Real Hypersurfaces in Hermitian Symmetric Space of Rank Two with Killing Shape Operator

Ji-Eun Jang, Young Jin Suh and Changhwa Woo

Abstract We have considered a new notion of the shape operator *A* satisfies Killing tensor type for real hypersurfaces *M* in complex Grassmannians of rank two. With this notion we prove the non-existence of real hypersurfaces *M* in complex Grassmannians of rank two.

1 Introduction

A typical example of Hermitian symmetry spaces of rank two is the complex twoplane Grassmannian $G_2(\mathbb{C}^{m+2})$ defined by the set of all complex two-dimensional linear subspaces in \mathbb{C}^{m+2} . Another one is complex hyperbolic two-plane Grassmannians $SU_{2,m}/S(U_2\cdot U_m)$ the set of all complex two-dimensional linear subspaces in indefinite complex Euclidean space \mathbb{C}_2^{m+2} .

Characterizing model spaces of real hypersurfaces under certain geometric conditions is one of our main interests in the classification theory in complex twoplane Grassmannians $G_2(\mathbb{C}^{m+2})$ or complex hyperbolic two-plane Grassmannians $SU_{2,m}/S(U_2\cdot U_m)$. In this paper, we use the same geometric condition on real hypersurfaces in $SU_{2,m}/S(U_2\cdot U_m)$ as used in $G_2(\mathbb{C}^{m+2})$ to compare the results.

 $G_2(\mathbb{C}^{m+2}) = SU_{2+m}/S(U_2 \cdot U_m)$ has a compact transitive group SU_{2+m} , however $SU_{2,m}/S(U_2 \cdot U_m)$ has a noncompact indefinite transitive group $SU_{2,m}$. This

J.-E. Jang

Department of Mathematics, Kyungpook National University, Daegu 702-701, Republic of Korea e-mail: ji-eun82@daum.net

Y.J. Suh Department of Mathematics and RIRCM, Kyungpook National University, Daegu 41566, Republic of Korea e-mail: yjsuh@knu.ac.kr

C. Woo (\boxtimes) Department of Mathematics Education, Woosuk University, Wanju, Jeonbuk 565-701, Republic of Korea e-mail: legalgwch@woosuk.ac.kr

© Springer Nature Singapore Pte Ltd. 2017 Y.J. Suh et al. (eds.), *Hermitian–Grassmannian Submanifolds*, Springer Proceedings in Mathematics & Statistics 203, DOI 10.1007/978-981-10-5556-0_23

distinction gives various remarkable results. Riemannian symmetric space $SU_{2,m}/S(U_2 \cdot U_m)$ has a remarkable geometrical structure. It is the unique noncompact, Kähler, irreducible, quaternionic Kähler manifold with negative curvature.

Suppose that *M* is a real hypersurface in $G_2(\mathbb{C}^{m+2})$ (or $SU_{2,m}/S(U_2 \cdot U_m)$). Let *N* be a local unit normal vector field of *M* in $G_2(\mathbb{C}^{m+2})$ (or $SU_{2,m}/S(U_2 \cdot U_m)$). Since $G_2(\mathbb{C}^{m+2})$ (or $SU_{2,m}/S(U_2 \cdot U_m)$) has the Kähler structure *J*, we may define the *Reeb vector field* $\xi = -JN$ and a one dimensional distribution $[\xi] = \mathscr{C}^{\perp}$ where \mathscr{C} denotes the orthogonal complement in T_xM , $x \in M$, of the Reeb vector field ξ . The Reeb vector field ξ is said to be *Hopf* if \mathscr{C} (or \mathscr{C}^{\perp}) is invariant under the shape operator *A* of *M*. The one dimensional foliation of *M* defined by the integral curves of ξ is said to be a *Hopf foliation* of *M*. We say that *M* is a *Hopf hypersurface* if and only if the Hopf foliation of M is totally geodesic. By the formulas in [\[5,](#page-8-0) Sect. 2], it can be checked that ξ is Hopf vector field if and only if *M* is Hopf hypersurface.

From the quaternionic Kähler structure \mathfrak{J} of $G_2(\mathbb{C}^{m+2})$ (or $SU_{2m}/S(U_2\cdot U_m)$), there naturally exist *almost contact 3-structure* vector fields $\xi_v = -J_v N$, $v = 1, 2, 3$. Put \mathscr{Q}^{\perp} = Span{ ξ_1, ξ_2, ξ_3 }. It is a 3-dimensional distribution in the tangent bundle *TM* of *M*. In addition, we denoted by $\mathscr Q$ the orthogonal complement of $\mathscr Q^{\perp}$ in *TM*. It is the quaternionic maximal subbundle of *TM*. Thus the tangent bundle of *M* is expressed as a direct sum of *Q* and *Q*⊥.

For any geodesic γ in *M*, a (1,1) type tensor field *T* is said to be Killing if $T\dot{\gamma}$ is parallel displacement along γ , which gives $0 = \nabla_{\dot{\gamma}}(T\dot{\gamma}) = (\nabla_{\dot{\gamma}}T)\dot{\gamma} + T(\nabla_{\dot{\gamma}}\dot{\gamma}) =$ $(\nabla_{\dot{\mathcal{V}}} T) \dot{\mathcal{V}}$. That is, $(\nabla_{\mathcal{Y}} T) X = 0$ for any tangent vector field *X* on *M* (see [\[2\]](#page-8-1)).

$$
0 = (\nabla_{X+Y} T)(X+Y)
$$

= (\nabla_X T)X + (\nabla_X T)Y + (\nabla_Y T)X + (\nabla_Y T)Y
= (\nabla_X T)Y + (\nabla_Y T)X

for any vector fields *X* and *Y* on *M*.

Thus the Killing tensor field *T* is equivalent to $(\nabla_X T)Y + (\nabla_Y T)X = 0$.

From this notion, in this paper we consider a new condition related to the shape operator *A* of *M* defined in such a way that

$$
(\nabla_X A)Y + (\nabla_Y A)X = 0 \tag{C-1}
$$

for any vector fields *X* on *M*.

In this paper, we give a complete classification for real hypersurfaces in \overline{M} $(G_2(\mathbb{C}^{m+2})$ or $SU_{2,m}/S(U_2\cdot U_m))$ with Killing shape operator. In order to do it, we consider a problem related to the following:

Theorem 1 *There does not exist any real hypersurface in M complex Grassmannians* ¯ *of rank two,* $m \geq 3$ *, with Killing shape operator.*

Since the notion of Killing tensor field is weaker than the notion of parallel tensor field, by Theorem [1,](#page-1-0) we naturally have the following:

quotation There does not exist any real hypersurface in $G_2(\mathbb{C}^{m+2})$, $m \geq 3$, with parallel shape operator (see $[11]$).

On the other hand, by virtue of Theorem 2 we can assert the following:

Corollary 1 *There does not exist any hypersurface in* $SU_{2,m}/S(U_2\cdot U_m)$ *,* $m\geq 3$ *with parallel shape operator.*

2 Riemannian Geometry of $G_2(\mathbb{C}^{m+2})$ and $SU_{2,m}/S(U_2 \cdot U_m)$

In this section we summarize basic material about $G_2(\mathbb{C}^{m+2})$, for details we refer to [\[5,](#page-8-0) [6](#page-8-3), [11](#page-8-2), [12\]](#page-8-4). The complex two-plane Grassmannian $G_2(\mathbb{C}^{m+2})$ is defined by the set of all complex two-dimensional linear subspaces in \mathbb{C}^{m+2} . The special unitary group $G = SU(m + 2)$ acts transitively on $G_2(\mathbb{C}^{m+2})$ with stabilizer isomorphic to $K =$ $S(U(2) \times U(m)) \subset G$. Then $G_2(\mathbb{C}^{m+2})$ can be identified with the homogeneous space G/K , which we equip with the unique analytic structure for which the natural action of *G* on $G_2(\mathbb{C}^{m+2})$ becomes analytic. Denote by g and ℓ the Lie algebra of *G* and *K*, respectively, and by m the orthogonal complement of ℓ in g with respect to the Cartan-Killing form *B* of \mathfrak{g} . Then $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$ is an $Ad(K)$ -invariant reductive decomposition of g. We put $o = eK$ and identify $T_oG_2(\mathbb{C}^{m+2})$ with m in the usual manner. Since *B* is negative definite on α , its negative restricted to $m \times m$ yields a positive definite inner product on m . By $Ad(K)$ -invariance of *B*, this inner product can be extended to a *G*-invariant Riemannian metric *g* on $G_2(\mathbb{C}^{m+2})$. In this way, $G_2(\mathbb{C}^{m+2})$ becomes a Riemannian homogeneous space, even a Riemannian symmetric space. For computational reasons we normalize *g* such that the maximal sectional curvature of $(G_2(\mathbb{C}^{m+2}), g)$ is eight.

When $m = 1$, $G_2(\mathbb{C}^3)$ is isometric to the two-dimensional complex projective space $\mathbb{C}P^2$ with constant holomorphic sectional curvature eight.

When $m = 2$, we note that the isomorphism $Spin(6) \simeq SU(4)$ yields an isometry between $G_2(\mathbb{C}^4)$ and the real Grassmann manifold $G_2^+(\mathbb{R}^6)$ of oriented twodimensional linear subspaces in \mathbb{R}^6 . In this paper, we will assume $m \geq 3$.

The Lie algebra ℓ of *K* has the direct sum decomposition $\ell = \frac{\epsilon u}{m} \oplus \frac{\epsilon u}{2} \oplus \mathfrak{R}$, where \Re denotes the center of \mathfrak{k} . Viewing \mathfrak{k} as the holonomy algebra of $G_2(\mathbb{C}^{m+2})$, the center \Re induces a Kähler structure J and the $\mathfrak{su}(2)$ -part a quaternionic Kähler the center \Re induces a Kähler structure *J* and the $\mathfrak{su}(2)$ -part a quaternionic Kähler
structure \Im on $G_2(\mathbb{C}^{m+2})$. If *I* is any almost Hermitian structure in \Im then *II* – structure $\mathfrak J$ on $G_2(\mathbb C^{m+2})$. If J_ν is any almost Hermitian structure in $\mathfrak J$, then $JJ_\nu = I$, and JI is a symmetric endomorphism with $(II)^2 - I$ and $tr(IJ) = 0$ for $J_{\nu}J$, and JJ_{ν} is a symmetric endomorphism with $(JJ_{\nu})^2 = I$ and tr $(JJ_{\nu}) = 0$ for $\nu = 1, 2, 3.$

A canonical local basis $\{J_1, J_2, J_3\}$ of $\mathfrak J$ consists of three local almost Hermitian structures J_ν in $\mathfrak J$ such that $J_\nu J_{\nu+1} = J_{\nu+2} = -J_{\nu+1} J_\nu$, where the index ν is taken modulo three. Since \tilde{J} is parallel with respect to the Riemannian connection \overline{V} of $(G_2(\mathbb{C}^{m+2}), g)$, there exist for any canonical local basis $\{J_1, J_2, J_3\}$ of $\mathfrak J$ three local one-forms q_1 , q_2 , q_3 such that

$$
\bar{\nabla}_X J_{\nu} = q_{\nu+2}(X) J_{\nu+1} - q_{\nu+1}(X) J_{\nu+2}
$$

for all vector fields *X* on $G_2(\mathbb{C}^{m+2})$.

The Riemannian curvature tensor \overline{R} of $G_2(\mathbb{C}^{m+2})$ is locally given by

$$
\tilde{R}(X, Y)Z = g(Y, Z)X - g(X, Z)Y + g(JY, Z)JX \n- g(JX, Z)JY - 2g(JX, Y)JZ \n+ \sum_{\nu=1}^{3} \left\{ g(J_{\nu}Y, Z)J_{\nu}X - g(J_{\nu}X, Z)J_{\nu}Y - 2g(J_{\nu}X, Y)J_{\nu}Z \right\} (2.1) \n+ \sum_{\nu=1}^{3} \left\{ g(J_{\nu}JY, Z)J_{\nu}JX - g(J_{\nu}JX, Z)J_{\nu}JY \right\},
$$

where $\{J_1, J_2, J_3\}$ denotes a canonical local basis of \mathfrak{J} .

Now we summarize basic material about complex hyperbolic two-plane Grassmann manifolds $SU_{2m}/S(U_2 \cdot U_m)$, for details we refer to [\[14](#page-8-5), [16](#page-8-6)].

The Riemannian symmetric space $SU_{2,m}/S(U_2 \cdot U_m)$, which consists of all complex two-dimensional linear subspaces in indefinite complex Euclidean space \mathbb{C}_2^{m+2} , is a connected, simply connected, irreducible Riemannian symmetric space of noncompact type and with rank 2. Let $G = SU_{2,m}$ and $K = S(U_2 \cdot U_m)$, and denote by g and ℓ the corresponding Lie algebra of the Lie group *G* and *K*, respectively. Let *B* be the Killing form of g and denote by n the orthogonal complement of ℓ in g with be the Killing form of g and denote by p the orthogonal complement of ℓ in g with respect to *B*. The resulting decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ is a Cartan decomposition of g. The Cartan involution $\theta \in Aut(\mathfrak{g})$ on $\mathfrak{su}_{2,m}$ is given by $\theta(A) = I_{2,m} A I_{2,m}$, where

$$
I_{2,m} = \begin{pmatrix} -I_2 & 0_{2,m} \\ 0_{m,2} & I_m \end{pmatrix}
$$

 I_2 (resp., I_m) denotes the identity 2 × 2-matrix (resp., $m \times m$ -matrix). Then < *X*, $Y \geq -B(X, \theta Y)$ becomes a positive definite $Ad(K)$ -invariant inner product on g. Its restriction to p induces a metric *g* on $SU_{2m}/S(U_2 \cdot U_m)$, which is also known as the Killing metric on $SU_{2,m}/S(U_2 \cdot U_m)$. Throughout this paper we consider $SU_{2,m}/S(U_2 \cdot U_m)$ together with this particular Riemannian metric *g*.

The Lie algebra $\mathfrak k$ decomposes orthogonally into $\mathfrak k = \mathfrak s \mathfrak u_2 \oplus \mathfrak s \mathfrak u_m \oplus \mathfrak u_1$, where $\mathfrak u_1$ is the one-dimensional center of ℓ . The adjoint action of \mathfrak{su}_2 on p induces the quaternionic Kähler structure $\mathfrak J$ on $SU_{2,m}/S(U_2\cdot U_m)$, and the adjoint action of

$$
Z = \begin{pmatrix} \frac{mi}{m+2}I_2 & 0_{2,m} \\ 0_{m,2} & \frac{-2i}{m+2}I_m \end{pmatrix} \in \mathfrak{u}_1
$$

induces the Kähler structure *J* on $SU_{2,m}/S(U_2\cdot U_m)$. By construction, *J* commutes with each almost Hermitian structure J_ν in $\mathfrak J$ for $\nu = 1, 2, 3$. Recall that a canonical local basis $\{J_1, J_2, J_3\}$ of a quaternionic Kähler structure $\mathfrak J$ consists of three almost Hermitian structures J_1 , J_2 , J_3 in \tilde{J} such that $J_\nu J_{\nu+1} = J_{\nu+2} = -J_{\nu+1} J_\nu$, where the index ν is to be taken modulo 3. The tensor field JJ_{ν} , which is locally defined on $SU_{2,m}/S(U_2\cdot U_m)$, is self-adjoint and satisfies $(JJ_\nu)^2 = I$ and $tr(JJ_\nu) = 0$, where *I* is the identity transformation. For a nonzero tangent vector *X* we define $\mathbb{R}X =$ $\{ \lambda X | \lambda \in \mathbb{R} \}$, $\mathbb{C}X = \mathbb{R}X \oplus \mathbb{R}JX$, and $\mathbb{H}X = \mathbb{R}X \oplus \mathfrak{J}X$.

We identify the tangent space $T_o SU_{2,m}/S(U_2 \cdot U_m)$ of $SU_{2,m}/S(U_2 \cdot U_m)$ at *o* with p in the usual way. Let a be a maximal abelian subspace of p. Since $SU_{2,m}/S(U_2 \cdot U_m)$ has rank 2, the dimension of any such subspace is two. Every nonzero tangent vector $X \in T_oSU_{2,m}/S(U_2\cdot U_m) \cong \mathfrak{p}$ is contained in some maximal abelian subspace of \mathfrak{p} . Generically this subspace is uniquely determined by *X*, in which case *X* is called regular. If there exists more than one maximal abelian subspaces of p containing *^X*, then *X* is called singular. There is a simple and useful characterization of the singular tangent vectors: A nonzero tangent vector $X \in \mathfrak{p}$ is singular if and only if $JX \in \mathfrak{J}X$ or $JX \perp \mathfrak{J} X$.

Up to scaling there exists a unique SU_{2m} -invariant Riemannian metric *g* on complex hyperbolic two-plane Grassmannians $SU_{2,m}/S(U_2\cdot U_m)$. Equipped with this metric $SU_{2,m}/S(U_2 \cdot U_m)$ is a Riemannian symmetric space of rank 2 which is both Kähler and quaternionic Kähler. For computational reasons we normalize *g* such that the minimal sectional curvature of $(SU_{2,m}/S(U_2 \cdot U_m), g)$ is −4. The sectional curvature *K* of the noncompact symmetric space $SU_{2m}/S(U_2\cdot U_m)$ equipped with the Killing metric *g* is bounded by −4≤*K*≤0. The sectional curvature −4 is obtained for all 2-planes $\mathbb{C}X$ when *X* is a non-zero vector with $JX \in \mathfrak{J}X$.

When $m = 1$, $G_2^*(\mathbb{C}^3) = SU_{1,2}/S(U_1 \cdot U_2)$ is isometric to the two-dimensional complex hyperbolic space $\mathbb{C}H^2$ with constant holomorphic sectional curvature -4 .

When $m = 2$, we note that the isomorphism $SO(4, 2) \simeq SU_{2,2}$ yields an isometry between $G_2^*(\mathbb{C}^4) = SU_{2,2}/S(U_2 \cdot U_2)$ and the indefinite real Grassmann manifold *G*^{*}₂(ℝ⁶₂) of oriented two-dimensional linear subspaces of an indefinite Euclidean space \mathbb{R}_2^6 . For this reason we assume $m \geq 3$ from now on, although many of the subsequent results also hold for $m = 1, 2$.

Hereafter *X*,*Y* and *Z* always stand for any tangent vector fields on *M*.

The Riemannian curvature tensor *R* of $SU_{2,m}/S(U_2 \cdot U_m)$ is locally given by

$$
\bar{R}(X, Y)Z = -\frac{1}{2} \Big[g(Y, Z)X - g(X, Z)Y + g(JY, Z)JX \n- g(JX, Z)JY - 2g(JX, Y)JZ \n+ \sum_{\nu=1}^{3} \{g(J_{\nu}Y, Z)J_{\nu}X - g(J_{\nu}X, Z)J_{\nu}Y \n- 2g(J_{\nu}X, Y)J_{\nu}Z\} \n+ \sum_{\nu=1}^{3} \{g(J_{\nu}JY, Z)J_{\nu}JX - g(J_{\nu}JX, Z)J_{\nu}JY\}\Big],
$$
\n(2.2)

where $\{J_1, J_2, J_3\}$ is any canonical local basis of \mathfrak{J} .

3 Basic Formulas

In this section we derive some basic formulas and the Codazzi equation for a real hypersurface in $G_2(\mathbb{C}^{m+2})$ (or $SU_{2m}/S(U_2\cdot U_m)$) (see [\[3](#page-8-7), [5,](#page-8-0) [7,](#page-8-8) [10](#page-8-9)[–12](#page-8-4), [18](#page-9-0)]).

Let *M* be a real hypersurface in $G_2(\mathbb{C}^{m+2})$ (or $SU_{2,m}/S(U_2 \cdot U_m)$). The induced Riemannian metric on *M* will also be denoted by *g*, and ∇ denotes the Riemannian connection of (M, g) . Let N be a local unit normal vector field of M and A the shape operator of *M* with respect to *N*.

Now let us put

$$
JX = \phi X + \eta(X)N, \quad J_{\nu}X = \phi_{\nu}X + \eta_{\nu}(X)N \tag{3.1}
$$

for any tangent vector field *X* of a real hypersurface *M* in $G_2(\mathbb{C}^{m+2})$, where *N* denotes a unit normal vector field of *M* in $G_2(\mathbb{C}^{m+2})$. From the Kähler structure *J* of $G_2(\mathbb{C}^{m+2})$ (or $SU_{2,m}/S(U_2\cdot U_m)$) there exists an almost contact metric structure (ϕ, ξ, η, g) induced on *M* in such a way that

$$
\phi^{2} X = -X + \eta(X)\xi, \quad \eta(\xi) = 1, \quad \phi\xi = 0, \quad \eta(X) = g(X, \xi) \tag{3.2}
$$

for any vector field *X* on *M*. Furthermore, let $\{J_1, J_2, J_3\}$ be a canonical local basis of \mathfrak{J} . Then the quaternionic Kähler structure J_{ν} of $G_2(\mathbb{C}^{m+2})$ (or $SU_{2,m}/S(U_2\cdot U_m)$), together with the condition $J_v J_{v+1} = J_{v+2} = -J_{v+1} J_v$ in Sect. [1,](#page-0-0) induces an almost contact metric 3-structure (ϕ_v , ξ_v , η_v , *g*) on *M* as follows:

$$
\phi_{\nu}^{2}X = -X + \eta_{\nu}(X)\xi_{\nu}, \quad \eta_{\nu}(\xi_{\nu}) = 1, \quad \phi_{\nu}\xi_{\nu} = 0, \n\phi_{\nu+1}\xi_{\nu} = -\xi_{\nu+2}, \quad \phi_{\nu}\xi_{\nu+1} = \xi_{\nu+2}, \n\phi_{\nu}\phi_{\nu+1}X = \phi_{\nu+2}X + \eta_{\nu+1}(X)\xi_{\nu}, \n\phi_{\nu+1}\phi_{\nu}X = -\phi_{\nu+2}X + \eta_{\nu}(X)\xi_{\nu+1}
$$
\n(3.3)

for any vector field *X* tangent to *M*. Moreover, from the commuting property of $J_v J = J J_v$, $v = 1, 2, 3$ $v = 1, 2, 3$ $v = 1, 2, 3$ in Sect. 2 and [\(3.1\)](#page-5-0), the relation between these two almost contact metric structures (ϕ , ξ , η , g) and (ϕ _v, ξ _v, η _v, g), $\nu = 1, 2, 3$, can be given by

$$
\phi \phi_v X = \phi_v \phi X + \eta_v(X)\xi - \eta(X)\xi_v,
$$

\n
$$
\eta_v(\phi X) = \eta(\phi_v X), \quad \phi \xi_v = \phi_v \xi.
$$
\n(3.4)

On the other hand, from the parallelism of Kähler structure *J*, that is, $\overline{V}J=0$ and the quaternionic Kähler structure \mathfrak{J} , together with Gauss and Weingarten formulas it follows that

$$
(\nabla_X \phi)Y = \eta(Y)AX - g(AX, Y)\xi, \quad \nabla_X \xi = \phi AX,\tag{3.5}
$$

$$
\nabla_X \xi_\nu = q_{\nu+2}(X)\xi_{\nu+1} - q_{\nu+1}(X)\xi_{\nu+2} + \phi_\nu AX,\tag{3.6}
$$

Real Hypersurfaces in Hermitian Symmetric Space of Rank Two … 279

$$
(\nabla_X \phi_\nu)Y = -q_{\nu+1}(X)\phi_{\nu+2}Y + q_{\nu+2}(X)\phi_{\nu+1}Y + \eta_\nu(Y)AX - g(AX, Y)\xi_\nu.
$$
\n(3.7)

Combining these formulas, we find the following:

$$
\nabla_X(\phi_v \xi) = \nabla_X(\phi \xi_v)
$$

\n
$$
= (\nabla_X \phi) \xi_v + \phi(\nabla_X \xi_v)
$$

\n
$$
= q_{v+2}(X)\phi_{v+1}\xi - q_{v+1}(X)\phi_{v+2}\xi + \phi_v \phi AX
$$

\n
$$
- g(AX, \xi)\xi_v + \eta(\xi_v)AX.
$$
\n(3.8)

Using the above expression [\(2.1\)](#page-3-0) for the curvature tensor \bar{R} of $G_2(\mathbb{C}^{m+2})$ (or $SU_{2,m}/S(U_2 \cdot U_m)$, the equations of Codazzi is given by

Using the above expression (2.1) for the curvature tensor R of
$$
G_2(\mathbb{C}^{m+2})
$$
 (or
\n $I_{2,m}/S(U_2 \cdot U_m)$), the equations of Codazzi is given by
\n
$$
k\{(\nabla_X A)Y - (\nabla_Y A)X\} = \eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi
$$
\n
$$
+ \sum_{\nu=1}^3 \left\{\eta_{\nu}(X)\phi_{\nu}Y - \eta_{\nu}(Y)\phi_{\nu}X - 2g(\phi_{\nu}X, Y)\xi_{\nu}\right\}
$$
\n
$$
+ \sum_{\nu=1}^3 \left\{\eta_{\nu}(\phi X)\phi_{\nu}\phi Y - \eta_{\nu}(\phi Y)\phi_{\nu}\phi X\right\}
$$
\n
$$
+ \sum_{\nu=1}^3 \left\{\eta(X)\eta_{\nu}(\phi Y) - \eta(Y)\eta_{\nu}(\phi X)\right\}\xi_{\nu},
$$
\n(3.9)

where in the case of $G_2(\mathbb{C}^{m+2})$ (resp., $SU_{2,m}/S(U_2 \cdot U_m)$), the constant $k = 1$ and $SU_{2,m}/S(U_2\cdot U_m)$ (resp., $k = -2$).

4 Proof of Theorems

In this section, we classify real hypersurfaces in \overline{M} ($G_2(\mathbb{C}^{m+2})$ or $SU_{2,m}/S(U_2 \cdot U_m)$) whose shape operator has Killing tensor field.

From $(C-1)$ and the Codazzi equation (3.9) , we have

e shape operator has Killing tensor field.
\nom (C-1) and the Codazzi equation (3.9), we have
\n
$$
-2k(\nabla_Y A)X = \eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi
$$
\n
$$
+ \sum_{\nu=1}^3 \left\{ \eta_{\nu}(X)\phi_{\nu}Y - \eta_{\nu}(Y)\phi_{\nu}X - 2g(\phi_{\nu}X, Y)\xi_{\nu} \right\}
$$
\n
$$
+ \sum_{\nu=1}^3 \left\{ \eta_{\nu}(\phi X)\phi_{\nu}\phi Y - \eta_{\nu}(\phi Y)\phi_{\nu}\phi X \right\}
$$
\n
$$
+ \sum_{\nu=1}^3 \left\{ \eta(X)\eta_{\nu}(\phi Y) - \eta(Y)\eta_{\nu}(\phi X) \right\} \xi_{\nu}
$$
\n(4.1)

Putting $Y = \xi$ into [\(4.1\)](#page-6-1),

$$
\text{J.-E. Jang et al.}
$$
\n
$$
\text{utility } Y = \xi \text{ into (4.1)},
$$
\n
$$
-2k(\nabla_{\xi}A)X = -\phi X + \sum_{\nu=1}^{3} \left\{ \eta_{\nu}(X)\phi_{\nu}\xi - \eta_{\nu}(\xi)\phi_{\nu}X - 3\eta_{\nu}(\phi X)\xi_{\nu} \right\}. \tag{4.2}
$$

Lemma 1 Let M be a real hypersurface in complex Grassmannians of rank two \overline{M} , *m* ≥ 3 *with Killing shape operator. Then the Reeb vector field* ξ *belongs to either the distribution* $\mathscr Q$ *or the distribution* $\mathscr Q^{\perp}$ *.*

Proof Without loss of generality, ξ is written as

$$
\xi = \eta(X_0)X_0 + \eta(\xi_1)\xi_1, \tag{**}
$$

where X_0 (resp., ξ_1) is a unit vector in \mathscr{Q} (resp., \mathscr{Q}^{\perp}).

Taking the inner product of (4.2) with ξ , we have

is a unit vector in
$$
\mathcal{Q}
$$
 (resp., \mathcal{Q}^{\perp}).
product of (4.2) with ξ , we have

$$
-2kg((\nabla_{\xi}A)X, \xi) = -4 \sum_{\nu=1}^{3} \eta_{\nu}(\xi) \eta_{\nu}(\phi X).
$$
 (4.3)

Since $(\nabla_{\xi} A)$ is self-adjoint, it follows from (C-1) that $-4\sum_{v=1}^{3} \eta_{v}(\xi)\eta_{v}(\phi X) =$ 0. By putting $X = \phi X_0$ and using (**), we have $-4\eta_1^2(\xi)\eta(X_0) = 0$.

Thus we have only two cases: $\xi \in \mathcal{Q}^{\perp}$ or $\xi \in \mathcal{Q}$.

• **Case 1.** $\xi \in \mathcal{Q}^{\perp}$.

Without loss of generality, we may put $\xi = \xi_1 \in \mathcal{Q}^{\perp}$. Then [\(4.2\)](#page-7-0) is reduced into

$$
-2k(\nabla_{\xi}A)X = -\phi X - \phi_1 X + 2\eta_3(X)\xi_2 - 2\eta_2(X)\xi_3. \tag{4.4}
$$

The symmetric endomorphism of [\(4.4\)](#page-7-1) with respect to the metric *g*, we have

$$
-2k(\nabla_{\xi}A)X = \phi X + \phi_1 X - 2\eta_3(X)\xi_2 + 2\eta_2(X)\xi_3. \tag{4.5}
$$

Combining [\(4.4\)](#page-7-1) with [\(4.5\)](#page-7-2), we have $\phi X + \phi_1 X - 2\eta_3(X)\xi_2 + 2\eta_2(X)\xi_3 = 0$. By putting $X = \xi_3$ into the equation above, we have $2\xi_3 = 0$. This is a contradiction.

Thus, there does not exist any hypersurface in *M*, $m \geq 3$, with Killing shape operator and $\xi \in \mathcal{Q}^{\perp}$ everywhere.

• **Case 2.** ξ ∈ *Q*.

Equation (4.2) becomes

$$
\equiv \mathcal{Q}.
$$
\n4.2) becomes\n
$$
-2k(\nabla_{\xi}A)X = -\phi X + \sum_{\nu=1}^{3} \left\{ \eta_{\nu}(X)\phi_{\nu}\xi - 3\eta_{\nu}(\phi X)\xi_{\nu} \right\}.
$$
\n(4.6)

The symmetric endomorphism of [\(4.6\)](#page-7-3) with respect to the metric *g*, we have

access in Hermitian Symmetric Space of Rank Two ...
281
metric endomorphism of (4.6) with respect to the metric *g*, we have

$$
-2k(\nabla_{\xi}A)X = \phi X + \sum_{\nu=1}^{3} \{-\eta_{\nu}(\phi X)\xi_{\nu} + 3\eta_{\nu}(X)\phi\xi_{\nu}\}.
$$
 (4.7)

Combining [\(4.6\)](#page-7-3) with [\(4.7\)](#page-8-10), we have $2\phi X + 2\sum_{v=1}^{3} \{\eta_v(X)\phi \xi_v + \eta_v(\phi X)\xi_v\} =$ 0. By putting $X = \xi_1$ into above equation, we have $4\phi \xi_1 = 0$. This is a contradiction, too. Thus, there does not exist any hypersurface in \overline{M} , $m > 3$, with Killing shape operator and $\xi \in \mathcal{Q}$ everywhere.

Accordingly, we complete the proof of Theorem [1](#page-1-0) in the introduction.

Usually, the notion of parallel is stronger than the notion of Killing, we also have a non-existence of parallel hypersurface in $SU_{2,m}/S(U_2\cdot U_m)$, $m \geq 3$. Then Corollary [1](#page-2-1) in the introduction is naturally proved.

References

- 1. Alekseevskii, D.V.: Compact quaternion spaces. Func. Anal. Appl. **2**, 106–114 (1966)
- 2. Blair, D.E.: Riemannian geometry of contact and symplectic manifolds. Springer Science and Business Media (2010)
- 3. Jeong, I., Machado, C., Pérez, J.D., Suh, Y.J.: Real hypersurfaces in complex two-plane Grassmannians with \mathscr{D}^\perp -parallel structure Jacobi operator. Int. J. Math. **22**(5), 655–673 (2011)
- 4. Lee, H., Choi, Y.S., Woo, C.: Hopf hypersurfaces in complex two-plane Grassmannians with Reeb parallel shape operator. Bull. Malaysian Math. Soc. **38**(3), 617–634 (2015)
- 5. Lee, H., Suh, Y.J.: Real hypersurfaces of type *B* in complex two-plane Grassmannians related to the Reeb vector. Bull. Korean Math. Soc. **47**(3), 551–561 (2010)
- 6. Lee, H., Suh, Y.J., Woo, C.: Real hypersurfaces with commuting Jacobi operators in complex two-plane Grassmannians. Houston J. Math. **40**(3), 751–766 (2014)
- 7. Pérez, J.D., Suh, Y.J.: The Ricci tensor of real hypersurfaces in complex two-plane Grassmannians. J. Korean Math. Soc. **44**, 211–235 (2007)
- 8. Pérez, J.D., Suh, Y.J., Woo, C.: Real hypersurfaces in complex two-plane Grassmannians with GTW Harmonic curvature. Canad. Math. Bull. **58**(4), 835–845 (2015)
- 9. Pérez, J.D., Suh, Y.J., Woo, C.: Real hypersurfaces in complex two-plane Grassmannians whose shape operator is recurrent for the generalized Tanaka-Webster connection. Turkish J. Math. **39**(3), 313–321 (2015)
- 10. Pérez, J.D., Suh, Y.J., Woo, C.: Real Hypersurfaces in complex hyperbolic two-plane Grassmannians with commuting shape operator. Open Math. **13**(1), 493–501 (2015)
- 11. Suh, Y.J.: Real hypersurfaces in complex two-plane Grassmannians with parallel shape operator. Bull. Austral. Math. Soc. **68**, 493–502 (2003)
- 12. Suh, Y.J.: Real hypersurfaces in complex two-plane Grassmannians with parallel shape operator II. J. Korean Math. Soc. **41**, 535–565 (2004)
- 13. Suh, Y.J.: Real hypersurfaces in complex two-plane Grassmannians with parallel Ricci tensor. Proc. Royal Soc. Edinb. A. **142**, 1309–1324 (2012)
- 14. Suh, Y.J.: Hypersurfaces with isometric Reeb flow in complex hyperbolic two-plane Grassmannians. Adv. Appl. Math. **50**, 645–659 (2013)
- 15. Suh, Y.J.: Real hypersurfaces in complex two-plane Grassmannians with harmonic curvature. J. Math. Pures Appl. **100**, 16–33 (2013)
- 16. Suh, Y.J.: Real hypersurfaces in complex hyperbolic two-plane Grassmannians with Reeb vector field. Adv. Appl. Math. **55**, 131–145 (2014)
- 17. Suh, Y.J.: Real hypersurfaces in complex hyperbolic two-plane Grassmannians with commuting Ricci tensor. Int. J. Math., World Sci. Publ. **26**, 1550008 (26 pages) (2015)
- 18. Suh, Y.J., Woo, C.: Real Hypersurfaces in complex hyperbolic two-plane Grassmannians with parallel Ricci tensor. Math. Nachr. **287**, 1524–1529 (2014)