Real Hypersurfaces in Hermitian Symmetric
Space of Rank Two with Killing Shape
Operator

Ji-Eun Jang, Young Jin Suh and Changhwa Woo

Abstract We have considered a new notion of the shape operator A satisfies Killing
tensor type for real hypersurfaces M in complex Grassmannians of rank two.
With this notion we prove the non-existence of real hypersurfaces M in complex
Grassmannians of rank two.

1 Introduction

A typical example of Hermitian symmetry spaces of rank two is the complex two-
plane Grassmannian G,(C"*?) defined by the set of all complex two-dimensional
linear subspaces in C”*2. Another one is complex hyperbolic two-plane
Grassmannians SU, ,, /S (U-U,,) the set of all complex two-dimensional linear sub-
spaces in indefinite complex Euclidean space C'z'”z.

Characterizing model spaces of real hypersurfaces under certain geometric con-
ditions is one of our main interests in the classification theory in complex two-
plane Grassmannians G,(C"*2) or complex hyperbolic two-plane Grassmannians
SU;,m/S(Uz-U,y,). In this paper, we use the same geometric condition on real hyper-
surfaces in SU, ,,/S(Uz-U,y,) as used in G,(C"*2) to compare the results.

G>(C"™?) = SU»4,, /S(U,-Uy,) has a compact transitive group SUj.,, how-
ever SU,,,/S(Uy-U,,) has a noncompact indefinite transitive group SU, ,. This
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distinction gives various remarkable results. Riemannian symmetric space
SU, m/S(Uz-U,,) has a remarkable geometrical structure. It is the unique noncom-
pact, Kéhler, irreducible, quaternionic Kéhler manifold with negative curvature.

Suppose that M is a real hypersurface in GL(C"2) (or S Uy m/S(Us-Uy)). Let N
be a local unit normal vector field of M in G,(C™*?) (or SU».m/S(U>-Uy)). Since
G, (C™2)(or S U,/ S(U,-Uy)) has the Kihler structure J, we may define the Reeb
vector field ¢ = —JN and a one dimensional distribution [£] = €+ where € denotes
the orthogonal complement in 7, M, x € M, of the Reeb vector field £. The Reeb
vector field & is said to be Hopf if € (or €*) is invariant under the shape operator
A of M. The one dimensional foliation of M defined by the integral curves of & is
said to be a Hopf foliation of M. We say that M is a Hopf hypersurface if and only
if the Hopf foliation of M is totally geodesic. By the formulas in [5, Sect. 2], it can
be checked that & is Hopf vector field if and only if M is Hopf hypersurface.

From the quaternionic Kihler structure J of G,(C"*?) (or SUs.,,/S(Us-Up)),
there naturally exist almost contact 3-structure vector fields £, = —J,N,v = 1,2, 3.
Put 2% = Span{&,, &, &}. It is a 3-dimensional distribution in the tangent bundle
TM of M. In addition, we denoted by 2 the orthogonal complement of 2+ in TM.
It is the quaternionic maximal subbundle of 7M. Thus the tangent bundle of M is
expressed as a direct sum of 2 and 2.

For any geodesic y in M, a (1,1) type tensor field T is said to be Killing if 7y is
parallel displacement along y, which gives 0 = V,(Ty) = (V; T)y + T(V,y) =
(V,T)y. Thatis, (VxT)X = 0O for any tangent vector field X on M (see [2]).

0=VxuD)(X+Y)
= (VxT)X + (VxT)Y + (VyT)X + (VyT)Y
— (VxT)Y + (VyTHX

for any vector fields X and Y on M.

Thus the Killing tensor field 7 is equivalent to (VxT)Y + (VyT)X = 0.

From this notion, in this paper we consider a new condition related to the shape
operator A of M defined in such a way that

(VxA)Y + (VyA)X =0 (C-1)

for any vector fields X on M.

In this paper, we give a complete classification for real hypersurfaces in M
(GL(C"+2) or SU.m/S(Uy-Uy)) with Killing shape operator. In order to do it, we
consider a problem related to the following:

Theorem 1 There does not exist any real hypersurface in M complex Grassmannians
of rank two, m > 3, with Killing shape operator.

Since the notion of Killing tensor field is weaker than the notion of parallel tensor
field, by Theorem 1, we naturally have the following:
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quotation There does not exist any real hypersurface in G,(C"*2), m > 3,
with parallel shape operator (see [11]).
On the other hand, by virtue of Theorem 2 we can assert the following:

Corollary 1 There does not exist any hypersurface in SU; ,,, / S(Up-U,,), m > 3 with
parallel shape operator.

2 Riemannian Geometry of G,(C™*?)

In this section we summarize basic material about G,(C”*?2), for details we refer to
[5, 6, 11, 12]. The complex two-plane Grassmannian G,(C"*2) is defined by the set
of all complex two-dimensional linear subspaces in C"*+2. The special unitary group
G = SU(m + 2) acts transitively on G,(C™*2) with stabilizer isomorphic to K =
S(U(2) x U(m)) C G. Then G,(C"™*?) can be identified with the homogeneous
space G/K, which we equip with the unique analytic structure for which the natural
action of G on G,(C™*?) becomes analytic. Denote by g and & the Lie algebra
of G and K, respectively, and by m the orthogonal complement of € in g with
respect to the Cartan-Killing form B of g. Then g = £ & m is an Ad(K)-invariant
reductive decomposition of g. We put 0 = ¢K and identify 7,G,(C"*?) with m in
the usual manner. Since B is negative definite on g, its negative restricted to m x m
yields a positive definite inner product on m. By Ad(K)-invariance of B, this inner
product can be extended to a G-invariant Riemannian metric g on G,(C"*+?). In this
way, G»(C"*?) becomes a Riemannian homogeneous space, even a Riemannian
symmetric space. For computational reasons we normalize g such that the maximal
sectional curvature of (G,(C"*?), g) is eight.

When m = 1, G,(C?) is isometric to the two-dimensional complex projective
space CP? with constant holomorphic sectional curvature eight.

When m = 2, we note that the isomorphism Spin(6) >~ SU (4) yields an isom-
etry between G,(C*) and the real Grassmann manifold G2+ (R%) of oriented two-
dimensional linear subspaces in RO. In this paper, we will assume m>3.

The Lie algebra £ of K has the direct sum decomposition ¢ = su(m) @ su(2) & *R,
where R denotes the center of €. Viewing £ as the holonomy algebra of G,(C"*?),
the center R induces a Kihler structure J and the su(2)-part a quaternionic Kéhler
structure J on G,(C"*2). If J, is any almost Hermitian structure in JJ, then J J, =
J,J, and JJ, is a symmetric endomorphism with (JJ,)> = I and tr(J J,) = 0 for
v=1,2,3.

A canonical local basis {Jy, J», J3} of J consists of three local almost Hermitian
structures J, in J such that J,J, 1 = J,1» = —J,41J,, where the index v is taken
modulo three. Since J is parallel with respect to the Riemannian connection V of
(G (Cm+2), g), there exist for any canonical local basis {J;, J», J3} of J three local
one-forms ¢q1, g2, g3 such that
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Vxdy = qui2(X)Jvi1 — o1 (X)Jyi2

for all vector fields X on G,(C™"*2). }
The Riemannian curvature tensor R of G,(C"*?) is locally given by

RX,V)VZ=g(Y,2)X —g(X,2)Y + g(JY, Z)JX
—g(JX,2)JY —2g(JX,Y)JZ

3
+ 2 gAY DX — gX, DAY = 20(LX. 1Z) @)

v=1

3
+ > {g(JVJY, 2)I,IX —g(J,JX, Z)JVJY},
v=1

where {J;, J», J3} denotes a canonical local basis of J.

Now we summarize basic material about complex hyperbolic two-plane
Grassmann manifolds SU, ,,,/S(U,-U,,), for details we refer to [14, 16].

The Riemannian symmetric space SU, ,,/S(U,-U,,), which consists of all com-
plex two-dimensional linear subspaces in indefinite complex Euclidean space C}' 2
is a connected, simply connected, irreducible Riemannian symmetric space of non-
compact type and with rank 2. Let G = SU, ,, and K = S(U»-U,,), and denote by g
and ¢ the corresponding Lie algebra of the Lie group G and K, respectively. Let B
be the Killing form of g and denote by p the orthogonal complement of £ in g with
respect to B. The resulting decomposition g = € & p is a Cartan decomposition of g.
The Cartan involution 8 € Aut(g) on su, ,, is given by 0(A) = I, ,, Al ,,, where

_12 02,m
I2,m - (Om,Z Im )

I, (resp., I,) denotes the identity 2 x 2-matrix (resp., m x m-matrix). Then <
X,Y >= —B(X,0Y) becomes a positive definite Ad(K)-invariant inner product
on g. Its restriction to p induces a metric g on SU,,,/S(U,-U,,), which is also
known as the Killing metric on SU; ,,/S(Uz-U,,). Throughout this paper we con-
sider SU, ,,/S(U,-U,,) together with this particular Riemannian metric g.

The Lie algebra £ decomposes orthogonally into £ = su, @ su,, @ u;, where u;

is the one-dimensional center of €. The adjoint action of su, on p induces the quater-
nionic Kihler structure J on SU, ,, /S(U,-U,,), and the adjoint action of

7 = (’:1212 Oz ) €y

—2i
On2 s I

induces the Kéhler structure J on SU, ,,/S(U,-U,,). By construction, J commutes
with each almost Hermitian structure J, in J for v = 1, 2, 3. Recall that a canonical
local basis {J;, J», J3} of a quaternionic Kéhler structure Jj consists of three almost
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Hermitian structures J;, J, J3 in J such that J,J, 1 = J,40 = —J,+1J,, where the
index v is to be taken modulo 3. The tensor field JJ,, which is locally defined on
SUs. . /S(Uy-Uy,), is self-adjoint and satisfies (JJ,)> = I and tr(J J,) = 0, where
I is the identity transformation. For a nonzero tangent vector X we define RX =
{AX|AeR},CX =RX®RJX,and HX = RX & JX.

We identify the tangent space T,SU, ,,/S(U,-Uy,) of SU,,,,,/S(U>-Uy,,) at o with
p in the usual way. Let a be a maximal abelian subspace of p. Since SU; ,, /S (U»-U,y,)
has rank 2, the dimension of any such subspace is two. Every nonzero tangent vector
X € T,85U2,,/S(Uy-Uy,) = p is contained in some maximal abelian subspace of p.
Generically this subspace is uniquely determined by X, in which case X is called
regular. If there exists more than one maximal abelian subspaces of p containing X,
then X is called singular. There is a simple and useful characterization of the singular
tangent vectors: A nonzero tangent vector X € p is singular if and only if /X € JX
orJX 1 JX.

Up to scaling there exists a unique SU, ,-invariant Riemannian metric g on
complex hyperbolic two-plane Grassmannians SU, ,, /S (U»-U,,). Equipped with this
metric SU3,,/S(Uy-U,,) is a Riemannian symmetric space of rank 2 which is both
Kihler and quaternionic Kéhler. For computational reasons we normalize g such
that the minimal sectional curvature of (SU,,,/S(Uz-U,,), g) is —4. The sectional
curvature K of the noncompact symmetric space SU, ,,/S(U,-U,,) equipped with
the Killing metric g is bounded by —4 <K <0. The sectional curvature —4 is obtained
for all 2-planes CX when X is a non-zero vector with J X € JX.

When m =1, G;((C3) = SU;2/S(U,-U,) is isometric to the two-dimensional
complex hyperbolic space CH? with constant holomorphic sectional curvature —4.

When m = 2, we note that the isomorphism SO (4, 2) >~ SU, , yields an isometry
between G;((C“) = SU,/S(Uy-U,) and the indefinite real Grassmann manifold
G3(RS) of oriented two-dimensional linear subspaces of an indefinite Euclidean
space RS. For this reason we assume m > 3 from now on, although many of the
subsequent results also hold form = 1, 2.

Hereafter X,Y and Z always stand for any tangent vector fields on M.

The Riemannian curvature tensor R of S Uz m/S(Us-Uy) is locally given by

RX,Y)Z = — %[g(Y, )X —g(X, 2)Y +g(JY, 2)J X

—g(UX,2)JY —2g(UX,Y)JZ
3
+ Z}{g(m, 2)J,X - (L, X, 2)1,Y 22
- 2g(, X, V)1, Z)
3
+ D (g IY. 2) 1T X — g(J,J X, Z)JVJY}],

v=1

where {J1, J», J3} is any canonical local basis of J.
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3 Basic Formulas

In this section we derive some basic formulas and the Codazzi equation for a real
hypersurface in G,(C"*2) (or SU» . /S(Uz-Uy)) (see [3, 5, 7, 10-12, 18]).

Let M be a real hypersurface in G, (C"™*2) (or SU n/S(Uz-Uy)). The induced
Riemannian metric on M will also be denoted by g, and V denotes the Riemannian
connection of (M, g). Let N be alocal unit normal vector field of M and A the shape
operator of M with respect to N.

Now let us put

JX =X +n(X)N, J,X = ¢ X +n(X)N 3.1)

for any tangent vector field X of a real hypersurface M in G,(C"*?), where N
denotes a unit normal vector field of M in G,(C”*?). From the Kihler structure J
of Go(C"™*?) (or § Uy m/S(Uy-Uy,)) there exists an almost contact metric structure
(¢, &, n, g) induced on M in such a way that

P*X ==X+nX)§ nE =1 ¢£=0, nX)=gX.&) (3.2

for any vector field X on M. Furthermore, let {J;, J>, J3} be a canonical local basis
of J. Then the quaternionic Kéhler structure J, of G,(C"*2) (or SU» m/S(Uz-Uy)),
together with the condition J,,J,+1 = J,42 = —J,+1J, in Sect. 1, induces an almost
contact metric 3-structure (¢,, &,, 1,, g) on M as follows:

X =—X+nXE, nE) =1, ¢& =0,
dv1éy = —&v10, €1 = &g,

D1 X = P2 X + 0y 11 (X)E,,

Grr1Pv X = —Pp2 X + 7, (X)Ev 41

(3.3)

for any vector field X tangent to M. Moreover, from the commuting property of
JuoJ =JJ,,v=1,2,31in Sect.2 and (3.1), the relation between these two almost
contact metric structures (¢, &, 1, g) and (¢,, &), 1y, g), v = 1, 2, 3, can be given by

PP X = X + 1, (X)§ — n(X)E,,

(3.4)
7lu(¢X) = 77(¢VX)7 ¢%_v = ¢v‘§

On the other hand, from the parallelism of Kihler structure J, that is, VJ =0 and
the quaternionic Kéhler structure J, together with Gauss and Weingarten formulas it
follows that

(Vx9)Y =n(Y)AX — g(AX,Y)E, Vx& = AKX, (3.5

VXSU = ql)+2(X)SU+1 - CIU+1(X)€:V+2 + ¢VAX7 (36)
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(VX¢U)Y = _qv+1(X)¢v+2Y + QU+2(X)¢V+1Y + UU(Y)AX - g(AX, Y)Ev-

(3.7)
Combining these formulas, we find the following:
Vx(¢§) = Vx(9&))
= (Vx®)é, + ¢ (Vx&y) (3.8)

= qu+2(X)Pv11€ — Gu1 (X126 + PrpAX
—g(AX, §)& +né)AX.

Using the above expression (2.1) for the curvature tensor R of G,(C"*?) (or
SUs.m/S(Uy-Uy)), the equations of Codazzi is given by

H(VxA)Y — (VyA)X} = n(X)pY —n(Y)pX — 28(¢X, Y)&

3
+ 3 [ 0sy = 06X - 260X, V)8
v=I
3
+> {n@x)6.9Y —n.@V)0.0x]
v=1

3
+3 [10om@n) — nmmexle.
v=1

(3.9
where in the case of G,(C"*?) (resp., SU>,,,/S(Uz-Uy)), the constant k = 1 and
SUs/S(Us-Uy) (resp., k = —2).

4 Proof of Theorems

In this section, we classify real hypersurfaces in M (G>(C™ %) or § Uz /SWU2-Uy))
whose shape operator has Killing tensor field.
From (C-1) and the Codazzi equation (3.9), we have
—2k(VyA)X =n(X)¢Y —n(Y)pX — 2g(¢X, Y)§
3
+ 3 [ 0sy = ng.X - 20, 18,
v=I

3 4.1)
+> {nv(¢X)¢v¢Y - m(¢Y)¢u¢X}
v=1

3
+ 3 [non@n) - e &
=1
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Putting Y = £ into (4.1),

3
—2k(V:A)X = —pX + Z (X9 —nu(E)duX =30, (9X)E ). (4.2)

v=l1

Lemma 1 Let M be a real hypersurface in complex Grassmannians of rank two M,
m > 3 with Killing shape operator. Then the Reeb vector field & belongs to either
the distribution 2 or the distribution 2+.

Proof Without loss of generality, £ is written as

& =n(Xo)Xo +n1é1, (%)

where X (resp., £) is a unit vector in 2 (resp., 271).
Taking the inner product of (4.2) with &, we have

3
— 2kg((VeA)X, &) = =4 D ny(E)nu(@X). (4.3)

v=1

Since (V¢ A) is self-adjoint, it follows from (C-1) that —4 Zi:l n@E)n(@X) =
0. By putting X = ¢ X, and using (**), we have —4n%(§)n(X0) =0.
Thus we have only two cases: £ € 2+ or & € 2.

o Casel.£ € 2+
Without loss of generality, we may put £ = & € 2+. Then (4.2) is reduced into
—2k(VeA)X = =X — 1 X + 2n3(X)& — 212 (X)éEs. 4.4)
The symmetric endomorphism of (4.4) with respect to the metric g, we have
—2k(V:A)X = X + ¢1 X — 2n3(X)& + 2ma(X)é&3. 4.5)

Combining (4.4) with (4.5), we have ¢ X + 1 X — 2n3(X)& + 2nr(X)& = 0.
By putting X = &; into the equation above, we have 2&; = 0. This is a contradiction.

Thus, there does not exist any hypersurface in M, m > 3, with Killing shape
operator and £ € 2+ everywhere.

o Case2.£ € 2.

Equation (4.2) becomes

3
—2k(V: A)X = =X + D {n.(X)pu& — 31, ($X)E,}. (4.6)

v=1
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The symmetric endomorphism of (4.6) with respect to the metric g, we have

3

—2k(VeA)X =X + D { = n(@X)E, + 31, (X)) (4.7)

v=1

Combining (4.6) with (4.7), we have 2¢ X + 2 Z?):l {nU(X)¢E,) + nv(qbX)Ev} =

0. By putting X = & into above equation, we have 4¢§; = 0. This is a contradiction,
too. Thus, there does not exist any hypersurface in M, m > 3, with Killing shape
operator and & € 2 everywhere.

Accordingly, we complete the proof of Theorem 1 in the introduction.
Usually, the notion of parallel is stronger than the notion of Killing, we also have a

non-existence of parallel hypersurface in SU; ,, /S(Uz-U,,), m > 3. Then Corollary 1
in the introduction is naturally proved.
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