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Abstract We have considered a new notion of the shape operator A satisfies Killing
tensor type for real hypersurfaces M in complex Grassmannians of rank two.
With this notion we prove the non-existence of real hypersurfaces M in complex
Grassmannians of rank two.

1 Introduction

A typical example of Hermitian symmetry spaces of rank two is the complex two-
plane Grassmannian G2(C

m+2) defined by the set of all complex two-dimensional
linear subspaces in C

m+2. Another one is complex hyperbolic two-plane
Grassmannians SU2,m/S(U2·Um) the set of all complex two-dimensional linear sub-
spaces in indefinite complex Euclidean space Cm+2

2 .
Characterizing model spaces of real hypersurfaces under certain geometric con-

ditions is one of our main interests in the classification theory in complex two-
plane Grassmannians G2(C

m+2) or complex hyperbolic two-plane Grassmannians
SU2,m/S(U2·Um). In this paper, we use the same geometric condition on real hyper-
surfaces in SU2,m/S(U2·Um) as used in G2(C

m+2) to compare the results.
G2(C

m+2) = SU2+m/S(U2·Um) has a compact transitive group SU2+m , how-
ever SU2,m/S(U2·Um) has a noncompact indefinite transitive group SU2,m . This
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distinction gives various remarkable results. Riemannian symmetric space
SU2,m/S(U2·Um) has a remarkable geometrical structure. It is the unique noncom-
pact, Kähler, irreducible, quaternionic Kähler manifold with negative curvature.

Suppose that M is a real hypersurface in G2(C
m+2) (or SU2,m/S(U2·Um)). Let N

be a local unit normal vector field of M in G2(C
m+2) (or SU2,m/S(U2·Um)). Since

G2(C
m+2)(or SU2,m/S(U2·Um)) has the Kähler structure J , we may define the Reeb

vector field ξ = −JN and a one dimensional distribution [ξ ] = C ⊥ whereC denotes
the orthogonal complement in Tx M , x ∈ M , of the Reeb vector field ξ . The Reeb
vector field ξ is said to be Hopf if C (or C ⊥) is invariant under the shape operator
A of M . The one dimensional foliation of M defined by the integral curves of ξ is
said to be a Hopf foliation of M . We say that M is a Hopf hypersurface if and only
if the Hopf foliation of M is totally geodesic. By the formulas in [5, Sect. 2], it can
be checked that ξ is Hopf vector field if and only if M is Hopf hypersurface.

From the quaternionic Kähler structure J of G2(C
m+2) (or SU2,m/S(U2·Um)),

there naturally exist almost contact 3-structure vector fields ξν = −Jν N , ν = 1, 2, 3.
Put Q⊥ = Span{ ξ1, ξ2, ξ3}. It is a 3-dimensional distribution in the tangent bundle
TM of M . In addition, we denoted by Q the orthogonal complement of Q⊥ in TM.
It is the quaternionic maximal subbundle of TM. Thus the tangent bundle of M is
expressed as a direct sum of Q and Q⊥.

For any geodesic γ in M , a (1,1) type tensor field T is said to be Killing if T γ̇ is
parallel displacement along γ , which gives 0 = ∇γ̇ (T γ̇ ) = (∇γ̇ T )γ̇ + T (∇γ̇ γ̇ ) =
(∇γ̇ T )γ̇ . That is, (∇X T )X = 0 for any tangent vector field X on M (see [2]).

0 = (∇X+Y T )(X + Y )

= (∇X T )X + (∇X T )Y + (∇Y T )X + (∇Y T )Y

= (∇X T )Y + (∇Y T )X

for any vector fields X and Y on M .
Thus the Killing tensor field T is equivalent to (∇X T )Y + (∇Y T )X = 0.
From this notion, in this paper we consider a new condition related to the shape

operator A of M defined in such a way that

(∇X A)Y + (∇Y A)X = 0 (C-1)

for any vector fields X on M .
In this paper, we give a complete classification for real hypersurfaces in M̄

(G2(C
m+2) or SU2,m/S(U2·Um)) with Killing shape operator. In order to do it, we

consider a problem related to the following:

Theorem 1 There does not exist any real hypersurface in M̄ complex Grassmannians
of rank two, m ≥ 3, with Killing shape operator.

Since the notion of Killing tensor field is weaker than the notion of parallel tensor
field, by Theorem 1, we naturally have the following:
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quotation There does not exist any real hypersurface in G2(C
m+2), m ≥ 3,

with parallel shape operator (see [11]).
On the other hand, by virtue of Theorem 2 we can assert the following:

Corollary 1 There does not exist any hypersurface in SU2,m/S(U2·Um), m ≥ 3with
parallel shape operator.

2 Riemannian Geometry of G2(C
m+2)

and SU2,m/S(U2·Um)

In this section we summarize basic material about G2(C
m+2), for details we refer to

[5, 6, 11, 12]. The complex two-plane Grassmannian G2(C
m+2) is defined by the set

of all complex two-dimensional linear subspaces inCm+2. The special unitary group
G = SU (m + 2) acts transitively on G2(C

m+2) with stabilizer isomorphic to K =
S(U (2) × U (m)) ⊂ G. Then G2(C

m+2) can be identified with the homogeneous
space G/K , which we equip with the unique analytic structure for which the natural
action of G on G2(C

m+2) becomes analytic. Denote by g and k the Lie algebra
of G and K , respectively, and by m the orthogonal complement of k in g with
respect to the Cartan-Killing form B of g. Then g = k ⊕ m is an Ad(K )-invariant
reductive decomposition of g. We put o = eK and identify ToG2(C

m+2) with m in
the usual manner. Since B is negative definite on g, its negative restricted to m × m
yields a positive definite inner product on m. By Ad(K )-invariance of B, this inner
product can be extended to a G-invariant Riemannian metric g on G2(C

m+2). In this
way, G2(C

m+2) becomes a Riemannian homogeneous space, even a Riemannian
symmetric space. For computational reasons we normalize g such that the maximal
sectional curvature of (G2(C

m+2), g) is eight.
When m = 1, G2(C

3) is isometric to the two-dimensional complex projective
space CP2 with constant holomorphic sectional curvature eight.

When m = 2, we note that the isomorphism Spin(6) � SU (4) yields an isom-
etry between G2(C

4) and the real Grassmann manifold G+
2 (R6) of oriented two-

dimensional linear subspaces in R
6. In this paper, we will assume m≥3.

TheLie algebra k of K has the direct sumdecomposition k = su(m) ⊕ su(2) ⊕ R,
where R denotes the center of k. Viewing k as the holonomy algebra of G2(C

m+2),
the center R induces a Kähler structure J and the su(2)-part a quaternionic Kähler
structure J on G2(C

m+2). If Jν is any almost Hermitian structure in J, then J Jν =
Jν J , and J Jν is a symmetric endomorphism with (J Jν)

2 = I and tr(J Jν) = 0 for
ν = 1, 2, 3.

A canonical local basis {J1, J2, J3} of J consists of three local almost Hermitian
structures Jν in J such that Jν Jν+1 = Jν+2 = −Jν+1 Jν , where the index ν is taken
modulo three. Since J is parallel with respect to the Riemannian connection ∇̄ of
(G2(C

m+2), g), there exist for any canonical local basis {J1, J2, J3} of J three local
one-forms q1, q2, q3 such that
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∇̄X Jν = qν+2(X)Jν+1 − qν+1(X)Jν+2

for all vector fields X on G2(C
m+2).

The Riemannian curvature tensor R̄ of G2(C
m+2) is locally given by

˜R(X, Y )Z = g(Y, Z)X − g(X, Z)Y + g(JY, Z)J X

− g(J X, Z)JY − 2g(J X, Y )J Z

+
3

∑

ν=1

{

g(JνY, Z)Jν X − g(Jν X, Z)JνY − 2g(Jν X, Y )Jν Z
}

+
3

∑

ν=1

{

g(Jν JY, Z)Jν J X − g(Jν J X, Z)Jν JY
}

,

(2.1)

where {J1, J2, J3} denotes a canonical local basis of J.
Now we summarize basic material about complex hyperbolic two-plane

Grassmann manifolds SU2,m/S(U2·Um), for details we refer to [14, 16].
The Riemannian symmetric space SU2,m/S(U2·Um), which consists of all com-

plex two-dimensional linear subspaces in indefinite complex Euclidean spaceCm+2
2 ,

is a connected, simply connected, irreducible Riemannian symmetric space of non-
compact type and with rank 2. Let G = SU2,m and K = S(U2·Um), and denote by g
and k the corresponding Lie algebra of the Lie group G and K , respectively. Let B
be the Killing form of g and denote by p the orthogonal complement of k in g with
respect to B. The resulting decomposition g = k ⊕ p is a Cartan decomposition of g.
The Cartan involution θ ∈ Aut(g) on su2,m is given by θ(A) = I2,m AI2,m , where

I2,m =
(−I2 02,m
0m,2 Im

)

I2 (resp., Im) denotes the identity 2 × 2-matrix (resp., m × m-matrix). Then <

X, Y >= −B(X, θY ) becomes a positive definite Ad(K )-invariant inner product
on g. Its restriction to p induces a metric g on SU2,m/S(U2·Um), which is also
known as the Killing metric on SU2,m/S(U2·Um). Throughout this paper we con-
sider SU2,m/S(U2·Um) together with this particular Riemannian metric g.

The Lie algebra k decomposes orthogonally into k = su2 ⊕ sum ⊕ u1, where u1
is the one-dimensional center of k. The adjoint action of su2 on p induces the quater-
nionic Kähler structure J on SU2,m/S(U2·Um), and the adjoint action of

Z =
( mi

m+2 I2 02,m
0m,2

−2i
m+2 Im

)

∈ u1

induces the Kähler structure J on SU2,m/S(U2·Um). By construction, J commutes
with each almost Hermitian structure Jν in J for ν = 1, 2, 3. Recall that a canonical
local basis {J1, J2, J3} of a quaternionic Kähler structure J consists of three almost
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Hermitian structures J1, J2, J3 in J such that Jν Jν+1 = Jν+2 = −Jν+1 Jν , where the
index ν is to be taken modulo 3. The tensor field J Jν , which is locally defined on
SU2,m/S(U2·Um), is self-adjoint and satisfies (J Jν)

2 = I and tr(J Jν) = 0, where
I is the identity transformation. For a nonzero tangent vector X we define RX =
{λX |λ ∈ R}, CX = RX ⊕ RJ X , and HX = RX ⊕ JX .

We identify the tangent space To SU2,m/S(U2·Um) of SU2,m/S(U2·Um) at o with
p in the usual way. Let a be a maximal abelian subspace of p. Since SU2,m/S(U2·Um)

has rank 2, the dimension of any such subspace is two. Every nonzero tangent vector
X ∈ To SU2,m/S(U2·Um) ∼= p is contained in some maximal abelian subspace of p.
Generically this subspace is uniquely determined by X , in which case X is called
regular. If there exists more than one maximal abelian subspaces of p containing X ,
then X is called singular. There is a simple and useful characterization of the singular
tangent vectors: A nonzero tangent vector X ∈ p is singular if and only if J X ∈ JX
or J X ⊥ JX .

Up to scaling there exists a unique SU2,m-invariant Riemannian metric g on
complex hyperbolic two-planeGrassmannians SU2,m/S(U2·Um). Equippedwith this
metric SU2,m/S(U2·Um) is a Riemannian symmetric space of rank 2 which is both
Kähler and quaternionic Kähler. For computational reasons we normalize g such
that the minimal sectional curvature of (SU2,m/S(U2·Um), g) is −4. The sectional
curvature K of the noncompact symmetric space SU2,m/S(U2·Um) equipped with
the Killingmetric g is bounded by−4≤K≤0. The sectional curvature−4 is obtained
for all 2-planes CX when X is a non-zero vector with J X ∈ JX .

When m = 1, G∗
2(C

3) = SU1,2/S(U1·U2) is isometric to the two-dimensional
complex hyperbolic space CH 2 with constant holomorphic sectional curvature −4.

Whenm = 2, we note that the isomorphism SO(4, 2) � SU2,2 yields an isometry
between G∗

2(C
4) = SU2,2/S(U2·U2) and the indefinite real Grassmann manifold

G∗
2(R

6
2) of oriented two-dimensional linear subspaces of an indefinite Euclidean

space R
6
2. For this reason we assume m ≥ 3 from now on, although many of the

subsequent results also hold for m = 1, 2.
Hereafter X ,Y and Z always stand for any tangent vector fields on M .
The Riemannian curvature tensor R̄ of SU2,m/S(U2·Um) is locally given by

R̄(X, Y )Z = − 1

2

[

g(Y, Z)X − g(X, Z)Y + g(JY, Z)J X

− g(J X, Z)JY − 2g(J X, Y )J Z

+
3

∑

ν=1

{g(JνY, Z)Jν X − g(Jν X, Z)JνY

− 2g(Jν X, Y )Jν Z}

+
3

∑

ν=1

{g(Jν JY, Z)Jν J X − g(Jν J X, Z)Jν JY }
]

,

(2.2)

where {J1, J2, J3} is any canonical local basis of J.
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3 Basic Formulas

In this section we derive some basic formulas and the Codazzi equation for a real
hypersurface in G2(C

m+2) (or SU2,m/S(U2·Um)) (see [3, 5, 7, 10–12, 18]).
Let M be a real hypersurface in G2(C

m+2) (or SU2,m/S(U2·Um)). The induced
Riemannian metric on M will also be denoted by g, and ∇ denotes the Riemannian
connection of (M, g). Let N be a local unit normal vector field of M and A the shape
operator of M with respect to N .

Now let us put

J X = φX + η(X)N , Jν X = φν X + ην(X)N (3.1)

for any tangent vector field X of a real hypersurface M in G2(C
m+2), where N

denotes a unit normal vector field of M in G2(C
m+2). From the Kähler structure J

of G2(C
m+2) (or SU2,m/S(U2·Um)) there exists an almost contact metric structure

(φ, ξ, η, g) induced on M in such a way that

φ2X = −X + η(X)ξ, η(ξ) = 1, φξ = 0, η(X) = g(X, ξ) (3.2)

for any vector field X on M . Furthermore, let {J1, J2, J3} be a canonical local basis
of J. Then the quaternionic Kähler structure Jν of G2(C

m+2) (or SU2,m/S(U2·Um)),
together with the condition Jν Jν+1 = Jν+2 = −Jν+1 Jν in Sect. 1, induces an almost
contact metric 3-structure (φν, ξν, ην, g) on M as follows:

φ2
ν X = −X + ην(X)ξν, ην(ξν) = 1, φνξν = 0,

φν+1ξν = −ξν+2, φνξν+1 = ξν+2,

φνφν+1X = φν+2X + ην+1(X)ξν,

φν+1φν X = −φν+2X + ην(X)ξν+1

(3.3)

for any vector field X tangent to M . Moreover, from the commuting property of
Jν J = J Jν , ν = 1, 2, 3 in Sect. 2 and (3.1), the relation between these two almost
contact metric structures (φ, ξ, η, g) and (φν, ξν, ην, g), ν = 1, 2, 3, can be given by

φφν X = φνφX + ην(X)ξ − η(X)ξν,

ην(φX) = η(φν X), φξν = φνξ.
(3.4)

On the other hand, from the parallelism of Kähler structure J , that is, ∇̄ J = 0 and
the quaternionic Kähler structure J, together with Gauss and Weingarten formulas it
follows that

(∇Xφ)Y = η(Y )AX − g(AX, Y )ξ, ∇Xξ = φ AX, (3.5)

∇Xξν = qν+2(X)ξν+1 − qν+1(X)ξν+2 + φν AX, (3.6)
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(∇Xφν)Y = −qν+1(X)φν+2Y + qν+2(X)φν+1Y + ην(Y )AX − g(AX, Y )ξν.

(3.7)
Combining these formulas, we find the following:

∇X (φνξ) = ∇X (φξν)

= (∇Xφ)ξν + φ(∇Xξν)

= qν+2(X)φν+1ξ − qν+1(X)φν+2ξ + φνφ AX

− g(AX, ξ)ξν + η(ξν)AX.

(3.8)

Using the above expression (2.1) for the curvature tensor R̄ of G2(C
m+2) (or

SU2,m/S(U2·Um)), the equations of Codazzi is given by

k
{

(∇X A)Y − (∇Y A)X
} = η(X)φY − η(Y )φX − 2g(φX, Y )ξ

+
3

∑

ν=1

{

ην(X)φνY − ην(Y )φν X − 2g(φν X, Y )ξν

}

+
3

∑

ν=1

{

ην(φX)φνφY − ην(φY )φνφX
}

+
3

∑

ν=1

{

η(X)ην(φY ) − η(Y )ην(φX)
}

ξν,

(3.9)
where in the case of G2(C

m+2) (resp., SU2,m/S(U2·Um)), the constant k = 1 and
SU2,m/S(U2·Um) (resp., k = −2).

4 Proof of Theorems

In this section, we classify real hypersurfaces in M̄ (G2(C
m+2) or SU2,m/S(U2·Um))

whose shape operator has Killing tensor field.
From (C-1) and the Codazzi equation (3.9), we have

−2k(∇Y A)X = η(X)φY − η(Y )φX − 2g(φX, Y )ξ

+
3

∑

ν=1

{

ην(X)φνY − ην(Y )φν X − 2g(φν X, Y )ξν

}

+
3

∑

ν=1

{

ην(φX)φνφY − ην(φY )φνφX
}

+
3

∑

ν=1

{

η(X)ην(φY ) − η(Y )ην(φX)
}

ξν

(4.1)
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Putting Y = ξ into (4.1),

− 2k(∇ξ A)X = −φX +
3

∑

ν=1

{

ην(X)φνξ − ην(ξ)φν X − 3ην(φX)ξν

}

. (4.2)

Lemma 1 Let M be a real hypersurface in complex Grassmannians of rank two M̄,
m ≥ 3 with Killing shape operator. Then the Reeb vector field ξ belongs to either
the distribution Q or the distribution Q⊥.

Proof Without loss of generality, ξ is written as

ξ = η(X0)X0 + η(ξ1)ξ1, (∗∗)

where X0 (resp., ξ1) is a unit vector in Q (resp.,Q⊥).
Taking the inner product of (4.2) with ξ , we have

− 2kg
(

(∇ξ A)X, ξ
) = −4

3
∑

ν=1

ην(ξ)ην(φX). (4.3)

Since (∇ξ A) is self-adjoint, it follows from (C-1) that −4
∑3

ν=1 ην(ξ)ην(φX) =
0. By putting X = φX0 and using (**), we have −4η2

1(ξ)η(X0) = 0.
Thus we have only two cases: ξ ∈ Q⊥ or ξ ∈ Q.

• Case 1. ξ ∈ Q⊥.

Without loss of generality, we may put ξ = ξ1 ∈ Q⊥. Then (4.2) is reduced into

− 2k(∇ξ A)X = −φX − φ1X + 2η3(X)ξ2 − 2η2(X)ξ3. (4.4)

The symmetric endomorphism of (4.4) with respect to the metric g, we have

− 2k(∇ξ A)X = φX + φ1X − 2η3(X)ξ2 + 2η2(X)ξ3. (4.5)

Combining (4.4) with (4.5), we have φX + φ1X − 2η3(X)ξ2 + 2η2(X)ξ3 = 0.
By putting X = ξ3 into the equation above, we have 2ξ3 = 0. This is a contradiction.

Thus, there does not exist any hypersurface in M̄ , m ≥ 3, with Killing shape
operator and ξ ∈ Q⊥ everywhere.

• Case 2. ξ ∈ Q.

Equation (4.2) becomes

− 2k(∇ξ A)X = −φX +
3

∑

ν=1

{

ην(X)φνξ − 3ην(φX)ξν

}

. (4.6)
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The symmetric endomorphism of (4.6) with respect to the metric g, we have

− 2k(∇ξ A)X = φX +
3

∑

ν=1

{ − ην(φX)ξν + 3ην(X)φξν

}

. (4.7)

Combining (4.6) with (4.7), we have 2φX + 2
∑3

ν=1

{

ην(X)φξν + ην(φX)ξν

} =
0. By putting X = ξ1 into above equation, we have 4φξ1 = 0. This is a contradiction,
too. Thus, there does not exist any hypersurface in M̄ , m ≥ 3, with Killing shape
operator and ξ ∈ Q everywhere.

Accordingly, we complete the proof of Theorem 1 in the introduction.
Usually, the notion of parallel is stronger than the notion of Killing, we also have a

non-existence of parallel hypersurface in SU2,m/S(U2·Um),m ≥ 3. ThenCorollary 1
in the introduction is naturally proved.
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