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Abstract In this survey paper, we consider several kinds of submanifolds in Rie-
mannian manifolds, which are obtained by many authors. (i.e., slant submanifolds,
pointwise slant submanifolds, semi-slant submanifolds, pointwise semi-slant sub-
manifolds, pointwise almost h-slant submanifolds, pointwise almost h-semi-slant
submanifolds, etc.) And we deal with some results, which are obtained by many
authors at this area. Finally, we give some open problems at this area.

1 Introduction

Given a Riemannian manifold (M, g) with some additional structures, there are
several kinds of submanifolds:

(Almost) complex submanifolds, totally real submanifolds, slant submanifolds,
pointwise slant submanifolds, semi-slant submanifolds, pointwise semi-slant sub-
manifolds, etc.

In 1990, Chen [3] defined the notion of slant submanifolds of an almost Her-
mitian manifold as a generalization of almost complex submanifolds and totally real
submanifolds.

In 1994, Papaghiuc [7] introduced a semi-slant submanifold of an almost Her-
mitian manifold as a generalization of CR-submanifolds and slant submanifolds.

In 1996, Lotta [6] introduced a slant submanifold of an almost contact metric
manifold.

In 1998, Etayo [5] defined the notion of pointwise slant submanifolds of an almost
Hermitian manifold under the name of quasi-slant submanifolds as a generalization
of slant submanifolds.

In 1999, Cabrerizo, Carriazo, Fernandez, Fernandez [2] defined the notion of
semi-slant submanifolds of an almost contact metric manifold.
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In 2012, Chen and Garay [4] studied deeply pointwise slant submanifolds of an
almost Hermitian manifold.

In 2013, Sahin [10] introduced pointwise semi-slant submanifolds of an almost
Hermitian manifold.

In 2014, Park [8] defined the notion of pointwise almost h-slant submanifolds and
pointwise almost h-semi-slant submanifolds of an almost quaternionic Hermitian
manifold.

In 2015, Park [9] introduced pointwise slant and pointwise semi-slant submani-
folds of an almost contact metric manifold.

In this paper, we consider some results, which are obtained by many authors at
this area. And we give some open problems at this area.

2 Preliminaries

Let (M, g, J ) be an almost Hermitian manifold, where M is a C∞-manifold, g is
a Riemannian metric on M , and J is an almost complex structure on M which is
compatible with g.

I.e., J ∈ End(T M), J 2 = −id, g(JX, JY ) = g(X, Y ) for X, Y ∈ Γ (T M).
Let M be a submanifold of M = (M, g, J ). We have the following notions.
We call M an almost complex submanifold of M if J (Tx M) ⊂ Tx M for x ∈ M .
The submanifold M is said to be a totally real submanifold if J (Tx M) ⊂ Tx M⊥

for x ∈ M .
The submanifold M is called a CR-submanifold if there exists a distributionD ⊂

T M on M such that J (Dx ) = Dx and J (D⊥
x ) ⊂ Tx M⊥ for x ∈ M , whereD⊥ is the

orthogonal complement of D in T M .
The almost Hermitian manifold M = (M, g, J ) is said to be Kähler if ∇ J = 0,

where ∇ is the Levi-Civita connection of g.
Nowwe recall other notions. Let N be a (2n + 1)-dimensionalC∞-manifold with

a tensor field φ of type (1, 1), a vector field ξ , and a 1-form η such that

φ2 = −I + η ⊗ ξ, η(ξ) = 1, (1)

where I denotes the identity endomorphism of T N .
Then we have [1]

φξ = 0, η ◦ φ = 0. (2)

And we call (φ, ξ, η) an almost contact structure and (N , φ, ξ, η) an almost
contact manifold.

If there is a Riemannian metric g on N such that

g(φX, φY ) = g(X, Y ) − η(X)η(Y ) (3)
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for X, Y ∈ Γ (T N ), then we call (φ, ξ, η, g) an almost contact metric structure and
(N , φ, ξ, η, g) an almost contact metric manifold.

The metric g is called a compatible metric.
Then we obtain

η(X) = g(X, ξ). (4)

Define Φ(X, Y ) := g(X, φY ) for X, Y ∈ Γ (T N ).
Since φ is anti-symmetric with respect to g, the tensor Φ is a 2-form on N and is

called the fundamental 2-form of the almost contact metric structure (φ, ξ, η, g).
An almost contact metric manifold (N , φ, ξ, η, g) is said to be a contact metric

manifold (or almost Sasakian manifold) if it satisfies

Φ = dη. (5)

It is easy to check that given a contact metric manifold (N , φ, ξ, η, g), we get

(dη)n ∧ η 
= 0. (6)

The Nijenhuis tensor of a tensor field φ is defined by

N (X, Y ) := φ2[X, Y ] + [φX, φY ] − φ[φX, Y ] − φ[X, φY ] (7)

for X, Y ∈ Γ (T N ).
We call the almost contact metric structure (φ, ξ, η, g) normal if

N (X, Y ) + 2dη(X, Y )ξ = 0 (8)

for X, Y ∈ Γ (T N ).
A contact metric manifold (N , φ, ξ, η, g) is said to be a K -contact manifold if

the characteristic vector field ξ is Killing.
It is well-known that for a contact metric manifold (N , φ, ξ, η, g), ξ is Killing if

and only if the tensor h̄ := 1
2 Lξφ vanishes, where L denotes the Lie derivative [1].

An almost contact metric manifold (N , φ, ξ, η, g) is called a Sasakian manifold
if it is contact and normal.

Given an almost contact metric manifold (N , φ, ξ, η, g), we know that it is
Sasakian if and only if

(∇Xφ)Y = g(X, Y )ξ − η(Y )X (9)

for X, Y ∈ Γ (T N ) [1].
If an almost contact metric manifold (N , φ, ξ, η, g) is Sasakian, then we have

∇Xξ = −φX (10)

for X ∈ Γ (T N ) [1].
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Moreover, a Sasakian manifold is a K -contact manifold [1].
An almost contact metric manifold (N , φ, ξ, η, g) is said to be a Kenmotsu man-

ifold if it satisfies
(∇Xφ)Y = g(φX, Y )ξ − η(Y )φX (11)

for X, Y ∈ Γ (T N ) [1].
Then we easily obtain

∇Xξ = X − η(X)ξ (12)

for X ∈ Γ (T N ) [1].
An almost contactmetricmanifold (N , φ, ξ, η, g) is called analmost cosymplectic

manifold if η and Φ are closed.
An almost cosymplectic manifold (N , φ, ξ, η, g) is said to be a cosymplectic

manifold if it is normal.
Given an almost contact metric manifold (N , φ, ξ, η, g), we also know that it is

cosymplectic if and only if φ is parallel (i.e., ∇φ = 0) [1].
Given a cosymplectic manifold (N , φ, ξ, η, g), we easily get

∇φ = 0, ∇η = 0, and ∇ξ = 0. (13)

Let M be a 4m-dimensional C∞-manifold and let E be a rank 3 subbundle of
End(T M) such that for any point p ∈ M with a neighborhood U , there exists a local
basis {J1, J2, J3} of sections of E on U satisfying for all α ∈ {1, 2, 3}

J 2
α = −id, Jα Jα+1 = −Jα+1 Jα = Jα+2,

where the indices are taken from {1, 2, 3} modulo 3.
Then we call E an almost quaternionic structure on M and (M, E) an almost

quaternionic manifold.
Moreover, let g be a Riemannian metric on M such that for any point p ∈ M

with a neighborhood U , there exists a local basis {J1, J2, J3} of sections of E on U
satisfying for all α ∈ {1, 2, 3}

J 2
α = −id, Jα Jα+1 = −Jα+1 Jα = Jα+2, (14)

g(Jα X, JαY ) = g(X, Y ) (15)

for X, Y ∈ Γ (T M), where the indices are taken from {1, 2, 3} modulo 3.
Then we call (M, E, g) an almost quaternionic Hermitian manifold.
Conveniently, the above basis {J1, J2, J3} satisfying (14) and (15) is said to be a

quaternionic Hermitian basis.
Let (M, E, g) be an almost quaternionic Hermitian manifold.
We call (M, E, g) a quaternionic Kähler manifold if there exist locally defined

1-forms ω1, ω2, ω3 such that for α ∈ {1, 2, 3}
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∇X Jα = ωα+2(X)Jα+1 − ωα+1(X)Jα+2

for X ∈ Γ (T M), where the indices are taken from {1, 2, 3} modulo 3.
If there exists a global parallel quaternionicHermitian basis {J1, J2, J3}of sections

of E on M (i.e., ∇ Jα = 0 for α ∈ {1, 2, 3}, where ∇ is the Levi-Civita connection
of the metric g), then (M, E, g) is said to be a hyperkähler manifold.

Furthermore, we call (J1, J2, J3, g) a hyperkähler structure on M and g a hyper-
kähler metric.

Let M = (M, E, g) be an almost quaternionic Hermitian manifold and M a sub-
manifold of M .

We call M a QR-submanifold (quaternionic-real submanifold) of M if there exists
a vector subbundle D of T M⊥ on M such that given a local quaternionic Hermitian
basis {J1, J2, J3} of E , we have JαD = D and Jα(D⊥) ⊂ T M for α ∈ {1, 2, 3},
where D⊥ is the orthogonal complement of D in T M⊥.

The submanifold M is said to be a quaternion CR-submanifold if there exists a
distribution D ⊂ T M on M such that given a local quaternionic Hermitian basis
{J1, J2, J3} of E , we get JαD = D and Jα(D⊥) ⊂ T M⊥ for α ∈ {1, 2, 3}, where
D⊥ is the orthogonal complement of D in T M .

Throughout this paper, we will use the above notations.

3 Some Results

In this section, we consider some results at this area.
Let (M, g, J ) be an almost Hermitian manifold and M a submanifold of M .
We call M a slant submanifold [3] of M if the angle θ = θ(X) between J X and

the tangent space Tx M is constant for nonzero X ∈ Tx M and any x ∈ M .
Given X ∈ Γ (T M), we have

JX = PX + FX, (16)

where P X ∈ Γ (T M) and F X ∈ Γ (T M⊥).

Lemma 1 ([3]) Let M be a submanifold of an almost Hermitian manifold M.
Then ∇ P = 0 if and only if M is locally the Riemannian product M1 × · · · × Mk,

where each Mi is either a Kähler submanifold, a totally real submanifold, or a
Kählerian slant submanifold.

Theorem 1 ([3]) Let M be a surface in C2 which is neither holomorphic nor totally
real.

Then M is a minimal slant surface if and only if ∇F = 0.

Let (M, g, J ) be an almost Hermitian manifold and M a submanifold of M .
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The submanifold M is said to be a semi-slant submanifold [7] if there is a distri-
bution D ⊂ T M on M such that J (Dx ) = Dx for x ∈ M and the angle θ = θ(X)

between J X and the space D⊥
x is constant for nonzero X ∈ D⊥

x and any x ∈ M ,
where D⊥ is the orthogonal complement of D in T M .

Proposition 1 ([7]) Let M be a semi-slant submanifold of a Kähler manifold
(M, g, J ).

Then the complex distribution D is integrable if and only if we have h(X, JY ) =
h(J X, Y ) for X, Y ∈ Γ (D).

Let N = (N , φ, ξ, η, g) be an almost contact metric manifold and M a subman-
ifold of N .

We call M a slant submanifold [6] of N if the angle θ = θ(X) between φX and
the tangent space Tx M is constant for nonzero X ∈ Tx M with X, ξ being linearly
independent and any x ∈ M .

Given X ∈ Γ (T M), we write

φX = PX + FX, (17)

where P X ∈ Γ (T M) and F X ∈ Γ (T M⊥).

Theorem 2 ([6]) Let M be a m-dimensional slant submanifold of an almost contact
metric manifold N and suppose θ 
= π

2 .
Then we have

m is even ⇔ ξ is orthogonal to N

m is odd ⇔ ξ is tangent to N .

Theorem 3 ([6])Let M be an immersed submanifold of a K-contact manifold N such
that the characteristic vector field ξ is tangent to M. Let θ ∈ [0, π

2 ]. The following
statements are equivalent:

(a) M is slant in N with the slant angle θ .
(b) For any x ∈ M the sectional curvature of any 2-plane of Tx M containing ξx

equals cos2 θ .

Let (M, g, J ) be an almost Hermitian manifold and M a submanifold of M .
The submanifold M is called a pointwise slant submanifold [4, 5] of M if at each

given point x ∈ M , the angle θ = θ(X) between J X and the tangent space Tx M is
constant for nonzero X ∈ Tx M .

Proposition 2 ([5]) Let M be a pointwise slant submanifold of an almost Hermitian
manifold (M, g, J ).

If M has odd dimension, then M is a totally real submanifold.

Theorem 4 ([5]) Let M be a submanifold of an almost Hermitian manifold
(M, g, J ).

Then M is a pointwise slant submanifold if and only if Px is a homothety for
x ∈ M.
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Theorem 5 ([5]) Let M be a pointwise slant complete totally geodesic submanifold
of a Kähler manifold (M, g, J ).

Then M is a slant submanifold.

Define Ω(X, Y ) := g(X, PY ) for X, Y ∈ Γ (T M).

Theorem 6 ([4]) Let M be a proper pointwise slant submanifold of a Kähler man-
ifold (M, g, J ).

Then Ω is a non-degenerate closed 2-form on M.
Consequently, Ω defines a canonical cohomology class of Ω:

[Ω] ∈ H 2(M; R).

Theorem 7 ([4]) Let M be a compact 2n-dimensional differentiable manifold with
H 2i (M; R) = 0 for some i ∈ {1, . . . , n}.

Then M cannot be immersed in any Kähler manifold as a pointwise proper slant
submanifold.

Let N = (N , φ, ξ, η, g) be an almost contact metric manifold and M a subman-
ifold of N .

We call M a semi-slant submanifold [2] of N if there is a distribution D ⊂ T M
on M such that φ(Dx ) = Dx for x ∈ M and the angle θ = θ(X) between φX and
the space D⊥

x is constant for nonzero X ∈ D⊥
x with X, ξ being linearly independent

and any x ∈ M , where D⊥ is the orthogonal complement of D in T M .

Theorem 8 ([2]) Let M be a submanifold of an almost contact metric manifold
N = (N , φ, ξ, η, g) such that ξ ∈ Γ (T M).

Then M is semi-slant if and only if there exists a constant λ ∈ [0, 1) such that (i)
D = {X ∈ T M |P2X = −λX} is a distribution. (ii) For any X ∈ T M, orthogonal
to D, F X = 0.

Furthermore, in this case, λ = cos2 θ , where θ denotes the slant angle of M.

Let (M, g, J ) be an almost Hermitian manifold and M a submanifold of M .
We call M a pointwise semi-slant submanifold [10] of M if there is a distribution

D ⊂ T M on M such that J (Dx ) = Dx for x ∈ M and at each given point x ∈ M ,
the angle θ = θ(X) between J X and the spaceD⊥

x is constant for nonzero X ∈ D⊥
x ,

where D⊥ is the orthogonal complement of D in T M .

Theorem 9 ([10]) Let M be a Kähler manifold.
Then there exist no non-trivial warped product submanifolds M = Mθ × f MT

of a Kähler manifold M such that MT is a holomorphic submanifold and Mθ is a
proper pointwise slant submanifold of M.

Theorem 10 ([10]) Let M be an m + n-dimensional non-trivial warped product
pointwise semi-slant submanifold of the form MT × f Mθ in a Kähler manifold

M
m+2n

, where MT is a holomorphic submanifold and Mθ is a proper pointwise

slant submanifold of M
m+2n

.
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Then we have
(i) The squared norm of the second fundamental form of M satisfies

||h||2 ≥ 2n(csc2 θ + cot2 θ)||∇(ln f )||2, dim(Mθ ) = n. (18)

(ii) If the equality of (18) holds identically, then MT is a totally geodesic submanifold

and Mθ is a totally umbilical submanifold of M
m+2n

.

Moreover, M is a minimal submanifold of M
m+2n

.

Let (M, E, g)be an almost quaternionicHermitianmanifold and M a submanifold
of (M, g).

The submanifold M is called a pointwise almost h-slant submanifold [8] if given a
point p ∈ M with a neighborhood V , there exist an open set U ⊂ M with U ∩ M =
V and a quaternionic Hermitian basis {I, J, K } of sections of E on U such that for
each R ∈ {I, J, K }, at each given point q ∈ V the angle θR = θR(X) between R X
and the tangent space Tq M is constant for nonzero X ∈ Tq M .

We call such a basis {I, J, K } a pointwise almost h-slant basis and the angles
{θI , θJ , θK } almost h-slant functions as functions on V .

The submanifold M is called a pointwise almost h-semi-slant submanifold [8] if
given a point p ∈ M with a neighborhood V , there exist an open set U ⊂ M with
U ∩ M = V and a quaternionic Hermitian basis {I, J, K } of sections of E on U
such that for each R ∈ {I, J, K }, there is a distribution D R

1 ⊂ T M on V such that

T M = D R
1 ⊕ D R

2 , R(D R
1 ) = D R

1 ,

and at each given point q ∈ V the angle θR = θR(X) between R X and the space
(D R

2 )q is constant for nonzero X ∈ (D R
2 )q , whereD R

2 is the orthogonal complement
of D R

1 in T M .
We call such a basis {I, J, K } a pointwise almost h-semi-slant basis and the angles

{θI , θJ , θK } almost h-semi-slant functions as functions on V .
Let M be a pointwise almost h-semi-slant submanifold of a hyperkähler manifold

(M, I, J, K , g) such that {I, J, K } is a pointwise almost h-semi-slant basis. We call
M proper if θR(p) ∈ [0, π

2 ) for p ∈ M and R ∈ {I, J, K }.
Let M be a proper pointwise almost h-slant submanifold of a hyperkählermanifold

(M, I, J, K , g) such that {I, J, K } is a pointwise almost h-slant basis.
Define

ΩR(X, Y ) := g(φR X, Y ) (19)

for X, Y ∈ Γ (T M) and R ∈ {I, J, K }.
Theorem 11 ([8]) Let M be a proper pointwise almost h-slant submanifold of a
hyperkähler manifold (M, I, J, K , g) such that {I, J, K } is a pointwise almost h-
slant basis. Then the 2-form ΩR is closed for each R ∈ {I, J, K }.
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Theorem 12 ([8]) Let M be a 2n-dimensional compact proper pointwise almost h-
slant submanifold of a 4m-dimensional hyperkähler manifold (M, I, J, K , g) such
that {I, J, K } is a pointwise almost h-slant basis.

Then
H∗(M, R) ⊇ ˜H , (20)

where ˜H is the algebra spanned by {[ΩI ], [ΩJ ], [ΩK ]}.
Theorem 13 ([8]) Let (M, I, J, K , g) be a hyperkähler manifold. Then given R ∈
{I, J, K }, there do not exist any non-trivial warped product submanifolds M =
B × f F of a Kähler manifold (M, R, g) such that B is a proper pointwise slant
submanifold of (M, R, g) and F is a holomorphic submanifold of (M, R, g).

Theorem 14 ([8]) Let M = B × f F be a non-trivial warped product proper point-
wise h-semi-slant submanifold of a hyperkähler manifold (M, I, J, K , g) such that
T B = D1, T F = D2, dim B = 4n1, dim F = 2n2, dim M = 4m, θI (p)θJ (p)θK

(p) 
= 0 for any p ∈ M, and {I, J, K } is a pointwise h-semi-slant basis.
Assume that m = n1 + n2.
Then given R ∈ {I, J, K }, we get

||h||2 ≥ 4n2(csc
2 θR + cot2 θR)||∇(ln f )||2 (21)

with equality holding if and only if g(h(V, W ), Z) = 0 for V, W ∈ Γ (T F) and
Z ∈ Γ (T M⊥).

Let N = (N , φ, ξ, η, g) be a (2n + 1)-dimensional almost contact metric mani-
fold and M a submanifold of N .

The submanifold M is called a pointwise slant submanifold [9] if at each given
point p ∈ M the angle θ = θ(X) between φX and the space Mp is constant for
nonzero X ∈ Mp, where Mp := {X ∈ Tp M | g(X, ξ(p)) = 0}.

The submanifold M is called a pointwise semi-slant submanifold [9] if there is a
distribution D1 ⊂ T M on M such that

T M = D1 ⊕ D2, φ(D1) ⊂ D1,

and at each given point p ∈ M the angle θ = θ(X) between φX and the space (D2)p

is constant for nonzero X ∈ (D2)p, where D2 is the orthogonal complement of D1

in T M .

Theorem 15 ([9]) Let M be a pointwise slant connected totally geodesic submani-
fold of a cosymplectic manifold (N , φ, ξ, η, g).

Then M is a slant submanifold of N .

Theorem 16 ([9]) Let M be a 2m-dimensional compact proper pointwise slant
submanifold of a (2n + 1)-dimensional cosymplectic manifold (N , φ, ξ, η, g) such
that ξ is normal to M.

Then [Ω] ∈ H 2(M, R) is non-vanishing.



258 K.-S. Park

Theorem 17 ([9]) Let M be a (2m + 1)-dimensional compact proper pointwise
slant submanifold of a (2n + 1)-dimensional cosymplectic manifold (N , φ, ξ, η, g)

such that ξ is tangent to M.
Then both [η] ∈ H 1(M, R) and [Ω] ∈ H 2(M, R) are non-vanishing.

Let M be a submanifold of a Riemannian manifold (N , g). We call M a totally
umbilic submanifold of (N , g) if

h(X, Y ) = g(X, Y )H for X, Y ∈ Γ (T M), (22)

where H is the mean curvature vector field of M in N .

Lemma 2 ([9]) Let M be a pointwise semi-slant totally umbilic submanifold of an
almost contact metric manifold (N , φ, ξ, η, g).

Assume that ξ is tangent to M and N is one of the following three manifolds:
cosymplectic, Sasakian, Kenmotsu.

Then
H ∈ Γ (FD2). (23)

Theorem 18 ([9]) Let N = (N , φ, ξ, η, g) be an almost contact metric manifold
and M = B × f F a nontrivial warped product submanifold of N . Assume that ξ is
normal to M and N is one of the following three manifolds: cosymplectic, Sasakian,
Kenmotsu.

Then there does not exist a proper pointwise semi-slant submanifold M of N such
that D1 = T F and D2 = T B.

Theorem 19 ([9]) Let N = (N , φ, ξ, η, g) be an almost contact metric manifold
and M = B × f F a nontrivial warped product submanifold of N . Assume that ξ is
tangent to M and N is one of the following three manifolds: cosymplectic, Sasakian,
Kenmotsu.

Then there does not exist a proper pointwise semi-slant submanifold M of N such
that D1 = T F and D2 = T B.

Theorem 20 ([9]) Let M = B × f F be a m-dimensional nontrivial warped product
proper pointwise semi-slant submanifold of a (2n + 1)-dimensional Sasakian man-
ifold (N , φ, ξ, η, g) with the semi-slant function θ such that D1 = T B, D2 = T F,
and ξ is tangent to M.

Assume that n = m1 + 2m2.
Then we have

||h||2 ≥ 4m2(csc
2 θ + cot2 θ)||φ∇(ln f )||2 + 4m2 sin

2 θ (24)

with equality holding if and only if g(h(Z , W ), V ) = 0 for Z , W ∈ Γ (T F) and
V ∈ Γ (T M⊥).
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Theorem 21 ([9]) Let M = B × f F be a m-dimensional nontrivial warped product
proper pointwise semi-slant submanifold of a (2n + 1)-dimensional cosymplectic
manifold (N , φ, ξ, η, g) with the semi-slant function θ such that D1 = T B, D2 =
T F, and ξ is tangent to M.

Assume that n = m1 + 2m2.
Then we have

||h||2 ≥ 4m2(csc
2 θ + cot2 θ)||φ∇(ln f )||2 (25)

with equality holding if and only if g(h(Z , W ), V ) = 0 for Z , W ∈ Γ (T F) and
V ∈ Γ (T M⊥).

Theorem 22 ([9]) Let M = B × f F be a m-dimensional nontrivial warped product
proper pointwise semi-slant submanifold of a (2n + 1)-dimensional Kenmotsu man-
ifold (N , φ, ξ, η, g) with the semi-slant function θ such that D1 = T B, D2 = T F,
and ξ is normal to M with ξ ∈ Γ (μ).

Assume that n = m1 + 2m2.
Then we have

||h||2 ≥ 4m2(csc
2 θ + cot2 θ)||∇(ln f )||2 + 2m1 (26)

with equality holding if and only if g(h(Z , W ), V ) = 0 for Z , W ∈ Γ (T F) and
V ∈ Γ (T M⊥).

4 Open Questions

Question 1. Let M be a (pointwise) slant (or (pointwise) semi-slant) submanifold of
a Riemannian manifold (M, g) with some geometric structures.

Then

1. Give some examples of the manifold M when dim M ≥ 3.
2. What kind of rigidity problems can we do on M ⊂ M?

Question 2. Let M be a pointwise almost h-semi-slant submanifold of an almost
quaternionic Hermitian manifold (M, E, g) with the almost h-semi-slant functions
{θI , θJ , θK }.

Then

1. Can we give a characterization of the almost h-semi-slant functions {θI , θJ , θK }?
2. What kind of rigidity problems can we do on M ⊂ M?
3. Since the quaternionic Kähler manifolds have applications in physics, what is the

relation between this notion and physics?
4. Using this notion, what are the advantages for studying quaternionic geometry?
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Question 3. Let M be a pointwise slant (or pointwise semi-slant) submanifold of an
almost contact metric manifold (N , φ, ξ, η, g) with the slant (or semi-slant) func-
tion θ .

Then

1. Can we give a characterization of the slant (or semi-slant) function θ?
2. What kind of rigidity problems can we do on M ⊂ N?
3. Using these notions, what are the advantages for studying contact geometry?
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