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Abstract We investigate Gromov–Witten invariants and quantum cohomologies on
the products of almost contact metric manifolds. The product of two cosymplectic
manifolds has a Kähler structure. We compute some cohomology classes of compact
cosymplectic manifolds and show that any compact simply connected Kähler man-
ifold cannot be a product of two cosymplectic manifolds. On the products we get
some geometric properties, Gromov–Witten invariants and quantum cohomologies.
We have some relations between Gromov–Witten invariants of the products and the
ones of two cosymplectic manifolds.

1 Introduction

Let M be a real (2n + 1)-dimensional smooth manifold and X(M) the Lie algebra
of smooth vector fields on M . An almost co-complex structure on M is defined by a
smooth (1, 1)-tensor field ϕ, a smooth vector field ξ , and a smooth 1-form η on M
such that ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, where I denotes the identity transformation
of the tangent bundle T M . Manifolds with an almost co-complex structure (ϕ, ξ, η)

are called almost contact manifolds. An almost contact manifold (M, ϕ, ξ, η) with
a Riemannian metric tensor g such that

g(ϕX, ϕY ) = g(X, Y ) − η(X)η(Y )

for all X, Y ∈ X(M) is called an almost contact metric manifold, and denote it by
(M, g, ϕ, ξ, η). An almost contact metricmanifold has its structure group of the form
U (n) ⊕ (1), and the fundamental 2-form φ defined by

φ(X, Y ) = g(X, ϕY )
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for all X, Y ∈ X(M). An almost cosymplectic structure (η, φ) on M is called cosym-
plectic if dη = 0 = dφ, in this case M is called an almost co-Kähler manifold.When
φ = dη the associated almost cosymplectic structure is called a contact structure on
M and M an almost Sasakian manifold. The Nijenhuis tensor Nϕ of ϕ is the (1, 2)-
tensor field defined by

Nϕ(X, Y ) = [ϕX, ϕY ] − [X, Y ] − ϕ[X, ϕY ] − ϕ[ϕX, Y ]

for all X, Y ∈ X(M), where [X, Y ] is the Lie bracket of X and Y . An almost cocom-
plex structure (ϕ, ξ, η) is called integrable if Nϕ = 0, and normal if Nϕ + 2dη ⊗ ξ =
0. An integrable almost cocomplex structure is called a cocomplex structure. An inte-
grable almost co-Kähler manifold is called a co-Kähler manifold, while a Sasakian
manifold is a normal almost Sasakian manifold. In this paper we follow definitions
and notations on almost contact metric manifolds in the references [1–4].

Let (M, g, ω, J ) be a symplectic manifold with an almost complex structure J
which is compatible with a symplectic structure ω. To study symplectic manifolds
many geometers [5–7] have studied the theory of pseudo-holomorphic maps from
a Riemann surface to M . Let A ∈ H2(M;Z) be an integral homology class, and
Mg,k(M, A, J ) be the moduli space of stable J -holomorphic maps which represent
A from aRiemann surfacewith genus g and k marked points to M . Themoduli spaces
define theGromov–Witten invariants via evaluationmaps.Using theGromov–Witten
invariants we can define quantum product on cohomologies and have the quantum
cohomology ring Q H∗(M;Λ) [6, 7] with coefficients in some Novikov ring Λ. In
[8, 9] we have studied Gromov–Witten invariants and quantum cohomologies on
symplectic manifolds, in [10] geodesic surface congruences. We have extended the
notion of pseudo-holomorphic map in symplectic manifolds to the one of pseudo-
co-holomorphic map in almost contact metric manifolds. We have had some results
on Gromov–Witten type invariants and quantum type cohomologies on contact man-
ifolds [2], and on the products of cosymplectic manifolds and circle [11].

In this paper we consider the products of almost contact metric manifolds. On the
products we investigate some geometric structures, Gromov–Witten invariants, and
quantum cohomologies. In Sect. 2, we induce the fundamental 2-form and almost
complex structure on the product of two almost contact metric manifolds. In partic-
ular, the product of two cosymplectic manifolds is Kähler. In Sect. 3, we have some
topological properties of the product of two cosymplectic manifolds. We show that
the cosymplectic structure (η, φ) of a compact cosymplectic manifold contributes to
each Betti numbers. As a consequence we have that any compact simply connected
Kähler manifold can not be a product of two cosymplectic manifolds. In Sect. 4, we
study Gromow-Witten invariants on the product of two cosymplectic manifolds. We
show that the Gromov–Witten invariant of the product is equal to the product of
Gromov–Witten type invariants of two cosymplectic manifolds.

http://dx.doi.org/10.1007/978-981-10-5556-0_2
http://dx.doi.org/10.1007/978-981-10-5556-0_3
http://dx.doi.org/10.1007/978-981-10-5556-0_4
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2 The Product of Two Almost Contact Metric Manifolds

Let (M2ni +1
i , gi , ϕi , ξi , ηi , φi ), i = 1, 2, be almost contact metric manifolds. Then

the product M := M1 × M2 is a smooth manifold of dimension 2n, where n = n1 +
n2 + 1. Let g be a Riemannian metric on M defined by

g((X1, X2), (Y1, Y2)) = g1(X1, Y1) + g2(X2, Y2)

for every (X1, X2), (Y1, Y2) ∈ X(M), and J a (1, 1)-tensor field on M defined by

J (X1, X2) = (ϕ1X1 − η2(X2)ξ1, ϕ2X2 + η1(X1)ξ2)

for every (X1, X2) ∈ X(M).
The tangent bundles are decomposed as

T M1 = D1 ⊕ 〈ξ1〉, T M2 = D2 ⊕ 〈ξ2〉,

whereD1 = {X ∈ T M1 | η1(X) = 0},D2 = {X ∈ T M2 | η2(X) = 0}, and 〈ξi 〉, i =
1, 2 are trivial real line bundles on Mi .

Lemma 1 Let M be the product of almost contact metric manifolds M1 and M2.
Then we have

(1) T M � D1 ⊕ D2 ⊕ 〈ξ1, ξ2〉 is isomorphic to a sum of complex vector bundles.
(2) J 2 = −I .
(3) J = ϕ1 on D1, J = ϕ2 on D2, and J := ϕ3 on 〈ξ1, ξ2〉, where ϕ3(ξ1) = ξ2 and

ϕ3(ξ2) = −ξ1.
(4) g = J ∗g.

Proof By the definitions of the almost contact metric manifold, the metric g, and the
(1, 1)-tensor J , we can easily prove Lemma 1. �

By Lemma 1 the product of two almost contact metric manifolds is an almost
complex manifold. The fundamental 2-form on the product M is given by

φ((X1, X2), (Y1, Y2)) = g((X1, X2), J (Y1, Y2))

for every (X1, X2), (Y1, Y2) ∈ X(M).

Lemma 2 The fundamental 2-form φ on the product M is

φ = φ1 + φ2 − η1 ∧ η2.

Proof For every (X1, X2), (Y1, Y2) ∈ X(M),

φ((X1, X2), (Y1, Y2)) = g((X1, X2), J (Y1, Y2))
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= g((X1, X2), (ϕ1Y1 − η2(Y2)ξ1, ϕ2Y2 + η1(Y1)ξ2))

= g1(X1, ϕ1Y1 − η2(X2)ξ1) + g2(X2, ϕ2Y2 + η1(Y1)ξ2)

= g1(X1, ϕ1Y1) − η2(X2)g1(X1, ξ1) + g2(X2, ϕ2Y2) + η1(Y1)g2(X2, ξ2)

= φ1(X1, Y1) + φ2(X2, Y2) − η2(X2)η1(X1) + η1(Y1)η2(X2)

= (φ1 + φ2 − η1 ∧ η2)((X1, X2), (Y1, Y2)).

Thus we have φ = φ1 + φ2 − η1 ∧ η2. �

Recall that an almost contact metric manifold (M, g, ϕ, ξ, η, φ) is almost cosym-
plectic or almost co-Kähler (cosymplectic or co-Kähler) if and only if dη = 0 = dφ

(dη = 0 = dφ = Nϕ), respectively.

Theorem 1 Let (M2ni +1
i , gi , ϕi , ξi , ηi , φi ), i = 1, 2, be almost contact metric man-

ifolds and (M2n, g, J, φ) their product, where n = n1 + n2 + 1. Then we have

(1) if Mi , i = 1, 2, are almost cosymplectic, then M is symplectic.
(2) if Mi , i = 1, 2, are cosymplectic, then M is Kähler.

Proof By Lemma 1, the product (M, g, J, φ) is an almost complex manifold. By
Lemma 2 the fundamental 2-form on the product is φ = φ1 + φ2 + η2 ∧ η1.

The exterior derivative of φ is

dφ = dφ1 + dφ2 + dη2 ∧ η1 − η2 ∧ dη1.

(1) Let Mi , i = 1, 2, be almost cosymplectic. Then dφi = 0 = dηi , i = 1, 2. and so
dφ = 0. Thus φ is closed. The n times exterior product of φ is

φn = (φ1 + φ2 + η2 ∧ η1)
n = φ

n1
1 ∧ φ

n2
2 ∧ η2 ∧ η1

which does not vanish on M .
Thus the fundamental 2-form φ is a nondegenerate closed 2-form on M .

(2) Let Mi , i = 1, 2, be cosymplectic. Then by (1) M is symplectic and J is almost
complex structure J is compatible with φ.
Since the Nigenhuis tensor on Mi is Nϕi = 0, i = 1, 2, the Nijenhuis tensor NJ

on M is zero. Thus (M, g, J, φ) is Kähler.

�

Remark 1 The odd dimensional spheres S2n1+1 and S2n2+1, ni > 0, are contact. The
product S2n1+1 × S2n2+1 is a complex manifold but not symplectic [12].
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3 The Product of Two Cosymplectic Manifolds

Let (M2n+1, g, ϕ, ξ, η, φ) be a cosymplectic manifold, and 
 the Levi-Civita con-
nection which is compatible with the metric g. Define Two operators L and ∧ on M
by the exterior product L = ε(φ) and the interior product ∧ = ι(φ).

Recall the cohomologies of cosymplectic manifolds.

Lemma 3 ([1]) For a cosymplectic manifold (M, g, ϕ, ξ, η, φ)

(1) 
Xφ = 0 for every X ∈ X(M).
(2) L commutes with the Laplace-Beltrami operator �.
(3) L maps the space of harmonic p-forms into the space of harmonic (p + 2)-forms.

Theorem 2 ([1]) Let (M2n+1, g, ϕ, ξ, η, φ) be a compact cosymplectic manifold.
Then the each Betti number Bi (M) of M is nonzero, i.e.,

Bi (M) �= 0 i = 0, 1, . . . , 2n + 1.

Recall the topology of compact cosymplectic manifolds. Since the fundamental
2-form φ satisfies 
Xφ = 0 for every X ∈ X(M) we have dφ = 0 and d∗φ = 0.
Thus �φ = (d∗d + dd∗)φ = 0, and φ is harmonic.

Suppose φ p is harmonic, then we have

�(φ p+1) = �(Lφ p) = L(�φ p) = L(0) = 0.

Thus φ p+1 is harmonic for every p.
Since φn �= 0 and φ p �= 0 for every 1 ≤ p ≤ n, the Betti numbers B2p(M) �= 0,

0 ≤ p ≤ n. By Poincaré duality the odd dimensional Betti numbers

B2p+1(M) �= 0, 0 ≤ p ≤ n.

Let {ξ, ei , ϕei | i = 1, . . . , n} be a local ϕ-basis and {η, ωi , ω
∗
i | i = 1, . . . , n} its

dual basis in M . Then we have

φ =
n∑

i=1

ωi ∧ ω∗
i ,

φn = n!ω1 ∧ ω∗
1 ∧ · · · ∧ ωn ∧ ω∗

n,

∗ φn = n! ∗ (ω1 ∧ ω∗
1 ∧ · · · ∧ ωn ∧ ω∗

n) = n!η,

and φn ∧ η is a nowhere vanishing (2n + 1)-form.
Since the Hodge star ∗ operator commutes to �, i.e., ∗� = �∗,

n!�η = �n!η = � ∗ φn = ∗�φn = ∗0 = 0.

Thus the η is a nonzero harmonic 1-form in M .
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For every 1 ≤ p ≤ n, since�(φ p ∧ η) = (�φ p) ∧ η + φ p ∧ (�η) = 0, theφ p ∧
η are nonzero harmonic (2p + 1)-forms.

Theorem 3 Let (M2n+1, g, ϕ, ξ, η, φ) be a compact cosymplectic manifold.
Then we have

(1) the cohomology classes, 1, η, φ, φ ∧ η, φ2, . . . , φn, φn ∧ η contribute the Betti
numbers Bi (M), i = 0, . . . , 2n + 1, respectively.

(2) every Morse function f : M → R has critical points more than n + 2 points
such that there are critical points xk ∈ M of f satisfying ind f (xk) = k for k =
0, 1, . . . , 2n + 1.

Let (M2ni , gi , ϕi , ξi , ηi , φi ) be compact cosymplectic manifolds, i = 1, 2 and
(M = M1 × M2, g, J, φ) the product of M1 and M2. By Theorem 1 M is a Kähler
manifold. By the Künneth Theorem the cohomology of M is

H∗(M,Q) = H∗(M1,Q) ⊗ H∗(M2,Q).

The k-dimensional cohomology of M is

H k(M,Q) =
∑

k1+k2=k

H k1(M1,Q) ⊗ H k2(M2,Q).

and the kth Betti number of M ,

Bk(M) =
∑

k1+k2=k

Bk1(M1)Bk2(M2).

By Theorem 3 the first Betti number of M is B1(M) = B1(M1) + B1(M2) ≥ 2.

Theorem 4 Let M be a product of two compact cosymplectic manifolds.
Then the B1(M) is even and greater than or equal to 2.

Theorem 5 A compact simply connected Kähler manifold cannot be the product of
two cosymplectic manifolds.

4 Gromov–Witten Invariants on the Products

Let (M2ni +1, gi , ϕi , ξi , ηi , φi ), i = 1, 2, compact cosymplectic manifolds and Di =
{X ∈ T Mi | ηi (X) = 0}, i = 1, 2, the distribution bundles associated with ηi on Mi ,
respectively. As in Sect. 2 we denote (M, g, J, φ) the product of M1 and M2. We
decompose the tangent bundle T M into three complex subbundles as follows:

http://dx.doi.org/10.1007/978-981-10-5556-0_2
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for every (X1, X2, r1ξ1, r2ξ2) ∈ D1 ⊕ D2 ⊕ 〈ξ1, ξ2〉.
In the decomposition (D1, ϕ1), (D2, ϕ2), (〈ξ1, ξ2〉, ϕ3) are Hermitian vector bun-

dles of rank n1, n2, and 1, respectively. By the Künneth formula the 2-dimensional
homology of M is

H2(M) = H2(M1) ⊕ H2(M2) ⊕ (H1(M1) ⊗ H1(M2)).

The first Chern class of M is

c1(T M) = c1(D1) + c1(D2) + c1(〈ξ1, ξ2〉)
= c1(D1) + c1(D2),

where 〈ξ1, ξ2〉 is a trivial complex line bundle.
Assume that an integral curve of ξi in Mi is a circle S1

i , i = 1, 2. Then the torus
T := S1

1 × S1
2 ⊂ M1 × M2 is an integral surface of {ξ1, ξ2} whose tangent bundle is

T = 〈ξ1, ξ2〉. For example, Mi = Ni × S1
i are the products of Kähler manifolds Ni

and circles S1
i , i = 1, 2 [11].

Let A ∈ H2(M) be decomposed as A = A1 + A2 + A3, where A1 ∈ H2(M1),

A2 ∈ H2(M2), A3 ∈ H1(M1) ⊗ H1(M2) and let πi : M → M1, M2, T , i = 1, 2, 3
be the projections, respectively. Recall that a smoothmap u : (�, j) → (M, J ) from
a Riemann surface (�, j) to (M, J ) is J -holomorphic if du ◦ j = J ◦ du. For each
i = 1, 2, 3 the map ui := πi ◦ u is ϕi -holomorphic if dui ◦ j = ϕi ◦ dui .

Lemma 4 A smooth map u : (�, j) → (M, J ) is J -holomorphic if and only if ui :
(�, j) → (Mi , Ji ) is ϕi -holomorphic i = 1, 2, 3, where (M3, J3) = (T, ϕ3)and J =
ϕ1 ⊕ ϕ2 ⊕ ϕ3 on T M = D1 ⊕ D2 ⊕ 〈ξ1, ξ2〉.

Let M0,3(M; A, J ) := {u : (�, j) → (M, J ) | u is J -holomorphic, u∗([�]) =
A} be the moduli space of stable J -holomorphic maps from a sphere with 3 marked
points to M which represent the 2-dimensional homology class A.

Note that there is no nontrivial rational map to a torus [5, 9].

Lemma 5 The moduli space of T is

M0,3(T ; A, ϕ3) =
{

T if A = 0
φ otherwise.

Theorem 6 (1) The moduli space M0,3(M; A, J ) is a compact stratified space of
dimension 2[c1(D1)A1 + c1(D2)A2 + n].
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(2) If A3 = 0, then there is a canonical homeomorphism

M0,3(M; A, J ) → M0,3(M; A1, ϕ1) × M0,3(M2; A2, ϕ2) × T .

Proof (1) By the stability of J -holomorphic maps the moduli spaceM0,3(M; A, J )

is compact. The dimension of M0,3(M; A, J ) is

dimM0,3(M; A, J ) = 2c1(T M)A + 2n
= 2(c1(D1) + c1(D2) + c1(〈ξ1, ξ2〉))(A1 + A2 + A3) + 2(n1 + n2 + 1)
= (2c1(D1)A1 + 2n1) + (2c1(D2)A2 + 2n2) + 2
= dimM0,3(M2; A2, ϕ2) + dimM0,3(M1; A1, ϕ1) + dim T .

(2) By Lemmas 4 and 5, (2) is clear. �

There are the canonical evaluation maps given by as follows:

ev : M0,3(M; A, J ) → M3, ev([u; z1, z2, z3]) = (u(z1), u(z2), u(z3)),

ev1 : M0,3(M1; A1, ϕ1) → M3
1 , ev([u1; z1, z2, z3]) = (u1(z1), u1(z2), u1(z3)),

ev2 : M0,3(M2; A2, ϕ2) → M3
2 , ev([u2; z1, z2, z3]) = (u2(z1), u2(z2), u2(z3)),

ev3 : M0,3(T ; A3, ϕ3) → T 3, ev3([u3; z1, z2, z3]) = (u3(z1), u3(z2), u3(z3)).

The Gromov–Witten invariants are defined by

Φ
M,A,J
0,3 : H∗(M3) → Q, Φ

M,A,J
0,3 (α) =

∫

M0,3(M;A,J )

ev∗(α),

Φ
M1,A1,ϕ1
0,3 : H∗(M3

1 ) → Q, Φ
M1,A1,ϕ1
0,3 (α1) =

∫

M0,3(M1;A1,ϕ1)

ev∗
1(α1),

Φ
M2,A2,ϕ2
0,3 : H∗(M3

2 ) → Q, Φ
M2,A2,ϕ2
0,3 (α2) =

∫

M0,3(M2;A2,ϕ2)

ev∗
2(α2),

Φ
T,A3,ϕ3
0,3 : H∗(T 3) → Q, Φ

T,A3,ϕ3
0,3 (α3) =

∫

T
ev∗

3(α3).

By Lemma 5 we have

Lemma 6 If A3 = 0, then the Gromov–Witten invariants of T are

Φ
T,A3,ϕ3
0,3 : H∗(T 3) → Q, Φ

T,A3,ϕ3
0,3 (α31 ⊗ α32 ⊗ α33) =

∫

T
(α31 ∪ α32 ∪ α33),

where α3i ∈ H∗(T ), i = 1, 2, 3.

Theorem 7 Under the above assumptions we have

Φ
M,A,J
0,3 (α1 ⊗ α2 ⊗ α3) = Φ

M1,A1,ϕ1
0,3 (α1) · Φ

M2,A2,ϕ2
0,3 (α2) ·

∫

T
ev∗

3(α3),
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where α1 ∈ H∗(M3
1 ), α2 ∈ H∗(M3

2 ), α3 ∈ H∗(T 3), and A3 = 0.

Proof Let α1 ∈ H d1(M3
1 ), α2 ∈ H d2(M3

2 ), and α3 ∈ H 2(T 3), where di = dimM0,3

(Mi ; Ai , ϕi ) = 2ci (Di ) + 2ni , i = 1, 2. Then we have

Φ
M;A,J
0,3 (α1 ⊗ α2 ⊗ α3) =

∫

M0,3(M,A,J )

ev∗(α1 ⊗ α2 ⊗ α3)

=
∫

M0,3(M1,A1,ϕ1)

ev∗
1(α1) ·

∫

M0,3(M2,A2,ϕ2)

ev∗
2(α2) ·

∫

M0,3(T,0,ϕ3)

ev∗
3(α3)

= Φ
M1,A1,ϕ1
0,3 (α1) · Φ

M2,A2,ϕ2
0,3 (α2) ·

∫

T
ev∗

3(α3).

�
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