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Abstract The Clifford hypersurface is one of the simplest compact hypersurfaces
in a unit sphere. We give two different characterizations of Clifford hypersurfaces
among constant m-th order mean curvature hypersurfaces with two distinct princi-
pal curvatures. One is obtained by assuming embeddedness and by comparing two
distinct principal curvatures. The proof uses the maximum principle to the two-point
function, which was used in the proof of Lawson conjecture by Brendle (Acta Math.
211(2):177–190, 2013, [6]). The other is given by obtaining a sharp curvature integral
inequality for hypersurfaces in a unit sphere with constant m-th order mean curva-
ture and with two distinct principal curvatures, which generalizes Simons integral
inequality (Simons, Ann. Math. (2) 88:62–105, 1968, [30]). This article is based on
joint works (Min and Seo, Math. Res. Lett. 24(2):503–534, 2017, [18], Min and Seo,
Monatsh. Math. 181(2):437–450, 2016, [19]) with Sung-Hong Min.

1 Introduction and Results

Recently minimal surface theory in a 3-dimensional unit sphere S3 has been exten-
sively studied by many geometers. Among compact minimal surfaces in S

3, the
simplest one is the equator, which is totally geodesic. In 1966, Almgren [2] obtained
the uniqueness theorem, which states that any immersed 2-sphere in S

3 is totally
geodesic. Thereafter Lawson [16] constructed compact embedded minimal surfaces
in S

3 with any genus. Moreover he conjectured that the only compact embedded
minimal torus in S3 is the Clifford torus. Brendle [6] proved ingeniously this famous
conjecture by using the maximum principle for the two-point function.

Theorem 1 ([6]) The only embedded minimal torus in S
3 is the Clifford torus.
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In 1989, Pinkall and Sterling [29] proposed the conjecture that any embedded con-
stant mean curvature(CMC) torus is rotationally symmetric, which is a CMC-version
of Lawson conjecture. Applying Brendle’s argument in [6], Andrews and Li [3] gave
an affirmative answer to Pinkall–Sterling’s conjecture.

Theorem 2 ([3]) Every embedded CMC torus in S
3 is rotationally symmetric.

It would be interesting to obtain an analogue in higher-dimensional cases. How-
ever, the situation is more complicated in higher-dimensional cases. In the following
we give brief historical review in this direction.

Let M be a compact minimal hypersurface in S
n+1. Simons [30] obtained the

following identity:

1

2
Δ|A|2 = |∇ A|2 + |A|2(n − |A|2),

whereΔ,∇, and A denote the Laplacian, the Levi-Civita connection, and the second
fundamental form on M , respectively. Integrating this identity over M , Simons was
able to prove the following integral inequality:

∫
M

|A|2 (|A|2 − n
) ≥ 0. (1)

It follows from the above integral inequality that there are three possibilities: Such
M is either totally geodesic, or |A|2 ≡ n, or |A|2(x) > n at some point x ∈ M .
Regarding the second case, Chern, doCarmo andKobayashi [10] in 1968 andLawson
[15] in 1969 independently proved

Theorem 3 ([10, 15])For n ≥ 3, if |A|2 ≡ n on M, then M is isometric to a Clifford

minimal hypersurface S
n−1

(√
n−1

n

)
× S

1
(√

1
n

)
.

For higher-dimensional cases, Otsuki deeply investigated minimal hypersurfaces
with two distinct principal curvatures as follows:

Theorem 4 ([23–25]) Let M be a minimal hypersurface in S
n+1 with two distinct

principal curvatures λ and μ.

• The distribution of the space of principal vectors corresponding to each principal
curvature is completely integrable.

• If the multiplicity of a principal curvature is greater than 1, then this principal cur-
vature is constant on each integral submanifold of the corresponding distribution
of the space of principal vectors.

• If one of λ and μ is simple, then there are infinitely many immersed minimal
hypersurfaces other than Clifford minimal hypersurfaces.

• If M is embedded, then M is locally congruent to a Clifford minimal hypersurface.

Hence one sees that the only compact embedded minimal hypersurfaces with two
distinct principal curvatures in Sn+1 is a Cliffordminimal hypersurface. However this
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uniqueness result does not hold in general. For example, Hsiang [14] constructed
infinitely many mutually noncongruent embedded minimal hypersurfaces in S

n+1

which are homeomorphic to the Clifford hypersurface using equivariant differential
geometry. Furthermore it is well-known that a lot of isoparametric hypersurfaces
exist in Sn+1, which are all embedded. See [1, 7–9, 12, 13, 21, 22, 26] for examples
and [20] for more references.

Otsuki’s result was extended to higher-order mean curvature cases for hypersur-
faces with two distinct principal curvatures. Wu [34] proved that if the multiplicities
of two distinct principal curvatures are at least 2, then a compact hypersurface with
constant m-th order mean curvature is congruent to a Clifford hypersurface. Thus
we shall consider hypersurfaces with constant m-th order mean curvature satisfying
that one of the two distinct principal curvatures is simple. We remark that if M is a
hypersurface in a space form with two distinct principal curvatures such that one of
two distinct principal curvatures is simple, then M is a part of rotationally symmetric
hypersurface, which was proved by do Carmo and Dajzer [11]. Recall that the m-th
order mean curvature Hm of an n-dimensional hypersurface M ⊂ S

n+1 is defined
by the elementary symmetric polynomial of degree m in the principal curvatures
λ1, λ2, · · · , λn on M as follows:

(
n

m

)
Hm =

∑
1≤i1<···<im≤n

λi1 . . . λim .

We also recall that if an n-dimensional Clifford hypersurface in Sn+1 has two distinct
principal curvatures λ and μ of multiplicities n − k and k respectively, then it is
given by

S
n−k

(
1√

1 + λ2

)
× S

k

(
1√

1 + μ2

)

with λμ + 1 = 0.
Assume that M is a compact hypersurface in a unit spherewith constantm-th order

mean curvature Hm and with two distinct principal curvatures with multiplicities
n − 1, 1. Without loss of generality, we may assume that λ = λ1 = · · · = λn−1 and
μ = λn . Choose the orthonormal frame tangent to M such that hi j = λiδi j , that is,

Aei = λei for i = 1, . . . , n − 1,
Aen = μen .

Then
(

n

m

)
Hm =

(
n − 1

m

)
λm +

(
n − 1

m − 1

)
λm−1μ,
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which gives

Hm = m

n
λm−1

(
n − m

m
λ + μ

)
. (2)

For some Weingarten hypersurfaces with two distinct principal curvatures,
Andrews, Huang, and Li obtained the following:

Theorem 5 ([4]) Let Σ be a compact embedded hypersurface in S
n+1 with two dis-

tinct principal curvatures λ and μ, whose multiplicities are m and n − m respectively
for 1 ≤ m ≤ n − 1. If λ + αμ = 0 for some positive constant α, Σ is congruent to

a Clifford hypersurface S
n−1

(√
1

α+1

)
× S

1
(√

α
1+α

)
.

Using the identity (2) and Theorem5, we see that any compact embedded hyper-
surfaces with vanishing m-th order mean curvature and with two distinct principal
curvatures is congruent to a Clifford hypersurface. On the other hand, Perdomo [28]
constructed compact embedded CMChypersurfaces in Sn+1, which have two distinct
principal curvatures, one of them being simple.

Theorem 6 ([28]) For any integer m ≥ 2 and H between cot π
m and (m2−2)

√
n−1

n
√

m2−1
,

there exists a compact embedded hypersurface in S
n+1 with constant mean curvature

H other than the totally geodesic n-spheres and Clifford hypersurfaces.

We note that the two distinct principal curvatures λ and μ satisfy λ > μ in
Theorem6, where μ is simple. In case where λ < μ, it is natural to ask whether
one can obtain the uniqueness of Clifford hypersurface or not. In [18], Sung-Hong
Min and the author gave the affirmative answer to this question as follows:

Theorem 7 ([18]) Let Σ be an n(≥ 3)-dimensional compact embedded hypersur-
face in S

n+1 with constant mean curvature H ≥ 0 and with two distinct principal
curvatures λ and μ, μ being simple. If μ > λ, then Σ is congruent to a Clifford
hypersurface.

In Sect. 3, we give another characterization of Clifford hypersurfaces using
Simons-type integral inequality for a compact hypersurface in a unit sphere with
constant higher-order mean curvature and with two distinct principal curvatures.

2 Proof of Theorem7

Here we give the brief sketch of the proof of Theorem7. If H = 0, then it is already
known that Σ is congruent to a Clifford minimal hypersurfaces by the work due to
Otsuki. We now assume that H > 0. Since Σ is a compact embedded hypersurface,
Σ divides Sn+1 into two connected components. We may assume that H > 0 by the
suitable choice of the orientation of Σ . Let R be the region satisfying that ν points
out of R. The mean curvature vector H satisfies that H = −nHν(x). For a positive
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function Ψ on Σ , we denote by BT (x, 1
Ψ (x)

) a geodesic ball with radius 1
Ψ (x)

which

touches Σ at F(x) inside the region R in S
n+1. Then BT (x, 1

Ψ (x)
) is given by the

intersection of Sn+1 and a ball of radius 1
Ψ (x)

centered at p(x) = F(x) − 1
Ψ (x)

ν(x)

in Rn+2. Define the two-point function Z : Σ × Σ → R by

Z(x, y) := Ψ (x)(1 − 〈F(x), F(y)〉) + 〈ν(x), F(y)〉. (3)

We introduce the notion of the interior ball curvature at x ∈ Σ , which was originally
given by Andrews-Langford-McCoy [5] (see also [3]).

Definition 1 The interior ball curvature k is a positive function on Σ defined by

k(x) := inf

{
1

r
: BT (x, r) ∩ Σ = {x}, r > 0

}
.

Since Σ is compact and embedded in Sn+1, the function k is a well-defined positive
function on Σ . From the definition of k(x) for every point x ∈ Σ , we have

k(x)(1 − 〈F(x), F(y)〉) + 〈ν(x), F(y)〉 ≥ 0

for all y ∈ Σ .
Let Φ(x) := max{λ(x), μ(x)} be the maximum value of the principal curvatures

of Σ in S
n+1 at F(x). It is easy to see that Φ(x) − H > 0. Motivated by the works

of Brendle [6] and Andrews-Li [3], we introduce the constant κ as follows:

κ := sup
x∈Σ

k(x) − H

Φ(x) − H
.

For convenience, we will write ϕ(x) := Φ(x) − H . It follows that there exists a
constant K > 0 satisfying

1 ≤ κ < K .

By definition, we see that Φ(x) ≤ k(x) for every x ∈ Σ in general. Indeed, we have
the equality case under our setting.

Proposition 1 Let Σ be an n(≥ 3)-dimensional compact embedded hypersurface
in S

n+1 with constant mean curvature H with two distinct principal curvatures, one
of them being simple. If H > 0. Then

k(x) = Φ(x)

for all x ∈ Σ .

Proof See [18] for the proof. �
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From this observation, it follows that k(x) = Φ(x) and hence

Φ(x)(1 − 〈F(x), F(y)〉) + 〈ν(x), F(y)〉 ≥ 0,

for all x, y ∈ Σ . Fix x ∈ Σ and choose an orthonormal frame {e1, . . . , en} in a
neighborhood of x such that h(en, en) = Φ. Let γ (t) be a geodesic on Σ such that
γ (0) = F(x) and γ ′(0) = en . Define a function f : R → R by

f (t) := Z(F(x), γ (t)) = Φ(x)(1 − 〈F(x), γ (t)〉) + 〈ν(x), γ (t)〉.

Then one sees that f (t) ≥ 0 and f (0) = 0. Moreover

f ′(t) = −〈Φ(x)F(x) − ν(x), γ ′(t)〉,

f ′′(t) = 〈Φ(x)F(x) − ν(x), γ (t) + h(γ ′(t), γ ′(t))ν(γ (t))〉,

f ′′′(t) = 〈Φ(x)F(x) − ν(x), γ ′(t) + (∇Σ
γ ′(t)h)(γ ′(t), γ ′(t))ν(γ (t))〉

+ 〈Φ(x)F(x) − ν(x), h(γ ′(t), γ ′(t))∇γ ′(t)ν(γ (t))〉,

where ∇ is the covariant derivative of Rn+2. In particular, at t = 0,

f (0) = f ′(0) = 0,

f ′′(0) = 〈Φ(x)F(x) − ν(x), F(x) + Φ(x)ν(x)〉 = 0.

Because f is nonnegative, we get f ′′′(0) = 0. Hence

0 = f ′′′(0) = 〈Φ(x)F(x) − ν(x), en + hnnn(x)ν(x)〉 = −hnnn(x).

Therefore we see that enλ = h11n = − 1
n−1hnnn = 0, which implies that λ and μ

are constant on Σ by Ostuki. It follows that Σ is an isoparametric hypersurface in
S

n+1 with two distinct principal curvatures. From the classification of isoparametric
hypersurfaces with two principal curvatures due to Cartan [7], Σ is congruent to the
Clifford hypersurface.

3 Sharp Curvature Integral Inequality

In this section, we give another uniqueness result of Clifford hypersurfaces in terms
of curvature integral inequality. Perdomo [27] andWang [31] independently obtained
a curvature integral inequality for minimal hypersurfaces in S

n+1 with two distinct
principal curvatures,which characterizes aCliffordminimal hypersurface. Later,Wei
[32] showed that the similar curvature integral inequality holds for hypersurfaceswith
the vanishing m-th order mean curvature (i.e., Hm ≡ 0).
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Theorem 8 ([27, 31, 32]) Let M be an n(≥ 3)-dimensional compact hypersurface
in S

n+1 with Hm ≡ 0 (1 ≤ m < n) and with two distinct principal curvatures, one
of them being simple. Then

∫
M

|A|2 ≤ n(m2 − 2m + n)

m(n − m)
Vol(M),

where equality holds if and only if M is isometric to a Clifford hypersurface

S
n−1

(√
n−m

n

)
× S

1
(√m

n

)
.

In [19], Sung-HongMin and the author obtained a sharp curvature integral inequal-
ity for compact hypersurfaces in S

n+1 with Hm ≡ constant (1 ≤ m < n) and with
two distinct principal curvatures, one of them being simple.

Theorem 9 ([19]) Let M be an n(≥ 3)-dimensional closed hypersurface in S
n+1

with constant m-th order mean curvature Hm and with two distinct principal curva-
tures λ and μ, μ being simple (i.e., multiplicity 1). For the unit principal direction
vector en corresponding to μ, we have

∫
M
Ric(en, en) ≥ 0,

where Ric denotes the Ricci curvature. Moreover, equality holds if and only if M is
isometric to a Clifford hypersurface.

We remark that if Hm ≡ 0 for 1 ≤ m < n, then

Ric(en, en) = (n − 1)

(
1 − m(n − m)

n(m2 − 2m + n)
|A|2

)
.

Theorem9 can be regarded as an extension of [27, 31, 32]. From this theorem, one
sees that if Ric(en, en) ≤ 0 on such a hypersurface M , then M is congruent to a
Clifford hypersurface.

Proof of Theorem9 Here we give a brief idea of the proof of Theorem9 (See [19]
for more details). Note that for λ = λ1 = · · · = λn−1 and μ = λn , the function w =
|λm − Hm |− 1

n is well-defined. From this notion, the Laplacian of f = f (w) on M is
given by

Δ f = − 1

n − 1
f ′(w)w Ric(en, en) +

[
f ′′(w) + (n − 1)

f ′(w)

w

]
(enw)2. (4)

If we let a function f (w) = logw in (4), then

Δ f = −Ric(en, en)

n − 1
+ n − 2

w2
(enw)2.
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Integrating Δ f over M gives

∫
M
Ric(en, en) = (n − 1)(n − 2)

∫
M

(enw)2

w2
≥ 0.

Equality holds if and only if enλ ≡ 0. Thus both λ and μ are constant, which shows
that M is congruent to a Clifford hypersurface by Cartan [7]. �

In the following, we generalize Simons’ integral inequality into closed hypersur-
faces with two distinct principal curvatures.

Theorem 10 ([19]) Let M be an n(≥ 3)-dimensional closed hypersurface in S
n+1

with Hm ≡ 0 (1 ≤ m < n) and with two distinct principal curvatures, one of them
being simple. Then we have

⎧⎪⎪⎨
⎪⎪⎩

∫
M

|A|p

(
|A|2 − n(m2 − 2m + n)

m(n − m)

)
≤ 0 i f p < n−2

n m,
∫

M
|A|p

(
|A|2 − n(m2 − 2m + n)

m(n − m)

)
≥ 0 i f p > n−2

n m.

Equalities in the above hold if and only if M is congruent to a Clifford hypersurface.

Proof See [19] for the proof. �

We remark that if m = 1 and p = 2, then Theorem10 is exactly the same as Simons’
integral inequality (1), which was mentioned in the introduction.We also remark that
when m = 2 and p = 2, Li [17] obtained some pointwise estimates on |A|2, which
gives the above theorem. For p = 2 and 3 < m < n, Wei [33] proved the above
theorem for compact and rotational hypersurfaces in a unit sphere with Hm ≡ 0.
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