Characterizations of a Clifford Hypersurface
in a Unit Sphere

Keomkyo Seo

Abstract The Clifford hypersurface is one of the simplest compact hypersurfaces
in a unit sphere. We give two different characterizations of Clifford hypersurfaces
among constant m-th order mean curvature hypersurfaces with two distinct princi-
pal curvatures. One is obtained by assuming embeddedness and by comparing two
distinct principal curvatures. The proof uses the maximum principle to the two-point
function, which was used in the proof of Lawson conjecture by Brendle (Acta Math.
211(2):177-190, 2013, [6]). The other is given by obtaining a sharp curvature integral
inequality for hypersurfaces in a unit sphere with constant m-th order mean curva-
ture and with two distinct principal curvatures, which generalizes Simons integral
inequality (Simons, Ann. Math. (2) 88:62-105, 1968, [30]). This article is based on
joint works (Min and Seo, Math. Res. Lett. 24(2):503-534, 2017, [ 18], Min and Seo,
Monatsh. Math. 181(2):437-450, 2016, [19]) with Sung-Hong Min.

1 Introduction and Results

Recently minimal surface theory in a 3-dimensional unit sphere S* has been exten-
sively studied by many geometers. Among compact minimal surfaces in S, the
simplest one is the equator, which is totally geodesic. In 1966, Almgren [2] obtained
the uniqueness theorem, which states that any immersed 2-sphere in S? is totally
geodesic. Thereafter Lawson [16] constructed compact embedded minimal surfaces
in S* with any genus. Moreover he conjectured that the only compact embedded
minimal torus in S? is the Clifford torus. Brendle [6] proved ingeniously this famous
conjecture by using the maximum principle for the two-point function.

Theorem 1 ([6]) The only embedded minimal torus in S* is the Clifford torus.
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In 1989, Pinkall and Sterling [29] proposed the conjecture that any embedded con-
stant mean curvature(CMC) torus is rotationally symmetric, which is a CMC-version
of Lawson conjecture. Applying Brendle’s argument in [6], Andrews and Li [3] gave
an affirmative answer to Pinkall-Sterling’s conjecture.

Theorem 2 ([3]) Every embedded CMC torus in S® is rotationally symmetric.

It would be interesting to obtain an analogue in higher-dimensional cases. How-
ever, the situation is more complicated in higher-dimensional cases. In the following
we give brief historical review in this direction.

Let M be a compact minimal hypersurface in S"*!. Simons [30] obtained the
following identity:

1
5A|A|2 = VAP + |APP(n — |A]P),

where A, V, and A denote the Laplacian, the Levi-Civita connection, and the second
fundamental form on M, respectively. Integrating this identity over M, Simons was
able to prove the following integral inequality:

/ |A]> (JA]* = n) = 0. (1)
M

It follows from the above integral inequality that there are three possibilities: Such
M is either totally geodesic, or |A|> = n, or |A|*(x) > n at some point x € M.
Regarding the second case, Chern, do Carmo and Kobayashi [10] in 1968 and Lawson
[15] in 1969 independently proved

Theorem 3 ([10, 15]) Forn > 3, if|A|2 = non M, then M is isometric to a Clifford
minimal hypersurface S"~! (1 / %) x S! (\/;)

For higher-dimensional cases, Otsuki deeply investigated minimal hypersurfaces
with two distinct principal curvatures as follows:

Theorem 4 ([23-25]) Let M be a minimal hypersurface in S"+' with two distinct
principal curvatures ). and (4.

e The distribution of the space of principal vectors corresponding to each principal
curvature is completely integrable.

e [fthe multiplicity of a principal curvature is greater than 1, then this principal cur-
vature is constant on each integral submanifold of the corresponding distribution
of the space of principal vectors.

e If one of A and  is simple, then there are infinitely many immersed minimal
hypersurfaces other than Clifford minimal hypersurfaces.

e If M is embedded, then M is locally congruent to a Clifford minimal hypersurface.

Hence one sees that the only compact embedded minimal hypersurfaces with two
distinct principal curvatures in S"*! is a Clifford minimal hypersurface. However this
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uniqueness result does not hold in general. For example, Hsiang [14] constructed
infinitely many mutually noncongruent embedded minimal hypersurfaces in S"+!
which are homeomorphic to the Clifford hypersurface using equivariant differential
geometry. Furthermore it is well-known that a lot of isoparametric hypersurfaces
existin S"T!, which are all embedded. See [1, 7-9, 12, 13, 21, 22, 26] for examples
and [20] for more references.

Otsuki’s result was extended to higher-order mean curvature cases for hypersur-
faces with two distinct principal curvatures. Wu [34] proved that if the multiplicities
of two distinct principal curvatures are at least 2, then a compact hypersurface with
constant m-th order mean curvature is congruent to a Clifford hypersurface. Thus
we shall consider hypersurfaces with constant m-th order mean curvature satisfying
that one of the two distinct principal curvatures is simple. We remark that if M is a
hypersurface in a space form with two distinct principal curvatures such that one of
two distinct principal curvatures is simple, then M is a part of rotationally symmetric
hypersurface, which was proved by do Carmo and Dajzer [11]. Recall that the m-th
order mean curvature H,, of an n-dimensional hypersurface M C S"*! is defined
by the elementary symmetric polynomial of degree m in the principal curvatures
A1, Ao, - -+, A, on M as follows:

n
(m) Hm = Z )\’il . )“im .

I<ij<-<ip<n

We also recall that if an n-dimensional Clifford hypersurface in S"*! has two distinct
principal curvatures A and p of multiplicities n — k and k respectively, then it is
given by

o () ()

withiu +1=0.

Assume that M is acompact hypersurface in a unit sphere with constant m-th order
mean curvature H,, and with two distinct principal curvatures with multiplicities
n — 1, 1. Without loss of generality, we may assume that . = Ay = --- = A,_; and
1 = A,. Choose the orthonormal frame tangent to M such that h;; = A;4;;, that is,

Ae; =Xe; fori=1,...,n—1,
Aen = Hey.

n n—1Y_, n—1\_,_,
H, = AT+ A",
m m m—1

Then
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which gives

m_ ., (n—m
H,=—\""{——x+pu). @
m

n

For some Weingarten hypersurfaces with two distinct principal curvatures,
Andrews, Huang, and Li obtained the following:

Theorem 5 ([4]) Let X be a compact embedded hypersurface in S"*" with two dis-
tinct principal curvatures A and |1, whose multiplicities are m and n — m respectively
forl <m <n—1.If A + ap = 0 for some positive constant o, X is congruent to

a Clifford hypersurface S"~! (\/g) x S! (E)

Using the identity (2) and Theorem 5, we see that any compact embedded hyper-
surfaces with vanishing m-th order mean curvature and with two distinct principal
curvatures is congruent to a Clifford hypersurface. On the other hand, Perdomo [28]
constructed compact embedded CMC hypersurfaces in S"*!, which have two distinct
principal curvatures, one of them being simple.
2

Theorem 6 ([28]) For any integer m > 2 and H between cot % and %
there exists a compact embedded hypersurface in S'+' with constant mean curvature
H other than the totally geodesic n-spheres and Clifford hypersurfaces.

We note that the two distinct principal curvatures A and p satisfy A > u in
Theorem 6, where w is simple. In case where A < u, it is natural to ask whether
one can obtain the uniqueness of Clifford hypersurface or not. In [18], Sung-Hong
Min and the author gave the affirmative answer to this question as follows:

Theorem 7 ([18]) Let X be an n(> 3)-dimensional compact embedded hypersur-
face in S"T! with constant mean curvature H > 0 and with two distinct principal
curvatures A and [, u being simple. If u > X\, then X is congruent to a Clifford
hypersurface.

In Sect.3, we give another characterization of Clifford hypersurfaces using
Simons-type integral inequality for a compact hypersurface in a unit sphere with
constant higher-order mean curvature and with two distinct principal curvatures.

2 Proof of Theorem 7

Here we give the brief sketch of the proof of Theorem7. If H = 0, then it is already
known that X is congruent to a Clifford minimal hypersurfaces by the work due to
Otsuki. We now assume that H > 0. Since X' is a compact embedded hypersurface,
X divides S"*! into two connected components. We may assume that H > 0 by the
suitable choice of the orientation of X. Let R be the region satisfying that v points
out of R. The mean curvature vector H satisfies that H = —n Hv(x). For a positive
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function ¥ on X', we denote by By (x, ﬁ) a geodesic ball with radius ﬁ which

touches X at F(x) inside the region R in S"*!. Then By (x, ﬁ) is given by the

intersection of S"*! and a ball of radius #X) centered at p(x) = F(x) — ll’éx) v(x)

in R"*2, Define the two-point function Z : ¥ x ¥ — R by

Z(x,y) =¥ )1 = (F(x), F(y)) + (v(x), F(y)). 3)

We introduce the notion of the interior ball curvature at x € X', which was originally
given by Andrews-Langford-McCoy [5] (see also [3]).

Definition 1 The interior ball curvature k is a positive function on X' defined by
. 1
k(x) :=inf{— : Br(x,r)N X ={x}, r >0¢.
r

Since X' is compact and embedded in S™t! the function & is a well-defined positive
function on X'. From the definition of k(x) for every point x € X', we have

k@) (I = (F(x), F()) + (v(x), F(y)) =0

forally € X.

Let @ (x) := max{A(x), u(x)} be the maximum value of the principal curvatures
of X in §"*! at F(x). It is easy to see that @ (x) — H > 0. Motivated by the works
of Brendle [6] and Andrews-Li [3], we introduce the constant « as follows:

k(x)— H
K 1= sup ———.
vex P(x) — H

For convenience, we will write ¢(x) := @(x) — H. It follows that there exists a
constant K > 0 satisfying

1<k <K.

By definition, we see that @ (x) < k(x) for every x € X' in general. Indeed, we have
the equality case under our setting.

Proposition 1 Let X be an n(> 3)-dimensional compact embedded hypersurface
in S"t with constant mean curvature H with two distinct principal curvatures, one
of them being simple. If H > 0. Then

k(x) = @(x)

forallx € X.

Proof See [18] for the proof. O
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From this observation, it follows that k(x) = @ (x) and hence
D (x)(1 = (F(x), F(y))) + (v(x), F(y)) =0,

for all x,y € X. Fix x € ¥ and choose an orthonormal frame {eq,...,e,} in a
neighborhood of x such that A(e,, ¢,) = @. Let y () be a geodesic on X' such that
y(0) = F(x) and y’(0) = ¢,. Define a function f : R — R by

f@):=Z(Fx),y@) =2x)1 - (Fx), y®)) + (v(x), y(1)).
Then one sees that f (1) > 0 and f(0) = 0. Moreover
[1(#) = —(@x)F(x) —v(x), y' 1)),
(@) = (@) F(x) —v(x), y (1) + h(y'(1), y' 0)v(y (1)),

f"(0) = (P)F(x) = v(x), ¥ (1) + (Vyy D (' (0), ¥ () (y (1))
T (P F(x) —v(@), h (Y (0), ¥ () Vy vy (1),

where V is the covariant derivative of R"*2. In particular, at t = 0,

f0) = f(0) =0,
F7(0) = (P () F(x) = v(x), F(x) + @(x)v(x)) = 0.

Because f is nonnegative, we get f"’(0) = 0. Hence
0= f"(0) = (PX)F(x) = v(x), € + hupn ()0 (X)) = —lypn ().

Therefore we see that e, A = hyy, = —ﬁhm = 0, which implies that A and u
are constant on X' by Ostuki. It follows that X is an isoparametric hypersurface in
S"+! with two distinct principal curvatures. From the classification of isoparametric
hypersurfaces with two principal curvatures due to Cartan [7], X' is congruent to the
Clifford hypersurface.

3 Sharp Curvature Integral Inequality

In this section, we give another uniqueness result of Clifford hypersurfaces in terms
of curvature integral inequality. Perdomo [27] and Wang [31] independently obtained
a curvature integral inequality for minimal hypersurfaces in §"*! with two distinct
principal curvatures, which characterizes a Clifford minimal hypersurface. Later, Wei
[32] showed that the similar curvature integral inequality holds for hypersurfaces with
the vanishing m-th order mean curvature (i.e., H, = 0).
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Theorem 8 ([27, 31, 32]) Let M be an n(> 3)-dimensional compact hypersurface
in S with H,, =0 (1 < m < n) and with two distinct principal curvatures, one
of them being simple. Then

2 _
/ AP < %wl(m
; =

where equality holds if and only if M is isometric to a Clifford hypersurface
s ((152) x ' (V).

In[19], Sung-Hong Min and the author obtained a sharp curvature integral inequal-
ity for compact hypersurfaces in S"*! with H,, = constant (1 < m < n) and with
two distinct principal curvatures, one of them being simple.

Theorem 9 ([19]) Let M be an n(> 3)-dimensional closed hypersurface in S"*!
with constant m-th order mean curvature H,, and with two distinct principal curva-
tures A and w, | being simple (i.e., multiplicity 1). For the unit principal direction
vector e, corresponding to |, we have

/ Ric(ey, e,) > 0,
M

where Ric denotes the Ricci curvature. Moreover, equality holds if and only if M is
isometric to a Clifford hypersurface.

We remark that if H,, = 0 for 1 < m < n, then

Ric(e,, e,) = (n — 1) (1 - sz) .
n(m? —2m +n)

Theorem 9 can be regarded as an extension of [27, 31, 32]. From this theorem, one
sees that if Ric(e,, e,) < 0 on such a hypersurface M, then M is congruent to a
Clifford hypersurface.

Proof of Theorem9 Here we give a brief idea of the proof of Theorem9 (See [19]
for more details). Note that for A = A, = --- = A,,_ and u = A,,, the function w =
M — H,, I_% is well-defined. From this notion, the Laplacian of f = f(w) on M is
given by

f'(w)

w

n—1

Af = — ! f'(w)w Ric(e,, e,) + [f”(w) +n-1) } (e’ (@)

If we let a function f(w) = logw in (4), then

Ric(e,,e,) n—2
_ =

(enw)z.

Af:

n—1
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Integrating Af over M gives

2
/ RiC(en, en) = (n — 1)(}1 _ 2)/ (en":) > 0.
M y oW

Equality holds if and only if e,A = 0. Thus both A and u are constant, which shows
that M is congruent to a Clifford hypersurface by Cartan [7]. O

In the following, we generalize Simons’ integral inequality into closed hypersur-
faces with two distinct principal curvatures.

Theorem 10 ([19]) Let M be an n(> 3)-dimensional closed hypersurface in S"*!
with H,, =0 (1 < m < n) and with two distinct principal curvatures, one of them
being simple. Then we have

-2
/|A|p(|A| ( m+n))§01fp<nn;2m’

m(n m)
m(n m) n

Equalities in the above hold if and only if M is congruent to a Clifford hypersurface.
Proof See [19] for the proof. O

We remark thatif m = 1 and p = 2, then Theorem 10 is exactly the same as Simons’
integral inequality (1), which was mentioned in the introduction. We also remark that
when m = 2 and p = 2, Li [17] obtained some pointwise estimates on |A]?, which
gives the above theorem. For p =2 and 3 < m < n, Wei [33] proved the above
theorem for compact and rotational hypersurfaces in a unit sphere with H,, = 0.
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