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Abstract
Confined to a narrow region but rich in nutrients, rhizosphere is always favorable 
to interactions between microorganisms and plants. While many soil microor-
ganisms have no obvious effects on plants, some have negative as well as positive 
effects on plant growth. Plant growth-promoting rhizobacteria (PGPR) are ben-
eficial microbes which have been fruitfully applied in agriculture to enhance 
seedling emergence, plant weight, crop yield, and disease resistance. Among 
these, some PGPR strains mediate plant growth promotion in direct and/or indi-
rect manner by releasing volatile organic compounds (VOCs). Bacteria emitted 
a wide array of volatiles ranging from inorganic such as hydrogen cyanide (HCN) 
and nitric oxide (NO) to organic such as hydrocarbon, ketone, acids, terpenes, 
etc. Bacterial VOCs promote plant growth by eliciting different signaling path-
way and show correlation with plant growth hormones also. In particular, 
2,3-butanediol and acetoin were reported for the heightened level of plant growth 
promotion and triggering induced resistance against fungal pathogens. This 
chapter focuses on recent research study and role of bacterial volatiles in plant 
growth promotion and protection against pathogens.
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16.1  Introduction

For the good health, healthy food is the main concern which is directly related to the 
present agroecosystem. Agricultural products are the primary dietary source of pro-
teins, carbohydrates, fat, vitamins, and other nutrients. With the increasing popula-
tion, the need of dietary sources is increasing day by day drastically that ultimately 
leads to use of different chemicals in the form of phytohormones and pesticides to 
promote plants growth and amelioration of pathogens, respectively, to get quick 
result. Presently, the primary concern for the cultivator is to cultivate disease-free 
plant and to gain high yield in any adverse condition. Plants act in response to attack 
by pathogens or herbivores by inducing resistance phenomena through extensive 
changes in the gene expression, resulting in expression of various traits de novo or 
at much higher intensities, which diminish or put off further tissue damage (Karban 
and Baldwin 1997). Such plant responses expressed systemically because patho-
gens and herbivores can spread from the preliminary site of attack to other organs. 
This systemic response gets regulated by long-distance signaling of three plant hor-
mones, namely, jasmonic acid (JA), ethylene, and salicylic acid (SA). SA and JA are 
transported either themselves or in the form of derivatives within the plant to elicit 
systemic responses against pathogen (Jain et al. 2017; Wasternack 2007; Heil and 
Ton 2008). Belowground, around the roots, rhizosphere is a narrow region where 
root-secreted exudates in the form of secondary metabolites affect the growth of 
indigenous microflora. This area can also be considered as a battlefield where ben-
eficial bacteria and deleterious microorganisms compete for the resources. Among 
the diverse microbial population of the rhizosphere, the beneficial root-associated 
bacteria, also referred to as plant growth-promoting rhizobacteria (PGPR), have 
been used to control plant diseases and enhance plant growth and yield. Such a dis-
ease controlling strategy is referred to as biological control in contrast to chemical 
control. Several mechanisms have been explained till now to elucidate PGPR- 
mediated plant growth stimulation. These mechanisms are broadly categorized as 
direct and indirect where phosphate solubilization and production of different plant 
hormones, i.e., indole acetic acid (IAA), gibberellic acid (GA), and cytokinin, 
directly enhance the plant growth, while biocontrol of plant pathogens and deleteri-
ous rhizosphere microorganisms indirectly promotes growth by avoiding growth- 
limiting conditions (Glick 1995; Idriss et al. 2002; Kloepper 1992). This indirect 
mechanism of suppression of harmful microorganisms is known as induced sys-
temic resistance (ISR) (Kloepper 1992; Dobbelaere et al. 2003).

Research studies have revealed that signaling molecules involved in the long- 
distance signaling through the vascular system can also be volatile compounds that 
move in the headspace outside the plant (Heil and Ton 2008). Volatile organic com-
pounds (VOCs) released from bacteria act as signaling molecules for other bacteria, 
animals, insects, plants, and microorganisms (Farag et al. 2013). Zoller and Clark 
first of all reported microbial VOCs. These signaling molecules have been reported 
to have considerable role in plant growth, ameliorating abiotic stress in plants and 
as inhibitor of fungal pathogens (Baily and Weisskopf 2012; Davis et  al. 2013). 
Plant-plant communication has been reported in several taxonomically unrelated 
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plants due to freely moving nature of VOCs in the air (Tscharntke et  al. 2001; 
Engelberth et al. 2004; Heil and Kost 2006; Paschold et al. 2006; Heil and Bueno 
2007; Ton et al. 2007; Godard et al. 2008). These studies show the role of VOCs in 
herbivore resistance via plant-plant communication phenomenon, and similar vola-
tile compounds from beneficial bacteria can also mediate the beneficial effects (Ryu 
et al. 2003, 2004b). Volatile derivatives of two major signaling molecules SA and JA 
play a major role in plant defense. Methyl salicylate (MeSA), volatile derivative of 
SA, has been projected as the most probable systemic signal in the plant (Park et al. 
2007). In tobacco, active resistance-inducing compounds were formed by SA after 
being converted back from MeSA that shows resistance induction in tobacco plants 
by higher exposure of MeSA (Kumar and Klessig 2003; Forouhar et  al. 2005; 
Shulaev et al. 1997).

In context to the plant defense, PGPB-produced VOCs elicited plant growth pro-
motion, and induced systemic resistance provides a new insight in plant growth- 
promoting bacteria (PGPB)–plant interaction (Chung et al. 2016; Weisskopf et al. 
2016). Bacteria produce a wide range of VOCs that have been reported to play a 
crucial role in plant defense. Some of the most common VOCs included dodecane, 
2-undecanone, 2-tridecanone, 2-tridecanol, tetramethylpyrazine 2, 3-butanediol, 
3-hydroxy-2-butanone (acetoin), etc. Volatile compounds, 2, 3-butanediol and 
3-hydroxy-2-butanone, were reported to be the most important one and found to be 
consistently released by the bacterial strain B. subtilis GB03 and B. amyloliquefa-
ciens IN937a. A. thaliana plants primed with these strains have shown that signifi-
cant resistance upon challenge inoculation of Erwinia carotovora subsp. carotovora 
SCC1 concluded the role of VOCs in elicitation of ISR. Furthermore, genetically 
modified Bacillus strain, lacking VOC-producing ability, was also used to justify the 
priming activity of such VOCs to induce resistance against diseases (Ryu et  al. 
2003). Besides Bacillus, several strains of P. fluorescens were also reported for the 
production of VOCs and shown more effectiveness in controlling root and seedling 
diseases (Landa et al. 2002).

16.2  Bacterial VOCs: Diversified in Nature

Bacterial VOCs are diversified in nature as bacteria that produce a wide variety of 
volatiles ranging from inorganic to organic compound with different subcategories. 
In addition to the role in communication, several bacterial volatiles have been 
reported for the antifungal activity, and most probably ketones have been proposed 
to be responsible for this effect. Bacterial volatiles were found effective against a 
wide range of fungi such as VOCs from Streptomyces that inhibit growth of entomo-
pathogenic fungi while from Staphylococcus pasteuri inhibit mycorrhizal fungi. 
Furthermore, VOCs were also reported for the plant growth-promoting activity and 
protection against bacterial phytopathogens (Schulz and Dickschat 2007). Bacteria 
produce a wide array of inorganic and organic volatile compounds.
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16.2.1  Inorganic Compounds

Different types of inorganic VOCs such as nitric oxide (NO), hydrogen sulfide 
(H2S), ammonia, or hydrogen cyanide (HCN) have been reported to release from 
bacteria. Biosynthesis of HCN is catalyzed by HCN synthase, encoded by hcnABC 
gene that converts glycine into HCN and CO2. Few bacterial species including 
Pseudomonas, Chromobacterium, and Rhizobium have been reported for the pro-
duction of HCN, and it is produced under low-oxygen concentration at the end of 
the exponential phase. Another volatile ammonia production is catalyzed by aspar-
tate ammonia lyase via conversion of aspartate to fumarate resulting in release of 
ammonia (Bernier et al. 2011). In addition to these, NO is produced mostly from 
L-arginine by nitric oxide synthases, while most H2S-producing bacteria generate 
this gas through degradation of cysteine (Mattila and Thomas 2014).

16.2.2  Organic Compounds

Organic VOCs released from bacteria include different types of chemical classes 
such as fatty acid derivatives, acids, sulfur, and nitrogen-containing compounds and 
terpenes.

16.2.2.1  Fatty Acid Derivatives
These types of volatiles are most likely formed by alteration of products of the fatty 
acid biosynthetic pathway, for example, hydrocarbons, aliphatic alcohols, ketones, 
and other components. Short-chain hydrocarbons such as decane to tetradecane are 
rarely found in microbes, while longer hydrocarbons such as hexadecane reported 
particularly in abundant manner in cyanobacteria (Ladygina et  al. 2006). 
Hydrocarbons and acids occur fewer often than ketones and alcohols. Acetoin 
(3-hydroxy-2-butanone), one of the most notable VOCs, belongs to ketone class and 
is derived from pyruvate fermentation under anaerobic conditions (Ryu et al. 2003), 
while another important compound 2,3-butanediol falls under short-chain alcohols 
and is produced by Proteobacteria and Firmicutes under low-oxygen conditions 
(Farag et  al. 2013; Whiteson et  al. 2014). Comparative to ketones and alcohols, 
organic acids are found less abundant in bacterial volatiles which include several 
short-chain fatty acids such as acetic, propionic, or butyric acids (Schulz and 
Dickschat 2007).

16.2.2.2  Sulfur Compounds
Being one of the important components of proteins and primary metabolism in 
plants and animal, sulfur is the most important macronutrient after nitrogen, phos-
phorus, and potassium, and its deficiency affects plant and animal health. Due to 
sulfur deficiency, chlorophyll content and synthesis of ribulose-1,5-bisphosphate 
carboxylase/oxygenase are reduced that restricts CO2 assimilation and leads to sup-
pression of the photosynthetic machinery (Burke et al. 1986; Gilbert et al. 1997; 
Aziz et al. 2016). The biogenesis of S-containing compounds, such as methanethiol, 
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dimethyl disulfide (DMDS), dimethyl sulfide, or dimethyl trisulfide and 1-(methyl 
thio)-3-pentanone, is often mediated by bacteria. Meldau et al. (2013) reported the 
role of VOC DMDS emitted by B55 in plant growth promotion by priming the N. 
attenuata 35S-etr1plant which is impaired in SO4

−2 uptake, with B55, and found 
significant promotion in seedling growth.

16.2.2.3  Terpenes
Terpenes are derived via mevalonate pathway or deoxyxylulose phosphate pathway 
from the terpene building units dimethylallyl pyrophosphate and isopentenyl pyro-
phosphate. Only monoterpenes (C10), sesquiterpenes (C15), and their derivatives or 
degradation products have been reported from bacterial volatile blends. Some of the 
notable terpene volatiles from bacteria are earthy odorant geosmin and antibiotic 
albaflavenone out of which the former is reported in several bacterial species, while 
the latter one is exclusively found in Streptomyces (Schulz and Dickschat 2007).

16.2.2.4  Nitrogen-Containing Compounds
Bacteria released several nitrogen-containing VOCs such as trimethylamine (TMA), 
2-amino-acetophenone (2-AA), indole, etc. Among these, indole is reported to be 
produced by most of the PGPB and play an important role in plant growth. In 
Escherichia coli, tryptophanase enzyme catalyzed the biosynthesis of indole as it 
converts substrate tryptophan into indole, pyruvate, and ammonia (Lee and Lee 
2010). Another VOC, 2-AA, can be used for the diagnosis of P. aeruginosa infec-
tions as it is aromatic in nature and responsible for the grape-like aroma of P. aeru-
ginosa (Que et al. 2013; Schulz and Dickschat 2007).

16.3  Bacterial VOCs: Plant Growth Booster

Arabidopsis thaliana, the model of the plant world, has been used for the most of 
VOC-related studies using I-plate methods (divided plates), where compartments 
are separated by a plastic border. This facilitates exchange of volatile compounds 
without any physical diffusion of nonvolatile metabolites. Apart from that, research 
studies have also been done on some other plants. Initially Ryu et al. (2003) revealed 
that volatiles released from specific bacterial strains of PGPR have positive role on 
the growth of Arabidopsis thaliana seedlings. PGPR consist of a broad range of 
beneficial root-colonizing bacteria which can promote plant growth by means of 
enhancing different plant growth-promoting traits such as seed emergence, plant 
weight, and crop yields (Kloepper 1992; Ciancio et  al. 2016). PGPR have been 
widely used for seed or seedling treatment to increase the growth of several crops 
and to restrain the growth of plant pathogens and harmful rhizosphere microorgan-
isms (Glick 1995). Apart from enhancing plant growth, certain PGPR provide pro-
tection against pathogen also by means of triggering ISR in plant through VOCs. 
Several in vitro condition experiments have shown role of VOCs emitted by differ-
ent genera of PGPR strains in the promotion of plant growth and elicitation of ISR 
against phytopathogens (Ryu et al. 2003, 2004a, b, c; Li et al. 2016). Two VOCs 
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2,3-butanediol and its precursor 3-hydroxy-2-butanone (acetoin) released from the 
strains GB03 and IN937a have been reported for the plant growth promotion through 
I-plate method. Furthermore, A. thaliana plants were reported with dose-dependent 
stimulation in growth upon exogenous application of commercial acetoin and 
2,3-butanediol, which suggest the effects of the volatile blend produced by the two 
Bacillus sp. Later on, the role of these compounds as plant growth-promoting vola-
tile determinants was confirmed by applying 2,3-butanediol mutant strains of B. 
subtilis, that results in no effect on plants’ growth (Ryu et al. 2003, 2004a). VOCs 
released by bacteria also play an important role in signaling of plant growth hor-
mones by regulating expression of some pathway genes. Correlation between some 
hormones and VOCs has been described here.

16.3.1  Ethylene

Ethylene is a gaseous plant growth hormone in nature and plays an important role 
in the VOC-mediated bacteria–plant interaction, and loss of the positive regulator of 
the ethylene pathway EIN2 led to different growth behaviors in response to bacterial 
strain IN937a and GB03 VOCs (Stepanova and Alonso 2009). VOCs from GB03 
were found to be unable to trigger biomass increase in mutant ein2 (ethylene insen-
sitive2) (Guzm’n and Ecker 1990; Ryu et al. 2003), while in another study VOCs of 
IN937a failed to show significant change in the growth promotion effect in the 
ethylene- insensitive mutants etr1 (ethylene response1) (Bleecker et al. 1988), ein2, 
and eir1 (ethylene-insensitive root1) (Luschnig et al. 1998). It implies that the plant 
amends its response by means of a strain-specific signal transduction pathway. 
Further in transcriptomic study, a subset of ethylene biosynthesis (ACO2, ACS4, 
ACS12, and SAM-2) and ethylene response (CHIB, ERF1, and GST1) genes 
have been shown to respond to bacterial volatiles (Kwon et  al. 2010). Different 
expression of four enzymes, namely, aspartate aminotransferase, aspartate semi-
aldehyde dehydrogenase precursor, methionine adenosyltransferase (MAT3), and 
S-adenosylmethionine synthetase 2 (SAM-2), has been reported upon exposure to 
bacterial volatiles. Conclusively, it shows significant role of ethylene pathway in the 
growth-promoting effect of bacterial volatiles.

16.3.2  Cytokinins

Plant growth hormone cytokinins play a major role in cell division processes and 
control the leaf size, root and shoot meristem maintenance, and root architecture 
(Argueso et al. 2010). Earlier, Arkhipova et al. (2005) have described the relation-
ship between microbial production of cytokinins and plant development. It is also 
reported that B. megaterium failed to promote plant growth in plants devoid of the 
histidine kinase cytokinin receptors and cytokinin receptor-deficient (CRE1)/
AHK4, AHK2, and AHK3. Ryu et  al. (2003) have also proven cytokinin role in 
mediation of PGPR signals as Arabidopsis mutant’s cre1 and ein2 were found 
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insensitive to GB03 volatiles. Though no recognition of cytokinin- related genes was 
reported in the succeeding microarray or proteomics studies (Kwon et al. 2010). 
Taken together, it shows that cytokinins are crucial for the root development and 
physiology; hence the importance of cytokinin pathway with respect to change in 
plant growth mediated by bacterial volatiles appears to be worthy for deep 
investigation.

16.3.3  Abscisic Acid

The abscisic acid (ABA) originally known to be involved in abscission and bud 
dormancy also plays an important role in plant responses to environmental stresses 
and pathogens. Its signaling pathway overlaps widely with sugar sensing in planta 
(Rolland et al. 2006). Sugars, being a product of photosynthesis, play an important 
role in plant growth and development. In this context, increased level of sugar con-
centration via increase in photosynthetic activity and chlorophyll content was 
reported in the Arabidopsis seedlings treated with GB03 volatiles that conclude role 
of VOCs in photosynthesis (Zhang et al. 2008). In another study, although increased 
photosystem efficiency was observed in Arabidopsis lines gin1 and gin2, impaired 
in hexokinase-dependent sugar sensing but found with no response to GB03 VOCs 
(Moore et al. 2003). These studies suggested that VOCs promote photosynthesis by 
means of triggering the repression of the hexokinase- dependent glucose signaling 
pathway. Further, Zhang et al. (2009) have also confirmed the VOCs’ role in plant 
growth by showing reduced concentration of ABA contents in aerial parts of the 
plants exposed to bacterial VOCs in comparison to control plants. It was also 
observed that GB03 volatiles increase photosynthetic capacity in the plants via acid-
ification of the rhizosphere and consequent increase in iron uptake.

16.3.4  Auxin

Auxin is one of the main plant growth hormones found in different natural forms. It 
conducts a complex signaling pathway that involves the spatial and temporal coor-
dination of auxin synthesis, transport, and perception. Plant growth-promoting rhi-
zobacteria have been reported to synthesize IAA to trigger plant growth promotion 
(Kim et al. 2011; Kochar et al. 2011). Zhang et al. (2007) have shown in a transcrip-
tome study that genes associated with auxin synthesis and response showed differ-
ential regulation upon exposure of Arabidopsis to volatiles of GB03. Müller et al. 
(1998) have reported upregulation of enzymes, namely, tryptophan synthase, an 
anthranilate synthase, and three nitrilases (two of these expressed specifically in the 
aerial tissues of the plant), involved in the tryptophan-dependent IAA biosynthesis 
pathway. Zhang et al. (2007) further supported this finding by using auxin transport 
inhibitor naphthylphthalamic acid (NPA) that results in abolishment of this response.

Differential expression of expansin genes associated with cell wall remodeling 
and cell expansion was also reported in the Arabidopsis leaves exposed to bacterial 
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VOCs (Zhang et  al. 2007). Similar upregulation has been reported for Lactuca 
sativa EXPA5 and Nicotiana tabacum EXP2 and EXP6 (Wang et al. 2009; Minerdi 
et al. 2011). Conclusively, these studies suggested the role of IAA biosynthesis, its 
transportation and local tissue concentration in the enhancement of aerial part of the 
plants, and hence its superlative role for the auxin machinery in the VOC-mediated 
plant growth promotion.

16.4  Bacterial VOCs: Invisible Weapons Against Pathogens

Bacterial VOCs work as bacterial determinants that play an important role in plant 
protection against invading pathogens. Volatiles 2,3-butanediol and phenazines are 
known to possess antimicrobial activity and often been considered harmful to a 
wide variety of biological systems. Priming the defense pathways by external elici-
tors allows the potentiated induction of defense response while not forthwith acti-
vating the defense signal cascades, which might be accompanied by the outflow of 
energy for defense mobilization (Paré et al. 2005). PGPR priming is not directly 
associated with direct changes in gene expression in leaves, but it is assumed that 
elicitation ends in a rise within the quantity or activity of cellular elements that play 
vital roles in defense signaling (Lee et al. 2012). Transcriptional expression of the 
marker genes PR1, ChiB, and VSP2 involved in salicylic acid, jasmonic acid, and 
ethylene signaling, respectively, was observed in the plants exposed to long-chain 
VOC tridecane, released from P. polymyxa against the biotrophic pathogen P. syrin-
gae pv. tomato. In another study, Han et al. (2006) reported that volatile 2,3- butanediol 
and acetoin from B. subtilis elicited a stronger ISR against P. carotovorum subsp. 
carotovorum, whereas direct application of 2,3-butanediol failed to trigger ISR 
against P. syringae pv. tabaci. In another study, Sharifi and Ryu (2016) found 
increased resistance in Arabidopsis plants against the necrotrophic fungus B. cine-
rea via ISR elicitation through bacterial VOCs exposure and suggested major role 
of volatiles in biocontrol against fungal phytopathogens. Recently, Tahir et  al. 
(2017) have reported induced protection in tobacco against bacterial wilt-causing 
pathogen Ralstonia solanacearum upon priming with Bacillus whose volatiles 
adversely affect the physiology and ultrastructure of the pathogens. This study sug-
gests that different defensive cascades are elicited in response to different 
pathogens.

Furthermore, transcriptomic and proteomic analysis of A. thaliana exposed to 
bacterial volatiles revealed that three major plant defense signaling pathways, 
including salicylic acid, jasmonic acid, and ethylene, mediate these effects (Kwon 
et  al. 2010; Zhang et  al. 2010). This study has shown that upon treatment with 
GB03, significant upregulation of VOCs was observed in the transcript of five ET 
biosynthesis-related genes, namely, MAT3, SAM-2, ACS4, ACS12, and ACO2, while 
strong induction was also found in the ET marker genes ERF1, GST2, and CHIB. 
Another proteome study has shown the independency of ISR elicited by B. subtilis 
FB17 to JA pathway but dependency on SA and ET signaling pathways against P. 
syringae pv. tomato DC3000.
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Ethylene-insensitive plants treated with 2,3-butanediol did not elicit ISR, sug-
gesting that ethylene is a major player in this interaction (Farag 2014). Different 
signaling pathways are responsible for the VOC-mediated induction of ISR. Mutants 
and transgenic plant lines of plants exposed to volatiles have been used to reveal the 
pathway (Han et al. 2006; Ramos et al. 2000; Ryu et al. 2003). Comparative study 
of the signal transduction pathways potentiated by individual VOCs in the presence 
or absence of exogenous priming agents offers more insight into the roles of elici-
tors and priming agents in eliciting plant defense responses and in increasing long- 
term protection of plants (Lee et al. 2012). Different VOCs produced by bacteria 
may help plants to change defense signaling pathways resulting in protection them 
against various types of pathogens, i.e., necrotrophs and biotrophs. Ryu et  al. 
(2004a) reported independency of ISR triggered by GB03 emissions to the salicylic 
acid, NPR1, and jasmonic acid signaling pathways although this response seems to 
be mediated via ethylene. On the other hand, independency of ISR triggered by 
strain IN937a to all the signaling pathways tested shows the possibility that addi-
tional VOCs utilize alternative pathways in planta. In fact, the ethylene (ET)-
dependent plant defense signaling pathway is more effective against a necrotrophic 
pathogen such as P. carotovorum subsp. carotovorum than against P. syringae, 
which requires an SA-dependent resistance response (Pieterse et al. 2009). Failure 
to elicit ISR by C4-alcohol biosynthetic pathway mutants stain of Bacillus subtilis 
confirms the role of acetoin and 2,3-butanediol as ISR volatile determinants. 
Significant upregulation in the transcript profile of PDF1.2 gene was also observed 
upon priming with B. subtilis strain GB03 and strain FB17 (Ryu et  al. 2004a). 
However, how plants modulate and recognize PGPR VOC-elicited defense straight 
away after pathogen infection remains to be fully elucidated.

16.5  Conclusion

With the diverse and rapidly evolving pathogens and global climate changes, 
adverse effects have been increasing in food security by reduction in the world crop 
yield. Although day-by-day increased application of pesticides and chemical fertil-
izers provides instant solutions for the plant disease and crop yield problems, 
respectively, it ultimately leads to affect human and environment health in negative 
manner. A wide array of research study on bacterial VOC–plant interactions has led 
to an ever more conceptual understanding of the nature of bacterial VOCs and their 
potential role in enhancing plant protection and productivity in a sustainable man-
ner. Significant modulation of plant metabolomics, physiology, and transcriptional 
status upon exposing to bacterial VOCs shows the plants’ ability to recognize and 
react to bacterial VOCs. These studies evidently revealed the necessity for imple-
mentation of bacterial VOCs in open-field conditions and stress their multiple roles 
to extend pathogen resistance, protection against herbivores, and in general as bio-
control agents. Bacterial VOC–plant interaction studies opened up a new era of 
bacterial VOC application for a sustainable development of agriculture with respect 
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to crop protection and production strategies as a possible replacement for hazardous 
pesticides and chemical fertilizers. Although bacterial VOCs are equivalent to 
biopesticides or biofertilizers, effective use of bacterial VOCs still, however, remains 
a big challenge.
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