
Improving the Map and Shuffle Phases
in Hadoop MapReduce

J. V. N. Lakshmi

Abstract Massive amounts of data are needed to be processed as analysis is
becoming a challenging issue for network-centric applications in data management.
Advanced tools are required for processing such data sets for analyzing. As a
proficient analogous computing programming representation, MapReduce and
Hadoop are employed for extensive data analysis applications. However,
MapReduce still suffers with performance problems and MapReduce uses a shuffle
phase as a featured element for logical I/O strategy. The map phase requires an
improvement in its performance as this phase’s output acts as an input to the next
phase. Its result reveals the efficiency, so map phase needs some intermediate
checkpoints which regularly monitor all the splits generated by intermediate phases.
MapReduce model is designed in a way that there is a need to wait until all maps
accomplish their given task. This acts as a barrier for effective resource utilization.
This paper implements shuffle as a service component to decrease the overall
execution time of jobs, monitor map phase by skew handling, and increase resource
utilization in a cluster.

Keywords MapReduce � Hadoop � Shuffle � Big data
Data analytics � HDFS

1 Introduction

The objective of data analytics is scrutinizing, cleansing, renovating, and molding
of the data for extracting functional information, portentous termination and sus-
taining choice making [1]. Data analysis has various sides and looming methods
beneath diverse identities in special business, science and social science fields [2].

Big data is a meticulous technique of data analysis that focuses on analyzing
huge data sets which materialize from various fields of intensive informatics data

J. V. N. Lakshmi (&)
AIMS Institutes of Higher Education, Peenya, Bengaluru, Karnataka, India
e-mail: jlakshmi.research@gmail.com

© Springer Nature Singapore Pte Ltd. 2018
S. C. Satapathy et al. (eds.), Smart Computing and Informatics, Smart Innovation,
Systems and Technologies 77, https://doi.org/10.1007/978-981-10-5544-7_21

203

centers [3]. Big data typically comprises of data sets of massive volume beyond the
skill of traditional software tools to analyze, handle, and process the data [4].

Procedures written in this practical way are mechanically parallelized and
implemented on an immense cluster of commodity equipment [5, 6]. In program
execution, runtime structures are concerned of the splits which are scheduled in
handling many operations such as implementation across set of machines,
managing failures, and handling inter-machine communications [7]. The crucial
drawback is exhibited on Hadoop performance affecting the cluster.

The significant explanation of Hadoop is outlined as below:

(1) Distinct phases are leaped into a single task—the implementation of reduce
function is CPU intensive and memory intensive as to segregate the map task
data and produce the absolute outcome.

(2) Arbitrary requests from I/O effecting the shuffle phase—task tracker receives
plenty of I/O reading requests. Each request will prompt plenty of I/O reading
operations with different offset on the task tracker.

In this paper, an attempt is done to extricate shuffle phase from reduce task and
instrument it as a standard resource provider. Integrate the shuffle service with
sequential read policy and handling partitioning skew in reduce task to manage
stragglers. Section 2 portrays the background and Hadoop MapReduce program-
ming model, and Sect. 3 describes the problem statement. Section 4 discusses
design process, and Sect. 5 analyzes on improvement in map phase. Section 6
involves the evaluation of algorithm, and Sect. 7 reviews the results. Finally,
Sect. 8 concludes.

2 Background

The recent efforts from Hadoop MapReduce features are analyzed in improving
performance are illustrated as follows:

(1) Map step, reduce step, the sort and merge step are included in Google
MapReduce model implemented by Hungchih yang, Ali Dasdan et al.

(2) An architectural combination of MapReduce and database technologies resulted
as HadoopDB is developed for analytical workloads.

(3) Hadoop MapReduce HDFS layer is replaced with concurrency optimized data
storage layer which improves efficiency of data accessing concurrency, pro-
posed by B Nicolae, G Antoniu et al.

(4) A pipeline architecture was proposed by N Conway, T Condie et al., which
supports online streaming for many networking sites

(5) Resource manager and scheduler are alienated into separate components by
YARN from Apache for solving the blockage of job tracker.

204 J. V. N. Lakshmi

2.1 MapReduce

A data flow standard such as MapReduce is widely used for parallelizing the data
on various applications [8]. This is a simple and open data flow programming
model preferential when compared over usual high-level database approaches. This
training model is used for processing large-scale datasets in computer clusters by
exercising two function map () and Reduce (). The functions Map () and reduce ()
are as follows:

Map K1; V1ð Þ ! list K2; V2ð Þ Reduce K2; list V2ð Þð Þ ! list V2ð Þ

The Map () functions uses key/value pair as input generating the intermediate
key/value pairs. The generated intermediate key/value pairs are the input given to
reduce function to produce final output [9].

2.2 Hadoop

Hadoop executes shuffle as a component of reduce task because of which there is
high utilization of bandwidth in the cluster, resulting low usage of processor and
unproductive performance [10, 11].

Hadoop distributed file system (HDFS) provides high throughput access to
application data, resource allocation task in cluster and high unsystematic disk I/O
requests are suitable for application that has large data sets [12].

From the Fig. 1, data in a Hadoop cluster is busted down into minor portions and
circulated all through the collection, where a job tracker keeps track of jobs in both
parent and child segments. The map and reduce functions can be implemented on

Fig. 1 MapReduce model

Improving the Map and Shuffle Phases in Hadoop MapReduce 205

slighter subsets of your larger data sets, and this provide the scalability metrics that
is needed for data processing [13].

3 Problem Statement

MapReduce Programming Model is very simple but as it processes, we come across
many problems in map () function. Map () function is assigned with each split if
one split cannot execute with any problem (or) if one split fails then we cannot
compute the result of Map () function. As combining the individual result of each
map function is assigned as input to reduce function, Map function should perform
in better way [14].

Two tasks associated with improved reduce phase are shuffle part and reduce
part. The initial shuffle segment calls for transitional outcome from map phase. This
necessitates more buffer area for various operations sorting and mapping to elicit
output.

Numerous disk I/O requests from shuffle phase result in inefficient usage of
resources. The above-specified reasons lead to cluster performance problems. The
analysis shows an improvement in certain phases of Hadoop MapReduce specifi-
cally in terms of execution [15, 16].

4 Design Process

Shuffle and reduce as individual stages of tasks: Primarily remove copy and merge
operations of shuffle from reduce as an entity splits.

4.1 Joining of Unusual Splits into Solitary Task

The shuffle phase fetches the transitional outcome from each and every map task
where as the reduce function could not start its processing until shuffle phase
releases the processed output data. This wastes the CPU resource time and
decreases the network bandwidth.

4.2 Random I/O Request of Shuffle Task

Each map task needs to read facts from disk and transfer the response to defined
reduce task instantly. This results in large amount of random disk I/O operations
which in turn reduces the performance.

206 J. V. N. Lakshmi

4.3 Design

Our features mainly involve the following stages to increase enhancement. Shuffle
can process meager data improving the resource utilization efficiently within the
same amount of time but the disk I/O request is progressively increased.

Fig. 2 describes the various stages of improved MapReduce architecture by
implementing the technique of disjoint maps with skew in them. They are handled
separately by the task tracker in slave node. The usage of generate function
improves the shuffle phase and processes the data to reduce task.

Services from Shuffle: By implementing shuffle as service, resource utilization
has been incremented because light weight common service relocates the on
command for reduce task as a service [17].

Overcoming stragglers: To avoid blocking of slots, a skewed task is recognized
and implemented. A skewed task is identified and accomplished them under similar
task master. It detects partitioning skew before shuffling of data begins by moni-
toring data sizes produced by map and handles it by dynamically creating multiple
reduce task per skewed partition [18].

Managing disk I/O requests in map phase: The I/O requests from different disk
drives are processed within certain interval of time. These requests are sorted and
grouped into a sequential list, forwarding them to respective output files of map
tasks [19]. Task tracker reconstructs responses by reading data emerging from disk
and sending their responses to reduce task in order.

Fig. 2 Improved shuffle phase and handling straggler

Improving the Map and Shuffle Phases in Hadoop MapReduce 207

5 Improving the Map Phase

From the problem statement discussed, there is a need to improve the map (). The
function needs some checkpoints which monitor the function regularly and try to
solve when a split intimates an interrupt.

Algorithm: Improving Shuffle service and avoiding stragglers in Map task.

1. Map phase runs the map task
//each map task does the job
//assigned by the Job Tracker

2. if(collision=true)
3. Generate(); //Straggler detection and removal and partition the task with

skew
//collision is an interrupt due to which map task cannot give an output
// if there is a collision it calls generate method

4. Map() /* After the map processing the task tracker initialize the shuffle task
launching the services*/

5. End if
6. Regular Check_points()

// to verify proper execution
7. // Managing Disk I/O request by processing

Read_ratio, read_time, file_size, read_total methods
8. Map task output is transferred to Shuffle phase
9. Shuffle sorts and merges the generated output

st= dr/bw
st: shuffle time for reduce task

dr: data to be shuffle per reduce
bw: band width between nodes.

10. This transfers the results to Reduce()

The generate function monitors the map phase at regular checkpoint and views
the status of each map split. These checkpoints are arranged dynamically and access
the needs of the splits. Distributed storage structure shares information among
different tasks. The above algorithm specifies the design in Fig. 2, and various
phases of handling the stragglers and handling the resources efficiently are
elaborated.

The map jobs are scheduled in a queue, and reduce jobs use priority queue
structure. In this way, interpretation of result from the map () results intermediate
key/value pairs [20]. These pairs are given as an input to the reduce function, and
after interpretation, we generate the final output. The generate function is also used
even in reduce phase. Dynamically arranged checkpoints monitor the reduce phase
and split into smaller splits when an interrupt occurs. It finally combines all the
split’s output for obtaining the final result.

208 J. V. N. Lakshmi

6 Evaluation

Presenting the performance and resource utilization of MapReduce jobs by
implementing the shuffle service can be analyzed below:

6.1 Simulation Experiments

Intricate methods, routine calls, resource requirements, etiquette, and exchanges in
the Hadoop cluster influence the ratio of disk read/write operations. Because of
these random requests, there is a decrease in the regular reading ratio on disk and by
which there is an increase in reduce task time.

6.2 MapReduce Job Experiment

Pi estimator utilizes more of CPU computations so it is CPU-intensive task where
as word count and TeraSort are resource oriented. The resources are memory and
band width.

6.3 Straggler Handling

The techniques are employed in distributing the reducers with even number of map
outputs in parallel, ensuring there are no skews.

6.4 Settings

The configuration of our Hadoop with 0.24 version requires 12-node cluster among
one is a master and remaining ten are slaves. Every node in a cluster uses core
processor organizes 2 GHZs 4 GB of Ram and 500 GB disk drive.

Read total: Sum of read operations per each reduce task.
File size: Volume of information produced by each map task in core state.
Read time: Mean time between transfer requests and to obtain data for process.
Read ratio: Average ratio of read total to read time.
Local read total: Word count of reduce task with comparison of job time.
Reduce_skew: Stragglers count in reduce task.

Improving the Map and Shuffle Phases in Hadoop MapReduce 209

7 Results

Reading performance is verified with an improved fetch phase with varied file sizes
such as 128, 256, and 512 MB than the earlier fetch task. If sequential strategy on
read operation is applied, then mean increase in read ratio is 94.17%, and if con-
current strategy is applied, then the ratio is 62.81%.

Figure 3 shows the data-read in local mode by varying in their speed of
accessing. The data read is measured as 128, 256 and 512 MB per second avoiding
stranglers. Drawing the result from word count showing the diminishing time uti-
lization of reduce phase from 8.94% to 6.32%.

The reduce phase utilization of resources and the word count are low as the data
from map phase has to release the entire output. Best word count is observed in
Fig. 4 as it visualizes the read and write ratios on disk. After the necessary mod-
ifications done for the shuffle phase, the graph illustrates the improvement by
showing 7% increase in resource utilization.

8 Conclusion

MapReduce programming model requires improvement in map phase as well as in
shuffle phase. Though it is simple, but while implementation some complications
are observed at map phase. If one map fails, it cannot compute the output as the
result of map phase is an output for reduce phase.

The reduce phase adds a scheduler for every node. So, by using generate
function which dynamically monitors the reduce phase will solve the basic problem
in map phase. Cluster resources are well utilized efficiently when data is huge for
processing transitional information then shuffle is determined as a service with
minute amounts of time.

Hadoop MapReduce uses word count and TeraSort which acts as an added
advantage for performance enhancement with different data structures. Resource
deployment, absolute time usage are perfection features observed in skew handling
technique.

0 2 3 6 8 13 15 18 22

39
54

68

0

100

200

300

Ra
o

(M
B/

S)

128 M 256 M 512 M

Fig. 3 Read total (MB) local
read

210 J. V. N. Lakshmi

References

1. Arulmurugan, A., Srinivasan, R.: Enhanced task scheduling scheme for Hadoop MapReduce
systems. In: IJETCSE, May 2015

2. Dimitris, F., Ioannis, M.: Scheduling MapReduce Jobs and Data Shuffle on Unrelated Process.
MIT, Cambridge (2015)

3. Pavloet, A.: A comparison of approaches to large-scale data analysis. In: Proceedings of
ACM SIGMOD, vol. 5, pp. 367–378 (2009)

4. Yandong, W., Yu, W., Que, X.: Virtual shuffling for efficient data movement in MapReduce.
In: IEEE Transitions on Computers Conference, June 2015

5. Luiz, A.B., Jeffrey, D., Holzle, U.: Web search for a planet: the Google cluster architecture.
IEEE Micro 23(2), 22–28 (2003)

6. Huston, L., Wickremesinghe, R., SatyaNarayana, M.: Storage architecture for early discard in
interactive search. In: FAST Conference Proceedings (2004)

7. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters in Google,
Inc OSDI (2004).

8. Lakshmi, J.V.N., Ananthi, S.: A theoretical model for big data analytics using machine
learning algorithms. In: ICACCI Conference, Delhi, October 2015

9. Kwon, Y.C., Howe, B.: A study of skew in Map Reduce application. In: International
Conference, USA (2014)

10. Alan, F.G., Olga, N., Shubham, C., Pradeep, K., Shravan, M.N.: Building a high level
dataflow system on top of MapReduce: the pig experience. In: IEEE Conference (2009)

11. Yanfei, G., Jia, R., Xiaobo, Z: IShuffle—improving Hadoop performance with
shuffle-on-write. In: USENIX ICAC, USA (2013)

12. Abouzeid, A., Bajda, P., Abadi, D.J., Rasin, A., et al.: HadoopDB: an architectural hybrid of
MapReduce and DBMS technologies for analytical workloads. PVLDB 2(1), 922–933 (2009)

13. Ananthi, S., Lakshmi, J.V.N.: A study on Hadoop architecture for big data analytics. In: Delhi
Conference ICETSCET, September 2014

14. Herodotos, H., Lim, H., Luo, G.: StarFish—a self tuning system for Big Data Analytics,
CIDR, USA (2011)

15. Ronnie, C., et al.: SCOPE: easy and efficient parallel processing of massive data sets. In:
Proceedings of VLDB (2008)

16. Ashish, T., Joy deep Sen, S.: HIVE—a warehousing solution over a MapReduce framework.
In: VLDB (2009)

17. Li, J., Ye, Y.: Improving the shuffle of Hadoop MapReduce. In: Proceedings of
IEEE ICCCTS (2013)

18. Li, J., Yue, Y., Lin, X.: Improving the shuffle of Hadoop MapReduce. In: IEEE ICCCTS,
Beijing, China (2013)

195
160

125 115

65

210

170
135

123

69

0

50

100

150

200

250

1 2 3 4 5
Reduce Num

Fig. 4 Word count
comparison of reduce task

Improving the Map and Shuffle Phases in Hadoop MapReduce 211

19. Prateek, D., Sriram, K., Janakiram, D.: Chisel: resource savvy approach for handling skew in
MapReduce application. In: IEEE Conference on Cloud Computing, vol. 35, pp. 45–56
(2013)

20. Dean, J., Ghemawat, S.: MapReduce: a flexible data processing tool. ACM Commun. 53,
72–77 (2010)

212 J. V. N. Lakshmi

	21 Improving the Map and Shuffle Phases in Hadoop MapReduce
	Abstract
	1 Introduction
	2 Background
	2.1 MapReduce
	2.2 Hadoop

	3 Problem Statement
	4 Design Process
	4.1 Joining of Unusual Splits into Solitary Task
	4.2 Random I/O Request of Shuffle Task
	4.3 Design

	5 Improving the Map Phase
	6 Evaluation
	6.1 Simulation Experiments
	6.2 MapReduce Job Experiment
	6.3 Straggler Handling
	6.4 Settings

	7 Results
	8 Conclusion
	References

