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Abstract
Dendritic cells (DCs) form a heterogeneous group of antigen-presenting cells 
that play different roles in skin immunology. Recent studies have revealed the 
existence of distinct DC populations in the skin, highlighting the complexity of 
the cutaneous DC network in the steady state and inflammatory conditions.

Recently, another new skin immune cell subset, innate lymphoid cells (ILCs), 
which are part of a heterogeneous family of innate immune cells, has emerged as 
an important contributor to inflammatory skin diseases, such as atopic dermatitis 
(AD) and psoriasis.

In this review, we will summarize the current understanding of the functions 
of cutaneous DCs and ILCs in the pathogenesis of AD and will discuss the poten-
tial implications of their functions in AD.
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8.1  Introduction

The skin is classified into two distinct regions, the epidermis and the dermis, separated 
by the basement membrane. The epidermis is derived from ectoderm and presents as 
an epithelial layer that is composed mainly of keratinocytes. Keratinocytes constitute 
90–95% of the cells in the epidermis; the remaining cells include Langerhans cells 
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(LCs), skin-resident memory CD8+ T cells, melanocytes, and Merkel cells. In addition, 
murine epidermis contains approximately the same percentage of the γδ T cell subset 
(called dendritic epidermal T cells [DETC]), as that of LCs [1, 2]. A much more het-
erogeneous population of immune cells reside in the dermis, including dermal den-
dritic cells (dDCs), mast cells, CD4+ and CD8+ T cells, dermal γδ T cells, macrophages, 
natural killer (NK) cells, and innate lymphoid cells (ILCs) [2, 3] (Fig. 8.1).

Atopic dermatitis (AD) is a pruritic, chronic, retractable inflammatory skin dis-
ease that is induced by the complex interaction between susceptibility genes encod-
ing skin barrier components and host immune responses [4–10]. Type 2 helper T 
(Th2) cells and related cytokines such as IL-4, IL-5, and IL-13 have been reported 
to play important roles in its pathogenesis [10–15]. Cutaneous DCs acquire protein 
antigens and drive the differentiation/proliferation of a distinct Th cell subset includ-
ing Th2 cells and provoke antigen-specific T cell responses to external pathogens 
[16]. In addition to Th2 cells, several recent papers have indicated that type 2 ILCs 
(ILC2s) are enriched in the lesional skin of AD patients and might play a critical 
role in driving the Th2-type immune response in AD [17–20].

This review will define the functions of cutaneous DCs and ILCs in the patho-
genesis of AD, with a focus on studies performed by Japanese researchers, and will 
discuss the potential implications of these functions in the context of skin immune 
responses in AD.
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Fig. 8.1 Description of skin immune cells. LCs Langerhans cells, TRM resident memory T cells, 
dermal DCs dermal dendritic cells, ILCs innate lymphoid cells, γδT cells gamma delta T cells, NK 
cells natural killer cells
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8.2  The Role of Cutaneous DCs in the Pathogenesis of AD

8.2.1  DC Subsets in the Skin

Several subsets of DCs have been identified in the skin of both mice and humans. 
LCs comprise a skin DC subset that resides in the epidermis. Both human and 
murine LCs constitutively express a lectin receptor, namely, langerin/CD207, which 
is capable of binding sugar moieties commonly found on a variety of microorgan-
isms [21]. They also express the E-cadherin and epithelial cell adhesion molecules 
(EpCAMs), which anchor LCs to keratinocytes [22, 23], and CD205 that is impli-
cated in antigen capture and antigen processing [24, 25]. Human LCs highly express 
CD1a, a member of the group 1 CD1 protein, which is capable of presenting micro-
bial lipid antigens to T cells [26] (Table 8.1).

DCs in the dermis consist of dermal-resident DCs and migratory LCs traveling 
to the lymphatic vessels [27]. Recent studies have shown that murine dermal-resi-
dent DCs are further classified into two populations including langerin- positive 
dDCs (langerin+ dDCs) and langerin-negative dDCs (langerin− dDCs) [28–30]. The 
langerin+ dDC population represents 10–20% of the total dDC pool. In contrast to 
LCs, langerin+ dDCs express integrin αEβ7 (also called CD103) [31], lack the adhe-
sion molecules E-cadherin and EpCAM, and express low levels of the integrin 
CD11b. Langerin+ dDCs express the same high levels of CD24 as LCs but do not 
express CX3CR1, F4/80, or signal-regulatory protein alpha (SIRPα); they also 
express low levels of CD11b and EpCAM [32] (Table 8.1). Langerin− dDCs repre-
sent the majority (up to 70%) of the dDC pool and express high levels of integrin 

Table 8.1 Dendritic cell population in the skin of human and mice

Localization Cell type Cellular markers
Human Epidermis LC CD45, MHC class II, CD1a, CD207 (langerin), 

E-cadherin, EpCAM
IDEC CD1a, CD1b, CD1c, CD11c, FcεRI, CD23, 

HLA-DR, CD11b, CD206, CD36
Dermis CD1c+ dDC CD1c, CD1a+/−, CD45, CD11b, CD11c, MHC  

class II
CD14+ dDC CD1c, CD45, CD11b, CD11c, CD14, MHC class 

II, CD209 (DC-SIGN)
CD141+ dDC CD1c, CD45, CD11c, CD141
pDC CD303 (CLEC4C), CD304 (neuropilin), CD123 

(IL-3R)
Tip-DC CD11c, TNF-α, iNOS

Mouse Epidermis LC CD45, CD11b, CD11c, CD24, MHC class II, 
CD205, CD207, E-cadherin, EpCAM

Dermis Langerin− 
dDC

CD45, CD11bhi, CD11c, CD24, MHC class II, 
CD205, SIRP-1α

Langerin+ 
dDC

CD45, CD11bdim, CD11c, CD24, CD103, MHC 
class II, CD207

pDC B220, Siglec-H, PDCA-1
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CD11b and several macrophage markers, such as F4/80, CX3CR1, and SIRPα [32]. 
In human, dDCs are classified into three subsets (i.e., CD1a + dDCs, CD14+ dDCs, 
and CD141+ dDCs), depending on the expression pattern of surface molecules, 
although their functional differences remain unclear [33] (Table 8.1).

In inflamed skin, two additional subsets of DCs can be found: a DC population 
derived from blood monocytes (monocyte-derived DCs) [19] and plasmacytoid DCs 
(pDCs) [2, 34] (Table 8.1, Fig. 8.2). Another subset of the identified DC subpopulation 
referred to as TNF-α and inducible NO synthase (iNOS)-producing DCs (Tip-DCs) 
has been reported to be critical against bacterial infections [35]. In AD patients, inflam-
matory dendritic epidermal cells (IDECs) appear in the epidermis (Table 8.1, Fig. 8.2).

8.2.2  Cutaneous DCs in the Pathogenesis of AD

Since AD is a Th2-type immune response to protein antigens, and cutaneous DCs 
can induce Th2 cell differentiation, it has been suggested that cutaneous DCs initi-
ate AD [36]. It remains unclear, however, which cutaneous DC subset mediates 
epicutaneous sensitization to protein antigens.

Kubo et al. showed that protein antigens of large molecular size are localized 
above the size-selective barrier, the tight junction (TJ), and that activated LCs extend 
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Fig. 8.2 Cutaneous dendritic cells in the steady state and in the inflammatory state. TJs tight junc-
tions, LCs Langerhans cells, dermal DCs dermal dendritic cells, IDECs inflammatory dendritic 
epidermal cells, Tip-DCs tumor necrosis factor and inducible nitric oxide synthase-producing den-
dritic cells, pDCs plasmacytoid dendritic cells. In steady state, LCs reside in the epidermis beneath 
the TJ barrier. Dermal DCs reside in the dermis. In inflammatory condition, such as AD, LCs 
elongate their dendrite through TJs, capturing external antigens. IDECs recruit into the epidermis. 
Tip-DCs, pDCs, and monocyte-derived DCs also recruit into the dermis from the circulation

S. Nakajima et al.



87

their dendrites through the TJ to take up antigens [37]. Therefore, it can be hypoth-
esized that LCs, not dermal DCs, initiate epicutaneous sensitization with protein 
antigens in the development of AD.

Nakajima et al. and Ouchi et al. showed that, in a murine AD model, which is 
induced by epicutaneous sensitization with protein antigen, depletion of LCs led to 
significantly attenuated induction of IgE/IgG1 upon epicutaneous sensitization with 
protein antigens [38, 39]. Moreover, Nakajima et al. showed that thymic stromal 
lymphopoietin (TSLP) receptor (TSLPR) expression on LCs is enhanced upon pro-
tein antigen exposure to the skin and that mice lacking TSLPR on LCs exhibited 
significantly attenuated Th2 cell differentiation in the AD model [38].

TSLP is a cytokine that is produced mainly by non-hematopoietic cells such as 
fibroblasts and epithelial cells, including epidermal keratinocytes. It has been 
reported that TSLP plays an important role in the induction of Th2 responses 
through the activation of DCs via the expression of OX40L [40]. TSLP stimulation 
also causes LCs to express OX40L [38]. In addition, cutaneous DCs can elicit a Th2 
response in a mechanical injury model, in which TSLP is produced by keratinocytes 
[41]. These results indicate that TSLP produced by keratinocytes acts on LCs, which 
induces Th2-type immune responses in the murine AD model [38] (Fig. 8.3). In 
keeping with this, it has been reported that TSLP is highly expressed in the lesional 
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Fig. 8.3 Role of LCs in the pathogenesis of AD.  Upon stimulation, keratinocytes produce 
TSLP. TSLP will activate LCs and induce LCs to uptake external antigens, migrate to the skin- 
draining lymph nodes, and induce Th2 cell differentiation
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skin of AD patients and that it activates human LCs in vitro [42–44], suggesting that 
LCs induce Th2-type immune response in human AD as well.

In the epidermis of human AD patients, both LCs and IDECs have been detected. 
Both LCs and IDECs express FcεRI on the surface and have been assumed to enable 
specific allergen uptake through IgE-dependent antigen capture [45, 46]. Yoshida 
et al., however, revealed that LCs, not IDECs, extend their dendrites through the TJ 
with a polarized distribution of langerin but not FcεRI in human AD skin [47]. These 
results again suggest that LCs mediate Th2-type immune responses in a langerin- 
dependent manner in the pathogenesis of AD.

8.3  The Role of ILCs in the Pathogenesis of AD

8.3.1  ILCs in the Skin

ILCs are part of a family of innate immune cells that are derived from a common 
lymphoid progenitor, and their development is partially or completely dependent on 
the common γ-chain (γc or CD132), IL-7, Notch, and the transcription factor inhibi-
tor of DNA binding 2 [48]. ILCs are predominantly tissue-resident cells that lack 
antigen-specific receptors, such as T and B cell receptors. Instead, ILCs rapidly 
respond to various environmental stimuli with cytokine production [49].

The ILC family can be subdivided into three groups based on their requirement 
for activating cytokines, expression of transcription factors, and production of effec-
tor cytokines (Fig. 8.4). Group 1 ILC comprises NK cells and ILC1s; both of them 
are activated by IL-12 depending on transcription factor T-bet and produce inter-
feron (IFN)-γ. Groups 2 ILC contains ILC2s that are activated by epithelial cell- 
derived cytokines/chemokines, such as IL-25, IL-33, and TSLP.  ILC2s express 
GATA3 and produce Th2-type cytokines, e.g., IL-4, IL-5, and IL-13 upon activa-
tion. Group 3 ILC comprises lymphoid tissue inducer (LTi) cells and ILC3s. ILC3s 
can be further subdivided based on their expression of natural cytotoxicity recep-
tors. They are activated by IL-1β and IL-23, are dependent on RORγt, and produce 
IL-17A and/or IL-22 [50]. Intriguingly, all of the ILC-activating cytokines can be 
produced by skin immune cells, such as keratinocytes, LCs, and dDCs.

All three ILC subsets have been identified in healthy human adult skin, where 
ILC3s are the most abundant and ILC2s make up 25% of the total ILC pool [20, 51–
54]. In addition to NK cells, ILC2s were the first ILCs to be identified in both healthy 
and AD skin [52]. Although ILCs are present in both epidermis and dermis, the major-
ity are found in the dermis, where ILC2s constitute 5–10% of CD45+ cells [55].

8.3.2  ILC2s in the Pathogenesis of AD

ILC2s were originally identified in the gut and gut-associated lymphoid tissues and 
were found to contribute to immunity against parasitic helminth in the absence of an 
adaptive immune system [56–59]. Subsequent studies showed that ILC2s play key 
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roles in airway hyperreactivity [60] and epithelial tissue repair in the lung [61]. 
These studies demonstrated that ILC2s were predominantly regulated by the epithe-
lial cell-derived cytokines IL-25 and IL-33 [62] (Fig. 8.5).

When ILC2s were first identified in the skin, they were also found to be enriched 
in the lesional skin of AD patients [20, 52]. Type 2 cytokines, including IL-5 and 
IL-13, have long been suspected to play a key role in the pathogenesis of AD [63–
65]. It was also revealed that ILC2s that produce IL-5 and IL-13 were found to be 
both necessary and sufficient for the development of AD-like disease in a low-dose 
vitamin D3-induced murine AD model [52, 55].

Mast cell numbers are elevated in chronic AD and likely drive IgE-mediated 
pathology in the disease [66]. Mast cells can also be directly activated by toxins 
derived from the skin-resident bacteria, Staphylococcus aureus, which is commonly 
found in the lesional skin of AD patients [67, 68]. Mast cell hyperplasia during 
inflammation is mediated by IL-3 and IL-9 [69, 70]. IL-9 can also augment the 
inflammatory cytokine response by mast cells following IgE-mediated activation 
[55]. ILC2s are a key source of IL-9 in vivo [71], suggesting that ILC2s potentially 
affect the severity of AD by regulating the number and function of mast cells in the 
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Fig. 8.4 Regulation and function of each subset of innate lymphoid cells (ILCs) in the human 
skin. Human skin ILC1s express CD161 and can be activated by IL-12 and IL-15 to produce its 
effector cytokines TNF-α and IFN-γ. Human skin ILC2s can be activated by epithelial cell-derived 
cytokines/eicosanoid (e.g., IL-25, IL-33, TSLP, and PGD2) and produce its effector cytokines IL-5 
and IL-13; they have thus been implicated in AD. Human skin ILC3s produce IL-17 and IL-22 in 
response to IL-1β and IL-23 and have been implicated in psoriasis
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lesional skin (Fig. 8.5). It has also been shown that prostaglandin D2 (PGD2) pro-
motes the migration of skin ILC2s and induces type 2 cytokine production from 
skin ILC2s. Moreover, the supernatant of IgE/anti-IgE-activated mast cells induces 
migration and cytokine production by human skin ILC2s [72]. Since mast cells 
produce PGD2 by means of activation through FcεRI, they might play a role in 
migration and cytokine production by ILC2s through the effects of PGD2.

As mentioned earlier, TSLP is a crucial cytokine that causes cutaneous DCs to 
induce Th2 cells. ILC2s express the receptor for TSLP, and TSLP signaling in 
ILC2s promotes cytokine production [73]. Activation of cutaneous ILC2s was 
found to be dependent on TSLP signaling, suggesting that ILC2s were critical for 
disease pathogenesis [52] (Fig. 8.5). In addition to TSLP, Imai et al. showed that 
transgenic overexpression of IL-33 under a keratin 14 promoter is sufficient to 
induce spontaneous AD-like dermatitis in association with the accumulation of 

External antigen/allergen/stimuli

Bacteria Fungi Viruses

Keratinocytes

LCs

ILC2s

Th2
cells

Naïve
T cells

LCs

Th2
cells Mast cells

Protein
antigen

IL-13

TSLP

IL-33

IL-25

PGD2

Degranulation
IL-9

IL-4

IL-4

S
ki

n 
dr

ai
ni

ng
LN

s
D

er
m

is
E

pi
de

rm
is

B cells

IgE

Allergens

Barrier disruption

Fig. 8.5 Potential roles of ILC2s in AD. ILC2s are activated by epithelial cell-derived cytokines 
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to IgE-mediated activation in AD. Activated mast cell-derived PGD2 promotes ILC2 migration in 
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ILC2s [74]. This human and mouse evidence indicates that ILC2s are important 
players in the pathogenesis of AD, where their activity likely depends on the sever-
ity of AD, coinfections, and dysfunction of the skin barrier.

 Conclusion
With their constitutional plasticity, LCs and ILC2s in the skin play crucial roles 
in initiating and modulating type 2 immune responses in AD. As many papers 
have demonstrated, both Th2 cells and ILC2s seem to play crucial roles in the 
pathogenesis of AD. The magnitude of their effect and/or their interplay, how-
ever, remains to be further elucidated.

Recent advances in our knowledge of the skin immune network and pathology in 
the pathogenesis of AD have opened avenues for the development of therapies that 
trigger skin DCs and/or ILC2s with specialized properties to control immunity.
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