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Chapter 4
Supporting Students’ Productive 
Collaboration and Mathematics Learning 
in Online Environments

Arthur B. Powell, Muteb M. Alqahtani, and Balvir Singh

Abstract  Digital technologies provide a wide range of tools and functions that can 
support students’ learning of mathematics as well as the development of their math-
ematical and collaborative practices. Bringing such technologies to mathematics 
classrooms often do not parallel students’ previous classroom experiences, espe-
cially when collaborative practices are emphasized. When facilitating mathematics 
learning, discrepancies between students’ previous classroom experiences and their 
expected engagement with new collaborative technologies result in challenges to 
which teachers need to attend. In this chapter, we describe how a high school math-
ematics teacher engaged his students in an online collaborative environment, Virtual 
Math Team with GeoGebra (VMTwG), and how he addressed students’ technologi-
cal and collaborative challenges to support growth in their geometrical understand-
ing. From a cultural historical perspective, we present a model of how teachers can 
support students’ instrumentation of collaborative environments and mathematical 
understanding. In our model, during a mathematical activity, teachers progressively 
decentralize their role and, simultaneously, support students’ development and per-
formance of collaborative practices. This model informs the theory of instrumental 
orchestration (Trouche L, Interact Comput 15(6):783–800, 2003; Trouche L, Int J 
Comput Math Learn 9(3):281–307, 2004; Trouche L, Instrumental genesis, indi-
vidual and social aspects. The didactical challenge of symbolic calculators. Springer, 
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New York, pp 197–230, 2005) by providing a pedagogical intervention trajectory 
that supports students’ instrumental genesis (Rabardel P, Beguin P, Theor Issues in 
Ergon Sci 6(5): 29–461, 2005) of collaborative mathematical environments and 
shifts students’ focus from their teacher to their peer collaborators.

4.1  �Introduction

The functionalities and tools of Web 2.0 applications offer potential support for 
mathematics learning by providing virtual spaces for individuals to perform col-
laborative and mathematical practices. Mathematical practices (Common Core 
State Standards Initiative, 2010) can be performed and made visible with dynamic 
mathematics software such as dynamic geometry environments (DGEs). These 
environments afford learners’ abilities to construct, visualize, and manipulate geo-
metric objects and relations and dependencies. These affordances support empirical 
explorations and theoretical justifications or proofs (Christou, Mousoulides, & 
Pittalis, 2004). In DEGs, empirical explorations are experienced immediately, while 
the need to formulate proofs is latent and to be realized requires either learners’ 
disposition toward justification or pedagogical intervention. Pedagogically moti-
vated transitions from empirical explorations to theoretical justifications depend on 
carefully designed tasks, teacher guidance, and classroom climates that support 
conjecturing and deductive justifications (Öner, 2008).

Conjecturing and deductive reasoning or formal proofs have been regarded as 
the pinnacle of geometry education (Wu, 1996). Students taking a formal geometry 
course at the high school level are expected to construct (in Euclidean sense) geo-
metric objects and use the relations among objects (or parts of objects) to prove why 
certain properties or relations are true (Common Core State Standards Initiative, 2010). 
In contrast, at the middle school level, students are primarily expected to solve basic 
geometric problems (numerical and algebraic) using given formulas, and at best, 
they may be expected to describe or verify properties through experiments (Common 
Core State Standards Initiative, 2010). Noticeably, students are not expected to pro-
vide arguments for the properties and relations; however, at the high school level, 
this expectation changes dramatically. Without prior experiences justifying mathe-
matical statements, this dramatic change causes difficulties for students to under-
stand basic tenets of mathematical proofs (Miyazaki, Fujita, & Jones, 2016). One 
objective of STEM education concerns helping students develop meaningful use of 
tools to investigate phenomena and construct viable arguments. To address this 
objective in mathematics education, teachers need to support students’ explorations 
and thinking about mathematical objects and relations among them. DGEs, uniquely 
designed to promote explorations, can be used to transition middle school students 
from the current geometric-properties focused learning to relational reasoning 
focused learning (Jones, 2000). This relational understanding is what enables stu-
dents to move away from empirical explanations toward deductive arguments. In 
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addition to geometric constructions, DGEs provide seamless access to both graphi-
cal and algebraic representations as well as present immediate, visual feedback. 
Appropriate and strategic use of DGEs as vehicles for representing mathematical 
situations supports STEM education in mathematics classrooms.

Learning environments that support conjecturing and deductive reasoning can be 
virtual as well as presential, focused on the individual or collaborative groups. 
Support for social conjecturing and justification can occur in computer-supported 
collaborative learning (CSCL) environments (Öner, 2008; Silverman, 2011). 
Longitudinal investigations suggest that learners’ dispositions toward conjecturing 
and deductive reasoning can emerge from collaborative interactions among learners 
in online environments (Alqahtani, 2016; Alqahtani & Powell, 2016, 2017; Stahl, 
2015). However, in such CSCL settings, mathematics education researchers and 
mathematics teachers remain unsure of how to orchestrate students’ instrumentation 
of collaborative environments so as to support students’ mathematical practices and 
movement between exploration and deductive justifications. Knowing how to 
orchestrate and promote this movement will enable mathematics education research-
ers and mathematics teachers to realize the potential of DGEs to improve geometry 
learning and of CSCL environments to engage learners in developing mathematical 
ideas through online collaboration that parallel the real-world online, collaborative 
work of mathematicians, including Fields Medal recipients (Alagic & Alagic, 
2013).

In this chapter, reporting from a larger iterative project,1 informed by design-
based research (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003), we address 
practical and theoretical challenges concerning the orchestration of students’ col-
laborative mathematical interactions in an online environment. After positioning 
our work in the literature and presenting our conceptual framework, we describe an 
online environment for collaborative learning, called Virtual Math Team with 
GeoGebra (VMTwG). Following these, we illustrate the case of a teacher, working 
with early high school students (15-year-olds), whose pedagogical orchestrations 
shape students’ movement between exploration and deductive justification by 
focusing on students’ collaborative practices. We understand pedagogical orchestra-
tions to be instructional actions initiated by teachers that precede, invite, sustain, 
monitor, or reflect on students’ activity. By movement between exploration and 
deductive justifications, we mean discursive, recursive trajectories in which stu-
dents are motivated by mathematical relations that they notice while manipulating 
mathematical objects to develop and communicate convincing arguments about the 
relations that satisfy their peers. Finally, we propose a model of how teachers can 
support students’ instrumentation of collaborative environments and mathematical 
understanding. In our model, during a mathematical activity, teachers progressively 
decentralize their role and, simultaneously, support students’ development and per-
formance of collaborative practices. This model informs the theory of instrumental 

1 The project—Computer-Supported Math Discourse among Teachers and Students—is an NSF-
funded collaboration among researchers affiliated with The Math Forum at the National Council of 
Teachers of Mathematics (NCTM) and Rutgers University-Newark.
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orchestration (Trouche, 2003, 2004, 2005) by providing a pedagogical intervention 
trajectory that supports students’ instrumental genesis (Lonchamp, 2012; Rabardel 
& Beguin, 2005) of collaborative mathematical environments and shifts students’ 
focus from their teacher to their peer collaborators.

4.2  �Positioning Within the Literature

Our online environment, VMTwG,2 is an interactional, synchronous space, contain-
ing support for chat rooms with collaborative tools for mathematical explorations, 
including a multiuser, dynamic version of GeoGebra. This dynamic geometry envi-
ronment within VMTwG provides affordances typical and beyond most DGEs. 
From different perspectives and foci, how DGEs influence learning has been the 
object of research. Some studies focused on affordances of DGEs and how learners 
use them, while others discussed how DGEs mediate mathematical activity and 
shape mathematical understanding. Early research noticed differences between 
pencil-and-paper geometric constructions and dynamic geometry constructions. 
Laborde (1993) distinguished between drawing and figure in DGEs to emphasize 
these differences. A drawing refers to the perceptual image as drawn on paper, while 
a figure is the theoretical object, constructed in DGE, and whose defining properties 
remains invariant under the drag test. Focusing on the dragging affordance of DGEs, 
researchers investigated how learners understand and use dragging and identified 
different dragging modalities that shape learners’ interactions with the environment 
and their mathematical understanding (Alqahtani & Powell, 2016, 2017; Arzarello, 
Bairral, & Danè, 2014; Arzarello, Olivero, Paola, & Robutti, 2002; Baccaglini-
Frank & Mariotti, 2010; Hollebrands, 2007; Hölzl, 1996; Lopez-Real & Leung, 
2006). Measurement affordance of DGEs was also investigated to understand how 
it influences learners’ mathematical understanding (González & Herbst, 2009; 
Hollebrands, 2007; Olivero & Robutti, 2007; Sinclair, 2004). In DGEs that provide 
multiple representations of objects such as GeoGebra, Alqahtani and Powell (2017) 
found that the analytical information offered in Algebra view provided additional 
support for learners’ discussion of properties and relations of geometric figures. 
These studies of affordances of DGEs show that learners’ cognitive processes relate 
to how learners use these affordances.

Other researchers studied how DGEs mediate learners’ activities to justify and 
prove mathematical propositions. With DGEs, learners justify and prove relations 

2 The environment, Virtual Math Teams (VMT), has been the focus of years of development by a 
team led by Gerry Stahl, Drexel University, and Stephen Weimar, The Math Forum at the National 
Council of Teachers of Mathematics (NCTM) (formerly, The Math Forum @ Drexel University), 
and the target of considerable research (see, e.g., Powell & Lai, 2009; Stahl, 2008; Stahl, 2009b). 
This chapter is part of a recent body of investigations centered on an updated VMT with a mul-
tiuser version of GeoGebra (see, for instance, Alqahtani & Powell, 2016, 2017; Grisi-Dicker, 
Powell, Silverman, & Fetter, 2012; Powell, 2014; Powell, Grisi-Dicker, & Alqahtani, 2013; Stahl, 
2013, 2015).
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using empirical and deductive reasoning (Hadas, Hershkowitz, & Schwarz, 2000; 
Jones, 2000; Lachmy & Koichu, 2014; Leung & Lopez-Real, 2002; Mariotti, 2000, 
2006, 2012; Marrades & Gutiérrez, 2000; Powell & Pazuch, 2016). DGEs allow 
learners to identify properties of mathematical objects, notice relations and depen-
dencies among them, make and test conjectures, and develop proofs. In addition, 
DGEs provide systems of tools, such as dragging and trace, and signs associated 
with these tools that learners can internalize and use to build mathematical meaning 
(Falcade, Laborde, & Mariotti, 2007; Mariotti, 2000). This internalization influ-
ences teachers’ and students’ mathematical discourse and activity (Alqahtani & 
Powell, 2015a; Powell & Alqahtani, 2015; Sinclair & Yurita, 2008; Stahl, 2015).

Some studies that investigated how DGEs support learning of mathematics used 
collaborative settings in which learners share and discuss their ideas as they manip-
ulate and construct objects (Alqahtani & Powell, 2016, 2017; Arzarello et al., 2014; 
Baccaglini-Frank & Mariotti, 2010; Jones, 2000; Lachmy & Koichu, 2014; Leung 
& Lopez-Real, 2002; Mariotti, 2000, 2012; Marrades & Gutiérrez, 2000; Stahl, 
2015). However, few studies attended to collaborative practices that learners develop 
while working in small groups with DGEs (Alqahtani & Powell, 2016, 2017; Stahl, 
2015). Affordances of DGEs enrich learners’ mathematical discourse when learners 
are working collaboratively (Oner, 2008, 2013; Wei & Ismail, 2010).

In the literature, some studies attend to how teachers organize instruction to sup-
port students’ learning with digital technologies. Using technology in their class-
room, teachers often have to manage new pedagogical situations and develop “a 
new repertory of appropriate teaching practices for these technology-rich settings” 
(Drijvers et al., 2014, p. 190). To understand these situations and practices for a 
given instructional setting, Trouche (2004) introduced the construct of instrumental 
orchestration that explains how teachers organize available artifacts and engage stu-
dents with them. Later, Drijvers, Doorman, Boon, Reed, and Gravemeijer (2010) 
and Drijvers (2012) highlighted the complexity of teaching processes and further 
developed Trouche’s construct. Adding to his two components of instrumental 
orchestration, didactic configuration and exploitation mode, they distinguish a third 
component, didactical performance. The didactical configuration concerns how 
teachers arrange learning environment such as tools, materials, and seating. In the 
exploitation mode, they plan how to engage students with tasks and tools and in 
discussions. The third component of instrumental orchestration captures how teach-
ers make instructional decisions in real time under changing circumstances. 
Together, these three components focus on the design, the didactical context, and 
the use of the technological tools in a classroom. Drijvers et al. (2010) identified 
various instrumental orchestrations for whole-class teaching and orchestrations for 
settings in which students work individually or in pairs with technology, distin-
guishing between teacher-centered and student-centered orchestrations.

Several studies examined how teachers use technological tools in their class-
rooms. Using instrumental orchestration, researchers investigated how teachers 
support students’ instrumentation of technological tools in classroom (Alqahtani & 
Powell, 2015b; Drijvers et al., 2010; Erfjord, 2011). Others analyzed teachers’ ped-
agogical interventions in classrooms to support students’ mathematical 
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understanding while working with digital technologies (Biza, 2011; Dove & 
Hollenbrands, 2014; Laborde, 2007; Sutherland, Olivero, & Weeden, 2004). 
Teachers support students’ learning by making available appropriate tools and 
materials and by engaging students with tasks that enhance their mathematical 
understanding.

In our review of the literature, we found that studies investigated how DGEs 
shape mathematical understanding and how teachers organize learning environ-
ments to support students’ use of digital technologies. Learners’ interactions with 
DGEs influenced their mathematical understanding. Teachers’ different instruc-
tional configurations supported students’ learning with digital technologies. Among 
these studies, we found only one study that investigated how teachers support stu-
dents’ learning with collaborative DGE (Alqahtani & Powell, 2015b). This suggests 
a need to further understand how teachers’ orchestration of mathematics classrooms 
that use synchronous, collaborative digital technologies.

4.3  �Theoretical Framework

To understand how teachers use collaborative technologies to support students’ 
mathematics learning with these technologies, we draw on several theoretical foun-
dations for our design and analysis. We employ a cultural historical perspective that 
encourages learners to collaborate with each other and communicate their ideas. 
Using Vygotsky’s ideas about tool-mediated activity and the role of signs and tools 
in human development, we view learners’ interactions in VMTwG as mediated 
activity through which students develop their understanding of mathematics and the 
VMTwG environment. We explain how learners develop their understanding of 
VMTwG and its different functions using Rabardel and Beguin’s (2005) notion of 
instrumental genesis. It allows us to describe how users appropriate tools and use 
them as instruments to solve mathematical problems. Finally, we use the construct 
of instrumental orchestration (Trouche, 2004) to describe how teachers organize 
and support students’ learning of mathematics while using technological tools.

To understand how learners use technological tools to collaborate in solving 
mathematics problems, we draw on Vygotsky’s perspective on the role in human 
development of cultural signs and tools. He believed that material tools, which are 
developed historically in cultures, influence human’s cognitive behavior and devel-
opment. In addition to tools, he included signs (e.g., written and spoken language, 
number systems) in human activity. The “alloy of speech and action has a very 
specific function in the history of the child’s development” (Vygotsky, 1978, p. 30). 
This perspective on the role of signs and tools informs our conceptual view of how 
learners use technological tools (online collaborative environments and dynamic 
mathematics software) and cultural signs (natural language and symbols) to con-
struct together geometric figures and solve jointly geometrical problems. While per-
forming mathematical activities, learners interact with each other to work on shared 
tasks using available environmental tools and signs. The mediational role of the 
tools and signs supports learners’ cognitive development through a process of inter-
nalization. In it, learners transform external activities that are linked to tools into 
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internal activities that are linked to signs (Mariotti, 2000; Vygotsky, 1978). The 
external actions learners perform with technological tools transform into signs that 
learners use to think about and communicate mathematical ideas.

The link between external actions and signs in the internalization process indi-
cates the significance of human interactions. A major implication of Vygotsky’s 
theory is the importance of social interactions in learning and human development. 
During an activity that is directed toward an object, learners employ “tools, speech 
directed toward the person conducting the experiment or speech that simply accom-
panies the action” to achieve their goal (Vygotsky, 1978, p. 30). Learners’ engage-
ment with these actions supports the internalization process that transforms social 
phenomena into psychological phenomena (mental functions) (Wertsch, 1985). 
This perspective emphasizes the importance of collaboration among students during 
mathematical activities. Collaboration with others gives learners opportunities to 
reflect on their own thinking and on thinking of others (Daniels, 2001) as well as 
improves mathematics achievement (Springer, Stanne, & Donovan, 1999).

Building on Vygotsky’s work, researchers have developed other constructs to 
explain how learners build knowledge while interacting with others through techno-
logical tools. Rabardel and Beguin introduced the notion of instrumental genesis 
(Lonchamp, 2012; Rabardel & Beguin, 2005), which theorizes how learners interact 
with tools that mediate their activity. Learners transform tools into instrument by 
developing their own knowledge of how to use them. The instrument then mediates 
activities between learners and a task. In the activities, learners perform actions 
upon an object (matter, reality, object of work, etc.) in order to achieve a goal using 
a tool (technical or material component). Rabardel and Beguin (2005) emphasize 
that the instrument is not just the tool or the artifact, the material device or semiotic 
construct, it “is a composite entity made up of an artifact component and a scheme 
component.” (p.  442). To transform the tool into an instrument (appropriation), 
learners develop their own utilization schemes through two important dialectical 
processes that account for potential changes in the instrument and in learners, called 
instrumentalization and instrumentation. Instrumentalization is “the process in 
which the learner enriches the artifact properties” (Rabardel & Beguin, 2005, 
p. 444). Instrumentation is about the development of the learner side of the instru-
ment; the learner assimilates an artifact to a scheme or adapts utilization schemes. 
When engaging students with different technological tools in mathematics class-
rooms, instrumentation plays a significant role in how students build their knowl-
edge about using the tools and how these tools support and shape students’ 
mathematical knowledge.

In mathematics classroom settings, how teachers support learners’ instrumental 
genesis is multifaceted. To understand how to support students’ instrumentation of 
technological tools, Trouche (2004, 2005) introduces “instrumental orchestration” 
to describe how teachers plan and implement mathematics lessons that integrate 
technological tools. The instrumentation process is an important multidimensional 
process, including individual as well as social dimensions (Trouche, 2005). Since 
instrumental genesis mainly accounts for the individual dimension, instrumental 
orchestration accounts for the social dimension of the instrumentation process. It 
describes the arrangements of artifacts in the environment, didactical configura-
tions, and teacher and student move within these configurations, exploitation modes 
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(Trouche, 2004, 2005). A third component was added by Drijvers et  al. (2010), 
didactical performance, to describe teachers’ instructional decisions responding to 
circumstances during mathematical lesson. There are different combinations of 
didactical configurations, exploitation modes, and didactical performance that 
teachers use to support their students’ instrumentation. The didactical configura-
tions concern the “layout of the artifacts available in the environment” (Trouche, 
2004, p. 296) for the students to interact with during the mathematical lesson. The 
exploitation modes represent actions that teachers choose for students to perform 
based on their lesson’s objects. The didactical configurations and the exploitation 
modes work together to support students’ achievement of lesson’s objects. 
Combinations of didactical configurations and the exploitation modes act on three 
levels: artifacts, instruments, and students’ relationship with the instruments 
(Trouche, 2005). Within these levels, teachers attend to the tools as artifacts (before 
instrumentation) and after students appropriate the tools. After students appropriate 
the tools, teachers’ decisions involve how to guide students’ interactions with the 
instrument and support their mathematical understanding.

4.4  �Online Environment for Collaborative Learning

The online environment, VMTwG, is an interactional, synchronous space. It con-
tains support for chat rooms with collaborative tools for mathematical explorations, 
including a multiuser version of GeoGebra, where team members can construct 
dynamic objects and drag elements to visually explore relationships (see Fig. 4.1). 
VMTwG records users’ chat postings and GeoGebra actions, which teachers can 
review and even replay at various speeds. The research team designed dynamic 
geometry tasks to encourage participants to discuss and collaboratively manipulate 
and construct dynamic geometry objects, notice relations and dependencies among 
the objects, make conjectures, and build justifications.

The data for this study come from the second course and concern the work of a 
high school mathematics teacher, Mr. S. He engaged his class in VMTwG in small 
teams of three to four students each. The class worked in a computer lab, and Mr. S. 
encouraged students to communicate only through VMTwG.  To understand his 
instrumental orchestration, we analyze qualitatively four sources of data: (1) the 
tasks he used with his students, (2) the modifications he made to the tasks after 
reviewing teams’ work, (3) the logged VMTwG interactions of two teams of his 
students on the tasks, and (4) his reflections on their work, which he wrote after each 
class session. We chose to analyze two teams, team 1 and team 6, since Mr. S. con-
sidered those teams to be most collaborative.

On each of the four data sources, we performed conventional and directed con-
tent analysis (Hsieh & Shannon, 2005). We were particularly interested in coding 
and categorizing both Mr. S.’s pedagogical interventions and the deductive justifica-
tions of two teams of his students. The data drives our analysis, and we interpret 
them using the theories of instrumental genesis and orchestration whenever there 
are links between the data and the theories.
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4.5  �Pedagogical Setting: Teachers Learning

The work of the high school mathematics teacher who engaged his students in an 
online collaborative environment, Virtual Math Team with GeoGebra (VMTwG), to 
extend their geometric knowledge was informed by a particular pedagogical setting. 
The setting is a professional development project, “Computer-Supported Math 
Discourse among Teachers and Students,” that involves middle and high school 
teachers in two 15-weeklong, technology-focused online courses. The first course 
engages teachers, working synchronously in small groups, in interactive, discursive 
learning of dynamic geometry through collaborating in VMTwG to solve 55 tasks 
that involve constructing geometric figures and solving open-ended geometric prob-
lems. In addition, the teachers realize and, in writing, reflect on their mathematical 
and collaborative practices; read and discuss synchronously and asynchronously 
articles about technology and pedagogy (Battista, 2002; Mishra & Koehler, 2006; 
Stahl, 2009a), lesson types with technology (McGraw & Grant, 2005), collabora-
tion and discourse (Mercer & Sams, 2006; Michaels, O’Connor, & Resnick, 2007; 
Resnick, Michaels, & O’Connor, 2010), and mathematical practices (Common 
Core State Standards Initiative, 2010, pp. 6–8); and collaboratively plan the content 
and means to implement what they learn in the course in lessons with their 
students.

The Implementation Plan is a major component of the 15-weeklong professional 
development course. Completed over 10 of the 15-weeklong professional develop-
ment course, it is divided into the following five phases:

Fig. 4.1  Screenshot of VMTwG environment with the work of Mr. S.’s students
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Phases of the Implementation Plan
Phase 1: Develop a plan for garnering school and district support and for technology 
availability.
Phase 2: Select a focus for VMTwG lessons that is of interest to you individually as a teacher. 
Discuss your focus during your team’s second synchronous session, and post your focus to the 
Blackboard Discussion forum. Do other teachers within your team or in other teams share the 
same focus?
Phase 3: Define your focus statement including a clear set of pedagogical goals. Collaborate 
within your VMT Team, and also exchange ideas with teachers from other teams through 
Blackboard Discussion forums. It is acceptable if several teachers share a focus statement, but it 
is not required.
Phase 4: Develop an activity list of collaborative dynamic mathematics activities to foster a 
developmental trajectory aligned with your focus statement. It is acceptable if several teachers 
share activities or all or part of a developmental trajectory, but it is not required.
Phase 5: Develop a coherent set of scripted VMTwG sessions, and decide how you might 
implement this curriculum next term. It is acceptable if several teachers share some or all 
scripted VMTwG sessions, but it is not required.

Each phase is further explained in an implementation document that the teachers 
receive. Over the course of the 10 weeks, each teacher uploads to the discussion 
board space of an online course management system (Blackboard™) their response 
to each phase of the plan and receives feedback from other teachers in the course as 
well as the course facilitators. This collaborative development of the teachers’ plan 
is a substantial way in which the course supports each teacher’s implementation 
efforts with their students.

A second major support for teachers’ classroom implementation is the second 
course, which is a reflective practicum. In the course, teachers post their planned 
lessons to Blackboard, receive constructive feedback and exchange ideas, post a 
reflection about each lesson that includes information about their students’ learning 
and about challenges and triumphs and to these receive feedback. In the teachers’ 
reflection on each of their lessons they write about the goals of the lesson, how 
whether the students achieved the goals, what worked and did not work, and what 
support the teacher provided suggest changes for further revisions to improvement; 
from the discursive and inscriptive, data highlight the collaborative and mathemati-
cal practices; comment on each teachers’ reflection.

4.6  �Pedagogical Setting: Teachers Supporting Student 
Learning

The teachers engage their students in at least 10 h of class sessions to learn dynamic 
geometry through the use of VMTwG to work on construction and problem-solving 
tasks. This study examines a teacher’s and his students’ initial engagement with the 
VMTwG program in an urban high school in southern New Jersey. The high school 
has a diverse student body, where 52% of the students identify as Black, 35% as 
White, 10% as Hispanic, and 3% as Asian. Twenty-one percent of the students have 
a classified disability, while 57% live in economically disadvantaged households. 
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For the 2012–2013 school year, the high school’s suspension rate was 48%, and its 
2014 graduation rate was 82%.

This mathematics teacher, Mr. S., has taught at this high school since the begin-
ning of his teaching career and, at the time of this study, had taught there for 6 years. 
During regular class time, from two different 10th and 11th grade classes, he 
engaged a total of 31 students in tasks in VMTwG. Nineteen of his students were 
females and 12 were males. Academically, they had performed below or at the aver-
age on statewide standardized assessments. Specifically, statewide assessment data 
for 25 of the 31 students were available, and of them, 19 passed the 7th grade assess-
ment and still fewer, 17, passed it in the 8th grade. At the time of this study, eight of 
the 31 students were concurrently enrolled in a separate mathematics remediation 
course. All 31 students neither had prior experience with dynamic geometry nor 
previously worked in a computer-supported collaborative learning environment.

For working in VMTwG, the students worked in a computer lab and divided 
themselves into teams. Teams were formed based on students’ already established 
social groupings since students chose their teammates according to with whom they 
normally socialized during class. They formed eight teams, seven teams with four 
students in each and one team of three. The teacher did not have students in regu-
larly assigned seats. In the computer lab, the computers were arranged on pentagonal-
shaped tables. There was a teacher station that was connected ceiling projector and 
two large wall-mounted whiteboards. The teacher provided his students with log-ins 
and assigned each student team to a VMTwG chat room. Students were not able to 
enter other teams’ chat rooms.

4.6.1  �Teacher’s Instrumental Orchestration

Based on our analyses of Mr. S.’s implementation of the project design, his instru-
mental orchestration was directed at supporting three categories of students’ actions: 
collaborative practices, mathematical reasoning, and the use of technology. In addi-
tion, the analysis reveals that Mr. S. followed a trajectory of pedagogical interven-
tions focused on his students’ discursive interactions and their emerging knowledge 
of dynamic geometry. In his reflections on his students’ work, Mr. S. expresses an 
overall goal that, within their teams, students manipulate and construct dynamic geo-
metric objects and notice and discuss relations among them, particularly relations of 
dependency. To achieve this goal, Mr. S.’s didactical configurations had students 
work in small groups in a computer lab and communicate online through VMTwG. His 
pedagogical interventions focused on how the teams of students collaborate. Having 
given his students a task designed to promote collaboration, Mr. S. expressed con-
cern in his weekly reflection that the teams did not collaborate successfully. He 
reported that to ensure successful collaborative sessions, he subsequently discussed 
with his class features of successful collaborations and presented examples of what 
he considered good collaborative moves. To underscore his advice, he distributed a 
list of behaviors that he judged could help to ensure successful collaboration and 
called it “The Pledge.” It contained statements of behaviors such as “Include every-
one’s ideas” and “Ask what my team members think and what their reasons are.”
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These pedagogical interventions and ones that we present below focused on col-
laboration. They reveal that Mr. S. choose exploitation modes (instructional deci-
sions) that encourage students to be reflective of their work within their teams. His 
pedagogical interventions are mostly focused on the second and third level of his 
instrumental orchestration. Those levels are concerned, respectively, with the instru-
ment and the students’ relations with the instrument. Mr. S. used collaboration as a 
vehicle to orchestrate his students’ appropriation of VMTwG artifacts and move-
ment toward deductive justifications. In his weekly reflections, he assessed his stu-
dents’ reasoning by tracking their collaborative practices and their use of 
mathematical language.

Closely following Mr. S.’s interventions concerning his students’ collaborative 
practices, he then focused on aspects of their use of the technological environment. 
This focus is at the first level—artifact level—of his instrumental orchestration. In 
his weekly reflections, he reported that during his students’ engagement in VMTwG, 
he “monitored progress and resolved some tech issues.” He helped students gain 
insights into the use of particular GeoGebra commands by modifying tasks and 
directing his students to view specific YouTube GeoGebra clips.

As Mr. S.’s teams of students increased their effective collaborative interactions, he 
shifted his pedagogical interventions more explicitly toward supporting their mathe-
matical reasoning. He discussed with his class the concept of dependency in dynamic 
geometry to contrast it with dependency in other mathematical domains and modified 
the tasks to explicate particular mathematical ideas. He posed detailed questions to 
foreground mathematical discourse. For example, he found that the tasks’ original 
questions were not specific enough to elicit mathematical reasoning, so he included 
the following questions in one of the tasks, “constructing an equilateral triangle”:

	1.	 What kinds of triangles can you find here?
	2.	 Drag the points. Do any of the triangles change kind? Discuss this in the chat.
	3.	 Are there some kinds [of triangles] you are not sure about?
	4.	 Why are you sure about some relationships?
	5.	 Does everyone in the team agree?

These questions prompted his students to attend to particular objects and relations 
in the construction and to discuss the behavior of these objects and relations.

4.6.2  �Students’ Work in VMTwG

Mr. S.’s instrumental orchestration and his other pedagogical interventions contrib-
uted to his teams of students’ instrumentation and movement toward greater col-
laboration and deductive justifications. For example, according to Mr. S. and our 
analyses, a team of three students (team 6) improved their collaboration, explora-
tions, and mathematical reasoning. In their third session, the task asked them to 
construct an equilateral triangle, find the relationships among objects in their con-
struction, and justify their claims. The students first dragged a preconstructed figure 
of an equilateral triangle (see triangle ABC in Fig. 4.1 above) to explore elements of 
the construction and their behavior. Afterward, they each constructed a similar 
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figure (see Fig. 4.1) and dragged their construction vigorously to validate and justify 
their construction. Below, an excerpt3 of their discussion shows how a team of stu-
dents articulated a valid justification of why their constructions were of equilateral 
triangles.

18 kar_bchs: looks like we both got it [both successfully construct and  
drag the figures vigorously]

19 kim_bchs: yay, it seems like for a second one of the circles appeared much  
larger. but that was my imagination.

20 kar_bchs: oh. lol. why is the third point dependent on the distance between  
the first two points? (number 7)

21 kar_bchs: it just connects the points and the circles. making them all one piece
22 kim_bchs: as the segments change sides so does the radius of the circle. 

However, the triangle remains an equilateral triangle
23 bsingh: [the teacher] be sure to read directions, ALL, and make the pledge
24 kim_bchs: triangle
25 kar_bchs: yea. even though the sizes of the sides change, the fact that it is  

an equilateral triangle doesn’t
26 kar_bchs: each side has the same distance in between it. even when you  

move the points
27 kim_bchs: i notice that point d and e are on the circumference of one circle.  

while point f is an intersetion of both circle. making it dependent  
on both points.

28 kar_bchs: if you try and move the intersected point (F and I), it won’t move.  
but yea you’re right, the intersecting point depends on the segment  
that was made

29 kim_bchs: *point f is an intersect of both circles
30 bsingh: [the teacher] there is something missing, are you reading the directions
31 bsingh: [the teacher] we are only doing tab 1 today
32 kar_bchs: i didnt use the polygon tool.. that’s missing in mine
33 kim_bchs: i just notice that.
34 kar_bchs: can i try?
35 kar_bchs: okay. i got it now
36 kim_bchs: do you think the triangle will always be an equilateral triangle.
37 kar_bchs: the sides stay equal.. the two circles were formed using one  

segment, so those circles were even with each other. so any points  
connecting them will become the same length as the original segment

. . .

. . .

. . .

3 This and the next excerpt in this chapter are from students engaged in chat communication in 
VMTwG. In this setting, at the same time that they write informally, without focusing on conven-
tions of academic writing, students direct their attention to communicating quickly their mathe-
matical ideas to themselves and their teammates. For this reason, we have chosen not to correct 
their orthography or any other aspect of their writing. We feel that it is important to honor and 
understand their authentic expressions.
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50 kim_bchs: the radius of a circle is the same distance. segment AB is Sure.  
the radii of both circles and Segment AC and BC are also radii  
of both circles. hence, the triangle should be equilateral.

51 kar_bchs: the circles are equal. making the circumference of each  
equal to one another

This team of students noticed that the equilateral triangle depended on the rela-
tionship between the two circles that they created. They discussed their construc-
tions and the relationships they noticed (lines: 18–29). Both students noticed that 
the construction maintains the triangle equilateral as vertices are dragged (lines 22 
and 25). They tried to explain how the intersection points of the circles are depen-
dent on the centers of the circles (lines 27–29). In line 36, kim_bchs asks whether 
the triangle is always equilateral. In response, kar_bchs states that the sides of the 
triangle are equal and mentions that the two circles are “even” or congruent. In line 
50, it seems that kim_bchs builds on kar_bchs’s observation and notes that the radii 
of both circles are equal and that imply that the triangle is equilateral and, in line 51, 
that the circumferences of the two circles are equal. The students successfully build 
on each other’s ideas and justify why their constructions yield equilateral triangles 
and justify other equivalences that they notice. They also note that the congruence 
of their circles depends on the segment that they share (line 37: “the two circles 
were formed using one segment, so those circles were even with each other”) and 
that two sides of the given triangle are dependent on segment AB (line 50: “the 
radius of a circle is the same distance. segment AB is Sure. the radii of both circles 
and Segment AC and BC are also radii of both circles. hence, the triangle should be 
equilateral.”). This provides further evidence that these students are justifying math-
ematical relations, moving themselves toward deductive justification. This also 
indicates that this student team transformed artifacts of the technological environ-
ment such as chat, dragging, and tools involved in constructing equilateral triangles 
into instruments.

4.7  �Discussion

Mr. S’s students’ actions led to their transformation of technological artifacts of 
VMTwG into instruments of their knowledge building. In this process, they accom-
plished movement between visual and dragging explorations and discursive deduc-
tive justifications. Their movement toward deductive justifications was evidenced in 
their discursive, interaction motivated by their perception of mathematical proper-
ties and relations that they notice while manipulating mathematical objects to 
develop and communicate convincing arguments about the mathematical relations 
that satisfy their team members.

These student knowledge-building actions were supported by Mr. S.’s pedagogi-
cal orchestrations. As we defined it earlier, such orchestrations are instructional 
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actions initiated by teachers that precede, invite, sustain, monitor, or reflect on stu-
dents’ activity. Initial actions in the trajectory of Mr. S.’s pedagogical orchestrations 
began with a focus on supporting teams of his students to have effective collabora-
tive interactions. The extension of their collaborative practices evidence collabora-
tive learning, as Jeong and Hmelo-Silver (2016) suggest: “a group of people 
engage[s] in activities toward a shared goal. They may divide the tasks in the pro-
cess of working together, but the ultimate goal is to produce an outcome that col-
lectively advances the knowledge of individuals as well as the collectives” (p. 248). 
Once Mr. S. was satisfied that, within teams, students were listening to each other 
and building on each other’s ideas, he shifted to focus his instructional interventions 
around ideas of mathematical reasoning and justifications. Our analysis of his 
weekly reflections, his later analysis of his students’ work, and our analysis of his 
students’ work indicate that, in parallel with his trajectory, his students progressed 
toward more pointed justifications of geometric relations that they noticed, includ-
ing, for dynamic geometry, mathematically significant relations of dependencies 
(Stahl, 2013; Talmon & Yerushalmy, 2004).

Mr. S.’s pedagogical orchestrations not only shaped his students’ transformation 
of technological artifacts of VMTwG into instruments for knowledge building but 
also inform the theory of instrumental orchestration (Trouche, 2003, 2004, 2005). 
His instructional actions undergird a model of pedagogical orchestration, the pur-
pose of which is to support students’ instrumental genesis (Rabardel & Beguin, 
2005) of collaborative mathematical environments such as VMTwG. The didactical 
configuration involves a technological environment specifically designed to support 
collaborative knowledge building among small teams of interlocutors, interacting in 
coordinated discursive (chat) and inscriptive (GeoGebra) spaces. Another aspect of 
the didactical configuration is the open-ended, collaborative, and discourse-
provoking nature of the mathematical tasks that the teacher chose and modified. The 
choices of technological environment and tasks are instructional moves that shift 
students’ focus in the classroom from their teacher to their peer collaborators.

In the exploitation mode, teacher and student moves vary significantly from Mr. 
S.’s students’ previous mathematical experiences in school. His students’ school 
experiences in mathematical classrooms neither include little to any work in col-
laborative teams nor with technological or dynamic geometry. They had no experi-
ence working on open-ended tasks in which they were expected to build their own 
geometrical knowledge. This expectation that students were to build their own geo-
metrical knowledge as they collaborative resolved open-ended tasks and constructed 
geometric figures rather than being told what they were to learn served to decentral-
ize further the teacher’s role. As a consequence, the teacher’s pedagogical orchestra-
tion meant that there were minimal opportunities for Mr. S. to intervene 
contemporaneously while he was interacting in VMTwG. After the students’ ses-
sions, he reviewed their interactional work and made decisions in the realm of 
didactical performance to respond to circumstances that had occurred in his stu-
dents’ online mathematical work. His whole-class discussion of collaborative 
moves, including “The Pledge,” is how he addressed the challenge of supporting his 
students’ development of productive collaborative practices.
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The example of Mr. S. provides evidence of pedagogical orchestration that sup-
ports students’ instrumentation. He models how teachers can support students’ 
instrumentation of collaborative environments and the extension of their mathemat-
ical understanding. In this model, during students’ mathematical activity, teachers 
progressively decentralize their role and, simultaneously, support students’ devel-
opment and performance of collaborative practices. This model augments the the-
ory of instrumental orchestration (Trouche, 2003, 2004, 2005) by providing a 
pedagogical intervention trajectory that supports students’ instrumental genesis of 
collaborative mathematical environments and shifts students’ focus from their 
teacher to their peer collaborators. In general, this model contributes to an under-
studied area of DGEs, teacher practice (Sinclair et al., 2016).
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