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Foreword

If wild tigers were easy to study, every aspiring field researcher would want to do
so. The elegance, ecological role, and aura of this top predator exert a magnetic pull
that extends far beyond biologists. Surveys undertaken by conservation groups show
that among the general public, tigers consistently come out as the most popular wild
species on Earth. The irony, of course, is that catching a glimpse of a tiger outside of
zoos and in its natural habitats is often, at best, a once-in-a-lifetime event. It should
thus come as no surprise that since George Schaller’s pioneering study of wild
tigers in India’s Kanha National Park over 50 years ago, relatively few long-term
field studies have been successfully carried out on this highly territorial, secretive
large carnivore. The authors in this volume make up a large subset of those intrepid
biologists who have crouched on jungle trails to set camera traps, pick up scats, and
look for other signs or monitored the prey of this big cat.

Even though few biologists have had the good fortune to study tigers in the
wild, everyone wants to know about their numbers, especially conservationists, for
without accurate counts and projections, it’s difficult or even impossible to devise
adequate conservation strategies. Those who have studied tigers are repeatedly plied
with the same four questions: How many tigers are left in the wild? Are their
numbers increasing or decreasing? Will they go extinct? What can we do to save
them? These are the questions to which government wildlife officials in the tiger
range states are hounded to provide answers by concerned citizens and the popular
press. Unless we have robust, repeatable methods to answer questions accurately
about changes in tiger numbers and forces affecting them, officials must answer by
reverting to guessing or crude surveys. The reliance on outdated and less accurate
approaches does little to advance science and even less to determine the true fate of
wild tigers.

Enter this volume. A gathering of scientists, under the leadership of Ullas
Karanth and Jim Nichols, addresses the most important topics related to accurately
assessing the status of tigers and their prey and, we can hope, monitoring their
recovery. It is a critical task to share information on best ways of analyzing numbers
for tiger and tiger prey researchers, for concerned others, and for those who study
other species in the region. In the ongoing effort to save and recover wild Asia, the
content of this book provides the monitoring bible.
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vi Foreword

In the 1970s and even today, India has been home to the majority of the world’s
wild tigers, and it is on that country that the authors focus much of their attention. In
the late 1960s, wildlife officials became aware that poaching of tigers and prey and
loss of habitat were leading to precipitous drops in the number of tigers in the wild.
The prevalent technique at the time to estimate tiger numbers was the well-worn
pugmark method, relying on the claim that the footprints of tigers, measured in the
appropriate substrate, served as identifying “fingerprints,” and adult and subadult
tigers could be identified as distinct individuals from tedious field measurements.
Ullas Karanth in the 1980s illustrated the inaccuracy of this approach through a
clever controlled experiment: allowing a known number of zoo tigers to make tracks
and inviting official “tiger pugmark identification experts” to attempt to determine
how many tigers had actually been present. The results of this experiment put to
rest the idea that “seasoned experts” could eyeball correctly the number of tigers in
an area based on an examination of pugmarks. Tracks were useful for establishing
the presence of tigers but not to determine their numbers. Karanth and coauthors
followed this up with a rigorous overall critique of the pugmark census method
(Karanth et al. 2003: “Science deficiency in conservation practice: the monitoring
of tiger populations in India,” Animal Conservation 6:141–146), which eventually
led to the method’s official demise in 2005.

From the early 1990s, Karanth and his WCS colleagues worked to replace
the pugmark method with a new technology—automatically triggered camera
traps—that, when used with a systematic sampling design, could begin to improve
estimation techniques. Guided by statistical guru Jim Nichols from USGS, the team
revolutionized how best to sample wild tigers and, by extension, how populations
of many other cryptic but individually identifiable animal species that occur at low
densities could be reliably, and noninvasively, estimated.

By 1995, researchers were also using new GIS mapping techniques to determine
the tiger’s range as a series of landscapes called tiger conservation units (TCUs),
formed by the known presence of tigers or their suspected presence and by their
ability to disperse. The resulting exercise identified places where tigers could be
conserved. It also identified giant polygons as “survey landscapes,” large blocks
of presumed habitat where no information on tiger status was available. These
polygons, mapped in purple, caught the attention of Karanth and his disciples and
became the targets of field efforts, many of these far from the boundaries of India.
Ten years later, all of the survey TCUs had been thoroughly camera-trapped or at
least visited by camera-trapping teams.

These results were collated again in 2005 and published in a series of papers,
one of which, “The Fate of Wild Tigers” by biologists from the World Wildlife
Fund and the Wildlife Conservation Society, divided the tigers’ truncated ranges
into 76 tiger conservation landscapes. The critical finding of their analysis could be
termed “range collapse”: tigers occupied 40% less habitat in 2005 than they had
a decade earlier according to a 1995 study. The structural habitat was still present
to support tigers, but either the tigers, their large prey, or both had been hunted
out. Even accounting for some error in the comparison, the interpretation of the
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intensive camera-trapping campaign between 1995 and 2005 can be summed up in
a depressing, short phrase: learning a lot more about fewer tigers.

Recognizing that a shift in strategy was needed to avoid the extirpation of tiger
populations, several tiger biologists hatched the idea of a Global Tiger Initiative
(GTI), which culminated in staging a Global Tiger Summit in 2010 in St. Petersburg,
Russia. The attending heads of state, hosted by Vladimir Putin, and subsequently
other range state leaders not in attendance agreed to the global goal of doubling the
wild tiger population from about 3200 in 2010 to upward of 6500 by 2022, the date
of the next Year of the Tiger. Suddenly, the work of Karanth and Nichols took on a
fresh new urgency: how to provide reliable information to monitor the path to this
milestone of recovery.

That work continues in earnest to this day, and the initial chapters here focus on
the latest approaches to answering several basic questions: Why are you undertaking
the monitoring program? What aspect of tiger or prey biology are you trying to
address? How do you go about it in the most robust way? It is an ideal beginning,
to state the questions clearly at the outset, to avoid wasting time and money in what
could otherwise be glorified fishing expeditions.

A subsequent chapter (Chap. 5) discusses five other questions that biologists and
technicians should ponder before proceeding. Another reason this book needs to
be widely circulated is that we need to ensure that the estimates of tiger numbers
and occupancy are accurate to make sure that the interventions on behalf of tiger
conservation are actually working. The GTI helped catalyze a number of range states
to allocate more funds for tiger protection. By answering the questions laid out here
and adopting the best practices described in this volume, we stand the best chance
of these resources being invested wisely.

A further pathbreaking finding of Karanth and his co-workers was that tiger
density can be predicted by prey density (Karanth et al. 2004: “Tigers and their
prey: Predicting carnivore densities from prey abundance,” Proceedings of the
National Academy of Sciences, USA 101:4854–4858). This insight builds on work
of Karanth’s mentor, felid biologist Mel Sunquist, who remarked at a conference in
1980 that “to be a tiger biologist, you really need to be a deer biologist.” So it is
welcome that this volume includes several important chapters on monitoring prey
density. If being a tiger biologist means being a deer biologist, one could argue that
being a deer biologist requires an understanding of plant ecology, soil science, and
geology. Underpinning the correlation of tiger densities with large prey densities
is another rarely discussed feature: alluvial soils produce the densest population
of tigers because they support the highest concentrations of large herbivores. Soil
fertility thus may be one of the ultimate drivers of tiger densities.

By incorporating techniques for monitoring tigers and their prey that can apply
to many other large mammals, the authors greatly extend the reach and value
of their work. A further benefit of the volume is the penultimate chapter, a
treatise on connectivity, a vital aspect of conserving many large terrestrial mammal
populations. If tigers are to have a future in Asia, they must be managed as
metapopulations—populations linked by dispersal. The fact remains that not a
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single tiger reserve among the 350 or so in the tiger’s range is large enough to
maintain a viable population. Establishing corridors connecting tiger conservation
areas and developing a healthy matrix through which to disperse are vital.

What will tiger and prey monitoring look like 15 years hence? Advances in
camera trapping, remote sensing, and GIS modeling led to a quantum leap in
how we have studied tigers and tiger habitats over the past 20 years. Could the
emerging technologies of computer vision, machine learning, miniaturization of
electronics, smart drones, and long-range (LoRa) radio frequency communication
further revolutionize how we count or detect wildlife? Sensors that use cryptic
cameras equipped with computer vision algorithms to detect humans (poachers) and
relay such information via GSM or LoRa networks will soon be in place in African
wildlands. It is only a half-step more to insert new low-cost, computer vision chips
into such cameras that can do “onboard” processing to detect tigers, sort and identify
them, and transmit photos in real time to a researcher connected to the Internet.
When these sensors are mass produced at “cents to the dollar” per unit, it would be
only another small step to expanding camera-trapping grids to systematically cover
the entire tiger landscape using linked sensors and thus obtain a total census.

These potential developments raise a final question: Will our sophisticated ability
to monitor tigers and their prey then be matched by the development of the necessary
political will, interest in protecting enough habitat, ability to gain the local buy-in
to save tiger landscapes, and then mobilization of sufficient resources to restore
thriving populations of tigers and other populations of large Asian mammals? If
we only set aside large blocks of habitat and left tigers and their prey alone, there
would be much less need for a book like this. But because the development of the
tiger range states, among the fastest in the world, has ramped up the pressures, this
volume becomes even more vital.

Biodiversity and Wildlife Solutions Program Eric Dinerstein
Washington, DC, USA
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The tiger is a global conservation icon. Because of its popular appeal, which has
religious, cultural, aesthetic, and social roots, an impressive array of leaders in these
spheres has also seriously engaged with tiger conservation over the past 50 years. A
quick chronological, but nonstatistical, sample includes Indira Gandhi (post-1969),
King Birendra of Nepal (1970s), Dalai Lama (1990s), and Vladimir Putin (2000s).
Tiger range state officials, tiger scientists, national and international NGOs, and
conservation advocates at various levels have all toiled hard to stem the tiger’s slide,
into what appeared to be inevitable extinction by the mid-1960s. Some of these
efforts have succeeded, while many others have failed.

One of us (Karanth) got involved in tiger conservation as an amateur naturalist
in the 1970s, around the same time as the other (Nichols) began his professional
career as a quantitative ecologist. At that time, in spite of conservation efforts,
rigorous science was excluded from the critical task of assessing how tiger
populations were faring. Such assessments required a thoughtful synthesis tiger
biology and quantitative ecology, relevant to specific conservation contexts. Such
a methodological synthesis was simply not available.

In the late 1980s, we met for the first time, somewhat serendipitously, at the
University of Florida, Gainesville. Soon after, we decided to collaborate to develop
and apply rigorous and defensible methods for monitoring tigers and their principal
prey species. With lots of help from various field personnel, wildlife managers, as
well as other tiger biologists and quantitative ecologists, we developed a set of
monitoring methods that we believed to be useful and representative of the state
of the art in inference methods for animal populations.

Application of these methods in India demonstrated their feasibility and utility to
the point where we believed that we should recommend them to others involved with
tiger conservation monitoring. We organized an international technical workshop,
sponsored by the Wildlife Conservation Society (WCS) at Nagarahole Reserve,
India, in January 1999. The workshop was conducted in association with Indian
government’s Project Tiger and some state forestry departments and included sev-
eral wildlife managers, carnivore biologists, and biostatisticians. Several population
monitoring approaches were discussed in detail, with topics ranging from the
collection of field data to their final statistical analysis.

ix
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As a direct result of this workshop, we produced the edited volume, Monitoring
Tigers and Their Prey: A Manual for Wildlife Researchers, Managers and Conserva-
tionists in Tropical Asia (Karanth and Nichols 2002). The intent of this volume was
to provide guidance about field monitoring and statistical methods that we believed
to be superior (in the sense of yielding stronger inferences), compared to methods
that had been used for decades in India and the rest of tiger range. Recognizing
the natural reluctance of practitioners to discard such historical methods in favor
of new approaches, we made a special effort to present the logic and rationale
underlying our recommended approaches. We tried to describe field methods in
sufficient detail that they could be duplicated by others and to provide simple
numerical examples to aid understanding of some of the analytic approaches that
we were recommending. In 2008, WCS collaborated with Trust for Environmental
Education, India, to produce a 47-minute video guide that clearly depicted the
various monitoring methods described in Karanth and Nichols (2002). Both PDF
version of the book and the video guide were made freely available to all users by
WCS on the Internet (http://wcsindia.org/home/media-library/).

As a result, the methods recommended in Karanth and Nichols (2002) have been
widely used by carnivore ecologists, conservationists, and wildlife managers. Many
users have adapted these methods to monitor not only tigers but also other big cats,
such as jaguars, Panthera onca; cheetahs, Acinonyx jubatus; leopards, Panthera
pardus; and snow leopards, Panthera uncia. We have been surprised and pleased
that some of the ideas (e.g., on camera trapping, occupancy modeling of sign survey
data) have been applied to conservation problems extending well beyond tigers and
prey, to varied species and conservation issues across the globe.

We ended the penultimate paragraph of the preface to Karanth and Nichols
(2002:xv) with the following two sentences: “However, we are well aware that,
eventually, the methods that we present in this manual will be replaced by better
methods generated through the very same process of scientific review that we
endorse. In fact, we look forward to such improvements.”

This methodological evolution has proceeded even more rapidly than we antic-
ipated, to the point where we believed it necessary to develop this new volume to
incorporate these advances. We were fortunate to have collaborated, once again,
with an outstanding group of authors who have produced what we believe is an
exceptional set of methodological chapters representing the current state of the art
in animal monitoring in general and as applied to tigers and their prey specifically.

This new volume differs from the 2002 volume in important ways, and we believe
that the relationship between the two volumes merits some discussion here. For the
purpose of brevity, in this comparison, we will refer to the earlier manual as KN
(2002) and the present volume as KN (2017).

First, we note that the methods presented in KN (2002) are still foundational and
useful. Unlike the earlier tiger census methods that they replaced, these methods
have sound conceptual underpinnings and still “work.” Rather than scrapping these
methods, many of the chapters of KN (2017) extend the modeling of KN (2002) in
exciting and novel ways that increase their value. Even the major “new” method

http://wcsindia.org/home/media-library/
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in KN (2017), spatially explicit capture-recapture modeling, can be viewed as a
marriage between two classes of methods described in KN (2002), classical capture-
recapture models and distance sampling.

An additional distinction between the two volumes is in simplicity of expla-
nations. In both editions, we made special efforts to simplify explanations to the
degree possible, hoping that readers can develop an understanding of how the
described methods work. However, many of the extensions and new developments
in KN (2017) were made possible by advances in computing power and associated
numerical methods, which are not as amenable to simplified explanations and
examples as the initial models described in KN (2002). We have thus come to view
the two volumes as complementary. The 2002 volume is probably a better starting
place for readers who have never been exposed to these inference methods yet
seek to develop an understanding of them. Explanations in the current volume have
been simplified to the degree possible but will be more readily understood by those
who have some prior familiarity with these general classes of methods. Therefore,
we have made the KN (2002) volume and its associated video guide to readers
of this volume available on the Internet (http://wcsindia.org/home/media-library/).
The video guide and related visual material are also available at http://www.
conservationindia.org/ and the publisher’s online support (www.springer.com). We
hope readers will find these features helpful.

An additional feature of this volume is a final chapter describing how the rigorous
monitoring approaches explained and recommended here can fit into, and contribute
to, adaptive natural resource management (Walters 1986, Nichols et al. 2007)
and structured decision-making (Martin et al. 2009), which are being increasingly
applied by conservation practitioners and wildlife managers in varied contexts
globally. We urge tiger conservationists to seriously consider these suggestions in
their own specific situations.

We both continue to strongly believe that the scientific process of peer review
and publication in high-quality journals should guide the choice of appropriate
methods for monitoring tigers and their prey. Therefore, we are somewhat dismayed
that, in spite of availability of superior methods, tiger conservation practitioners
are sometimes slow to adopt them or even use demonstrably flawed or obsolete
methodologies. We believe this is largely because of intellectual inertia, rather than
resource constraints, given the current levels of investment. Unfortunately, we can
offer no methodological cure for this problem.

As is the way of all scientific progress, the animal monitoring approaches that
authors in this volume recommend too will eventually be superseded by superior
ones. As editors, we hope that this volume will inspire cohorts of talented carnivore
biologists and quantitative ecologists who will follow, to seriously engage with
the innovations necessary to rapidly render our current effort obsolete. The still
precarious fate of the wild tiger populations urgently demands such a proactive
engagement.

Bengaluru, India K. Ullas Karanth
Crofton, MD, USA James D. Nichols

http://wcsindia.org/home/media-library/
http://www.conservationindia.org/
http://www.conservationindia.org/
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1Role of Monitoring in Global Tiger
Conservation

K. Ullas Karanth, James D. Nichols, John M. Goodrich,
G. Viswanatha Reddy, Vinod B. Mathur, Hariyo T. Wibisono,
Sunarto Sunarto, Anak Pattanavibool, and Melvin T. Gumal

1.1 Introduction

This chapter sets the overall context by providing a brief overview of the historical
and current status of wild tiger populations and social, cultural, and scientific
perspectives on the tiger. It also covers aspects of population biology of tigers,
history of conservation efforts, and the need for reliable monitoring for advancing
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tiger science as well as conservation. We also touch upon typical monitoring goals
relevant to different ecological and social contexts. Our primary goal here is to
convince field practitioners that approaches presented in this volume are not as
daunting as they may appear at first glance: they are more sound and practical,
compared to many of the methods on which large investments are currently being
made.

1.1.1 Status of Wild Tigers

Tigers (Panthera tigris) were once widespread across Asia, with a distributional
range spanning 30 present-day countries, stretching across a vast region (latitudes
530 520 N to S 80 510 N and longitudes 460 420 E to 1340 240 E). After modern
humans colonized Asia (�60,000 years BP), forest clearance for shifting cultivation,
followed by settled agriculture and livestock raising (�10,000 years BP), squeezed
tiger habitats. Expanding human settlement brought tigers under great pressure.
In the escalating conflict with people over land and livestock, tigers were sys-
tematically hunted out. Finally, with the advent of steel traps and snares—and later
firearms, explosives, and chemical poisons—hunters virtually extirpated tigers from
most agricultural tracts (Karanth 2001). For example, a molecular genetic estimate
(Mondol et al. 2009b), with wide variance, suggests a median estimate of 58,000
tigers for peninsular India �500 years ago. Just 150 years ago, the extent of tiger
habitat across Asia may have exceeded 13 million km2, an area the size of China and
India combined (computation based on Walston et al. 2010, Goodrich et al. 2015).
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During the nineteenth and twentieth centuries, the following threats to tigers
ratcheted up:

1. Agricultural encroachments through large- and small-scale forest conversions.
2. Major infrastructure and industrial development, such as railways, roads, mines,

irrigation, and power projects.
3. Intensive industrial-scale logging by governments and companies as well as

severe forest biomass exploitation by rural communities and their livestock.
4. Large-scale sport hunting by social elites and bounty hunting of tigers for conflict

mitigation. Depletion of wild ungulate populations by local hunters. For example,
in the British Indian Empire, in 50 years between 1875 and 1925, over 80,000
tigers were killed off by sportsmen and bounty hunters (Rangarajan 2001).

5. In the late twentieth century, increased demand for tiger body parts as medicinal
curatives and decorative trophies from newly affluent consumers in China and
East Asia has emerged as another major threat (Nowell and Ling 2007).

Under such intense pressures, tigers were successively extirpated: from Bali
Island by the 1940s, from West Asia by the 1950s, and from Java, Korean Peninsula,
Central China, Cambodia, and Vietnam by the late twentieth century (Goodrich
et al. 2015). In the last 200 years, the tiger’s range has shrunk by >95%, down
to � 638,000 km2 spread across 11 countries: India, Nepal, Bangladesh, and Bhutan
(all in South Asia) and Myanmar, Thailand, Malaysia, Indonesia, and Lao PDR
where they may be virtually extinct (all in Southeast Asia). Tigers also survive in
the Russian Far East and adjacent areas of China in Northern Asia (Goodrich et al.
2015; Fig. 1.1).

An educated guess is that �4000–5000 wild tigers may now survive in Asia, with
75% occurring in Southern Asia, which supports only 30% of remaining habitat.
Tiger populations are now secure only in a few protected areas, mostly in India.
They are virtually confined to “source populations” occupying about 6% of overall
habitat range wide (Walston et al. 2010, Wikramanayake et al. 2011).

1.1.2 Social and Cultural Underpinnings of Tiger Conservation

The tiger is the largest among living felid species. It is an apex predator in ecological
communities as diverse as the snow-bound taiga to steaming tropical jungles. Its
primary prey are large ungulates. Undoubtedly, the tiger must have made a deep
impression on the first humans who colonized Asia �60,000 years ago. Tigers
preyed on human beings and were feared greatly for that reason (McDougal 1987).
Both admired and feared, the tiger is deeply embedded in Asian cultures: from the
early animistic ones to the Hindu, Taoist, Buddhist, Christian, and Islamic faiths
that historically swept across Asia. Tiger iconography is pervasive: in caves and
shrines of tribal cultures as deities or spirits and in association with various gods,
saints, prophets, warriors, and kings (Boomgaard 2001, Thapar 2011). However, this
human fascination has not helped the tiger much in its historical struggle for survival
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(Karanth 2001). Overhunting of tigers for sport in the past and their continued
killing for human consumption are both culturally rooted.

More recently, this fascination for tigers has turned benign, with the cat serving
as a mascot of commerce for diverse products such as beer, petrol, breakfast cereals,
sports teams, and even hedge funds. The same fascination is now inspiring a
rearguard action to save tigers. Because of its wide cultural appeal, the tiger is now
a flagship of all global species conservation efforts.

1.1.3 Scientific Underpinnings of Tiger Conservation

Until the 1960s, all knowledge of tiger ecology came from accounts by hunters
and amateur naturalists. The first application of methods of modern wildlife
biology, such as analyses of tiger scats and kills to understand their food habits
or observations at baits to study tiger behavior, was by George Schaller in Central
India (Schaller 1967).

Scientific tiger studies advanced greatly with the application of the newly
developed radiotelemetry techniques in the early 1970s in Nepal (Sunquist 1981,
Smith 1993), in India (Karanth and Sunquist 2000) and Russia (Goodrich and
Miquelle 2010) in the 1990s, and in Thailand after 2000 (Simcharoen et al. 2014).
These studies have generated fine-grained data on the tiger’s spatial ecology, social
organization, and behavior.

Application of molecular genetic techniques to tiger DNA obtained from tissue
and blood samples has opened up new paths to study tiger taxonomy and evolution
(Luo et al. 2004, Mondol et al. 2009b, Wilting et al. 2015). Individual identification
using fecal DNA has advanced noninvasive population studies (Mondol et al. 2009a;
Chap. 11).

The critical need for practically estimating wild tiger numbers with sufficient
statistical rigor was addressed only in the 1990s, with the availability of inexpensive,
rugged camera traps activated by tiger movement (Karanth 1995). Such traps could
obtain “samples” of tiger photos from wild populations, enabling identification
of individuals from their unique stripe patterns. In combination with capture–
recapture statistical models (see Chaps. 9 and 10), photographic “capture histories”
of individuals were obtained. These enabled rigorous estimation of tiger numbers
(Karanth and Nichols 1998).

Many photographic capture–recapture studies have been conducted across the
tiger’s range, for example, Karanth et al. (2004a, b) and Jhala et al. (2011, 2015)
in India, Simcharoen et al. (2007) in Thailand, Rayan and Mohamad (2009) in
Malaysia, Sunarto et al. (2013) in Indonesia, Thapa and Kelly (2016) in Nepal, and
Xiao et al. (2016) in China. Systematic, long-term camera trap studies using “open-
model” analyses in India (Karanth et al. 2006) and Thailand (Duangchantrasiri
et al. 2016) have enabled even the estimation of difficult parameters such as rates
of survival, recruitment, and transience, providing a comprehensive understanding

http://dx.doi.org/10.1007/978-981-10-5436-5_11
http://dx.doi.org/10.1007/978-981-10-5436-5_9
http://dx.doi.org/10.1007/978-981-10-5436-5_10
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of dynamics of wild tiger populations reliably and cost-effectively. Because of
its practical utility and rigor, the photographic capture–recapture method has now
become the predominant method for population surveys of tigers across their range.

1.1.4 History of Tiger Conservation Efforts

Sporadic efforts to preserve tigers, as trophies to be exclusively hunted by social
elites, gathered pace during the nineteenth and twentieth centuries. These efforts
included exclusive hunting reserves, official tiger hunting licenses, and “bag limits.”
However, because tiger eradication efforts and habitat encroachment also continued
in the wider landscapes outside of hunting reserves, early preservation efforts could
not arrest the overall decline of tigers (Boomgaard 2001, Karanth 2001, Rangarajan
2001). Tiger recovery efforts launched under internationally sponsored initiatives
after 1969 (Jackson 1999) have been more successful.

However, it is a telling commentary on the difficulties of recovering wild tigers
that, after nearly five decades of effort, the needle of tiger numbers probably remains
pretty much where it was in 1969. All the key threats to tigers persist: hunting of
their prey by local people, direct killing of tigers either for trade or in conflicts,
and pressures on habitats from rural as well as urban sectors of Asia’s high-growth
economies.

Even after preservation efforts began, tigers were extirpated from Iran, the
two Koreas, Vietnam, Cambodia, and most parts of China. Tigers appear to have
declined in Russia, Lao PDR, Malaysia, Thailand, Bangladesh, and Indonesia. They
seem to be just about holding their ground in India, Nepal, and Bhutan. Currently
tigers are listed as endangered by the World Conservation Union (Goodrich
et al. 2015) and included in Appendix I of the Convention on Trade in Endangered
Species (CITES).

On the positive side, successful tiger population recoveries that occurred in
several reserves in India’s Western Ghats, Terai, and Central regions, as well as in
the Western Forest Complex of Thailand and Tambling in Indonesia, clearly show
that effective management responses can recover depleted tiger populations. There
is substantial scope for such recoveries over the 1.5 million km2 area of potential
habitat that still remains. It is clear that recovery efforts must focus on increasing
tiger numbers in surviving source populations in order to produce the surpluses
necessary to repopulate “sink” landscapes beyond (Karanth et al. 2010, Walston
et al. 2010).

It can be argued that past massive investments in tiger recovery have not paid
commensurate returns. A contributory factor has been the long history of weak
monitoring of tiger numbers used to evaluate the effectiveness of management
(Karanth et al. 2003, Karanth 2011, Gopalaswamy et al. 2015). The ability to learn
from past successes and failures (see Chap. 14) is hamstrung without reliable data
on tiger distribution and numbers. Addressing this lacuna is critical to sustain future
tiger recovery.

http://dx.doi.org/10.1007/978-981-10-5436-5_14
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1.2 Why Monitoring Tiger Populations is a Critical
Conservation Need

There are three important reasons why monitoring of wild tiger populations should
be a rigorous process, rather than a periodic managerial ritual as is often the case:

1.2.1 Planning, Targeting, and Managing Conservation
Interventions

Estimates of numbers and spatial distributions of tigers are critical to plan and
implement conservation interventions. Selection of the best sites for tiger recovery,
their extent and configuration within wider landscapes, location of protection
infrastructure, and targeted interventions should all be based on population data on
tigers and their prey. Goals for future tiger population recovery must necessarily rest
on rigorous assessments of tiger population dynamics—before, during, and after the
anticipated recoveries.

1.2.2 Tracking and Auditing Conservation Successes or Failures

Tiger conservation efforts may succeed, or fail, due to internal management factors
or extraneous social ones. Typically, a number of surrogate metrics for conservation
success are used on an ad hoc basis. Such surrogates may include amount of
money invested, local employment or income generated, human welfare measures
undertaken, or the number of staff deployed. Assessments of threats to tigers or
habitats are sometimes made either in the field or with remotely sensed data.
However, it is not possible to be certain about the utility of such surrogate metrics,
without directly measuring the response of tiger and prey populations (Karanth and
Nichols 2002). For example, in Lao PDR, conservation interventions appeared to
reduce poaching and increase prey populations, yet tigers were still lost because
poaching intensity was not reduced sufficiently (Johnson et al. 2016). In an even
more extreme case, after showing healthy numbers (using an unreliable counting
method), tigers rapidly plunged to extinction in Sariska and Panna reserves of India
during 2003–2004 (Karanth 2011). Tiger extirpations, which have initially gone
undetected because of poor survey methods, added up to an overall range loss of
42% between 2006 and 2010 (Goodrich et al. 2015).

1.2.3 Adaptively Learning and Making Management Predictions

Experience from other well-studied examples of conservation programs, such as
those involving management of North American duck hunting or horseshoe crab
harvests in Chesapeake Bay (Williams et al. 2002), shows that conservation funds
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and efforts can be deployed optimally and social friction among stakeholders min-
imized, when management is demonstrably adaptive rather than merely “seat-of-
the-pants.” Adaptive management is designed to learn about population responses
to management actions, thus improving management decisions as time goes on.
Such adaptive management would require learning from results of interventions on
a continual basis (see Chap. 14). It would certainly involve statistically rigorous
measurement of demographic parameters (Williams et al. 2002, Karanth et al. 2006,
Gopalaswamy et al. 2015, Chap. 9).

Although it may not be easy to apply a formal adaptive management structure
to tiger conservation, given the current pervasiveness of subjective and ad hoc
managerial decision-making in tiger conservation, the need for better evidence-
based approaches is clear (Chap. 14).

1.3 Demographic Parameters to be Monitored in Tiger
and Prey Populations

Tiger populations may occur as single “source” populations or as interconnected
meta-populations (Chap. 13). In some cases, they may have the potential to become
connected through suitable interventions. Clusters of breeding female territories
(Chap. 2) are typically embedded in much wider “sink” landscapes. The abundance
of ungulate prey species will be the single most important determinant of potential
size for most tiger populations (Karanth and Stith 1999, 2004a, b, Miquelle et al.
1999).

Two broad questions are asked while trying to measure tiger population param-
eters: (1) where are the tigers found (the spatial distribution question) and (2) how
many tigers are there at each location (population density/abundance questions).
The former involves measurement of tiger-occupied space, and the latter involves
estimating tiger numbers.

Investigations of both of these questions are frequently focused on characteristics
of a tiger population at a given single point in time. However, conservationists
are often more interested in measuring changes in tiger habitat occupancy, or in
tiger numbers, over multiple years. Indeed, conservation entails implementation of
management actions designed to bring about specified changes to focal populations.
Assessment of such changes is thus a key to useful conservation.

Sometimes, conservationists are interested in assessing connectivity between two
or more source populations. Therefore, they might want to assess movement rates
of tigers among protected areas (Chap. 13).

In some cases, it might be practical only to get some idea of “relative abundance”
of tigers (or prey species) rather than absolute numbers or densities. However, the
formidable methodological challenges of achieving even this seemingly easier goal
are often not understood by managers (Chaps. 3 and 10, Williams et al. 2002,
Gopalaswamy et al. 2015). Furthermore, effort and expense involved in getting
such “indices” (Jhala et al. 2011, 2015) are often not significantly lower than
reliably estimating densities. As an example, one can compare the protocols labeled

http://dx.doi.org/10.1007/978-981-10-5436-5_14
http://dx.doi.org/10.1007/978-981-10-5436-5_9
http://dx.doi.org/10.1007/978-981-10-5436-5_14
http://dx.doi.org/10.1007/978-981-10-5436-5_13
http://dx.doi.org/10.1007/978-981-10-5436-5_2
http://dx.doi.org/10.1007/978-981-10-5436-5_13
http://dx.doi.org/10.1007/978-981-10-5436-5_3
http://dx.doi.org/10.1007/978-981-10-5436-5_10
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Phase IV section 2 and 3 recommended by India’s National Tiger Estimation effort
(NTCA 2012): while both protocols are officially approved, the approach in section
2 that yields only “minimum counts” and weaker indices involves as much effort
and as many resources as the section 3 protocol which can yield a comprehensive
picture of tiger and prey population dynamics.

Sometimes conservationists may want to know how intensively tigers (or prey
species) may use particular patches of habitat within a reserve. In this case, the
goal is not to measure animal distribution or “habitat occupancy.” It is only
to measure intensity of the animal’s use of habitat in a smaller area within its
wider distributional range. Often the differences between these two definitions of
“occupancy” are not appreciated by practitioners, leading to poor survey designs
(Chaps. 4 and 5).

1.3.1 Measuring Spatial Distribution and Habitat Use Intensity

Several kinds of questions relevant to conservation can be addressed by investi-
gating the spatial distribution of animal populations. We list below some kinds of
estimation efforts that could prove useful:

1. Estimating overall tiger/prey population distribution across wider regions or
landscapes (true habitat occupancy) and identifying ecological and management
covariates (e.g., prey presence, human disturbance) that might drive these
occupancy rates. Assessing temporal changes in habitat occupancy across large
landscapes and likely covariates influencing them (Chaps. 4 and 5).

2. Assessing intensity of habitat use by tigers or prey across smaller areas, such as
single reserves, to study habitat selection behaviors and covariates influencing
them (Chaps. 4 and 5). These covariates can be ecological- (e.g., prey density) or
management-related factors (e.g., human disturbance).

3. Assessing connectivity and movement among source populations is neces-
sary to maintain long-term demographic and genetic viability. Such assess-
ments of connectivity can indirectly measure structural habitat features such as
type of land cover or, more usefully, functional responses of animals directly
(Chaps. 4, 5, and 13).

1.3.2 Measurement of Potential Tiger Numbers and Actual
Population Dynamics

Inferences about tiger populations and their dynamics are relevant to a variety of
conservation issues, as exemplified by the following kinds of investigations:

1. Assessing the potential carrying capacity of tiger source populations in key
conservation sites by estimating prey density and abundance (Chaps. 6, 7, and 8)
to know “how many tigers” can be there.

http://dx.doi.org/10.1007/978-981-10-5436-5_4
http://dx.doi.org/10.1007/978-981-10-5436-5_5
http://dx.doi.org/10.1007/978-981-10-5436-5_4
http://dx.doi.org/10.1007/978-981-10-5436-5_5
http://dx.doi.org/10.1007/978-981-10-5436-5_4
http://dx.doi.org/10.1007/978-981-10-5436-5_5
http://dx.doi.org/10.1007/978-981-10-5436-5_4
http://dx.doi.org/10.1007/978-981-10-5436-5_5
http://dx.doi.org/10.1007/978-981-10-5436-5_13
http://dx.doi.org/10.1007/978-981-10-5436-5_6
http://dx.doi.org/10.1007/978-981-10-5436-5_7
http://dx.doi.org/10.1007/978-981-10-5436-5_8
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2. In critical tiger habitats and key reserves, estimating tiger densities and abun-
dances, as well as annual changes in these parameters. Over the years, estimating
rates of survival, recruitment, and movement parameters that drive changes in
tiger abundance (Chaps. 9 and 10).

3. Investigating ecological and management covariates likely to influence demo-
graphic factors such as survival, recruitment, and movement in tiger source
populations (Chaps. 9 and 10).

1.4 Challenges and Opportunities in Monitoring Tiger
and Prey Populations

It is important to realize that a tiger monitoring program is not just a routine set
of activities to be carried out each year in isolation. Instead, monitoring should be
an integral part of an overall program of science or management and thus should be
driven by the need to answer specific scientific or management questions (Chap. 14).
The initial step in establishing a monitoring program is thus to identify the scientific
questions or conservation decisions that the program is intended to inform. The
monitoring is then tailored to these identified needs.

Here we briefly list the typical challenges that tiger conservationists or managers
face, when they establish any monitoring program:

1. Ecological traits of tigers (including low population density) and behavioral traits
(e.g., large home range size, elusive behavior).

2. Features of the physical environment, such as terrain (steep cliffs, wide rivers),
ease of access (roads, waterways), and substrate and seasonal conditions (pres-
ence of snow for tracking, torrential rains).

3. Administrative and social factors, such as availability of funds, man power,
technical or field skills, and local work ethic.

4. Often there are “political” constraints, such as governmental or donor pressure
to report “better results” from tiger monitoring (Karanth et al. 2003, Karanth
2011). Building up the capacity of wildlife managers and reserve staff for
carrying out routine monitoring is desirable. However, the technical nature
of the task, continuing scientific advances, and the desirability of isolating
monitoring activity from political pressures also need to be considered. We
believe a collaborative approach that also involves adequately qualified scientists
and capable naturalist volunteers is the best way to bring in rigor, transparency
and efficiency to the monitoring of tigers.

1.5 Conclusion

The tiger—in the broadest sense including its prey species and habitats—is a
powerful flagship for global conservation. In the past 50 years, major efforts to
recover wild tiger populations have been made. Governments of range states have

http://dx.doi.org/10.1007/978-981-10-5436-5_9
http://dx.doi.org/10.1007/978-981-10-5436-5_10
http://dx.doi.org/10.1007/978-981-10-5436-5_9
http://dx.doi.org/10.1007/978-981-10-5436-5_10
http://dx.doi.org/10.1007/978-981-10-5436-5_14
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played the most important role, often in collaboration with local, national, and
international conservation groups. There is no denying that great success has been
achieved at specific sites, particularly in India and to a lesser extent in other regions.
Generally, success has been achieved wherever availability of necessary resources
as well as social and political support for tiger conservation has been high.

In spite of these sporadic successes, the status of the tiger remains precarious.
While conservation efforts have prevented extinctions in many places, vast areas of
potential habitat are now devoid of tigers (Fig. 1.1).

More attention and investments are needed to effect significant improvements
in the status of wild tigers. The necessary interventions, such as improved law
enforcement, creation of more tiger-friendly habitats, or depressing the demand
for tiger body parts, will require major societal commitments. Rapid economic and
cultural changes now sweeping Asia present both challenges and opportunities for
conservation initiatives.

Adverse human impacts on tigers are driven by politics serving populism as
well as powerful economic interests. Market-driven local forest encroachment,
exploitation, and infrastructure development projects pose severe threats to tigers.
The reality is that wildlife managers—or even the tiger conservation community
as a whole—have little influence on underlying factors such as increased incomes,
rising aspirations, and changing cultures. However, managers are still mandated to
recover tiger populations across a potential habitat spanning 1.5 million km2.

Tiger conservationists must address the above challenges by being innovative
while learning from past successes and even more importantly from past failures.
In this context, monitoring programs should be rigorous ecological audits of
conservation efforts. As we shall demonstrate in each chapter, there is much room
for “creative destruction” by replacing many of the obsolete, inefficient monitoring
methods with better ones. Authors here have tried hard to meet this critical need.

The proposed methods have sound statistical and ecological foundations. They
have been applied by the authors and their collaborators to generate reliable results
published in high-quality scientific literature. We hope this factor will motivate at
least the more progressive minds among researchers, conservationists, and wildlife
managers to apply these methods.
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2.1 Introduction

Early naturalists recorded descriptive accounts of tigers in tropical Asia during
the past two to three centuries (Karanth 2001). For example, during the twentieth
century, important anecdotal accounts of tiger behavior were provided by Brander
(1923), Corbett (1944), McDougal (1977), and Singh (1984) for India and Nepal;
Baikov (1927) in Russia and China; Locke (1954) in Malaya; Baze (1957) in
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Indochina; and Hoogerwerf (1970) in Java. Although qualitative, these accounts
laid the foundation for subsequent scientific studies.

Scientific studies of tigers within the framework of modern wildlife biology were
pioneered by George Schaller (1967). Further scientific advances were made in
the 1973–1985 period, with the first radio-telemetry studies of tigers at Chitwan,
Nepal, by the Smithsonian Institution (Sunquist 1981; Smith 1993). During and
after the 1990s, long-term ecological studies of tigers have been conducted in
India (Karanth and Sunquist 1995, 2000; Karanth and Nichols 1998, Karanth
et al. 1999, 2004, 2006, 2011) and in Russia (Miquelle et al. 1999, 2010; Goodrich
et al. 2008; Goodrich et al. 2010; Kerley et al. 2002, 2003; Miller et al. 2013,
2014; Petrunenko et al. 2015; Robinson et al. 2015). These studies involved radio-
telemetry, camera trapping, diet analysis, and assessments of prey and habitats. They
included the first efforts to monitor population parameters in wild tiger populations
using rigorous methods.

All the challenges to tiger population monitoring (Chap. 1) must consider
three key factors: biology of the tiger, nature of the environment, and how we
actually conduct the monitoring. In this chapter, we provide a brief background
on the general biology, behavior, and population ecology of wild tigers. Thereafter,
we examine how tiger biology and environmental features interact with resource
availability while trying to establish reasonable monitoring goals for specific
contexts.
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2.2 General Biology, Behavior, and Ecology of the Tiger

2.2.1 Morphology and Physiological Adaptations

Tigers are quite variable in body size across their extensive range, with records
of the largest specimens (adult males weighing 175–250 kg) coming from India,
Nepal, and the Russian Far East. Tigers in Southeast Asian mainland tend to
be smaller (adult males 150–210 kg). Specimens from Sundarbans of India and
Bangladesh and from Indonesian islands are the smallest (adult males 100–140 kg).
Tigers are strongly sexually dimorphic, with females weighing 20%–40% less
than males. Typical range of body size measures reported for tigers are: head
and body length, 270–310 cm; tail length 85–110 cm; and shoulder height of
90–110 cm.

Tigers possess 30 teeth, represented by the dental formula: incisors 3/3; canines
1/1; premolars 3/2; and molars 1/1. The upper and lower canines (lengths, 50–
60 mm and 40–50 mm, respectively) are the tiger’s primary weapons for killing
prey. The tiger’s lower jaw is anchored to the skull by powerful muscles that enable
powerful and precise killing bites. The shear-like carnassial teeth can rapidly slice
flesh, while the molars can grind meat and smaller bones, with the incisors helping
in plucking hair, gripping, and peeling.

The forequarters of the tiger are especially powerful, with strong skeletal
structures and powerful muscles that enable it to grasp and pull down prey animals
three to five times its own size (Plate 2.1). The long hind legs enable speedy
movement and rearing up to pull down taller prey animals. Tigers have five curved,
retractile claws on their forepaws and four on the hind, which assist in pinning down
prey. At other times these claws remain sheathed, enabling noiseless movement,
which is also facilitated by the soft underfoot pads. Several scent glands are located
in the tiger’s digital pads, orbits, and cheeks. The anal gland produces a signature
scent, when mixed with the cat’s urine. Spraying such scent deposits continuously
on vegetation or substrate is the tiger’s most important communication tool. Tigers
also employ a range of calls—purrs, grunts, growls, and deep roars which carry
3–5 km—for communication in real time.

The tiger’s pelage can vary from pale yellow to dark ochre, with white underside
and orbital patches. The stripe patterns vary considerably and are unique to each
individual. This rather striking pattern, in reality, helps to break the tiger’s outline,
facilitating stealthy ambuscade of prey animals. Rarely, genetic mutations involving
an excess of melanin pigment can result in partially black tigers. In contrast, a single
gene mutation resulting in the absence of a specific melanin (pheomelanin) results in
the famous “white tigers,” which are not true albinos (Xu et al. 2013), nor a distinct
subspecies, as some believe.
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Plate 2.1 Tigers are powerfully built predators capable of killing prey animals 3–5 times their
own size (Image Copyright©: Ramki Sreenivasan)

2.2.2 Taxonomy, Evolution, and Biogeography

Within the mammalian order Carnivora, the tiger is a member of the family Felidae
together with 37 other cat species. It belongs to the genus Panthera or “roaring big
cats,” which also includes the lion (P. leo), jaguar (P.onca), leopard (P. pardus), and
the snow leopard (P. uncia).

Further taxonomic subdivisions are debated, with disagreements among molec-
ular geneticists, paleontologists, and biogeographers. The disagreements arise from
differing interpretations from sparse data available across the species range: one
view is that there are eight to nine extant and extinct subspecies, whereas another
posits only two. The former recognizes nine subspecies: Indian or Bengal tigris;
northern Indo-Chinese corbetti; Malayan jacksonii; Sumatran sumatrae; Amur
altaica, all of which still survive in wild populations; the South China subspecies
amoyensis, which survives only in captivity; and the extinct Javan sondaica; Bali
balica; and Caspian virgata (Luo et al. 2004). Some argue that the Caspian and
Amur tigers are of one subspecies (Driscoll et al. 2009).

However, others argue based on zoological, morphological, and biogeographic
evidence that variation among tigers is clinal and can be explained by biogeography
and ecological rules. They suggest all tigers, extant or extinct, on mainland Asia
belong to one subspecies, with those on islands forming a second subspecies
(Kitchener and Dugmore 2000; Wilting et al. 2015).

The broad consensus appears to be that a smaller ancestral species evolved
from the Panthera lineage in China and Southeast Asia about two million years
ago. Thereafter, the modern tiger evolved 72,000–108,000 years ago (Luo et al.
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2004). The tiger’s distribution expanded thereafter, reaching its limits in India
and West Asia during the last glacial maximum 20,000 years ago. Biogeographers
attribute variations observed in the tiger’s range to the timing of the radiation of
tigers in relation to major climatic events in the late Pleistocene. During the cold-
dry periods (stadials), forests in which tigers could survive shrank, but the lower
sea level connected the mainland to islands and archipelagos, thereby permitting
tiger range expansion. In contrast, the expansion of forests in the warm, moist
periods (interstadials) increased the extent of tiger habitat, but as sea levels rose,
connectivity between landmasses was severed, preventing further range expansion
(Kitchener and Dugmore 2000).

Although tigers are an adaptable species, they cannot tolerate arid bio-climates
the way cheetahs, leopards, and lions can. Tigers tolerate temperatures from –500 C
in the snow-bound Russian Far East to C500 C in Western India, where they over-
lapped the lion’s former range. They are adapted to a wide range of topographies
from sea level to about 2500 m altitude and are known to transit Himalayan passes at
4000 m. As a result of their adaptability, tigers were distributed across a diversity of
forests: the freezing Taiga in the Russian Far East; mangrove swamps in the delta of
Sundarbans; montane mixed conifer forests in the Himalayas and China; reedbeds
and riverine forests in West and Central Asia, and in evergreen, semi-evergreen, and
deciduous forests as well as alluvial moist grasslands of tropical Asia. However,
shade and water are critical habitat elements wherever they occur.

Despite the tiger’s general adaptability, a key determinant of their persistence
is the presence of ungulate prey at adequate densities. Of critical importance is
the presence of preferred prey of 50–250 kg body mass, essential for females to
successfully raise young (Karanth and Sunquist 1995, Miller et al. 2014). If prey
densities are depressed by human impacts, tiger populations cannot persist even in
suitable undisturbed forests. Tiger persistence must be examined primarily through
the lens of available prey density (Karanth et al. 1999, 2004, Miquelle et al. 1999),
a factor that conservationists sometimes ignore.

2.2.3 Social Organization, Spacing, and Land Tenure

Tigers are solitary felids, with associations between adults lasting just 4–6 days
for mating, when females come into estrus (typically once in 17–21 days) or when
related animals share kills. A tigress and her cubs associate for 18–24 months (Smith
1993, Kerley et al. 2003), with the cubs being dependent on their mother through
the first year. (Plate 2.2) Thereafter, they gradually acquire survival skills to become
independent.

Female home range size is governed by prey density and hence varies from
�20 km2 in the Indian subcontinent, through �80–400 km2 in Thailand, to over
400 km2 in the Russian Far East. Male home range size is dependent on female
density and only indirectly on prey, and hence varies much more. Male ranges can
be as small as 50–300 km2 (Simcharoen et al. 2014) in tropical habitats to over
2000 km2 in temperate forests in Russia (review in Goodrich et al. 2010). Tigers
are generally territorial, i.e., they exclude conspecifics of the same sex from their
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Plate 2.2 Tiger cubs are dependent on their mother for nearly 2 years (Image Copyright©:
Michael Vickers)

home ranges. However, territories tend to overlap on average about 10% (Smith
et al. 1987; Goodrich et al. 2010). Male territories tend to completely overlap 1–4
female territories. There may be exceptions (e.g., Hernandez-Blanco et al. 2015) as
a result of human interference.

Tigers are active mostly from dusk to dawn, resting �18 h or more during the
daily cycle. When active, they may travel 5–30 km/day, to hunt, seek mates, or, in
the case of residents, to secure their home ranges against intruding conspecifics.

The keystone of tiger social organization is the resident breeding female, who
becomes reproductively active at 3.5–4 years. Breeding will usually depend on her
first acquiring a territory that she defends while raising cubs. By defending their
home ranges, which overlap territories of 1–4 adjacent females, male tigers also
defend their own offspring from infanticide by challenging males. After a gestation
of 102–108 days, a tigress gives birth to 1–5 cubs, which she carefully raises for
the next 18–20 months. The cubs are nursed and fed regurgitated meat for the first
2–3 months, before being taken to feed off kills. In the second year the juveniles
learn to hunt wild prey and acquire survival skills such as avoiding humans or
dominant conspecifics. At 18–20 months, subadults gradually disperse away from
natal ranges. Males disperse long distances (50–300 km or more), whereas females
try to carve out territories inside or close to their natal ranges (Smith 1993, Goodrich
et al. 2010).

Throughout their lives, tigers always face risks associated with intraspecific
aggression: fights over kills, territories, and for mating access as well as from
infanticide of cubs by encroaching males. Tigers often die from starvation following



2 Tiger Ecology in Relation to Monitoring Issues 21

injuries suffered during fights or while hunting large, dangerous prey. They are
particularly at risk at all times from humans, for a variety of reasons (Chap. 1).

During the post-dispersal years (1.5–5 years), tigers move extensively across
larger landscapes seeking to establish their own territories. During such “tran-
sience,” they may crisscross boundaries of resident territories, human-dominated
landscapes, or even countries (Smith 1993). Consequently, transients suffer high
mortality rates from intraspecific aggression and human persecution (Karanth
et al. 2006, Robinson et al. 2015, Duangchantrasiri et al. 2016). As a cumulative
consequence of these natural dynamics—high rates of births, deaths, emigration,
immigration, and transience—tiger populations have high turnover of individuals.
This fact is often ignored in monitoring schemes, resulting in inflated tiger numbers
and flawed estimates of demographic parameters.

2.2.4 Ecological Determinants of Tiger Population Dynamics

Tigers depend on large ungulate prey: several species of deer, wild pigs, and wild
cattle that inhabit Asian forests (Plate 2.3). Occasionally, they may kill tapirs and
calves of elephants and rhinoceros.

Tigers are solitary “stalk-and-ambush” hunters that stealthily charge at their
unwary prey from 10 to 50 m distance. If the prey animal is large, the tiger
strangulates it with a throat bite, while trying to pull it down to avoid its dangerous
hooves and horns (Plate 2.4). If the animal is smaller, it is brought down from the
impact itself and killed swiftly with a bite through its skull or neck.

The tiger stays with its kill for 3–4 days in the tropics consuming about 65%
of the kill, but in colder climates they normally stay with a kill until over 90% of
the meat is consumed, which may take over 7 days for larger prey (Miller et al.
2013). Typically, an adult tiger kills about 3200–3400 kg of live prey animals per
year, which translates to about 50–60 kills/year (Miller et al. 2013). Females raising
cubs need to acquire approximately twice as much biomass as a lone female to
successfully raise an average-sized litter of cubs over the course of a year (Miller
et al. 2013). Studies show that tigers may crop about 10% of available prey biomass
or numbers, depending on prey size. Thus, there appears to be an approximate ratio
of 500 prey animals per tiger (Karanth et al. 2004). This ratio of numbers of available
prey to tigers influences resident female home range size, overall tiger density, and,
consequently, potential “carrying capacity” of a given habitat for tigers.

2.2.5 Tiger Population Dynamic Parameters: Abundance, Survival,
Recruitment, and Movement

Most wild tiger populations now occur in small isolated clusters. Although such
tiger “source populations” occupy just 6% of the remaining habitat, they support
70% of the remaining population, highlighting their critical importance for future
recovery of the species (Walston et al. 2010).

http://dx.doi.org/10.1007/978-981-10-5436-5_1
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Plate 2.3 The tiger’s principal prey are several species of deer, wild cattle and wild pigs found
in Asian forests (Image Copyright©: Clockwise from top left: Gaur – Kalyan Varma; Wild pig –
Ramki Sreenivasan; Banteng – Jitendra Shankaraiah; Nilgai – Harsh Dhanwatey; Barasingha –
Ullas Karanth; Muntjac, Sambar, Chital, Tiger – Ramki Sreenivasan)

Population densities of tigers can vary greatly, because of ecological as well as
anthropogenic factors. Even under adequate protection, tiger densities are low (often
less than 1.0 tiger/100 km2) in the Russian Far East where prey is naturally scarce.
A density of 1–4 tigers/100 km2 is typical of tropical evergreen and mangrove
forests that support somewhat higher prey abundance. Higher densities of 8–18
tigers/100 km2) are attained in alluvial grasslands and tropical deciduous forests
that support very high prey densities of 15–70 ungulates/ km2 (Karanth et al.
2004). Thus, tiger habitats in the Russian Far East that spread over 200,000 km2

currently support �400 tigers, whereas just five tiger reserves covering 2000 km2 in
Southwestern India can support as many tigers.

Long-term studies in Nagarahole, India, show that even under strict protection,
tiger densities naturally fluctuate widely from 8 to 15 tigers/100 km2. Densities vary
depending on numbers of resident females that successfully bred in the previous
year. Because of its high productivity, over a 10-year span, this tiger population
remained stable, although �23% of its members were lost annually from mortalities
and emigration (Karanth et al. 2006).

Theoretical population models (Kenney et al. 1995, Karanth and Stith 1999)
generally use the following estimates of annual survival rates: cubs D 60%;
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Plate 2.4 Tigers kill large dangerous prey through strangulation, trying to avoid their dangerous
horns and hooves (Image Copyright©: Valmik Thapar)

juveniles D 90%; female transients D 70%; male transients D 65%; breeding
females D 90%; and breeding males D 80%. These rates will be much lower in
sub-optimal habitats. Actual estimates of survival rates combined for tigers over
1 year age, estimated from photographic capture-recapture studies, were 77% in
India (Karanth et al. 2006) and 82% in Thailand (Duangchantrasiri et al. 2016). In
Russia, annual survival of adult females estimated from radio-telemerty data (85%)
was greater than that of adult males (62%) and subadults (55%) (Goodrich et al.
2008, Robinson et al. 2015). The data set included periods of high poaching.

It should be noted that these high natural mortality rates are not necessarily
a cause for alarm because they are offset by high reproductive potential and
recruitment rates. With sufficient prey, a tigress can have 12–15 cubs in her
lifetime, producing large “surpluses” of tigers to more than make up for the
heavy losses. However, when direct tiger poaching is intense and impacts the
resident female segment of the population, it can drive local extinctions (Johnson
et al. 2016, O’Kelly et al. 2012, Gopal et al. 2010, Sankar et al. 2010). Potential
growth rates of a tiger population will be largely determined by which seg-
ment of the population is suffering high mortality rates. High mortality rates
of subadults will have a much lower impact on growth rates than when adult
reproductive females are suffering high mortality rates. Theoretical models suggest
that when adult female mortality rates exceed 15%, population growth may stall
(Chapron et al. 2008). Therefore, protection of the core breeding population is the
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key to recovery of tiger populations. Monitoring the fate of these breeders can assess
potential trajectory of a population.

2.3 Challenges to Reliable Monitoring: Tiger Ecology
and Environmental Factors

2.3.1 Tiger Ecology in Relation to Monitoring

Most aspects of tiger ecology pose serious challenges to monitoring populations.
Tigers avoid human contact. Their secretive nature, preference for dense cover, and
largely nocturnal movements render them difficult to observe in field surveys. Even
tiger signs such as tracks and scats are dispersed across wide areas and degrade
rapidly making them difficult to find.

Normal daily ranging patterns of tigers also pose challenges. Even resident
breeders can move over 10–15 km per day, covering wide areas in a week or less.
The problem is worse with transients that may traverse tens or even hundreds of
kilometers in a few days. Tigers deposit signs as they move back and forth across
boundaries of census blocks or reserves that monitoring teams are typically expected
to cover. Furthermore, tigers are widely distributed, with potentially suitable forests
extending over 1.2 million km2 across Asia (Walston et al. 2010).

Perhaps the most difficult challenge to tiger monitoring is that, being large-
bodied carnivores, tigers live at naturally low densities. Even in the best habitats,
densities are as low as 10–20 tigers/100 km2. Across 90% of tiger range, tiger
densities are just 0.5–1.0 tigers/100 km2 (Karanth and Nichols 1998, 2000). Tiger
population surveys are like searching for the proverbial needle in a haystack!

The combination of all the above factors—low densities, secretiveness, wide-
ranging behavior, high rates of population turnover, extensive distribution, and the
low probabilities of detecting tiger signs—poses serious methodological problems
for monitoring. Collection of necessary quantitative data becomes problematic.
These problems are compounded by additional managerial constraints imposed by
the environments in which tigers live.

On the other hand, the fact that tigers have complex stripe patterns that make
each individual uniquely identifiable and that they commonly use the same trails as
travel routes present substantial advantages to sampling their populations in the face
of all the challenges (Chaps. 9 and 10).

2.3.2 Environmental Variables that Govern Tiger Monitoring

In practical terms, tiger habitats in Asia fall under two major categories: the
temperate zone areas in the Russian Far East and China, and the tropical forests in
South and Southeast Asia. In the Russian Far East, extremely low tiger densities and
the huge geographic scale at which tigers are monitored clearly set the monitoring
challenges apart from the monitoring problems in most of tropical Asia However,

http://dx.doi.org/10.1007/978-981-10-5436-5_9
http://dx.doi.org/10.1007/978-981-10-5436-5_10
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similar challenges are faced in the vast, extremely rugged forested mountains of
Sumatra and in Myanmar.

On the positive side, in the Russian Far East and adjacent tiger habitats in China,
fresh snowfall provides an ideal substrate that retains tiger tracks. Similarly, muddy
intertidal zones in the mangrove forests of Sundarbans of India and Bangladesh can
retain track prints for several hours between tides. Although light rain can improve
conditions for finding tiger signs during surveys, heavy rainfall can wash signs away.

In contrast, almost everywhere tiger tracks are seen along trails or streambeds
only if suitable substrate occurs naturally or is created by vehicular movement.
Although tigers prefer natural trails as travel routes (Karanth and Suquist 1995,
2000), if such trails are not readily identifiable, even counting signs becomes a real
challenge.

2.3.3 Issues of Access for Survey Personnel

Because tigers are so wide-ranging and occur at such low densities, surveys must
necessarily cover extensive areas to detect their travel routes. In this context, access
to the entire area to be sampled is a critical challenge. Poor access may require
greater investment of money, human power and time, to attain sampling intensities
essential for reliable monitoring, yet even when resources are available to cover such
areas, access may be so difficult as to make sampling in a short enough time frame,
to avoid violating the assumption of population closure, extremely difficult.

Inadequate access can result from difficult topography (high altitude, cliffs,
rivers) or seasonal factors (extreme heat or cold, deep snow, incessant rain, insect
infestations, forest fires, dense vegetation, etc.) and is usually a combination of these
factors. Lack of roads or trails to quickly reach remote areas on vehicles, boats,
or draft animals can also be impediments at times. Although not common, high
probabilities of encounters with dangerous animals such as elephants, rhinoceros,
or even individual tigers with a tendency to prey on humans could be factors that
limit access.

In many countries specific social factors such as barriers in the form of political
or administrative boundaries or the presence of violent insurgencies or criminals
may hinder access to survey areas.

2.4 Basic Steps Toward Establishing Reliable Tiger Monitoring
Programs

Although monitoring challenges described are often recognized, there is another
challenge that is not always explicitly recognized. Because of the almost totemic
conservation significance of tigers, massive attention and resources have already
been expended for monitoring efforts across tiger range over several decades.
However, many of these monitoring schemes are based on ad hoc methodologies
developed without adequate attention to critical assumptions, details of design, or
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statistical rigor. They consequently suffer from serious statistical flaws and practical
deficiencies (Karanth et al. 2003; Gopalaswamy et al. 2015; Harihar et al. 2017) that
hinder proper estimation of critical population parameters (Chap. 1).

However, we would like to emphasize here that progress toward modifying
flawed monitoring approaches has been slow and reluctant. This hesitancy has
several causes: misguided loyalty to “management traditions;” lack of familiarity or
comfort-level with technically superior alternatives; lack of adequate understanding
of tiger ecology and of basic statistical issues.

A fundamental antidote to such mindsets is to develop a deeper appreciation
of the universal approach of all modern science: reliance on constant refinement
through critical reviews. Such an appreciation rests on the foundation of “peer
review and publication” of the monitoring methods in scientific literature. Continu-
ous criticism and suggestions for improvement are at the heart of this process. This
process should not be viewed as an attack on authority or persons responsible for
tiger monitoring, but as a continuous attempt to improve the reliability and accuracy
of survey methods.

We submit that many of the current controversies about tiger numbers, their rates
of increase or decrease, and future prospects of wild tigers, result from impractical
monitoring goals and subsequent application of weak methodologies to attain them.
This we believe is a consequence of the widespread lack of appreciation of the
scientific process of constant review and refinement, among tiger conservationists
and wildlife managers.

In the following section, we examine the key features of a sound approach for
establishing reliable, science-based tiger monitoring programs across the range of
the species.

2.4.1 Adopting a Unified, Sampling-Based Approach to Tiger
Monitoring

We do not want to “reinvent the wheel” by trying to review all established scientific
methods for animal population estimation in general: there are several excellent
manuals that address this need. These works cover conceptual issues (Thompson et
al. 1998; Buckland et al. 1993, 2004; Williams et al. 2002; MacKenzie et al. 2006;
Royle and Dorazio 2008; Link and Barker 2010; Royle et al. 2014; Kéry and Royle
2016), as well as more focused works directed at monitoring of rare, elusive species
(Thompson 2004; Long et al. 2008; Boitani and Powell 2012). Some publications
even cover specific field techniques we advocate here, such as camera-trap surveys
(O’Connell et al. 2011).

We expect users of this book to be aware of such standard literature on animal
population estimation. However, for the sake of completeness, brief reviews of key
sampling-based population estimation methods are provided in Chaps. 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, and 13. It is important to note that these seemingly disparate
approaches are, in fact, conceptually unified elegantly as shown in Chap. 3.

http://dx.doi.org/10.1007/978-981-10-5436-5_1
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Specifically, the methods we recommend in this manual will consider the manner
in which monitoring approaches deal with the core problems of spatial sampling
and observability or imperfect detection. Spatial sampling concerns the frequent
inability to use animal survey methods over an entire area of interest. In such cases,
we need to survey some subset of the entire area of interest and then use these results
to draw inference about the entire area. Observability concerns the typical inability
to detect and count all animals present in an area that is selected for survey.

Regardless of the particular survey method, comparisons of resulting count statis-
tics over time or space require consideration of the associated detection probabilities
(probability that an animal appears in the count statistic). Some approaches to
animal monitoring permit direct estimation of these detection probabilities (these
methods tend to be those with the greatest requirements for effort and resources),
whereas others rely on strong assumptions about the absence of variation in these
probabilities over time and/or space.

Focus on the key features of animal monitoring below will be useful for
monitoring tigers and their prey.

2.4.2 Importance of Defining and Setting Clear, Practical
Monitoring Objectives

The very first step in monitoring any tiger or prey population is to define the
objectives of the exercise. These specific objectives are linked to one or more of
the following specific goals.

1. Mapping the distribution of tigers and principal prey species on a regional or
countrywide basis.

Tigers and their principal prey are landscape animals: as habitats become
degraded and fragmented, their local populations may get extirpated. The distri-
butional range of tigers may contract and shrink. On the other hand, if conservation
measures are successful, habitat fragments may get reconnected, enlarging pop-
ulations. Dispersal into newly improved habitats can establish new populations.
Tracking changes in distributions of tigers and prey at large spatial scales once every
5 years or so is thus a useful objective. Methods to attain this objective are covered
in Chaps. 4 and 5.

2. Estimating population trajectory or “trend” using quantitative indices of relative
abundances of tigers and prey species (e.g. number of tiger track sets seen per
100 km walked by surveyor, number of sambar pellets found in a 100 m2 plot),
in selected reserves.

At the level of specific individual reserves, managers, researchers, or conserva-
tionists lacking adequate resources may only be capable of monitoring population
trends of tigers and prey. Although desirable, it may not always be possible to

http://dx.doi.org/10.1007/978-981-10-5436-5_4
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28 K.U. Karanth et al.

obtain estimates of population size or densities of tigers at a desired precision. In
such cases sometimes management needs may be met by some reasonably reliable
metric of population size. Such metrics or “indices” may allow comparison of
population densities at the same site across the years at relatively low cost. The
issues concerning the use of indices are covered in Chap. 3. We note that various
methods covered in Chaps. 4, 5, 6, 7, 8, 9, and 10, because they address the issue of
detection probability squarely, can be helpful for generating better indices also.

3. Estimating potential ‘carrying capacity’ for tigers in an area based on estimates
of absolute densities of principal prey species.

With trained personnel and simple equipment such as compasses and range
finders, it is often possible to estimate densities and abundances of principal prey
species of tigers with reasonable accuracy. Thereafter, using the approximate 1
tiger to 500 prey ratio, it is possible to estimate (at least roughly) how many tigers
could potentially live in the surveyed area. Methods to assess this potential carrying
capacity are explained in Chaps. 6 and 7.

4. Estimating densities, numbers, rates of annual survival, recruitment and move-
ment rates in tiger populations.

At priority tiger conservation sites, where the primary goal is to understand
tiger ecology at a fine-grained level, parameters such as tiger population size,
absolute density, rates of survival, mortality, immigration, and dispersal may have
to be measured. In this case, there is no escape from deploying the most advanced
equipment, statistical techniques and skilled personnel. Such fine-grained data
cannot be obtained by simpler techniques used to attain objectives 2.4.2 (1, 2 and 3).
However, estimating carrying capacity may permit you to make reasonable guesses
at results expected when rigorous methods for estimating tiger numbers covered in
Chaps. 9 and 10 can be employed.

2.4.3 Assessing Resources Available for Monitoring

Which of the monitoring objectives outlined above can actually be achieved depends
on ecological and environmental factors outlined in section 3.0. It also depends on
the time available, material resources, manpower, and technical skills at the disposal
of the wildlife manager or tiger conservationist. Therefore, assessing the resources
available is the second important step of tiger monitoring.
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Usually monitoring of tigers and prey is carried out by either government
agencies, such as forestry or wildlife personnel, or by wildlife researchers. Survey
personnel may vary greatly in terms of their technical skills and field abilities. Their
numbers may range from a handful of highly trained naturalists to dozens, or even
hundreds, of field personnel without great scientific skills.

The types of skills required for carrying out field surveys of tigers and prey
also vary. Field skills, such as the ability to observe carefully, recognize and record
animals or their signs accurately, and do hard field work, are all of prime importance.
Persons with such field skills may be wildlife biologists, wildlife staff or local
hunters, and naturalists.

Very different skills are necessary for designing the field surveys and, subse-
quently, for analyzing the resulting data. We will call these analytical skills. These
skills include knowledge of population sampling methods and field conditions and
an ability to organize field survey data collection as well as interpreting their results
correctly. It is critically important for a wildlife manager or conservationist to assess
the kinds of skills that are available (or not available) in a particular monitoring
situation.

Similarly, the material resources available for tiger monitoring vary. In most
cases, particularly where wildlife or forestry departments carry out the tiger
monitoring, only basic tools exist, such as rudimentary maps of the area being
surveyed, polythene bags, identification tags, etc. Sometimes, additional “special
tools” such as compasses, range finders, and global positioning systems (GPS)
may be available. Increasingly, even “advanced” tools such as camera traps and
computers may be on hand.

2.4.4 Matching Resources to Objectives

A successful tiger monitoring program depends on the manager being able to come
up with a realistic, robust survey scheme that defines achievable objectives after
carefully considering available manpower, technical skills, and material resources.
Setting up grand goals based on wishful thinking is not useful, but is not uncommon
in many monitoring schemes we have seen. Tiger monitoring goals must be realistic
in a specific context: if not, the failure of the monitoring program is almost
guaranteed.

For a wildlife manager or a biologist, the following guidelines may be helpful to
assess monitoring methods that can be employed reliably in a given situation.

1. Recognize that it is simply impossible to achieve some of the objectives when
dealing with large regions, states, or countries. Therefore, if you have access
to only basic tools and untrained field personnel, you can only do surveys of
presence of tigers and prey species (2.4.2(1)), applying concepts and methods
described in Chaps. 4 and 5. Most likely this is the situation that wildlife
managers will encounter over much of the tiger’s range in Asia.

http://dx.doi.org/10.1007/978-981-10-5436-5_4
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2. If there are well-trained wildlife biologists or survey personnel, you can try
to get relative density estimates of tigers from track or scat-based indices
and relative density estimates of prey species using dung counts (objective
2.4.2(2)). It is likely that you can do such index-based surveys only in indi-
vidual reserves or study areas for making comparisons across the years. Some
concepts and methods used for attaining these objectives are described in
Chaps. 3 and 8.

3. If you have access to special tools, enough trained personnel, and skilled
biologists, then, in addition to objectives 2.4.2(1 and 2), you can estimate
absolute densities of prey species (Objective 2.4.2(3)), using the concepts and
methods detailed in Chaps. 6 and 7. Such surveys are likely to be feasible only
in individual reserves or study areas, but not across wider landscapes.

4. If you have access to all the above resources, plus adequate number of camera
traps and persons with technical skills to deploy them properly, photographic
capture-recapture sample surveys of tigers using methods described in Chaps.
9, 10, and 11 can estimate absolute densities and abundances of tigers. This
type of survey may be feasible only in a few sites. If repeated across years,
under rigorous open-population model scenarios, the same surveys can also
additionally yield reliable estimates of population change (rates of growth) and
other demographic parameters such as rates of survival and recruitment (Chaps.
9 and 10). When deployment of camera traps is not feasible and reliable facilities
are available for analyses of fecal DNA extracted from tiger scat samples,
methods elaborated in Chap. 11 can be helpful.

Further studies of tiger movements and connectivity among populations across
large spatial scales (Chap. 12) and of meta-population structure and dynamics
(Chap. 13) are possible over the longer term by assessment of these data collected
at various spatial scales.

However, it is likely that over much of tiger range, the sample sizes attained from
field counts of tiger tracks, camera trap photos, or prey dung counts are likely to be
too small for deriving density estimates or even reliable metrics of relative numbers.
Therefore, managers may have to be realistically content with objective 2.4.2(1)
(mapping the presence of tigers and principal prey) diligently over the years. There
is absolutely nothing wrong with this goal: monitoring of tiger distribution is a
critically important first step in implementing any landscape level conservation
program. Therefore, survey efforts can be initiated with objective 2.4.2(1) and over
the years gradually build necessary capacity and resources to try to reach objectives
2.4.2(3 and 4).

We emphasize that if one really wants to estimate tiger population and meta-
population parameters, such as abundance, densities, survival, recruitment, move-
ment, and connectivity listed under objective 2.4.2(4), there is no escape from
employing the advanced methods described in Chaps. 9, 10, 11, 12, and 13.
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However, we note that all sorts of ad hoc methods are sometimes used in
conjunction with deployment of camera traps or fecal DNA kits without clarity
as to how such data should be collected and analyzed. These advanced methods
are relevant for monitoring tigers over a very small fraction of the animal’s vast
range and work only if they are correctly used. On the other hand, the three
other critical needs of monitoring, mapping spatial distributions over large regions
(2.4.2(1)), tracking tiger population trends in specific reserves (2.4.2(2)), and
establishing carrying capacities for tigers in reserves (2.4.2(3)) are attainable goals
using relatively simple tools and methods.

2.5 Conclusion

Considering the different possible monitoring objectives, the variety of field sit-
uations encountered, and the differences in available manpower, equipment, and
resources, it is clear that an array of different monitoring methods—rather than
any single approach—is needed. While attempts to successfully deploy these tiger
monitoring methods under different ecological, social, and technological contexts
are sometimes made, it is not often recognized that they should also nest within a
sound scientific framework (Karanth et al. 2003, Karanth 2011).

The four monitoring goals identified above are distinct and often pursued by
different sets of managers, researchers, or conservationists. However, they are
mutually contributory. It is unwise for these practitioners to pursue their objectives
in isolation from each other or from the scientific or management programs to which
they contribute (Karanth 2011).

The underpinning for all tiger population monitoring must be provided by sound
science. While methods applied must match the resources and skills available,
lack of resources or training should not become an excuse to practice substandard
science. In other words, having worthless or misleading data is worse than an honest
acknowledgment of data deficiency.

It is clear that the methods employed to meet data collection needs at different
levels of refinement are likely to be quite different in terms of the sampling
design, effort, equipment used, and the kinds of personnel skills required for the
survey. However, regardless of the variables involved in a particular situation, the
monitoring methods need to be statistically robust. This means they should have a
reasonable theoretical basis, a history of empirical validation, and a record of being
refined through the universally accepted process of scientific peer review.

Tiger biologists, managers, and conservationists cannot claim exemption from
these criteria, if they are to retain credibility. Therefore, the editors of this manual
have deliberately chosen to present only those approaches to monitoring that are
adequately justified in the peer-reviewed scientific literature. A conceptually unified,
rigorous array of valid methods for monitoring tigers in an adaptive management
framework is provided in Chaps. 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14 that
follow.
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3Animal Population Monitoring: A Unified
Conceptual Framework

James D. Nichols, K. Ullas Karanth, Arjun M. Gopalaswamy,
and Mohan Delampady

3.1 Introduction

As emphasized in the previous two chapters, monitoring of tiger and prey popula-
tions must necessarily rest on a solid foundation of established statistical theory and
associated methodological practice. In this chapter, we describe a unified framework
for monitoring populations of tigers as well as their prey species. For generality and
convenience, we refer to the species populations that are targeted for monitoring as
“animal populations.” A graphic visualization that introduces this topic is available
in the online support material and in the companion video guide Monitoring Tigers
& Their Prey: The Right Way (Trust for Environmental Education 2008).
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“Monitoring” of animal populations can be defined as the estimation of some
state variable (e.g., absolute or relative abundance, occupancy) or vital rate (e.g.,
survival or reproductive rate) relevant to populations, for the purpose of drawing
inferences about variation in this quantity over space and/or time. For example, we
might focus on a single time period and ask whether animal abundance varies among
different locations at that time in order to assess the distribution patterns of animals
or to address questions about the relationship between animal abundance and such
factors as habitat or management actions. We might also focus on a single location
and ask whether animal abundance varies over time. Rates of temporal change are
sometimes referred to as “trends,” and some workers view monitoring as restricted
to such assessments of temporal change. We make no such restriction.

As noted in Chap. 1, development of an animal monitoring program requires
answers to three basic questions (Yoccoz et al. 2001, Nichols and Williams 2006):
why, what, and how? For scientific endeavors, the basic answer to the “why”
question is to provide estimates of key quantities to be compared with model-based
predictions for use in discriminating among the competing hypotheses represented
by the models. In the case of tigers and their prey, scientific hypotheses could involve
questions about distribution of tigers as a function of prey (e.g., Karanth et al. 2004)
and distribution of both tigers and prey with respect to habitat (Karanth et al. 2011)
and human density (Karanth et al. 2009), for example.

When monitoring is to be a component of a conservation program, it provides
estimates for use in making state-dependent decisions, assessing progress toward
conservation objectives, discriminating among competing hypotheses about effects
of conservation actions, and populating models used to predict effects of conserva-
tion. For example, decisions in tiger conservation will depend on current estimates
of tiger densities, as well as on inferences about the effects of different management
actions on tiger population dynamics. We cannot overemphasize the importance of
having a clear objective (answer to the “why” question) in mind when developing
a monitoring program. Indeed, the answers to the other two fundamental questions
about monitoring, “what” and “how,” are basically inherited from the answer to
“why.”

The answer to the question of what to monitor is thus determined by the objec-
tive(s) of the monitoring effort. When monitoring is used to inform conservation,
then it is typically focused on the state variable of primary conservation interest
(e.g., tiger abundance or occupancy), state variables relevant to those of primary
interest (e.g., abundance of important prey species), and perhaps vital rates useful
in models that project dynamics of state variables and predict management effects.

Answers to the why and what questions then provide guidance about how
we monitor. Methods used to estimate state variables and vital rates of animal
populations fill many books (e.g., Seber 1982, Borchers et al. 2002, Williams et al.
2002). However, in this volume we focus on specific methods that are potentially
useful to tiger conservation. Although these methods are seemingly diverse, we
note that a single conceptual framework underlies virtually all inference methods
for state variables and vital rates of animal populations. Our framework clarifies
the relationship among these seemingly disparate methods and provides a basis

http://dx.doi.org/10.1007/978-981-10-5436-5_1
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for considering and developing modifications and new methods. In particular, this
framework clarifies the (often misunderstood) relationship between indices and
abundance estimates. It should thus facilitate informed decisions about which of
these approaches should be most appropriate and useful for different situations.

3.2 Statistical Framework

3.2.1 Basic Issues in Counting Animals

Virtually all inferences about animal populations are based on count statistics. In
many cases, count statistics are provided by direct counts of animals themselves.
For example, we might count the number of chital deer observed while walking on
a line transect or the number of tigers identified (caught) by camera trapping. In
other situations, count statistics are based on animal sign such as ungulate tracks or
dung, or pugmarks (footprints) or scats of tigers.

Two basic problems confront biologists and managers who would like to use
such count statistics to estimate and draw inferences about animal populations:
observability or detectability and spatial sampling (see Nichols 1992; Thompson
2002; Lancia et al. 1994, 2005; Skalski 1994; Nichols and Conroy 1996; Williams
et al. 2002). With respect to direct counts of animals, observability refers to the usual
inability to detect and enumerate all animals, regardless of the sampling or survey
method being used. With respect to indirect evidence of animal presence such as
tracks, pugmarks, scat, and dung, observability refers to the fact that sign may go
undetected as well, such that sites occupied by animals may not be identified. Even
when sign is detected, sign counts will seldom equal the true number of animals.
Spatial sampling refers to the fact that we are frequently interested in areas so large
that we are unable to obtain count statistics over the entire area. Instead, we must
select locations thought to be representative of the entire area and then try to use
counts on these sampled areas to draw inferences about the number of animals in
the entire area.

3.2.2 Observability/Detectability

We can state more precisely what we mean by observability and detectability by
first defining the following quantities for a sample area (or for the entire area, if we
assume there is no need to subsample areas). Here we assume that the quantity or
state variable of interest is animal abundance, N:

C D count statistic or number of animals (or indirect sign) counted
N D abundance or true number of animals
p D proportionality constant relating the count statistic and abundance
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In the case of direct counts of animals, p reflects the probability that an animal in
the sampled area is counted. This can be restated as the probability that a member of
N appears in the count statistic; p can also be viewed as the expected proportion of
animals appearing in the count statistic. The count, C, is known to the investigator
and is a result of his or her sampling efforts, whereas the other two quantities, N
and p, are not known and must be estimated. The following expression shows the
relationship between the count statistic and abundance:

E.C/ D Np (3.1)

where E(C) denotes the expected value (or expectation) of C. C is a random variable
and can assume different values each time a count is made. E(C) can be viewed as
the average value of C that would be obtained if the count statistic could be collected
a large number of times under the same exact sampling conditions with the same N.
In cases where C represents some count of animal sign (or of something other than
the animals themselves), Eq. 3.1 still provides a reasonable model. However, in this
case, p should not be thought of as a detection probability but simply as a coefficient
relating N and C.

One consequence of Eq. 3.1 is that it is not possible to draw strong inferences
about N based only on our counts, C. Lower counts in one place than another may
result from lower abundance or simply lower detection probability (see Chap. 7).
Thus, we must know something about detection probability, p, in order to draw
inferences about abundance. If we are able to estimate the p associated with a
particular count statistic (denote this estimate as bp where the “hat” denotes an
estimate), then abundance can be estimated as

bN D
C

bp
(3.2)

The estimator in Eq. 3.2 is very general, as virtually all population estimation
methods (Seber 1982; Lancia et al. 1994, 2005; Borchers et al. 2002, Williams
et al. 2002) for a single location can be written in this basic form. For example,
the count statistic under distance sampling (Buckland et al. 1993, 2001) is the
number of animals observed and counted (e.g., along a line transect), and the
perpendicular distances of these observations to the transect line are used to estimate
the detectability function and, hence, p. The count statistic under classical capture-
recapture sampling (Otis et al. 1978; Seber 1982; White et al. 1982; Pollock et al.
1990, Williams et al. 2002) is the number of different animals caught, and the
patterns of capture and recapture for individual animals are modeled in order to
estimate p. The number of different animals captured is also the count statistic
for spatially explicit capture-recapture models (e.g., Royle et al. 2014), although in
this case the extra information provided by the location of each individual capture
provides information that is used to estimate capture probability.

As a numerical example to help illustrate the rationale and intuition underlying
Eq. 3.2, assume that we count 20 deer in an area and estimate a corresponding
detection probability of bp D 0:25; that is, we estimate that we detected about

http://dx.doi.org/10.1007/978-981-10-5436-5_7


3 Animal Population Monitoring: A Unified Conceptual Framework 39

25% of the animals when we conducted our counts. Our abundance estimate is
then obtained as bN D 20=0:25 D 80: This estimate is intuitively reasonable
in that we estimate that we detect approximately one of every four deer, so our
estimated abundance is four times the number of animals counted. Perhaps the most
important consideration resulting from Eqs. 3.1 and 3.2 is that the count statistic
itself does not permit unambiguous inference about abundance (see subsequent
section, Counts as Indices). Instead, such inference requires information about the
detection probability associated with the count statistic.

The quantity of primary biological interest in Eqs. 3.1 and 3.2 is abundance,
N, total number of animals present in the surveyed area. However, these equations
are also fundamental to drawing inferences about other quantities of interest. For
example, in Chap. 4 we focus on a different state variable, occupancy, used in the
assessment of spatial distribution patterns of animals. As explained in Chap. 4,
the count statistic for inference about occupancy is the number of surveyed sites
at which a focal species is detected. Chapter 8 focuses on dynamics of animal
populations and on the vital rates responsible for those dynamics. Survival rate is
a key vital rate usually obtained by asking how many of a set of marked animals
detected at one sampling occasion, t, are still alive and in the population at the
next sampling occasion, t C 1. The relevant count statistic is the number of marked
animals detected at occasion t C 1. In both cases, occupancy and survival rate,
Eq. 3.2 provides the conceptual basis for translating count statistics into estimates.

3.2.3 Spatial Sampling

Often, we cannot survey an entire area of interest, so we must select sample locations
that are representative of the entire area. One way to obtain a representative sample
is to select locations using simple random sampling (Thompson 2002, Williams
et al. 2002). These sample locations will represent some fraction, ˛, of the total
area of interest. Unlike the situation where the fraction of animals present in a
sampled area that is counted (p) must be estimated, the spatial sampling fraction
(˛) is often known (but see below) and requires no estimation. Define N0 to be the
true abundance of animals in sampled areas representing fraction ˛ of the total area
of interest. Then if this abundance on sample sites can be estimated, abundance for
the entire area of interest can be estimated as

bN D
bN0

˛
(3.3)

i.e., we simply divide the estimated abundance for the sampled locations by the
fraction of the entire area represented by those locations.

As a numerical example, assume that we have randomly, or at least represen-
tatively, sampled several locations representing 10% of the entire area of interest
(˛ D 0.10) and that we have obtained an estimate of 80 deer on these locations
(bN0 D 80). Then the population estimate for the entire area is computed as bND 80 /
0.10 D 800 deer.

http://dx.doi.org/10.1007/978-981-10-5436-5_4
http://dx.doi.org/10.1007/978-981-10-5436-5_4
http://dx.doi.org/10.1007/978-981-10-5436-5_8
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Equation 3.3 is based on the simple case in which the fraction of the total area that
is surveyed is known. However, this simple case does not apply to all animal survey
methods. For example, in standard capture-recapture sampling, the area over which
we deploy our traps is typically known with certainty. But this does not mean that we
know the area to which the resulting capture-recapture abundance estimate applies.
Animals with home ranges that lie largely outside the sampled area, but that overlap
it, may be caught, such that the abundance estimate actually pertains to a larger area
than that covered by traps. Spatially explicit capture-recapture models deal with this
issue explicitly, but the point is that ˛ is not always known and sometimes must be
estimated.

3.2.4 Canonical Estimator

If we seek to estimate abundance for some large area, based on survey counts
from representative sample locations within this area, we must deal with both
observability/detectability and spatial sampling. We cannot survey all locations
within the area of interest, and we cannot detect all animals even at the locations
that we do survey. Thus, we must combine Eqs. 3.2 and 3.3 into a general estimator
that deals with both issues. We can readily accomplish this in a general manner that
deals with variation from one sample location to the next in either true abundance
or detection probability or both (see Skalski 1994, Thompson 2002, Williams et al.
2002). However, for ease of understanding, we present the canonical estimator
for the simpler case in which expected abundances and detection probabilities are
identical across all sample locations.

Define C0 as the summed counts over all sampled locations that comprise area ˛.
If detection probability is similar for the different sample locations, then combining
3.2 and 3.3 yields the following canonical estimator for abundance of the entire area:

bN D
C0

bp˛
(3.4)

We thus estimate population size for the entire area of interest by dividing the
count statistic for the sampled locations by both the estimated fraction of the animals
on the sampled area(s) that was detected (bp) and the proportion of the total area from
which the count statistic was taken (˛). The two terms in the denominator reflect the
two sources of incompleteness of the counts, as the counts include neither the entire
area of interest nor all animals present at the sampled locations.

In order to illustrate the canonical estimator, assume that we count 20 deer
(C0 D 20) at sample locations representing 10% of the total area of interest,
so ˛ D 0.10. Further assume a detection probability for these counts of 0.25
.bp D 0:25/. Then we estimate abundance for the entire area as

bN D
C0

˛bp
D

20

.0:10/.0:25/
D 800 deer
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We would thus view 800 deer as our best estimate of the number of deer in
the area of interest. But this estimate is characterized by uncertainty, as we did
not obtain counts over the entire area, and the counts on sample locations were

incomplete. The uncertainty is characterized by a variance, var
�

bN
�

, which will

be influenced by the details of the spatial sampling design; the degree of variation
among counts at sampled locations; the proportion of total area sampled, ˛; the
magnitude of detection probability; and the manner in which it was estimated.
Nevertheless, we can make some general statements about the factors that influence
the magnitude of the abundance estimator’s variance.

The variance of the counts across sample locations, var(C0), is smaller when
counts are similar across locations and larger when animals are clumped, with
large counts at some locations and small counts at others. A variance will also
be associated with the estimate of detection probability, var .bp/, and will depend
on the method used to estimate detection and the associated sample size. Smaller

variances of abundance, var
�

bN
�

, are desirable and result from smaller values of

var(C0) and var .bp/ and larger values of p and ˛. In the case of methods in which
sign counts are used to estimate abundance, then an additional variance component
will be needed to deal with the relationship between number of sign and number of
individual animals.

The above discussion of area surveyed is very simplistic. The ability to draw
inferences about locations not surveyed based on data collected at a set of surveyed
locations is usually dependent on probabilistic sampling. Under probabilistic sam-
pling designs, each potential location in an area is sampled with some probability
that is known a priori. A variety of such designs is possible (simple random,
stratified random, adaptive random, dual frame, etc.), and Thompson (2002) is
an excellent source of information on them (also see Cochran 1977, Skalski
1994, Williams et al. 2002). The basic discussion above, and indeed much of the
discussion of spatial sampling throughout the book, is based on simple random
sampling but is relevant to other probabilistic designs (stratified random, adaptive
random, etc.) as well.

3.2.5 Indices

The canonical estimator thus provides the generic answer to the question “how
should we monitor.” Unfortunately, this advice is often not followed in tiger moni-
toring efforts. Frequently, detection probability issues are ignored, and inferences
about state variables and vital rates are based directly on the raw count data
themselves. The counts are referred to as indices and typically viewed as reflecting
a constant proportion of the true state variable. Because the proportionality constant
is not known or estimated, index proponents do not typically have good estimates
of state variables or vital rates. Instead they claim that indices can be used to draw
inferences about relative changes or differences in state variables (Johnson 2008),
so here we examine the basis for this claim.
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In Chaps. 6 and 7, we discuss the use of distance sampling methods for estimating
abundance of ungulates based on counts of animals obtained while the investigator
walks along a line transect. Information about the distance of each detected animal
from the transect line is used to estimate detection probability, assumed to be a
decreasing function of distance between observer and animal. Index proponents
would not advocate expending the effort to obtain these distance data, but rather
would assume that about the same proportion of animals was being seen in each
year or at each sampled location. If this assumption is true, then we can estimate the
rate of population change between 2 years using the ratio of the counts themselves.

Consider the quantities used in Eq. 3.1; except now add a subscript denoting time
or location and a new parameter reflecting the ratio of abundances at two times or
locations:

Ci D count statistic or number of animals (or indirect sign) counted at time/place i
Ni D abundance or true number of animals, at time/place i
pi D proportionality constant relating the count statistic and abundance at

time/place i
�ij D Ni/NjD ratio of abundances at two times or places, i and j

So if i and j are successive years, then �ij is a population trend or rate of change.
If i and j are different locations, then �ij is often referred to as relative abundance.
Index proponents typically estimate �ij as the ratio of the counts themselves. We
can explore the possibility of bias in this estimator by writing out its approximate
expected value:

E

�

Ci

Cj

�

�
E .Ci/

E
�

Cj
� D

Nipi

Njpj
D �ij

�

pi

pj

�

(3.5)

So when pi D pj, then pi/pj D 1, and the ratio of counts provides an approximately
unbiased estimator for �ij, where bias is defined as the difference between the

expected value of an estimator,b� , and the true quantity being estimated, � (i.e., bias
Db��� ). But when pi ¤ pj, the index-based estimator of Eq. 3.5 will be biased, with
the direction and magnitude of bias dictated by the difference between the detection
probabilities of the two times or locations being compared.

As an example, assume that we are twice as likely to see an ungulate such as
sambar deer in drier open forest habitat (location i) than in more humid forest with
dense understory (location j), say pi D 0.6 and pj D 0.3. If we count 50 sambar
along transects in each of the two habitats, then our index-based estimate of relative
abundance is 1, indicating similar abundances in the two habitats. However, if we
estimate the detection probabilities well and apply the estimator of 3.2, we obtain
estimated abundances of about 83 in habitat i and 167 in habitat j, yielding an
estimate of relative abundance of 0.5. So in this case, the index-based approach
led to substantial bias in our estimate of relative abundance.

http://dx.doi.org/10.1007/978-981-10-5436-5_6
http://dx.doi.org/10.1007/978-981-10-5436-5_7
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Note that the above discussion and example focused on detection probability
and omitted the ˛ parameter indicating proportional area surveyed. Usually index
proponents recognize the need to compare areas of similar size, in which case the
˛ terms drop out and leave us with the above expression (3.5). But if abundance
comparisons are based on areas of different sizes, then of course this influences
estimates as well. Finally, we note that we based the above discussion on the state
variable of abundance, but the very same arguments apply to estimates of other
state variables such as density or occupancy, and to vital rates (e.g., survival and
reproduction) as well. Detection probability should be a pervasive concern in the
estimation of animal population parameters and deserves our serious attention.

3.3 Discussion

The establishment of monitoring programs for tiger and associated prey populations
has become a popular endeavor of conservation biologists and wildlife managers
across the species’ range over the last three decades. In a general sense, this is
certainly a good thing, as any information about endangered species is potentially
useful in recovery and conservation. However, in times of limited availability of
funds and human effort for conservation, we believe that efficient use of these
resources is important. In particular, we are concerned that many current tiger
monitoring programs are established without adequate thought devoted to exactly
how resulting data are to be used for either scientific or conservation endeavors
(Karanth et al. 2003, Gopalaswamy et al. 2015). Hence, we began this chapter with
the recommendation that developers of monitoring programs consider three basic
questions: why, what, and how?

Addressing the question “why monitor” is extremely important, as all other
aspects of a monitoring program are inherited from the answer. Our perspective
is that monitoring should not be viewed as a stand-alone activity, but rather is most
useful when viewed as a component of a larger process, typically either of science
or conservation. We elaborate on the specific roles of monitoring in conservation
programs in Chap. 14. For the question of “what to monitor,” programs designed
for the purpose of informing tiger conservation will likely be focused generally
on the dynamics of tiger and prey populations and specifically on the responses
of such populations to management actions. This focus will typically lead to the
monitoring of state variables such as species abundance and/or occupancy and the
vital rates responsible for their dynamics (e.g., reproduction, survival, movement,
local extinction, local colonization).

The question of “how to monitor” was addressed broadly in this chapter, but the
remainder of the book is devoted mostly to such specifics. Two critical issues for the
sampling of animal populations were identified: (1) observability/detectability and
(2) spatial sampling. With respect to (1), animal survey methods entail counts, and
these counts represent some unknown fraction of the animals actually present in a
sampled location. Estimation of that unknown fraction (i.e., estimation of detection
probability) then becomes a key to inference about animal numbers and related

http://dx.doi.org/10.1007/978-981-10-5436-5_14
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quantities (e.g., occupancy, species richness, survival rate, reproductive rate, local
extinction rate, local colonization rate).

With respect to (2), investigators are often interested in drawing inferences about
animal populations inhabiting areas so large that they cannot possibly be completely
surveyed. In such cases investigators must sample space; that is, they must use their
survey methods at a subset of locations within the entire area of interest. Inferences
about locations not surveyed must then be based on survey data from the locations
that are surveyed. Such inferences are generally made possible by probabilistic
sampling approaches such as simple random, stratified random, etc.

A canonical estimator was presented that essentially corrects raw count data
for these two sources of incompleteness: not all locations are surveyed and not all
animals are seen at surveyed locations. This estimator forms the basis for inferences
about state variables, such as animal abundance, occupancy and species richness,
and vital rates, such as survival and reproductive rates, rates of local extinction and
colonization, etc. The various specific estimation methods and associated estimators
described in this volume can all be viewed as special cases of this canonical
approach to estimation.

Despite the canonical nature of this basic approach to inference, the specific
sampling and estimation methods described in this volume are very diverse in
detailed application. For example, approaches to inference about detection prob-
ability may be based on detection histories (detection or not, and location for
detected animals) of marked individuals over multiple sampling occasions; on
the distance between the observer and each detected, unmarked animal; or on
detection/nondetection of a species over replicate surveys at multiple locations.
Similarly, approaches for dealing with spatial variation include random sampling;
random sampling within strata; sampling many locations with an inexpensive survey
method and then sampling a subset of these with a more expensive, but also more
informative, method; sampling initially with a random approach and subsequently
with an approach that is conditional on results of the first survey; etc. These very
different approaches to dealing with detectability and spatial variation lead to very
different ways to select locations to survey and to very different field survey methods
to be used at these locations.

The detailed methods of selecting locations to be surveyed and collecting field
data at these locations are the major components of monitoring program design.
Indeed, design is critical to the ultimate ability to draw inferences. The chapters
of this volume that deal with specific methods will emphasize those features
of study design that are critically important to program success, with the hope
that practitioners will carefully follow recommendations in order to maximize
chances of obtaining data that are useful for the intended purposes. The statistical
methods and algorithms used to analyze data are tailored to, and dependent on, the
monitoring program design. Although practitioners need not understand all of the
details of the statistical methods to which their data will be subjected, we believe it
is important that they understand the conceptual basis of each methodology and the
resultant close pairing of survey design features and analytic method.
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In summary, the framework presented in this chapter focuses on the conceptual
thread that runs through all of the specific methods described in this volume. It
is our hope that this general framework will facilitate a basic understanding of
these methods and how they work. Subsequent chapters then focus on specific
methods and their associated designs, hopefully providing the practitioners with
the information needed to develop field surveys of tigers and prey based on these
approaches. We hope that this overall approach not only facilitates understanding
but also leads to development of new field and analytic methods tailored to the
logistical and ecological specifics of new estimation problems.
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4Concepts: Assessing Tiger Habitat Occupancy
Dynamics

James D. Nichols, Varun R. Goswami, Ravishankar Parameshwaran,
Soumen Dey, and K. Ullas Karanth

4.1 Introduction

Conservationists are often interested in making inferences about spatial distribu-
tions of tigers, potential competitor species, and prey species (Chap. 2). For this
purpose, we do not require precise estimates of abundance or density over many
locations across large spatial landscapes. Instead, we can use detection-nondetection
survey data for animals, or even their sign, to draw such inferences in a cost-effective
manner. We can investigate key spatial relationships (e.g., between tigers and habitat
variables, tigers and prey, etc.), as well as occupancy dynamics and the factors
influencing the vital rates (local probabilities of extinction and colonization) driving
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these dynamics. These detection-nondetection occupancy surveys are especially
useful for large-scale inferences about geographic range and range changes in tigers
and other species.

Just as counts of animals in a sample unit are likely to miss animals (detection
probability <1), so are surveys of a sample unit likely to miss species that are
actually present there (see Chap. 3). Karanth and Nichols (2002) presented an initial
approach to dealing with nondetection in such surveys. This approach used closed
capture-recapture models with detection-nondetection data from replicate temporal
sampling at multiple sites. The sites were treated as “individual animals,” and the
detection history data were used to first estimate the number of occupied sample
units, bN. If s sample units are surveyed, then the proportion of these that is actually
occupied by the species can be estimated as:

b D
bN

s
(4.1)

The estimator (4.1) thus entails two steps, estimation of N and then  . Estimation
of N can be based on any of the closed capture-recapture models to be described in
Chap. 8.

A key difference between the inference problems of closed-population capture-
recapture and occupancy is that inference about N typically is unconstrained in
capture-recapture modeling, in the sense that no upper bound on abundance is
imposed. Stated differently, the number of individuals exhibiting detection histories
of all 0’s (never detected) is not constrained and can be very large. However,
in occupancy modeling, we know the exact number of all-0 detection histories,
imposing the logical constraint that N � s; that is, the number of sample units
occupied by the focal species cannot exceed the total number of units. This
knowledge of s led J.A. Royle to conceive a single-step approach to occupancy
modeling that imposes this constraint, and this is the approach that we have
developed for occupancy modeling (MacKenzie et al. 2002).

4.2 Detection-Nondetection Surveys

Detection-nondetection surveys for the purpose of collecting data to study occu-
pancy can be carried out in a variety of ways. Here, we provide survey design
requisites and outline some basic approaches. Detailed discussion of field methods
that can be used for tigers and their prey is provided in Chap. 5. Data and
corresponding modeling can be used to make inferences about occupancy during
a single season or extended to deal with occupancy dynamics across multiple years
and seasons. We begin by focusing on sampling for single-season models.

There are few restrictions on the kind of sampling that is conducted, as the
primary objective is to simply select a survey method that provides a reasonably
high probability of detecting the focal species, given its presence in the sample

http://dx.doi.org/10.1007/978-981-10-5436-5_3
http://dx.doi.org/10.1007/978-981-10-5436-5_8
http://dx.doi.org/10.1007/978-981-10-5436-5_5
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unit. Investigators often visit a sample unit and then move through it recording
individuals of the focal species. For species that are very difficult to detect in this
manner, sign surveys may be used, with focal species identified as present based on
tracks, scats, dung, or other signs. In other situations, stationary sampling devices
such as traps, camera traps, or audio recording devices may be used to survey an area
(see Chap. 5).

The key requisite for classic, single-season occupancy modeling is replication.
The investigator is interested in S sites or sample units and in the proportion of these
sites that is occupied by the focal species. A total of s sites would be selected for
survey, with s � S. A typical single-season sampling design would entail multiple
samples at each site, where the sampling would involve implementation of any
specific survey method(s) capable of detecting the species of interest or its sign. For
a study design with K D 3 sampling occasions at each site, raw detection history
data for site i would be written as a row vector of 1’s and 0’s indicating detection
or nondetection, respectively, at each sampling occasion. For example, hi D 1 0 1
would indicate detection of the focal species at site i on occasions 1 and 3, but not
on occasion 2. Each site has a corresponding detection history, and the histories for
all surveyed sites are the data from which inferences about occupancy are derived.

The key assumption underlying single-season occupancy models is that the
sampled sites are closed to changes in occupancy for all surveys during the season.
This simply means that a site is either occupied for all K sampling occasions or
not. The total period over which temporal replicate visits are made is typically fairly
short in order to try to satisfy this closure assumption. If the study system is very
large, it may be necessary to conduct all K surveys for one group of sites during
one period and for another group of sites during a different period. For this type
of sampling design, the closure assumption applies to the replicate sampling within
each period. Approaches exist for testing the closure assumption (MacKenzie et al.
2003; Rota et al. 2009), and models have been developed to relax this assumption
in specific ways (e.g., Kendall et al. 2013). This and other requisite assumptions are
discussed in Sect. 4.3.3.

There are several ways to achieve this sort of replicate sampling over a relatively
short period of time (see Chap. 5). In addition to the standard approach of one or
more investigators sampling the same sites at multiple times (e.g., multiple days),
logistics (e.g., safety reasons) may dictate that multiple individuals visit each site
simultaneously. In such cases, it may be possible for different individuals to survey
independently, in which case the individual survey results can be used as replicates.

Sometimes logistics dictate so-called removal designs. When sites require
substantial effort and travel time to reach, or are otherwise expensive to sample,
then investigators may visit all sites on an initial occasion. Sites at which the focal
species is detected on the initial survey are not revisited. Instead, second surveys
only occur on sites with no detections initially. Similarly, sites with no detections
at surveys 1 or 2 are surveyed a third time, etc. This design approach constrains
modeling to some degree, but can still be wise when sampling is very expensive.

http://dx.doi.org/10.1007/978-981-10-5436-5_5
http://dx.doi.org/10.1007/978-981-10-5436-5_5
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Fig. 4.1 Multiseason occupancy studies of animal populations are conducted at two temporal
scales: (i) over multiple (Kt) occasions within each season t, across which sites are assumed to be
“closed” to changes in occupancy state (occupied sites remain occupied; unoccupied sites remain
unoccupied) and (ii) across multiple (T) seasons, during which unoccupied sites may be colonized
and occupied sites may go locally extinct

It is sometimes possible to substitute space for time and to survey small replicate
spatial units, such as segments along a trail, within each sample unit. Whenever
possible, such selection of spatial units for subsampling should be conducted
randomly and with replacement (Kendall and White 2009). However, when the
focal species is mobile and moves about extensively within sample units, sampling
randomly and with replacement becomes less important. In addition, special models
have been developed for certain types of dependent spatial sampling (Hines et
al. 2010, Chap. 5). In fact these models were initially developed specifically
to incorporate tiger movement ecology, by allowing dependence of local tiger
occupancy on adjacent trail segments.

Studies focusing on changes in occupancy over time typically follow a so-called
robust design (Pollock 1982) consisting of replicate sampling over a short period
within a season followed by a longer period with no sampling over which change is
expected, and then another short period of replicate sampling (Fig. 4.1). The basic
requisites for sampling under single-season models apply as well to the within-
season sampling components of multiseason designs.

4.3 Basics of Single-Season Occupancy Modeling

4.3.1 Basic Model

The basic ideas underlying occupancy modeling were summarily noted in Sect.
4.1. The detection history data for surveyed sites contain information about
nondetection. For example, consider the detection history 101 for a site. The failure
to detect the species at occasion 2 clearly reflects nondetection, as the focal species

http://dx.doi.org/10.1007/978-981-10-5436-5_5
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was known to use the site based on detections at occasions 1 and 3. So occupancy
models use the site replicates to draw inferences about detection probability and
thus the number of occupied sites. We can estimate the number of occupied sites
using the canonical estimator (3.2):

bN D
C

bp
(4.2)

where C is now the number of sites at which the focal species was detected on at
least one occasion, andbp is the detection probability estimated from the replicate
surveys. More explicitly, p in expression (4.2) is the probability that the focal
species is detected on at least one sampling occasion, given that the sample unit is
occupied by the species. Expression (4.1) is used to translate the estimated number
of occupied sites into the estimated proportion of sites occupied,b .

It is useful to model the parameter,  , directly as a function of covariates, as
species-habitat relationships are an important area of interest in species distribution
modeling, for example. J.A. Royle thus developed an approach to occupancy
modeling that incorporates the  parameter directly into the likelihood (MacKenzie
et al. 2002). Under this model, a probability can be assigned to every distinct
detection history, and that probability is based on two kinds of parameters, occu-
pancy ( ) and occasion-specific detection probability, pj, where j denotes sampling
occasion. Specifically, pj is the probability of detecting the focal species on sampling
occasion j, given that the sample unit is occupied by the focal species. Consider the
probability corresponding to detection history 101:

Pr
�

101j ; pj
�

D  p1 .1 � p2/ p3

We know the species was present at the site, because we detected it there, and the
probability associated with presence/occupancy is  . The species was detected at
sampling occasions 1 and 3, with corresponding probabilities, p1 and p3, and was
not detected at occasion 2, with probability (1 � p2).

The probability associated with detection history 000 can be written as follows:

Pr
�

000j ; pj
�

D .1 �  /C  

3
Y

jD1

�

1 � pj
�

There are two possible events that could give rise to this detection history, and
the underlying probability must include both possibilities. The first is that the
species was not present at the site, with corresponding probability (1 �  ). The
second possibility is that the species was present and simply went undetected at
all three sampling occasions, represented by the second additive term in the above
expression.

Estimation is based on the model likelihood for the observed data which is simply
the product of the probabilities associated with the observed detection histories:
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L
�

 ;
˚

pj
�

jh1; h2; : : : ; hs
�

D

s
Y

iD1

Pr .hi/ (4.3)

The method of maximum likelihood determines the values of occupancy and
detection probabilities for which the above expression is a maximum, essentially
asking “what are the most likely values for occupancy and detection parameters
given the model and the observed data?” (see MacKenzie et al. 2006). Programs
PRESENCE (Hines 2006), MARK (White and Burnham 1999), and unmarked
(Fiske and Chandler 2011) can all be used to compute estimates using detection-
nondetection data.

4.3.2 Covariate Relationships

The parameters of expression (4.3) were written without subscripts for specific
sample units, essentially assuming that parameter values are the same for all sample
units. Estimates of parameters such as occupancy under this assumption can be
useful, but we are frequently interested in relationships between these parameters
and site-specific covariates. Such relationships can be investigated using the so-
called logit link, which can be used to model covariate relationships for parameters
(such as occupancy) that are constrained to the interval [0, 1]. For example, we can
write a relationship between occupancy of site i,  i, and two covariates associated
with site i, xi1 and xi2, as:

log it . i/ D ln

�

 i

1 �  i

�

D ˇ0 C ˇ1xi1 C ˇ2xi2 (4.4)

Expression (4.4) can be solved for  i to obtain the following expression for
occupancy as a function of the covariates:

 i D
exp .ˇ0 C ˇ1xi1 C ˇ2xi2/

1C exp .ˇ0 C ˇ1xi1 C ˇ2xi2/
(4.5)

Such covariate modeling can be used to test hypotheses about ecological relation-
ships, for example, between tiger occupancy and habitat, prey abundance, distance
from roads or villages, etc. (see Karanth et al. 2011).

Detection probabilities, pij, can also be modeled as functions of covariates. In this
case, covariates can be associated with either site, or sampling occasion, or both,
xijm, where i denotes sample unit, j denotes sampling occasion, and m indicates
the specific covariate. Selection of potential covariates for detection depends on
the nature of the sampling. For example, detection probabilities for camera trap
sampling might include site-specific covariates such as number of cameras in a
sample unit and occasion-specific covariates such as any weather variable that
might influence activity of the focal species (e.g., tigers, ungulates). Covariates for
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detection probabilities based on sign surveys might include site-specific covariates
such as substrate (e.g., pugmarks may be more easily detected along a dusty
trail than one covered by grass) and occasion-specific covariates such as rainfall
(influencing both animal activity and distinctness of tracks). Finally, we note that
other link functions can be used for such modeling as well (e.g., Williams et al.
2002), although the logit link will be selected for most occupancy modeling.

Inference about relationships can be obtained by substituting the right-hand
side of (4.5) for the occupancy parameter in the likelihood, and estimates of the
ˇi parameters obtained directly (e.g., MacKenzie et al. 2006). Note that this sort
of direct inference precludes our need to use 2-step analyses (doing statistics on
statistics) that correlate estimates of occupancy with covariates. Covariate modeling
based on Eqs. (4.4) and (4.5) can be accomplished using the abovementioned
software. The ˇi parameters are estimated directly, and the modeled parameters
(e.g.,  i and pij) are estimated as derived parameters.

4.3.3 Assumptions

Several assumptions underlie these basic occupancy models. When assumption
violations are anticipated, they can frequently be dealt with via small changes in
sampling design. In addition, the models have been extended in many cases to
accommodate specific assumption violations. Here we discuss assumptions briefly
and provide citations to more detailed discussions and model extensions.

The first assumption is referred to as “closure,” that is, surveyed sites do not
change occupancy status over the entire period of survey. The sites are either
occupied or not occupied for the full survey period. Violations occur if, for
example, surveys of migratory animals begin before the focal species has migrated
to the breeding grounds or end after all members of the species have departed for
nonbreeding areas. The simplest approach to dealing with this issue is to reduce
the time between successive sampling occasions, such that violation of closure
becomes less and less likely. Kendall et al. (2013) developed a single-season
occupancy model to deal with such violations and then extended it for multiple
seasons (Chambert et al. 2015b). The model permits entry of the focal species to the
surveyed sites after the initiation of surveys and departure before the end of surveys.

A more common form of violation of the closure assumption concerns animals
that may move in and out of sample units during the course of their daily movement.
This can result in a focal species being present in a sample unit during some survey
occasions and not during others. If this movement is completely random, then
estimates of occupancy now reflect the proportion of sites that is used by the focal
species, with use reflecting some non-negligible probability of the species being in
the sample unit at any time. This probability is <1, reflecting the fact that the species
is not confined to the sample unit. Similarly, detection probability for the case of
random movement in and out of sampling units is now defined as the product: Pr(at
least one member of the focal species is present in the sample unit during the survey
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j sample unit is used by the species) � Pr(focal species is detected j at least one
member of the focal species is present in the sample unit during the survey).

Closure tests can be developed by combining consecutive groups (e.g., pairs)
of sampling occasions within a season and fitting multiseason models (MacKenzie
et al. 2003; Rota et al. 2009). For example, a season with six sampling occasions
could be treated as being comprised of three “seasons,” each of which contains
two sampling occasions. Multiseason occupancy models in which local extinction
and colonization parameters occurring between occasions are constrained to equal 0
can be viewed as null hypotheses that reflect closure and compared against models
that permit these parameters to attain values >0. It should be noted that this test
for absence of closure should detect random movement in and out of sample units,
a “violation” that does not really cause inference problems (see above). Finally,
the single-entry, single-exit model of Kendall et al. (2013) can also be used as
an alternative hypothesis against the standard single-season occupancy model that
reflects closure.

A second assumption of single-season occupancy models is that there are no
differences in occupancy probabilities across sites, or else that variation in occu-
pancy is explained by modeled covariates. However, if unmodeled heterogeneity in
occupancy occurs within a surveyed system, random selection of sample units to
survey (or survey of all sample units) should produce an approximately unbiased
estimate of average occupancy across the units (MacKenzie et al. 2006:106–107).

One specific source of heterogeneity in occupancy across sample units comes
from the local neighborhood of a sample unit. Units surrounded by occupied sites
are more likely to be occupied than isolated sample units, because of the proximity
of sources of colonists (e.g., Hanski 1998). Royle and Dorazio (2008) recommended
the use of so-called autologistic models for dealing with this situation. Such models
express focal site occupancy as some function (e.g., logistic, Eq. 4.4) of the

occupancy of neighboring sites (e.g., mean occupancy, 
Ni

i , where Ni denotes the
neighborhood of sample unit i). If xi is a standard covariate (e.g., habitat at sample
unit i), then we could write an autologistic model of occupancy as a function of both
habitat and neighborhood occupancy as follows:

 i D
exp

�

ˇ0 C ˇ1xi C ˇ2 
Ni

i

�

1C exp
�

ˇ0 C ˇ1xi C ˇ2 
Ni

i

�

However, neighborhood occupancy is not a standard covariate, as the same
uncertainty that characterizes inference about focal patch occupancy characterizes
neighborhood occupancy as well. For this reason, inference in such single-season
autologistic models is best carried out using the expectation-maximization (EM)
algorithm (Dempster et al. 1977) or Markov Chain Monte Carlo (MCMC; Royle
and Dorazio 2008; Link and Barker 2010) approaches. Again, we stress that even
when autologistic processes actually generate occupancy data, random sampling
yields reasonable estimates of average occupancy, even with standard occupancy
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models. However, if mapping is an objective of the investigation, then site-specific
occupancy is of more interest, and autologistic models can be very useful.

A third assumption of single-season occupancy models is that there are no
differences in detection probabilities across sites, or else that variation in detection is
explained by modeled covariates. Heterogeneity of detection probabilities typically
leads to negatively biased estimates of occupancy. Estimates of detection probability
tend to be positively biased, as most of the information about detection is provided
by sites with at least one detection, and sites with high detection probabilities are
overrepresented in this group. Positively biased estimates of detection probability
then produce negatively biased estimates of the number and proportion of occupied
sites (expressions 4.1 and 4.2).

The best way to deal with heterogeneous detection probabilities is via selection
of site-specific covariates that can explain much of the existing variation. Finite and
continuous mixture models are frequently useful (MacKenzie et al. 2006: 137–140)
when substantial variation in detection probability remains after covariate modeling.
These mixture models assume distributional forms for heterogeneity and then
estimate the parameters of these distributions. One specific source of heterogeneous
detection probabilities is produced by site-specific variation in animal abundance.
The focal species is more likely to be detected at sample units with large numbers
of animals and less likely to be detected when only 1 or 2 animals are present.
Royle and Nichols (2003) provide one approach to this source of heterogeneity
using assumptions about the distribution of animals across sample units.

A fourth assumption is that the species detections are independent both across
sample units and at replicates within a sample unit. Lack of independence of
detection probabilities across sample units may not be a common issue, but could
be dealt with using autologistic modeling (see above) of detection probabilities.

Dependence of detection probabilities across replicates within a sample unit can
occur in a number of ways. Consider the situation in which initial detection of the
focal species at a sample unit influences detection probability for all subsequent
sampling occasions. An example of this situation occurs in tiger sign surveys when
an investigator discovers a pugmark impression in hardened mud at a particular
location in the sample unit. If the same observer conducts all the sampling, then
the observer can revisit that pugmark impression on each subsequent sampling
occasion, increasing the detection probability to approach 1 and clearly violating the
independence assumption. Such dependence can be addressed by either modifying
sampling design or using specific types of models. For example, a useful approach to
sampling design is to specify that different observers visit a given site on different
sampling occasions. Another way to deal with such dependence is via a removal
modeling approach in which there are different detection probability parameters
before and following initial detection of the species at a sample unit. Under the
removal design described in Sect. 4.2 (investigator stops visiting the sample unit
after initial detection), the detection probability following initial detection is fixed
at 0. In the case of more general dependence, detection probabilities following
initial detection can differ from those prior to detection but are not fixed to any
value. In fact, models intermediate between removal models and models assuming
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independence can include a relationship between detection probabilities before and
after initial detection.

Another form of sampling dependence across replicates occurs with spatial
sampling. Consider a popular design for tigers and other large felids in which
long trails are surveyed for sign, with segments of specified length treated as
spatial replicates. It is likely that a single animal can move along the trail for
distances that cover multiple segments, creating dependence in detection probability
between adjacent segments. This kind of dependence can produce biased estimates
of occupancy. Hines et al. (2010) showed that the bias can be substantial and thus
developed a model that can be described as a spatial Markov process in which the
probability of local presence of the focal species on a segment differs depending on
whether the previous segment was locally occupied. This model includes not only
the standard occupancy parameter,  i, that corresponds to a sample unit (the area
sampled by the entire trail) but also parameters for probability of local occupancy
for segments that are, and are not, preceded by locally occupied segments. Detection
probability for this model is then conditional on local occupancy, being 0 for
segments that are not locally occupied. This kind of model may be useful for other
sampling designs in which spatial sample units are linearly arrayed (e.g., Hines
et al. 2014) and even for designs based on temporal replication (dependence of
detection probabilities for adjacent sampling periods). Guillera-Arroita et al. (2011)
provide an alternative approach to modeling data along trails in the face of correlated
segments.

A final assumption is that all detections of the focal species are certain. That is, all
of the uncertainty associated with detection-nondetection data is with nondetections.
However, for certain types of data, so-called false positives are not only possible,
but likely. Surveys based on animal sign can lead to false positives. For example,
pugmarks and scats of small tigers may be misidentified as leopards, whereas
pugmarks and scats of large leopards may be identified as tigers sometimes. False
positives can lead to positively biased estimates of occupancy, with substantial
problems associated with even small rates of misidentification (McClintock et al.
2010b).

In some cases, false positives can be dealt with via changes in survey design.
For example, rather than classifying felid scats based on visual cues, samples of
all scats may be subjected to molecular classification based on DNA. Sometimes,
additional training of survey personnel would seem to be a useful design approach
to the elimination of false positives. However, limited experience with this approach
indicates that training may reduce misclassification, but not necessarily eliminate it
(Miller et al. 2012a).

Royle and Link (2006) developed a general occupancy model permitting false
positives (misidentification) and negatives (nondetection). Miller et al. (2011) built
on this model, showing that the existence of subsets of detection observations for
which truth is known can greatly improve inferences under such models. Chambert
et al. (2015a) then generalized the work of Miller et al. (2011) to include situations
in which misclassification probabilities are estimated, not as a part of the occupancy
survey, but experimentally in the laboratory, for example. Thus, there exist several
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Fig. 4.2 Design of the WCS surveys (2006–2007) to assess tiger occupancy in the Malenad Tiger
Landscape (MTL), Karnataka, India. The figure shows grid cells selected for sampling as potential
tiger habitat, overall forest cover in the landscape (light green), and wildlife reserves (dark green).
Inset shows the geographic location of the Malenad landscape in India

modeling approaches to dealing with false positives. They are all effective, and
selection of a specific method depends on the details of the sampling situation and
the manner in which false positives arise (Chambert et al. 2015a).

4.3.4 Example

Karanth et al. (2011) assessed habitat occupancy for a tiger Panthera tigris metapop-
ulation across the 38,000-km2 Malenad Tiger Landscape (MTL) in southwestern
India. Survey design used spatial replication, with investigators detecting sign along
trail segments within 205 sample units (grid cells, Fig. 4.2), each 188 km2 in size.
Model selection provided strong evidence of the inadequacy of the basic model
assuming independent replicates and of the need for the spatial dependence model
developed by Hines et al. (2010).

Tiger occupancy was positively related to the proportion of tiger habitat in a
sample unit and density of ungulate prey and was negatively related to levels of
human disturbance (Karanth et al. 2011). Model-averaged probabilities of local
occupancy were substantially greater for trail segments preceded by a locally
occupied segment. The model-averaged estimate of replicate-level detection prob-
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Fig. 4.3 Results of tiger occupancy survey by WCS in Malenad (2006–07): (a) Naïve tiger
occupancy assuming perfect detectability and (b) cell/site-specific estimates of tiger occupancy
derived using the Hines et al. (2010) model that allows for imperfect and spatially varying detection
rates for tiger signs, as well as spatial dependence in replicate-level occupancy (Source: Karanth et
al. 2011)

ability (conditional on local occupancy) was bp D 0:17; bSE
�

bp
�

D 0:17. Tiger

occupancy for the entire system was estimated to be b D 0:67; bSE
�

b 
�

D 0:086;

or 14,076 km2 of the 21,167 km2 of potential habitat. In contrast, a traditional
presence-absence approach, assuming tiger absence from all sample units with
no detections, underestimated occupancy by 47%. Mapped probabilities of local
site occupancy clearly identified areas viewed as tiger source populations and
corresponded well with observed tiger density variations across locations at which
density had been estimated (Fig. 4.3).

4.4 Dynamic Occupancy Models

4.4.1 Motivation

Occupancy models described in the above sections are useful for estimating static
occupancy patterns associated with specific short intervals of time. They are
especially useful in identifying relationships between focal species occurrence and
spatial covariates. There is a long history in ecology of investigating such static
patterns with the objective of drawing inferences about the underlying processes that
generated them. However, such inferences about process based on estimated patterns
are typically weak. Much stronger inferences can be obtained by directly studying
dynamics and the vital rates that generate them (MacKenzie et al. 2006; Yackulic
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et al. 2015). Multiseason occupancy models (Barbraud et al. 2003; MacKenzie et al.
2003) were developed for this purpose.

4.4.2 Survey Design

Data needed for multiseason or dynamic occupancy models are similar to those
collected for single-season modeling. In the first season of a multiseason study,
a set of sample units is surveyed multiple times or using spatial replication. The
sample units are assumed to be closed during the sampling within the season. The
next season, a set of sample units within the system of interest is again sampled.
These units need not be exactly the same units as surveyed in season 1, although
the strongest inferences about process come from repeat sampling of the same set
of sample units. Sample units are not assumed to be closed between seasons, but
rather are permitted to be possibly open to changes in occupancy state (occupied
or not). However, within season 2, sample units are again assumed to be closed to
occupancy changes. This robust sampling design (Pollock 1982) permits inference
not only about season-specific occupancy but also about the vital rates that govern
changes in occupancy, local probabilities of extinction and colonization (Fig. 4.1).

Data from this design are extended detection histories for each sample
unit (Fig. 4.4). For example, consider the following history for sample unit i,
hi D 110 000. This history reflects a 2-season study with three sampling replicates
within each season. The space between the first and second 0’s separates the two
seasons. So this particular history indicates a sample unit at which the focal species

Fig. 4.4 Matrix of detection versus non-detection data structure for multiseason occupancy
studies. This example shows surveys at s sites, across T seasons, and over K D 3 occasions
(replicates) within each season. Spaces separate surveys in different seasons
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was detected on occasions 1 and 2, but not 3, of season 1 and was not detected on
any of the three occasions in season 2.

4.4.3 Basic Model

Data from multiseason surveys can be modeled using either implicit or explicit
approaches (MacKenzie et al. 2006). The implicit approach essentially models
the data as a sequence of single-season studies, with no necessary dependence
between site occupancy in successive seasons. Sometimes, implicit modeling can
incorporate a parameter reflecting rate of change in occupancy between seasons.
Implicit modeling may be recommended in cases where few sample units are
sampled in multiple seasons or where data are generally sparse.

The explicit modeling approach accounts for heterogeneity in occupancy prob-
abilities among sample units attributable to their prior histories. For example, at
any season t, sample units can be grouped according to whether or not they were
occupied in the previous season, t-1. Under many ecological hypotheses (e.g.,
metapopulation models, Hanski 1998), we would expect greater probabilities of
being occupied in season t for sample units that were also occupied in season
t-1. This kind of thinking leads us to an explicit Markov model for community
dynamics.

Probabilities of local extinction and colonization, respectively, are defined as
follows:

"t D Pr .not occupied at t C 1 j occupied at t/ I

�t D Pr .occupied at t C 1 j not occupied at t/ :

A site or sample unit at any season, t, can be in one of two occupancy states,
occupied or not occupied. The transition probability of changing state for an
occupied site is the local extinction probability and that for an unoccupied state
is the colonization probability (Fig. 4.5). Explicit modeling of detection history
data for multiseason models requires these extinction and colonization parameters
in addition to probabilities of occupancy ( t, occupancy in season t) and detection
(pt,j, detection on occasion j, season t).

Consider the multiseason detection history 110 000. The probability associated
with this detection history can be written as:

Pr
�

110 000j 1; pt;j; "t; �t
�

D  1p1;1p1;2 .1 � p1;3/

2

4"1 C .1 � "1/

3
Y

jD1

�

1 � p2:j
�

3

5

We are certain that the site was occupied in season 1, as the focal species was
detected then. The terms in brackets reflect the two possible outcomes for season
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Fig. 4.5 Markov model for occupancy dynamics, where the probability of occupancy at time t C 1
depends on occupancy state at t. Changes in occupancy state occur through colonization (� t) of
unoccupied sites or local extinction ("t) of occupied sites from season t to t C 1. Black squares
denote occupied sites and white squares denote unoccupied sites

2. The first possibility is that the site went locally extinct. The second is that the
species persisted until season 2 but was not detected at any of the three surveys in
that season.

As for single-season models, every possible detection history has a corre-
sponding probability statement about the processes that could have generated
the history. These probability statements now include not only initial occupancy
and occasion- and season-specific detection probabilities but also time-specific
probabilities of local extinction and colonization. Note that we would refer to
this general multiseason model as model ( 1 , pt , j , "t , � t). Estimates of occupancy
probabilities following season 1 can be obtained as derived parameters using the
fundamental equation of occupancy dynamics:

 tC1 D  t .1 � "t/C .1 �  t/ �t (4.6)

The relationship expressed in Eq. (4.6) shows the redundancies among parameters.
We believe that model ( 1 , pt , j , "t , � t) will frequently be most useful in

permitting direct modeling of local probabilities of extinction and colonization as
functions of covariates, as described in Sect. 4.3.2. Relevant covariates may be
environmental or may include management actions, depending on the questions
being addressed. Some questions may be better addressed by modeling time-specific
occupancy directly, in which case we can reparameterize the basic model to include
time-specific occupancy and estimate either colonization ( t, pt , j, "t) or extinction
( t, pt , j, � t) as derived parameters (MacKenzie et al. 2003, 2006; Hines 2006).
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As with single-season models, the likelihoods for the multiseason models can be
written as the product of the probabilities for the detection histories of the sampled
sites. For example, the likelihood for model ( 1 , pt , j , "t , � t) can be written as:

L
�

 1;
˚
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�

; f"tg ; f�tg
�

j h1; h2; : : : ; hs

�

D

s
Y

iD1

Pr .hi/ (4.7)

This is a multinomial likelihood, and parameters can be estimated via maximum
likelihood using software packages such as PRESENCE (Hines 2006), MARK
(White and Burnham 1999), and unmarked (Fiske and Chandler 2011). Note that
we dropped the subscript i from this description of multiseason models primarily in
order to simplify notation, but parameters will be site specific when modeling with
site-specific covariates.

4.4.4 Assumptions

The robust design (Pollock 1982) sampling used for multiseason modeling basically
combines models for open and closed populations. The single-season models
represent the closed model components, and all of the assumptions required for
single-season models (see Sect. 4.3.3) thus apply to the within-season sampling
conducted each season.

In multiseason models, the “closure” assumption still applies within each season,
but not between seasons. Thus, sites may change occupancy state between seasons,
but not within them. The potential for closure violations within seasons can be
addressed via study design, for example, reducing the time intervals between
replicate surveys. The single-season model of Kendall et al. (2013) permits the
focal species to enter the surveyed sites after the initiation of surveys and depart
before the end of surveys. This model was recently extended to multiple seasons
(Chambert et al. 2015b). Another form of violation of the closure assumption
concerns animals that may move in and out of sample units during the course of
their daily movement. As discussed for single-season models, random movement
of this sort simply requires a reinterpretation of the model parameters, such that
occupancy now reflects use of a sample unit (as opposed to full-time residency)
during the season.

As noted in Sect. 4.3.3, tests for closure in single-season models can be
developed by combining consecutive groups (e.g., pairs) of sampling occasions
within a season and fitting multiseason models (MacKenzie et al. 2003; Rota et
al. 2009). This kind of thinking can be readily extended to multiseason models.
Intervals between sampling occasions that extend from one season to the next (i.e.,
between the last sample occasion in season t and the first occasion in t C 1)
will be parameterized with the usual transition probabilities of local extinction
and colonization. Intervals between sampling occasions within a season will be
parameterized with extinction and colonization parameters that are constrained to



4 Concepts: Assessing Tiger Habitat Occupancy Dynamics 63

equal 0 in the null model reflecting closure, but permitted to be non-0 in the more
general model of an open system. The single-entry, single-exit model of Chambert
et al. (2015b) can be also used as a specific alternative hypothesis to the null model
of within-season closure.

As is the case for single-season models, multiseason models assume that there
are no differences in occupancy probabilities across sites, or else that variation
in occupancy is explained by modeled covariates. However, random selection
of sample units should produce approximately unbiased estimates of average
occupancy across the units (MacKenzie et al. 2006:106–107) even in the face of
unmodeled heterogeneity.

In multiseason models, the assumption of no heterogeneity across sites is
extended to the rate parameters of local extinction and colonization. Modeling such
variation using site-specific covariates not only reduces heterogeneity but is also a
focus of important ecological questions. The occupancy state of neighboring sites
is likely to be an important determinant of both local colonization (e.g., Hanski
1998) and extinction (Brown and Kodric-Brown 1977) probabilities. Autologistic
models express focal site colonization and extinction as some function (e.g., logistic,
Eq. 4.4) of the occupancy of neighboring sites (e.g., mean occupancy). However,
neighborhood occupancy is not a standard covariate, but rather a quantity that is also
estimated. Multiseason models have thus been developed to implement autologistic
models using both MCMC (Bled et al. 2011, 2013) and likelihood (Yackulic et al.
2012, 2014; Eaton et al. 2014) approaches to inference. Program PRESENCE
(Hines 2006) implements a general likelihood approach to multiseason, autologistic
modeling that allows neighborhood occupancy to be defined in a variety of ways
(see discussion in Eaton et al. 2014).

The assumption of no differences in detection probabilities across sites, or else
that variation in detection is explained by modeled covariates, is also required by
multiseason models. As discussed in Sect. 4.3.3, heterogeneity of detection proba-
bilities typically leads to negatively biased estimates of occupancy. Heterogeneity in
detection probabilities is also expected to produce bias in estimates of probabilities
of local extinction and colonization, but such effects have not been explored to our
knowledge. The Royle-Nichols (2003) model for abundance-induced heterogeneity
of detection probabilities could be extended to multiseason models but would
require the modeling of site-specific abundance dynamics.

Multiseason models require the assumption that species detections are inde-
pendent both across sample units and over replicates within a sample unit. One
form of dependence of detection probabilities across replicates occurs when initial
detection of the focal species at a sample unit influences detection probability for
all subsequent sampling occasions. Multiseason models can be based on a removal
model approach to within-season data, in which detection probabilities within a site
differ before and after initial detection of the focal species.

As noted in Sect. 4.3.3, a popular occupancy survey design for tigers and other
large felids is to survey long trails for sign, with segments of specified length treated
as spatial replicates. The spatial Markov process model of Hines et al. (2010) was
developed to model local presence of the focal species on a segment as a function of
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whether the previous segment was locally occupied. This model has been extended
to multiseason studies (Hines et al. 2014).

A final assumption is that all detections of the focal species are certain; i.e., that
“false positives” are not possible. The general single-season modeling approaches
of Royle and Link (2006), Miller et al. (2011), and Chambert et al. (2015) provide
several effective ways to deal with false positives, depending on sampling design
and the existence and type of data for which “truth” is known. In particular, the
approach of Miller et al. (2011) has been extended to multiseason models (Miller
et al. 2013). The latter models have been incorporated into PRESENCE (Hines
2006).

4.5 Extensions

The discussion of occupancy modeling in a previous edition of this manual (Nichols
and Karanth 2002) was very simple, requiring only a few pages. Together with
MacKenzie et al. (2002), we were introducing a new approach to inference about
species occurrence, and most of our discussion centered on its potential for large-
scale studies. Subsequent interest in these models was substantial and accompanied
by a great deal of work, requiring a synthetic book (MacKenzie et al. 2006).
New developments have continued, resulting in synthetic reviews (Bailey et al.
2014; Guillera-Arroita 2016) and work on a second occupancy book. We cannot
thoroughly review all developments and extensions here, so will simply provide
pointers to literature that we believe to have some potential for use in tiger-prey
studies.

A major advance in occupancy modeling was the introduction of multistate
occupancy models (MacKenzie et al. 2004; Royle 2004; Royle and Link 2005;
Nichols et al. 2007; MacKenzie et al. 2009). The occupancy models discussed
thus far have assumed each site or sample unit to be in one of two possible states,
occupied or unoccupied. However, “occupied” may not be an adequate descriptor
for some kinds of inferences. MacKenzie et al. (2004) considered 2-species models
in which sites could be characterized by any of 4 states: occupied by neither species,
just one species, just the other species, or both species. Royle (2004) and Royle and
Link (2005) considered occupancy modeling of data from anuran call surveys and
wanted to distinguish among different levels of calling intensity, denoted 1–3, with
higher levels reflecting more animals calling. Nichols et al. (2007) considered states
of not occupied, occupied with no reproduction, and occupied with reproduction.
Epidemiological studies can focus on sites occupied by a focal species at which a
species pathogen was and was not present (McClintock et al. 2010c; Lachish et al.
2012; Miller et al. 2012b). Goswami et al. (2014) evaluated elephant habitat use
considering states of not used, used with low intensity, and used with high intensity,
where intensity of use was defined based on density of elephant signs encountered
during the surveys.

The multistate occupancy modeling described above was initially developed for
single-season occupancy studies. Extension of this approach to multiple seasons
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provides a direct focus on system dynamics, but carries the cost of more complex
modeling (MacKenzie et al. 2009; Miller et al. 2012c). Uses of dynamic multistate
models include territory transitions between reproductive and nonreproductive
states (MacKenzie et al. 2009), dynamics of relative abundance (MacKenzie et al.
2009), joint habitat-occupancy dynamics (Martin et al. 2010; MacKenzie et al. 2011;
Miller et al. 2012c), predator-prey dynamics (Miller et al. 2012c), and dynamics
of purported competitors (Yackulic et al. 2014). The simultaneous modeling of
dynamics of multiple species or habitat-occupancy should be a much more powerful
approach to modeling system dynamics than the more usual approach of modeling
focal-species occupancy dynamics as functions of covariates. Joint modeling is
especially well-suited to making projections of future dynamics (e.g., Yackulic et al.
2014).

Sometimes sampling may be carried out using multiple detection methods or
devices. Models have been developed to fully use such data and to deal with lack of
independence of detections of two devices at the same location (Nichols et al. 2008).
These models also permit inferences about method-specific detection probabilities.
When tigers are the focal species, occupancy sampling might be carried out using
sign surveys along trails combined with camera traps at some points along trails as
well.

Finally, we note that occupancy models can also be used to address questions
about species richness and associated dynamics. Studies of tigers, for example,
might focus on the ungulate prey community, rather than on particular prey species.
Data for such inferences are detections and nondetections of each species in the
local species pool at each sampling occasion. One approach to inference about
richness can be implemented at a single location. The species are treated as “sites”
in standard occupancy modeling, and the  i parameters reflect probability of
occupancy at the location by species i (MacKenzie et al. 2006). The other approach
uses multispecies detection-nondetection from a set of sites. Species richness at a
site is then estimated as the sum of unconditional occupancy probabilities for all
species in the community or, equivalently, as the sum of species actually detected
and conditional (on nondetection) occupancy probabilities for species not detected
(Dorazio and Royle 2005; MacKenzie et al. 2006).

4.6 Discussion

We believe that occupancy modeling can be useful for addressing a variety of
questions relevant to tiger and associated prey communities. However, we remind
the reader that occupancy (presence in, or use of, a site by a focal species) and
abundance (number of animals of the focal species present in, or using, a site) are
related concepts but not equivalent. If we view the abundance distribution across
sites as the number of sites with 0 individuals, 1 individual, 2 individuals, etc., then
we would think of occupancy as separating two parts of this distribution, places with
0 individuals and places with >0 individuals. So the concepts are clearly related.
However, it is also clear that the abundance distribution contains more information
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than the occupancy distribution. This distinction is thus relevant to our reminders
throughout this volume that the investigator or manager must select the methods
that best suit his or her objectives (i.e., scientific questions or management goals).

Occupancy modeling represents one approach to the conduct of species distri-
bution modeling (SDM), which has become a popular endeavor among ecologists.
An important goal of SDM is to determine environmental and habitat determinants
of species distributions. Although we agree that such questions are ecologically
interesting and potentially useful for conservation, we disagree with the approaches
commonly used to develop such models. The vast majority of SDM efforts use so-
called presence-only data, records of where animals have been detected, without
information on locations that have been surveyed but no detections recorded (e.g.,
Elith et al. 2006). SDM analyses using presence-only data (e.g., MAXENT, Phillips
et al. 2006, and related software) require extremely restrictive assumptions that are
seldom met by the data used with them (see critiques by Royle et al. 2012, Yackulic
et al. 2013). We thus strongly recommend use of detection-nondetection data with
the single-season occupancy models of this chapter (Sect. 4.3) as the path to strong
inference for SDM, both in general and in particular for tiger and prey surveys
(MacKenzie et al. 2006; Bailey et al. 2014; Guillera-Arroita 2016).

In terms of estimation methodology, we have focused on maximum likelihood as
a primary inference method and have emphasized software that uses this approach
(e.g., PRESENCE; Hines 2006). We have also mentioned the possible use of MCMC
methods of inference (e.g., Royle and Dorazio 2008; Kery and Schaub 2012; Kery
and Royle 2016). We note here that Bayesian approaches to inference such as
MCMC have the advantage of permitting incorporation of prior information into
inferences. The ability to use information from past surveys may be useful in some
cases.

Occupancy models are expected to be especially useful for inferences about
species distribution modeling over medium to large spatial scales. Karanth et al.
(2009, 2010) used occupancy approaches with observation data from interviews
with local naturalists to draw inferences about selected large mammals (including
tigers and multiple prey species) across all India. Protected areas were found
to be important for a number of species. Tigers were estimated to occur across
approximately a quarter of India (Karanth et al. 2009). Long-term extinction
probabilities were investigated by relating recent occupancy estimates to historical
records of confirmed species presence, and protection was found to be negatively
related to local extinction probabilities for tigers and several other species, as
predicted (Karanth et al. 2010). The example of Sect. 4.3.4 relied on data from
a large-scale field survey of the Malenad Tiger Landscape (MTL) and provided
detailed inferences about distribution of tiger (and multiple prey species) across a
large landscape (Karanth et al. 2011).

We can think of many additional uses of standard occupancy models that
could be useful in tiger conservation. In addition, single-season multistate models
could potentially be used to identify sites at which tiger reproduction occurs:
the so-called source populations (Walston et al. 2010) that are critical to species
recovery efforts. Two-species distribution models of tiger and leopard, or tiger
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and select prey species, could prove interesting and useful for drawing inferences
about potential species interactions. Single-season occupancy modeling can also
be usefully combined with more intensive sampling (e.g., camera trap density
estimation) in an approach that is both integrated and adaptive (Conroy et al. 2008).

Although there have been some published uses of single-season occupancy
modeling for tigers and associated prey species, analyses using multiseason models
are currently underway (K.U. Karanth pers. comm.), but not yet published. For
example, the second large survey of the MTL has been recently completed
permitting multiseason modeling of tigers and prey. Such modeling will focus on
the influence of covariates (e.g., protection status) on the probabilities of local
tiger extinction and colonization. Multiseason modeling for tigers and associated
competitor species (leopards) or prey species (sambar, chital, etc.) can be used to
draw inferences about potential effects of the presence of one species on the local
extinction and colonization of the other. Multistate modeling could be used to draw
inferences about the dynamics of site state as defined, for example, by presence or
absence of reproduction at sites.

Connectivity of subpopulations in a heterogeneous landscape has been identified
as a potentially important feature of current tiger metapopulations (Chap. 13).
One approach to inferences about tiger movement among different sites is based
on intensive sampling of marked individuals using multistate capture-recapture
modeling (Chap. 13). However, inferences at larger scales can be based on the
autologistic models described in this chapter. In particular, these can be used to
assess the importance of neighborhood occupancy to probabilities of local extinction
and colonization of a focal site (Chap. 13).

This discussion has just scratched the surface of the kinds of questions that
can be addressed about tiger and prey distribution and associated dynamics using
occupancy modeling. However, we also note that occupancy can be used in novel
ways to address questions that are relevant to conservation, yet go beyond the state
variable of species occupancy to focus on other state variables associated with the
species. Barber-Meyer (2010) described the use of occupancy modeling with species
data from wildlife trade market surveys, in order to estimate the prevalence of a
species in illegal trade. Goswami et al. (2015) focused on human-wildlife conflict,
noting that incidents are not always reported. They used data from local surveyors
to estimate prevalence and correlates of such conflict over time and space with the
help of dynamic occupancy models. In summary, we see much scope for application
of rigorous occupancy modeling concepts outlined in this chapter for assessing not
only ecological questions but also conservation threats to tigers in the future.
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5Field Practices: Assessing Tiger Habitat
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and K. Ullas Karanth

5.1 Introduction

Conservation and management planning of tigers and prey species requires basic
information on the spatial distribution at regional and landscape levels, at an
appropriate scale (Karanth and Nichols 2000). One of the most useful activities that
can be taken up at regional or countrywide levels is the assessment and monitoring
of the spatial distribution of tiger (and prey) populations using field surveys
(Chap. 1). The statistical concepts underlying such surveys of spatial distribution are
covered in Chap. 4, under the general estimation and sampling framework described
in Chap. 3. This chapter provides details of best field practices that are essential for
reliable assessment of tiger distribution at large spatial scales.

As we saw in Chap. 1, given the critical status of tigers and the substantial
investments being made in tiger conservation, wildlife managers and conservation
agencies primarily need clear and reliable answers to the following basic questions
regarding distribution of tigers:
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1. What is the geographical range occupied by individual tiger populations in the
country or a wider region?

2. What are the ecological and management factors that influence patterns of tiger
habitat occupancy?

3. Where are individual tiger populations increasing their ranges and where are the
ranges fragmenting and shrinking?

4. Within a landscape of interest, what is the proportion of area occupied by tiger
populations (reproductive and transient)?

5. Which are the habitat patches that could potentially enhance movement perme-
ability and connect populations or subpopulations?

Tigers are elusive, secretive, and difficult to see in dense vegetation; hence,
encounters are infrequent when they occur at low densities. These considerations
typically preclude the use of sighting-based survey methods to assess distribution.
However, tigers leave behind a variety of signs such as tracks, scats, and scrape
marks which are readily seen in the field. Information from sign surveys can
provide useful insights for management and science, even under field conditions
characterized by scarcity of resources and lack of trained manpower that prevail
in most parts of the tiger range. Consequently, sign-based occupancy surveys are
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often preferred for assessing distribution and habitat use. Additionally, occupancy
methods and sign surveys can be used to identify potential habitat corridors,
landscape connectivity, dispersal routes, and threats faced by tigers (see Chap.
13). Furthermore, sign survey-based occupancy modeling has the potential to link
occupancy data with more intensively measured abundance estimates at local scales
(Royle and Nichols 2003; Conroy et al. 2008, Dey et al. 2017, see Chap. 12) to draw
inference about abundance at large spatial scales.

When such surveys are conducted periodically (e.g., each year) as part of a long
term monitoring program, then resulting data can be used to assess the influence
of landscape characteristics on metapopulation vital rates (local extinction and
colonization rates) and changes in occupancy. These surveys also help us identify
and deal with prevailing or emerging threats to tigers, prey, and habitats. Over
time, results from periodic monitoring can be used to evaluate the success of land-
scape conservation and management efforts. Such monitoring surveys, therefore,
should be a part of any tiger and prey recovery program over large geographic
regions.

In this chapter, we consider field practices and protocols that can be employed
to implement the occupancy modeling concepts discussed in Chap. 4. We note,
however, that these field protocols would require appropriate modifications to suit
local conditions.

5.2 Survey Design Protocols

The size of the occupancy survey grid cells (habitat patches, sites) should be based
on the questions of interest and prior knowledge of tiger ecology, which may vary
from one landscape to another. For example, grid cell sizes of �200 km2 for India
and 256 km2 or 300 km2 for Southeast Asian sites have been used. The biological
basis for this is that the largest expected range for any individual animal (a male
transient tiger) is <250–300 km2 in India and Southeast Asia. The expected home
range sizes for tigers in all other age-sex classes will be smaller. Also, tigers can
move anywhere between 0–40 km in 24 h. Therefore, teams searching and moving
linearly along good trails are more likely to increase detections of signs (scats
and tracks for tigers). This approach to survey design aims at assessing “habitat
occupancy” rather than “intensity of habitat use” (see Chap. 4 and MacKenzie
and Royle 2005). Grid cell size for studies of habitat use intensity might be
substantially smaller than those based on home range sizes. In practice, cell sizes
can be modified marginally so that cell boundaries can be made to coincide with
geographic coordinates such as latitude and longitude or UTM markings on the
maps being used by the field teams. This makes it easier for field teams to follow
the survey design and record data with minimum error.

Once the appropriate grid cell size has been selected, the leaders of the survey
should delineate the survey area on a base map showing altitudinal contours,
vegetation types, human settlements, land use, and other relevant details. This

http://dx.doi.org/10.1007/978-981-10-5436-5_13
http://dx.doi.org/10.1007/978-981-10-5436-5_12
http://dx.doi.org/10.1007/978-981-10-5436-5_4
http://dx.doi.org/10.1007/978-981-10-5436-5_4
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base map should then be used to create a map of grid cells overlaid on the entire
area of interest. Each grid cell (say of size 200 km2) is then further divided into
some number (e.g., 16) of smaller sub-cells of equal size (Fig. 5.1). To meet the
randomized sampling scheme design, one of the 16 sub-cells should be randomly
picked in advance, and the survey teams must ensure that the survey route passes
through this randomly chosen sub-cell. The overall survey route should be planned
based on ecological considerations (coverage of diverse potential tiger habitats
found among the sub-cells), local expert knowledge (where tigers are likely to be),
and sampling effort considerations (survey route length), besides the mandatory

Fig. 5.1 A hypothetical survey frame showing nine grid cells, each with 16 sub-cells, one of which
is selected randomly, and which must be visited by the field team
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need of covering the randomly chosen sub-cell. The sampling route should also
not be clumped around a few sub-cells but should aim to ensure adequate spatial
coverage of the overall grid cell. Figure 5.1 gives an example of an occupancy
survey with nine grid cells (all with 100% tiger habitat), each with its own randomly
selected sub-cell and a hypothesized sequence of field survey effort, with 3 days (in
a normal terrain; longer in more difficult areas) being spent in each grid cell to
search for the tiger sign and with the sequential order of grid cells to be surveyed
being based on logistics and convenience. Alternatively, in Thailand (and other
Southeast Asian countries) with limited road availability and accessibility, grid
cells are divided into only four smaller sub-cells, allowing for greater flexibility
in designing survey routes (see Box 5.1 for summary of field protocols followed in
Thailand).

Box 5.1: Summary Features of Tiger Occupancy Field Survey Protocols
Followed in Thailand’s Western Forest Complex

• The study area of 18,000 km2 was divided into 104 grid cells of 16 � 16 km
(256 km2) following the grid cells on a topographic map scale of 1:50,000
in Thailand.

• These grid cells were then subdivided into four sub-grids of 8 � 8 km
(64 km2), which formed the basic template for field survey planning.

• To meet the randomization of survey locations, each 64 km2 grid cell was
divided into 16 sub-grid cell of 4 km2 and randomly selected one sub-grid
which the surveyors passed through during the field survey.

• Within each 64 km2 grid cell, linear survey routes were delineated,
which composed of 1-km spatial replicates. The number of replicates was
proportional to the amount of forest habitat found within the grid cell. A
maximum route length of 15 km per 64 km2 was used if the entire grid
cell was forested with no villages or agricultural land inside. Grid cells
with <10% forest cover were not surveyed. During the survey, surveyors
recorded detection/non-detection data of the target species at every 100-m
intervals.

• The survey teams walked through habitat that was most likely used by
tigers such as animal trails, mineral licks, forest roads, and river banks.
Data recorded included direct sightings, scats, pugmarks/tracks, carcasses,
scent marks, and vocalizations. Only fresh scats and signs (<7 days) were
recorded to avoid biases that may arise from variable decay rate. Addi-
tionally, in each 100-m subsegment, the survey team recorded substrate
condition, habitat type, and human activities such as evidence of domestic
animals.

• Surveys were conducted in the dry season (October –December of 2010
and January –May and October–December of 2011).
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If resources and logistic considerations permit, we recommend a 100% spatial
sampling of all grid cells (sites) within the predefined sampling frame, to increase
sample sizes for reliable occupancy modeling and to permit more direct inference
about the entire study area (Chap. 4). Such an approach enables mapping tiger
occupancy even if suitable covariate data that permit extrapolation of occupancy
estimates to un-surveyed areas are not available. Furthermore, this approach offers
some advantages for monitoring changes in occupancy across the years more
reliably besides enabling better assessment of landscape-level threats to the tiger
habitat as well as evaluation of potential connectivity/corridors between popula-
tions. However, when 100% sampling is not feasible, a proper spatial sampling
design can be used to select cells for the survey (MacKenzie et al. 2006, see Chap.
4). The exact type of design will be governed by the objectives of the occupancy
modeling. For example, a focus on occupancy of a large area may lead to systematic
or random sampling of cells, whereas a focus on a question about habitat use could
be based on random sampling of the focal habitats.

Once the grid array for the region of interest is finalized, survey teams should
calculate the extent of potential tiger habitat available in each grid cell and eliminate
those that are unlikely to hold tigers. Based on our experience with studies on
tigers, all cells containing more than 10% tiger habitat should be included within
the survey sampling frame, if cell sizes are 200–300 km2 in size. The logic here is
that tigers cannot “live” in patches smaller than these (20–30 km2), although they
may occasionally pass through or take refuge in them for a short period. However,
this decision, which defines the sampling frame, should be based on local knowledge
of tiger ecology as well as the cell sizes used in the specific survey.

Once the sampling frame has been finalized, it is necessary to decide on the
number of spatial replicates per cell or the total distance to be sampled in each cell.
The sampling effort required will depend on the desired level of precision needed in
the occupancy estimates and can be assessed through simulation programs such as
GENPRES. From experience with sign-based occupancy surveys of tigers in India
(Karanth et al. 2011) and in Thailand (Pattanavibool, Unpublished data), we have
found that a “spatial replicate” (Kendall and White 2009; Karanth et al. 2011; Chap.
4) can be a trail segment of about 1–2-km length. The issue of potential lack of
independence among sign detection events on such replicates has been addressed
by the development of a new occupancy model (Hines et al. 2010).

We suggest that the length of the spatial replicate for a tiger survey be set constant
at 1 km, with the effort (total distance to be walked within each cell) proportional to
the extent of potential tiger habitat available in the cell. In the above-cited example
(Karanth et al. 2011), 40 km of walk/search effort was invested in a cell with 100%
tiger habitat, and the effort for cells with smaller amounts of tiger habitat was scaled
in proportion to the extent of habitat available in each cell. Thus, the minimum
number of 1-km long replicates per grid cell was 4 for a 200-km2 cell with 10%
habitat cover and 40 for a cell with 100% habitat cover. The field survey teams
should record detections of the tiger sign (or non-detections) for every 100-meter
segment along each 1-km replicate, although during the analysis, the data may get
aggregated as detection histories for each 1-km long replicate (see Karanth et al.

http://dx.doi.org/10.1007/978-981-10-5436-5_4
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2011). This approach will provide additional flexibility for modeling covariates
and to consider various analytical options based on site-specific considerations.
Implementation of such an approach also allows analysis at multiple spatial scales
to simultaneously assess tiger occupancy and/or habitat use (Sunarto et al. 2012).

5.3 Resource and Logistic Considerations for Conducting
Sign-Based Occupancy Surveys

Similar to any other field survey, an adequate number of personnel should be
available to survey the area being assessed (i.e., a “landscape”). Remember,
however, that the aim is not to count every individual tiger or even every tiger sign
present in the surveyed area. Rather, the goal is to estimate the proportion of habitat
patches or sites occupied by tigers. Therefore, the surveys need not be conducted in
all patches or sites simultaneously, as long as overall closure assumptions are met
as discussed in Chap. 4. This logistical flexibility helps investigators deploy survey
resources judiciously.

Skilled survey personnel who can find and identify tiger signs reliably and
accurately and who can also record, map, and geo-reference the data collected are
essential to the success of a survey. Typically, sign-based occupancy survey teams
may have three to four observers, with at least one “expert tiger tracker,” and others
who possess the necessary skills to use maps and GPS and to record data.

The surveys can be conducted over shorter periods by employing a large number
of government staff, local naturalists, or trained civil society volunteers, if they are
available. If sufficient people are not available, smaller teams can sequentially cover
the cells over a longer period.

As part of the planning, it is useful to determine the actual number of days
available for fieldwork after carefully considering the availability of competent
survey teams and potential logistical problems that field teams could face while
carrying out surveys (safety of personnel, rivers to be crossed, topography and
terrain problems, vehicles, accessibility, snow, rainfall, holidays, etc.). It is very
important to be realistic and practical about the areas to be covered, distances to be
walked, and more importantly how and by whom the survey will be conducted and
supervised.

It is also important to choose the best season and months of the year for the
survey, based on knowledge of field conditions: for example, soon after first showers
or snowfall, when there is less leaf litter, when survey personnel are free of other
tasks, or when volunteers are easier to find. The whole point is to carry out the
survey when personnel are available, logistics are tractable, and animal signs easier
to find. After you have chosen the best time for the survey, try to conduct the
survey in roughly the same period periodically (e.g., every 3–4 years) thereafter.
Such standardization is helpful for monitoring effort and to minimize seasonal bias.
The best time for field surveys is likely to vary from region to region, even within a
country.

http://dx.doi.org/10.1007/978-981-10-5436-5_4
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5.4 Identification and Recording of Tiger Signs

Tigers are secretive, wide-ranging animals, distributed over an extensive area.
They are difficult to observe in the field, and therefore signs such as tracks,
scats, scent marks, and kills are important means for assessing the status of tiger
populations over large regions. Tracks of tigers are readily detected wherever
substrate conditions are appropriate. In the tropics, such conditions are met on
dusty roads, sandy riverbeds, riparian deltas, and alluvial soils. Unfortunately, in
most parts of the tropics, tiger tracks are difficult to find because of unsuitable soil,
rainfall, and leaf-fall. Where tiger tracks are not easily detected, tiger scats can be
recorded, although usually fewer scats than tracks are encountered. Additionally,
tiger scats can be aged and categorized as fresh or old with relative ease, compared
to other tiger signs. It is important to note, however, that in order to reduce ambiguity
about the meaning of “occupancy” (see Chap. 4), only data on “fresh” (<7 days)
scats should be recorded, excluding older scats that may have remained intact for
many months.

Occupancy surveys must also record the signs of principal prey species (includ-
ing livestock). Sightings, tracks, dung, and calls of prey species are the type of data
gathered from field surveys.

Because the viability of tiger populations is chiefly a function of prey abundance
(Karanth and Stith 1999; Miquelle et al. 1999), questions about tiger status can be
answered better if tiger surveys are carried out simultaneously with sign surveys of
the principal prey species. Such data on distribution and encounter rates of prey
signs can be further used as covariate information along with other habitat and
environmental factors, to model tiger occupancy.

Personnel participating in the field survey must be able to correctly recognize the
signs of tigers and prey species that they encounter in the field. Misidentification
of signs can lead to serious flaws at the stage of data analysis and interpretation of
results. It should be emphasized here that if certain signs cannot be attributed to
a species with certainty, it is better to exclude them from being recorded. It may
also be useful to have a field orientation workshop before the surveys, for general
skill development and as a team building exercise. For some sign such as scats,
uncertainty in species assignment (e.g., leopard versus tiger) can be incorporated
into the occupancy modeling (e.g., Miller et al. 2011, 2013; Chambert et al. 2015)
if some scats are collected for subsequent laboratory analysis to ascertain truth.

Usually, experienced survey personnel can distinguish similar signs such as tiger
from leopard. Tracks that look like leopard tracks, but accompany a definite tiger
track, often indicate a tigress moving with her cubs. Several publications describe
how to recognize and record tiger and prey signs in the field (van Strien 1983;
Rabinowitz 1997; WWF-Nepal 1998; McDougal 1999). Illustrations of common
large carnivores and prey species of tigers that occur in tropical Asia and of the
tracks they leave are provided in Karanth and Nichols (2002; pp 167-175). These
materials can be used to familiarize survey personnel with the survey objects.
However, we reiterate that manuals are not a substitute for actually looking at
animals or signs and gaining practical experience in accurate recognition.

http://dx.doi.org/10.1007/978-981-10-5436-5_4
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5.5 Field Survey (Data Collection) Protocols

It is extremely important to prepare standardized data forms beforehand (see
Table 5.1 for example). Clear guidelines must be given to field teams on how to
fill in each column for every record. This will minimize error and unstandardized
data collection and recording.

Field survey teams should make preplanned visits to cells and search for the tiger
sign following a carefully worked-out survey design (see above and Chap. 4; also
see Hines et al. 2010 and Karanth et al. 2011 for example). As described above, the

Table 5.1 Occupancy survey: field data form

Form No.: Date: Grid: Survey Team:

Start time: End time: GPS No.: GPS File Name: Replicate:

Start LAT/LONG: End LAT/LONG:

Area: Survey Route:

Segment
number 1 2 3 4 5 6 7 8 9 10
Segment 

type
Substrate
condition

Habitat type

TGR

LPD

DHL

BER

ELP

CHT

SBR

GAR

MJK

PIG

LVS

UID

Remarks

http://dx.doi.org/10.1007/978-981-10-5436-5_4
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Table 5.1 (continued)

SUPPLEMENTARY INFORMATION RECORDED

Instructions for filling the form:
Record ONLY the first encounter of TRACK and SCAT/PELLET for each species in every 100-m
segment. Segment Type, Substrate Condition and Habitat Type should be entered for every 100-m
segment.
Enter a “tick mark‟ for specific human impact categories ONCE every kilometre. Describe details of human
impact under “Remarks” column of the main datasheet in the segment where the human impact sign was seen.

Details of Direct Sighting (number seen for each and every direct sighting), photos taken (photo file name)
with details in the “Remarks” column should be entered in the Supplementary Information Table.

Acronyms used in the form:

Segment type: ROD=Road, TRL=Trail

Substrate condition: SOF=Soft Soil, HAR=Hard Soil, LLT=Leaf Litter, GCR=Grass Cover 

Habitat type: FOR=Forest, SCB =Scrub, GRS=Grassland, OTH=Other

Species: TGR=Tiger, LPD=Leopard, DHL=Dhole, BER=Bear, ELP=Elephant, CHT=Chital, SBR=Sambar,

GAR=Gaur, MJK=Muntjac, PIG=Wild Pig, LVS=Livestock, UID=Unidentified

Evidence: S=Scat, T=Track, P=Pellet, D=Direct Sighting, C=Call

Remarks: OBE=Organized Biomass Extraction, LBE=Local Biomass Extraction, FIR=Forest Fire,

MFP=Minor Forest Products (non-timber), PCH=Poaching, MIN=Mining/Clearance of land, MOD=Habitat

Modification

Species Segment No. No. Seen (Direct sighting) Photo ID Remarks

field survey teams should be directed to pass through the randomly located sub-cell
in each cell. The field teams should search potential tiger habitat within each larger
cell, guided by local knowledge. The survey of a cell may take 1–7 days depending
on the topography, terrain, vegetation density, presence of natural barriers, and
logistical constraints such as availability of manpower. Each cell should be surveyed
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in a predetermined, convenient sequence so that all the cells are covered within the
entire occupancy survey period.

When searching for tiger signs, the field team(s) should thoroughly search at most
likely places to locate tiger signs by walking along trails, mineral licks, logging
roads, rivers banks, and stream beds – whatever works best in the field situation.
Linear daily movement of survey teams should aim to mimic the movement patterns
of tigers. Each trail segment should be surveyed only once, and “return journeys”
made along it should be excluded for data collection purposes.

We note that, sometimes, after completing the predetermined sampling effort
within a cell, substantial distances may have to be walked within that same cell to the
next cell to be surveyed. Similarly, long distances may have to be walked to reach
overnight camping points. We recommend that all such walking effort expended
within the “defined tiger habitat inside each grid cell” should not be considered
“wasted effort” or “down time,” as far as possible. With careful planning, even these
distances walked can be combined to meet the required survey effort for each cell,
under the specified survey design. Thus, all tiger sign data should be collected and
recorded meticulously, including the survey effort, within all tiger habitat traversed.
The only time the tiger sign should not be recorded is when the team ends up
completely out of the tiger habitat, for example, while moving to the camp or to
the next cell. Only such “real wasted effort” should be excluded from the survey
sampling effort. It should be noted here that fatigue can sometimes cause teams to
miss signs. Therefore, in order to not compromise on the data quality, it is important
to carefully plan the survey effort/distance to be walked per day depending on teams’
abilities, terrain, etc.

5.6 Protocol for Collecting Covariate Data

Different factors can influence the occupancy of tigers in a given site depending
on habitat conditions and refuge, availability of sufficient prey, and anthropogenic
disturbances. Indeed, assessment of the importance of such factors may be an
important objective of the survey and modeling effort. Concurrently, certain factors
may also affect the detectability of tiger and prey signs such as substrate and weather
conditions. Tremendous value can be therefore added to a survey if appropriate
covariate data are collected during a sign-based occupancy survey. Thus, in addition
to data on tiger signs, data on predefined covariates should be recorded for every
100-m or 1-km segment (see the datasheet in Table 5.1). As an example, we
provide in Box 5.2 covariate data that were gathered during tiger occupancy surveys
in India (Karanth et al. 2011; also see Sunarto et al. 2012, Harihar and Pandav
2012, Chanchani et al. 2016 for additional examples). It is important to note that
covariate data need to be collected for every search path segment in every cell
irrespective of whether tiger signs were encountered in the segments. Moreover,
it is imperative to train surveyors and standardize the observation process and
recording of the covariate so as to minimize observer bias. Apart from collecting
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ground-based covariates, data on certain covariates such as terrain, forest type, etc.,
can be obtained from remotely acquired satellite imageries. It may also be useful,
where possible, to consider covariates that are continuous or ordinal rather than
categorical variables to have more flexibility and power in data analysis.

Box 5.2: Example of Covariate Data That Can Be Collected During
a Sign-Based Occupancy Survey (from Karanth et al. 2011)

Segment Type ROD D Road, TRL D Trail

Segment-type covariate is to indicate the width of the 100-m sample
segment being surveyed. Road means a forest road which is wide enough for
a four-wheel vehicle to pass. Road may have either two visible or no tracks in
it. Trail means a narrow forest or animal trail used either by humans or other
animals.

Substrate Condition SOF D Soft Soil, HAR D Hard Soil, LLT D Leaf Litter,
GCR D Grass Cover

Substrate condition covariate is to indicate the prominent substrate con-
dition for every 100-m sample segment. For example, if you are walking on
a road, the substrate condition for the tracks on the road should be recorded
and not for the center of the road which is usually covered with grass. The
dominant substrate condition of the sample segment should also be recorded.
For example, if the substrate condition for the tracks is soft for more than 50%
of the 100-m segment and the rest is hard, then it should be recorded as soft
(SOF). Similarly if the tracks on the road or trail are covered with leaf litter
for more than 50% of the 100-m segment, then they should be recorded as
LLT.

Habitat type MDF D Mixed Deciduous Forest, EVG D Evergreen Forest,
GRS D Grassland, OTH D Other

Habitat-type covariate is to indicate the prominent habitat found in the
100-m segment surveyed. MDF indicates mixed deciduous forest (both moist
and dry deciduous forest types are included in this category), EVG indicates
evergreen forest, GRS indicates grassland, and OTH indicates any other type
of habitat that might be found (e.g., plantations). The prominent habitat type
for the 100-m segment walked should be recorded. For example, if more than
50% of the 100-m segment was deciduous and less than 50% was evergreen,
then the habitat type should be recorded as MDF for this 100-m segment.
The habitat-type categories have to be decided a priori based on information
available on the forest vegetation types prevalent in the overall study area.
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5.7 Collection of Ancillary Data

As mentioned earlier, misidentification of signs and generating false positives can
result in severe misinterpretations of the results. If possible, it is always useful to
collect fecal/scat samples to extract fecal DNA. Fecal DNA-based genetic analysis
facilitates the unambiguous identification of species, thus eliminating misclassifi-
cation errors. It is also useful for identification of individual tigers, which permits
application of advanced modeling to derive tiger abundance estimates and other
population dynamic parameters under appropriate survey designs. Furthermore,
it can be used to investigate genetic relatedness between populations over large
regions (see Chap. 13 for details). However, to ensure the scat samples are useful,
it is necessary to follow carefully standardized protocols (e.g., to avoid cross
contamination of DNA, which may render the analyses futile).

DNA is best obtained from fresh <24-h scats. However, we have had some
success in getting DNA from even older scats. Therefore, it is advisable to collect
scats that are judged to be <7 days old, in reasonably intact, not totally washed,
or dried-out conditions. However older scats including the deteriorated ones can be
collected for other non-DNA, dietary studies. Furthermore, new or future analytical
techniques such as e-DNA may allow DNA extraction from old scats or other low
quality samples. If logistics permit, scats can be frozen, and DNA can be extracted
later as well. For further details on collection and preservation protocols, please see
Chap. 11.

5.8 Additional Methods for Assessing Occupancy

Before we describe alternate methods to assessing occupancy of tigers, please note
that these are not substitutes for conducting field surveys at finer scales as described
earlier in this chapter and elsewhere in this manual. The objective of this section is
to provide an overview of other methods that have used the occupancy framework
to address similar questions.

5.8.1 Questionnaire Surveys

If very large regions are to be surveyed in a short period without investing tremen-
dous amounts of effort in the field, occupancy surveys based on “expert information”
can be considered. In such a case, each reliable informant or expert consulted
becomes a “replicate sample.” See Karanth et al. (2009) for examples of occupancy
modeling of large mammals, including tigers, based on expert information surveys.
In order to be most useful for occupancy modeling, such interviews should focus on
recent time spent by the informant in the field and any actual detections of tigers
or their signs. Note that this kind of specific information is very different from
simply asking informants about whether they believe tigers to be present in an area

http://dx.doi.org/10.1007/978-981-10-5436-5_13
http://dx.doi.org/10.1007/978-981-10-5436-5_11
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or not. Information from reliable local hunters, naturalists, researchers, and wildlife
personnel can be useful, but soliciting information from unreliable informants –
via random sampling or the like – might not provide valuable data for analysis.
We note that quite often, such knowledgeable informants may not be literate or
educated and may be even suspicious about the surveyors’ motives, and hence
special communication skills may be required to elicit reliable information from
them (e.g., making them first identify a species from photographs). Questionnaire
surveys should be conducted only by trained personnel capable of assessing the
quality of information. If the informants are ignorant or untruthful, the data should
be discarded. Questionnaire surveys with reliable informants or experts may also
yield information on certain aspects of populations that are difficult to obtain
through sign-based occupancy surveys. For example, one may be able to assess
where the population is breeding over large regions by gathering information on
sightings of mothers with cubs by reliable informants.

Each individual informant must be treated as a distinct survey (replicate), and
his or her information must be recorded on a fresh questionnaire survey form. As in
the case of field surveys of signs, these forms must be systematically numbered
and cross-linked to geo-referenced maps. In such studies, one must carefully
delineate/identify the areas, represented by a single or a group of sampling units
(such as grids), that the interviewee is knowledgeable about (area of knowledge).
Several criteria can be used to determine the interviewees’ familiarity with the area
(e.g., interviewee must have either lived in or visited or “surveyed” a sampling unit
at least twice per month for a year; Zeller et al. 2011); however, these will have to
be defined keeping in mind the specific objectives of the study. Also it is critical
to ensure that the detection of species is based on first-hand information and not
hearsay (as this could violate the assumption of independence).

5.8.2 Media Reports

Certain species such as tigers are able to generate substantial media attention,
especially if they are detected outside, or on the fringes of forested habitats. Athreya
et al. (2015) used media reports collected over a 1-year period to determine the
occupancy of leopards across a 191,791-km2 landscape. Since such an occupancy
analysis is based on secondary data, certain precautions must be taken. First and
foremost, it is of utmost importance to check the reliability and authenticity of
the news report as there are chances of obtaining a false presence. To ensure this,
one should rely on trusted news sources, as well as checking if there are multiple
reports about the same incident. Additionally, there may be a bias in the process of
selecting media reports – certain areas may have better reportage in comparison to
isolated or rural areas. It is therefore important that this detection bias is considered
during the modeling process (e.g., via use of distance to a human population
center as a covariate for detection probability). Care must also be taken while
aggregating data – multiple news reports about the same incident/sighting should
be combined and treated as unique records. It is vital to consider the spatial scale of
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occupancy, i.e., size of the grid cells or administrative units should be coarse enough
to reliably attribute news reports to a location. For example, in the above study,
while incidents/sightings pertained to specific villages, assessments were made at
the subdistrict level. This was because at the subdistrict level, the spatial locations
could be unambiguously assigned to the correct administrative unit (as there are
several villages in India with the same names). While each month was considered
as an independent replicate, one should be careful to distinguish between the date
of news report and the date of incident/sighting when attributing the detections.

5.8.3 Historical and Museum Records

For the purpose of monitoring, and to assess range contraction over long periods of
time (decades or even centuries), it may be useful to use either historical literature
(such as hunting records or natural history notes) or museum records to provide
information on species distribution. However, such records provide information on
the distribution of detections, but not on what areas were “sampled” but provided
no detections. Such presence-only data cannot be used with standard occupancy
modeling and require extremely restrictive assumptions for any sort of distribution
modeling (see Royle et al. 2012; Yackulic et al. 2013). Such distribution surveys can
also be useful for estimating extinction rates and predicting species extinctions over
longer time periods. For example, Karanth et al. (2010) conditioned on locations of
known historical occurrences and then conducted present-day sampling to estimate
the fraction of these locations that were still occupied by 25 species of Indian
mammals. The complements of these persistence proportions were extinction rates,
which were modeled as functions of relevant covariates. However, extra care must
be given as old records do not typically have accurate location information and only
have an associate position with nearest village or town.

5.9 Organizing Field Data for Mapping and Analysis

The data from field surveys or questionnaires will be in the form of several maps and
“tiger detection” data on field forms linked to these maps. The investigator should
examine these forms to correct errors, remove ambiguities, discard questionable
data, and fill in missing information by interviewing the field survey team members.
This must be done immediately after the surveys. It is often a good idea for the
investigators to physically check a certain proportion of the data through random
field visits, as this will enhance data quality. Thereafter, the investigator must ensure
data forms and maps are intelligible to persons entering the data into computers,
preparing spatial distribution maps, or performing other analyses. As data volumes
can be very large, we recommend using a database (e.g., MS Access, PostgreSQL)
to store and retrieve data for analysis. Additionally, database software allows
creation of forms to allow data entry which eliminates entry mistakes that can prove
costly while carrying out analysis.
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6Concepts: Estimating Abundance of Prey
Species Using Line Transect Sampling

Samantha Strindberg, N. Samba Kumar, Len Thomas,
and Varun R. Goswami

6.1 Introduction

The principal prey of tigers are typically large, diurnal ungulates and can be visually
detected and counted by observers while walking, riding domesticated elephants,
or in very open habitats from aircraft, moving along a straight line. At the same
time, the observers can also record distances to observed animals from this line.
Therefore, line transect sampling is a method frequently used to estimate their
density and abundance, as with many other wildlife species. It is a special case of
a wider class of methods called distance sampling: in line transect surveys, data are
collected along transect lines (as opposed to point transects, where data are collected
from points). The basic distance sampling methods are described comprehensively
in the book by Buckland et al. (2001), which is an update to a previous book
by Buckland et al. (1993) and is predated by earlier work (e.g., Burnham et al.
1980). More advanced elements are described by Buckland et al. (2004) and recent
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developments can be found in Buckland et al. (2015) and Kéry and Royle (2015).
These references should be consulted to obtain an in-depth understanding of theory
involved.

Thomas and Karanth (2002) provided a concise summary of the line transect
sampling method as applicable to tiger prey species earlier. The current chapter
explains fundamental concepts of line transect sampling together with the summary
of recent advances that are relevant for sampling tiger prey populations in forested
habitats. Chapter 7 that follows describes field practices.

In the line transect method, detections are made of individual animals (or groups
of animals) of the target species; this requires habitat in which individual animals
can be seen before they respond and move. Here we provide a basic introduction
to line transect sampling focusing on visual detection of tiger prey species to
estimate their density, abundance, and factors influencing their spatial distribution.
Throughout, we assume that the target during any survey is one or several tiger prey
species, such as gaur, Asiatic water buffalo, sambar, chital, muntjac, and wild pig
that typically live in forested habitats (Chap. 2).

Line transect sampling can be seen as a generalization of strip transect sampling.
During strip transect sampling, observers traverse a set of randomly located lines,
detecting and recording all animals of the target species within a set distance w
on either side of the line. To ensure that no animals within the strip of width
2w are missed, the strip must be reasonably narrow. This is fine for animals that
occur at high density and are easily detectable. Strip transect sampling, however, is
inefficient and leads to biased estimates in most surveys of tiger prey species. In a
line transect, a much wider strip can be searched, potentially as far as the observer
can see from the line, because perfect detectability is assumed only on the line itself
and the assumption that all animals in the strip are counted is relaxed (Fig. 6.1).

Additional data, namely, the perpendicular distance between each observation
and the transect line, are used to estimate the detection probability. In the case of
tiger prey surveys, observers typically record the observer-to-animal distance (the
“radial distance”) and the compass bearings to the animal and line, which are used
to calculate perpendicular distance. It is standard practice in surveys of prey species
to record only visual detections, because aural detections tend to be inaccurate in
terms of distance, species, and group size estimates (Alldredge et al. 2007a).

To gain an understanding of how the line transect method fits into the general
statistical framework described in Chap. 3, let us revisit the canonical estimator:

bN D
C

bp˛
(6.1)

where bN is estimated abundance, C is the number of animals counted, bp is the
estimated proportion of animals counted, and ˛ is the proportion of the study area
surveyed;bp relates to detectability and ˛ relates to spatial sampling.

http://dx.doi.org/10.1007/978-981-10-5436-5_7
http://dx.doi.org/10.1007/978-981-10-5436-5_2
http://dx.doi.org/10.1007/978-981-10-5436-5_3
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2w

Line Transect

Survey Region

Observed

Unobserved

Outside sampled area

Fig. 6.1 During a line transect survey of tiger prey species, observers move along a set of
randomly located line transects. The unit of observation is the prey group. Group size and radial
distance to the center of the groups is recorded. Some of the animal groups are seen by the
observers, while others are not; some fall outside the sampled area – the subregion, a distance
w from the line. Methods are used to correct for these animals missed by the observer

In strip transect sampling, we assume all animals within the surveyed strips are
detected and hencebpD1; whereas in line transect sampling, we use the perpendic-
ular distances to detected animals to estimate p. Regarding spatial sampling, if L
is the total length of all the transects, then we can conceptualize the area surveyed
as a rectangle of width 2w and length L. Thus the area surveyed is 2wL and the
proportion of the study area, A, surveyed is ˛D 2wL/A. Consequently, Eq. (6.1) can
be written as

bN D
AC

bp2wL
(6.2)

Density and abundance are related as follows N D D � A, so the equation to
estimate density is

bD D
C

bp2wL
(6.3)
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Given that tiger prey species often occur in groups (referred to as “clusters” in
the distance sampling literature), it is the group that constitutes the unit of detection
during line transect surveys. Thus, the perpendicular distance to the center of the
group is recorded, as well as the group size. Once group density in the study area
has been estimated using Eq. (6.3), an estimate of individual animal density can be
obtained as follows:

bD D
CbE.s/

bp2wL
(6.4)

where C is now the number of detected groups and bE.s/ denotes the estimated
population mean group size.

In the remainder of the chapter, we will focus on (1) the theory behind the
line transect sampling method, (2) the critical assumptions underlying density or
abundance estimation with line transect sampling and the potential biases that
arise if these are violated, (3) survey design options with an emphasis on reducing
variability and other alternatives for improving precision, and (4) data analysis with
an overview of the software tools available to design line transect surveys and
analyze the resulting data. In this last section, we focus on the heart of distance
sampling (of which line transect sampling is a special case), namely, modeling
the detection function, and revisit some of the more advanced topics introduced in
earlier sections, such as multiple covariate distance sampling and spatial modeling
using distance sampling data and other covariates.

6.2 Line Transect Sampling Theory

In this section we outline how density estimates are obtained by accounting for
the proportion of animals counted and the proportion of the study area sampled.
We also describe how associated variances and confidence intervals for density and
abundance are estimated.

6.2.1 The Distance Sampling Survey

Prior to conducting the line transect survey, k transect lines of length l1 , : : : , lk
(with total length L D

Pk
jD1 lj) are randomly located within the study area (survey

design is covered in more detail in Sect. 6.4). During the survey, observers traverse
these lines and record clusters of all tiger prey species seen. A “cluster” consists of
one or more individual animals where group membership is clearly defined in the
field protocol ahead of the survey (see Chap. 7). Observers record data necessary
to obtain the perpendicular distance to the center of the group and the group size.
Sometimes only observations out to a distance w from the line are recorded, but
more frequently all observations are recorded and w is set during analysis (see
Sect. 6.5).

http://dx.doi.org/10.1007/978-981-10-5436-5_7
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Line transect surveys for tiger prey species can be conducted from an airplane
(in very open habitats), from elephant back, or on foot. Generally, for these types
of survey, different kinds of measurements are taken to calculate the perpendicular
distance x from the center of the animal group to the transect line during analysis:
frequently for an aerial survey, a clinometer reading to obtain the angle of
declination � to the center of the group as it passes abeam is taken (where 0ı is
at the horizontal plane and 90ı is directly below the aircraft) and the height of the
airplane h is recorded; for a ground-based survey, it is more usual to obtain a radial
(sighting) distance r and sighting angle � . The sighting distance is the distance from
the observer on the transect line to the center of the group of animals, and the
sighting angle is the angle between the transect line and an imaginary line drawn
between the observer and the center of the group (Fig. 6.2). For the aerial survey
x D h/ tan� and for the terrestrial survey x D r sin � .

a b

h

Observer

x

Transect line

Observer

x

Transect line

r

f q

Fig. 6.2 Perpendicular distance x to the center of the animal group is calculated (a) from the
height of the airplane h and angle of declination ® by applying the formula x D h/ tan�, for an
aerial survey (note that the alternate interior angle that has the same degree measurement as the
angle of declination, which is the angle between the horizontal plane and the sighting, is labeled
on the figure to make the formula more intuitive), and (b) from the radial (sighting) distance r
and sighting angle � by applying the formula x D r sin � , for a terrestrial survey conducted from
elephant back or on foot
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6.2.2 Estimating Detectability

When the transect lines are located randomly, there will be, on average, an equal
number of animal groups close to the transect lines as there are far away. However,
the number of detected groups drops off with increasing perpendicular distance
(Fig. 6.3a), because animals farther from the line are more likely to be obscured by
vegetation. This decrease in detected groups with distance from the line therefore
tells us about how detectability changes with distance. During a standard distance
sampling analysis, we exploit this fact to estimate p the average proportion of animal
groups in the surveyed strips that is counted. We define a detection function g(x),
which gives the probability of detecting a group when it is at a distance x from the
line, where x is between 0 and w. g(x) will tend to decrease with increasing x. We
can conceptualize this by considering the detection curve that has been fitted by eye
to the data in Fig. 6.3a. To estimate p, the area under the curve corresponding to the
average number of detected animal groups at each distance is divided by the area of
the rectangle corresponding to the actual average number of groups at each distance
(i.e., the number we would detect, on average, if we could detect them all). Note
that this requires us to assume all animals at zero distance are detected (i.e., that
g(0) D 1), in order to determine the height of the rectangle.

Figure 6.3b shows the same curve but this time rescaled so that the y-axis is
the probability of detection, g(x), rather than average number of detections. We
introduce another term commonly found in the line transect literature: the “effective
strip width” (ESW) (or, more correctly, the “effective strip half width”) denoted by

�, as the area under the detection function: � D
w
R

xD0

g.x/dx: Since the proportion of

animal groups counted, p, is equal to the area under the curve divided by the area
of the rectangle, and in this case the height of the rectangle is g(0), which is 1, this
implies that

bp D

w
R

xD0

bg.x/dx

1:0 � w
D
b�

w

We can think about the ESW as the distance at which as many animals are expected
to be seen beyond � as are missed within � (note the two hatched areas in Fig. 6.3b
are equal in size).

One last piece of terminology is helpful to understand how the detection function
g(x) is actually fitted to the observed distances: the probability density function
(pdf) of the observed distances, denoted f (x). This can be loosely thought of as
the probability that a detected animal is detected at distance x. It is obtained by
rescaling the detection function: f .x/ D g.x/

�
:

The area under the pdf must be 1 (i.e., all detected animals are detected
somewhere between distance 0 and w), and if we define f (x) as above, we obtain

w
R

xD0

f .x/dx D 1
�

w
R

xD0

g.x/dx D �

�
D 1.
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We now can write down the statistical likelihood of the data, given some model
for the detection function:

L D

C
Y

iD1

f .xi/

where xi is the observed distance of the ith detected animal, there are C animals
detected in total, and f (x) denotes the model for the detection function. This in turn
is the key to estimating the parameters of the detection function model using well-
known methods such as maximum likelihood or Bayesian inference. The software
packages used for model fitting are more fully described in Sect. 6.5.

Once we have an estimate of f (x), it is easy to derive estimates of � or p: since
we assume g(0) D 1, it follows that the pdf evaluated at x D 0 is given by f .0/ D 1

�

(see Fig. 6.3c) and hence � D 1
f .0/ ; hence p D 1

f .0/w :

6.2.3 Estimating Abundance and Density

Once we have an estimate of the detection probability, p, animal abundance can be
estimated using Eq. 6.2. and density using Eq. 6.3. If animals are detected in groups,
we can use Eq. 6.4 – but we must first obtain an estimate of the population mean
group size, E(s). If large and small groups are equally visible at any distance from
the transect line, E(s) can simply be estimated by taking the mean of the observed
group sizes. Frequently, this is not the case, as large groups tend to be more visible
especially as distance from the line increases. This phenomenon leads to size bias,
because large groups are overrepresented in the sample. There are a number of
approaches for dealing with this type of size-biased sampling, where the detection
probability is a function of both distance from the observer and group size, and they
are briefly covered in Sect. 6.3.5.

6.2.4 Estimating Variance and Confidence Intervals

Quantifying the uncertainty in an estimate is just as important as calculating the
estimate itself. For example, you would place a very different interpretation on the
statement that there are 2.1 muntjac per square kilometer of forest if you were
also told that the 95% confidence interval on this estimate was 1.7–2.6 versus
if this confidence interval was 0.4–10.7! Here we outline how to quantify the
uncertainty on a density estimate in terms of variance, coefficient of variation (CV),
and confidence interval.

The variance of the density estimate, var
�

bD
�

; has three components: variance in

number counted (C), variance in the estimation of detectability (p), and variance
in the estimation of average group size E(s). Typically, these three components
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Fig. 6.3 (a) An example of plotting the distances recorded to animal groups during a distance
sampling in six distance intervals. The dashed lines show the expected number of objects in each
interval. The curve has been fitted to these data by eye, and the area under the curve represents
the number of observations that were made, while the area above the curve represents the missed
observations. Thus the proportion of animal groups counted is equal to the area under the curve
(27.25) divided by the total area of the rectangle (1.5 � 25 D 37.5), i.e., bp D 27:25=37:50 D
0:7676, approximately. (b) A detection function is defined such that g(0) D 1, and the effective strip
width � is the distance at which as many animal groups are seen beyond � as are missed within

� (shaded regions). The proportion of groups detected and countedbp D
w
R

xD0

bg.x/dx= .1:0� w/ D

b�=w. (c)� can be estimated by fitting a probability density function f (x) of perpendicular distances
to the data to obtain b� D 1=bf .0/
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are statistically independent, so var
�

bD
�

can be calculated using the delta method

approximation (Powell 2007, Oehlert 1992):

vbar
�

bD
�

D bD2 �

8

<

:

vbar.C/

C2
C

vbar .bp/

bp2
C

vbar
�

bE.s/
�

bE.s/
2

9

=

;

(6.5)

The variance of the counts among transect lines, after taking into account the
potentially different line lengths, is usually used to estimate the variance in number
of animal groups seen, var(C) (Buckland et al. 2001: pp. 78–79, 108–109, 154–
155; Fewster et al. 2009). This is usually the largest component of the variance
(70–80% of the total), and to obtain a reliable estimate of this variance at least
15–20, but preferably more than 25, replicate lines are required. A less than ideal
solution that can be applied when there are insufficient transect lines to estimate
var(C) empirically is to estimate this variance by assuming that it is proportional to
the expected value of C. The detection function is fitted to the distance data, and
thus a likelihood-based estimate of var .bp/ is produced. The approach for estimating

E(s) will determine how var
�

bE.s/
�

is estimated (Buckland et al. 2001: pp. 72–74,

120, 164).
If the components comprising Eq. 6.5 are not independent (e.g., when animals

can be found in few large groups or many small groups and this tendency varies

spatially), then a nonparametric bootstrap can be used to estimate var
�

bD
�

: This

statistical technique does not require any distributional assumptions and involves
randomly resampling the data with replacement to obtain a large number of

estimates of D from which var
�

bD
�

is then estimated. The resamples are taken at

the level of the transect line, as these are considered to be independent, rather than
at the level of the observation (Buckland et al. 2001: pp. 82–84, 117, 161–164).

When considering precision of a density estimate, it is convenient to use the

coefficient of variation (CV), where CV
�

bD
�

D

q

var.bD/
bD

. CV
�

bD
�

gives the size

of the standard error of the density estimate

r

var
�

bD
�

relative to the size of the

estimate bD: As a unit-less quantity, it can be used to compare different studies that
may use different units or have very different estimates of density or abundance.

Thus Eq. (6.5) can equivalently be written in terms of CV
�

bD
�

as follows:

bCV
�

bD
�

D

r

h

bCV.C/
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Burnham et al. (1987: pp. 211–213) showed that log-based confidence intervals
give a better measure of the precision of bD than the standard symmetrical 95%
confidence intervals. Thus the approximate asymmetric 95% confidence inter-
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vals are given by bD=C and bD � C where C D exp
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. In practice the 1.96 that corresponds to a

normal distribution is generally replaced by another constant (Buckland et al. 2001:
pp. 77–88, 118–119). These calculations are done automatically by the standard
software packages. Alternatively, a nonparametric bootstrap can be used to estimate
confidence intervals without making any distributional assumptions.

6.3 Assumptions of Line Transect Distance Sampling
and Biases Arising from Their Violations

In this section we look at the four critical assumptions underlying distance sampling
along line transects and consider the biases that arise if these assumptions are not
met. These assumptions are covered in considerably more detail in Buckland et al.
(2001: pp. 29–37, 130–133). We also look at some other issues that are important to
consider to successfully apply distance sampling methods.

6.3.1 An Adequate Number of Line Transects Is Located Randomly
with Respect to the Distribution of the Animals

Conventional distance sampling uses both model- and design-based inference
(Thompson 1992). The former is used when fitting the detection function. The latter
pertains to the random placement of the transect lines. Distance sampling requires
independence between the animal distribution and the location of the line transects.
This can be achieved through a survey design that ensures random placement of the
transect lines. A random survey design permits valid inference at two levels:

1. Reliable estimation of the proportion of animals counted bp from the observed
distances. In order to interpret the pattern of observed distances, we must
assume that the true distribution of animals does not change with distance (i.e.,
the rectangle in Fig. 6.3a) – in other words that animal groups are uniformly
distributed in the interval [0, w]. Although this is an assumption about the animal
distribution (and so model-based inference), it is met if the lines are placed at
random – so having a good survey design ensures this model-based assumption
is met.

2. Reliable extrapolation from observations made during the survey in the sampled
area to the entire study area. This requires that the surveyed lines are represen-
tative of the study area as a whole. A sufficient number of randomly located lines
is likely to pass through areas with densities representative of the entire region
of interest rather than some smaller set of areas with possibly atypical densities.
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Without a random design, one can resort to model-based inference, which relies
on the possibility of fitting a model that reasonably approximates the processes that
gave rise to the data. Thus, the simplest and most robust alternative is to use a
random survey design. In Sect. 6.4 we focus on various survey design options.

If the assumption of random transect placement is violated, then the resulting
density estimates have the potential to be either positively or negatively biased. For
example, if the transects are placed along or in the vicinity of trails and animals
either use those trails preferentially or avoid them, then density and abundance will
be overestimated or underestimated, respectively, if applied to a larger region.

In addition, with an insufficient number of randomly placed lines, the potential
exists to sample only areas with atypical densities by chance. In addition inadequate
replication leads to poor estimates of precision. The exact number of transect lines
required for adequate replication depends on the variability in tiger prey density over
the region of interest; 25 spatially replicated lines are a reasonable recommendation,
but sometimes 15–20 lines may suffice.

Another important consideration concerns the probability of sampling a partic-
ular location (referred to as the coverage probability) for a given type of random
survey design. Ideally, every location in the survey stratum (see Sect. 6.4.1 on how
to stratify your survey area to improve precision) should have the same probability
of being sampled (“covered” by a transect line and its associated search area, hence
the term “coverage probability”), if the standard analysis technique is to be applied.
Those types of designs where the coverage probability is variable have the potential
to produce biased estimates. If standard methods are applied during the data analysis
phase and coverage probability is assumed to be even when it is not, then if high
(or low) density areas were sampled more intensively this would lead to a positive
(or negative) bias. If the differences in coverage probability are extreme, then it
may be advisable to use an estimator that takes account of this. However, this type
of estimator is likely to increase the variance of the estimate (Strindberg 2001;
Strindberg and Buckland 2004).

6.3.2 Animals on or Very Near the Line Are Detected with Certainty

For distance sampling along line transects, the derivation of the density estimator is
based on the assumption that all animal groups are detected at zero perpendicular
distance from the line, i.e., g(0) D 1. If this assumption does not hold because animal
groups whose centers are on or very near the line are missed, then estimates of
density or abundance will be negatively biased, as the proportion of animal groups
counted, p, will be underestimated. When only the assumption of perfect detection
on or near the line fails, the negative bias is a simple function of the proportion of
objects on the line that is missed. For example, if 20% of groups with center on or
near the line are missed, then the estimate of animal density or abundance will be
20% lower than it should be. In particular, when dealing with animal groups, this
assumes no movement, so that the entire detection function is effectively scaled by
0.8. Depressed g(0) could also occur due to evasive movement, but this would not
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scale the entire detection function by 0.8. In reality it should be possible to meet this
assumption in terrestrial surveys of tiger prey species through good field methods
as outlined in Chap. 7. However, this assumption is difficult to meet in some line
transect surveys (e.g., aerial surveys of tiger prey species in the Russian Far East),
where advanced methods must be used to estimate g(0) (see Laake and Borchers
2004, Borchers et al. 2006, 2013, Fewster and Pople 2008, Burt et al. 2015, Borchers
and Langrock 2015 for details).

6.3.3 Animals Are Detected at Their Initial Location

In line transect surveys, slow nonresponsive movement of the animals relative to the
speed of the observers is generally not problematic. The general recommendation is
that observers should be moving 2–3 times the average speed of their target animals
to avoid biases associated with animal movement (Buckland et al. 2001).

If animals systematically move, away from the observers, as they typically do,
and if such responsive movement takes place before the animals are detected, then
estimates of density or abundance will be negatively biased. Such evasive movement
is likely for prey surveys, and it is difficult to identify when it is moderate, as it
may just make the detection function look as though it has a wide shoulder. Note
that a “spike” at zero distance can have several causes, including unlikely attractive
movement, rounding distances or angles to zero (in the case of attractive movement,
there will be a surfeit of small values, but zeroes will not be overrepresented),
guarding the transect line, or cutting wide straight transects, so that (a) animals
start to use them as trails and (b) one can see a long way ahead (see Chap. 7). See
Fig. 6.4a for an example of how data might look with responsive animal movement.

It is difficult to obtain reliable estimates of density if there is responsive
movement, emphasizing the importance of sound field procedures that minimize
disturbance as observers move along line transects (see Chap. 7 for details).

Certain tiger prey species may be extremely wary, making it impossible for foot-
based observers to meet this assumption. In such a case, elephant-back surveys may
provide an alternative (Karanth 1988, Wegge and Storaas 2009).

6.3.4 Measurements from the Line to the Center of Each Detected
Animal Group Are Exact

For a terrestrial survey, the radial distances and sighting angles should be recorded
correctly, similarly, for the clinometer and height readings taken during an aerial
survey. It is especially important that distances to animals near the line transect
should be measured both precisely and accurately. A prerequisite for this is that the
location of the line is clearly defined and known to the observers.

If distances to observations are rounded to convenient values (see Fig. 6.4c), then
it is possible to deal with these “heaped” data during analysis by grouping data into
distance intervals, where cut points for the intervals are chosen so that heaps fall

http://dx.doi.org/10.1007/978-981-10-5436-5_7
http://dx.doi.org/10.1007/978-981-10-5436-5_7
http://dx.doi.org/10.1007/978-981-10-5436-5_7
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Fig. 6.4 Examples of (a) evasive movement where animals have moved away from the observers
prior to detection; (b) spiked data potentially caused by rounding perpendicular distances or angles
to zero, guarding the transect line, extensively clearing the transect line, or by movement toward the
observers prior to detection (less likely for tiger prey surveys); and (c) heaped data where distances
are rounded to convenient values

approximately at the midpoints of the intervals. However, systematic bias in distance
measurements cannot be dealt with unless bias correction factors are estimated by
means of experiments. Consistently overestimated distance measurements will lead
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to underestimation of densities and vice versa. This is also the reason why observers
should measure the distance to the center of the animal group rather than to the
closest or first individual seen; the latter option may seem more convenient but will
lead to positively biased density and abundance estimates. Hence, it is important to
follow good field procedures to meet this assumption (see Chap. 7 for details).

Care must also be taken to avoid a “spike” of detection data at zero distance,
which occurs if sighting angles to an animal or center of a group, a considerable
distance ahead, are rounded to zero (see Fig. 6.4b). Technical aids (reticule
binoculars, optical and laser range-finders, compasses, clinometers, etc.) should be
used to improve the accuracy and precision of measurements.

If the survey conditions make it especially difficult to record detection distances
precisely, then an option is to record data by distance interval (this is particularly
relevant for aerial surveys). For line transects, intervals are usually narrower near the
line and increase in width with increasing distance from the line, with 5–7 distance
intervals being recommended and careful measurement near the interval cut points
being required. It is best to avoid measurement errors whenever possible, because
the options are either a biased estimate of density and abundance or an attempt to
accommodate these measurement errors with the added expense of additional data
collection and increased analysis complexity with likely increased variances as well
(Borchers et al. 2010).

6.3.5 Other Important Considerations

To reliably model detection, one should aim for a sample size of 60–80 animal
groups per species (and per stratum) in line transect surveys. The exact sample size
required depends on the nature of the data; usually fewer observations are needed if
detectability is certain near the line and remains certain or nearly certain for some
distance from the line, whereas a larger number is needed if detection drops off
rapidly with distance from the line. Sometimes species with similar detectability can
be combined when sample sizes are limited per species (Durant et al. 2011). In such
instances, including species as a covariate and using the multiple covariate distance
sampling (MCDS) analysis option is likely to be particularly helpful (e.g., Alldredge
et al. 2007b; see Marques et al. 2007 for an introduction to MCDS). Another
option is to pool data across multiple surveys to obtain more reliable estimates of
detectability when sample sizes from a single survey are small, again potentially
including “survey” as a covariate. In general, the MCDS analysis approach should
be considered, as it is likely to provide more accurate results than simply pooling
the data, which will only provide an average estimate of detectability across species
or surveys with associated inaccuracy for the specific species or survey density or
abundance estimate (Buckland et al. 2015).

There are other considerations that are less critical but nonetheless important.
One of these is whether or not detections are independent events. When detections
are dependent (e.g., animals fleeing and disturbing others that are subsequently
detected), this has little effect on the point estimate of density or abundance.

http://dx.doi.org/10.1007/978-981-10-5436-5_7
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However, analytical estimates of sampling variance will be negatively biased. This
problem can be alleviated by using empirical estimators or resampling methods
for variance estimation (e.g., using the bootstrap or jackknife that only assume
independence between transect lines).

An obvious case where this assumption is violated is when animals tend to
aggregate and occur in groups. If animals aggregate in loose, poorly defined groups,
then it may be necessary to treat each individual animal as an observation. Distance
sampling is particularly robust to the lack of independence between sightings of
individuals that do in fact belong to the same group, providing an unbiased estimate
of animal density or abundance as long as all individuals on or near the line are
detected. Otherwise, as we described previously, we treat the group as the object of
interest and measure the distance to the center of the group, as well as the group
size.

It is also assumed group (cluster) size is recorded correctly when this is the unit
of observation. When size-biased sampling occurs, then the detection probability
of the group is a function of both distance from the observer and its size, which
can lead to biases. The recommended option for dealing with this problem is size
bias regression where distance or detection at a given distance is regressed against
either group size or the logarithm of group size when group size is highly variable,
and mean group size is then taken to be the size at the line. The slope of the
regression of group size (or log group size) on distance tends to have a positive
slope (as group size increases with distance) and on detection probability a negative
slope. Sometimes the sign of the slope is reversed. This happens when observers
underestimate the size of groups and the degree of underestimation increases with
distance. Another option is to again turn to MCDS analysis and treat group size
as a covariate when fitting the model for the detection function. For more details
and other options for dealing with size bias, see Buckland et al. (2001: pp. 71–76,
122–130, 164–171).

The multi-analysis (MA) feature in the Distance software (Thomas et al. 2010)
allows for uncertainty in covariate measurement, including group size. It also allows
for sightings where the species was not identified with certainty, as long as there is
a hierarchical structure of species sighting codes (see Gerodette and Forcada 2005).

If animals move in response to the observers and are thus detected several times
on the same or adjacent transect line, it can cause substantial positive bias (assuming
repeat counting is common during the survey). If the same animal is detected more
than once while sampling the same transect during different sampling occasions,
this is not a problem. Distance sampling theory also allows for an animal to be
detected from different transects due to random movement of the animal.

Distance sampling theory performs well when detectability is certain near the line
and remains nearly certain for some distance from the line. Thus, the potential for
detecting animal groups should not drop off abruptly at a short distance from the line
transect for ecological reasons. Although this shape criterion is not an assumption,
it is a practical consideration required to provide reliable estimates of density and
abundance.
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6.4 Survey Design and Other Considerations to Improve
Precision

For line transect surveys of tiger prey, variability in the density and abundance
estimates is caused by (i) variance in observed sample size C or encounter rate
C/L, (ii) variance in the estimated detection probabilitybp or equivalentlybf .0/ or b�;
and (iii) variance in the estimated expected group size bE.s/. This emerges directly
from the equations used to estimate density (Eqs. 6.3 and 6.4) that result in the
estimate of variance given by Eq. 6.5. Variance in encounter rate is often the largest
contributor to the variance of the density estimate (often 70–80% for line transects).
Thus, we can reduce variability in the density and abundance estimate by improving
the precision of these three components that contribute to the overall variability but
particularly encounter rate.

6.4.1 Reducing Variance in Encounter Rate

6.4.1.1 Stratification
Spatial variation in animal group density between transect lines causes variance of
observed sample size C or encounter rate C/L. Precision can potentially be improved
by stratification. If spatial heterogeneity in population density exists, then defining
strata that are internally homogeneous reduces variance. By means of stratification,
we attempt to make encounter rates along transects corresponding to a particular
stratum as similar as possible and encounter rates along transects corresponding
to different strata as different as possible. To improve overall precision, different
stratifications may be selected for different components – encounter rate, detection
probability, and mean group size – of the density estimator. Stratification by habitat
type (open grassland, forest, etc.) is often sensible as one might expect both density
and the probability of detection to change by habitat type. This type of stratification
during the design phase of the survey is only possible if the habitat types are not
too fragmented and intertwined. An option for regions with patchy (fine-grained)
variation in habitat types is to keep a record of when the habitat type changes along
the transect line, subdividing it into smaller line segments that have an associated
habitat classification. One would then have a total for the amount of effort spent in
each habitat type, which would allow for post-stratification by habitat type during
analysis. It is important that such a strategy is set out before data are collected and
not in response to a noted variation in encounter rate during initial data analysis –
the latter leads to serious underestimation of the true uncertainty. Variables such as
season or time of day might also affect encounter rate, or the other components of
the density estimator, and stratification by these variables should be considered.

If something is known about the relative number of animals within each stratum,
then an approximate rule of thumb is to allocate effort proportional to abundance
to achieve the best overall precision. It may also be necessary to do this to ensure
sufficient replication per stratum (see below). However, one needs to keep in mind
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that pooling robustness (see Sect. 6.5.3) does not apply when sampling intensity
differs by stratum and thus care needs to be taken to ensure sufficient observations
are obtained, even in the low-density strata, so that a separate detection function
can be fit for each stratum. Hence a safer (but less efficient) strategy is to stick
to equal sampling intensity in each stratum, i.e., allocating effort proportional to
sample area. See Buckland et al. (2001: pp. 246–248) and Cochran (1977: pp. 96–
98) for a description of optimal effort allocation between strata. Thus precision can
be improved by allocating more survey effort to those strata that have more animals,
which becomes challenging for multispecies surveys. However, the distribution of
effort by stratum is not as important as the total line length L, and clearly the more
overall effort, the greater the overall improvement in precision.

Stratification may also be used for logistical reasons or because density estimates
are required for certain subregions of the survey area for management purposes
(e.g., inside a national park versus outside). In the former case, for example, the
study area may be stratified according to ease of access, and less effort may be
allocated to hard-to-access strata for reasons of cost efficiency. This may lead to
some loss in precision, but logistics or the need for estimates by predefined survey
units may require such stratification nonetheless. If the stratification occurs for other
than logistical reasons and if nothing is known about density in each of the strata,
then effort should be allocated in proportion to stratum size.

6.4.1.2 Replication
As mentioned previously, at least 15–20 replicate lines per stratum, preferably 25 or
more, are needed to ensure a representative sample and to get a reliable estimate of
variance in observed sample size. This consideration usually limits the number of
strata that can be defined, as each needs an adequate number of transects. In general,
a design that has a larger number of shorter lines is preferable to one with a smaller
number of longer lines when it comes to obtaining a representative sample and also
a more precise estimate of the variance of the density and abundance estimates.
Transect length may be dictated by the size and shape of the survey area. Lines
might cross the entire survey area (e.g., Fig. 6.6a) or may be shorter lines such that
several or a single transect can be covered in a day with time to move to the next
transect before setting up camp (e.g., Fig. 6.6b). Logistics might dictate repeated
sampling along the same transect lines during a given survey period (e.g., if the
cost of adding additional transects is prohibitively expensive compared to repeated
visits to the same transect). Repeated visits to the same transects, however, do not
constitute replication, but they help accrue sufficient effort to improve precision and
obtain a sufficient number of observations to reliably fit the detection function.

6.4.1.3 Line Transect Orientation and Spatial Distribution
If strata are defined or if there is simply a single stratum corresponding to the entire
survey region, then to further improve precision one should orient transect lines
parallel to any gradients of density within each stratum. In this way, variation in
encounter rate is maximized within transects and minimized between them. So, for
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Fig. 6.5 A line transect survey comprises a series of lines. Illustrated here within a simple
rectangular survey region are examples of two commonly used designs: randomly spaced parallel
lines (left) and systematically spaced parallel lines with a random start (right)

example, if one suspects that density decreases with increasing distance from the
edge of a habitat, a topographic feature such as a river, or a human modification
to the landscape such as a road, then transects would be placed approximately
perpendicular to the edge of the habitat type, river, or road.

For each survey stratum, not only the orientation of the lines, their number,
and length but also their relative location to one another has implications for
the precision of the density estimate. Survey designs that locate line transects
systematically with a random start give a more even spatial spread of survey effort
over the survey region than their nonsystematic counterparts, where each transect
line is randomly located (see Fig. 6.5 the design on the left versus the right). A
systematic survey design whose line transects have a more even spatial distribution
across the survey area is more robust and likely to lead to less variation in the
estimates of density or abundance, as it is less susceptible to variations in population
behavior (Strindberg 2001; Strindberg and Buckland 2004). In other words, transect
lines that have a more even spatial distribution tend to improve precision, as they
ensure that a more representative sample is selected from the population. Advances
in estimating the variance of encounter rate for all types of designs, including
systematic designs, make it possible to exploit the greater precision these tend to
afford (Fewster et al. 2009). Aside from the issue of precision, systematic designs
are also more efficient and consistent (i.e., more expedient in terms of survey
logistics). These are described in detail by Strindberg et al. (2004).

6.4.1.4 Randomization
Accuracy and precision of density estimates, as well as the efficiency achieved, are
determined to a large extent by the survey design that dictates how the sample is
collected. To obtain estimates of animal density based on valid statistical inference,
the observations should be obtained by means of a probability sample. This requires
that the line transects be located randomly. All survey design options discussed
above presuppose a randomized sampling design. This design process is facilitated
by the development of automated design algorithms that randomly superimpose line
transects on the survey region of interest (Strindberg 2001; Strindberg et al. 2004).
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By automating the survey design process, it is also possible to contrast designs with
regard to properties such as the spatial distribution of sampling locations within
the survey region, the distances covered by observers to obtain the sample data,
and the probability of a particular location being included in the sample (coverage
probability).

The Distance software has an automated survey design component and geo-
graphic information system (GIS) functionality that can be used for the design of
distance sampling surveys (Thomas et al. 2010). In order to design a survey using
this software, one has to define the survey area in a spatially explicit manner by
means of an ESRI shapefile. This component permits the selection of a design
from among a number of different possibilities and the exploration of the design
properties given the logistical constraints for the survey in question. A number
of frequently used line transect designs, both systematic and nonsystematic, with
discrete or continuous transect lines, have been implemented within the automated
survey design component of the Distance software. This component also provides a
simulation option to check whether or not even coverage probability is achieved by
a given design, which avoids potential biases when using a standard analysis. The
designs shown in Figs. 6.6 and 6.7 are examples of survey plans that can be produced
using this feature of Distance. In addition, the simulation feature (Marshall 2016)
available from Distance version 7 onward allows one to define a study area and
provide potential characteristics of the wildlife population and a possible survey
design to compare the efficiency of a variety of designs under different scenarios.

6.4.2 Reducing Variance in Detection Probability Estimation

As for encounter rate, stratification (or post-stratification) can be used to improve
the precision of p. For a given sample size, the best way to reduce the variance
of p is to have a detection function with a wide shoulder. If detection changes by
habitat type, observer, environmental conditions, etc., then estimating the detection
function separately by strata defined by these variables should decrease its variance.
However, as adequate sample sizes are required for reliable estimation, the number
of strata should be such that enough observations occur in each stratum.

An efficient way to improving the precision of p when it is not possible to
obtain sufficient sample sizes for stratified estimation of detection is through MCDS
analysis. Variables (e.g., habitat type, season, observer, group size, or environmental
conditions) are incorporated as covariates when fitting the model for the detection
function (Marques and Buckland 2004a, b; Marques et al. 2007; Buckland et al.
2015). The methods assume that these types of covariates influence the scale of
the detection function, but not its shape. Thus animal groups at the same distance
from the transect line can have different probabilities of detection depending on
their associated covariate values. Both the conventional distance sampling (CDS)
and MCDS analysis options are implemented within the Distance software.
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Fig. 6.6 Consider a survey region that comprises two strata, namely, a national park and a logging
concession, where the latter is more heavily impacted by human activity. Transect lines are oriented
in a northeast-southwest direction as this is suspected to coincide with the gradient in animal
density. (a) If the habitat type were open and suitable for an aerial survey, then a design with
systematic parallel lines located with a random start in each stratum might be appropriate. Note
that the spacing between sequential line transects is 6.5 km in the national park but 6 km in the
logging concession to ensure sufficient replication (15 lines in each stratum). (b) In the case of
a more closed forest habitat type, a terrestrial survey would be a likely option. In both cases, the
amount of time it takes to cover a kilometer of transect line and to move between transects is an
important design consideration, as total survey time is always limited by cost and other logistic
constraints. In closed habitat types, it is often difficult to cut transects and to move along them in a
straight line, whereas ground can be covered much more quickly when moving between transects,
during which time animal paths or existing roads or rivers can be used. Hence, a design comprising
1–2-km-long line transects systematically spaced with a random start with a larger spacing between
transects could be a good design option. In this example, the 25 and 47 transect lines are 1 km long
and have a systematic spacing of 12 km and 7 km in the national park and logging concession,
respectively. Given the roads in the logging concession, it is easier to access this stratum and thus
it is more cost-efficient to allocate more sampling effort to this stratum

6.4.3 Reducing Variance in Expected Group Size

An option for reducing the variance in estimated expected group size,bE.s/; if group
sizes change seasonally, is to survey when group sizes are smaller. This facilitates
group size estimation and also increases encounter rates (if there is interest in
obtaining seasonal estimates of density, however, then one would have to survey
during the various seasons regardless of expected group sizes). Additionally, if
sample sizes are adequate, then it may be possible to post-stratify by group size
during analysis to improve precision.
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Fig. 6.7 Consider a small survey region that has large rivers along its boundaries and running
through its interior. The survey region also has a ridge running in NW-SE direction through its
central part. Due to the small size of the survey area, a segmented transect design was deemed most
appropriate to ensure that a sufficient number of replicate transect lines could be generated within
the survey region. Segments of length 1.5 km at a spacing of 1.5 km were generated according to a
systematic survey design with a random start within the survey allowing for incomplete segments
where the segments intersected the boundary. Two types of designs were considered: (a) systematic
segmented trackline sampling and (b) systematic segmented grid sampling. The first design was
selected for implementation in the field, as it is likely to provide a more representative sample. The
second design tends to place a majority of transects either along a river or along the ridge where
the vegetation and potentially also species density is different to what is found in the remainder
of the survey region. Both designs provide approximately even coverage probability, as they allow
for shorter line transects along the region boundary

6.4.4 Precision and Bias Versus Available Resources

Generally, when designing a survey, a balance has to be struck between the precision
of the density estimate and the resources available for the survey in terms of time
and money. This trade-off between desired precision and the cost of implementing
the survey usually dictates the survey effort and design used in sampling a particular
study area. A pilot survey is the best way to estimate the amount of survey effort
required to achieve a desired precision. During a pilot survey, one should avoid
clustering the lines or choosing the most convenient locations for their placement.
The lines should be spread throughout the study area and cover different habitats
or areas under different degrees of human influence to ensure that the results are
representative and able to correctly inform planning of the main survey. The time
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and cost constraints associated with a particular type of survey in a given study
area will usually dictate whether the desired precision is feasible and which survey
design is most suitable for the given circumstance.

As described in the introduction, the CV is a useful unit-less metric that can
be used to compare different studies. For a distance sampling survey of tiger prey,
where detection on the line is certain, one can estimate the total length of transect
line required for a given encounter rate C0

L0
and a target CV for the density estimate

CVt

�

bD
�

by applying the formula
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The standard deviation of group size is SD.s/ D

q

PC0

iD1 .si � s/2= .n � 1/,
where s is the mean group size and si the size of the ith group, which assumes group
size is independent of detection distance. The parameter b is known as the dispersion

parameter or variance inflation factor and is approximated by var.C/
C CC

var.bf .0//

Œbf .0/�
2 . The

dispersion parameter generally takes a value in the range 1.5–3. It would take on its
smallest value if the spatial distribution of the animals were random, as then one
would expect the count on each line to approximately follow a Poisson distribution
(i.e., vbar.C/ Š C). If the population is highly aggregated, then b takes on larger
values. Although, there is site-specific variation, estimated values of b from previous
surveys indicate that tiger prey species such as gaur, sambar, muntjac, and wild
pig tend to be less patchily distributed compared to chital, for example. Thus, to
avoid underestimating L for planning purposes, it is suggested that one use a value
of at least 3.5 for gaur, sambar, muntjac, and wild pig and double that value for
chital (assuming it is not possible to estimate b from a pilot study or use a value
calculated previously from a similar study). Ideally, a pilot study would be carried
out to estimate the encounter rates to be expected during the actual survey and the
mean and standard deviation of group size. These values can then be plugged into
the above equations to estimate the amount of effort required to achieve the desired
precision. If the pilot study is more comprehensive and distances are measured, then

the dispersion parameter b can be approximated by C0 �
n

CV
�

bD0

�o2

;where C0 is the

number of animal groups counted during the pilot survey and D0 the corresponding
estimated density.

If the available resources determine the total effort in terms of line length, L, then

it is possible to estimate CV
�

bD
�

using the formula
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If CV
�

bD
�

is too large, then it may not be worthwhile conducting the survey, if

a certain precision is required. Similarly, we can calculate the amount of effort,

L, required to achieve our desired CVt

�

bD
�

and possibly conclude that we do not

have the resources; then it is necessary to decide whether a reduction in precision is
feasible given the goals of the survey. All of these equations assume that the lines
are distributed according to a random design. Additionally, if detection on the line is
not certain and g(0) needs to be estimated, then greater effort is required to achieve
a target precision (equivalently the same amount of effort will give lower precision).
For more detailed explanations and example calculations, see Buckland et al. (2001:
pp. 241–244).

For animals that live at low density but are also aggregated into groups, the
number of groups observed may be small, even if a great deal of sampling effort is
invested in the survey. This often results in imprecise estimates that are potentially
biased given the unreliability associated with fitting the detection function. For a set
total survey effort L and a given encounter rate from a pilot survey of C0/L0, the
resulting sample size can be estimated as C D L � C0/L0, which should ideally be
60–80 animal groups. If this target sample size is not attained, then other options
that can be considered include pooling data across species, surveys, or sites, as
described previously (Sect. 6.3.5). Adaptive sampling is one way to increase the
sample size, thus also increasing precision and reducing bias (Thompson and Seber
1996). An inherent problem with adaptive sampling is that usually the total survey
effort required to complete the survey is unknown in advance, which can create
logistical problems. However, an adaptive line transect sampling method that allows
the amount of effort (in terms of survey time) to be fixed in advance has been
developed (Pollard et al. 2002; Pollard and Buckland 2004). The details of adaptive
sampling are beyond the scope of this chapter.

6.5 Data Analysis Using the Available Software Tools

Here, we consider the steps one might follow during an analysis of distance
sampling data, including data entry and validation, data exploration, model fitting
and selection, final analysis, and inference. Again, Buckland et al. (2001, 2015)
should be consulted for more detailed information. Fortunately, there are several
software tools available to support analysis and these are introduced. We focus on
modeling the detection function, which lies at the heart of distance sampling. We
also introduce spatial modeling based on distance sampling data.

6.5.1 Data Entry and Validation

If data are recorded on paper forms (see Chap. 7 for an example), they should be
stored electronically as soon as possible (e.g., after each day of surveying) – entered
into a spreadsheet, such as MS Excel, and validated to ensure that transcription

http://dx.doi.org/10.1007/978-981-10-5436-5_7
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errors are corrected and feasible data values are entered. If data were entered
electronically in the field, e.g., using CyberTracker (cybertracker.org), SMART-ER
(smartconservationsoftware.org), or another data entry application on some type
of handheld device, then some reformatting may be required before the data are
ready for analysis, but validation can occur as the data are collected. It is extremely
important that data validation occurs as soon as possible, as it becomes harder or
impossible to sort out data errors later during analysis. It is also vital that all field
data are backed up, by copying the paper forms or electronic files and storing them
at a different site.

6.5.2 Software for the Analysis of Distance Sampling Data

Distance is the custom windows-based computer package for the design and analysis
of distance sampling surveys of wildlife populations (Thomas et al. 2010), which
has evolved substantially from the program Transect and early DOS versions of the
software (Laake et al. 1993). The software comes with context-sensitive online help
and a comprehensive user’s guide, so we only give a brief overview in this section.

Distance projects are made up of a project file with a “dst” file extension and an
associated data folder with a “dat” suffix. Internal data are stored in DistData.mdb
file within the data folder. The data folder is also used by default to store the
GIS information (ESRI shape files) for those projects using the Maps, Designs,
and Surveys features to create maps, explore design options for the study area,
and eventually generate a survey plan. Many of the advanced features in Distance
are implemented as R libraries that are called by Distance. The freely available
R statistical software (www.r-project.org) needs to be installed to conduct mark-
recapture distance sampling (MRDS) analysis, density surface modeling (DSM),
and multi-analysis (MA) or use the simulation features available in Distance. An
R folder is created automatically within the Distance data folder the first time the
mrds, dsm, mads, or DSsim libraries are called. It contains the R object file (.RData)
and image files generated by the R statistical software package. It is worth noting
that only a subset of features available in these R libraries can be accessed via
the Distance’s graphical user interface and many more options are available if the
libraries are called directly in the R software.

Besides creating a new project, it is possible to import data or project files from
earlier versions of the software. If the survey data are stored in a package such as
MS Excel, then it is relatively straightforward to import the data into Distance from
such software by saving the data in a predefined order as a tab delimited text file.
This is much easier and less error prone than typing the data into Distance. The data
should be imported in their disaggregated form, i.e., if distance data were collected
ungrouped, then they should not be grouped even if they are subsequently analyzed
that way. Data should be entered taking into account stratification and sampling
units (usually lines). Data can also be linked from external databases in a variety
of formats. It is possible to export Distance projects to zip archive files, facilitating
transfer to other computers or users, and to open projects directly from the archive

http://cybertracker.org
http://smartconservationsoftware.org
http://www.r-project.org
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file. The most current version of the software can be downloaded at no cost from the
Distance website (www.ruwpa.st-and.ac.uk/distance).

To allow for analyses that use the entire power of R, an R package distance has
been written to facilitate straightforward distance sampling analysis in R (Miller
2013). An alternative package, unmarked, developed by a different group (Fiske
and Chandler 2011), provides a common hierarchical modeling framework not only
for analyses of distance sampling data but also analyses of other types of data (e.g.,
occupancy) from unidentified individuals.

When advanced analyses are conducted for which there is no standard software
package or library available, it is sometimes easier to use Bayesian methods.
Packages such as JAGS (http://mcmc-jags.sourceforge.net/), WinBUGS (www.mrc-
bsu.cam.ac.uk/bugs/winbugs/contents.shtml), or the more recent version Open-
BUGS (www.openbugs.info/w/) provide users with the flexibility to conduct a
multitude of analyses and can also be used in the form of the R2WinBUGS library
(Sturtz et al. 2005; Kéry and Royle 2015).

Although there is no single approach to completing an analysis of distance
sampling or associated data, it should start with a good deal of data exploration
before model fitting and selection take place and the final estimates are obtained
and inferences are drawn.

6.5.3 Modeling the Detection Function

6.5.3.1 Exploratory Phase
Histograms of the data should be plotted under several different groupings either
using the Distance software or any other package that has graphing facilities. It can
even be done by hand using pen and paper, and this may be particularly beneficial for
novices to distance analyses. They can then gauge whether there are any problems
with the data and estimate what the probability detection function might look like
by eye (see Fig. 6.3a). Results obtained by means of this simple analysis could be
compared to the results produced by Distance.

An initial analysis with many (10–20) cut points and a simple model (e.g., half-
normal) should be carried out. During this phase it’s best to not try to estimate
density, but simply look at the histograms and quantile–quantile (qq) plots to see
whether assumptions have been violated and there are problems with the data, such
as heaping, a spike at zero distance, evasive movement, or outliers.

The problems caused by heaping can potentially be reduced with appropriate
grouping (note that goodness-of-fit tests are sensitive to heaping and data should
be appropriately grouped when performing these tests). It will be difficult to obtain
reliable density estimates if evasive movement has occurred. Outliers that are caused
by incorrect data entry should be corrected if possible during data validation. Then
truncation can be used to eliminate the remaining outliers. Right truncation is
generally recommended for robust estimation of the detection function. For line
transects a rule of thumb is to truncate when g(x) � 0.15 (truncating approximately
the largest 5% of distances usually works too).

http://www.ruwpa.st-and.ac.uk/distance
http://mcmc-jags.sourceforge.net/
http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml
http://www.openbugs.info/w/
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One needs to decide whether to analyze data as grouped or ungrouped. If the
exploratory phase of the analysis shows signs of rounding at convenient values,
then the former option should be selected with cut points defined in such a manner
that rounding distances lie approximately at the midpoints of intervals; this way
observations will tend to fall within the correct distance interval. For aggregated
populations, check for evidence of size bias and apply one of the methods described
previously to take care of this problem if necessary.

6.5.3.2 Select a Model for the Detection Function
The detection function g(x) gives the probability that an animal at distance x is
detected from the line. To estimate density a distance sampling analysis relies
on fitting a model of g(x) to the observed distances (where x corresponds to the
perpendicular distances x1 , : : : , xC recorded during the line transect survey or
calculated from the radial distances and angles or angles of declination and height),
which allows one to estimate the proportion of animal groups within surveyed strips
that are detected and counted bp: Once a sufficient number of animal groups are
detected to allow reliable modeling of the detection function, a precise and unbiased
estimate of animal density relies on the selection of an appropriate model for g(x).
Such models have certain desirable properties, namely (in order of importance),
model robustness, a shape criterion, and efficiency.

Model Robustness A robust model needs to be general and flexible so that it can
fit a variety of shapes for the detection function. Models should also be pooling
robust, which means that the data can be combined (pooled) over different factors
that affect detectability (habitat, observer, weather, etc.) and still provide a reliable
density estimate. In other words, the density estimate produced by stratifying the
data by habitat, observer, weather, etc., should be approximately the same as the
estimate produced from the combined data.

Shape Criterion As mentioned previously, the potential for detecting animals
should not drop off abruptly at a short distance from the line transect. In other words,
g(x) should have a “shoulder” near the line transect (mathematically this means that
the derivative g

0

(0) should be zero). Given this property, spiked functions near zero
are excluded from consideration. It is worth noting that histograms of the detection
distances often do not reveal the presence or absence of a shoulder, especially if
histogram groupings are large.

Efficiency An efficient model is one that has a small variance. Maximum likelihood
methods are used as they ensure a minimum variance asymptotically, i.e., as the
sample size increases. This characteristic is only useful if the model is robust and
when the shape criterion can be met. Otherwise, you may get a very precise estimate
that is wrong!

Models of the form g(x) D key(x) � [1 C series(x)], as implemented in the Dis-
tance software, have these characteristics, where key(x) is a key function and
series(x) is a series expansion. The modeling process involves two steps:
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Selection of a key function based on the histogram data (after truncation)
Adjustment of the key function by means of the series expansion

Key functions include the uniform, half-normal, and hazard-rate functions. Series
expansions include the cosine series, simple polynomials, and Hermite polynomials.
Sometimes a key function without a series adjustment is sufficient.

Model Fit For analyses on exact distances, the Cramér-von Mises and Kolmogorov-
Smirnoff goodness-of-fit (gof) tests available in Distance can be used to compare the
detection function model to the actual data. In addition, quantile–quantile (qq) plots
provided by the Distance software are a graphical means for identifying problems
with the data, e.g., rounding to preferred values or systematic departures from the
fitted model. These tests avoid arbitrarily grouping exact data into intervals, unlike
the �2 gof test that can be used to test the fit of the g(x) model to the distance
data. The test is based on the grouping of the distance data and compares the
observed frequencies Ci (dependent on the groupings selected) to the expected

frequencies bE .Ci/ under the model in the usual way �2 D
Pu

iD1
ŒCi�bE.Ci/�

2

bE.Ci/
, which

is approximately �2 distributed with u � q � 1 degrees of freedom if the fitted
model is a good approximating model (where u is the number of groups and q
is the number of parameters estimated). A defect of the �2 gof test is that it has
difficulty discriminating between different models at the most critical region near
x D 0, unless given enough data, and the results are very dependent on the groupings
selected. The gof test leads to overfitting, and its power is low, too, and should not
be relied on when selecting a model for g(x). The test is useful for highlighting
problems with the data.

Model Selection In general, as the number of parameters in the model increases,
the bias decreases, but the sampling variance increases. Hence, the number of
parameters selected needs to be a compromise between bias and variance. Model
selection should only take place once the data have been adequately truncated and
various data groupings considered. The fit of the model to the distance data near
the line is extremely important (except in the case of heaping at zero). Akaike’s
information criterion (AIC) is generally used in model selection.

The AIC attempts to find a balance between the number of model parameters q
and the model fit and in this way provides a trade-off between variance and bias
(more parameters improve model fit and reduce bias, but the cost is an increase in
model complexity and variance). For a given data set, the model with the smallest
AIC is selected. The AIC is given by AIC D � 2 � loge(L ) C 2q, where loge(L ) is
the log-likelihood function evaluated at the maximum likelihood estimates of the
model parameters.

To select a model, fit a small number of key/series adjustment combinations
(e.g., uniform C cosine or simple polynomial, half-normal C cosine or Hermite
polynomial, and hazard-rate C cosine or simple polynomial). Consider whether
detectability might be influenced by group size, observer ability, habitat, or other
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factors. In that case fit models using MCDS methods checking that the covariates of
interest only influence the scale of the detection function. If the covariate influences
the shape of the detection function, then if sample size allows one can stratify the
detection function by the factor of interest. If the same right-truncation distance
or intervals are used, then all of the models can be ranked and compared in
terms of their AIC value. Look at the histograms, goodness-of-fit test results, AIC,
and summary tables to choose a model. The most important thing to consider is
goodness-of-fit test results close to x D 0. To improve fit it may be necessary to
revert to the exploratory phase. Occasionally it will be difficult to select between
models that fit the data well and have similar AIC values (difference between them
less than 1). In this case a solution is to resort to multi-model inference. It is worth
noting that, for “good” data, with no visible violation of assumptions and a wide
shoulder, different detection functions tend to give almost identical results – this is
a good situation to be in as it indicates that results are robust. As is more generally
the case for any type of model selection, AIC should not replace common sense. For
example, in order to reduce the effect of a responsive movement issue, a detection
function model might be used that is not the highest ranked model according to AIC
(e.g., Williams and Thomas 2007). For a detailed treatment of model selection and
multi-model inference, see Buckland et al. (2001), Burnham and Anderson (2002),
or Buckland et al. (1997).

6.5.3.3 Final Analysis and Inference
Once a model has been selected for the distance data, then consider (i) options for
variance estimation (e.g., bootstrapping to estimate the variance of the estimate),
(ii) stratifying some or all of the components of estimation, and (iii) inclusion
of covariates in the analysis. Fit the data using the favored model or models and
selected options to obtain the estimate of density or abundance. Finally, extract
summaries from the analysis and histograms for reporting.

6.5.4 Spatial Modeling

If certain variables are thought to influence density and distribution (based on
ecological hypotheses), then a model that incorporates these variables can be fitted
to the distance sampling data. Such covariate modeling will also potentially improve
precision (Hedley and Buckland 2004; Hedley et al. 2004). The variables can either
be collected during the survey as ancillary data, or they can be obtained from other
sources, e.g., from a GIS or from other spatially explicit data sources for the study
area. These spatially explicit models allow one to investigate factors influencing
animal abundance (habitat type, other environmental variables, distance to human
settlements or roads, etc.), to extrapolate over the entire area of interest, and to
calculate animal abundance for subregions in the study area.

Spatial modeling does not necessarily require data collected from randomly
located transects, as there is no need to rely on design-based inference to extrapolate
from the surveyed area to the larger area. However, it is preferable to employ
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a randomized sampling scheme, as both the standard and entirely model-based
analysis options are then available. This is a far less risky strategy, as it does not
restrict one’s options to finding a good approximating model that fits the data well.
Another important point here is that a good design produces samples evenly spread
through the area – and so forms an ideal start point for a model, where data are
available from throughout the spatial region being modeled.

The spatial modeling methods introduced by Hedley and Buckland (2004) are
available in the Distance software and in the form of the dsm R library, which takes
specifically formatted distance sampling data and predicts the spatial distribution
of animals in the survey region. The details of density surface modeling (DSM)
are provided by Miller et al. (2013). This is one of the several possible two-stage
approaches where detectability is first estimated and then subsequently incorporated
into a count model using different error distributions (e.g., Poisson or negative
binomial) or modeling approaches, such as generalized linear models (McCullagh
and Nelder 1989) or generalized additive modeling (Wood 2006). Single-stage
approaches move away from counts to spatial point processes that permit the
assignment of variable values at the individual level while avoiding the somewhat
ad hoc decision of how to split transects into smaller segments for analysis with
associated variable values that may only coarsely represent the characteristic across
the entire segment (e.g., Johnson et al. 2010).

Further details on one- and two-stage approaches to spatial modeling are given by
Buckland et al. (2015) or Miller et al. (2013), for example, a common framework
for model-based distance sampling is described by Buckland et al. (2016), which
covers nonspatial model-based approaches (e.g., Borchers et al. 2002; Royle and
Dorazio 2008; Kéry and Royle 2015), model-based MCDS, model-based MRDS,
plot-based models (e.g., Royle et al. 2004), as well as the addition of random effects
(Oedekoven et al. 2014, 2015).

If we have the resources to implement a designed experiment rather than simply
conduct an observational study (Royle et al. 2004; Buckland et al. 2009; Oedekoven
et al. 2013, 2014), then spatial modeling can be used to investigate different
treatment effects (e.g., these could correspond to different land management regimes
or conservation actions).

6.6 Discussion

Line transect sampling is an efficient and cost-effective method for obtaining esti-
mates of density and abundance for large populations of tiger prey species sparsely
distributed over large geographic areas. The method requires that detectability of
animal groups decreases with increasing distance from the transect line and that
the perpendicular distance can be obtained for each group of animals. The method
works particularly well for prey populations at moderate density where populations
occur in well-defined groups. Habitat should be sufficiently open to ensure that
animal groups on or close to the line can be seen. Aerial surveys should ideally
be conducted in habitat with little forest or other cover that might obscure animals
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from the air; otherwise more costly data collection and analysis options need to be
considered to estimate the proportion of animals missed due to availability bias.
Foot-based surveys remain the standard for areas that are moderately forested.

In addition, new and novel ways are continually being developed to fit spatial
models to distance sampling data to investigate the key drivers of species distribu-
tion and other questions of interest. The available options for experimental design
using distance sampling also provide tools for the assessment of new or different
conservation actions or management regimes.

Standard distance sampling requires a random survey design with a sufficient
number of transect lines and total effort to ensure that animal locations are
independent of the transect lines and a representative sample is obtained and a
sample size of observations large enough to fit a detection function that will yield
unbiased estimates. In practice (Chap. 7), systematic placement of transects, but
with a random start, works well. With survey design and simulation tools available,
it should be possible to determine whether it is feasible to meet these criteria while
considering the logistical constraints and field practicalities for a given study area
or population of interest.

The remaining assumptions underlying distance sampling may be more chal-
lenging to meet, even with rigorous observer training, a good field protocol, and
instruments to take accurate and precise measurements. In some cases it is possible
to collect additional data to deal with assumption failures. The next chapter will
provide details on how best to meet these assumptions to avoid the additional costs
and complexity of the associated analyses, where possible.
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7Field Practices: Estimating Abundance of Prey
Species Using Line Transect Sampling

N. Samba Kumar, Abishek Harihar, Hannah J. O’Kelly,
and Anak Pattanavibool

7.1 Introduction

Distance sampling using line transects is one of the most frequently used methods
to obtain estimates of population density and abundance for tiger prey species.
This approach can also be used to investigate factors that influence the spatial
distribution of prey across the region of interest, which in turn can further inform
management actions. In order to ensure reliable monitoring data are generated, it is
important to implement appropriate field practices that adequately reflect the survey
design considerations and the methodological framework described in Chap. 6.
Ecological, logistical and resource constraints can make it challenging to satisfy
the underlying methodological assumptions of distance sampling when planning
and actually conducting line transect surveys in the field. This chapter tries to strike
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a balance between fulfilling the theoretical requirements of line transect sampling
and also addressing some common practical issues that arise in the field.

7.2 Line Transect Survey Design

7.2.1 Minimum Sample Size Requirements

As with all scientifically robust approaches to animal population estimation, the
ability to obtain a sufficient sample size of observations is a critical consideration
in the design phase of line transect surveys. If densities of some, or all, prey species
are low in the survey area, encounter rates will also be low and the sample size
attained (i.e. number of animals or clusters of animals detected) may be small,
even with high levels of sampling effort (i.e. many kilometres walked on transects).
Small sample sizes will result in poor model fits (Chap. 6) and imprecise density
estimates. The minimum sample size required will depend on study objectives
and data quality. A practical rule of thumb is about 60–80 observations per prey
species (Buckland et al. 2001). There are various analytical procedures available,
such as pooling observations across multiple survey periods or borrowing detection
functions from other similar studies (see Chap. 6 for details), which can help to
deal with the constraints posed by low sample size (also see Chap. 8). Furthermore,
new analytical approaches to population estimation are continually being developed,
such as combining available data from different sources (Chap. 12).

A practical way of determining what level of line transect walk effort will be
required to attain sufficient sample sizes in a specific study is to do a pilot survey.
This will consist of test walks on transects during which observations of prey species
are recorded to calculate encounter rates (number of animal detections per kilometre
walked). Encounter rates from the pilot survey can then be used with the survey
design and simulation tools in DISTANCE software (see Chap. 6) to approximately
estimate the total effort required. Multiple survey scenarios can be compared to
investigate required effort allocation at different levels of resource availability or
logistical needs.

Where only some prey species occur at low densities, it may be worth considering
if they are really contributing substantially to tiger diet. If they are not, survey design
can be optimised primarily keeping principal prey species in mind to determine
carrying capacity for tigers.

Line transect surveys remain the recommended approach to reliable density
estimation of prey species, at low densities. However, if prey species are at very low
densities and cannot generate reasonable sample sizes for abundance estimation,
then alternative approaches need to be explored. One such alternative may be to
monitor changes in habitat occupancy by different prey species by estimating the
‘occupancy rates’ (see Chaps. 4 and 5). In such a case, the occupancy rate becomes
a surrogate measure for relative prey densities, rather than absolute ones.

http://dx.doi.org/10.1007/978-981-10-5436-5_6
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http://dx.doi.org/10.1007/978-981-10-5436-5_4
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7.2.2 Appropriate Placement of Line Transects

Appropriate placement of transect lines must come before the conduct of a line
transect survey. However, it is in this very first step that the common errors
associated with the application of method occur. As described in Chap. 6, one
of the basic assumptions of this method is that transects are located randomly
with respect to the spatial distribution of target animals. Without this assumption,
the distribution of observed detection distances reflects both detection probability
and possible gradients in density, leading to biased estimates. Additionally, in the
absence of a probabilistic spatial sampling scheme, it may not be reasonable to
extrapolate density estimates from transects to the entire area of interest, under
traditional design-based line transect surveys.

All too frequently, because of sheer convenience, investigators are tempted to use
animal trails, roads, firebreaks, waterways and other linear formations as ‘transect
lines’. Although this is logistically convenient, particularly in difficult terrain or
dense vegetation, it has the potential to induce severe biases in the survey data.
Such bias is introduced in two ways: First, these existing linear features are likely
to be nonrepresentative, by not sampling existing variations in habitats and human
influences that affect densities proportionally. Second, these features may be specific
microhabitats for only some prey species. Prey species may be either attracted or
repelled by them, again causing the distribution of detection distances to reflect
some combination of detection and density variation, rather than only detection.

To illustrate this point, envision a survey design with transects located along
existing animal trails in the study area. It is likely that for some or all species,
densities along these trails will be higher than off the trails, leading to inflated
encounter rates on them. In addition, if more animals occur on or closer to the trails,
then the gradient in detectability with distance from the transect line is confounded
by the natural gradient in density. As a result, not only is the sampling becomes
nonrepresentative of the study area but seriously undermines the investigators’
ability to accurately estimate detection probability via the detection function.
Generally, in such situations, such factors will lead to an overestimation of animal
density.

A contrasting scenario would be if transects are situated along trails that are
heavily used by human hunters. In this case, true animal density along trails is likely
to be lower on trails than away from trails, because some species may actively
avoid hunters. This scenario will lead to lower encounter rates on the trails and
more observations at greater distances than would be the case, if they were proper
transects placed randomly. In this scenario, animal densities will be underestimated.
To further complicate matters, different species within a given area may exhibit
different behaviours, with some species favouring trails and others actively avoiding
them.

The only way to avoid these biases is to place line transects using a probabilistic,
fully randomised survey design or using a systematic placement with a random
start (Chap. 6). Systematic placement of transects with a random starting point is

http://dx.doi.org/10.1007/978-981-10-5436-5_6
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generally the most logistically practical design. Moreover, it also achieves more
uniform sample area coverage, as assumed in standard distance sampling analyses
(Buckland et al. 2001, Chap. 6). The transect placement process can be visualised as
drawing transects on an acetate sheet using a particular survey design and sampler
geometry and then placing it on a map of the study area using a randomly chosen
starting point for alignment.

In some instances, there may be no other option but to conduct surveys along
pre-existing features such as trails. One obvious consideration in such situations is
that trails are generally somewhat curved rather than straight, although techniques
have been developed to adjust for this during the analysis (Hiby and Krishna 2001).
If animals are not orienting their movements with respect to trails, in theory, a valid
estimate of animal density can be obtained for the locations surveyed, and this may
potentially represent a useful metric for trend monitoring purposes. However, there
is still no theoretical basis for extrapolating such an estimate to the entire area of
interest. The only way to justify such an extrapolation is by demonstrating that
average density in the surveyed area (e.g. along trails) is the same as that over the
whole area – an extremely difficult task. Some possibilities are (i) to perform strip
transect counts of animal dung at right angles to the trails to investigate whether
dung density varies with distance from the trail or (ii) to compare encounter rates
on trails with those from transects placed at random.

In summary, when all the additional effort that is required to justify the use of
existing linear features is considered, it is strongly recommended that wherever
possible, investigators should establish transect lines according to some valid
sampling design (see Chap. 6).

7.2.3 Requirement for Spatial and Temporal Replication

In general, a larger number of spatially replicated transect lines will reduce the
between-transect variance in encounter rates and improve estimates. However, in
areas hard to access, there are also logistical problems and costs associated with
increasing the number of spatial replicates. Therefore, the number of transects to
be established depends on available survey personnel and other resources also.
A minimum of 15–20 replicates are recommended and preferably 25 or more
(Buckland et al. 1993, 2001; Thomas et al. 2010). If the objective is to obtain one
density estimate for the study area, these 15–25 transects can possibly represent
the area reasonably well. If, however, separate density estimates for multiple strata
(Chap. 6) are required, for example, in different habitat types or management zones,
at least 15–20 spatial replicates must be placed in each stratum. In situations where
a smaller number of spatial replicates are used, the variance of encounter rates may
have to be estimated theoretically rather than empirically (see Chap. 6). Generally,
deriving these variance estimates empirically from the survey data on hand is
considered a superior option (Buckland et al. 1993, 2001).

If certain prey species are restricted only to specific parts of the study area,
separate sets of transect lines may have to be created to target them. More typically,

http://dx.doi.org/10.1007/978-981-10-5436-5_6
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however, the distributions of several prey species will overlap spatially, and once
a system of transects is established across the entire area, it should be possible to
conduct surveys of several prey species simultaneously.

For multispecies surveys, walking at a speed of approximately 1.5 kilometres per
hour is recommended for optimal detection of animals. Assuming that an observer
can employ about 2–3 h of concentrated search effort in one session, 3–4 kilometres
long can be walked depending on terrain and other ambient conditions. To have
25 spatial replicates, a minimum of 75–100 kilometres of transect lines may need
to be established. As discussed in Chap. 6, repeated walks of the same transect
lines, called temporal replications, can improve the precision of the estimates of
detection probability and of cluster size. Often multiple temporal replications may
be necessary to attain sufficient sample size of detections. Generally, in habitats
with moderate to high prey densities, 8–10 temporal replicates on each spatial
replicates will yield reasonable sample sizes (i.e. 60–80 detection events) to
estimate detection function parameters with CV(bD) < 20% for most prey species.
However, only a larger number of spatial replicates can improve the precision of
encounter rate estimates (Chap. 6).

Repeated temporal use can lead to transect lines becoming de facto animal trails
which are not desirable as described in previous sections. Particularly in forested
habitats, effort should be made to keep transects as unobtrusive as possible with
minimal trimming of vegetation to enable quiet movement of survey personal. If
animals are reacting to the transect lines, the standard way of checking is to place
shorter (100–200 m) dung count transects perpendicular to the line transects to
measure whether dung density increases or decreases with the distance from the
line, indicating either attraction or avoidance by prey species.

7.2.4 Sampler Geometry

The geometrical shape of transects (termed ‘samplers’ in distance sampling lit-
erature; Buckland et al. 2001, 2004) can be a straight line, a square or some
other shape (Strindberg et al. 2004). A square sampler design offers a number of
advantages for line transect surveys of tiger prey species. This layout (i) eliminates
the additional effort required to return to the start point after the survey (which is
particularly useful in difficult habitat), (ii) increases the uniform sample coverage
of the surveyed area, (iii) increases survey efficiency and (iv) eases logistics by
facilitating multiple access points to start the survey, which in turn increases the
potential options for locating campsites, transportation of personnel, etc.

A set of points or line segments, at chosen spacing and orientation, can be
generated by the automated survey design feature in the DISTANCE software
(Thomas et al. 2010). These points or line segments subsequently can be converted
into square samplers using GIS tools. Square sampler survey designs have been
successfully implemented for estimating prey densities in a variety of habitats
(O’Kelly et al. 2012; Jathanna et al. 2015; Karanth and Kumar, Unpublished data;
Pattanavibool, Unpublished data).

http://dx.doi.org/10.1007/978-981-10-5436-5_6
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One criticism of square samplers (spatially replicated transects) is that animal
detections made at the four corners may be nonindependent events (e.g. detected
animals fleeing and flushing others around the corner leading to more detections).
However, as explained in Chap. 6, although such dependent detection events may
bias analytical estimates of sampling variance, they will have little effect on
the density estimates. Furthermore, this problem can be addressed by choosing
empirical estimators for variance estimation. Karanth and Kumar (unpublished data)
also found that detections close to corners of the square sampler contributed little to
the overall estimation of detection function parameters. For example, in a large-
scale transect survey data set using a square sampler design collected over the
past 15 years in India, ‘corner observations’ constituted less than 1% of the total
detections (Karanth and Kumar, unpublished data).

In dense forests, swamp or rugged terrain, sampler geometry other than the
square one may be more appropriate. Zigzag (Strindberg and Buckland 2004) or
curvilinear (Hiby and Krishna 2001) transect designs are also such options. The
same caveats regarding unrepresentative sampling described in Sect. 7.2.2 apply to
these designs also. Moreover, there may also be issues of non-uniform coverage
probability, which must be addressed during the analysis (Strindberg and Buckland
2004). Ultimately, the choice of sampler geometry will be somewhat study specific
shaped by habitat features, prey population characteristics, logistics and resource
considerations.

7.3 Field Protocols for Conducting Line Transect Surveys

7.3.1 Meeting Line Transect Assumptions in the Field

The four key assumptions in line transect sampling (Chap. 6) are as follows:

1. Transect lines are located randomly with respect to the distribution of animals.
2. Animals on the line are detected with certainty.
3. Animals are detected at their initial location.
4. Measurements made are exact.

Field protocols should ensure above assumptions are satisfied as best as possible.
In the following section, each field protocol prescription is linked to meeting one or
more of these assumptions using above numbers. For example, (1) indicates that the
prescription is to meet assumption 1.

The start location and orientation of transects should be decided upon in advance,
based on an appropriate survey design (see Chap. 6). From a purely theoretical
perspective, survey personnel could go to the transect start point, set a predetermined
compass azimuth and simply walk in that direction, searching for animals. However,
this is not often feasible because of dense vegetation and other impediments
to travel such as rivers or escarpments. Such an approach of traversing and
crashing through vegetation would also generate unacceptable levels of disturbance,

http://dx.doi.org/10.1007/978-981-10-5436-5_6
http://dx.doi.org/10.1007/978-981-10-5436-5_6
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Plate 7.1 Transect lines have to be clearly marked, while also minimising cutting of the under
growth in order to avoid attracting or repelling prey species to the lines (Image Copyright©:
Killivalavan Rayar)

causing systematic evasive movement in response to the survey process itself. Such
movement would constitute a serious violation of the assumption 3.

Therefore, transect lines have to be minimally cut and maintained physically,
while carefully marking their orientation, and distance traversed, with paint (Plate
7.1). This will keep disturbance from the passage of survey personnel down (3).
Lines can be oriented using a sighting compass and/or a GPS unit (1). Survey
personnel should be concentrating on searching for animals (2), not searching for
their line transect itself! Locations along the line should be clearly marked at regular,
closely spaced intervals using brightly coloured paint, metal tags or flagging tape to
guide survey personnel.

Observers need not walk ‘exactly’ on the line at all times (see below), but they
must know exactly where the line is at all times (2) and record all measurements
from the line (4). Transects can be measured using hip chains, GPS units or fixed
lengths of rope. Subsections of transect can be marked at every 100 m if covariate or
any other spatial data collection is involved in the study (see Sect. 7.3.4). Vegetation
along transect should be trimmed minimally as necessary to enable survey personnel
to move quietly along the line (3).

In open habitats, it may be possible to maintain lines just by paint marks,
without cutting any vegetation. In either case, it is essential that transect marking
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Plate 7.2 Two observers move along the marked transect line, recording each visual detection of
prey species (Image Copyright©: Eleanor Briggs)

and vegetation trimming are completed fully before conducting the actual survey to
avoid all disturbance (1).

It is recommended that a team of two observers should survey each line transect
(Plate 7.2). It is essential to pay attention to ensure that animals on the line or close
to it are detected without fail (2) (shape criterion; see Chap. 6). Observers must
be vigilant to detect animals hiding in the vegetation. The first observer should
focus on the line itself (2) and on scanning an arc of 30ı on either side of it (shape
criterion). The second observer should concentrate on a wider arc, say 30ı–90ı,
on both sides of the transect. The second observer should also be responsible for
scanning the canopy above the transect line if primate species are surveyed. In this
manner, two observers combined should be able to search an arc of 180ı ahead of
them adequately (3). Sometimes, animals are detected after observers have already
passed them. Data from such ‘back sightings’ are not a problem only if they are not
too frequent and systematic.

The survey objective is for the observers to see the animal before the animal
sees them (3). Observers should wear cryptic clothing and footwear that permits
silent passage (3). They should move carefully and quietly, refraining from talking
or smoking (3). Walking at a uniform pace of 1.5 km per hour helps to minimise
responsive evasive movement before initial detection (3) and ensures that observers
move faster than undisturbed target animals would naturally move (Buckland et al.
2001, 2004, see Chap. 6). In addition, walking at this speed reduces footfall noise
and increases detection of auditory cues from animals that often lead to subsequent

http://dx.doi.org/10.1007/978-981-10-5436-5_6
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visual observations. However, auditory detections on their own cannot be used for
gathering distance data, without visual confirmation (3).

Both active and passive detections of prey species should be recorded. Active
detections occur if observers detect the animal before it becomes aware of them.
Passive detections occur if the animal flushes in response to the observers leading
to the detection event. In both of these cases, all measurements should be taken to
the initial location of the animal or animal cluster (3). Upon sighting an animal or
a cluster of animals, the measurements usually taken are true distance to the animal
or centre of the cluster, r, compass bearing to the animal or cluster,�1, and compass
bearing of the line, �2. Perpendicular distance, x, can then be calculated during the
data entry process, as x D r sin(�1 � �2).

If animals are first observed close to the line but move away before an accurate
measurement of radial distance can be recorded, it is acceptable to walk along
the line to a point opposite to their initial location and measure the perpendicular
distance directly (3). In this situation, particular care must be taken that one observer
continues to scan ahead on the transect (2), while the other keeps sight of the
animal’s initial location (3). To avoid heaping and rounding errors (see Chap. 6), the
distance and angle measurements should be accurately read and exactly recorded to
the nearest integer value (4). True distances should be measured with a rangefinder,
and compass bearings measured with a sighting compass. Laser rangefinders have
become increasingly preferred to optical rangefinders because they are easy to use
and provide a clear digital display of the distance. Laser binoculars can record
both the distance and compass measurements simultaneously although they are
considerably more expensive.

Although it is acceptable to move off the transect line by a few metres, to avoid
obstructions, observers must remember the location of the ‘true line’ and try to stay
close to it. All measurements should be made from this true line (4). It is particularly
important to record both angles �1 and �2, unless the animal is dead centre on the
line (which is unlikely). Even if a cluster of animals may straddle the line, it is
unlikely that exact centre of the cluster is exactly on the line. Once again, both
angles �1 and �2 should be recorded.

For each detection event, distance and angle measurements should be made with
reference to the approximate geometric centre of the cluster (4). We emphasise
that the animal ‘cluster’ as defined in line transect surveys refers to an aggregation
of individual animals that occurs within the sampled strip. Such a cluster may be
smaller than a larger ‘social grouping’ in gregarious species such as chital, hog deer
or gaur, for example. A larger group may sometimes be detected as one or more
detections of smaller clusters. Some parts of it may lie beyond the sampled strip
and go undetected. As a general practice, considering all animals within a 30 metre
radius as one ‘cluster’ is convenient in surveys of forest ungulates in tiger habitats
of southern Asia that we have surveyed.

The number of individuals in a detected cluster (cluster size) should be accurately
counted before the observers move on (4). After animals flush and scatter, enabling
more animals to be counted, they should also be added to the final cluster size count.
Detecting such extra individuals may also change the approximate geometric centre

http://dx.doi.org/10.1007/978-981-10-5436-5_6
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of the cluster, requiring distance and angle measurements to be made again (4).
Binoculars can improve the accuracy of counts as well as validate species detected.
It is also good practice for both observers to count each cluster and compare
counts before recording. However, when one observer is recording data, the second
observer must continue to scan the transect line so that no animals on or close to it
are missed (2).

Additional information that is commonly recorded with detections includes
location of the observer/animals at the point of each detection (e.g. 100 metre
subsection, indicated by distance markers) and/or it’s habitat type. Such information
can potentially be used as covariate data for modelling of spatial distribution or
other advanced analytical techniques (see Chaps. 6 and 8). However, spending time
and paying attention to all sorts of biological or management data, not related to
distance sampling, will seriously undermine the data quality in line transect surveys.
Unfortunately, many investigators overreach, ignoring this crucial need for focus on
counting prey, and seriously undermine the quality or even validity of the data they
collect.

A sample data entry form for use in the field for conducting line transect surveys
is shown in Table 7.1. After completion of a field trip, data forms should be checked
as soon as possible for data recording errors. Most errors can be corrected easily if
such validation is performed immediately after the survey, preferably the same day.
Postponing this quality control to after completion of the survey is not advisable at
all. Memory of a particular detection event fades rapidly, and even the observer may
not be available for such crosschecking later.

Sometimes, a particular temporal replicate walk may have to be abandoned part
of the way, because of onset of darkness, bad weather, illness and danger from
animals such as elephants or rhinos or even from other humans. In such cases,
the location where the survey was abandoned and the distance covered should be
recorded to ensure sampling effort is recorded accurately on the data form. The
survey may be resumed at a later date if possible.

7.3.2 Season for Conducting Line Transect Surveys

The seasonal timing of line transect surveys depends on several biological factors.
If prey species are locally migratory, this factor must be taken into account. The
way ungulate species aggregate in groups in and out of rut, presence of antlers
or propensity to call in male animals and animals being active or not because of
ambient conditions are all ecological factors that do influence the detection process.

Seasonal effect on habitats also influences the process of animal detection from
a line transect. Often, visibility is greatly improved when trees and shrubs are sea-
sonally deciduous. Improved visibility increases detectability and adds to encounter
rates and ultimately a larger sample size for better estimates of both. Additionally,
undercounting cluster size is less likely with greater visibility, reducing size bias
(see Chap. 6) in data.

Conversely, deciduousness of the vegetation may increase dry leaf litter along
transect, creating excessively noisy underfoot conditions, leading to a more evasive
movement of animals. A compromise for forests in South Asia is to conduct line

http://dx.doi.org/10.1007/978-981-10-5436-5_6
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Table 7.1 Example of field data form used in line transect surveys

Surveyor 1:                  Surveyor 2 : Transect No: Field Site:

Date: Weather: Page No:

Start Time: End Time: Sample Walk:

Start Location: End Location: Total Distance Walked (KM):

Species Acronym: Sambar: SBR; Nilgai: NLG; Muntjak: MJK; Chital: CHT; Chinkara: CHK; Blackbuck: BBK;
Elephant: ELP; Wild Pig: PIG; Sloth Bear: BER; Mouse deer: CHV; Common langur: LGR; Rhesus macaque: RHM; 
Bonnet macaque: BNT; Giant Squirrel: GSQ; Cattle: CTL; Sheep/Goat: GOT

Sl. No. Time Species Cluster 
Size

Sighting
Distance
(metres)

r

Compass Bearings
Habitat
Type/

Segment 
Location

Animal
(degrees)

1θ

Line
(degrees)

2θ

transect surveys towards the end of the dry season but after early monsoon showers
(Karanth and Nichols 2002).

Seasonal factors can also seriously impact the logistics of line transect surveys.
The high ambient temperature in summer is a major constraint to undertaking
arduous fieldwork. On the other hand, access to field may be cut off in the wet season
or become dangerous due to poor road conditions or flooded rivers. In addition,
the risk of disease to field personnel is often greatly increased in certain seasons
affecting their efficiency and safety.
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Choice of the season for carrying out line transect surveys is therefore every
context dependent and needs to consider the above (and perhaps other) local factors.

Timing of transect walks within the diel cycle is a more straightforward matter.
Many ungulate prey species are crepuscular (e.g. sambar), being active around
dusk and dawn, and tend to lie up during the day. Others (e.g. chital) are more
diurnal but still tend to be active early in the morning and evenings. Therefore,
although the underlying ungulate densities do not change, detection probability
will differ by time of day. Detection probabilities are higher when prey species
are active and moving around and drop dramatically when they are lying down
or resting (Karanth and Nichols 2002). We recommend that, in tropical Asia, line
transects are surveyed early in the morning and/or late in the afternoon to improve
detection probabilities due to increased animal activity. In the hot season, these
times are also more comfortable for survey personnel. Furthermore, to even out
possible variations in detection rates, even within these windows of survey time,
it is recommended that temporal replications along the same transect (1) are split
evenly between evenings and mornings and (2) traversed from opposite ends (e.g.
for square samplers switching between clockwise and counterclockwise directions).
We have found that with a little attention to such ‘clever logistics’, it is possible
to add these refinements to even out variations in encounter rates and improve
detection probabilities, thereby increasing the reliability of prey density estimates.

Some other logistical factors that might affect the timing of surveys include the
time taken to traverse the transect line, the distance and time involved in reaching
starting points of the transect lines and the mode of transport available for doing so.

7.3.3 Training and Human Resource Requirements

Because in an ideal study, over 25–50 spatial replicates of 3–4 km length are
to be walked 8–10 times each (temporal replication), within a reasonably short
survey period, a large number of skilled and well-trained survey personnel will
be required to collect high-quality line transect data. Karanth (1999) demonstrated
the efficacy of using highly motivated and well-trained volunteer naturalists or
‘citizen scientists’ to collect high-quality line transect data. They were trained for a
week or so in the use of survey equipment and tested for ability to spot, identify
and count target species rapidly. While collecting data, each trainee was paired
with an experienced instructor. This model led to collection of large amounts of
high-quality field data. Furthermore, a large of number of these citizen scientists
continued to be involved in prey monitoring initiatives over the long term making
major contributions to tiger conservation (Johnson et al. 2014). This ‘social model’
of conducting line transect surveys may have relevance in many tiger range
countries possessing educated populations of potential volunteers interested in



7 Field Practices: Estimating Prey Abundance Using Line Transects 133

natural history. In alternative scenarios, park management staff or research workers
or field assistants can be paid and employed to provide the necessary manpower for
prey surveys.

7.3.4 Covariate Data Collection

In addition to generating overall estimates of prey abundance and density in an
area, researchers, conservationists and wildlife managers may additionally want
to investigate spatial variation in prey density within that area of interest. Such
variation may be found because of both ecological and management factors or
simply through stochastic processes (Royle and Dorazio 2008). This variation can
also be useful to generate model-based predictions of prey density (Chaps. 6 and 8)
at unsurveyed locations using covariate data (Chap. 8).

Classical distance sampling covered above cannot achieve these objectives.
However, recent advances in standard distance sampling methods (Hedley and
Buckland 2004; Hedley et al. 2004) and the development of fully model-based
inferential approaches (Royle and Dorazio 2005, 2008; Kumar 2011; Kéry and
Royle 2015) have opened new analytical avenues to explore such responses of
tiger’s prey species to ecological and management factors (e.g. Sillett et al. 2012).
These approaches are briefly covered in Chaps. 6 and 8.

The newer analytical extensions to line transect survey methods mentioned above
make it necessary to collect additional data on the spatial location of detection
events on transects and other relevant covariate information associated with each
detection. Some types of covariate data can be extracted from existing GIS layers
and/or remotely sensed data sets, while others can be collected during field surveys
(e.g. location of observers/animals at a detection event, habitat information, weather
conditions, elevation, etc.; e.g. see Kumar 2011, Harihar et al. 2014). It is important
to make sure this additional data collection does not distract survey personnel from
their primary task and lower the quality of the basic line transect prey survey
data. Therefore, we suggest that a separate, one-time survey can be conducted on
each transect line to gather these additional data, without trying to record animal
detections (e.g. data on vegetation, evidence of fire or other human impacts, etc.;
e.g. see Kumar 2011). Such one-time surveys can also be carried out simultaneously
with the initial marking, or annual maintenance, of transect lines.

7.4 Implementing Line Transect Surveys Under Challenging
Conditions

Tiger habitats outside of Southern Asia pose some additional challenges to imple-
ment line transect surveys as we have described above. Protected areas (PAs) in
Southeast Asia tend to be far more extensive (1000s of sq. km as opposed to 100s
of sq. km) and situated in remote regions with limited infrastructure such as roads
and power supply. This makes access to survey areas and movement within them

http://dx.doi.org/10.1007/978-981-10-5436-5_6
http://dx.doi.org/10.1007/978-981-10-5436-5_8
http://dx.doi.org/10.1007/978-981-10-5436-5_8
http://dx.doi.org/10.1007/978-981-10-5436-5_6
http://dx.doi.org/10.1007/978-981-10-5436-5_8
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time-consuming, with field teams generally being required to hike and camp for
several days to reach transects on foot in difficult terrain. In order to maximise
the ratio of survey time to travel time in these situations, it is recommended that
transects are temporally surveyed on successive days until the necessary effort
(total distance walked) per each spatially replicated transect is attained. For greater
efficiency, surveys should be undertaken both in the morning and evening, where
possible. There is a small risk that animals may be disturbed as a result of such
repeated sampling. Encounter rates should be checked to confirm there is no such
systematic decrease over time. Additional precautions should be taken to minimise
such disturbance, by ensuring survey teams camp at a sufficient distance away from
transects.

Another characteristic of many Southeast Asian PAs is depressed prey densities
due to hunting pressure. Low prey densities make it extremely difficult to obtain
sufficient detections to estimate species-specific detection function parameters. This
issue of small sample sizes is already discussed in Sect. 7.2.1. However, one advan-
tage of distance sampling method is that detection function data can be accumulated
and pooled over time (i.e. over multiple years) until a detection function can be
reliably modelled using a larger data set. This detection function can then be applied
retrospectively to previous surveys. In extreme cases of low density, data can be
combined from similar species to model a detection function. Detection functions
can also be ‘borrowed’ from ‘similar studies’ conducted elsewhere. However, all
of these techniques involve implicit assumptions regarding the detectability of the
species to be constant across time or space or species. Therefore, they should be
applied with due caution. It is worth noting that where densities of all prey species
are so low that they preclude all attempts at population estimation, there is probably
no sufficient prey base present to support a viable tiger population in the area
anyway (Karanth and Stith 1999; O’Kelly et al. 2012).

Another critical constraint that is common in tiger range states is a lack of
adequate manpower and limited technical capacity. Outside of Southern Asia, there
is typically a lack of volunteers, and even government staff may be reluctant
to spend long periods of time surveying at remote field sites. Survey personnel
undertaking line transect surveys must be able to use equipment (GPS, map,
compass, rangefinder, etc.) and fill out data forms. They should understand the need
to meet basic assumptions of distance sampling. Another essential requirement for
survey personnel is field skill in spotting, identifying and rapidly counting animals.
This is particularly important in forests or where animals are wary. It is vitally
important that observers gain sufficient experience to develop a ‘search image’
for target species, not easy when dealing with low-density or cryptic species. An
efficient approach we recommend is to pair one locally recruited observer with only
field skills with another more educated observer possessing skills to use instruments
and record data (i.e. a high school or university graduate). It is also important that
both observers train each other over time. Given the challenges involved in finding
and training skilled field personnel, it helps to retain trained survey personnel, for
example, by providing employment beyond the duration of the line transect surveys.
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Due to all of the above constraints, conducting line transect surveys can be
expensive and time-consuming. There are, however, multiple advantages to carrying
out annual surveys: increasing the number of data points to better assess prey
population trends, retaining skilled staff, gathering auxiliary anecdotal information
relevant to management and conservation by being eyes and ears in the tiger habitat
being surveyed. However, because of resource constraints, surveys may be feasible
only once every 2 or 3 years or only survey different parts of the area of interest each
year by rotation. All such resource allocation decisions are context specific and will
invariably depend on a wide range of local factors (Chap. 2).

Finally, it must be recognised that in some tiger habitats, transect surveys of
prey species are simply not a feasible option because of steep terrain, barriers to
movement and even low densities of prey animals or other logistical issues. In these
circumstances, investigators do have other methods, perhaps as not well developed
as line transects at this point, available for monitoring prey (e.g. Gopalaswamy
et al. 2012; Vongkhamheng et al. 2013). Some of these issues and approaches are
discussed in Chaps. 2 and 8.
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8Concepts and Practices: Estimating
Abundance of Prey Species Using
Hierarchical Model-Based Approaches

Robert M. Dorazio, N. Samba Kumar, J. Andrew Royle,
and Arjun M. Gopalaswamy

8.1 Introduction

Tigers predominantly prey on large ungulate species, such as sambar (Cervus
unicolor), red deer (Cervus elaphus), gaur (Bos gaurus), banteng (Bos javanicus),
chital (Axis axis), muntjac (Muntiacus muntjak), wild pig (Sus scrofa), and bearded
pig (Sus barbatus). The density of a tiger population is strongly correlated with the
density of such prey species (Karanth et al. 2004). In the absence of direct hunting of
tigers, abundance of prey in an area is the key determinant of the “carrying capacity”
of that area for tigers (Chap. 2). Accurate estimates of prey abundance are often
needed to assess the potential number of tigers a conservation area can support.

Historically, the most accurate estimates of abundance of tiger prey have been
obtained using line-transect sampling at randomly selected locations (Buckland
et al. 2001, 2004, Chaps. 6 and 7). This approach has the advantage of providing
an estimate of prey abundance that is design unbiased for a fixed sample frame
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(i.e., a finite region of interest) provided the model of detection is correct (or at least
approximately correct). The use of randomization in selecting locations ensures that
estimates of total prey abundance in the region are unbiased relative to the true,
though unknown, total number of prey. This approach is ideally suited to regions
that are relatively homogenous in habitat or to regions that can be stratified for
sampling into subregions of similar habitats.

In practice, however, spatial heterogeneity in the habitat of tiger prey species is
more common, and it is not always possible to conduct surveys at randomly selected
locations owing to inaccessibility and other logistical constraints. For example, a
randomly selected location may be too steep or heavily forested to be surveyed on
foot. The presence of swampy soils or water bodies also may impede survey efforts.
These problems have motivated statisticians to develop extensions of conventional
line-transect models that account for the spatial variation in density of individuals
(Hedley and Buckland 2004; Royle et al. 2004; Johnson et al. 2010; Conn et al.
2012; Buckland et al. 2015). These extensions do not require sample locations to
be selected randomly. Instead, the idea is to select locations that span the range
of variation in habitat and to estimate the effects of habitat on prey density from
the data. This fully model-based approach to the analysis of line-transect data may
lack the design unbiasedness of conventional methods of analysis, but a model-
based approach is more versatile and can be extended to accommodate a variety
of sampling protocols that include line-transect surveys. A model-based approach
provides much more than a single estimate of population abundance or density.
Modeling can be used to learn about how key characteristics of habitat influence the
density of prey across a region. Modeling also can be used to estimate the abundance
or density of prey within any subregion of interest. In this chapter we describe this
fully model-based approach and its relevance to surveys of tiger prey.

The general problem that we consider is the estimation of abundance of a prey
species living in a finite region of interest that contains spatial heterogeneity in
habitat. Our use of the term habitat is not limited to physical habitat. We mean
to include measures of ecological or management-related factors that are known to
influence variation in prey abundance over space. We assume that sample locations
span the range of variation in habitat within the region and that two or more line-
transect surveys are conducted at each of these locations within a brief period of
time (e.g., on consecutive days). Repeated sampling at each location is used in
surveys of tiger prey to increase the number of detections at each location; therefore,
the number of prey animals within range of detection can differ among temporal
replicates owing to movements of individuals between surveys. Fortunately, existing
models can be extended to account for these differences in abundance when prey
animals are assumed to move randomly (i.e., into and out of the region of sampling)
between surveys (Chandler et al. 2011, 2014; Kéry and Royle 2016, Section 9.5).

In the following sections, we describe several hierarchical models that may be
applicable in the analysis of spatially and temporally replicated surveys of tiger
prey. As a continuation of the previous chapters, we begin by describing models
of line-transect data recorded by one or two observers and models of counts of
these observers. The counts, a by-product of line-transect sampling, are obtained by
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enumerating individual prey detected by one or two observers during each line-
transect survey. We show that these counts alone can be used to estimate prey
abundance in surveys where detectability of individuals depends more on habitat
(e.g., the presence of concealing vegetation) than on distance from observers.
We also show that if prey abundance is relatively low at most survey locations,
abundance still can be estimated using only a quantized version of each count (that
is, the detection or non-detection of one or more individuals). We provide examples
of fitting these models to hypothetical data sets constructed by assuming realistic
levels of prey density and prey detection probability and to line-transect surveys of
chital in the Nagarahole and Bandipur Tiger Reserves of India.

8.2 Hierarchical Models for Spatially and Temporally
Replicated Surveys

In this section we describe a hierarchical, model-based framework for estimating the
abundance of a prey species living in a finite region of interest that contains spatial
heterogeneity in habitat. One component of the hierarchy is used to specify spatial
variation in prey abundance, usually as a function of covariates whose measurements
are available throughout the region of interest. These measurements are often
accessible using geographical databases and software. The other component of
the hierarchy is used to specify a relationship between the data observed at a
survey location and the unknown abundance of individuals vulnerable to detection
at that location. This hierarchical approach, often called N-mixture modeling, was
first proposed for the analysis of point counts (Royle 2004); however, N-mixture
modeling also has been used to analyze data associated with other sampling
protocols (Royle and Dorazio 2006, 2008; Kéry and Royle 2016). We describe
several examples of these kinds of models in the following sections.

8.2.1 Sampling Design and Assumptions Common to All Models

We assume that the region of interest may be partitioned into a finite number of
disjoint (nonoverlapping) sample units, each of which can potentially be surveyed
using a protocol that provides information about the abundance and detectability of
individuals. The size of each sample unit should correspond (at least approximately)
to the area that can be surveyed. In most cases all units in the region cannot be
surveyed, and observations are recorded only for a sample of units. We assume that
the sample is selected to span the range of variation in habitat within the region.
Ideally, the sample will be representative of the entire region, but representativeness
is not a requirement of the models we describe.

We also assume that movements of prey between repeated surveys of the same
transect are limited to random excursions into and out of the area surveyed. Such
movements are sometimes referred to as a “temporary emigration” or “temporary
absence” and occur as individuals move within their home ranges. This assumption
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is reasonable for most tiger prey because they do not migrate (bearded pigs may be
an exception). We assume that the spatial extent of prey movements is sufficiently
limited that individuals can only be detected within a single sample unit. This
assumption could potentially influence the selection of units to be surveyed, but in
practice most regions are large enough to ensure that the fraction of units surveyed
is small. Therefore, given our assumptions a sample will likely include sample units
that are far apart relative to the spatial extent of prey movements.

8.2.2 Modeling Spatial Variation in Abundance

Suppose a representative sample of K units is selected for the purpose of estimating
prey abundance in the region of interest. Within each of these units, assume a
survey is repeated on J occasions separated by relatively short time intervals (e.g.,
consecutive days). For now, we let the survey protocol be unspecified. Later, we
will describe models induced by specific kinds of survey protocols. In addition,
while the number of sampling occasions can generally vary among units, we assume
for simplicity that each unit in the sample is surveyed the same number of times.
However, all of the models can be fitted if the number of repeated visits actually
differs among sample units.

Let Mk denote the unknown number of prey available to be detected in sample
unit k (k D 1; : : : ;K), and assume

Mk � Poisson.�kak/

where ak is the area of the sample unit and �k is the expected density of prey
(number of individuals per unit area). To specify a relationship between �k and
habitat covariates, we assume a log-linear model as follows:

log.�k/ D ˇ0vk C uk

where vk is a vector of predictors of prey density computed using the observed
covariates and where ˇ is a vector of parameters that corresponds to the effects
of the predictors on �k. Unobserved sources of variation in prey abundance that
may generate overdispersion (relative to the Poisson) can be specified by the
parameter uk. For example, we might assume u � Normal.0; 	2R/ for the
parameter vector u D .u1; : : : ; uK/

0, wherein the correlation matrix R is formulated
so that abundances in sample units close to one another are more similar than
abundances in sample units located farther apart. This correlation model is often
used to account for the effects of unobserved, spatially varying covariates (Wikle
2010) and provides a hedge against model misspecification or nonrepresentative
sampling, particularly in regions where covariate values change smoothly over
space.

The abundance of prey at a sample location can differ among surveys of that
location because individuals can move into or out of the range of detection between
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surveys. To account for these movements, we assume that a fixed proportion  of
the Mk prey available to be detected is, on average, actually present during each of
the J surveys. Specifically, we assume

Nkj j Mk � Binomial.Mk;  /

where Nkj is the number of prey present and within range of detection during the jth
survey (j D 1; : : : ; J) of transect k.

To estimate the total abundance of prey in the entire sample, we need to estimate
the expected number of prey in each unit as follows:

E.Nkj/ D EŒE.NkjjMk/� D  �kak

using estimated values of  and �k. This estimator accounts for spatial variation
in habitat because each estimate of �k depends on spatial predictors vk and uk.
An identical calculation is needed to predict the expected number of prey in each
unsampled unit, so that abundance of prey in the entire region can be estimated
by adding these predictions to the estimated abundances of prey in units that were
surveyed.

8.2.3 Modeling Different Types of Data Observed in Temporally
Replicated Surveys of Each Sample Unit

In this section we describe models of several types of data that can be obtained when
J surveys are conducted by one or two observers within each of K sample units. A
common characteristic of these models is their explicit conditioning on the unknown
number of individuals that are vulnerable to detection. To be specific, each model of
the observed data depends explicitly on Nkj, the unknown number of individuals
that are present and within range of detection during the jth survey of sample
unit k. These models are often referred to as “observation models” because their
formulation depends only on the sampling process, not on the ecological process
that produced the Nkj individuals vulnerable to detection.

Our description of each model is primarily conceptual and is focused on the
underlying assumptions needed for analyzing different types of data. More technical
material, including a derivation of the likelihood function for each model, is
provided in the Appendix 1.

8.2.3.1 Single-Observer Surveys
We first describe models for the case where repeated surveys of the same sample
unit are conducted by one observer.

Modeling distance of each individual from a transect line: The line-transect
sampling protocol (described in Chaps. 6 and 7) yields the perpendicular distance
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between each individual’s location and the transect line. Let xkj denote this distance,
and let nkj denote the number of individuals detected during the jth survey of sample
unit k.

To estimate Nkj, we assume that the probability of detecting an individual during
the jth survey of unit k depends on the individual’s distance xkj from the transect
line. A variety of functions can be used to specify this probability. One commonly
used function called a “half-normal” is

p.xkj/ D exp

 

�
x2kj

2	2

!

where 	 is a strictly positive parameter to be estimated in conjunction with Njk.
Note that p.0/ D 1, which implies that any individual located on the transect line is
assumed to be detected. In contrast, individuals not located on the transect line can
be missed, and their detection probability p.xkj/ is assumed to decrease as distance
xkj from the line increases. The magnitude of this decrease is controlled by the
magnitude of the scale parameter 	 , which has units of distance.

The primary assumptions needed for estimating the model’s parameters are:

xkj � Uniform.0;Bk/ (8.1)

ykj j xkj � Bernoulli.p.xkj// (8.2)

where Bk is the maximum perpendicular distance from transect k at which indi-
viduals can be detected and where ykj indicates whether an individual is detected
(ykj D 1) or not detected (ykj D 0) during the jth survey of transect k. Therefore,
ykj D 1 for each of the nkj observed individuals, and ykj D 0 for each of the
remaining Njk � njk individuals that were present but undetected.

All that is known of the undetected individuals is that ykj D 0 for each individual.
Because distance xkj is not observed for these individuals, we need to compute the
marginal probability that each individual was missed (not detected) during the jth
survey of sample unit k. This probability, which we denote by 
k, depends on 	 and
Bk as follows:


k D

Z Bk

0

Pr.ykj D 0jxkj/.1=Bk/ dxkj

D

Z Bk

0

Œ1 � p.xkj/�.1=Bk/ dxkj

D 1 �
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F.Bk/ �
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�

where F.�/ is the cumulative distribution function of a Normal.0; 	2/ distribution.
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Each of the undetected individuals has probability 
k of being missed; therefore,
the sum of their individual Bernoulli responses, which equals Nkj � njk, has a
binomial distribution with index parameter Nkj and probability 
k. Equivalently, we
can express the distribution of nkj conditional on Nkj as follows:

nkjjNkj � Binomial.Nkj; 1 � 
k/

It should be noted that 
k is a derived parameter of the model (that is, a function
of the formal parameter 	 ). In addition, we note that the binomial distribution of
njk is a consequence of the assumptions given in Eqs. (8.1) and (8.2); it is not an
additional assumption of the model.

It is easily shown that our assumed uniform distribution for distance xkj implies
that the locations of individuals are also uniformly distributed over the rectangular
region surveyed. This assumption is consistent with our model of spatial variation
in abundance (described earlier) provided the habitat used to predict abundance is
the same within the region surveyed along a transect line. The effects of habitat or
observer ability on p.xkj/ may be specified by formulating 	 as a function of habitat
or observer (Marques and Buckland 2003).

If habitat varies along the transect, our assumption of uniformity of individual
locations may not be tenable. In this case abundance Nkj can still be estimated,
but the hierarchical model must be formulated using the locations of detected
individuals, not their perpendicular distances (Hedley and Buckland 2004; Johnson
et al. 2010; Kéry and Royle 2016, Section 9.8).

Modeling counts of all individuals: In some situations an individual’s location
(or distance to transect line) is less informative of its detectability than other factors,
such as habitat or observer ability. This is particularly true when individuals are
potentially hidden from view due to dense vegetation or other physical structures.
For some species of prey (e.g., chital), group size or herd size also can be informative
of detectability. Therefore, when distance is uninformative of an individual’s
detectability, we might choose to estimate abundance using only nkj, the number
of individuals detected during the jth survey of sample unit k. In this case each of
the Nkj individuals present in the sample unit (with or without a transect) is assumed
to be detected with the same probability pk, which leads to the following model of
the observed number of individuals:

nkj j Nkj � Binomial.Nkj; pk/

Unlike an N-mixture model of repeated point counts (Royle 2004), there is no
replication because prey abundance can differ among the J surveys of sample unit k
owing to movements of individuals. Some restrictions therefore are needed to make
the parameters of this model identifiable (i.e., estimable). In particular, we can prove
that

nkj j Mk � Binomial.Mk;  pk/
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so the detection probability pk must be specified as a function of covariates of sample
unit k if both  and pk are to be estimated. For example, we might choose to specify
differences in pk using the following logit-linear model: logit.pk/ D ˛0wk, where
wk is a vector of predictors (e.g., based on habitat) and ˛ is a vector of the effects
of those predictors. At least one of the predictors in wk must be continuously valued
(that is, not categorical) to estimate both  and ˛; otherwise, only the product  pk

is estimable.

Modeling a quantized count of all individuals: For some species of prey, counts
of individuals may be unreliable or difficult to obtain. For these species, it is more
practical to observe whether one or more individuals appears to be present within a
sample unit. This sampling protocol, often called a presence-absence survey, yields
a quantized count of the individuals that are present (i.e., a presence or a zero).
As with actual counts, any quantized count of individuals is potentially subject to
detection errors, and a class of models (known collectively as occupancy models)
has been developed to account for these errors (MacKenzie et al. 2006; Royle and
Dorazio 2008).

Here we describe an occupancy model to estimate the abundance of individuals
under the sampling design described earlier. As in our model of counts, we assume
an individual’s location is less informative of its detectability than other factors,
such as habitat or observer ability. Let zkj indicate whether one or more individuals
are detected (zkj D 1) or not (zkj D 0) during the jth survey of sample unit k. An
observed value of zjk depends on the presence or absence of individuals (i.e., on the
value of I.Nkj > 0/) and on the probability qk of detecting one or more individuals
when they are present. Specifically, we assume

zkj j Nkj � Bernoulli.qk I.Nkj > 0//

following the occupancy model described by Koshkina et al. (2017). Notice that
this occupancy model assumes functional independence between qk and Nkj, unlike
the occupancy model of Royle and Nichols (2003), which assumes a functional
dependence between qk and Nkj. As in our model of counts, some restrictions are
needed to identify the parameters of this model. In particular, we can prove that
marginalizing Njk yields

zkj j Mk � Bernoulli.qk .1 � .1 �  /Mk//

where the term in parentheses equals Pr.Nkj > 0jMk/ under the binomial model
of Nkj. Therefore, if both  and qk are to be estimated, qk must be specified as a
function of covariates of sample unit k.

This occupancy model is best suited to situations where the abundance Mk in a
sample unit is not too high because Pr.Nkj > 0jMk/ ! 1 as Mk increases. If Mk is
too high, detectability and abundance of individuals cannot both be estimated. The
abundance-based occupancy model is therefore useful when individual densities are
relatively low throughout the population.
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Modeling counts of groups of individuals in distance categories: Some species
of prey are detected more conveniently as groups of individuals. We use the term,
group, to denote a cluster of individual animals observed together, not a social
group of individuals. A group can include one or several individuals, or it can even
contain dozens of individuals (e.g., chital). In line-transect surveys of these species,
it is difficult to record distances for individual animals, and it is more practical to
record observations associated with groups of individuals. Specifically, each group
is recorded as being detected in a discrete category of distance. Similarly, group
size, the number of individuals per group, is recorded using a discrete category of
abundance, particularly if group sizes are difficult to determine accurately during
a survey. We assume that the observed data are classified correctly with respect to
each category of distance and group size.

To model these group-level data, we need to honor the discrete nature of the
observations of distance and group size. We also need to account for differences
in detectability associated with these observations. That is, we expect larger groups
to be more detectable than groups composed of fewer individuals, and we expect
groups farther from the transect line to be less detectable than groups located closer
to the transect line.

To simplify our model of group-level data, we ignore the temporal replication of
each transect survey and instead concentrate on estimating the total abundance Nk

of groups summed over J replicates of sample unit k. Therefore, Nk corresponds to
the number of groups present in a hypothetical area of Jak, where ak is the actual
area surveyed during each replicate of the kth transect. Given this definition of Nk,
the expected density of groups �k is a parameter of the following Poisson model:
Nk � Poisson.�kJak/.

Suppose the observed perpendicular distance from each transect line is divided
into the following Hk categories: Œ0; bk1�; .bk1; bk2�; : : : ; .bk;Hk�1; bk;Hk �, noting that
bk;Hk � Bk. In addition, suppose the observed number of individuals per group is
divided into the following I categories: Œ1; c1�; .c1; c2�; : : : ; .cI�1; cI �. The observed
data correspond to the number of groups in each of the IHk combinations of group
size and distance categories.

Let nk D .nk;11; nk;12; : : : ; nk;IHk/
0 denote a vector of the IHk group counts

observed in sample unit k. We can relate these counts to group abundance Nk using
a multinomial model as follows:

nkjNk � Multinomial.Nk;�k/

where �k D .
k;11; 
k;12; : : : ; 
k;IHk/
0 denotes a vector of IHk probabilities, one for

each combination of group size category i and distance category h. To complete
this observation model, we need to formulate an expression for each multinomial
probability 
k;ih, which denotes the probability that a group from size category i is
present and is detected in distance category h.
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Assume 
k;ih D Ngi Npk;ih, where Ngi is the probability that a group is a member
of size category i and where Npk;ih is the probability that a group belonging to size
category i is present and detected in distance category h.

Let m denote the number of individuals in a group. We assume that the
distribution of group size is the same for all sample units, a zero-truncated Poisson
with mean �=.1�exp.��//; therefore, the probability that a group contains exactly
m individuals is

g.m/ D
exp.��/�m

mŠ.1 � exp.��//

for m 2 f1; 2; : : :g. Given this assumption, the probability that a group is a member
of size category i is Ngi D

Pci
mDci�1C1

g.m/, and the average number of individuals
in this size category is

Nmi D .1=Ngi/

ci
X

mDci�1C1

m � g.m/

To calculate Npk;ih, let xki 2 Œ0;Bk� denote the perpendicular distance at which a
group of size category i is detected in sample unit k. We assume

xki � Uniform.0;Bk/

yki j xki � Bernoulli.p.xki//

where yki indicates whether the group is detected (yki D 1) or not (yki D 0) with
probability

p.xki/ D exp

�

�
x2ki

2	2i

�

This detection probability is functionally dependent on the average number of
individuals in size category i because we assume the following log-linear model
for the scale parameter 	i:

log.	i/ D ˛0 C ˛1. Nmi � 1/

where the parameter ˛1 is assumed to be strictly positive to ensure that both 	i and
p.xki/ increase monotonically with average group size Nmi. Given these assumptions,
we calculate Npk;ih by noting that

Npk;ih D Pr.yki D 1jxki 2 h/ Pr.xki 2 h/

D Pr.yki D 1jxki 2 h/ .bkh � bk;h�1/=Bk (8.3)
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where

Pr.yki D 1jxki 2 h/ D

Z bkh

bk;h�1

Pr.yki D 1jxki/ Pr.xkijxki 2 h/dxki

D
1

.bkh � bk;h�1/

Z bkh

bk;h�1

p.xki/ dxki

D
1

.bkh � bk;h�1/

Z bkh

bk;h�1

exp

�

�
x2ki

2	2i

�

dxki

Substitution of the above expression for Pr.yki D 1jxki 2 h/ into the right hand side
of Eq. 8.3 yields

Npk;ih D
1

Bk

Z bkh

bk;h�1

exp

�

�
x2ki

2	2i

�

dxki

D

p
2
	i

Bk
.F.bh/ � F.bh�1//

where F.�/ is the cumulative distribution function of a Normal.0; 	2i / distribution.
We conclude this section by noting that the expected number of individual prey

in sample unit k may be calculated by multiplying the expected group size, the
expected density of groups, and the area surveyed as follows: ��kak=.1�exp.��//.

8.2.3.2 Double-Observer Surveys
We now describe models for the case where repeated surveys of the same sample
unit are collected by two dependent observers (Cook and Jacobson 1979; Nichols
et al. 2000). For example, in a line-transect survey, suppose one observer is
responsible for detecting individual prey, while the other observer records the prey’s
distance from the transect. If the first observer fails to detect an individual that
is seen by the second observer, the second observer still records that individual’s
distance (assuming both observers are equipped with range finders or another
measuring device). We assume that the two observers switch roles (as first and
second (dependent) observer) during the J surveys of the same transect. Switching
roles allows estimation of each observer’s ability to detect prey.

Modeling observer-specific distance of each individual from a transect line:
Let nkj1 and nkj2 denote the numbers of individuals detected by the first and second
observers, respectively, during the jth survey of sample unit k. Let xkj denote the
perpendicular distance between each individual’s location and the transect line
during the jth survey of sample unit k.
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To estimate Nkj, we specify the probability of detecting an individual using the
half-normal detection function for each observer as follows:

p1.xkj/ D exp

 

�
x2kj

2	21

!

p2.xkj/ D exp

 

�
x2kj

2	22

!

where 	1 and 	2 are strictly positive parameters for the first and second observers,
respectively. Differences in the values of 	1 and 	2 correspond to differences in
abilities of the two observers to detect individual prey.

The primary assumptions needed for estimating the model’s parameters are:

xkj � Uniform.0;Bk/ (8.4)

ykj1 j xkj � Bernoulli.p1.xkj// (8.5)

ykj2 j ykj1; xkj � Bernoulli..1 � ykj1/ p2.xkj// (8.6)

where Bk is the maximum perpendicular distance from transect k at which indi-
viduals can be detected and where ykj1 indicates whether an individual is detected
(ykj1 D 1) or not detected (ykj1 D 0) by the first observer during the jth survey
of transect k. The value of ykj2 indicates whether the second observer succeeds
(ykj2 D 1) or fails (ykj2 D 0) to detect an individual that was not detected by the
first observer.

Given these definitions, ykj1 D 1 for each of the nkj1 individuals detected by the
first observer, and ykj1 D 0 and ykj2 D 1 for each of the nkj2 individuals detected
only by the second observer. All that is known of the Nkj � .nkj1 C nkj2/ undetected
individuals is that ykj1 D ykj2 D 0 for each individual. Because distance xkj is not
observed for these individuals, we need to compute the marginal probability that
each individual was missed (not detected by either observer) during the jth survey
of sample unit k. This probability, which we denote by 
k, depends on 	1, 	2, and
Bk as follows:


k D

"

1 �

p
2
	1

Bk

�

F1.Bk/ �
1

2

�

#"

1 �

p
2
	2

Bk

�

F2.Bk/ �
1

2

�

#

where F1.�/ and F2.�/ denote the cumulative distribution functions of Normal.0; 	21 /
and Normal.0; 	22 / distributions, respectively.

Each of the undetected individuals has probability 
k of being missed; therefore,
the sum of their individual Bernoulli responses, which equals Nkj � .nkj1 C nkj2/, has
a binomial distribution with index parameter Nkj and probability 
k. Equivalently,
we can express the distribution of the number of observed individuals .nkj1 C nkj2/

conditional on Nkj as follows:

nkj1 C nkj2jNkj � Binomial.Nkj; 1 � 
k/
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This binomial distribution is a consequence of the assumptions given in Eqs.
(8.4), (8.5), and (8.6); it is not an additional assumption of the model. As with the
single-observer model of individual distances, the effects of habitat on p1.xkj/ and
p2.xkj/ may be specified by formulating 	1 and 	2 as a function of habitat.

Modeling observer-specific counts of individuals: Suppose the individual dis-
tances measured by the two dependent observers are less informative of prey
detectability than other factors, such as habitat. In this situation we can estimate
prey abundance using only the counts obtained by each observer. A model of these
counts conditional on abundance Nkj is

nkj1; nkj2 j Nkj � Multinomial.Nkj; pk1; .1 � pk1/pk2/

where pk1 and pk2 are the detection probabilities of the first and second (dependent)
observer, respectively (Shirley et al. 2012). Marginalizing Nkj from the model yields
the following model of double-observer counts:

nkj1; nkj2 j Mk � Multinomial.Mk;  pk1;  .1 � pk1/pk2/

As with the model of single-observer counts, the effect of habitat on detection of
prey can be included by specifying logit-linear models as follows:

logit.pk1/ D �1 C ˛0wk

logit.pk2/ D �2 C ˛0wk

where the parameters �1 and �2 are logit-scale effects of the abilities of the first
and second observers, respectively, and where ˛ is a vector of the effects of the
predictors wk.

8.3 Analysis of Data Sets

8.3.1 Simulated Data

In this section we analyze six hypothetical data sets constructed by assuming
realistic levels of prey density and prey detection probability in a real landscape.
To construct the sample frame, we partitioned the Nagarahole Tiger Reserve, which
is located in Karnataka, India, into 1358 rectangular sample units, each measuring
1.6 � 0.4 km. We chose these dimensions to accommodate a transect of length
1.6 km and a maximum detectable distance of 200 m on each side of the transect.

The expected density of individual prey in each unit was modeled as a log-linear
function of habitat quality, whose spatial distribution included patches or clusters
of high-quality habitat (Fig. 8.1). In real surveys, level of forest cover or understory
foliage could be an example of habitat.
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Fig. 8.1 Maps of the spatial distribution of an abundance covariate (left panel), a detection
covariate (middle panel), and the expected density of individuals (right panel)

A prey population with medium to high densities of individuals: We simulated
one prey population so that the expected density ranged from about 3 to
42 individuals/km2 (Fig. 8.1); however, in most (85%) of the sample units, the
expected density was less than 10 individuals/km2 owing to the spatial heterogeneity
in habitat quality. For purposes of sampling, we selected K D 200 sample units
randomly and applied two sampling protocols (single observer and double observer)
within each unit to generate four types of data (i.e., perpendicular distances and
counts of individuals for each two protocols). Each transect was surveyed on
J D 4 occasions. In the single-observer surveys, the effect of habitat on individual
detection probability was specified by modeling 	 as a function of a covariate
whose value increased from southwest to northeast (Fig. 8.1). The simulated values
of 	 ranged from 71 to 358 m. A similar approach was used to model the effects
of habitat and observer in the double-observer surveys. The simulated values of
	1 ranged from 71 to 358 m; in contrast, the values of 	2 ranged from 36 to
242 m, indicating that the second observer was less skilled at detecting individual
prey.

A prey population with low densities of individuals: We simulated a second prey
population so that the expected density ranged from about 0.2 to 3 individuals/km2
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(Fig. 8.4); however, in most (92%) of the sample units, the expected density was
less than 1 individual/km2 owing to the spatial heterogeneity in habitat quality.
We sampled this population intensively by selecting K D 500 units randomly
and by applying two single-observer sampling protocols (counts of individuals and
presence-absence sampling) within each unit during J D 10 occasions. The effect
of habitat on individual detection probability was specified by modeling 	 as a
function of a covariate whose value increased from southwest to northeast (Fig. 8.1),
as described earlier. The maximum number of counts within a unit ranged from zero
to four, and one or more individuals were detected in only 29% of the surveyed
units.

8.3.1.1 Results
We estimated the parameters of each model using the method of maximum
likelihood and the R software program (R Core Team 2017). Our source code
is available upon request. The parameter estimates then were used to compute
the expected abundance of individuals in each unit (including units that were not
surveyed) as described in Sect. 8.2.2.

A prey population with medium to high densities of individuals: All of the fitted
models predicted the spatial distribution of prey density reasonably well (compare
the true map in Fig. 8.1 with the estimated maps in Figs. 8.2 and 8.3). Model-based
predictions of the expected abundance of prey in all units were similar (5915, 6037,
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Fig. 8.2 Maps of expected density of individuals predicted from single-observer models of
distances (left panel) and counts (right panel)
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Fig. 8.3 Maps of expected density of individuals predicted from double-observer models of
distances (left panel) and counts (right panel)

5295, and 5238 individuals). Of course, the predictions cannot be expected to equal
the true abundance (6302 individuals) exactly because information from only 200 of
the 1358 sample units was used to predict the abundance of prey in all 1358 sample
units. In addition, the count model (without distances) was a misspecification of the
model actually used to simulate the data.

A prey population with low densities of individuals: Both fitted models pre-
dicted the spatial distribution of prey density reasonably well (compare panels in
Fig. 8.4). Model-based predictions of the expected abundance of prey in all units
were similar (475 and 436 individuals) but not exactly equal to the true abundance
(450 individuals), even though the sample included information from 500 of the
1358 sample units. These results were not unexpected given that the models of
counts and quantized counts were misspecifications of the model actually used to
simulate the data.

8.3.2 Line-Transect Surveys of Chital

In this section we analyze counts of groups of chital observed in 2005–2006
while conducting line-transect surveys at locations within the Nagarahole and
Bandipur Tiger Reserves of India. These surveys were undertaken to estimate the
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Fig. 8.4 Maps of expected density of individuals predicted from single-observer models of counts
(middle panel) and presence-absence data (right panel). Left panel contains a map of the true
expected density of individuals

spatial distribution and abundance of chital in the reserves. Kumar (2011) provided
a detailed description of these surveys. Briefly, chital were observed along 77
transects that varied in length from 0.8 to 3.2 km. Each transect was surveyed six or
seven times within a relatively short period of time (less than 30 days). Categories of
group size and perpendicular distance were assigned to each group of chital detected
during the surveys. Each group size category included five levels of abundance,
and the abundances of 12 group size categories ranged from 1 to 60 individuals
(i.e., [1,5], [6,10], : : :, [56,60]). Perpendicular distance categories were obtained by
dividing the maximum observable distance (380 m) into 19 categories (i.e., [0,20],
(20,40], : : :, (360,380]).

We formulated a log-linear model of the expected abundance of chital groups
using a combination of both transect-level and grid-level covariates. A spatial grid of
the reserves was obtained by partitioning the study area into 1792 square cells, each
of 1 km2 area. Potential covariates of group abundance at the grid cell level included
protection ineffectiveness, ecoclimatic distance, terrain undulation, and distance to
water. Potential covariates of group abundance at the transect level included forage
quantity and habitat disturbance. A full description of these covariates and of the
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log-linear model that accounts for spatial misalignment between transect-level and
grid-cell-level information was provided by Kumar (2011). Bayesian methods and
WinBUGS software (Lunn et al. 2000) were used to fit this model because the
marginal likelihood function obtained by integrating out the spatially correlated,
random effects cannot be evaluated in closed form (Kumar 2011). Maximization
of this likelihood function was therefore not feasible for estimating the model’s
parameters.

8.3.2.1 Results
During the line-transect surveys, 559 groups of chital were detected while walking
a total distance of 1404 km. The estimated detection probabilities of relatively
small groups declined with perpendicular distance much more rapidly than the
estimated detection probabilities of larger groups (Fig. 8.5). In addition, because
most (94%) of the observed chital groups contained �10 individuals, uncertainty in
the estimates of detection probability of groups containing more than 10 individuals
was considerably higher than the uncertainty of detection probabilities estimated for
groups with fewer individuals.

Our estimate of the expected group size was 6.38 individuals (95% interval, 6.14–
6.62), which is slightly higher than the average size of all observed groups (5.2
individuals). Chital group abundance was positively associated with forage quantity
and negatively associated with ecoclimatic distance (Table 8.1). The effects of all
other covariates of chital group abundance were not significant.
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Fig. 8.5 Estimated relationship between the probability of chital group detection and the perpen-
dicular distance from the transect line for each of four categories of chital group size. Shaded
region indicates the 95% credible interval for the probability of chital group detection
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Table 8.1 Estimated posterior means and 95% credible limits for the effects of transect-level and
grid-cell-level covariates on expected abundance of chital groups. Monte Carlo standard errors in
parentheses

Covariate Mean 2.5% 97.5%

Forage quantity 0.30 (0.0043) 0.03 (0.0047) 0.60 (0.0057)

Habitat disturbance 0.10 (0.0028) �0.16 (0.0037) 0.36 (0.0039)

Terrain undulation �0.82 (0.0238) �2.37 (0.0334) 0.28 (0.0181)

Distance to water �0.17 (0.0034) �0.47 (0.0043) 0.14 (0.0047)

Ecoclimatic distance �0.92 (0.0142) �1.79 (0.0176) �0.08 (0.0149)

Protection ineffectiveness �0.21 (0.0049) �0.57 (0.0063) 0.14 (0.0061)

Fig. 8.6 Spatial distribution of chital abundance in the Nagarahole and Bandipur Tiger Reserves
of India. Resolution is 1 km2

Spatial variation was clearly evident in our estimates of the expected abundance
of chital in different parts of the tiger reserves (Fig. 8.6). Grid cells from the
westernmost regions of the reserves generally contained higher abundances of
chital than grid cells lying to the east of these regions. The western-most parts
of the reserve are the wettest forest patches (where the degree of deciduous or
the ecoclimatic distance is lower) with relatively flat terrain and lower protection
ineffectiveness, all of which lend support to higher levels of chital abundance.



156 R.M. Dorazio et al.

8.4 Discussion

In this chapter we described hierarchical models for the analysis of data observed
in temporally and spatially replicated surveys. Some of the models require the loca-
tions of individuals detected during each survey. Other models require only counts
of the individuals detected by either one or two observers. The abundance-based
occupancy model, which only requires observations from presence-absence surveys,
can even estimate prey abundances when density of individuals is sufficiently low.
That said, relatively high sample sizes may be needed to estimate prey abundances
accurately from presence-absence data.

An important aspect of all of these models is that they can account for spatial
variation in abundance of prey induced by differences in habitat at sample locations.
These fully model-based estimators of prey density are therefore much more
versatile than their conventional, design-unbiased counterparts. A fully model-based
analysis of spatially and temporally replicated survey data can be used to predict
a map of the spatial distribution of prey abundance or density, thus offering new
opportunities to examine patterns of spatial overlap between tigers and their prey.
A fully model-based analysis also provides inferences about the effects of the
physical habitat or management-related factors that are known to influence the
spatial distribution of prey, thereby permitting central questions of prey species
ecology and conservation to be considered in the analysis.

In this chapter we have not attempted to include an exhaustive list of the various
approaches developed for the analysis of data observed in temporally and spatially
replicated wildlife surveys. Rather, we have used our knowledge of tiger prey
sampling methods to develop probability-based models that can be used to solve
a variety of estimation and inference problems involving tiger prey populations. We
believe that this kind of direct and principled approach to statistical model building
has obvious benefits for the analysis of tiger prey surveys.

Appendix 1

In this appendix we derive the likelihood function for estimating the parameters
of each model described in the text. We use bracket notation (Gelfand and Smith
1990) to specify probability density functions; thus, Œx; y� denotes the joint density
of random variables X and Y , Œxjy� denotes the conditional density of X given Y D y,
and Œx� denotes the unconditional (marginal) density of X.

A.1 Single-Observer Surveys

Modeling distance of each individual from a transect line: The conditional
probability density of data observed during the jth survey of the kth sample unit is
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Œxkj; nkjjNkj� D

 

Nkj

nkj

!



Nkj�nkj

k .1=Bk/
nkj

nkj
Y

iD1

p.xkj;i/
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0 is a vector that contains the perpendicular distances

from the transect line of the nkj individuals observed during the survey. We can
marginalize Nkj from the joint density Œxkj; nkj;Nkj� to obtain the probability density
of the data conditional on Mk as follows:
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(derivation omitted for brevity).
To obtain the likelihood function for estimating  , 	 , and the parameters that

specify �k (ˇ), we marginalize Mk from the joint density Œfxkj; nkjg
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In practice, this marginalization is done numerically by replacing the infinite limit
of summation with a sufficiently high abundance. Assuming independence among
sample units, the likelihood function for the entire data set is

L. ; 	;ˇ/ D
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J
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Modeling counts of all individuals: The conditional probability of the number of
individuals nkj observed during the jth survey of the kth sample unit is
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Mk�nkj

where logit.pk/ D ˛0wk.
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To obtain the likelihood function for estimating  , ˛, and the parameters
that specify �k (ˇ), we marginalize Mk from the joint density Œfnkjg

J
jD1; Mk� as

follows:
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As described earlier, this marginalization is done numerically by replacing the infi-
nite limit of summation with a sufficiently high abundance. Assuming independence
among sample units, the likelihood function for the entire data set is

L. ;˛;ˇ/ D
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J
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Modeling a quantized count of all individuals: The conditional probability of
observing the quantized count zkj during the jth survey of the kth sample unit is

ŒzkjjMk� D fqk .1 � .1 �  /Mk/gzkjf1 � qk .1 � .1 �  /Mk/g1�zkj

where logit.qk/ D ˛0wk.
To obtain the likelihood function for estimating  , ˛, and the parameters

that specify �k (ˇ), we marginalize Mk from the joint density Œfzkjg
J
jD1; Mk� as

follows:
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As described earlier, this marginalization is done numerically by replacing the infi-
nite limit of summation with a sufficiently high abundance. Assuming independence
among sample units, the likelihood function for the entire data set is

L. ;˛;ˇ/ D
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kD1

Œfzkjg
J
jD1�
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Modeling counts of groups of individuals in distance categories: The
conditional probability of the vector of group counts nk observed in the kth sample
unit is
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where nk� D
P

ih nk;ih is the total number of groups observed in sample unit k and
where 
k� D

P

ih 
k;ih.
To obtain the likelihood function for estimating �, ˛, and the parameters that

specify �k (ˇ), we note that the unconditional probability of the vector of group
counts can be computed analytically as a product of Poisson probabilities as
follows:
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Therefore, assuming independence among sample units, the likelihood function for
the entire data set is
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A.2 Double-Observer Surveys

Modeling distance of each individual from a transect line: The conditional
probability density of data observed during the jth survey of the kth sample unit is
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where xkj1 and xkj2 are vectors that contain the perpendicular distances from the
transect line of individuals detected by observers 1 and 2, respectively, and where
nkj D nkj1 C nkj2 is the total number of individuals detected by observers 1 and 2
during the jth survey of sample unit k. We can marginalize Nkj from the joint density
Œxkj1; nkj1; xkj2; nkj2;Nkj� to obtain the probability density of the data conditional on
Mk as follows:
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(derivation omitted for brevity).
To obtain the likelihood function for estimating  , 	1, 	2, and the

parameters that specify �k (ˇ), we marginalize Mk from the joint density
Œfxkj1; nkj1; xkj2; nkj2g

J
jD1; Mk� as follows:
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In practice, this marginalization is done numerically by replacing the infinite limit
of summation with a sufficiently high abundance. Assuming independence among
sample units, the likelihood function for the entire data set is

L. ; 	1; 	2;ˇ/ D
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Modeling counts of all individuals: The conditional probability of the numbers
of individuals detected by observers 1 and 2 during the jth survey of the kth sample
unit is
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where nkj D nkj1 C nkj2 is the total number of individuals detected by observers 1
and 2 during the jth survey of sample unit k and where

logit.pk1/ D �1 C ˛0wk

logit.pk2/ D �2 C ˛0wk

as described earlier.
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To obtain the likelihood function for estimating  , �1, �2, ˛, and the parameters
that specify �k (ˇ), we marginalize Mk from the joint density Œfnkj1; nkj2g
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As described earlier, this marginalization is done numerically by replacing the
infinite limit of summation with a sufficiently high abundance. Assuming indepen-
dence among sample units, the likelihood function for the entire data set is
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9Concepts: Assessing Tiger Population
Dynamics Using Capture–Recapture Sampling

J. Andrew Royle, Arjun M. Gopalaswamy, Robert M. Dorazio,
James D. Nichols, Devcharan Jathanna,
Ravishankar Parameshwaran, and K. Ullas Karanth

9.1 Introduction

Capture-recapture can be viewed as an animal survey method in which the count
statistic is the total number of animals caught, and the associated detection proba-
bility is the probability of capture. This probability is estimated using the pattern of
captures and recaptures of animals over the survey period. For example, a typical
design might involve a small mammal trapping grid. Traps are set, and animals
trapped on the first sampling occasion are individually marked (tagged) to permit
identification in subsequent sampling periods. On the second sampling occasion
(e.g., the next day), animals that represent recaptures (they were caught at sampling
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occasion 1) are recorded, and newly captured animals are recorded and given
individual marks. The process is repeated for the duration of the study (perhaps
five consecutive days). The data resulting from the study then consist of the total
number of animals that were caught and the record of when (i.e., on what sampling
occasions) each animal was caught. The temporal sequence of encounter for each
individual is referred to as the individual encounter history. The total number of
animals caught is the count statistic, and the detection or capture probability is
estimated from the records of the individual capture histories (Otis et al. 1978).

Although capture-recapture methods were originally developed for such cases
where animals are physically caught and marked with artificial tags, the underlying
concepts are valid even when animals are identified using natural markings. In
the case of tigers (and other patterned animals such as leopard, chital, etc.), we
can rely on their distinctive markings in the form of stripes or spots. In addition,
identification of individuals based on DNA obtained from hair or scat has become
widely adopted in surveys of carnivore populations (Long et al. 2008). As long
as individuals can be identified reliably and sampling methods provide records of
detection and non-detection over time (sampling periods) or space (traps or areas
searched), then the resulting data can be used in a capture-recapture framework to
estimate animal abundance.

As these new technologies for obtaining individual identity have been adopted,
they have facilitated the study of species that could not have been effectively studied
two decades ago and, at the same time, have produced vast quantities of spatially
explicit encounter information. Using classical capture-recapture methods (Otis
et al. 1978), such spatial information is not directly used (as data in the likelihood)
in making inferences about population size or density. To make use of this spatial
information, new classes of capture-recapture models have been developed. These
are called spatial capture-recapture (SCR) or spatially explicit capture-recapture
(SECR) methods (Efford 2004; Royle et al. 2014). They are spatially explicit in the
sense that they involve explicit spatial models for both the sampling process and how
individuals interact with the sampling process. A benefit of SCR is that they provide
a means of direct estimation of population density. However, SCR is far more than
simply an extension of technique meant to resolve certain technical deficiencies
of ordinary capture-recapture or for improved density estimation. Rather, SCR is
a general framework for the study of spatial population ecology, which allows
ecologists to characterize wildlife populations and address many aspects of spatial
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population ecology from individual encounter history data, including such things
as resource selection, movement, landscape connectivity, and factors that influence
density (Royle et al. 2017).

9.2 Photo-Trapping Tigers

Camera trapping of tigers for the purpose of estimating abundance is described in
some detail by Karanth (1995) and Karanth and Nichols (1998, 2000). The field has
grown rapidly in the subsequent years, seeing publication of numerous syntheses
and review articles on camera trapping including Long et al. (2008) and O’Connell
et al. (2010).

The practical aspects of camera trapping tigers are explained in Chap. 5. The
basic methodology involves setting out camera traps within some area of interest.
The configuration of the traps can vary with the situation. As camera trapping
methodology was being developed in the 1980s and 1990s, one of the main concerns
in implementing field studies was to ensure that an area was covered fairly uniformly
with cameras (Nichols and Karanth 2002; Chap. 11) in the sense that it would
be difficult for a tiger in the sampled area to travel about and not encounter at
least one camera trap. That is, traps should be set in a manner to prevent having
“holes” in the sampled area in which tigers could move without any chance of
being “captured” (photographed). The rationale for this “no holes” objective was
to ensure that all individuals in a well-defined geographic area were catchable by
at least one camera. Presumably the existence of holes implies p D 0 individuals
which are not accounted for in the classical nonspatial capture-recapture models
that were used. By assuming that no such individuals exist, then the estimate of N
obtained by capture-recapture methods could be asserted to apply to a prescribed
area containing the trap array. With spatial capture-recapture (SCR) models, there
are no such restrictions necessary on the spatial arrangement of camera traps. This
is because the population size is defined by the specification of the state space (see
below), and the model explicitly accommodates p D 0 individuals, which arise as a
result of individuals that are not in close proximity to any traps (Royle et al. 2014,
Chap. 10).

In general, camera traps are set for several consecutive days. Each day is often
considered as a sample period for defining encounter histories of individuals,
although it could be sensible in some cases to group days together. In an ideal
situation, there are sufficient camera traps to cover the entire area of interest with
the available traps. However, if the area to be sampled is large, then various possible
schemes for rotating traps to cover the entire area are possible. In these cases, the
entire area is covered once every 2 or 3 days, perhaps. In this sampling situation,
the sampling period is defined by the number of days necessary to cover the entire
area. With the use of SCR methods, when the region being sampled is very large
relative to the number of available traps, the use of cluster designs has proven to be
very practical and efficient (Efford and Fewster 2013; Sun et al. 2014). Additional
discussion of details associated with sampling designs will be presented in Sect. 7
below (also see Royle et al. 2014, Chap. 10).
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The data obtained from camera trapping are summarized as capture history
data, which is a record of the occasions and traps of capture for each individual.
Each animal captured at least once during the survey has a capture history. While
ordinary capture-recapture capture histories are simply a row vector of 1s and 0s
indicating on what periods an animal was caught, the spatial encounter history
for each individual consists of a two-dimensional matrix with J (number of traps)
rows and K (occasions) columns where element (j,k) D 1 if an individual was
encountered in trap j during occasion k. The programs such as SECR (Efford 2016)
and SPACECAP (Gopalaswamy et al. 2012) make use of a compact encounter data
file (EDF) and a trap deployment file (TDF) which describes the occasions in which
each trap was operated. We note that capture histories need not be based on binary
detection/non-detection data. Models can be developed based on total encounter
frequencies per individual (Efford et al. 2009; Royle et al. 2009), and also recent
advances in continuous time models have been made (Borchers et al. 2014; Dorazio
and Karanth 2017).

In the remaining sections of this chapter, we elaborate on the basic modeling con-
cepts that allow inference about encounter histories from camera trapping arrays. We
cover classical capture-recapture methods and also relatively recent spatial capture-
recapture methods. While the essential concepts are the same for both classes
of methods, spatial capture-recapture models make use of spatial information on
encounter and, in doing so, resolve some important technical limitations of classical
capture-recapture and also allow researchers to study elements of spatial population
ecology using individual encounter history data (Royle et al. 2017).

9.3 Closed Capture-Recapture

Capture-recapture models can be viewed as probabilistic expressions describing the
processes that give rise to encounter history data (Nichols 1992, Williams et al.
2002). Capture-recapture models are frequently classified according to requisite
assumptions about population closure. Closed population models are used when no
gains to, or losses from, the population occur between sampling occasions. Because
of this assumption of no population change, closed models are generally applied
to studies conducted over relatively short time periods. Closed population models
permit estimation of abundance or density. In contrast, open population models are
used when there are gains, losses, or both occurring between sampling periods.
Longer time intervals typically separate sampling occasions. Such models permit
estimation of abundance and also local survival rate and number of recruits. Both
closed and open models have been used with tiger camera trap data. For applications
of closed population models, see Karanth (1995) and Karanth and Nichols (1998).
Camera trap data from long-term studies at Nagarahole reserve, India have also been
analyzed extensively to understand tiger population dynamics using open models
(Karanth et al. 2006; Gardner et al. 2017).



9 Concepts: Assessing Tiger Population Dynamics Using Capture–Recapture 167

9.3.1 Classical Closed Population Capture-Recapture Models

We suppose that the population of N individuals is subjected to repeated sampling
for a specified number of occasions, say K (e.g., nights of a camera trapping study),
where, in the first sampling occasion, all captured individuals are marked and
released, and then at each subsequent sampling occasion, the detection of marked
individuals is recorded and new unmarked individuals are marked or identified. This
repeated sampling produces individual encounter histories that describe whether or
not individuals were detected in each of the K occasions. For example, in a K D 5
occasion capture-recapture study, an individual with an encounter yi D (01010) was
encountered two times; first on occasion 2, and then again on occasion 4, and it
was not encountered in occasions one, three, or five. Estimating abundance using
encounter history data collected using the general sampling scheme described above
can be thought of as the process of estimating how many individuals were missed by
the sampling, i.e., how many individuals have encounter history yi D (00000). Under
the closure assumption, an individual detected at least once during the study was
alive and present for the entire study, and therefore, failure to detect that individual
in any occasion was due to imperfect detection alone. This information therefore
allows for the estimation of the frequency of all-zero encounter histories.

The basic idea of all closed population capture-recapture methods is that the
pattern of detections (the encounter histories) of individuals observed at least
once provides information about detection probability, p, which, in turn, can
be used to estimate the number of individuals that were not encountered. The
underlying concept can be understood by recognizing that, under the assumption
that n � Binomial .N; Qp/, the observed number of individuals n is related to the
total population size N by the expression:

E.n/ D N Qp

where E() denotes statistical expectation, and Qp is the probability that an individual
is captured at least once during the study. Thus, the canonical estimator of N (also
sometimes called the heuristic estimator) is obtained by plugging in an estimator of
Qp into this expression and rearranging to yield ON D n=OQp.

The simplest closed population capture-recapture model is often called “model
M0,” or the null model. Under model M0, the encounter probability “per sample” pi

for each individual i D 1 , 2 , : : : , N, is assumed to be the same for all individuals
in the population, i.e., piDp. That is, there are no individual or temporal covariates
that affect p. Then, whether or not we encounter an individual iD1,2,...,N during
sampling occasion k, yik, is a Bernoulli trial (a “coin flip”) with constant probability
p. In a study of K survey occasions, the probability of being captured at least once,
Qp, is directly related to the “per sample” probability of detection parameter p by the
formula

Qp D 1 � .1 � p/K
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The expression relating p to Qp is different depending on the specific capture-
recapture model being considered. The parameter p can be estimated from the
observed encounter histories, and, in turn, this is used to estimate Qp, and then finally
we estimate N using the canonical estimator introduced previously. Alternatively,
one may obtain the MLE of N directly by maximizing what is usually referred to
as the “full likelihood,” which is an explicit function of both p and N (Sanathanan
1972).

The assumption of constant encounter probability p is usually not satisfied in
practice. Otis et al. (1978) described a family of models that can be used to deal
with most sources of variation in individual encounter probabilities:

Mo – The null model. Capture probability is constant.
Mt – Time effects model. Capture probability is the same for all individuals but

varies among sampling occasions. (Note that we use k for the time index here.)
Mb – The behavioral response model. Capture probabilities vary depending on

whether or not individuals have been captured previously.
Mh – The individual heterogeneity model. Capture probabilities vary among

individuals.

Variations of these different models exist, and the effects in some cases can
be included together in a model. For example, the usual application of model
Mt involves occasion-specific parameters pk, but we can also consider systematic
variation in detection probability that results from explicit covariates such as
related to environmental conditions or systematic variation in time. For example,
in classical small mammal trapping using catch traps, traps may be checked in
the morning and evening, and we might expect encounter probability to vary
over time (e.g., by sampling occasion). In camera trapping studies which usually
involve a daily sample period then we might have systematic variation in encounter
probability that varies by “day” according to a quadratic polynomial in Julian day,
Jk, such as:

logit .pk/ D ˛0 C ˛1Jk C ˛2Jk
2

where the parameters ˛0, ˛1, and ˛2 are estimated. The behavioral response model
is usually parameterized as a permanent change in p for individuals subsequent
to their initial capture (i.e., ppre and ppost, for capture probability before and after
first capture, respectively). This could be the result of “trap happiness” due to
using bait or lures at traps, or it could be the result of “trap shyness” due to
aversion.

Model Mh has been an important model in capture-recapture because a number
of factors usually induce variation in p among individuals, and it has long been
recognized that the existence of individual heterogeneity in capture probability will
lead to underestimation of N when it is not accounted for (Otis et al. 1978). Thus
much attention has been focused on developing more flexible classes of model Mh

(Dorazio and Royle 2003). Norris and Pollock (1996) formulated the model in terms
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of a finite mixture or latent class model in which each individual in the population
belongs to a finite (and small) number of classes represented by distinct values of
p (see Pledger 2000), but membership in these classes is not known. This finite
mixture model is probably the most widely used version of model Mh.

There are a number of basic technical or conceptual problems with the use of
classical closed population capture-recapture models in camera trapping studies.
For example, classical CR methods do not allow modeling of trap-level covariates,
which may include type of trap (e.g., model of camera), effort (or days of
operation of each camera), behavioral response which in many cases should depend
on the specific trap, and local habitat conditions which might affect encounter
probability through differential resource selection (Royle et al. 2013a). Another
problem that has been widely recognized is that the spatial nature of camera trap
arrays induces heterogeneity in encounter probability (Karanth and Nichols 1998)
due to the juxtaposition of individual home ranges with the trap array (Fig. 9.1
below). Individuals with home ranges on the edge of an array will have lower
probabilities than individuals with home ranges having a more interior location.
This induced individual heterogeneity has traditionally been addressed by fitting
individual heterogeneity models (i.e., “model Mh”), although this approach has
technical limitations (Link 2003). Alternatively, it may be preferable to explain
heterogeneity using explicit covariates that are the cause, such as spatial proximity
of individuals relative to traps. This was the idea behind Boulanger and McLellan
(2001) who proposed using Huggins-Alho type models with a “distance to the edge”
covariate, where distance to edge is computed as the distance from the average
capture location to the boundary of a convex hull containing the trap locations.
SCR models can be seen as an extension and formalization of this approach (Royle
et al. 2014) by accommodating uncertainty in the definition of average capture
location and making use of trap-level encounter data. However, one of the main
deficiencies with classical closed population models is that they do not permit direct
estimation of animal density because, in almost all practical field applications, it
is not possible to precisely define the area sampled by a set of trapping devices.

Fig. 9.1 Two home ranges
of individuals (gray circles)
juxtaposed with a spatial
sampling grid of traps
showing the variable
exposure to trapping based on
home range location
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This is because individuals being captured move about space and can be captured
without the biologists knowing whence those individuals originated or how much
space they are using. Historically this has been accommodated in closed capture-
recapture models by the use of buffer strips defined by the mean maximum distance
moved (Wilson and Anderson 1985). Inference based on this method is discussed
by Nichols and Karanth (2002; Chap. 11 of the first edition p. 129). Spatial capture-
recapture models provide a formal technical framework for dealing with density
estimation (Efford 2004; Borchers and Efford 2008; Royle and Young 2008; Royle
et al. 2014) by prescribing an explicit “state space,” effectively a prior distribution
on potential home-range locations, and estimating the number of points (individual
activity centers) contained on that state space.

9.4 Closed Spatial Capture-Recapture

The sampling scheme for a spatial capture-recapture analysis is the same as
described above, i.e., there is a population of N individuals, and we consider each
individual having an individual covariate which is their activity center (siD[si,X ,
si,Y ]), a spatial coordinate. This is regarded as a latent variable (i.e., unobserved).
Now the goal is to estimate the number of individuals (or activity centers) within a
region of interest which is referred to as the state space, or S. The basic (“null”) SCR
model assumes that individual activity centers are distributed uniformly throughout
the state space:

si � Uniform .S/:

In SCR models, the realized density is the number of activity centers in the
state space divided by the area of the state space: D D N / jjSjj, where jjSjj is
the area of S. Moreover, the realized density for any subset of the state space,
say D(R) can be estimated. For example, using a fine partition of the state space
allows explicit density maps to be produced. In some formulations of SCR, a prior
distribution is imposed on N, e.g., N � Poisson(œjjSjj) (e.g., Borchers and Efford
2008), and instead of the realized density noted previously, the expected density � is
estimated.

As before, the population is subjected to sampling using camera traps. However,
we explicitly acknowledge both how many traps there are, jD1,...,J traps, and
the location of each of the traps, which we denote as xj. The acknowledgment
of the spatial structure of the traps means observations can be spatially indexed
so encounter histories describe which individual (i), when (k), and importantly
where (j) individuals were encountered, i.e., yi,j,k. Typically, these observations are
assumed to be Bernoulli outcomes:

yi;j;k � Bernoulli
�

pi;j;k
�

;

http://dx.doi.org/10.1007/978-981-10-5436-5_11
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where pi,j,k is the probability of encountering individual i in trap j and occasion k,
which depends on the distance between the trap location (xj) and the individuals
activity center (si) as follows:

pi;j;k D p0 � e�.1=2¢2/d.xj;si/
2

:

It may also depend on sample occasion k in some manner and trap or time-
varying covariates, as well as other individual covariates. This is referred to as
the half-normal encounter model where the parameter logit(p0)D˛0 is the baseline
encounter probability, corresponding to the maximum probability of encountering
an individual, which occurs when an individual’s activity center coincides with a
trap location. The parameter ¢ describes the rate at which detection probability
declines as a function of distance, and d(xj,si) is the Euclidean distance between
trap j and the activity center of individual i. In a spatial capture-recapture analysis,
the parameters to be estimated are ˛0 and ¢ in addition to population size N. As in
model Mh, the additional parameter ¢ accommodates individual heterogeneity in p,
but, unlike model Mh, the parameter represents an explicit source of heterogeneity
that is due to distance between individual activity or home-range centers and trap
locations.

Thus, SCR models involve two very prominent modifications compared to
ordinary capture-recapture models: (1) the encounter model describes trap-specific
encounters and (2) the trap-level encounter probabilities are a function of a latent
individual covariate, describing the activity center of individuals. These two modi-
fications provide solutions to many of the technical and conceptual deficiencies of
ordinary capture-recapture models. SCR provides an explicit model of heterogeneity
in encounter probability induced by spatial sampling, and SCR models address the
density estimation problem directly by specification of the model for activity centers
and an explicit state space S. The inference problem then reduces to estimating the
number of such activity centers in any well-defined subset of S.

SCR models are extremely flexible from the standpoint of modeling covariates
on detection probability and also density. For example, occasion or trap-specific
covariates (or even individual covariates such as individual’s sex) on baseline
detection probability p0 can be modeled using logistic models of the form:

logit
�

p0;ijk
�

D ˛0 C ˛1 � Sexi C ˛2 � Covariatejk

Covariates can also be modeled on the parameter(s) of the encounter probability
model. For example, on the ¢ parameter of the half-normal model:

log .	ik/ D �0 C �1 � Sexi C �t � Covariatek:

The assumption that individual activity centers are uniformly distributed in space
(i.e., constant density) is often regarded as being overly simplistic. However, other
very general models describing the distribution of activity centers are possible. For
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example, when spatially referenced covariates, say z(s), can be identified which
affect the density of individuals (Borchers and Efford 2008, Dorazio 2013), then
we can formulate a point process model in which the intensity parameter of the
point process is a function of such covariates:

log.�.s// D ˇ0 C ˇ1z .s/

where the parameter ˇ1, to be estimated, allows density to depend on z(s).

9.5 Example: Analysis of the Nagarahole Data

We provide a brief example here using tiger camera trapping data collected in 2006
from the Nagarahole reserve, India. The data have been analyzed using spatial
capture-recapture models by Royle et al. (2009) and Gopalaswamy et al. (2012)
(the data are available as part of the R package SPACECAP). Both of those studies
used Bayesian methods, but here we obtain a density estimate under two models
using maximum likelihood in the R package oSCR (Sutherland et al. 2016). The
study used 120 camera trap sites with 30 cameras rotated every 12 days (K D 12).
The data set contains encounter histories of 44 individuals captured up to five times
each. The state space was defined by a grid with 1000 m spacing and buffering the
trap array by 3000 m (Fig. 9.2). We fit the null SCR model having constant p, 	 ,
and D which produced the following summary results:

> print(out0)
Model: D ~ 1 p0 ~ 1 sig ~ 1
Run time: 21.92167 minutes
AIC: 901.432

Summary table:
Estimate SE z P(>jzj)

p0.(Intercept) -5.515 0.269 -20.478 0
sig.(Intercept) 7.567 0.108 69.882 0
d0.(Intercept) -2.035 0.194 -10.494 0

*Density intercept is log(individuals per pixel)
Nhat(state-space) D exp(d0.)*nrow(ssDF)
(caution is warranted when model contains density covariates)

Because the default parameterization involves transformations of the basic param-
eters, we have to back-transform them to their natural scale for interpretation.
Estimated density in the raw output is “per pixel” of the input state space
(1000 m � 1000 m for the state space used here), on the log scale, and this has
to be back-transformed and multiplied by 100 to get tigers per 100 km2:

> 100*(exp(-2.035))
[1] 13.06805

(Note that results differ modestly from Royle et al. (2009) due to variations in the
definition of the state space and parameterization used here.) The baseline detection
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Fig. 9.2 120 camera trap
locations (black dots) in
Nagarahole reserve, India and
the state-space grid (gray
dots) used to fit the null SCR
model

probability is computed by taking the inverse logit transformation of the intercept
parameter:

> plogis(-5.515)
[1] 0.004009784

The estimated 	 parameter, in meters, requires back-transforming the “sig.int”
parameter which is estimated on the log scale:

> exp(7.567)
[1] 1933.332

And finally we produce a realized density map using the predict.oSCR function
and plotting the output shown in Fig. 9.3. This density map can be very useful
in the context of conservation and management because it depicts where the
population is distributed, and thus estimate of total population for subregions, such
as management units, can be obtained directly.

9.6 Open Model Capture-Recapture (Conventional
and Spatial)

9.6.1 Classical Open Models

As discussed above, capture-recapture models for closed populations are used when
a marked population is sampled over a relatively short time span such that it is not
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Fig. 9.3 Estimated tiger density expressed in units of “individuals per state-space pixel” (individ-
ual activity centers per km2) of the Nagarahole reserve, India. Black dots are camera trap locations

expected to exhibit substantial changes from births, deaths, or movements in and out
of the population. The quantities of primary interest are usually abundance (number
of animals in the sampled area) or density (number of animal activity centers per
unit area) of animals during this short sampling period. Encounter probabilities (ps)
and (for SCR models) parameters describing the decrease in encounter probabilities
associated with increasing distance between activity center and trap (	 ) are also
estimated.

Capture-recapture models for open populations shift the emphasis from statics
to dynamics. Open populations are defined as those to which changes are expected
to occur between sampling occasions. Those changes include births, deaths, and
movement in and out of the sampled population. The very first capture-recapture
models for open populations focused on losses to the population between sampling
occasions (Cormack 1964; also see Jolly 1965; Seber 1965). We refer to these
as Cormack-Jolly-Seber (CJS) models. The data for these models are encounter
histories, the same as for classical closed population models, but the modeling
differs in allowing for losses from the population between sampling occasions. The
CJS model describes probabilities of these observable encounter histories in terms
of detection probability and survival probability parameters.

We define the following CJS parameters used to model encounter history data:
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pt D probability that an animal in the sampled population at time/occasion t is
encountered during sampling efforts

� t D probability that a member of the sampled population at occasion t is alive and
in the population at occasion t C 1

Consider the detection history, 01010, arising during a K D 5 occasion study.
Using the above parameters, the CJS probability associated with this history can
be written as:

Pr .01010jrelease at occasion 2/ D �2 .1 � p3/ �3p4 .1 � �4p5/

The animal was initially encountered in occasion 2, so we condition on this
encounter (i.e., we don’t model this initial encounter, but use it as a starting point,
effectively focusing interest on the fate of the marked population). We know the
animal survived until at least occasion 4, because we encountered the animal on that
occasion, and the probability associated with surviving from occasion 2 to 4 is �2�3.
Despite being alive, the animal was not encountered at occasion 3 (1-p3) but was
encountered at occasion 4 (p4). Uncertainty characterizes occasion 5, as the animal
may have been lost (death or movement) from the population or may have survived
but simply not been encountered. The probability associated with these two events
can be written as the complement of the probability of surviving and being detected:
(1-�4p5). Note that this CJS model incorporates both the observation process (the
pt) and the dynamical ecological process (� t) within the same model structure.

Every animal detected in a capture-recapture study has an associated encounter
history, and each such history has an associated probability, as above. The product
of these probabilities for all of the animals encountered during a study forms the
likelihood and can be used to estimate the survival and detection/encounter parame-
ters. The CJS model is very general, with many time-specific parameters to estimate
in long-term studies. It is possible to constrain survival or encounter parameters to
be constant over time, or they can be modeled as linear-logistic functions of time-
specific covariates (e.g., weather variables) to yield more parsimonious models.
Software is available to make computations relatively easy for the full CJS model,
constrained models, and models with time-specific covariate relationships (e.g.,
MARK; White and Burnham 1999).

Although Cormack’s (1964) original model focused on survival, Jolly (1965)
and Seber (1965) recognized that encounter data also contained information about
population size and recruitment to the population. Under the Jolly-Seber (JS) model,
abundance and recruitment are estimated as derived parameters. That is, survival
and encounter probabilities are estimated directly as parameters of the model
structure and then used to estimate these other quantities with an additional step.
The two additional quantities in the JS modeling approach both concern ecological
processes:

Nt D abundance, number of animals in the population at sampling occasion t
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Bt D number of new individuals joining the population between occasions t and
t C 1 and still in the population at time t C 1

Abundance is estimated by counting all of the individuals encountered at each
occasion (denote nt) and then dividing this statistic by the estimate of encounter
probability:

bN D
nt

Opt
: (5.1)

Note that the above estimator represents another application of the canonical
estimator of Chap. 3. Recruitment can then be estimated as the difference between
the estimated abundance at occasion t C 1 and the expected survivors from
occasion t:

Bt D ONtC1 � ONt¥t: (5.2)

The basic JS approach for modeling open populations thus provides estimates of
the time-specific state variable, bNt; the number of new recruits, OBt; the rate of loss,

1� O�t; and the number of losses, ONt

�

1 � O�t

�

. These estimates provide a remarkably

good description of population dynamics, based only on a set of encounter histories,
i.e., a set of vectors populated by 0s and 1s. Other open population modeling
approaches have been developed more recently that include parameters associated
with recruitment and change in abundance directly in the likelihoods (Crosbie
and Manly 1985, Pradel 1996, Schwarz and Arnason 1996). The logic of these
approaches is identical to that of Jolly (1965) and Seber (1965), however, and
selection of a modeling approach should depend on the objectives of the analysis.

Several basic assumptions underlie these estimators (also see Williams et al.
2002). First, time-specific encounter and survival probabilities are assumed to be the
same for all animals in the population. This assumption can be relaxed in numerous
ways. For example, animals may be stratified by any variable relevant to either
observation or ecological processes. Some variables remain constant throughout
the study (e.g., sex), and the most general modeling approach essentially uses
separate JS models for each stratum. Age and prior (to time t) encounter history
are dynamic state variables for which specific models have been developed (e.g.,
Pollock 1975, Pollock 1981, Brownie and Robson 1983, Brownie et al. 1986,
Williams et al. 2002). Stochastically dynamic variables that characterize animals
(e.g., size, location, reproductive state) and may influence survival and/or detection
can be dealt with using multistate models (Arnason 1972, 1973; Brownie et al. 1993;
Lebreton et al. 2009). In addition to survival and encounter probabilities, these
models also estimate probabilities of moving from one state to another between
sampling occasions. These so-called multistate models are discussed more fully in
Chap. 12.

Marks permitting individual identification are assumed to remain with animals
(no loss of marks) and to be read accurately and not overlooked. Sampling occasions

http://dx.doi.org/10.1007/978-981-10-5436-5_3
http://dx.doi.org/10.1007/978-981-10-5436-5_12
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are assumed to be short relative to the periods between occasions, and mortality
during sampling occasions is assumed to be negligible. Animals are assumed to
behave independently with respect to probabilities of survival and/or encounter.
Finally, all emigration from the sampled population is assumed to be permanent.
This assumption can be relaxed using either the robust design (Kendall et al. 1997;
see below) or open population models with certain constraints (Kendall and Nichols
2002).

The above assumptions are needed for CJS and JS modeling. One assumption
required by JS and not CJS models is that previously encountered individuals
have the same encounter probability as individuals not previously encountered. In
CJS modeling, the pt parameters only apply to previously encountered animals.
However, under the JS model, these encounter probabilities are assumed to apply
to animals not previously encountered (new animals) as well.

9.6.2 Robust Design

Pollock (1982) recognized that many sampling programs include groups of sam-
pling occasions that are close together in time (e.g., a few days apart) but separated
from the next group of occasions by a long time period (e.g., approximately 1 year).
He noted that encounter data within a season (referred to as secondary period
data) could be analyzed using models developed for closed populations, whereas
encounters from one season to the next (primary period data) could be analyzed
using models for open populations. Advantages of this approach included robust
estimators and the ability to estimate quantities that might not be estimable using
only open or only closed models (Pollock 1982, Kendall and Pollock 1992, Kendall
et al. 1997, Williams et al. 2002).

Pollock’s (1982) initial proposal was to simply use open models (e.g., CJS) to
estimate survival probabilities, to use classical closed models to estimate abun-
dances, and then combine the two kinds of estimators to estimate recruitment using
the basic structure of Eq. 5.2. More recent work has incorporated the closed and
open model components into a single likelihood (Kendall et al. 1995), but historic
work with tiger populations has thus far relied on Pollock’s (1982) initial ad hoc
approach of combining estimates from closed and open population models. Note
that a distinct advantage of this ad hoc approach is the ability to use SCR models for
closed populations to estimate abundances (Duangchantrasiri et al. 2016). A clear
advantage provided by SCR models is an explicit mechanism for dealing with an
important source of heterogeneity in encounter probabilities, the spacing of animal
activity centers relative to camera trap positions. Another advantage provided by
SCR models is the ability to estimate time-specific density, ODt, directly. Studies
using capture-recapture models for open populations typically span multiple years
(e.g., Karanth et al. 2006, Duangchantrasiri et al. 2016). A common occurrence in
such studies is variation over time in the amount of area sampled. It is common
to begin a camera trap study, for example, by covering a relatively small area.
Additional funding often allows investigators to buy more cameras and increase
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areas surveyed. One consequence of such temporal changes in area surveyed is that

traditional estimates of population change, O�t D
ONtC1=ONt

, reflect changes in both

population dynamics and sampled area. However, we typically want to estimate �t

in order to draw inferences about ecology, not sampling design changes. One way
to deal with this issue is to base ecological inferences on ratios of density estimates,

i.e., O�t D
ODtC1=ODt

. As long as the habitat characteristics of the added area sampled
are similar to those of the original study area, then these density-based estimates
of population change should pertain largely to ecological and not observational
processes. A similar approach can be used for recruitment, replacing ONt in Eq. 5.2
with ODt. The resulting OBt is now interpreted as new recruits per unit area, but their
use restricts inference to ecological processes rather than to changes in study area.

The robust design has been used to draw inferences about tiger population
dynamics in Nagarahole reserve, Karnataka state, India (Karanth et al. 2006), and
in Huai Kha Khaeng Wildlife Sanctuary in the Western Forest Complex of Thailand
(Duangchantrasiri et al. 2016). Both studies used CJS-type models to estimate
annual survival rates. The Karanth et al. (2006) study used classical models for
closed populations to estimate tiger abundance and density, as SECR models were
not well developed at the time of their analyses. Duangchantrasiri et al. (2016) used
SECR models to estimate densities and abundances over time.

The original references should be consulted for methodological details, but
Table 9.1 shows some of the population dynamic parameters that can be estimated
using the robust design (from Karanth et al. 2006). The increases in estimated
abundances that accompanied increases in study area size emphasize the need

Table 9.1 Estimated abundance, annualized (not period to period) survival rate, area sampled by
camera traps, population density, and rate of change in density for primary sampling periods, for
the tiger population in Nagarahole, India, 1991–2000

Primary
period t Date Abundance ONt Survival rate O�t

Area
sampled OAt Density ODt

Density
change O�t

1 May 1991 9 (0.0) 0.77(0.051) 41.4 (3.3) 21.73 (1.7) 0.78 (0.30)
2 Dec 1991 7 (2.6) 0.77(0.051) 41.4 (3.3) 16.91 (2.6) 0.64 (0.40)
3 Apr 1992 11 (5.5) 0.77(0.051) 101.5 (5.2) 10.84 (5.4) 1.91 (1.01)
4 Jan 1994 21 (3.2) 0.77(0.051) 101.5 (5.2) 20.69 (3.3) 0.57 (0.10)
5 Jan 1995 12 (0.0) 0.77(0.051) 101.5 (5.2) 11.82 (0.6) 0.99 (0.08)
6 Mar 1996 27 (1.4) 0.77(0.051) 231.8 (7.8) 11.65 (0.7) 0.74 (0.13)
7 Jun 1997 20 (3.2) 0.77(0.051) 231.8 (7.8) 8.62 (1.4) 0.85 (0.17)
8 Jan 1998 17 (1.7) 0.77(0.051) 231.8 (7.8) 7.33 (0.8) 1.35 (0.18)
9 Mar 1999 23 (1.7) 0.77(0.051) 231.8 (7.8) 9.92 (0.8) 1.30 (0.15)
10 May 2000 30 (2.1) – 231.8 (7.8) 12.94 (1.0) –

Estimated standard errors are in parentheses. From Karanth et al. (2006)a

aEstimation of number of new recruits between primary sampling occasions required estimates
of survival from one occasion to the next (computed as annual survival raised to the power
corresponding to the interval between sampling periods). Estimated recruits (SE) for the last four
intervals (no change in study area size) are OB6 D 3.3:2/; OB7 D 0.3:0/; OB8 D 11.2:8/; OB9 D
14.2:9/
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to account for such changes when making ecological inferences. Because of the
changing study area size, rate of population change, �t, was estimated using density
estimates, and recruitment was estimated for the largest number of primary sampling
occasions with unchanged area sampled. Annual survival rates were best estimated
using a time constant model. Results of these analyses from India (Karanth et al.
2006) and Thailand (Duangchantrasiri et al. 2016) provided evidence of dynamic
stability, with fluctuations in abundance and turnover of individuals, yet no sustained
increases or decreases.

9.6.3 Open SCR Models

Spatial capture-recapture models allow for a much richer class of open population
models compared to classical Jolly-Seber and CJS models. Not only can explicit
population dynamics (survival, recruitment) be modeled but also spatial dynamics
such as dispersal and transience can be modeled by allowing for the point process
model of activity centers to be temporally dynamic (Ergon and Gardner 2013;
Schaub and Royle 2014; Royle et al. 2016; Gardner et al. in review). We describe
basic ideas of open SCR models here. We note that so far all applications of open
SCR models have been based on Bayesian analyses using MCMC because of the
complexity of the latent variable structure in these models. That said, we imagine
that such models are amenable to likelihood analysis using techniques of hidden
Markov models.

One class of open SCR model which does not contain explicit dynamics is
the multi-session models. These models assume that year-specific population sizes
Nt are Poisson random variables that are independent from 1 year to the next:
Nt�Poisson(�t). This allows for variation among years to be modeled on the
expected population size parameter �t such as log(�t) Dˇ0 Cˇ1 � yeart for a
simple trend model. Under this Poisson assumption for annual population size, it
is possible to obtain MLEs of model parameters using marginal likelihoods (see
Royle et al. 2014, ch. 6). These models are usually called multi-session models
in the context of SCR (e.g., as implemented in the software package “SECR,”
Efford 2016). Multi-session models provide a flexible framework for combining
data from multiyear studies into a single analysis framework while at the same time
providing year-specific density or population size estimates and also estimates of
basic parameters that describe inter-annual variation in density or population size
(recall that with SCR models, density is related directly to Nt and the area of the
prescribed state space, as discussed above). Multi-session models do not preserve
individual identity across years and so information about survival and recruitment
is lost. Nevertheless the approach is straightforward to apply and versatile because
the populations need not be strictly temporal but can be demographic groups, or
different species, or different locations (such as different tiger reserves). However,
as noted in the previous section, it is often important to be able to obtain explicit
estimates of population dynamics (survival and recruitment, state-transition proba-
bilities, growth rate, etc.). This is especially true in many camera trapping studies
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which are often focused on extremely rare carnivores for which little is known due
to the difficulty in conducting population ecological studies of such species.

It is possible to incorporate explicit population dynamics into spatial capture-
recapture models. So far, all applications of “open SCR” models have been based on
a Bayesian formulation of the models using data augmentation (Royle and Dorazio
2008, ch. 10; Royle and Dorazio 2012; Kery and Schaub 2012, ch. 10; Royle et al.
2014, ch. 16). Bayesian analysis of these models has been done because SCR models
contain many latent variables (i.e., the individual activity centers), and no one has
worked out likelihood formulations yet, although in principle we imagine this can
be done.

To specify a spatially explicit version of the Jolly-Seber model, let yi,j,k,t be the
encounter history for individual i, at trap j, occasion k, and during primary occasion
t. We think of t here indexing biological seasons or years, or “primary periods” in
the terminology of the robust design, such that dynamics occurs across the t index
of the variables. We note that there may or may not be replication within primary
periods (i.e., kD1 is allowable). The observation model is specified conditional on a
latent state variable zi,t which we define as the “alive state” of individual i in year t.
That is, zi,tD1 if individual i is alive in year t and zi,tD0 if not. Thus, the observation
model has the form:

yi;j;k;t j zi;t � Bernoulli
�

p
�

xj; si
�

zi;t
�

where p(xj, si) is an ordinary “closed” SCR encounter probability model such as
the half-normal model defined above. Population dynamics are parameterized in a
model for the individual state variable zi,t (Royle and Dorazio 2008). The initial
state is assumed to be a Bernoulli random variable: zi , 1 � Bernoulli(�1), where
the interpretation of �1 is related to the initial population size. Under the data
augmentation scheme (Royle and Dorazio 2012) where the maximum size of the
super-population is set at M, then E(N1)D�1M. The latent state variable zi,t is
assumed to be Markovian so that values for tD2,...,T depend on the previous states.
For t 	 2, zi , t � Bernoulli(�� zi , t � 1 C �� ri , t); where ri , t is an indicator of whether
an individual is available to be recruited or not (set to 0 if that individual has
ever been previously recruited and to 1 otherwise to ensure that individuals are
recruited at most once). Thus if zi , t � 1D1, then the individual can survive with
probability �, and if ri , t D 1, then an individual can be recruited with probability � .
In this parameterization of the Jolly-Seber model (Schwarz and Arnason 1996), the
recruitment parameters are interpreted as “conditional entrance probabilities,” not
per capita recruitment. Under this formulation, the number of recruits during interval
t, Rt, is a derived parameter, being the sum of all values of zi , t which transition is
from zi , t D 0 to zi , t D 1. Further, per capita recruitment can be derived by dividing
the number of recruits at time t, Rt by Nt � 1. We note that the model can also be
formulated directly in terms of per capita recruitment (Chandler and Clark 2014;
Gardner et al. in review).

An application of the spatial Jolly-Seber type model was first given by Gardner
et al. (2010) for the simplest case where TD2 and the individual activity centers
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si were static from one year to the next. In general, however, it is possible to
allow for explicit population dynamics (survival and recruitment) and also spatial
dynamics in which individual activity centers are not static. Ergon and Gardner
(2013) consider this in the context of modeling dispersal of voles using spatial
capture-recapture data, while also modeling survival and recruitment. Schaub and
Royle (2014) consider a Cormack-Jolly-Seber version of this type of system in
which the spatially dynamic model allows for the explicit separation of dispersal
and true survival from capture-recapture data. Recently Gardner et al. (in review)
apply a fully open SCR model to Nagarahole camera trapping data in which the
activity centers are modeled according to Gaussian random walk such that

si;t � Normal
�

si;t�1; 	
2
s I
�

;

where I is the 2�2 identity matrix. Here, 	2s is the variance of the random walk
(quantifying the degree of movement in activity centers between primary occa-
sions), which is different than ¢2, the scale parameter in the encounter probability
model defined above (quantifying within primary occasion movement about an
individual’s activity center).

9.6.4 Spatially Dynamic Models, Without Population Dynamics

SCR models allow for both population dynamics (survival, recruitment) and also
spatial dynamics (space-time dynamics of the point process model for activity
centers). These two types of dynamics can be represented together in the same
model (as in Gardner et al. in review), but, in addition, models can be developed
that contain only one or the other dynamic components. For example, the basic
open SCR model developed by Gardner et al. (2010) accommodates population
dynamics but not spatial dynamics. In addition, a special kind of “open” population
model which is only possible in the context of SCR is a model in which there are
no population dynamics, but the individual activity centers are spatially dynamic
(Royle et al. 2016). This type of model might be relevant when, during the study,
some portion of the population disperses or when some portion of the population
exhibits transient space usage. Royle et al. (2016) considered Markovian movement
or dispersal models in demographically closed systems and showed that while
parameters of the movement model could be estimated from repeated detections of
individuals subject to demographic closure, ignoring movement dynamics did not
produce biased estimates of density. Thus if estimating density is the main objective
of a study then a misspecified encounter probability model that neglects movement
is not necessarily detrimental to inferences.

We imagine intermediate types of models too in which some reduced population
dynamics are paired with spatially dynamic activity centers. For example, we might
allow for recruitment, but not survival, and spatially dynamic activity centers.
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9.7 Survey Design Considerations

An overview of the sampling associated with camera trapping was provided above.
Here we provide general considerations about important aspects of sampling when
the objective is focused on estimating population size or density within a study area.

The basic consideration in all camera trapping studies is this: you need to
sample “enough” (time and space) to accumulate a sufficient sample size of unique
individuals and a sufficient sample size of recaptures, whether or not you intend to
use ordinary CR or SCR models. If you are using SCR models then, in addition,
you need to obtain sufficient “spatial recaptures” (i.e., captures of individuals in
more than one trap). Unfortunately, what constitutes sufficient depends on just
about everything: the actual unknown population size, the actual unknown detection
probability and any other parameter of the model, and the extent and geometry of
the space being sampled. Importantly, however, it depends on the length of time or
number of occasions that camera traps are operational and also the number of traps
and configuration of traps within the study area. As such, it is almost impossible,
in general, to give prescriptive sample design guidance. As a practical matter, the
best approach to make sensible choices of sampling design is to use Monte Carlo
simulation. That is, propose a number of realistic sampling designs, and evaluate
them by simulating populations and the sampling process using a priori guesses of
the parameter values (or values taken from the literature). This should always be
done, for any field study, before deployment of camera traps.

Using simulation we will usually seek to find a design to meet a certain precision
target (e.g., CV of 10% for estimating N), or we will seek to evaluate a handful of
logistically feasible designs and use the best one in terms of CV or perhaps also
considering economic cost of implementing the design. All things being equal, we
find for given true values of the parameters p and N (or other parameters of the
model), you can always reduce the CV of an estimator by increasing the amount of
effort (number of sample occasions, number of traps), because this produces larger
sample sizes. On the other hand, this comes at increased economic cost. Thus the
design problem always comes down to trading off a cost constraint with a statistical
precision objective. As such, many study design problems are formulated in terms
of optimizing precision for a fixed number of sample locations. This is roughly
the same in practical terms as having a fixed project budget because “number of
sites” is easy to translate into financial cost (cost of cameras, effort to establish sites,
check cameras). In these situations, the design question boils down to “where do we
allocate those traps?” Then various designs can be defined, and simulations run to
produce a sequence of results (estimates). Then, looking at the results, you have
to ask the question: is the realized statistical precision sufficient for management
needs? If not, you increase the effort (number of traps, number of days operational)
and repeat the exercise.

As in traditional capture-recapture models, most important design elements
represent aspects of sampling in space and time: how many spatial samples (and
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where, and what spacing) and how long should sampling occur? We discuss some
specific aspects of space and time here.

Study duration. A general objective in camera trapping is to keep sampling
duration short relative to tiger population turnover so that demographically closed
models can be used. However, the definition of short will be situation dependent
and will likely be determined by the logistics of each sampling situation. It would
be excellent, but likely impossible, to complete sampling within a 2-week period.
Periods of 4–6 weeks or even longer will more likely be required. Longer time
intervals increase the likelihood of models for open populations being needed.
Closed models are preferred for reasons of precision and estimator robustness,
but if closed models cannot be used, then open models are available (Seber 1982;
Pollock et al. 1990) and can be used to accommodate non-closure. This general
consideration relating to the duration of the study is relevant to both SCR and
ordinary capture-recapture methods. From the standpoint of estimating density, it
would be preferable to focus on simpler (demographically closed) models, but if it
is necessary to increase the length of time in order to obtain sufficient sample sizes,
the open models can be used to accommodate non-closure. An economical way to
deal with non-closure that avoids having to model complex population dynamics
is the use of multi-session models as described previously. These could involve
one additional structural parameter per session and yet still accommodate temporal
variation in density but “share” the parameters of the detection probability model
among the sessions.

Trap spacing. General trap spacing is an important element of SCR models.
Effective estimation requires that spatial recaptures are obtained, that is, recaptures
of individuals in multiple traps. Intuitively, designing a study to have traps close
together should maximize the number of spatial recaptures. On the other hand,
the total sample size of unique individuals should be maximized if the traps are
placed uniformly far apart in any prescribed region of interest. Thus, practical SCR
design represents a compromise between obtaining sufficient spatial recaptures and
a large sample size of individuals (Royle et al. 2014, ch. 10), and the two objectives
contradict one another in the sense that close trap spacing is optimal for the former
objective, while distant trap spacing is optimal for the latter. Simulation studies
(Sollmann et al. 2013; Efford and Fewster 2013; Royle et al. 2014, ch. 10; Augustine
unpubl. Results: https://groups.google.com/forum/#!topic/spatialcapturerecapture/
SnswEKOwFb0) indicate that trap spacing of 1.5–2.5 times ¢ produces optimal
designs for estimating population size or density under the half-normal encounter
probability model with parameter ¢ . Thus if sufficient traps exist to achieve this
spacing with uniform coverage of the area, then this should be done. Note that this
approach (uniform coverage) is the same as the “Design 1” recommendation of
Nichols and Karanth (2002) who recommended to “...spread [traps] throughout the
area once and then checked each day for say 5-30 consecutive days”. This approach
yields standard (spatial) capture history data amenable to analysis by the classes of
models described in this chapter. On the other hand, if the study area is too large
to cover uniformly given the number of available camera traps or effort to deploy
them, then there are three additional design options available:

https://groups.google.com/forum/#!topic/spatialcapturerecapture/SnswEKOwFb0
https://groups.google.com/forum/#!topic/spatialcapturerecapture/SnswEKOwFb0
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• (Design 2) Cover a central area of the study uniformly to achieve close to the
optimal spacing.

• (Design 3) Use a type of cluster design where small clusters achieve optimal
within-cluster spacing in order to generate spatial recaptures, but then clusters
are more widely spaced to cover the area uniformly, expose a larger portion
of the population to sampling, and obtain a higher sample size of encountered
individuals.

• (Design 4) Cover a subregion uniformly and then rotate the traps so that a larger
area is covered.

Design 2 is logistically appealing because it saves on the labor and cost of moving
traps. On the other hand, by moving traps you can obtain a larger sample size
of observed individuals and possibly more spatial recaptures. If there is a strong
local behavioral response, then there is probably some statistical benefit to moving
traps since the recaptures provide less information. When implementing this design,
the area sampled should be representative of the area as a whole. If there is a
strong gradient in density, then this approach is not necessarily robust to density
models, and this should be studied by simulation for the specific landscape under
consideration. The use of cluster designs (Design 3) has proved to be an effective
and logistically practical way of carrying out studies for density estimation (Efford
and Fewster 2013; Sun et al. 2014; Fuller et al. 2016). Spacing of within and
between clusters can be analyzed by Monte Carlo simulation. As in the first edition
of this manual, designs which involve sampling an area and then moving traps
(rotating blocks of traps, Design 4) can be viable in some situations. The advice
from Edition 1 is probably still good advice, as long as we keep the basic trap
spacing considerations of SCR in mind. In that regard, we probably should define
grid cells to be about 1.5–2 times ¢ and then rotate the traps to achieve uniform
coverage of the grid cells over time but making sure that sufficient neighboring cells
contain traps so as to produce the needed spatial recaptures.

9.8 Future Directions

The field of capture-recapture has undergone rapid and profound evolution over the
last few years. This has been driven in large part by technological innovations such
as camera trapping and DNA sampling which allow for capture-recapture studies of
species such as tigers that could not be effectively studied using historical methods
requiring physical capture and marking. Such methods produce huge quantities of
spatially explicit encounter information that are informative about all aspects of
spatial population ecology, not just estimation of density and population size. The
development of spatial capture-recapture methods has been driven to some extent by
the widespread adoption of these new technologies for sampling which produce rich
spatial encounter data. Spatial capture-recapture methods have proved useful for
modeling spatial variation in density, resource selection, movement, and population
dynamics (Royle et al. 2017). We believe that SCR methods will continue to grow
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in importance, and there are many unresolved and important aspects related to the
study of animal populations by capture-recapture that have received little or no
attention in the literature so far but which we feel have enormous practical relevance
for the study of tiger and other populations. We identify a few of these here.

Uncertain Identity The advent of new technologies for noninvasive sampling,
including camera trapping and DNA sampling, has increased the frequency of
samples with uncertain identity. When a sample is obtained but cannot be identified
to individual, observed encounter histories may not be the true encounter history
of an individual. Accommodating uncertain identity is extremely important for
unbiased population size estimation when, for example, it can produce “ghost”
individuals which have the effect of inflating the population size estimation (Lukacs
and Burnham 2005) or if behavioral response is present and not properly modeled in
the presence of uncertainty (Augustine et al. 2014). Uncertain identity is especially
relevant in camera trapping where, historically, obtaining photos of both sides
of an individual has been necessary in order to identify an individual. However,
a single-side photograph can be viewed as a sample having uncertain identity,
and this uncertainty can be accommodated in capture-recapture models. Augustine
et al. (2016) showed that spatial location of encounter is informative about sample
identity and used this information in the development of SCR models to allow for
single-side samples in camera trapping. Their method can be applied even to whole
arrays of single cameras, in which case it may not ever be possible to obtain both
sides of an individual.

Landscape Connectivity SCR provides an empirical basis for estimating not only
density but also connectivity of the landscape. For example, explicit models
of connectivity, such as least-cost path, can be integrated directly in the SCR
likelihood, and parameters that describe the resistance of the landscape to individual
space usage can be estimated (Royle et al. 2013b; Sutherland et al. 2015; Fuller
et al. 2016). Furthermore, SCR provides an empirical framework for making
explicit landscape management decisions using population density and connectivity
information. For example, Morin et al. (2017) evaluated the potential of camera
trapping studies to estimate density-weighted connectivity (DWC) and proposed
that landscape management (corridor, reserve design) should be based on maximiz-
ing DWC of a landscape or minimizing the loss of DWC. We imagine that these
ideas might be useful in the development of connected landscapes for tigers and
other large cats based on camera trapping studies.

Biologically Realistic Point Process Models Most applications of SCR models
to date are based on the simplistic homogeneous point process model in which
individual activity centers are distributed uniformly and independent of one another.
There is an obvious need for more biologically realistic point process models
which accommodate important biological features of populations such as territorial
behavior and territory overlap of individuals and among species. General classes
of point process such as Markov point process models accommodate dependence



186 J.A. Royle et al.

among points (Illian et al. 2008) might be realistic for modeling such biological
phenomenon. Reich and Gardner (2014) proposed an SCR model for territorial
species based on a Strauss process model which accommodates point processes that
are more regular than complete spatial randomness. To the best of our knowledge, no
other examples of non-independent point process models in the context of capture-
recapture modeling exist.

Continuous Time SCR Models Both classical and spatial capture-recapture models
accommodate the modeling of temporal variation in the form of time effects or
behavioral response. In the vast majority of applications to date, these effects are
modeled in discrete time, that is, assuming that sample occasions are registered
in discrete time intervals kD1,2,...,K. Recent efforts toward developing continuous
time models (Borchers et al. 2014; Dorazio and Karanth 2017) show promise in
improving the modeling of biological processes such as a behavioral response (due
to transient space use of an individual’s home range) and make more efficient use
of detection data.
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10Field Practices: Assessing Tiger Population
Dynamics Using Photographic Captures

K. Ullas Karanth, James D. Nichols, Abishek Harihar,
Dale G. Miquelle, N. Samba Kumar, and Robert M. Dorazio

10.1 Introduction

In Chap. 9, sampling animal populations by repeatedly “catching” identifiable
individuals to generate capture histories was described. From these histories, capture
frequency statistics and estimates of capture probabilities can be derived. Estimates
of capture probabilities permit us to estimate the abundance and density of animals
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in the surveyed area, after accounting for imperfect detection, without having to
catch all individuals in the population.

In traditional “capture–recapture” or “mark-recapture” studies of smaller animals
such as rodents, birds, or fish, individuals are physically caught “invasively” and
then “recognizably marked” using artificial tags, branding, or mutilation. Such
physical captures, marking and recaptures of tigers, at the scale needed, are not
practical because of logistical and ecological constraints.

However, the fact that tigers are “naturally marked” confers a major advantage.
Because unambiguous individual identification of tigers from their stripe patterns is
possible (Plate 10.1), statistical sampling of wild populations through “photographic

Plate 10.1 Tigers can be individually identified from differences in their stripe patterns. However,
stripe patterns on the two sides of the same animal differ. Camera trap photos above show two
distinct individual tigers photo-captured in Malenad landscape of India. They are labelled BRT-
105 (top) and BRT-103 (bottom) (Image Copyright©: Ullas Karanth/WCS)
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captures” of individuals become feasible. Such sampling can generate data appro-
priate for capture–recapture (hereafter CR) analyses (Chap. 9) for estimating
demographic parameters. The volume by O’Connell et al. (2011) provides a general
overview of the use of camera traps in animal ecology.

Currently, two reliable, noninvasive methods for “marking” tigers exist: capture
and identification of individual tigers from photographs (this chapter) and from
DNA extracted from their scats or hair (Chap. 11, Bhagavatula and Singh 2006,
Mondol et al. 2009, Gopalaswamy et al. 2012a). Although individual identifications
based on other methods, such as recognition of tigers from their unique scent using
trained dogs (Kerley and Salkina 2007) or from voice recordings may be feasible,
these have not been rigorously proven for practical population sampling.

Royle et al. (2014; pp. 381–399) present various options to statistically describe
different ways in which a “detection device” and the “target object” potentially inter-
sect resulting in a “capture event” (fixed detectors, areal searches, route searches),
while Efford et al. (2009) describe different types of fixed detection devices (i.e.,
proximity detectors, multi-catch or single-catch) and “encounter process” models
(Chap. 11) corresponding to each. The process of a tiger naturally moving around its
area of activity and being photographed in an array of multiple, stationary camera
traps matches the “proximity detector” encounter process (Poisson) model. This
process yields counts of captures of an individual at a trap in a sampling occasion but
can also be approximated by the binomial model (captured/not captured) if counts
(disaggregated by individual, trap, and occasion) of >1 are rare, as typical in camera
trap studies of tigers (Royle et al. 2009, Dorazio 2013). On the other hand, survey
personnel moving and detecting stationary tiger scat samples requires the use of
models for search encounter data (Royle et al. 2014, Chap. 11 of this volume).

In the following sections, we present possible designs for field surveys as well
as protocols for camera trap data collection, storage, management, and analyses to
fully exploit the analytic power of methods described in Chap. 9.

10.2 Design of Field Surveys Using Camera Traps

Choosing the right kind of equipment, selecting the best spots to set traps, and
designing an array of such camera traps to efficiently sample an area, to “catch”
individuals from the tiger population exposed to the array, are key factors to
be considered even before data collection can begin. These practical aspects are
covered in this section.

10.2.1 Some General Considerations

Implementing a survey design is not a mere ad hoc step. We emphasize that the
details of the field monitoring effort should be inherited from the ultimate objectives
of the program for tiger conservation and/or science that the survey is expected to
inform (Chap. 14).

http://dx.doi.org/10.1007/978-981-10-5436-5_9
http://dx.doi.org/10.1007/978-981-10-5436-5_11
http://dx.doi.org/10.1007/978-981-10-5436-5_11
http://dx.doi.org/10.1007/978-981-10-5436-5_11
http://dx.doi.org/10.1007/978-981-10-5436-5_9
http://dx.doi.org/10.1007/978-981-10-5436-5_14
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Design of camera trap surveys should also be guided by site-specific aspects of
the ecology of the tiger population being sampled, as well as environmental and
logistical factors as described in Chap. 2. In this monitoring context, prior knowl-
edge of ecological variables such as expected tiger home range sizes, numbers,
travel routes, as well as available investigator skills and other resources will shape
the quality of results.

Standard capture–recapture analyses (Chap. 9) require unambiguous identifica-
tion of individual tigers to construct accurate capture histories. The stripe patterns on
the left and right sides of the same tiger differ. Therefore, to identify any particular
individual with certainty, both sides of each tiger must be simultaneously pho-
tographed. This should happen at least once during a survey to definitively link the
two profiles of the same animal. In practical terms, this means that every camera trap
location should have two cameras, with one positioned on either side of the expected
path of the tiger. This critical need greatly increases the resources required to
conduct camera trap surveys, placing constraints on the extent of area to be sampled.

Because not all tigers present are likely to be photo-captured, any unmatched left
or right profiles constitute uncertain data with lower value. Therefore, the practice
has been to generate reliable individual identifications using two cameras per trap.
However, recent analytical advances (Augustine et al. 2016, Chap. 9) may permit
more efficient use of “single-flank only” data by accounting for the associated
uncertainties in conjunction with data on capture locations. However, even these
new models perform best if at least some unambiguous (two-flank) detections are
available. Use of single-flank data in spatial capture–recapture (SCR) models is
a new and rapidly developing methodological research area. Within the next few
years, we expect to be able to provide some general recommendations about what
fraction of survey camera trap stations should contain two traps. These new hybrid
designs (some two-trap stations and some one-trap stations) should permit major
gains in analytical and cost efficiencies. However, many tiger populations are small
and under serious threat (Chap. 1), and reliably identifying individuals also has
applications in law enforcement or tracking “problem tigers”; for these reasons
using two cameras per trap to get definite identifications of as many individuals as
possible has merit. In this chapter, we recommend two cameras per trap as justifiable
“best practice” at this point in time, while recognizing that this recommendation
may be modified in the future.

10.2.2 Choice of Camera Trap Equipment

It is beyond the scope of this chapter to provide precise guidance on the exact
type of camera trap equipment suited for every ecological, logistical, and resource
availability context. Based on several decades of camera-trapping tigers across a
range of survey conditions (see also O’Connell et al. 2011), we provide some
general guidelines below.

Camera traps used in tiger population surveys have two components: the cameras
and the tripping device that fires them.

http://dx.doi.org/10.1007/978-981-10-5436-5_2
http://dx.doi.org/10.1007/978-981-10-5436-5_9
http://dx.doi.org/10.1007/978-981-10-5436-5_9
http://dx.doi.org/10.1007/978-981-10-5436-5_1
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10.2.2.1 The Camera
Nowadays, digital cameras are used in practically all camera trap models. The
final image quality is important because poor images make it difficult to identify
individual tigers. Specifically, when pattern matching software is used for rapid
identification of tigers (Sect. 10.4.1), grainy images may not meet quality standards
necessary for automated pattern matching.

Some camera traps also offer an additional video feature. This may help when
several individual tigers pass through together or when additional information from
video footage may improve the ability to identify individuals or to classify them
by age and sex. However, video footage usually produces poorer-quality photos for
any given frame in a sequence, rendering identification difficult. Reviewing video
footage is also much more time-consuming than reviewing still photos. Use of video
also requires the extra step of identifying the best frame of a video and converting
the video into a still frame for use in database management and identification
software programs. Unless video footage can produce images of sufficient quality,
we generally recommend relying on still images of higher quality.

Camera traps with white flash can take color pictures of tigers at night,
which is better for individual identification compared to monochromatic infrared
flash images, particularly because infrared images also tend to be more “grainy.”
However, visible white flash may increase a “trap-shy” behavioral response in tigers
(Chap. 9, Karanth and Nichols 1998, Wegge et al. 2004) increasing analytical
complexity. White flash may also attract thieves or vandals more readily to the
camera trap.

The cameras used should be capable of shooting several flash photos in sequence
rapidly without exhausting their batteries over several days. They should withstand
extreme heat or cold, moisture, and rough field use as anticipated.

To conserve battery power, most cameras are designed to go to “sleep” when
the shutter cover is left open for some time. With such “idiot-proof” cameras, the
tripping device should be capable of periodically “waking the camera up” so that no
animal is missed.

Some camera traps have moisture-resistant containers. In humid areas, this is
an advantage. Sometimes, other species of large animals such as elephants or bears
may damage cameras. More commonly, people may steal or vandalize them. In such
situations, a steel shell may be needed to protect the cameras. Design for such an
elephant-proof steel shell is provided in the Karanth and Nichols (2002; Appendix
5) manual.

10.2.2.2 The Tripping Device
Electronic tripping devices are of two types. The “active” type has a transmitter
that emits an infrared beam, which impinges on a receiver placed opposite. When
the tiger walks between the two, the beam is interrupted, triggering the cameras.
Most cameras on the market today rely on a “passive” infrared monitor that detects
the combination of body heat and motion in the area it is monitoring. The area of
sensitivity forms a wedge radiating outward in front of the monitor.

Generally, passive infrared units tend to be less prone to false tripping by
moisture condensation, insects, or vibrations compared to active infrared units. In

http://dx.doi.org/10.1007/978-981-10-5436-5_9
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areas where wind and rain are problems, this may be an important factor favoring
passive infrared units. However, passive infrared units are also prone to taking
multiple exposures in response to changes in ambient light and movement of non-
target animal species.

10.2.2.3 Important Considerations in Camera Trap Choice
In recent years, technological advancements and increased demand have improved
camera trap quality and availability. Continued advancements in camera design will
quickly make any recommendations on specific cameras obsolete. Therefore, we do
not attempt to provide precise guidance on exact type of camera traps best suited
for every ecological, logistical, and resource availability context. Based on several
decades of camera-trapping tigers (see also O’Connell et al. 2011), we provide some
general guidelines below. These highlight the need for camera traps to meet six
major design/functionality criteria.

1. Fast trigger speed: It is critical under most field situations that the delay between
the tripping of the sensor and the triggering of camera is minimal. In general, a
trigger speed of about 250 ms (1/4 sec) is considered optimal.

2. Long battery life: During field surveys, camera traps are often required to be
set in remote locations for long periods of time. Hence, having long battery
life helps reduce maintenance costs. Batteries that do not require changing
for about 100 days and are resilient to changes in temperature would be
ideal.

3. Low weight: Deploying camera traps in the field often involves teams carrying
several traps on foot to remote locations; hence, having lightweight units reduces
the burden of transportation.

4. Durability: Some camera trap manufacturers enclose their units in moisture-
resistant containers. In wet or humid areas, this is an important advantage.
Sometimes, other large animals such as bears or elephants damage cameras, or
people may steal or vandalize them. In such situations, a rugged protective shell
may need to be deployed to protect the cameras. Appendix 5 in Karanth and
Nichols (2002; pp. 184–186) shows the design of the Javaji steel shell that has
been used to house many camera trap brands.

5. Highly configurable: Refining the camera’s functionality (e.g., trigger speed,
photo and video mode) to suit local conditions is important. Having models that
are easy to configure in the field is critical.

6. Costs: Finally, depending on the field study to be conducted, effective surveys
often require hundreds of camera trap units. With tight budgets, typical of most
conservation programs, cost of individual units becomes a primary concern.

Several commercial camera traps are available in the market with models
changing rapidly. We advise users to check relevant literature, websites,
and list servers for current details (http://www.crowsystems.com/cameras.htm,
http://www.trailmaster.com/thttp://www.camtrakker.com, http://www.trailsenseeng
ineering.com/); for reviews and comparisons of cameras, see http://www.
chasingame.com/ and http://www.jesseshunting.com.

http://www.crowsystems.com/cameras.htm
http://www.trailmaster.com/http://www.camtrakker.com
http://www.trailsenseengineering.com/
http://www.chasingame.com/
http://www.chasingame.com/
http://www.jesseshunting.com
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10.2.3 Field Surveys: Camera Trap Locations and Setup

Because tigers live at low population densities of 10–15 animals/100 km2 even in
the best habitats (Chap. 2), getting a “photographic capture” of a tiger is a highly
uncertain, rare event even with many camera traps in an array.

Therefore, if estimation of demographic parameters is the monitoring goal,
camera trap sites must be chosen to maximize tiger capture probabilities: they
should not be randomly selected spots in the sampled area (Karanth and Nichols
2010, Karanth et al. 2011). Tigers use favored travel routes (Chap. 2) and do not
move randomly through space. If traps are set randomly, most will have near-zero
probabilities of catching a tiger. Therefore, practitioners should avoid randomly
selected GPS coordinates for setting camera traps, if the study objectives focus on
tiger population parameters.

Probabilities of tigers encountering camera traps are inherently low. In order to
maximize capture probabilities (Chap. 9), traps can be placed along tiger travel
routes identified based on natural history skills (Plate 10.2) or radio-tracking data if
available. More generally, trap site selection depends on the ability to “think like a
tiger”: convergence of game trails and presence of salt licks and water holes that
attract prey animals may indicate good sites. Usually, trails with soft underfoot
conditions, sandy streambeds, and forest logging roads make good “trap lines.”

Although we do not routinely recommend scents or lures to “hold tigers” in front
of the cameras, these could be employed if found useful. Capture–recapture models
can account for any potential “trap-happy” response induced by baits or lures, if
they are used (Chap. 9).

Plate 10.2 Camera trap locations should be non-random and selected carefully to maximise tiger
photo captures (Image Copyright©: Eleanor Briggs)

http://dx.doi.org/10.1007/978-981-10-5436-5_2
http://dx.doi.org/10.1007/978-981-10-5436-5_2
http://dx.doi.org/10.1007/978-981-10-5436-5_9
http://dx.doi.org/10.1007/978-981-10-5436-5_9
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Once a trap site is chosen, the goal is to frame the picture so that the tiger’s
flanks are clearly photographed. Although stripes on any part of the tiger’s body
can be used for identification, pictures of flanks are the easiest for comparing and
identifying individuals.

The trail should not be modified drastically, and traps should be placed as
unobtrusively as possible. Often, a simple trick such as throwing a few twigs around
a trap can prevent it from being conspicuous. Masking tape of a dull color should
be used on bright shiny parts. All loose cables should remain hidden.

At each trap site, cameras should be positioned about 3–4 meters away on both
sides of the path. In active infrared-triggered units, the electronic beam should be
set 45 cm above the ground and at a trigger sensitivity-level sufficient to catch even
tiger cubs.

It may be necessary to experiment with cameras to determine the optimal
distance from traps to the tiger’s likely path. For cameras with easily accessible
memory cards, it is best to experiment and review photographs to ensure the best
positioning of the camera. Having an extra camera or tablet computer to view
photographs from the memory card is useful for this task if the camera trap does
not have a built-in screen. Even if the tiger walks on the far edge of the path, usable
pictures should be obtainable at this distance.

10.2.4 Survey Design: Spatial Sampling of the Tiger Population

Achieving “randomness” is sometimes offered as the reason for placing traps in
some regular geometrical pattern, such as a square grid. Although the grid itself is
certainly not random, the distances between unknown animal home range centers
and the camera traps (a determinant of capture probability) can be viewed as
random. It should be noted that, as far as possible, sampling should produce similar
capture probabilities for all animals in the sampled area, but employing a square grid
(or any other shape) is not necessarily advised. What should be avoided is the choice
of inferior locations for setting traps to fulfill some vague pursuit of randomness
while ignoring superior ones.

Although similar capture probabilities among individual animals are desirable
for classical CR methods, we also note that the SCR models (Chap. 9) reduce this
need, in the sense that variation among individuals in the distances between home
range centers and camera traps is explicitly incorporated into the modeling (also see
Royle et al. 2014).

Placement of traps in areas less likely to be visited is not helpful for increasing
capture probabilities or making them similar among individual tigers. Not using the
best available trap sites will often dramatically lower capture probabilities (fewer
animals caught and fewer recaptures). Tigers are rare and difficult to detect in traps,
and good trap sites are difficult to find, particularly in low tiger density areas. The
aim is to get more photos from more individual tigers exposed to the trap array.
Thus, choosing the best possible trap sites for each individual in the sampled area
should be the primary consideration.

http://dx.doi.org/10.1007/978-981-10-5436-5_9
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With the advent of SCR models (Borchers and Efford 2008, Royle et al. 2009,
2014), conventional capture–recapture analyses have become much less important.
Therefore, our general prescriptions on spatial survey design below are made
keeping SCR analyses in mind. Whether the subsequent analyses are spatial or
nonspatial, all closed model capture–recapture surveys assume that “samples” of
a few individual tigers are drawn multiple times within a “short period.” The
population is assumed to remain unchanged by births, immigration, deaths, or
emigration because the survey duration is short.

Although not all tigers need to be “detected” for capture–recapture methods
to work (Chaps. 3 and 9), every individual exposed to the sampling effort must
have non-zero probability of being detected by trapping, in order for conventional
closed models to work. For this reason, large “holes” without any traps in the
array within which a tiger can potentially remain unexposed to cameras are best
avoided. Therefore, expected home range sizes of breeding females, which are
typically smallest (Chap. 2), should critically influence the trap spacing. This
recommendation of “no holes” is not so important for SCR models, because these
explicitly deal with the fact that capture probability is a function of distance between
range center and individual traps, thus permitting animals with range centers far
from any traps to have capture probabilities that approach zero.

With a limited number of traps available, which is most often the case, any
survey design faces an unavoidable trade-off. A closer trap spacing increases capture
probabilities for each tiger exposed to trapping. However, close spacing reduces
the number of individual tigers exposed to cameras. Placing traps farther apart
(increasing trap array size) will expose more individuals to capture if the sampled
population occupies a larger area. Because sample size for capture–recapture
analyses is dependent on the number of individuals caught (n), larger sample sizes
lead to stronger inferences. Balancing these competing needs is a key to efficient
spatial design of a tiger survey (see Table 7.2 in Karanth et al. 2011 for an example).

In absolute terms what should be the spacing between traps? It should be lower
at smaller expected minimum tiger home range sizes. If the expected home ranges
are larger, traps can be set farther apart. From previous studies of tiger social
organization (Chap. 2, Smith 1993, Kerley et al. 2003, Goodrich and Miquelle 2010,
Hernandez-Blanco et al. 2015) within a population, resident tigresses that breed
have the smallest home ranges. Therefore, if at least 2–3 camera traps are placed
within an expected female home range (Karanth and Nichols 1998), individual tigers
in other age–sex classes will automatically be exposed to an equal (juveniles, cubs)
or larger (breeding males, transients) number of traps in their home ranges.

Home ranges of breeding tigresses in prey-rich areas can be as small as 10–
15 km2 (Sunquist 1981; Smith 1993; Sunquist et al. 1999, Karanth and Sunquist
2000, Chap. 2). In such high-density areas, camera traps can be set at about 2–3 km
apart to potentially expose a resident tigress to 2–3 traps. At the other extreme,
female ranges can be as large 200–600 km2 (Goodrich et al. 2010, Hernandez-
Blanco et al. 2015, See Chap. 2). In such areas, camera traps can be deployed
5–10 km apart. We suggest the above figures only as broad guidelines: specific local
knowledge about likely tiger range size is a key factor in designing the trap array.

http://dx.doi.org/10.1007/978-981-10-5436-5_3
http://dx.doi.org/10.1007/978-981-10-5436-5_9
http://dx.doi.org/10.1007/978-981-10-5436-5_2
http://dx.doi.org/10.1007/978-981-10-5436-5_2
http://dx.doi.org/10.1007/978-981-10-5436-5_2
http://dx.doi.org/10.1007/978-981-10-5436-5_2
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Fig. 10.1 Camera trap survey design, showing the array of camera trap points and tiger habitat
in Nagarahole reserve, India, within the defined state space. Inset shows one of eight “trap lines”
used by field teams to regularly check camera traps

Within each expected home range area, it is better to place “more traps” than “fewer
traps” depending on the availability of traps.

However, the need is also to catch as many different individual tigers as
possible. Potentially more individual tigers can be caught by increasing trap spacing.
Therefore, trap spacing becomes a compromise between these two competing needs
as already noted.

The area to be sampled should be initially explored by skilled naturalists to locate
and map most of the potential camera trap sites. Their number should be 2–3 times
more than the final number required by the spatial design employed. While deciding
the final trap array shape and size, logistical factors, such as topography, barriers to
movement of personnel, and potential theft of traps, also have to be considered.
Final choice of camera trap sites is made after all these factors are balanced.

Outer boundaries of camera traps—final location of the trap array—typically
form an irregular “trap polygon” (Fig. 10.1). Although not all factors that lead to a
specific design are controllable, solid, compact shapes for a trap array—say circles,
squares, ovals—are preferable to shapes resembling “donuts,” “hub and spokes,” or
“narrow strips” from the analytical perspective.

Furthermore, it is necessary to delineate “real habitat” in which tigers are resident
or move through frequently. These habitats may have adjacent “non-habitat” areas,
such as human settlements, some types of agricultural land, or large water bodies.
Such “non-habitat” areas, which are not routinely used by tigers, should be excluded
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from the effectively sampled area during analysis. In this context, more efficient
sampled area coverage with a given number of traps can sometimes be achieved by
placing the outermost traps at some reasonable distance inside, rather than right on
the edge of known and mapped tiger habitats (Fig. 10.1).

SCR models of different “flavors” are available now (Efford 2004, Borchers and
Efford 2008, Royle et al. 2009, Dorazio 2013, Dorazio and Karanth 2017). All these
approaches require adding a “buffer” or “mask” around the trap array to delineate
the area sampled in the survey. The purpose of adding such a buffer is to identify
a “catchment” area, beyond the trap array, from which captured tigers could have
come. The linear distance from the edge of the trap array to the outer periphery of
the buffer (mask) depends on how far we expect tigers to routinely move during the
survey period.

Because the sampled tiger population may include post-dispersal transients,
which have the largest home ranges (Chap. 2; Smith 1993), we suggest a buffer
distance of 3–4 times greater than the radius of expected resident female range.
For example, in high tiger density sites, the expected female resident home range
radius of 2.5 km leads to a buffer distance of 10 km. As in the case of defining the
trap array, “non-tiger habitat” is excluded from this buffer area also. Thereafter, the
area effectively sampled, including the trap array and buffer and excluding non-tiger
habitat, can be identified and mapped. An example is shown in Fig. 10.1.

10.2.5 Survey Design: Temporal Sampling of the Tiger Population

Capture probabilities are estimated from temporally repeated “samples” drawn
from among all tigers exposed to trapping. These temporal replicates can be
thought of as multiple “sweeps” over the area. The camera trap survey therefore
extends over the total number of days required to sweep the entire sampled area
successively, multiple times. Each successive “sweep” is considered a sample
(“sampling occasion” in conventional capture–recapture terminology). SCR permits
greater flexibility in this regard, permitting each temporal sweep to cover the
sampled area either fully or partially. However, the former approach will provide
better quality data, particularly if temporal changes in capture rates can be expected
due to changing weather or some other factor.

Camera trap monitoring conducted once in each year, or season, is called a
primary sample. It may include multiple subsamples, designated as “secondary
samples” (see Chap. 9). The length of each primary sampling period is guided
by theoretical and practical considerations. Recall that the critical parameter we
are trying to estimate under closed models is the number of tigers in the surveyed
area (absolute abundance). This tiger population is assumed to be “demographically
closed” (see Chap. 9) through the primary period. Therefore, ideally the survey
duration should be as “short” as possible to reduce chances of violating the
population closure assumption. We recommend durations of fewer than 45 days,
preferably 15–30 days. As this primary sample duration increases, violations of the
closure assumption may occur, which can lead to biased estimates (Williams et al.
2002, Chaps. 2 and 9).

http://dx.doi.org/10.1007/978-981-10-5436-5_2
http://dx.doi.org/10.1007/978-981-10-5436-5_9
http://dx.doi.org/10.1007/978-981-10-5436-5_9
http://dx.doi.org/10.1007/978-981-10-5436-5_2
http://dx.doi.org/10.1007/978-981-10-5436-5_9
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Generally, if there are more secondary samples, it is possible to use analytic
models that can deal better with potential sources of variation in capture probabil-
ities such as individual heterogeneity, trap response, or time-related variation (Otis
et al. 1978, White et al. 1982). Having 5–15 secondary temporal samples is better
than having just two. However, extending the survey duration (the primary sample
period) increases the risk of violating the demographic closure assumption.

For illustration, assume that 100 trap locations must be sampled in a 28-day
closed model survey. If the investigator possesses 100 camera traps, each day’s
trapping can be considered a secondary sample. Thus, capture data from 28 days
of trapping will cover the primary period. However, investigators may not have
enough camera traps to cover all trap locations simultaneously. Therefore, they may
spatially segregate the trap array into logistically convenient “blocks” or “trap lines”
(Fig. 10.1). These blocks are each sampled for a few successive days, one after
another. In the above case, if we had only 25 pairs of camera traps, the 100 locations
would be partitioned into four blocks, and each block is trapped continuously for
7 days, in sequence, to complete the entire survey in 28 days.

The key point is that the capture data for each primary period, as well as for each
secondary period, must come from across the entire sampled area and not from parts
of it as is sometimes erroneously done.

For example, in conventional CR analyses, seven sampling occasions can be
artificially constructed from the above example data. Data from day 1 in each block
are combined as sample 1, data from day 2 data as sample 2, and so on (See Karanth
and Nichols 2002, page 133 for details). In SCR analyses, capture data from such
a “block” trapping scheme can be readily handled, because the data structure can
specify which traps are active during each sample.

Frequent checking of traps can inform which traps were operational and which
ones were not. If this is not the case, nonfunctional traps may go into the SCR
input data structure considered as “active traps.” However, practically, if traps are
not checked frequently, even if analyses use SCR models, our preference is for
sampling the entire area of interest in each sweep, rather than using the block
trapping approach.

We provide a cautionary note: camera trapping an area continuously over months,
as some surveys reported by Jhala et al. (2015) appear to have done, is likely to
seriously violate the assumption of population closure. It is incorrect to apply closed
capture–recapture models to such data from what are really open populations of
tigers. Although open CR models (Sect. 10.4.4) can be used in such cases, their
primary use is for estimation of survival and recruitment rates rather than abundance
or density as already seen (Chap. 9).

Of course, if there are no constraints on available camera trap numbers or on
logistics, the area can be camera trapped continuously over the year. In such a
situation, data from successive “short periods,” in which closure can be assumed,
can be separately analyzed and yield an “average abundance” for the overall
period (see Jedrezejewsky et al. 2017, for such an analysis of jaguar capture data).
However, continuous trapping will frequently not represent an efficient use of
resources and should prompt the question “Is some sort of year-round average
abundance/density preferable in any way to abundance/density in a specific season?”

http://dx.doi.org/10.1007/978-981-10-5436-5_9
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It is also pertinent to note that such an approach is not readily extendable to the
estimation of vital rates using open models under the robust design (Chap. 9,
Karanth et al. 2006). For example, it is desirable that time intervals between
successive primary sampling occasions are long relative to the duration of each
primary occasion. Artificial discretization of continuous sampling data is an ad hoc
approach that can be used but is not recommended by us. SCR models for closed
populations now exist for data collected continuously in time, as is really the case
with camera trap surveys (Borchers et al. 2014, Dorazio and Karanth 2017).

The central point is that temporal scale of camera trap sampling, as with all other
aspects of study design, should be based on survey objectives and assumptions of
models to be used in analysis. We can think of no reason to design studies that
do not correspond to any of the numerous currently available analytic modeling
approaches.

Sometimes, the tiger survey objective is deliberately scaled down to determine
the “minimum number of tigers alive” at any point in time (e.g., Phase IV, Section 2,
Part-D in NTCA 2012 protocol). However, because of high population turnover rates
(Chap. 2), if surveys are extended, violating the closure assumption, accumulated
number of animals photo-captured can potentially exceed the total number of tigers
alive at any point during the survey! Given the major investments made in camera
trap surveys of tigers, we see no logic in setting up such inadequate objectives or
in applying poor methods to achieve them. The real tiger conservation need is for
reliable demographic estimates obtained using the most rigorous methods available.

10.3 Conduct of Camera Trap Surveys in the Field

10.3.1 Setting Up, Checking, and Troubleshooting Camera Traps

Meticulous field protocols will prevent inaccuracies creeping into tiger individual
identifications and records of capture location and time. In this regard, we make the
following recommendations:

1. All camera trap equipment should be maintained as per the manufacturer’s
manual. Fresh battery cells should be used in the cameras and tripping devices to
ensure that data are not lost. Camera traps should be checked on a daily basis—or
as frequently as possible—to record data. Particular attention should be paid to
battery status, amount of remaining memory, and proper mounting of the camera
and tripping device. It is important to make sure that the date, time, time zone
set for capture, camera delay, and expected target size (period of beam breakage)
are all set correctly. The date and time of each exposure as read by the camera’s
data-back (metadata) should be carefully double-checked with data recorded by
the tripping device as well as manual records. Spatial capture–recapture analyses
also require records of “working cameras” in the trap array for each sampling
occasion.

2. Standard data forms (e.g., Tables 10.1 and 10.2) should be used to record
information from camera traps. Unique identification numbers should be given

http://dx.doi.org/10.1007/978-981-10-5436-5_9
http://dx.doi.org/10.1007/978-981-10-5436-5_2
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Table 10.1 Camera trap field data form for details of date, time, location, equipment, images,
and other remarks. Camera trap survey field data form

CAMERA TRAP SURVEY FIELD DATA FORM

Names of Surveyors: Name of Supervisor: Field Site:

Other details: Page No:

Date Time Location
Exposure details

RemarksCam 
No.

USB Pen 
Drive No.

No. of 
Images

Setup

Check
Setup

Check

Setup

Check
Setup

Check
Setup

Check
Cam No. = Camera ID number No. of Images = Should be filled from 
USB Pen Drive No. = Unique USB Pen Drive ID number the log file of each camera

to each camera and tripping device for identifying its location and functioning
and for easy troubleshooting in case of malfunction.

3. Memory cards should be reformatted prior to camera deployment to avoid
inadvertent additions of photos from earlier surveys. This may particularly occur
when setting of dates on the camera is incorrect. It is important to uniquely label
each memory card (or film roll) before it is loaded into the camera. Because
cameras tend to get moved around in field surveys, this practice is critical for
accurately determining the time and location for any tiger capture event, as well
as for linking left and right profiles of tigers. Therefore, the record of each
identified memory card (or film roll) must be traceable from the time of loading
until image data are processed.

4. For most currently available analysis methods, individual tigers must be identi-
fied correctly and unambiguously by getting photographs of both sides. Investi-
gators using single camera units can end up with two smaller data sets of left and
right profiles, without being able to match the profiles for a certain identification.
Analyses of such data, however, are now possible using new models under
development (Augustine et al. 2016). However, even these models typically
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Table 10.2 Camera trap field data form for equipment maintenance and troubleshooting

Details of trouble shooting 

Trap
location

Camera 1
working

Camera 2
working

Camera
Battery Status

Clock Battery
Status

No False
Tripping

All OK

Details of Units
replaced/Rolls

changed/Batteries
replaced

Camera 1 Camera 2

rely on a subset of animals identified using images of both flanks. We do not
recommend studies be designed using single camera traps at all, or even most,
trap sites at this point.

10.3.2 Collection and Management of “Raw” Camera Trap Data

We have seen that quite often poor management of raw capture data results in
analytical problems because of inaccuracies in individual tiger identifications as
well as in photo-capture locations and dates. The field protocols outlined below will
help ensure reasonable integrity of survey data:

1. Each “camera trap” consists of two cameras and a tripping system, each labeled
with unique ID numbers. Each image storage device (e.g., memory card or film
roll) should have a unique ID label, all of which are entered into data forms.

2. While setting up camera traps, date, time, and GPS location of the cameras and
tripping device should be fully synchronized. The camera trap setup and checking
activities, with all relevant ancillary data, should be recorded on a data form
(Tables 10.1 and 10.2).
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3. It is important that all field and supervisory personnel record their names on data
forms to assign responsibility for the integrity of the survey exercise.

4. Downloading of raw image data from the camera traps in the field and their
subsequent storage on computers in a carefully designed folder structure
are critical. Details of such a data storage folder structure are provided
at http://projecttiger.nic.in/WriteReadData/userfiles/file/Protocol_Phase_IV_
Monitoring_r.pdf. These raw data can be stored in a spreadsheet (or some
other convenient format). However, they should be extractable using specific
criteria, for subsequent construction of capture histories (Chap. 9). Only after a
high-quality tiger photo database is established can analyses described in Section
10.4 be undertaken.

5. However, several software packages to manage camera trapping data are now
available, from desktop applications such as ‘AARDWOLF’ (Krishnappa
and Turner 2014) and ‘Camera Base’ (Tobler 2013), to citizen-science
oriented web applications, e.g. ‘SNAPSHOT SERENGETI’ (Swanson et al.
2015) and ‘Camera CATalogue’ (https://www.zooniverse.org/projects/panthera-
research/camera-catalogue) to more project-specific cyber-infrastructures like
‘TEAM NETWORK’ (Fegraus et al. 2011) or ‘WILDLIFE INSIGHTS’
(https://www.wildlifeinsights.org). In recent years more flexible open source
packages such as CamtrapR (Niedballa et al. 2016) and TRAPPER (Bubnicki et
al. 2016) have been developed.

10.4 Capture–Recapture Analyses of Camera Trap Data

10.4.1 Individual Identification of Tigers

After tiger images from a survey are correctly labeled and stored, the next step is to
link the left and right profiles of individual tigers to identify and assign them unique
identification (ID) numbers.

Tiger images can of course be visually compared and identified entirely manu-
ally. However, as the number of images increases over the years, manual comparison
of each new image with all previous ones becomes cumbersome. It is necessary to
set up a semiautomated system to store, manage, and identify tigers from images.

Although many image storage and management software programs are now
available (camtrapR: Niedballa et al. 2016; PhotoWarehouse: Ivan and Newkirk
2015; trapper: Bubnicki et al. 2016), as are animal identification programs (WildID:
Bolger et al. 2011 and HotSpotter: Crall et al. 2013), we have found the database and
identification approach developed by Hiby and Lovell (1990), implemented in the
free software ExtractCompare (Hiby et al. 2009) to be versatile and reliable for tiger
identifications. Although not the most user-friendly software available, requiring
substantial training before the user can gain proficiency, this very feature ensures
data integrity by automatically excluding incorrect data entries that may slip through
with other more “user-friendly” software programs.

http://projecttiger.nic.in/WriteReadData/userfiles/file/Protocol_Phase_IV_Monitoring_r.pdf
http://projecttiger.nic.in/WriteReadData/userfiles/file/Protocol_Phase_IV_Monitoring_r.pdf
http://dx.doi.org/10.1007/978-981-10-5436-5_9
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When comparing tiger stripe patterns, diagnostic features such as uniquely
shaped stripes, either singly or in juxtaposition with others, are used for identifi-
cation (Plate 10.1). The shapes of specific individual stripes as well as their relative
positioning on the flanks of tigers are particularly useful. If necessary, additional
stripe patterns found on the head, limbs, and the tail can also be used (Plate 10.1).

The following three demographic stages can be assigned to photo-captured tigers
based on body size and proportions: cubs <12 months; juveniles 12–24 months;
and post-dispersal subadults/adults 24 months or older, when clear photographs
are available (Karanth and Stith 1999, Karanth et al. 2006). Often, sex can also
be identified for juveniles and adults.

Tiger cubs have lower capture probabilities than older animals due to wariness.
They also have higher mortality rates, violating the closure assumption and lowering
numbers of recaptures for individuals. As a result, typically fewer cubs are photo-
captured and identified. In this sense, tiger cubs are akin to a different species with
extremely low capture probabilities. Therefore, we recommend that estimates of
tiger density, abundance, and vital rates should be based on data that exclude cubs
<12 months old.

The website of India’s NTCA (2012) describes a unique identification and label-
ing system: http://projecttiger.nic.in/WriteReadData/userfiles/file/Protocol_Phase_
IV_Monitoring_r.pdf. This system, developed by Karanth et al. (unpublished data),
is based on a database of images of >800 individual tigers accumulated from a long-
term camera trap study in India (1991–2017).

10.4.2 Construction of Capture Histories of Individual Tigers

After individuals are given unique identification numbers, every capture event for
each individual is assigned to a particular secondary sampling occasion (Chap.
9) using the location, date, and time of capture. From this database, the capture
history of each individual tiger can be constructed. For conventional CR analyses,
only the individual identity and the sampling occasion(s) on which the individual
was captured are used. For SCR analyses, data that pertain to location and time of
capture, as well as the temporal schedule of operation of each trap, are included.

Spatial CR analyses will also require maps in the form of GIS shape files for the
sampled area, the trap array, buffer distance used (mask), and non-tiger habitat, as
described in Sect. 4.3.2. Typically, GIS software such as ArcView (ESRI 2011) is
employed to create these spatial data layers.

Thereafter, analyses generally proceed as below.

10.4.3 Closed Model CR Analyses: Basic Approaches and Software

We believe conventional CR approaches highlighted in the Karanth and Nichols
(2002) manual are obsolete and superseded by spatial CR models for most
uses. Details of conventional CR analyses can be found in Otis et al. (1978),

http://projecttiger.nic.in/WriteReadData/userfiles/file/Protocol_Phase_IV_Monitoring_r.pdf
http://projecttiger.nic.in/WriteReadData/userfiles/file/Protocol_Phase_IV_Monitoring_r.pdf
http://dx.doi.org/10.1007/978-981-10-5436-5_9
http://dx.doi.org/10.1007/978-981-10-5436-5_4\#Sec5
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White et al. (1982), and Amstrup et al. (2005). Specifically, with reference to
tiger data, readers are referred to Chaps. 11 and 12 in Karanth and Nichols
(2002). Typically, estimation of tiger abundance using conventional methods
is performed using software programs CAPTURE (White et al. 1982, Rexstad
and Burnham 1991) or MARK (White and Burnham 1999). Both of these are
free software, available respectively at www.mbr-pwrc.usgs.gov/software.html and
whttp://ww.warnercnr.colostate.edu/�gwhite/mark/mark.htm. Their users are also
supported by helpful online lists (e.g., http://www.phidot.org/forum).

10.4.3.1 Testing for Demographic Closure
The first step in the analysis of CR data from a “secondary sample” (one snapshot of
the tiger population, obtained over 30–45 days, in a single season or year) involves
testing for potential violation of the demographic closure assumption, using tests
for demographic closure implemented in software such as CAPTURE, MARK, and
ClosTest (Stanley and Burnham 1999). White et al. (1982) suggest that the power of
these closure tests has not been intensively investigated, and they may be sensitive
to certain forms of variation in capture probability, highlighting the importance of
making realistic biological assumptions.

If the demographic closure assumption appears reasonable for the sample data,
the CR analysis can proceed. If the closure assumption appears to have been violated
seriously, the analyst may be compelled to either use one of the open model analyses
(Sect. 4.4.) or to restrict analysis to capture data from a reasonable shorter period
within the primary sampling period.

10.4.3.2 Spatial Capture–Recapture: Basic Approaches
Statistical concepts of spatial capture–recapture models have been summarized in
Chap. 9. These are based on statistical advances that emerged rapidly in the last
decade (Efford 2004, Borchers and Efford 2008, Efford et al. 2009, Royle et al.
2009, 2014).

Spatial capture–recapture models have been developed under likelihood-based
(Borchers and Efford 2008) and Bayesian (Royle et al. 2009, 2014) approaches.
The reader is referred to relevant statistical literature (e.g. Royle and Dorazio 2008,
Link and Barker 2010) on comparative merits of these two fundamental inferential
approaches. We note that for estimates of tiger density, the “credible intervals”
generated under Bayesian approaches constitute direct probability statements,
whereas the frequentist confidence intervals have more complicated interpretations
(see Link and Barker 2010 pages 7, 29–36 for a lucid explanation of the distinction).

Although the Bayesian spatial CR model formulations require more computing
time and power, we believe they provide greater general flexibility. We also
believe that the scope for future development of integrated modeling of “closed”
and “open” capture–recapture population analyses is greater under the Bayesian
framework. The Bayesian approach also has inherent advantages for drawing on
prior knowledge and for generating estimates from small samples of data (Royle
and Dorazio 2008, Link and Barker 2010, Royle et al. 2014).

http://dx.doi.org/10.1007/978-981-10-5436-5_11
http://dx.doi.org/10.1007/978-981-10-5436-5_12
http://www.mbr-pwrc.usgs.gov/software.html
http://ww.warnercnr.colostate.edu/~gwhite/mark/mark.htm
http://www.phidot.org/forum
http://dx.doi.org/10.1007/978-981-10-5436-5_4\#Sec8
http://dx.doi.org/10.1007/978-981-10-5436-5_9
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Several computer programs are available for analyses of tiger capture–recapture
data. Under the likelihood approach, the following programs are popular: DENSITY
(Efford et al. 2004), R package secr (Efford 2011), and R package oSCR (Sutherland
et al. 2016). There are several options for performing Bayesian analyses also. They
range from software specifically designed for camera trap data, such as R package
SPACECAP (Gopalaswamy et al. 2012b), to the more general package SCRbayes
(https://github.com/jaroyle/SCRbayes). Some analysts prefer to develop computer
code specifically tailored to individual studies using the R programming language
(R Development Core Team 2012) or Bayesian programming environments such as
WinBUGS (Gilks et al. 1994) and JAGS (Plummer 2003).

Going into details of all these analytical options is beyond the scope of this
chapter. We recommend detailed study of the original literature cited above.
Table 10.3 has results of SCR analyses from tiger studies in India and Malaysia
We find it comforting from our experience that, if the data are clean and properly
handled, these alternative SCR analyses usually generate estimates that are very
similar (Table 10.4). The Appendix shows an example of a full analysis performed
in the R programming environment, using an SCR model developed by Dorazio
(2013). It shows the input files, part of the R code used, and the output, along with
definitions and notation employed.

10.4.4 Open CR Models and Analyses: Approaches and Software

The secondary sample surveys are embedded within an annual primary sample
as described above that provides a “snapshot” of the tiger population. They
generate estimates of population size (abundance, N), density, and other spatial-
and detection-related parameters for that particular period.

Such surveys are repeated over some longer time period (e.g. annually), for
the overall period (consisting of multiple primary samples, each of which contains
secondary samples over which the population is assumed to be closed). We treat the
tiger population as being open between primary samples: subject to increases due
to births and immigration, and decreases from deaths and permanent emigration.
Such a multi-year capture–recapture analysis can generate estimates of demographic
parameters such as survival, losses, and gains that drive tiger population dynamics
and are critical needs for tiger population management and recovery.

Ideally, the annual surveys should be similar in terms of area sampled, duration,
and other aspects of field implementation. However, as it often happens, as more
equipment and resources become available over the years, the sampled area can be
increased. If such expansion is systematic and takes place from the original “core
area” outward, it is still possible to combine data across the years to obtain some
parameter estimates over the entire period, while some parameters can only be
estimated when the sampled area remains constant (see Karanth et al. 2006, 2011 for
an example). However, many practitioners employ additional resources that become

https://github.com/jaroyle/SCRbayes
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Table 10.3 Estimates of tiger densities at different sites from camera trap surveys using spatial
capture–recapture analyses under closed models

Site Year

Software
package
used for
analyses

Park
boundary
(km2)

Trap
array area
(km2)

Duration
(days) n

bD
�

cSE
�

(/100 km2) bN

Nagarahole-
Wayanad
North, Indiaa

2013 SPACECAP 774 503.8 30 82 11.24 (0.9) 94d

Bandipur-
Wayanad
South, Indiaa

2013 SPACECAP 1178 647.8 30 99 10.30 (0.81) 132d

Bhadra, Indiaa 2013 SPACECAP 492 571.9 30 20 2.31 (0.40) 13d

Dandeli-
Anshi,
Indiaa

2013 SPACECAP 1306 936.0 81 3 0.20 (0.07) 3d

Biligiri
Rangaswamy
Temple, Indiaa

2013 SPACECAP 539.5 351.7 30 52 11.42(1.33) 69d

Rajaji National
Park, Indiab

2004–2005 WinBUGS 148 NA 45 4 3.31(1.51) 8e

2005–2006 WinBUGS 148 NA 45 5 2.67 (0.97) 13e

2006–2007 WinBUGS 148 NA 45 6 5.17 (1.94) 25e

2007–2008 WinBUGS 148 NA 45 6 5.81 (2.26) 28e

The Royal
Belum State
Park,
Malaysiac

2009 secr 1175 �400 90 17 1.95 (0.48) 24f

Temengor
Forest
Reserve,
Malaysiac

2009 secr 1489 �400 90 4 0.61 (0.31) 9f

n: number of individuals photo-captured; bD: estimated density/100 km2; bN: estimated abundance
Sources: aKaranth et al. (2014) and unpublished data; bHarihar et al. (2011); cRayan and Linkie
(2015)
dAbundance estimated by summing pixel densities over park boundary/administrative area
eAbundance estimated as the “number of individuals exposed to the sampling”
fNo details provided on how abundance was estimated and what area it pertains to

available in an ad hoc manner to sample disjunct areas, unthinkingly sacrificing
analytical gains from a more careful study design. Overall, we believe that it is a
better strategy to obtain one set of reliable estimates of tiger population parameters
through data integration and borrowing of information across space and time, as
opposed to scattering resources across multiple areas to conduct surveys with low
inferential strength.

In many open population capture–recapture studies, the probability of observing
a particular tiger capture history is a function of two key sets of parameters: the
probability of capture and the probability of that individual surviving between
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Table 10.4 Results from spatial capture-recapture analyses of the same data-set from a camera
trap survey in Nagarahole – North Wayanad, under different modeling approaches

SCR modeling
approach used

Borchers and
Efford (2008) Dorazio (2013)

Royle et al.
(2014) Royle et al. (2009)

Software used R package secr R, code
provided by RM
Dorazio

JAGS, code
from Royle et
al. (2014)

R package
SPACECAP

State space S (km2) 1125
Administrative area
(km2)

858

Trap array area (km2) 504
No. of trap locations 161
Mean trap spacing (m) 1534
Duration of trapping
(days)

30

Effort (trap days) 4760
No. of individuals
photo-captured n

82

No. of capture events 305 302 305 302
Encounter process
model

Poisson Binomial Poisson Binomial

Detection function Half normal Half normal Half normal Half normal
Baseline capture

probability dg.0/
�

cSE
�

0.026 0.025 (0.002) 0.026 (0.002)a 0.025 (0.002)a

Scale parameter

b	
�

cSE
�

(m)

1843 (37) 1871 (70) 1832 (64) 1877 (70)

Density bD
�

cSE
�

(/ 100 km2)

11.1 (1.2) 11.0 (1.2) 10.9 11.0 (0.7)

bD 95% Confidence
Interval

8.9–13.8 8.7–13.5b 8.9–13.5b 9.6–12.4b

Zero-inflation
parameter b 

�

cSE
�

NA NA NA 0.26

Effectively sampled
area (km2)

929 931 928 931

Abundance within
administrative area
bNadmin

103 102 101 102

Abundance within
state space bNsuper

NA NA NA 124

aBaseline encounter rate �0; b95% Credible Interval
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primary sampling occasions and remaining within the sampled area. This survival is
referred to as “apparent survival” (®), and its complement (1- ®) does not distinguish
between losses due to death and permanent emigration from the sampled area.
As with most closed model estimation, the data for open model analyses are the
capture histories, and maximum likelihood estimates are those parameter values that
maximize the probability of having obtained the observed set of capture histories
(Chap. 9).

The original Cormack–Jolly–Seber (CJS; Cormack 1964, Jolly 1965, Seber
1965) model permits only estimation of apparent survival and capture probabilities,
whereas the Jolly–Seber (JS) model that includes an additional assumption of equal
capture probabilities for tigers that have and have not been previously caught can
estimate abundance and recruitment as well. A major problem with these earlier
models for analyses of tiger capture data is that they produce biased estimates of
abundance in the presence of individual heterogeneity or trap response behavior,
which are sometimes observed. However, trap response does not induce bias in
survival estimators, and heterogeneity produces bias in survival that is relatively
small (see summary in Williams et al. 2002).

In Pollock’s robust design (Pollock 1982, Pollock et al. 1990, Williams et al.
2002), this problem is overcome by integrating the sampling at two temporal
scales: the primary sampling periods separated by years and between which the
population is assumed to be “open” to gains and losses and within each of these
several secondary sampling occasions between which the population is assumed
to be “closed” to gains and losses. Under Pollock’s (1982) original two-step
approach, robust design analyses estimate survival across the years using CJS-
type estimators and abundance each year basically using closed models (Nichols
2005), including those that account for heterogeneity. Thereafter, recruitment into
the tiger population can also be estimated by combining estimates of survival and
time-specific abundance. Kendall et al. (1995) proposed an improved likelihood-
based robust design approach that simultaneously combines data from primary
and secondary samples. Such joint modeling enables borrowing information across
years, potentially reducing the number of model parameters and increasing their
precision (Table 10.5).

As a result of all these advances, even temporary emigration (Kendall and
Nichols 1995, Kendall et al. 1997) and transience (Pradel et al. 1997) can be
estimated and dealt with. We note that “transience probability” can be viewed as
the expected proportion (among all captures of new animals) of tigers that have a
near-zero probability of being recaptured, because of movement out of the study
area. Temporary emigration is likely to be a function of study area size: in open
study areas without hard edges, some individuals may be absent during some of the
primary occasions simply because they are occupying parts of their home ranges
that lie outside the trapped area. Furthermore, improvements in likelihood-based
estimators that can incorporate individual heterogeneity in capture probabilities
(e.g., Pledger 2000, Pledger et al. 2003) have been very important for tiger studies
(see Karanth et al. 2006).

http://dx.doi.org/10.1007/978-981-10-5436-5_9
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Table 10.5 Assessing tiger population dynamics from camera trap surveys under robust design

Site Year t

Time
interval
�t

Abundance

bNt

�

d

SE
�

Annual
survival

b't

�

d

SE
�

Interval
survival

b't
�t
�

d

SE
�

Recruitment

bBt

�

d

SE
�

Mean
annual
growth rate
b
�

�
�

cSE
�

Nagarahole,
India

1991 0.667 9 (0.0) 0.77 (0.051) 0.85 (0.040) – a 1.03 (0.02)b

1992 1.333 7 (2.6) 0.77 (0.051) 0.72 (0.061) – a

1993 0.75 11 (5.5) 0.77 (0.051) 0.83 (0.043) – a

1994 0.917 21 (3.2) 0.77 (0.051) 0.80 (0.048) – a

1995 1.25 12 (0.0) 0.77 (0.051) 0.73 (0.059) – a

1996 1.167 27 (1.4) 0.77 (0.051) 0.75 (0.056) 3 (3.2)
1997 0.583 20 (3.2) 0.77 (0.051) 0.87 (0.037) 0 (3.0)
1998 1.25 17 (1.7) 0.77 (0.051) 0.73 (0.059) 11 (2.8)
1999 1.083 23 (1.7) 0.77 (0.051) 0.77 (0.051) 14 (2.9)
2000 – 30 (2.1) – – –

Huai Kha
Khaeng,
Thailand

2005 1.408 51 (1.85) 0.80 (0.08) 0.73 (0.08) –a 0.99 (0.23)c

2006 1.0438 58 (2.06) 0.80 (0.08) 0.79 (0.08) 0 (5.03)
2007 1.0109 41 (1.32) 0.96 (0.06) 0.95 (0.06) 5 (2.86)
2008 0.9151 43 (1.11) 0.87 (0.05) 0.88 (0.05) 9 (2.67)
2009 1.0822 47 (1.27) 0.59 (0.08) 0.57 (0.08) 17 (4.22)
2010 0.974 44 (1.37) 0.86 (0.05) 0.86 (0.05) 0 (2.70)
2011 1.0192 35 (1.00) 0.90 (0.09) 0.90 (0.09) 24 (3.40)
2012 – 56 (1.37) – – –

aNot estimated due to changes in study area; bestimated for the period 1996–2000; cestimated for
the period 2006–2012

To understand tiger population dynamics fully, several parameters in addition
to abundance are biologically relevant and need to be estimated. These include
survival, losses, recruitment, temporary emigration (probability of a tiger not being
present during some of the primary sampling periods), and transience (probability
of a dispersing individual just passing through). Of course, the key “nuisance
parameter” of detection probability must necessarily be estimated. Program MARK
offers a large suite of flexible models, including most of those mentioned above, and
they can be used under a robust design analysis of secondary samples derived from
closed CR models.

Bayesian models for spatial capture–recapture analyses of data from demograph-
ically open populations have been developed recently (Gardner et al. 2010, Chandler
and Clark 2014, Ergon and Gardner 2014, Raabe et al. 2014, Schaub and Royle
2014, Whittington and Sawaya 2015) and are undergoing refinements. These will,
in the future, enable analyses under a fully Bayesian approach to explore tiger
population dynamics.
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10.4.5 Understanding and Using Capture–Recapture Analyses

Analyses of tiger capture–recapture data under various closed and open CR models
covered here and in Chap. 9 rely on a variety of fairly complex models implemented
in different software options available. They generate analytical outputs and results
that are also fairly complex and use a variety of notations. These analytical options
are not always well understood by practitioners, who often simply choose default
options offered in the software. In the Appendix, we provide brief definitions and
descriptions of notation used in the Dorazio (2013) modeling approach.

10.5 Conclusion

We note that in spite of all the advanced tools for surveying tiger popula-
tions that are available and massive investments by conservation agencies, there
have been only two rigorous capture–recapture studies of long-term population
dynamics of tiger populations. In India, Karanth et al. (2006, 2011) combined
conventional closed model and open models analyses in a likelihood-based, robust
design analysis. Another study in Thailand combined Bayesian SCR closed-
population analyses with a likelihood-based open model analysis of primary
samples (Duangchantrasiri et al. 2016). Table 10.5 summarizes results of these
two studies, which clearly demonstrate the power and utility of rigorous capture–
recapture modeling approaches. We hope these examples will encourage tiger
conservation practitioners to more widely adopt rigorous SCR and Robust Design
methods presented here for monitoring tiger populations. Regardless of the type of
analysis employed, we emphasize that careful thought and planning are critical to
reliable assessments of tiger population dynamics.

http://dx.doi.org/10.1007/978-981-10-5436-5_9
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Appendix

Example: Spatial Capture-Recapture Analysis Based
on the Approach Developed by Dorazio (2013)

A. Notation Used
Parameters in the output:

n0: Number of undetected individuals in the state space
	 : Scale parameter (m)
˛1: Logarithm of baseline encounter probability
ˇ1: Logarithm of density

Real parameters to be reported, with calculation:

N D n0 C n: Total number of individuals within the state space
p0 D e˛1 : Maximum probability of capture (when trap and activity center coincide)
� D eˇ1 : Density (/100km2)

B. Input Files
– GIS shapefiles for tiger habitat within state space (shown mapped in a GIS along

with trap array below)
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Captures File
The matrix is of dimension n � j where n is the number of captured individuals and
j is the number of trap locations. Each element of the matrix specifies the number of
captures of each individual in each trap location.

– Trap file, with deployment matrix

The first three columns are the trap location ID and the X and Y coordinates in
UTM projection. The remaining columns indicate whether a trap location was active
(1) or not (0) in each sampling occasion.

– R script file, showing a part of the MCMC algorithm
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C. Output Files
– Density and abundance maps
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– Markov chain (mc.csv), with iterations in rows and parameters in columns

– Summary files, showing posterior mean, median, and 95% credible intervals for
parameters of interest
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Mean 50% 2.50% 97.50%

n0 42.236 42 27 60
sigma 1.871 1.869 1.741 2.016
alpha1 �3.688 �3.686 �3.869 �3.512
beta1 �2.216 �2.215 �2.439 �2.005

– Summary of Markov chain standard error (MCSE); this indicates how many
significant digits can be considered in summaries of the posterior distributions

Mean 50% 2.50% 97.50%

n0 0.1265 0.14 0.1804 0.3089
sigma 0.0013 0.0014 0.0018 0.0028
alpha1 0.0014 0.0017 0.0023 0.0025
beta1 0.0016 0.0018 0.0036 0.0028

– Plotting posterior distribution of model parameters: descriptions of parameters
given above
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11Concepts and Practices: Assessing
Tiger Population Dynamics Using
Genetic Captures

Samrat Mondol, Uma Ramakrishnan, Olutolani Smith,
and Devcharan Jathanna

11.1 Introduction

Capture–recapture (CR) models (Chap. 9) represent a powerful suite of approaches
for estimating animal population parameters such as abundance, density, survival,
population growth rate, among others. What makes CR particularly useful is the
ability to define “captures” broadly. Capture–recapture sampling may entail phys-
ical capture and tagging of animals; “photo-capturing” animals with individually
identifiable markings using camera trap surveys; searching a defined area of interest
with handheld cameras to photo-capture individually identifiable animals; obtaining
“captures” of individuals from deoxyribonucleic acid (DNA) samples collected
using fixed hair snares; or obtaining DNA from noninvasive samples such as scats
encountered by searching along forest trails and roads. Noninvasive genetic CR
surveys are particularly useful for monitoring tiger populations in situations and
sites where camera trap surveys (Chap. 10) are not feasible due to lack of access,
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equipment, or risk of damage or theft of camera traps. Potential disadvantages of
DNA-based CR include the requirement for a specialized, well-equipped laboratory
and skilled geneticists for DNA extraction, amplification, genotyping, and identi-
fication of individuals, as well as the requirement for capture–recapture models
that account for genetic misidentification, which typically have lower precision
due to uncertainties induced by such misidentification. While noninvasive DNA-
based individual identification has previously been used to derive the minimum
number alive in wild tiger populations (Wasser et al. 1997; Bhagavatula and Singh
2006), when used in conjunction with capture–recapture modeling, it can be used
to reliably estimate population parameters, as shown using conventional CR (e.g.,
Mondol et al. 2009) or SCR (e.g. Gopalaswamy et al. 2012a) approaches.

However, errors in DNA-based individual identification can cause substantial
bias in estimates of abundance, density, and other population parameters (Lukacs
and Burnham 2005a) and need to be addressed either through laboratory protocols
to screen samples that may be subject to erroneous identification or by incorporating
the misidentification process—and the consequent “ghost” individuals created—in
subsequent statistical modeling. It is also important to carefully consider key factors
affecting the observation process (i.e., survey design, field survey protocols) that
generate the genetic capture data (see Chaps. 9 and 10).

Estimation based on genetic captures requires multilocus (locus, the position of a
gene on a chromosome) genotype data from genetic markers such as microsatellite
or single nucleotide polymorphism (SNP) panels for unambiguous identification of
individual animals (Taberlet and Luikart 1999, Broquet et al. 2007). This chapter
deals with the details of genetic-based individual identification in the context of
capture–recapture modeling and estimation of tiger populations.

11.2 Field Collection and Storage of Fecal DNA

In this section, we focus on field and laboratory protocols necessary to provide
capture data amenable to reliable tiger population estimation using the methods
described in Chap. 9.

11.2.1 Sources of Noninvasive DNA in the Field

For any monitoring program based on genetic samples, one would ideally prefer
to use biological samples such as blood or tissue, which yield sufficient, high-
quality molecular data. However, for endangered and elusive species such as tigers,
it is not possible (or desirable) to capture and draw blood/tissue samples from
dozens of individuals at the large spatial scales necessary for meaningful estimation
of population parameters. Noninvasive sources of DNA are clearly required and,
in conjunction with appropriate survey designs, field protocols, and analytical

http://dx.doi.org/10.1007/978-981-10-5436-5_9
http://dx.doi.org/10.1007/978-981-10-5436-5_10
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frameworks, can permit long-term studies of tiger population dynamics. Here we
examine advantages and disadvantages of different noninvasive sources of DNA for
monitoring wild tiger populations:

1. Feces: Tiger feces (scats) are the most widely used biological material for DNA
extraction across tiger range. The use of fecal DNA in capture–recapture-based
monitoring of other wildlife populations has been a standard practice for over
two decades, including a number of studies of tigers (e.g., Mondol et al. 2009,
Gopalaswamy et al. 2012a, Sugimoto et al. 2012). Fecal samples, however,
contain a mixture of DNA from the focal animal (tiger), prey species consumed,
and gut microbes, as well as other bacterial, fungal, and environmental DNA. The
host DNA comes from intestinal gut cells that are sloughed off while the scat is
passing through the digestive system and is generally concentrated on the surface
of the scat, particularly at the tip, and in areas of the scat covered with mucus.
The advantages of using fecal DNA include relative ease of sample collection
and potentially large sample size and extensive area coverage in a short time.
Disadvantages include poor quality and quantity of DNA in scats (particularly in
old samples) and problems of safe collection, storage, and shipping in tropical,
humid environments. Despite these shortcomings, scat samples are often the most
suitable DNA source for noninvasive tiger population monitoring.

2. Urine and scent marks: Urine is known to be a good source of DNA from wild
animals (Valiere and Taberlet 2000, Inoue et al. 2007). Tigers additionally spray
scent from the anal gland, mixed with urine, on boles of trees and leaves of
bushes along their trails as a means of olfactory communication (see Chap. 2).
These scent marks can be detected easily due to their unique smell. Although
only validated with captive tigers, Caragiulo et al. (2015) show that DNA derived
from tiger scent is as good as DNA derived from scats. However, there has been
no study of the potential of urine or scent-derived DNA for genetic studies of wild
tiger populations. Population estimation may also prove to be difficult based on
such samples, which would only be obtained opportunistically and infrequently.

3. Hair: Shed or extracted body hair is another common source of noninvasively
obtained DNA in wildlife genetics studies. DNA is obtained only from the hair
roots and has been extracted from plucked hairs obtained using hair snares (e.g.,
Gardner et al. 2010) or naturally shed hair (e.g., Morin and Woodruff 1992) in
mammal species. While hair samples have been used for individual identification
of captive tigers and species identification in forensic cases, no study of tigers has
been conducted to date using DNA derived from hair samples collected in the
field. It may also be possible to collect tiger hair from scratch trees, kills of prey,
and resting sites. However, as with scent and urine samples, such opportunistic
samples may not meet data requirements for rigorous population estimation.
Potential problems with hair samples include poor quantity and quality of DNA
and contamination (e.g., if multiple individual tigers use the same scratch trees).

http://dx.doi.org/10.1007/978-981-10-5436-5_2
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Table 11.1 Example field
data form for fecal DNA
sample collection in the field

Scat collection field data form

Sample ID: Date:
Collection time: Geographical location:
Strata: Condition:
Scat diameter: Remarks:
Collector: GPS location:

11.2.2 Field Collection and Storage of Samples

Appropriate DNA sample collection media and protocols are areas of active research
in noninvasive wildlife genetics. As discussed earlier, DNA from fecal samples is
present mostly on the top layer of the scat, originating from the outer layer of the
intestine’s inner walls. As soon as these sloughed-off cells leave the host’s body,
degradation of DNA begins, resulting in poor quality and quantity of host DNA in
old fecal samples. This degradation process is accelerated by exposure to sunlight,
humidity, and rain. These environmental degradation processes make appropriate
sampling and storage in the field a critical consideration.

A number of different approaches have been used for fecal sample collection
including simple drying, use of silica gel, ethanol, TNE buffer, RNAlater (for
DNA stability), and a number of commercially available preservatives (DNA/RNA
Shield, Norgen Biotek stool sampling tubes). Appendix 1 outlines protocols for
the commonly used simple drying and ethanol collection protocols for fecal DNA
samples. A sample data collection form is given in Table 11.1.

Sample Storage Appropriate storage of field DNA samples is critical to retain
adequate quantity and quality of DNA prior to transportation to the laboratory
but may need resources which may not always be readily available in field
camps. Prolonged exposure to sun, humidity, or high temperatures increases DNA
degradation rate. Irrespective of the field sample collection approach, scat samples
should ideally be refrigerated, which requires a continuous electricity source. If
continuous refrigeration is not available, the next best option is to air-dry the
samples in dark, dry conditions, followed by refrigeration in the laboratory. Samples
collected in ethanol or TNE can be stored at room temperature until they are
transferred to the laboratory refrigerator.

11.3 Laboratory Protocols for Noninvasive Genetic Samples

We describe each of the steps outlined in Fig. 11.1 in detail below:

DNA Extraction In the laboratory, DNA extraction protocols will vary depending
on the sample collection method and medium (e.g., samples collected dry or in
a liquid). For samples collected in any liquid medium (ethanol, TNE buffer, or
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Plate 11.1 Standard work
flow in the laboratory for
tiger population estimation
from fecal samples

RNAlater), the top layer should be scraped with a spatula into a tube for DNA
extraction. With dry samples, the top layer can either be swabbed or scraped for
subsequent processing. DNA extraction can be done with commercially available
“Stool DNA Extraction Kits” or by using modified and validated protocols with
standard tissue DNA kits. Processing a negative control along with samples is
important in detecting potential contamination. Detailed protocols for different
extraction methods can be found in Appendix 2.

Species Identification Distinguishing carnivore species based on signs such as
tracks or on fecal morphology (size, shape, scent, and dietary contents) poses
significant challenges (Zuercher et al. 2003; Prugh and Ritland 2005) and can be
error-prone in areas with multiple similar-sized, co-occurring species (Davison et al.
2002; Fernandes et al. 2008). More accurate and reproducible DNA-based species
identification has become a preferred alternative (Beja-Pereira et al. 2009; Goossens
and Bruford 2009) and is being increasingly used to study rare, threatened, and cryp-
tic populations. Species identification is an important first step to exclude samples
from nontarget species prior to individual identification (Paetkau 2003) in genetic
(S)CR studies, or it can be used to confirm species identity for occupancy modeling
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(Chaps. 4 and 5). For tigers, a number of different mitochondrial DNA (mtDNA)-
based molecular approaches have been used for species identification (Mukherjee
et al. 2007, Mondol et al. 2015). Broadly, species identification is carried out by
amplifying specific regions of the mitochondrial DNA using a polymerase chain
reaction (PCR), which produces multiple copies of the target regions, selected based
on their utility for distinguishing between species. Alternatively, regions of mtDNA
can be sequenced and species identity assigned based on comparisons with known
sequences saved in publicly available databases (e.g., NCBI).

Individual Identification Individual identification from DNA requires a set of
genetic markers that, taken together, differ for every individual of a species. For
example, in photographic identification of tigers or thumb imprint-based identi-
fication of humans, the patterns differ in every individual. Similarly, in genetic
approaches we use a set of biological markers that can provide unambiguous
individual identification. “Microsatellites” (Fig. 11.2), the biomarkers most widely
used for mammalian individual identification, are small repetitive fragments of
nuclear DNA found across the mammalian genome, with alleles characterized by
the number of repeats. They are neutral (not subject to natural selection), and
high mutation rates make them highly polymorphic, which is particularly important
for individual identification. Microsatellites have additional advantages, including
the facts that they are codominant (both alleles are detectable), abundant (found
in every mammal examined to date), distributed across the genome, and that the
same loci may be present in closely related species (allowing markers identified for
one species to be used for other related species). Among disadvantages, laboratory
protocols may generate erroneous genotypes (see Sources of error and types of
genetic misidentification below), scoring loci involves some degree of subjectivity,
and laboratory protocols are extremely time-consuming and expensive. In this
section we will try to provide a detailed understanding of the use of microsatellite
markers in individual identification of tigers (see Bhagavatula and Singh 2006,
Mondol et al. 2009, 2015 for further information).

Plate 11.2 Basic illustration of microsatellite markers

http://dx.doi.org/10.1007/978-981-10-5436-5_4
http://dx.doi.org/10.1007/978-981-10-5436-5_5
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1. Selection, Testing, and Validation of Microsatellites

The best practices in selecting a set of polymorphic microsatellite markers are
described by Mondol et al. (2009). Some important points include:

– Standardization and validation of microsatellites requires good quality samples
such as blood or tissue, which may be obtainable from captive tigers.

– A large number of microsatellites should be assessed at the outset, from which
the geneticist selects the best panel, based on polymorphic information content
and expected heterozygosity (i.e., low PID; see below). As different microsatellite
markers are polymorphic in different parts of the tiger’s range, selection of the
optimal panel should be based on tissue samples from captive individuals that
are genetically similar to the target population of interest.

Selection of an optimal panel of loci for microsatellite-based individual iden-
tification (to be used in subsequent (S)CR analyses) requires a trade-off between
(a) selecting a larger number of loci with higher power to distinguish individuals
(which means that amplification may fail at one or more loci for more samples,
which need to be discarded) and (b) selecting a smaller number of loci with
lower power to distinguish individuals (PID; see Sources of error and types of
genetic misidentification below) but which are likely to be amplified in a larger
number of samples. While statistical power to distinguish different individuals
cannot be compromised, a large number of captures (and recaptures, including
spatial recaptures) are nonetheless required for reliably fitting statistical models to
the capture data. Similarly, ghost identities (described below) are more likely to
occur in panels with larger numbers of loci. Empirical work shows that optimal
panels consist of a small set (�8–12) of highly polymorphic microsatellites, where
all alleles are well characterized.

– After setting the final panel of polymorphic markers and standardizing it with
captive tiger samples, the panel should be tested using field-collected wild tiger
scat samples.

– Identifying individual tigers from fecal sample extracts is done by amplifying the
selected microsatellites using primers during a PCR. Gel electrophoresis is then
carried out on the PCR product, where the amplified DNA fragments separate
based on length, forming distinct bands on the gel. A molecular weight size
marker, containing DNA fragments of known size and run as one of the samples
on the gel, helps determine the DNA lengths corresponding to each band. It is
important that no bands are observed for the negative control included in each
gel, to ensure no contamination of samples. A genotyping machine with greater
power to resolve small differences in fragment lengths is used to accurately
determine fragment lengths (Fig. 11.3), which are then “scored” by a geneticist
and recorded as the observed genotype.

– In most noninvasive studies, the variability in DNA quality and quantity is
very large across samples, producing genotype information of varying quality.



232 S. Mondol et al.

Plate 11.3 Example microsatellite panel and individual identification using microsatellite mark-
ers

To eliminate genotyping errors, it is necessary to amplify and genotype each
locus multiple times from each sample and only use samples (in subsequent
statistical analyses) in which some specified minimum consensus is obtained
across multiple instances of genotyping. This procedure, known as the multiple
tube approach (Navidi et al. 1992, Tablerlet et al. 1996), has been widely used
in noninvasive wildlife research. For example, Mondol et al. (2009, 2013, 2015)
showed that four independent amplifications of each locus from each sample,
followed by screening for at least three identical genotypes from these four
repetitions, result in reliable individual identification. Another approach is to use
a modeling framework that incorporates the possibility of genotyping error. The
added cost here is reduced precision of estimates.

– During all testing steps, estimates of genotyping error need to be calculated.
Genotyping errors mainly occur during PCR amplification from poor quality and
quantity DNA sources, such as scat, hair, urine, or scent samples. Any locus with
high genotyping error rate should be removed from the panel. Unfortunately,
genotyping errors are sometimes difficult to compute without some notion of
“truth,” often unavailable in field studies.

2. Identifying Recaptures

Once the panel of microsatellite loci is amplified from all field-collected scat
samples, the genotypes derived from the samples are compared to identify samples
with identical genotypes at the selected loci. This can be performed by software
program CERVUS (Marshall et al. 1998). Samples are considered to belong to
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the same individuals if they have identical genotypes at the selected loci. Because
samples are referenced in space and time, these captures can then be used to create
input data for conventional or spatial capture–recapture analyses, in the appropriate
format (see Chaps. 9 and 10).

11.4 Novel Approaches to Identifying Individuals

The last decade has witnessed unprecedented changes in DNA sequencing tech-
nologies. These technological changes have allowed us to sequence genomes faster
and cheaper than ever before (Schuster 2008). The ability to sequence genomes
also allows us to better understand individuals, populations, and even species.
Genome-wide data have tremendous application in conservation (e.g., Steiner et
al. 2013, Allendorf et al. 2010), including investigating connectivity, identifying
individuals, quantifying inbreeding, and disease susceptibility (Steiner et al. 2013)
in populations of endangered species. The tiger genome was sequenced a few years
ago (Cho et al. 2013), allowing us to understand more about tiger genetic variability
but also providing the initial framework to develop tools for tiger conservation.

Careful analyses of genome-level data reveal that the most common polymorphic
DNA markers (more polymorphic markers improve statistical power to distinguish
individuals) are single nucleotide polymorphisms (SNPs). These are single base
mutations, which makes scoring them easy and the data on individuals more reliable.
SNPs can also be used for individual identification. Typing of 10,000 SNPs in
several Indian tigers (Natesh et al., in revision) reveals that some combinations
of SNPs can be more powerful than microsatellites at identifying individuals
(Fig. 11.4).
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Based on comparisons to Mondol et al. (2009), 20 SNPs have the same power to
discriminate individuals as 30 microsatellites, and 96 SNPs make an identification
error once in 1016 individuals, even if they were all siblings! Future methods
for conservation genetics of tigers are sure to be based on SNP data. This is
particularly true if we wish to develop a common, range-wide set of genetic markers
for tigers. Tigers have a very large geographic range, and different microsatellite
markers are polymorphic in different locations. This would necessitate a large set
of microsatellite markers if we wish to develop a pan-range common individual
identification protocol. Unfortunately, there is a trade-off between the number
of loci and error (see Mondol et al. 2009). This would make it difficult to use
a large set of microsatellite markers reliably. SNP markers are less prone to
genotyping error, and so in the future, it may be possible to develop a large panel of
common SNP markers that could be used to individually identify tigers across their
range.

11.5 Identification of Sex from DNA and Use in (S)CR Modeling

In addition to allowing identification of species and individuals, DNA (including
from noninvasive sources) also allows determination of sex. Incorporating gender in
(S)CR modeling helps account for heterogeneity in detection parameters between
genders (e.g., Sollmann et al. 2011), investigate intersex differences in vital rates
(e.g., Lebreton et al. 1992, Horak and Lebreton 1998), and estimate gender ratios in
addition to population state variables such as abundance or density (e.g., Broekhuis
and Gopalaswamy 2016, Elliot and Gopalaswamy 2016). When sex is identified
from fecal DNA for carnivores such as tigers, care is needed to ensure that sex
identification primers do not amplify prey DNA (Waits 2004).

11.6 Sources of Error and Types of Genetic Misidentification

There is a substantial amount of literature on sources of error in genetic identi-
fication of individuals, particularly based on noninvasive samples. Taberlet et al.
(1999), Paetkau (2003), Pompanon et al. (2005), Lukacs and Burnham (2005a),
Waits (2005), Waits and Paetkau (2005), and Broquet et al. (2007) review a number
of laboratory procedures and protocols, discuss sources and consequences of
error, and make recommendations for detecting and avoiding such errors. Broadly,
errors in genetic identification of individuals from noninvasive samples may occur
due to:

1. Amplification failure, where the PCR fails to produce copies of the required
part of the genome. As (S)CR models explicitly account for imperfect capture
probability, this is fully accounted for in analyses using these models but may
reduce the number of captures or individuals included in the analyses.
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2. Allelic dropout, where one allele at a locus fails to amplify, causing a sample
that is heterozygous at a particular locus to appear homozygous. One way of
addressing this is by repeating the genotyping multiple times and obtaining
consensus in the observed genotypes (e.g., obtaining the same results at least
three out of four times). An alternative is to incorporate this probability of
misclassification/error directly into the modeling.

3. False alleles could be caused by mutation early in the PCR that gives rise to
spurious alleles. These arise relatively rarely and could also be addressed by
obtaining consensus in multiple genotyping of the same PCR sample.

4. The shadow effect is when different individuals share the same alleles over a
panel of loci. This problem can be overcome by using a set of microsatellite loci
with high power to resolve individuals, which entails selection of polymorphic
loci and increasing the number of loci considered, thereby decreasing the
probability that two different individuals share the same alleles at those loci (also
known as probability of identity, PID), often assessed conservatively assuming
that the two individuals are siblings (PID(sibs)).

Ultimately, these different types of genotyping error lead to either loss of
sample(s) from analysis (i above), creation of “ghost” individuals (ii and iii above),
or incorrectly inferring that two different individuals are the same due to the shadow
effect (iv above). If undetected ghost individuals persist into statistical analyses,
the number of individuals captured M is inflated. Additionally, ghost individuals
are captured only once, leading to false capture histories containing only a single
capture each time a misidentification occurs, while the capture histories of the
true individuals have additional zeroes introduced each time a misidentification
occurs. This leads to underestimation of overall detection probability p*. Using the
canonical estimator (Chap. 3), which forms the basis for all population estimation
models covered in this volume, abundance is estimated as bN D M=p�, where bN
is estimated abundance, M is the total number of individuals captured, and p*
is the probability that an animal is captured at least once. When M is inflated
and p* is underestimated, the ratio M/p* is severely overestimated (Lukacs and
Burnham 2005a). Therefore, it is critical to ensure that genotyping errors do
not vitiate subsequent analyses, either by screening samples and including only
those determined to be error-free (e.g., through consensus in the multiple tubes
approach) or by adopting a modeling framework that explicitly accounts for genetic
misidentification.

11.7 Capture–Recapture Models Dealing with Genetic
Misidentification

Lukacs and Burnham (2005b) developed a model that estimates the probability
that a genotype is identified correctly when observed for the first time, based on
the disproportionate number of individuals captured only once. Link et al. (2010)
later developed a modeling framework that dispenses with some of the restrictive

http://dx.doi.org/10.1007/978-981-10-5436-5_3
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assumptions in the Lukacs and Burnham (2005b) formulation, and the treatment by
Yoshizaki et al. (2011) better dealt with “ghost” individuals created by genotyping
errors, and reduced bias in estimates, particularly as genotyping error rates increase.
All these methods assume that ghost individuals are never recaptured, since the
probability of observing the same DNA sequence by error is very low (Link et al.
2010). Miller et al. (2005) developed a model that utilizes multiple recaptures of an
individual’s DNA within sampling occasions, but their approach assumes no errors
in genetic identification.

There has been no attempt to address genetic misidentification within an SCR
framework. As pointed out by Royle et al. (2014), SCR models explicitly include
the locations of individual animals and captures, and this should help substantially
resolve uncertainties due to misidentification. Augustine et al. (2016) developed an
SCR model that addresses the partial identity problem (e.g., when we obtain only
left flank or only right flank photo-captures for some individuals in a camera trap
study and are unable to determine if and which of these single flank captures belong
to the same individual) based on locations of captures, and a similar perspective
should help in the context of genetic misidentification.

11.8 Types of Genetic Surveys and Corresponding Analytical
Frameworks

Surveys for fecal or other types of DNA samples could be conducted using
various survey designs and field protocols, and the modeling approach used for
estimation should be carefully selected based on how well it describes the particular
observation processes.

11.8.1 Nonspatial CR

An example of nonspatial CR estimation of tiger abundance based on fecal DNA-
based identification is by Mondol et al. (2009), who carried out a study in which
tiger scats were sampled in Bandipur Tiger Reserve, Karnataka, India. The study
area contained 18 scat search routes designed to cover the entire 671 km2 study
area with no “holes” where a tiger could move around and not be exposed to the
sampling. The field teams searched the routes sequentially, covering the entire study
area over a period of 7 days, and this was repeated over six such weekly sampling
occasions. These surveys yielded data for standard nonspatial CR analyses, with
weekly sampling occasions (scats collected on days 1–7 were assigned to sampling
occasion 1, scats collected on days 8–14 to sampling occasion 2, and so on). This
design ensured full spatial coverage of the study area in each sampling occasion and
a survey duration (42 days) that was sufficiently short to ensure population closure.
The data were analyzed using the Mh Jackknife estimator in program CAPTURE
and yielded abundance estimates that were very similar to estimates derived from
camera trap surveys conducted 15 weeks earlier in the same study area.
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11.8.2 Spatial CR

As described in Chap. 9, SCR approaches incorporate the spatial locations of
captures and the spatio-temporal schedule of effort (e.g., where and when camera
traps were deployed) in the analysis, in addition to information on which individual
was captured on which sampling occasion. In surveys for fecal DNA, scat samples
are typically found along search routes, unlike camera trap surveys in which
detections of animals can only occur at fixed camera trap locations. Several options
are available to incorporate these elements of the observation process in the
modeling, as described below:

1. Areal searches, polygon detector models: When searches (e.g., for scat samples)
are conducted with uniform sampling intensity and encounter probability across
a defined polygon of interest, the approaches developed by Royle and Young
(2008) and Efford (2011) may be appropriate. The formulation by Royle and
Young (2008) is implemented in a Bayesian framework and can be analyzed
using software program WinBUGS (Gilks et al. 1994) by modifying the code
provided in the paper. Efford’s (2011) approach uses maximum likelihood
estimation and is implemented in the R package secr (Efford 2016).

2. Detections at fixed, discrete sampling stations: When “captures” of DNA sam-
ples occur at an array of point locations, such as hair snares (hair snags), standard
SCR analyses used for camera trap data can be applied. SCR models (see Chap.
9 for a fuller description) include (i) an observation component describing the
capture data conditional on the activity centers (including an encounter process
model that specifies the type of data obtained at each trap and a detection function
describing the decline in capture probability with increasing distance between
trap and individual activity center) and (ii) the process component describing the
number and distribution of activity centers within a defined state space (see Royle
et al. 2014, Chap. 9). The Bernoulli encounter process model should be used for
hair snare surveys (individual encountered or not at a trap during a sampling
occasion, rather than 0,1,2,3 : : : encounters), as it is not possible to separately
identify multiple visits to a trap within a sampling occasion (Gardner et al.
2010, Royle et al. 2014). Such analyses can be implemented using R packages
SPACECAP (Gopalaswamy et al. 2012b), scrBayes (https://github.com/jaroyle/
SCRbayes), or secr (Efford 2016) and require careful preparation of a captures
file (specifying which individual was captured on which sampling occasion at
which location), a traps file (with locations of each trap and information on which
traps were active on which sampling occasions), and a state-space file (defining
a large state space of interest encompassing the trap array, with non-habitat areas
clipped out; see Chap. 10 and its Appendix for details).

3. Detections from search paths, hazard to encounter: When searches are carried
out along predetermined search routes, and “captures” of DNA samples occur at
different distances from this route, the observation component of the SCR model
should additionally describe the locations of individuals (or scats) conditional on
their activity centers, in addition to components that model the data conditional

http://dx.doi.org/10.1007/978-981-10-5436-5_9
http://dx.doi.org/10.1007/978-981-10-5436-5_9
http://dx.doi.org/10.1007/978-981-10-5436-5_9
https://github.com/jaroyle/SCRbayes
https://github.com/jaroyle/SCRbayes
http://dx.doi.org/10.1007/978-981-10-5436-5_10
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on the locations and the process component describing the number and locations
of activity centers (Royle et al. 2011, 2014). Such an approach may be useful if
searches are carried out along fixed routes using scat detection dogs which can
detect scats deposited some distance away from these routes. Analysis using this
approach may be carried out by modifying the R and WinBUGS code provided
by Royle et al. (2011, 2014).

4. Detections on search paths, segments as detectors: When searches for DNA
samples such as scat are carried out along routes, and “captures” occur on the
route, one may break the route up into a series of short segments and treat the
midpoint of each segment as a fixed detector. The segments should be short
enough that one retains adequate resolution in spatial locations of captures of
individuals. An example of this approach can be seen in Gopalaswamy et al.
(2012a). Analyses using this approximation can be implemented using standard
SCR software such as R packages SPACECAP (Gopalaswamy et al. 2012b),
scrBayes (https://github.com/jaroyle/SCRbayes), and secr (Efford 2016); the
latter contains functions to discretize search paths into detectors.

5. Detections on search paths, grid cells as detectors: Similar to the approach
described above, searches carried out along routes can be overlaid on a raster
layer of pixels (grid cells) covering the area of interest, with the center point
of each pixel treated as a “trap.” Because captures are more likely in pixels
that receive greater search effort, the length of the search route within each
pixel (on the log scale) can be used as a covariate for baseline encounter
probability, which is set D 0 for pixels that are not searched. Similarly, captures
of DNA samples are referenced with respect to the pixels in which they are
encountered. Pixel size needs to be small enough to retain spatial resolution
in (re)capture data but large enough that detections do not occur across pixels
(Royle et al. 2014) and could potentially be the same grid system used to define
the state space. This approach has been used for unstructured spatial surveys,
with “captures” obtained using biopsy darts from mountain lions treed by dogs
(Russell et al. 2012), from fisher scats detected by dogs (Thompson et al. 2012),
or photographic captures of cheetahs (Broekhuis and Gopalaswamy 2016) and
lions (Elliot and Gopalaswamy 2016) by field survey teams searching along
routes within the area of interest. The analyses can be carried out using R
packages scrBayes (https://github.com/jaroyle/SCRbayes) or secr (Efford 2016).

Of the different designs—and corresponding analytical approaches—described
above (see Fig. 11.5), polygon searches (approach 1 above) are unlikely to be
useful for fecal DNA surveys of tigers and other large carnivores, particularly
since it is difficult to apply uniform search effort at the spatial scales required to
sample tiger populations. To our knowledge, hair snare surveys (2 above) have not
been attempted for tigers anywhere across their distributional range. The hazard to
encounter approach (3 above) may be used if searches are carried out along routes
and scats or other DNA samples are detected at different distances from the search
path. Alternatively, in such a situation, one may rasterize the area of interest and

https://github.com/jaroyle/SCRbayes
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Plate 11.5 Schematic representation of different DNA-based SCR survey designs

treat centers of grid cells as “traps” (5 above). For the most common situation
where surveys (e.g., for scat samples) are carried out by searching forest trails and
detections occur on (not away from) these routes, midpoints of segments along these
routes may be treated as traps (approach 4 above).

11.9 Summary and Conclusion

Noninvasive fecal DNA surveys, in conjunction with CR (particularly SCR) mod-
eling, can be an important tool in monitoring and studying tiger populations, par-
ticularly where camera trap surveys cannot be used. Genetic CR surveys, however,
require substantial resources including laboratory facilities, reagents, and trained
geneticists. Protocols for field sample collection, storage, DNA extraction, species
identification, and individual identification have by now been well established and
need to be followed very strictly—both in the field and in the laboratory—to
minimize errors from contamination, DNA degradation, amplification failure, allelic
dropout, false alleles, or shadow effects. However, such errors cannot be eliminated
completely and can seriously bias estimates of population parameters such as
abundance, density, or survival. Genetic misidentification needs to be addressed
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through strict screening of samples or through the use of CR models that incorporate
the various ways genetic misidentification may have affected the dataset in hand.
The modeling framework used should also reasonably describe the sampling and
ecological realities, particularly in the case of SCR, where captures are not collapsed
across space. Recent developments in the use of SNPs may allow biologists to
identify a large panel of common SNP markers that could be used to individually
identify tigers across their range.

Overall, the approaches based on identifying individual tigers offer an alterna-
tive, sometimes highly relevant, approach to understanding tiger dynamics using
capture–recapture methods outlined in Chap. 9. This is particularly so in many
contexts where deployment of cameras is challenging or additional data is needed on
sex, reproductive status, relatedness among individuals, or to answer biogeographic
and evolutionary questions.

Appendices

Appendix 1: Field Collection Protocols

(a) Simple Drying

Requirements:

1. GPS
2. Butter paper
3. Plastic gloves
4. Ziploc bags (small and large)

5. Writing pad
6. Permanent marker
7. Pen

1. Collect fresh/relatively fresh scats in the field. If large numbers of samples are
available, then it is better to collect samples that are less than 3–4 days old.
However, in low-density areas, collect all available samples.

2. Use a fresh pair of gloves for each sample and place the sample in butter paper.
3. Put the sample in a large Ziploc bag.
4. Record the following details in a preformatted datasheet:

(i) Date of collection
(ii) Putative species

(iii) Sample age (old/fresh)
(iv) Latitude, longitude (from GPS unit)
(v) Location, beat, range, PA (all if possible)

(vi) Collector name and contact details

5. Place the datasheet inside another large Ziploc along with the Ziploc containing
the scat sample. Label both Ziploc bags with sample ID (in standard format)
using a permanent marker and record sample ID and other details in a notebook.

http://dx.doi.org/10.1007/978-981-10-5436-5_9
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(b) Ethanol Collection

Requirements:

1. GPS
2. Scat collection vial
3. Sterile plastic spoon
4. Ethanol (100%)
5. Plastic gloves

6. Ziploc bags (small and large)
7. Writing pad
8. Permanent marker
9. Pen

10. Sticker labels

1. Wear fresh gloves before collecting each scat.
2. Open the ethanol-filled sample collection vial.
3. Use the spoon to scoop the sample into the collection vial. If the scat is fresh

and it is easy to distinguish the top layer, please collect from there. If not collect
from both the upper and lower parts of the scat. Where possible, collect the tip
that emerges last during defecation.

4. Please collect as much of the scat as possible in a single vial. For fresh scats
try to collect as much of the top layer as possible. If needed, use more than one
vial.

5. After scat collection, record sample number, date, collection area, and your
name on the vial.

6. Tightly close the vial, ensuring that the alcohol does not leak. Place the vial in
a Ziploc bag and seal it. Write the sample number and the GPS location on this
zip lock bag with the marker or pencil (pencil marks stay even if the alcohol
leaks).

7. Please fill the collection sheet, including sample number, age of the scat (fresh,
old), diameter, GPS location, collector name and contact information, and any
other relevant remarks.

8. Place the collection sheet inside an outer Ziploc bag.
9. Place both bags in a third, bigger Ziploc bag, to ensure that even if leakage

occurs, the alcohol does not erase the sample information. Write just the sample
number on this bag.

10. Discard the spoon and the gloves in a bag or container.
11. Always use a new collection kit for every new sample, even if you think two

scats are from the same individual, to eliminate cross-sample contamination.

Appendix 2: DNA Extraction Protocols for Scat Samples

(a) Dry Samples: Swabbing Extraction

1. Label two 2 ml microfuge tubes for each field sample with lab ID. Include one
negative control for every 11 tubes.

2. Swab each scat with a sterile cotton swab applicator, after soaking in 1X PBS
solution for �10 seconds. Try to swab the entire surface of the scat, using all
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sides of the swab and targeting all areas that seem to have mucus. Insert swab
into labeled tube and break the stick. Repeat the swabbing process. Close the
tube carefully.

3. Add 300 l ATL buffer in all tubes.
4. Add 30 l Proteinase K to all tubes.
5. Vortex all tubes for 1 minute for proper mixing of the contents.
6. Put all tubes in the 56 ıC incubator overnight. During incubation, the ATL

buffer lyses cells and the Pro-K digests proteins. During incubation vortex the
samples several times.

7. Centrifuge tubes for 1 minute at the end of the incubation.
8. Carefully remove swabs with clean forceps, ensuring no cross-contamination

among tubes.
9. Add 330 l AL buffer in each tube.

10. Add 330 l 100% EtOH to each sample.
11. Vortex the tubes for �20 seconds each tube.
12. Spin down tubes briefly to get liquid off lids (�1 minute).
13. Set up one Qiagen spin column in a collection tube (lidless tube for collecting

waste) for each sample and three more 2 ml collection tubes in the same column
for each sample. Also set up one 1.5 ml microfuge tube for each sample for the
final elution.

14. Add 500 l of each sample to its corresponding spin column, and centrifuge
lysate through column into catch tube, �30 sec/spin. Do this twice or until all
of the lysate has been loaded on to column.

15. Add 500l of wash buffer AWI to the column in the third catch tube. Centrifuge
for 30 seconds and move column to the fourth (last) catch tube.

16. Add 500 l of wash buffer AW2 to the column and centrifuge for 3 minutes.
Move the column to its corresponding final tube for elution.

17. Add 100 l Qiagen AE buffer to the column. Incubate samples for 10 minutes,
and then centrifuge at top speed for 2 minutes.

18. Add another 100 l Qiagen AE buffer to the column. Incubate samples for
10 minutes, and then centrifuge at top speed for 2 minutes. Store the final elution
tubes in freezer for long-term storage of DNA.

(b) Dry/Wet Samples: Scraping Extraction

1. Label two 2 ml microfuge tubes for each field sample with lab ID. Include one
negative control for every 11 tubes.

2. Scrape top layer of each scat with sterile blade/spatula. Try to scrape the entire
surface of the scat. Place scrape pieces into both labeled tubes. Close the tube
carefully. Use approximately 200 mg of scrape material in each tube.

3. Add 300 l ATL buffer in all tubes.
4. Add 30 l Proteinase K to all tubes.
5. Vortex all tubes for 1 minute for proper mixing of the contents.
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6. Put all tubes in the 56 ıC incubator overnight. During this incubation, the ATL
buffer lyses cells and the Pro-K digests proteins. During incubation, vortex the
samples several times.

7. Centrifuge tubes for 1 minute at the end of the incubation.
8. Carefully remove swabs with clean forceps, ensuring no cross-contamination

among tubes.
9. Add 330 l AL buffer in each tube.

10. Add 330 l 100% EtOH to each sample.
11. Vortex each tube for �20 seconds.
12. Spin down tubes briefly to get liquid off lids (�1 min).
13. Set up one Qiagen spin column in a collection tube (lidless tube for collecting

waste) for each sample and three more 2 ml collection tubes in the same column
for each sample. Also set up one 1.5 ml microfuge tube for each sample for the
final elution.

14. Add 500 l of each sample to its corresponding spin column, and centrifuge
lysate through column into catch tube, �30 seconds per spin. Do this twice
(until all of lysate has been loaded on to column).

15. Add 500l of wash buffer AWI to the column in the third catch tube. Centrifuge
for 30 sec and move column to the fourth (last) catch tube.

16. Add 500 l of wash buffer AW2 to the column. Centrifuge for 3 minutes. Move
the column to its corresponding final tube for elution.

17. Add 100 l Qiagen AE buffer to the column. Incubate samples for 10 minutes,
and then centrifuge at top speed for 2 minutes.

18. Add another 100 ul Qiagen AE buffer to the column. Incubate samples for
10 minutes, and then centrifuge at top speed for 2 minutes. Store the final elution
tubes in freezer for long-term storage of DNA.

(c) Dry/Wet Samples: Swabbing/Scraping Extraction with Commercial
Kits

1. Process the scat samples similar to the above two methods into tubes, and then
follow the protocol specified in the kit. The Qiagen Stool DNA kit is one of the
best available commercial kits for extraction from fecal samples.
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12Concepts: Integrating Population Survey
Data from Different Spatial Scales,
Sampling Methods, and Species

Robert M. Dorazio, Mohan Delampady, Soumen Dey,
and Arjun M. Gopalaswamy

12.1 Introduction

Conservationists and managers are continually under pressure from the public,
the media, and political policy makers to provide “tiger numbers,” not just for
protected reserves, but also for large spatial scales, including landscapes, regions,
states, nations, and even globally. Estimating the abundance of tigers within
relatively small areas (e.g., protected reserves) is becoming increasingly tractable
(see Chaps. 9 and 10), but doing so for larger spatial scales still presents a
formidable challenge. Those who seek “tiger numbers” are often not satisfied by
estimates of tiger occupancy alone, regardless of the reliability of the estimates (see
Chaps. 4 and 5). As a result, wherever tiger conservation efforts are underway, either
substantially or nominally, scientists and managers are frequently asked to provide
putative large-scale tiger numbers based either on a total count or on an extrapolation
of some sort (see Chaps. 1 and 2).

The sheer size of a tiger population’s physical habitat and the clustering of
individuals within that habitat present formidable challenges to biologists and
managers charged with estimating the number and spatial distribution of tigers. For
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example, during the past two centuries, the geographic range of tigers has declined
by approximately 93% owing to fragmentation of physical habitat, depletion of prey,
and direct hunting (Karanth et al. 2004; Walston et al. 2010). Remaining populations
of tigers are composed of interconnected clusters of individuals distributed within a
large landscape of several thousand square kilometers (Karanth et al. 2011). These
clusters, often located within small areas or protected reserves, typically span a few
hundred square kilometers.

The abundance of tigers can be estimated accurately for relatively small portions
of a population using intensive surveys of uniquely identified individuals (via
distinct stripe patterns or fecal DNA) (Royle et al. 2009; Gopalaswamy et al.
2012b); however, these surveys are impractical to apply to entire populations owing
to logistical constraints and financial limitations. Other kinds of surveys based on
the detection of tiger signs (tracks, scats) are less costly, easier to implement, and
therefore more practical for larger areas (Karanth et al. 2011).

Surveys of tiger signs have primarily been used to estimate probabilities of
occurrence of tigers. Statistical approaches for estimating spatial variation in
abundance from sign surveys do exist (Royle and Dorazio 2008, chapter 4), but
to our knowledge these approaches have rarely been used in the analysis of
tiger signs. Instead, some researchers have attempted to establish a correlation
between observed encounter rates of tiger signs and rigorous estimates of tiger
abundance with the intention of predicting abundance at locations where only
tiger signs are observed (Kindberg et al. 2009; Jhala et al. 2011). The proclaimed
“success” of these so-called index-calibration experiments has been questioned
on theoretical grounds (Gopalaswamy et al. 2015). As an alternative, Dey et al.
(2017) recently proposed a model-based approach for relating sign-based esti-
mates of tiger abundance to estimates of tiger abundance based on camera-trap
surveys.

The approach of Dey et al. (2017) provides a step in the right direction,
particularly in circumstances where the underlying data are unavailable. What
is needed, however, is a common statistical framework for the joint analysis of
data collected during intensive surveys of relatively small areas (e.g., camera-trap
surveys) and data collected during surveys of tiger signs over much larger areas that
overlap the intensively surveyed areas. Models for the joint analysis (or integration)
of different types of survey data have been developed previously (e.g., see Buckland
et al. 2007; Conroy et al. 2008; Schaub and Abadi 2011), but none of these models
includes a spatially explicit description of the population, which is needed when
surveys use different spatial scales – that may or may not overlap – and different
sampling methods (Chandler and Clark 2014).

Before elaborating on this idea, we note that the challenges associated with
a joint analysis of data from intensive and less-intensive surveys of tigers also
apply to other species. For example, line-transect surveys are often used to obtain
accurate estimates of abundance of tiger prey species (Karanth et al. 2004, also
see Chapters 6–8). These surveys, being labor-intensive, are generally conducted
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within relatively small areas. However, prey species also are sampled over much
larger areas using occupancy-based surveys that require only the presence or
absence of individuals to be observed (Kawanishi and Sunquist 2004; Killivalavan
2010; Gopalaswamy et al. 2012a; Linkie et al. 2013; Vongkhamheng et al. 2013).
As with the analysis of tiger signs, occupancy-based surveys of prey have been
used to estimate probabilities of occurrence of prey over the area surveyed. A
combined analysis of data observed in the different types of surveys (line-transect
and occupancy) has not been attempted.

In this chapter we describe a conceptual framework for the joint analysis of
survey data collected using different spatial scales, different methods of sampling,
and multiple species. In a community of interacting species, such as a predator-
prey network, it is reasonable to expect the abundances of different species to
be correlated. The strength of this correlation will depend, of course, on the
relative effects of factors that can influence abundance, including habitat quality or
availability. However, knowing the abundance of one species is likely to help predict
the abundance of another species when interactions exist between individuals of
each species (Dorazio et al. 2015).

We intentionally limit our description of the statistical framework for the
joint analysis of different types of survey data to its conceptual underpinnings.
Implementation of this framework is an ambitious undertaking and extends beyond
the scope of this book. Our goal here is to describe the framework in sufficient detail
that it may inspire future research in the development of methods for analyzing
survey data obtained using different spatial scales, sampling methods, and species.
We also summarize the potential benefits of this approach for the conservation and
management of tigers and their prey.

12.2 A Hierarchical Approach for the Analysis of Different
Types of Spatially Referenced Data

To develop a statistical framework for the joint analysis of different types of
survey data, we adopt a hierarchical modeling approach similar to that used in
the analysis of spatially explicit, capture-recapture data (Royle et al. 2014, also
see Chapter 9). One component of the hierarchy is used to specify the number
and spatial distribution of latent (unobserved) individual activity centers for each
species and the movements of individuals about those centers. A second component
is used to specify how the locations and methods selected for sampling induce
various kinds of observations that depend on the locations and activity centers of
individuals. This approach was used to analyze the detections of a single species,
the Louisiana black bear (Ursus americanus luteolus) (Chandler and Clark 2014). In
the following sections, we extend this approach to multiple species and to different
methods of sampling.
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12.2.1 A Spatial Point Process for the Locations of Multiple Species

Models of spatially explicit, capture-recapture data have been formulated using
relatively simple spatial point processes (binomial or Poisson) (Royle et al. 2014).
These processes are specified using a first-order intensity function �.s/ to denote the
limiting expected density of individual activity centers at location s. The parameters
of the first-order intensity function specify the effects of spatially varying covariates,
such as habitat, on the expected density of activity centers.

To model the number and spatial distribution of two or more interacting species,
we require a multivariate, spatial point process – specifically, a Markov point
process formulated to specify pairwise interactions among individuals of each
species (Cressie 1993; Högmander and Särkkä 1999; Diggle 2014). In this process
the activity center of an individual is determined, at least in part, by its position
relative to the activity centers of all other individuals.

Without going into too much technical detail, we describe the underpinnings of
a Markov point process for two interacting species, say A and B. (Extensions of this
process to three or more species are straightforward.) Let sA D .sA;1; : : : ; sA;NA/

0

denote the activity centers of NA individuals of species A living within some finite
region of interest S 
 R

2 (i.e., sA;i 2 S). Similarly, let sB D .sB;1; : : : ; sB;NB/
0 denote

the activity centers of NB individuals of species B also living in region S. If the
abundances and activity centers of these two species follow a Markov point process,
their probability density is proportional to

f .NA; sA;NB; sB/ /
1

NAŠNBŠ
� fA � fB � fAB

where

fA D
Y

i

�A.sA;i/ �
Y

i

Y

j>i

hA.sA;i; sA;j/

fB D
Y

k

�B.sB;k/ �
Y

k

Y

l>k

hB.sB;k; sB;l/

fAB D
Y

i

Y

k

hAB.sA;i; sB;k/

The intensity functions �A and �B specify the effects of spatially varying covariates
on the expected densities of species A and B, respectively. The pair-potential
functions hA and hB specify the effects of a pairwise interaction between two
individuals of species A and between two individuals of species B, respectively (i.e.,
a pairwise interaction between conspecifics). In contrast, the pair-potential function
hAB specifies the effect of a pairwise interaction between an individual of species
A and an individual of species B. Considerable flexibility exists for choosing the
functional forms of hA, hB, and hAB, but these interactions are usually formulated
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as functions of the distance between locations of individuals. Interactions between
individuals can be positive and induce spatial clustering, or the interactions can
be negative and induce spatial regularity or repulsion. This versatility is useful
because it allows the effects of territoriality, predation, and other kinds of ecological
interactions to be formulated with the same type of model specification. Pair-
potential functions generally contain one or more parameters that determine the
spatial extent and type of interaction between individuals. The values of these
parameters are estimated in conjunction with other parameters of the model.

While the Markov point process allows us to model the activity centers of tigers
and prey species, it does not specify movements of individuals during the period
of sampling. We assume that each individual moves randomly about its activity
center during the period of sampling. In some cases, as with detections of tigers
in camera-trap surveys, the locations where individuals can be detected are fixed.
In these cases the model of an individual’s movements is implicit because trap
locations are selected so that the same individual can be detected at multiple traps
as a consequence of its movements. In other cases an explicit model may be used to
specify an individual’s locations during repeated surveys of the same area or sample
unit. For example, if individuals are detected in line-transect surveys or in searches
of discrete areas, we might use a bivariate Normal(s; 	2I) distribution to model the
locations of an individual with activity center s.

12.2.2 Modeling Survey Data Obtained Using Different Methods
and Spatial Scales

Thus far, we have described a fairly general model for the abundance and spatial
distribution of individuals, though neither abundance nor the activity centers of
individuals is directly observable. In this section we describe an approach for mod-
eling different kinds of observations obtained using different kinds of surveys. The
key idea in developing such models is to specify the distribution of an observable
quantity, such as a detection or a count, conditional on the latent locations or activity
centers of individuals. By adopting this approach, each set of survey data contributes
information about the population of individuals in a consistent and coherent fashion.
Furthermore, because the data are modeled conditionally, different sources of survey
data need not be independent, a requirement that may be difficult to satisfy when
surveys using different methods overlap in space and time.

As described earlier (see Introduction), several kinds of surveys are often used
to sample tiger populations and their prey. Considerable differences exist in the
spatial scales, sampling methods, and types of observations used in these surveys.
Despite these differences, observations may be classified into one of two groups.
One group corresponds to information observed at the level of an individual animal.
Detections of an individual in a camera-trap survey or in a line-transect survey are
examples. For this group observations are modeled as a function of the distance
between the individual and the detector (person or device). For example, the number
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of detections Y of an individual during J days of exposure to a camera trap might be
assumed to have a binomial distribution as follows:

Y j s � Binomial.J; p.s; x//

where the individual’s daily detection probability p.s; x/ is specified as a function of
the distance between the individual’s activity center s and the location of the camera
trap x. Similarly, the detection of an individual in a line-transect survey might be
assumed to have a Bernoulli distribution, where the detection probability p.u; x/
is specified as a function of the perpendicular distance between the individual’s
location u and the transect line x. The model of line-transect data also could be
expanded by assuming u � Normal.s; 	2I/. The key point in both of these surveys,
however, is that each observation is modeled conditional on an individual’s activity
center s or location u.

A second group of observations in animal surveys occurs when information
pertains to an unknown number of individuals. For example, these observations are
common when the region of interest S is partitioned into a finite number of disjoint
(nonoverlapping) sample units and surveys are conducted within a subset of those
units. Common examples include occupancy surveys – which can include surveys of
animal signs (tracks, scats) – and count-based surveys of animals based on single-
or double-observer protocols (see Chap. 8). In these surveys each observation is
modeled conditional on the latent abundance of individuals in a sample unit. For
example, suppose each of K sample units (denoted by C1; : : : ;CK) is surveyed on J
occasions using a particular sampling protocol. The number of individuals present
and available to be detected during the jth survey of unit Ck is

Nkj D

N
X

iD1

I.uij 2 Ck/

where N is the total number of individuals living in region S and where uij �

Normal.si; 	
2I/. Note that I.z/ is an indicator function whose value equals one if

expression z is true (or zero if z is false). In a single-observer, point-count survey,
the number of individuals detected during the jth survey of unit k would be modeled
as a binomial outcome as follows:

nkj j Nkj � Binomial.Nkj; pk/

where pk is the probability of detection per individual during the survey. Similarly,
in an occupancy survey, a binary indicator of the detection of at least one individual
would be modeled as a Bernoulli outcome as follows:

Ykj j Nkj � Bernoulli.qk I.Nkj > 0//
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where qk is the probability of detecting at least one individual during the survey.
We emphasize that the key feature common to both surveys is that each observation
is modeled conditional on the latent abundance of individuals in the sample unit
and that this abundance, being spatially referenced, depends on the locations of
individuals during sampling.

12.3 Discussion

In this chapter we briefly described a general framework for the joint analysis of
survey data collected using different spatial scales, different methods of sampling,
and multiple species. Our framework is intended primarily for the analysis of
surveys of tigers and their prey. In India and in other parts of Asia, vast amounts
of financial resources and human effort have been expended to establish rigorous
monitoring programs for these species. Some of these monitoring programs have
been in place for decades, and it seems prudent now to conduct a retrospective
analysis of the data acquired in these programs.

Our model-based framework provides a reasonable starting point for this task. At
the very least, it should be possible to estimate the abundance and spatial distribution
of an entire population of tigers by conducting a joint analysis of data observed in
camera-trap surveys and occupancy-based surveys. Similarly, the distribution and
abundance of individual prey species should be estimable using a joint analysis
of data observed in line-transect surveys and occupancy-based surveys. More
challenging, perhaps, is to complete a combined analysis of data obtained in surveys
of tigers, other large predators (leopards, dholes), and their prey. However, the
results of this type of analysis could reveal patterns of spatial overlap between tigers,
leopards, and individual prey species, as well as quantitative relationships between
the densities of prey and their habitat. Both results are important to decisions
regarding the conservation and management of these species. It seems possible
also to develop point-process models that specify changes in the distribution of
predator and prey species over time as a result of the biological interactions between
individuals. This would allow hypotheses about the nature of these interactions to
be specified mechanistically in terms of the model’s parameters.
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13Assessing Landscape Connectivity
for Tigers and Prey Species: Concepts
and Practice

Divya Vasudev, James D. Nichols, Uma Ramakrishnan,
Krishnamurthy Ramesh, and Srinivas Vaidyanathan

13.1 Introduction

Tiger conservation efforts are shifting from an exclusive focus on single reserves
to include large heterogeneous landscapes. Consequently, monitoring now encom-
passes both between-habitat ecological processes and within-habitat demographic
processes, the most important among these being connectivity. In this chapter, we
provide an overview of current theory and conceptual frameworks of connectivity
modelling, examining their applicability to the conservation of tiger population
connectivity. We visualize large landscapes where tiger habitat fragments are
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described in terms of their size and quality, while linkages among them are
quantified by either actual transition (movement) rates or the probability of dispersal
between patches. We briefly review long-term studies of tiger dispersal biology from
radiotelemetry, photographic capture-recapture and landscape genetic approaches.
We describe methods for drawing inferences about tiger dispersal biology, and
about current and potential connectivity patterns. As connectivity is still a growing
field of study, we do not stress prescriptive rules but suggest an array of methods
that can shed light on tiger connectivity. These include fine-scale tracking of
individual dispersal events through radiotelemetry; estimation of population-level
connectivity through multistate capture-recapture or dynamic occupancy models
and landscape genetics; modelling of potential connectivity, through resistance-
based models, individual-based models and stochastic dynamic optimization; and
spatial conservation prioritization. We also describe incorporation of remotely
sensed data into landscape-scale analyses.

We discuss the current state of tiger connectivity conservation, noting that there
seem to be few isolated populations, with evidence of long-distance dispersal across
multiple-use and densely populated landscapes, and conclude the chapter with a
prospectus for future conservation of connectivity, emphasizing the utility of a
thorough understanding of tiger dispersal behaviour for managing a heterogeneous
matrix for landscape-scale tiger conservation.

13.2 A Landscape Perspective on Tiger Conservation

13.2.1 From Protected Areas to Landscapes

The last couple of decades have seen a global shift of the scope of animal con-
servation from single isolated protected areas (PAs) or reserves to large landscapes
comprised of habitat patches interspersed within a heterogeneous human-dominated
matrix (or lands outside of species’ optimal habitat; see Table 13.1 for a definition
of select terms used in this chapter). Habitat fragmentation is a global phenomenon,
and threatened species are increasingly pocketed into small, isolated habitat frag-
ments. Simultaneously, there has been recognition of the importance of ecological
processes that occur in the matrix, primary among these being connectivity among
habitat fragments (Taylor et al. 1993; Doerr et al. 2011). While the relative
importance of fragmentation and the establishment of landscape connectivity, in
comparison with maintaining habitat integrity, has been much debated, there is no
doubt that processes such as dispersal that occur within the matrix can have a serious
impact on species persistence (Doerr et al. 2011).

Connectivity enhances species persistence through demographic rescue effects
(Brown and Kodric-Brown 1977), colonization of empty habitat fragments (Han-
ski 1998), inbreeding avoidance (Frankham 2005; Hostetler et al. 2013) and
metapopulation dynamics (Hanski 1998); it can shape communities through influ-
encing extinction-colonization dynamics (MacArthur and Wilson 1967) and inter-
species interactions (e.g. competition, Yackulic et al. 2014, and disease dynamics,
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Table 13.1 Operational definitions of terms used in this chapter that are relevant to tiger
connectivity

Term Definition

Landscape An area that is spatially heterogeneous in at least one factor of
interest; here we specifically refer to a heterogeneous area
comprised of habitat fragments interspersed in a mosaic of matrix
types

Habitat fragment (or patch) A well-defined area with local conditions suited to support a
population of the focal species

Matrix All nonoptimal habitat areas of the landscape
Connectivity Functional linkages between populations or habitat fragments
Structural connectivity Physical linkages formed of the species’ habitat between fragments
Functional connectivity Linkages between habitat fragments accounting for the interaction

between species traits and landscape characteristics. Taylor et al.
(1993) define this as ‘the degree to which a landscape facilitates or
impedes animal movement’

Population connectivity Movement of individuals or genes between two populations. It can
be quantified as transition rates or emigration and immigration rates

Potential connectivity The probability of successful dispersal, given a decision taken by
an individual to emigrate

Actual or realized dispersal Measurements or estimates of actual movement of animals among
fragments

Dispersal Movement of genes or animals across space. Here, we specifically
refer to movement across heterogeneous landscapes, comprised of
three stages, namely, emigration, search for new habitat and
immigration

Matrix resistance The inverse of permeability of a given matrix type to animal
movement

Network A graph-theoretic representation of a collection of interconnected
habitat fragments, where the fragments are represented as nodes,
while linkages between fragments are represented as edges

Connectivity conservation All research and action taken to conserve linkages among
populations or habitat patches. To date, the predominant strategy
for connectivity conservation has been the demarcation of corridors

Corridors Linear or narrow sections of habitat that may facilitate dispersal
between habitat fragments

Source: Vasudev et al. (2015), Taylor et al. (1993), Lindenmayer and Fischer (2007), Clobert et al.
(2012), Turner and Gardner (2001)

McCallum and Dobson 2002). Connectivity is also increasingly being perceived
as a tool to ameliorate impacts of climate change and land-use dynamics (Doerr
et al. 2011). Consequently, the last few decades have seen a surge of landscape
ecology studies, resulting in an improved understanding of animal movement and
dispersal (Nathan et al. 2008; Vasudev et al. 2015), new methods for observing and
analysing animal movement routes (e.g. McRae et al. 2008; Langrock et al. 2012;
Ramesh et al. 2016) and novel applications of spatial conservation planning (Minor
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and Urban 2007; Moilanen et al. 2009; Fletcher et al. 2013), providing methods for
improved landscape-scale conservation.

There are multiple aspects of tiger biology that are pertinent to their landscape-
scale conservation. First, tigers, being apex predators, live at low population
densities (<10–15 individuals/100 km2; Karanth et al. 2004, Chap. 2), thus requiring
large tracts of habitat for long-term demographic viability. Such large contiguous
tracts of natural habitat are decreasing (Wikramanayake et al. 1998; Sanderson
et al. 2010). Therefore, sustaining demographic and genetic linkages among tiger
populations is crucial (Frankham 2005; Kenney et al. 2014). Second, landscape
connectivity can potentially lead to recovery of low-density tiger populations as well
as colonization of newly protected habitats, both key requirements for increasing
overall tiger numbers (Walston et al. 2010; Joshi et al. 2013). Third, the demo-
graphic stage of transience or dispersal, involving search for new territories, presents
high risk for individual tigers (Smith 1993). Through long-term photographic
capture-recapture studies (see Chaps. 9 and 10), Karanth et al. (2006) estimated
that approximately 20% of individual tigers >1 year of age are lost from even
healthy tiger populations annually through emigration and mortality, suggesting
naturally high dispersal rates in this territorial species. Such high emigration rates
may reduce population persistence as tiger ‘source sites’ (Walston et al. 2010)
become surrounded by a hostile matrix, increasing dispersal-related mortality rates.
Fourth, conservation programmes need to encompass the issue of connectivity,
keeping in view other conservation needs, such as human-tiger conflict mitigation
(Treves and Karanth 2003; Malviya and Ramesh 2015; Goswami and Vasudev
2017). Last, human impacts originating from the surrounding matrix will impact
tiger populations within any protected area, as the species is known to be sensitive
to human presence and activities (Chundawat et al. 2016). Taken together, it is clear
that effectively addressing landscape connectivity and matrix heterogeneity issues
will enhance the efficacy of tiger conservation programmes.

13.2.2 Landscape-Scale Conservation of Tigers

Over time, tiger conservation focus has shifted from large Tiger Conservation
Units, consisting of a single habitat, putatively insular fragments (Wikramanayake
et al. 1998), to a more realistic scenario of Tiger Conservation Landscapes (TCLs;
Sanderson et al. 2010). Sanderson et al. (2010) describe 76 TCLs situated across the
species’ range, of varying degrees of conservation priority and viability. However, as
initially described, even these TCLs did not sufficiently emphasize the heterogeneity
and conservation utility of the matrix, which is central to the more recent field
of landscape-scale conservation. Furthermore, there is a need for TCLs to be
demarcated based on ‘critical scales’, relevant to tiger conservation (see Fletcher
et al. (2013) for an assessment of critical scales for endangered species). Genetic
studies (Sharma et al. 2013a; Ramesh et al. 2016), as well as observation of
dispersal events from camera trap data (K. U. Karanth, unpublished data; Jhala
et al. (2015)), demonstrate higher levels of connectivity among populations than

http://dx.doi.org/10.1007/978-981-10-5436-5_2
http://dx.doi.org/10.1007/978-981-10-5436-5_9
http://dx.doi.org/10.1007/978-981-10-5436-5_10


13 Assessing Landscape Connectivity for Tigers and Prey Species 259

originally visualized, indicating that some TCLs may need to be combined into
larger conservation landscapes. Finally, while the need for connectivity has been
emphasized (Sanderson et al. 2010), future conservation plans also need to balance
landscape connectivity conservation with the protection of source populations
(Walston et al. 2010).

With novel methods available to model, assess and conserve functional con-
nectivity, in addition to the earlier purely structural approaches (such as the focus
on forested corridors in Sharma et al. 2013a and in the practice of tiger connec-
tivity conservation), it is feasible to incorporate species’ dispersal biology into
connectivity conservation (Vasudev et al. 2015). Tiger connectivity conservation
practices largely rely on structural connectivity, stressing contiguity of habitat or
the preservation of forested corridors. However, recently movement ecology-based
assessments of tiger dispersal among populations have emerged (e.g. Kanagaraj
et al. 2013; Ramesh et al. 2016).

In this chapter, we focus on newer methods that can potentially achieve more
informed connectivity conservation for tigers. We first contextualize tiger connectiv-
ity conservation, within broader theoretical developments. We review knowledge on
tiger movement behaviour and describe quantitative methods for making inferences
on connectivity based on this knowledge. We conclude with a discussion on
current tiger monitoring practices related to connectivity issues and suggest future
directions.

13.2.3 Tiger Connectivity: Concepts and Theory

The term connectivity has been used variously in the past (Lindenmayer and Fischer
2007). There has particularly been much confusion on how metrics of landscape
connectivity patterns translate to ecological processes (Lindenmayer and Fischer
2007; Zeller et al. 2012). Early definitions of connectivity largely stemmed from
descriptions of habitat contiguity in the landscape (structural connectivity; Turner
and Gardner 2001). Taylor et al. (1993) defined landscape connectivity as the
‘degree to which a landscape facilitates or obstructs animal movement’, implicitly
acknowledging that connectivity is realized through an interaction of individual
dispersers with landscape elements, relating to functional connectivity. Even this
definition remains a description of the landscape, rather than of a species-specific
ecological process(es). Population connectivity is the movement of individuals or
genes between resource patches and, as such, is a species-focused definition of
connectivity. Throughout this chapter, we refer to either the actual movement of
animals between patches or the potential for such movement when using the term
connectivity, unless otherwise specified.

Connectivity for tigers is realized through dispersal, which is a complex of
processes that includes permanent emigration, a transient phase involving search
for a new habitat patch, and immigration. Gene flow (genetic connectivity) is then
effected by dispersal followed by the successful settlement and reproduction of
immigrants into a population (sometimes termed as effective dispersal). While
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Table 13.2 Commonly used metrics and their relation to patterns and processes of connectivity

Metric Definition Relates to

Neighbourhood metrics Euclidean distance between patches or
number of neighbourhood patches within a
threshold distance

Structural connectivity

Cost- or
resistance-weighted
distance

Euclidean distances between patches
weighted by the permeability of different
matrix types

Functional connectivity,
potential connectivity

Transition, emigration or
immigration rates

Rates of movement of individuals between
populations

Population connectivity,
actual connectivity

Genetic distance measures
such as Fst or Dsp, or
genetic clustering

Measures of historic or contemporary
genetic distance or differentiation between
populations, or detection of spatial genetic
structure

Genetic connectivity,
actual connectivity

gene flow and population connectivity have often been viewed interchangeably in
practice, various factors may cause differences between the rate of movement and
the extent of gene flow among populations. In Table 13.2, we relate frequently used
metrics to each of these above-mentioned formulations of connectivity.

There has been a shift away from structural connectivity and a move towards
incorporating dispersal behaviour into connectivity conservation (Vasudev et al.
2015). New movement ecology paradigms show movement routes as determined
by an interaction between physiological capability, navigability and motivation of
the moving individual, with the external environment (Nathan et al. 2008). Vasudev
et al. (2015) point out a number of factors that can limit successful dispersal of
individuals, categorized as (a) spatial factors, or those that limit dispersal by virtue
of their spatial location in the landscape; (b) environmental factors, including biotic
(e.g. food resources) and abiotic limits (e.g. terrain); and (c) intrinsic species-,
population-, group- or individual-specific factors that impede animal movement.
There is now evidence from natural populations that various factors ranging from
road-induced mortality (Kramer-Schadt et al. 2004) to configuration of the matrix
(Revilla and Wiegand 2008; Ramesh et al. 2016) to species’ social structure (Riley
et al. 2006) impact landscape connectivity of large carnivores. At the same time,
there is a rising concern that expert opinion, often used in connectivity models
and conservation, may not adequately reflect how animals traverse heterogeneous
dynamic landscapes (Zeller et al. 2012). Similarly, remotely sensed covariates
(Sawyer et al. 2011) or indices of habitat suitability (Vasudev and Fletcher 2015)
used as proxies for matrix permeability also may not accurately reflect ways in
which animals traverse landscapes. It is therefore imperative for conservation to be
firmly based on scientific knowledge of tiger movements in the matrix and explicitly
incorporate empirical monitoring data relevant to such movement.

Both metapopulation theory and source-sink dynamics have been applied in the
past to issues of large carnivore landscape conservation. While a metapopulation in
its simplest form is a set of interrelated populations, many of the theoretical and
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methodological advancements over the last few decades have focused on turnover
dynamics (Hanski 1998). Further, Hanski (1998) distinguishes a metapopulation
approach as one that simplifies the landscape into a binary habitat/non-habitat
mosaic, whereas landscape ecology delves more into matrix heterogeneity. In more
recent years, network theory, which focuses on the study of discrete, linked objects
(here, habitat patches or populations), has been applied to the study of species
connectivity (Minor and Urban 2007); many of the metrics used in both network and
metapopulation theories are based on the same fundamental principles and relate to
the same ecological processes. Network theory in itself continues to focus on a
binary habitat/non-habitat dichotomy, but the linkages between populations can be
configured to incorporate matrix heterogeneity using models that simulate animal
movement (e.g. circuit models, McRae et al. 2008; individual-based models, Revilla
and Wiegand 2008). Network theory can also incorporate characteristics of habitat
patches, as well as movement metrics between patches. In doing so, it provides a
sound basis for spatial conservation planning in large, heterogeneous landscapes.

Defining linkages, or transition matrices, between habitats in a network addresses
the fundamental question of how one quantifies connectivity. Connectivity can be
quantified as movement rates between populations or habitat patches, typically
estimated in measurements of actual connectivity. This quantity can then be decom-
posed into the probability of an individual making a decision to emigrate based
on causal factors intrinsic to populations (e.g. density-dependent dispersal), and a
conditional probability of successful dispersal, impacted almost wholly by factors
emerging from the matrix (Vasudev et al. 2015). Depending on the model/metric,
potential dispersal may relate to either the former or the latter. Here again, we
highlight that ‘successful dispersal’ in the demographic context, or movement
of an individual into a fragment, is different from a genetic context, implying
movement followed by successful reproduction, and the two contexts cannot be
used interchangeably. Taken together, we envisage tiger conservation landscapes
described by population-specific characteristics (nodes in a network), as well as a
transition matrix parameterized by the probability of successful dispersal between
population pairs (linkages).

13.3 Tiger Dispersal Biology: What We Know and Knowledge
Gaps

13.3.1 Tiger Dispersal Kernels

A fundamental piece of information on dispersal is the distance that a species
naturally moves while searching for new territories, either as point measures or
dispersal kernels, typically characterized via negative exponential, half-normal or
Weibull distributions.

Radio tracking provides direct information on tiger movement routes, which
however may be biased due to very small sample sizes and the inability to sample
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all possible destinations at increasing distances from origins. Smith (1993) reported
a mean dispersal distance of 33 km for adult males (N D 10 individuals) and
10 km for females (N D 4 individuals) in Chitwan, Nepal, which may be an
underestimate because of limitations of VHF telemetry employed at the time.
Multiple genetic studies have demonstrated lack of genetic structure in fragmented
tiger populations, indicating (at least) occasional past and recent movement (and
post-dispersal reproduction) of tigers across large distances (e.g. Reddy et al. 2012;
Joshi et al. 2013; Sharma et al. 2013b). Intensive and long-term photographic
capture of tigers in the Western Ghats has provided evidence of tigers dispersing
200–300 km (Karanth KU, unpublished data). A radio-tracking study in Central
India of wild-caught tigers released into a new landscape recorded dispersal events
from 20 km to 375 km (Ramesh et al. 2016). Joshi et al. (2013), through genetic
assignment tests, suggest that tigers may move as far as 650 km, but definitely
half that distance, i.e. 375 km, across human-modified lands in Central India. In
general, available evidence suggests that tigers currently can occasionally move
approximately 375 km through human-modified lands.

13.3.2 Movement Through the Matrix

Despite being a species much studied, knowledge on how tigers respond to
landscape features, how they navigate the matrix or how they choose and settle
into new territories is limited. Joshi et al. (2013) show movement from high-density
to low-density populations, reinforcing that a search for vacant territories drives
dispersal in the species. Many connectivity studies have used either expert opinion
or tiger habitat suitability as a proxy for matrix permeability to movement (e.g.
Carroll and Miquelle 2006; Kanagaraj et al. 2013), an assumption that may not
always be valid (see Vasudev and Fletcher 2015). Using data on movement paths
of radio-collared tigers, Ramesh et al. (2016) found that open agricultural matrix
types were avoided by dispersing tigers compared to forested areas with complex
terrain.

Evidence from landscape genetic studies suggests that the maintenance of
vegetation cover, or the presence of tenuous habitat corridors, facilitates tiger
movement (Joshi et al. 2013; Sharma et al. 2013a), either through the presence of
wild prey or cover from human persecution. Karanth et al. (2004, 2011) show that
tiger presence and abundance are predominantly driven by abundance of ungulate
prey (Chap. 2). Further, that tigers perceive risk in human presence is supported by
their typical avoidance of settlements and villages while traversing the landscape
(Carroll and Miquelle 2006; Joshi et al. 2013; Ramesh et al. 2016). Joshi et al.
(2013) also inferred that roads were detrimental to landscape connectivity through
landscape genetic approaches. It is unknown what the mortality rates for tigers are
in the matrix, though evidence from some landscapes suggests that these rates may
be very high (Goodrich et al. 2008).

While the maintenance of forested corridors remains the leading strategy to
connect tiger populations, simulation models (Kanagaraj et al. 2013) suggest that

http://dx.doi.org/10.1007/978-981-10-5436-5_2
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narrow corridors may inhibit tigers from locating movement routes (similar to
‘target effects’ that lead to decreased immigration into small islands; MacArthur and
Wilson 1967). Kanagaraj et al. (2013) also demonstrate that connectivity is sensitive
to animal movement parameters, showing (a) that quantifying parameters such as
dispersal distance and matrix permeability is vital to modelling and predicting tiger
connectivity and (b) that small changes in land-cover or behavioural adaptation of
tigers to fragmented landscapes can have major impacts on connectivity.

13.4 Methods for Monitoring Landscape Connectivity

13.4.1 What Are We Quantifying?

Connectivity emerges from a complex of processes, initiating with animals making
decisions to disperse from source populations and ending at either settlement in
destination habitats or successful reproduction, depending on the context of the
study. Actual events of dispersal can be detected through genetic analyses, tracking
marked animals across populations, or colonization events. These events typically
record actual or realized connectivity. On the other hand, there also exist models
for potential connectivity, which only deals with the probability of an animal
successfully completing a dispersal event (Table 13.1).

Realized connectivity depends on two sets of factors: one, factors arising from
within a population/habitat that incite a decision to disperse, often population-
specific characteristics such as population density, and second, those that arise from
characteristics outside of the source fragment. Measures of actual connectivity typi-
cally integrate the decision of animals to disperse with the probability of successful
dispersal. Metapopulation models, for instance, take into account population charac-
teristics such as patch area in measures of connectivity. Similarly occupancy models
incorporate the state of ‘occupancy’ of a fragment while assessing connectivity.
Cost- or resistance-based potential connectivity models, on the other hand, typically
differ from this treatment in focussing on characteristics of the matrix, and thus
modelling the probability of successful dispersal, conditional on a decision taken to
disperse.

Dispersal in itself is a complex of processes, typically divided into emigration,
a transient search phase and immigration. In general, models can either focus on
predominantly the emigration/immigration phases, i.e. on identifying the source
and destination fragments. Information on the source and destination phases can
then be used to indirectly infer on the transient search phase. Sampling for these
models is focussed on animal populations or habitat fragments. Alternatively,
models can focus on the transient phase of dispersal, using empirical data to infer
on how animals make movement decisions while in the matrix. Often, the former
source/destination models estimate actual connectivity, while the latter deal with
potential connectivity.

While ideally one would want information on all three phases of dispersal, with
the power to make inferences on factors impacting different stages of dispersal, as
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well as on the impacts of dispersal (or the lack thereof) on species conservation
status, there is probably no large mammal species worldwide for which such
data exist. Being a growing field, there are a number of methods for estimating
various parameters of interest to connectivity, with little agreement on an ideal
approach. We present multiple methods below that are all applicable for the
study of tiger connectivity in fragmented landscapes. First, we describe a method,
radiotelemetry, to record entire dispersal events of tigers at fine temporal and spatial
scales; while this method provides a whole suite of information on connectivity,
it suffers from small sample sizes and typically provides inferences at the level of
individuals, rather than populations. We then describe source/destination models
for assessing actual connectivity, including extensions of the capture-recapture
models described in Chap. 5, occupancy models described in Chap. 4 and landscape
genetic approaches. We note here that occupancy models and landscape genetics
contrast in that the former deal with demographic connectivity, while the latter are
based on genetic connectivity. Following this, we describe a suite of approaches
for modelling potential connectivity, including a discussion on parameterizing
potential connectivity models with movement-relevant data. We extensively discuss
the appropriate use of remotely sensed data, widely used for studies conducted at
the scale of large landscapes. We conclude with a discussion on spatial conservation
prioritization approaches. Each of these approaches provides a different flavour of
data, all relevant to complete the picture of tiger connectivity.

13.4.2 Observing Dispersal Events Through Radiotelemetry

Tigers disperse from natal areas mostly around the age of 2 years, and dispersal
characteristics vary between sexes and different age classes depending on the demo-
graphic structure of the population and configuration of the landscape. Empirical
data on individual responses to habitat features at multiple scales are useful to draw
robust inferences on dispersal patterns and processes. Direct observations on tiger
dispersal are near impossible due to their elusive nature and the large spatial scale
of movement. Radiotelemetry serves as a useful tool for fine-scale and systematic
observation of tiger movement and provides insights into tiger movement behaviour
required for modelling dispersal and connectivity.

While telemetry provides valuable fine-scale movement data, it has some
limitations. (a) Traditional ground tracking involving Very High-Frequency (VHF)
telemetry requires close proximity to radio-collared animals for accurate data
collection. Animal positions are then obtained by acquiring VHF transmissions
from radio-collars using a hand-held antenna from three or more sampling points to
triangulate the location of the animal. This method is very prone to position errors
as tigers can rarely be approached at close proximities. New technologies in the
form of Geographic Positioning System (GPS)-based collars and Global System for
Mobile Communication (GSM) networks provide much more power for tracking
animal movement in inaccessible areas and across large spatial scales. With these
technologies, data on the location of the collared animal can be obtained at regular
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predetermined intervals through satellites with reasonably high accuracy. These
collars also have automated drop-off options such that the collar can be retrieved
without recapturing the focal animal, after a predetermined period of time. (b)
Radiotelemetry studies invariably suffer from small sample size, as telemetry data
typically come from few individuals (Patterson et al. 2008). (c) Further, the fine-
scale movement data obtained from radiotelemetry (and other methods of recording
animal movement) are subject to nonindependence as the location of animals at
any time step is dependent on its location at previous time steps, though these are
addressable through the use of Markov models (Langrock et al. 2012).

Due to small sample sizes typically associated with telemetry data, it is rec-
ommended that the following issues be carefully taken into consideration. First,
it is important to carefully select the individual tiger to be collared, based on
study objectives. If the objective of the study is to observe dispersal movements
of transient tigers in search of new territories, it is ideal to radio-collar an individual
of 12–18 months of age, within its natal area, that is likely to disperse. Second, the
time interval between fixes of the animal’s position should be determined; this is
based on an assessment of animal activity and storage capacity of the device. Third,
collar-retrieving strategies should be decided beforehand. For tigers, as they are shy
of human presence, drop-off collars are recommended (unless the objective is to
replace with a new collar); the time frame over which the animal is to be tracked
is determined beforehand but can be modified subsequent to collaring. Lastly, it
is important to regularly monitor the animal using GPS and/or VHF signals. It is
crucial to have field teams to be able to go to the last recorded location at short
notice in case satellite signals are lost, and immediately locate the animal using
VHF signals; the reasons for loss of signals—collar damage or malfunctioning—
can then be determined and corrected.

Radio tracking provides direct information on animal dispersal routes. In com-
bination with data on potential covariates that may influence tiger movement, it
is possible to obtain insights into tiger responses to landscape elements (Ramesh
et al. 2016). Dispersal routes are typically analysed by breaking up observed paths
into ‘steps’ at specified temporal resolution. Path analysis includes quantifying step
lengths and turning angles of the dispersing animal and how these parameters
change with varying matrix characteristics (Morales et al. 2004). Conditional
logistic models have been used to assess why tigers (and other animals) choose
certain movement paths, in comparison to a set of available (randomly chosen)
alternatives (e.g. Ramesh et al. 2016). More recently, analytical models have been
developed that can handle the spatial autocorrelation that is inherent in movement
data using Markov processes (Langrock et al. 2012). These models can additionally
take the ‘state’ of the animal into account, differentiating between temporal phases
showing different animal movement behaviours, such as foraging/resting/directed
movement phases.

The scale at which animals make movement decisions depends on multiple
factors, such as perceptual window of the species and the spatial scale, or distance, at
which it responds to perceived threats or attractors in the landscape. Ramesh et al.
(2016) show that tigers tend to respond to different variables at different spatial
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scales; they responded at much finer scales to human presence and local topology
and at coarser scales to the presence of (open) forests. This highlights two important
points: (a) spatial scale is an important consideration while recording, modelling
and predicting connectivity, and (b) connectivity conservation, apart from being
spatially informed, needs to incorporate information on the scale at which dispersal
is impacted by threats.

Radiotelemetry also provides crucial individual-level information that can pro-
vide insights into variation among dispersers (Ramesh et al. 2016); such variation
is expected to have significant impacts on connectivity patterns across landscapes
(Vasudev et al. 2015). These advantages notwithstanding, it must be noted that
radiotelemetry typically provides individual-level information at relatively small
sample sizes, to the scale of a few individuals. It is only for a few large cat species
that a relatively larger number of individuals have been radio-collared for inference
at population or landscape scales (e.g. Florida panther, Maehr et al. 2002, n D 27;
Iberian lynx, Revilla and Wiegand 2008, n D 30).

13.4.3 Marked Animals: Photographic Capture of Dispersal Events

Non-invasive captures and recaptures of tigers (and other animals) from photographs
(Chaps. 9 and 10) or DNA (Chap. 11) offer the advantages of obtaining larger
sample sizes of individuals and conducting population-level studies, in contrast
to telemetry studies that provide more fine-grained data on a few individuals.
Capture-recapture studies conducted simultaneously at multiple locations provide
information about animal movement. If an identified animal is ‘caught’ at time
t in one location and then again at time t C 1 at another location, we know
that the animal survived the interval and that it moved. However, the issue of
non-detection will cause us to miss (not detect) some movements, complicating
inferences about rates and probabilities of movement (Williams et al. 2002:335–
336). These complications led to the development of multistate capture-recapture
models, which are extensions of the open-population capture-recapture models
(Chap. 9).

Multistate capture-recapture models were developed for open populations by
Arnason (1972) but saw very little use. They were ‘rediscovered’ in the late 1980s
(Hestbeck et al. 1991), were developed for general use (Schwarz et al. 1993)
and have become an important tool in population ecology (Lebreton et al. 2009).
Initial uses of multistate models (Arnason 1972; Hestbeck et al. 1991) were for
the problems of interest in this chapter, movements of individuals among different
locations. It was quickly recognized that the concept of ‘state’ of an animal at
capture was much more general than just spatial location (Nichols et al. 1992), but
we restrict multistate models in this chapter to inferences about movement from one
location to another.

The sampling situation for which multistate models were developed entails
sampling at multiple locations for each of K sampling occasions. Data can still
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be summarized as capture histories (or detection histories), but multistate models
require additional information. Rather than each history being a vector of 1s (indi-
cating detection) and 0s (indicating non-detection), detections must now provide the
extra information that the animal was not only detected but was detected in a specific
location. For a two-location study, for example, we might find the following capture
history:

1 0 2 2

This history indicates that the animal was initially captured at location 1. It was
not captured at occasion 2, but it was captured at location 2 at occasions 3 and 4.

Modelling of these more complicated capture histories requires some new
notation, and we denote location with superscripts. We can simply extend the open
CJS models of Chap. 5 by adding location superscripts to the capture and survival
parameters:

pr
t D probability that an animal alive in location r and occasion t is captured/detected

then;
�rs

t D probability that an animal alive in location r at occasion t is alive in location
s at occasion t C 1.

With these parameters, we can model multistate encounter history data.
Consider the probability associated with history 1 0 2 for a study of 3 sampling

periods and 2 locations:

Pr .1 0 2 j release at location 1 in occasion 1/ D
�

�111
�

1 � p12
�

�122 C �121
�

1 � p22
�

�222
�

p23
.

The uncertainty associated with the location of the animal at occasion 2 led to
the additive terms in brackets. One possible sequence of events, denoted by the first
additive term, is that the animal stayed in location 1 at occasion 2, was not detected
at that time and then moved to location 2 between occasions 2 and 3. The second
possibility (the second additive term) is that the animal moved to location 2 between
occasions 1 and 2, was not detected there at occasion 2, and then stayed in location
2 at occasion 3. There is no uncertainty associated with the location of the animal at
time 3; hence the detection parameter p23.

The parameters 'rs
t incorporate both survival and movement, and in some cases

it is possible and useful to separate these two processes. If survival for an interval is
determined primarily by the location of an animal at the beginning of the interval,
then 'rs

t can be rewritten as (Hestbeck et al. 1991):

�rs
t D Sr

t 
rs
t ;

http://dx.doi.org/10.1007/978-981-10-5436-5_5
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where

Sr
t D probability that an animal alive at location r in occasion t survives and remains

in study system at occasion t C 1.
 rs

t D probability that an animal is in location s at occasion t C 1, given that it was
in location r at occasion t and survived until occasion t C 1.

The above decomposition of �rs
t into survival and movement components is

much more commonly used than the �rs
t parameterization. Both parameterizations

incorporate movement between locations, provide estimable quantifications of the
linkages between populations as described in Sect. 2.3 of this chapter and are thus
relevant to connectivity.

Multistate models have not seen much use with data from tigers or prey
species, although such work has begun. For example, Karanth and others have
planned a multistate analysis to draw inferences about movement of tigers between
Nagarahole and Bandipur National Parks. These models have been used for other
species to test hypotheses about the relationship between movement probabilities
and distance between two locations (e.g. Skvarla et al. 2004), intervening matrix
characteristics (Coffman et al. 2001; Skvarla et al. 2004) and corridors (Coffman
et al. 2001). All of these questions are relevant to the concept of connectivity and
should prove useful in future studies of tigers and perhaps prey.

The two movement parameters defined above, �rs
t and rs

t , refer to the probability
of an animal in one location at sampling occasion t moving and being at a
different location at sampling occasion t C 1. It is also possible to estimate other
parameters associated with connectivity using both single state and multistate data.
For example, it is sometimes of interest to be able to decompose recruitment of
new adults in a sampled population at some occasion t C 1 into two components,
surviving adults and young that were members of the sampled population at
occasion t and immigrants that moved into the sampled population from some other
location. This is possible using single state models for open populations (Nichols
and Pollock 1990).

Additional questions related to connectivity include the following: what is the
probability that a randomly selected individual at location r at occasion t C 1 was in
location s at occasion t. The parameter defined in this manner, � rs

tC1, can be estimated
by reversing the temporal sequence of multistate capture histories, in which case the
estimates of �rs

t are now interpreted as � rs
tC1 (Nichols 2016). For example, consider

reverse-time modelling of the capture history shown above, 1 0 2:

Pr .1 0 2 j last capture at period 3 in location 2/ D
�

�223
�

1 � p22
�

�212

C�213
�

1 � p12
�

�112
�

p11

So we condition on (use as a starting point) the capture at occasion 3 in location
2. The summed terms indicate the uncertainty about whether the animal was in
location 1 or 2 during occasion 2 when it was not caught.



13 Assessing Landscape Connectivity for Tigers and Prey Species 269

This reverse-time parameter, � rs
tC1, is especially relevant to the concepts of source

and sink and, more generally, to the contributions of metapopulation components
to each other and to the entire metapopulation (Runge et al. 2006). In fact, � rs

tC1
directly estimates the contribution of subpopulation s to the population growth

rate of subpopulation r, defined as �r
t D Nr

tC1
.

Nr
t

, where �r
t is growth rate of

subpopulation r and Nr
t is abundance of subpopulation r at occasion t. We believe

that direct inferences about contributions of different locations to an overall system
of locations have the potential to be very useful in a conservation setting (Runge
et al. 2006).

13.4.4 Occupancy Dynamics and Movement

Surveys of animal presence and absence at multiple locations have long been used
to draw inferences about animal distribution patterns. Because animals that are
present at a location are not always detected via surveys, occupancy models were
developed to incorporate the thinking of Chap. 3, and associated detection issues,
into inferences about species distribution (Chap. 4, also MacKenzie et al. 2006). As
described in Chap. 4, dynamic (multi-season) occupancy models include two vital
rate parameters, colonization and extinction. Colonization � t reflects the probability
that a site not occupied by a focal species at sampling occasion t is occupied at
sampling occasion t C 1. This colonization parameter thus describes movement into
a site from somewhere outside of that site. However, unlike the capture-recapture
approaches described above, the specific origin of colonizing individuals is not
specified in dynamic occupancy models. Extinction "t is the probability that a site
that is occupied at occasion t is not occupied at occasion t C 1. The complement of
extinction, 1 – "t, may thus incorporate a so-called rescue effect (Brown and Kodric-
Brown 1977) in which a site may go locally extinct and then become recolonized
before the next sampling occasion.

Inferences about movement based on dynamic occupancy modelling are often
based on site-specific covariates that affect rates of colonization. Dynamic occu-
pancy models have not seen use for tigers and prey, to our knowledge, although
we expect this to change, as the second occupancy survey of the Malenad Tiger
Landscape in Karnataka, India has just been completed (see Karanth et al. (2011)
for description of the first survey of this landscape). However, examples from other
species and systems provide an indication of what sorts of inferences are possible
with these models. For example, we frequently expect that probabilities of a site
being colonized will be influenced by such site-specific covariates as distance to a
potential source population and nature of the intervening habitat matrix.

Specialized autologistic occupancy models include not only site-specific covari-
ates that may be related to movement but also potential effects of occupancy of
neighbouring sites (Yackulic et al. 2012; Eaton et al. 2014). For example, it would be
reasonable to expect a higher probability of colonization, and a lower probability of
extinction (rescue effect), for a focal site surrounded by occupied neighbouring sites
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than one surrounded by unoccupied neighbours. Although no marked individual
animals are involved, the expectation is based on the likelihood of movement into
the focal site from neighbouring sites. This hypothesis can be tested by defining a
‘neighbourhood’ (sites adjacent to, or within some radius of, the focal site) and then
assessing occupancy at these sites. Focal site occupancy (for single season models)
or rates of extinction and/or colonization (for multi-season models) can then be
written as a function of neighbourhood occupancy, for example, as

logit .�i;t/ D ˇ0 C ˇ1X C ˇ2 
Ni

i;t

where:

� i , t is the modelled parameter (occupancy, extinction, colonization) of focal site i at
occasion t.

ˇj are model parameters describing relationships.
X is an environmental covariate.
 

Ni

i;t is the average occupancy of neighbours of focal site i.

Such autologistic models have been used with a priori specified neighbourhoods
(e.g. Yackulic et al. 2012). Another approach is to specify neighbourhoods of
differing sizes (different distances from focal site) and allow model selection to help
determine the appropriate neighbourhood size (Eaton et al. 2014). These models are
especially useful for systems experiencing non-equilibrium occupancy dynamics
(Yackulic et al. 2012) and can be useful for determining the scale of movement in
landscapes.

In summary, despite the absence of marked individual animals and documented
movements, occupancy modelling can be used to draw indirect inferences about
movement. These inferences are directly related to the concept of connectivity and
should be useful for surveys that cover large spatial scales.

13.4.5 Landscape Genetics

Tigers have a very broad geographic distribution (Chaps. 1 and 2). It is pertinent
to ask whether tigers in different protected areas and landscapes are genetically
different. Population genetics is the theoretical framework that allows us to quantify
these differences. The faecal DNA approach allows us to identify individual tigers
non-invasively (see Chap. 11), and also to identify how gene frequencies change
across tiger populations.

The most important population genetic process in relation to connectivity is gene
flow, or movement of genes between populations. Population genetics can help us
quantify whether two populations of tigers are similar or different. When gene flow
is high, populations will be similar, but when gene flow is low and they have been
separated for some time, they are likely to be more different. This similarity or

http://dx.doi.org/10.1007/978-981-10-5436-5_1
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(a)

(b)

High gene flow,low Fst

Low gene flow,high Fst

High gene flow,low Fst

Distance = x

Low gene flow,high Fst

Distance = x

Plate 13.1 (a) As connectivity decreases, genetic dissimilarity between patches increases. (b)
This may be affected by distance between patches, or the intervening landscape

difference is reflected in a statistic called Fst (Fig. 13.1a; see Slatkin (1987) for a
review on population structure and Fst).

Landscape genetics integrates these concepts of population genetics with those
in landscape ecology. As discussed earlier, population genetics can help us quantify
the effects of movement on gene pools, as shown in Fig. 13.1a. But a closer look at
this illustration shows that we are ignoring what lies between the two populations.
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Imagine if the two populations were equidistant to one another, but what lies
between these populations is different (Fig. 13.1b). In this case, if you collected
genetic data from two sets of populations that were the same distance apart, but one
had more genetic connectivity than the other, you could infer that the first landscape
was conducive to movement, while the second was not. In the illustrative example
shown in Fig. 13.1b, forest cover enhances connectivity while urban settlements
hamper it. This suggests that populations are not simply isolated by distance (as
in Slatkin 1987), but in addition by resistance offered by the intervening matrix
(detailed further in Sect. 4.6 of this chapter). The use of a graph-theoretic approach
to model movement across a landscape of varying resistance is detailed in McRae
et al. (2008), and these approaches are implemented in software programs such as
Circuitscape. In these models, genetic samples are collected from different locations
in the landscape (for details on collection and processing of genetic samples of
tigers, see Chap. 11), and connectivity among these different locations is modelled
in a manner akin to the flow of current along circuits (more details provided in
Sect. 4.6), the underlying assumption being that more gene flow would lead to more
similar genetic composition among samples (e.g. Joshi et al. 2013).

While the concept of resistance to movement (as opposed to linear distance)
is easy to understand, parameterizing such resistance poses a larger challenge.
Landscape genetics provides a valuable framework to parameterize resistance
surfaces, using information on genetic dissimilarity across space. The first step to
estimating a resistance surface in a landscape would be to list a set of environmental
variables that may resist or impede movement. These could include land-use types,
elevation or climatic variables. Testing which of these environmental variables
drive genetic dissimilarity across sites then provides inputs on their contribution to
resistance. Essentially, the genetic data can be used to test the validity of potential
models of resistance surfaces; note that this would provide information specifically
on genetic connectivity. The protocols and toolkits for developing landscape genetic
approaches are outlined in several reviews including Zeller et al. (2012) and Hall
and Beissinger (2014). Several other papers review landscape genetics in general
(e.g. Manel and Holderegger 2013). These estimated resistances can then be used
to predict potential dispersal across landscapes through various methods detailed in
Sect. 4.6.

Current models that assess the actual (realized) rates of movement or connectivity
among populations using genetics are fundamentally based on two concepts, both
emerging from the genetic (dis)similarity among collected samples. One, they may
be based on partitioning samples (or individuals) into clusters showing genetic
similarity. These models are able to further identify the most appropriate number of
clusters in a landscape (Pritchard et al. 2000) and thus highlight isolated populations
that have had no recent immigration. Clustering of genetic samples of tigers from
across India leads us to believe that the westernmost population in Ranthambhore
forms a separate cluster, or is isolated and genetically differentiated from popu-
lations in the rest of the country (U Ramakrishnan, unpublished data). Second,
one may assign genetic samples from specific individuals to reference populations,
which are defined based on the entire set of samples obtained in a landscape.

http://dx.doi.org/10.1007/978-981-10-5436-5_11
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Dispersers, or their progeny, can then be identified when the population of origin, the
population to which the sample is assigned, differs from the population of sampling,
the population from which the sample was physically collected (Piry et al. 2004).
Using assignment tests, Joshi et al. (2013) identified dispersers in a Central Indian
landscape and an example of a long-distance dispersal (approximately 650 km).

13.4.6 Modelling Potential Population Connectivity

Modelling potential connectivity is useful as (a) inferences about actual connectivity
are based on infrequent events that are difficult to detect and, thus, may be subject
to substantial uncertainty; (b) modelling potential connectivity allows us to isolate
matrix effects on connectivity from those arising within populations, whereas this
distinction is less tangible in measures of actual or realized connectivity (though
this distinction can also be made through modelling population-related effects;
e.g. Nichols and Kendall 1995); and (c) predicting potential connectivity within a
scenario-testing framework can be useful for prioritizing conservation interventions
situated in the matrix.

Animals make decisions on where to move in the landscape based on various
factors. The permeability of different land-cover types to animal movement has
been quantified through either the cost of movement (Adriaensen et al. 2003) or
the resistance the matrix offers for animal movement (Mcrae et al. 2008). Cost-
distance modelling is based on the cumulative cost of traversing through a particular
movement route (Adriaensen et al. 2003). These analyses are typically conducted
within a Geographic Information Systems (GIS) platform, whereby each pixel (or
location) in an image is associated with a ‘cost’ to movement. There are many
possible movement routes between two habitat fragments. The total cost of moving
along each of these routes (or the dispersal cost) is simply the added cost of each
pixel located along the route. The movement route between a source and destination
habitat patch that minimizes the cumulative cost of dispersal is then chosen as the
‘least-cost path’. A threshold dispersal cost is sometimes used to define isolation,
whereby it is assumed that an animal cannot move along a movement path that
imposes a dispersal cost greater than this threshold.

Least-cost modelling has been very popular as an approach that (a) takes into
account matrix heterogeneity, (b) is spatially explicit, and (c) is based on the
cumulative nature of dispersal costs. However, least-cost modelling makes a number
of assumptions, which are not likely to hold for tigers and most endangered species.
(1) The model assumes that the disperser has complete knowledge of the landscape.
In reality, most animals perceive their environment in their immediate neighbour-
hood, determined by the animals’ navigation capabilities, or perceptual range, as
well as the environment, and this shapes movement routes (Nathan et al. 2008).
(2) Least-cost modelling assumes that the disperser has chosen its destination,
immediately upon emigration, an assumption that is unlikely to be true. Animals,
in fact, use a number of cues, including the presence of conspecifics, to determine
suitable destination fragments to immigrate into. (3) It assumes that animals choose
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movement paths optimizing the cost of movement, while there is evidence that
this need not be true. (4) Least-cost modelling focuses on a single optimal path,
whereas path redundancy can increase overall landscape connectivity and resilience
to land-cover change. While path redundancy has been partly accounted for through
selection of multiple paths with low cumulative dispersal costs, it is still not
explicitly quantified in cost-distance modelling, that is, two habitat patches joined
by two movement paths are not quantified to be more connected than when joined
by one movement path, through the cost-distance approach. Despite these issues,
cost-distance modelling continues to be used for connectivity modelling of tigers
(e.g. Carroll and Miquelle 2006; Areendran et al. 2012; Rathore et al. 2012) and
other endangered species (e.g. Cushman et al. 2016).

Some of the restrictive assumptions mentioned above are relaxed in another
set of models, derived from electrical circuit theory (McRae et al. 2008). These
models simulate animal movement as current flowing along a circuit map of
‘nodes’, while the resistance between the two nodes provides information on local
matrix permeability. The current flowing between nodes depends on the resistance,
which mirrors the assumption that animals are more likely to move along paths
of lower resistance. Modelled in such a manner, the simulated dispersal is more
akin to a random walk and hence more formally based in movement ecology. These
models then quantify cumulative ‘resistance’ along all potential dispersal routes
between source and destination habitat patches. Unlike cost-distance models, path
redundancy—shown to be important for connectivity—is accounted for in circuit
models such that connectivity between two patches is quantified to be greater
when there are multiple movement paths between them. Results of the model
include ‘resistance distances’ separating fragments or populations (a quantification
of linkages among fragments), and a current map that shows how much ‘current’
(or movement) flows through each location in the landscape (McRae et al. 2008).
This allows us to identify ‘pinch points’ or locations that are critical for maintaining
connectivity across the landscape (McRae et al. 2008). Validation of least-cost path
models and circuit theory models, using empirical data on animal movement, or
estimated actual connectivity, has shown circuit-based models to generally be better
able to predict animal movement (McRae et al. 2008; McClure et al. 2016).

For both cost-distance and resistance-distance modelling, a key step is quantify-
ing ‘costs’ or ‘resistances’ of different matrix types. Rayfield et al. (2010) show
through simulation models that cost-distance models are highly sensitive to the
assigned cost values. Zeller et al. (2012) reviewed connectivity models and found
that most studies used expert opinion to assign resistance values to matrix types,
a practice also undertaken for tiger connectivity modelling (e.g. Areendran et al.
2012; Rathore et al. 2012). Expert opinion, however, may be misleading, especially
when it relates to a process such as dispersal, which is infrequent, occurs at large
scales and is often hard to detect. A number of connectivity studies also use habitat
suitability as a proxy for species connectivity requirements, which may provide very
misleading results in heterogeneous landscapes (Zeller et al. 2012; Vasudev and
Fletcher 2015; Abrahms et al. 2016). Quantifying resistance values of the matrix is
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thus a vital step for tiger connectivity models. This can be done using observed tiger
movement behaviour, data from radiotelemetry or calibrations of matrix resistance
derived from estimates of actual connectivity (i.e. from genetic assignment tests,
multi-state capture-recapture models or dynamic occupancy models, e.g. Ramesh
et al. 2016).

Spatially explicit individual-based models (IBMs) can be used to model animal
connectivity. These models follow simulated individuals that make decisions based
on predetermined rules, and track population- or landscape-scale consequences
of the behaviour of these individuals (DeAngelis and Gross 1992). IBMs are
powerful and flexible and can incorporate current theoretical advances in movement
ecology (e.g. Revilla and Wiegand 2008). However, IBMs are data hungry and
often sensitive to model parameters that sometimes are difficult to reliably estimate.
Kanagaraj et al. (2013) assess connectivity across tiger populations in the Terai
Arc Landscape in India and Nepal, using a spatially explicit IBM. They use
habitat suitability as a proxy for matrix resistance and a range of plausible tiger
movement parameters. Their simulations indicated that fragments in this landscape
are currently isolated but pointed to potential for restoring connectivity (Kanagaraj
et al. 2013). Carroll and Miquelle (2006) use an IBM to model population viability
of tigers in the Russian Far East, within which was included the modelling of
‘floaters’, or dispersing tigers. Dispersal was modelled using a random walk, and
results of the model included the identification of corridors connecting patches in
the landscape (Carroll and Miquelle 2006). Both the above models suffered from a
paucity of movement-related information. Kanagaraj et al. (2013) in fact also found
that their model was highly sensitive to the specification of movement parameters,
emphasizing the importance of obtaining such information through observations of
tiger movement, which would greatly enhance the utility of such simulation models.

Stochastic dynamic optimization also provides a modelling approach to develop
optimal movement decisions while incorporating animal perceptive abilities, land-
scape characteristics, internal states and other relevant factors (Williams and Nichols
1984). Such formulations would be an extension of the least-cost modelling
approach but with relaxation of many of its assumptions. In this approach, dispersal
can be viewed as a series of decisions taken by an individual, based on its
perceived environment, current internal state and perceived rewards. A stochastic
dynamic optimization approach allows us to formulate movement decisions based
on simple mathematical rules of maximizing perceived rewards while minimizing
perceived costs and/or subject to certain constraints, based on the current state of
the individual. The state of the individual could comprise its internal motivation
(sensu Nathan et al. 2008), fatigue and current state of knowledge of the landscape.
Rewards may include the presence, accessibility and quality—in terms of habitat
structure, resources, or mates—of potential destination fragments, as well as
resources in the matrix, depending on the state of the individual. Costs may include
actual physiological costs of moving, predation risk, mortality costs associated
with moving through the matrix—for instance, road mortality—or moving through
unfamiliar areas and/or missed opportunity costs (Zeller et al. 2012; Vasudev
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et al. 2015). Optimization models can also take into account stochastic effects,
and uncertainty in rewards and costs. However, such models may still be data
hungry, requiring information on step-wise rewards, costs and state of dispersers;
the sensitivity of models to these parameters is unknown. While these optimization
approaches have been applied to animal seasonal migration (Bauer and Klaassen
2013), they have not been developed to any significant extent for dispersal and
provide a valuable avenue of exploration.

13.4.7 Using Remotely Sensed Data to Depict Heterogeneous
Landscapes

Remotely sensed data and derived products have largely been used to model
potential connectivity in combination with approaches such as least-cost paths
(Adriaensen et al. 2003) and circuit theory (McRae et al. 2008). All these approaches
rely on a cost/resistance layer, which is an estimate of how landscape features or
environmental parameters affect animal movement within the landscape (Zeller
et al. 2012). To evaluate potential tiger connectivity, studies have used spatially
explicit information on land-use, land-cover, linear intrusions, human settlements
and human populations to derive cost layers (Joshi et al. 2013; Sharma et al. 2013a;
Kanagaraj et al. 2013; Ramesh et al. 2016). The benefits of remotely sensed data lie
in their being widely available at fine resolutions for large landscapes; on-ground
observations on such large spatial scales would be practically impossible.

While there is no standard method for deriving resistance layers, the overall
framework is to assign the highest resistance to landscape features that impede
movement (Zeller et al. 2012). Further, multiple layers can be combined to obtain
a single layer that reflects the cumulative resistance of all landscape features.
One of the biggest challenges in developing resistance layers is that landscape
features/patterns do not directly reflect ecological costs (e.g. travel time, mortality
risk, habitat suitability, ability to cross physical barriers) which affect animal
movement, and converting remotely sensed products or spatially explicit data to
a meaningful resistance layer needs to be carefully thought through (Vasudev et al.
2015).

A review of 96 research papers by Zeller et al. (2012) shows that broadly five dif-
ferent sources of biological data and three different analytical approaches have been
used to convert remotely sensed products into resistance values. While remotely
sensed products are now easily available, a key consideration before using remotely
sensed/GIS data is to examine the spatial resolution at which the data are available
and how this relates to the way the animal perceives its environment (grain size),
and any potential mismatches need to be addressed (Zeller et al. 2012). It is also
important to consider the implications of classification errors, and their effects on
derived connectivity maps and subsequent management/conservation decisions. The
same holds true while using remotely sensed indices (e.g. Normalized Difference
Vegetation Index, NDVI), where issues of saturation and non-linear relationships
with ecological processes need to be carefully examined.
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Irrespective of the source of information, and the analytical approach adopted
to assign resistance values to landscape features/pattern, it is important that the
estimated resistances are validated against independently collected information on
actual movement from telemetry studies, studies on marked animals (e.g. photo-
graphic capture-recapture) or genetic data (Revilla and Wiegand 2008). However,
most often such information is likely to be missing. In this case, it may be preferable
to use a range of resistance values, and the resulting connectivity maps should be
examined by experts who are familiar with the target species and the ecological
condition of the landscape. Such an assessment would help in determining the
optimal resistance values and sensitivity to resistance values and also in minimizing
any uncertainty in the resulting outputs. It must be kept in mind, however, that our
ability to make meaningful inference from analyses lacking key movement-related
information is limited.

While remotely sensed products have been used widely to identify potential
connectivity, they have also been applied in understanding dispersal using multi-
state capture-recapture models (see Sect. 4.2. for details on the model). The model
parameterization incorporates both survival at a given location and movement
between locations (Hestbeck et al. 1991). Remotely sensed information characteriz-
ing the quality of location (e.g. metrics on compactness of tiger habitat) can be used
to understand the role of landscape features on survival. Similarly, landscape metrics
such as density of linear features surrounding the location, mesh size and inter-
patch distances describing landscape features between two locations, determined
along least-cost/current flow/random walks, can be incorporated to empirically
understand which landscape features promote dispersal. The possibility of linking
environmental and landscape features to understand dispersal using multi-state
models needs to be further explored, and this opens a new line of ecological studies
which can greatly contribute to our understanding of tiger dispersal.

13.4.8 Spatial Conservation Prioritization

Conservation planning and prioritization exercises can determine where and on what
to invest limited conservation resources (Moilanen et al. 2009). Such exercises bring
increased transparency and efficiency to conservation programmes and ultimately
enhance the probability of successful conservation. Connectivity is inherently
spatial, and hence, it is vital to include spatial components in prioritization
exercises for connectivity conservation. Basically, these methods provide a way
to use existing knowledge emanating from various observational and inferential
approaches, to formally inform conservation decision-making (Fig. 13.2). Circuit
theory can provide information on conservation bottlenecks or locations in the
landscape that are vital for the maintenance of landscape connectivity (McRae et al.
2008). Individual-based models can provide information on potential corridors, or
of impacts of dispersal mortality on species. For tigers, least-cost path modelling
has been used to identify corridors (Carroll and Miquelle 2006; Rathore et al. 2012)
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Plate 13.2 An overview of methods and approaches available for studying, predicting and
making inferences on tiger connectivity. Here, for illustrative purposes, a landscape in Western
Ghats is shown, but methods are generally applicable across landscapes. Map sourced from WCS
India, tiger image credited to Arjun Srivathsa

and the impact of developmental projects on tiger connectivity (Areendran et al.
2012); both studies, however, suffered from a lack of data on matrix resistances.
Occupancy modelling approaches have been used to identify optimal locations for
road-crossing structures in highways (Rayan and Linkie 2015).

Network theory has gained much attention in the past few years due to its
utility in depicting sets of interconnected populations, and its strong theoretical
foundations (Minor and Urban 2007). Networks are composed of individual habitat
fragments, termed ‘nodes’, interconnected by linkages, termed ‘edges’. Nodes can
be characterized through their size, habitat quality, population size or any other
characteristic, while linkages can be characterized by their strength or degree of
flow. Networks can be symmetrical, such that the flow of individuals or genes from
fragment A to B is identical to the flow from B to A, or it can be asymmetrical,
where this assumption is relaxed. Quantification of linkages can be through data
on actual connectivity using mark-recapture data (e.g. Fletcher et al. 2013) or
through potential connectivity using circuit theory (e.g. Vasudev and Fletcher 2015).
While network approaches have been hailed due to the minimal data requirements
(Minor and Urban 2007), it is highly recommended that linkages between patches
be quantified realistically to obtain meaningful and useful inferences.
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With information on habitat fragments and nodes, there are a number of metrics
that provide analyses of the importance of each node (habitat patch) or link for
overall landscape connectivity (Minor and Urban 2007). Isolation metrics determine
clusters of populations and fragments that are genetically and demographically
unconnected to their neighbours (Minor and Urban 2007). A number of these met-
rics are similar to those used in metapopulation theory. Recent extensions of network
modularity have been used to identify critical scales or thresholds in natural land-
scapes, which can be used to inform conservation activities and delineate species
conservation landscapes (Fletcher et al. 2013). A number of prioritization models
also aim to combine information on the feasibility of conserving certain areas, with
their conservation value or impact on species viability (Moilanen et al. 2009).

Multilocation population projection matrices provide an explicit modelling
framework that includes both within- and between-population dynamics. Asymp-
totic population growth rate and sensitivity/elasticity of growth rate to population-
specific vital rates can be computed directly. The multilocation extension of Fisher’s
reproductive value provides a metric reflecting the relative importance of an animal
in each potential age/stage to ultimate population size and is thus a natural metric
by which to place value on different subpopulations (e.g. Rousset 1999). Empirical
approaches to this theory include multistate capture-recapture modelling, which
can be used to directly estimate the proportional contribution of animals in any
subpopulation to growth of the entire metapopulation system, an explicit accounting
of subpopulation ‘value’ (see Sect. 4.3; also Nichols 2016).

Optimization theory can also be used on networks to achieve conservation
objectives (e.g. maximize species presence or landscape connectivity), under certain
conservation/management constraints, feasibility and vulnerability (Chadès et al.
2011). These methods are yet to be used for tigers but hold great potential for
informing future conservation of the species.

13.5 Tiger Connectivity Conservation: Challenges
and Opportunities

13.5.1 Existing Evidence of Population Isolation

Several landscape genetic studies explore connectivity and how land-use types
impact resistance to tiger movement. These studies have mostly focused on the
Central Indian landscape (see Joshi et al. 2013; Sharma et al. 2013a; Thatte et al.
in review). A single study in Northwestern India (Reddy et al. 2012) establishes
connectivity but does not estimate resistance. Overall, these studies indicate that
tiger connectivity is high, despite fragmentation; this may perhaps be due to the
relatively recent time frame of fragmentation in these landscapes or to the ability of
tigers to traverse large distances in human-inhabited lands.

Multiple approaches and genetic datasets from different studies (e.g. Thatte et al.,
in review; Joshi et al. 2013) suggest that human settlements and linear barriers
such as roads are detrimental to tiger connectivity. Because many tiger landscapes
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have not been studied (e.g. Western Ghats, Terai Arc, Northeast India), we are
uncertain about how generalizable these results are across landscapes and land-use
types. Future studies should focus on trying to investigate connectivity in multiple
landscapes.

13.5.2 Conservation Implications of Small Isolated Populations

Small isolated populations are generally extinction prone for multiple reasons.
Small populations are subject to demographic stochasticity, such that they may be
impacted by random variation in birth rates, death rates or resulting sex ratios. They
are also subject to genetic stochasticity, that is, inbreeding depression, loss of poten-
tially adaptive genetic diversity and the accumulation of mutations (O’Grady et al.
2006). Small, isolated populations tend to have closely related individuals and low
genetic variation. Genetic variability is the raw material for evolution, a necessity
for species to adapt to a changing environment due to habitat loss, fragmentation
and climate change. Low genetic variability reduces individual survival and fitness,
and decreases population persistence (Lacy 1997; Frankham 2005).

There are few studies that have isolated the impact of inbreeding on extinction
probability. However, O’Grady et al. (2006), using existing evidence of inbreeding
in the wild, showed through simulation models that inbreeding is likely to have an
impact on small isolated populations of many endangered species. Populations with
low heterozygosity, a consequence of inbreeding, have impaired sperm quality that
impacts reproductive success (Ralls et al. 1988). Ralls et al. (1988) demonstrated
significant effects of inbreeding on fitness in 38 zoo species and concluded that
even a 0.25 level of inbreeding results in a 33% decline in juvenile survival. Several
studies have subsequently reviewed inbreeding effects in wild populations (e.g.
Keller and Waller 2002). Demonstrated inbreeding effects in wild felids include
poor sperm quality, low testosterone levels and chryptorchidism (undescended
testes) in Florida panthers, all of which impact population reproductive rates.
Further, these effects were reversed when genetically dissimilar individuals were
introduced into the population. Inbred populations of the Florida panther showed
improved reproductive output following genetic restoration (Hostetler et al. 2013).

Thus far, inbreeding depression has not been demonstrated in wild tiger popula-
tions, although foetal and juvenile mortality have been observed in inbred captive
tigers (Xu et al. 2007). It is also evident that most populations of the species
are much smaller than what is recommended for long-term viability (Traill et al.
2007; Walston et al. 2010). As an apex predator, tigers exist at relatively low
densities (Karanth et al. 2004). In source sites, population sizes range between 14
and 300 individuals, while Traill et al. (2007) recommend population sizes of over
4000 individuals for long-term viability. Smith and McDougal (1991) estimate that
the effective population size for tigers is little less than half the adult population
(i.e. the largest tiger population would have an effective population size of <150
individuals).
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Through a spatially explicit individual-based simulation model, Kenney et al.
(2014) show that in small (12 female breeding tigers) and medium sized (24
female breeding tigers) populations, even one immigrant male tiger per generation
can drastically reduce the probability that the population will go extinct in the
next 100 years. Currently, tigers appear to be able to traverse human-dominated
landscapes across large distances (Joshi et al. 2013; Ramesh et al. 2016). The only
wild tiger population that appears to be isolated based on genetic data is a population
at the westernmost edge of the range, Ranthambore (U Ramakrishnan, unpublished
data). While this population does not yet show signs of inbreeding depression,
relatedness between individuals is high and genetic variation is low (Natesh et al.,
in review).

Small populations may also by ‘rescued’ by immigration, ameliorating negative
impacts of demographic stochasticity (in addition to increasing genetic variability).
Joshi et al. (2013) show movement of individuals from high-density sites such as
Kanha to low-density tiger populations such as Nagarjunasagar-Srisailam Tiger
Reserve (NSTR). Tigers are also now moving into Kawal Tiger Reserve in
Telangana from source sites, leading to population recovery (I Siddiqui, unpublished
data). Maintaining such connectivity is critical given ongoing efforts to increase
protection of NSTR to aid tiger population recovery.

13.5.3 Current Connectivity Conservation

By far the most common conservation strategy used to enhance connectivity is the
demarcation of corridors, or narrow stretches of habitat that connect fragments.
Corridors are mentioned, for instance, in the Wildlife Protection Act of India
(1972), while proposing a clear definition and legal framework for protection in
future amendments. A number of corridors have been demarcated for tigers, some
examples being the Rajaji-Corbett and Kanha-Pench corridors in India, the Central
Annamite corridor in Vietnam and the Tennaserim Hills in Myanmar. Katarniaghat-
Bardia and Dudhwa-Basanta transboundary corridors link forests of India and
Nepal, while the recently declared Sredne-Ussuriiskii refuge links tiger habitat in
Russia to China.

Tiger corridors have largely been demarcated through structural connectivity
measures, with little spatial information on where tigers move, or their importance
for maintaining connectivity. Nonetheless, there is evidence that tigers use some
of these forested corridors (Karanth et al. 2011; Rayan and Linkie 2015) and that
they house populations of tiger prey (Rayan and Linkie 2015) and are likely of
conservation value for other biodiversity as well.

Corridors rarely benefit from the same level of protection, or conservation
effort, as Protected Areas (PAs). Corridors, even when government-owned, may be
managed as multiple-use lands, or may not be prioritized for conservation. Corridors
are therefore especially susceptible to forest loss or degradation. Corridors, being
by nature narrow stretches of habitat, are also susceptible to edge effects and
associated consequences for habitat quality. Kanagaraj et al. (2013) also showed
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through a simulation model that narrow corridors may not serve well to link habitat
fragments. Prey may be differentially available in corridors (Rayan and Linkie
2015). Dispersing tigers that do not encounter prey may turn to domestic cattle for
food, leading to human-tiger conflict. Human settlements and other developmental
projects may restrict the use of corridors (Joshi et al. 2013; Rayan and Linkie 2015).

Roads and other linear developmental projects have a disproportionate impact on
tiger connectivity (Joshi et al. 2013). Areendran et al. (2012) assessed the impact
of developmental projects on connectivity in the Nilgiri landscape, southwestern
India, through use of cost-distance modelling. Even at conservative estimates of
their impacts, roads drastically increased dispersal cost and negatively impacted
landscape connectivity (Areendran et al. 2012).

Dispersal is a risky phase, during which animals often face high mortality risks.
The inability of tigers to successfully traverse a human-dominated landscape is
a serious issue that can have impacts on landscape connectivity and population
demographic parameters. Marked dispersing tigers in the Russian Far East suffered
100% mortality while traversing the matrix (Goodrich et al. 2008). Animals do
not only move through forested corridors, and those dispersing through human-
dominated areas face difficulties of prey availability (Karanth et al. 2011; Rayan
and Linkie 2015), decreased hunting efficiency (Kerley et al. 2002) and heightened
poaching (Goodrich et al. 2008). Dispersing tigers are also more conflict prone, as
(a) they are more likely to encounter people, (b) they are often moving through
areas of low prey availability and hence may resort to killing cattle and (c) due to
high levels of perceived risk and unfamiliar environments faced during dispersal,
tigers may display behaviours that aggravate conflict. Indeed, movement conduits
face high levels of human-tiger conflict (e.g. Ahmed et al. 2012). Such conflict,
whether it leads to tiger mortality or removal to captivity, ultimately has the impact
of limiting successful dispersal. Roads and highways in the matrix might also cause
increased dispersal mortality. Lastly, tigers may be unable to locate suitable habitat
due to the configuration of the matrix, leading to dispersal culs-de-sac or dead ends
(Kanagaraj et al. 2013). To ensure that current rates of connectivity persist into the
future, these factors need to be addressed within tiger conservation programmes.

13.5.4 A Prospectus for Tiger Connectivity Conservation: Corridors
and Beyond

Connectivity conservation globally has largely focussed on the demarcation and
maintenance of corridors (Worboys et al. 2010). Corridors are extremely important
where present, as they represent areas of natural vegetation and form habitat for
a number of species. Further, corridors, in addition to aiding dispersal, may also
serve as secondary habitat for species. Structural connectivity or habitat contiguity
is thus critical as it not only reinforces linkages in the landscape for multiple species
and ecological processes but also serves to increase the overall natural vegetation
cover. Thus, forest conversion to inhospitable matrix in areas that may serve to
enhance structural connectivity needs to be strictly avoided, while habitat restoration
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or afforestation efforts should be carefully planned using spatial prioritization
exercises such that these efforts lead to increased linkages between fragmented
populations.

However, corridors, while valuable, are typically difficult to manage and often
face threats of habitat loss, poaching, encroachment and edge effects. Corridors may
not always be within the jurisdiction of the government, and hence imposing the
legal framework that applies to PAs may be problematic. Lastly, there is evidence
that while animals use corridors for dispersal, having a hospitable matrix that
can occasionally be used adds to path redundancy and the overall resilience of
connectivity towards land-use change. Thus, managing the matrix through incentive
measures, participatory programmes or legal initiatives is vital for the overall health
of the landscape.

Animals use not only corridors for dispersal but also move through the matrix.
Tigers are known to move through coffee plantations, sugarcane fields and even
human settlements (Ramesh et al. 2016). A more meaningful perspective towards
connectivity conservation is a mechanistic approach, whereby the main threats to
successful dispersal and connectivity are addressed (Vasudev et al. 2015).

Corridors as well as different matrix types vary in their utility due to certain
factors, such as lack of cover, limited food resources or human presence (e.g.
Rayan and Linkie 2015). Roads and other linear developmental projects are
hugely detrimental to connectivity. Ideally, ecological costs of connectivity loss
should be included in planning stages of these developmental projects such that
they minimally impact wildlife. Alternatively, overpasses and viaducts have been
recommended to allow wildlife crossing of highways (Rayan and Linkie 2015).
These methods are often costly, and it is imperative to design them based on
scientific information on tiger movement such that they are maximally effective.
Further, monitoring of overpasses and viaducts is critical to ensure conservation
success.

The lack of food resources in corridors and the matrix often leads to tigers
preying on livestock. Increasingly, the response to such incidents is the removal of
tigers either through killing or moving into captivity. Such removal directly impacts
connectivity and, under extreme cases, completely precludes dispersal. Fostering an
environment where removals immediately follow the sighting of tigers in human-use
lands will impact connectivity and population viability (see Goswami and Vasudev
2017). Fencing tigers and other wildlife within forests is also not a solution that is
viable in the long term. Context-specific participatory solutions that disincentivize
practices that are harmful to tiger connectivity and encourage wildlife-friendly
measures are required within tiger conservation landscapes.

Lastly, while all these approaches are focussed on enhancing connectivity in
the landscape, it is crucial to remember that connectivity may also have negative
impacts on species (Fletcher et al. 2016), such as loss of local adaptions (Marshall
and Spalton 2000) or spread of diseases (McCallum and Dobson 2002). To date,
these impacts have not been detected in tigers. Theoretical models suggest that ‘one
migrant per generation’ is an appropriate level of dispersal to be maintained among
populations (Wang 2004), but this rule is based on assumptions that are unlikely
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to hold in natural populations (Wang 2004), and how much connectivity should
be maintained in a landscape is still undetermined. Connectivity requirements (and
limitations) for inbreeding avoidance, demographic rescue or habitat recolonization
are also bound to be drastically different, with demographic contributions requiring
far greater movement than genetic contributions.

Overall there is increased need for incorporation of species dispersal biology
into connectivity conservation (Sawyer et al. 2011; Zeller et al. 2012; Vasudev et al.
2015). Tiger conservation investments into corridors and the matrix, unless informed
by science, may not be successful in increasing landscape connectivity. In the face
of rapid habitat and environmental changes, the ability of conservation scientists
to predict the response of tiger populations to such changes is critical. Without
increasing our understanding of tiger movement behaviour, and incorporating this
knowledge into connectivity conservation planning, tigers may only persist in small,
isolated populations in the future.
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14.1 Introduction

Humans have been involved in efforts to manage wildlife populations for cen-
turies. Modern wildlife management and conservation are often traced back to
the publication in 1933 of Game Management by Aldo Leopold. In this seminal
volume, Leopold described both rudimentary population models and animal “census
methods,” recognizing the important roles these methods would play in active

J.D. Nichols (�)
Crofton, MD, USA
e-mail: jamesdnichols2@gmail.com

K.U. Karanth
Wildlife Conservation Society (WCS), New York, NY, USA

Centre for Wildlife Studies, Bengaluru, India

Wildlife Conservation Society, India Program, Bengaluru, India

National Centre for Biological Sciences-TIFR, Bengaluru, India
e-mail: ukaranth@wcs.org; https://www.wcs.org/; http://cwsindia.org/; http://wcsindia.org/home/;
https://www.ncbs.res.in/

A.M. Gopalaswamy
Statistics and Mathematics Unit, Indian Statistical Institute, Bengaluru, India

Department of Zoology, University of Oxford, Oxford, UK
e-mail: arjungswamy@gmail.com; https://www.isibang.ac.in; https://www.zoo.ox.ac.uk/

G.V. Reddy
Indian Forest Service, Government of Rajasthan, Jaipur, India
e-mail: gvreddy.rajforests@gmail.com

J.M. Goodrich
Panthera, New York, NY, USA
e-mail: jgoodrich@panthera.org; https://www.panthera.org/

© Springer Nature Singapore Pte Ltd. 2017
K.U. Karanth, J.D. Nichols (eds.), Methods For Monitoring Tiger And Prey
Populations, DOI 10.1007/978-981-10-5436-5_14

289

mailto:jamesdnichols2@gmail.com
mailto:ukaranth@wcs.org
https://www.wcs.org/
http://cwsindia.org/
http://wcsindia.org/home/
https://www.ncbs.res.in/
mailto:arjungswamy@gmail.com
https://www.isibang.ac.in
https://www.zoo.ox.ac.uk/
mailto:gvreddy.rajforests@gmail.com
mailto:jgoodrich@panthera.org
https://www.panthera.org/


290 J.D. Nichols et al.

management. It is doubtful that a member of the wildlife profession from Leopold’s
time would even recognize the methods currently used for population modeling
and inference, as these methods have progressed dramatically in formalism and
associated rigor. In stark contrast to the dramatic improvements in these classes
of methodology, our approach to decision-making has evolved very little since the
time of Leopold. Instead, most current approaches to decision-making still entail
experts looking at models and data and then rendering a judgment about what
action(s) is most appropriate. Such decisions based on the thought processes of
the decision-maker are not necessarily bad, but they are neither transparent nor
objective, and they will usually be suboptimal. It is our view that the future of
the wildlife and conservation professions should move to adopt modern, decision-
theoretic approaches to making decisions in ways that are transparent, objective,
defensible, and scientific.

As we saw in Chap. 1, tiger conservation is attracting substantial interest
within tiger range states as well as from the international community. In Chaps.
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13 of this volume, we examined rigorous
methods for modeling and making inferences about tiger and prey populations.
Given all these resources and powerful monitoring methods that are tailored
well to fit modern decision-theoretic approaches, we believe that programs of
tiger conservation should strongly consider adopting these approaches for making
conservation decisions. In this somewhat theoretical and speculative chapter, we
explore how such a tiger conservation agenda can be advanced.

We begin by briefly considering the basic components of structured decision
processes, as these are required for virtually any informed decision. We then con-
sider the special case of recurrent decision problems characterized by uncertainty,
outlining an adaptive management approach to these problems. Finally, we move to
specific examples associated with conservation of tigers and prey and briefly discuss
application of decision-theoretic approaches.

14.2 Elements of an Informed Decision Process

14.2.1 Objectives

Management and conservation entail actions designed to meet specified objectives.
Indeed, the effectiveness of any action is measured only by the degree to which
it furthers stated objectives. In the absence of objectives, there is no basis for
selecting one management action over another or deciding whether or not specific
management actions have been successful. Thus, objectives are not optional but
rather are essential components of management processes.
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Objectives are based on human values, specifically on the values of decision-
makers and other stakeholders with interests in the managed system. Realistic
objectives can be arrived at only by reconciling varied, and sometimes conflicting,
demands of different segments of human society as well as data on tiger ecology.
Therefore, the process of developing a conservation program should incorporate
special efforts to include all potential stakeholders in order to arrive at objectives
that reflect all relevant opinions and to instill a sense of “buy-in” to the program by
all stakeholders. The usual case in conservation problems is for multiple objective
components that compete with one another, in the sense that achievement of
one objective component may be deleterious to another. Costs associated with
management actions are often included as a component of objectives as well,
because resources available for conservation are nearly always limited. Inclusion of
multiple objectives and corresponding trade-offs in a decision process may require
a common currency, use of threshold constraints, or even an explicit weighting
scheme. Above all, it is important to devote adequate time and effort to developing
objectives, as they drive the entire process.

14.2.2 Actions

The terms “conservation” and “management” imply taking actions that move the
system in the direction of achieving objectives. Following the development of
objectives, it is important to identify potential actions that can be used to attain
objectives. Conceptually, actions may be continuous variables (e.g., harvest rate,
fraction of land that is burned) or discrete (e.g., select one of three fixed harvest rates
or fractions of lands to be burned). The optimization methods currently used to solve
structured decision problems are better adapted to deal with selecting from a set of
discrete actions, although this methodological constraint will likely be overcome in
the near future. The primary consideration in selecting a set of potential actions is
the nature of the objective(s) and the potential for considered actions to influence
the system in ways relevant to those objectives.

14.2.3 Model(s)

Models provide a basis for making predictions about the consequences of different
actions, thus providing a basis for selecting the action that is most likely to
perform best with respect to objectives. Models are viewed by some managers
as entities devised by academics that have no place in real-world management.
We believe that this perspective reflects a misunderstanding of conservation and
management. If a decision-maker really has no basis for projecting consequences of
different management actions, then he/she cannot claim to be engaged in informed
management. Instead, the decision of which action to implement at any decision
point might as well be decided by a throw of dice. Models need not be mathematical
constructs (although these are frequently the most useful) and may instead be
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formulations found in the mind of the decision-maker. The important point is that
models for projecting system responses to management actions are not optional in
informed management. They are required.

Uncertainty about managed systems often leads to use of multiple competing
models of predicted system response. That is, we are not certain exactly how the
system responds to our management actions and thus develop multiple models of
possible responses. Development of a decision based on multiple models typically
requires that the models be weighted by our relative degrees of confidence in
their predictive abilities, based on past predictions. Adaptive resource management
(ARM) is designed to make decisions in the face of such uncertainty, while
simultaneously reducing it (e.g., Nichols and Williams 2013, see below).

14.2.4 Monitoring

Tiger monitoring programs (the primary subject of this book) provide estimates of
system state variables and vital rates for multiple purposes. For a single population
at a specific site, the key state variable might be tiger abundance and the associated
vital rates of survival, recruitment, and movement. For a metapopulation of a single
species across multiple sites, the relevant state variable may be the fraction of sites
occupied, with corresponding vital rates of local extinction and colonization.

In many informed decision processes, the optimal decision depends on the
current state of the system. So we take very different actions if our population is
very small than if it is large, for example. Estimation of system state for making
state-dependent decisions is a primary function of monitoring. Another function
of monitoring is assessment of progress toward management objectives, which
frequently include state variables themselves. Still another function is initial and
updated parameter estimation for management models.

A fourth important function of monitoring data is for use in learning. When
uncertainty about system response leads to multiple models, management is
improved when this uncertainty is reduced. Reduction in uncertainty occurs via
the insertion of a scientific step into the management process (see discussion
of ARM below). This scientific step compares model-based predictions against
monitoring results in order to learn which model predicts best. More specifically,
informed decisions based on multiple models require use of model “weights” (wi,t is
the weight associated with model i at time t) that reflect our relative degrees of con-
fidence in the different models. These weights are simply numbers between 0 and 1
that sum to 1 for all of the models in the model set (denote number of models as m).

If we are managing a focal species, such as the tiger, our monitoring program
(see below) provides an estimate of population size or density (system state) at time
t. Using the model weights (and thus the relative model influences) at time t, we
decide on a specific action to take. Based on this information available at time t (i.e.,
estimated population size, xt, and action taken, at), each model makes a prediction of
the distribution of population sizes expected at time t C 1. Pri(xt C 1j xt, at) denotes
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the probability under model i of the estimated population size at t C 1 (xtC1), given
the population size at time t and action taken at time t. Model weights are updated
using Bayes formula:

wi;tC1 D
wi;tPri .xtC1jxt; at/

Pm
iD1 wi;tPri .xtC1jxt; at/

(14.1)

The numerator of the above expression is the product of the prior weight (the
relative degree of confidence in model i accrued up until time t) and the probability
of the new monitoring data (xtC1) having arisen, given that model i is a good
approximating model. The denominator sums this product of prior weight and
likelihood of new estimates for all of the models in the model set.

Repeated use of expression (14.1) hopefully results in one of the members of the
model set attaining weights that approach 1, with weights of other models becoming
very small. This evolution of model weights results in increased confidence in the
model that makes the best predictions. This increased confidence is accompanied by
increased influence on decisions and hopefully in better management.

14.2.5 Decision Algorithm

At each decision point, information from the preceding four elements must be
combined to produce an informed decision about which action should be taken.
Frequently in natural resource management and conservation, such decisions come
from the thought processes of decision-makers. Decisions can be made in this way,
but they will seldom be optimal.

Some conservation programs use formal optimization approaches to arrive at
decisions. One-step optimization approaches are based only on immediate returns
(the values of variables directly relevant to the objective function) and are appropri-
ate for one-time decisions, such as land acquisitions or drawing up park boundaries,
perhaps. However, many ongoing conservation programs are better characterized as
dynamic decision processes (Fig. 14.1), such as patrolling to reduce poaching, fire
suppression, or removal of “problem” tigers. In such dynamic processes, the action
taken at any decision point, t, produces returns and drives the system to a new state.
Because of state-dependent decisions, the new state determines what actions are
viable the next time step. This combination of system state dynamics and state-
dependent decisions requires a dynamic optimization approach that considers not
just single-step returns, but returns from subsequent decision points into the future.
Stochastic dynamic optimization approaches to achieve such optimization include
stochastic dynamic programming (e.g., Bellman 1957; Williams et al. 2002) and
other approaches such as genetic algorithms.
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Plate 14.1 Diagrammatic representation of tiger reserve management as a recurrent decision
problem. At each decision point (t), decisions are made about whether and where to deploy
patrols. These patrol decisions might be made every year, for example. The decisions are based
on objectives (e.g., tiger numbers exceeding some objective threshold at minimal cost) and on
current tiger numbers, as estimated via monitoring. The selected patrol actions lead to changes in
numbers of tigers and prey species, and these changes are assessed via monitoring before the next
decision point. Achievement of tiger densities that exceed the threshold is viewed as a positive
outcome of management, whereas patrol costs are viewed as negative outcomes. These outcomes
combine to represent the management returns, by which the success of management is judged. The
new estimates of tiger densities are then used to make the state-dependent decision about patrols
the next time step, and the process proceeds

14.3 Adaptive Resource Management

14.3.1 General Description

ARM is an informed decision process developed to deal with uncertainty, specif-
ically with uncertainty about system responses to management actions (Walters
1986; Williams et al. 2007; Nichols and Williams 2013). ARM provides an approach
for making decisions in the face of uncertainty and for reducing that uncertainty in
order to improve future management. ARM was developed for recurrent decision
processes with multiple decision points through time (Fig. 14.1). However, ARM
can also be applied to sequences of “one-time” decisions (e.g., land purchases,
establishing boundaries of a tiger reserve) that are sufficiently similar that lessons
learned from one decision may be useful to subsequent decisions elsewhere.

Although not yet widely used in tiger conservation, ARM has been used
successfully in North America in the management of waterfowl harvest (Johnson et
al. 1993; Nichols et al. 2007; 2015; U.S. Fish and Wildlife Service 2013; Cooch et
al. 2014), horseshoe crab harvest for both crab and shorebird objectives (Smith et al.
2013; McGowan et al. 2015), and hiking in Denali National Park with golden eagle
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disturbance objectives (Martin et al. 2011; Fackler et al. 2014). ARM programs
typically include setup, iterative, and possibly double-loop phases.

14.3.2 Setup Phase

The initial phase of any ARM program entails assembling and developing all of
the above components of an informed decision process, i.e., objectives, actions,
models, monitoring, and decision algorithms. The articulation of objectives and
development of a formal objective function is an extremely important step that
requires full stakeholder involvement. Not only the decision-maker, associated man-
agement personnel, and scientists knowledgeable of the system should be involved
in establishing objectives, but also other conservation groups, individuals whose
businesses or livelihoods are somewhat dependent on the system, and members
of the general public should be invited to participate. Objectives in conservation
typically entail trade-offs, such that ultimate objective functions nearly always
represent compromises of stakeholders with competing demands. Broad stakeholder
involvement is also useful in deciding on what actions should be considered as part
of the decision process, as sometimes actions that are potentially effective (e.g.,
predator control, resettlement of villages from inside protected areas) may not be
equally acceptable to all stakeholders. Necessarily, such stakeholders involved in
setting objectives may include reserve managers; conservationists; political, social,
and community leaders; as well as some scientists.

In contrast to the establishment of objectives and potential actions, the develop-
ment of system models and monitoring programs is primarily the task of wildlife
managers and scientists. Interested stakeholders should be invited to participate
in these processes, but expertise in modeling and monitoring is typically found
in conservation and scientific professionals. Model development should seek to
incorporate existing uncertainty about system response to management actions. In
particular, all stakeholders should be able to see in the model set at least one model
that reflects their understanding of how the system works. Monitoring should then
be focused on state variables that are found in the objectives and that are needed for
state-dependent decisions, as well as other variables related to objectives. Learning
is sometimes best achieved via a focus on key rate parameters governing system
behavior, requiring the monitoring of key system vital rates as well.

Selection of the decision algorithm is also best handled by professionals familiar
with dynamic optimization (Bellman 1957; Puterman 1994; Williams and Nichols
2014). However, this expertise is rare. If it is not available, decisions can still
be made by key individuals in the absence of optimization algorithms, as long
as there is recognition that such subjective decisions are likely to be suboptimal.
ARM processes that proceed without use of optimization to select actions can still
represent major improvements over widely prevalent forms of ad hoc management
and still permit learning.
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14.3.3 Iterative Phase

Full implementation of ARM can immediately follow the development of decision
components in the setup phase. This iterative or operational phase of ARM proceeds
as follows. At each decision point, an action is selected based on all of the decision
process elements: objectives, potential actions, estimated state of the system, models
(and associated weights) of system response to management actions, and the
decision algorithm that selects the optimal action.

The selected action is implemented, yielding returns and driving the system
to a new state, which is identified by the monitoring program. Learning occurs
as the new estimate of system state obtained via monitoring is compared against
the predictions of each model using Eq. 14.1. Weights increase for models that
predict well [larger Pri(xt C 1j xt, at)] and decrease for models that predict poorly.
The next decision is then made, with most process components remaining the same
(objectives, actions, models), but with an updated estimate of system state and
updated model weights. The entire process iterates through time in this manner,
with model weights hopefully becoming large (approaching 1 eventually) for one of
the models in the set and becoming small for the others.

14.3.4 Double-Loop Phase

Whenever there is doubt or dissatisfaction with any of the decision process elements,
it is possible to revisit the setup phase and reconsider any process component. For
example, changing attitudes and values could bring about a change in program
objectives. New technologies or ideas could lead to new potential actions to
consider. If none of the models seems to predict adequately, then one or more could
be modified using new ideas about system dynamics. New technologies and/or infer-
ence methods could lead to new monitoring methods, and new software for solving
dynamic optimization problems could be implemented as well (e.g., Chades et al.
2012; Fackler and Pacifici 2014; Fackler et al. 2014). Double-loop reconsideration
of components is always possible, although the expectation is that such considera-
tions will usually occur over longer time steps than the iterative process itself.

14.3.5 ARM Advantages

ARM has some important advantages over the kinds of processes typically used
to manage natural resources. Many conservation decision processes exist in the
absence of clearly specified and agreed upon objectives. Without clear objectives,
the terms “management” and “conservation” are not really applicable, as there is
never a means to decide whether actions have been useful or not. Such ill-defined
processes represent little more than “random walks in action space.” As a formal
decision process, ARM requires objectives, and these objectives drive the entire
process, as appropriate.
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Related to objectives is the ability of ARM processes to readily accommodate
competing perspectives of multiple stakeholders. Objective functions frequently
represent compromises among stakeholders with very different values. In addition,
different values are often accompanied by different ideas about how the focal
system “works” and can be managed. Within ARM, these different ideas can be
incorporated directly into the process via competing models of system response
to management actions. And the model weights that dictate the relative influence
of these models in conservation decisions result not from political pressure,
but from relative abilities of the different models to predict system change.
This direct incorporation of varying stakeholder values and ideas about system
dynamics facilitates stakeholder buy-in and should lead to a general sense of
fair play.

Despite pleas for evidence-based conservation (e.g., Sutherland et al. 2004),
conservation frequently employs actions about which there is little evidence of
effectiveness. ARM places a premium on learning (accruing evidence) and accom-
plishes this by inserting a scientific step into the decision process. This inclusion of
science satisfies current demands for both evidence-based decisions and integration
of science and management (Nichols et al. 2015). The nature of this scientific
step also insures that science is directed explicitly at management, as opposed to
peripheral issues.

Another advantage of many ARM processes is that management decisions are
optimal. In some management settings, this may not be so important. However, for
very contentious issues, especially those that entail litigation, it may prove very
useful to be able to make the following kind of statement: “Given the management
objectives to which we all agreed, the set of actions that was available to us, and our
understanding of the system state and dynamics as provided by our monitoring and
encoded in our model set; we made the smartest decision that we could have made,
and we can prove this to you!”

A final advantage worthy of emphasis is the transparency of the process. From
the setup phase, with its inclusion of relevant stakeholders, to the development of
the model set based on different ideas of the stakeholders, there is an open attempt to
include multiple perspectives. In addition, whenever dynamic optimization is used
in the process, there is no suspicion that the decision of which action to take is
based on an overemphasis on the values and ideas of the decision-maker. These
values and ideas are transparently found in the objective function and the model set,
and, conditional on them, the optimal action is not an opinion but a provable fact.

14.4 Structured Decisions and Tiger Conservation

14.4.1 Land Purchase

Many tiger conservation efforts focus on various types of protection, including
habitat, prey populations, and tigers themselves. Decisions about habitat protection
sometimes entail purchase or acquisition of land parcels as new tiger reserves, as
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additions to existing reserves or as corridors connecting reserves or other source
populations. Objectives will usually be framed as making adequate purchases with
minimal cost. Although such land acquisitions are one-time decisions, they may
permit the learning that characterizes recurrent decisions if multiple purchases are
made that share common features. We believe that structured decision processes can
be useful for all land acquisition decisions and that ARM and consequent learning
can be applied sometimes to sequences of related acquisition decisions.

14.4.2 Voluntary Resettlement

Another kind of one-time decision for existing tiger reserve lands entails encourag-
ing voluntary relocation of families of local people residing in reserve inholdings
(Karanth 2007). Such relocation efforts reduce poaching and conflict, and con-
solidate habitats of tigers and prey species (Karanth et al. 2004). Objectives will
again include efforts to minimize monetary costs and potential social costs, while
maximizing gains to tiger and prey species populations. As with decisions about
land acquisitions, resettlement projects may be viewed as one-time or recurrent
decisions, depending on the consideration of similar actions in other locations.

14.4.3 Livestock Grazing Control

Grazing control is a common approach to improving and maintaining habitat within
tiger reserves and other protected areas of India. The focus of this management
action is on reducing the number of livestock grazing in a reserve, or at least
restricting it to a limited number of buffer zones. Such control efforts require
ongoing efforts to detect illegal grazing and enforce restrictions. System state
variables that can be monitored to draw inferences about control effectiveness
include numbers and distribution of livestock, status (e.g., richness and/or spatial
extent) of native plant communities, status (e.g., abundance or density) of wild
ungulate prey species, and finally, tiger densities themselves. Allocation of ranger
effort to grazing detection and control will most typically be viewed as a recurrent
decision problem.

14.4.4 Patrols and Law Enforcement

For existing reserves that focus on tiger conservation, protection usually takes the
form of patrols by staff to discourage poaching of tigers and prey animals. Decisions
can be viewed as recurrent, as patrol effort, timing, and locations are all decision
components that can be varied over time depending on perceived poaching threats
(Fig. 14.1). Objectives would include costs associated with different patrol efforts,
and benefits would include recovery and well-being of prey and tiger populations.
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System models for projecting consequences of patrol efforts could focus directly
on response of tiger populations to patrol effort. Another approach would be to
construct models that projected responses of prey populations to patrol effort (and
reduced poaching) and then responses of tiger populations to both patrol effort
and changes in prey populations. This latter approach would include both key prey
species and tigers as state variables. Still a third approach would project responses
of poaching activity to patrol effort, treating poaching activity itself as a system
state variable. Prey populations would then be modeled as functions of poaching
activity, and tiger populations as a function of both prey populations and tiger
poaching activity. These modeling approaches are successively more mechanistic,
and selection of the appropriate modeling for any situation will be tied directly to
the associated monitoring program(s).

Regardless of which of the above three modeling approaches is selected,
monitoring efforts supporting decision processes based on patrols as a primary
management action would include information on tiger abundance or density (for
specific reserves) or tiger distribution (for landscapes including multiple reserves),
depending on the scale at which management decisions are being made. Tiger
monitoring for specific reserves would likely entail spatially explicit capture-
recapture methods using data from camera traps or perhaps from scat collection
with subsequent DNA analysis for individual identification (Gopalaswamy et al.
2012; Royle et al. 2009a, b, Chap. 9). Monitoring of tiger distribution would likely
be based on sign survey data analyzed using occupancy modeling (Karanth et al.
2011, Chap. 4).

The second and third modeling approaches listed above would require moni-
toring of selected prey species. In most cases, this would entail distance sampling
along line transects (Buckland et al. 2001; Chap. 6). However, other possibilities
exist, and spatially explicit capture-recapture models could be used for prey species
with individual marking patterns (e.g., chital, see Chap. 9). Other possible inference
methods for abundance and density exist as well (Chap. 8). If the decision process is
to focus on a larger landscape scale, occupancy methods may be adequate for some
purposes, although prey density estimates will be more useful for assessing models
and making decisions than simple occupancy estimates.

Finally, the most mechanistic approach listed above incorporated poaching
activity as a model state variable. Data relevant to this variable might include patrol
encounters with poachers or poacher sign (kill sites), arrest records, local media
reports, and even “market surveys” of local shops. Of course incomplete detection
characterizes these data sources, just as they do animal monitoring data. That is,
certainly some poaching activity will go undetected. However, capture-recapture
and occupancy thinking can be used to draw inferences about illegal activities in the
face of nondetection (e.g., Barber-Meyer 2010; Sharma et al. 2014).

The presentation here of three possible approaches to modeling and monitoring
decision processes that focus on patrols as a primary management action can be
used to make several general points about such processes. First, there is no single
“right way” to develop models and monitoring for any process. The approach of

http://dx.doi.org/10.1007/978-981-10-5436-5_9
http://dx.doi.org/10.1007/978-981-10-5436-5_4
http://dx.doi.org/10.1007/978-981-10-5436-5_6
http://dx.doi.org/10.1007/978-981-10-5436-5_9
http://dx.doi.org/10.1007/978-981-10-5436-5_8
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directly modeling tiger dynamics as a function of patrol effort requires simpler
models and less monitoring effort than the other two approaches. The focus is
directly on the response of tigers to the management action, with no need to
model or monitor state variables associated with the underlying mechanisms of tiger
response. One disadvantage of this approach may be the expected time lag between
management action and tiger response. In situations where tigers are at carrying
capacity relative to existing prey numbers, patrol efforts are expected to first
influence prey populations, and tiger numbers may then respond to changes in prey
numbers. However, where tiger numbers are below carrying capacity, frequently
due to direct poaching of tigers, a response in tiger numbers could occur without
an increase in prey. Modeling and monitoring that incorporate prey populations and
poaching activity should reduce time lags in system responses to management, with
changes in poaching activity expected to shortly follow changes in patrol effort.
In fact, there is rarely good reason not to monitor poaching activity, because the
cost is largely covered by existing patrol efforts and tiger and prey monitoring
efforts.

Another potential disadvantage to focusing directly on the relationship between
tiger numbers and patrol effort is that it may be more difficult to diagnose problems
with models, should they exist. For example, multiple possible explanations might
underlie a drop in tiger numbers or a failure of tiger numbers to respond to
patrol efforts. Perhaps the patrol efforts were not effective at influencing poaching
activities. Or perhaps poaching was reduced, but not to the extent needed to increase
tiger numbers. Or maybe tiger numbers did not respond to increased prey numbers
as anticipated. Diagnoses of problems with model predictions should be easier
for programs that include intermediate state variables such as prey abundance and
poaching activity.

14.4.5 Summary

There are multiple ways to model and monitor system dynamics in order to support
decision processes. Perhaps the key point is the need to integrate all components
of the decision process. The entire process is driven by objectives. So when these
objectives include tiger populations, for example, then management actions should
be selected based on their potential to influence tiger numbers. Similarly, models
should project consequences of potential actions on tiger numbers, and monitoring
should be focused on tiger dynamics. If more mechanistic models that include
responses of prey species and even illegal activities are thought to be useful, then
monitoring should be tailored to these models and should include state variables
in addition to tigers. Good, and even optimal, decisions can be made using any of
these described approaches, and all permit learning for better management in the
future.
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14.5 Conclusions

This chapter has not offered a critique of current approaches to conservation, either
in general or for tigers in particular. Many tiger conservation efforts have been very
effective and should be applauded. Instead, we began the chapter by simply noting
that some classes of methods integral to conservation (specifically, inference and
modeling) have evolved tremendously over the past century, whereas the standard
approach to conservation decision-making has changed little. In this chapter, we
have briefly described some modern approaches to decision-making, believing that
they deserve consideration in tiger conservation.

Structured decision processes can be viewed as providing a formal structure for
making logical, common-sense decisions. Separate specification and discussion of
the elements of informed decision processes are useful not only in insuring consid-
eration of all relevant elements, but also as a means of minimizing obfuscatory shifts
from one element to another in arguments advocating specific actions. Discussing
each element separately and then eventually combining them is a very useful
approach to keeping discussions properly focused. Structured decision processes
are typically transparent and defensible, characteristics that not only engender trust
and buy-in, but that are also useful in cases of litigation.

ARM is a special case of structured decision-making developed for decisions that
are recurrent (as opposed to one-time decisions) and characterized by uncertainty.
The recurrent nature of these decision problems admits the possibility of learning
about the predictive abilities of one or more system models by comparing model-
based predictions against estimates of system state variables and vital rates obtained
via monitoring. This insertion of a scientific step into the decision process effec-
tively integrates science and management, leading to better decisions in the future
as uncertainty is reduced.

Tiger conservation nearly always requires difficult decisions. Limited tiger
numbers, limited tiger habitat, limited potential management actions, and limited
resources available for tiger conservation all place pressure on those involved in
conservation to make wise decisions. We believe that structured decision-making
and ARM should be given serious consideration as means to facilitate such decisions
for existing and future tiger conservation programs.
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