
Detecting Malwares Using Dynamic Call
Graphs and Opcode Patterns

K.P. Deepta(&) and A. Salim

College of Engineering Trivandrum, Thiruvananthapuram, Kerala, India
deeptakp6@gmail.com, salim.mangad@gmail.com

Abstract. Classification and detection of malware includes detecting instances
and variants of the existing known malwares. Traditional signature based
approaches fails when byte level content of the malware undergoes modifica-
tion. Different static, dynamic and hybrid approaches exist and are classified
based on the form in which the executable is analyzed. Static approaches include
signature based methods that uses byte or opcode sequences, printable string
information, control flow graphs based on code and so on. Dynamic approaches
analyze the runtime behavior of the malwares and constructs features. Hybrid
methods provide an effective combination of static and dynamic approaches.
This work compares the classification accuracy of static approach that employs
opcode sequence analysis and dynamic approach that uses the call graph gen-
erated from the function calls made by the program and an integrated approach
that combines both these approaches. Integrated approach shows an improve-
ment of 2.89% than static and 0.82% than dynamic approach.

Keywords: Dynamic analysis � Integrated approach �Malware � Static analysis

1 Introduction

Malware or malicious software is any software which has the potential to damage the
information stored in a computer. There are different categories of malware including
viruses, worms, spyware and so on. There has been a profound increase in the number
of malicious samples due to the deployment of morphing techniques, which prevents
the anti-malware software from detecting them. Researchers and anti-malware vendors
face the challenge of how to detect previously unseen malware (also called zero-day
attack).

Malware detection involves identification of both instances and variants of the
existing malware. For this, it is essential to observe and study the organization of the
malicious code and its behavior. This gives an understanding about the nature of
infection caused by the code and thus identifies similar ones.

1.1 Basics of Malware Analysis

Malware analysis can be considered as an art of dissecting the malware to find out the
way it works, methods to identify it and how to trash and wipe it out. Malware analysis
is critical area as it is a threat to security of computer systems.

© Springer Nature Singapore Pte Ltd. 2017
M. Singh et al. (Eds.): ICACDS 2016, CCIS 721, pp. 91–101, 2017.
DOI: 10.1007/978-981-10-5427-3_10



1.1.1 Static Analysis
Static analysis consists of examining the executable file without viewing the actual
instructions. It can be applied on different representations of a program like binary
code, source code etc. It can be used to find memory corruption issues and prove the
correctness of models if the source code is available.

Some of the techniques used for static malware analysis are file fingerprinting,
extracting hard coded strings, file format inspection, disassembling of machine code
etc.

Islam et al. presented an automatic malware classification method based on function
length frequency and Printable String Information [1]. Their results demonstrated that a
combined approach of string and function length features into a single test provides a
superior result than they were used individually. Even though these features are easier
to collect, the use of static features alone, fails when obfuscation and packing is
performed.

Santos et al. proposed a malware detection system that uses semi-supervised
learning to detect malicious programs [2]. This method is useful when a limited amount
of labeled data exists for benign and malware classes. N-gram distribution is used to
represent the executables. The main contribution of this paper is the reduction in the
number of required labeled instances while maintaining a good precision of above
90%. However, due to the use of static nature of features, the system will be unable to
counter packed malware.

Ye et al. proposed a detection system based on static analysis to generate signatures
for clustering malwares [3]. Two features have been considered here, namely
Instruction Frequency and Function-based sequences. A Hybrid hierarchical clustering
algorithm which combines the advantages of hierarchical clustering and k-medoids
algorithm was used to cluster the malwares.

Cesare et al. has proposed a static method of malware detection [4]. Initially the
system unpacks the executables and disassembles the code. Malware signature is
generated based on the set of control flow graphs (from high level source code) the
malware contains. Feature vector is a decomposition of the set of graphs into either
fixed size k-subgraphs, or q-gram strings. Similarity with the known malwares is
computed using string distance matching methods like edit distance. This method is
more efficient than signature based methods as the control flow overcomes the limi-
tations of byte level and instruction level classification but cannot properly handle
packing and obfuscation issues. The major drawback of the approach is that it considers
the static control flow of the program and this can be easily bypassed by the code
obfuscation techniques.

The key advantage of static malware analysis is that it permits a comprehensive
analysis of a given binary i.e., it can cover all possible execution paths of a malware
sample. Additionally, as the source code is not actually executed, static analysis is
generally safer than the dynamic analysis. But the drawback is that static analysis is
usually conducted manually and thus consumes time and requires expertise.

92 K.P. Deepta and A. Salim



1.1.2 Dynamic Analysis
Executing a given malware sample within a controlled environment and monitoring its
actions to analyze the malicious behavior is called dynamic malware analysis. Zhao et al.
proposed a vector space model where API sequences were translated into features [5].

Another approach is a graph based model where API calls and OS resources are
represented as graph nodes and edges representing reference between them [6]. The
Graph Edit Distance algorithm was used to find the match between different graphs.

Anderson et al. proposed a malware detection algorithm that analyzes the graphs
constructed from dynamically collected instruction traces of that executables [7]. The
nodes of the graph represent instructions and the transition probabilities are estimated
by the data in the trace. Using the concept of graph kernels, similarity matrices between
instances in training set were constructed. Gaussian kernel and spectral kernel were the
two measures used to construct kernel matrix.

Borojerdi and Abadi proposed MalHunter, which is a method for generating
behavioral signature [8]. Sequence-based clustering algorithm is based on the Basic
Sequential Algorithmic Scheme (BSAS). The steps involved in generating the signature
were identifying semantic behaviors, clustering the behavior sequences, generalizing
these sequences and generating multiple behavioral signatures.

As the analysis and detection is during runtime and malware unpacks itself,
dynamic malware analysis avoids the restrictions of static analysis like unpacking and
obfuscation issues. The main drawback is the issue of dormant code. Also if the
analysis environment is not properly managed, the system itself may get damaged.
Furthermore, malware samples may change their behavior or stop the execution when
they detect that execution is taking place in a controlled analysis environment.

Observing the runtime-behavior of an application is currently the most promising
approach. It is mostly conducted utilizing sandboxing. A sandbox refers to a controlled
runtime environment which is partitioned from the rest of the system in order to isolate
the malicious process. This partitioning is typically achieved using virtualization
mechanisms on a certain level.

1.1.3 Integrated Approach
Integrated approaches are the combination of static and dynamic malware analysis
techniques. Sharma proposed a combination of dynamic representation of program
calling structures, with a static analysis applied to a region of that structure with
observed performance problem [9]. Suspicious behavior showing portions are taken as
signatures and searched for similar patterns. This was a theoretical work and does not
contain any experimental results for evaluating the actual performance.

Nguyen et al. proposed a method to identify real target of an indirect jump [10].
This work was aimed at reducing the false target identification that could happen when
processing such jumps and during CFG construction. The framework consists of two
phases: Static and Dynamic. In the static phase, the program was divided into regions
and sub-CFGs were generated. During the dynamic analysis Intermediate labeled
transition system is generated and test cases are executed and then the CFG is updated,
followed by first step and this continues.

Detecting Malwares Using Dynamic Call Graphs and Opcode Patterns 93



2 Proposed Architecture

Figure 1 shows the proposed architecture of the malware detection system. It consists
of a static, dynamic and integrated approach for fast and accurate detection of malware.

2.1 Static Feature Extraction

2.1.1 Disassemble the Executable
A disassembler is a computer program that translates machine language into assembly
language. Objdump command in Linux is used to disassemble the codes.

Fig. 1. Proposed architecture of malware detection method

94 K.P. Deepta and A. Salim



2.1.2 Feature Vector Formation
The disassembled code contains the opcode sequence of the program. Opcodes from
the disassemble input has been separated using a python program and 3-gram patterns
were generated using the Linux utility text2ngram.

Initially all the opcodes from the disassembled code were extracted and frequency
of every possible 3-gram sequence were computed. The 3-grams with frequency above
a threshold were filtered from both malware and benign samples. To get a feature
vector that represent malware family more precisely, we extracted all frequent 3-grams
and filtered out that are common in both classes. Various length feature vectors (size
10, 20, 50, 80 and 100) were considered. The feature vector consists of strings of 1 s
and 0 s depending on the presence of 3-gram patterns. This was done for each pattern
and feature vectors corresponding to each sample was generated. Algorithm 1 describes
the steps in Static feature extraction.

Detecting Malwares Using Dynamic Call Graphs and Opcode Patterns 95



2.2 Dynamic Feature Extraction

The core idea is to make malware detection system more resilient to byte- and
instruction-level modifications and obfuscations. A call graph derived from the binary
code provides a reasonable approximation of the program’s run time behavior. So we
translate the problem of finding similar graphs into that of extraction of different
features of the graph and analyze the similarities in them.

The executable files were analyzed using Callgrind, a profiling tool that records the
call history among functions in a program’s run as a call-graph. By default, the col-
lected data consists of the number of instructions executed, their relationship to source
lines, the caller/callee relationship between functions and the numbers of such calls.

We used Callgrind to analyze the executables. This is a profiling tool which records
the call history of functions in a program during execution as a call-graph. The output
generated by Callgrind was visualized using KCachegrind. Figure 2 shows a section of
a sample call graph. The nodes of the graph contain the function name, its memory
location, number of instructions and cost and the edges represent time consumed. The
graph needs to be exported to Dot format for further analysis. The following features
were extracted from graph corresponding to each of the sample. We ranked the features
based on the information gain and Table 1 shows the features in descending order of
ranks.

2.3 Classifier Model

Dataset consisted of 787 malicious and 425 benign samples. Malware samples were
collected from malware repositories Virusshare [13] and AVCaesar [14] and benign
samples were obtained from Windows system directory. BayesNet and RandomForest
classifiers were chosen to implement the classification model. BayesNet has the
capability to find interdependencies between different attributes. Unlike decision tree,
in Random forest the best parameter at each node in the tree is selected from a
randomly chosen set of features. This helps Random Forest to perform well and makes
it less vulnerable to noise in the data. An open source machine learning tool, Weka was
used to implement the models [12].

Fig. 2. A section of a sample call graph

96 K.P. Deepta and A. Salim



3 Experimental Results and Discussion

Performance of the classification models were evaluated using measures like True
Positive Rate (TP Rate), False Positive Rate (FP Rate), Precision, Recall, F-Measure
(Harmonic mean of precision and recall), ROC Area (ROC curve is the curve created
by plotting TPR against FPR at various threshold settings) and Accuracy.

3.1 Static Approach

Tables 2 and 3 show the classification results obtained using RandomForest and
BayesNet classifiers respectively. Experiments have been repeated with varying
number of static features from 10 to 100. Classification results of static analysis using
RF classifier indicate that the features do not show much variation in accuracy between
lengths 20 and 50. 95.87% is the best accuracy observed from RF classifier when
feature length was 20.

Table 1. Ranking of features extracted from graph

Rank Feature Description

1 Network diameter Longest graph distance between any 2 nodes. ie.
How far apart are the two most distant nodes?

2 Average path length Average number of steps along the shortest
paths for all possible pairs of nodes

3 Average weighted degree Ratio of sum of the in- and out-degree of all
nodes to the number of vertices

4 Average degree Ratio of sum of the in-degree of all nodes to the
number of vertices

5 Modularity Measures the density of links inside
communities as compared to links between
communities

6 Graph density How close network is to complete? Ratio of
number of edges to the possible number of edges

7 Strongly connected
components

A directed graph is strongly connected if there is
a path between all pair of nodes. A strongly
connected component of a directed graph is a
maximal strongly connected subgraph

8 Edge count Number of edges
9 Node count Number of nodes
10 Average clustering coefficient Indicates how nodes are embedded in their

neighbourhood
11 Weakly connected components

Detecting Malwares Using Dynamic Call Graphs and Opcode Patterns 97



3.2 Dynamic Approach

We conducted experiments with complete set of dynamic features and Tables 4 shows
the classification results obtained using RF classifier with dynamic approach. Dynamic
feature analysis shows an improvement of 1.65% over static feature analysis with RF
classifier.

3.3 Integrated Approach

We conducted experiments by taking complete set of dynamic features and varying
number of static feature lengths. Tables 5 and 6 shows the classification results
obtained using RF and BayesNet classifiers using integrated approach. Figure 3 depicts
the variation in ROC curves obtained from RF classifier with change in static feature
vector length. Classification results obtained after integrating the features obtained from

Table 2. Weighted average of classification results with RandomForest classifier

Feature
vector length

TP rate FP rate Precision Recall F-Measure ROC area Accuracy (%)

10 0.941 0.092 0.942 0.941 0.941 0.952 94.14
20 0.959 0.06 0.959 0.959 0.959 0.973 95.87
30 0.959 0.06 0.959 0.959 0.959 0.983 95.87
40 0.957 0.063 0.957 0.957 0.957 0.983 95.71
50 0.957 0.062 0.957 0.957 0.957 0.985 95.71
80 0.95 0.075 0.951 0.95 0.95 0.964 95.05
100 0.945 0.086 0.945 0.945 0.944 0.956 94.47

Table 3. Weighted average of classification results with BayesNet classifier

Feature
vector length

TP rate FP rate Precision Recall F-Measure ROC area Accuracy (%)

10 0.87 0.145 0.871 0.87 0.87 0.916 86.96
20 0.823 0.183 0.83 0.823 0.825 0.889 82.26
30 0.771 0.227 0.787 0.771 0.775 0.869 77.06
40 0.744 0.237 0.771 0.744 0.75 0.854 74.42
50 0.732 0.24 0.766 0.732 0.738 0.849 73.18
80 0.721 0.253 0.755 0.721 0.727 0.833 72.11
100 0.716 0.258 0.75 0.716 0.723 0.826 71.62

Table 4. Weighted average of classification results with RFclassifier

Classifier TP rate FP rate Precision Recall F-Measure ROC area Accuracy (%)

Random Forest 0.975 0.042 0.976 0.975 0.975 0.97 97.52
Bayes Net 0.979 0.038 0.98 0.979 0.979 0.962 97.93

98 K.P. Deepta and A. Salim



Table 5. Weighted average of classification results with RFclassifier

Feature
vector length

TP rate FP rate Precision Recall F-Measure ROC area Accuracy (%)

10 0.979 0.034 0.979 0.979 0.978 0.993 97.85
20 0.982 0.027 0.982 0.982 0.982 0.983 98.18
30 0.985 0.026 0.985 0.985 0.985 0.993 98.51
40 0.985 0.024 0.985 0.985 0.985 0.995 98.51
50 0.988 0.019 0.988 0.988 0.988 0.997 98.76
80 0.987 0.019 0.987 0.987 0.987 0.998 98.68
100 0.985 0.9024 0.985 0.985 0.985 0.998 98.51

Table 6. Weighted average of classification results with BayesNetclassifier

Feature
vector length

TP rate FP rate Precision Recall F-Measure ROC area Accuracy (%)

10 0.978 0.034 0.978 0.978 0.978 0.992 97.77
20 0.971 0.042 0.971 0.971 0.971 0.988 97.11
30 0.975 0.036 0.975 0.975 0.975 0.991 97.52
40 0.979 0.04 0.979 0.979 0.978 0.993 97.85
50 0.967 0.041 0.967 0.967 0.967 0.985 96.70
80 0. 912 0.075 0.918 0.912 0.913 0.975 91.17
100 0. 869 0.101 0.886 0.869 0.871 0.969 86.88

Fig. 3. Variation in ROC curves obtained from RF classifier with change in static feature vector
length (Integrated approach)

Detecting Malwares Using Dynamic Call Graphs and Opcode Patterns 99



static and dynamic analysis shows an improvement of 2.89% than static and 0.82%
than dynamic approach.

On analyzing the classification results, we observed that the accuracy shows a
declining trend on increasing the static feature vector length beyond 50. On an average
both classifiers gives best accuracy rates for vector length between 30 and 50. The
average time taken to build the model was 0.07 s. This is faster than the Control flow
based malware variant detection [4] which took 0.7 s and Hybrid concentration based
feature extraction approach for malware detection [11] which took 0.99 s on an
average.

4 Conclusion

Dynamic malware analysis is done by watching and logging the behavior of the
malware while running on the host. As most of the malwares pack themselves or morph
their code during execution, static analysis alone is not efficient in malware detection.
So here we have proposed a method that extracts features by analyzing the dynamic
behavior of the malware and also static properties of the binaries and identifying
whether the new sample possess similar features. The experimental results show that
the method is more efficient than the static and dynamic analysis methods alone and
also will be able to identify the polymorphic variants of the malware. The detection
accuracy of integrated approach is comparatively better than several existing approa-
ches. Integrated approach shows an improvement of 2.89% than static and 0.82% than
dynamic approach. A practical extension to this work is to improve the static analysis
part by incorporating the concept of function length analysis and also to consider files
other than executables while constructing the model.

References

1. Islam, R., Tian, R., Batten, L., Versteeg, S.: Classification of malware based on string and
function feature selection. In: IEEE Second Cybercrime and Trustworthy Computing
Workshop (2010)

2. Santos, I., Nieves, J., Bringas, P.G.: Semi-supervised learning for unknown malware
detection. In: 9th International Conference on Practical Applications of Agents and
Multi-agent Systems (PAAMS) (2011)

3. Ye, Y., Li, Y., Chen, Y., Jiang, Q.: Automatic malware categorization using cluster
ensemble. In: Proceedings of the 16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 2010, pp. 95–104. ACM, New York (2010)

4. Cesare, S., Xiang, Y., Zhou, W.: Control flow-based Malware variant detection. IEEE Trans.
Dependable Secure Comput. 11, 307–317 (2014)

5. Zhao, Z., Wang, J., Bai, J.: Malware detection method based on the control flow construct
feature of software. IET J. Inf. Secur. 8, 18–24 (2014)

6. Elhadi, A.A.E., Maarof, M.A., Osman, A.H.: Malware detection based on hybrid signature
behavior application programming interface call graph. Am. J. Appl. Sci. 9, 283 (2012)

100 K.P. Deepta and A. Salim



7. Anderson, B.H., Quist, D.A., Neil, J.C.: Graph-based Malware Detection Using Dynamic
Analysis. Los Alamos National Laboratory Associate Directorate for Theory, Simulation,
and Computation (ADTSC) LA-UR 12-20429

8. Borojerdi, H.R., Abadi, M.: MalHunter: automatic generation of multiple behavioral
signatures for polymorphic Malware detection. In: 3rd International Conference on
Computer and Knowledge Engineering (ICCKE 2013), 31 October–1 November 2013.
Ferdowsi University of Mashhad (2013)

9. Sharma, V.: A theoretical implementation of blended program analysis for virus sign
extraction. In: IEEE International Carnahan Conference on Security Technology (ICCST),
October 2011

10. Nguyen, M.H., Nguyen, T.B., Quan, T.T., Ogawa, M.: A hybrid approach for control flow
graph construction from binary code. In: IEEE Software Engineering Conference (APSEC)
(2013)

11. Zhang, P., Tan, Y.: Hybrid concentration based feature extraction approach for malware
detection. In: 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering
(2015)

12. http://www.nilc.icmc.usp.br/elc-ebralc2012/minicursos/WekaManual-3-6-8.pdf
13. https://virusshare.com
14. https://avcaesar.malware.lu

Detecting Malwares Using Dynamic Call Graphs and Opcode Patterns 101

http://www.nilc.icmc.usp.br/elc-ebralc2012/minicursos/WekaManual-3-6-8.pdf
https://virusshare.com
https://avcaesar.malware.lu

	Detecting Malwares Using Dynamic Call Graphs and Opcode Patterns
	Abstract
	1 Introduction
	1.1 Basics of Malware Analysis
	1.1.1 Static Analysis
	1.1.2 Dynamic Analysis
	1.1.3 Integrated Approach


	2 Proposed Architecture
	2.1 Static Feature Extraction
	2.1.1 Disassemble the Executable
	2.1.2 Feature Vector Formation

	2.2 Dynamic Feature Extraction
	2.3 Classifier Model

	3 Experimental Results and Discussion
	3.1 Static Approach
	3.2 Dynamic Approach
	3.3 Integrated Approach

	4 Conclusion
	References


