
RESTful Is Not Secure

Tetiana Yarygina(B)

Department of Informatics, University of Bergen, Bergen, Norway
tetiana.yarygina@uib.no

Abstract. The shift in web service design towards the REST paradigm
has spawned a series of security concerns. To date there has been no gen-
eral agreement on how the REST paradigm addresses security and what
web security mechanisms adhere to the REST style. This paper ana-
lyzes the REST paradigm from a security perspective and shows signifi-
cant incompatibilities between the style constraints and typical security
mechanisms. We conclude that the REST style was not designed with
security properties in mind and does not fit the security requirements of
modern web applications.

Keywords: Web services security · REST · Stateless · Token
authentication

1 Introduction

Web services enable rapid design, development, and deployment of software solu-
tions. They provide a unified web interface and hide complexity and heterogene-
ity of the underlying infrastructure, enabling simple integration of diverse clients
and external components [1]. Unfortunately, the desirable simplicity does not
extend to the security aspects of web services.

Representational State Transfer (REST) is an architectural style for web ser-
vices that is widely adopted. As an architectural style, REST imposes six general
design constraints [2]: client-server, stateless resource, cacheable responses, uni-
form interface, layered, and code-on-demand (optional constraint). These con-
straints enforce the original concept of the Web as a scalable distributed hyper-
media system with loosely coupled components. Web services that strictly adhere
to REST style constraints are commonly referred to as RESTful services, while
those with loose adherence are often called REST-like services.

It was long believed [3] that RESTful services should be used for ad hoc
integration over the Web, whereas Big Web services (see [1] for naming conven-
tion) were preferable in enterprise application integration scenarios with longer
lifespans and advanced security requirements. However, today we find that more
and more corporate solutions, even the most security demanding ones like finan-
cial systems and sensitive data operations, are based on RESTful or REST-like
services. In contrast to Big Web services, no formal security framework exists
for RESTful services.

c© Springer Nature Singapore Pte Ltd. 2017
L. Batten et al. (Eds.): ATIS 2017, CCIS 719, pp. 141–153, 2017.
DOI: 10.1007/978-981-10-5421-1 12



142 T. Yarygina

There are relatively few studies of RESTful services security, herein we men-
tion most of them. A recent study by Gorski et al. [4] compares the security
stacks of Big Web services and RESTful services. A paper by Lo Iacono and
Nguyen [5] compares RESTful authentication mechanisms with focus on mes-
sage signing. In particular, the authors propose a signing mechanism not limited
to HTTP. Finally, two papers describe approaches to message security for REST-
ful services [6] and secure communication between mobile clients and RESTful
services [7]. Although all of these studies claim to deal with RESTful security,
they do not discuss the REST architectural style from security perspective.

A much debated question among practitioners is what security mechanisms
are truly RESTful. As an example, discussion threads on RESTful authentica-
tion1 and best practices for securing REST APIs2 are viewed more than 250,000
times each. The introduction of security components often changes system behav-
ior, which can affect how a system adheres to the REST style constraints. To
date there has been no general agreement on how the REST paradigm should
address security. Apart from Inoue et al. [8], who argued that a session state is
not against the REST architectural style, there is a lack of research in the area.

This paper aims to unravel some of the mysteries surrounding RESTful secu-
rity. We analyze the REST paradigm from a security perspective and show signif-
icant incompatibilities between the style constraints and typical security mech-
anisms. To our knowledge, we are the first to conduct such a detailed security
evaluation of the REST style and prove that RESTful security is impossible.

The rest of the paper is organized as follows. In Sect. 2, an overview of com-
mon web security mechanisms and a brief discussion of their security merits are
given. Section 3 explores in detail how particular security decisions and especially
authentication schemes relate to core principles of the REST style. Section 4 con-
cludes the paper by summarizing the uncovered contradictions, discussing the
implications of the findings, and providing insights for future research.

2 Overview of Security Mechanisms
for the Modern Web

Adequate security mechanisms are needed to build secure RESTful services.
This section focuses on common security mechanisms such as Transport Layer
Security (TLS), cryptographic objects in JavaScript Object Notation (JSON),
token-based authentication, client side request signing, and delegated authoriza-
tion and shared authentication. The overview creates a background for a more
advanced analysis of how common security mechanisms adhere to the REST
style constraints.

TLS was originally designed to be independent of any application protocol
and has became a de facto security protocol on the Web. Although the design of

1 https://stackoverflow.com/questions/319530/restful-authentication.
2 https://stackoverflow.com/questions/7551/best-practices-for-securing-a-rest-api-

web-service.

https://stackoverflow.com/questions/319530/restful-authentication
https://stackoverflow.com/questions/7551/best-practices-for-securing-a-rest-api-web-service
https://stackoverflow.com/questions/7551/best-practices-for-securing-a-rest-api-web-service


RESTful Is Not Secure 143

TLS supports mutual authentication, HTTPS in its current form is largely used
to authenticate the gateway, but not the client. Even though the idea of both
parties maintaining digital certificates is simple and secure, embedding a unique
certificate into each client is a serious implementation obstacle. Therefore, client
authentication must be provided on the application (message) level.

To provide higher security, as well as client authentication, TLS can be and
often is combined with encryption and signing on the message level. Standards for
cryptographic objects in JSON and XML were created to address security needs
on the message level and to facilitate interoperability. Cryptographic objects can
be seen as containers incorporating secured data and the information necessary
for its processing. The JSON Object Signing and Encryption (JOSE) suite of
specifications offers powerful and flexible building blocks for message security in
web services by providing a general approach to signing and encryption of JSON-
formatted messages. The JOSE suite is essential for delegated authorization and
shared authentication schemes, such as OAuth 2.0 and OpenID Connect (see
Fig. 1).

JWS JWE
JWT

OAuth 2.0

OpenID
Connect

Fig. 1. The hierarchical relation between the JOSE suite, OAuth 2.0, and OpenID Con-
nect. The JOSE suite incorporates JSON Web Signature (JWS), JSON Web Encryption
(JWE), JSON Web Token (JWT) [9], and several other specifications.

HTTP is a stateless protocol, which implies that requests are treated inde-
pendently of each other. Nevertheless, most web applications require sessions.
Session management in HTTP is historically performed via HTTP cookies, URL
parameters, HTTP body arguments in requests, or custom HTTP headers. A
natural extension of session management is client authentication. In modern
web applications, there exist two main approaches to authentication: token-based
authentication and client side request signing. The following discussion focuses
on the security aspects of these approaches.

Traditionally [10], message authentication methods include Message Authen-
tication Codes (MACs), digital signature schemes, and appending a secret
authenticator value before encrypting the whole text. In the context of modern
web services, either JWS or XML Signature standards can be used for message
authentication depending on the message format. For the sake of simplicity, the
term signature is used to refer to both MACs and actual digital signatures.



144 T. Yarygina

2.1 Token-Based Authentication

Token-based authentication via HTTP cookies is the most widely adopted
authentication mechanism in web applications. The mechanism is based on a
notion of security tokens—cryptographic objects containing information relevant
for authentication or authorization.

An authentication token is generated by a web service and sent to a client
for future use. A service generates a token upon the successful validation of the
client’s credentials either during the initial user log in or a re-authentication. A
token can be seen as a temporary replacement for the client’s credentials: every
request from a client must include a valid token to be fulfilled. A token-based
authentication scheme was first analyzed by Fu et al. in 2001 [11].

Security considerations. Server-created security tokens ensure scalability of
the solution and server statelessness by moving the maintenance responsibil-
ity for tokens to clients. Additionally, a limited lifetime of security tokens makes
them superior to direct use of passwords such as in HTTP Basic/Digest Authen-
tication. A server-side secret used to create tokens is the most important security
asset of the server. If the secret is leaked, the damage is not limited to one user:
an adversary can impersonate any user of his or her choice.

Hijacking of security tokens is another serious threat. Token-based mecha-
nisms rely on channel confidentiality. If compromised, a security token can be
used by an adversary to impersonate the client until the token expires or is
revoked. Short expiration time of tokens limits the possible damage, but also
reduces usability of a system by requiring frequent user re-authentication.

The severity of security token hijacking is rooted in the static nature of such
tokens and their independence of particular requests. Dacosta et al. [12] pro-
posed to switch from static cookies to dynamic ones (request-specific). Channel-
binding cookies is another approach to strengthen cookie-based authentication
by binding cookies to TLS channels using TLS origin-bound certificates [13].
However, no approach has gained wide adoption mostly due to increased com-
plexity. The evidence presented herein suggests that token-based authentication
requires minimal amount of data being stored on the server-side, i.e. contributes
to server statelessness, but also has significant security limitations.

2.2 Client Side Request Signing

Many existing RESTful services implement client authentication and in-transit
tampering protection by requiring a client to sign each request. Cryptographic
keys are established between parties during or after the initial authentication
step. Request signing implies signing of an actual message (HTTP payload)
and, optionally, HTTP headers.

Request signing involving HTTP headers has been successfully deployed
by several major web services such as Amazon Web Services (AWS) [14] and
Microsoft Azure [15]. Both are cloud services intended only for programmatic use
through REST APIs. An investigation shows that numerous newly developed sys-
tems borrow AWS’ HMAC-SHA256-based approach to request signing [14].



RESTful Is Not Secure 145

A comparison of REST message authentication mechanisms based on request
signing was performed by Lo Iacono and Nguyen [5]. The paper contributes a
detailed HMAC-based scheme for authentication of all types of REST messages,
including HTTP messages. A similar, but not as detailed approach to HTTP
signing can be found in the IETF draft Signing HTTP Messages [16].

Security considerations. Client-signed requests provide stronger authentica-
tion than mere token-based schemes. Signing of each client request effectively
mitigates session hijacking attacks by limiting damage only to a single request.
A signing key never leaves a client which makes stealing the key much more
difficult than stealing a token that is not only stored on the client, but also
repeatedly sent over the channel. As often happens, higher security comes at a
price of lower scalability and higher complexity since a server needs to maintain
a separate key for each user.

2.3 Delegated Authorization and Shared Authentication

Delegated authorization and shared authentication have become an integral
part of modern web security. The popular security protocols underlying del-
egated authorization and shared authentication mostly instantiate the token-
based authentication introduced earlier. Therefore, they share both advantages
and disadvantages of token-based authentication.

Delegated authorization. We consider a scenario where a user, or resource
owner, has stored some sensitive information on a server. The desire to separate
the login process on the server from the process of granting permissions to a
client application on the behalf of the user has stimulated the emergence of
OAuth [17]. OAuth is a delegated authorization protocol providing third-party
applications (clients) with delegated access to protected resources on behalf of
a user (resource owner). Client side request signing in OAuth 1.0 enables client
authentication and message integrity, while OAuth 2.0 does not. Developers often
fail to implement OAuth correctly due to its ambiguity and complexity [18–20].

Shared authentication. OAuth 2.0 is used as an underlying layer for shared
authentication protocols and Single-Sign-On (SSO) systems. Prominent exam-
ples are OpenID Connect [21], Facebook Login, and Sign In With Twitter. In
such schemes the user authenticates into a third party service (a Relying Party
or RP) using a digital identity at an Identity Provider (IdP) of the user’s choice.
However, additional steps must be taken in order to use OAuth 2.0 for authenti-
cation. Security analyses of commercially deployed OAuth-based SSO solutions
(i.e. popular social login providers) [20,22] have revealed various security and
privacy issues.

3 REST Architectural Style and Security

So far this paper has focused on the security mechanisms commonly used to
secure RESTful services. This section elaborates on why none of the systems



146 T. Yarygina

using such mechanisms are strictly RESTful by analyzing the REST style and its
constrains from a security perspective. It is worth mentioning that the majority
of RESTful services actually fail to adhere to REST for reasons unrelated to
security. Absence of custom media types support and use of verbs in URIs are
common examples of such violations.

The REST architectural style was introduced by Fielding in his influential
dissertation [2] and related paper [23] in 2000. The style is widely adopted and
many popular web services, such as Twitter3 and LinkedIn4, have REST APIs.
The dissertation remains the most fundamental source when talking about the
core principles of REST.

3.1 Not Designed with Security in Mind

The REST style was proposed as an architectural standard for the Web and
introduced only the properties that seemed necessary for the Web at that time.
Fielding makes no attempt to address the question of security in REST. The
words security, authentication, and authorization are rarely mentioned in Field-
ing’s work. The words encryption and signing do not appear at all.

According to Fielding [2], “REST emphasizes scalability of component inter-
actions, generality of interfaces, independent deployment of components, and
intermediary components to reduce interaction latency, enforce security, and
encapsulate legacy systems.” The claim that REST enforces security is neither
justified in the dissertation nor explained in any other literature related to REST.

When talking about scalability of the Web, Fielding writes [2, Sect. 4.1.4.1]
“since authentication degrades scalability, the architecture’s default operation
should be limited to actions that do not need trusted data.” In modern Web, and
especially for REST APIs, the situation is reversed: some form of authentication
is always present. TLS is only mentioned as a connector type [2, Sect. 5.2.2], no
encryption on the message level is considered.

The REST architectural style does not incorporate security as one of its
goals and leaves it up to the developer to decide how security fits the six core
principles. The introduction of security components affects system behavior ini-
tially shaped by REST constraints. Most of the constraints, such as client-server,
uniform interface, and layered system, are high-level and flexible enough to not
interfere with adopted security mechanisms. At the same time, the stateless,
cacheable, and code-on-demand constraints have several practical security impli-
cations. The security implications of the relevant REST constraints are discussed
in the following sections.

3.2 Stateless Constraint

Revisiting the definition. The stateless resource constraint is particularly
problematic from a security perspective. The constraint is often misunderstood

3 https://dev.twitter.com/rest/public.
4 https://developer.linkedin.com/docs/rest-api.

https://dev.twitter.com/rest/public
https://developer.linkedin.com/docs/rest-api


RESTful Is Not Secure 147

by practitioners and overlooked in the scientific literature. According to Field-
ing [2, Sect. 5.1.3], for a resource to be stateless “each request from client to
server must contain all of the information necessary to understand the request,
and cannot take advantage of any stored context on the server.” Such a defin-
ition makes no exceptions and, when followed to the letter, leaves no room for
security mechanisms.

Furthermore, [2] specifies that the “session state” (also referred to as “appli-
cation state”) should be stored exclusively on the client side; however, a def-
inition of session state is never given. A commonly used interpretation of the
stateless resource constraint introduced in [1] differentiates between application
state and resource state. A resource state is defined as any information about
the underlying resource [1].

While the resource state belongs to the server, it still can be changed in
response to a client request. If we consider a user as a resource, then the balance
of the user’s bank account is a resource state that is changing with each per-
formed transaction. Similarly, usernames and passwords are also resource states
that change over time.

Security implications. Most security components introduce additional
resource states. Stateless security protocols do not exist. It is very hard, if at
all possible, to prevent replay attacks without maintaining at least some form
of client state on the server side. Nonces (numbers used once), counters, and
timestamps are examples of such a resource state. All authentication mecha-
nisms described in Sect. 2 incorporate one or more such components. Thus, web
services utilizing these mechanisms are not strictly RESTful.

Differentiating between application state and resource state can be difficult.
For example, security tokens are stored by the client, but are issued exclusively
by the server. The server must maintain the key(s) used to sign tokens, which
introduces more resource states.

The demand of “taking no advantage of any stored context on the server” is
impractical. For example, a common security practice of restricting the number
of login attempts made per specific account relies on the login history being
available.

As pointed out by Fielding [2, Sect. 6.3.4.2], HTTP cookies fail to fulfill the
stateless constraint of REST. An example of such a violation is the use of cookies
to identify a user’s “shopping basket” stored on the server, while the basket can
be stored on the client side and presented to the server only when the user
checks out. This mismatch between REST and HTTP makes a huge part of the
modern Web not RESTful and implicitly deprecates cookie-based authentication
for RESTful web services.

When token-based mechanisms, such as JWT, OAuth 2.0, and OpenID Con-
nect are used, a server needs O(1) resource states to authenticate N users [11].
With client request signing as in OAuth 1.0a and AWS, the server needs to main-
tain a separate key for each client, thus having O(N) resource states. Therefore,
token-based mechanisms can be considered stateless in a sense that there is
no per-user or per-session state when compared to client request signing given



148 T. Yarygina

a substantial number of clients. Although token-based authentication fits the
REST style better then the client side request signing, the latter is generally
more secure as explained in Sect. 2.

Additionally, it is possible to classify application state into two classes, secu-
rity insensitive and security sensitive, that must be treated differently. The server
cannot prevent the client from tampering with the data given to it, nor can the
server directly protect data stored on a client from malicious third parties. The
latter puts user privacy at risk if the data stored is security sensitive.

Even though the definition of the stateless constraint dictates that a client’s
request must contain all of the information necessary to understand the request,
sensitive information should not be transferred unless absolutely necessary. All
security sensitive application states must belong to the server and be resource
states.

Advantages and disadvantages. To evaluate immediate importance of state-
less resource constraint for modern security-aware applications, the advantages
and disadvantages of the constraint must be revisited. According to Fielding [2],
stateless resource constraint induces the properties of visibility, reliability, and
scalability.

The original argument for improved visibility [2] was that the server should
process a client request without looking beyond this request. The argument is
valid until security is involved. Let us consider an online store. If some items
are added to the shopping basket, the only allowed step should be a payment
step, and not goods delivery. To ensure this restriction, the user must have state
within the system.

Additionally, intrusion detection systems (IDS), anti-denial-of-service, and
anomaly detection mechanisms are more likely to mitigate attacks when they
have knowledge of the state and the history of requests. If we consider security
sensitive data such as authentication tokens, the server unavoidably needs to
validate the token, which requires retrieval of the cryptographic key used to
generate the token. The step of token verification can also be seen as one that
decreases visibility. The aforementioned suggests that improvement of visibility
can only be seen for security insensitive data.

The common belief is that maintaining client states on the server side can
potentially create a high load of session management and degrade system perfor-
mance. However, storing clients states on the server side does not cause significant
performance problems for existing high load systems and Cloud services; a study
of REST session state [8] showed that the impact of the stateless resource con-
straint on scalability and reliability of REST in the modern Web is insignificant.

Moreover, maintaining client states on the server side is a desired property
in many cases, for example personalized services, targeted advertisement, smart
suggestion systems, and IDS benefit from it. An alternative solution to scalability
and reliability issues is adoption of special software architecture styles, such as
microservices [24].

The stateless constraint puts significant limitations on handling session syn-
chronization. In the example with the shopping basket, the problems occur when



RESTful Is Not Secure 149

the user has initialized a session on a mobile device and wants to continue the
session using the browser on a laptop. Storing session state exclusively on the
client side and not on the server makes it impossible to keep persistent state in
such situations. Hence, current demand for client state synchronization negates
the stateless resource constraint of REST.

3.3 Other Constraints Affecting Security

Cache constraint. The cachebility constraint is affecting security much less
than the stateless criteria, but the effect is still noteworthy. The definition of
the constraint [2] states that the server responses must be explicitly marked as
cacheable or noncacheable. Of course, only actual caching of responses improves
scalability and network efficiency by eliminating identical repeating interactions.
Caching of server responses can be performed by intermediates, i.e. proxies and
gateways, or clients themselves.

Caching by intermediates has less value on the modern Web due to an increas-
ing amount of encrypted traffic such as HTTPS traffic. As of February 2017,
52.8% of the most popular websites implemented HTTPS [25]. When encrypted
either by TLS or on the message level, server responses are not cacheable by
intermediate proxies. Encrypted content cannot be cached unless the intermedi-
ates are allowed to decrypt the traffic, which defeats the purpose of encryption
in the first place.

Although caching by clients is not affected by encryption, it loses its impor-
tance due to different reasons. Modern websites include large amounts of dynamic
personalized content that cannot and should not be cached. In case of online
banking or online shopping the content (the bank account balance or availabil-
ity of specific items in the shopping basket) is dynamic and gets outdated fast.
Such content is not suitable for caching due to reliability reasons. Similarly,
sensitive content should never be cached for security reasons.

Taken together, encryption and personalized content dramatically reduce
the benefits of traditional web caching in general, and the importance of cache
constraint of the REST style in particular. While the content marked as non-
cacheable does not contradict the definition of the cache constraint (since the
constraint only requires proper labeling), it brings no actual benefit in terms of
scalability or network efficiency.

Code-on-demand constraint. In the code-on-demand paradigm the code for
a specific task is requested by the client, provided by a server, and executed in
the client’s context. As argued in [2], the code-on-demand constraint of REST
improves system extensibility, but also reduces visibility. Therefore, it is only an
optional constraint.

It should be noted that the code-on-demand constraint is relevant primar-
ily within the browser environment. In semantic web with machine-to-machine
communication and native clients consuming REST APIs, execution of external
JavaScript code in the native applications is currently uncommon.



150 T. Yarygina

An important security implication of the code-on-demand paradigm is an
increased attack surface on a client. Among the major security concerns are
authenticity of the received code and the client’s ability to limit the behavior
of the code. These problems have been studied for a long time and mitigation
techniques, such as sandboxing, Address Space Layout Randomisation (ASLR),
and Data Execution Prevention (DEP), are implemented in modern browsers.
However, the problems still persist.

4 The Way Forward

4.1 Security Failure of REST

The main goal of this paper was to asses how the REST style addresses security
and whether security mechanisms adhere to the style constraints. The study has
shown that the REST style fails to take security into account, or to explain
security implications of the constraints. To fill the gap, we provided the missing
security interpretation of the relevant style constraints and made the following
observations:

– Stateless resource constraint. The more security critical a system is, the more
resource states it is likely to have. Among authentication approaches, token-
based authentication most closely fits the stateless resource constraint. How-
ever, it is not entirely stateless.

– Cache constraint. Although formally the cache constraint (labeling of
responses) is not directly affected by security mechanisms, the constraint
loses its meaning for security critical systems. Encrypted, dynamic, and per-
sonalized content is not suitable for caching.

– Code-on-demand constraint. The optional code-on-demand constraint reduces
security of the system by increasing the attack surface on the client side.

To be strictly RESTful and follow all the constraints as they were originally
defined, a system should neither deploy authentication nor store session identi-
fiers in HTTP cookies or headers. Since only the absence of security mechanisms
allows an entity to provide truly RESTful APIs, a bank claiming to have REST-
ful APIs either has serious security problems or the APIs do not satisfy all the
RESTful requirements.

An important finding is that the concept of RESTful security is impossible.
We conclude that the strict REST style on one side and security mechanisms
and security best practices on the other side are incompatible. We suggest that
secure applications trying to adhere to the REST style should never be called
RESTful, but REST-like, i.e. partially adhering to the REST style constraints.
Although the term REST-like does appear in some security specifications, such
as OpenID Connect [21], it has never been justified from a security perspective.



RESTful Is Not Secure 151

4.2 What to Do

The right security approach is system-specific and heavily dependent on the
context. In particular, the frameworks OAuth 2.0 and OpenID Connect rely
on TLS for confidentiality, integrity, and server authentication. These frame-
works prioritize scalability over security because they use server signed tokens
for client authentication. The overall conclusion from the analysis is that systems
with high security requirements should deploy client signatures, even though it
comes with the cost of reduced performance when compared to token-based
approaches. Social login solutions are both easy to support and convenient for
users, but should be avoided if privacy is a serious concern. OAuth should not
be relied on for authentication and needs to be combined with a component for
authentication. Figure 2 contains a flow chart showing how to choose the correct
security architecture.

Will 3rd 
parties use your 
APIs on users’ 

behalf?

OAuth 
provider

Do you trust 
3rd parties to 
authenticate 
your users?

Start

Do you want to 
provide shared 
authentication 

solution?

More 
scalability, 

less 
security

OpenID Connect 
provider

Social login or 
OpenID Connect 

consumer

TLS+token

Non-repudiation 
needed?

TLS+dig.sign. TLS+HMAC

Y

Y N

N

N

Y Y

Y

N

N

Fig. 2. Making the right security decision

4.3 Future Research

Inoue et al. [8] introduced an architectural style called RESTUS, which incor-
porates session state at the server-side as an additional constraint. RESTUS
partially addresses the security issues of the stateless resource constraint, but
not the issues related to the cache and code-on-demand constraints. Similarly
to REST, it does not accommodate security. Future research should therefore
concentrate on resolving the existing conflicts. A natural progression of this work
is to propose an architectural style that incorporates basic security principles.



152 T. Yarygina

References

1. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly Media, Sebastopol
(2007)

2. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. thesis, University of California, Irvine (2000)

3. Pautasso, C., Zimmermann, O., Leymann, F.: RESTful web services vs. big web
services: making the right architectural decision. In: 17th International World Wide
Web Conference (WWW 2008), Beijing, China, pp. 805–814 (2008)

4. Gorski, P., Lo Iacono, L., Nguyen, H., Torkian, D.: Service security revisited. In:
IEEE International Conference on Services Computing, pp. 464–471. IEEE Com-
puter Society, Washington, DC (2014)

5. Lo Iacono, L., Nguyen, H.: Authentication scheme for REST. In: International
Conference on Future Network Systems and Security, pp. 113–128 (2015)

6. Serme, G., de Oliveira, A., Massiera, J., Roudier, Y.: Enabling message security
for RESTful services. In: IEEE 19th International Conference on Web Services,
pp. 114–121. IEEE Computer Society, Washington, DC (2012)

7. De Backere, F., Hanssens, B., Heynssens, R., Houthooft, R., Zuliani, A., Verstichel,
S., Dhoedt, B., De Turck, F.: Design of a security mechanism for RESTful web
service communication through mobile clients. In: IEEE Network Operations and
Management Symposium, pp. 1–6. IEEE, Krakow (2014)

8. Inoue, T., Asakura, H., Sato, H., Takahashi, N.: Key roles of session state: not
against REST architectural style. In: IEEE 34th Computer Software and Applica-
tions Conference, pp. 171–178. IEEE (2010)

9. Jones, M., Bradley, J., Sakimura, N.: RFC 7519. JSON Web Token (2015)
10. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-

tography. CRC Press, Boca Raton (1996)
11. Fu, K., Sit, E., Smith, K., Feamster, N.: The dos and don’ts of client authentication

on the Web. In: USENIX Security Symposium, pp. 251–268 (2001)
12. Dacosta, I., Chakradeo, S., Ahamad, M., Traynor, P.: One-time cookies: preventing

session hijacking attacks with stateless authentication tokens. ACM Trans. Internet
Technol. 12(1), 1:1–1:24 (2012)

13. Dietz, M., Czeskis, A., Balfanz, D., Wallach, D.S.: Origin-bound certificates: a fresh
approach to strong client authentication for the web. In: 21st USENIX Security
Symposium, pp. 317–331. USENIX, Bellevue, WA (2012)

14. Amazon S3: Authenticating requests (AWS Signature v4). https://docs.aws.
amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html

15. Microsoft Azure documentation: Authentication for the Azure Storage Services
(2015). https://msdn.microsoft.com/en-us/library/dd179428.aspx

16. Cavage, M., Sporny, M.: IETF draft. Signing HTTP messages (2015)
17. Hammer-Lahav, E.: RFC 5849. The OAuth 1.0 protocol (2010)
18. Chen, E., Pei, Y., Chen, S., Tian, Y., Kotcher, R., Tague, P.: OAuth demystified

for mobile application developers. In: ACM SIGSAC Conference on Computer and
Communications Security, pp. 892–903. ACM, New York (2014)

19. Wang, R., Zhou, Y., Chen, S., Qadeer, S., Evans, D., Gurevich, Y.: Explicating
SDKs: uncovering assumptions underlying secure authentication and authoriza-
tion. In: 22nd USENIX Security Symposium, pp. 399–314. Washington, DC (2013)

20. Sun, S.T., Beznosov, K.: The devil is in the (implementation) details: an empirical
analysis of OAuth SSO systems. In: ACM Conference on Computer and Commu-
nications Security, pp. 378–390. ACM, New York (2012)

https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html
https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html
https://msdn.microsoft.com/en-us/library/dd179428.aspx


RESTful Is Not Secure 153

21. Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., Mortimore, C.: OpenID
Connect Core 1.0 (2014)

22. Wang, R., Chen, S., Wang, X.: Signing me onto your accounts through Facebook
and Google: a traffic-guided security study of commercially deployed single-sign-on
web services. In: IEEE Symposium on Security and Privacy, pp. 365–379. IEEE
Computer Society, Washington, DC (2012)

23. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture,
pp. 407–416, June 2000

24. Fetzer, C.: Building critical applications using microservices. IEEE Secur. Priv.
14(6), 86–89 (2016)

25. Trustworthy Internet Movement: SSL Pulse (2017). https://www.trustworthy
internet.org/ssl-pulse/

https://www.trustworthyinternet.org/ssl-pulse/
https://www.trustworthyinternet.org/ssl-pulse/

	RESTful Is Not Secure
	1 Introduction
	2 Overview of Security Mechanisms for the Modern Web
	2.1 Token-Based Authentication
	2.2 Client Side Request Signing
	2.3 Delegated Authorization and Shared Authentication

	3 REST Architectural Style and Security
	3.1 Not Designed with Security in Mind
	3.2 Stateless Constraint
	3.3 Other Constraints Affecting Security

	4 The Way Forward
	4.1 Security Failure of REST
	4.2 What to Do
	4.3 Future Research

	References




