
123

Lynn Batten · Dong Seong Kim
Xuyun Zhang · Gang Li (Eds.)

8th International Conference, ATIS 2017
Auckland, New Zealand, July 6–7, 2017
Proceedings

Applications and Techniques
in Information Security

Communications in Computer and Information Science 719



Communications
in Computer and Information Science 719

Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Dominik Ślęzak, and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Ankara, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Ting Liu
Harbin Institute of Technology (HIT), Harbin, China

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan



More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899


Lynn Batten • Dong Seong Kim
Xuyun Zhang • Gang Li (Eds.)

Applications and Techniques
in Information Security
8th International Conference, ATIS 2017
Auckland, New Zealand, July 6–7, 2017
Proceedings

123



Editors
Lynn Batten
School of Information Technology
Deakin University
Geelong, VIC
Australia

Dong Seong Kim
University of Canterbury
Christchurch
New Zealand

Xuyun Zhang
The University of Auckland
Auckland
New Zealand

Gang Li
Deakin University
Geelong, VIC
Australia

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-981-10-5420-4 ISBN 978-981-10-5421-1 (eBook)
DOI 10.1007/978-981-10-5421-1

Library of Congress Control Number: 2017944321

© Springer Nature Singapore Pte Ltd. 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

http://orcid.org/0000-0003-4525-2423
http://orcid.org/0000-0003-2605-187X
http://orcid.org/0000-0001-7353-4159
http://orcid.org/0000-0003-1583-641X


Preface

The present volume contains the proceedings of the 8th International Conference on
Applications and Techniques in Information Security (ATIS 2017). ATIS has been held
annually since 2010. This year, the eighth in the series was held at Massey University,
Auckland, New Zealand, during July 6–7, 2017.

The scope of ATIS includes all the areas of information security from cryptography
to system security, network security, and various applications. ATIS provides a
valuable connection between the theoretical and the implementation communities
attracting participants from industry, academia, and government organizations.

This year, ATIS 2017 received 29 submissions. Each paper was reviewed by at least
three reviewers. Following this independent review, there were discussions among
reviewers and program co-chairs. A total of 14 papers were selected as full papers, and
another four papers were selected as short papers.

We would like to express our appreciation to all the people who participated in the
development of the ATIS 2017 program. The general organization of the conference
also relied on the efforts of the ATIS 2017 Organizing Committee. We would like to
thank Julian Jang-Jaccard for the local arrangements and her kind help in providing
such a nice venue at Massey University. We especially thank Judy Chow, Julian
Jang-Jaccard, Mehmood Baryalai, and Jodi Bubeck for the general administrative
issues, the registration process, and the maintenance of the conference website. We
would give special thanks to the Program Committee and external reviewers, for their
hard work in reviewing papers and providing their detailed and valuable feedback to
the authors. We would like to thank all the participants of this conference. Finally and
most importantly, we thank all the authors, who are the primary reason why ATIS 2017
was so exciting, and why it was the premier forum for presentation and discussion of
innovative ideas, research results, applications, and experience from around the world
as well as for highlighting activities in the related areas. Because of your great work,
ATIS 2017 was a great success.

May 2017 Lynn Batten
Dong Seong Kim

Xuyun Zhang
Gang Li



Organization

ATIS 2017 was organized by the School of Information Technology, Deakin
University, Australia, and the Institute of Natural and Mathematical Sciences, Massey
University, New Zealand.

Steering Committee

Lynn Batten (Chair) Deakin University, Australia
Heejo Lee Korea University, South Korea
Gang Li Secretary, Deakin University, Australia
Jiqiang Liu Beijing Jiaotong University, China
Tsutomu Matsumoto Yokohama National University, Japan
Wenjia Niu Chinese Academy of Sciences, China
Yuliang Zheng University of Alabama at Birmingham, USA

Organizing Committee

General Chair

Gang Li Deakin University, Australia

Organizing Committee

Lynn Batten Deakin University, Australia
Judy Chow Deakin University, Australia

Program Co-chairs

Dong Seong Kim University of Canterbury, New Zealand
Xuyun Zhang University of Auckland, New Zealand

Local Organizing Committee Chair

Julian Jang-Jaccard Massey University, New Zealand

Web Chair

Mehmood Baryalai Massey University, New Zealand

Program Committee

Abdulrahman Alarifi King AbdulAziz City for Science and Technology,
Saudi Arabia

Lynn Batten Deakin University, Australia
Guoyong Cai Guilin University of Electronic Technology, China



Yanan Cao Chinese Academy of Science, China
Rohan DeSilva Central Queensland University, Australia
Jin B. Hong University of Canterbury, New Zealand
Dong Seong Kim University of Canterbury, New Zealand
Kwangjo Kim KAIST, South Korea
Jie Kong Xi’an Shiyou University, China
Gang Li Deakin University, Australia
Qingyun Liu Chinese Academy of Sciences, China
Shaowu Liu Deakin University, Australia
Wenjia Niu Chinese Academy of Sciences, China
Eiji Okamoto University of Tsukuba, Japan
Lei Pan Deakin University, Australia
Deepak Puthal University of Technology Sydney, Australia
Lianyong Qi Qufu Normal University, China
Wei Ren China University of Geosciences, China
Jinqiao Shi Chinese Academy of Sciences, China
Zhongzhi Shi Chinese Academy of Sciences, China
Dirk Thatmann Technical University Berlin, Germany
Hongtao Wang Chinese Academy of Sciences, China
Jinlong Wang Qingdao University of Technology, China
Gang Xiong Chinese Academy of Sciences, China
Ping Xiong Zhongnan University of Economics and Law, China
Ziqi Yan Beijing Jiaotong University, China
Xuyun Zhang University of Auckland, New Zealand
Yuan Zhang Nanjing University, China
Sheng Zhong Nanjing University, China
Yongbin Zhou Chinese Academy of Sciences, China
Tianqing Zhu Wuhan University of Technology, China
Tingshao Zhu Chinese Academy of Sciences, China

Additional Reviewers

Chi Yang
Lefeng Zhang
Matthew Ruffell
Mehmood Baryalai
Mengmeng Ge

Muhan Erza Aminanto
Seongmo An
Simon Enoch Yusuf
Suhan Kim
Tae Hoon Eom

Sponsoring Institutions

Beijing Jiatong University, China
Chinese Academy of Sciences, China
Deakin University, Australia
Massey University, New Zealand

VIII Organization



Keynote Speeches



Identity of Things: Nano Artifact Metrics
Using Silicon Random Nanostructures

Tsutomu Matsumoto

Yokohama National University, Yokohama, Japan
tsutomu@ynu.ac.jp

Abstract. Nano-artifact metrics exploit unique physical attributes of nanos-
tructured matter for authentication and clone resistance, which is vitally
important in the age of Internet-of-Things where securing identities is critical.
We demonstrate nano-artifact metrics based on silicon nanostructures formed
via an array of electron-beam-lithography resist pillars that randomly collapse.
There are several ways to utilize such nanostructures. Our first system [1] is
based on scanning electron microscopy to capture the nanostructure having
extremely fine-scale morphology with a minimum dimension below 10 nm,
which is less than the resolution of current lithography capabilities. Although an
expensive and huge experimental apparatuses is required, the system has
remarkable accuracy with respect to false non-match, false match and
clone-match rates.

Our second system [2] adopts an optical approach to characterize the
nanoscale-precision signatures of silicon random structures towards realizing
low-cost and high-value information security technology. Unique and versatile
silicon nanostructures are generated via resist collapse phenomena, which
contains dimensions that are well below the diffraction limit of light. We exploit
the nanoscale precision ability of confocal laser microscopy in the height
dimension; our experimental results demonstrate that the vertical precision of
measurement is essential in satisfying the performances required for artifact
metrics. Furthermore, by using state-of the-art nanostructuring technology, we
experimentally fabricate clones from the genuine devices. We demonstrate that
the statistical properties of the genuine and clone devices can be successfully
exploited in artificially-constructed solid-state nanostructures. These findings
pave the way for reasonable and yet sufficiently secure novel principles for
hardware security based on silicon random nanostructures.

References

1. Matsumoto, T., et al.: Nano-artifact metrics based on random collapse of resist. Sci. Rep. 4,
6142 (2014). doi:10.1038/srep06142

2. Matsumoto, T., et al.: Optical nano artifact metrics using silicon random nanostructures. Sci.
Rep. 6, 32438 (2016). doi:10.1038/srep32438

http://dx.doi.org/10.1038/srep06142
http://dx.doi.org/10.1038/srep32438


Five Decades of Software Obfuscation:
A Retrospective

Clark Thomborson

Computer Science Department, University of Auckland,
Auckland, New Zealand

cthombor@cs.auckland.ac.nz

Abstract. We romp through the history of software obfuscation, providing
non-technical explanations of key events in each decade. In the 1970s, obfus-
cation was an elite sport played by overly-clever programmers who hid
undocumented features in system software. In the 1980s, obfuscation was a
competitive sport in The International Obfuscated C Code Contest, and
white-hat analyst Fred Cohen designed self-obfuscating viruses which would
evade detection. In the 1990s, obfuscation was a dark-side tool for malware
designers, and white-hat inventors produced patentable art for use in the com-
mercial sector. The 2000s was a decade of consolidation: some potent obfus-
cation methods were released in an open-source software suite, the first
commercial vendor of obfuscation services became profitable, and Boaz Barak
received a Turing Award for proving that a general-purpose software obfuscator
cannot exist. In this decade, most smartphone apps are lightly obfuscated, and
obfuscation theorists are hoping to construct a provably-secure restricted-
purpose obfuscation method.



Contents

Crypto Algorithms and Applications

Defeating Plausible Deniability of VeraCrypt Hidden Operating Systems . . . . 3
Michal Kedziora, Yang-Wai Chow, and Willy Susilo

Security Analysis of a Design Variant of Randomized Hashing. . . . . . . . . . . 14
Praveen Gauravaram, Shoichi Hirose, and Douglas Stebila

Secure Two-Party Computation Using an Efficient Garbled Circuit
by Reducing Data Transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Mohammad Hossein Yalame, Mohammad Hossein Farzam,
and Siavash Bayat-Sarmadi

An Efficient Non-transferable Proxy Re-encryption Scheme . . . . . . . . . . . . . 35
S. Sharmila Deva Selvi, Arinjita Paul, and C. Pandu Rangan

Rounding Technique’s Application in Schnorr Signature Algorithm:
Known Partially Most Significant Bits of Nonce . . . . . . . . . . . . . . . . . . . . . 48

Wenjie Qin and Kewei Lv

On the Practical Implementation of Impossible Differential Cryptanalysis
on Reduced-Round AES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Sourya Kakarla, Srinath Mandava, Dhiman Saha,
and Dipanwita Roy Chowdhury

Privacy Preserving Techniques

Private Distributed Three-Party Learning of Gaussian Mixture Models. . . . . . 75
Kaleb L. Leemaqz, Sharon X. Lee, and Geoffrey J. McLachlan

A Privacy Preserving Platform for MapReduce . . . . . . . . . . . . . . . . . . . . . . 88
Sibghat Ullah Bazai, Julian Jang-Jaccard, and Xuyun Zhang

Privacy-Preserving Deep Learning: Revisited and Enhanced . . . . . . . . . . . . . 100
Le Trieu Phong, Yoshinori Aono, Takuya Hayashi, Lihua Wang,
and Shiho Moriai

Attacks

Characterizing Promotional Attacks in Mobile App Store . . . . . . . . . . . . . . . 113
Bo Sun, Xiapu Luo, Mitsuaki Akiyama, Takuya Watanabe,
and Tatsuya Mori

http://dx.doi.org/10.1007/978-981-10-5421-1_1
http://dx.doi.org/10.1007/978-981-10-5421-1_2
http://dx.doi.org/10.1007/978-981-10-5421-1_3
http://dx.doi.org/10.1007/978-981-10-5421-1_3
http://dx.doi.org/10.1007/978-981-10-5421-1_4
http://dx.doi.org/10.1007/978-981-10-5421-1_5
http://dx.doi.org/10.1007/978-981-10-5421-1_5
http://dx.doi.org/10.1007/978-981-10-5421-1_6
http://dx.doi.org/10.1007/978-981-10-5421-1_6
http://dx.doi.org/10.1007/978-981-10-5421-1_7
http://dx.doi.org/10.1007/978-981-10-5421-1_8
http://dx.doi.org/10.1007/978-981-10-5421-1_9
http://dx.doi.org/10.1007/978-981-10-5421-1_10


Low-Data Complexity Attacks on Camellia . . . . . . . . . . . . . . . . . . . . . . . . 128
Takeru Koie, Takanori Isobe, Yosuke Todo, and Masakatu Morii

RESTful Is Not Secure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Tetiana Yarygina

Malware and Malicious Events Detection

UnitecDEAMP: Flow Feature Profiling for Malicious Events Identification
in Darknet Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Ruibin Zhang, Chi Yang, Shaoning Pang, and Hossein Sarrafzadeh

A Hybrid Approach for Malware Family Classification . . . . . . . . . . . . . . . . 169
Naqqash Aman, Yasir Saleem, Fahim H. Abbasi,
and Farrukh Shahzad

Low-Complexity Signature-Based Malware Detection for IoT Devices. . . . . . 181
Muhamed Fauzi Bin Abbas and Thambipillai Srikanthan

System and Network Security

De-anonymous and Anonymous Technologies
for Network Traffic Release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Xiang Tian, Yu Wang, Yujia Zhu, Yong Sun, and Qingyun Liu

Privacy-Aware Authentication for Wi-Fi Based Indoor
Positioning Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Sang Guun Yoo and Jhonattan J. Barriga

On the Effectiveness of Non-readable Executable Memory Against BROP . . . 214
Christian Otterstad

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

XIV Contents

http://dx.doi.org/10.1007/978-981-10-5421-1_11
http://dx.doi.org/10.1007/978-981-10-5421-1_12
http://dx.doi.org/10.1007/978-981-10-5421-1_13
http://dx.doi.org/10.1007/978-981-10-5421-1_13
http://dx.doi.org/10.1007/978-981-10-5421-1_14
http://dx.doi.org/10.1007/978-981-10-5421-1_15
http://dx.doi.org/10.1007/978-981-10-5421-1_16
http://dx.doi.org/10.1007/978-981-10-5421-1_16
http://dx.doi.org/10.1007/978-981-10-5421-1_17
http://dx.doi.org/10.1007/978-981-10-5421-1_17
http://dx.doi.org/10.1007/978-981-10-5421-1_18


Crypto Algorithms and Applications



Defeating Plausible Deniability of VeraCrypt
Hidden Operating Systems

Michal Kedziora1(B), Yang-Wai Chow2, and Willy Susilo2

1 Faculty of Computer Science and Management,
Wroclaw University of Science and Technology, Wroclaw, Poland

michal.kedziora@pwr.edu.pl
2 School of Computing and Information Technology,

Institute of Cybersecurity and Cryptology, University of Wollongong,
Wollongong, Australia

{caseyc,wsusilo}@uow.edu.au

Abstract. This paper analyzes the security of VeraCrypt hidden oper-
ating systems. We present attacks on the plausible deniability attribute of
hidden Operating Systems (OSs) created using VeraCrypt. We demon-
strate that the encrypted outer volume can contain information that
compromises the existence of a hidden OS, and the fact that it was
running, even if only one copy of the encrypted drive is examined. To
further investigate this, we show that cross drive analysis, previously
used to analyze deniable file systems, can also be applied to prove the
presence of a hidden OS volume and to estimate its size. In addition, we
discuss other attack vectors that can be exploited in relation to cloud
and network information leaks. This paper also examines the security
requirements of a threat model in which the attacker has direct access
to a running hidden OS.

Keywords: Deniable file system · Hidden operation system · Plausible
deniability · TrueCrypt · VeraCrypt

1 Introduction

A hidden Operating System (OS) is an operating system installed in an
encrypted hidden volume, using software such as VeraCrypt. The assumption
is that it should be impossible to prove that a hidden volume exists, and there-
fore impossible to prove that a hidden operating system exists. This concept
is known as plausible deniability, as the existence of the hidden volume cannot
be proven. This feature was implemented in TrueCrypt/VeraCrypt software as
an extension of Deniable File Systems (DFSs) [10], and is based on deniable
encryption which was introduced by Canetti [2,11].

One notion of deniable encryption is the ability to decrypt a ciphertext into
two different plaintexts depending on the key that is provided. An additional
property is to ensure that the adversary cannot detect that a hidden message is
present in the ciphertext. The purpose of this is to protect against adversaries
c© Springer Nature Singapore Pte Ltd. 2017
L. Batten et al. (Eds.): ATIS 2017, CCIS 719, pp. 3–13, 2017.
DOI: 10.1007/978-981-10-5421-1 1



4 M. Kedziora et al.

who are able to force the user to provide a password to decrypt the content,
as the password that is provided will only reveal the decoy message/data while
keeping the true message/data hidden.

Plausible deniability is implemented in TrueCrypt/VeraCrypt via its ability
to create hidden volumes and hidden operating systems. VeraCrypt was devel-
oped based on the original TrueCrypt project. VeraCrypt uses XTS mode for
encrypting partitions, drives and virtual volumes [11]. This mode of operation
is described by Eq. 1; where ⊗ denotes multiplication of two polynomials over
the binary field GF(2) modulo x128 + x7 + x2 + 1; K1 is the encryption key; K2
is the secondary encryption key; i is the cipher block index within a data unit;
n is the data unit index within the scope of K1; and a is the primitive element
of Galois Field (2128) that corresponds to polynomial x [11]. This implies that
a change in one bit of the plaintext will result in a change to the entire 8-bytes
(128 bits) data block of the encrypted volume.

Ci = EK1(Piˆ(EK2(n) ⊗ ai))ˆ(EK2(n) ⊗ ai) (1)

The VeraCrypt documentation provides a guide on how to encrypt a hid-
den OS [11]. A practical implementation consists of two partitions and a boot
loader residing in the first track of a system drive (or a VeraCrypt RescueDisk).
However, this is not a smart solution as the unencrypted boot loader will indi-
cate that the drive is encrypted by VeraCrypt. To overcome this issue there
is an option to create a VeraCrypt rescue disk containing the boot loader, as
depicted in Fig. 1. This will provide plausible deniability as a decoy OS can be
created. Obviously, the system installed on the first partition must not contain
any sensitive files.

Fig. 1. Layout of a drive containing a hidden operating system.

The second partition is also encrypted and can be mounted by the user upon
supplying the second password. The outer volume contains an integrated hidden
volume within which the hidden OS is installed. Existence of the hidden volume,
which is a DFS, cannot be proven via One-Time Access methods (described in
Sect. 2). To access the hidden OS, the user must provide the valid password that
is different from the decoy OS volume’s password. The boot loader will first try to
decrypt the decoy OS’s header, and after it is unsuccessful, it will then attempt
to decrypt the hidden OS’s header. What is important is that when running, the



Defeating Plausible Deniability of Hidden Operating Systems 5

hidden OS will appear to be installed on the same partition as the decoy OS. All
read/write operations will be transparently redirected from the system partition
to the hidden volume inside the outer volume. The VeraCrypt documentation
asserts that neither the OS nor any application programs will know that all data
is essentially written to and read from the hidden volume [11]. In this paper, we
demonstrate that the above statement is not entirely true, as the presence of the
hidden OS can in fact be revealed.

Our Contribution. In this paper, we analyze the security of VeraCrypt hidden
OSs. While this software allow for plausible deniability via the creation of hidden
OSs, we demonstrate that the encrypted outer volume can contain information
that compromises the existence of a hidden OS. Our results are presented from
the point of view of a new threat model incorporating One-Time Access, Multi-
ple Access and Live Response Access scenarios. This paper presents experiment
results showing that the VeraCrypt hidden OS implementation has faults that
can be exploited to compromise the hidden OS even if an attacker only pos-
sess one binary copy of the drive. In addition, we show that it is vulnerable to
cross drive analysis, which can be used to estimate the size of the hidden OS.
Furthermore, this paper discusses other types of attacks that can be conducted
to reveal the existence of a hidden OS on a device based on the Live Response
Access scenario.

2 Threat Model

This work is based on our previously improved threat model for the secu-
rity analysis of Deniable File Systems (DFSs) and hidden Operating Systems
(OSs) [9]. This new model is an improvement on the model proposed by Czeskis
et al. [3], as it addresses the flaws and inconsistencies in the previous model.
The improved threat model is depicted in Fig. 2, in which the attack vectors are
defined by One-Time Access, Multiple Access and Live Response Access scenar-
ios. Compare with the previous model, this new model is much more practical
and suitable for assessing the security of hidden OSs.

The One-Time Access scenario is a situation where an investigator has man-
aged to obtain one or more copies of a device containing only a single copy of the
drive containing a hidden OS [3]. Attack vectors based on this model have been
presented in related work [4,6,7]. However, most of these findings are based on
detecting DFSs, but cannot be applied to detecting hidden OSs. This is because
in the case of hidden OSs, the entire drive is encrypted, thus, reducing the
potential sources of information leaks that can compromise the hidden volume.

In a Multiple Access scenario, an investigator has access to multiple device
images containing multiple hidden encrypted containers. The main threat to
DFSs in this scenario lies in possibility of differential analysis for detecting hidden
volumes, as this results in the ability to attack the plausible deniability attribute.
This issue was raised in Czeskis et al. [3], where they highlighted that if disk
snapshots could be obtained at close enough intervals, then the existence of any



6 M. Kedziora et al.

Fig. 2. Threat model and attack vectors on deniable file systems and hidden operating
systems.

deniable files would become obvious. This is due to the fact that examination
using differential analysis can reveal that seemingly random bytes on the hard
drive will change in a non-random fashion. This was practically demonstrated
by Hargreaves and Chivers [6], and research on detecting the creation of DFSs
inside an encrypted container have been presented in Jozwiak [8].

The Live Response Access model is the model that is most suitable for detect-
ing a hidden OS. Examples of such a scenario is when an investigator has direct
live access to a DFS based hidden OS, or has access to the network environ-
ment within which a hidden OS is operating, or has access to cloud applications
in which a hidden OS is connected to. A typically situation will involve an
investigator remotely logging into a system containing a hidden OS using live
response tools or just using standard remote access software like Team Viewer
or VNC. Live response and memory analysis tools have the capabilities of col-
lecting information from network connections, open ports and sockets, running
processes, terminated processes, loaded DLLs, open files, OS kernel modules,
process dumps, strings or user logs [12].

3 Defeating Deniability of Hidden Operating Systems

In this section, we present practical attacks on the deniability of hidden Operat-
ing Systems (OSs). For this, a test environment was created using Oracle Virtual
Box version 5.1.12. A hard drive image size of 50GB was created. However, since
the virtual box operates using the vdi file format with included metadata, its
image had to be converted to a binary RAW format before analysis using com-
puter forensic tools. Both the decoy and hidden OS (MS Windows 10) where
installed using VeraCrypt 1.19. The designed layout of partitions is depicted in
Table 1.



Defeating Plausible Deniability of Hidden Operating Systems 7

Table 1. Layout of the test environment.

Partition Starting sector Last sector Size (MB)

/dev/sda1 2048 1026047 500

/dev/sda2 1026047 43530239 20270

/dev/sda3 43532225 104855551 29240

/dev/sda5 43532288 1048553551 29240

Unallocated 104855552 104857599 1

The first partition, /dev/sda1, was for the Windows Recovery Environment
(WinRE) and was unencrypted. The second partition, /dev/sda2, was the one
on which the decoy operating system was installed; the whole partition was
encrypted. /dev/sda3 was the extended partition that hosts the /dev/sda5/
partition, which was the completely encrypted outer volume; the hidden OS
was installed within this partition. As the hidden OS was contained within the
encrypted hidden volume, which was located inside the encrypted outer volume,
plausible deniability necessitates that it should be impossible to prove the exis-
tence of this hidden OS. However, in the next section, we show that plausible
deniability of the VeraCrypt hidden OS is not met even in the simplest threat
model scenario.

3.1 Encrypted Drive Analysis

First, we investigated the possibility of defeating plausible deniability of a Ver-
aCrypt hidden OS under the most basic thread scenario, i.e. the One-Time
Access scenario. An example of such a scenario is when Alice’s computer is
seized by police, who force Alice to reveal the password of the encrypted par-
titions. Alice reveals the password for the decoy OS and for the outer volume.
According to the plausible deniability attribute of the VeraCrypt hidden OS, the
police should not be able to prove that Alice has a hidden OS installed on the
computer, as it is stored in an encrypted hidden volume inside the encrypted
outer volume.

A VeraCrypt hidden OS requires a special uncommon disk layout consisting
of at least two partitions that are both completely encrypted. This information,
in conjunction with the fact that VeraCrypt is installed on the computer under
investigation, can potentially raise the suspicion of the police to the presence of a
hidden OS. Nevertheless, this can reasonably be explained by Alice as the need to
separate the system and documents into separate partitions. However, any solid
indication that a hidden OS is installed on the computer under investigation is
sufficient to defeat plausible deniability.

We conducted randomness testing to check for artifacts in the outer vol-
ume. The reason for this is because if a hidden OS is running inside a com-
pletely encrypted hidden volume that is located within an outer volume, which
is also completely encrypted, no pseudo-random anomalies should be found.



8 M. Kedziora et al.

When we performed entropy analysis on the outer volume, it showed that most
of the examined data had values between 7.9978 and 7.9986, which represent
expected values from correctly encrypted cipher text data. However, we were
able to observe some unexpected values in specific sectors that were occupied
by the outer volume. In particular, there were two areas which clearly showed
significantly lower entropy values of 7.9966 and 7.997, as can be seen in the plot
provided in Fig. 3.

Fig. 3. Areas with significantly lower entropy inside the outer encrypted volume.

The first of these observed areas was located in sector number 61345696, and
the second was located 45928448 bytes later in sector number 61435400. Both
of these sectors are located within the /dev/sda5 partition, which was within
the completely encrypted outer volume. The hidden volume hosting the hidden
OS had a size of 42504191 sectors. This could infer that the lower entropy areas
indicate the beginning and end of the hidden volume hosting the hidden OS.
Presence of these areas violates the plausible deniability of the existence of a
VeraCrypt hidden OS.

Both areas are exactly 512 bytes in length and consist of “00” bytes and
strings, and the path to the “\windows\system32\winload.exe” file, refer to
Fig. 4. Cross drive analysis showed that the second area correlates to running
the hidden OS. Three bytes at offset 61435400 are altered every time the hidden
OS is started. This is highlighted in Fig. 4, the bytes 90 90 00 change to CD 1E
01 whenever the hidden OS is started. A VeraCrypt ciphertext block size is 16
bytes (128 bits), this indicates that this area is not overwritten by the VeraCrypt
encryption algorithm.

In summary, an investigator can easily find these areas in a One-Time Access
threat model scenario. The presence of these areas is correlated with the exis-
tence of a hidden OS, and thus violates the plausible deniability attribute of a
VeraCrypt hidden OS. Furthermore, if an investigator is able to compare this



Defeating Plausible Deniability of Hidden Operating Systems 9

Fig. 4. Lower entropy areas.

area with binary snapshots taken over an interval of time (i.e. in the case of a
Multiple Access model), this can provide strong evidence as to the running of a
hidden OS on the computer.

3.2 Cross Drive Analysis

In this section, we demonstrate a method of defeating plausible deniability of
a VeraCrypt hidden OS in the case of a Multiple Access threat model. This
scenario assumes that an investigator is in possession of multiple binary copies
of Alice’s computer hard drive that were taken over several time intervals during
which Alice was using either the decoy OS or the hidden OS. This method has
previously been used in DFSs for detecting the existence of TrueCrypt hidden
volumes on a drive under investigation [6]. Our research adopts this method for
detecting the presence of a VeraCrypt hidden OS.

First, we split the binary images of the investigated drives into 1000 MB
blocks. Then the SHA1 of each block was computed. This was done under the
assumption that this will help narrow down the analysis from a 50 GB image
to smaller parts of the drive where data actually changes, which was true in
the case of analyzing TrueCrypt hidden volumes [6]. It turns out that running a
VeraCrypt OS’s “on the fly” encryption (even when the OS is idle) writes large
amounts of data, which distributes changes over the whole system partition.
VeraCrypt statistics estimate that 17, 33, and 520 MBs of data written on an
encrypted volume correspond to 1 min, 2 min and 5 min intervals [11]. Analysis
of the cryptographic hash function values clearly showed that mismatched blocks
in the case of running the decoy OS are placed in the first half of the investigated
drive image. This is in contrast to running the hidden OS, which changes only the
second half of the drive image. We performed a detailed comparison of changes
in each corresponding data block, and a visual depiction of this is presented in



10 M. Kedziora et al.

Fig. 5. In Fig. 5, every rectangle represents a 1000 MB block of the binary image
from the investigated drive (except for the last block which is 200 MB in size).
The first block is on the upper left, while the last block is on the lower right. The
data that changed during the running of the decoy and hidden OSs are depicted
as the horizontal gray lines.

Fig. 5. A visual depiction of changes that were made to the volume while running the
decoy OS (left) and hidden OS (right).

The experiment started with the creation of the binary images of the inves-
tigated drive containing both the installed decoy and hidden OSs. Then, virtual
machines were cloned, switched on and immediately turned off for the decoy OS
and a second clone for the hidden OS. While running the decoy OS, only data
on the second portion changed. Whereas, running the hidden OS only resulted
in changes in the outer volume, located in the third partition. Analyzing the
first change sector offset (62351360) and the last sector (103601344) allows for
an estimation of the hidden OS partition size. In the case of the experiment, it
was estimated as 19.7 GB, which compares favorably with the actual hidden OS
partition size of 20.26 GB. It is assumed that a more accurate estimation can be
made if we didn’t just turn the OSs on and off, but allowed the OSs to operate
for some time.

In summary, this demonstrates that cross drive analysis can uncover evidence
that a hidden OS is running on an investigated drive based on analysis of changes
in the encrypted drive.



Defeating Plausible Deniability of Hidden Operating Systems 11

3.3 Other Attack Vectors

Hidden OS by design are intended to ensure plausible deniability, especially in
the case of a One-Time Access model. In the previous section, we demonstrated
that they are vulnerable to Multiple Access attacks. In this section, we discuss
attack vectors based on the Live Response Access scenario. This is based on
the situation where an investigator has live access to the running hidden OS
or to the network/cloud environment within which the hidden OS is operating.
Our purpose is to reveal any information that can lead to proving that either
a decoy or a hidden OS is running. Despite information provided in the Ver-
aCrypt documentation that asserts that neither the OS nor any application pro-
grams will know that all data is essentially written to and read from the hidden
volume [11], we discovered that even non-privilege level applications can reveal
some information that can be used to detect a hidden OS.

Right after logging into the hidden OS, a pop-up message informing the
user that “for security reasons, when a hidden operating system is run-
ning, local unencrypted file systems and non-hidden VeraCrypt volumes are
mounted as read-only”, which gives away the fact that the system is run-
ning a hidden OS. In addition, when configuration files located in the %APP-
DATA%\VeraCrypt\folder from both the decoy and hidden OSs are compared,
there is a configuration key named “HiddenSystemLeakProtNotifStatus” that is
initially set to “1”, while no such key exists in the decoy OS’s configuration file.
There is an option to disable the pop-up message, however, upon disabling this
message, the configuration key will change to “2”. This is simple proof that the
hidden OS is running. Moreover, when comparing the configurations files, there
are clear differences. The hidden OS’s configuration file has 58 lines, whereas by
default, the decoy OS’s configuration file only has 10. While this by itself cannot
be treated as hard evidence, it potentially leaks information.

Another indication that a hidden OS is running can be obtained from
mounted volume information that the user can retrieve from the VeraCrypt GUI.
By default, a decoy OS runs from an encrypted volume named “System parti-
tion” with type “System”, whereas a hidden OS runs from a volume mounted
with the name “Hidden system partition” with type “Hidden”. This is shown
in Fig. 6. Even a standard user account is able to obtain this information. If an
investigator has administrative rights, it is highly likely that additional informa-
tion can be obtained by analyzing processes and drives on the kernel.

Another class of attack is based on network/cloud environment informa-
tion leaks. Modern operating systems are enhanced by default in cloud based

Fig. 6. VeraCrypt GUI while running a hidden OS.



12 M. Kedziora et al.

mechanisms to make work easier for the user. An example of this is the Microsoft
account that involves signing into one account for all devices. This information
and the number of login attempts are recorded and stored on user account infor-
mation which can easily be accessed. In our tests we also checked the Apple ID,
which is used to log into Apple’s iCloud as well as Google’s single sign on account.

The use of both the decoy and hidden OSs is visible in the account logs and
this can be an easy way to prove that another OS is installed on the device
by simply observing that two OSs are registered and used concurrently on the
same device. Combining this information with forensic analysis indicating that
only one OS is present on the device and that the drive structure is capable
of running a DFS hidden OS, can be used to prove the existence of a hidden
OS. Similar attacks can be performed by comparing browser fingerprints. These
types of web tracking techniques are described in [1,5]. We conducted a series of
tests which confirm that this method can indeed be used to reveal the presence
of a hidden OS.

Information that can compromise the existence of a hidden OS can also be
obtained from monitoring device network traffic. An attacker can use both pas-
sive and active OS identification techniques. As with cloud based information
leaks, these techniques can easily reveal the existence of a hidden OS if the user
runs different OS types. Techniques for detecting hidden OSs can also include
forensic analysis of decoy OSs by indexing application versions and network ser-
vices and comparing these with intercepted network traffic. Any unusual traffic
from the same IP and MAC, but with applications and services not present in
the decoy OS can lead to the conclusion that a hidden OS must be installed on
the device.

4 Conclusion

This paper demonstrates that the implementation of the VeraCrypt hidden oper-
ating system has faults that can be exploited to compromise the plausible deni-
ability attribute of the hidden OS even if an attacker only possess one binary
copy of the drive. This paper also presents experiment results showing that the
VeraCrypt hidden OS is vulnerable to cross drive analysis. This is because even
if the OS is idle, it still performs large amounts of read/write operations that
distribute changes to the entire partition area. Simply turning the hidden OS
on and off generates enough changes in the binary image to estimate the size of
the hidden OS. In addition, we discuss other types of attacks based on the Live
Response Access model that can be used to reveal the existence of a hidden OS.
Current hidden OS implementations do not cater for the possibility of cloud and
network applications, which result in information leaks that can be exploited to
prove that a hidden OS is installed on a device.

Acknowledgment. This work was undertaken with financial support of a Thelx-
inoe grant in the context of the EMA2/S2 THELXINOE: Erasmus Euro-Oceanian
Smart City Network project, grant reference number: 545783-EM-1-2013-1-ES-ERA
MUNDUS-EMA22.



Defeating Plausible Deniability of Hidden Operating Systems 13

References

1. Acar, G., Eubank, C., Englehardt, S., Juarez, M., Narayanan, A., Diaz, C.: The
web never forgets: persistent tracking mechanisms in the wild. In: Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2014, pp. 674–689. ACM, New York (2014)

2. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski,
B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg
(1997). doi:10.1007/BFb0052229

3. Czeskis, A., Hilaire, D.J.S., Koscher, K., Gribble, S.D., Kohno, T., Schneier, B.:
Defeating encrypted and deniable file systems: TrueCrypt v5.1a and the case of the
tattling OS and applications. In: Provos, N. (ed.) 3rd USENIX Workshop on Hot
Topics in Security, HotSec 2008, San Jose, CA, USA, 29 July 2008, Proceedings.
USENIX Association (2008)

4. Davies, A.: A security analysis of TrueCrypt: detecting hidden volumes and oper-
ating systems a security analysis of TrueCrypt. Detecting hidden volumes and
operating systems (2014)

5. Fifield, D., Egelman, S.: Fingerprinting web users through font metrics. In: Böhme,
R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 107–124. Springer, Heidel-
berg (2015). doi:10.1007/978-3-662-47854-7 7

6. Hargreaves, C., Chivers, H.: Detecting hidden encrypted volumes. In: Decker, B.,
Schaumüller-Bichl, I. (eds.) CMS 2010. LNCS, vol. 6109, pp. 233–244. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-13241-4 21

7. Jozwiak, I., Kedziora, M., Melinska, A.: Theoretical and practical aspects of
encrypted containers detection - digital forensics approach. In: Zamojski, W.,
Kacprzyk, J., Mazurkiewicz, J., Sugier, J., Walkowiak, T. (eds.) Dependable Com-
puter Systems. AISC, vol. 97, pp. 75–85. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21393-9 6

8. Jozwiak, I., Kedziora, M., Melinska, A.: Methods for detecting and analyzing hid-
den FAT32 volumes created with the use of cryptographic tools. In: Zamojski,
W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J. (eds.) New Results
in Dependability and Computer Systems. AISC, vol. 224, pp. 237–244. Springer,
Heidelberg (2013). doi:10.1007/978-3-319-00945-2 21

9. Kedziora, M., Chow, Y.-W., Susilo, W.: Improved threat models for the security
of encrypted and deniable file systems. In: Kim, K., Joukov, N. (eds.) The 4th
iCatse International Conference on Mobile andWireless Technology, ICMWT 2017.
LNEE, vol. 425, pp. 223–230, Kuala Lumpur, Malaysia, 26–29 June 2017. Springer
(2017). doi:10.1007/978-981-10-5281-1 24

10. Loginova, N., Trofimenko, E., Zadereyko, O., Chanyshev, R.: Program-technical
aspects of encryption protection of users’ data. In: 2016 13th International Confer-
ence on Modern Problems of Radio Engineering, Telecommunications and Com-
puter Science (TCSET), pp. 443–445, February 2016

11. VeraCrypt. VeraCrypt Documentation. http://veracrypt.codeplex.com/
documentation

12. Waits, C., Akinyele, J., Nolan, R., Rogers, L.: Computer forensics: results of live
response inquiry vs. memory image analysis. Technical report CMU/SEI-2008-TN-
017, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA
(2008)

http://dx.doi.org/10.1007/BFb0052229
http://dx.doi.org/10.1007/978-3-662-47854-7_7
http://dx.doi.org/10.1007/978-3-642-13241-4_21
http://dx.doi.org/10.1007/978-3-642-21393-9_6
http://dx.doi.org/10.1007/978-3-642-21393-9_6
http://dx.doi.org/10.1007/978-3-319-00945-2_21
http://dx.doi.org/10.1007/978-981-10-5281-1_24
http://veracrypt.codeplex.com/documentation
http://veracrypt.codeplex.com/documentation


Security Analysis of a Design Variant
of Randomized Hashing

Praveen Gauravaram1, Shoichi Hirose2(B), and Douglas Stebila3

1 Tata Consultancy Services, Brisbane, Australia
p.gauravaram@tcs.com

2 University of Fukui, Fukui, Japan
hrs shch@u-fukui.ac.jp

3 McMaster University, Hamilton, Canada

Abstract. At EUROCRYPT 2009, Gauravaram and Knudsen pre-
sented an online birthday attack on the randomized hashing scheme
standardized in NIST SP800-106. This attack uses a fact that it is easy
to find fixed points for the Davies-Meyer-type compression functions of
standardized hash functions such as those in the SHA-2 family. This
attack is significant in that it is an attack on the target collision resis-
tance (TCR) of the randomized hashing scheme which is claimed to be
enhanced TCR (eTCR). TCR is a property weaker than eTCR. In this
paper, we will present a randomized hashing scheme called RMC. We
will also prove that RMC satisfies both TCR and eTCR in the random
oracle model and in the ideal cipher model. In particular, the proof for
the TCR security in the ideal cipher model implies that the attack by
Gauravaram and Knudsen is not effective against RMC.

Keywords: Iterated hash function · Randomized hashing · Target col-
lision resistance · Davies-Meyer compression function · Provable security

1 Introduction

Background. At EUROCRYPT 2009, Gauravaram and Knudsen [11] showed an
online existential birthday forgery attack on the digital signatures based on a ran-
domized hashing scheme that are enhanced Target-Collision-Resistant (eTCR)
secure designed by Halevi and Krawczyk [13]. The randomized hashing was also
standardized by U.S. National Institute of Standards and Technology in the
SP 800-106 [22]. An interesting aspect of this attack is that it is an attack on
the TCR property of the randomized hashing scheme. TCR is a property weaker
than eTCR. Namely, an attack on the TCR property implies an attack on the
eTCR property. In addition, the attack has a practical impact as it is applicable
in the scenarios where a random value used as part of the signature computation
is also used for randomized hashing, which is a recommended practice to save
on the communication bandwidth from transmitting an additional random value
used for randomized hashing.

c© Springer Nature Singapore Pte Ltd. 2017
L. Batten et al. (Eds.): ATIS 2017, CCIS 719, pp. 14–22, 2017.
DOI: 10.1007/978-981-10-5421-1 2



Security Analysis of a Design Variant of Randomized Hashing 15

Although digital signatures based on a randomized hashing scheme with the
eTCR property have a practical advantage of not requiring to sign a random
value along with the hash value, in some scenarios such as above, an attack
on the eTCR property is not useful to forge randomize-hash-and-sign digital
signatures [11] whereas an attack on the TCR property is. This argument is
valid for both online and offline attacks on the eTCR property.

Our contribution. We will present a randomized hash function family which
we call RMC. It simply feeds concatenation of the randomization input and
a message block to each compression function in the iterated hash function.
Similar to the randomized hash function family by Halevi and Krawczyk, RMC
can be implemented without any modifications to iterated hash functions such
as SHA-2 hash functions [7]. We will specify a preprocessing scheme for message
input and randomization input to instantiate RMC with the use of iterated hash
functions such as SHA-2 hash functions.

Actually, RMC is essentially equivalent to the strengthened Merkle-Damg̊ard
domain extension in the dedicated key setting [1] if instantiated with compression
functions of SHA-2 hash functions. In the dedicated key setting, the underlying
compression function takes as a part of input a key which is not secret but chosen
uniformly at random. For compression functions of SHA-2 hash functions, it is
natural to feed the key as a part of the message-block input.

Additionally, a negative result is shown for TCR and eTCR properties of
RMC. It is shown that neither TCR nor eTCR are preserved by strengthened
Merkle-Damg̊ard in the dedicated key setting by Bellare and Ristenpart [1] and
by Reyhanitabar, Susilo and Mu [24]. This also applies to RMC. Namely, RMC
does not necessarily satisfy TCR and eTCR even if the underlying compression
function satisfies TCR and eTCR, respectively.

In this paper, we will give a positive result on TCR and eTCR properties of
RMC on a different assumption on the underlying compression function. More
precisely, we will show that RMC satisfies both TCR and eTCR if the underlying
compression function is an ideal primitive. The result implies that RMC provides
better security with respect to TCR than the Halevi-Krawczyk randomized hash
function family. In particular, it implies that RMC is secure against the online
TCR attack by Gauravaram and Knudsen [11].

We remark that the idea for our RMC design has originated from the ran-
domized hash function variant [8] wherein inputs to the RMX hash function were
randomized at both prefix and suffix ends. Although the Gauravaram-Knudsen
attack is not applicable to this variant due to suffix randomization, this attack
can be combined with the herding-style attack [14] to mount an online birthday
forgery attack which does not apply to RMC.

Organization. Some basic notions are introduced and the RMX randomized hash
function family is reviewed in Sect. 2. The security notions of TCR and eTCR
are formally defined for randomized hash function family in Sect. 3. The RMC
randomized hash function family is presented in Sect. 4. It is also shown in the
same section that the RMC hash function family satisfies TCR and eTCR in the



16 P. Gauravaram et al.

random oracle model and in the ideal cipher model. In Sect. 5, a preprocessing
scheme for message input and randomization input is described, which is used for
instantiating the RMC randomized hash function family with widely deployed
iterated hash functions such as SHA-2 hash functions.

2 Definitions

Let {0, 1}∗ be the set of the binary sequences of arbitrary length including the
empty sequence. The length of x ∈ {0, 1}∗ is denoted by |x|. For x and y in
{0, 1}∗, x‖y is their concatenation. a ←← A means that an element is chosen
uniformly at random from a finite set A and assigned to a.

2.1 Deterministic Hash Function

A hash function takes as input an arbitrary-length message and outputs a fixed-
length digest. A hash function is usually constructed by iterating a compression
function, which takes as input a fixed-length message and outputs a fixed-length
digest, by applying a mode of operation or domain extension transform such
as Merkle-Damg̊ard (MD) [5,19]. In this paper, we consider MD as the hash
function mode of operation albeit the extension of our analysis to other modes.

Let f : {0, 1}n × {0, 1}b → {0, 1}n be a compression function which takes
as input a b-bit message block and an n-bit chaining value and outputs a new
n-bit chaining value. The MD mode of operation iterated over f takes as input
a message M of length a multiple of b. M is divided into b-bit message blocks
M [1],M [2], . . . ,M [m], and is processed with MD to obtain the digest. The MD
mode of operation iterated over f with an initialization vector IV , denoted by
MDf , is formally defined as follows: MDf (IV ,M) = V [m], where V [0] ← IV ,
M [1]‖M [2]‖ · · · ‖M [m] ← M and V [i] ← f(V [i − 1],M [i]) for i = 1 to m.

Let Hf : {0, 1}n × {0, 1}∗ → {0, 1}n be a deterministic hash function con-
structed by using the MD mode of operation iterated over f . Hf takes as
input a message M of arbitrary length. With the application of a padding
procedure, M is extended as M‖pad , which is processed by MDf . The length
of M‖pad is a multiple of b. pad usually depends only on the length of M .
A hash function Hf with an initialization vector IV is formally defined as
Hf (IV ,M) = MDf (IV ,M‖pad).

For deterministic hash functions such as SHA-256 and SHA-512, their initial-
ization vectors are fixed and public. Thus, we will use the notations MDf (M)
and Hf (M).

2.2 Randomized Hash Function Family and RMX

A randomized hash function family is defined by a deterministic hash func-
tion with an auxiliary randomization input. Randomized hash function families
were first introduced by Naor and Yung in the name of universal one-way hash
functions (UOWHFs) [21]. The UOWHFs were called target-collision-resistant



Security Analysis of a Design Variant of Randomized Hashing 17

(TCR) hash functions by Bellare and Rogaway [2] and they satisfy TCR prop-
erty which is weaker than collision resistance. Bellare and Rogaway [2] and later
Shoup [25] proposed and analyzed composition constructions to build TCR
iterated hash functions from TCR compression functions. Halevi and Kraw-
czyk [13] designed randomized hash functions with TCR and stronger prop-
erty of enhanced Target Collision Resistance (eTCR) by using properties related
to second preimage resistance of the compression function. One of their eTCR
designs is called RMX.

The scope of this paper is in proposing design improvements for RMX hash
function family, and we limit our design description to RMX. An RMX hash
function family over Hf is defined by H̄ =

{
H̄f

r | r ∈ {0, 1}c}, where H̄f
r (M) =

Hf (r‖(r ⊕M [1])‖(r ⊕M [2])‖ · · · ‖(r ⊕M [m])). For simplicity, it is assumed that
the length c of r equals the message-block length of f . It is also assumed that
M = M [1]‖M [2]‖ · · · ‖M [m] and |M [i]| equals the message-block length of f .
The detailed specification for the general cases is given in NIST SP 800-106 [22].

2.3 Fixed Points in Block-Cipher-Based Compression Functions

Several practical block-cipher-based compression functions [23] such as Davies-
Meyer [20], Matyas-Meyer-Oseas [18] and Miyaguchi-Preneel [23], that are prov-
ably collision resistant and (second) preimage resistant in the ideal cipher
model [3,4,26], are easily differentiable from a fixed-input-length random ora-
cle [17]. For example, it is easy to find fixed points for the Davies-Meyer compres-
sion function [20]. This weakness was exploited in several attacks on popular hash
function frameworks [6,9–12,15,16]. These attacks make use of fixed points in
compression functions to generate birthday collision attacks that are used to find
second preimages in much less than generic second preimage attack complexity.

3 TCR and eTCR of Randomized Hash Function Family

Let H be a randomized hash function family using a deterministic iterated hash
function Hf randomized with an auxiliary random input. We formalize multi-
target (enhanced) target-collision-resistance using the experiments given below:

ExpTCR-t
H : 1. st ← ⊥; r0 ← ⊥

2. For i = 1 to t: (Mi, st) ← Af (ri−1, st); ri ←← {0, 1}c
3. (M∗, r∗) ← Af (r, st)
4. WIN iff ∃i : (Mi 	= M∗) ∧ (ri = r∗) ∧ (Hf

ri(Mi) = Hf
r∗(M∗))

ExpeTCR-t
H : 1. st ← ⊥; r0 ← ⊥

2. For i = 1 to t: (Mi, st) ← Af (ri−1, st); ri ←← {0, 1}c
3. (M∗, r∗) ← Af (r, st)
4. WIN iff ∃i : (ri,Mi) 	= (r∗,M∗) ∧ (Hf

ri(Mi) = Hf
r∗(M∗))



18 P. Gauravaram et al.

An experiment is a game played by an adversary A. A is given t first preim-
ages. For each first preimage (Mi, ri), message Mi is chosen by A adaptively, and
the corresponding randomization input ri is chosen uniformly at random after
Mi. A wins in the experiment if A finds a second preimage for one of the given t
first preimages. The experiment for TCR requires that the randomization input
of the second preimage is equal to that of the first preimage.

The TCR advantage of A is defined as follows:

AdvTCR-t
H (A) = Pr[A wins in ExpTCR-t

H ] .

The eTCR advantage AdveTCR-t
H is defined analogously.

4 RMC Hash Function Family

We propose RMC as a randomized hash function family which offers bet-
ter security bounds against TCR attacks than the RMX hash function fam-
ily. Let H̃ be an RMC hash function family which uses MD mode as the
underlying domain extension. A hash function H̃f

r in this family is formally
defined as follows: H̃f

r (M) = Hf (r‖M [1])‖(r‖M [2])‖ · · · ‖(r‖M [m]), where
M [1]‖M [2]‖ · · · ‖M [m] ← M . Here, r ∈ {0, 1}c, and it is assumed that b > c,
|M | ≡ 0 (mod b − c) and |M [i]| = b − c for 1 ≤ i ≤ m. For arbitrary-length
messages, a preprocessing function producing inputs to the deterministic hash
function Hf is specified in the next section.

4.1 Rationale for the Design Choice of RMC

The key criterion is to choose a design so that an RMC randomized hash function
family is not vulnerable to length-extended fixed-point-based birthday collision
attacks used to find online TCR collision attacks on RMX hash functions [11,12].
In a length-extended fixed-point-based birthday collision attack on an iterated
hash function Hf , an adversary develops a colliding pair (M,M‖M [� + 1]) such
that H(M) = H(M‖M [� + 1]), where M is an arbitrary �-block message and
M [� + 1] is a fixed-point message block for f such that f(H(M),M [� + 1]) =
H(M). As demonstrated in [11,12], this attack is also applicable on RMX ran-
domized hash function families in the following way:

1. Adversary A is given t preimages (M1, r1), (M2, r2), . . . , (Mt, rt).
2. A produces s random fixed points for f such that f(Vj , Nj) = Vj for 1 ≤ j ≤ s.
3. If A finds some i and j such that H̄f

ri(Mi) = Vj , then A outputs (Mi‖(ri ⊕
Nj), ri) as the second preimage for (Mi, ri).

This attack is a TCR collision attack in birthday complexity since it is successful
with some significant probability if ts = O(2n).

This attack cannot be applied to RMC randomized hash function families as
the compression function always takes a randomization input.



Security Analysis of a Design Variant of Randomized Hashing 19

4.2 Security Analysis

The TCR and eTCR security of the RMC randomized hash function family H̃ ={
H̃f

r

∣
∣ f : {0, 1}n × {0, 1}b → {0, 1}n ∧ r ∈ {0, 1}c} are analyzed in the random

oracle model and in the ideal cipher model. In the random oracle model, the
compression function f is assumed to be a fixed-input-length random oracle. In
the ideal cipher model, it is assumed to be a Davies-Meyer compression function,
that is, f(v, x) = Ex(v) ⊕ v, where the block cipher E with block size n and key
size b is chosen uniformly at random. In these ideal models, the advantage of an
adversary is evaluated based on the number of calls to the ideal primitive. Let

AdvTCR-t
H (�, q) = max

A
Pr

[A wins in ExpTCR-t
H

]
,

where each preimage given to A has at most � message blocks and A calls f at
most q times, which exclude the number of calls required to compute the outputs
for the t first preimages. AdveTCR-t

H (�, q) is defined similarly. Notice that a call
to f in the ideal cipher model is a call to encryption E or decryption E−1.

Theorem 1 given below quantifies the TCR security of the RMC hash function
family. The proof is omitted due to the page limit.

Theorem 1. Let q, t and � be positive integers. Let α = min{t, 
(e ln 2)c/(ln c+
ln ln 2)�}. Suppose that t ≤ 2c.

1. If f is a random oracle, then AdvTCR-t
H̃ (�, q) ≤ (α� + 1)(t� + q)/2n + 1/2c.

2. If f is a Davies-Meyer compression function with an ideal cipher, then

AdvTCR-t
H̃ (�, q) ≤ (α� + 1)(t� + q)

2n − (α� + q)
+

1
2c

.

It is implied by the result for the ideal cipher model shown in Theorem 1 that
the collision attack on the RMX hash function family is not effective against the
RMC hash function family.

Theorem 2 gives upper bounds on the eTCR advantage both in the random
oracle model and in the ideal cipher model. The proof is also omitted.

Theorem 2. Let q, t and � be positive integers.

1. If f is a random oracle, then AdveTCR-t
H̃ (�, q) ≤ (t� + 1)(t� + q)/2n.

2. If f is a Davies-Meyer compression function with an ideal cipher, then

AdveTCR-t
H̃ (�, q) ≤ (t� + 1)(t� + q)

2n − (t� + q)
.

5 Randomized Message Preprocessing for Hash Functions

A randomized message preprocessing algorithm for an iterated hash function is
specified for instantiation of the RMC randomized hash function family with
widely deployed iterated hash functions such as SHA-256 and SHA-512. It is



20 P. Gauravaram et al.

assumed that the iterated hash function uses a compression function f : {0, 1}n×
{0, 1}b → {0, 1}n and the Merkle-Damg̊ard strengthening. For the iterated hash
function, let l be the length of the binary representation of the input length. For
example, n = 256, b = 512 and l = 64 for SHA-256, and n = 512, b = 1024 and
l = 128 for SHA-512.

The message preprocessing algorithm takes as input r ∈ {0, 1}c chosen uni-
formly at random and a message M ∈ {0, 1}∗. It is assumed that l + 1 ≤ b − c.

The algorithm first pads the message M with 10k, where k is the minimum
non-negative integer such that |M | + k + 1 ≡ (b − c) − (l + 1) (mod b − c).
Then, it divides M‖10k into the blocks M [1],M [2], . . . ,M [m] such that |M [i]| =
b − c for 1 ≤ i ≤ m − 1 and |M [m]| = (b − c) − (l + 1). Finally, it produces
(r‖M [1])‖(r‖M [2])‖ · · · ‖(r‖M [m]).

From the TCR security analysis in Sect. 4, since it is assumed that t ≤ 2c,
where t is the number of the first preimages, it is recommended that c ≥ 128
for SHA-256 and SHA-512. In addition, it is reasonable to assume that c ≤ n,
where n is the output length and n < b − l − 1 for SHA-256 and SHA-512. If
c = 128, the number of calls of RMC to the compression function is about 4/3
and 8/7 times larger than that of RMX for SHA-256 and SHA-512, respectively.
Table 1 summarizes the comparison for some other values of c.

Table 1. Performance comparison between RMC and RMX

c 128 256 384 512

SHA-256 4/3 2 n/a n/a

SHA-512 8/7 4/3 8/5 2

Acknowledgements. A part of this work was done when Dr. Praveen Gauravaram
was at QUT supported by Australian Research Council (ARC) Discovery Project grant
DP130104304. The second author was supported in part by JSPS KAKENHI Grant
Number JP16H02828.

References

1. Bellare, M., Ristenpart, T.: Hash functions in the dedicated-key setting: design
choices and MPP transforms. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A.
(eds.) ICALP 2007. LNCS, vol. 4596, pp. 399–410. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-73420-8 36

2. Bellare, M., Rogaway, P.: Collision-resistant hashing: towards making UOWHFs
practical. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 470–484.
Springer, Heidelberg (1997). doi:10.1007/BFb0052256

3. Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based
hash-function constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 320–335. Springer, Heidelberg (2002). doi:10.1007/3-540-45708-9 21

4. Black, J., Rogaway, P., Shrimpton, T., Stam, M.: An analysis of the blockcipher-
based hash functions from PGV. J. Cryptology 23(4), 519–545 (2010)

http://dx.doi.org/10.1007/978-3-540-73420-8_36
http://dx.doi.org/10.1007/BFb0052256
http://dx.doi.org/10.1007/3-540-45708-9_21


Security Analysis of a Design Variant of Randomized Hashing 21

5. Damg̊ard, I.B.: A design principle for hash functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, New York (1990). doi:10.
1007/0-387-34805-0 39

6. Dean, R.D.: Formal aspects of mobile code security. Ph.D. thesis, Princeton Uni-
versity (1999)

7. FIPS PUB 180–4: Secure Hash Standard (SHS) (2015)
8. Gauravaram, P.: Generation of randomized messages for cryptographic hash func-

tions, US Patent 9444619 B2 (2016)
9. Gauravaram, P., Kelsey, J.: Linear-XOR and additive checksums don’t protect

Damg̊ard-Merkle hashes from generic attacks. In: Malkin, T. (ed.) CT-RSA
2008. LNCS, vol. 4964, pp. 36–51. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-79263-5 3

10. Gauravaram, P., Kelsey, J., Knudsen, L.R., Thomsen, S.S.: On hash functions using
checksums. Int. J. Inf. Sec 9(2), 137–151 (2010)

11. Gauravaram, P., Knudsen, L.R.: On randomizing hash functions to strengthen the
security of digital signatures. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol.
5479, pp. 88–105. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01001-9 5

12. Gauravaram, P., Knudsen, L.R.: Security analysis of randomize-hash-then-sign dig-
ital signatures. J. Cryptology 25(4), 748–779 (2012)

13. Halevi, S., Krawczyk, H.: Strengthening digital signatures via randomized hash-
ing. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 41–59. Springer,
Heidelberg (2006). doi:10.1007/11818175 3

14. Kelsey, J., Kohno, T.: Herding hash functions and the Nostradamus attack. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 183–200. Springer,
Heidelberg (2006). doi:10.1007/11761679 12

15. Kelsey, J., Lucks, S.: Collisions and near-collisions for reduced-round Tiger. In:
Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 111–125. Springer, Heidelberg
(2006). doi:10.1007/11799313 8

16. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less
than 2n work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005). doi:10.1007/11426639 28

17. Kuwakado, H., Morii, M.: Indifferentiability of single-block-length and rate-1 com-
pression functions. IEICE Fundam. 90–A(10), 2301–2308 (2007)

18. Matyas, S.M., Meyer, C.H., Oseas, J.: Generating strong one-way functions with
cryptographic algorithm. IBM Techn. Discl. Bull. 27, 5658–5659 (1985)

19. Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, New York (1990). doi:10.1007/
0-387-34805-0 40

20. Miyaguchi, S., Ohta, K., Iwata, M.: Confirmation that some hash functions are
not collision free. In: Damg̊ard, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473,
pp. 326–343. Springer, Heidelberg (1991). doi:10.1007/3-540-46877-3 30

21. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, pp. 33–43 (1989)

22. NIST SP 800–106: Randomized Hashing for Digital Signatures (2009)
23. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers:

a synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
368–378. Springer, Heidelberg (1994). doi:10.1007/3-540-48329-2 31

24. Reyhanitabar, M.R., Susilo, W., Mu, Y.: Enhanced target collision resistant hash
functions revisited. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 327–
344. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03317-9 20

http://dx.doi.org/10.1007/0-387-34805-0_39
http://dx.doi.org/10.1007/0-387-34805-0_39
http://dx.doi.org/10.1007/978-3-540-79263-5_3
http://dx.doi.org/10.1007/978-3-540-79263-5_3
http://dx.doi.org/10.1007/978-3-642-01001-9_5
http://dx.doi.org/10.1007/11818175_3
http://dx.doi.org/10.1007/11761679_12
http://dx.doi.org/10.1007/11799313_8
http://dx.doi.org/10.1007/11426639_28
http://dx.doi.org/10.1007/0-387-34805-0_40
http://dx.doi.org/10.1007/0-387-34805-0_40
http://dx.doi.org/10.1007/3-540-46877-3_30
http://dx.doi.org/10.1007/3-540-48329-2_31
http://dx.doi.org/10.1007/978-3-642-03317-9_20


22 P. Gauravaram et al.

25. Shoup, V.: A composition theorem for universal one-way hash functions. In: Pre-
neel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 445–452. Springer, Hei-
delberg (2000). doi:10.1007/3-540-45539-6 32

26. Stam, M.: Blockcipher-based hashing revisited. In: Dunkelman, O. (ed.) FSE
2009. LNCS, vol. 5665, pp. 67–83. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-03317-9 5

http://dx.doi.org/10.1007/3-540-45539-6_32
http://dx.doi.org/10.1007/978-3-642-03317-9_5
http://dx.doi.org/10.1007/978-3-642-03317-9_5


Secure Two-Party Computation
Using an Efficient Garbled Circuit

by Reducing Data Transfer

Mohammad Hossein Yalame, Mohammad Hossein Farzam,
and Siavash Bayat-Sarmadi(B)

Sharif University of Technology, Tehran, Iran
{yalame,mfarzam}@ce.sharif.edu, sbayat@sharif.edu

Abstract. Secure computation has obtained significant attention in the
literature recently. Classic architectures usually use either the Garbled
Circuit (GC) or the Goldreich-Micali-Wigderson (GMW) protocols. So
far, to reduce the complexity of communications in these protocols, var-
ious methods have been proposed. The best known work in both meth-
ods reduces the communication up to almost 2k-bits (k is the symmetric
security parameter) for each AND gate, and using XOR gate is free. In
this paper, by combining GC and GMW, we propose a scheme in the
semi-honest adversary model. This scheme requires an Oblivious Trans-
fer (OT) and a 2-bit data transfer for each AND gate, keeping XOR
gates free. The analytical results on different applications, including AES,
DES, SHA-1, SHA-256, MD5, multiplier, adder, and comparator show
that the data transfer size can be reduced up to 52% and 41% when com-
pared to the best known GC and GMW based methods, respectively.

Keywords: Secure computation · Secure function evaluation · Garbled
circuit protocol · GMW protocol · Oblivious transfer protocol

1 Introduction

Secure computation has received significant attention in the literature recently.
Applications include secure computation of biometric identification [1], user
authentication [2], privacy-preserving ElectroCardioGram (ECG)[3], privacy-
preserving remote diagnostics [4], and so on. In two-party secure computation,
both parties can perform or evaluate a function together and realize the result;
while no party can know about the private inputs of the other party. Such com-
putations usually are performed in two approaches, including Garbled Circuit
protocol (GC) [5–7] and the Goldreich-Micali-Wigderson protocol (GMW) [8],
[9,10]. In GC, inputs and outputs of the circuit gates are masked so that the
intermediate values and input values of one party cannot be determined by the
other party in the course of the function evaluation. In GMW, the two parties
share all inputs and intermediate values using an XOR-based sharing scheme.
Each party evaluates the function with his/her own secret shares to find out one
c© Springer Nature Singapore Pte Ltd. 2017
L. Batten et al. (Eds.): ATIS 2017, CCIS 719, pp. 23–34, 2017.
DOI: 10.1007/978-981-10-5421-1 3



24 M.H. Yalame et al.

share of the final output of the circuit. These two shares are then XORed to
make the final output.

In [11–14] some techniques are presented to minimize the GC construction
algorithms in terms of computation and communication complexity for secure
evaluating of functions. Round complexity in GC is constant [15]. However, in
GMW it significantly lies on the depth of the circuit representation of the func-
tion [16]. That is why a number of the previous work have tried to reduce boolean
circuits depth [10]. The other main direction of improving GMW is reducing
communication or computation overhead in the Oblivious Transfer (OT) proto-
col [9,10]. That is due to the fact that OT is a main component of the GMW
protocols.

In this paper, by combining GC and GMW, we have proposed a scheme
for the semi-honest adversary model that reduces the communication overhead.
This adversary model is widely used in previous work such as [6,9–11]. The
contributions of the paper are as follows:

– When compared to GMW which uses OT as one of its main components, the
proposed method requires one OT2

1 instead of one OT4
1 for most AND gates.

We should note that any optimization on the OT protocol improves GMW
and the proposed scheme to the same extent. Neither the security nor the
computation of the scheme is negatively affected by this optimization.

– In GC-based protocols, wire label size is usually large and determines the level
of security. In the proposed work, the security level is independent from the
size of the label. This enables reducing label size to 2 bits. Furthermore, in GC,
XOR gates are said to be free. However, in fact, the local evaluation of each
XOR gate costs k XOR operations (k is the symmetric security parameter).
For instance, for the case of k = 128, applying an XOR operation on k-bit
labels costs 128 XORs. Reducing label size to 2 bits reduces the computation
of XOR gate evaluation accordingly.

For evaluating the proposed scheme, we have performed our experiments
for different sizes of circuits, including 32-bit multiplier, 32-bit comparator, 32-
bit adder, 64-bit adder, AES, DES, SHA-1, SHA-256 and MD5. The results
show that overall data transfer size mostly decreases up to 52% and 41% when
compared to the best known GC and GMW based methods.

This paper is organized as follows. In Sect. 2, the preliminaries and related
work regarding GC and GMW are presented. Section 3 presents the proposed
scheme. In Sect. 4, the analytical and experimental results are reported. Finally,
we conclude the paper in Sect. 5.

2 Preliminaries and Previous Work

In this section, main components of SFE and its best known previous works are
reviewed.

Oblivious Transfer (OT) [17]: This cryptographic protocol runs between a
sender and a receiver. Generally, in 1-out-of-n OT the sender has n secret values



Secure Two-Party Computation Using an Efficient Garbled Circuit 25

(s1, ..., sn). The receiver should prepare a selection number r (1 ≤ r ≤ n). Then,
after performing the protocol, receiver learns sr, but nothing about other secret
values of the sender. Additionally, the sender does not learn about r, i.e., does
not know which secret has been selected.

Garbled Circuit (GC) Protocol [5]: Yao introduced two-party secure func-
tion evaluation (GC protocol)[5]. Each wire of the circuit in GC protocol carries
a bit-string (label) instead of one single bit. There are two main phases in GC
protocol. In the first phase, the garbler garbles the circuit. In other words, it
garbles the relation between gate inputs and output (also known as truth table).
The resulting table of ciphertexts, generated for each gate by the garbler, is called
Garbled Table (GT). In the second phase, the evaluator computes (evaluates)
circuit outputs using GT and garbled value of each wire. In other words, the
evaluator and the garbler compute the values of the function outputs without
revealing their inputs to each other.

Free XOR Method [11]: The main idea of this method is to evaluate an XOR
gate without sending any ciphertexts. In Free XOR, the labels on a wire are
chosen in the form of (W 0,W 0 ⊕ R); where R is random and common to all
wires; however, it is only known to the garbler. “W 0” is also chosen to be a
random number and is the label on the wire corresponding to “0” value. This
way when the evaluator observes an XOR gate, it XORs the labels of the input
wires to compute the label of the output wire (in form of either Wg or Wg ⊕ R).
Therefore, XOR gates do not need GT for evaluation. Each AND gate needs
to send three ciphertexts, according to row reduction technique [14], from the
garbler to the evaluator.

Garbled Row Reduction [14]: In this method, the required number of cipher-
texts for each gate is further reduced. Instead of choosing a random label for
each output wire of a gate, it is chosen as a function of Wa and Wb, where Wa

and Wb are the labels of input wires of the gate. Using this method, the first
row of GT is always zero; hence, it does not need to be sent. So, each gate needs
three ciphertexts. This technique is compatible with the Free XOR method; i.e.,
XOR gates are free.

Half Gate Method [13]: This work enables evaluating AND gates with only
two ciphertext while keeping XORs free. To this end, each AND gate is divided
into two half gates, i.e., an AND gate for which one party knows one input.
Since half gates can be garbled with only one ciphertext, AND gates’ garbling
will need only two.

Improved OT Extension [15] and LUT based OT [9]: As mentioned earlier,
OT is a core building block of GMW. In these works, the communication of OT is
reduced to make a more efficient GMW protocol. In [15], they achieved this end
by reducing a log2N -bit OTN

1 to log2N 1-bit OT2
1 compared to [18]. This reduc-

tion resulted in communication improvements up to 1.6x per each two 1-bit OT2
1.

Continuing this path, in [9], a log4N -bit OTN
1 is reduced to log4N 1-bit OT4

1 and
improvements up to 1.9x per each two 1-bit OT2

1 is achieved compared to [18].



26 M.H. Yalame et al.

3 Proposed Scheme for SFE

In this work, the idea is to reduce the cost of data transfer by reducing the size of
the labels without compromising the security. In contrast to the previous work
[5,11,13], in our scheme, wire labels W 0 and W 1, are of length two. Each AND
gate is assigned a ternary (αa, αb, αc), which can be computed using the labels
on each input. We have defined A and B to be two functions to identify the
first and the second incoming wires of gates, respectively. G is a function that
identifies the functionality of gates. Additionally, we refer to the garbled values
of the first and the second input of each gate as Wa and Wb, respectively. The
garbled output is referred to as Wg. We have also made use of XOR Connected
Components (XCCs) in the proposed scheme. To this end, we define xcc() as a
function to identify the XCC of each XOR gate and nxcc to represent the number
of XCCs in the circuit. Figure 1 illustrates how a sample circuit is partitioned
into three XCCs. The XOR gates surrounded by a curve are in the same XCC.

4

1

2
3

5

6
7

8
9

XCC1

XCC3XCC2

Fig. 1. Partitioning XOR gates in a sample circuit into XCCs.

To clarify how we reached the proposed scheme, our approach is provided in
Subsect. 3.1. Also, we describe the details of the scheme in Subsects. 3.2 and 3.3.

3.1 The Approach of the Proposed Scheme

The main idea in this work is to reduce label size without compromising the
security. Reducing label size in GC-based works, e.g., [11,13], leads to a security
degradation. That is because such work provide the evaluator with a chance
to check the correctness of his/her guesses for the garbled output of an AND
gate. This problem has been resolved by increasing the state space of garbled
values, which in turn needs to increase label size to k-bit, i.e., 128-bit. In this
work, we have proposed another solution to this problem not by increasing state
space but by changing the protocol in a way that the evaluator cannot check the
correctness of his/her guesses anymore. To achieve this end, we have made use
of OT for each AND gate.



Secure Two-Party Computation Using an Efficient Garbled Circuit 27

The simplest way to achieve this goal is to assign a unique index to each row
in the truth table of the AND gate. To do so, similar to other work [11,13], each
row of the truth table is indexed by its most significant bit (MSB) of its input
labels. Thus, the two labels of each AND gate input wire must have opposite
MSBs. The relation between MSBs and actual values is random and secret. In
this way, the evaluator can obtain the required garbled value of an output wire
by execution of an OT4

1. In this OT, the garbler provides the garbled outputs
of each row of the truth table and the evaluator receives the garbled output by
providing the index of the corresponding row.

Table 1. All possible garbling groups for AND gates

Aa Garbling group Garbled inputs

W 0
a W 0

b W 0
a W 1

b W 1
a W 0

b W 1
a W 1

b

0000 G0 α = 0 α = 0 α = 0 α = 0*

0001 G1 α = 0 α = 1* α = 0 α = 1

0010 G2 α = 1 α = 0* α = 1 α = 0

0011 G3 α = 1 α = 1 α = 1 α = 1*

0100 G4 α = 0 α = 0 α = 1* α = 1

0101 G5 α = 0* α = 1 α = 1 α = 0

0110 G6 α = 1* α = 0 α = 0 α = 1

0111 G7 α = 1 α = 1 α = 0* α = 0

1000 G8 α = 1 α = 1 α = 0* α = 0

1001 G9 α = 1* α = 0 α = 0 α = 1

1010 G10 α = 0* α = 1 α = 1 α = 0

1011 G11 α = 0 α = 0 α = 1* α = 1

1100 G12 α = 1 α = 1 α = 1 α = 1*

1101 G13 α = 1 α = 0* α = 1 α = 0

1110 G14 α = 0 α = 1* α = 0 α = 1

1111 G15 α = 0 α = 0 α = 0 α = 0*

actual output 0 0 0 1
a LSB(W 0

a )|LSB(W 1
a )|LSB(W 0

b )|LSB(W 1
b ).

The data transfer overhead in this scheme is still more than the half gate
scheme [13]. The fact that the garbled output of the AND gate has only two
different possible values suggests that it may be possible to achieve the same
level of security with only one OT2

1. For using an OT2
1, we need to use another

bit in the labels to classify all the possible garblings. The least significant bit
(LSB) of the labels are selected for this purpose. So, label size can be reduced
to two bits.

A garbling determines the value of four two-bit labels, i.e., W 0
a , W 1

a , W 0
b and

W 1
b . Although there are eight bits to be determined, there are only 64 different



28 M.H. Yalame et al.

Table 2. A sample garbling for an AND gate

Input Output Garbled input Garbled output Index

a b g Wa Wb Wg

0 0 0 11 01 W 0
g 10

0 1 0 11 10 W 0
g 11

1 0 0 01 01 W 0
g 00

1 1 1 01 10 W 1
g 01

valid garblings. This is because the MSBs of the labels on each wire are opposite.
The garblings can be classified based on the LSBs of the labels into 16 different
groups, namely G0 to G15. These groups are shown in Table 1. Each row of the
table is representative of a garbling group. For each garbling, three identifiers,
i.e., αa, αb and αc are calculated as follows:

αa = LSB(W 0
b ⊕ W 1

b ), αb = LSB(W 0
a ⊕ W 1

a ), αc = LSB(W 1
a ⊕ W 1

b ). (1)

It should be noted that the value of each identifier is the same for all the garblings
in a group. Table 1 and the newly defined identifiers will be used in the evaluation
process of AND gates.

Each AND gate in the circuit is corresponding to one cell in Table 1. To
identify this cell, one needs to know the garbling group used for the gate, which
identifies the corresponding row. Moreover, he/she needs to know the garbled
value on the inputs of the gate, which identify the corresponding column. Nei-
ther the garbler nor the evaluator have this information completely. During the
function evaluation, when the evaluator reaches an AND gate with two garbled
inputs Wa and Wb, he/she computes α = LSB(Wa ⊕Wb). Ideally, we would like
to use the value of this identifier as the select signal of the OT2

1, but it is not
possible. That is because the value of this signal is the same in some cells with
different actual outputs in each row of Table 1. For instance, consider the first
row of the table. The value of α is the same for all the cells in it. In other words,
if the garbling group of an AND gate is G0, then the evaluator will get α = 0
no matter what the garbled inputs are. Thus, some other condition Cond must
be checked for each AND gate. The holding of Cond along with the value of α
must be enough for the garbler to assign W 0

g and W 1
g to OT2

1 inputs correctly.
To do so, we mark a cell in each row of Table 1 with an asterisk. Know-

ing the garbling group of an AND gate, we define Cond holds for it if it is
corresponding to the marked cell in that garbling group. This can be checked
by comparing the MSBs of the garbled inputs of the AND gate against the
MSBs of the garbled inputs in the marked cell for that garbling group. For
instance, consider the AND gates shown in Fig. 2. The garbling has been pre-
viously described in Table 2. As mentioned earlier, it is clear that this garbling
is classified in G14 (LSB(W 0

a ) = LSB(11) = 1, LSB(W 1
a ) = LSB(01) = 1,

LSB(W 0
b ) = LSB(01) = 1, LSB(W 1

b ) = LSB(10) = 0 and (1110)2 = 14).



Secure Two-Party Computation Using an Efficient Garbled Circuit 29

11

01

11

10

01

01
01

10

(a) α = 0, Cond = False (b) α = 1, Cond = True

(c) α = 0, Cond = False (d) α = 1, Cond = False

Fig. 2. Determining α and Cond for four AND gates as an example. Table 2 presents
the corresponding garbling.

EvaluatorGarbler
index

garbled
output0

1

OT1
2

Fig. 3. AND gate evaluation in the proposed scheme using OT2
1.

Now, only consider the gate shown in Fig. 2(b). According to Table 2, the gar-
bled inputs are W 0

a and W 1
b . So, the corresponding column of the gate would

be the second column in Table 1. Since the identified cell is a marked cell, Cond
holds for this AND gate.

We proceed with the details of AND gates evaluation. We initially suppose
that the used garbling is not in the groups in which the value of α is the same
across different cells, i.e., G0, G3, G12 and G15. In this case, a careful exami-
nation of all cells in each row of Table 1 shows that the actual output is “0” in
marked cells. Among the other cells with no asterisk, the ones with the actual
output value equal to “1” and “0” can be distinguished based on the value of α.
More specifically, the garbled output of the AND gate would be WCond⊕α⊕αc

g .
In the other case, when the used garbling is from groups G0, G3, G12 or G15,
it can similarly be shown that the garbled output of the AND gate is WCond

g .
The OT select signal equation must be the same in all garbling groups. Other-

wise, the evaluator may find about the garbling group chosen by the garbler. To
make the equations identical, we make use of the don’t care situations in groups
G0, G3, G12 and G15. As it can be seen in Table 1 and Eq. 1, the value of α and
αc are always equal in G0, G3, G12 and G15 and it follows that α ⊕ αc = 0. So,
WCond

g can be re-written as WCond⊕α⊕αc
g . The final step to unify both equations

is to add a term to differentiate between G0, G3, G12 and G15 with others. This
makes the final equation of the garbled output to be W

(α⊕Cond)⊕(αc⊕(αa+αb))
g .

This is so promising that none of the scheme sides can evaluate this equation,
as the garbler and the evaluator do not know the value of α ⊕ Cond and αc ⊕
(αa + αb), respectively. However, it can be evaluated obliviously if the garbler

puts W
αc⊕(αa+αb)
g and W

αc⊕(αa+αb)
g on the first and second input of the OT,



30 M.H. Yalame et al.

and the evaluator provides the OT select signal Cond ⊕ α. This configuration is
shown in Fig. 3.

3.2 The Algorithms of the Garbler and the Evaluator Side

Algorithms 1 and 2 present how the garbled circuit is generated and evaluated.

Algorithm 1. Construction of Garbled Circuit Algorithm
1: Procedure GARBLE
2: S ∈R {0, 1}nxcc

3: for each Gg == XOR (in the topological order)
4: index ← xcc(g), R ← {1}|S[index], a ← A(g), b ← B(g)
5: if (garbled value of a has not been assigned)
6: W 0

a ∈R {0, 1}2, W 1
a ← W 0

a ⊕ R
7: if (garbled value of b has not been assigned)
8: W 0

b ∈R {0, 1}2, W 1
b ← W 0

b ⊕ R
9: W 0

g ← W 0
a ⊕ W 0

b , W 1
g ← W 0

g ⊕ R
10: for each wire i that garbled values have not been assigned
11: W 0

i ∈R {0, 1}2, tmp ∈R {0, 1}, W 1
i ← MSB(W 0

i )|tmp
12: for each input wire of circuit send the garbled value
13: for each Gg == AND
14: a ← A(g), b ← B(g)
15: αa ← LSB(W 1

b ⊕ W 0
b ), αb ← LSB(W 1

a ⊕ W 0
a ), αc ← LSB(W 1

a ⊕ W 1
b )

16: ρg ← [MSB(W ᾱa
a )|MSB(W

ᾱb
b )]

17: provide the inputs of OT2
1: (W

αc⊕(αa+αb)
g ,W

αc⊕(αa+αb)
g )

18: for each output wire i of circuit
19: di ← MSB(W 0

i )

Algorithm 2. Evaluation of Garbled Circuit Algorithm
1: Procedure EVALUATE
2: for each input wire i of circuit receive corresponding garbled value
3: for each gate g (in the topological order)
4: a ← A(g), b ← B(g)
5: if (Gg == XOR)
6: Wg ← Wa ⊕ Wb

7: if (Gg == AND)
8: α ← LSB(Wa ⊕ Wb)
9: if (MSB(Wa)|MSB(Wb) == ρg)

10: OT in ← ᾱ
11: else
12: OT in ← α
13: provide the select input of OT2

1 (OTin) and receive its output Wg

14: for each primary output wire i
15: yi ← di ⊕ MSB(Wi)



Secure Two-Party Computation Using an Efficient Garbled Circuit 31

3.3 An Exception in the Proposed Scheme

The algorithms in Subsect. 3.2 present how the scheme works in general. There
is a special case in which this general form of the scheme is not applicable due to
a security issue. This case occurs when both inputs of an AND gate come from
one XCC. Due to page limit, we only discuss the solution but not more details.
In these cases the garbler provides the gate’s garbled output without sending ρg

by conducting an OT4
1. The evaluator uses MSB(Wa)|MSB(Wb) as the select

signal, which can uniquely identify a row of AND gate’s truth table, and the
garbler provides the corresponding garbled outputs. Different benchmarks have
been analyzed to see how common this case is and the results are reported in
Table 4.

4 Analytical and Experimental Results

In this section, the communication complexity of the proposed scheme has been
compared against the schemes proposed in [9,13]. In the next subsection, the
communication overhead of each method is investigated when applied to some
common SFE applications [19]. The results show significant improvement in
communication overheads for most cases. The overheads are stated using the
following parameters:

– neval: the number of the evaluator’s inputs,
– k: the symmetric security parameter,
– nA: the total number of AND gates,
– nAD

: the number of AND gates whose inputs are from two different XCCs,
– nAS

: the number of AND gates with both inputs coming from the same XCC.

The communication of the proposed SFE scheme in this paper depends on
the complexity of the OT protocol. To estimate the overhead of the proposed
scheme, we need to select one of the proposed OT protocols in the literature. The
OT protocols presented in [9,18] are among the best previous work in this field.
Although, the communication overhead of the OT protocol in [9] is less than
the other work, we consider both to show the efficiency of our work even using
OT protocols with more communication overhead. Hereafter, we refer to the
protocols presented in [9,13,18] as ExtendedOT, HalfGate, and LutBasedOT,
respectively.

4.1 Results

The bit-length of the data transfer (ntran) in different schemes are presented in
Table 3. We have considered a number of applications given in [19]. The number
of gates in each function, nAD

, nAS
, and nxcc are presented in Table 4. Tables 5

and 6 compare the size of data transfer for HalfGate, GMW and the proposed
scheme. The results show improvements in the data transfer size.



32 M.H. Yalame et al.

Table 3. Data transfer of different schemes

Scheme ntran(bits)

HalfGate 2nAk + nk + nevalk

Proposed using ExtendedOT neval(k + 4) + 2ngen + nAD (k + 6) + nAS (2k + 10)

GMW using LutBasedOT ngen + neval + 138nA

Proposed using LutBasedOT 75neval + 2ngen + 78nAD + 154nAS

Table 4. Circuits of basic functions useful for SFE [19]

Function No. ANDs No. XORs No. INVs nAD nAS nxcc

AES 6800 25124 1692 400 6400 1

Expanded AESa 5440 20325 1927 320 5120 68

DES 18124 1340 10849 16597 1527 10076

Expanded DESa 18175 1351 10875 17466 709 10132

MD5 29084 14150 34627 14220 14864 19162

SHA-1 37300 24166 45135 21043 16257 25635

SHA-256 90825 42029 103258 60306 30519 63067

32-bit comparator 150 0 162 150 0 162

32-bit adder 127 61 187 68 59 130

64-bit adder 265 115 379 162 103 278

32 × 32-bit multiplier 5926 1069 5379 4907 1019 3883
a Key expanded version of symmetric encryption.

Table 5. The size of data transfer in the proposed scheme and HalfGate using Extende-
dOT for several functions

Function Proposed scheme HalfGate scheme Improvement (↓%)

AES 1760352 1789952 2

Expanded AESa 1414272 1605632 12

DES 2635702 4664320 43

Expanded DESa 2537604 4767488 47

MD5 5897160 7576576 22

SHA-1 7179194 9679872 26

SHA-256 16205604 23382272 31

32-bit comparator 24388 50688 52

32-bit adder 28976 44800 35

64-bit adder 57476 92416 38

32 × 32-bit multiplier 930842 1529344 39
a Key expanded version of symmetric encryption.



Secure Two-Party Computation Using an Efficient Garbled Circuit 33

Table 6. The size of data transfer in the proposed scheme and GMW using LutBase-
dOT for several functions

Function Proposed scheme GMW scheme Improvement (↓%)

AES 1026656 938656 −9

Expanded AESa 825856 752256 −9

DES 1534652 2501240 39

Expanded DESa 1477870 2508982 41

MD5 3399240 4014104 15

SHA-1 4145956 5147912 19

SHA-256 9404818 12534362 25

32-bit comparator 14164 20764 32

32-bit adder 16854 17590 4

64-bit adder 33426 36698 9

32 × 32-bit multiplier 542136 817852 34
a Key expanded version of symmetric encryption.

5 Conclusion

Majority of implementations of semi-honest secure two-party computation
schemes still suffer from large communication overhead. The security of the GC-
based schemes proposed in previous work mainly depends on the labels of each
gate. Hence, the length of the labels has to be larger than a certain value (e.g.,
128 bits). In this work, a semi-honest secure two-party computation is proposed
whose security is independent of the label size. To this end, we have made use of
an oblivious transfer (OT) for each AND gate evaluation. The resulting scheme
is similar to GMW; However, it has less communication overhead due to the
replacement of OT4

1 with OT2
1 in most AND gate evaluation. The results of

our experiments on different applications show that the data transfer size of
the scheme reduces up to 52% and 41% against GC and GMW based schemes,
respectively. We note that any optimization on OT implementation will result
in further optimization of the proposed scheme accordingly.

References

1. Bringer, J., Chabanne, H., Patey, A.: Privacy-preserving biometric identification
using secure multiparty computation: an overview and recent trends. IEEE Signal
Process. Mag. 30(2), 42–52 (2013)

2. Sui, Y., Zou, X., Du, E.Y., Li, F.: Secure and privacy-preserving biometrics based
active authentication. In: IEEE International Conference on Systems, Man, and
Cybernetics, pp. 1291–1296 (2012)

3. Barni, M., Failla, P., Lazzeretti, R., Paus, A., Sadeghi, A.R., Schneider, T.,
Kolesnikov, V.: Efficient privacy-preserving classification of ECG signals. In: First
IEEE International Workshop on Information Forensics and Security, pp. 91–95
(2009)



34 M.H. Yalame et al.

4. Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote
diagnostics. In: ACM Conference on Computer and Communications Security, pp.
498–507 (2007)

5. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium
on Foundations of Computer Science, pp. 162–167 (1986)

6. Yao, A.C.: Protocols for secure computations. In: 23th Annual Symposium on
Foundations of Computer Science, pp. 160–164 (1982)

7. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party compu-
tation. J. Cryptology 22(2), 161–188 (2009)

8. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Pro-
ceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp.
218–229 (1987)

9. Dessouky, G., Koushanfar, F., Sadeghi, A.-R., Schneider, T., Zeitouni, S., Zohner,
M.: Pushing the communication barrier in secure computation using lookup tables.
In: 24th Annual Network and Distributed System Security Symposium (2017)

10. Schneider, T., Zohner, M.: GMW vs. Yao? Efficient secure two-party computation
with low depth circuits. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp.
275–292. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39884-1 23

11. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-70583-3 40

12. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols. In:
ACM Symposium on Theory of Computing, pp. 503–513 (1990)

13. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46803-6 8

14. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism
design. In: ACM Conference on Electronic Commerce, pp. 129–139 (1999)

15. Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring short
secrets. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
54–70. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40084-1 4

16. Demmler, D., Dessouky, G., Koushanfar, F., Sadeghi, A.-R., Schneider, T.,
Zeitouni, S.: Automated synthesis of optimized circuits for secure computation.
In: ACM Conference on Computer and Communications Security, pp. 1504–1517
(2015)

17. Naor, M., Pinkas, B.: Computationally secure oblivious transfer. J. Cryptology
18(1), 1–35 (2005)

18. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer
and extensions for faster secure computation. In: ACM Conference on Computer
and Communications Security, pp. 535–548 (2013)

19. Circuits of basic functions suitable for MPC and FHE. http://www.cs.bris.ac.uk/
research/cryptographysecurity/mpc

http://dx.doi.org/10.1007/978-3-642-39884-1_23
http://dx.doi.org/10.1007/978-3-540-70583-3_40
http://dx.doi.org/10.1007/978-3-662-46803-6_8
http://dx.doi.org/10.1007/978-3-642-40084-1_4
http://www.cs.bris.ac.uk/research/cryptographysecurity/mpc
http://www.cs.bris.ac.uk/research/cryptographysecurity/mpc


An Efficient Non-transferable Proxy
Re-encryption Scheme

S. Sharmila Deva Selvi, Arinjita Paul(B), and C. Pandu Rangan

Theoretical Computer Science Lab,
Department of Computer Science and Engineering,

Indian Institute of Technology Madras, Chennai, India
{sharmila,arinjita,prangan}@cse.iitm.ac.in

Abstract. Proxy re-encryption (PRE) allows re-encryption of a cipher-
text for Alice (delegator) into a ciphertext for Bob (delegatee) via a semi-
trusted proxy, who should not obtain the underlying plaintext. Alice gen-
erates a re-encryption key (re-key) for the proxy using which, the proxy
transforms the ciphertexts. The basic notion of PRE provides security
against the proxy from learning anything about the encrypted message
given the re-encryption key. However, this is not sufficient in all situa-
tions as the proxy can collude with Bob and re-delegate Alice’s decryp-
tion rights. Hence, non-transferability is a desirable property in real-time
scenarios wherein an illegal attempt to transfer Alice’s decryption rights
exposes Bob’s private key as a penalty. In Pairing 2010, Wang et al.
presented a CPA secure non-transferable Identity Based PRE scheme in
the random oracle model. However, we show that the scheme violates
the non-transferable property. Also, we present the first construction of
a non-transferable unidirectional PRE scheme in the PKI setting using
bilinear maps which meets CCA security under a variant of the decisional
Diffie-Hellman hardness assumption in the random oracle model.

Keywords: Proxy re-encryption · Bilinear maps · Public key ·
Unidirectional · Non-transferable

1 Introduction

Blaze et al. [2] in 1998 first proposed the concept of proxy re-encryption, which
allows a proxy with specific information (re-encryption key) to translate a cipher-
text for Alice into another ciphertext for Bob, without knowing the underlying
plaintext. PRE has many useful applications, such as ensuring security of shared
data in the cloud computing setting, enabling a data owner to encrypt shared

S. Sharmila Deva Selvi—Postdoctoral researcher supported by Project No. CCE/
CEP/22/VK&CP/CSE/14-15 on Information Security & Awareness(ISEA) Phase-
II by Ministry of Electronics & Information Technology, Government of India
A. Paul and C. Pandu Rangan—Work supported by Project No. CCE/CEP/
22/VK&CP/CSE/14-15 on ISEA-Phase II.

c© Springer Nature Singapore Pte Ltd. 2017
L. Batten et al. (Eds.): ATIS 2017, CCIS 719, pp. 35–47, 2017.
DOI: 10.1007/978-981-10-5421-1 4



36 S. Sharmila Deva Selvi et al.

data in the cloud in his public key and store them, which can be transformed by a
proxy-server into a ciphertext for a legitimate recipient. This consigns the costly
burden of secure data sharing to the resource-abundant semi-trusted proxy. PRE
offers promising solutions to encrypted email forwarding, digital rights manage-
ment, outsourced encrypted spam filtering among others [1,3,14].

PRE schemes are classified into bidirectional and unidirectional schemes based
on the direction of delegation. They are also classified into single-hop and multihop
schemes. In this paper, we focus on unidirectional single-hop PRE schemes.

The existing PRE schemes assume that the proxy is semi-trusted and does not
collude with Bob to acquire Alice’s private key or re-delegate Alice’s decryption
rights to a malicious user Carol, failing to provide the non-transferable property
which was first proposed by Ateniese et al. [1]. A PRE scheme is said to be
non-transferable when the colluding proxy and delegatees should not be able to
re-delegate decryption rights to other parties without compromising the private
keys of the delegatees or the privacy of the delegatees. Note that Bob can always
decrypt and forward the message to the malicious user Carol, but this would
require Bob to be online. The notion of non-transferability is to prevent the
colluding proxy and Bob to provide Carol with a secret value that can be used
to decrypt Alice’s ciphertexts when Bob is offline. Hence, the only way for Bob
to transfer decryption capabilities to Carol is to reveal his own private key.

1.1 Related Work

While several protocols achieving PRE in various models are available, only
a few provides the non-transferable property as well. In this section, we focus
on PRE schemes supporting non-transferability. Illegal delegation of decryption
rights would cause unauthorised sharing of data and financial losses which marks
non-transferability as an important property in practice, such as the cloud ser-
vice security scenario. Libert et al. [9] stated the difficulty in preventing such
collusions and proposed a CPA secure scheme to trace the malicious proxies
after a collusion. Even though penalising the colluders after an unauthorised
transferance is a possible strategy to attain non-transferability, it is more desir-
able to prevent collusion than discouraging it. In the ID-based PRE scheme
given by Wang et al. [13] in the random oracle model, a PKG generates the
re-encryption keys and this is undesirable as it requires the PKG to be online
for the re-encryption keys generation and introduces the key-escrow problem
and key-despotism problem. He et al. [7] proposes a non-transferable ID-based
PRE scheme in the random oracle model that addresses the previous problems
but involves multiple rounds of interactions for partial-key generations and key-
validations which makes their scheme less practical. Hayashi et al. [6] introduces
a partial solution to non-transferability as their schemes are shown to achieve
unforgeability of re-encryption keys against collusion attack (UFReKey-CA),
assuming the hardness of the variants of the Diffie-Hellman inversion problem in
the standard model, which was later shown vulnerable to forgeability attack on
the re-encryption keys by Isshiki et al. [8]. Guo et al. [5] uses indistinguishability



An Efficient Non-transferable Proxy Re-encryption Scheme 37

obfuscation (iO), a highly complex primitive, to resolve the problem of non-
transferability in PRE.

1.2 Our Contributions

In 2005, Ateniese et al. [1] stated that “achieving a proxy scheme that is non-
transferable, in the sense that the only way for Bob to transfer offline decryption
capabilities to Carol is to expose his own secret key, seems to be the main open
problem left for proxy re-encryption”. Guo et al. [5] achieves non-transferability
using indistinguishability obfuscation (iO), a highly complex and impractical
primitive. Our major contribution lies in providing a non-transferable unidirec-
tional single-hop PRE scheme in the random oracle model that uses bilinear
maps and group operations, and is much more practical. To the best of our
knowledge, there are no known PRE schemes satisfying non-transferability in
the PKI setting based on group theoretic operations. Wang et al. [13] proposed
an uni-directional non-transferable PRE scheme in the random oracle model
in the identity-based setting, in which the fully trusted PKG generates the re-
encryption keys. We present an attack on their scheme, by showing that the
colluders can indeed construct an illegal decryption function that can be used
by any malicious third party to decrypt the delegator’s second level ciphertexts,
without any compromise of the delegatees private keys.

2 Preliminaries

2.1 Bilinear Pairings

Our PRE scheme is based on bilinear pairings. Let G1 and G2 be an additive
and multiplicative cyclic groups respectively of prime order q. G1 is generated
by P . G1 has an admissible bilinear mapping into G2, ê : G1 × G1 → G2, if the
following three conditions hold:

1. Bilinear : ∀P,Q,R ∈ G1, ∀a, b ∈ Z
∗
q

(a) ê(P + Q,R) = ê(P,R) · ê(Q,R)
(b) ê(P,Q + R) = ê(P,Q) · ê(P,R)
(c) ê(aP, bQ) = ê(P,Q)ab

2. Non-degenerate: ∃P,Q ∈ G1 such that, ê(P,Q) �= 1G2 .
3. Computable: ∀P,Q ∈ G1, there is an efficient algorithm to compute ê(P,Q).

2.2 Hardness Assumptions

In this section, we state the computational hardness assumptions used to estab-
lish the security of the schemes.

Modified Decisional Bilinear Diffie-Hellman (m-DBDH) Assump-
tion [12]: The m-DBDH assumption is said to hold if, given the elements
{P, aP, bP, cP, a−1P} ∈ G1 and T ∈ G2, there exists no probabilistic polynomial-
time adversary which can determine whether T = ê(P, P )abc or a random ele-
ment from G2 with a non-negligible advantage, where P is a generator of G1

and a, b, c ∈R Z
∗
q .



38 S. Sharmila Deva Selvi et al.

1-Weak Decisional Bilinear Diffie-Hellman Inversion (1-WDBDHI)
Assumption [10]: The 1-wDBDHI assumption is said to hold if, given the ele-
ments {P, 1

aP, bP} ∈ G1 andT ∈ G2, there exists no probabilistic polynomial-time
adversary which can determine whether T = ê(P, P )ab or a random element from
G2 with a non-negligible advantage, where P is a generator of G1 and a, b ∈R Z

∗
q .

3 Definition and Security Model

3.1 Definition

We describe the syntactical definition of unidirectional proxy re-encryption [13]
and its security notion. A PRE scheme consists of the following seven algorithms:

– Global setup(λ): returns a set of public parameters params, which is shared
by all the users in the system.

– KeyGen(params): returns the public key and private key pair (pki, ski) of a
user i.

– ReKeyGen(ski, pki, pkj , params): returns a re-encryption key RKi→j .
– Encrypt(m, pki, params): returns the ciphertext Ci corresponding to m which

is allowed to be re-encrypted for another user. The ciphertext Ci generated
is called as the second level ciphertext.

– Re-Encrypt(Ci, RKi→j , params): returns a ciphertext C ′
j , re-encryption of

Ci, now encrypted under the public key pkj . The re-encrypted ciphertext C ′
j

is called as the first level ciphertext.
– Decrypt(Ci, ski, params): returns a plaintext m or the error symbol ⊥ if the

ciphertext is invalid.
– Re-Decrypt(C ′

j , skj , params): returns a plaintext m or the error symbol ⊥ if
the ciphertext is invalid.

The consistency of a PRE scheme for any given public parameters params and
a public-private key pair {(pki, ski), (pkj , skj)} is defined as follows:

1. Consistency between encryption and decryption; i.e.,

Decrypt(Encrypt(m, pki), ski) = m,∀m ∈ M
2. Consistency between encryption, proxy re-encryption and decryption; i.e.,

Re − Decrypt(Re − Encrypt(RKi→j , Encrypt(m, pki)), skj) = m,∀m ∈ M

3.2 Security Model

Since there exists two types of ciphertexts namely first level and second level
ciphertexts in PRE, it is necessary to prove the security of each of these two
levels as defined in [9]. As in [4], in our model, the adversary A can only obtain
the uncorrupted public keys pki:i∈HU and corrupted public-private key pairs
{pki, ski}i:i∈CU from the challenger C and cannot determine which parties will
be compromised adaptively. A is provided with re-encryption keys he is entitled
to know but can adaptively query the re-encryption and decryption oracles which
C answers as below and simulates an environment running PRE for A.



An Efficient Non-transferable Proxy Re-encryption Scheme 39

– Re-encryption oracle OReEnc(Ci, pki, pkj): C runs C ′
j ← ReEnc(Ci, RKi→j),

where RKi→j = ReKeyGen(ski, pki, pkj) and returns C ′
j to A.

– Second level decryption oracle ODec(Ci, pki): C runs Decrypt(Ci, ski) and
returns the result to A.

– First level decryption oracle OReDec(C ′
j , pkj): C runs ReDecrypt(C ′

j , skj) and
returns the result to A.

Second Level Ciphertext Security. It models the scenario that the adver-
sary A is challenged with a second level ciphertext C∗, where C∗ is the chal-
lenge ciphertext under the targeted public key pki∗ where we use the index i∗

to denote the targeted user. C responds to the queries issued by A to the above
defined oracles considering that they do not allow A to decrypt the challenge
ciphertext trivially. For example, A is not allowed to obtain a re-encryption
key RKi∗→j where skj was already compromised. In such a case, A can triv-
ially decrypt the challenge ciphertext by first re-encrypting it into a first level
ciphertext and then decrypting it with skj . Also, for a first level ciphertext
C ′

j = Re−Encrypt(C∗
i , RKi∗→j), querying on OReDec(C ′

j , pkj) by A is not per-
mitted.

Below is given the formal definition for second level ciphertext’s semantic
security under chosen ciphertext attack (IND-PRE-CCA).

Definition 1. Given a single-hop unidirectional PRE scheme, the advantage of
any PPT adversary A denoted by AdvA in the game shown below is defined by
the probability:

Pr[{(pki, ski) ← KeyGen(λ)}i∈CU∪HU , (pk∗
i , sk∗

i ) ← KeyGen(λ);
{RKi∗→j ← ReKeyGen(sk∗

i , pkj)}j∈HU ;
{RKi→j ← ReKeyGen(ski, pkj)}i∈HU,j∈CU∪HU∪{i∗},

(m0,m1, St) ← AOReEnc,OReDec(pk∗
i , {pkj , skj}j∈CU ,

{pkj}j∈HU , {RKi∗→j}j∈HU ; {RKi→j}i∈HU,j∈CU∪HU∪{i∗});

bεR{0, 1}, C∗ ← Encrypt(pk∗
i ,mb); b′ ← AOReEnc,OReDec(C∗, St) : b′ = b]

Note that |m0| = |m1|. St is the state information maintained by A. A single hop
unidirectional PRE scheme is IND-PRE-CCA secure for second level ciphertext
if for any IND-PRE-CCA adversary A, |AdvA − 1

2 | is negligibly small.

First level ciphertext security. In the first-level ciphertext security, A is
allowed to obtain the re-encryption keys for any user, since the first level cipher-
text cannot be further re-encrypted in a given single hop PRE scheme. This
also justifies the fact that there is no need for any second-level decryption or
re-encryption oracle as all the re-encryption keys are available to A.

Definition 2. Given a single-hop unidirectional PRE scheme, the advantage of
any PPT adversary A denoted by AdvA in the game shown below is defined by
the probability:



40 S. Sharmila Deva Selvi et al.

Pr[{(pki, ski) ← KeyGen(λ)}i∈CU∪HU , (pk∗
i , sk∗

i ) ← KeyGen(λ);
{RKi→j ← ReKeyGen(ski, pkj)}i,j∈CU∪HU∪{i∗},

(m0,m1, St) ← AOReDec(pk∗
i , {pkj , skj}j∈CU ,

{pkj}j∈HU , {RKi→j}i,j∈CU∪HU∪{i∗});

bεR{0, 1}, C∗ ← Re−Encrypt(Encrypt(mb, pki), RKi→i∗)i∈HU∪CU ;

b′ ← AOReDec(C∗, St) : b′ = b]

Note that |m0| = |m1| and St is the state information maintained by A.
A single hop unidirectional PRE scheme is said to be IND-PRE-CCA secure
for first level ciphertext if for any IND-PRE-CCA adversary A, |AdvA − 1

2 | is
negligibly small.

4 Non-transferability

In order to achieve non-transferability, Alice’s ciphertext must possess the prop-
erty that if a malicious user has the private key of Bob and the re-encryption
key, only then it can obtain the plaintext, else it shall obtain nothing useful.
Our security definition of non-transferability follows from the definition of non-
transferability proposed in [6].

In the following definition, we use the following subscripts i∗, h ∈ HU, ci ∈
CU, j to denote a target honest delegator, an honest user, a corrupted delegatee
and a malicious user respectively, where i ∈ {1, · · · L} and L is polynomially
bounded.

Definition 3 [6]. Non-transferability: A single-hop unidirectional PRE scheme
is non-transferable if there exists a polynomial time algorithm J ′, such that

Pr[(pk∗
i , sk∗

i ) ← Keygen(1λ); (pkh, skh) ← Keygen(1λ);

{(pkci
, skci

← Keygen(1λ)}; (pkj , skj) ← Keygen(1λ);
{RKi∗→ci

← ReKeyGen(sk∗
i , pkci

)}; {RKh→ci
← ReKeyGen(skh, pkci

)};
m ← M;C∗ ← Encrypt(m, pk∗

i ); {mi ← M}; {Ci ← Encrypt(mi, pkci
)};

{m′
i ← M}; {C ′

i ← Re−Encrypt(RKh→ci
, Encrypt(m′

i, pkh))};
X ← C(pk∗

i , {(pkci
, skci

)}, {RKi∗→ci
});mJ ← J (X, (pkj , skj), C∗);

mJ ′ ← J ′(X, (pkj , skj), {Ci}, {C ′
i})

: m �= mJ ∨ mJ ′ ∈ {mi} ∪ {m′
i}]

is overwhelming for any polynomial time algorithm C, J and polynomial L.

In the above definition, C denote the set of colluders and J ,J ′ denotes
the malicious users. The definition states that, if C tries to construct an illegal
decryption box X for the second level ciphertext of the target honest user i∗ to
re-delegate the decryption rights to J , then J ′ can exploit X to compromise
the decryption capabilities of C. Informally, the colluders should not be able to



An Efficient Non-transferable Proxy Re-encryption Scheme 41

generate a decryption-box to decrypt the delegator’s ciphertext, without com-
promising the private keys of the delegatee. The main challenge for constructing
such a scheme lies in extracting the decryption capability of the delegatee from
this illegal decryption box.

5 Analysis of a CPA-Secure Non-transferable PRE
Scheme by Wang et al. [13]

5.1 Review of the Scheme

– Setup(λ): G1 and G2 are multiplicative groups of order p. ê : G1 ×G1 → G2

is a bilinear map. PKG computes g1 = gα ∈ G1 where g is a generator
of G1 and α ∈ Z

∗
p. Also, g2, η ∈ G1 are chosen at random. H : {0, 1}l →

G1 is a cryptographic hash function. the system parameters are params =
{G1,G2, p, ê, g, g1, g2, η,H}, and msk = gα

2 .
– Extract(id): Choose u ∈ Z

∗
p, set skid = (d0, d1) = (gα

2 H(id)u, gu), where
u = hmsk(id). Validation of key by user id with sk skid is done by

ê(d0, g) ?= ê(g1, g2)ê(H(id), d1)

– ReKeyGen(id, id′): PKG returns seed of re-key to delegator id:

r̃kid→id′ =
(

H(id)
H(id′)

)u′

Here, u′ is selected by PKG to generate private key of id′. User id selects
δ ∈ Z

∗
p at random and computes rekey as:

rkid→id′ = (rk1, rk2) =
(

ηδ
( H(id)

H(id′)

)u′

, gδ

)

– Encryption(m ∈ G2, id): Encryptor chooses r ∈ Z
∗
p and computes

C = (C1, C2, C3, C4) = (m.ê(g1, g2)r, gr,H(id)r, ηr)

– Re-Encryption(m, id′): The proxy conducts a consistency check for the
received 2nd level ciphertext: ê(C2, η) ?= ê(C4, g). If it holds, compute:

C ′ = (C ′
1, C2, C3) =

(
C1.

ê(C4, rk2)
ê(C2, rk1)

, C2, C3

)

– Decryption(C, skid): m is obtained from the second level ciphertext by com-
puting:

m = C1.
ê(C3, d1)
ê(C2, d0)

– Re-Decryption(C ′, skid′): m is obtained from the first level ciphertext by
computing:

m = C ′
1.

ê(C3, d
′
1)

ê(C2, d′
0)



42 S. Sharmila Deva Selvi et al.

5.2 Attack on the Scheme

We show an attack on the non-transferable property of the ID-PRE scheme pro-
posed in [13]. As per the definition of non-transferability in Sect. 4, the adversary
is allowed to obtain one pair of keys (rkidi∗→idj

, skidj
) wherein the delegatee idj

is a corrupt user. So, consider the following attack where the adversary queries
for a re-encryption key (rkidi→idj

) = (rk1, rk2) and a private key for idj to
obtain the corresponding private key skidj

= (d0, d1) = (gα
2 H(idj)uj , guj ). Now,

given the second level ciphertext C = (C1, C2, C3, C4), the adversary does the
following computation:

1. Pick β ∈ Z
∗
q .

2. Define d′ Δ= d1 · gβ = guj+β .
3. Compute the value of a partial decryption key pskidi

= (rk1 · d0 · H(idi)
β)

= ηδ
( H(idi)

H(idj)

)uj · gα
2 H(idj)uj · H(idi)

β

= ηδ · H(idi)
uj+β · gα

2 (Note that this gives the adversary a function of the
private key of user idi which can be used to compute a decryption box for
ciphertexts encrypted under idi)

4. Construct a decryption box for a second level ciphertext of idi as:

m =
C1

ê(C2, pskidi
) · ê(C3, d′)−1 · ê(C4, rk2)

−1

The malicious users can obtain the second level ciphertext C =
(C1, C2, C3, C4) of user idi and obtain obtain the plaintext m as follows:

C1

ê(C2, pskidi
) · ê(C3, d′)−1 · ê(C4, rk2)

−1

=
C1

ê(C2, ηδ · H(idi)
uj+β · gα

2 ) · ê(C3, d′)−1 · ê(C4, rk2)
−1

=
m · ê(g1, g2)

r

ê(g1, g2)
r · ê(C4, rk2) · ê(d′, C3) · ê(C4, rk2)

−1 · ê(d′, C3)
−1

= m.

Note that the private key of the delegatee (d0, d1) is not compromised and
the second level encrypted message of user idi is exposed to the malicious users
violating the non-transferable property of Proxy Re-encryption.

6 A CCA-secure Non-transferable Scheme

6.1 Our Scheme

– Setup(λ): Let λ be the security parameter, G1,G2 are two groups of prime
order q, e : G1×G1 → G2 is a bilinear map. Let P be a generator of the group
G1 and randomly choose Q ∈ G1. Set α = ê(P, P ). Choose five hash functions



An Efficient Non-transferable Proxy Re-encryption Scheme 43

H̃ : G1 ← Z
∗
q ,H1 : G1 × G1 × G1 × G1 → Z

∗
q ,H2 : G2 → {0, 1}lm+lω ,H3 :

{0, 1}lm+lω → Z
∗
q ,H4 : G1 ×G1 ×{0, 1}lm+lω ×G1 → G1, where lm, lω denote

the message space M. The hash functions are modelled as random oracles in
the security proof. The global parameters are:

params := {G1,G2, q, P,Q, H̃,H1,H2,H3,H4, α}
– KeyGen(λ,params): Pick xi, yi, zi ← Z

∗
q , set the private key ski = (xi, yi, zi),

public key pki = (Xi, Yi, Zi, Qi) = (xiP, yiP, ziP, yiQ) and set hi = H1(pki).
– ReKeyGen(ski, pki, pkj ,params): Given as input the public key pkj =

(Xi, Yi, Zi, Qi) and private key ski = (xi, yi, zi) of user i and the public key
pkj = (Xj , Yj , Zj , Qj) of user j, pick s, δ, β ← Zq at random, and compute
the re-encryption key as follows:

T =
zi + hi

δ + β
∈ Z

∗
q ,

R = xi
−1(δYj + sP ) + xi

−1H̃(Xj)Q

= xi
−1(δyj + s)P + xi

−1H̃(Xj)Q ∈ G1,

S = yi
−1(βYj − sP ) + yi

−1Qj

= yi
−1(βyj − s)P + yi

−1Qj ∈ G1.

Return the re-encryption key RKi→j = (R,S, T ).
– Encrypt(m, pki): Given a message m ∈ M and a public key pki =

(Xi, Yi, Zi, Qi) as input:
• Choose ω ∈R Z

∗
q .

• Set r = H3(m,ω) ∈ Z∗
q .

• Compute C1 = rXi ∈ G1.
• Compute C2 = rYi ∈ G1.
• Compute C3 = (m||ω) ⊕ H2(ê(Zi + hiP, P )r) = (m||ω) ⊕

H2(ê(P, P )(zi+hi)r).
• Compute C4 =r · H4(C1, C2, C3, C5) ∈ G1.
• Compute C5 =r · Q ∈ G1.

The second level ciphertext C= (C1, C2 ,C3 ,C4, C5) is returned.
– Re-Encrypt(C,RKi→j): On input of a second level ciphertext C= (C1, C2 ,C3

,C4, C5) and a re-key RKi→j = (R,S, T ), check the validity of C by testing
if condition (1) and (2) holds:

ê(C4,Xi)
?= ê(H4(C1, C2, C3, C5), C1) (1)

ê(Xi + Yi, C5)
?= ê(C1 + C2, Q) (2)

If the above check fails, return invalid, else compute

D1 =
[ ê(C1, R) · ê(C2, S)
ê(H̃(Xj)P,C5) · ê(Yj , C5)

]T

= ê(P, P )(zi+hi)ryj ∈ G2, (3)

Set D2 = C3,D3 = C5; return D = (D1,D2,D3) as the first level ciphertext.



44 S. Sharmila Deva Selvi et al.

– Decrypt(C, ski): Given as input the private key ski and second level ciphertext
C = (C1, C2 ,C3 ,C4, C5), first check if conditions (1) and (2) hold. If they do
not hold, return “invalid”, else compute

(m||ω) = H2(ê((C1 + C2),
1

(xi + yi)
P )

(zi+hi)

) ⊕ C3 (4)

Remark 1. Conditions (1) and (2) allow for the public verifiability of the cipher-
text C. After conditions (1) and (2) are checked, recover (m||ω) and it suffices
to verify any one of the conditions from (6) to (9) in V erify(pki, (m||ω), C).

Remark 2. To avoid checking conditions (1) and (2) as it incurs heavy compu-
tation cost as indicated in Table 2 due to bilinear pairing, recover (m||ω), ensure
if C is well-formed by checking if V erify(pki, (m||ω), C) = valid and return
(m||ω), else return invalid.

– Re-Decrypt(D, skj ,): Given as input a private key skj and first level ciphertext
D = (D1,D2,D3), compute

(m||ω) = H2(D
y−1

j

1 ) ⊕ D2 (5)

Return (m||ω).
– Verify((pki,m||ω,C)): Given as input a second level ciphertext C = (C1, C2,

C3, C4, C5), a public key pki and a message (m||ω), compute r = H3(m||ω)
and check if the following conditions hold:

C1
?= r · Xi (6)

C2
?= r · Yi (7)

C4
?= r · H4(C1, C2, C3, C5) (8)

C5
?= r · Q (9)

If all the conditions (6)–(9) are satisfied, return valid else return invalid.

6.2 Security Proof

We prove the second level security under a variant of the m-DBDH assumption.

Lemma 1. The variant of the modified decisional bilinear diffie-hellman (m-
DBDH) assumption is said to hold if, given the elements (P, aP, a−1P, a−2P,
bP, cP ) and T ∈ G2, there exists no probabilistic polynomial-time adversary
which can determine whether T = ê(P, P )abc or a random element from G2 with
a non-negligible advantage, where P is a generator of G1 and a, b, c ∈R Z

∗
q .



An Efficient Non-transferable Proxy Re-encryption Scheme 45

Table 1. Comparative analysis of the properties of uni-directional single-hop PRE
schemes studied in the literature and our scheme.

Property [13] [7] [6] [5] Our scheme

Model Random Oracle Random Oracle Standard Standard Random Oracle

Security CCA CCA RCCA CPA CCA

Non-interactive No No Yes Yes Yes

Proxy invisibility Yes Yes Yes Yes Yes

Collusion-safe Yes Yes Yes Yes Yes

Non-transitive Yes Yes Yes Yes Yes

Non-transferable No Yes No Yes Yes

Non-key escrow Yes No Yes Yes Yes

Theorem 1. Our proposed scheme is CCA-secure for the second level ciphertext
under the variant of the m-DBDH assumption.

Theorem 2. Our proposed scheme is CCA-secure for the first level ciphertext
under the 1-wDBDHI assumption.

Remark 3. The proof of Lemma 1, Theorems 1 and 2 is shown in the full version
of this paper [11].

Remark 4. The proposed scheme is non-transferable as the proxy and a set of
colluding delegatees cannot re-delegate decryption rights to a third party. We can
observe this from the following. In order to re-delegate decryption rights to an
illegal user, the colluding delegatee will construct the decryption box (D′

1 ⊕ C3)

by defining D′
1

Δ= D
y−1

j

1 = e(P, P )(zi+hi)r·yj ·y−1
j = e(P, P )(zi+hi)r. Given C =

(C1, C2, C3, C4, C5), which is the second level ciphertext encrypted under the
public key of the delegator, any malicious user can decrypt C by computing
D′

1 ⊕C3. However, this re-delegation will only succeed when the delegatee sends
his private key component yj explicitly to the malicious user as y−1

j must be used
to exponentiate D1 to compute D′

1 and extract (m||ω). Since the value of D1

changes in every delegation as a fresh random element ω ∈ Z
∗
q is used for every

encryption, the value of Dy−1
j cannot be computed offline and hence must be

explicitly provided by the delegatee to the malicious users. Hence, the delegatee
must expose his private key for the illegal transference of decryption rights to a
third party. Therefore, as per the definition in Sect. 4, non-transferable property
is achieved in our scheme.

7 Comparison

We give a comparison of our scheme with the existing single-hop PRE schemes
studied in the literature with respect to the non-transferable property. In Table 1,
we show the various properties of a PRE scheme which are satisfied by the
existing schemes alongside our scheme. In Table 2, we show the computational



46 S. Sharmila Deva Selvi et al.

Table 2. The Efficiency comparisons among unidirectional schemes in the literature
with our scheme. ∗ O(n) = O(logN), where N is the maximum number of delegatees
for each delegator in [9]. ∗∗ denotes the computation complexity for decrypt algorithm
when conditions (1) and (2) are used for public verification along with any one of
conditions (6) to (9) of the V erify() algorithm.

Scheme Encrypt Decrypt Re-Encrypt Re-Decrypt

[5] 5te + 5tet + 8tbp te + 6tet + 4tbp te + tet + tbp 2te + 2tet + 3tbp

[9] ((n + 2)te + tet)
∗ te + tbp 2tbp tet

[6] ts + 4te + tet + tbp + tme te+tet+9tbp+tv te + 8tbp + tv te + 2tet + 18tbp + tv

[13] 3te + tet + tbp 2tbp 4tbp 2tbp

Our scheme 5te + tet + tbp 5te + tet + tbp or

(2te + tet +

5tbp)
∗∗

tet + 8tbp tet

efficiency of a few well-known PRE schemes. Note that we use t to denote the
time required for the various computations subscripted with bp, e, et,me, s, v to
denote the time taken for a bilinear pairing, exponentiation in G1, exponentia-
tion in G2, multi-exponentiation in group G1, signing algorithm and verification
algorithm respectively. The comparisons show that our proposed design is the
first scheme that achieves non-transferability with minimal efficiency loss and
satisfies all the properties of an unidirectional single-hop PRE scheme.

8 Conclusion

Although there are several protocols achieving PRE in the literature, only two
schemes [7] (ID-based settings) and [5] have reported the non-transferable prop-
erty. To resolve the problem of non-transferability in PRE, [5] uses indistin-
guishability obfuscation (iO), which involves very complex operations and is
highly impractical. In [7], the IB-PRE protocol involves multiple rounds of inter-
action for partial-key generations and key validations which incurs computa-
tional overhead as indicated in the comparison Table 2. Our non-transferable
PRE scheme is practical, based on direct manipulation in groups. Our scheme
is shown to be CCA secure in the random oracle model for both the first and
second level ciphertext and meets the non-transferability definition wherein the
colluders (delegatee and proxy) cannot re-delegate the decryption rights of the
delegator. An attempt to construct an illegal decryption box to decrypt the sec-
ond level ciphertexts of the delegator reveals the private key components of the
colluding delegatee. We have proposed an efficient non-transferable PRE scheme
that affirmatively resolves the problem of illegal transference of decryption rights.



An Efficient Non-transferable Proxy Re-encryption Scheme 47

References

1. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. In Proceedings of the
Network and Distributed System Security Symposium, NDSS 2005, San Diego,
California, USA, pp. 29–43 (2005)

2. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998). doi:10.1007/BFb0054122

3. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 207–222. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24676-3 13

4. Chow, S.S.M., Weng, J., Yang, Y., Deng, R.H.: Efficient unidirectional proxy re-
encryption. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol.
6055, pp. 316–332. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12678-9 19

5. Guo, H., Zhang, Z., Jing, X.: Non-transferable proxy re-encryption. IACR Cryp-
tology ePrint Archive 2015:1216 (2015)

6. Hayashi, R., Matsushita, T., Yoshida, T., Fujii, Y., Okada, K.: Unforgeability
of re-encryption keys against collusion attack in proxy re-encryption. In: Iwata,
T., Nishigaki, M. (eds.) IWSEC 2011. LNCS, vol. 7038, pp. 210–229. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-25141-2 14

7. He, Y.J., Chim, T.W., Hui, L.C.K., Yiu, S.M.: Non-transferable proxy re-
encryption scheme. In: 5th International Conference on New Technologies, Mobility
and Security, Istanbul, Turkey, NTMS 2012, 7–10 May 2012, pp. 1–4 (2012)

8. Isshiki, T., Nguyen, M.H., Tanaka, K.: Attacks to the proxy re-encryption schemes
from IWSEC2011. In: Sakiyama, K., Terada, M. (eds.) IWSEC 2013. LNCS, vol.
8231, pp. 290–302. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41383-4 19

9. Libert, B., Vergnaud, D.: Tracing malicious proxies in proxy re-encryption. In:
Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 332–
353. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85538-5 22

10. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. IEEE Trans. Inform. Theory 57(3), 1786–1802 (2011)

11. Sharmila Deva Selvi, S., Paul, A., Pandu Rangan, C.: An efficient non-transferable
proxy re-encryption scheme (full version). Cryptology ePrint Archive, May 2017

12. Sree Vivek, S., Sharmila Deva Selvi, S., Radhakishan, V., Pandu Rangan, C.:
Efficient conditional proxy re-encryption with chosen ciphertext security. Int. J.
Network Secur. Appl. 4(2), 179–199 (2012)

13. Wang, L., Wang, L., Mambo, M., Okamoto, E.: New identity-based proxy re-
encryption schemes to prevent collusion attacks. In: Joye, M., Miyaji, A., Otsuka,
A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 327–346. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-17455-1 21

14. Yu, S., Wang, C., Ren, K., Lou, W.: Attribute based data sharing with attribute
revocation. In: Proceedings of the 5th ACM Symposium on Information, Computer
and Communications Security, ASIACCS 2010, Beijing, China, 13–16 April 2010,
pp. 261–270 (2010)

http://dx.doi.org/10.1007/BFb0054122
http://dx.doi.org/10.1007/978-3-540-24676-3_13
http://dx.doi.org/10.1007/978-3-642-12678-9_19
http://dx.doi.org/10.1007/978-3-642-25141-2_14
http://dx.doi.org/10.1007/978-3-642-41383-4_19
http://dx.doi.org/10.1007/978-3-540-85538-5_22
http://dx.doi.org/10.1007/978-3-642-17455-1_21


Rounding Technique’s Application in Schnorr
Signature Algorithm: Known Partially Most

Significant Bits of Nonce

Wenjie Qin(B) and Kewei Lv(B)

Institute of Information Engineering,
Data Assurance and Communication Security Research Center,

University of Chinese Academy of Sciences,
Beijing 100093, People’s Republic of China

qinwenjie wenky@126.com, lvkewei@iie.ac.cn

Abstract. In 1996, Boneh and Venkatesan proposed the Hidden Num-
ber Problem (HNP) and proved the most significant bits (MSB) of com-
putational Diffie-Hellman key exchange scheme and related schemes are
unpredictable. They also gave a lattice rounding technique to solve HNP
in non-uniform model. In this paper, we analyse the security of the most
significant bits of random nonce in Schnorr signature. We put forward
the Schnorr-MSB-HNP and use the lattice rounding technique to solve
the Schnorr-MSB-HNP in uniform model. We prove that if there is an
oracle which inputs the random nonce and outputs �2 log log q�+4 most
significant bits of nonce, the signature private key will be obtained by
choosing 2�log q� signature pairs randomly. Thus the security of the pri-
vate key can be reduced to the �2 log log q� + 4 most significant bits of
random nonce.

Keywords: Rounding technique · Most significant bits · Schnorr signa-
ture algorithm · Nonce · Schnorr-MSB-HNP

1 Introduction

In 1996, Boneh and Venkatesan [1] proposed the Hidden Number Problem(HNP,
for simplicity): For a sufficiently large prime q and an integer k, g is the root of
cycle group Z∗

q . Let Oracleα,g(x) be an oracle which given x, outputs the k most
significant bits of αgx mod q. The task is to recover the hidden number α mod q,
using the oracle Oracleα,g(x). That is, given (gxi ,MSBk(αgxi)) for 1 ≤ i ≤ d,
we try to compute α mod q. Here the k most significant bits MSB(αgx mod q)
is defined as the integer t such that (t − 1)q/2k ≤ αgx mod q < tq/2k and
d = O(logq). They proved that computing the

√
log q most significant bits of

the secret key in Diffie-Hellman and related schemes is as hard as computing
the secret key itself. The proof method is based on the Babai’s approximation
theorem [2,3] and uniqueness theorem.

This work is partially supported by NSF No. 61272039.

c© Springer Nature Singapore Pte Ltd. 2017
L. Batten et al. (Eds.): ATIS 2017, CCIS 719, pp. 48–57, 2017.
DOI: 10.1007/978-981-10-5421-1 5



Rounding Technique’s Application in Schnorr Signature Algorithm 49

There are a lot of studies on HNP. Shparlinski et al. extended some results of
[1] to arbitrary multiplicative order T using the bounds of exponential sums [4–6].
Boneh and Shparlinski [7] showed that just predicting one bit of the elliptic curve
Diffie-Hellman secret in a family of curves is as hard as computing the entire
secret. Jetchev and Venkatesan [8] proved that if one can efficiently predict the
LSB with non-negligible advantage on a polynomial fraction of all the curves
defined over a given finite field Fq, then with polynomial factor overhead, one
can compute the entire Diffie-Hellman secret on a polynomial fraction of all the
curves over the same finite field. Recently, Shani [9] gave the first bit security
result for the elliptic curve Diffie-Hellman key exchange protocol for elliptic
curves defined over prime fields and showed that about 5/6 of the most significant
bits of the x-coordinate of the Diffie-Hellman key are as hard to compute as the
entire key. They used the ideas behind the solution to the modular inversion
hidden number problem given in [10] and followed the formal proof given by Ling,
Shparlinski, Steinfeld and Wang [11]. Fazio et al. [12] extened the idea of [7] in
two novel ways, one is that they generalized it to the case of finite fields Fq2 , the
other is that they proved that any bit is hard using the list decoding techniques
of Akavia et al. [13] as generalized at CRYPTO’12 by Duc and Jetchev [14].
Galbraith and Shani [15] showed that if one can find the significant Fourier
coefficients of some function, then one can solve the multivariate hidden number
problem for that function, using tools from discrete Fourier analysis introduced
by Akavia [13]. In 2007 Garefalakis extended the HNP to non-prime modulus
N and proved that computing roughly

√
log N bits of RSA or Rabin function

is equivalent to computing the entire value [16]. In 2010, Su Dong et al. proved
that computing Rabin-Pailier trap function �3√

2n/2�+ �log2n� MSB is as hard
as computing the entire cipher [17], where n is the binary length of the RSA
modulus N .

HNP as a method to study bit security can also be used to analyse the security
of private key in digital signature. We know that ElGamal signature and other
variants, such as Schnorr, DSA, are all in one feature that is the random nonce
which is generated in each signature. Special care must be taken with the nonce.
It is well known that if the random nonce is disclosed, the secret key α can be
recovered. In 1997, Bellare et al. [18] showed that if the random nonce in DSS is
produced by a weak pseudo-random generator with known parameters, then α
can also be recovered using only a few signatures. Howgrave-Graham and Smart
[19] showed that Babai’s nearest plane algorithm [2] could heuristically recover
α, provided that sufficiently many DSA signatures and sufficiently many bits of
the corresponding nonces in DSA signatures are known. Although Howgrave-
Graham and Smart referenced Boneh-Venkatesan paper [1], they did not notice
how close their problem was to the hidden number. In 1999, Nguyen [20] showed
a connection between solving HNP and breaking DSA signature. It was then
extended together with Shparlinski in [21].

In 1997, Boneh and Venkatesan put forward another idea to solve the HNP,
which is the lattice rounding technique [22], and they improved the result to
log log q bits in the non-uniform model. In this paper, firstly, they gave a lattice



50 W. Qin and K. Lv

and introduced the rounding algorithm. Then they proved that if there exists a
basis in the lattice space which satisfied the Lemma 1, and the lattice roudning
technique can be used to solve the HNP. Accordind to the condition of the
Lemma 1, they could obtain the satisfied basis in the dual lattice. By inverting
and transposing the matrix of lattice, they got the dual lattice, and multiplied
the matrix of dual lattice on the left by two carefullly constructed unimodular
matrices. At last, they got the dual lattice basis which satisfied the Lemma 1.
In this way, they could use the rounding technique to solve the HNP. In 2008,
Su Dong et al. [23] proved that the security of generalized SRA intellectual
poker protocol can be reduced to the hardness of computing the �(log log q)/2+
1�MSB bits of plaintext and the �2 log log q�MSB bits of key using the rounding
technique. We will use this method to analyse the security of the most significant
bits of random nonce in Schnorr signature.

Our Works: We know the Schnorr signature algorithm requires the signer to
generate a new random number with every signature, usually called the nonce.
Thus, in our paper, we analyse the security of the most significant bits of random
nonce in Schnorr signature. Based on the idea that DSA signature was reduced
to the HNP, we put forward the Schnorr-MSB-HNP. Using the lattice rounding
technique, we solve the Schnorr-MSB-HNP in uniform model, and prove that if
there is an oracle which inputs the random nonce and outputs �2 log log q� + 4
most significant bits of nonce. The signature private key will be obtained by
choosing 2�log q� signature pairs randomly. Thus the security of the private key
can be reduced to the �2 log log q� + 4 most significant bits of random nonce.

Notations: We define q is a sufficiently large prime and [x]q = x ≡ a mod q,
the integer a ∈ [0, q − 1]. Let Z be the set of integer number and R be the set
of real number. Let L1(wi) denote the L1 norm of wi. For a matrix W whose

columns are the vectors w1, · · · ,wd, we define L1,∞(W )
def
= max

i
L1(wi).

Organization: In Sect. 2, we give some basic concepts, introduce the Schnorr
digital signature and propose the Schnorr-MSB-HNP. In Sect. 3, we introduce
the lattice rounding technique. In Sect. 4, we present our main result. In Sect. 5,
we give our conclusion.

2 Preliminaries

2.1 Basic Concept

Definition 1. For any rational n, l, APPl,q(n) denotes any rational r such that
|n − r|q ≤ q/2l+1, where the symbol | · |q is defined as |z|q = minb∈Z |z − bq| for
any rational number.

Definition 2. q is a prime number, for many known random number t ∈ Z∗
q ,

and approximation APPl,q(αt), the problem of recovering the number α ∈ Z∗
q is

called the HNP.



Rounding Technique’s Application in Schnorr Signature Algorithm 51

Definition 3. Let b1, · · · , bs be a set of linearly independent vectors in Rs. The
set of vectors

L = {
s∑

i=1

xibi|xi ∈ Z, 1 ≤ i ≤ s}

is called an s-dimensional full rank lattice. The set b1, · · · , bs is called a basis of
L, and L is said to be spanned by b1, · · · , bs.

Definition 4. The dual lattice of L, denoted L∗, is the set of vectors

L∗ = {y ∈ Rss.t.∀x ∈ L :< x, y >∈ Z}

2.2 Schnorr Digital Signature

Schnorr digital signature is a variant of ElGamal digital signature [24]. Let p
and q be large prime numbers with q|p−1, generally p ≈ 21024 and q ≈ 2160. Let
g, g ∈ Z∗

p be a fixed element of multiplicative order q, that is [gq]p ≡ 1, q 
= 1.
The signer randomly select α, α ∈ Z∗

q , as the secret key and computes y = g−α

mod p. Let h : {0, 1}∗ → Z∗
p , be a safe hash function.

To sign a message μ, the signer chooses a random integer k ∈ Z∗
q called

nonce, which must be kept secret, and computes r = [gk]p as well as the hash
value e = h(μ ‖ r). In the last, the signer computes s = [(k + αe)]q. The pair
(e, s) is the Schnorr signature of the message μ with a nonce k.

The receiver gets the message μ and the signature pair (e, s), then he needs
to verify it. He needs to compute

r′ ≡ gsye ≡ gsg−αe ≡ gs−αe ≡ gk

If r′ = r then e′ = h(μ ‖ r′) = h(μ ‖ r) = e, and the signature is valid.

2.3 Schnorr-MSB-HNP

The connection between the Schnorr digital signature and the HNP can be easily
explained. In the process of digital signature, we assume that we know the l most
significant bits of random nonce k. That is, we are given an integer a such that
0 ≤ k−aq/2l < q/2l. The congruence s = [(k+αe)]q from the process of sigature
can be written as αe ≡ [s − k]q. So we can get:

0 ≤ αe − s − aq/2l < q/2l.

Let t = 
e�q, u = s + aq/2l, we obtain

0 ≤ αt − u < q/2l.

Therefore,
|αt − u − q/2l+1|q < q/2l+1.



52 W. Qin and K. Lv

We note that both t and u can be easily computed by attacker from the pub-
licly known information. Thus, the approximation APPl,q(αt) is known. Collect-
ing several signature pairs of Schnorr and the corresponding l most significant
bits of nonce, the problem of recovering the secret key α is called the Schnorr-
MSB-HNP.

The HNP in [1] is that if we are given an oracle to predict partial relevant
information about the hidden number, then we try to find out the hidden num-
ber. In this method, we choose a series of samples uniformly and randomly to
query oracle. The oracle answers partial information about the hidden number.
Then we use these samples and answers of oracle to construct a lattice and
resolve the problem.

The Schnorr-MSB-HNP is that we also are given an oracle to get the most
significant bits of nonce, we try to find out the secret key. We mainly choose
a series of signature pairs uniformly and randomly, and we can get the leaked
most significant bits of the nonce in every signature satisfying the approximation
APPl,q(αt). Then we use these signatures and the leaked most significant bits
to consturct a lattice and resolve the problem.

3 Rounding Technique

Let q be a prime, choose t1, · · · , td integers uniformly and independently at
random in the range [0, q−1]. The hidden number is α. We assume that there is an
oracle, the inputs are t1, · · · , td, 1, and the outputs are numbers a1, · · · , ad, ad+1

such that |[αti]q − ai| < R. The value ad+1 is obtained by querying the oracle at
the point t = 1.

We construct the lattice L spanned by the rows of the matrix:

L =

⎡

⎢⎢⎢⎢⎢⎣

q 0 · · · 0 0
0 q · · · 0 0
...

...
. . .

...
...

0 0 · · · q 0
t1 t2 · · · td 1

⎤

⎥⎥⎥⎥⎥⎦

Set u = (a1, · · · , ad, ad+1) and define the lattice vector vα ∈ L by vα =
([t1α]q, [t2α]q, · · · , [tdα]q, α). We want to recover α from the vector vα. The
rounding technique is to find the lattice point vα given the vector u .

Let b1, · · · , bd+1 be some basis of L, the technique performs two steps:

1. Write u =
∑d+1

i=1 yibi for some yi ∈ R.
2. Set v =

∑d+1
i=1 
yi�bi where 
yi� is the integer closet to yi.

If the basis b1, · · · , bd+1 satisfies the next Lemma 1, we can get the right
answer, that is vα = v , then we obtain the hidden number α.



Rounding Technique’s Application in Schnorr Signature Algorithm 53

Lemma 1. Let A be the matrix whose rows are the basis vectors bi. If

L1,∞(A−1) < 1/(2R)

then the vector v constructed by rounding technique satisfies v = vα.

Lemma 2. Let q, d, t1, · · · , td as above. Set m = �log log q� + 4 and n = m +

log q�. By assumption d > n. Then with probability at least 1/2 for all k =
m + 1,m + 2, · · · , n there exist subsets Sk ⊆ 1, · · · , k − 1 satisfying:

2n−k ≤ [tk +
∑

i∈Sk

ti]q < 2 · 2n−k

The proofs of Lemmas 1 and 2 are from [22].

4 Main Result

We assume that there is an oracle. With this oracle, we can get l = 2�log log q�+4
MSB of the random nonce in Schnorr signature. We can express it as Oraclel

which inputs k, returns MSBl([k]q).

Theorem 3. Given an oracle Oraclel as above. For Schnorr signature, we can
get an efficient polynomial-time algorithm using the oracle, calls to the Oraclel

about d = 2�log q� times, computes the signature private key α.

Proof.
step1: We choose d = 2�log q� signature pairs randomly, (e1, s1), (e2, s2), · · · ,
(ed, sd). The random nonces denote k1, · · · , kd. We can also get the l =
2�log log q� + 4 most significant bits of the random nonce ki by calling the
Oraclel, which defined as the number a′

i. We use t′1, · · · , t′d and u′
1, · · · , u′

d to
replace e1, · · · , ed and (s1 + a′

1q/2l), · · · , (sd + a′
dq/2l) separately. we obtain

|αt′i − u′
i − q/2l+1| < q/2l+1

Thus, we get the Schnorr-MSB-HNP. Let R in Lemma 1 is q/2l+1. If using
the rounding technique to solve Schnorr-MSB-HNP, we need to find the lattice
basis to satisfy the Lemma 1. Therefore we have to find the basis to meet the
conditions through the next steps.

step2: According to the signature, we construct a lattice L′ as follow:

L′ =

⎡

⎢⎢⎢⎢⎢⎣

q 0 · · · 0 0
0 q · · · 0 0
...

...
. . .

...
...

0 0 · · · q 0
t′1 t′2 · · · t′d 1/2l+1

⎤

⎥⎥⎥⎥⎥⎦



54 W. Qin and K. Lv

Set u ′ = (u′
1 + q/2l+1, · · · , u′

d + q/2l+1, q/2l+1), and define the lattice vector
v ′

α = ([αt′1]q, · · · , [αt′d]q, α/2l+1). Notice that ||u ′ − v ′
α|| < q/2l+1

√
d + 1. Thus

the vector u ′ is close to the lattice point v ′
α.

step3: We have to find the dual lattice of L′, denoted L′∗. We know that if
the lattice L′ is full rank, the dual lattice L′∗ can be obtained By inverting and
transposing the matrix L′, thus

L′∗ =
1
q

⎡

⎢⎢⎢⎢⎢⎣

1 0 · · · 0 −t′1
0 1 · · · 0 −t′2
...

...
. . .

...
...

0 0 · · · 1 −td
0 0 · · · 0 q2l+1

⎤

⎥⎥⎥⎥⎥⎦

step4: In order to construct the basis that satisfies the condition, we need to
multiply the matrix L′∗ on the left by two constructed unimodular matrices.

1. According to the Lemma 2, we can construct the unimodular matrices W ,
and define the d + 1 × d + 1 matrix W = (wi,j) by

wi,j =

{
0 if j ∈ Si or i = j

1 otherwise

After multiplying the matrix W on the left, we can get the matrix

L′∗ =
1
q

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 −t′1
0 1 · · · 0 −t′2
...

...
. . .

...
...

0 0 · · · 0 −t′m
0 0 · · · 0 −t′m+1 +

∑
i∈Sm+1

(−ti)
...

...
...

...
0 0 · · · 0 −t′h +

∑
i∈Sh

(−ti)
...

...
...

...
0 0 · · · 0 −t′n +

∑
i∈Sn

(−ti)
0 0 · · · 0 −t′n+1

...
...

...
0 0 · · · 1 −t′d
0 0 · · · 0 q2l+1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Though the elementary row transformation of WL′∗, we get

L′∗ =
1
q

⎡

⎢⎢⎢⎢⎣

w1

w2

D
wd

q2l+1

⎤

⎥⎥⎥⎥⎦



Rounding Technique’s Application in Schnorr Signature Algorithm 55

2. Constructing the unimodular matrices V . Let x(h) be the right most entry in
the matrix L′∗ e.g. x(1) = w1, x

(2) = w2, · · · , x(d+1) = q2l+1. Let

x(h) =
h−1∑

i=1

x
(h)
i x(i), x

(h)
i = 0, 1, 2, 3

We get the unimodular matrix V as follow:

V =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
−x

(2)
1 1 0 · · · 0

−x
(3)
1 −x

(3)
2 1 · · · 0
...

...
−x

(d+1)
1 −x

(d+1)
2 −x

(d+1)
3 · · · 1

⎤

⎥⎥⎥⎥⎥⎥⎦

Then we can get matrix

L′∗ =
1
q

⎡

⎢⎢⎢⎢⎢⎣

1
0

D′ ...

0

⎤

⎥⎥⎥⎥⎥⎦

where D′ is a d + 1 × d matrix whose entries in absolute are all less 3(n − m) <
3 log q, and the dual satisfies

L1,∞(L′∗) < 3(n − m)d/q < 3 · 2 log q · log q/q < 2�log log q�+4/q < 1/(2R)

Thus there is a basis in the Lattice L′ satisfying the Lemma 1.

setp5: By inverting we get

C = [c1, · · · , cd+1] = (L′∗)−1 =

⎛

⎜⎜⎜⎜⎜⎝

1
q

⎡

⎢⎢⎢⎢⎢⎣

1
0

D′ ...

0

⎤

⎥⎥⎥⎥⎥⎦

⎞

⎟⎟⎟⎟⎟⎠

−1

Using the rounding technique with the basis C = [c1, · · · , cd+1], we can find
the vector u =

∑d+1
i=1 yici, and get the value of yi. Thus the vector v can be

resolved, vα = v =
∑d+1

i=1 
yi�ci, we can get the secret key α.

5 Conclusion

We reduce the security of private key to the most significant bits of random
nonce in Schnorr signature. Given an oracle which outputs the most significant
bits of nonce, we try to attack the secret key. We choose 2�log q� signature pairs



56 W. Qin and K. Lv

uniformly and randomly, and get the leaked most significant bits of the nonce
in every signature satisfying the approximation APPl,q(αt). Then we use these
signatures and the leaked most significant bits to consturct a lattice. Finally we
have come to the conclusion that if there is an oracle which inputs the random
nonce and outputs �2 log log q� + 4 most significant bits of nonce, the signature
private key will be obtained by choosing 2 log q signature messages randomly,
using the rounding technique. We avoid the discrete logarithm problem and do
not need the advice bits include discrete-log of ti to the base g in the [22] and get
the result in uniform model. The idea can also be applied to research the security
of the least significant bits of random nonce in the Schnorr digital scheme and
can get the result that if there is an oracle which inputs the random nonce and
outputs �2 log log q� + 4 least significant bits of nonce, the signature private key
will be obtained by choosing 2�log q� signature messages randomly.

References

1. Boneh, D., Venkatesan, R.: Hardness of computing the most significant bits of
secret keys in diffie-hellman and related schemes. In: Koblitz, N. (ed.) CRYPTO
1996. LNCS, vol. 1109, pp. 129–142. Springer, Heidelberg (1996). doi:10.1007/
3-540-68697-5 11

2. Babai, L.: On lovasz’ lattice reduction and the nearest lattice point problem. Com-
binatorica 6, 1–13 (1986)

3. Lenstra, A., Lenstra, H., Lovasz, L.: Factoring polynomial with rational coefficients.
Mathematiche Annalen 261, 515–534 (1982)

4. Gonzalez Vasco, M.I., Shpailinski, I.E.: On the security of diffie-hellman bits. In:
Proceedings of the Workshop on Cryptography and Computational Number The-
ory, Singapore, Birkhauser, pp. 257–268 (2001)

5. Gonzalez Vasco, M.I., Shpailinski, I.E.: Security of the most signficant bits of the
shamir message passing scheme. Math. Comp. 71, 333–342 (2002)

6. Konyagin, S.V., Shpailinski, I.E.: Charater Sums with Exponential Functions and
their Applications. Cambridge University Press, Cambridge (1999)

7. Boneh, D., Shparlinski, I.E.: On the unpredictability of bits of the elliptic curve
diffie-hellman scheme. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
201–212. Springer, Heidelberg (2001). doi:10.1007/3-540-44647-8 12

8. Jetchev, D., Venkatesan, R.: Bits security of the elliptic curve diffie–hellman secret
keys. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 75–92. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-85174-5 5

9. Shani, B.: On the bit security of elliptic curve diffie–hellman. In: Fehr, S. (ed.)
PKC 2017. LNCS, vol. 10174, pp. 361–387. Springer, Heidelberg (2017). doi:10.
1007/978-3-662-54365-8 15

10. Boneh, D., Halevi, S., Howgrave-Graham, N.: The modular inversion hidden num-
ber problem. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 36–51.
Springer, Heidelberg (2001). doi:10.1007/3-540-45682-1 3

11. Ling, S., Shparlinski, I.E., Steinfeld, R., Wang, H.: On the modular inversion hidden
number problem. J. Symbolic Comput. 47(4), 358–367 (2012)

12. Fazio, N., Gennaro, R., Perera, I.M., Skeith, W.E.: Hard-core predicates for a diffie-
hellman problem over finite fields. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8043, pp. 148–165. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40084-1 9

http://dx.doi.org/10.1007/3-540-68697-5_11
http://dx.doi.org/10.1007/3-540-68697-5_11
http://dx.doi.org/10.1007/3-540-44647-8_12
http://dx.doi.org/10.1007/978-3-540-85174-5_5
http://dx.doi.org/10.1007/978-3-662-54365-8_15
http://dx.doi.org/10.1007/978-3-662-54365-8_15
http://dx.doi.org/10.1007/3-540-45682-1_3
http://dx.doi.org/10.1007/978-3-642-40084-1_9
http://dx.doi.org/10.1007/978-3-642-40084-1_9


Rounding Technique’s Application in Schnorr Signature Algorithm 57

13. Akavia, A., Goldwasser, S., Safra, S.: Proving hard-core predicates using list decod-
ing. In: IEEE Symposium on Foundations of Computer Science-FOCS, pp. 146–157
(2003)

14. Duc, A., Jetchev, D.: Hardness of computing individual bits for one-way func-
tions on elliptic curves. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 832–849. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32009-5 48

15. Galbraith, S.D., Shani, B.: The multivariate hidden number problem. In:
Lehmann, A., Wolf, S. (eds.) ICITS 2015. LNCS, vol. 9063, pp. 250–268. Springer,
Cham (2015). doi:10.1007/978-3-319-17470-9 15

16. Garefalakis, T.: The hidden number problem with non-prime modulus. JP J. Alge-
bra Number Theory Appl. 8(2), 193–211 (2007)

17. Dong, S., Wang, K., Kewei, L.: The bit security of two variants of paillier trapdoor
function. Chin. J. Comput. 33(6), 1020–1059 (2010)

18. Bellare, M., Goldwasser, S., Micciancio, D.: “Pseudo-random” number generation
within cryptographic algorithms: the DDS case. In: Kaliski, B.S. (ed.) CRYPTO
1997. LNCS, vol. 1294, pp. 277–291. Springer, Heidelberg (1997). doi:10.1007/
BFb0052242

19. Howgrave-Graham, N.A., Smart, N.P.: Lattice attacks on digital signature schemes.
Design Codes Cryptog. 23, 283–290 (2001)

20. Nguyen, P.Q.: The dark side of the hidden number problem: lattice attacks on
DSA. In: Lam, K.-Y., Shparlinski, I.E., Wang, H., Xing, C. (eds.) Proceedings
of the Workshop on Cryptography and Computational Number Theory (CCNT
1999), Singapore, pp. 321–330. Birkhauser, Basel (2001)

21. Nguyen, P.Q., Shparlinski, I.E.: The insecurity of the digital signature algorithm
with partially known nonces. J. Cryptology 15(3), 151–176 (2002)

22. Boneh, D., Venkatesan, R.: Rounding in lattices and its cryptographic applications.
In: Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 675–681. ACM (1997)

23. Dong, S., Kewei, L.: Research on the security of generalized SRA intelligence poker
protocol based on hidden number problem. In: National Conference on Information
Confidentiality (2008)

24. Schnorr, C.P.: Efficient signature generation by smarts cards. J. Cryptology 4,
161–174 (1991)

http://dx.doi.org/10.1007/978-3-642-32009-5_48
http://dx.doi.org/10.1007/978-3-642-32009-5_48
http://dx.doi.org/10.1007/978-3-319-17470-9_15
http://dx.doi.org/10.1007/BFb0052242
http://dx.doi.org/10.1007/BFb0052242


On the Practical Implementation
of Impossible Differential Cryptanalysis

on Reduced-Round AES

Sourya Kakarla(B), Srinath Mandava, Dhiman Saha,
and Dipanwita Roy Chowdhury

Crypto Research Lab, Department of Computer Science and Engineering,
IIT Kharagpur, Kharagpur, India

{skakarla,smandava,dhimans,drc}@cse.iitkgp.ernet.in

Abstract. In this work, we give a practical implementation of the well
known impossible differential attack on 5 round AES-128 given by Biham
and Keller. The complexity of the original attack is in the order of the
practical realm with time complexity 231 and data complexity 229.5. How-
ever, the primary memory required to execute the attack was 4 TB mak-
ing it difficult to implement which is supported by the fact that there are
no reported implementations of the attack. We propose a data-memory
tradeoff for the attack which lets us reduce memory needed at the expense
of increased data complexity. We have been able to implement the attack
using 128.5 GB of primary memory and 232 data complexity. Though the
data complexity is increased by about 4.65 times, it makes up for the
fact that we decreased the memory usage by about 32 times. We also
extend the implementation to 5 round AES-192/256. To the best of our
knowledge, the implementations of attacks in this work are the first ones
available publicly.

Keywords: AES · Impossible differential · Cryptanalysis · Data struc-
ture · Implementation · Data-memory tradeoff · Key recovery

1 Introduction

AES [6] has become the standard symmetric key cipher used across the inter-
net since the Rijndael family of ciphers were selected for Advanced Encryption
Standard by the U.S National Institute of Standards and Technology. Its secu-
rity is of utmost importance to the security of the internet thereby making it
one of the most widely studied ciphers. Though there are no practical attacks
possible on full round AES, round-reduced versions were attacked with complex-
ities significantly less than the brute force complexity. These attacks help in
developing greater insight into the security of AES. One such family of attacks
is impossible differential attacks [2]. Impossible differential cryptanalysis is a
form of differential cryptanalysis [4]. While traditionally differential cryptanaly-
sis tracks the probabilities of differences through the rounds of a cipher that are
c© Springer Nature Singapore Pte Ltd. 2017
L. Batten et al. (Eds.): ATIS 2017, CCIS 719, pp. 58–72, 2017.
DOI: 10.1007/978-981-10-5421-1 6



On the Practical Implementation of Impossible Differential Cryptanalysis 59

highly probable, impossible differential cryptanalysis tracks difference patterns
that are impossible to occur at an intermediate state i.e. their probability is zero.
Generally, two plaintexts are taken and their difference is tracked down in the
encryption direction to an intermediate state. Their corresponding ciphertexts
are taken and their differences are tracked in the direction of the decryption
to the same intermediate state. If at this intermediate state, the probability of
both the paths holding is 0, then these patterns are called impossible differential
paths. Using impossible differential paths, we can mount an attack by eliminat-
ing all keys which give the impossible differential path thereby leaving behind
the right key.

The first impossible differential attack on AES is an attack on 5 round AES-128
by Biham and Keller [3]. This was extended to a 6 round attack by Cheon
et al. [5]. Later in 2004, Phan [10] extended the attack to 7 round AES-192 and
AES-256. There have been several other impossible differential attacks [1,8,9] on
the different variants of AES since then. Among these attacks, the ones [3,5] on
AES-128 which do not exploit the key schedule of AES are extendable to AES-192
and AES-256.

Almost all of the impossible differential attacks on AES with the exception of
[3] are not practical attacks since their time and/or data complexities are highly
infeasible to be implemented in real life. As the 5 round attack on AES-128
is practical with time complexity only 231, we were surprised to observe that
there are no readily available public implementations of the attack. We deduced
that the memory needed for the attack which was 4 TB might have been the
reason for it not having been implemented. So we set out to achieve probably
the first implementation of a full key recovery impossible differential attack on
5 round AES.

Our contribution is as follows:

– First, we propose a data-memory tradeoff to the attack given by Biham and
Keller [3] on 5 round AES-128. This tradeoff enables us to implement the
attack with flexible resources.

– We implement full key recovery attack on 5 round AES-128 using the data-
memory tradeoff. This implementation uses 128.5 GB of primary memory
and 234 chosen plaintexts.

– We used customized data structures which lead to a time and space efficient
implementation.

– Using the techniques above, we implement the attack on 5 round variants of
AES-192 and AES-256.

The rest of the paper is organized as follows. Section 2.1 provides a brief
description of AES with its operations. In Sect. 2.2, notations for some of the
aspects of AES are furnished. Section 2.4 gives an explanation of the attack given
in [3]. The data-memory tradeoff for the attack is given in Sect. 3. The imple-
mentation details of the attacks on AES-128, AES-192, and AES-256 are given
in Sect. 4. Finally, we finish with concluding remarks in Sect. 5.



60 S. Kakarla et al.

2 Background and Preliminaries

2.1 AES

AES is a block cipher which operates on blocks of 128 bits using key sizes of 128,
192 or 256 bits. The intermediate state of AES can be arranged as 4× 4 matrix as
shown in Fig. 1 The number of rounds varies with the key size, 10 for AES-128,
12 for AES-192 and 14 for AES-256. Each round of AES encryption consists of
the following operations in the given order:

Fig. 1. Byte positions in AES state

– SubBytes(SB): Each byte is substituted by the value from S-box. This is the
only non-linear operation in AES.

– ShiftRows(SR): Each row in the state is shifted cyclically to the left. The
ith row is shifted by i bytes to the left (0 ≤ i ≤ 3).

– MixColumns(MC): Each column is multiplied by a constant 4× 4 matrix over
the GF (28).

– AddRoundKey(ARK): The state is XORed with the 128-bit round key.

The decryption of AES consists of the inverse of the above operations in the
reverse order. Last round of AES does not contain a MixColumns operation. It is
assumed that this is true for round reduced AES too. An additional AddRoundKey
is applied at the start of the first round. Thus for n rounds, there are n+1 round
keys. The round keys are supplied by the key schedule algorithm.

2.2 Notation

We define notations to represent intermediate states and other aspects of the
AES algorithm. There are n rounds and 1 ≤ i ≤ n. The key is represented by K.

– si is the state at the beginning of ith round.
– s0 is the initial state which is generally the plaintext.
– sn+1 is the final state which is generally the ciphertext.
– s1 is the state after the initial AddRoundKey.
– sB

i is the state after SubBytes of ith round.
– sR

i is the state after ShiftRows of ith round.
– sM

i is the state after MixColumns of ith round (i �= n).
– sA

i is the state after AddRoundKey of ith round.



On the Practical Implementation of Impossible Differential Cryptanalysis 61

– sX
i,j is the jth byte of sX

i (1 ≤ j ≤ 16, X ∈ {∅,B,R,M,A}).
– Ki denotes the round key used in round i. K0 corresponds to the key used in

the initial AddRoundKey.
– Dp: The set of byte positions in sB

1 which move to the same column after
ShiftRows in sR

1 .

Dp = ((1, 6, 11, 16), (2, 7, 12, 13), (3, 8, 9, 14), (4, 5, 10, 15))

– Dc: The set of byte positions in sA
n which move to the same column after

ShiftRows−1 in sR
n .

Dc = ((1, 8, 11, 14), (2, 5, 12, 15), (3, 6, 9, 16), (4, 7, 10, 13))

We can see that sA
i = si+1, 1 ≤ i ≤ n.

2.3 4 Round Impossible Differential

In this subsection, the 5 round attack on AES-128 given by Biham and Keller [3]
is explained. A 4 round impossible differential path which is used in the attack
is shown in Fig. 2. The difference between the two states are traced through the
rounds of AES. The last round does not contain the MixColumns operation. The
grey squares represent bytes where the difference is non-zero. These bytes are
called active bytes. The white squares represent bytes where the difference is zero
i.e. the bytes where the states are equal. These bytes are called passive bytes.

Fig. 2. 4 round impossible differential path

If the two states are p and q, the difference between the states is represented
as another state, d, where dX

i = pX
i ⊕qX

i ,∀X ∈ {∅,B,R,M,A}. The path shows



62 S. Kakarla et al.

that if there is a single active byte in d0, all the bytes are active in dA
2 . If all the

bytes along one of the diagonals in Dc are passive in dA
4 (ciphertext pair), then

at least 4 bytes are passive in d3. This is a contradiction since dA
2 = d3. This

proves that if the starting states differ only in one byte, then it is impossible to
obtain ciphertext states that are passive along one of the diagonals in Dc.

2.4 5 Round Attack on AES-128 by Biham and Keller

A round is added at the top to the 4-round impossible differential path to mount
an attack on 5 round AES-128 as shown in Fig. 3. All keys which give the impossi-
ble condition in the last 4 rounds can be deemed as wrong keys and be eliminated.

Fig. 3. 5 round attack on AES-128

Let the plaintext pairs which are active in one of the diagonals from Dp

be referred to as chosen pairs and the chosen pairs whose ciphertext pairs are
passive in one of the diagonals from Dc be referred to as desired pairs. For each
desired pair we can eliminate all key guesses of K0 which give a single active
byte in dM

1 . If we fix the diagonal (from Dp) in plaintext pairs, the property
is affected by only the key bytes along that diagonal. These set of bytes are
called as a partial key corresponding to that diagonal. Thus a partial key can be
independently eliminated irrespective of the other partial keys of K0.

Instead of taking a desired pair and checking whether the property satisfies
for all the 232 partial key guesses, pre-computation is used to speedup the elim-
ination of wrong partial keys. A hash table is created using Algorithm 1 which



On the Practical Implementation of Impossible Differential Cryptanalysis 63

Algorithm 1. Compute Hash Table
1: HashTable← Initialization()
2: for all a, a′, b, c, d ∈ {0, 1, · · · , 28 − 1}, a �= a′ do � These are bytes.
3: col ← InitializeColumn(a, b, c, d)
4: col′ ← InitializeColumn(a′, b, c, d)
5: col ← MixColumn-1(SubBytes-1(col)) � The column version of the operations

are used
6: col′ ← MixColumn-1(SubBytes-1(col′))
7: hkey ← col ⊕ col′

8: HashTable[hkey].Append(col)
9: end for

gives the partial keys eliminated by a desired pair. The hash table contains 240

values stored in 232 indexes averaging 28 values per index.
Given a desired pair with plaintexts P1, P2, we can compute all the partial

keys eliminated by calculating x ⊕ P1 over all the values x in hash table at the
index P1⊕P2. On an average, 28 partial keys are eliminated per desired pair. The
probability that a chosen pair is a desired pair is 2−32 ·4 = 2−30. We take chosen
plaintexts which are varied over the 232 possibilities along a diagonal from Dp

with all the other bytes fixed. From these chosen plaintexts, we get 263 chosen
pairs. The corresponding ciphertexts are obtained and desired pairs are taken
from the chosen pairs. We get 263 · 2−30 = 233 desired pairs. We iterate over
these desired pairs and eliminate the wrong partial keys using the hash table.
The expected number of wrong partial keys remaining is

232 · (1 − 2−32)2
33·28 ≈ 0 (1)

It is given in the original attack that using 228 desired pairs would suffice
for the attack which would mean using about 229.5 chosen plaintexts. Iterating
through the 228 pairs, we make 28 XOR and hash table lookups per pair making
it a total of 236 XOR calculations and hash table computation. If the compu-
tation cost of XOR calculation and hash table lookup is equated to 2−5 part of
computation of 1 encryption, the total time complexity is about 231 encryptions.
Similarly, the precomputation of hash table is calculated as 236 encryptions. The
data complexity is 229.5 chosen plaintexts. The memory used is at least 4 TB
as 242 bytes are used for the hash table. Although this memory can be deemed
as practical, a server with 4 TB of primary memory is not yet commonly avail-
able. Thus the memory usage is a bottleneck for implementing the attack. We
introduce measures in the following section to tackle this.

3 Memory Reduction Techniques

In this section, we introduce methods to reduce the primary memory needed for
the attack. First, we give a simple 50% reduction in the memory needed with no
extra cost and then introduce a data-memory tradeoff.



64 S. Kakarla et al.

Reducing the hash table size to 2 TB
We first look to reduce the size of the hash table without any other increased
costs. In the original attack both the ordered pairs ((a, b, c, d), (a′, b, c, d)) and
((a′, b, c, d), (a, b, c, d)) are used in the computation of the hash table. We can
remove this redundancy by replacing the condition a �= a′ with a > a′ in line 2
of Algorithm 1. The hash table size is reduced by half to 2 TB. Given a desired
pair, (P1, P2) we eliminate the partial keys x ⊕ P2 and x ⊕ P1 (as opposed to
only x ⊕ P1 in the original attack) over the values x at the index P1 ⊕ P2. This
makes up for the fewer values in the hash table. Even though now we have only
an average of 27 values per index in the hash table, still on an average 28 partial
keys are eliminated per desired pair. Note that the time and data complexities
are not changed with this alteration.

Data-Memory Tradeoff
To further reduce the hash table, we need to look at the equation which calculates
number of remaining partial keys. If we have an average of 2x (0 ≤ x ≤ 7) values
per index in the hash table, 2x+1 partial keys are expected to be eliminated
per desired pair. If 2y desired pairs are used, the expected number of remaining
partial keys is given by

232 · (1 − 2−32)2
y·2x+1

= 232 · (1 − 2−32)2
x+y+1

(2)

In the original attack with 28 values per index, 233 desired pairs sufficed. Thus
we have,

x + y + 1 = 8 + 28 ⇒ y = 35 − x. (3)

232 · (1 − 2−32)2
35−x·2x+1 ≈ 483 (4)

If we have 2x values per index in the hash table, then the number of desired
pairs required for the attack would be 235−x. For 2y desired pairs used, 2(y+31)/2

chosen plaintexts are needed. We have to be careful when computing a hash
table (smaller than the original) such that the values are not extremely skewed
across the indices. If we have a skewed hash table, it might be possible that all
the desired pairs used might get values from the sparse part of the table, thus
resulting in fewer keys eliminated than expected. In practice it is found that
randomly sampling a subset of all values of (a, a′, b, c, d) when calculating the
hash table leads to a distribution which is not too skewed.

Thus we can reduce the memory usage by reducing x to a suitable value
and increasing y to the corresponding value. It is preferable not to reduce x
to a value as low as 0. Even though there is 1 entry per index on an average
for x = 0, a skewed hash table might lead to 0 entries at some indexes. If we
take x = 2, y = 35 − 2 = 33. Number of chosen plaintexts required is 232.
The memory needed for the hash table is 64 GB (for storing 234 4-byte values).
Though the data complexity is increased by 22.5 times, it makes up for the fact
that primary memory usage is greatly reduced from 4 TB to 64 GB provided
optimal implementation of the hash table.



On the Practical Implementation of Impossible Differential Cryptanalysis 65

Reducing data complexity. There might be scenarios where the attacker is
equipped with abundant memory but has less data to attack with. From the
data-memory tradeoff (Eq. 3), we can see that decreasing the data complexity is
possible if the average number of entries per index in the hash table increases.
This is actually possible if we alter the computation of the hash table. Instead
of only considering pairs such as ((a, b, c, d), (a′, b, c, d)), we can also consider the
pairs ((a, b, c, d), (a, b′, c, d)), b �= b′ and similar pairs with the different byte at
c or d. Now the maximum of average number of entries per index in the hash
table is increased from 27 to 29.

Thus either the memory usage or the data complexity can be decreased based
on the requirements. The memory used and the data complexity for different x
is given in Table 1.

Table 1. Attack on 5 round AES-128 data-memory tradeoff (partial key)

Average number of
hash table entries
per index x

Hash table
entries
232+x

Hash table
size
2x+4 GB

Desired pairs
235−x

Chosen plaintexts
233−0.5x

9 241 8 TB 226 228.5

7 239 2 TB 228 229.5

4 236 256 GB 231 231

3 235 128 GB 232 231.5

2 234 64 GB 233 232

1 233 32 GB 234 232.5

Time Complexity. One might expect that with increase in data complexity,
time complexity might increase. This is in fact not true. The data-memory trade-
off has no effect on the time-complexity of the attack. The main operation in
the attack is calculating the partial keys eliminated for each desired pair from
the hash table. Thus time complexity is proportional to 2x · 2y = 2x+y, which is
constant as per Eq. 3. So we expect that time complexity to not be affected by
changes in x.

4 Implementation Details and Experimental Results

The implementation of the attacks was coded in C. The code was run on a server
with Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.70GHz processors. The total pri-
mary memory of the server was 256 GB under a NUMA setting. An AES imple-
mentation using AES-NI [7] instructions was used. Other subroutines of the
attack which involved AES operations also used these instructions. Now we give
some high level implementation details of the attack.



66 S. Kakarla et al.

4.1 Implementation for AES-128

From the data-memory tradeoff, we take x = 2, meaning the hash table has an
average of 22 entries per index. The number of chosen plaintexts used is 232 per
partial key.

Hash Table. For any hash table implementation, we expect the size to be
at least 64 GB. But as the number of entries per index vary, it is difficult to
implement the table without using any extra memory. We implemented a data
structure for the hash table as shown in Fig. 4.

Fig. 4. The hash table data structure with the arrays V and C. vi,j is the jth value in
the index i.

If ni is the number of values at index i, the cumulative count ci is given by

ci =

⎧
⎨

⎩

0, for i = 0
i−1∑

k=0

nk, for i > 0

V is the value-array where all the values of the hash table are stored in the
order of their hash table indexes. C is the cumulative-array where C[i] = ci. The
hash table values at index i are given by

HashTable[i] =
{
V [j] | C[i] ≤ j < C[i + 1]

}

Each element of V is 4 bytes in size since hash table values are 4 byte values.
As there are 234 hash table values, size of V is 64 GB. For elements in C, 4 bytes
is not sufficient as ∃i, C[i] ≥ 232. Therefore, we use 8 byte sized elements. There
are 232 elements in C making its size 32 GB. Thus, the total size of hash table
is 96 GB.

Desired Pairs. We would be needing 233 desired pairs from 232 chosen plain-
texts for a partial key. However, it is not feasible to enumerate the 263 pairs
of chosen plaintexts to obtain the desired pairs. This is avoided by fixing the



On the Practical Implementation of Impossible Differential Cryptanalysis 67

ciphertext diagonal (from Dc) and storing the chosen plaintexts in a hash table
called desired-table. This table is indexed by the value of the diagonal bytes of
the corresponding ciphertexts. We only need to store the bytes of the plaintext
along the plaintext diagonal as all the chosen plaintexts are equal across the
other bytes. The procedure for constructing the desired-table is given in Algo-
rithm 2. Once the desired-table is constructed, all the pairs of plaintexts at the
same index are desired pairs. This process is repeated for different ciphertext
diagonals to get all the desired pairs.

Algorithm 2. Desired Pair Generation 5 round AES-128

Require: pdiag, cdiag ∈ {0, 1, 2, 3} � indexes of the plaintext and ciphertext
diagonals resp.

1: procedure BuildDesiredTable(pdiag, cdiag)
2: DesiredTable← Initialization()
3: for all a, b, c, d ∈ {0, 1, · · · , 28 − 1} do � These are bytes
4: p ← InitializeStatePDiagonal((a, b, c, d), pdiag) � Bytes not in

diagonal are fixed
5: c ← EncryptionOracle(p)
6: dc ← GetCDiagonalBytes(c, cdiag) � Obtain bytes in ciphertext

diagonal
7: DesiredTable[dc].Insert((a, b, c, d))
8: end for
9: return DesiredTable

10: end procedure

As the number of entries per index in the desired-table is not known, we use
a linked-list like data structure shown in Fig. 5 which is highly space efficient. H
is the head-array. H[i] gives the first node at index i. N is the node-array. N [i]
is the next node in the list. Ending of a list is represented by a self-reference at
the last node of the list. There are 232 4-byte sized elements in both the arrays.
Thus, the size of each array is 16 GB making the total size of desired-table 32
GB. The procedures of desired-table are given in Algorithm 3. Some details of
null references in H are skipped for brevity. Elements of H are initialized to 0
while elements of N are initialized as N [i] = i.

Key Elimination. Once the desired-table for a ciphertext diagonal is obtained,
we eliminate the partial keys over the corresponding desired pairs using the hash
table. This is repeated for all the diagonals. The overall implementation is given
as a procedure in Algorithm 4. 232 bits are needed to keep track of the eliminated
partial keys. Therefore, 0.5 GB is used for the key-array. The over all memory
usage is displayed in Table 2.

From Eq. 4, it is expected that around 483 partial keys to be not eliminated.
In practice we have found that around 450 to 520 partial keys remain after the
elimination process. It took 12 h to get these keys for one partial key. We get the



68 S. Kakarla et al.

(a) {P2, P3, P6} have the same ciphertext diagonal value C1. Similarly, {P1, P4} have C2 as their
ciphertext diagonal. Only P5 has C3 as its ciphertext diagonal. P7 has not been processed yet. C4

and C5 have no entries yet.

(b) P7 is processed and it is found that its ciphertext diagonal is C2. Hence, now {P1, P4, P7} are
the plaintexts which have C2 as their ciphertext diagonal.

Fig. 5. Two intermediate states of the desired-table during its construction.

correct key, K = K0, by brute forcing over all the possible keys computed from
the partial key sets (Table 3).

As the attack on AES-128 does not involve key schedule, we can apply it to
the 5 round AES-192 and AES-256 variants by making a few alterations which
are explained in the following sub-section.

4.2 Implementation for AES-192/256

Here we explain the implementation for AES-256 which can be applied for
AES-192 without any changes. The first round key K0 is obtained in the same
way as for AES-128. For the second round key K1, we give a new differential
path that shifts the previous path by one round forward as shown in Fig. 6.
Note that the definition of desired pair needs to be modified as in the cipher-
text pair, only one passive byte is required for it to be a desired pair for K1.
Thus data complexity for K1 is significantly less than that for K0. Similarly we



On the Practical Implementation of Impossible Differential Cryptanalysis 69

Algorithm 3. Desired Table Procedures
1: procedure Insert(p, c) � Insert p in index c
2: if H[c] = 0 then � List at index c is empty
3: H[c] ← p
4: else
5: N [p] ← H[c]
6: H[c] ← p � Inserting p at the start of the list at H[c]
7: end if
8: end procedure
9: procedure GetEntries(c) � Returns all entries at index c

10: set ← ∅

11: next ← H[c]
12: if next = 0 then � If list at index c is empty
13: return set
14: else
15: set = set ∪ {next}
16: while N [next] �= next do � Iterate till end of list
17: next = N [next]
18: set = set ∪ {next}
19: end while
20: end if
21: return set
22: end procedure

Algorithm 4. 5 round AES-128 Attack (Partial Key)
Require: pdiag ∈ {0, 1, 2, 3}
1: procedure AttackPartial(pdiag) � pdiag is the index of diagonal of the

partial key
2: HashTable ← LoadHashTable()
3: IK ← InitializeIK() � IK is the key-array used to keep track of elimination

of keys
4: for cdiag = 0 to 3 do � cdiag is the index of the ciphertext diagonal
5: DesiredTable ← BuildDesiredTable(pdiag, cdiag)
6: for dkey = 0 to 232 − 1 do
7: for all {P1, P2} ∈ DesiredTable[dkey] do
8: hindex ← P1 ⊕ P2

9: for all x ∈ HashTable[hindex] do
10: EliminateKey(IK, x ⊕ P1) � The partial key x ⊕ P1 is

eliminated
11: EliminateKey(IK, x ⊕ P2)
12: end for
13: end for
14: end for
15: end for
16: KeySet ← GetValidKeys(IK) � Get the partial keys which were not

eliminated
17: return KeySet
18: end procedure



70 S. Kakarla et al.

Table 2. Memory usage of implementation

Data structure Memory used

Hash table 96 GB

Desired table 32 GB

Key array 0.5 GB

Total 128.5 GB

Table 3. Full key recovery attack on 5 round AES-128

Key retrieved Chosen plaintexts Memory used Time taken

K = K0 232 · 4 128.5 GB 4 × 12 = 48 h

Fig. 6. Path to retrieve K1 for 5 round AES-192/256

need to redefine chosen plaintexts. Chosen plaintexts are plaintexts s0, whose
bytes in the state sM

1 vary along a diagonal from Dp with other bytes fixed.
We choose plaintexts by choosing sM

1 and decrypt back using K0 to obtain the
actual plaintext s0. The rest of the implementation follows along the same lines
of the implementation on AES-128. The results are given in Table 4.



On the Practical Implementation of Impossible Differential Cryptanalysis 71

Table 4. Full key recovery attack on 5 round AES-256

Key retrieved Chosen plaintexts Memory used Time taken

K0 232 · 4 128.5 GB 4 × 12 = 48 h

K1 225 · 4 98 GB 2 h

K 232 · 4 128.5 GB 50 h

5 Conclusion

In this work, we have given a data-memory tradeoff for the impossible differential
attack on 5 round AES-128 by Biham and Keller. This data-memory tradeoff
enables implementation of the attack with flexible resources to tackle the high
memory requirement of 4 TB of the original attack. We have implemented the
attack on AES-128 with a decrease in primary memory from 4 TB to 128.5 GB
and increase in data complexity from 229.5 to 232 with the time complexity, 231,
not affected. Custom data structures were devised to make the implementation
efficient. This attack was extended to AES-192 and AES-256 and implemented
using the same techniques. This is the first reported implementation of all the
attacks mentioned to the best of our knowledge.

This implementation might be useful to future impossible differential attacks
on higher number of rounds with practical complexities as the basic primitives
of computation in impossible differential attacks are implemented in an efficient
way. It might also be useful for gaining insight into the distribution of hashes
in the hash table and the key elimination patterns per pair and can be a future
extension of this work.

References

1. Bahrak, B., Aref, M.R.: Impossible differential attack on seven-round AES-128.
IET Inform. Secur. 2(2), 28–32 (2008). http://dx.doi.org/10.1049/iet-ifs:20070078

2. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12–23. Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 2

3. Biham, E., Keller, N.: Cryptanalysis of Reduced Variants of Rijndael. In: 3rd AES
Conference, vol. 230 (2002)

4. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J.
Cryptology 4(1), 3–72 (1991). http://dx.doi.org/10.1007/BF00630563

5. Mala, H., Dakhilalian, M., Rijmen, V., Modarres-Hashemi, M.: Improved impossi-
ble differential cryptanalysis of 7-round AES-128. In: Gong, G., Gupta, K.C. (eds.)
INDOCRYPT 2010. LNCS, vol. 6498, pp. 282–291. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-17401-8 20

6. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer (2002). http://dx.doi.
org/10.1007/978-3-662-04722-4

http://dx.doi.org/10.1049/iet-ifs:20070078
http://dx.doi.org/10.1007/3-540-48910-X_2
http://dx.doi.org/10.1007/BF00630563
http://dx.doi.org/10.1007/978-3-642-17401-8_20
http://dx.doi.org/10.1007/978-3-662-04722-4
http://dx.doi.org/10.1007/978-3-662-04722-4


72 S. Kakarla et al.

7. Gueron, S.: Intel R© Advanced Encryption Standard (AES) New Instructions Set.
Intel Corporation (2010). https://software.intel.com/sites/default/files/article/
165683/aes-wp-2012-09-22-v01.pdf

8. Lu, J., Dunkelman, O., Keller, N., Kim, J.: New impossible differential attacks
on AES. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT
2008. LNCS, vol. 5365, pp. 279–293. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-89754-5 22

9. Mala, H., Dakhilalian, M., Rijmen, V., Modarres-Hashemi, M.: Improved impossi-
ble differential cryptanalysis of 7-round AES-128. In: Gong, G., Gupta, K.C. (eds.)
INDOCRYPT 2010. LNCS, vol. 6498, pp. 282–291. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-17401-8 20

10. Phan, R.C.: Impossible differential cryptanalysis of 7-round Advanced Encryption
Standard (AES). Inf. Process. Lett. 91(1), 33–38 (2004). http://dx.doi.org/10.
1016/j.ipl.2004.02.018

https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
http://dx.doi.org/10.1007/978-3-540-89754-5_22
http://dx.doi.org/10.1007/978-3-540-89754-5_22
http://dx.doi.org/10.1007/978-3-642-17401-8_20
http://dx.doi.org/10.1016/j.ipl.2004.02.018
http://dx.doi.org/10.1016/j.ipl.2004.02.018


Privacy Preserving Techniques



Private Distributed Three-Party Learning
of Gaussian Mixture Models

Kaleb L. Leemaqz(B), Sharon X. Lee, and Geoffrey J. McLachlan

School of Mathematics and Physics, University of Queensland,
Brisbane, Australia

k.leemaqz@uq.edu.au

Abstract. This paper presents a scheme for privacy-preserving cluster-
ing in a three-party scenario, focusing on cooperative training of multi-
variate mixture models. With modern-day big data often collected and
stored across multiple independent parties, preservation of private data
is an important issue during cross-party communications when carry-
ing out statistical analyzes of the joint data. We consider the situation
where the data are horizontally distributed among three parties and that
each data owner wants to learn the global parameters while data from
other parties are kept private. The inter-party communications must not
expose any information that may potentially disclose details of the pri-
vate data, including how the data are partitioned across the parties. In
addition, unlike most existing methods, the proposed scheme does not
require a special trusted party to be involved. Clustering plays an impor-
tant role in statistical learning and is one of the most widely used data
mining methods. We shall illustrate our scheme using a Gaussian mixture
model (GMM) based cluster analysis.

1 Introduction

Distributed knowledge discovery has emerged as an active field of research due to
the need of analyzing extremely big data. In these settings, cross-party data min-
ing raises important privacy and security concerns. The data might, for example,
contain sensitive information such as personal details, credit records, sales data,
and medical history, which can lead to serious consequences, whether legally,
commercially, or ethically, if disclosed to other parties. However, it is inevitable
that some privacy will be lost if cooperative data mining is to be carried out.
The challenges then rest on finding the optimal balance between privacy and
utility, that is, to maximize the utility of data in each party while minimizing
information leakage. This has led to significant growth in the development of pri-
vacy preserving data mining techniques. Two streams of approaches seem to have
emerged from the literature, namely, auxiliary-based and encryption-based meth-
ods. The former focuses on preventing the miner from learning about the original
data by instead working on auxiliary data derived from the original one. To this
end, techniques such as randomization, transformation, and noise-contamination
have been proposed; see, for example, [2,5,6]. The encryption-based approach,
c© Springer Nature Singapore Pte Ltd. 2017
L. Batten et al. (Eds.): ATIS 2017, CCIS 719, pp. 75–87, 2017.
DOI: 10.1007/978-981-10-5421-1 7



76 K.L. Leemaqz et al.

on the other hand, utilizes cryptographic methods to enable cooperative compu-
tation without disclosure of any private data [9,10,17,19]. For surveys of recent
developments in this area, the reader is to referred to papers by, for example,
[1,16,18].

Most of the existing methods consider only the case where one intends to
utilize untrusted computational resources. A typical example of such situation
is cloud computing, where the data are to be shared with an untrusted party (in
this case, it is the service provider). This leads to the existence of an hierarchical
arrangement of participating parties, commonly in the form of master and slave
nodes, with the results of the algorithm only known by the master nodes. This
implicitly leads to the situation of multiple levels of trust between parties, where,
to a slave node, a master node has a higher level of trust.

A less discussed scenario in multi-party computation is where parties of equal
levels of trust (or distrust) intend to analyze their data as a joint set without
revealing their private data. One solution might be to entrust their data to
a third party, and for them to perform the analysis. In practice, however, it
can be difficult to find such a trusted third party. Here we focus on the rarely
considered situation where there is no trusted third party and no master/slave-
type arrangements.

This paper proposes a method for performing private joint analysis on data
stored between three parties, set in the latter scenario of equal trust levels
between the parties. However, in contrast to existing works, we do not require a
special trusted party (that is, a party with a higher level of trust than others).
Based on a cyclic communication strategy, our scheme does not adopt the more
commonly-used broadcast communication topology and hence avoid leakage of
party-specific information. In the event that one of the parties is corrupted, pri-
vate data from the other two parties will not be leaked to the adversary. Other
side-channel information such as the partitioning or distribution of data across
the parties is also protected from disclosure to any parties.

Mixture models (MM) are powerful tools for clustering and density estima-
tion. They provide a formal but very flexible framework to model data comprising
of heterogeneous populations, facilitating probabilistic classification/clustering
of the data [13,15]. As such, they are widely used in machine learning, data
mining, artificial intelligence, and in numerous applications in related fields rang-
ing from signal processing, image analysis, social science, finance, ecological and
environmental modelling, to biological and medical data analysis. Among many
parametric finite mixture models proposed in the literature, the Gaussian mix-
ture model (GMM) is the one of the most commonly used models due to its math-
ematical tractability and formal properties. Hence, we shall adopt the GMM as
an illustration of our protocol. It should be noted that the proposed approach can
be implemented for more complex clustering tools based on non-normal mixture
models (for example, those described in [3,11,12])

The rest of this paper is organised as follows. In Sect. 2, we briefly define
the GMM model. Section 3 briefly outline a learning algorithm for the GMM
model. In Sect. 4, we discuss the encryption schemes used as well as the privacy



Private Distributed Three-Party Learning of Gaussian Mixture Models 77

model used for later analysis in Section 6. In Sect. 5, we present a novel scheme
for learning a global GMM model across multiple parties while preserving indi-
vidual private data. In Sect. 6, a privacy analysis of the proposed algorithm is
performed. Finally, concluding remarks are given in Sect. 8.

2 The GMM Model

We begin by giving an overview of model-based clustering via the Gaussian
mixture model (GMM). A finite mixture model is a convex combination of com-
ponent densities, the latter typically taken to belong to the same parametric
family. In the case of the GMM, its component densities are taken to be a (mul-
tivariate) Gaussian distribution given by

φp(y ;μ,Σ) = (2π)− p
2 |Σ|− 1

2 e− 1
2 (y−μ)T ΣT (y−μ), (1)

where y denotes a p-dimensional random vector, μ is a p-dimensional mean
vector, and Σ is a p × p positive definite covariance matrix. In the above, |Σ|
denotes the determinant of Σ.

The density of a g-component mixture of Gaussian distributions can be
expressed as

f(y ;Ψ ) =
g∑

i=1

πiφp(y ;μi,Σi), (2)

where πi (i = 1, . . . , g) are the mixing proportions satisfying πi ≥ 0 and∑g
i=1 πi = 1. The vector Ψ is the vector containing all the unknown parameters

of the mixture model and is given by Ψ = (π1, . . . , πg−1,θ1, . . . ,θg). Here, θi

denotes the vector of unknown parameters of the ith component density, which
contains the elements of μi and the distinct elements of Σi.

Under the mixture model framework, a probabilistic clustering of a data set
can be easily obtained by applying the maximum a posteriori (MAP) rule to
each observation; that is, an observation is assigned to the component to which
it has the highest estimated posterior probability [15].

In many application, constraints are applied to the covariance matrices Σi

or other parameters of the GMM to achieve parsimony or sometimes simply for
computational convenience. For example, the widely popular k-means algorithms
is a special case of the GMM assuming common spherical covariance matrices
and equal mixing proportions. In this paper, we will work with the general GMM
without imposing any constraints on the parameters of the model.

3 The EM Algorithm

The training or fitting of a GMM can be carried out by maximum likelihood
(ML) via the Expectation–Maximization (EM) algorithm [14]. Given a set of
initial parameters, the EM algorithm iterates between the E- and M-steps until



78 K.L. Leemaqz et al.

some convergence criterion is satisfied. The E-step calculates the conditional
expectation of the complete-data log likelihood log Lc(Ψ ) given the observed
data y (that is, the so-called Q-function), using the current estimates of Ψ . In
the case of a GMM, the missing data are the latent component indicators Zij

(which takes the value of one if y j belongs to the ith component of the mixture
model, and zero otherwise) and hence the E-step involves only the calculation
of the conditional expectation of Zij given the observed data. This is because
log Lc(Ψ) is linear with Zij . The M-step updates the estimate of the parameters
of the model (that is, the elements of Ψ) by maximizing the Q-function with
respect to Ψ .

3.1 E-Step

Let y j (j = 1, . . . , n) be a random sample of n observations. It follows that the
conditional expectation of Zij given y is given by

τ
(k)
ij = EΨ (k){Zij = 1 | y} =

π
(k)
i fi(y j : θ

(k)
i )

∑g
h=1 π

(k)
h fh(y j : θ

(k)
h )

, (3)

where the superscript (k) is used to denote the value of the parameter after the
kth iteration of the EM algorithm. The above quantity τ

(k)
ij is the value after the

kth iteration of the posterior probability of the jth observation y j belonging to
the ith component of the mixture model given y j .

3.2 M-Step

The M-step of the (k + 1)th iteration of the EM algorithm for a GMM is imple-
mented by updating the parameters π, μi, Σi (i = 1, . . . , g), respectively, as
follows:

π
(k+1)
i =

n
(k)
i

n
, (4)

μ
(k+1)
i =

∑n
j=1 τ

(k)
ij y j

n
(k)
i

, (5)

Σ
(k+1)
i =

∑n
j=1 τ

(k)
ij (y j − μ

(k)+1
i )(y j − μ

(k+1)
i )T

n
(k)
i

,

where n
(k)
i =

∑n
j=1 τ

(k)
ij .

3.3 Implementation

Concerning the starting values for the parameters, these are typically obtained
from a given initial clustering of the data (for example, via k-means clustering



Private Distributed Three-Party Learning of Gaussian Mixture Models 79

or random partitions) and subsequently applying the M-step described above by
taking τij to be defined according to the initial clustering.

Concerning the stopping criterion, we adopt the approach of monitoring the
progress of the likelihood function. The algorithm terminates when the relative
difference log likelihood values between the current and previous iteration is
smaller than a specified threshold ε, that is, when

|L(k+1) − L(k)|
L(k)

< ε, (6)

where L(k) denotes the value of the log likelihood function evaluated at the
completion of the kth iteration of the EM algorithm. The log likelihood function
is defined as L(k) =

∑n
j=1 log(f(y j ,Ψ

(k))).

4 Privacy

There is a large amount of data involved in the process of learning a GMM model
that may be of interest to an adversary. This includes not only information on the
observations themselves, but also side channel information that may be leaked
the process such as the distribution of the partitions. In brief, attributes that are
to remain private include: the total number of observations n, the dimensions of
the observations p, the distribution of the data between parties πi (i = 1, . . . , g),
and the parameters of each component of the mixture model θi. Likewise, with
regards to the results of the clustering process, the parameters of the mixture
density Ψ , as well as their respective cluster labels (which are derived from the
estimate of τij) are to remain private.

4.1 Cryptographic Schemes

The scheme proposed in this paper requires the use of only two cryptographic
protocols, a message exchange scheme and an additive homomorphic encryption
scheme.

Any message exchange protocol that satisfies the required security proper-
ties can be used for the sending and receiving of messages between parties.
Therefore the proposed scheme can be used with any well-studied key-exchange/
establishment and message exchange protocols. Thus we assume that the chosen
protocol will provide any required authentication, integrity, confidentiality, and
forward/backward secrecy properties. For the purpose of our proposed scheme,
we only require that the homomorphic encryption scheme used is additive.

Additive Homomorphic Encryption. A homomorphic encryption scheme is
additive, if given two plaintext, p1, p2, an encryption scheme Enck() provides
the property: Enck(p1 ⊕ p2) = Enck(p1) ⊕ Enck(p2)
That is, the product of two cipher texts will decrypt to the sum of their corre-
sponding plaintexts.



80 K.L. Leemaqz et al.

4.2 Adversary Model

Since the main concern of the proposed scheme is to minimize the leakage of
information rather than the analysis of the chosen message exchange and encryp-
tion scheme, the security and privacy properties are to be guaranteed by their
semantic security assumption. Thus it can be assumed that the external commu-
nicational attacks are mitigated by the use of secure communication channels.

To analysis the privacy properties of the algorithm, we utilize the notion of
a Semi-Honest adversary and the Malicious adversary.

Semi-Honest Adversary Model. In the Semi-Honest adversary model, some-
times also referred to as the Honest-but-Curious model, an adversary can control
some subset of the participating parties with the aim of gathering as much pri-
vate information as possible. Under this model, the adversary will follow the
protocol as specified, but will also attempt to gain as much information as pos-
sible through normal protocol message exchange.

Thus at the completion of the protocol, an adversary will have all the infor-
mation stored at the parties it controls as well as the transcripts of all message
interactions between parties. For the proposed scheme, information stored at a
party at the completion of the algorithm includes the parameters of the resulting
model, its partition of the data, the number of clusters, the number of iterations,
and the size of the complete data set.

Malicious Adversary Model. In MPC (multi-party computation) there also
exists a stronger Malicious adversary which, in addition to possessing the powers
of the semi-honest adversary, does not necessarily follow the protocol specifica-
tion and may also attempt to gain private information by sending malicious
messages or altering protocol messages to its advantage. It has been shown that
a protocol that is secure under the Semi-Honest Adversary Model is also secure
under the Malicious Adversary Model by the use of zero-knowledge proofs to
ensure the soundness of executed protocol.

5 Privacy-Preserving Distributed GMM Algorithm

This section presents an algorithm for three-party learning of a GMM for hori-
zontally partitioned data. At the completion of the algorithm all parties would
have common (but undisclosed) knowledge of the global model parameters with-
out revealing their private data sets. Each party will also be able to derive the
predicted cluster labels for their private data, but not the labels for the data held
by other parties. Under our communication scheme, there is no master or slave
nodes and each party is treated as equal in term of trust level. Furthermore, com-
munications between parties are one-way, that is, node A can only either receive
or send messages to/from node B, but not both send and receive from the node
B. One of the benefits of adopting this cyclic-like topology is that it can help
minimize the extraction of node-specific information from the received messages.
Before presenting our algorithm, we shall establish some notation (Table 1) to
be used in this section.



Private Distributed Three-Party Learning of Gaussian Mixture Models 81

Table 1. Notations used in Algorithms 1 and 2

Symbol Definition

P Number of parties

m Index for a party

n Number of observations in the complete dataset

skp Secret key of party p

pkp Public key of party p

Enck Encryption function with key k

Deck Decryption function with key k

5.1 Initialization

Before the commencement of the main algorithm, a secure communication chan-
nel is to be established between all parties. Key generation and exchange are
also to be completed for all chosen encryption schemes. Let m = 1, . . . , P denote
the index of the P parties. Note that for notational convenience, the indices are
consecutively numbered but in practice they are assigned randomly and that this
assignment is known by all parties. For the required homomorphic encryption
scheme, each party p should at minimum possess its secret key skp and the P
public keys pk1, ..., pkm.

Through the established secure communication channel, there is common
information that must be shared. Most of the required information such as the
number of desired clusters and number of participating parties are not considered
to be private knowledge as they are directly related to the data but only ensure
the functioning of the algorithm.

One essential piece of information required, however, is the overall size of the
dataset n. To minimize information leakage, this must be distributed in a way
such that the proportion of the (joint) data held by each party remains private.
To achieve this, we propose a scheme for computing n without revealing nm, the
number of observation held by Party m. Throughout this paper, we shall use the
subscript m to denote the data stored or quantities to be calculated by Party m;
for example, y jm (j = 1, . . . , nm) denotes the nm observations stored by Party
m. An overview of the scheme is shown in Algorithm 1.

Lastly, concerning the starting values required for the EM algorithm, these
can be computed using an existing distributed privacy preserving k-means algo-
rithm (for example [8] or [4]), or by sharing some disclosable quantities over the
existing secure channel.

5.2 E-Step

The E-step is computed as per Sect. 3.1 for all parties on their respective data
sets. Thus for Party m (m = 1, ..., P ), this step involves calculating the posterior



82 K.L. Leemaqz et al.

Algorithm 1. Algorithm for Privately Determining n for Party m

Input: index of parties m = 1, ..., P , secret key of m skm, public key of all parties
pk = pk1, ..., pkP , size of data nm

Compute message Tm = (Mm, m) where Mm = Encpkm(nm)
Send Tm to m+1

On receiving Tm∗ = (Mm∗, m∗)
If:m∗ �= m
Tm∗+1 = Mm∗ ⊕ Encpkm∗(nm), m∗
Send Tm∗+1 to m+1modP

Else if: m∗ = m
n = Decskm(Tm∗)
Output: n

probabilities of component membership τijm (i = 1, . . . , g) for observation y jm

(j = 1, . . . , nm), as given by

τ
(k)
ijm =

p
(k)
ijm

∑g
h=1 p

(k)
hjm

, (7)

where p
(k)
ijm = π

(k)
i fi(y jm;θ(k)

i ). As noted previously, the superscript (k) is used

to denote the kth iteration of the EM algorithm. The computed quantities τ
(k)
ijm

are to remain private and not to be disclosed to other parties as these may reveal
information about individual observations.

5.3 M-Step

Since the M-Step requires the corporation of all parties, we need to disclose at
least some sufficient statistics in order for other parties to evaluate the values of
the global parameters. Thus, each party will calculate the following summarizing
quantities and communicate them to the designed ‘send to’ party:

T1im =
nm∑

j=1

τ
(k)
ijm, (8)

T2im =
nm∑

j=1

τ
(k)
ijmy jm, (9)

T3im =
nm∑

j=1

τ
(k)
ijm(y jm − μ

(k)
i )(y jm − μ

(k)
i )T . (10)

In addition, unless the algorithm is at its initial iteration (that is, k = 1),
Party m will also need to communicate an encrypted message containing (14)
from the previous iteration together with the quantities (8) to (10) above.

As all parties will disclose the above mentioned encrypted quantities, Party
m will need to perform the chosen additive function on messages received from



Private Distributed Three-Party Learning of Gaussian Mixture Models 83

Algorithm 2. M-Step EM Algorithm for Party m

Input: data y jm (j = 1, . . . , n), number of components g
Compute T1im, T2im, and T3im using (8), (9), and (10), respectively.
Compute Tm = (M1m, M2m, M3m, m) where
M1m = Encpkm(T1im),
M2m = Encpkm(T2im),
M3m = Encpkm(T3im)
Send Tm to m+1

On receiving Tm∗ = (M1m∗, M2m∗, M3m∗, m)
If:m∗ �= m
Tm∗+1 = (M1m∗⊕Encpkm∗(T1im),
M2m∗⊕Encpkm∗(T2im),
M3m∗⊕Encpkm∗(T3im), m∗)
Send Tm∗+1 to m+1modP

Else if: m∗ = m
T1im = Decskm(T1im∗)
T2im = Decskm(T2im∗)
T3im = Decskm(T3im∗)
Compute πi, μi, and Σi using (13).
Output: labels, parameters πi, μi, and Σi

its ‘receive from’ party and pass them to its ‘send to’ party; see Algorithm 2 for
details. If the received message is at the end of its cycle (that is, it had passed
through all the parties once), we can proceed to complete the M-step as follows:

πi =
1
n

P∑

m=1

T1im, (11)

μi =

P∑

m=1

T2im

ni
, (12)

Σi =

P∑

m=1

T3im

ni
, (13)

where n =
∑P

m=1

∑g
i=1 T1im and ni =

∑P
m=1 T1im.

5.4 Stopping Criteria

After the completion of the E- and M-steps as described above, each party will
also need to calculate the value of the log likelihood function corresponding to
its part of data given by (14) and communicate it on the next iteration.

L(k)
m =

nm∑

j∈1

log

(
g∑

i=1

p
(k)
ijm

)
. (14)



84 K.L. Leemaqz et al.

Each party will also receive the sum corresponding to (14) from other parties,
from which the global log likelihood value can be derived. The algorithm termi-
nates once the stopping criterion is met (see Sect. 3.3).

6 Privacy and Information Leakage

Definition. Under the semi-honest privacy model, we say that for parties x, y,
protocol φ is secure if for the function f there exists a probabilistic polynomial
time simulators S1 and S2, where the ith party’s view is viewπ

i (x, y) and x, y
the party’s respective private inputs. Such that

{S1(x, f(x, y))}x,y∈{0,1}∗
c≡ { viewφ

1 (x, y)}x,y∈{0,1}∗
{S2(x, f(x, y))}x,y∈{0,1}∗

c≡ { viewφ
2 (x, y)}x,y∈{0,1}∗

where |x| = |y|.
Informally, a protocol is said to be secure, if from each party’s viewpoint, the
outputs of the protocol is indistinguishable from that of a simulated one, where
only its private input and output of the algorithm is being computed.

For the proposed algorithm, the security of the messages are guaranteed by
the semantic security property of the chosen homomorphic encryption scheme,
where it is not possible for a probabilistic polynomial time-bounded adversary
to distinguish between an outputted ciphertext and random output of the same
length with non-negligible greater than 1/2.

Malicious Adversary. When considering a Malicious adversary, the possibility
of incorrect values or unexpected terminations must be considered. In the prior
case, it can be argued that the adversary actually learns less information. Since
the purpose of the algorithm is to learn the model parameters of the combined
data between all parties, if the adversary returns false or incorrect values to
other parties, all subsequent intermediate and final outputs will no longer be
representative of the combined data.

In the latter case, the adversary will only learn of the intermediate values from
the last iteration before the algorithm is terminated. The amount of information
gained is discussed in the subsequent section.

Information Leakage. Since the proposed algorithm does not modify or alter
the chosen encryption schemes, for any party m, message T = Encpkm∗(M) is
indistinguishable from a randomly generated message of the same length. Thus
the focus on the analysis is to be on the amount of information a party can learn
through normal execution of the algorithm.

A list of information that might be of possible interest to an adversary is
given in Table 2 with their respective level of privacy. As shown in the table,
model parameters and inputs of the algorithm are shared knowledge as they
need to be synchronized at every party for the algorithm to function. Thus the
main pieces of information that is required to remain private are the observations
and the meta-data of the observations. We shall now examine the information
available to the adversary with corruption capabilities.



Private Distributed Three-Party Learning of Gaussian Mixture Models 85

Table 2. Information of interest

Information Type

Number of observations Private

Distribution of observations Private

Distribution of observations for each component Private

Likelihood values Shared

Mean vectors Shared

Covariance Matrices Shared

Class labels Private

Number of clusters Shared

Number of dimensions Shared

Number of iteration Shared

A corrupted party is considered to be controlled by the adversary and thus
have knowledge of all its shared and private data. In the event that a secure
k-means scheme was not used for the initialization of the algorithm, summa-
rization quantities may have been shared between the parties depending on the
initialization scheme used, but no other sensitive information should have been
transmitted. Although there is a possibility for an adversary of exploiting this
initialization step, it would nevertheless require a significant effort to learn the
total number of observations. Evidently, a large number of protocol initializa-
tions would be considered by other parties to be malicious behavior.

The remaining issue is the consideration of what an adversary can learn
from a controlled party. An adversary will learn of all the observations, and
any shared or private information held, when it has been controlled. As one
may recognize, in a three party protocol, little information would be unknown
to the adversary if it controls more than a single party. Thus the focus should
be of learning the partition sizes of the observations held by each party when
the adversary is in control of a single party. In this scenario, through normal
execution of the algorithm, the adversary will have knowledge of the total number
of observations n and the total number of participating parties P . Thus from
the perspective of the adversary, the number of possible different distributions
of the observations between the remaining two honest parties. An adversary can
attempt to discover this information from the intermediate parameters that are
cooperatively calculated at every iteration during the secure summation process
shown in (9). However, knowing only the values n, an An, the number of possible
observation distributions can be expressed by the following Stirling partition
number [7]

Sr(n + 1, 2) = 2Sr(n, 2) +
(

n
0

)
Sr(n − 2, 1), (15)



86 K.L. Leemaqz et al.

where r denotes the minimal number of observations held by a party. In the above,

the operator
(

a
b

)
denotes the binomial coefficient defined as

(
a
b

)
= a!

(a−b)!b! ,

where a! denotes the factorial of a.
Alternatively, the adversary may attempt to learn the number of observations

at each party for each component (ni), where ni =
∑m

q=1 nmi. This reduced
number of possible distributions of the observations between parties based on
the component i can be expressed as

Sr(ni + 1, 2) = 2Sr2 +
(

n
−1

)
Sr(ni − 2, 1). (16)

As one may observe, the number of possible distributions are directly affected
by the total number of observations and the number of components. Thus it can
be considered that the algorithm is most suitable for applications with a large
amount of data.

7 Performance

The performance overhead of the scheme is heavy dependent on the chosen
communication and encryption scheme as well as the increase in the number of
messages required compared to a non-privacy preserving counterpart. In a typical
distributed GMM implementation, all parties would be computing their part of
observations and then combining their results at the end of each iteration. Thus
assuming a cyclic communication topology, the proposed algorithm is required
to send three times the number of messages as each party is required to compute
intermediate parameters independently with the help of the other two parties.
Due to this, there is also a slight computational penalty, as each part is also
required to perform one additive encryption operation per message.

8 Conclusion

In this paper, we have presented an algorithm for training a GMM between
three parties without revealing their private data. Unlike existing methods that
typically uses a ring or mesh topology, we adopt a ring-like topology that can
effectively minimise the risk of leaking party-specific information (such as the
number of observations held by each party) in the event of a corrupted party.
Upon completion of the algorithm, all parties will learn the parameters of the
global model as if the analysis were performed on the joint data set. In addition,
each party will also be able to derive the predicted cluster labels for each of
its own private observations. We also investigated the amount of side-channel
information that may be gain by an adversary with corruption capabilities.



Private Distributed Three-Party Learning of Gaussian Mixture Models 87

References

1. Aggarwal, C.C., Yu, P.S.: A general survey of privacy-preserving data mining mod-
els and algorithms. In: Privacy-Preserving Data Mining and Algorithms, pp. 11–52
(2008)

2. Agrawal, S., Haritsa, J.R.: A framework for high-accuracy privacy-preserving min-
ing. In: Proceedings of the 21st ICDE, Japan (2005)

3. Azzalini, A., Capitanio, A.: The Skew-Normal and Related Families. Institute of
Mathematical Statistics Monographs. Cambridge University Press, UK (2014)

4. Beye, M., Erkin, Z., Lagendijk, R.L.: Efficient privacy preserving k-means cluster-
ing in a three-party setting. In: 2011 IEEE WIFS, pp. 1–6 (2011)

5. Evfimevski, A., Gehrke, J., Srikant, R.: Limiting privacy breaches in privacy pre-
serving data mining. In: Proceedings of ACM SIGMOD/PODS Conference (2003)

6. Evfimievski, A.: Randomization in privacy preserving data mining. ACM SIGKDD
Explor. Newsl. 4, 43–48 (2002)

7. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics. Addison Wes-
ley, Reading (1988)

8. Jagannathan, G., Wright, R.N.: Privacy-preserving distributed k-means clustering
over arbitrarily partitioned data. In: Proceedings of the Eleventh ACM SIGKD-
DICKDDM, New York, NY, USA, pp. 593–599 (2005)

9. Jha, S., Kruger, L., McDaniel, P.: Privacy preserving clustering. In: Vimercati, S.C.,
Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 397–417.
Springer, Heidelberg (2005). doi:10.1007/11555827 23

10. Kantarcoglu, M., Vaidya, J.: Privacy preserving naive bayes classifier for horizon-
tally partitioned data. In: Proceedings of the IEEE ICDM PPDM, pp. 3–9 (2003)

11. Lee, S., McLachlan, G.J.: Finite mixtures of multivariate skew t-distributions: some
recent and new results. Stat. Comput. 24, 181–202 (2014)

12. Lee, S.X., Leemaqz, K.L., McLachlan, G.J.: A simple parallel EM algorithm for
statistical learning via mixture models. In: Liew, A.W.-C., et al. (eds.) Proceedings
of DICTA 2016, pp. 295–302. IEEE eXpress, Los Alamitos, California (2016)

13. McLachlan, G.J., Basford, K.E.: Mixture Models: Inference and Applications.
Marcel Dekker, New York (1988)

14. McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions. Wiley,
Hoboken (1997)

15. McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley, New York (2000)
16. Vaidya, J.: A survey of privacy-preserving methods across vertically partitioned

data. In: Privacy-Preserving Data Mining and Algorithms, pp. 337–358 (2008)
17. Vaidya, J., Clifton, C.: Privacy preserving association rule mining in verti-

cally partitioned data. In: Proceedings of the Eighth ACM SIGKDD ICKDDM,
pp. 639–644. ACM Press (2002)

18. Verykios, V.S., Bertino, E., Fovino, I.N., Provenza, L.P., Saygin, Y., Theodoridis, Y.:
State-of-the-art in privacypreservingdatamining. In:Proceedings ofACMSIGMOD
Record, New York, USA, pp. 50–57 (2004)

19. Wu, D., Atallah, M.: Privacy-preserving cooperative statistical analysis. In: Pro-
ceedings of the 17th ACSAC. pp. 103–110 (2001)

http://dx.doi.org/10.1007/11555827_23


A Privacy Preserving Platform for MapReduce

Sibghat Ullah Bazai1(&), Julian Jang-Jaccard1, and Xuyun Zhang2

1 CS/IT, INMS, Massey University, Palmerston North, New Zealand
{s.bazai,j.jang-jaccard}@massey.ac.nz

2 Department of ECE, University of Auckland,
Auckland, New Zealand

xuyun.zhang@auckland.ac.nz

Abstract. Big data applications typically require a large number of clusters,
running in parallel, to process data fast and more efficiently. This is typically
controlled and managed by MapReduce. In MapReduce operations, Mappers
transform input original key/value pairs to a set of intermediate key/value pairs
while Reducers aggregate a set of intermediate values, compute and write to the
output. The output however can bring serious privacy concerns. Firstly, the
output can directly leak sensitive information because it contains the global view
of the final computation. Secondly, the output can also indirectly leak infor-
mation via composite attacks where the adversary can link it with public
information published via different sources such as Facebook or Twitter. To
address such privacy concerns, we propose a privacy preserving platform which
can prevent privacy leakage in MapReduce. Our platform can be plugged into
the Reduce phase to sanitize the final output in such a way that the privacy is
preserved while it yet provides a high data utility. We demonstrate the feasibility
of our platform by providing empirical studies and highlights that our proposal
can be used for real life applications.

Keywords: MapReduce � Differential privacy � K-anonymity � New york taxi
data

1 Introduction

Tremendous work in data analytics has made an impressive progress to assist in critical
data-driven decision-making processes. What makes scalable data analytics possible is
the emergence of MapReduce which provides a parallel computing paradigm for big
data applications. The name MapReduce comes from its two main functions: Map and
Reduce. In the Map function, input data is usually spilt into smaller chunks and
computed in a completely parallel manner by independent cluster nodes. The Reduce
function consolidates the smaller chunks into a group. The several groups from dif-
ferent cluster nodes are computed and are written as an output. The MapReduce
platform provides libraries which can provide everything meant for computing on
larger clusters from parallelization, data distribution, load balancing, and fault
tolerance.

© Springer Nature Singapore Pte Ltd. 2017
L. Batten et al. (Eds.): ATIS 2017, CCIS 719, pp. 88–99, 2017.
DOI: 10.1007/978-981-10-5421-1_8



One considerable privacy concern raised in the way the Reducer handles the output
and writes it to the file system. The concern is raised because the Reducer often runs on
third-party infrastructure (i.e., public clouds). The administrators of the third party (or
adversaries) can easily infer the sensitive knowledge simply by directly examining the
output files. Or indirectly, they can also infer the original input by linking the output
with other types of data, for example with non-sensitive data published in social media
such as Facebook, Twitter or background auxiliary information gained via a friend or
family - this is known as composite attacks [1]. To solve such a privacy concern, a
variety of data anonymization techniques have been used such as data masking and
grouping, K-anonymity [2], t-closeness [3], l-diversity [4] and differential privacy
(DP) [5]. However, these techniques exist in isolation from each other in which often
are tailored to address a specific problem for a specific domain.

We proposed a privacy preserving platform to prevent MapReduce privacy leakage.
Our platform is designed in such a way that it can accommodate many different privacy
preserving mechanisms and corresponding algorithms that can implement different
strategies for different data anonymization results. Our platform can be plugged in the
Reducer phase to sanitize the final output so that it can prevent adversaries to inference
the original data or other privacy related data within dataset. We demonstrate the
feasibility of our platform by providing empirical studies which aim to highlight that
our proposal can be used for real life application. The studies illustrate the concrete
examples of applying two state-of-art privacy preserving mechanisms, Differential
Privacy and K-anonymity respectively along with New York Taxi dataset in our
platform.

The rest of paper is organized as follows. In Sect. 2, we describe the major tech-
nologies and their important features involved in our platform. In Sect. 3, we describe
the related work that provides different types of solutions to addressing MapReduce
privacy problems. In Sect. 4, we describe our proposed platform in detail. In Sect. 5,
the results of our experiment analysis based on our empirical study are demonstrated.
Finally, we conclude our work and discuss some future directions in Sect. 6.

2 Background

2.1 MapReduce

The MapReduce have been a critical technology in processing big data analytics.
MapReduce was originally proposed by Google in 2002 [6]. As a typical data batch
processing technology, its applications have been developed for the fields in data
mining, machine learning, data analytics and other fields. Due to its powerful parallel
processing support, MapReduce has become the key technology for data processing.

Big Data processing is typically performed by feeding a large dataset to mappers
that split the data into smaller more manageable chunks for different nodes of clusters.
Mapper is responsible for reading each data, line by line, and saving that each assigned
information into key/value pairs where the key is the data from the input file and the
value is the number of times that the key appears in the data. After completing this
process, mapper stores the key/value pairs in a temporary location. The temporarily

A Privacy Preserving Platform for MapReduce 89



located data is then processed using shuffle and sort then forwards this intermediate
value to a reducer. The reducer performs the collective combining job, that is, to collect
all intermediate data with the same key/value pairs and store them into HDFS.

2.2 K-Anonymity

K-anonymity is the first data anonymization technique with formal mathematical
support as a proof. Sweeney [7] introduced K-anonymity in 2002 by stating that
without ensuring k individuals in aggregation a single aggregate statistic should not be
published. In his definition, Quasi- Identifiers (QID) are attributes in dataset which may
be linked from publicly available dataset. The main goal to achieve K-anonymity is to
replace QID values with more general values, for example generalizing 3 different
values “15”, “17”, and “19” into a more general single value “15–20”.

K-anonymity is considered as one of the most popular techniques thus has been
studied well in the data anonymization community. In typical processing of
K-anonymity, it utilizes two distinct techniques known as generalization and
suppression with the aim to decrease the granularity of quasi identifier. Using gener-
alization, more granular values are combined together to create a broader category.
This can be achieved both for numerical variables (e.g., number of passenger in single
taxi 3, 4, and 5 into a broader category of 3–5) and for categorical variables (e.g.,
generalizing pickup time data from “2013-08-07 17:38:43” to “2013-08-07”). Gener-
alization replaces the original record attributes with less exact but constant values.
QIDs may become generalized to a certain point where a few conclusions can be drawn
about their relationships with other records. However, caution should be taken as
repeated generalization could decrease the quality of the entire data set. Suppression
works differently from generalisation by removing any records that violate anonymity
standards from the data set entirely. Also caution should be taken that suppression can
skew the integrity of data set when values are eliminated disproportionately to the
original distribution of the data. More often than not, suppression is used in con-
junction with the generalization to improve the anonymization efficiency, for example,
the records that were not within the boundary of K-anonymity after generalization can
be automatically suppressed.

2.3 Differential Privacy (DP)

Formally DP [8] can be defined as; if datasets D1 and D2 are only differ from a single
record the function f over the range of output R is e- Differentially private [14] for all
subset Sb of R by satisfying the following condition

Pr f D1ð Þ 2 Sb½ � � ee: Pr f D1ð Þ 2 Sb½ � ð1Þ

DP ensures that output will not raise the probability of any adversary learning any
individual data by more than the factor. To measure the perturbation in any mecha-
nisms sensitivity plays a vital role. Mainly two types of sensitivities are measured;
global sensitivity and local sensitivity. The global sensitivity Gs [10] is considered as an

90 S.U. Bazai et al.



essential notation of DP noise calculation, and defined as maximal differences between
query results on neighbouring datasets, and indicates how much the difference should
be hidden in mechanisms. Local sensitivity calibrates the record-based differences
between query results on neighbouring datasets and also satisfies the DP.

Privacy budget- e controls privacy guarantee level of any noisy-based anonymi-
sation mechanisms. For types of applications which require higher degree of privacy,
the lower privacy budget is more efficient which can range from 0.001 to max 1. The
ultimate privacy guarantee depends on the step with the maximal e. Laplace and
Exponential mechanisms are the two most common mechanisms to provide noise for
DP. Laplace mechanism adds controlled noise to the query result before returning it to
the adversary [16]. The noise is generated using Laplace distribution, typically applied
in the continuous data and it controls the random noise by Laplace distribution. Let a
function f: D

0 ! R over a dataset D
0
, the Laplace mechanism is used to achieve

e-differential privacy.

M Dð Þ ¼ f D
0

� �
þ LapðDf

e
Þ ð2Þ

Where Df represents the sensitivity of query f . For non-numeric queries expo-
nential mechanism perform much better then Laplace mechanism [11]. The exponential
mechanism takes a set of possible outputs, a quality score that assigns to each element
in the range a number, and the dataset itself. The quality score is at most s-sensitive in
the dataset, and here we allow this sensitivity to be passed in as a parameter. The
algorithm privately outputs an element of the range that approximately maximizes the
quality score [12]. The formal definition of Exponential mechanism is: Let E : ðD;wÞ
be a quality function of dataset D that measures the score of output r 2 R. Then an
Exponential mechanism is Mc is e-differential privacy if

M Dð Þ ¼ Returnr with the Probability a exp e
EðD; rÞ
2Df

ð3Þ

Where Δf represents the sensitivity of query f .

3 Related Work

In this section, we describe existing works that discuss security and privacy issues in
MapReduce in different stage of its operations.

A number of works in this area focuses protecting the intermediate values that are
produced after Mapper function. The intermediate values which are stored in a tem-
porary file by MapReduce platform are not supported with any protection mechanism
[9] therefore these values can be easily accessed by adversaries. The deletion of the
intermediate (i.e., temporary) files happens at the end of mapper and reduce job [13].
Pig allow user to run high level scripting language on MapReduce platform in the
Hadoop ecosystem. Pig does not handle temporary files deletion if the script execution
failed or killed. Once this happens, the deletion task is left to the developers to handle it

A Privacy Preserving Platform for MapReduce 91



on their own without any support from the MapReduce platform. The authors in [14]
discuss three main challenges of MapReduce when used in cloud platform: Scalability
and Dynamic, Cost effectiveness and Data utility and Compatibility. Zhang et al. [15]
addresses these issues by proposing a privacy preserving layer over MapReduce, which
satisfies privacy demands itemized by data publishers built on diverse MapReduce
privacy models.

More closed work to us which provides the protection on the reducer is described
by Airavat [16] which proposed a secure framework for MapReduce by defining
mandatory access control (MAC) with DP on secure Operating system SELinux.
Airavat MAC is activated when privacy leakage exceeds from define limit, ensuring
high utility and privacy. However, Airavat add pre-configured noise for query which
limits its application. Tran and Sato [17] addresses Airavat limitation by allowing users
to write reducer code by modifying System’s access control, however, if adversary
manage to sneak reducer code by changing user right as a trusted user, the proposed
solution fail to provide privacy guarantee.

4 Proposed Solution

In this section, we describe the details of our proposed platform including the major
components and their responsibilities.

4.1 The Proposed Platform

We propose a privacy-preserving platform that works collaboratively with Mapper and
Reducer in such a way that it hides the details of the final output by providing
mechanisms for various data sanitization while it still provide a high data utility. The
approach taken by our platform essentially provides a better flexibility of executing
different privacy preserving mechanisms and corresponding algorithms while ensuring
any part of data is not leak during any MapReduce operations. The proposed platform
is illustrated in Fig. 1.

Fig. 1. Proposed platform

92 S.U. Bazai et al.



Our platform consists of three components: Privacy Preserving Mechanism layer,
Algorithm Implementation layer, and Privacy and Utility Measurement layer. The
privacy preserving mechanism layer can accommodate many state-of-art data
anonymization mechanisms. Once this mechanism is determined, an algorithm which
can produce a specific sanitized dataset can be implemented by the algorithm layer.
Finally, Privacy and Utility Measurement layer can measure the different privacy and
utility values using different formulas in order to verify the sanitized data is still
ensuring the privacy and yet provide enough useful information.

4.2 Components

In this section, we provide the details of the components in our proposed model.

Privacy PreservingMechanism layer: This layer receives data from trustedMapper(s)
and defines a privacy protection mechanism to preserve the privacy from unprotected
reducer and dishonest system administrator. The list of privacy protection mechanisms
which can be applied in this layer include for example but not limited to, K-anonymity,
l-diversity, t-closeness and differential privacy. Each of these mechanisms has their own
strengths and weaknesses and is most often applicable to use in a specific use case.
Providing a single privacy preserving technique is often too limiting to accommodate
many different applications scenarios. In our proposal, we address this limitation by
allowing the data scientist to decide and pick a mechanism that best suitable for their
business demands.

Algorithm Implementation layer: Algorithms deal with the process of transforming
the original data into a sanitized data under the umbrella of the privacy preserving
mechanism that was defined in the privacy preserving mechanism layer. This layer
allows the data scientist to choose a suitable algorithm for data transformation, for
example, it can be a simple aggregation algorithm implementation using a sum and
mean value of the data set under the group of K, or it can be the implementation of
Naïve Bayers or Decision Trees for classification task, or K-means for clustering task.

Privacy and Utility Measurement layer: This layer is responsible for providing a
functionality where data scientist can measure the privacy and utility trade-off after the
original data has been transformed into a sanitized one.

Data utility can ensure that the data still contain enough information where data
analytics can still find the relationships and correlations between data. This can be done
by a utility measurement (e.g., RMSE, MAE). The utility measure can be done in many
different ways depending on the type of algorithms it dealt with. For example, to
measure data utility in the aggregation, the data utility can be measured by comparing
the accuracy of answering aggregate queries between the original dataset and the
sanitized data. For a classification algorithm, the utility measure can be done by
comparing the percentage of samples that are correctly classified between the original
dataset and the sanitized version. A noise added statistical utility measure can be
achieved by calculating the total variance of perturbed data or calculating the length
confidence interval of the estimator. Additionally, utility measure can be achieved by

A Privacy Preserving Platform for MapReduce 93



using the techniques such as generalization height, privacy information loss ratio,
workload aware anonymization. Each approach has its own unique way for calculating
a data utility.

Privacy measure can ensure that the data is protected from any privacy attack after
the data has been sanitized. The privacy measure is typically done by measuring the
uniqueness of data (e.g., the number of unique data). For example, record-based pri-
vacy measure, it can measure the ratio of counts that are related to unique record before
and after transformation.

5 Empirical Studies

This section provides empirical studies to illustrate a number of different ways to utilise
our proposed platform for a real life application. To this end, we choose two
state-of-the-art privacy-preserving mechanisms, differential privacy (DP) and
K-anonymity, respectively, to demonstrate the effectiveness and usefulness of our
proposed platform along with the widely-used New York taxi data [18]. The experi-
ments are performed on Intel(R) Xeon(R) CPU E5-1650 v3 @ 3.50 GHz, 3501 MHz,
6 Core(s), and 12 Logical Processor(s) with 4 Tara bytes hard drive and 32 GB of
RAM. As to the New York Taxi trip data, we specifically use the 2013–2016 version of
this dataset. The original New York Taxi trip data includes 19 features in total.
However, we specifically use a subset of the original dataset and only consider four
commonly-used features: pickup date time, pickup longitude, pickup latitude, and total
fare amount, in order to focus on the discussion of our main idea in this paper.

5.1 Applying Differential Privacy (DP) on Aggregation Algorithm

Let’s suppose a data scientist wants to execute a query to find the average of total
amount of taxi fare charged to passengers from JFK airport New York to see how much
the driver earns from this location collectively in the year between 2013 and 2016.
Typically, New York Taxi Workers Alliance (NYTWA) Repair Services have the
details of every taxi visited for JFK airport. The NYTWA could use this knowledge to
link with non-sensitive published results to deduce the exact salary of a particular
driver. To prevent such privacy violation from occurring, rather than using a real value
(i.e., the total exact amount of taxi income), it would protect privacy better if a sta-
tistically approximate of the total taxi fare is used instead.

With that goal in mind, we implemented DP as a privacy preservation mechanism
to see the effect of using a noisy mechanism-based technique to provide privacy. For an
algorithm implementation, we utilise an aggregation scenario with the following details
in the pseudocode.

For the implementation of adding the controlled noise for our algorithm, we use the
Laplacian mechanism which generates the random noise in terms of the Laplace

94 S.U. Bazai et al.



distribution from Eq. (2). This Laplace noise is added to each raw data (i.e., individual
total amount). The value with noise then is summed. To understand the effect of noise in
different data size and distribution, our experiments were carried out on different location
density scale which is denoted as LD. We used 5 different scales: LD-10, LD-100,
LD-1000, LD-2500, and LD-5000, respectively where the number after LD- indicates the
size of the data; for example, LD-10 represents the 10 pickup locations in the sample. Our
experiment study used a fixed sensitive = 1. For each location density, we apply four
different privacy budgets (i.e., e-0.001, e-0.01, e- 0.1 and e-1) to understand the effect of
noise between the privacy budget and the data size. The overall privacy verses utility
trade-off, based on different privacy budget and the data size, is calculated using the Root
Mean Square Error (RMSE) which measures the difference between the raw data and the
sanitized data (i.e., the noised injected raw data). Assuming test samples with raw data
values , and sanitized values , the RMSE is then given by:

ð4Þ

The RMSE calculation on the privacy budget on different LD is shown in Fig. 2.
The results in Fig. 2 show differences on the privacy budget value e for different

location densities. We make the following observations;

• For the privacy budget e-0.001, it provides the lowest error rate denoted by the
smallest RMSE values. Most likely, the noise is relatively small compared to other
privacy budget. This privacy budget may be applicable for the types of applications
where it requires relatively high accuracy but privacy is not a main concern.

• The privacy budgets e-0.01 and e-1 illustrates similar RMSE values no matter the
data size. We see a big difference in RMSE result on the LD size 10. This is most
likely that the LD size 10 is too skewed to get any meaningful value.

AS

A Privacy Preserving Platform for MapReduce 95



• Using the privacy budget e-0.01, it provides the most uniform distribution of the
error rate regardless the different size of location density. It also demonstrates the
highest RMSE values which mean that the most noise was introduced. This privacy
budget may be applicable for the types of applications where it requires relatively
high privacy but accuracy is not a main concern.

5.2 Applying K-Anonymity on Aggregation Algorithm

For our second empirical study, we used K-anonymity as a privacy preservation
mechanism to anonymise the total taxi fare. For an algorithm implementation, we use
the following pseudocode which calculates the approximate total taxi fare within
different group sizes of k.

0

0.1

0.2

0.3

0.4

0.5

0.6

ε-0.001 ε-0 .01 ε- 0.1 ε-1

R
M

SE

LD-5000 LD-2500 LD-1000 LD-100 LD-10

Fig. 2. Privacy utility trade-off using RMSE on DP

96 S.U. Bazai et al.



The aggregation algorithm is applied in the following ways. We first calculate the
average value against the total taxi fare (i.e. Total amount) within all records in the same
group. The average becomes a new sanitized value for all records. To see the effects of the
accuracy against different levels of group size k threshold, we use K to be the one of the
sizes of k 2 {5, 10, 100 and 1000}. To understand the effect of anonymized value in the
different group size, our experiments carried out again on different location density scales:
LD-10, LD-100, LD-1000, LD-2500, LD-5000. Here again, we use Root Mean Square
Error (RMSE) (4) to understand the overall privacy verses utility trade-off based on
different group threshold k and the data size (i.e., location density).

The RMSE calculation on different group threshold k on different LD is shown in
Fig. 3.

The results in Fig. 3 show differences on the group size k for different location
densities. We make the following observations:

• The k group size 5 and 10 do not make much difference in the location density
LD-10 which illustrates that the distribution of data within 10 records looks to be
fairly uniform (i.e., not so much variations on total taxi fare within the record sets).

• For the location density LD-100, there is a quite large difference in RMSE values
among different k group sizes. It indicates that the distribution of data in this group
is much more skewed. For example, total amount may vary from the minimum
value of 0.16 to the maximum value of 375. This indicates that the sample size of
100 is less preferable to use for any meaningful analysis.

• For the location density LD-1000, we experience a good consistency with RMSE
values across different k group sizes. It is evident that the distribution of data in this
group is unvarying or the size of the data is big enough to hide the difference between
the data range which contributes to the stable RMSE values across different value of
k sizes.

• From the location density above 2500, the graphs started looking similar in their
RMSE value proportion across different k group sizes. The smaller group size k
(i.e., k = 5) gives the lowest RMSE value due to its frequent average sum applied
across the data set. Similarly, the largest group size k (i.e., k = 1000) also gives
relatively low RMSE value because there is more chance for the data to be
normalised.

0
3
6
9

12
15
18
21
24
27

LD-5000 LD-2500 LD-1000 LD-100 LD-10

R
M

SE

k=5 k=10 k=100 k=1000

Fig. 3. Privacy utility trade-off using RMSE on K-anonymity

A Privacy Preserving Platform for MapReduce 97



6 Conclusions and Future Work

In this paper, we have proposed a privacy preserving platform for the prevention of
privacy leakage in MapReduce by adding three middle layers between Mappers and
Reducers. The novelty of our Platform is that it allows the users to choose
anonymization technique in Layer 1, algorithm to process that technique in Layer 2 and
utility-privacy trade-off measurement to verify the impact of algorithm and anonymity
technique combination in Layer 3.

We have presented an empirical study on NYC taxi data using our Platform to
illustrate the feasibility and practicability of our proposal. The first empirical study
been carried out using Differential Privacy with an aggregation algorithm then the
privacy verses utility measurements were demonstrated using the accuracy measure and
RMSE. The second empirical study has been carried out on K-anonymization with a
generalization and suppression algorithms then again privacy and utility comparison
was demonstrated using Precision measure.

In future, we plan to provide more privacy preservation mechanisms other than the
two we demonstrated. We also plan to develop more real application case studies where
it uses not only aggregation but it also uses classification and feature extraction and
consequently different measures of privacy and accuracy trade-offs. Currently we
manually set important values to decide the privacy verses utility measures such as
K-threshold in case K-anonymity or the privacy budget epsilon and sensitivity value in
the case of differential privacy. We plan to enable our platform to automatically pick up
these values in the future, depending on the application scenarios.

References

1. To, Q.C., Nguyen, B., Pucheral, P.: TrustedMR: a trusted MapReduce system based on
tamper resistance hardware. In: Debruyne, C., et al. (eds.) On the Move to Meaningful
Internet Systems: OTM 2015. LNCS, vol. 9415, pp. 38–56. Springer, Cham (2015). doi:10.
1007/978-3-319-26148-5_3

2. Sweeny, L.: K-Anonymity: a model for protecting privacy. Int. J. Uncertainty Puzziness
Knowledge-Based Syst. 10, 557–570 (2002)

3. Ninghui, L., Tiancheng, L., Venkatasubramanian, S.: t-closeness: privacy beyond
k-anonymity and L-diversity. In: Proceedings of the International Conference on Data
Engineering, pp. 106–115 (2007)

4. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: ?-diversity: privacy
beyond k-anonymity. ACM Trans. Knowl. Discov. Data. 1, 3–es (2007)

5. Chen, C.-L., Pal, R., Golubchik, L.: Oblivious mechanisms in differential privacy:
experiments, conjectures, and open questions. In: 2016 IEEE Security and Privacy
Workshops, pp. 41–48 (2016)

6. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun.
ACM 51, 107 (2008)

7. Sweeney, L.: Achieving K -anonymity privacy protection using generalization and
suppression. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 10, 1–18 (2002)

8. Dwork, C.: A firm foundation for private data analysis. Commun. ACM 54, 86 (2011)

98 S.U. Bazai et al.

http://dx.doi.org/10.1007/978-3-319-26148-5_3
http://dx.doi.org/10.1007/978-3-319-26148-5_3


9. Dwork, C., Smith, A.: Differential privacy for statistic: what we know and what we want to
learn. J. Priv. Confidentiality 1, 135–154 (2009)

10. Liu, F., Mathematics, C., Dame, N.: Generalized gaussian mechanism for differential
privacy, pp. 1–29. arXiv. 46556 (2016)

11. Barthe, G., Gaboardi, M., Gregoire, B., Hsu, J., Strub, P.-Y.: Proving differential privacy via
probabilistic couplings, pp. 1–10. arXiv. 1 (2016)

12. Gaboardi, M., Haeberlen, A., Hsu, J., Narayan, A., Pierce, B.C.: Linear dependent types for
differential privacy. In: Popl 2013, vol. 48, pp. 357–370 (2013)

13. Ohrimenko, O., Costa, M., Fournet, C., Gkantsidis, C., Kohlweiss, M., Sharma, D.:
Observing and preventing leakage in MapReduce. In: Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communication Security - CCS 2015,
pp. 1570–1581 (2015)

14. Chen, G., Cai, Q., Zhan, Y.: Approaches on personal data privacy preserving in cloud: a
survey. In: Proceedings of The Third International Conference on Data Mining, Internet
Computing, and Big Data, Konya, pp. 36–43. Turkey (2016)

15. Zhang, X., Liu, C., Nepal, S., Dou, W., Chen, J.: Privacy-preserving layer over MapReduce
on cloud. In: Proceedings of the 2nd International Conference on Cloud Green Computing,
2nd International Conference on Society Computer Its Applications CGC/SCA 2012,
pp. 304–310 (2012)

16. Roy, I., Setty, S.T.V.S.T.V., Kilzer, A., Shmatikov, V., Witchel, E.: Airavat: security and
privacy for MapReduce. In: Proceedings of the 7th USENIX Conference on Networked
System Design Implementation, vol. 19, pp. 20–20 (2010)

17. Tran, Q., Sato, H.: A solution for privacy protection in mapreduce. In: Proceeding of the
International Computer Software Application Conference, pp. 515–520 (2012)

18. Douriez, M., Doraiswamy, H., Freire, J., Silva, C.T.: Anonymizing NYC taxi data: does it
matter? In: 2016 IEEE International Conference on Data Science and Advanced Analytics
(DSAA), pp. 140–148. IEEE (2016)

A Privacy Preserving Platform for MapReduce 99



Privacy-Preserving Deep Learning: Revisited
and Enhanced

Le Trieu Phong1(B), Yoshinori Aono1, Takuya Hayashi1,2, Lihua Wang1,
and Shiho Moriai1

1 National Institute of Information and Communications Technology (NICT),
Tokyo, Japan

{phong,aono,wlh,shiho.moriai}@nict.go.jp
2 Kobe University, Kobe, Japan
t-hayashi@eedept.kobe-u.ac.jp

Abstract. We build a privacy-preserving deep learning system in which
many learning participants perform neural network-based deep learning
over a combined dataset of all, without actually revealing the partici-
pants’ local data to a curious server. To that end, we revisit the previous
work by Shokri and Shmatikov (ACM CCS 2015) and point out that
local data information may be actually leaked to an honest-but-curious
server. We then move on to fix that problem via building an enhanced
system with following properties: (1) no information is leaked to the
server; and (2) accuracy is kept intact, compared to that of the ordinary
deep learning system also over the combined dataset. Our system makes
use of additively homomorphic encryption, and we show that our usage
of encryption adds little overhead to the ordinary deep learning system.

Keywords: Privacy · Deep learning · Neural network · Additively
homomorphic encryption

1 Introduction

1.1 Background

In recent years, deep learning (aka, deep machine learning) has produced excit-
ing results in both acamedia and industry, in which deep learning systems are
approaching or even surpassing human-level accuracy. This is thanks to algorith-
mic breakthroughs and physical parallel hardware applied to neural networks
when processing massive amount of data.

Massive collection of data, while vital for deep learning, raises the issue of
privacy. Individually, a collected photo can be permanently kept on a server
of a company, out of the control of the photo’s owner. At law, privacy and
confidentiality worries may prevent hospitals and research centers from sharing
their medical datasets, baring them from enjoying the advantage of large-scale
deep learning over the joint datasets.

c© Springer Nature Singapore Pte Ltd. 2017
L. Batten et al. (Eds.): ATIS 2017, CCIS 719, pp. 100–110, 2017.
DOI: 10.1007/978-981-10-5421-1 9



Privacy-Preserving Deep Learning: Revisited and Enhanced 101

As a directly related work, Shokri and Shmatikov [12] presented a system
for privacy-preserving deep learning, allowing local datasets of several partic-
ipants staying home while the learned model for the neural network over the
joint dataset can be obtained by the participants. To achieve the result, the
system in [12] needs the following: each learning participant, using local data,
first computes gradients of a neural network; then a part (e.g. 1%–10%) of those
gradients must be sent to a parameter cloud server. The server is honest-but-
curious: it is assumed to be curious in extracting the data of individuals; and
yet, it is assumed to be honest in operations.

To protect privacy, the system of Shokri and Shmatikov admits an accu-
racy/privacy tradeoff (see Table 1): sharing no local gradients leads to perfect pri-
vacy but not desirable accuracy; on the other hand, sharing all local gradients vio-
lates privacy but leads to good accuracy. To compromise, sharing a part of local
gradients is the main solution in [12] to keep as less accuracy decline as possible.

1.2 Our Contributions

We demonstrate that, in the system of Shokri and Shmatikov [12], even a small
portion of the gradients stored over the cloud server can be exploited: namely,
local data can be unwillingly extracted from those gradients. Illustratively, we
show in Sect. 3 a few examples on how a small fraction of gradients leaks useful
information on data.

We then propose a novel system for deep learning to protect the gradients
over the honest-but-curious cloud server, using additively homomorphic encryp-
tion. All gradients are encrypted and stored on the cloud server. The additive
homomorphic property enables the computation over the gradients. Our system
is described in Sect. 4, and depicted in Fig. 3, enjoying following properties on
security and accuracy:

Security. Our system leaks no information of participants to the honest-but-
curious parameter (cloud) server.

Accuracy. Our system achieves identical accuracy to a corresponding deep
learning system (Downpour SGD, see below) trained over the joint dataset of
all participants.

Our tradeoff. Protecting the gradients against the cloud server comes with
the cost of increased communication between the learning participants and the
cloud server. We show in Table 2 that the increased factors are not big: less than
3 for concrete datasets MNIST [2] and SVHN [11]. For example, in the case of
MNIST, if each learning participant needs to communicate 0.56 MB1 of plain
gradients to the server at each upload or download; then in our system with
LWE-based encryption, the corresponding communication cost at each upload
or download becomes

2.46 (Table 2’s factor) × 0.56 (original MB) ≈ 1.38MB
1 Size of 140106 gradients each of 32 bits; the size is computed via the formula

140106×32
8×106

≈ 0.56.



102 L.T. Phong et al.

Table 1. Comparison of techniques.

System Method to protect
gradients (against the
curious server)

Tradeoff Accuracy is declined?

Shokri-Shmatikov [12] Partial sharing Accuracy/Privacy Yes (less than

Downpour SGD)

Ours (Sect. 4) Additively

homomorphic

encryption

Efficiency/Privacy No (equal to

Downpour SGD)

Table 2. Increased communication factor.

Our system Increased factor (compared to ordinary Downpour SGD)

LWE-based 2.46 (MNIST dataset [2]), 2.43 (SVHN dataset [11]), 2.41 (speech dataset [6])

(Using parameters for 128-bit security in encryption)

which needs less than 2 s to be transmitted over a 10 Mbps channel. Technical
details are in Sect. 5.

On the computational side, the most frequent operation is ciphertext addi-
tions over the server. As each ciphertext is a vector of integers, the addition cost
is also small. For example, it takes only 0.013 s to add two LWE-based cipher-
texts with parameters for the SVHN dataset over a server (2.60 GHz) with one
thread of computation.

A remark on adversary model. We consider the cloud server as the adversary
in this paper while learning participants are seen as honest entities. This is
because in our scenario learning participants are considered as organisations
such as financial institutions or hospitals acting with responsibilities by laws. Our
scenario and adversary model is different from Hitaj et al. [8] which examines
dishonest learning participants.

1.3 Technical Overviews

Asuccinct comparison is inTable 1.Belowwepresent theunderlying technicalities.

Downpour stochastic gradient decent (Downpour SGD) [6], no privacy
protection. Both our system and that of [12] rely on the fact that neural net-
works can be trained via a variant of asynchronous stochastic gradient decent
called Downpour SGD [6]. Specifically, first a global weight vector Wglobal for the
neural network is initialised randomly. Then, at each iteration, replicas of the
neural network are run over local datasets, and the corresponding local gradient
vector Glocal is sent to a cloud server. For each Glocal, the cloud server then
updates the global parameters as follows:

Wglobal := Wglobal − α · Glocal (1)

where α is a constant called learning rate. The updated global parameters Wglobal

are broadcasted to all the replicas, who then use them to replace their old weight



Privacy-Preserving Deep Learning: Revisited and Enhanced 103

parameters. The process of updating and broadcasting Wglobal is repeated until
a desired minimum for a pre-defined cost function (based on cross-entropy or
squared-error) is reached.

The design of Downpour SGD is for large-scale efficiency, and learning accu-
racy. Data privacy is not considered in Downpour SGD.

Shokri-Shmatikov systems. The system in [12, Sect. 5] can be called as
gradients-selective Downpour SGD, by following reasons. In [12, Sect. 5], the
update rule at (1) is modified as follows:

Wglobal := Wglobal − α · Gselective
local (2)

in which vector Gselective
local contains selective (say 1%–10%) gradients of Glocal.

The update using (2) allows each participant to choose which gradients to share
globally, with the hope of reducing the risk of leaking sensitive information on
the participant’s local dataset to the cloud server.

Putting aside the issue that gradients leak information to the server (showed
in Sect. 3), as only a part of local gradients are used to update the weight vector
Wglobal, Shokri-Shmatikov’s system accuracy is not as good as Downpour SGD
(where all local gradients are used), in general.

In [12, Sect. 7], Shokri-Shmatikov showed an additional technique on using
differential privacy to counter-measure indirect leakage from gradients. Their
strategy is to add Laplace noises into Gselective

local at (2). Due to noises, this method
much more declines the learning accuracy.

Our system. The system we designed can be called as gradients-encrypted
Downpour SGD, by following reasons. In our system in Sect. 4, we make use of
the following update formula

E(Wglobal) := E(Wglobal) + E(−α · Glocal) (3)

in which E is homomorphic encryption supporting addition over ciphertexts.
The decryption key is only known to the participants and not to the cloud
server. Therefore, the honest-but-curious cloud server knows nothing about each

Input layer
(Layer 1)

Hidden layers
(Layers 2 and 3)

Output layer
(Layer 4)

+1

+1

+1

weight variables

f
hW,b(x)

def
=

f( d
i=1 Wixi + b)

...

x1

...

xd

+1

W1

Wd

b

Fig. 1. (left) a neural network with 5 inputs, 2 hidden layers, 2 outputs; (right) a
network with one neuron.



104 L.T. Phong et al.

Glocal, and hence obtains no information on each local dataset of participants.
Nonetheless, as

E(Wglobal) + E(−α · Glocal) = E(Wglobal − α · Glocal)

by the additively homomorphic property of E, each participant will get the
correctly updated Wglobal by decryption.

In addition, to ensure the integrity of the homomorphic ciphertexts, each
client will use a secure channel such as TLS/SSL (distinct from each other) to
communicate the homomorphic ciphertexts with the server.

2 Preliminaries

Deep machine learning can be seen as a set of techniques applied to neural
networks. In Fig. 1 is a neural network with 5 inputs, 2 hidden layers, and 2
outputs. The node with +1 represents the bias term. The neuron nodes are
connected via weight variables. In a deep learning structure of neural network,
there can be multiple layers each with thousands of neurons.

Each neuron node (except the bias node) is associated with an activation
function f . Examples of f in deep learning are f(z) = max{0, z} (rectified
linear), f(z) = ez−e−z

ez+e−z (hyperbolic tangent), and f(z) = (1 + e−z)−1 (sigmoid).
The output at layer l+1, denoted as a(l+1), is computed as a(l+1) = f(W (l)a(l)+
b(l)) in which (W (l), b(l)) is the weights connecting layers l and l + 1, and a(l) is
the output at layer l.

The learning task is, given a training dataset, to determine these weight
variables to minimise a pre-defined cost function such as the cross-entropy or
the squared-error cost function [1]. The cost function can be computed over
all data items in the training dataset; or over a subset (called mini-batch) of t
elements from the training dataset. Denote the cost function for the latter case as
J|batch|=t. In the extreme case of t = 1, corresponding to maximum stochasticity,
J|batch|=1 is the cost function defined over 1 single data item.

Stochastic gradient descent (SGD). Let W be the flattened vector consisting
all weight variables, namely we take all weights in the neural network and arrange
them consecutively to form the vector W . Denote W = (W1, . . . ,Wngd

) ∈
R

ngd . Let

G =
(

δJ|batch|=t

δW1
, . . . ,

δJ|batch|=t

δWngd

)
(4)

be the gradients of the cost function J|batch|=t corresponding to variables
W1, . . . ,Wngd

. The variable update rule in SGD is as follows, for a learning
rate α ∈ R:

W := W − α · G (5)

in which α ·G is component-wise multiplication. The learning rate α can also be
changed adaptively as described in [1].



Privacy-Preserving Deep Learning: Revisited and Enhanced 105

Downpour SGD [6]. By (4) and (5), as long as the gradients G can be com-
puted, the weights W can be updated. The data used in computing G can be
distributed (does not have to be centrally stored) and the update of W can
be done at any time (no waiting after having G). These properties enable the
following variant of SGD called Downpour SGD.

Specifically, Downpour SGD uses multiple replicas of a neural network. Before
each execution, each replica will download the newest weights from the parameter
server; and each replica is run over a data shard, which is a subset of the training
dataset. Weight updates are done over the parameter server according to SGD’s
rule (5). Downpour SGD significantly increases the scale and speed of deep
network training, as experimentally shown in [6].

Thanks to the asynchronous property of the SGD’s rule (5), in Downpour
SGD the replicas can run independently of each other. To reduce the commu-
nication overhead, it is possible that each replica send gradients G and retrieve
weights W at npush and nfetch steps. In the extreme case, npush = nfetch = 1,
which corresponds to maximum stochasticity.

Parameter server: (new) W := (old) W − αG

replica 1

gradients
G

weights W

Dataset 1

m
o
d
e
l
re

p
li
c
a
s

D
a
ta

sh
a
rd

s

. . .

replica N

Dataset N

Fig. 2. Downpour SGD [6].

3 Gradients Leak Information

Example 1 (one neuron). For illustration of how gradients leak information
on data, we first use the neural network in Fig. 1, with only one neuron. In the
figure, real numbers xi (1 ≤ i ≤ d) are the input data, with a corresponding truth
label y; real numbers Wi (1 ≤ i ≤ d) are the weight parameters to be learned; and
b is the bias. The function f is an activation function (either sigmoid, rectified
linear, or hyperbolic tangent as described in Sect. 2). The cost function is defined
as the distance between the predicted value hW,b(x) def= f(

∑d
i=1 Wixi + b) and



106 L.T. Phong et al.

the truth value y: J(W, b, x, y) def= (hW,b(x) − y)2 and hence the gradients are

ηk
def=

δJ(W, b, x, y)
δWk

= 2(hW,b(x) − y)f ′(
d∑

i=1

Wixi + b) · xk (6)

η
def=

δJ(W, b, x, y)
δb

= 2(hW,b(x) − y)f ′(
d∑

i=1

Wixi + b) · 1. (7)

The k-th component xk of x = (x1, . . . , xd) ∈ R
d or the truth label y can be

inferred from the gradients by one of the following means:
(O1) Observe that ηk/η = xk. Therefore, xk is completely leaked if ηk and

η are shared to the cloud server. For example, if 1% of local gradients, chosen
randomly as suggested in [12], are shared to the server, then the probability that
both ηk and η are shared is (1/100) × (1/100) = 1/104, which is not negligible.

(O2) Observe that the gradient ηk is proportional to the input xk for all
1 ≤ i ≤ d. Therefore, when x = (x1, . . . , xd) is an image, one can use the
gradients to produce a related “proportional” image, and then obtain the truth
value y by guessing.

Example 2 (general neural networks). The above observations (O1) and
(O2) similarly hold for general neural networks, with both cross-entropy and
squared-error cost functions [1]. In particular, following [1], ηik

def= δJ(W,b,x,y)

δW
(1)
ik

=

ξi · xk + λW
(1)
ik , ηi = ξi

def= δJ(W,b,x,y)

δb
(1)
i

, where W
(1)
ik is the weight parameter

connecting layer 1’s input xk with hidden node i of layer 2; b
(1)
i is the bias

associated with node i of layer 2; and λ ≥ 0 is a regularization term.
As in observation (O1), both ηik and ηi is known to server with a non-

negligible probability. Additionally ηik

ηi
= xk + λW

(1)
ik

ξi
which is exactly the data

xk (if λ = 0) or an approximation of the data xk (if λ > 0).

4 Our System: Privacy-Preserving Deep Learning
Without Accuracy Decline

Our system is depicted in Fig. 3, consisting of a common cloud server and N
(e.g. = 10x) learning participants.

Learning Participants. First, the participants jointly set up the public key pk
and secret key sk for an additively homomorphic encryption scheme. The secret
key sk is kept confidential against the cloud server, but is known to all learning
participants. Each participant will establish a TLS/SSL secure channel, different
from each other, to communicate and protect the integrity of the homomorphic
ciphertexts.

Then, the participants locally hold their datasets and run replicas of a deep
learning based neural network. The initial (random) weight Wglobal to run the
local deep learning is downloaded from the cloud server. The gradient vector G(k)



Privacy-Preserving Deep Learning: Revisited and Enhanced 107

(Init) Initialise random weight parameters Wglobal and learning rate α and make it available to all participants.
Repeat the following:

(Update) Whenever receiving the encryption Ek
def= E(−α · G(k)) from Participant k (1 ≤ k ≤ N ), set E(Wglobal) := E(Wglobal) + Ek.

(Share) Keep the updated E(Wglobal) available for all participants’ download.

. . .

Cloud server (honest-but-curious)

×(−α)

Local dataset 1 Local result

local learning

Wglobal Gradients G(1)

Decryption Encryption E(−α · G(1))

Participant 1

TLS/SSL channel 1

×(−α)

Local dataset N Local result

local learning

Wglobal Gradients G(N)

Decryption Encryption E(−α · G(N))

Participant N

TLS/SSL channel N

Fig. 3. Our system (gradients-encrypted Downpour SGD) for privacy-preserving deep
learning, with a cloud server and N participants.

obtained after each execution of the neural network, multiplied by the learning
rate α, is then encrypted using the public key pk. At each iteration of running
the neural network, the resulting encryption E(−α · G(k)) (1 ≤ k ≤ N) from
each learning participant is sent to the server. Mimicking Downpour SGD, it is
possible to split G(k) into many parts, encrypt those part separately, and then
send to the server for additively homomorphic encryption.

All learning participants download the encrypted Wglobal at each execution
of the local neural network. The secret key sk is used to decrypt, so that the
participants will obtain the updated weight Wglobal.

The downloads and uploads of the encrypted Wglobal can be asynchronous: a
participant does not have to wait for the others in uploading and downloading.
Nonetheless, the more local data each participant uses in each local training,
the better Wglobal everyone can reach, thanks to the characteristic of stochastic
gradient descent.

Cloud Server. The cloud server is a common place to recursively update the
encrypted weight parameters. First, initial weight Wglobal and learning rate α are
chosen and sent to all participants. After receiving any encryption E(α · G(k)),
the server computes E(Wglobal) + E(−α · G(k)) = E(Wglobal − α · G(k)) where
the equality is thanks to the additively homomorphic property of encryption.
Therefore, Wglobal is updated to Wglobal − α · G(k), or notationally Wglobal :=
Wglobal − α · G(k). The encrypted and updated Wglobal is made available for all
participants to download. Like in Downpour SGD, it is also possible that parts



108 L.T. Phong et al.

of Wglobal are updated separately if the learning participants choose to send
encrypted parts of gradients.

Ciphertext indistinguishability against chosen plaintext attacks [7] (or CPA
security for short below) ensures that no bit of information is leaked from cipher-
texts.

Theorem 1 (Security against the cloud server). Our system in Fig. 3
leaks no information of the learning participants to the honest-but-curious cloud
server, provided that the underlying homomorphic encryption scheme is CPA-
secure.

Proof. The participants only send encrypted gradients to the cloud server.
Therefore, if the encryption scheme is CPA-secure, no bit of information on
the data of the participants can be leaked. ��
Theorem 2 (Accuracy equivalence to Downpour SGD). Our system in
Fig. 3, when all ciphertexts are decrypted, functions as Downpour SGD (in
Fig. 2). Therefore, our system can achieve the same accuracy as that of Down-
pour SGD.

Proof. After decryption, the update rule of weight parameter becomes Wglobal :=
Wglobal − α · G(k) in which G(k) is the gradient vector computed from data
samples held by participant k (and the downloaded Wglobal). Since the update
rule is identical to (5) and each learning participant in our system functions
as a replica (as in Downpour SGD) when encryption is removed, the theorem
follows. ��

5 An Instantiation of Our System

In this section we show an instantiation of our system using an LWE-based
encryption based on [4]. The mark g← is for “sampling randomly from a discrete
Gaussian” set, so that x

g← Z(0,s) means x appears with probability proportional
to exp(−πx2/s2).

• ParamGen(1λ): Fix q = q(λ) ∈ Z
+ and l ∈ Z

+. Fix p ∈ Z
+ so that gcd(p, q) = 1.

Return pp = (q, l, p).
• KeyGen(1λ, pp): Take s = s(λ, pp) ∈ R

+ and nlwe ∈ Z
+. Take matrices

R,S
g← Z

nlwe×l
(0,s) , A

$← Z
nlwe×nlwe
q . Compute P = pR − AS ∈ Z

nlwe×l
q . Return

the public key pk = (A,P, nlwe, s), and the secret key sk = S.
• Enc(pk,m ∈ Z

1×l
p ): Take e1, e2

g← Z
1×nlwe
(0,s) , e3

g← Z
1×l
(0,s). Compute c1 = e1A +

pe2 ∈ Z
1×nlwe
q , c2 = e1P + pe3 + m ∈ Z

1×l
q . Return c = (c1, c2).

• Dec(S, c = (c1, c2)): Compute m = c1S + c2 ∈ Z
1×l
q . Return m = m mod p.

• Add(c, c′): For addition, compute and return cadd = c + c′ ∈ Z
1×(nlwe+l)
q .



Privacy-Preserving Deep Learning: Revisited and Enhanced 109

Data encoding and encryption. A real number a ∈ R can be represented,
with prec bits of precision, by an integer 	a ·2prec
 ∈ Z. To realise the encryption
E(·) in Fig. 3, because both Wglobal and α ·G(k) are in the space R

ngd , it suffices
to describe an encryption of a real vector r = (r(1), . . . , r(ngd)) ∈ R

ngd . The
encryption is, for l = ngd,

E(r) = lweEncpk

( Z
1×ngd
p︷ ︸︸ ︷

	r(1) · 2prec
︸ ︷︷ ︸
∈Zp

· · · 	r(ngd) · 2prec
︸ ︷︷ ︸
∈Zp

)
. (8)

For r, t ∈ R
ngd , the decryption of E(r) + E(−t) ∈ Z

1×(nlwe+ngd)
q will yield, for

all 1 ≤ i ≤ ngd, 	r(i) · 2prec
 − 	t(i) · 2prec
 ∈ Zp ⊂ (−p/2, p/2] and hence u(i) =
	r(i) ·2prec
−	t(i) ·2prec
 ∈ Z if p/2 is large enough (see below). The substraction
r(i) − t(i) ∈ R is computed via u(i)/2prec ∈ R, so that finally r − t ∈ R

ngd

is obtained after decryption as desired. In general, to handle ngradupd additive
terms without overflow, it is necessary that p/2 > ngradupd · 2prec, or equivalently,
p > ngradupd · 2prec+1.

Lemma 1 (Choosing parameters). When nlwe ≥ 3000, s = 8, it is possible
to set log2 q ≈ log2 p+log2 ngradupd +log2(167.9

√
nlwe+33.9)+1 in which ngradupd

is the number of gradient updates at cloud server in Fig. 3. For example, when
nlwe = 3000, p = 248 + 1, ngradupd = 215, it is possible to set q = 277.

Theorem 3 (Increased communication factor, LWE-based). The com-
munication cost between the server and participants of our system is nlwe log2 q

ngd·prec +
log2 q
prec times of the communication cost of the corresponding Downpour SGD, in
which (nlwe, p, q) is parameters of the encryption scheme, ngd is the number of
gradient variables represented by prec bits.

Proof. In Downpour SGD, each replica sends ngd gradients (each of prec bits)
to the parameter server at each iteration, so that the communication cost for
one iteration in bits is PlainBits = ngd · prec. In our system, let us compute
the ciphertext length that each participant sends to the cloud parameter server
at each iteration. By (8), the ciphertext is in Z

1×(nlwe+ngd)
q so that its length

is EncryptedBits = (nlwe + ngd) log2 q (bits). The increased factor is therefore
EncryptedBits

PlainBits = nlwe log2 q
ngd·prec + log2 q

prec ending the proof. ��

We take nlwe = 3000, s = 8, p = 248 +1, ngradupd = 215, and q = 277 following
Lemma 1. These parameters for (nlwe, s, q) conservatively ensure that the LWE
assumption has at least 128-bit security according to recent attacks [3,5,9,10].

Let us consider multiple ngd:

• ngd = 140106: this number of gradient parameters is used in [12] with the
dataset MNIST [2]. Real numbers are represented by 32 bits, so that prec = 32.
Theorem 3 tells us that the increased communication factor between our system
and the related Downpour SGD is nlwe log2 q

ngd·prec + log2 q
prec = 3000·77

140106·32 + 77
32 ≈ 2.46.



110 L.T. Phong et al.

• ngd = 402250: this is used in [12] with the dataset SVHN [11]. The increased
communication factor becomes nlwe log2 q

ngd·prec + log2 q
prec = 3000·77

402250·32 + 77
32 ≈ 2.43.

• ngd = 42 · 106: this number of gradient parameters is used in [6] for speech
data. The increased communication factor becomes nlwe log2 q

ngd·prec + log2 q
prec =

3000·77
42·106·32 + 77

32 ≈ 2.41.

Acknowledgement. This work is partially supported by JST CREST
#JPMJCR168A.

References

1. Stanford Deep Learning Tutorial. http://deeplearning.stanford.edu
2. The MNIST dataset. http://yann.lecun.com/exdb/mnist/
3. Aono, Y., Boyen, X., Phong, L.T., Wang, L.: Key-Private Proxy Re-encryption

under LWE. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS, vol.
8250, pp. 1–18. Springer, Cham (2013). doi:10.1007/978-3-319-03515-4 1

4. Aono, Y., Hayashi, T., Phong, L.T., Wang, L.: Efficient key-rotatable and security-
updatable homomorphic encryption. In: Fifth ACM International Workshop on
Security in Cloud Computing (SCC), 2017, pp. 35–42. ACM (2017)

5. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-53887-6 1

6. Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Le, Q.V., Mao, M.Z.,
Ranzato, M., Senior, A.W., Tucker, P.A., Yang, K., Ng, A.Y.: Large scale distrib-
uted deep networks. In: NIPS 2012, pp. 1232–1240 (2012)

7. Goldreich, O.: The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press, Cambridge (2004)

8. Hitaj, B., Ateniese, G., Pérez-Cruz, F.: Deep models under the GAN: information
leakage from collaborative deep learning. CoRR abs/1702.07464 (2017)

9. Lindner, R., Peikert, C.: Better key sizes (and Attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-19074-2 21

10. Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: an update. In: Dawson, E.
(ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-36095-4 19

11. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits
in natural images with unsupervised feature learning. In: NIPS Workshop on Deep
Learning and Unsupervised Feature Learning 2011 (2011)

12. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: ACM CCS 2015,
pp. 1310–1321. ACM (2015)

http://deeplearning.stanford.edu
http://yann.lecun.com/exdb/mnist/
http://dx.doi.org/10.1007/978-3-319-03515-4_1
http://dx.doi.org/10.1007/978-3-662-53887-6_1
http://dx.doi.org/10.1007/978-3-642-19074-2_21
http://dx.doi.org/10.1007/978-3-642-36095-4_19


Attacks



Characterizing Promotional Attacks
in Mobile App Store

Bo Sun1(B), Xiapu Luo2, Mitsuaki Akiyama3, Takuya Watanabe3,
and Tatsuya Mori1

1 Department of Computer Science and Communications Engineering,
Waseda University, Shinjuku, Japan

{sunshine,mori}@nsl.cs.waseda.ac.jp
2 Department of Computing, The Hong Kong Polytechnic University,

Kowloon, Hong Kong
csxluo@comp.polyu.edu.hk

3 NTT Secure Platform Laboratories, NTT Corporation, Tokyo, Japan
akiyama.mitsuaki@lab.ntt.co.jp, watanabe@nsl.cs.waseda.ac.jp

Abstract. Mobile app stores, such as Google Play, play a vital role in
the ecosystem of mobile apps. When users look for an app of interest,
they can acquire useful data from the app store to facilitate their deci-
sion on installing the app or not. This data includes ratings, reviews,
number of installs, and the category of the app. The ratings and reviews
are the user-generated content (UGC) that affect the reputation of an
app. Unfortunately, miscreants also exploit such channels to conduct
promotional attacks (PAs) that lure victims to install malicious apps. In
this paper, we propose and develop a new system called PADetective to
detect miscreants who are likely to be conducting promotional attacks.
Using a dataset with 1,723 of labeled samples, we demonstrate that the
true positive rate of detection model is 90%, with a false positive rate of
5.8%. We then applied PADetective to a large dataset for characterizing
the prevalence of PAs in the wild and find 289 K potential PA attackers
who posted reviews to 21 K malicious apps.

Keywords: Mobile app store · Promotional attacks · Machine learning

1 Introduction

With more than four million apps [20], mobile app markets, such as Google Play
and Apple App Store, play a vital role in distributing apps to customers. To help
users look for apps and for developers to promote their apps, mobile app markets
provide various information about the apps, such as descriptions, screenshots,
and number of installations. In addition, most markets involve reputation sys-
tems, through which users can rate the apps and write down reviews, to facilitate
other users to select apps. Since apps with higher ratings usually get more down-
loads [12], recent studies report that some developers adopt unfair approaches
to manipulate their apps’ ratings and reviews [22,23], even if such behaviors are
c© Springer Nature Singapore Pte Ltd. 2017
L. Batten et al. (Eds.): ATIS 2017, CCIS 719, pp. 113–127, 2017.
DOI: 10.1007/978-981-10-5421-1 10



114 B. Sun et al.

prohibited by FTC [9] and app markets. Note that attackers also employ such
approach to promote malicious apps and lure victims to install them. We call
such malicious apps campaign as promotional attacks (PAs).

Although a few recent studies have revealed the paid reviews [22] and colluded
reviewers [23], there have been no systematic examinations on the promotional
attacks in mobile app stores. To fill in the gaps, we conducted the first large-scale
investigation on PAs with the aim of answering the following two questions: (1)
How can we detect PAs systematically? and (2) How prevalent are PAs in the
wild?

It is non-trivial to address these two questions because the solution should
be accurate to capture PA attackers with low false positive rate, scalable to
handle millions of apps and reviews in app stores, and robust to raise the bar for
sophisticated attackers to evade the detection. Existing studies cannot achieve
these goals. For example, high computational complexity limits the scalability
of [22], and requiring the similar reviews in keyword level affects the accuracy
of [17,18]. Moreover, to our best knowledge, none of the existing studies have
examined market-scale apps.

To tackle these challenges, we propose and develop a novel system, named
PADetective, to identify PA attackers accurately and efficiently. PADetective
adopts supervised learning to characterize PA attackers according to 15 features
(e.g., day intervals, semantic similarity), and then applies the trained model to
detect other PA attackers. It is worth noting that these new and effective fea-
tures are carefully selected from not only UGC but also metadata in order to
enhance the robustness of PADetective. In particular, features from metadata
have not been used by existing works, and they could contribute to the robust-
ness of PADetective because it is easier for attackers to manipulate UGC than
metadata. We employ the information entropy and the coefficient of variation for
quantifying the features from metadata, and leverage the state-of-the-art NLP
technique (i.e., Paragraph vector [14]) to extract features from UGC because it
can extract similar reviews at semantic level and therefore increase the accuracy.
Moreover, we employ the TRUE-REPUTATION [19] algorithm to calculate the
true reputation scores for detecting abnormal ratings. These algorithms are light-
weight, and we only need to recompute the true reputation scores and similarity
word weight vectors for new UGC and metadata. This feature extraction app-
roach empowers PADetective to handle large-scale dataset. In our evaluation,
PADetective processed 57 million reviews in one day. We evaluate PADetective
using real PA data, and the result shows that PADetective’s true positive rate
is up to 90% with a low false positive rate of 5.8%.

Moreover, we conduct the first large-scale investigation on PA by applying
PADetective to 1 million apps in Google Play, which has 57 million reviews
posted by 14 million users. PADetective flagged 289 K reviewers as suspicious
promotional attackers. These reviewers posted reviews to 136 K apps, which
included 21 K malicious apps. Among the top 1 K reviewers who were flagged as
promotional attackers with high probability score, 136 reviewers posted reviews
only for malicious apps, and another 113 reviewers posted reviews for apps where



Characterizing Promotional Attacks in Mobile App Store 115

more than half of the apps were detected as malicious. It is worth noting that PAs
detected by PADetective can contribute to the detection of potentially malicious
apps.

Major contributions of this work are summarized as follows:

– We developed a novel system, named PADetective, which aims to detect PA
attackers from a large volume of reviewers with high accuracy and low false
positive rates. The extensive experiments demonstrated that PADetective can
achieve 90% true positive rate with low false positive rate of 5.8% (Sect. 4).

– Using the PADetective, we conducted the first large-scale measurement study
on PAs by examining 57 million reviews, posted by 14 million users for 1 mil-
lion apps in Google Play, and obtained interesting observations and insights
(Sect. 5).

– Our extensive analyses revealed that the detected PAs can be used to discover
potentially malicious apps, which have not been detected by popular anti-
virus scanners (Sect. 5).

2 Problem Statement

This section specifies the problem we address in this paper by first presenting
the high-level overview of the problem and then describing its mathematical
formulation. Figure 1 presents the high-level overview of the problem. Although
this work targets Google Play, the model is applicable to other mobile app stores
as well. In the model, a reviewer posts review comments and rating scores for
several apps published in the app store. For the apps commented/rated by the
reviewer, we can extract the UGC and the metadata associated with the apps.
The UGC includes comment posting time, review comment, and rating score;
these are generated by the reviewer. The app metadata includes the number of
installs, a set of developers of the app, and a set of the categories of the app;
these are the data of the apps commented/rated by the reviewer.

Our goal is to determine whether a given reviewer is a PA attacker or not
by analyzing the UGC and the metadata associated with apps commented on
or rated by the reviewer. To achieve it, we first extract a feature vector from
the UGC and app metadata, and then train a classifier using labeled data. After
that, we apply the trained classifier to differentiate legitimate reviewers and a
PA attackers.

To formulate the problem in a mathematical way, we introduce the variables
summarized in Table 1. It is worth noting that we only examine the reviewers
with mi ≥ 3 because it takes time and efforts for promotional attackers to
create zombie accounts for commenting apps and therefore they often reuse
these accounts for posting reviews. We discuss how to relax this restriction in
Sect. 6. Of the variables shown in Table 1, cij , sij , and tij are UGC data and
nij , dij , and kij are the metadata. Using these six values for all the apps in
A(ri), we compute a feature vector F(ri) = {f i

1, f
i
2, . . . f

i
15} for a given reviewer

ri. Our goal is to build an accurate classifier g(F(ri)) that determines whether
ri is promotional attacker or not. The details of computing a feature vector from
the observed variables will be described in the next section.



116 B. Sun et al.

UGC App metadata

f1Feature vector f2

Reviewer

Posting 
time

Review 
comments

Rating 
scores #installs Developers Categories

. . .
Classification

Feature extraction

Legitimate 
reviewer

Promotional 
attacker

Fig. 1. High-level overview of the
problem.

Table 1. Notations used for our
problem.

Symbol Definition

ri the i-th reviewer (i = 1, 2, . . .)

A(ri) a set of apps reviewed by the

reviewer ri

mi number of apps reviewed by the

reviewer ri. mi = |A(ri)|
cij review comment posted by the

reviewer ri for the j-th app.

j = 1, 2, . . . ,mi

sij rating score posted by the

reviewer ri for the j-th app.

j = 1, 2, . . . ,mi

tij time at which the reviewer ri
posted a comment for the j-th

app. j = 1, 2, . . . ,mi

nij number of installs for the j-th

app reviewed by the reviewer ri.

j = 1, 2, . . . ,mi

dij developer of the j-th app

reviewed by the reviewer ri.

j = 1, 2, . . . ,mi

kij category of the j-th app reviewed

by the reviewer ri.

j = 1, 2, . . . ,mi

Information 
  Entropy 

      TRUE-
REPUTATION  
    algorithm 

$

Large-scale Measurement

Fig. 2. Overview of PADetective.

3 PADetective System

This section details PADetective (Fig. 2), especially its four major components
including: data collection, data preprocessing, feature extraction, and detection.

3.1 Data Collection and Preprocessing

Collection. We first create a list of apps to be downloaded by using the list of
package names in [21]. Then, we collect metadata for each app by accessing its
description page according to its package name and employing our HTML parser
to extract the metadata in the page. Moreover, we develop a UGC crawler by
leveraging the review collection API [4] provided by Google Play Store. Figure 3
shows the statistics of the number of reviews in each app. Note that the Google



Characterizing Promotional Attacks in Mobile App Store 117

Fig. 3. Histogram for the number of
reviews in each app.

Fig. 4. Percentage of review numbers
with different rating.

Play review collection service only allows 4, 500 most recent reviews to be crawled
for each app. To circumvent this limitation, we could fetch the reviews continu-
ously thanks to our automated process of data collection. To follow the accept-
able use policy of the API, we deployed our crawler on 100 servers around the
world to collect UGC for a large number of apps. We used the crawler to collect
UGC and metadata for 1,058,259 apps from the Google Play app store in Novem-
ber 2015. The data set involved 57,868,301 reviews from 20,211,517 unique users.
Figure 4 shows the statistics for the collected rating data. The rating scale in the
Google Play Store ranges from 1 to 5. We can see that over 55% of ratings are
5 stars.

Preprocessing. Before creating the feature vector for the classifier, we develop
a 8-step process to remove the noisy and meaningless data. Step 1: Remove all
reviews under the default reviewer name “A Google User”, because we cannot
extract the string features from the default reviewer name. Step 2: Extract the
reviewers who have commented on at least three apps. The limitation introduced
by this step is discussed in Sect. 6. Step 3: Remove reviews written in languages
other than English as PADetective currently only handles English. Step 4: Split
all sentences into words. Step 5: Transform all letters into lowercase. Step 6:
Remove all stop words such as “is”, “am”, “the”. Step 7: Consolidate variant
forms of a word into a common form (i.e., word stemming), for example, con-
vert “running” to “run.”. Step 8: Correct the misspelled English words for all
the reviews. For Steps 3–8, we implement the natural language processing based
on NLTK [5] and TextBlob [7]. TextBlob enables us to realize language detec-
tion and spelling correction. After data preprocessing, our dataset for feature
extraction includes 2,606,791 reviewers.

3.2 Feature Extraction

We profile each reviewer ri using 15 features extracted from UGC and metadata.
These features form a feature vector F(ri) = {f i

1, f
i
2, . . . f

i
15}, and are described

as follows.



118 B. Sun et al.

f i
1: Day intervals. PA Attackers are likely to launch PA attacks within a short

day interval. For example, Xie and Zhu found that reviewers hired by app pro-
motion web services tend to complete their review promotion missions within
120 days [23]. Therefore, we calculated the day intervals between the earliest and
the latest post time max(Ti)−min(Ti), where Ti = {ti1, . . . , timi

}, and defined
f i
1 = max(Ti) − min(Ti).

f i
2: Day entropy. PA Attackers are likely to write reviews within the same day,

because they may use automated posting process or want to finish the task as
quickly as possible. To measure the proportion of same-day reviews, we defined
f i
2 using the information entropy: f i

2 = H(X) = −
∑mi

j=1 P (tij) log P (tij), where
P (tij) is the frequency of same-day reviews: tij/sum and sum =

∑mi

j=1 tij is the
sum of days reviewed by reviewer ri. If all the reviews are posted on the same
day, the entropy of the post time will be 0.
f i
3: Bi-gram matching. PA attackers often post similar reviews. Detecting

similar reviews is important due to the presence of made-up words that are
used to express strong feelings, such as “goooooood” and “coooooool”. Made-up
words cannot be reformed by existing spelling correction algorithms because they
are designed to correct misspelled words instead of intentionally created words.
To address this problem, we converted each word into a bi-gram and then used
bag of bi-gram to build a feature vector for each cij . Finally we calculated the
average of the cosine similarity score of each pair of reviews by the reviewer
ri. In other words, f i

3 =
∑mi

j=1

∑mi

k=1 cosim(cij , cik)/m2
i . Where cosim is cosine

similarity score. We set the threshold of cosine similarity as 0.9.
f i
4: Semantic similarity. Since reviewers may use different words and expres-

sions to express the same feeling, we identify similar words and expressions using
the the Paragraph Vector (PV) algorithm [14], because it performs a semantic
analysis in discovering similar words and expressions. By applying the PV algo-
rithm realized in the Python library gensim [3] to 57, 868, 301 reviews in our
dataset, we get the predicted model after around 1 h. We defined f i

4 as the aver-
age of the similarity scores predicted from the trained model for each pair of
reviews. f i

4 =
∑mi

j=1

∑mi

k=1 D(cij , cik)/m2
i , Where D is the distance of two dif-

ferent documents computed by PV algorithm. Table 2 presents some examples
of the similarity scores computed by the trained PV model. It is clear that
the model can infer the correlations between not only different words with the
same purpose but also security-related similarity words without using the labeled
data. Note that although we used words to demonstrate the effectiveness of the
approach, we actually apply the algorithm to the entire review texts.
f i
5: Sentiment analysis. PA attackers usually post positive reviews to promote

apps for monetary benefit and/or luring victims to install malicious apps. Sen-
timent analysis classifies the attitude of a text into three categories: negative,
neutral, positive. Using sentiment analysis, we could reveal potential PA attack-
ers if all the reviews are positive. We use TextBlob [7] to conduct the sentiment
analysis of all the reviews. The sentiment analysis in TextBlob was implemented
by a supervised learning naive Bayes classifier that is trained on the labeled
movie reviews provided by NLTK. We define f i

5 as the average score for each



Characterizing Promotional Attacks in Mobile App Store 119

Table 2. Examples of similarity score
computed with the trained Paragraph
vector model.

word1 word2 similarity score

adware malware 0.88

ads spam 0.64

camera permission 0.74

hack access 0.71

internet location 0.62

good nice 0.60

Table 3. Example of score predicted
by sentiment analysis classifier

Sentence The score of sentiment

analysis

That is my

opinion

0.0

Awesome game 0.3

Nice graphics

and I love it

0.55

Very bad game −0.65

I hate all the

covers I’m here

to look for the

songs made by

the artist not

covers

−0.8

pair of reviews predicted by the sentiment analysis classifier. Table 3 shows an
example of the scores predicted by the sentiment analysis classifier. If the score is
zero, it means the sentiment of the review is neutral. It shows that our classifier
can correctly identify the sentiment of the reviews.
f i
6: The average length of the reviews. Fake reviews injected by promotional

attackers are likely to be short, because they may use an automated posting
process or want to get income as quickly as possible. Therefore, we defined f i

6

as the average length of the reviews written by the reviewer ri.
f i
7: True Reputation Score. Users often rely on the average ratings of the

apps, computed by the app stores, in selecting the apps. Unfortunately, PA
attackers can easily manipulate the average ratings by giving high ratings to
their target apps. We defined f i

7 as the average of the margin between the app’s
rating and the reviewer’s rating based on the true reputation score of each app
instead of the average rating. This score is calculated according to the TRUE-
REPUTATION algorithm [19], which takes into account the user confidence in
terms of user activity, user objectivity, and user consistency. f i

7 is computed as:
f i
7 =

∑mi

i=1(sij − uaj)/mi, where mi is the number of apps reviewed by reviewer
ri. a is an app and ua is true reputation score for app a.
f i
8: Average ratings. Since PA attackers give high ratings to malicious apps

for attracting more downloads, we defined f i
8 as the average ratings posted by

reviewer ri. f i
9: Coefficient of variation of ratings. We defined f i

9 as the
coefficient of variation of all the ratings posted by each reviewer to measure
their distribution. It is the ratio of the standard deviation to the mean: f i

9 =
σ(Si)/

∑mi

j=1 sij , where σ is standard deviation and Si = {si1, . . . , simi
}. If a

reviewer posts identical ratings, f i
9 will be 0.

f i
10: Average number of installs. Since the number of installs is an important

metric affecting users’ selection of apps, we defined f i
10 as the average number

of installs for reviewer ri. f i
10 =

∑mi

j=1 nij/mi.



120 B. Sun et al.

f i
11: Coefficient of variation of the number of installs. To measure the

distribution of the number of installs, we define f i
11 as the coefficient of variation

of the number of installs for reviewer ri. The computation of f i
11 can be referred

to the equation defined by f i
10. If a reviewer posts reviews to apps with the same

number of installs, the coefficient of variation will be 0.
f i
12: Developer Entropy. PA attackers are more likely to promote apps from the

same developer because the targeted malicious apps should be associated with
each other. Therefore, we defined f i

12 as the entropy of developer for reviewer
ri. The computation of f i

12 can be referred to the equation defined by f i
2. If a

reviewer only posts reviews for apps from the same developer, his/her f12 will
be 0.
f i
13: Category Entropy. PA attackers tend to promote apps having a small

number of distinct categories, possibly due to the automated posting process.
Similar to f i

12, we defined f i
13 as the entropy of category for reviewer ri. The

computation of f i
13 can also be referred to the equation defined by f i

2. If a
reviewer only posts reviews for apps having a small number of distinct categories,
his/her f13 will be 0.
f i
14: Length of reviewer name. Legitimate reviewers usually use their own

name as the reviewer name, whereas the reviewer names selected by PA attackers
are likely to be unusually short or long. Hence, we defined f i

14 as the length of
the reviewer name.
f i
15: Number of digits and symbols in reviewer name. The reviewer names

of promotional attackers are often randomly generated, and therefore they are
likely to contain digits and symbols such as “!”, “*”, “@.”According to this
observation, we defined f i

15 as the number of digits and symbols in the reviewer
names.

3.3 Effectiveness of Feature and Description of Detection Model

Effectiveness of feature. To demonstrate how our features facilitate the detec-
tion, we compute the importance of our features. For the space limitation, we
present the top-3 features that had the largest contributions (f i

1: Day inter-
vals, f i

10: Average number of installs, f i
12: Developer Entropy). We extracted

these three features by using tree-based feature selection method [2], which uses
forests of trees to evaluate the importance of features.

Figure 5 shows the CDF of the day intervals of promotional attackers and
those of normal reviewers. We can see that promotional attackers usually have
shorter day intervals than normal reviewers. It is likely that promotional attack-
ers want to get revenue quickly or are required by their employers to do so.
Figure 6 shows the CDF of the number of installs of promotional attackers and
those of normal reviewers. We can figure out that promotional attackers tend to
promote apps whose number of installs is not very large due to the prohibition
of promotion activity by Google Play [1]. Figure 7 shows the CDF of the devel-
oper entropy of promotional attackers and those of normal reviewers. We can see
that promotional attackers tend to promote apps produced by the same devel-
oper. Because promotional attackers are probably hired by the same developer.



Characterizing Promotional Attacks in Mobile App Store 121

Fig. 5. f i
1: Day intervals. Fig. 6. f i

10: Average number
of installs.

Fig. 7. f i
12: Developer

Entropy

We note that these three features are informative for identifying promotional
attackers from normal reviewers. We also found that the features extracted from
metadata are more effective than those from UGC in PA detection, because it is
not easy for attackers to manipulate the metadata such as developer and number
of installs.

Description of detection model. We build our detection model using the
library scikit-learn [6] because it is efficient, and implement several supervised
learning algorithms, including support vector machine (SVM), k-nearest neigh-
bor (KNN), random forest, decision tree, and adaBoost. To determine the best
algorithm and parameters, we test the algorithms and parameters using our
labeled dataset. The detailed model selection process and its results are pre-
sented in Sect. 4. Finally, we use the best detection model to perform a large-scale
analysis of our real-world dataset.

4 Performance Evaluation

This section presents the evaluation result of PADetective. We first introduce
how we prepare the labeled dataset (i.e., the ground truth), and then describe
the evaluation method and the result, respectively.

Training Dataset. We first generate the training dataset with the ground truth.
Since legitimate reviewers may comment bad apps and/or post reviews to mali-
cious apps, we define a PA attacker as a reviewer who only posts reviews to mali-
cious apps and comments at least three malicious apps. We determine whether
an app was malicious by submitting the app to VirusTotal [8] and making the
decision based on the results from a set of antivirus systems. Note that we did
not verify all the apps in our dataset to generate the training dataset because
of the limitation of time and computer resources. We also note that VirusTotal
usually classifies malicious apps into two categories: malware and adware. We
did not distinguish between these categories because PAs would likely be used
to promote both malware and adware apps. With this approach and additional
manual inspection, we identified 723 promotional attackers. Aside from this, we
randomly selected 1,000 legitimate users to create the training dataset. The rea-
son why we randomly sampled legitimate users was to achieve a good balance
between the two classes when we trained our classifiers.



122 B. Sun et al.

Evaluation Method. We randomly divided the labeled data into two sets.
Containing 70% of labeled data, the first dataset is the training dataset used to
optimize each machine learning model and select the best model. For optimizing
the machine learning algorithms, we specify a set of carefully chosen values for
each parameter used in those algorithms (e.g., for random forest, we set parame-
ter “n estimators” to a set of values: 50, 100, 150, 200, 250). Then, we evaluate
the machine learning algorithms with different parameters through 10-fold cross-
validation. Finally, we select the best result in consideration of accuracy, false
positive and false negative. Having 30% of labeled data, the second dataset is the
test dataset utilized to evaluate PADetective’s performance after the best model
is selected. To measure the accuracy of various supervised learning algorithms,
we use three metrics: false positive rate (FPR), false negative rate (FNR) and
accuracy (ACC), where FPR = FP/(FP +TN), FNR = FN/(TP +FN), and
ACC = (TP + TN)/(TP + TN + FP + FN), respectively. TP is true positive,
FP is false positive, TN is true negative and FN is false negative. We also show
the performance of the best detection model through the ROC curve, which can
be used to determine the best combination of true and false positive rates.

Table 4. Classification accuracy. The means and standard deviations are calculated
using 10-times 10-fold cross-validation tests for each machine learning algorithm.

Machine learning Algorithm ACC FPR FNR

mean std mean std mean std

SVM 0.661 0.041 0.059 0.072 0.372 0.048

RandomForest 0.933 0.014 0.083 0.033 0.053 0.036

KNN 0.894 0.020 0.162 0.027 0.050 0.022

DecisionTrees 0.902 0.020 0.091 0.035 0.100 0.033

AdaBoost 0.918 0.022 0.100 0.030 0.066 0.034

Evaluation Result. Table 4 lists the accuracy of different machine learning
algorithms used by PADetective. Most of these algorithms discover the PA
attackers with high accuracy and low false negative or false positive rate. Among
the five machine learning algorithms we tested, RandomForest achieves the high-
est accuracy (i.e., 0.933) with the lowest false positive (i.e., 0.083) and false neg-
ative (i.e., 0.053) rates. Moreover, its standard deviations of the accuracy, false
positive rate, and false negative rate of RandomForest are also low, indicating
that RandomForest can identify promotional attackers effectively. We use the
grid search to determine the best parameter for RandomForest, and find that 50
is the optimal number of trees. Based on these results, we select RandomForest
as our detection model.

To better understand the root causes of false negative rate and false positive
rate in our system, we conduct error analysis with manual inspection. It turns out
that PADetective failed to detect the PA attackers who had posted reviews for a



Characterizing Promotional Attacks in Mobile App Store 123

Fig. 8. Evaluation of detection model using test set.

period of two years or longer. On the other hand, PADetective wrongly flagged
the legitimate reviewers whose behaviors were similar to a PA attacker (e.g., their
reviews seemed to be fake, but the apps were not flagged as malware/adware by
VirusTotal). Note that advanced malware may evade the online virus checkers.
Finally, using the optimized RandomForest algorithm, we test PADetective’s
accuracy using the test dataset. Figure 8 shows that it can achieve 90% true
positive rate with low false positive rate of 5.8%.

5 Promtional Attacks in the Wild

Using PADetective, we examined a large-scale data collected from the Google
Play Store, and found 289, 000 potential PA attackers from 2,605,068 reviewers.
Table 5 summarizes the number of reviewers/apps detected by PADetective. The
number of unique malicious apps reviewed by the potential PA attackers was
20,906, accounting for approximately 65% of the malicious apps reviewed by all
observed reviewers. Many malicious apps having reviews were associated with
the potential PA attackers. Moreover, the majority of malicious apps detected by
VirusTotal had no user reviews. It may be due to the fact that the malicious apps
were detected and deleted by mobile app stores in the early stage of distribution,
and hence there are no comments on such apps. Another possibility is that
mobile app stores deleted both malicious apps and their information including
reviews simultaneously, and therefore we can not collect the reviews. We ranked

Table 5. Statistics of detected promotional attackers and apps. “–” indicates that we
were not able to perform the evaluation due to the lack of resources.

# reviewers # apps # malicious apps # apps deleted by app store

All observed reviewers 2, 605, 068 234, 139 32, 367 –

Potential promotional

attackers

289, 000 135, 989 20, 906 –

Detected promotional

attackers with high

probability

1, 000 2, 904 486 148



124 B. Sun et al.

the reviewers in descending order according to the probability of being a PA
attacker, and investigated top 1,000 reviewers. The top 1,000 reviewers posted
reviews for 2, 904 of apps, which include 486 of malicious apps and 148 of apps
deleted by the app store for some reasons, e.g., malware or potentially harmful
apps.

Among the 1,000 promotional attackers, 136 reviewers (13.6%) posted
reviews only for malicious apps or the deleted apps. We found that other detected
reviewers posted reviews for not only malicious apps, but also for apps that were
not regarded as malware/adware by VirusTotal. We acknowledge that using the
online virus checkers might lead to false detection, and leave the checking of
those undetected apps in future work.

Figure 9 shows the top 10 categories of the apps reviewed by PA attackers.
Three categories (approximately 15% in total) are related to games, which was
the primary target of the PAs. To study the impact of apps promoted by PA
attackers, Fig. 10 illustrates the top 10 number of installs of the apps reviewed
by PA attackers. It shows that the majority of such apps do not have many
installs. This observation indicates that PAs are used when the app is not so
popular. There may be other reasons that the data was captured when the PA
was just launched (i.e., not yet finished).

We also investigate whether the detected PA attackers can be used to discover
malicious apps. More precisely, we compare the time when the PA attackers
posted reviews on malicious apps and the time when the malicious app was
first submitted to VirusTotal. If all the posting times are earlier than the first
submission time, then our PA detection scheme has the potential to identify
malicious apps that have not been listed in Virustotal. We examine the top
241 detected PA attackers who only reviewed malicious apps, and find that 72
of them reviewed malicious apps before these malicious apps were detected by
VirusTotal. Among all the apps reviewed by these 72 promotional attackers, 217
apps were labeled as malicious app by VirusTotal. It is worth noting that other
apps reviewed by the PA attackers might also be suspicious.

Fig. 9. Top 10 categories of apps
reviewed by the detected promotional
attackers.

Fig. 10. Top 10 number of installs for
apps reviewed by the detected promo-
tional attackers.



Characterizing Promotional Attacks in Mobile App Store 125

6 Discussion

This section discusses some limitations of PADetective and future research
directions.

Evasion. Advanced attackers may evade the PADetective system by employ-
ing lots of user accounts with different names and/or mimicking the reviewing
behaviors of normal users. It is worth noting that such evasion strategies require
much more resources and efforts. For example, attackers may acquire lots of fake
user accounts and use each account to just post one comment in order to degrade
the detection accuracy of PADetective. However, since mobile app stores (e.g.,
Google Play) usually adopt advanced techniques [10] to deter automated account
registration, it will cost the attackers lots of resources and efforts to create many
accounts and it does not benefit the attackers if these accounts are just used to
post one comment. Note that the primary goal of the attackers is to increase the
success rate of attacks with lower costs [16]. Even if an attacker affords to adopt
such an expensive approach, the stakeholders of mobile app stores can enhance
PADetective with additional information about each account, such as IP address
which could be correlated with user accounts to detect malicious users [24]. The
attackers may also mimic the reviewing behaviors of normal users by writing
short/long reviews, reviewing both legitimate and malicious apps, adjusting the
posting time, and etc. It will also significantly increase the cost of attacks. We
leave the challenge of differentiating such advanced attacks and human reviewers
in future work.

Number of apps reviewed by each reviewer. PADetective does not consider
reviewers who posted comments for only one or two apps. This constraint origi-
nates from the fact that computing some features such as entropy or coefficient
variants require more than two samples. In this work, we empirically set the num-
ber as 3 because increasing the number was not sensitive to the final outcomes.
Since attackers usually employ the accounts to post a number of comments as
we discussed above, we believe that this number is reasonable to capture promo-
tional attackers. As the number of apps reviewed by a reviewer may exceed the
threshold, 3, over time, PADetective could identify them by continuously collect-
ing and analyzing the comments. We will construct a real-time detection system
for fetching and examining UGC and the metadata continuously in future work.

7 Related Work

Review Analysis. Kong et al. [13] designed AutoREB to automatically identify
users’ concerns on the security and privacy of mobile apps. They applied the
relevance feedback technique for the semantic analysis of user reviews and then
associated the results of the user review analysis to the apps’ behaviors by using
the crowd-sourcing technique. Mukherjee et al. [17,18] proposed new approaches
to detect fake reviewer groups from Amazon product reviews. They first used a
frequent itemset mining method to identify a set of candidate groups, and then



126 B. Sun et al.

adopted several behavioral models based on the relationships among groups such
as the review posting time and similarities. Fu et al. [11] proposed WisCom to
provide important insights for end-users, developers, and potentially the entire
mobile app ecosystem. They leveraged sentiment analysis, topic model analysis,
and time-series analysis to examine over 13 M user reviews.

Rating Analysis. Xie et al. [22] proposed a new method for discovering colluded
reviewers in app stores. They built a relation graph based on the ratings and the
deviations of the ratings, and applied a graph cluster algorithm to detect collu-
sion groups. Oh et al. [19] developed an algorithm that calculates the confidence
score of each app. Market operators can replace the average rating of each app
with the confidence score to defend against rating promotion/demotion attacks.
Lim et al. [15] devised an approach to measure the degree of spam for each
reviewer based on the rating behaviors, and evaluated them using an Amazon
review dataset.

Among previous works mentioned above, [17,18,22] are closely related to
our work. The major differences between PADetective and Xie et al. [22] is
the scalability. More precisely, their system is not scalable because it is not
possible to build a tie graph of large-scale dataset in physical memory. Moreover,
they performed the evaluation on a small and local dataset (200 apps collected
from the china apple store). In contrast, since our detection model uses static
features, our system can conduct large-scale analysis. Moreover, we investigate
the prevalence of PAs in the official Android app store by collecting information
on more than 1 M apps. The method of review analysis is the main difference
between PADetective and [17,18]. Since they aimed to identify copy reviews used
by spammers, their method only extracts the similar reviews in keyword level,
e.g., “good app” and “good apps”. Since users can express the same opinion using
different words and expressions, e.g., “nice app” and “good app”, we leveraged
the state-of-the-art NLP technique called Paragraph vector [14] to extract similar
reviews at the semantic level for better accuracy.

8 Conclusion

In this study, we developed PADetective to detect PA attackers in mobile app
stores using UGC and metadata as well as machine-learning techniques. The
large-scale evaluation revealed that we can exploit the PA attackers identified by
PADetective to discover potentially malicious apps effectively and efficiently. We
believe that this research sheds a new light on the analysis of UGC and metadata
of app stores as a complementary channel to find malicious apps for enhancing
the widely used anti-malware tools or for market operators and malware analysts.

Acknowledgements. A part of this work was supported by JSPS Grant-in-Aid for
Scientific Research (KAKENHI) B, Grant number JP16H02832. A part of this work
was also supported by a Grant for Non-Japanese Researchers from the NEC C&C
Foundation and a Waseda University Grant for Special Research Projects (Project
number: 2016S-055).



Characterizing Promotional Attacks in Mobile App Store 127

References

1. Developer policy center. http://goo.gl/yA0qUb
2. Feature selection. http://scikit-learn.org/stable/modules/feature selection.html
3. gensim:topic modelling for humans. https://radimrehurek.com/gensim/
4. Google play reviews collection service. https://play.google.com/store/getreviews
5. Natural language toolkit. http://www.nltk.org
6. scikit-learn:machine learning in python. http://scikit-learn.org/stable/
7. Textblob: Simplified text processing. http://textblob.readthedocs.io/en/dev/
8. Virustotal- free online virus, malware and url scanner. https://www.virustotal.com
9. The FTC’s endorsement guides: What people are asking (2015). http://goo.gl/

3875GT
10. El Ahmad, A.S., Yan, J., Ng, W.-Y.: Captcha design: color, usability, and security.

IEEE Internet Comput. 16(2), 44–51 (2012)
11. Fu, B., Lin, J., Li, L., Faloutsos, C., Hong, J.I., Sadeh, N.M.: Why people hate

your app: making sense of user feedback in a mobile app store. In: Proceedings of
the ACM KDD (2013)

12. Ganguly, R.: App. store optimization - a crucial piece of the mobile app marketing
puzzle (2013). https://blog.kissmetrics.com/app-store-optimization/

13. Kong, D., Cen, L., Jin, H.: AUTOREB: automatically understanding the review-to-
behavior fidelity in android applications. In: Proceedings of the ACM CCS (2015)

14. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. In:
Proceedings of the ICML (2014)

15. Lim, E., Nguyen, V., Jindal, N., Liu, B., Lauw, H.W.: Detecting product review
spammers using rating behaviors. In: Proceedings of the ACM CIKM (2010)

16. Liu, B., Nath, S., Govindan, R., Liu, J.: DECAF: detecting and characterizing ad
fraud in mobile apps. In: Proceedings of the NSDI (2014)

17. Mukherjee, A., Liu, B., Glance, N.S.: Spotting fake reviewer groups in consumer
reviews. In: Proceedings of the WWW (2012)

18. Mukherjee, A., Liu, B., Wang, J., Glance, N.S., Jindal, N.: Detecting group review
spam. In: Proceedings of the WWW (2011)

19. Oh, H., Kim, S., Park, S., Zhou, M.: Can you trust online ratings? A mutual
reinforcement model for trustworthy online rating systems. IEEE Trans. Syst. Man
Cybern. Syst. 45(12), 1564–1576 (2015)

20. Statista Inc.: Number of apps available in leading app stores as of June 2016.
http://goo.gl/JnBkmY

21. Viennot, N., Garcia, E., Nieh, J.: A measurement study of google play. In: Pro-
ceedings of the ACM SIGMETRICS (2014)

22. Xie, Z., Zhu, S.: Grouptie: toward hidden collusion group discovery in app stores.
In: Proceedings of the ACM WiSec (2014)

23. Xie, Z., Zhu, S.: Appwatcher: unveiling the underground market of trading mobile
app reviews. In: Proceedings of the ACM WiSec (2015)

24. Zhao, Y., Xie, Y., Yu, F., Ke, Q., Yu, Y., Chen, Y., Gillum, E.: Botgraph: large
scale spamming botnet detection. In: Proceedings of the NSDI (2009)

http://goo.gl/yA0qUb
http://scikit-learn.org/stable/modules/feature_selection.html
https://radimrehurek.com/gensim/
https://play.google.com/store/getreviews
http://www.nltk.org
http://scikit-learn.org/stable/
http://textblob.readthedocs.io/en/dev/
https://www.virustotal.com
http://goo.gl/3875GT
http://goo.gl/3875GT
https://blog.kissmetrics.com/app-store-optimization/
http://goo.gl/JnBkmY


Low-Data Complexity Attacks on Camellia

Takeru Koie1(B), Takanori Isobe2, Yosuke Todo3, and Masakatu Morii1

1 Graduate School of Engineering, Kobe University, Hyogo, Japan
koie@stu.kobe-u.ac.jp

2 University of Hyogo, Hyogo, Japan
3 NTT Secure Platform Laboratories, Tokyo, Japan

Abstract. In this paper, we propose low-data complexity attacks on
reduced-round Camellia. Our attacks are based on deterministic trun-
cated differential characteristics exploiting properties of binaries matri-
ces and differential properties of S-boxes of Camellia. Combining these
with the structure of Camellia, we obtain low data complexity attacks on
4 to 7 rounds of Camellia. Surprisingly, 4 to 6 rounds attacks are feasi-
ble with only two chosen plaintexts and the attacks complexity becomes
very practical by increasing a small amount of data.

Keywords: Block cipher ·Camellia ·Truncateddifferential cryptanalysis

1 Introduction

Over the past 20 years, we have seen a significant progress in the field of blockci-
phers. Especially, knowledge and techniques for securely designing blockciphers
are sufficiently accumulated. Nowadays, without strong constrains of implemen-
tations such as lightweight and low latency, it is relatively easy to develop
secure blockciphers. As a practical evidence, there has not been any attack on
the full AES-128 since it was published in 1998. Bogdanov, Khovratovich and
Rechberger proposed full-round attacks on AES-128 [3]. However, time complex-
ity of their attacks is slightly smaller than bruteforce attacks, and their attacks
require large amounts of memory and data unlike brute force attacks. It is not
sure that their attacks are more efficient than bruteforce attacks.

The security of blockciphers is evaluated on the basis of time complexity of
the exhaustive key search. If there is an attack on certain numbers of rounds,
which successfully recovers the key with time complexity less than that of brute-
force attack, the cipher with such a number of rounds is considered as inse-
cure. On the other hand, it is important to evaluate the security of blockcipher
from practical point of the view, i.e. we consider whether attacks are feasible in
the practical setting. One of examples of such evaluations is low-data complex-
ity attack where the number of available data is highly restricted. Considering
practical attack scenarios, in order to collect pairs of plaintext/ciphertext, an
adversary has to access a target blockcipher and execute it with known/chosen
plaintexts or passively eavesdrop data in the network. Thus, data complexity
c© Springer Nature Singapore Pte Ltd. 2017
L. Batten et al. (Eds.): ATIS 2017, CCIS 719, pp. 128–140, 2017.
DOI: 10.1007/978-981-10-5421-1 11



Low-Data Complexity Attacks on Camellia 129

Table 1. Summary on our results on reduced round Camellia-128.

Attack type Whitening FL/FL−1 Rounds Data Time

Tr.D(4.1) � 4 2CP 223

Tr.D(4.2) � 4 3CP negl.

Tr.D(5.1) � 5 2CP 258

Tr.D(5.2) � 5 5CP negl.

Tr.D(7.1) � � 5 9CP 220

Tr.D(6.2) � 6 2CP 2114

Tr.D(6.2) � 6 5CP 268

Tr.D(6.1) � 6 24CP 266

Tr.D(6.1) � 6 93CP 212

Tr.D(7.2) � � 6 9CP 284

Tr.D(7.2) � � 6 129CP 264.3

Collision [12] 6 210CP 215

Tr.D(6.3) � 7 24CP 2122

Tr.D(6.3) � 7 93CP 276

Collision [12] 7 212CP 254.5

MitM [10] � � 11 2117CP 2121.3

Imp.D [5] � � 11 2118.4CP 2118.43

ZC [2] � � 11 2125.3KP 2125.8

Tr.D: Truncated differential cryptanalysis, Collision: Collision attack,
MitM: Meet-in-the-Middle attack, Imp.D: impossible differential
cryptanalysis,
ZC: Zero correlation linear cryptanalysis.
CP: Chosen plaintext, KP: Known Plaintext.

heavily depends on attack scenarios, while time and memory requirements are
estimated by computational resource of the adversary independently from attack
scenarios. Therefore, data-complexity may be crucial in the practical setting.
Several low-data complexity attack on AES were recently proposed [4,8,11].

In this paper, we propose low-data complexity attacks on 128-bit blockci-
pher Camellia [1], which was designed by NTT and Mitsubishi corporation,
and is currently selected as ISO standard [9] and CRYPTREC recommended
ciphers [7]. Under the assumption that available data is restricted, we are not
able to mount statistic cryptanalysis such as differential, linear and impossible
differential attacks. In the sense of the low data, one may consider that meet-
in-the-middle attacks are promising candidates. However it basically requires a
large amount of memory. Chen and Li studied low-data attacks on Camellia-
256 by using the meet-in-the middle approach [6]. Their attack requires 219

chosen plaintexts and around 2230 time and memory complexity. Recall one
of our purposes is to minimize time and memory requirements as possible for
practical estimations. Therefore, meet-in-the-middle attacks do not match with



130 T. Koie et al.

our purposes. Our attacks are based on deterministic truncated differential
characteristics exploiting properties of binaries matrices and differential proper-
ties of S-boxes of Camellia. Combining these with the structure of Camellia and
linearity of Matrices, we obtain low-complexity data attacks on 4 to 7 rounds
of Camellia-128 with whitening keys. Table 1 shows the summary of our results.
Surprisingly, 4 to 6 rounds attacks are feasible with only two chosen plaintexts.
In addition, by increasing a small amount of data, time complexity becomes very
practical, and the required memory is negligible. Compared to previous results,
the amount of required data is dramatically reduced while keeping practical
time complexity, even if our attacks include whitening keys and unlike previous
attacks. Finally we show that our low-data complexity attacks are applicable to
Camellia including FL functions.

2 Preliminaries

This section gives notations used in this paper and explains the description of
Camellia blockcipher.

2.1 Notations

The following notations are used in this paper:

PL, PR : left and right 64-bit halves of the plaintext
CL, CR : left and right 64-bit halves of the ciphertext
Lr, Rr : left and right 64-bit halves of the r-th round input
kr : subkey used in the r-th round
kli : 64-bit subkey used in the FL/FL−1 layer (i = 1, 2, 3, 4)
wi : whitening key used in the beginning and the end of Camellia (i = 1, 2, 3, 4)
ΔX : XOR difference of X and X′
0, ? : ‘0’ denotes the zero difference byte and ‘?’ denotes the unknown byte
⊕, ∩, ∪ : bitwise exclusive OR(XOR), AND, OR
≪1 : left rotation of a bit string
‖ : bit string concatenation

2.2 Specification of Camellia

Camellia [1] is based on an SP-type Feistel structure with a 128-bit block length
and variable key lengths of 128, 192 or 256 bits. The number of rounds depends
on the key length: 18 rounds for 128-bit keys and 24 rounds for 192/256-bit
keys. In this paper, we consider only Camellia-128 which is the one supporting
a 128-bit key.

The 64-bit F function of Camellia, F : {0, 1}64 ×{0, 1}64 → {0, 1}64, consists
of a key addition layer, a S-layer and a P-layer. In the key addition layer, a
64-bit subkey Kr is Xored to the input state. The S-layer S: {0, 1}64 → {0, 1}64
consists of four 8-bit Sboxes, S1, S2, S3, S4, and execute these in the parallel in
the order of S1, S2, S3, S4, S2, S3, S4 and S1. In the P-layer, an 8×8 binary byte



Low-Data Complexity Attacks on Camellia 131

Fig. 1. FL layer Fig. 2. FL−1 layer

matrix M : {0, 1}64 → {0, 1}64 is applied, where the matrix M and its reverse
M−1 are given as follows:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1
0 1 1 1 1 1 1 0
1 1 0 0 0 1 1 1
0 1 1 0 1 0 1 1
0 0 1 1 1 1 0 1
1 0 0 1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,M−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 0 1 1 1
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 0
1 1 0 0 1 0 1 1
0 1 1 0 1 1 0 1
0 0 1 1 1 1 1 0
1 0 0 1 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

For r = 6, 12, key-dependent linear functions, FL/FL−1: {0, 1}64×{0, 1}64 →
{0, 1}64, are applied. Let X = (XL ‖ XR) and K = (KL ‖ KR) be 64-bit blocks,
where XL, XR, KL, and KR are 32-bit words, respectively. Then FL/FL−1 are
defined as follows. Figures 1 and 2 illustrate the descriptions of FL and FL−1,
respectively.

FL(X,K) = ((((XL ∩ KL) ≪1 ⊕XR) ∪ KR) ⊕ XL) ‖ ((XL ∩ KL) ≪1 ⊕XR)
FL−1(X,K) = (XL ⊕ (XR ∪ KR)) ‖ (((XL ⊕ (XR ∪ KR)) ∩ KL) ≪1 ⊕XR)

In this paper, we omit the description of the key scheduling function, because
our attacks do not use any property of the key scheduling function. We refer to
[1] about details of the key scheduling function.

The encryption procedures of Camellia-128 are given as follows.

1. L1 ‖ R1 = (PL ⊕ w1) ‖ (PR ⊕ w2)
2. For i = 1 to 18:

if i = 6 or 12,
Li+1 = FL((F(Li, ki) ⊕ Ri), kl i

6
)

Ri+1 = FL−1(Li, kl i
6+1)

else
Li+1 = F(Li, ki) ⊕ Ri

Ri+1 = Li

3. CL ‖ CR = (R19 ⊕ w3) ‖ (L19 ⊕ w4)



132 T. Koie et al.

3 Observations on the Structure of Camellia

In this section we present two observations on the structure of Camellia. The
first one is a well-known property regarding the relation of differences through
S-boxes, and is also utilized for low-data complexity attacks on AES [4]. We
experimentally confirmed that four S-boxes of Camellia satisfy this property.

Observation 1. Consider pairs (Δα �= 0,Δβ) of input/output differences for
one of a single S-box in the S-layer. For 129/256 of such pairs, the differen-
tial transition is impossible, i.e. there is no pair (x, y) such that x ⊕ y = Δα
and Si(x) ⊕ Si(y) = Δβ. For 126/256 of the pairs (Δα,Δβ), there exist two
ordered pairs (x, y) that satisfy the input/output differences. And for the remain-
ing 1/256 of the pairs (Δα,Δβ) there exist four ordered pairs (x, y) that satisfy
the input/output differences.

In the other word, once a pair of input/output differences of S-box (Δα,Δβ) is
given, corresponding pairs of input/output values (x, y) are immediately found
by using the difference distribution table (DDT). Note that time complexity to
construct DDT is estimated as 216 evaluations of the S-box. Since Camellia uses
four types of S-boxes, the total complexity for creating DDT tables of these
S-boxes is estimated as 218(= 216 × 4) S-box evaluations, and the memory
required to store the tables is about 219 bytes.

The second one is obtained by the property of the balanced Feistel structure
and linearity of Matrices.

Observation 2. An output difference of the S layer in round n (S(ΔLn)) is
expressed by left and right 64-bit inputs of round n − 2 (ΔLn−2, ΔRn−2), and a
left 64-bit input of round n + 1 (Ln+1).

S(ΔLn) = S(ΔLn−2) ⊕ M−1(ΔLn+1 ⊕ ΔRn−2)

This relation is obtained using linearity of P layers as follow.

S(ΔLn) = M−1(M(S(ΔLn−2)) ⊕ ΔLn+1 ⊕ ΔRn−2)

= M−1(M(S(ΔLn−2))) ⊕ M−1(ΔLn+1 ⊕ ΔRn−2)

= S(ΔLn−2) ⊕ M−1(ΔLn+1 ⊕ ΔRn−2)

4 Low-Data Complexity Attacks on 4-Round
Camellia-128

In this section, we presents two types of low-data complexity attacks on 4-round
Camellia-128 using some observations in the previous section. One is data opti-
mized attack which aims to reduce the required data as possible. The other is
time-optimized attack which tries to reduce time complexity by increasing a small
amount of data compared to data-optimized attacks but the required data is still
sufficiently small.



Low-Data Complexity Attacks on Camellia 133

4.1 Data-Optimized Attack

We use only two chosen plaintexts in the difference form of ΔPL = 0 and
ΔPR = Δ(a, 0, 0, 0, 0, 0, 0, 0), where a is an arbitrary 1-byte value. Then, we can
construct a truncated differential characteristic of 4-round Camellia as shown in
Fig. 3. Importantly, this truncated differential characteristic holds with proba-
bility one thanks to the deterministic diffusion property of Matrices.

From Observation 2, an output of S-box in round 4, S(ΔL4), is expressed as

S(ΔL4) = S(ΔL2) ⊕ M−1(ΔL5 ⊕ ΔR2),

where ΔL5 equals ΔCR and ΔR2 is zero. S(ΔL2) is given as

S(ΔL2) = S(Δ(a, 0, 0, 0, 0, 0, 0, 0)) = Δ(x, 0, 0, 0, 0, 0, 0, 0).

From Observation 1, Δx has 127 candidates. Then, we obtain the following equa-
tion regarding an output of S-box in round 4.

S(ΔL4) = Δ(x, 0, 0, 0, 0, 0, 0, 0) ⊕ M−1(ΔCR)

Since an input differences of S-box of round 4, namely ΔL4, is same as ΔCL,
we know values of input and output difference of S-boxes of round 4 by guessing
the value of Δx. According to Observation 1, we obtain candidates of values of
input/outputs pairs of each S-boxes by using DDTs. Here given the value of an
input of S-box and CL, the values of k4 ⊕ w3 is determined. Thus, the number
of candidates of each byte of k4 ⊕ w3 is reduced to two. The total number of
remaining candidates of k4⊕w3 is expected to be 28. Since Δx has 127 patterns,
all possible k4 ⊕ w3 values are estimated as 215(≈ 28 × 127).

Once the value of k4⊕w3 is determined, a pairs of input and output differences
of S-layer in round 3 is computable. Then, k3 ⊕ w4 has 28 candidates by using
DDT table in the same manner of the attack in round 4. Total space of k3 ⊕ w4

and k4 ⊕ w3 is reduced to 223 (≈ 215 × 28) from 2128. Thus, time complexity of
the 4-round attack is estimated as 223 encryptions, and the required data is only
2 chosen plaintexts.

4.2 Time-Optimized Attack

As with the data-optimized attack, we prepare two chosen plaintexts in the dif-
ference form of ΔPL = 0 and ΔPR = Δ(a, 0, 0, 0, 0, 0, 0, 0), and utilize the same
deterministic truncated differential characteristic. Unlike the data-optimized
attack, the time-optimized attack does not guess the value Δx in the follow-
ing equation to further reduce time complexity.

S(ΔCL) = Δ(x, 0, 0, 0, 0, 0, 0, 0) ⊕ M−1(ΔCR)

Since the S-layer is a byte-wise operation and bytes of ΔL2 except the first byes
are known as zero, we can obtain candidates of each byte of k4 ⊕ w3 except a



134 T. Koie et al.

Fig. 3. Truncated differential of
4-round Camellia

Fig. 4. Truncated differential of
5-round Camellia

first byte without guessing Δx. The number of remaining candidates of 7 bytes
of k4 ⊕ w3 is 27.

Next,weprepare anewpair of chosenplaintexts in the difference formofΔPL =
0 and ΔPR = Δ(0, a, 0, 0, 0, 0, 0, 0). Then we obtain the following equation.

S(ΔCL) = Δ(0, x, 0, 0, 0, 0, 0, 0) ⊕ M−1(ΔCR).

In this case, we can obtain candidates of each byte of k4 ⊕ w3 except a second
byte. Now, 6 bytes except first and second bytes can be determined to one value
by comparing candidates obtained by first and second results. The number of
remaining candidates of first two bytes is 22. Once k4⊕w3 is determined, a pairs
of input and output differences of S-layer in round 3 is also obtained. Using two
pairs of plaintexts, all bytes of k4 ⊕ w3 can be determined.

Time complexity is estimated as 22 encryptions and 27 × 2 + 28 × 2 table
access. It is less than that for creating DDT table (216), thus time complexity
is negligible. Also, two pairs of our chosen plaintexts are created by only three
plaintexts. Thus, the required data is 3 chosen plaintexts.

5 Low-Data Complexity Attacks on 5-Round
Camellia-128

This section proposes low-data complexity attacks on the 5-round Camellia-128.
Similar to attacks on the 4-round Camellia, we introduce two types of attacks,
namely a data-optimized attack and a time-optimized attack.



Low-Data Complexity Attacks on Camellia 135

5.1 Data-Optimized Attack

We use a deterministic truncated differential characteristic of the 5-round Camel-
lia as shown in Fig. 4, which is obtained by the same pair of chosen plaintexts of
the 4-round attack. From Observation 2, an output of S-box in round 5, S(ΔL5),
is expressed as

S(ΔL5) = S(ΔL3) ⊕ M−1(ΔL6 ⊕ ΔR3),

where ΔL6 and ΔR3 are known as ΔCR and ΔPR, respectively. ΔL3 is expressed
as ΔL3 = Δ(x, x, x, 0, x, 0, 0, x), where the number of candidates of Δx is 127.
Then, S(ΔL3) is expressed as

S(ΔL3) = S(Δ(x, x, x, 0, x, 0, 0, x)) = Δ(l,m, n, 0, p, 0, 0, q),

where l,m, n, p, q are unknown five bytes, respectively. The number of candidates
of l,m, n, p, q is estimated as 127 × 1275 = 1276, because each candidate of Δx
takes 127 patterns, and each candidate changes to 127 patterns through each
S-box. Now we obtain a pair of input and output differences of the S layer in
round 5 by guessing five bytes of l,m, n, p, q. Since the number of candidates of
each byte of k5 ⊕w3 is reduced to two (Observation 1), the number of remaining
candidates of k5 ⊕ w3 is expected to be 28. So all possible k5 ⊕ w3 values are
estimated as 28 × 1276 ≈ 250.

Once k5⊕w3 is determined, a pairs of input and output differences of S-layer
in round 4 is also obtained. Then, k4 ⊕ w4 has 28 candidate values. Thus, space
of k4 ⊕w4 and k5 ⊕w3 is reduced to 258 from 2128. Time complexity is estimated
as 258 encryptions, and data complexity is 2 chosen plaintexts.

5.2 Time-Optimized Attack

We use the same truncated differential characteristic of the data-optimized
attack on the 5-round Camellia as shown in Fig. 4. The time-optimized attack
does not guess the five bytes of x, l,m, n, p, q in the following equation to reduce
time complexity unlike the data-optimized attack.

S(ΔL3) = S(Δ(x, x, x, 0, x, 0, 0, x)) = Δ(l,m, n, 0, p, 0, 0, q)

Without guessing these values, we can obtain candidates of 3 bytes of k5 ⊕
w3 where there is no zero difference in Δ(x, x, x, 0, x, 0, 0, x). The number of
candidates of 3 bytes of k5 ⊕w3 is 23. Using another pair of chosen plaintexts in
the form of ΔPL = 0 and ΔPR = Δ(0, a, 0, 0, 0, 0, 0, 0), we can obtain another
set of candidates of 3 bytes of k5 ⊕ w3.

Specifically we mount these procedures with four different pairs of
chosen plaintexts such that ΔPR = Δ(a, 0, 0, 0, 0, 0, 0, 0) and ΔPL =
{Δ(a, 0, 0, 0, 0, 0, 0, 0), Δ(0, a, 0, 0, 0, 0, 0, 0), Δ(0, 0, a, 0, 0, 0, 0, 0), Δ(0, 0, 0, a,
0, 0, 0, 0)}. Then we have following sets of S(ΔL3)

S(ΔL3) =

⎧⎪⎪⎨
⎪⎪⎩

Δ(?, ?, ?, 0, ?, 0, 0, ?),
Δ(0, ?, ?, ?, ?, ?, 0, 0),
Δ(?, 0, ?, ?, 0, ?, ?, 0),
Δ(?, ?, 0, ?, 0, 0, ?, ?).



136 T. Koie et al.

Fig. 5. Additional round of first and last

In this case, last 4 bytes of k5⊕w3 can be determined, and remaining 4 bytes
has 24 candidate values. Once k5 ⊕w3 is determined, a pair of input and output
differences of S-layer in round 4 is obtained. Two pairs of plaintexts is enough
to determine the value of k4 ⊕ w4.

Time complexity is estimated as 24 encryptions and 23 × 4 + 28 × 2 table
access. It is less than that for creating DDT table (216), thus time complexity is
negligible. Our attack utilizes four differential characteristics. Such four pairs of
plaintexts are created by only five chosen plaintexts.

6 More-Round Attacks

This section proposes methods to add more rounds on the begin and the end of
5-round attacks on Camellia-128, and describe low-data complexity attacks on
the 7-round Camellia-128.

6.1 Adding First Round

Adding one more round on the begin of 5-round attacks on Camellia (Sect. 5) is
achieved by using a pair of plaintexts in the difference form of

ΔPL = Δ(a, 0, 0, 0, 0, 0, 0, 0),ΔPR = Δ(b, b, b, 0, b, 0, 0, b),

where a and b are arbitrary 1-byte values, respectively. Let us consider the event
where an output difference of the F function in round 1 is cancelled out by ΔPR

as follows.

M(S(Δ(a, 0, 0, 0, 0, 0, 0, 0) ⊕ (k1 ⊕ w1)) = Δ(b, b, b, 0, b, 0, 0, b).

In this case, the truncated characteristic from round 2 follows the same one used
for the 5-round attacks as shown in the left of Fig. 5. Since the probability of
this event is estimated as 2−8, we should collect 28(= 256) pairs of the chosen
plaintexts. Given 24 plaintexts, the number of possible pairs is estimated as(
24
2

)
= 276. Thus, the data-optimized attack on the 6-round Camellia is feasible

with time complexity of 28 × 258 = 266 and 24 chosen plaintexts.



Low-Data Complexity Attacks on Camellia 137

The time-optimized attack on the 5-round Camellia utilizes four differential
characteristics with different input differences. It seems to require 24 × 4 = 96
chosen plaintexts to add the first round. However, one pair of plaintexts which
works for one differential characteristic can be reused for remaining three ones.
Thus, the time-optimized attack on the 6-round Camellia is feasible with time
complexity of 24 × 28 = 212 and 93 chosen plaintexts.

6.2 Adding Final Round

Guessing 64 bits of the sum of the whitening key and 6-th subkey, i.e., w3 ⊕ k6,
we can add one round in the end of 5-round attacks. Note that in this case,
we do not need to guess the 4-round subkey, because once 5 and 6-round keys
are determined, the other keys can be recovered by using relations of the key
scheduling function. Therefore, the data-optimized attack requires 2114(= 250 ×
264) time complexities and 2 chosen plaintexts, the time-optimized attack on
the 6-round Camellia requires time complexitiy of 268(= 24 × 264) and 5 chosen
plaintexts.

6.3 Attacks on 7-Round Camellia-128

Making use of both methods for adding the first and last rounds, we can achieve
the low-data complexity attacks on 7-round Camellia-128.

Since the data-optimized attack on the 5-round Camellia exploits only one
differential characteristic, the required data for adding the first round is 24 chosen
plaintexts, and time complexity increases 28 times. If we add one round in the
end of round, time complexity increases multiple of 264. Then, the 7-round attack
is feasible with time complexity of 2122 and 24 chosen plaintexts.

Since the time-optimized attack on the 5-round Camellia uses four differ-
ential characteristics, the required data for adding the first round is 93 chosen
plaintexts, and time complexity increases 28 times. Adding last one more round
increase the multiple of 264 time complexities. Then, the 7-round attack is fea-
sible with time complexity of 276 and 93 chosen plaintexts.

7 Attacks on Camellia-128 Including FL/FL−1 layers

In this section, we describe low-data complexity attacks on 5 and 6 round
Camellia including FL/FL−1 layer between round 2 and round 3.

7.1 Attack on 5-Round Camellia with FL/FL−1

We prepare a pairs of chosen plaintexts in the difference form of PL = 0, PR =
Δ(0, 0, 0, 0, a, 0, 0, 0). In this attack, we considers a truncated differential char-
acteristic of Fig. 6.

An output difference of FL−1 is ΔR3 = Δ(x, 0, 0, 0, y, 0, 0, 0), and an input
difference of FL−1 is same as ΔPR. The values of Δx and Δy are determined by



138 T. Koie et al.

Fig. 6. Truncated differential of 5th round Camellia with FL layer Here, 0× 01 � a �
0 × 7f .

kl2 in FL−1. Here, we do not need to guess all the key bits of kl2 to know values
of Δx and Δy, and instead guess only bits having a difference thanks to the
bit-based key AND/OR operations. If the number of the bit having difference is
1 (e.g. Δa =1, 2, 4, 8, 16, 32, 64), only 2 bit of kl2 are enough to guess.

Next, let us consider FL layer. Here an input difference of the FL layer is
Δ(0, b, b, b, 0, b, b, b), where b is unknown one byte value. In the FL function, 1-bit
rotation is executed as shown in Fig. 1. If the most significant bit of b has no
difference, namely between 1 and 127, we can obtain an output of the FL layer
of Δ(0, ?, ?, ?, 0, ?, ?, ?), The probability that Δb is between 1 and 127 is 2−1.

Now we get the value of ΔR3 and zero difference byte position at S(ΔL3).
Similar to the 5-round data-optimized attack, we can find 2 byte of k5 ⊕ w3.
Changing the place of input differences, we obtain other 2 bytes of k5 ⊕ w3 as
follows.

ΔPR =

⎧⎪⎪⎨
⎪⎪⎩

Δ(0, 0, 0, 0, a, 0, 0, 0),
Δ(0, 0, 0, 0, 0, a, 0, 0),
Δ(0, 0, 0, 0, 0, 0, a, 0),
Δ(0, 0, 0, 0, 0, 0, 0, a).

⇒ S(ΔL3) =

⎧⎪⎪⎨
⎪⎪⎩

Δ(0, ?, ?, ?, 0, ?, ?, ?),
Δ(?, 0, ?, ?, ?, 0, ?, ?),
Δ(?, ?, 0, ?, ?, ?, 0, ?),
Δ(?, ?, ?, 0, ?, ?, ?, 0).

By using four pairs, we can reduce candidates of w4 ⊕ k4 to 28 from Obser-
vation 1. The probability that all four pairs follow the truncated differential
characteristic of Fig. 6 is 2−4, and we need to guess 8 bits of kl2. Thus, time
complexity for finding w4 ⊕ k4 is estimated as 220(= 28 × 24 × 28). The data
requirement is 9 chosen plaintexts (required differentials are 8).



Low-Data Complexity Attacks on Camellia 139

7.2 Attack on 6-Round Camellia with FL/FL−1

This part describes additional first round or last round and 6 round attack. If
last round is added, time complexity increases 264 and 6 round attack requires
284 time complexities and 9 chosen plaintexts.

In additional first round, we collect 29 = 512 differences because the 5
round attack needs 2 differentials between 1 and 127. 33 chosen plaintext
yield

(
33
2

)
= 528 pairs, and that is enough. At FL−1, the 29 differentials

branch 17136 patterns. We calculated that. Results, additional the first round
requires 33 × 4 − 3 = 129 chosen plaintext (‘−3’ is reworking plaintexts) and
28 × 171364 ≈ 264.3 time complexities.

8 Conclusions

In this paper, we proposed low-data complexity attacks on reduced-round
Camellia. Our attacks are based on deterministic truncated differential char-
acteristics exploiting properties of binaries matrices and differential properties
of S-boxes of Camellia. Combining these with the structure of Camellia, namely
balanced Feistel, we obtain low data complexity attacks on 4 to 7 rounds of
Camellia. Surprisingly, 4 to 6 rounds attacks are feasible with only two cho-
sen plaintexts and the attack complexity becomes very practical by increasing a
small amount of data.

References

1. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: a 128-bit block cipher suitable for multiple platforms—design
and analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012,
pp. 39–56. Springer, Heidelberg (2001). doi:10.1007/3-540-44983-3 4

2. Bogdanov, A., Geng, H., Wang, M., Wen, L., Collard, B.: Zero-correlation lin-
ear cryptanalysis with FFT and improved attacks on ISO standards camellia and
CLEFIA. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282,
pp. 306–323. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43414-7 16

3. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the
full AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 344–371. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0 19

4. Bouillaguet, C., Derbez, P., Dunkelman, O., Fouque, P.A., Keller, N., Rijmen, V.:
Low-data complexity attacks on AES. IEEE Trans. Inf. Theory 58(11), 7002–7017
(2012)

5. Boura, C., Naya-Plasencia, M., Suder, V.: Scrutinizing and improving impossible
differential attacks: applications to CLEFIA, Camellia, LBlock and Simon. In:
Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 179–199.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-45611-8 10

6. Chen, J., Li, L.: Low data complexity attack on reduced Camellia-256. In:
Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 101–114.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-31448-3 8

7. CRYPTREC: Cryptrec ciphers list (2013)

http://dx.doi.org/10.1007/3-540-44983-3_4
http://dx.doi.org/10.1007/978-3-662-43414-7_16
http://dx.doi.org/10.1007/978-3-642-25385-0_19
http://dx.doi.org/10.1007/978-3-662-45611-8_10
http://dx.doi.org/10.1007/978-3-642-31448-3_8


140 T. Koie et al.

8. Grassi, L., Rechberger, C., Rønjom, S.: Subspace Trail Cryptanalysis and its Appli-
cations to AES. IACR Trans. Symmetric Cryptol. 2016(2) (2016)

9. ISO/IEC 18033–3: Information technology - security techniques - encryption algo-
rithms - part 3: Block ciphers (2005)

10. Li, L., Jia, K., Wang, X., Dong, X.: Meet-in-the-middle technique for truncated
differential and its applications to CLEFIA and Camellia. In: Leander, G. (ed.)
FSE 2015. LNCS, vol. 9054, pp. 48–70. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48116-5 3

11. Tiessen, T.: Polytopic cryptanalysis. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9665, pp. 214–239. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-49890-3 9

12. Wu, W., Feng, D.: Collision attack on reduced-round Camellia. Sci. China Ser. F
Inf. Sci. 48(1), 78–90 (2005)

http://dx.doi.org/10.1007/978-3-662-48116-5_3
http://dx.doi.org/10.1007/978-3-662-48116-5_3
http://dx.doi.org/10.1007/978-3-662-49890-3_9
http://dx.doi.org/10.1007/978-3-662-49890-3_9


RESTful Is Not Secure

Tetiana Yarygina(B)

Department of Informatics, University of Bergen, Bergen, Norway
tetiana.yarygina@uib.no

Abstract. The shift in web service design towards the REST paradigm
has spawned a series of security concerns. To date there has been no gen-
eral agreement on how the REST paradigm addresses security and what
web security mechanisms adhere to the REST style. This paper ana-
lyzes the REST paradigm from a security perspective and shows signifi-
cant incompatibilities between the style constraints and typical security
mechanisms. We conclude that the REST style was not designed with
security properties in mind and does not fit the security requirements of
modern web applications.

Keywords: Web services security · REST · Stateless · Token
authentication

1 Introduction

Web services enable rapid design, development, and deployment of software solu-
tions. They provide a unified web interface and hide complexity and heterogene-
ity of the underlying infrastructure, enabling simple integration of diverse clients
and external components [1]. Unfortunately, the desirable simplicity does not
extend to the security aspects of web services.

Representational State Transfer (REST) is an architectural style for web ser-
vices that is widely adopted. As an architectural style, REST imposes six general
design constraints [2]: client-server, stateless resource, cacheable responses, uni-
form interface, layered, and code-on-demand (optional constraint). These con-
straints enforce the original concept of the Web as a scalable distributed hyper-
media system with loosely coupled components. Web services that strictly adhere
to REST style constraints are commonly referred to as RESTful services, while
those with loose adherence are often called REST-like services.

It was long believed [3] that RESTful services should be used for ad hoc
integration over the Web, whereas Big Web services (see [1] for naming conven-
tion) were preferable in enterprise application integration scenarios with longer
lifespans and advanced security requirements. However, today we find that more
and more corporate solutions, even the most security demanding ones like finan-
cial systems and sensitive data operations, are based on RESTful or REST-like
services. In contrast to Big Web services, no formal security framework exists
for RESTful services.

c© Springer Nature Singapore Pte Ltd. 2017
L. Batten et al. (Eds.): ATIS 2017, CCIS 719, pp. 141–153, 2017.
DOI: 10.1007/978-981-10-5421-1 12



142 T. Yarygina

There are relatively few studies of RESTful services security, herein we men-
tion most of them. A recent study by Gorski et al. [4] compares the security
stacks of Big Web services and RESTful services. A paper by Lo Iacono and
Nguyen [5] compares RESTful authentication mechanisms with focus on mes-
sage signing. In particular, the authors propose a signing mechanism not limited
to HTTP. Finally, two papers describe approaches to message security for REST-
ful services [6] and secure communication between mobile clients and RESTful
services [7]. Although all of these studies claim to deal with RESTful security,
they do not discuss the REST architectural style from security perspective.

A much debated question among practitioners is what security mechanisms
are truly RESTful. As an example, discussion threads on RESTful authentica-
tion1 and best practices for securing REST APIs2 are viewed more than 250,000
times each. The introduction of security components often changes system behav-
ior, which can affect how a system adheres to the REST style constraints. To
date there has been no general agreement on how the REST paradigm should
address security. Apart from Inoue et al. [8], who argued that a session state is
not against the REST architectural style, there is a lack of research in the area.

This paper aims to unravel some of the mysteries surrounding RESTful secu-
rity. We analyze the REST paradigm from a security perspective and show signif-
icant incompatibilities between the style constraints and typical security mech-
anisms. To our knowledge, we are the first to conduct such a detailed security
evaluation of the REST style and prove that RESTful security is impossible.

The rest of the paper is organized as follows. In Sect. 2, an overview of com-
mon web security mechanisms and a brief discussion of their security merits are
given. Section 3 explores in detail how particular security decisions and especially
authentication schemes relate to core principles of the REST style. Section 4 con-
cludes the paper by summarizing the uncovered contradictions, discussing the
implications of the findings, and providing insights for future research.

2 Overview of Security Mechanisms
for the Modern Web

Adequate security mechanisms are needed to build secure RESTful services.
This section focuses on common security mechanisms such as Transport Layer
Security (TLS), cryptographic objects in JavaScript Object Notation (JSON),
token-based authentication, client side request signing, and delegated authoriza-
tion and shared authentication. The overview creates a background for a more
advanced analysis of how common security mechanisms adhere to the REST
style constraints.

TLS was originally designed to be independent of any application protocol
and has became a de facto security protocol on the Web. Although the design of

1 https://stackoverflow.com/questions/319530/restful-authentication.
2 https://stackoverflow.com/questions/7551/best-practices-for-securing-a-rest-api-

web-service.

https://stackoverflow.com/questions/319530/restful-authentication
https://stackoverflow.com/questions/7551/best-practices-for-securing-a-rest-api-web-service
https://stackoverflow.com/questions/7551/best-practices-for-securing-a-rest-api-web-service


RESTful Is Not Secure 143

TLS supports mutual authentication, HTTPS in its current form is largely used
to authenticate the gateway, but not the client. Even though the idea of both
parties maintaining digital certificates is simple and secure, embedding a unique
certificate into each client is a serious implementation obstacle. Therefore, client
authentication must be provided on the application (message) level.

To provide higher security, as well as client authentication, TLS can be and
often is combined with encryption and signing on the message level. Standards for
cryptographic objects in JSON and XML were created to address security needs
on the message level and to facilitate interoperability. Cryptographic objects can
be seen as containers incorporating secured data and the information necessary
for its processing. The JSON Object Signing and Encryption (JOSE) suite of
specifications offers powerful and flexible building blocks for message security in
web services by providing a general approach to signing and encryption of JSON-
formatted messages. The JOSE suite is essential for delegated authorization and
shared authentication schemes, such as OAuth 2.0 and OpenID Connect (see
Fig. 1).

JWS JWE
JWT

OAuth 2.0

OpenID
Connect

Fig. 1. The hierarchical relation between the JOSE suite, OAuth 2.0, and OpenID Con-
nect. The JOSE suite incorporates JSON Web Signature (JWS), JSON Web Encryption
(JWE), JSON Web Token (JWT) [9], and several other specifications.

HTTP is a stateless protocol, which implies that requests are treated inde-
pendently of each other. Nevertheless, most web applications require sessions.
Session management in HTTP is historically performed via HTTP cookies, URL
parameters, HTTP body arguments in requests, or custom HTTP headers. A
natural extension of session management is client authentication. In modern
web applications, there exist two main approaches to authentication: token-based
authentication and client side request signing. The following discussion focuses
on the security aspects of these approaches.

Traditionally [10], message authentication methods include Message Authen-
tication Codes (MACs), digital signature schemes, and appending a secret
authenticator value before encrypting the whole text. In the context of modern
web services, either JWS or XML Signature standards can be used for message
authentication depending on the message format. For the sake of simplicity, the
term signature is used to refer to both MACs and actual digital signatures.



144 T. Yarygina

2.1 Token-Based Authentication

Token-based authentication via HTTP cookies is the most widely adopted
authentication mechanism in web applications. The mechanism is based on a
notion of security tokens—cryptographic objects containing information relevant
for authentication or authorization.

An authentication token is generated by a web service and sent to a client
for future use. A service generates a token upon the successful validation of the
client’s credentials either during the initial user log in or a re-authentication. A
token can be seen as a temporary replacement for the client’s credentials: every
request from a client must include a valid token to be fulfilled. A token-based
authentication scheme was first analyzed by Fu et al. in 2001 [11].

Security considerations. Server-created security tokens ensure scalability of
the solution and server statelessness by moving the maintenance responsibil-
ity for tokens to clients. Additionally, a limited lifetime of security tokens makes
them superior to direct use of passwords such as in HTTP Basic/Digest Authen-
tication. A server-side secret used to create tokens is the most important security
asset of the server. If the secret is leaked, the damage is not limited to one user:
an adversary can impersonate any user of his or her choice.

Hijacking of security tokens is another serious threat. Token-based mecha-
nisms rely on channel confidentiality. If compromised, a security token can be
used by an adversary to impersonate the client until the token expires or is
revoked. Short expiration time of tokens limits the possible damage, but also
reduces usability of a system by requiring frequent user re-authentication.

The severity of security token hijacking is rooted in the static nature of such
tokens and their independence of particular requests. Dacosta et al. [12] pro-
posed to switch from static cookies to dynamic ones (request-specific). Channel-
binding cookies is another approach to strengthen cookie-based authentication
by binding cookies to TLS channels using TLS origin-bound certificates [13].
However, no approach has gained wide adoption mostly due to increased com-
plexity. The evidence presented herein suggests that token-based authentication
requires minimal amount of data being stored on the server-side, i.e. contributes
to server statelessness, but also has significant security limitations.

2.2 Client Side Request Signing

Many existing RESTful services implement client authentication and in-transit
tampering protection by requiring a client to sign each request. Cryptographic
keys are established between parties during or after the initial authentication
step. Request signing implies signing of an actual message (HTTP payload)
and, optionally, HTTP headers.

Request signing involving HTTP headers has been successfully deployed
by several major web services such as Amazon Web Services (AWS) [14] and
Microsoft Azure [15]. Both are cloud services intended only for programmatic use
through REST APIs. An investigation shows that numerous newly developed sys-
tems borrow AWS’ HMAC-SHA256-based approach to request signing [14].



RESTful Is Not Secure 145

A comparison of REST message authentication mechanisms based on request
signing was performed by Lo Iacono and Nguyen [5]. The paper contributes a
detailed HMAC-based scheme for authentication of all types of REST messages,
including HTTP messages. A similar, but not as detailed approach to HTTP
signing can be found in the IETF draft Signing HTTP Messages [16].

Security considerations. Client-signed requests provide stronger authentica-
tion than mere token-based schemes. Signing of each client request effectively
mitigates session hijacking attacks by limiting damage only to a single request.
A signing key never leaves a client which makes stealing the key much more
difficult than stealing a token that is not only stored on the client, but also
repeatedly sent over the channel. As often happens, higher security comes at a
price of lower scalability and higher complexity since a server needs to maintain
a separate key for each user.

2.3 Delegated Authorization and Shared Authentication

Delegated authorization and shared authentication have become an integral
part of modern web security. The popular security protocols underlying del-
egated authorization and shared authentication mostly instantiate the token-
based authentication introduced earlier. Therefore, they share both advantages
and disadvantages of token-based authentication.

Delegated authorization. We consider a scenario where a user, or resource
owner, has stored some sensitive information on a server. The desire to separate
the login process on the server from the process of granting permissions to a
client application on the behalf of the user has stimulated the emergence of
OAuth [17]. OAuth is a delegated authorization protocol providing third-party
applications (clients) with delegated access to protected resources on behalf of
a user (resource owner). Client side request signing in OAuth 1.0 enables client
authentication and message integrity, while OAuth 2.0 does not. Developers often
fail to implement OAuth correctly due to its ambiguity and complexity [18–20].

Shared authentication. OAuth 2.0 is used as an underlying layer for shared
authentication protocols and Single-Sign-On (SSO) systems. Prominent exam-
ples are OpenID Connect [21], Facebook Login, and Sign In With Twitter. In
such schemes the user authenticates into a third party service (a Relying Party
or RP) using a digital identity at an Identity Provider (IdP) of the user’s choice.
However, additional steps must be taken in order to use OAuth 2.0 for authenti-
cation. Security analyses of commercially deployed OAuth-based SSO solutions
(i.e. popular social login providers) [20,22] have revealed various security and
privacy issues.

3 REST Architectural Style and Security

So far this paper has focused on the security mechanisms commonly used to
secure RESTful services. This section elaborates on why none of the systems



146 T. Yarygina

using such mechanisms are strictly RESTful by analyzing the REST style and its
constrains from a security perspective. It is worth mentioning that the majority
of RESTful services actually fail to adhere to REST for reasons unrelated to
security. Absence of custom media types support and use of verbs in URIs are
common examples of such violations.

The REST architectural style was introduced by Fielding in his influential
dissertation [2] and related paper [23] in 2000. The style is widely adopted and
many popular web services, such as Twitter3 and LinkedIn4, have REST APIs.
The dissertation remains the most fundamental source when talking about the
core principles of REST.

3.1 Not Designed with Security in Mind

The REST style was proposed as an architectural standard for the Web and
introduced only the properties that seemed necessary for the Web at that time.
Fielding makes no attempt to address the question of security in REST. The
words security, authentication, and authorization are rarely mentioned in Field-
ing’s work. The words encryption and signing do not appear at all.

According to Fielding [2], “REST emphasizes scalability of component inter-
actions, generality of interfaces, independent deployment of components, and
intermediary components to reduce interaction latency, enforce security, and
encapsulate legacy systems.” The claim that REST enforces security is neither
justified in the dissertation nor explained in any other literature related to REST.

When talking about scalability of the Web, Fielding writes [2, Sect. 4.1.4.1]
“since authentication degrades scalability, the architecture’s default operation
should be limited to actions that do not need trusted data.” In modern Web, and
especially for REST APIs, the situation is reversed: some form of authentication
is always present. TLS is only mentioned as a connector type [2, Sect. 5.2.2], no
encryption on the message level is considered.

The REST architectural style does not incorporate security as one of its
goals and leaves it up to the developer to decide how security fits the six core
principles. The introduction of security components affects system behavior ini-
tially shaped by REST constraints. Most of the constraints, such as client-server,
uniform interface, and layered system, are high-level and flexible enough to not
interfere with adopted security mechanisms. At the same time, the stateless,
cacheable, and code-on-demand constraints have several practical security impli-
cations. The security implications of the relevant REST constraints are discussed
in the following sections.

3.2 Stateless Constraint

Revisiting the definition. The stateless resource constraint is particularly
problematic from a security perspective. The constraint is often misunderstood

3 https://dev.twitter.com/rest/public.
4 https://developer.linkedin.com/docs/rest-api.

https://dev.twitter.com/rest/public
https://developer.linkedin.com/docs/rest-api


RESTful Is Not Secure 147

by practitioners and overlooked in the scientific literature. According to Field-
ing [2, Sect. 5.1.3], for a resource to be stateless “each request from client to
server must contain all of the information necessary to understand the request,
and cannot take advantage of any stored context on the server.” Such a defin-
ition makes no exceptions and, when followed to the letter, leaves no room for
security mechanisms.

Furthermore, [2] specifies that the “session state” (also referred to as “appli-
cation state”) should be stored exclusively on the client side; however, a def-
inition of session state is never given. A commonly used interpretation of the
stateless resource constraint introduced in [1] differentiates between application
state and resource state. A resource state is defined as any information about
the underlying resource [1].

While the resource state belongs to the server, it still can be changed in
response to a client request. If we consider a user as a resource, then the balance
of the user’s bank account is a resource state that is changing with each per-
formed transaction. Similarly, usernames and passwords are also resource states
that change over time.

Security implications. Most security components introduce additional
resource states. Stateless security protocols do not exist. It is very hard, if at
all possible, to prevent replay attacks without maintaining at least some form
of client state on the server side. Nonces (numbers used once), counters, and
timestamps are examples of such a resource state. All authentication mecha-
nisms described in Sect. 2 incorporate one or more such components. Thus, web
services utilizing these mechanisms are not strictly RESTful.

Differentiating between application state and resource state can be difficult.
For example, security tokens are stored by the client, but are issued exclusively
by the server. The server must maintain the key(s) used to sign tokens, which
introduces more resource states.

The demand of “taking no advantage of any stored context on the server” is
impractical. For example, a common security practice of restricting the number
of login attempts made per specific account relies on the login history being
available.

As pointed out by Fielding [2, Sect. 6.3.4.2], HTTP cookies fail to fulfill the
stateless constraint of REST. An example of such a violation is the use of cookies
to identify a user’s “shopping basket” stored on the server, while the basket can
be stored on the client side and presented to the server only when the user
checks out. This mismatch between REST and HTTP makes a huge part of the
modern Web not RESTful and implicitly deprecates cookie-based authentication
for RESTful web services.

When token-based mechanisms, such as JWT, OAuth 2.0, and OpenID Con-
nect are used, a server needs O(1) resource states to authenticate N users [11].
With client request signing as in OAuth 1.0a and AWS, the server needs to main-
tain a separate key for each client, thus having O(N) resource states. Therefore,
token-based mechanisms can be considered stateless in a sense that there is
no per-user or per-session state when compared to client request signing given



148 T. Yarygina

a substantial number of clients. Although token-based authentication fits the
REST style better then the client side request signing, the latter is generally
more secure as explained in Sect. 2.

Additionally, it is possible to classify application state into two classes, secu-
rity insensitive and security sensitive, that must be treated differently. The server
cannot prevent the client from tampering with the data given to it, nor can the
server directly protect data stored on a client from malicious third parties. The
latter puts user privacy at risk if the data stored is security sensitive.

Even though the definition of the stateless constraint dictates that a client’s
request must contain all of the information necessary to understand the request,
sensitive information should not be transferred unless absolutely necessary. All
security sensitive application states must belong to the server and be resource
states.

Advantages and disadvantages. To evaluate immediate importance of state-
less resource constraint for modern security-aware applications, the advantages
and disadvantages of the constraint must be revisited. According to Fielding [2],
stateless resource constraint induces the properties of visibility, reliability, and
scalability.

The original argument for improved visibility [2] was that the server should
process a client request without looking beyond this request. The argument is
valid until security is involved. Let us consider an online store. If some items
are added to the shopping basket, the only allowed step should be a payment
step, and not goods delivery. To ensure this restriction, the user must have state
within the system.

Additionally, intrusion detection systems (IDS), anti-denial-of-service, and
anomaly detection mechanisms are more likely to mitigate attacks when they
have knowledge of the state and the history of requests. If we consider security
sensitive data such as authentication tokens, the server unavoidably needs to
validate the token, which requires retrieval of the cryptographic key used to
generate the token. The step of token verification can also be seen as one that
decreases visibility. The aforementioned suggests that improvement of visibility
can only be seen for security insensitive data.

The common belief is that maintaining client states on the server side can
potentially create a high load of session management and degrade system perfor-
mance. However, storing clients states on the server side does not cause significant
performance problems for existing high load systems and Cloud services; a study
of REST session state [8] showed that the impact of the stateless resource con-
straint on scalability and reliability of REST in the modern Web is insignificant.

Moreover, maintaining client states on the server side is a desired property
in many cases, for example personalized services, targeted advertisement, smart
suggestion systems, and IDS benefit from it. An alternative solution to scalability
and reliability issues is adoption of special software architecture styles, such as
microservices [24].

The stateless constraint puts significant limitations on handling session syn-
chronization. In the example with the shopping basket, the problems occur when



RESTful Is Not Secure 149

the user has initialized a session on a mobile device and wants to continue the
session using the browser on a laptop. Storing session state exclusively on the
client side and not on the server makes it impossible to keep persistent state in
such situations. Hence, current demand for client state synchronization negates
the stateless resource constraint of REST.

3.3 Other Constraints Affecting Security

Cache constraint. The cachebility constraint is affecting security much less
than the stateless criteria, but the effect is still noteworthy. The definition of
the constraint [2] states that the server responses must be explicitly marked as
cacheable or noncacheable. Of course, only actual caching of responses improves
scalability and network efficiency by eliminating identical repeating interactions.
Caching of server responses can be performed by intermediates, i.e. proxies and
gateways, or clients themselves.

Caching by intermediates has less value on the modern Web due to an increas-
ing amount of encrypted traffic such as HTTPS traffic. As of February 2017,
52.8% of the most popular websites implemented HTTPS [25]. When encrypted
either by TLS or on the message level, server responses are not cacheable by
intermediate proxies. Encrypted content cannot be cached unless the intermedi-
ates are allowed to decrypt the traffic, which defeats the purpose of encryption
in the first place.

Although caching by clients is not affected by encryption, it loses its impor-
tance due to different reasons. Modern websites include large amounts of dynamic
personalized content that cannot and should not be cached. In case of online
banking or online shopping the content (the bank account balance or availabil-
ity of specific items in the shopping basket) is dynamic and gets outdated fast.
Such content is not suitable for caching due to reliability reasons. Similarly,
sensitive content should never be cached for security reasons.

Taken together, encryption and personalized content dramatically reduce
the benefits of traditional web caching in general, and the importance of cache
constraint of the REST style in particular. While the content marked as non-
cacheable does not contradict the definition of the cache constraint (since the
constraint only requires proper labeling), it brings no actual benefit in terms of
scalability or network efficiency.

Code-on-demand constraint. In the code-on-demand paradigm the code for
a specific task is requested by the client, provided by a server, and executed in
the client’s context. As argued in [2], the code-on-demand constraint of REST
improves system extensibility, but also reduces visibility. Therefore, it is only an
optional constraint.

It should be noted that the code-on-demand constraint is relevant primar-
ily within the browser environment. In semantic web with machine-to-machine
communication and native clients consuming REST APIs, execution of external
JavaScript code in the native applications is currently uncommon.



150 T. Yarygina

An important security implication of the code-on-demand paradigm is an
increased attack surface on a client. Among the major security concerns are
authenticity of the received code and the client’s ability to limit the behavior
of the code. These problems have been studied for a long time and mitigation
techniques, such as sandboxing, Address Space Layout Randomisation (ASLR),
and Data Execution Prevention (DEP), are implemented in modern browsers.
However, the problems still persist.

4 The Way Forward

4.1 Security Failure of REST

The main goal of this paper was to asses how the REST style addresses security
and whether security mechanisms adhere to the style constraints. The study has
shown that the REST style fails to take security into account, or to explain
security implications of the constraints. To fill the gap, we provided the missing
security interpretation of the relevant style constraints and made the following
observations:

– Stateless resource constraint. The more security critical a system is, the more
resource states it is likely to have. Among authentication approaches, token-
based authentication most closely fits the stateless resource constraint. How-
ever, it is not entirely stateless.

– Cache constraint. Although formally the cache constraint (labeling of
responses) is not directly affected by security mechanisms, the constraint
loses its meaning for security critical systems. Encrypted, dynamic, and per-
sonalized content is not suitable for caching.

– Code-on-demand constraint. The optional code-on-demand constraint reduces
security of the system by increasing the attack surface on the client side.

To be strictly RESTful and follow all the constraints as they were originally
defined, a system should neither deploy authentication nor store session identi-
fiers in HTTP cookies or headers. Since only the absence of security mechanisms
allows an entity to provide truly RESTful APIs, a bank claiming to have REST-
ful APIs either has serious security problems or the APIs do not satisfy all the
RESTful requirements.

An important finding is that the concept of RESTful security is impossible.
We conclude that the strict REST style on one side and security mechanisms
and security best practices on the other side are incompatible. We suggest that
secure applications trying to adhere to the REST style should never be called
RESTful, but REST-like, i.e. partially adhering to the REST style constraints.
Although the term REST-like does appear in some security specifications, such
as OpenID Connect [21], it has never been justified from a security perspective.



RESTful Is Not Secure 151

4.2 What to Do

The right security approach is system-specific and heavily dependent on the
context. In particular, the frameworks OAuth 2.0 and OpenID Connect rely
on TLS for confidentiality, integrity, and server authentication. These frame-
works prioritize scalability over security because they use server signed tokens
for client authentication. The overall conclusion from the analysis is that systems
with high security requirements should deploy client signatures, even though it
comes with the cost of reduced performance when compared to token-based
approaches. Social login solutions are both easy to support and convenient for
users, but should be avoided if privacy is a serious concern. OAuth should not
be relied on for authentication and needs to be combined with a component for
authentication. Figure 2 contains a flow chart showing how to choose the correct
security architecture.

Will 3rd 
parties use your 
APIs on users’ 

behalf?

OAuth 
provider

Do you trust 
3rd parties to 
authenticate 
your users?

Start

Do you want to 
provide shared 
authentication 

solution?

More 
scalability, 

less 
security

OpenID Connect 
provider

Social login or 
OpenID Connect 

consumer

TLS+token

Non-repudiation 
needed?

TLS+dig.sign. TLS+HMAC

Y

Y N

N

N

Y Y

Y

N

N

Fig. 2. Making the right security decision

4.3 Future Research

Inoue et al. [8] introduced an architectural style called RESTUS, which incor-
porates session state at the server-side as an additional constraint. RESTUS
partially addresses the security issues of the stateless resource constraint, but
not the issues related to the cache and code-on-demand constraints. Similarly
to REST, it does not accommodate security. Future research should therefore
concentrate on resolving the existing conflicts. A natural progression of this work
is to propose an architectural style that incorporates basic security principles.



152 T. Yarygina

References

1. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly Media, Sebastopol
(2007)

2. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. thesis, University of California, Irvine (2000)

3. Pautasso, C., Zimmermann, O., Leymann, F.: RESTful web services vs. big web
services: making the right architectural decision. In: 17th International World Wide
Web Conference (WWW 2008), Beijing, China, pp. 805–814 (2008)

4. Gorski, P., Lo Iacono, L., Nguyen, H., Torkian, D.: Service security revisited. In:
IEEE International Conference on Services Computing, pp. 464–471. IEEE Com-
puter Society, Washington, DC (2014)

5. Lo Iacono, L., Nguyen, H.: Authentication scheme for REST. In: International
Conference on Future Network Systems and Security, pp. 113–128 (2015)

6. Serme, G., de Oliveira, A., Massiera, J., Roudier, Y.: Enabling message security
for RESTful services. In: IEEE 19th International Conference on Web Services,
pp. 114–121. IEEE Computer Society, Washington, DC (2012)

7. De Backere, F., Hanssens, B., Heynssens, R., Houthooft, R., Zuliani, A., Verstichel,
S., Dhoedt, B., De Turck, F.: Design of a security mechanism for RESTful web
service communication through mobile clients. In: IEEE Network Operations and
Management Symposium, pp. 1–6. IEEE, Krakow (2014)

8. Inoue, T., Asakura, H., Sato, H., Takahashi, N.: Key roles of session state: not
against REST architectural style. In: IEEE 34th Computer Software and Applica-
tions Conference, pp. 171–178. IEEE (2010)

9. Jones, M., Bradley, J., Sakimura, N.: RFC 7519. JSON Web Token (2015)
10. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-

tography. CRC Press, Boca Raton (1996)
11. Fu, K., Sit, E., Smith, K., Feamster, N.: The dos and don’ts of client authentication

on the Web. In: USENIX Security Symposium, pp. 251–268 (2001)
12. Dacosta, I., Chakradeo, S., Ahamad, M., Traynor, P.: One-time cookies: preventing

session hijacking attacks with stateless authentication tokens. ACM Trans. Internet
Technol. 12(1), 1:1–1:24 (2012)

13. Dietz, M., Czeskis, A., Balfanz, D., Wallach, D.S.: Origin-bound certificates: a fresh
approach to strong client authentication for the web. In: 21st USENIX Security
Symposium, pp. 317–331. USENIX, Bellevue, WA (2012)

14. Amazon S3: Authenticating requests (AWS Signature v4). https://docs.aws.
amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html

15. Microsoft Azure documentation: Authentication for the Azure Storage Services
(2015). https://msdn.microsoft.com/en-us/library/dd179428.aspx

16. Cavage, M., Sporny, M.: IETF draft. Signing HTTP messages (2015)
17. Hammer-Lahav, E.: RFC 5849. The OAuth 1.0 protocol (2010)
18. Chen, E., Pei, Y., Chen, S., Tian, Y., Kotcher, R., Tague, P.: OAuth demystified

for mobile application developers. In: ACM SIGSAC Conference on Computer and
Communications Security, pp. 892–903. ACM, New York (2014)

19. Wang, R., Zhou, Y., Chen, S., Qadeer, S., Evans, D., Gurevich, Y.: Explicating
SDKs: uncovering assumptions underlying secure authentication and authoriza-
tion. In: 22nd USENIX Security Symposium, pp. 399–314. Washington, DC (2013)

20. Sun, S.T., Beznosov, K.: The devil is in the (implementation) details: an empirical
analysis of OAuth SSO systems. In: ACM Conference on Computer and Commu-
nications Security, pp. 378–390. ACM, New York (2012)

https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html
https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html
https://msdn.microsoft.com/en-us/library/dd179428.aspx


RESTful Is Not Secure 153

21. Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., Mortimore, C.: OpenID
Connect Core 1.0 (2014)

22. Wang, R., Chen, S., Wang, X.: Signing me onto your accounts through Facebook
and Google: a traffic-guided security study of commercially deployed single-sign-on
web services. In: IEEE Symposium on Security and Privacy, pp. 365–379. IEEE
Computer Society, Washington, DC (2012)

23. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture,
pp. 407–416, June 2000

24. Fetzer, C.: Building critical applications using microservices. IEEE Secur. Priv.
14(6), 86–89 (2016)

25. Trustworthy Internet Movement: SSL Pulse (2017). https://www.trustworthy
internet.org/ssl-pulse/

https://www.trustworthyinternet.org/ssl-pulse/
https://www.trustworthyinternet.org/ssl-pulse/


Malware and Malicious Events Detection



UnitecDEAMP: Flow Feature Profiling
for Malicious Events Identification

in Darknet Space

Ruibin Zhang(B), Chi Yang, Shaoning Pang, and Hossein Sarrafzadeh

Decentralized Machine Learning Intelligence Laboratory Department of Computing,
Unitec Institute of Technology, Auckland, New Zealand
{pzhang,cyang2,ppang,hsarrafzadeh}@unitec.ac.nz

http://www.unitec.ac.nz

Abstract. This paper proposes a traffic decomposition approach called
UnitecDEAMP based on flow feature profiling to distinct groups of
significant malicious events from background noise in massive histor-
ical darknet traffic. Specifically, we segment and extract traffic flows
from captured darknet data, categorize the flows according to sets of
criteria derived from our traffic behavior assessments. Those criteria
will be validated through the followed correlation analysis to guaran-
tee that any redundant criteria be eliminated. Significant events are
appraised by combined criteria filtering, including significance regard-
ing volume, significance in terms of time series occurrence and sig-
nificance regarding variation. To demonstrate the effectiveness of our
UnitecDEAMP, real world darknet traffic data sets with twelve months
are used for conducting our empirical study. The experimental results
show that UnitecDEAMP can effectively select the most significant mali-
cious events.

Keywords: Darknet traffic analysis · Cyber threats · Malicious event
detection · Flow feature profiling · Malicious traffic flow identification

1 Introduction

Observing traffic over darknet space (i.e., non-active IP addresses) has become
an increasingly important analyzing technique for detecting malicious activities
on the Internet. Since there are no legitimate hosts existing in darknet space,
any observed traffic could be the backscatter packets of Distributed Denial of
Service (DDoS) attacks that are using spoofed source addresses; Scanning from
worms and another network probing; or misconfiguration [13]. Regarding this
fact, the traffic observed on darknet is invaluable for monitoring and analyzing
cyber threats. Darknet traffic has been extensively used in observing a broad
range of activities which includes denial of service [5,10,13], worms and scanning
[7,13,19], misconfigured network traffic [6], and malware behaviour categorising
[10]. In practice, over 50% of cyber attacks are preceded by some form of network
c© Springer Nature Singapore Pte Ltd. 2017
L. Batten et al. (Eds.): ATIS 2017, CCIS 719, pp. 157–168, 2017.
DOI: 10.1007/978-981-10-5421-1 13



158 R. Zhang et al.

scanning activity according to Panjwani et al. [16], and in most of the cases, it
is the first stage of an intrusion attempt that enables an adversary to locate,
target, or exploit vulnerable systems remotely.

For malicious network activity analysis, cyber security researchers have
drawn attention to the utilization of darknet monitoring [13] and data collec-
tion. Such collected data will enable researchers to analysis and obtain practical
insight into not only the operation of the Internet background but also partic-
ular global and local events including worms probing and distributed denial of
service (DDoS) attacks. Moreover, the benefit of the darknet is that this allows
cyber security researchers to perform analysis among traffic without concern-
ing privacy issues over the captured data [15]. According to the works done by
Shannon [18] and Moore [12], data collected from darknet telescope has made
an impressive contribution towards worm analysis, especially Code Red; the first
worm has been revealed on network telescope.

The fundamental proposition of our work is that by carefully examining the
packets transmission and underlying features of the sources sending traffic to the
darknet space, we can extract the most up-to-date details of such events for the
next stage analysis. We conduct close observations on captured darknet traffic
data, which contains the load of malicious activities. We show that it is possible
to study the flow features that extracted from flow segmentation of packets data
capture, which then allows us to recover a broad range of significant malicious
events. Also, we propose that the combination of flow feature measurements is
a powerful tool for the detection and classification of network anomalies. The
intuition behind this work is that most kinds of malicious threats cause anomaly
changes in the measures of addresses or ports observed in darknet traffic.

Please note that this work does not evaluate on the TCP protocol traffic
and we have only applied the approach on selected protocols (UDP & ICMP).
There are two reasons for this. First, the well-populated TCP traffic contains
massive background noise, which will cost us huge computation regarding effi-
ciency and second, since there is no ground truth for our dataset, such massive
amount of background noise will interfere the understanding of traffic behavior
and judgment. In Sect. 2, we discuss the status of darknet traffic analysis for
cybersecurity. Section 3 we describe the proposed flow feature profiling approach
for malicious darknet events identification and explains its differences to exist-
ing methods. Section 4 presents the experiment setup, results and discussion. In
Sect. 5 we will conclude our work and its contribution to the field.

2 Background

Darknet points at a group of network security sensors deployed by cybersecurity
researchers for observing events that take place on the internet [12,14]. The pur-
pose of such darknet monitoring is to capture traffics to the unused IP address
space of the network. Consider those unallocated IP addresses are not being
engaged for active and legitimate services, there should be no traffics destined
to those unused IP addresses. Therefore, any incoming traffics observed from the



UnitecDEAMP: Flow Feature Profiling for Malicious Events Identification 159

darknet space are suspicious, and can be considered as unsolicited or miscon-
figured [8]. Visual representation of network data contributes alot as volume of
network data generated and captured keep growing, which makes it increasingly
difficult to detect sophisticated network threats, thus Alsaleh, Barrera & Van
Oorschot [2] propose a network flow filtering mechanism that take advantage
of exposure maps technique to reduce the traffic for the visualization process
according to the network services being offered. There is a significant decrease
in the volume of traffic according to their experiment, which results in visible
patterns and insights not previously apparent. Three years later, apart from
presenting a lightweight network scan detection algorithm (LQS) that detects
scanners in the livenet network, Alsaleh, Barrera & Van Oorschot [3] also propose
a novel method to obtain an estimated ground truth in terms of performence
evaluation.

The definition of flow is introduced in [4], and it is essential in the passive
network traffic measurement and analysis filed. In [9], Kim et al. use flow-based
network traffic analysis technique to detect abnormal network traffic activities.
They indicate that certain malicious activities are not going to be identified
through time series data examination alone, and a flow-based anomaly network
traffic detection method has been proposed and validated. Salem, Vaton and
Gravey [17] propose a new flow-based approach for high-speed network traffic
anomaly detection and classification. In their approach, they start with the data
reduction phase through flow sampling by filtering the short-lived flows only, then
perform random aggregation of some descriptors such as some packets per flow in
two different data structures. After that, the sketch cell values are continuously
monitored through a sequential change-point detection algorithm, and finally,
any significant change in cell values will raise the alarm for the anomaly.

In signature-based approach, a general to a specific framework is proposed by
Agarwal and Joshi, and in their model, the classifier learns from widely various
class distributions in the dataset [1]. They trained their system with KDD Cups
databased, and four groups of attacks were classified: Denial of Service (DoS):
deny legitimate access and request to the server; Probing: information gathering;
User to Root: unauthorized access to root and Remote to Local: unauthorized
access from the remote server to local. Overall, while the traditional signature-
based technique performed well in anomaly detection for darknet space malicious
traffic analysis [11,17], it is rigid and not feasible to develop a comprehensive
signature database for maximum coverage of malicious activity. Especially in
practice, there are new variations of malicious activity unveil every day, which
means theoretically, the size of the signature database will be infinite to cover
every possible threat. Also, those zero-day malicious activities will still potential
to cause great harm when it is not recorded.

3 The Proposed UnitecDEAMP

The Profiling module is part of our Unitec Darknet Event Analytic Model
(UnitecDEAMP). Further to our previous study, the objective of this work,



160 R. Zhang et al.

which is to identify the most significant malicious events from background noise
for later regional analysis. As mentioned earlier in [20], the existing time series
based anomaly detection techniques not satisfy our requirement, as they only
cover the temporal feature of any suspicious activities from the presence of abnor-
mal peaks in the time series data. To obtain additional knowledge for the bet-
ter understanding of events’ behavior, we now have to consider discovering the
causes behind such anomaly and also the varieties of activity on the same host
to produce multiple dimensional analysis regarding outcomes. Therefore we seg-
ment the traffic data into flows first so that each flow will be considered as
an individual activity. Once the flow segmentation completes, we will end up
with tons of malicious activities. Due to the nature of darknet, we should only
consider the most significants to be the candidates for our investigation, and
all the rest are redundant to our design. Also, it is not feasible to develop a
comprehensive signature database that covers every piece of malicious activity.
Thus we propose to introduce sets of criteria that summarized from our traffic
behavior observation, utilize such combination of criteria to distinct the events.
Such criteria including strength (significance regarding volume), frequency (sig-
nificance in terms of time series occurrence) and degree of transmission order
(significance regarding variation). In the end, correlation measurement is taking
place to eliminate any redundant criteria, also unveil the intra-event connections
embedded while providing sufficient illustration for the user to validate through
visual analytics.

3.1 Flow Segmentation

To achieve a better understanding and interpretation of the event behav-
ior, we pay very special attention to those captured event data that
being transmitted pre, during and post the event. Given darknet data
X = {x(1),x(2), . . . ,x(t), . . . ,x(T )} in L emission events, where x(t) =
{a1(t), a2(t), . . . , aM (t)} denotes one network packet consists of M attributes,
and T represents elapsed time. A single point is no sense for event detection,
but a time series could be very long, sometimes containing millions of pack-
ets. For host behavior analyzing, it is desirable to apply a sliding window w to
X and produce an observation of darknet traffic as a sequence of shorter time
series. The observed variable can be any packet attribute ai, or its statistical
representation. In our case, we simply use the number of packets, the number of
source IPs, the number of destination IPs, and the number of the (source and
destination) IP combinations.

We conduct first flow segmentation using Maximum Packets Interval (MPI).
Given a sequence of packets x(1), x(2), . . . , x(t) from the same host and the time
stamp ts(1), ts(2), . . . , ts(t) for each packet, a new flow starts at a packet x(i)
that has a delay to its previous packet Dly(i) = ts(i) − ts(i − 1) greater than
a predefined MPI. In other words, the delay between two sequential packets is
smaller than MPI and that between two flows are greater than MPI. Figure 1
gives an example of flow segmentation. As seen, packets transmitted from two
source hosts are plotted as two streams, and each stream represents a source



UnitecDEAMP: Flow Feature Profiling for Malicious Events Identification 161

Fig. 1. Example of flow segmentation

host. Flow A is extracted from the first stream, in which the flow starts at the
1st packet and ends at the 4th. The 5th packet has a delay greater than MPI.
Thus a new flow (i.e., flow B) creates. The same regulation applies to the other
stream for flow segmentation.

We consider each flow as an activity, and apparently, such flow segmentation
helps distinguish the events on the same host. For MPI, we calculate the cumu-
lative distribution of packet delay over traffic data in the previous work [20],
and observed that over 80% samples’ packet delay is less than 10 s. Therefore,
we adopt MPI as 15 s to ensure that our flow segmentation satisfies (1) small
packet delay with good sample coverage; and (2) each flow covers the whole
period of an event.

3.2 Flow Feature Profiling

At the completion of the above segmentation, we also have extracted the follow-
ing eight flow features for conducting the profiling: number of packets (nPkt),
number of destination IP addresses (nDstIP ), number of destination port
(nDstPort), average packets per second (PktSec), number of packets per desti-
nation IP (nPktDstIP ), number of source port (nSrcPort), time length (TL)
and number of packets per destination port (nPktDstPort)

Criteria for identifying events that are commonly understood (i.e. frequency,
strength), the threshold will be adjusted later during the experiment stage:

– Frequency:
• Type I: an event that has been energetic for a short period, but contributes

a huge amount of traffic. i.e. a huge number of packets with only a few
flows.



162 R. Zhang et al.

• Type II: an event that has been active for a long period to contribute
an enormous amount of traffic. i.e. a huge number of packets plus a huge
number of flows.

– Strength:
• Packets per second: a lot of packets sent in short period generating huge

throughput.
• Total number of packets: a host that produces a lot of packets with con-

stant throughput.
• Flow power ratio: flows that share same/similar peak throughput pro-

vides weaker impacts from longer flow length (Peak Throughput per Flow
Length).

Various flow features are selected and deployed to perform the feature profiling
to distinguish the most significant malicious events from the background noise.
The selection of flow features for each event categories is conducted through
the traffic behavior observation. Once the candidate features are well defined, a
threshold will be applied for the filtering process. The threshold for each flow
features will be different, so to solve this problem, a threshold will be initialized
at the first place which based on that particular flow feature data. The procedure
of flow feature profiling is summarized in Algorithm 1.

Algorithm 1. Flow Feature Profiling
Input: Matrix F contains n flows with m dimensional features, and combination

matrix R for various criteria setup. {F}m = Fm(1), Fm(2), . . . , Fm(n).
Output: Indices {I}p

n for n varieties of malicious activities of protocol p
1: Obtaining
2: Compute significance index Sp

m by Filtering F p
m by applying z

3: if Sp
m < α or Sp

m < β then
4: repeat
5: threshold z by a% increment or b% reduction
6: until fulfilment of Sp

m

7: else
8: Sp

m ∈ {I}p
n

9: end if

For the purpose of obtaining a crispy understanding of the nature of malicious
activities and associated combination of criteria on various attributes that com-
prise a Transmission Control Protocol/Internet Protocol (TCP/IP) connection.
We observed and analyzed hundreds of malicious activities in our previous work
from similar dataset [20]. Looking at the traffic in various anomalous time win-
dow at the IP flow level, and trace back to its original packet data are strategies
involved with our manual inspection (Fig. 2).



UnitecDEAMP: Flow Feature Profiling for Malicious Events Identification 163

Fig. 2. The network configuration of Unitec darknet monitoring system

4 Experiment

The darknet monitoring system conducts real time monitoring within UNITEC’s
internal network infrastructure on total 2,014 (as of January 2014) public IP
addresses. The dataset we used in this work is a selection of 12 months darknet
traffic from 2013 January to December, and it was captured from the dark-
net monitoring system on a /22 network block, which incorporates 1, 024 IP
addresses. Table 1 gives the dataset category statistics in terms of network pro-
tocols applied. As seen from Table 1, TCP traffic is the leading portion of the
whole set of data captured, and SYN packets contributes almost 90 percent
of the TCP data. Despite the fact that the domination of TCP traffic could
provide us well-population of data, we also need to take consideration of the
background noise as it is one of the important characteristics of darknet traffic.
Combating redundant data is a common practice to all darknet traffic analyst,
and computational cost and interference are also the keys toward the model
design. Therefore in our experiments, we adopt ICMP and UDP first to perform
the proposed approach to provide the preliminary study efficiently, afterwards,
a comprehensive study among the TCP dataset will be carried if the outcome
from the preliminary study is positive.

Table 1. Overall breakdown of data in terms of network protocols

Protocol Number of

packets

Weight Number of

flows

TCP flag Number of

packets

Weight Number of

flows

TCP(6) 100,642,347 77.47% 28,808,419 SYN 85,988,605 86.08% 22,972,828

UDP(17) 24,809,348 19.10% 4,603,012 SYN/ACK 12,731,319 12.74% 4,858,380

ICMP(1) 4,458,033 3.43% 1,480,262 ACK/RST 1,183,628 1.18% 769,608



164 R. Zhang et al.

Table 2. Top 20 significant malicious events in ICMP

Signatures

Events ID Occurrence Weight % Power (Packets) nPkt TL PktSec nDstIP nPktDstIP nDstPort nSrcPort

I1 1,071 22.19 989,259 > 850 & < 1, 000 > 200 & < 1, 100 < 200 > 400 & < 500 < 5 n/a n/a

I2 45 11.45 510,435 > 1, 000 & < 72, 975 > 1, 100 & < 268, 940 < 200 < 5 > 40 & < 72, 975 n/a n/a

I3 1,021 7.89 351,885 > 35 & < 850 > 200 & < 1, 100 < 200 > 200 & < 400 < 5 n/a n/a

I4 296 6.78 302,447 > 1, 000 & < 72, 975 < 20 > 1, 200 & < 335, 540 > 500 & < 1, 023 < 5 n/a n/a

I5 83 3.35 149,304 > 1, 000 & < 72, 975 > 20 & < 90 < 200 > 500 & < 1, 023 < 5 n/a n/a

I6 157 2.72 121,243 > 35 & < 850 > 200 & < 1, 100 < 200 > 400 & < 500 < 5 n/a n/a

I7 43 1.26 56,088 > 1, 000 & < 72, 975 > 90 & < 200 < 200 > 500 & < 1, 023 < 5 n/a n/a

I8 531 1.02 45,574 > 35 & < 850 > 90 & < 200 < 200 > 200 & < 400 < 5 n/a n/a

I9 2,403 0.80 35,655 < 15 > 20 & < 90 < 200 < 5 > 5 & < 15 n/a n/a

I10 2,343 0.79 35,167 > 15 & < 35 > 20 & < 90 < 200 < 5 > 15 & < 20 n/a n/a

I11 2,333 0.78 34,995 < 15 & < 35 > 20 & < 90 < 200 < 5 > 15 & < 20 n/a n/a

I12 2,333 0.78 34,995 > 15 & < 35 > 20 & < 90 < 200 < 5 > 15 & < 15 n/a n/a

I13 23 0.69 30,887 > 1, 000 & < 72, 975 < 20 & < 90 < 200 > 500 & < 1, 023 < 5 n/a n/a

I14 31 0.69 28,328 > 850 & < 1, 000 > 1, 100 & < 1, 100 < 200 > 400 & < 500 < 5 n/a n/a

I15 5,105 0.57 25,591 < 15 < 20 & < 90 < 200 < 5 > 5 & < 15 n/a n/a

I16 18 0.49 21,655 > 1, 000 & < 72, 975 > 1, 100 & < 90 < 200 > 500 & < 1, 023 < 5 n/a n/a

I17 16 0.41 18,325 > 1, 000 & < 72, 975 > 200 & < 90 < 200 > 500 & < 1, 023 < 5 n/a n/a

I18 116 0.40 17,865 > 35 & < 850 < 20 & < 200 < 200 > 200 & < 400 < 5 n/a n/a

I19 275 0.38 16,830 > 35 & < 850 > 20 & < 200 < 200 > 200 & < 400 < 5 n/a n/a

I20 12 0.37 16,288 > 1, 000 & < 72, 975 < 20 > 200 & < 1, 200 > 500 & < 1, 023 < 5 n/a n/a

Fig. 3. Top 10 malicious events on
ICMP protocol heatmap

Fig. 4. Correlation measurements
within Top 10 malicious events on
ICMP protocol (threshold 0.5)

4.1 Significant Malicious Events of ICMP

ICMP flood, also known as Ping flood is the most common malicious activity take
place on the ICMP protocol. It is a variation of Denial of Service (DOS) attack
by overwhelming the target host with the high amount of ICMP echo requests,
to cause the degraded performance of the network or take down the service
entirely in some instance. Despite the weight of total ICMP traffic less than 4%
in the collected data, the practical consequences of such malicious activity is
very harmful. By examining the characteristics of ICMP flood, which typically
overloads the victim with a giant volume of requests, we summarized with two
criteria. A massive amount of packets transmitted and high speed of packets
transmission and the flow features associated with those criteria are PktSec,
nPktDstIP , nDstIP , nPkt, TL. Table 2 gives the details of flow feature criteria
for the top 20 events (Fig. 3).

In Fig. 3, we conduct an hourly behavior analysis over 24 h period, and present
in the heat map format. As shown in the colormap beside, warmer color indicates
the energic activity, and on the other hand, cooler color shows the inertia. We
include all the traffic transmitted within the top ten events regarding strength;



UnitecDEAMP: Flow Feature Profiling for Malicious Events Identification 165

Fig. 5. Top 20 malicious events on
ICMP protocol heatmap

Fig. 6. Correlation measurements
within top 20 malicious events on
ICMP protocol (threshold 0.5)

each block is representing the energy of specific event flow traffic during that
hour. Thus we would obtain the multi-dimensional knowledge from both inter-
event and intra-event analysis. The visualization of heat map positively provides
us the better view and understanding of events along the time stamp. The heat
map also outlines the previous mentioned two types of events. Type I events
being very active and contribute a huge amount of packets during a short period
(i.e. event ID 1, 2, 9 and 10), and Type II events provide a lot of packets with
longer time duration, but less throughput (i.e. event ID 4, 5 and 7). This figure
also shows that balanced distributions (sparsely distributed) are frequent in the
traffic patterns. However, to avoid it lead us to the misjudgment (i.e. event ID
1 & 2), we measure the correlation coefficient of the above data and display in
the circular graph Fig. 4, where each dot represents the even ID and connections
between dots are the result of positive correlation. The circular correlation graph
will truly unveil some intra-event connections embedded in the hourly activity
heat map from our human eye (i.e. in Fig. 3, the positive correlation between
event ID 3 & 8 is barely observable from the visualization) (Fig. 4).

4.2 Significant Malicious Events of UDP

One of well known malicious activity by using User Datagram Protocol (UDP)
is UDP flood, and it is still one of the most common DoS attack today, since
the UDP protocol is “connectionless” and does not have any type of handshake
mechanism or session like TCP does. To saturate the bandwidth link id the
main intention of a UDP flood. It works as, a targeted host receives huge num-
ber of UDP packets with spoofed source ip address on various ports, and the
system checks for applications associated with these datagrams, replies back
with a “Destination Unreachable” packet if the search is failed. Table 1 indicates
that portion of UDP traffic is not major, but the impact of any successful UDP
malicious activity is damaging, as by utilising the bandwidth and large capac-
ity servers, attackers send more and more packets to flood the target host with
unwanted traffic in order to make it no longer respond to legitimate services,



166 R. Zhang et al.

Table 3. Top 10 significant malicious events in UDP

Signatures

Events
ID

OccurrenceWeight
%

Power
(Packets)

nPkt PktSecnDstIP nPktDstIP nDstPort nSrcPort

U1 2,808 11.69 2,901,117 > 0 & < 170< 1000 > 1.5 & < 3> 30 & < 80 > 7 & < 20 > 29 & < 45

U2 203 10.53 2,613,471 > 0 & < 170< 1000 > 1.5 & < 3> 30 & < 80 > 7 & < 20 > 4 & < 7

U3 930 3.18 788,758 > 0 & < 170< 1000 > 1.5 & < 3> 10 & < 30 > 20 & < 396> 15 & < 29

U4 28 2.92 724,860 > 0 & < 170< 1000 > 1.5 & < 3> 80 & < 160> 0 & < 2 > 29 & < 45

U5 529 2.21 548,320 > 0 & < 170< 1000 > 1.5 & < 3> 80 & < 160> 7 & < 20 > 29 & < 45

U6 15 1.98 491,328 > 0 & < 170< 1000 > 1.5 & < 3> 80 & < 160> 2 & < 7 > 0 & < 4

U7 6 1.13 279,595 > 0 & < 170< 1000 > 1.5 & < 3> 80 & < 160> 0 & < 2 > 45 & < 60463

U8 2256 1.08 269,123 > 0 & < 170< 1000 > 0 & < 1.5> 10 & < 30 > 2 & < 7 > 15 & < 29

U9 354 1.02 252,475 > 0 & < 170< 1000 > 1.5 & < 3> 30 & < 80 > 2 & < 7 > 4 & < 7

U10 85 0.93 230,222 > 0 & < 170< 1000 > 1.5 & < 3> 30 & < 80 > 20 & < 396> 15 & < 29

Fig. 7. Top 50 malicious events on
UDP protocol heatmap

Fig. 8. Correlation measurements
within top 50 malicious events on
UDP protocol (threshold 0.85)

including but not limited to DNS, SNMP, and DHCP. In the UDP flooding, the
volume of packets transmitted is massive, this could also resulting in multiple
source ports deployment, the duration of such activity is solely strategy depen-
dent, and the target is clear. In the UDP port scanning, not only the volume of
traffic is high, but also the number of destination ports involved with packets
transmission. As shown in Table 3, by considering the above summaries, the flow
features we make use of constructing the criteria for UDP malicious activities are
PktSec, nPktDstIP , nDstIP , nPkt, nDPort, nSrcPort, and details of criteria
indicate the diversity of flow feature profiling in this protocol (Fig. 8).

For UDP protocol, same as ICMP, we also generate the hourly activity heat
map of packets that associated with the top 50 active events, and the same color
map has been used. In Figs. 7 and 9, we could notice that, unlike ICMP, sparse
distributions are less shown in the traffic patterns. This is due to the malicious
activities such as UDP flood, and UDP port scan is often performed on the
condition of either high volume of packets with small ranges of destination IP
(due to multiple destination ports) or great packets transmission throughput
(Fig. 10).



UnitecDEAMP: Flow Feature Profiling for Malicious Events Identification 167

Fig. 9. Top 10 malicious events on
UDP protocol heatmap

Fig. 10. Correlation measurements
within top 10 malicious events on UDP
protocol (threshold 0.85)

5 Conclusion

This work has made several contributions to deal with malicious events in dark-
net space for threats analytics. Firstly, in the UnitecDEAMP module, based on
our previous work on event classification, we carried out traffic decomposition
approach with the addition of proposed flow feature profiling for distinguishing
groups of significant malicious events from massive historical darknet traffic data
for further regional impact studies. At the same time, the background noise was
also taken into consideration. To evaluate our approach, we have selected two
IPv4 protocol datasets (UDP & ICMP). Then, we should integrated correlation
analysis to guarantee that any redundant criteria be eliminated. The experi-
ment results showed that our module can effectively select the most significant
malicious events, and successfully unveil the embedded intra-event connections.

References

1. Agarwal, R., Joshi, M.V.: PNrule: a new framework for learning classifier models
in data mining (a case-study in network intrusion detection). In: SIAM (2000)

2. Alsaleh, M., Barrera, D., van Oorschot, P.C.: Improving security visualization with
exposure map filtering. In: Computer Security Applications Conference, ACSAC
2008, Annual, pp. 205–214. IEEE (2008)

3. Alsaleh, M., van Oorschot, P.C.: Network scan detection with LQS: a lightweight,
quick and stateful algorithm. In: Proceedings of the 6th ACM Symposium on Infor-
mation, Computer and Communications Security, pp. 102–113. ACM (2011)

4. Claffy, K.C., Braun, H.W., Polyzos, G.C.: A parameterizable methodology for
internet traffic flow profiling. IEEE J. Sel. Areas Commun. 13(8), 1481–1494 (1995)

5. Cooke, E., Jahanian, F., McPherson, D.: The zombie roundup: Understanding,
detecting, and disrupting botnets. SRUTI 5, 6 (2005)

6. Francois, J., Festor, O., et al.: Tracking global wide configuration errors. In:
IEEE/IST Workshop on Monitoring, Attack Detection and Mitigation (2006)

7. Harder, U., Johnson, M.W., Bradley, J.T., Knottenbelt, W.J.: Observing internet
worm and virus attacks with a small network telescope. Electron. Notes Theor.
Comput. Sci. 151(3), 47–59 (2006)



168 R. Zhang et al.

8. Irwin, B.: A baseline study of potentially malicious activity across five network
telescopes. In: 5th International Conference on Cyber Conflict (CyCon), 2013, pp.
1–17. IEEE (2013)

9. Kim, M., Kong, H., Hong, S., Chung, S., Hong, J.: A flow-based method for abnor-
mal network traffic detection. In: IEEE/IFIP Network Operations and Manage-
ment Symposium (IEEE Cat. No.04CH37507), vol. 1 (2004)

10. Kumar, A., Paxson, V., Weaver, N.: Exploiting underlying structure for detailed
reconstruction of an internet-scale event. In: Proceedings of the 5th ACM SIG-
COMM Conference on Internet Measurement - IMC 2005, p. 1 (2005). http://
portal.acm.org/citation.cfm?doid=1330107.1330150

11. Lakhina, A., Crovella, M., Diot, C.: Mining anomalies using traffic feature dis-
tributions. In: ACM SIGCOMM Computer Communication Review, vol. 35, pp.
217–228. ACM (2005)

12. Moore, D.: Network telescopes: observing small or distant security events. In: Pro-
ceedings of the 11th USENIX Security Symposium, pp. 167–174 (2002)

13. Moore, D., Shannon, C., Brown, D.J., Voelker, G.M., Savage, S.: Inferring Internet
denial-of-service activity. ACM Trans. Comput. Syst. 24, 115–139 (2006)

14. Moore, D., Shannon, C., Voelker, G.M., Savage, S.: Network telescopes: Technical
report. Department of Computer Science and Engineering, University of California,
San Diego (2004)

15. Pang, R., Yegneswaran, V., Barford, P., Paxson, V., Peterson, L.: Characteristics
of internet background radiation. In: Proceedings of the 4th ACM SIGCOMM
Conference on Internet Measurement, pp. 27–40. ACM (2004)

16. Panjwani, S., Tan, S., Jarrin, K.M., Cukier, M.: An experimental evaluation to
determine if port scans are precursors to an attack. In: Proceedings of the Inter-
national Conference on Dependable Systems and Networks, pp. 602–611 (2005)

17. Salem, O., Vaton, S., Gravey, A.: A scalable, efficient and informative approach for
anomaly-based intrusion detection systems: theory and practice. Int. J. Network
Manage. 20(5), 271–293 (2010)

18. Shannon, C., Moore, D.: The spread of the Witty worm (2004)
19. Staniford, S., Moore, D., Paxson, V., Weaver, N.: The top speed of flash worms.

In: Proceedings of the 2004 ACM Workshop on Rapid Malcode, pp. 33–42. ACM
(2004)

20. Zhang, R., Zhu, L., Li, X., Pang, S., Sarrafzadeh, A., Komosny, D.: Behavior
based darknet traffic decomposition for malicious events identification. In: Arik, S.,
Huang, T., Lai, W.K., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9491, pp. 251–260.
Springer, Cham (2015). doi:10.1007/978-3-319-26555-1 29

http://portal.acm.org/citation.cfm?doid=1330107.1330150
http://portal.acm.org/citation.cfm?doid=1330107.1330150
http://dx.doi.org/10.1007/978-3-319-26555-1_29


A Hybrid Approach for Malware Family
Classification

Naqqash Aman1(B), Yasir Saleem1, Fahim H. Abbasi2, and Farrukh Shahzad2

1 University of Engineering and Technology, Lahore, Pakistan
naqqash.aman90@gmail.com, yasir@uet.edu.pk

2 Lahore, Pakistan
f.abbasi@massey.ac.nz, farrukhshahzad0@yahoo.com

Abstract. One of the top most cyber security threats – in today’s world
– are malware applications. Traditional signature and static analysis
based malware defenses are prune to obfuscation and polymorphism,
so they fail to detect and classify malware variants and zero-day attacks,
due to the exponential growth and ever increasing complexity of malware.
Behavior-based malware detection provides better insight into malware
execution behavior and hence can be used for family classification. This
paper proposes a novel framework that can correctly classify known and
in the wild malware samples into their families and can identify novel
malware samples for analysis. Malware analysis environment is setup
using an enhanced and scalable version of Cuckoo sandbox to generate
behavior reports. These reports are used to extract a novel combination
of features, used to train a machine learning classifier i.e., random forest
to achieve a high predictive performance. The developed system can help
in filtering novel (i.e., zero-day) malwares and can also help in dealing
with the limitation of static analysis while classifying malware into their
families.

Keywords: Malware · Family classification · Cuckoo sandbox ·
Dynamic analysis · Naive Bayes · J48 · Random forests · API call ·
Machine learning

1 Introduction

Internet surfing, using social media and information sharing is not as safe as
it used to be. With the increased Internet usage, states, companies and private
users have to secure themselves in order to protect sensitive information. Cyber-
criminals employ malware to attack their targets in automated fashion. Mal-
ware is growing rapidly, it doubles every year and between years 2012 to 2014 it
has actually tripled. As of 2015, 390 k new malware are registered everyday by
AV-Test institute [4]. Malware exploit vulnerabilities in software to infect and
control their victims. Therefore, security companies are required to detect mali-
cious programs and protect their customers. A lot of human effort is required in

F.H. Abbasi and F. Shahzad—Security Researcher

c© Springer Nature Singapore Pte Ltd. 2017
L. Batten et al. (Eds.): ATIS 2017, CCIS 719, pp. 169–180, 2017.
DOI: 10.1007/978-981-10-5421-1 14



170 N. Aman et al.

analyzing large number of malware samples manually and after malware detec-
tion an additional effort is required to classify malware into families depending
upon their behavior and code similarities. Traditional static analysis based tech-
niques are prune to sophisticated obfuscation, poly & metamorphic variations
and encryption techniques; that make malware unidentifiable for security ana-
lysts. Therefore, researchers are now focusing on dynamic analysis of malware
as compared to static analysis. Dynamic analysis techniques relies on logging
malware behavior by executing it in a virtual sandbox environment and thus
requires less human effort. Malware can be classified into families and types using
machine learning. In this study we have made an effort to develop a framework
which can be used as a filtering application to separate new malware samples
from the already known malware families in order to provide fast and efficient
coverage for new attacks. The known malware samples are than classified into
their family based classes.

Major Contributions: We have made the following key contributions in this
research:

– Developed a malware labeling mechanism which uses labels and information
available from all AV vendors and assign label to malware samples based on
a majority vote performed amongst AVs.

– In addition to API calls being used as features. Key family behaviors are
extracted from arguments of the API calls. Regular expressions are used to
identify distinct behavior patterns which cannot be represented using hard
coded values for each malware family and these identified patterns are used
as features.

– Developed a framework using machine learning techniques to classify known
malware into their respective families and filter novel malware for detailed
analysis.

The remaining paper is organized as follows. Section 2 provides an overview
of related work, Sect. 3 covers the data set and method used for data collec-
tion. Section 4 covers methodology used for malware classification, In Sect. 5 we
discuss results and evaluate performance and finally in Sect. 6 we conclude the
paper.

2 Related Work

Various machine learning approaches have been used to detect and classify sam-
ples into their types and families to filter out malware for detailed analysis that
show novel behavior. The literature related to these approaches is discussed in
this section. In [10] they have used Honey clients and Amun to collect malware.
Malware behavior is identified by executing it in two virtual platforms CWSand-
box [5] and Anubis [3]. The behavior reports are customized using human analy-
sis and are classified into two families Worms and Trojans. The customization
using human analysis is not possible for large sample sets and this work don’t



A Hybrid Approach for Malware Family Classification 171

cover all malware types. In [11] they have classified unpacked malware using
edit distances and inverted indexes as features. The drawback of this method is
that minor changes to malware result in a major difference in feature set, which
reduces classification accuracy. [17] have proposed a multi-task learning system
wchich can simultaneously separate malware from benign samples and also clas-
sify the malware based on its class using deep learning. [8] have used honeypots
to collect malware samples. They collected 10000 malware samples belonging
to 14 malware families. The sample set is labeled using Avira Anti Virus and
executed in CW Sandbox [5] to generate behavior reports, which are used for
classification. The limitation of this research is the use of non-uniform sample
set for malware families which results in a biased classifier and in some cases
they have very low number of samples for a family. For example only 4 samples
are used to build beahvior profile of Worm.korgo. In [7] authors have proposed
a solution to reduce noise and unnecessary text data from behavior reports by
representing malware behavior using a special representation named Malware
Instruction set (MIST). Each system call and its arguments are denoted using
numeric identifiers which in turn reduces the run time of analysis algorithm.
[18] used API names and their input arguments as features and built a binary
classifier for the separation of malicious and clean files. They used a sample set
of 826 malware and 385 clean files. Malware behavior is defined as non-transient
state changes in [9] and hierarchical clustering algorithms are applied to identify
malware classes. In [13] they have used Cuckoo sandbox [6] to generate behavior
reports of around 42000 samples. Sequence and frequency representation of API
calls are used as features. Random forest with 160 trees is used to build a classi-
fier that is able to classify malware based on four types (Trojan, PUP, Adware
and Rootkit) with an AUC value of 0.98 and F-measure of 0.898.

There are several weaknesses in the related work i.e., The use of smaller
data sets for classifier building and very little contribution towards improving
the labeling mechanism of malware samples as researchers tend to rely on a
single AV vendor for labeling the data set. Our technique is different because:
(a) We use a significantly large enough data set considering the total number
samples available for each of these families on VirusTotal. (A minimum of 2000
samples for each family). (b) We have carefully selected high confidence features
which commonly appear among malware families by ensuring selected features
are based on activities performed by malware in the VM are not based on activi-
ties of other processes running in the VM. (c) Our technique has shown successful
classification with 9 different malware families.

3 Dataset

In order to build an effective framework to accurately classify malware into
their respective families it is essential to use a data set consisting of malware
families which are active in the cyber-attacks and therefore, can be used to
classify malware received by AV vendors every day. Due to the lack of standard
data sets for malware classification, it is opted to collect our own sample set



172 N. Aman et al.

using VirusTotal [15]. During the first two quarters of 2016 malware binaries
were collected on weekly basis. On average 0.5 million new binary samples are
submitted on VirusTotal for analysis daily but a limited number of samples
and their results can be retrieved using VirusTotal API. Malware samples were
collected weekly for a period of 6 months, which we believe is a reasonable time
to collect malware data set that represent the trend of cyber-attacks and the
malware families which are most active in these attacks. From the collected
sample set malware families with most number of samples are shown in Fig. 1.

Fig. 1. Distribution of malware families

The graph has been cut off to show top 20 malware families. All those mal-
ware families having more than 2000 samples are considered for the classifi-
cation framework. These families are than analyzed for the final selection. It
is decided to use malware families having many variants as such families use
obfuscation and polymorphism due to which they evade static analysis and as
a result researchers have to repeatedly analyze them. Some malware families
are analyzed and it is observed that they detect and evade virtual execution
environment showing very little or no activity. One such case is Hupigon family,
samples of this family detect VM environment and show no activity. Some of its
variants are also able to crash the execution environment. Based on the matrices
described above a data set of 32475 malware samples consisting of nine malware
families is selected.

4 Methodology

We utilize a novel mechanism for malware family classification. This section
describes the methodology used and will cover the four important parts, namely:
data collection and report generation, label and feature extraction, feature rep-
resentation, feature selection and classification.



A Hybrid Approach for Malware Family Classification 173

4.1 Data Collection and Report Generation

Behavior reports of malware samples are obtained by using a secure and distrib-
uted setup for malware analysis based on Cuckoo sandbox [6]. The enhanced ver-
sion has 11 new API hooked using HOOK JMP DIRECT technique. The imple-
mentation of hooking using HOOK JMP DIRECT is discussed in [12]. New API
hooks are added because they are used by malware frequently and are helpful in
generating a more clear behavioral profile of a malware. Table 1 shows the list of
additional APIs hooked and the count of behavior reports in which these API
calls are reported. The distributed virtual environment consists of 30 VMs and
a controller which is responsible for the distribution of analysis and collection
of reports. It is important to simulate real execution environment, therefore,
Microsoft windows 7 without any service pack is installed in VMs along with
exploitable and vulnerable version of some commonly used software [16]. Addi-
tionally scripts to emulate web activity and user interaction are also running in
VMs. To ensure secure analysis environment malware samples are not provided
Internet connectivity instead INetSim [14] is used to emulate Internet services.
Malware samples are analyzed for 240 s and behavior reports are collected by
controller in JSON format.

Table 1. Hooked APIs and number of reports in which API is reported

API Number of reports

CreateWindow[ExA/ExW] 11486

ExitProcess 24473

ExitThread 8995

GetDiskFreeSpace[A/ExA] 12937

GetFileVersionInfoSizeW 2595

GetFileVersionInfoW 2375

NtCreateEvent 1600

NtOpenEvent 1581

NtResumeProcess 0

SetWindowLong[A/PtrA/PtrW/W] 7436

WaitForDebugEvent 813

4.2 Label Assignment and Feature Extraction

Malware family labels are extracted using VirusTotal [15]. Labels are extracted
by using information available from all AVs rather than using label from any one
of them due to problems of completeness, consistency, correctness and coverage
raised by [1,2]. Signed binaries and other potential non malicious samples are
filtered using Yara rules which are written after performing basic static analysis.
In this research a labeling framework is developed by stripping malware type



174 N. Aman et al.

Fig. 2. Process flow diagram of framework

and other generic information from the labels assigned by AVs, remaining infor-
mation is tokenized and label is selected based on a majority vote amongst the
AV vendors. Features for malware classification are based on file, registry, net-
work, process and system API calls that are invoked during the execution of the
samples. In addition to API calls, signature based features are also used which
denotes the unique behavior of the malware family. Signature based features are
extracted from the arguments of API calls. The overall system is shown in the
flow diagram in Fig. 2.

4.3 Feature Representation

API calls from file, registry, network, process and system activities observed
during the execution of malware data set are used as primary features, whereas
signatures based features which serve as complementary information for malware
classification are extracted from arguments of the API calls. In total 287 features
are used out of which 269 are primary and 18 are used as secondary features.
Features are stored in a matrix where each column represents a fixed order of
feature and each row represents a unique sample. For Primary features, API
calls invoked during the execution of each malware sample are recorded. Based
on the presence of API call in behavior report the corresponding entry in the
feature matrix is set to ‘1’ if feature is present and to ‘0’ otherwise.

For Secondary features, binary representation is used to indicate if signa-
ture is present in API arguments or not. A total of 18 signature based features
are used for the 9 malware families. These signatures are extracted by analyzing
malware family reports and identifying unique activities that defines the key and
trademark behavior of that particular malware family and hence can serve as



A Hybrid Approach for Malware Family Classification 175

Fig. 3. Structure of JSON Behavior report

powerful features. For each malware family one static and one dynamic signa-
ture was identified. Figure 3 shows the structure outline of the behavior report
section from the JSON report.

Static Signatures: Looks for a hard coded string or directory path or any other
indicator in the arguments of API calls. We have analyzed and compared the
behavioral reports of malware families and it is ensured that only those features
are selected as signature features which represent the distinct behavior and are
key indicators of a malware family.

Dynamic Signatures: By using regular expressions a more powerful set of
signatures features can be generated. While analyzing behavior reports it was
observed that malware families in addition to using hard coded names for activ-
ities performed (file, registry etc.) on target machine use pattern based names
which are harder to identify and detect. E.g. Bifrose malware family samples
create a mutex which starts with Bif followed by few decimal numbers. Decimal
numbers are not fixed and may vary (Bif123, Bif1234, Bif345 etc.), therefore, a
regular expression based signature is required to log this pattern based behavior.
The regular expression ‘Bif+. ’ will provide coverage for mutex name variation in
case of Bifrose family.

4.4 Feature Selection

The purpose of feature selection is to primarily avoid over fitting of the classifi-
cation model. API calls that are pivotal in defining behavior of malware family
are used as features, still feature set might have some irrelevant and redundant
information. It is decided to use filters for feature selection as they are indepen-
dent of classification algorithm as compared to wrappers and embedded methods
which are not. Feature selection is performed using Information Entropy, which
uses information gain ratio (IGR) as an important measure to rank a feature.
Tests are executed with all (287), 200 and 100 features using both IG and IGR
in conjunction with Ranker. Random Forest with 100 trees is used as classifier.
The results of these tests are shown in Table 2.

It can be seen that best results both in case of IG and IGR are achieved
when all (287) features are used for classification. It can be concluded from the



176 N. Aman et al.

Table 2. Feature selection tests results (Weighted average)

FS Algorithm Feature count AUC Precision F-measure

IG+Ranker 287 0.99 0.928 0.927

IG+Ranker 200 0.97 0.84 0.83

IG+Ranker 100 0.95 0.82 0.81

IGR+Ranker 287 0.99 0.93 0.927

IGR+Ranker 200 0.974 0.85 0.84

IGR+Ranker 100 0.963 0.849 0.83

table that all features used in this study provide unique information and there
is no redundancy or noise in the extracted features.

5 Results

From the data set, families with relatively uniform and large data set are selected.
Based on this criteria 32475 samples from nine malware families are selected. The
dataset is then split into a training set and test set, in such a way that both sets
have coverage from all classes. 67% of the sample set is used for training and the
remaining 33% is testing.

5.1 Model Selection and Training Set Evaluation

It is very important to analyze the feature set and machine learning algorithms
in order to select a machine learning algorithm which is most suitable for mal-
ware classification problem. We are using API calls as features, The API calls
are invoked in a sequential manner during the execution of a program and are
dependent upon the each other. Therefore, it is essential to select machine learn-
ing algorithm which don’t consider features separately and independently and
can identify the relation between them. It is also important to consider the size of
data set and select a machine learning algorithm which is low bias/high variance
as they have a low asymptotic error and high bias algorithms are not powerful
enough to provide accurate models.

Based on our analysis of feature set and machine learning algorithms it is
decided to use J48 a decision tree algorithm, as decision tree classifiers are able
to handle feature interactions and they are non-parametric due to which they
can handle outliers. The only problem with decision tree classifiers is that they
can sometimes over fit, this problem can be resolved using ensemble methods
and therefore, Random forest is also selected to be used as classifier in the
training phase. In order to support our study and to justify the decision of not
using classifiers which consider each feature independently and are high bias/low
variance, it is decided to use Naive Bayes classifier as well in the training phase
in order to see if poor performance is observed.



A Hybrid Approach for Malware Family Classification 177

In order to select the best model we shall rely on the classifier that yields the
most correct results. Hence a simple 10-fold cross validation is used for evaluating
the training set using three machine learning classifiers namely: J48, Naive Bayes
and Random Forest. The weighted average results of 10-fold cross validation of
each of these classifiers for the training phase are presented in Table 3.

Table 3. Training Results for the selected classifiers (Weighted Average).

Classification algorithm TP rate FP rate Precision F-measure AUC

Naive Bayes 0.732 0.037 0.741 0.724 0.917

J48 0.908 0.012 0.911 0.908 0.97

Random Forest 0.927 0.009 0.93 0.927 0.99

From table it can be seen that Random forest is showing best results. J48
also has shown promising results with good classification accuracy and a very low
FPR. Naive Bayes as expected has not performed well as it considers all features
individually and independent of each other. Based on the 10-fold cross validation
results on the training data it is decided to use Random Forest for classifying
malware in the testing phase as it provides highest TP rate and Lowest FP rate
amongst the classifiers used.

5.2 Test Set Evaluation

Random Forest was able to classify 93.0235% of the samples correctly with mean
absolute error of 0.0292 and root mean square error of 0.1133. The classifier
has a very low number of FPs and FNs, as it is indicated from high values
of precision (0.933) and TP-rate (0.93). The classification results of the testing
phase are described and evaluated using the following metrics: TP rate, FP rate,
Precision, F-measure and Area under the curve. All these metrics are presented
in the form of Table 4, these results are be followed by an overall summary in
the form confusion matrix shown in Fig. 4.

If we look at the results presented in table for nine classes, it can be seen that
the classifier has best results for “Swizzor” and “Vundo”. This is due to the fact
that these malware families have less number of variants as compared to other
classes and most of the samples show distinct behavior represented by signature
based features. “Small” on the other hand shows less promising results for TPR,
FPR and F-measure as compared to other families. The predictions made by
the framework for individual classes can be seen in the confusion matrix and are
discussed in the next section.

5.3 Discussion and Analysis of Results

In this section we will try to analyze and asses the results and performance of
proposed approach for malware classification. We will discuss if the results for



178 N. Aman et al.

Table 4. Testing results for random forest using representation 2

Class TP rate FP rate Precision F-measure AUC

Banload 0.93 0.007 0.962 0.946 0.99

Bifose 0.833 0.01 0.846 0.84 0.98

Buzus 0.887 0.01 0.891 0.889 0.98

Farfli 0.993 0.023 0.805 0.889 0.98

Small 0.862 0.023 0.866 0.864 0.98

Swizzor 0.993 0 0.999 0.996 0.99

Vundo 0.991 0 1 0.996 1

Zbot 0.92 0.001 0.985 0.951 0.99

Zlob 0.934 0.005 0.974 0.953 0.99

Weighted Avg. 0.93 0.009 0.933 0.931 0.99

a given malware class are useful enough to be used in the future system and
opportunities that present themselves for future research.

Some of the “Banload” samples are classified as bifrose, buzus and small
and vice versa. Banload is a family of Trojans used to download other malwares
mostly responsible for stealing banking credentials. Buzus is also an information
stealing family and bifrose is a combination of backdoor and trojan allowing
remote access to the attacker which is also used for information stealing in most
cases. This shows that banload has functional similarities with bifrose and buzus.

“Small” is another family which is showing some considerable number of FPs
and FNs for all classes except for vundo and swizzor. This is due to the fact that
small is a very generic malware family having a great number of variants. They
are mainly used to download and execute malicious code and files on the affected
computer, however its variants can be virtually use for any purpose. The result
of generic behavior of small malware family is that it has less discriminative
features and its functionality overlaps with that of other malware classes.

“Swizzor” and “Vundo” have shown best results in classification because they
have some distinct functionality which as a result provide us with discriminative
features. Swizzor are trojans which mostly inject code into web browser in order
to display adware or sometimes to download additional threats and vundo is a
multi-type family that is used to display irrelevant pop-up ads. They are mostly
installed without user consent as helper object for browser.

A few number of instances from each malware family are classified as “Farfli”.
These FPs are observed because the activities of this family are limited, it drops a
few files on infected machine and sometimes modifies start page of browser. It has
capabilities to contact a remote attacker and wait for instructions. Samples from
other malware families that contain limited number of events in the behavior
report due to evasion, launching and arguments issues, communication errors
between controller and guest VMs and incomplete analysis due to any other
reason are classified as “Farfli”.



A Hybrid Approach for Malware Family Classification 179

Fig. 4. Confusion matrix: Results of the testing phase

Overall the results of family classification are encouraging with very small
number of miss predictions. In this study an effort is made to collect a large
sample set but in order to enhance this system we intend to include more malware
families and a larger sample set for new as well as existing malware families will
be required.

6 Conclusion

This study proposes a malware family classification system based on malware
behavior. High frequency malware samples comprising of 9 distinct classes are
collected from VT and submitted to an enhanced version of Cuckoo sandbox
to generate behavior reports. A novel labeling mechanism is employed to cope
with AV’s naming and coverage inconsistencies. Once labeled, novel features
were studied and extracted into a multi-dimensional vector space, which include
API calls, static and regular expression based signature features from APIs input
arguments. 269 API calls based, 9 static and 9 regular expressions based features
were used. The features set was represented in WEKA compatible format and
submitted to three different machine learning classifiers namely: J48, Random
Forest and Naive Bayes. In order to evaluate the training set we applied a 10
fold cross validation test which revealed that random forest performs the best
classification compared to others. Random forest classifier with 100 trees was
then used on test data set and it provided excellent results with a steep ROC,
and an area under the curve of 0.9914. Precision, recall and F-measure of classifier
are 0.933, 0.93 and 0.931 respectively.



180 N. Aman et al.

References

1. Mohaisen, A., Alrawi, O., Larson, M., McPherson, D.: Towards a methodical
evaluation of antivirus scans and labels. In: Kim, Y., Lee, H., Perrig, A. (eds.)
WISA 2013. LNCS, vol. 8267, pp. 231–241. Springer, Cham (2014). doi:10.1007/
978-3-319-05149-9 15

2. Mohaisen, A., Alrawi, O.: AV-meter: an evaluation of antivirus scans and labels.
In: Dietrich, S. (ed.) DIMVA 2014. LNCS, vol. 8550, pp. 112–131. Springer, Cham
(2014). doi:10.1007/978-3-319-08509-8 7

3. Anubis. http://anubis.iseclab.org/
4. AV-TEST (2016). New Malware, https://www.av-test.org/en/statistics/malware/
5. Willems, C., Holz, T., Freiling, F.: Toward automated dynamic malware analysis

using CWSandbox. IEEE Secur. Priv. 5, 32–39 (2007)
6. Guarnieri, C., Tanasi, A., Bremer, J., Schloesser, M.: The cuckoo sandbox (2012)
7. Rieck, K., Trinius, P., Willems, C., Holz, T.: Automatic analysis of malware behav-

ior using machine learning. J. Comput. Secur. 19(4), 639–668 (2011)
8. Rieck, K., Holz, T., Willems, C., Düssel, P., Laskov, P.: Learning and classification

of malware behavior. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol. 5137, pp.
108–125. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70542-0 6

9. Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F., Nazario, J.:
Automated classification and analysis of internet malware. In: Kruegel, C., Lipp-
mann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 178–197. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-74320-0 10

10. Zolkipli, M.F., Jantan, A.: An approach for malware behavior identification and
classification. In: 3rd International Conference on Computer Research and Devel-
opment (ICCRD), pp. 191–194 (2011)

11. Gheorghescu, M.: An automated virus classification system. In: Virus Bulletin
Conference, pp. 294–300 (2005)

12. Ferrand, O.: How to detect the cuckoo sandbox and to strengthen it? J. Comput.
Virol. Hacking Tech. 11, 51–58 (2015)

13. Pirscoveanu, R.S., Hansen, S.S., Larsen, T.M., Stevanovic, M., Pedersen, J.M.,
Czech, A.: Analysis of Malware behavior: type classification using machine learning.
In: International Conference on Cyber Situational Awareness, Data Analytics and
Assessment (CyberSA), pp. 1–7 (2015)

14. Hungenberg, T., Eckert, M.: INetSim: internet services simulation suite (2013).
http://www.inetsim.org

15. VirusTotal. VT Community. https://www.virustotal.com/
16. Vulnerability & Exploit Database. https://www.rapid7.com/db/
17. Huang, W., Stokes, J.W.: MtNet: a multi-task neural network for dynamic

malware classification. In: Caballero, J., Zurutuza, U., Rodŕıguez, R.J. (eds.)
DIMVA 2016. LNCS, vol. 9721, pp. 399–418. Springer, Cham (2016). doi:10.1007/
978-3-319-40667-1 20

18. Salehi, Z., Ghiasi, M., Sami, A.: A miner for malware detection based on API func-
tion calls and their arguments. In: 16th CSI International Symposium on Artificial
Intelligence and Signal Processing (AISP), pp. 563–568 (2012)

http://dx.doi.org/10.1007/978-3-319-05149-9_15
http://dx.doi.org/10.1007/978-3-319-05149-9_15
http://dx.doi.org/10.1007/978-3-319-08509-8_7
http://anubis.iseclab.org/
https://www.av-test.org/en/statistics/malware/
http://dx.doi.org/10.1007/978-3-540-70542-0_6
http://dx.doi.org/10.1007/978-3-540-74320-0_10
http://www.inetsim.org
https://www.virustotal.com/
https://www.rapid7.com/db/
http://dx.doi.org/10.1007/978-3-319-40667-1_20
http://dx.doi.org/10.1007/978-3-319-40667-1_20


Low-Complexity Signature-Based Malware
Detection for IoT Devices

Muhamed Fauzi Bin Abbas(B) and Thambipillai Srikanthan

Nanyang Technological University, Singapore, Singapore
{fauzi,astsrikan}@ntu.edu.sg

Abstract. The ominous threat from malware in critical systems has
forced system designers to include detection techniques in their systems
to ensure a timely response. However, the widely used signature-based
techniques implemented to detect the multitude of potential malware
in these systems also leads to a large non-functional overhead. Such
methods do not lend well to the extremely resource constrained IoT
devices. Hence, in this paper, we propose a low complexity signature-
based method for IoT devices that only identifies and stores a subset
of signatures to detect a group of malware instead of storing a sepa-
rate signature for every potential malware, as done in the existing work.
Experimental results show that the proposed approach can still achieve
100% detection rate while relying on a very low number of signatures for
detection.

1 Introduction

The dramatic rise in the number of hacking attempts, often resulting in
catastrophic losses, has made information security a critical concern for not only
government agencies and large corporations but also the masses. Recently, with
the sheer popularity of IoT devices that are typically ultra resource-constrained
embedded systems, the number of malware [1] focusing on IoT has multiplied.
The year 2015 saw the biggest jump in the number of malware targeted towards
IoT devices [2,3]. [4,5] have shown that there is a rapid increase in the number
of embedded malware that impacts every aspect of modern life. This could be
attributed to the large number of embedded devices we use in our everyday lives
- from smartphones to vehicles, kitchen appliances, and television sets - that all
contain embedded systems and software. Hence, the impact of a malware attack
can be very critical and potentially life threatening [6,7].

Additionally, malware has become more sophisticated, targeted and stealth-
ier with time [8]. This makes it extremely challenging to detect them in a timely
manner and take appropriate actions. Further, the computational effort required
to be on a constant lookout and rapidly differentiate malicious application (mal-
ware) from non-malicious ones (benign) adds to the overhead in a system. This
is especially troublesome for resource constrained embedded systems in general
and considerably more so for ultra resource constrained IoT devices.

c© Springer Nature Singapore Pte Ltd. 2017
L. Batten et al. (Eds.): ATIS 2017, CCIS 719, pp. 181–189, 2017.
DOI: 10.1007/978-981-10-5421-1 15



182 M.F.B. Abbas and T. Srikanthan

Existing techniques of detecting malware are either based on machine learn-
ing [9,10] or malware signatures [11,12]. Machine learning based techniques
require meticulous selection of features that would best help classify the mal-
ware. In addition, machine learning based detector need careful training and
long time for tuning [13]. Additionally, machine learning faces false alarms that
can quickly erode users trust in the machine-learning-based solutions [14].

Currently, signature-based malware detection techniques are still the most
widely used method for detecting malware [15,16]. However, in this method
unique signatures need to be generated offline for every malware [17] and stored
in the system for online detection. This puts additional pressure on the memory
and computational resources of the already resource-constrained IoT devices.

Hence, in this paper we present an enhanced signature-based detection sys-
tem that identifies and stores common signatures for a group of malware instead
of storing unique signatures for every malware. An intelligent mechanism to fall
back on the existing approach of generating and storing unique signature per
malware is also used as a last resort to ensure close to 100% detection rate. This
technique offers multiple advantages over existing solutions including high accu-
racy, no false alarm generation, and reduced memory resource requirement to
store the signatures. These characteristics make our malware detection approach
ideal for the ultra resource-constrained IoT devices.

The rest of the paper is organized as follows. Section 2 presents some of
the recent and important work in this area. Section 3 discusses our proposed
methodology while Sect. 4 presents the results. Section 5 concludes this paper.

2 Related Work

Currently, there are various malware classification techniques based on machine
learning using features obtained from static and dynamic analysis of mal-
ware [18,19]. Static analysis is the technique to analyse malware without a need
for executing it [20]. This is done by examining the malicious code and finding
patterns such as strings and import functions etc. The drawback of this approach
is that it is unable to detect complex and polymorphic malware. This problem
can be solved by performing a dynamic analysis [21] which includes executing it
in a controlled environment and monitoring various run-time activities like reg-
istry changes, system calls, performance counters etc. Combining both approach
would improve the detection and classification of malware.

There are several research works that suggested monitoring the system calls
of a program for the purposes of malware detection. Signature-based matching
technique is one of the most popular approach for malware detection [15]. This
technique has been applied in anti-virus products in the market. Forrest et al. [22]
discovered that the short sequences of system calls made by a program during a
normal executions are consistent but the sequences changes in an exploited appli-
cation. Wagener et al. [23] proposed an automated approach to extract malware
behavior by observing the system calls in a sandbox environment. Similarities
and distances between malware behaviors are computed which allows classifying



Low-Complexity Signature-Based Malware Detection for IoT Devices 183

malware behaviors. The classification process uses phylogenetic tree which has
limitation of wrongly classifying a few malware behavior.

In contrast, our approach is faster and computationally less intensive in
generating the malware signatures while maintaining a high detection rate of
known malware. Unlike existing signature-based approaches, our approach does
not monitor specific byte-sequences or string that are unique for every malware.
Instead, it strives to find common signatures across a group of malware to save
on the computation and storage costs of these malware signatures and therefore
is especially useful for extremely resource constrained IoT devices.

3 Proposed Malware Classification System

This section presents the proposed system for extracting a small set of mal-
ware signatures that are used to differentiate malware from benign applications.
Figure 1 illustrates the design flow of the proposed malware signature extraction
technique and its subsequent usage for malware detection. Our method works
in two stages where the signatures are first extracted in an offline step and then
subsequently used in an online malware detection step.

Executable Trace 
Acquisi�on

Signature 
Extrac�on

Signature 
Refinement

Malware 
Detec�on

Enhanced 
Malware 
Detec�on

Malware

Fig. 1. Overview of the proposed technique

3.1 Offline Signature Extraction

As can be seen in Fig. 1, a system call trace is first obtained from the malware
by executing it in a sandbox environment. The traces are then processed and
analysed to extract signatures, which are essentially unique sequences of system
calls that can be used to identify a particular malware executable. The minimal
set of signatures are selected that can be used to identify a group of malware.
In a similar fashion, signatures from benign executables were also obtained.
Finally both the benign and malware signature list are analysed to select relevant
signatures that can be used to accurately detect malware while eliminating the
false positive. The description of various steps involved in the system is as follows:



184 M.F.B. Abbas and T. Srikanthan

Trace Acquisition: The executables are run in a Virtual Machine Linux sand-
box environment as explained later in Sect. 4. This sandbox ensures that the
system call trace can be obtained in a controlled and isolated environment.
The execution step generates the real-time system call traces of the executable.
Table 1 shows an excerpt of the system call trace before (Column 1) and after
(Column 2) processing. This involves removing both the inputs and outputs.

Table 1. Processing system call trace

Raw trace Processed trace

brk(NULL) = 0x892e000 brk

access(“etc/ld.so.nohwcap”,F OK) = −1 ENOENT access

access(“etc/ld.so.preload”,R OK) = −1 ENOENT access

open(“etc/ld.so.cache”,O RDONLY—O CLOEXEC) = 3 open

fstat64(3, fst mode = S IFREG—0644, st size = 82832, ...g) = 0 fstat64

mmap2(NULL, 82832, PROT READ, MAP PRIVATE, 3, 0) = 0xf7719000 mmap2

close(3) close

In this work, as in [24], we used common applications such as Firefox and var-
ious Linux commands (ls, pip, etc.) as benign applications. Similar to malware,
we also use benign applications’ executable to obtain their system call traces by
running them on the same sandbox environment. Both the malware and benign
traces are then passed to the next step to extract the respective signatures.

Benign 
Executable

Pre-processed 
System Call Traces

Unique Signatures
(Benign) Benign Signatures

virtual
machine
sandbox

extract
unique
signatures

combining all
unique signatures

Malware 
Executable

Pre-processed 
System Call Traces

Unique Signatures
(Malware)

Minimal Set of 
Unique Malware 

Signatures

virtual
machine
sandbox

extract
unique
signatures

Clustering and obtain
most frequent occurring
across all malware
signatures

Fig. 2. Signature extraction

Signature Extraction: As shown in Fig. 2, signature is generated by extracting
a sequence of 2 to 5 system calls for each system call, till the end of the trace.
Here, we define a signature as a list such sequential system calls. All duplicate
signatures are removed. This signature can be subsequently used to identify a
particular executable. This procedure is then repeated for each of the malware
and benign traces. Algorithm 1 shows a pseudo code for this procedure.

After obtaining the signatures for all malware, they are sorted based on their
occurring frequency across all the malware. This procedure is repeated for benign



Low-Complexity Signature-Based Malware Detection for IoT Devices 185

Algorithm 1. Extracting Unique Signatures
1 for each Sn from 1 to n do
2 add(SL, [Si, Si+1]);
3 add(SL, [Si, Si+1, Si+2]]);
4 add(SL, [Si, Si+1, Si+2, Si+3]);
5 add(SL, [Si, Si+1, Si+2, Si+3, Si+4]);

6 end
7 for each i from 1 to i-1 do
8 for each j from i+1 to n do
9 if SL(i) == SL(j) then

10 remove(SL, SL[j]);
11 end
12 next j;

13 end
14 next i;

15 end

executables. However, rather than sorting the signatures, we chose to compile
all the benign signatures in to a master list.

Signature Refinement: Finally, as shown in Fig. 3, the benign signature list
and malware minimal set signature list are cross referenced. Any signature from
the malware set that is found in the benign list is removed as a potential sig-
nature to uniquely identify a malware. This is to eliminate any false positive
by ensuring that any signatures used for malware detection cannot be found
in benign executables. The refined signature list can be further reduced while
still maintaining the same detection rate. This is mainly due these signatures
detecting the same set of malware. Thus removing either one of these signatures
would yield the same detection rate. Algorithm 2 shows a pseudo code for this
signature refinement step.

3.2 Online Malware Detection

As can be seen in Fig. 4, the application would be executed on the system while
the system monitors keep tracks of any system call that is being executed [25].
If the system call matches with any of the system call in the first system call in
refined malware signatures, the system would monitor and check if the subse-
quent system calls match. If so, then the application is a malware.

3.3 Enhanced Malware Detection Algorithm

In cases where the refined malware signatures fail to detect certain malware, the
system can fall back on existing signature-based technique to extract system call
signatures from each malware by cross-referencing the malware signatures with
the benign signature list as shown in Fig. 5. These signatures were not included
in the refined malware signatures as these malwares are unique (outliers) and do
not share any similarities in system call signatures with other malwares.



186 M.F.B. Abbas and T. Srikanthan

Refined Malware 
Signatures

remove malware 
signatures appearing 
in benign signatures

Benign Signatures
Minimal Set of 

Unique Malware 
Signatures

Fig. 3. Refining malware signature
extraction

Applica�on System Call 
Matching

trace
monitoring

Refined Malware 
Signatures

yes
Malware

Malware 
Signature 
Match?

no

Trace 
End?

yes
Benign

no

Fig. 4. Malware detection

Algorithm 2. Malware Signature Refinement
1 for each Si from 1 to i do
2 for each Si from 1 to i do
3 add(SignatureList, Mj[Si]);
4 end

5 end
6 for each i from 1 to i-1 do
7 for each j from i+1 to n do
8 if SignatureList(i) == SignatureList(j) then
9 remove(SL, SL[j]);

10 end
11 next j;

12 end
13 next i;

14 end

Therefore, the overall purpose of the system is to find the balance between
the minimal set of malware signatures and high detection accuracy. This would
significantly reduce the iteration for enhanced malware detection algorithm.

4 Evaluation

We conducted our experiments on a Virtual Machine with 4-core CPU and 4GB
RAM running Ubuntu 13.04 Linux OS with kernel version 3.8.0. We collected
70 malicious samples targeting Linux OS from Virusshare [26] database that is
available in the public domain after free registration. These were scanned using



Low-Complexity Signature-Based Malware Detection for IoT Devices 187

Refined Malware 
Signatures

remove malware signatures
appearing in benign signatures

Benign Signatures

Minimal Set of 
Unique Malware 

Signatures

verify
signatures
accuracy

Malware not 
Detected

Refined Malware 
Signatures

extract malware signatures
using exis�ng method

update
signature
list

Fig. 5. Enhanced malware signature extraction

AVG anti-virus software to verify their maliciousness. As mentioned in Sect. 3, we
used common applications such as Firefox and various Linux commands (ls, pip,
etc.) as benign applications in this work. The system call trace was generated
once and stored for all the malware and benign application executables.

4.1 Experiment Results

As discussed in Sect. 3, we identified the common system call based signatures
from all the 70 malware samples’ trace that do not appear in the benign applica-
tions’ trace. Figure 6 plots the number of malware, in terms of percentage, that
contain these identified signatures. The signatures, as plotted on the X-axis,
are sorted in a descending order of their number of occurrences in the malware
samples. For example, from Fig. 6, Signature 1 appears in close to 48% of the
malware samples, while Signature n appears in about 2% of the malware. We
obtained an average of about 90% detection rate, as shown in the first column
of Fig. 7, using only the top 3 most frequently occurring signatures.

In order to ensure a 100% detection rate, we identified additional signa-
tures for the malware that cannot be detected using the top 3 most frequently
occurring signatures, as described in Sect. 3.3. For the 70 malware samples, we
identified 4 additional signatures that could be used to detect all the malware.
The second column in Fig. 7 shows the detection rate after using the enhanced
malware detection technique described in Sect. 3.3 after using the enriched set
of signatures. Hence, it is evident that the proposed method only needs a total
of 7 signatures to detect 70 malware samples. The small, but highly effective,
set of signatures do not add a significant overhead to the malware detection
mechanism and hence is useful for IoT devices.



188 M.F.B. Abbas and T. Srikanthan

0

10

20

30

40

50

60

Pe
rc

en
ta

ge
 n

um
be

r o
f m

al
w

ar
es

 (%
)

Fig. 6. Sorted malware signature by per-
centage (% found in malwares)

89

100

0

10

20

30

40

50

60

70

80

90

100

Refined Malware
Signatures

Enhanced Malware
Signatures

Fig. 7. Refined vs Enhanced tech-
nique (detection %)

5 Conclusion

In this paper, we presented an improved signature-based malware detection
method. The system call based signatures provide a way to use a minimal set of
signatures for detecting a group of malware instead of using unique signature per
malware, as done in the existing methods. It was shown through experimental
evaluation that only 7 signatures is enough to detect 70 malware taken from a
popular malware dataset.

References

1. Moser, A., et al.: Exploring multiple execution paths for malware analysis. In: 2007
IEEE Symposium on Security and Privacy (SP 2007), May 2007

2. Symantec Security Response, IoT devices being increasingly used for DDoS
attacks (2016). https://www.symantec.com/connect/blogs/iot-devices-being-
increasingly-used-ddos-attacks. Accessed 28 Mar 2017

3. Snell, B.: Mobile threat report: whats on the horizon for 2016 (2016). https://www.
mcafee.com/us/resources/reports/rp-mobile-threat-report-2016.pdf. Accessed 28
Mar 2017

4. Biswas, A.: Scary insights into the security of smart things: what the IoT
startups dont pitch about (2016). http://electronicsofthings.com/expert-opinion/
scary-insights-security-smart-things-what-the-iot-startups-dont-pitch-about/5/.
Accessed 28 Mar 2017

5. Greenemeier, L.: IoT growing faster than the ability to defend it (2016).
https://www.scientificamerican.com/article/iot-growing-faster-than-the-ability-
to-defend-it/. Accessed 28 Mar 2017

6. Hasan, R., et al.: How secure is the healthcare network from insider attacks? An
audit guideline for vulnerability analysis. In: IEEE Annual Computer Software and
Applications Conference (COMPSAC), June 2016

https://www.symantec.com/connect/blogs/iot-devices-being-increasingly-used-ddos-attacks
https://www.symantec.com/connect/blogs/iot-devices-being-increasingly-used-ddos-attacks
https://www.mcafee.com/us/resources/reports/rp-mobile-threat-report-2016.pdf
https://www.mcafee.com/us/resources/reports/rp-mobile-threat-report-2016.pdf
http://electronicsofthings.com/expert-opinion/scary-insights-security-smart-things-what-the-iot-startups-dont-pitch-about/5/
http://electronicsofthings.com/expert-opinion/scary-insights-security-smart-things-what-the-iot-startups-dont-pitch-about/5/
https://www.scientificamerican.com/article/iot-growing-faster-than-the-ability-to-defend-it/
https://www.scientificamerican.com/article/iot-growing-faster-than-the-ability-to-defend-it/


Low-Complexity Signature-Based Malware Detection for IoT Devices 189

7. Iqbal, M.S., et al.: SAM: a secure anti-malware framework for the smartphone
operating systems. In: IEEE Wireless Communications and Networking Conference
(2016)

8. Greengard, S.: Cybersecurity gets smart. Commun. ACM (2016). http://doi.acm.
org/10.1145/2898969

9. Arslan, B., et al.: A review on mobile threats and machine learning based detection
approaches. In: International Symposium on Digital Forensic and Security, April
2016

10. Kolosnjaji, B., et al.: Deep learning for classification of malware system call
sequences. In: Australasian Joint Conference on Artificial Intelligence (2016)

11. Othman, Z.A., et al.: Improving signature detection classification model using fea-
tures selection based on customized features. In: International Conference on Intel-
ligent Systems Design and Applications, November 2010

12. Saracino, A., et al.: Madam: effective and efficient behavior-based android malware
detection and prevention. IEEE Trans. Dependable Secure Comput. PP(99), 1
(2016)

13. Narayanan, B.N., et al.: Performance analysis of machine learning and pattern
recognition algorithms for malware classification. In: IEEE National Aerospace
and Electronics Conference (NAECON) and Ohio Innovation Summit (OIS), July
2016

14. Islam, N., et al.: On-device mobile phone security exploits machine learning. IEEE
Pervasive Comput. 16(2), 92–96 (2017)

15. Hellal, A., et al.: Maximal frequent sub-graph mining for malware detection. In:
International Conference on Intelligent Systems Design and Applications (ISDA),
December 2015

16. Sun, M., et al.: Monet: a user-oriented behavior-based malware variants detection
system for android. IEEE Trans. Inform. Forensics Secur. 12(5), 1103–1112 (2017)

17. Gandotra, E., et al.: Malware analysis and classification: a survey. J. Inform. Secur.
5, 56–64 (2014)

18. Kong, D., et al.: Discriminant malware distance learning on structural information
for automated malware classification. In: ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (2013)

19. Nari, S., et al.: Automated malware classification based on network behavior. In:
International Conference on Computing, Networking and Communications (ICNC)
(2013)

20. Tian, R., et al.: Function length as a tool for malware classification. In: Interna-
tional Conference on Malicious and Unwanted Software, October 2008

21. Firdausi, I., et al.: Analysis of machine learning techniques used in behavior-based
malware detection. In: International Conference on Advances in Computing, Con-
trol, and Telecommunication Technologies, December 2010

22. Forrest, S., et al.: A sense of self for unix processes. In: IEEE Symposium on
Security and Privacy, May 1996

23. Wagener, G., et al.: Malware behaviour analysis. J. Comput. Virol. (2008). http://
dx.doi.org/10.1007/s11416-007-0074-9

24. Kolosnjaji, B., et al.: Empowering convolutional networks for malware classification
and analysis. In: International Joint Conference on Neural Networks (2017)

25. Rahmatian, M., et al.: Hardware-assisted detection of malicious software in embed-
ded systems. IEEE Embedded Syst. Lett. 4(4), 94–97 (2012)

26. VirusShare, VirusShare.com - Because Sharing is Caring (2017). https://
virusshare.com/. Accessed 2 Apr 2017

http://doi.acm.org/10.1145/2898969
http://doi.acm.org/10.1145/2898969
http://dx.doi.org/10.1007/s11416-007-0074-9
http://dx.doi.org/10.1007/s11416-007-0074-9
https://virusshare.com/
https://virusshare.com/


System and Network Security



De-anonymous and Anonymous Technologies
for Network Traffic Release

Xiang Tian1,2,3, Yu Wang4(&), Yujia Zhu2,3, Yong Sun2,3,
and Qingyun Liu2,3

1 University of Chinese Academy of Sciences, Beijing, China
2 National Engineering Laboratory for Information Security Technologies,

Beijing, China
{zhuyujia,sunyong,liuqingyun}@iie.ac.cn

3 Institute of Information Engineering, Chinese Academy of Sciences, Beijing,
China

tianxiang@iie.ac.cn
4 National Computer Network Emergency Response and Coordination Center,

Beijing, China
slimzczy@163.com

Abstract. With the rapid growth of data, the network traffic data is of great
significance for the research and analysis. Through research and real events,
anonymous network traffic is susceptible to de-anonymity attacks. Therefore, the
release of network traffic need to consider the existence of de-anonymization
attacks, and balance the privacy and utility of data. On the one hand, we
summarize the anonymous technologies of network traffic, list some traffic
anonymity methods. on the other hand, we analyze the anonymous strategy of
network flow against de-anonymous attacks. Based on the research on
de-anonymization attacks, this paper divides the de-anonymization method into
three categories from the dimension of inferring attack object: restoring the
network topology graph, inferring the host behavior, inferring the node and edge
information. Specifically, we analyze the implementation methods of these three
types of de-anonymization attacks respectively. In connection with the network
traces anonymity method, we analyze the confrontation strategy of the above
de-anonymity attacks.

Keywords: Network traffic � De-anonymous attack � Anonymization �
Privacy � Data release

1 Introduction

The complexity of the modern network makes the use of real data in network research
becomes critical, the authenticity of the data to a great extent affect the accuracy of the
results. Real network data can be applied to the research and analysis of traffic char-
acterization, the diagnosis of network events, and the assessment of network systems.
Therefore, the network traffic data for the research and analysis of great significance.
There are many de-anonymous attacks on anonymous network traffic, the maximum
degree of anonymity of network traffic is a hot topic in the research.

© Springer Nature Singapore Pte Ltd. 2017
L. Batten et al. (Eds.): ATIS 2017, CCIS 719, pp. 193–200, 2017.
DOI: 10.1007/978-981-10-5421-1_16



1.1 Acquisition of Network Traffic Data

Real network data can be widely used in network analysis and research, but access to
real packet traffic is challenging. The existing methods to obtain real network traffic
mainly include obtaining the data traffic from the public library. The main public
libraries are CAIDA [1], DeepSight [2], Dshield.org [3], Packetlife.net [4], Pcapr [5],
ISCX [6], PCAPLib [7]. Most of the data traffic in the public library is disrupted the
availability in the analysis.

1.2 Release of Network Traffic Data

Network traffic data is published in two ways: (1) simple release, release all the traffic
data set, (2) incremental release, with a clear practical advantage, making the calcu-
lation of cost and the demand of storage of large data sets greatly reduce [8, 9]. There
are some challenges in release of real network flow: (1) data traffic including privacy
information, required anonymization before release. (2) Anonymous methods have
been limited to a small number of protocols. (3) Most importantly, the existing traffic
anonymity method can not completely confront the de-anonymity attack.

This paper studies anonymous network traffic trajectories for data releasing system
based on de-anonymous network traffic, and mainly completes the following work:

(1) First, we summarize the anonymous technologies, list six anonymous methods for
traffic trajectories.

(2) With the development of anonymous technology, de-anonymity attacks are
generated and continuously derived. Based on the existing research on traffic
anonymity, we classified the de-anonymity attack of anonymous network traffic
from the dimension of the object to be inferred. Then, this paper analyzes the
implementation of these three types of de-anonymous attacks.

(3) Finally, we analyze the strategies to combat de-anonymous attacks from the
perspective of the classification method proposed in this paper.

2 Traffic Anonymity Method

There are a large number of information that can not be released, which can directly or
indirectly obtain privacy information in the network traffic. Even if the payload is
deleted in all the packets, the attacker can infer the privacy information by analyzing
the IP address. Therefore, it is significant to anonymize traffic data.

Anonymity is changing the network traffic data to protect its privacy. The goal of
anonymity is remove the identifiable relationships between the two endpoints while
ensuring data availability. By applying the anonymity algorithm to a specific field, it
can provide privacy protection for the network data. The anonymization method can be
subdivided into different levels of anonymous algorithms.

Anonymous method of address prefix preservation means that the value of an IP
address is replaced by a synthetic value [10]. If the prefix value is preserved, the
original structure of the IP address can be maintained. The address prefix preservation

194 X. Tian et al.



can be applied in whole or in part to the IP address. According to this feature, the
anonymous method can be divided into full prefix preservation and partial prefix
preservation [11]. The Tcpdpriv tool first applied the prefix to keep anonymous [12].
The encryption prefix preserves anonymous methods has been applied in the anony-
mous traffic tool Crypto-Pan [10].

Enumeration usually acts on an ordered data set. First sort the discrete data, and
then select the first value from the record. The algorithm can not be used for all fields.

The hash algorithm replaces the data with a fixed byte-sized string, and any data
transformation changes the hash value, which in some cases is shorter than the original
value [13]. Truncation is usually used for anonymous IP addresses and MAC
addresses, which delete some of the data while keeping the remaining data unchanged.
The truncation method removes the n least significant bits of the field value and
replaces them with 0. The elimination time unit is a partitioning algorithm for an
anonymous timestamp. Which eliminates some of the timestamps with the value of 0 to
replace these removed parts. The method deletes or replaces all the information in the
field with a fixed value that can be applied to all fields in the traffic [7].

Before applying the anonymous algorithm, you must select the appropriate fields.
Table 1 shows the commonly used anonymous fields and their application anonymous
algorithm. There are many tools for anonymization of network traffic release [14–19].

3 De-anonymous Attacks

With the development of anonymous technology, de-anonymous attacks are generated
and continue to be derived. The classification of attacks that are anonymous to network
traffic is the basis for a comprehensive study of the security of anonymous policies.

Combined with Gattani, Daniels and King and others in the de-anonymous attack
classification, we classify de-anonymous attack from the dimension of inferring attack
object: (1) infer topology structure: the attack restore the network topology structure
from the anonymous trajectory; (2) infer the host behavior: the attack can determine the
host’s characteristic behavior, in order to obtain the behavior of the host which can
identify the characteristics; (3) infer the node information: the attack attempts to
de-anonymize the nodes in the network and the edges representing the nodes connected
and routed. It is concluded that the topology structure inference is a global
de-anonymity attack method, and it is inferred the host behavior and the node infor-
mation are local attack methods. The main difference between the latter two is that the
host behavior is a dynamic interaction process, and it emphasizes that the dynamic

Table 1. Common anonymous fields and corresponding algorithms.

Field Algorithm

IP address Prefix-preserving. replacement, truncation, black block mark
MAC address Replacement, truncation, black block mark
Port number Enumeration, black block mark
Timestamp Replacement, eliminate the time unit, black block mark
Counter Replacement, black block mark

De-anonymous and Anonymous Technologies 195



information of the host can be recognized. Node information is a relatively static
attribute. In de-anonymous attacks, the attributes of anonymous data are used to
compare with known network structures to discover the relationship between anony-
mous and non-anonymous data (Table 2).

3.1 Infer the Topology Structure

Xu et al. proposed the use of subnet clustering to obtain summary information about
backbone router traffic [22]. Coull et al. applied the sub-network clustering technique
based on k-means [23]. For each cluster clustered by k-means, calculated the longest
common prefix of the subnet address of all IP addresses as the subnet address (Fig. 1).

3.2 Infer the Host Behavior

The main threat to traffic releasing is the host de-anonymity. If the behavior of the
anonymous host can uniquely map to the real object, the attacker can localize the
topology to de-anonymous attack, that is, infer the host behavior.

Dominant State Analysis. Xu et al. proposed a new method for determining the most
characteristic behavior of a given host, called the dominant state analysis. The domi-
nant state analysis algorithm can discover the behavior of each anonymous IP address.

Dynamic Data Injection Attack Data injection attack refers to the attacker in the
network to inject information, the information in the anonymous track data can still be
identified, as shown in Fig. 2 [24].

Table 2. De-anonymity attack multiple categories.

Gattani [20] King [21] This paper

De-anonymous attack
categories

Dynamic data
injection

Fingerprint
recognition

Infer topology
structure

Known mapping Injection Infer host
behavior

Network topology
inference

Decryption IP
address

Infer node
information

Encryption

identify subnet identify routing 
device

rebuild network 
topology

Fig. 1. Inference of the network topology implementation method.

specific 
tag inject data 

packet
tran-
form 

data 
traffic 

anony
-mize

release
data match

sensitive
behavior 

information

Fig. 2. Dynamic data injection attack implementation method.

196 X. Tian et al.



K-vulnerable. In 2008, Ribeiro et al. pointed out that in the prefix-preserving
anonymous network traffic, the attacker could achieve a systematic attack, that is, a
k-vulnerable [25]. First, the attacker gets the traffic fingerprint of each host in the
anonymous traffic. Then, he collects information from the external public sources, dig
the network host fingerprint. Eventually, he uses the acquired fingerprints to find partial
or completely anonymous mapping relationships.

3.3 Infer the Node Information

The node information refers to the static attribute information, which represented the
node at the vertex at the top of the network topology and the edge between the nodes
connecting and routing.

Frequency Analysis Injection Attack. Frequency analysis injection attack is a type of
traffic analysis based on the assumption that the opponent has a priori knowledge of the
traffic distribution of the observed network [26].

Web Server Fingerprint Attack. Web server fingerprints match an overview of the
content of the URL in the anonymous traffic, identify the common URL. Bypass the
anonymous identifiers of the known web server to achieve the de-anonymous site
server’s attack, which can be connected to an anonymous client IP [27]. The steps in
this type of attack is shown in Fig. 3.

Remote Physical Device Fingerprint Attack. The attacker gets the legitimate site
traffic of the acquisition machine. Then anonymizing the IP address by comparing the
clock offset in the probe with the clock offset in the TCP timestamp option [28].

K-edge Attack. The k-edge attack assumes that the attacker can inject enough
information to identify the k edges in the anonymous traffic. In the graph structure, the
node represents the IP address in the traffic, and the edge represents the connection
between the two nodes. If the topology is not distorted, the degree remains the same, it
is possible to infer the k edge associated node [29].

4 Anonymous Methods Against Attacks

Applying a specific anonymity method is critical to the implementation of traffic
anonymization for attacks against different attack targets.

get the signature 
of page 

create a signature 
database

match the site of 
high similarity

score

Fig. 3. Web server fingerprint attack implementation method.

De-anonymous and Anonymous Technologies 197



4.1 Against Topology Inference Attack

Publish the anonymous NetFlow log or remove the link layer header from the packet
flow can against the network topology attack. In addition, by deleting the ARP (address
resolution protocol) traffic information, we can make the attacker unable to obtain the
link layer topology information.

4.2 Against Host Behavior Inference Attack

By re-mapping the port number, the attacker will not be able to directly infer the
behavior information. Restricting the publication of anonymous data based on short
intervals can counter the injection of dynamic data.

Qardaji et al. proposed an improved method for the full prefix anonymity, k-entity
anonymity [30], which can against k-vulnerable. It is based on temporal consistency,
and only the flow data that appears in the same time block remains anonymous con-
sistent, ensuring that the anonymous entities have at least corresponding k different
entities in anonymous traffic.

4.3 Against Node Information Inference Attack

The method of preventing fingerprint attacks from remote physical devices includes:
ignoring the ICMP timestamp request and not enabling the TCP timestamp option in
the output TCP packet.

Graph Confusion. Confusion of the graph can against k-edge attacks, and the core
idea is to produce a side that combines all the communication relationships. Specific
implementation: generate a bipartite graph, one side is a collection of special nodes,
and all nodes on the other side can be merged into a single pass through traffic.

Netshuffle. Valgenti et al. proposed Netshuffle, by reassembling the attacker on behalf
of the communication relationship in the traffic trajectory [31]. Netshuffle relies on
edge properties, and an attacker would be misled or forced to guess the target entity
from several possible candidates.

(k, j)-obfuscation. (k, j)–obfuscation method is proposed by Riboni et al. in 2012
[8, 9]. IP address and pseudo-random group ID achieve multi-to-mapping. In anony-
mous traffic, pseudo-random group ID replaces the real IP address, each IP address in
the published traffic is hidden at least k possible IP addresses.

5 Summary and Future Work

Today, the information society is in the era of big data, the rapid growth of data has
brought the serious challenges and valuable opportunities of the whole society.
Accessing to real traffic data has been a major challenge. Published data were processed
and anonymous, limiting their research value. Through research and real events, it is

198 X. Tian et al.



easy for anonymous data to be inferred sensitive information. Therefore, the release of
network traffic data needs to balance the privacy and usability of data. This paper
studies anonymous network traffic trajectories for data releasing system based on
de-anonymous network traffic. We summarize the six anonymous methods for traffic
trajectories, classify the de-anonymity attack of anonymous network traffic from the
dimension of the object to be inferred, and divide into three categories. And then we
conclude that the specific implementation methods. Finally, we analyze the strategies to
against de-anonymous methods.

With the change of de-anonymous attack technology, a higher demand for traffic
anonymity is proposed. It makes research related traffic anonymous more challenging,
traffic anonymous methods need to innovate, based on attacks, continuous improving
anonymous method. There is a trade-off between the privacy and the utility. Existing
network traffic data anonymity methods mostly emphasize privacy, and how to max-
imize the availability of data relative to the expected network traffic is still a challenge.
Differential privacy protection can be used to anonymize network traffic data. More
research need to be applied to the use of differential privacy in network traffic data.

Acknowledgments. This work was supported by National Key R&D Program 2016 (Grant
No. 2016YFB081304).

References

1. CAIDA traces dataset. http://www.caida.org/home
2. DeepSight. http://enterprisesecurity.symantec.com/products/products.cfm?ProductID=

158&EID=0
3. DShield.org. http://www.dshield.org
4. Packetlife repository. http://www.packetlife.net/captures
5. PCAPR collaborative network forensics. http://www.pcapr.net/forensics
6. Shiravi, A., Shiravi, H., Tavallaee, M., et al.: Toward developing a systematic approach to

generate benchmark datasets for intrusion detection. Comput. Secur. 31(3), 357–374 (2012)
7. Lin, Y.D., Lin, P.C., Wang, S.H., et al.: PCAPLib: a system of extracting, classifying, and

anonymizing real packet traces. IEEE Syst. J. 1–12 (2014)
8. Riboni, D., Villani, A., Vitali, D., et al.: Obfuscation of sensitive data in network flows. In:

IEEE INFOCOM, pp. 2372–2380. IEEE (2012)
9. Riboni, D., Villani, A., Vitali, D., et al.: Obfuscation of sensitive data for incremental release

of network flows. IEEE/ACM Trans. Netw. 23(2), 672–686 (2015)
10. Xu, J., Fan, J., Ammar, M., et al.: On the design and performance of prefix-preserving IP

traffic trace anonymization. In: Proceedings of the 1st ACM SIGCOMM Workshop on
Internet Measurement, pp, 263–266. ACM (2001)

11. Xu, J., Fan, J., Ammar, M.H., et al.: Prefix-preserving IP address anonymization:
measurement-based security evaluation and a new cryptography-based scheme. In: IEEE
International Conference on Network Protocols, Proceedings, pp. 280–289. IEEE (2002)

12. Minshall, G.: Tcpdpriv: program for eliminating confidential information from traces (2005)
13. Pang, R., Paxson, V.: A high-level programming environment for packet trace anonymization

and transformation, pp. 339–351 (2003)

De-anonymous and Anonymous Technologies 199

http://www.caida.org/home
http://enterprisesecurity.symantec.com/products/products.cfm?ProductID=158&EID=0
http://enterprisesecurity.symantec.com/products/products.cfm?ProductID=158&EID=0
http://www.dshield.org
http://www.packetlife.net/captures
http://www.pcapr.net/forensics


14. Sperotto, A., Schaffrath, G., Sadre, R., et al.: An overview of IP flow-based intrusion
detection. IEEE Commun. Surv. Tutor. 12(3), 343–356 (2010)

15. Mendonca, M., Seetharaman, S., Obraczka, K.: A flexible in-network IP anonymization
service. In: IEEE International Conference on Communications. IEEE (2012)

16. Jeon, S., Yun, J.H., Kim, W.N.: Obfuscation of critical infrastructure network traffic using
fake communication. In: International Conference on Critical Information Infrastructures
Security (2014)

17. Lin, T.: Anonym: a tool for anonymization of the internet traffic. In: IEEE International
Conference on Cybernetics, pp. 261–266 (2013)

18. Yurcik, W., Woolam, C., Hellings, G., et al.: SCRUB-tcpdump: a multi-level packet
anonymizer demonstrating privacy/analysis tradeoffs. In: International Conference on
Security and Privacy in Communications Networks and the Workshops (SECURECOMM
2007), pp. 49–56. IEEE (2007)

19. Stanek, J., Kencl, L., Kuthan, J.: Analyzing anomalies in anonymized SIP traffic. In:
Networking Conference, pp. 1–9. IEEE (2014)

20. Gattani, S., Daniels, T.E.: Reference models for network data anonymization. In: ACM
Conference on Computer and Communications Security, pp. 41–48 (2008)

21. King, J., Lakkaraju, K., Slagell, A.: A taxonomy and adversarial model for attacks against
network log anonymization. In: Proceedings of ACM SAC, pp. 1286–1293. ACM (2009)

22. Xu, K., Zhang, Z.L., Bhattacharyya, S.: Profiling internet backbone traffic: behavior models
and applications. ACM SIGCOMM Comput. Commun. Rev. 35(4), 169–180 (2005)

23. Coull, S.E., Wright, C.V., Monrose, F., et al.: Playing devil’s advocate: inferring sensitive
information from anonymized network traces. In: Network and Distributed System Security
Symposium (NDSS 2007), San Diego, California, USA, pp. 35–47, March 2007

24. Burkhart, M., Schatzmann, D., Trammell, B., et al.: The role of network trace anonymization
under attack. ACM SIGCOMM Comput. Commun. Rev. 40(1), 5–11 (2010)

25. Ribeiro, B.F., Chen, W., Miklau, G., et al.: Analyzing privacy in enterprise packet trace
anonymization. In: Network and Distributed System Security Symposium (NDSS 2008),
San Diego, California, USA, February 2008

26. Foukarakis, M., Antoniades, D., Polychronakis, M.: Deep packet anonymization, pp. 16–21
(2009)

27. Koukis, D., Antonatos, S., Antoniades, D., et al.: A generic anonymization framework for
network traffic, vol. 5, pp. 2302–2309 (2006)

28. Kohno, T., Broido, A., Claffy, K.C.: Remote physical device fingerprinting. In: IEEE
Symposium on Security and Privacy, pp. 211–225. IEEE Computer Society (2005)

29. Paul, R.R., Valgenti, V.C., Min, S.K.: Real-time netshuffle: graph distortion for on-line
anonymization. In: IEEE International Conference on Network Protocols (ICNP 2011),
Vancouver, BC, Canada, pp. 133–134 (2011)

30. Qardaji, W., Li, N.: Anonymizing network traces with temporal pseudonym consistency,
pp. 622–633 (2012)

31. Valgenti, V.C., Paul, R.R., Min, S.K.: Netshuffle: improving traffic trace anonymization
through graph distortion. In: IEEE International Conference on Communications, pp. 1–6.
IEEE (2011)

200 X. Tian et al.



Privacy-Aware Authentication for Wi-Fi Based
Indoor Positioning Systems

Sang Guun Yoo1,2(&) and Jhonattan J. Barriga2

1 Departamento de Ciencias de la Computación, Universidad de las Fuerzas
Armadas ESPE, Sangolquí, Ecuador

yysang@espe.edu.ec
2 Facultad de Ingeniería de Sistemas, Escuela Politécnica Nacional,

Quito, Ecuador
{sang.yoo,jhonattan.barriga}@epn.edu.ec

Abstract. Indoor location-based application and services have drawn busi-
nesses attention as they have shown advances in conjunction with a growing
importance of ubiquitous computing and context-dependent information.
However, current systems have serious problems in terms of privacy since
attackers can track users by analyzing information captured from the network
such as MAC addresses. In this situation, this work provides a practical solution
to the privacy issue in indoor positioning systems. We propose the usage of
pseudo-certificates issued by third-party authorities for anonymous auhentica-
tion of mobile devices. The proposed scheme provides privacy to users while
providing governmental authorities the possibility to analyze the historical
position of users when they are required. The proposed anonymous authenti-
cation system offers highest level of security while maintain minimal crypto-
graphic overhead.

Keywords: Privacy � Anonymous authentication � Indoor positioning system �
IPS � WLAN

1 Introduction

Indoor location techniques have captured the attention of research and industrial
institutions, particularly in fields such as healthcare, national defense, social life, and
Internet of things [1–3]. According to [1], people spend more than 80% of their time
living indoors, which means that there is a need on having an adequate indoor location
based services. The widely known positioning services based on Global Navigation
Satellite Systems (GNSSs) is not recommended for indoor usage since they have signal
loss and/or position accuracy problems because of the interference of Non Line Sight
(NLOS) [1, 4]. In this situation, several technologies have been proposed for Indoor
positioning systems. Among those, Wi-Fi technology has been considered important by
the scientific community as it is widely used in private and public organizations [5].

To improve the accuracy of Wi-Fi based location systems, several algorithms have
been proposed to improve its precision level while reducing the number of antennas.
RADAR [6], RADAR with VL (Viterbi-like) [7], FBCM (Friis Based Calibrated

© Springer Nature Singapore Pte Ltd. 2017
L. Batten et al. (Eds.): ATIS 2017, CCIS 719, pp. 201–213, 2017.
DOI: 10.1007/978-981-10-5421-1_17



Model) [8] are some examples of such position computation algorithms which are
based on Signal Strength (SS) cartography or propagation models [4]. However, even
though Indoor Positioning Systems (IPSs) have denoted significant advances for
improving accuracy, there are still issues in regarding to privacy of users, since some
information can be directly acquired from protocol headers without consent of users
[5, 9–11]. Because of this situation, several works such as [12] indicated the need for
addressing the privacy issue when implementing IPSs since the position of users can
deliver important and confidential information about them.

In this situation, we propose an privacy-aware authentication system for Wi-Fi
based IPSs. The proposed system makes use of the pseudo-certificates issued by
third-party authorities for anonymous authentication of mobile devices. The proposed
scheme provides privacy to users while providing governmental authorities the pos-
sibility to analyze the historical position of users when they are required (e.g. for legal
investigation).

The rest of the paper is structured as follows, Sect. 2 comprises a brief revision on
indoor positioning algorithms based on WLAN; besides, privacy issues are discussed.
Then, the proposed solution is explained with details in Sect. 3. Later, Sect. 4 analizes
the proposed solution in terms of security and performance. Finally, the paper is
concluded in Sect. 5.

2 State of the Art

2.1 Wi-Fi Based Indoor Positioning Systems

We can categorize the positioning systems in indoor, outdoor and mixed one. The most
popular positioning system for the outdoor environment is the Global Positioning
System (GPS) which is widely used for tracking and management of assets.
Although GPS performs well in outdoor positioning, it has problems for indoors
environments (buildings, underground) since it has a weak signal which cannot pass
the walls easily. For this reason, other technologies have been used for IPSs such as
Wi-Fi [3], RFID [13], Bluetooth [14], and Ultra Wide Band (UWB) [14]. Among the
mentioned technologies, this paper focuses on the Wi-Fi based systems, since they are
widley deployed in the real world.

The advanced Wi-Fi positioning systems use the signal strength fingerprinting
methods which observe the Wi-Fi signal strengths from several Access Points
(APs) within a determined environment. Those observations are registered in a data-
base so a user, with the aid of smartphone Wi-Fi sensor, can perform positioning
activities later inside an interest area. When a user wants to determine his/her location,
he/she matches his/her Wi-Fi signal strength observation with Received Signal
Strenght (RSS) values residing in the database to obtain the closest value which rep-
resents an estimated location.

202 S.G. Yoo and J.J. Barriga



2.2 Security Limitations of IPS Based on Wi-Fi

Some researchers have tried to solve the privacy and security issue in differents works.
Reference [5] discusses several of those proposals, such as obfuscation of sensitive data
and usage of random MAC addresses. However, those solutions do not solve the whole
problem since they produce delays affecting the quality of service and since they can
generate collisions because of duplicate MAC addresses on the same network. On the
other hand, an architecture for disclosing information based on the sensitivity of an area
was proposed in [9]; however, it also has several limitations since a malicious user can
obtain other information that might lead to infer future location of a victim [9].
Additionally, other proposals were developed in [5, 9, 10]; however, those initiatives
need to be supported by legal regulations to become stronger.

3 Proposed Protocol

3.1 Overview of the System

The proposed system is composed of three main entities (see Fig. 1):

(1) User environment, which is composed of the (a) user who wants to access to the
IPS service and his/her (b) mobile device(s).

(2) Certificate authority (CA): this is a third party entity, responsible of managing
users’ accounts and the data of their mobile devices. This entity also issues the
pseudo-certificates and private keys used by users to authenticate to the IPS
server.

(3) IPS Server: this is the server that provides the indoor positioning service. The IPS
Server that wants to be part of the proposed solution must be registered to the CA.

IPS 
Server

4) Pseudo-certificate

6) User Position

5) Verify
pseudo-certificate

User Environment

Certificate 
Authority

1) Register
user 
and 

mobile device

2) Request
Pseudo-

certificates
3) Pseudo-certificates

Main Protocols 
Overview

Fig. 1. Overview of proposed solution

Privacy-Aware Authentication for Wi-Fi 203



The aforementioned entities interact each other executing the following steps.
The user who wants to access to the indoor positioning service must authenticate to

the IPS server. The technological mechanism chosen in the proposed solution to allow
users to authenticate anonymously to the IPS Server is the pseudonymous authenti-
cation scheme [15]. This means that users must get pseudo-certificates before accessing
to the IPS service. For this, the user communicates with the Certificate Authority to
register his/her data and his/her mobile device(s). Once created the user account in the
Certificate Authority, the user requests the issue of a set of pseudo-certificates. The
Certificate Authority, once verified the user’s credentials, generates a set of
pseudo-certificates for the connected mobile device and delivers it to the user.

The user, once with the pseudo-certificates, can authenticate to the IPS Server. Each
time a user wants to know his/her position, a single pseudo-certificate is delivered to
the IPS server. If the pseudo-certificate is valid, the IPS Server responds to user’s
request by providing the position of the user.

It is important to notice that each pseudo-certificate has an expiration time and it is
valid only a single time. This means that the user must request for a new set of
pseudo-certificates when his/her pseudo-certificates have been used.

3.2 Pseudonymous Authentication Scheme

As mentioned before, the proposed solution makes use of pseudo-certificates for
authentication. This papers suggests the usage of PASS (pseudonymous authentication
scheme with strong privacy preservation) [15] to authenticate participating mobile
devices of users when accessing to IPS Servers.

Let G1; þð Þ and G2; �ð Þ be two cyclic groups of prime order q and e : G1 �G1 !
G2 be an efficient admissible bilinear map. The CA selects a random generator P 2 G1,
two hash functions h(∙) and f ð�Þ : 0; 1f g�! G1 and a random key s 2 Z

�
q. Then, the CA

calculates its public key PubKeyCA as follows PubKeyCA = sP and distributes the
parameters G1;G2; q;P; e;PubKeyCA; hð�Þ; f ð�Þ; SEncð�Þ;DTð Þ where SEnc(∙) is a
symmetric encryption function and DT is the expiration threshold of a pseudonymous
certificate. Applying the concept proposed in [15], the Certificate Authority CA gen-
erates a private key PriKeyCA and uses it to issue a set of pseudonymous certificates to
the mobile devices of those users which expressed their willingness to participate in the
proposed solution. The size of each pseudonymous certificate is 66 bytes: 21 bytes for
the public key, 20 bytes for pseudo identity, 4 bytes for the validity period, and 21
bytes for digital signature. Finally, the CA generates the private key set corresponding
to the pseudonymous certificates and delivers it accompanied with the set of
pseudonymous certificates to the mobile device, and stores the mapping relationship
between the real identity of participating users/mobile devices and its pseudo identities.

3.3 Details of the System

In the previous subsection, we described briefly the flow of the proposed system. The
intention of this subsection is to describe the proposed system with more details.

204 S.G. Yoo and J.J. Barriga



The proposed solution is composed of a (1) system initialization phase and four
main protocols. These main protocols are: (2) user registration protocol, (3) mobile
device registration protocol, (4) pseudo-certificate issue protocol, and (5) IPS access
protocol. The notation used to describe the protocols is detailed in Table 1.

System Initialization. In the proposed system, each CA manages a certain
geographic/administrative regional area (e.g. a state, city, or district). All the CAs share
the same DT, which indicates the validity period threshold of a pseudonymous cer-
tificate issued to a mobile device of a user. It is important to remember that each
pseudonymous certificate is usable only once and it has an expiration time which is
equal to LastPCertTimeMDj_Ui +DT, where LastPCertTimeMDj_Ui is the last time where
a pseudonymous certificate of a specific mobile device of a user was used.

Since each pseudonymous certificate has an expiration time, the CA must estimate
the number of certificates to be issued to each mobile device. We think it is a good idea
to issue enough pseudonymous certificates for a year. For example, if DT = 1 h, the
number of pseudonymous certificates required for a mobile device during a year will be
24 � 365 = 8760. Considering that the certificate size is 66 bytes (as indicated in
previous subsection), the total amount of space required will be approximately 565 KB,
which is a reasonable overhead in term of storage. We recommend the usage of a
tamper proof device for storage and management of confidential data (e.g. keys and
pseudonymous certificates) in each mobile device. Security technologies such as
TrustZone by ARM [16] and Secure RAM by Freescale [17] could be possible solu-
tions for the mentioned tamper proof devices.

User Registration Protocol. This protocol is executed as follows (see Fig. 2). First,
the user Ui inputs his/her identity IDUi and password PWUi to his/her mobile device
MDj_Ui. Then, MDj_Ui communicates with the third-party CA and asks for user regis-
tration. After receiving the request message, CA generates a random number RN1 and
sends it to MDj_Ui. Once received the response from CA, MDi_Ui generates a random
nonce RN2, a random symmetric key RK1, and calculates M1 = AEnc(PubkeyCA, RK1)
and M2 = SEnc(RK1, RN1||RN2||IDUi||h(PWUi)), where AEnc(x,y) is an asymmetric
encryption of message y using the key x, PubkeyCA is CA’s public key, SEnc(x,y) is a
symmetric encryption of message y using the key x, || is a concatenation operation, and
h(.) is a one-way hash function. Once calculated M1 and M2, MDj_Ui sends those
values to CA.

Table 1. Notations used in the proposed solution

Notation Description

Ui ith user
MDj_Ui Ui’s j

th mobile device
RN1, RN2, …, RNn Random nonces
RK1, RK2… RKn, RKCA, RKIPS Random symmetric keys
CA Certificate Authority
PubkeyCA, PrikeyCA CA’s asymmetric key pair

(continued)

Privacy-Aware Authentication for Wi-Fi 205



On the other side, CA gets RK1 by executing ADec(PrikeyCA, M1) where ADec(x,y)
is an asymmetric decryption of an encrypted message y using the key x, and uses RK1
to get RN10, RN20 , IDUi, and h(PWUi) by executing SDec(RK1, M2), where SDec(x,y)
is a symmetric decryption of an encrypted message y using the key x. Once gotten
RN10, CA verifies the freshness of the message by comparing the decrypted RN10 with
the random nonce created previously by itself i.e. RN1. This step allows CA to protect
against replay attacks. After verifying the validity of the message, CA verifies if IDUi is
available. If IDUi is already taken by another user, CA calculates M3 ¼
SEnc RK1; RN20 ID ALREADY TAKENkð Þ and sends M3 to MDj_Ui. If IDUi is avail-
able, CA stores the {IDUi, h(PWU)} tuple in its DB, calculates
M3 ¼ SEnc RK1; RN20ð Þ, and sends M3 to MDj_Ui. It is important to mention that
ID_ALREADY_TAKEN is a flag indicating that the user must select another
identification.

Finally, MDj_Ui gets RN20 by executing SDec(RK1,M3) and compares RN20 with
the random nonce generated previously i.e. RN2. If such values are the same, MDj_Ui

verifies if the flag ID_ALREADY_TAKEN is included in M3; if such flag is present,
MDj_Ui informs to the user to select another identification, otherwise MDj_Ui confirms
the successful registration of the user.

Table 1. (continued)

Notation Description

PubkeyIPS, PrikeyIPS IPS Server’s asymmetric key pair
IDUi Identification of Ui

PWUi Password of Ui

NAMEMDj_Ui Name of MDj_Ui

MACMDj_Ui MAC address of MDj_Ui

{PCert(CA,MDj_Ui)1,…, PCert(CA,
MDj_Ui)n}

Pseudo-certificates of MDj_Ui

{Prikey(CA,MDj_Ui)1,…, Prikey(CA,
MDj_Ui)n}

Private keys of pseudo-certificates of MDj_Ui

IPIPS IPS Server’s IP address
ID_ALREADY_TAKEN Flag indicating if IDUi is already taken
SSAPS Signal Strength of Access Points
PCert(CA,MDj_Ui)k kth (unused) pseudo-certificate
PosMDj_Ui Current position of MDj_Ui

|| String concatenation
h(.) One-way hash function
AEnc(x,y) Asymmetric encryption of message y using the key x
ADec(x,y) Asymmetric decryption of message y using the key x
SEnc(x,y) Symmetric encryption of message y using the key x
SDec(x,y) Symmetric decryption of message y using the key x
Sign(x, y) Digital signature of message y using the private key x
VerifySign(x,y) Digital signature verification of signature y using

public key x

206 S.G. Yoo and J.J. Barriga



Mobile Device Registration. Once Ui is registered in CA, he/she can register his/her
mobile device MDj_Ui (see Fig. 2). For this, Ui delivers his/her IDUi, PWUi and a
recognizable name of MDj_Ui i.e. NAMEMDj_Ui to MDj_Ui. Then, MDj_Ui communicates
with CA and asks for mobile device registration. After receiving the request message,
CA generates a random number RN3 and sends it to MDj_Ui. Once received the
response from CA, MDi_Ui generates a random nonce RN4, a random symmetric key
RK2, and calculates M5 = AEnc(PubkeyCA, RK2) and M6 = SEnc(RK2, RN3||RN4||
IDUi||h(PWUi)||NAMEMDj_Ui||MACMDj_Ui), where MACMDj_Ui is the MAC address of
the mobile device. Then, MDj_Ui sends M5 and M6 to CA.

On the other side, CA gets RK2 by executing ADec(PrikeyCA, M5) and uses it to get
RN30,RN40, IDUi, h(PWUi),NAMEMDj_Ui, andMACMDj_Ui by executing SDec(RK2,M6).

Fig. 2. User and mobile device registration protocols

Privacy-Aware Authentication for Wi-Fi 207



Once gotten RN30, CA verifies the freshness of the message by comparing the decrypted
RN30 with the random nonce created previously by itself i.e. RN3. After verifying the
validity of the message,CA verifies the authenticity of the user by comparing the received
tuple {IDUi, h(PWU)} with the one stored in its DB. If the user is non-authentic, the
registration process is aborted; otherwiseCA storesNAMEMDj_Ui, andMACMDj_Ui toUi’s
record. Once registered the mobile device in CA, it sends the RN40 to MDj_Ui.

Finally, MDj_Ui, once received RN40 from CA, compares such value with the
random nonce generated previously by itself i.e. RN4. If such values are the same
MDj_Ui confirms to Ui the successful execution of the protocol.

Pseudo-Certificate Issue Protocol. This protocol is executed for downloading a set of
pseudo-certificates with their private keys and the information of the IPS Server (i.e. IP
address IPIPS and Public Key PublickeyIPS of IPS Server). This protocol is executed as
follows (see Fig. 3).

The Ui inputs his/her identity IDUi and password PWUi to his/her mobile device

MDj_Ui. Then, MDj_Ui communicates with CA and asks for pseudo-certificate issue.
After receiving the request message, CA generates a random number RN5 and sends it
to MDj_Ui. Once received the response of CA,MDi_Ui generates a random nonce RN6, a
random symmetric key RK3, and calculates M7 = AEnc(PubkeyCA, RK3) and M8 =

Fig. 3. Pseudo-certificate issue protocol

208 S.G. Yoo and J.J. Barriga



SEnc(RK3, RN5||RN6||IDUi||h(PWUi)||MACMDj_Ui). Once calculated M7 and M8,
MDj_Ui sends those values to CA.

On the other side, CA gets RK3 by executing ADec(PrikeyCA, M7) and uses it to get
RN50, RN60, IDUi, h(PWUi), andMACMDj_Ui by executing SDec(RK3, M8). Once gotten
RN50, CA verifies the freshness of the message by comparing the decrypted RN50 with
the random nonce created previously by itself i.e. RN5. After verifying the validity of the
message, CA verifies the authenticity of the user by comparing the received tuple {IDUi,
h(PWU)} with the one stored in itsDB. If the user is non-authentic, the pseudo-certificate
issue is aborted; otherwise CA generates a new set of pseudo-certificates {PCert(CA,
MDj_Ui)1, …, PCert(CA,MDj_Ui)n} and the private keys corresponding to each
pseudo-certificate {Prikey(CA,MDj_Ui)1, …, Prikey(CA,MDj_Ui)n} for MDj_Ui with
MACMDj_Ui. Additionally, CA gets the IP address of the IPS server its public key i.e.
IPIPS, PubkeyIPS, calculates M9 ¼ SEnc RK3; RN60 PrikeyðCA;MDj UiÞ1; . . .;

����

PrikeyðCA;MDj UiÞng: PCertðCA;MDj UiÞ1; . . .;PCertðCA;MDj UiÞn
� �

IPIPS PubkeyIPSkk�� Þ and
send M9 to MDj_Ui. Meanwhile, MDj_Ui gets RN600, {Prikey(CA,MDj_Ui)1, …, Prikey(CA,
MDj_Ui)n}, {PCert(CA,MDj_Ui)1,…, PCert(CA,MDj_Ui)n}, IPIPS, and PubkeyIPS by executing
SDec(RK4, M9). After, MDj_Ui compares the decrypted RN600 with the random nonce
generated previously by itself i.e. RN6. If such values are the same, MDj_Ui stores the
decrypted data to its DB and confirms the successful execution of the protocol to the
user.

IPS Access Protocol. This protocol is executed when the user wants to access to the
IPS service and it is executed as follows (see Fig. 4).

The MDj_Ui generates a random nonce RN7, measures the signal strength of Access
Points nearby i.e. SSAPs, and sends such values to the IPS Server accompanied with an
valid pseudo-certificate PCert(CA,MDj_Ui)k. Once received the message, the IPS Server

Mobile Device
MDj_Ui

IPS

SSAPs||RN7||PCert(CA,MDj_Ui)k - Verify PCert(CA,MDj_Ui)k
- Extract PubKey(CA,MDj_Ui)k from PCert(CA,MDj_Ui)k

- Get MDj_Ui's position PosMDj_Ui using SSAPs

- Generate random key RKIPS
- M10=AEnc(PubKey(CA,MDj_Ui)k, RKIPS)
- M11=SEnc(RKIPS, RN7||PosMDj_Ui||Sign(PriKeyIPS, RKIPS))
- Store PCert(CA,MDj_Ui)k, PosMDj_Ui) in DB

IPS Access

- Generates a random nonce RN7
- Get APs signal strength SSAPs

M10, M11

- RKIPS=ADec(PriKey(CA,MDj_Ui)k, M10)
- RN7'||PosMDj_Ui||Sign(PriKeyIPS, RKIPS)=SDec(RKIPS, M11)
- Verify RN7'=RN7
- Read PubKeyIPS from DB
- VerifySign(PubKeyIPS, Sign(PriKeyIPS, RKIPS))
- Use PosMDj_Ui

Fig. 4. IPS access protocol

Privacy-Aware Authentication for Wi-Fi 209



verifies the validity of the PCert(CA,MDj_Ui)k by using the public key of CA PubkeyCA
and verifying the expiration time of the pseudo-certificate. The IPS Server also registers
the received certificate to make it invalid for further authentications.

After validating the pseudo-certificate, the IPS Server extracts the public key
Pubkey(CA,MDj_Ui)k from PCert(CA,MDj_Ui)k, gets the current position of the mobile
device PosMDj_Ui, generates a random key RKIPS, and calculates M10 and M11, where
M10 = AEnc(PubKey(CA,MDj_Ui)k, RKIPS). M11 = SEnc(RKIPS, RN7||PosMDj_Ui||Sign
(PriKeyIPS, RKIPS)), and Sign(x,y) is the signing function of a message y using the
private key x. Once calculated M10 and M11, the IPS Server stores the {PCert(CA,
MDj_Ui)k, PosMDj_Ui} combination in DB and sends {M10, M11} to MDj_Ui.

On the other side, the MDj_Ui gets RKIPS by executing ADec(PriKey(CA,MDj_Ui)k,
M10) and uses it to extract RN70, PosMDj_Ui, and Sign(PriKeyIPS, RKIPS) by executing
SDec(RKIPS, M11). Then, MDj_Ui verifies the freshness of the message by comparing
the extracted RN70 with RN7. After MDj_Ui gets PubKeyIPS and verifies the digital
signature of the message by executing VerifySign(PubKeyIPS, Sign(PriKeyIPS, RKIPS))
to ensure the authenticity of the message. Finally, once verified the authenticity of the
message, the mobile device can use the PosMDj_Ui information.

4 Analysis of the Proposed Protocol

This section analyzes the proposed protocol in terms of security and performance.

4.1 Security Analysis

This part analyzes the security of the proposed protocol in terms of analysis of possible
attacks. For this analysis, the widely known Dolev-Yao [18] threat model was used,
which assumes that two communicating parties uses an insecure channel.

Man in the Middle Attack. This attack is not possible because the messages are
encrypted using secure encryption functions. When MDj_Ui communicates with CA, the
message is encrypted using the public key of CA; when CA communicates with MDj_Ui

the message is encrypted with the random symmetric key generated by MDj_U; and
when IPS Server communicates with MDj_Ui the message is encrypted with the public
key of MDj_Ui extracted from the pseudo-certificate. The usage of secure encryption
functions allows proposed protocols to maintain the confidentiality and integrity of
messages.

Replay Attack. Random nonces are used to avoid replay attacks in user registration,
mobile device registration, and pseudo-certificate issue protocols. On the other hand,
replay attack is avoided in the IPS access protocol by using pseudo-certificates; even
though the attacker captures the pseudo-certificate, he/she cannot authenticate to the
IPS server since the pseudo-certificate is usable only once.

Password Guessing Attack. This attack is not possible because PWUi is not stored
anywhere. Instead, a variant value h(PWUi) is used for user validation. Since h(.) is a
secure one-way hash function, the attacker cannot guess the PWUi from h(PWUi).

210 S.G. Yoo and J.J. Barriga



Privileged-Insider Attack. In the proposed solution, MDj_Ui never transmits the
password of the user PWUi in plaintext. Instead, a variant value h(PWUi) is sent to the
CA. Even a privileged-insider of CA cannot guess the PWUi because h(PWUi) is cal-
culated using a secure one-way hash function.

Many Logged-In Users with the Same Pseudo-Certificate. Since a
pseudo-certificate is usable only once, it is not possible two users to login using the
same pseudo-certificate.

Brute Force Attack. The attacker can attempt to authenticate by sending random or
sequential messages to IPS Server. However, as well as explained in the replay attack,
this attack becomes infeasible because each pseudo-certificate is usable once.

Anonymous Authentication. The proposed protocol makes use of a random
pseudo-certificates to authenticate to the IPS Server. Since pseudo-certificates are
random and since it was issued by a third party entity (CA), the IPS Server cannot guess
the user being authenticated. This means that the IPS Server cannot track the position
of the user.

Separation of Responsibilities. CA manages only the information of the users/mobile
devices while IPS Server manages only the information about the relation between a
pseudo-certificate and position. Therefore, the entities cannot determinate the position
of users by themselves. The historical position of users can be obtained only with the
permission of a governmental authority by assembling the information of both entities
i.e. CA and IPS Server, for example, for crime scene investigation.

4.2 Performance Analysis

Table 2 indicates the overhead of cryptographic steps of each protocols. It important to
mention that the cryptographic overhead in each protocol is minimal; therefore, it does
not affect to the real implementation of the proposed solution.

Table 2. Cryptographic Overhead (i.e. number of operations)

Phase Entity Proposed

User registration MDj_Ui 1 AEnc + 1 SEnc + 1H + 1SDec
CA 1 ADec + 1 SDec + 1 SEnc

Mobile device
registration

MDj_Ui 1 AEnc + 1 SEnc + 1 H
CA 1 ADec + 1 SDec

Pseudo-certificate
issue

MDj_Ui 1 AEnc + 1 SEnc + 1 H
CA 1 ADec + 1 SDec + Pseudo-certificate and private keys

generation
IPS access MDj_Ui 1 ADec + 1 SDec + 1 VerifySign

IPS
Server

1 AEnc + 1 SEnc + 1 Sign

AEnc: Asymmetric encryption, ADec: Asymetric decryption, H: hash, SEnc: Symmetric
encryption, SDec: Symmetric decryption, Sign: Creation of digital signature, VerifySign:
Verification of digital signature

Privacy-Aware Authentication for Wi-Fi 211



5 Conclusions and Future Direction

This paper has proposed a novel authentication system for Indoor Positioning Systems
that delivers privacy to users. The proposed solution allows tracking the position of
users when required by the governmental authorities (e.g. police, department of justice)
for legal investigation procedures. Separation of responsibilities between CA and IPS
Servers allows maintaining the privacy of users even if a malicious user compromises
one of them. The proposed solution provides a secure authentication system for IPS
while maintaining a minimal performance overhead. In the near future, we will con-
tinue our research in adding new features to the proposed authentication system such as
pseudo-certificate revocation and mobile device revocation protocols.

References

1. Deng, Z., Yu, Y., Yuan, X., Wan, N., Yang, L.: Situation and development tendency of
indoor positioning. China Commun. 10(3), 42–55 (2013)

2. Mainetti, L., Patrono, L., Sergi, I.: A survey on indoor positioning systems. In: 2014 22nd
International Conference on Software, Telecommunications and Computer Networks
(SoftCOM), pp. 111–120 (2014)

3. Yang, C., Shao, H.: WiFi-based indoor positioning. IEEE Commun. Magaz. 53(3), 150–157
(2015)

4. Cypriani, M., Lassabe, F., Canalda, P., Spies, F.: Open wireless positioning system: a
Wi-Fi-based indoor positioning system. In: IEEE Vehicular Technology Conference, pp. 1–5
(2009)

5. Shokouhifard, M.: User privacy risks and protection in WLAN-based indoor positioning.
Master of Science thesis, Tampere University of Technology, Tampere, Finland (2016)

6. Bahl, P., Padmanabhan, V.N.: RADAR: an in-building RF-based user location and tracking
system. INFOCOM 2, 775–784 (2000)

7. Lassabe, F.: Geolocalisation et prediction dans les reseaux Wi-Fi en iterieur. Ph.D.
dissertation. Ecole doctorale SPIM (2009)

8. Lassabe, F., Baala, O., Canalda, P., Chatonnay, P., Spies, F.: A friis-based calibrated model
for wifi terminals positioning. In: Proceedings of IEEE International Symposium on a World
of Wireless, Mobile and Multimedia Networks, pp. 382–387 (2005)

9. Gruteser, M., Liu, X.: Protecting privacy in continuous location tracking applications. IEEE
Secur. Priv. Magaz. 2(2), 28–34 (2004)

10. Konstantinidis, A., Chatzimilioudis, G., Zeinalipour-Yazti, D., Mpeis, P., Pelekis, N.,
Theodoridis, Y.: Privacy-preserving indoor localization on smartphones. IEEE Trans.
Knowl. Data Eng. 27(11), 3042–3055 (2015)

11. Takeda, K.: User identification and tracking with online device fingerprints fusion. In:
Proceedings - International Carnahan Conference on Security Technology, pp. 163–167
(2012)

12. Kjærgaard, M.B., Krarup, M.V., Stisen, A., Prentow, T., Blunck, H., Gronbaek, K., Jensen,
C.S.: Indoor positioning using wi-fi: how well is the problem understood? In: International
Conference on Indoor Positioning and Indoor Navigation (2013)

212 S.G. Yoo and J.J. Barriga



13. Al-Ammar, M., Alhadhrami, S., Al-Salman, A., Alarifi, A.: Comparative survey of indoor
positioning technologies, techniques, and algorithms. In: Proceedings of the 2014
International Conference on Cyberworlds (CW), pp. 1–8 (2014)

14. Alarifi, A., Al-Salman, A., Alsaleh, M., Alnafessah, A., Al-Hadhrami, S., Al-Ammar, M.,
Al-Khalifa, H.: Ultra wideband indoor positioning technologies: analysis and recent
advances. Sensors 16, 707 (2016)

15. Sun, Y., Lu, R., Lin, X., Shen, X., Su, J.: An efficient pseudonymous authentication scheme
with strong privacy preservation for vehicular communications. IEEE Trans. Veh. Technol.
59(7), 3589–3603 (2010)

16. Alvez, A., Felton, D.: TrustZone: integrated hardware and software security. enabling trusted
computing in embedded systems. ARM, White Paper (2004)

17. Freescale Semiconductors. Security features in the i.MX31 and i.MX31L multimedia
application processors. Freescale Semiconductors, White Paper (2005)

18. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory 29(2),
198–208 (1983)

Privacy-Aware Authentication for Wi-Fi 213



On the Effectiveness of Non-readable Executable
Memory Against BROP

Christian Otterstad(B)

Department of Informatics, University of Bergen, Bergen, Norway
christian.otterstad@uib.no

Abstract. With the advent of the low-level exploitation mitigation
techniques W⊕X, ASLR, and stack canaries, the attacker has in most
cases been forced to use ROP (Return-Oriented Programming) to enable
successful arbitrary code execution. Strong, fine-grained ASLR has fur-
ther raised the bar, requiring the attacker to possess an information
leak or primitive to read memory. As a further mitigation technique
to this attack scenario, XnR (Execute-no-Read) and similar protections
have been suggested, which prevent an attacker from reading executable
memory. This paper shows that BROP (Blind Return Oriented Pro-
gramming) can in certain cases be used to exploit mitigation techniques
similar to XnR on Linux x86-64. We examine some important aspects of
BROP and its First Principles counterpart in the context of defeating
XnR, and present and discuss extensions and complications. An exploit
implementation is also presented and discussed, showing that XnR by
itself—without sufficiently strong ASLR—offers no protection against
BROP-type reading of memory.

Keywords: XnR · Low-level · Exploitation · Stack overflow · BROP

1 Introduction

Traditionally on x86, an attacker could inject and execute machine code on
the stack and heap. W⊕X enabled the defender to flag pages as writable but
not executable, hence stopping such attacks. However, with this scheme, the
attacker is still able to execute arbitrary code, namely by code reuse. This tech-
nique was first established with the ret2libc (Return-to-libc) attack and was
later generalized in a Turing complete form called ROP (Return-oriented Pro-
gramming) utilizing short return-terminated snippets of machine code—gadgets.
ASLR (Address Space Layout Randomization) makes the address of certain code
segments unknown at runtime, thus preventing the attacker from reusing known
code snippets. Academia has seen a number of ASLR techniques with different
granularity and entropy [3,5,6,10,13]. However, the JIT-ROP paper [11] has
shown that in some cases, when the attacker has an iterable read primitive, even
arbitrarily strong ASLR can be defeated by reading the memory in situ.

XnR (Execute-no-Read) introduces the notion of executable but non-
readable memory. This can be seen as a similar type of mitigation as the NX-bit
c© Springer Nature Singapore Pte Ltd. 2017
L. Batten et al. (Eds.): ATIS 2017, CCIS 719, pp. 214–221, 2017.
DOI: 10.1007/978-981-10-5421-1 18



On the Effectiveness of Non-readable Executable Memory Against BROP 215

to prevent an executable and readable stack or heap. Effectively, it grows the
attribute set which can be used by the kernel to define and enforce memory
constraints. XnR prevents the attacker from obtaining a reliable read primitive
causing techniques such as JIT-ROP to fail. There are also similar mitigation
efforts, e.g. [4,12,14]. In this paper such systems will for simplicity collectively
be referred to as XnR or XnR-like techniques.

The rest of the paper is structured as follows. Section 2 presents earlier rel-
evant work and outlines the contributions of this paper. Section 3 presents and
discusses an exploit capable of bypassing XnR in a particular environment based
on the first principles technique. This section also considers complications and
alternative ways to optimize the XnR exploit. Section 4 discusses the overall
effectiveness of XnR. Finally, a conclusion is given in Sect. 5.

2 Earlier Work and New Contributions

The most relevant paper about indirectly reading memory, which this paper
builds directly upon, is “Hacking blind” [2], where the BROP (Blind Return
Oriented Programming) technique is presented. BROP relies on blind and guided
execution of remote memory. However, the final step in the BROP variant of
the attack relies on reading memory directly, which is specifically prevented by
XnR [1]. The authors of the paper [2] also present the “first principles” technique
which does not rely on direct reading, but with no implementation provided.
Hacking Blind briefly discusses how exploitation may be optimized if the attacker
has a copy of the target binary, but have only provided an example for a specific
case, not generic spatial information obtained whilst probing. Another related
technique is JIT-ROP, which enables defeating arbitrarily strong ASLR given a
read primitive in a scripting environment [11].

BROP has been examined previously by Keener Lawrence [8] who found
that not all programs contain the required gadgets. Furthermore, the thesis
states that the first principles technique is not a reliable method to fall back on
when BROP based attacks fail. Other research has found weaknesses in XnR in
scripting environments and with gadget injection through a JIT compiler [9,14].
A completely different exploitation approach may also be taken in some cases,
namely that of a data-oriented exploit [7].

This paper evaluates the feasibility of attacking XnR and similar mitiga-
tion techniques under special circumstances—a forking server with no scripting
environment. In particular, it examines if the BROP and the “first principles”
techniques [2] can be applied to attack XnR, and what extensions are useful.
Furthermore, an extension to the first principles technique, relying on a priori
information available when not attacking blindly, is presented and discussed in
the context of defeating XnR. In particular, the notion of using a multi-threaded
attack and exploiting spatial information gleaned from a copy of the target
binary is discussed. Finally, to the knowledge of the author, the first principles
technique has been implemented in C for the first time with some extensions.
Although first principles was suggested in [2], the actual implementation is not



216 C. Otterstad

straightforward as some of the gadget detection techniques required different
approaches, care must also be taken to avoid false positives, as described later
in this paper. The BROP technique previously implemented in Braille [2] has
also been reimplemented in C and can be used as an attack method in the same
exploit.

3 Exploitation Overview

This section discusses some important aspects related to detecting gadgets and
avoiding false positives. It also outlines how the performance of gadget detection
can be improved.

3.1 Exploitation Technique

Exploitation is achieved by finding gadgets to control rax, rdi, rsi, rdx, and
syscall. This is due to the calling convention of x86-64 on Linux. Pop gadgets
are not the only way to achieve such control, but it is the most straightforward.

There already exist [2] basic primitives to find the BROP gadget, the PLT,
pop gadgets, syscall gadgets, and generic gadgets. However, pop gadget detec-
tion is not clearly described in [2] and differentiation of pop gadgets was also
found during this research to be incorrectly described in the same paper.

A generic gadget is a gadget that executes some unknown code and returns
safely, which is identifiable behavior. Useful gadgets such as inc rdx may be
possible to locate by chaining together generic gadgets and then an identifying
gadget. Since a true generic gadget is safe to execute, multiple such gadgets
may be concatenated without the remote process crashing. Assume the attacker
already has the ability to control rax, rdi, and rsi but cannot find a pop rdx
gadget. If it is possible to set rdx to a non-zero value, the attacker has some
control over it and can start attempts to read non-executable memory pages
directly to confirm the behavior of the candidate gadget affecting rdx. Blind
execution of generic gadgets may be combined with efforts to map regions of
memory with known local memory, depending on the granularity of the ASLR
in place.

The BROP gadget is useful in the original BROP attack, which involves
reading the remote binary directly. It is useful since it offers control over both
rdi and rsi with a single gadget. Nevertheless, after finding the BROP gadget
it would still be necessary to scan for and identify all stack popping gadgets
when using first principles, hence limiting its usefulness. However, it would be
useful if rdi and rsi cannot be controlled with normal stack popping gadgets.

Care must be exerted when attempting to probe for popping gadgets as
false positives can occur. This can happen for multiple reasons, e.g. probing at
an offset into the procedure prologue of a function which skips a push opcode
making the epilogue perform an additional pop on the stack, thus acting like a
single pop gadget. Furthermore, a probed gadget that also is a stop gadget will
result in a false positive, as may a leave and instructions manipulating rsp.

To correctly detect pop gadgets, the following probes should be used:



On the Effectiveness of Non-readable Executable Memory Against BROP 217

– probe =⇒ crash =⇒ stop =⇒ crash =⇒ crash
– probe+1 =⇒ stop =⇒ crash =⇒ crash
– probe =⇒ crash =⇒ crash =⇒ crash

To actually identify gadgets in first principles, Hacking Blind [2] suggests
setting all identified pop gadgets to pause and check if the probe hangs. This
procedure works. The exploit records known hang addresses while scanning for
pop gadgets. These addresses can then be skipped when scanning for syscall.
False positives can be identified by testing the functionality of the syscall
gadget. If it does hang, then it should not hang on other syscall arguments.

To find rdi, Hacking Blind suggests using the nanosleep system call, stating
it takes arguments of the form nanosleep(len,rem), where len is the nanosec-
onds to sleep. The argument is actually a pointer to a struct timespec, but it
requires being filled with a set of specific values (at least on Linux 4.4.6), limiting
its use. Such a structure in memory with these particular values is unknown at
this point for the attacker. The attacker could possibly use the leaked stack frame
pointer to determine where the stack is and use values written to the stack as a
timespec structure. However, an alternative not mentioned in Hacking Blind is
to use close and simply guess, or brute force the FD (File Descriptor). When the
source target is available, the attacker can also in some cases simply determine
the FD a priori.

To find rsi, Hacking Blind suggests using kill. However, kill(pid, sig)
with pid = 0 and sig set to a terminating signal such as SIGTERM or SIGKILL
will kill the whole group, including the parent. This causes the whole server to
terminate and therefore stops the attack. A possible solution is to call setsid()
first to create a new group, s.t. the parent process is not killed as well. It does not
seem the setsid() call can be ignored. Even with a server that gets restarted by
some other process, e.g. inetd or equivalent would have its entropy reissued by
the system. Therefore, it cannot be relied on even with a server of this nature.

To find rdx, Hacking Blind suggests using clock nanosleep. However,
clock nanosleep has the same issue as regular nanosleep. In the exploit it
was decided to use write instead.

3.2 Performance

We shall now examine additional ways to improve the performance of the exploit.
There are basically two ways the overall performance can be improved: By reduc-
ing the number of probes, and by improving the rate at which probes are eval-
uated. In general, the execution rate of the exploit is bounded by the attacker’s
timing, the defender’s total CPU performance, defender side RAM (if applica-
ble), the network connection, and the number of workers (if applicable) available
to the defender.

The new exploit is able to take advantage of a priori spatial knowledge in
the general case whenever the ASLR implementation allows for it. The exploit is
supplied with an argument of a binary copy of the target program being attacked
and uses it to locate spatially adjacent gadgets within the assumed size of the



218 C. Otterstad

minimum basic block the target ASLR implementation works with. If assuming
a unique gadget A is found remotely, e.g. a pop rax gadget residing at address
x, and the local offset from gadget A to gadget B, has a difference less than the
minimum basic block size, then the attacker will immediately know a possible
remote address of gadget B as well, based on its location in the copy of the
binary. This reduces the entropy of the remote machine memory. The ability of
an exploit to variably adjust its minimum basic block size based on probes—
whilst still able to fall back on first principles probes—is as far as the author is
aware not previously published. The basic algorithm for such spatial inference
is given in Algorithm 1.

Algorithm 1. Find gadgets by spatial inference
1: procedure FindSpatialGadgets

2: for all gadgets G not spatially examined in

the list of gadgets do
3: for all adjacent gadgets in local memory

Gl to G do
4: α ← remote address of G
5: δ ← local offset to Gl from G
6: if δ < minimum basic block size then
7: Gr ← G + δ
8: if there exists a remote gadget of type Gl

at Gr then
9: Add Gr to the list of gadgets

10: Adjust the minimum basic block size
return

1: procedure FindGadgetScan

2: for all remote memory offsets i do
3: probe i
4: if a gadget G is found then
5: add G to the list of gadgets
6: FindSpatialGadgets

7: if all gadgets required have been found then
8: return

The Hacking Blind paper [2] already points out multiple ways to improve
performance. However, it is also possible to do a binary search to eliminate
popping gadgets. When searching for pop gadgets, at least one byte can be
skipped once it has been found. The next instruction cannot be another true
pop gadget.

Hacking Blind appears to get at most around 33 probes per second when
attacking a remote host [2]. Based on testing, it is possible to get at least
77 probes per second against a local server with Braille, on average for a full
exploit. However, multithreading as used in the new exploit can dramatically
improve this figure in some cases when compared to the new exploit developed.



On the Effectiveness of Non-readable Executable Memory Against BROP 219

Fig. 1. Performance improvement as a result of multithreaded scanning on a system
under load, scanning the non-executable region 0 × 0 to 0 × 10000 against the toy server
on an Intel Core i7-3720QM, full load on all cores. Average of 8 runs per observation.

The performance gain becomes even more apparent as the system is put under
load, as shown in Fig. 1. If there is no load on the server (which happens earlier
in the exploit process), the same type of gain can be achieved with much fewer
threads, but as the load increases more threads are required to compete with
stray children spawned based on previous probes.

4 Effectiveness of XnR

XnR by itself offers no protection against BROP. The ASLR strength is criti-
cal for making XnR effective and directly dictates the required time budget of
the attacker. Different defender systems may allow for a varying attack win-
dow due to different IDSes (Intrusion Detection System) and different levels of
supervision. These factors make it hard to quantify the overall effectiveness of
an attack, especially when the ASLR strength may be variable. Hacking Blind
assumes eight hours in their longest example [2], however it is fair to assume
some systems can be attacked for even longer.

High entropy but very coarse granularity ASLR—at a granularity similar to
standard Linux ASLR where only an offset is moved—coupled with XnR has no
effect against BROP due to Offset2lib type attacks. This is true even if the code
itself is highly permuted and rewritten as the attacker is given a base address
to scan. Furthermore, arbitrarily fine coarse granularity ASLR and high entropy
ASLR that does not move any permuted code region away from the base offset
also has no effectiveness against BROP. In both of these cases the base address
can be obtained from the rip, just as in Offset2lib. It can then be scanned, and
since all the code is found in the same region, the scanning process would be
fast, on the order of what was pointed out in Sect. 3.2. However, strong ASLR
that uses a large address space and places code blocks throughout the whole
address space would be effective as it would require a larger address space to be
scanned.

The running time of the attack is O(a), where a is the total number of
possible addresses. If the attacker is unable to scan all the addresses due to



220 C. Otterstad

time constraints or being detected by the defender, the attack may fail. As
previously pointed out [8], the required gadgets may not exist. But assuming
they do, the main limitation of any variant of BROP is the worst case number
of addresses that must be scanned. If the ASLR implementation can place code
at an n bit address space, the scanning time would at worst be approximately
2n − ((B − 1) · G)

P
seconds, where P is the average number of probes per second,

B is the minimum basic block size that can be permuted, and G is the number
of gadgets successfully used to infer another gadget in a basic block. Depending
on the strength of the ASLR, on the binary being attacked, and on the time
budget, it can then be decided if extended first principles is a feasible mode of
attack in that particular case.

5 Conclusion

The first working implementation for an extended first principles attack, initially
described in Hacking Blind [2], was presented. The improved exploit was then
used to attack XnR and the result was analyzed. The first principles attack
has been extended using the spatial locality of detected gadgets to reduce the
number of required probes, as well as enhanced in terms of throughput with
multithreading to demonstrate significant gains in scanning performance.

It has been shown that XnR by itself has no effect against BROP-like tech-
niques, even when coupled with certain high entropy ASLR systems with an
insufficient address space range. It was also argued that BROP-attacks are
impractical when XnR is coupled with sufficiently strong ASLR/ASLP. How-
ever, given the performance cost of various strong ASLR implementations, it
also seems fair to assume that not all targets will employ the strongest ASLR
available. To that effect, an attacker facing ASLR of intermediate or weaker
strength may find practical use of the extended first principles technique for
indirect reading of memory.

References

1. Backes, M., Holz, T., Kollenda, B., Koppe, P., Nürnberger, S., Pewny, J.: You
can run but you can’t read: preventing disclosure exploits in executable code. In:
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS 2014), pp. 1342–1353, NY, USA (2014). http://doi.acm.org/
10.1145/2660267.2660378

2. Bittau, A., Belay, A., Mashtizadeh, A., Maziéres, D., Boneh, D.: Hacking blind.
In: Proceedings of the 2014 IEEE Symposium on Security and Privacy (SP 2014),
pp. 227–242 (2014). http://dx.doi.org/10.1109/SP.2014.22

3. Conti, M., Crane, S., Frassetto, T., Homescu, A., Koppen, G., Larsen, P., Liebchen,
C., Perry, M., Sadeghi, A.R.: Selfrando: securing the tor browser against de-
anonymization exploits. In: The Annual Privacy Enhancing Technologies Sym-
posium (PETS), July 2016

http://doi.acm.org/10.1145/2660267.2660378
http://doi.acm.org/10.1145/2660267.2660378
http://dx.doi.org/10.1109/SP.2014.22


On the Effectiveness of Non-readable Executable Memory Against BROP 221

4. Crane, S., Liebchen, C., Homescu, A., Davi, L., Larsen, P., Sadeghi, A.R., Brun-
thaler, S., Franz, M.: Readactor: practical code randomization resilient to memory
disclosure. In: 36th IEEE Symposium on Security and Privacy (Oakland), May
2015

5. Davi, L.V., Dmitrienko, A., Nürnberger, S., Sadeghi, A.R.: Gadge me if you can:
secure and efficient ad-hoc instruction-level randomization for x86 and arm. In:
Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer
and Communications Security (ASIA CCS 2013), pp. 299–310, NY, USA (2013).
http://doi.acm.org/10.1145/2484313.2484351

6. Hiser, J., Nguyen-Tuong, A., Co, M., Hall, M., Davidson, J.: ILR: where’d my
gadgets go? In: 2012 IEEE Symposium on Security and Privacy (SP), pp. 571–
585, May 2012

7. Hu, H., Chua, Z.L., Adrian, S., Saxena, P., Liang, Z.: Automatic generation of
data-oriented exploits. In: Proceedings of the 24th USENIX Conference on Security
Symposium (SEC 2015), pp. 177–192. USENIX Association, Berkeley, CA, USA
(2015). http://dl.acm.org/citation.cfm?id=2831143.2831155

8. Keener, L.: Evaluating the generality and limits of blind return-oriented pro-
gramming attacks. Ph.D. thesis, Naval Postgraduate School, Monterey, California
(2015). http://calhoun.nps.edu/handle/10945/47979

9. Maisuradze, G., Backes, M., Rossow, C.: What cannot be read, cannot be
leveraged? revisiting assumptions of JIT-ROP defenses. In: 25th USENIX Secu-
rity Symposium (USENIX Security 2016), pp. 139–156. USENIX Associa-
tion, Austin, TX (2016). https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/maisuradze

10. Marco, H., Ripoll, I.: ASLR-NG: ASLR Next Generation. http://cybersecurity.
upv.es/solutions/aslr-ng/aslr-ng.html. Accessed 06 July 2016

11. Snow, K.Z., Monrose, F., Davi, L., Dmitrienko, A., Liebchen, C., Sadeghi, A.R.:
Just-in-time code reuse: on the effectiveness of fine-grained address space layout
randomization. In: Proceedings of the 2013 IEEE Symposium on Security and
Privacy (SP 2013), pp. 574–588 (2013). http://dx.doi.org/10.1109/SP.2013.45

12. Tang, A., Sethumadhavan, S., Stolfo, S.: Heisenbyte: thwarting memory disclosure
attacks using destructive code reads. In: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security (CCS 2015), pp. 256–267,
NY, USA (2015). http://doi.acm.org/10.1145/2810103.2813685

13. Wartell, R., Mohan, V., Hamlen, K.W., Lin, Z.: Binary stirring: self-randomizing
instruction addresses of legacy x86 binary code. In: Proceedings of the 2012 ACM
Conference on Computer and Communications Security (CCS 2012), pp. 157–168,
NY, USA (2012). http://doi.acm.org/10.1145/2382196.2382216

14. Werner, J., Baltas, G., Dallara, R., Otterness, N., Snow, K.Z., Monrose, F., Poly-
chronakis, M.: No-execute-after-read: preventing code disclosure in commodity
software. In: Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security (ASIA CCS 2016), pp. 35–46, NY, USA (2016). http://
doi.acm.org/10.1145/2897845.2897891

http://doi.acm.org/10.1145/2484313.2484351
http://dl.acm.org/citation.cfm?id=2831143.2831155
http://calhoun.nps.edu/handle/10945/47979
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/maisuradze
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/maisuradze
http://cybersecurity.upv.es/solutions/aslr-ng/aslr-ng.html
http://cybersecurity.upv.es/solutions/aslr-ng/aslr-ng.html
http://dx.doi.org/10.1109/SP.2013.45
http://doi.acm.org/10.1145/2810103.2813685
http://doi.acm.org/10.1145/2382196.2382216
http://doi.acm.org/10.1145/2897845.2897891
http://doi.acm.org/10.1145/2897845.2897891


Author Index

Abbas, Muhamed Fauzi Bin 181
Abbasi, Fahim H. 169
Akiyama, Mitsuaki 113
Aman, Naqqash 169
Aono, Yoshinori 100

Barriga, Jhonattan J. 201
Bayat-Sarmadi, Siavash 23
Bazai, Sibghat Ullah 88

Chow, Yang-Wai 3
Chowdhury, Dipanwita Roy 58

Farzam, Mohammad Hossein 23

Gauravaram, Praveen 14

Hayashi, Takuya 100
Hirose, Shoichi 14

Isobe, Takanori 128

Jang-Jaccard, Julian 88

Kakarla, Sourya 58
Kedziora, Michal 3
Koie, Takeru 128

Lee, Sharon X. 75
Leemaqz, Kaleb L. 75
Liu, Qingyun 193
Luo, Xiapu 113
Lv, Kewei 48

Mandava, Srinath 58
McLachlan, Geoffrey J. 75
Mori, Tatsuya 113

Moriai, Shiho 100
Morii, Masakatu 128

Otterstad, Christian 214

Pandu Rangan, C. 35
Pang, Shaoning 157
Paul, Arinjita 35
Phong, Le Trieu 100

Qin, Wenjie 48

Saha, Dhiman 58
Saleem, Yasir 169
Sarrafzadeh, Hossein 157
Shahzad, Farrukh 169
Sharmila Deva Selvi, S. 35
Srikanthan, Thambipillai 181
Stebila, Douglas 14
Sun, Bo 113
Sun, Yong 193
Susilo, Willy 3

Tian, Xiang 193
Todo, Yosuke 128

Wang, Lihua 100
Wang, Yu 193
Watanabe, Takuya 113

Yalame, Mohammad Hossein 23
Yang, Chi 157
Yarygina, Tetiana 141
Yoo, Sang Guun 201

Zhang, Ruibin 157
Zhang, Xuyun 88
Zhu, Yujia 193


	Preface
	Organization
	Keynote Speeches
	Identity of Things: Nano Artifact Metrics Using Silicon Random Nanostructures
	Five Decades of Software Obfuscation: A Retrospective
	Contents
	Crypto Algorithms and Applications
	Defeating Plausible Deniability of VeraCrypt Hidden Operating Systems
	1 Introduction
	2 Threat Model
	3 Defeating Deniability of Hidden Operating Systems
	3.1 Encrypted Drive Analysis
	3.2 Cross Drive Analysis
	3.3 Other Attack Vectors

	4 Conclusion
	References

	Security Analysis of a Design Variant of Randomized Hashing
	1 Introduction
	2 Definitions
	2.1 Deterministic Hash Function
	2.2 Randomized Hash Function Family and RMX
	2.3 Fixed Points in Block-Cipher-Based Compression Functions

	3 TCR and eTCR of Randomized Hash Function Family
	4 RMC Hash Function Family
	4.1 Rationale for the Design Choice of RMC
	4.2 Security Analysis

	5 Randomized Message Preprocessing for Hash Functions
	References

	Secure Two-Party Computation Using an Efficient Garbled Circuit by Reducing Data Transfer
	1 Introduction
	2 Preliminaries and Previous Work
	3 Proposed Scheme for SFE
	3.1 The Approach of the Proposed Scheme
	3.2 The Algorithms of the Garbler and the Evaluator Side
	3.3 An Exception in the Proposed Scheme

	4 Analytical and Experimental Results
	4.1 Results

	5 Conclusion
	References

	An Efficient Non-transferable Proxy Re-encryption Scheme
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions

	2 Preliminaries
	2.1 Bilinear Pairings
	2.2 Hardness Assumptions

	3 Definition and Security Model
	3.1 Definition
	3.2 Security Model

	4 Non-transferability
	5 Analysis of a CPA-Secure Non-transferable PRE Scheme by Wang et al. 
	5.1 Review of the Scheme
	5.2 Attack on the Scheme

	6 A CCA-secure Non-transferable Scheme
	6.1 Our Scheme
	6.2 Security Proof

	7 Comparison
	8 Conclusion
	References

	Rounding Technique's Application in Schnorr Signature Algorithm: Known Partially Most Significant Bits of Nonce
	1 Introduction
	2 Preliminaries
	2.1 Basic Concept
	2.2 Schnorr Digital Signature
	2.3 Schnorr-MSB-HNP

	3 Rounding Technique
	4 Main Result
	5 Conclusion
	References

	On the Practical Implementation of Impossible Differential Cryptanalysis on Reduced-Round AES
	1 Introduction
	2 Background and Preliminaries
	2.1 AES
	2.2 Notation
	2.3 4 Round Impossible Differential
	2.4 5 Round Attack on AES-128 by Biham and Keller

	3 Memory Reduction Techniques
	4 Implementation Details and Experimental Results
	4.1 Implementation for AES-128
	4.2 Implementation for AES-192/256

	5 Conclusion
	References

	Privacy Preserving Techniques
	Private Distributed Three-Party Learning of Gaussian Mixture Models
	1 Introduction
	2 The GMM Model
	3 The EM Algorithm
	3.1 E-Step
	3.2 M-Step
	3.3 Implementation

	4 Privacy 
	4.1 Cryptographic Schemes
	4.2 Adversary Model

	5 Privacy-Preserving Distributed GMM Algorithm
	5.1 Initialization
	5.2 E-Step
	5.3 M-Step
	5.4 Stopping Criteria

	6 Privacy and Information Leakage
	7 Performance
	8 Conclusion
	References

	A Privacy Preserving Platform for MapReduce
	Abstract
	1 Introduction
	2 Background
	2.1 MapReduce
	2.2 K-Anonymity
	2.3 Differential Privacy (DP)

	3 Related Work
	4 Proposed Solution
	4.1 The Proposed Platform
	4.2 Components

	5 Empirical Studies
	5.1 Applying Differential Privacy (DP) on Aggregation Algorithm
	5.2 Applying K-Anonymity on Aggregation Algorithm

	6 Conclusions and Future Work
	References

	Privacy-Preserving Deep Learning: Revisited and Enhanced
	1 Introduction
	1.1 Background
	1.2 Our Contributions
	1.3 Technical Overviews

	2 Preliminaries
	3 Gradients Leak Information
	4 Our System: Privacy-Preserving Deep Learning Without Accuracy Decline
	5 An Instantiation of Our System
	References

	Attacks
	Characterizing Promotional Attacks in Mobile App Store
	1 Introduction
	2 Problem Statement
	3 PADetective System
	3.1 Data Collection and Preprocessing
	3.2 Feature Extraction
	3.3 Effectiveness of Feature and Description of Detection Model

	4 Performance Evaluation
	5 Promtional Attacks in the Wild
	6 Discussion
	7 Related Work
	8 Conclusion
	References

	Low-Data Complexity Attacks on Camellia
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Specification of Camellia

	3 Observations on the Structure of Camellia
	4 Low-Data Complexity Attacks on 4-Round Camellia-128
	4.1 Data-Optimized Attack
	4.2 Time-Optimized Attack

	5 Low-Data Complexity Attacks on 5-Round Camellia-128
	5.1 Data-Optimized Attack
	5.2 Time-Optimized Attack

	6 More-Round Attacks
	6.1 Adding First Round
	6.2 Adding Final Round
	6.3 Attacks on 7-Round Camellia-128

	7 Attacks on Camellia-128 Including FL/FL-1 layers
	7.1 Attack on 5-Round Camellia with FL/FL-1
	7.2 Attack on 6-Round Camellia with FL/FL-1

	8 Conclusions
	References

	RESTful Is Not Secure
	1 Introduction
	2 Overview of Security Mechanisms for the Modern Web
	2.1 Token-Based Authentication
	2.2 Client Side Request Signing
	2.3 Delegated Authorization and Shared Authentication

	3 REST Architectural Style and Security
	3.1 Not Designed with Security in Mind
	3.2 Stateless Constraint
	3.3 Other Constraints Affecting Security

	4 The Way Forward
	4.1 Security Failure of REST
	4.2 What to Do
	4.3 Future Research

	References

	Malware and Malicious Events Detection
	UnitecDEAMP: Flow Feature Profiling for Malicious Events Identification in Darknet Space
	1 Introduction
	2 Background
	3 The Proposed UnitecDEAMP
	3.1 Flow Segmentation
	3.2 Flow Feature Profiling

	4 Experiment
	4.1 Significant Malicious Events of ICMP
	4.2 Significant Malicious Events of UDP

	5 Conclusion
	References

	A Hybrid Approach for Malware Family Classification
	1 Introduction
	2 Related Work
	3 Dataset
	4 Methodology
	4.1 Data Collection and Report Generation
	4.2 Label Assignment and Feature Extraction
	4.3 Feature Representation
	4.4 Feature Selection

	5 Results
	5.1 Model Selection and Training Set Evaluation
	5.2 Test Set Evaluation
	5.3 Discussion and Analysis of Results

	6 Conclusion
	References

	Low-Complexity Signature-Based Malware Detection for IoT Devices
	1 Introduction
	2 Related Work
	3 Proposed Malware Classification System
	3.1 Offline Signature Extraction
	3.2 Online Malware Detection
	3.3 Enhanced Malware Detection Algorithm

	4 Evaluation
	4.1 Experiment Results

	5 Conclusion
	References

	System and Network Security
	De-anonymous and Anonymous Technologies for Network Traffic Release
	Abstract
	1 Introduction
	1.1 Acquisition of Network Traffic Data
	1.2 Release of Network Traffic Data

	2 Traffic Anonymity Method
	3 De-anonymous Attacks
	3.1 Infer the Topology Structure
	3.2 Infer the Host Behavior
	3.3 Infer the Node Information

	4 Anonymous Methods Against Attacks
	4.1 Against Topology Inference Attack
	4.2 Against Host Behavior Inference Attack
	4.3 Against Node Information Inference Attack

	5 Summary and Future Work
	Acknowledgments
	References

	Privacy-Aware Authentication for Wi-Fi Based Indoor Positioning Systems
	Abstract
	1 Introduction
	2 State of the Art
	2.1 Wi-Fi Based Indoor Positioning Systems
	2.2 Security Limitations of IPS Based on Wi-Fi

	3 Proposed Protocol
	3.1 Overview of the System
	3.2 Pseudonymous Authentication Scheme
	3.3 Details of the System

	4 Analysis of the Proposed Protocol
	4.1 Security Analysis
	4.2 Performance Analysis

	5 Conclusions and Future Direction
	References

	On the Effectiveness of Non-readable Executable Memory Against BROP
	1 Introduction
	2 Earlier Work and New Contributions
	3 Exploitation Overview
	3.1 Exploitation Technique
	3.2 Performance

	4 Effectiveness of XnR
	5 Conclusion
	References

	Author Index



