
Chapter 1
Design and Preparation of Microfluidics
Device

Luyao Lin and Jin-Ming Lin

Abstract A rapid development has been witnessed since the birth of this minia-
turized analytical equipment about forty years ago. And microfluidics, a discipline
studying the manipulation and analysis of micro volume sample is also attracting
the attention of academics with the annually increasing publications. At present,
microfluidic device has become a powerful platform with diverse functions
implicated in the fields of cellular biology, environmental study, food safety
monitoring and micro synthesis, and has crossed the barrier of academic study into
the daily life of normal customers. In this chapter, we will focus on several aspects
concerning the design and fabrication of microfluidic devices, such as the devel-
opment of device material, different methods of chip fabrication and functional
units to realize purpose of intention. And in the end of this part, a brief future
perspective is given to evaluate the potential applications of microfluidic device,
especially with other portal devices like smart phone.
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1.1 Introduction

Microfluidic devices are termed as micro total analysis system (lTAS) or laboratory
on a chip (LOC), with the first reported work dating back to 1975. A gas chro-
matography at micro scale was reported then [1]. However, the academics did not
respond actively to the new-born of this epoch-marking device firstly, but rather
turned indifference to it with no follow up studies in a long term. Not until 1990s
did the microfluidics device start to receive broad attention. The rapid development
of integrated circuit processing technique and computer industrial, along with the
urgent demand of bio-molecules separation devices redirected analytical devices to
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a path of miniaturization. Manz and coworkers designed an open-channel liquid
chromatography based on microfabricated silicon chip in 1990 [2]. It is noteworthy
that Manz is also the proposer of lTAS concept [3]. In this work, the authors
displayed integrated functions of sample pretreatment, separation and detection on
one chip. In the last 20 years, researches concerning novel microfabrication
strategies [4], development of new chip material [5] and application of microchip to
detection [6, 7] have been increasingly studied and published. And microfluidic
chip has become a multi-functional platform for various targets analysis (Fig. 1.1a)
[8] and a powerful tool for biomedical applications (Fig. 1.1b) [9].

The advantages of applying microfluidic devices to analytical testing include:
less consumption of reagents and samples, rapid reaction in microscale chamber,

Fig. 1.1 Illustration of lab-on-chip concept. a Multifunctional microfluidic platform(Reprinted
with permission from Ref. [8]). b Microfluidic analysis process for biomedical applications
(Reprinted with permission from Ref. [9])
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high integration allowing for high-throughput parallel test, miniaturization for good
portability, diverse chip designs for various functioning intentions, and precise
control of cell culturing environment in cell in vitro models. The processing
technique of microfluidic chip originated from the semi-conductor industrial, and
was further developed by micro-electromechanical systems fabrication. The wide
utilization of microfluidic chip in research fields is benefiting from its analytical
ability and manipulation of microscale objects. The fluids dynamics in micro scale
is distinct from macro world (Fig. 1.2a) [7]. A variant as Re is used to interpret the
characteristics of flow in micro regions. The connection of Re with fluid properties
as well as channel dimensions is illustrated in following equation:

Re ¼ qvd
l

Fig. 1.2 Schematic of flow dynamics in microfluidic region. a Laminar and turbulent flow,
surface tension and capillary forces (Reprinted with permission from Ref. [7]). b Generation of
Dean Flow in curved micro channel. c Flow focusing in curved channel induced by Dean Flow
(Fig. 1.2b and c were reprinted with permission from Ref. [12]). d Dean flow enhances flow
mixing (Reprinted with permission from Ref. [13])
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where q represents fluid density (kg/m3), v stands for average linear velocity (m/s),
d for the dimension of channel and l for fluid viscosity. When Re is larger than
2000, the main characteristic of flow is turbulent with vortexes happening. For cases
when Re is smaller than 1, the flow is steady and laminar. In micro channels, Re is
basically among the section belonging to laminar flow due to the miniaturized
channel dimensions, thus making the flow highly predictable. Lack of convection
leads to slow fluid mixing by diffusion. Another difference in microfluidic region is
that gravity no longer dominates the object motion as it does in macro world.
Surface interfacial tension and capillary forces become two major influencing
factors of objects behaviors [10, 11]. Besides, there are Dean flow induced inertia
forces (Fig. 1.2b) [12] which can be used for particle focusing (Fig. 1.2c) [12] and
enhancing mixing process (Fig. 1.2d) [13].

One of the big future developments for microfluidic chip is to design and prepare
function oriented chip prototypes with optimized and facile fabrication steps. And
generally, the basic rule for chip design rests in taking the maximum advantage of
microscale fluid physics to realize analytical test as well as objects manipulation.
Therefore various functional units were invented and integrated into microchip
along with its development, such as surface tension valve [14], concentration
gradient generator [15, 16] and droplet nozzle[17–19]. To match up the micro
analytical system, popular detection methods like fluorescent [20], electrochemical
[21, 22] and MS [23, 24] detectors as well as other biosensors [25, 26] were
combined to the microchip. In material selection, the choice for chip fabrication
evolved from inorganic material of silicon and glass to elastomer, thermoset and
thermoplastic, and again further to the paper based and other functional hybrid
materials. At present, the microfluidic device has become one of the most popular
research tools in analytical chemistry and bio-analytical fields with frequent
applications in environmental pollutants analysis [27, 28], food safety [29, 30],
disease diagnosis [31, 32] and construction of cell in vitro culture model [33–35].

However, it has to be admitted that the commercialization of microfluidic
devices is not successful despite of its broad application in academics and research
institutes [36]. Reason for this mediocrity is that comparing to other maturely
established detection methods, microfluidic devices are still short of some killer
applications, which makes researchers prefer conventional assays than microchips
[37]. On the other hand, the microfluidics commercialization is also limited by the
difficulties in mass production. The realization of specific functions on chip requires
specifically designed chip structure, and it would be overly difficult to format a
universal chip model for all kinds of purposes. Commonly researchers would
design and prepare homemade chips themselves, especially after the widely uti-
lization of PDMS as a replacement for glass and silicon in chip fabrication and the
acceptance of facial and cheap soft lithography as standard preparation methods. In
2013, the market scale of microfluidic devices was about 1.6 billion dollars, with
compound annual growth rate of 18–29% to a predicted size of 3.6–5.7 billion
dollars in 2018 [38]. The rapid development of this industrial is largely depending
on the fast expansion of genome sequencing [39, 40] and in vitro diagnosis
applications.
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In this chapter, we will have a detailed discussion about the development of
microfluidic devices materials and fabrication methods. The design of functional
units as well as the field’s prospect will also be covered.

1.2 Development of Microfluidic Chip Material

At the primitive stage of microfluidic chip, glass and silicon were the basic
materials for chip fabrication. With the invention of new materials and improve-
ment of processing technique, a flood of materials were applied in microchip
preparation(Fig. 1.3a) [41]. Currently, the chip materials can be roughly divided
into three categories as polymers (Fig. 1.3b) [42], inorganic(Fig. 1.3c) [43] and
paper based materials (Fig. 1.3d) [44]. And the material properties are among the
basic considering factors for material selection, such as air tightness, biocompati-
bility, conductivity, transparency and solvent tolerance. For example, glass and
silicon are with good stability and highly tolerant to solvents, while the polymer
materials have poor resist to solvents, and become partly dissolved or even disin-
tegrate among organic solvents. Besides, the choice of material should also meet the
requirement from chip miniaturization and integration. In laboratory environment,
the major concern of researchers is how to realize rapid prototype of newly
designed chip model and conduct performance testing, but for commercial intention
lowing the fabrication cost of product and improving the reliability during usage
would be more important. Next, we will have a closer look of the material
development history.

Fig. 1.3 Material choice of microfluidic device preparation. a Examples of microfluidic chip
material (Reprinted with permission from Ref. [41]). b PDMS based micro chip (Reprinted with
permission from Ref. [42]). c Glass microfluidic channel by laser direct writing method (Reprinted
with permission from Ref. [43]). d Paper based multiple targets analysis chip (Reprinted with
permission from Ref. [44])
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1.2.1 Inorganic Material in Chip Preparation

The earliest type of microfluidic device such as miniaturized gas [1] or liquid
chromatography [2] and capillary electrophoresis devices was prepared by glass and
silicon, under the processing technique inherited from semiconductor and micro-
electronics industrials [45]. The advantages of glass and silicon chip are fine
chemical stability in high temperature, good strength and thermal conductivity and
processability for nano-resolution surface patterns [46, 47].

Silicon is the first material which has been used in microfluidics devices, but was
once being replaced by glass and polymers. With excellent thermal conductivity,
the use of silicon in some devices is intended to achieve a uniform distribution of
temperature [48]. The modification of silicon is easy through the reaction between
silylating reagent and silicon hydroxyl exposed on surface [49]. Silicon material has
been widely applied in the manufacture of complex 3D structures such as micro
reaction chamber [50, 51], cell culture unit [52–54], electrospray nozzle [55] and
solvent extraction device [56]. However, the weakness of silicon chip is also sig-
nificant. Due to lack of elasticity, it is hard to produce flow control elements like
pump and valve from silicon. The opacity of material makes optical detection
almost incompatible with silicon chip. But still the weakness can be circumvented
by comprising hybrid microchip with transparent and elastic material. It is safe to
conclude that because of the very appearance of hybrid material chip, the appli-
cation of silicon in microfuidics is once again expanded.

As contrast, glass is highly transparent with low fluorescence background, which
allows for combination with real-time monitoring methods. The thermal conduc-
tivity of glass is relatively poor and has been utilized in generation of temperature
gradients on device. Fluid flow in glass channel is witnessed with rare non-specific
absorption and the modification of glass through silicon hydroxyl reaction is also
easy. The air tightness of glass makes it unsuitable for long term cell culture. Glass
is well-known for its role as channel material in capillary and chip electrophoresis
[57]. Benefiting from high material electroosmotic mobility, fluid in glass capillary
is driven by strong electroosmotic flow without the need for external pumping
device and being rapidly mixed at good reproducibility. In addition, glass is widely
applied in PCR equipment [58] and gas chromatography [59].

Currently, the main processing techniques of glass and silicon material include:

(a) Standard photolithography [60]. Firstly, photoresist is spin coated to form a thin
layer over the surface of glass or silicon, and then exposed to UV radiation
against predesigned mask. Next, the patterns transferred from photo mask is
developed by developer solution to reveal bare glass or silicon surface for
further etching step. The exposed surface is etched by hydrofluoric acid solu-
tion for a concave channel. After removal of the photoresist, channels are
finally sealed to a plain surface.

(b) Surface micromachining. As shown in Fig. 1.4a, the fabrication involves steps
of patterning sacrificial layer on material surface, casting of amorphous material
over the sacrificial layer to form structural layer and etching of sacrificial layer
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to achieve the corresponding channels [61]. Comparing to other processing
methods, surface micromachining is more capable in fabricating multi-layer
devices (Fig. 1.4b) and nano channel due to the minimum thickness of sacri-
ficial layer to a few nano meters [62, 63]. Because multiple steps are required,
this machining method would take a long time to finish. Figure 1.4c presents
micro featured devices fabricated by surface machining [64].

(c) Buried-channel techniques. In this method, a tunnel is carved through aniso-
tropic deep reactive ion etching (DRIE) in vertical direction. Then the tunnel
walls are blocked by chemical vapor deposition (CVD) only leaving a reaction
site for further etching to form a cylinder-shaped channel [65–67]. This method
is particularly suitable for preparation of high aspect radio channel.

(d) Bulk micromachining. Bulk micromachining is a common micro fabrication
method usually employed in preparing micro or nano scale channels [68, 69].
Formation of channel is realized due to the different etching rates for different
lattice planes of silicon substrate in electrochemical corrosion. The channel
depth is regulated by controlling the etching time, but the accuracy is often
unsatisfactory. Another etching method with better accuracy is to dope boron
into selected regions, where after doping slower etching rate is witnessed.
However the doping process might cause stress in structure and lead to easy
break.

(e) Laser direct writing (LDW). Laser direct writing is a method of fabrication
employing laser beam to carve channels directly specially for photosensitive
glass material [70–72].

(f) Electrochemical micromachining. Electrochemical machining was firstly used
in aerospace industrial half century ago, and when it was optimized and adapted
for fabrication at micro scale region, a feasible method for micro structure
building was born. Electrochemical micromachining utilizes cathode and anode
to simultaneously and electrically depositing and electrolyzing material at the

Fig. 1.4 Schematic of surface micromachining. a Three steps of surface machining. b Illustrations
of surface machined devices (a and b were reprinted with permission from Ref. [61]). c SEM
photos of surface machined devices (Reprinted with permission from Ref. [64])
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same time, and was suitable for processing silicon (Fig. 1.5a, b) [73] and
metallic (Fig. 1.5c) [74] material. Combined with computer controlled pro-
cessor or scanning tunneling microscopy (Fig. 1.5d) [75], high-resolution and
three dimensional patterns can be made on material surface with micro scales or
even lower dimension (Fig. 1.5e) [76].

Generally the processing steps for glass and silicon based microchip include
etching, bonding and connecting to external equipment, and the etching resolution
determines the smallest structure that could be achieved on glass and silicon. For
glass, wet etching by hydrofluoric acid has been frequently used and resulted in arc
shape of the channel side walls [77]. Other etching methods such as plasma etching
would be slow and hard to control. For silicon, method of reactive ion beam etching
is well established and has been applied in monocrystalline silicon processing to
form channels with vertical side walls [78, 79]. Judging from processability of glass
and silicon, the disadvantages of their application in chip preparation are high
material cost, tedious fabrication steps, employment of dangerous chemical
reagents, high standards of bonding condition for chip seal such as high temperature
and pressure and ultra-clean environment. Moreover, functional structures like
microvalve are hard to be integrated into glass or silicon microchips, which would
require additional use of PDMS to assemble hybrid chip. There are other inorganic

Fig. 1.5 Schematic of Electrochemical micromachining. a Principle diagram of electrochemical
micromachining b Spiral indentation fabricated by electrochemical micromachining (Fig. 1.5a and
b were reprinted with permission from Ref. [73]). c Through hole array fabricated by
electrochemical micromachining (Reprinted with permission from Ref. [74]). d Set up of
electrochemical micromachining device (Reprinted with permission from Ref. [75]).
e Electrochemical micromachining of silicon substrate. (Reprinted with permission from Ref. [76])
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materials that have been reported in the preparation of microchip, such as
low-temperature co-fired ceramic (LTCC) [80, 81], but we will not have a detailed
discussion here.

1.2.2 Silicon Elastomer

Polymer materials have been frequently applied to microfluidic devices since 2000s
[82, 83]. Comparing to inorganic material, polymers are finely processable and
castable, cheap in cost and amendable for mass production. The molecular structure
of polymer is variable, and by facile modification its chemical properties can be
easily regulated. Polymers applied in chip preparation can be roughly classified into
three types, silicon elastomer, thermoset and thermoplastic material.

In the last decade, PDMS has become the primary choice for microfluidics
device fabrication [84, 85]. Elastomer allows for rapid prototype of microchip
model and assembling with glass substrate for a transparent device. The elasticity
makes possible the integration of micro pump and valve into one chip [86–89].
Through placing PDMS layer by layer, complex chip structures can be realized.

Elastomer casting technique was invented by Bell group in 1970s [90], and
firstly applied to microfluidic devices in 1980s [91]. After Whitesides reported the
PDMS chip fabrication through soft lithography in late 1990s [92], soft lithography
as well as PDMS has been broadly accepted by researchers and become a primary
chip preparation method. In soft lithography, liquid elastomer is polymerized at a
mild temperature condition (40–70 °C), which lowers the infrastructure require-
ment for laboratory use. The resolution of mold-casting method can reach nano
scale, and owing to the small surface tension of PDMS, casted chip device can be
easily peeled from photoresist template with good integrity [93, 94]. By simple
physical attachment, PDMS channels can be reversibly sealed to another PDMS,
glass or other surface. With the assistance of thin layer PDMS as adhering agent or
plasma surface treatment, PDMA chip can be irreversibly sealed to another PDMS
or glass substrate. Comparing to air tight materials such as glass, silicon, PMMA
and PC, PDMS is permeable to gas and permits exchange of oxygen and carbon
dioxide in cell culture model [95]. Also the hydrophobic surface of PDMS makes it
preferable for cell adhesion [96].

Advantages mentioned above as well as cheap material cost account for the
broad application of PDMS in cell biology researches such as cell screening [97],
culture [98, 99] and biochemical analysis [100]. And the ability of microfluidics to
process samples in nano or pico liter enables the building of single cell analysis
platform by PDMS microchips with integration of functional units like micropump
and microvalve[101].

However the limits of PDMS are also apparent. Hydrophobic surface of PDMS
increases the chances of non-specific absorption of drug components and biomo-
lecules [102]. Although surface treatment by plasma or corona discharge will
temporarily reduce this unwanted effect, the treatment often does not last long
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[103]. From the view of molecular structure, PDMS is a porous bulk with Si-O
chains as skeleton and alkyl groups covering all over it. Therefore, PDMS is
extremely vulnerable to organic solvent, and the application of PDMS is only for
aqueous system. The air permeability benefits gas exchange but also causes the
volatilization of water through micro channel and alternates the solution concen-
tration. Besides, when fabricating channels of high aspect ratio, the flexibility of
PDMS material would be more likely to induce channel collapse. The operation
condition of PDMS chip has to be mild in prevention of unrecoverable deformation.
And due to the existing uncertainties between different baths that may influence
product quality, PDMS has been excluded from commercialization.

Substitutions of PDMS are applied to chip manufacture to overcome some
disadvantages. For example, perfluoro polymers were introduced for great inertness
and anti-fouling properties [104], and hydrogels were used in 3D cell culture matrix
and concentration gradient generator[105, 106].

1.2.3 Thermoset and Thermoplastic Materials

Thermoset material was employed in soft lithography as photo resist before it was
assumed as device building material. When being heated or radiated, molecules
inside thermoset will cross link to form rigid structure, which can’t be reshaped
once accomplished. Normally, thermoset materials are transparent, stable at high
temperature and tolerant of most solvents. Microfluidic chip can be prepared by sole
material of thermoset via proper bonding technique [107, 108]. Thermoset materials
are proper candidates for constructing complex microstructures through photo
initiated polymerization, and the high rigidity permits implement of extreme
aspect-ratio channels. However, the high rigidity also makes it impossible to
integrate membrane based microvalve on chip. Common thermoset materials
include thermoset polyester (TPE) and epoxy plastics.

Different from thermoset polymers, thermoplastics can be shaped and reshaped
repeatedly at high temperature. The raw material of thermoplastics is at solid phase
when purchased, and when being heated to its glass phase transition temperature, the
material is significantly softer and suitable for next fabrication process.
Thermoplastics is widely used in modern industrial, typical products of thermo-
plastics include PMMA, PC, PS, PET, PVC and perfluorinated compounds.
Application of Teflon PFA and FEP to the fabrication of microfluidics devices has
been reported [109, 110]. Teflon is well resistant to the harmful impact from solvents
and chemical reagents, and flexible with good transparency, which can be used for
microvalve integration on chip. Generally, thermoplastics have a better tolerance to
solvents than PDMS, but are still vulnerable to organic solvents such as ketone and
alkanes. The air tightness limits long term cell culture on thermoplastics. Through
thermomolding, mass production of thermoplastics based devices can be realized at
low cost, which is favored by the commercial companies. However, utilization of
thermoplastics in laboratory is limited by the infrastructures of expensive metal or
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silicon template. Whitesides and Xia developed a method of transferring patterns
from photo resist template to thermoplastics by using PDMS as intermediary material
[111]. Restricted by the mild operating condition of PDMS, this method is feasible
only with materials of transition temperature lower than 150 °C.

Thermal bonding and adhesive agent assisted sealing are two major packaging
methods for thermoplastics, and the operating condition is much milder comparing
to glass material. Surface modification of thermoplastics can endure a long time by
covalent reaction. For example, the surface hydrophilicity of thermoplastics can last
for years after plasma treatment [112].

1.2.4 Hydrogel Material

The skeleton of bulk hydrogel is formed by entangling hydrophilic polymer chains in
three dimensions, and there are water molecules occupying nearly 99% of the
material space [113]. The porous structures inside hydrogel permit diffusion of small
molecules and bio-molecules. Owing to the similarity of hydrogel to extracellular
matrix in properties such as permeability and mechanical strength, hydrogels are
frequently applied in cell encapsulation and in vitro culture model. However,
long-term culture scale is still limited by the effective diffusion distance of nutrients
and oxygens, and requires more precisely controlled culturing conditions. The
application of hydrogels as supporting material for vascular mimicry model was
reported [114], and enhancement of mass transportation was observed [115].

Though hydrogels are generally biocompatible, there are different affinities to
cell adhering of different gel materials. For example, animal derived gels such as
matrigel and collagen contain factors enhancing cell proliferation, while plant
derived gels like alginate and agarose and other synthesized polymers like PEG and
polyacrylamide are lack of adhering points for cells. The deficiency of less cell
adhering affinity can be overcome by simple grafting modification.

Hydrogel is a low-density soft material, and therefore not ideal for
high-resolution manufacturing. The minimum texture in hydrogel is currently at
micro scale. Major processing techniques for hydrogel based fabrication include
LDW and 3D printing. Due to the mild gelating condition of hydrogel, the only
requirement of employed mold template is insolubility in aqueous system. But real
problem of gel based devices is the difficulty of sealing. Hydrogels are widely
applied in the fields of 3D cell culture and tissue engineering[116, 117].

1.2.5 Paper Based Microfluidic Devices

Microfluidic paper based analytical devices (lPADs) is an emerging field in rapid
development (Fig. 1.6a–f) [118–123]. Whitesides group reported the first paper
microchip in 2007 [124], while the prototype of its design can be dated back to
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1940s, when Muller and Clegg proposed a method of pH testing by filter paper
strips [125]. Muller patterned micro channels on filter paper through paraffin
coating and observed plant pigment diffusion and separation over the channel after
sample addition of different pigments mix. This very micro channel can be regarded
as the embryo of lPADs. Till now, the applications of paper based devices have
expanded to disease diagnosis [126], environmental monitoring [127, 128] and food
safety control [129]. Rapid development of paper based devices is based on their
unique advantages: cheap and easily obtained materials with flexibility (Fig. 1.6g)
[130] and biocompatibility, facile disposal by burning or burying, porous structures
and large specific surface area of paper for analytes filtering, transportation and
separation, convenient surface modification and patterning by wax coating or
covalent reaction, inherent white background for colorimetric detection. Besides,
when operating paper based analytical devices, liquids are passively driven by
capillary effect without necessity of connecting to external pump, which makes it a
proper candidate for portable device fabrication. Functional reagents can be pre-
served on paper with post bake after addition.

At present, the major directions of equipment development lay on the facile and
convenient chip preparation methods and novel chip based test for important
biomarkers. Common processing techniques for paper based microchips include
lithography [131], inkjet modification [132], plasma treatment [133], direct cutting,
patterned wax coating [134], flexographic printing [135], silk-screen printing [136]
and laser processing [137]. And the principles are basically the same, which include

Fig. 1.6 Paper based analytical device. a–f Examples of paper based analytical device. (Reprinted
with permission from Ref. [118–123]). g Origami inspired folding paper device (Reprinted with
permission from Ref. [130]). h A ready-to use analytical paper strip (Reprinted with permission
from Ref. [139])
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the formation of hydrophobic/hydrophilic contrast area and restricting liquid flows
in predefined microchannels. Normally, the width of micro paper channel is about
several hundred or thousand micrometers, and due to the hydrophilicity of paper
surface, hydrophobic reagent is employed in paper modification. According to the
different cost of surface modification, hydrophobic reagents can be classified into
three categories: expensive ones as SU-8 photo resist (modifying 100 cm2 requires
0.1 dollars), cheaper ones as wax (modifying 100 cm2 requires 0.01 dollars) and the
cheapest ones like alkyl ketene dimer (modifying 100 cm2 requires 0.00001 dol-
lars). And modification principles can also be differentiated as physical block of
surface porous structures, deposition of hydrophobic layer and chemical regulation
of surface property. Modification by chemical reactions can be hardly removed by
solvent dissolving, while physical deposition on surface is vulnerable to organic
solvents, which is utilized in channel formation on paper based devices.

The processing techniques for surface modification include hydrophobic coating
in predesigned patterns such as wax printing and ink jet printing, and overall
coating followed by selective removal of coating material through lithography,
microfluidics methods and region confined plasma treatment. Currently, the most
frequently used methods are ink jet printing of AKD reagents and wax coating.
Common advantages shared by these two techniques are low in cost, easy to control
and short fabrication periods.

Detection methods accommodated with paper based microfluidic chips include
colorimetric, electrochemical, chemiluminescence and electrochemiluminescence
detections. Among all these methods, colorimeter has been often applied to qual-
itative and semi-quantitative testing due to its direct observation by raw eyes of the
reaction products under enzymes catalyzed systems [138]. And because of no
requirement of external equipment, colorimetric methods have also become well
commercialized to ready-to-use products (Fig. 1.6h) [139]. Electrochemical meth-
ods have high sensitivity which is capable for quantitative detection of substances
as low amount as nM level. Besides, the application of electrochemical detection
can also effectively avoid the interference from other colored matters in detection
matrix [140]. Studying from the published works, the major detection methods
employed in paper based devices are colorimetric and electrochemical, while in few
works chemiluminescenceand electrochemiluminescence were applied.

Future development directions for paper based devices lay on the studies of
inventing cheap, easily-handled and portal devices to help improve diseases diag-
nosis, especially in the developed regions which suffer from the lack of infras-
tructures and trained medical workers. Also development of quantitative detecting
papers of multiple targets on the basis of current qualitative and semi-quantitative
test papers is in avid demand. At present, the functional test papers can be roughly
divided into two types: on demand devices and ready to use devices. Different
reacting reagents can be added to the former ones according to different target
substances, while for the latter ones, specific reagents for single target test have
been placed into the paper in advance and simple sample addition can lead to
detection results.
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To reinforce the detection capability of paper based devices, integration of
different functional units is needed, such as sample separation channel and reaction
chambers. The development of 3D paper chip has allowed the transportation of
solution not only inside 2D plane, but also in vertical directions [141]. The simplest
method for 3D paper chip fabrication is physical folding and overlaying of 2D
paper chip. Comparing to 2D chips, the appearance of 3D chips has largely increase
the device detection throughput, where each layer can be designed to implement
analysis for one specific substance. Of course, one popular application for paper
chip is as supportive material for cell biology related researches. For example, paper
chip has been applied as 3D cell culture matrix for in vitro model construction
[142].

As it is said, every coin has two sides. The limited factors for paper based
devices including:

(a) The diffusion and carryover of sample inside paper would significantly decrease
the valid concentration of target for detection. Also open channels on paper
would enhance water volatilization and harm sample transportation. Normally,
amount of sample reaching detection area is no more than 50% of the sample
addition.

(b) For fluids with low surface tensions (bio-sample containing surfactant, for
example), hydrophobic modification on surface is not enough to confine sample
solution inside predesigned channels. In this situation, sample channeling is not
effective by controlling surface hydrophilicity/hydrophobicity.

(c) Frequently used in conventional methods, microfluidic hydrodynamics such as
laminar and micro droplet technology can’t be accommodated to paper devices.
Micro structures like micro valves are unable to be integrated into paper chip.

(d) Detection limit of colorimetric method is not low enough for trace amount
pollutants in drinking water, which is usually in ppb or ppt level.

1.2.6 Hybrid Material Chip

When single material is unable to fulfill all the technique requirements to realize
device function, coupling different types of materials in one microchip should be
considered. We term the chip which extensively employs two or more types of
materials the hybrid chip. Design of hybrid chip should following the principle that
combined materials can’t antagonize each other, but serve as complements to
improve over all properties. One typical example of the hybrid chip includes glass
as substrate and PDMS as channel and microvalve formatting material in one
microchip [143–145]. There are also other examples such as glass channel and
electrode substrate [146], and microchannel embedded with hydro gel to eliminate
bulk flow while preserving diffusion.
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1.3 Chip Fabrication

We have had a brief introduction about the chip materials and different fabrication
methods that vary according to material as mentioned above. Next, we shall sup-
plement some frequently used chip fabricating methods to make it more complete.

1.3.1 Soft Lithography

After the elastomer became the major material for microfluidic devices preparation,
its fabrication methods have also been developed since. Currently the basic method
for PDMS chip preparation is soft lithography. Soft lithography was invented in the
late 1990s by Whiteside’s group [92], and its principle originated from standard
lithography which is employed for glass and silicon chip preparation. In standard
lithography, glass or silicon surface is covered with a layer of photo resist, which is
selectively exposed to UV radiation and developed. The bare surface without photo
resist covering is vulnerable to chemical etching, and thus ready for channel for-
mation. For soft lithography, elastomer is mold-casted to a photo resist template
standing on silicon base. After elastomer solidification under hours’ heating, the
whole PDMS bulk is peeled from the template and sealed to a glass substrate. Main
processing steps of soft lithography include: UV mask design, photo resist
spin-coating on silicon wafer, exposure to UV and development, mold-casting and
sealing. With the advantages of low infrastructure cost and simple operation, soft
lithography has been widely applied in laboratories of universities and institutes to
achieve fast prototype of chip model. However, the disadvantages are multiple
processing steps. From preliminary design to real products, it often requires several
hours to days to cover a single fabrication period. If the mold chip couldn’t pass
performance testing, preparation would have to restart over from design, which
makes a great liability on time and labor. Limited to the lithography principle, some
three-dimensional structures are unable to be formed. In the aspect of resolution, no
matter the specific lithography processing steps, the final resolution is always
limited by diffraction effect. Slight differences may be observed by using different
masking technologies. For example, resolution of contact photolithography is about
0.5 lm but 0.3 lm for projection photolithography [4]. Generally, microchip pre-
pared by lithography can meet the requirement of micro volume bio-sample anal-
ysis, but when more precisely controlled structure feature is needed, electron beam
etching or nano imprint lithography may be necessary. Both of these methods can
lower down resolution to below 100 nm, but with heavy cost of equipment and
time.
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1.3.2 Fabrication of Extended-Nano Channels

The scale of extended-nano channel (10–100 nm) lies between the conventional
nanotechnology (1–10 nm) and microtechnology (>1 lm). In the past, researches
concerning fluid properties at extended-nano scale were limited by the lack of
appropriate tools. Extended-nano channel is too large for bottom-up synthesis or
assembling from atoms or molecules of nanotechnology, and too precise for
micromachining of microtechnology. Therefore, specialized methods are required
to study channels at extended-nano scale. Focused ion beam milling and electron
beam lithography have become alternatives to traditional photo lithography and
applied to nano channel formation(Fig. 1.7a) [147]. These methods are able to
realize precise nanomachining in selected regions, but unsuitable for large scale and
high throughput fabrication. Focused ion beam milling mainly uses gallium ion
beam to directly carve 2D nano channels on silicon or fused silica. Normally, the
formed extended-nano channel is embed and connected with surrounding
microchannels to constitute complete flow system. The microchannels are intended
for solution supply.

In electron beam lithography, electron resist and conductive polymer are spin
coated to quartz wafer respectively. Nano patterns are created by electron beam
drawing without the requirement of photo mask. Then with the coupled plasma and
chemical vapors treatment, extended-nano channels are achieved on substrate. And
chip sealing is accomplished by thermal bonding with or without external pressure.
In addition, laser direct writing can also be applied for fabrication of extended-nano
channels(Fig. 1.7b) [148].

Fig. 1.7 Extended-nano channel fluidics. a Extended-nano channel produced by focused ion
beam milling and connected to micro channels (Reprinted with permission from Ref. [147]).
b Extended-nano channel bunch fabricated by direct laser writing (Reprinted with permission from
Ref. [148])
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1.3.3 3D Printing Technology

3D printing technology firstly appeared in the 1980s [149], but subject to expensive
equipment, limited printing material and few choices of printing nozzle, the
application of 3D printing technology in microfluidics was only restricted to chip
prototype and exploring fabrication methods. Thirsty years since then, as the
development of technology and decrease of equipment and material cost, 3D
printing has not only been widely employed to the researches of various disciplines
in laboratory, but also come to the daily life of ordinary customers. Customer grade
3D printing device has now been successfully commercialized with price at 1000
dollars [150].

3D printing is a highly precise manufacturing method, enabling facile and easy
preparation of complex 3D structures. Comparing to conventional microfluidic
device fabrication methods like lithography and micromachining, 3D printing is
simpler in operation, enables full automation and on-step fabrication of
microchip. 3D printing spares the design of UV mask, and testing performances can
be directly used as reference for design optimization, thus increasing the speed of
experience based modifying. At present, the choice of materials for 3D printing is
broadly extended, and materials from polymers to various bio substances such as
cells [151] can be printed.

3D printing is also called additive manufacturing (ASTM F2792), that is, device
manufacture by continuous addition of new material to substrate. Commonly, steps
of 3D printing include:

(a) Building 3D model of target object on CAD or other engineering drawing
software. (b) Transferring the model data to 3D printing devices where 3D model is
sliced to be successive 2D layers. The final amount of 2D slices is determined by
the resolution of 3D printing devices, and normally printing resolution can be
smaller than 10 lm.

(c) Layer by layer 3D printing of material to rebuild the 3D features of model
objects. (d) In construction of some structures, post-processing is needed to remove
the supporting frames or other exogenous materials. 3D printing devices are
equipped with precise positioning and delivering modules, which can build struc-
tures of any shape in 3D space theoretically, like curved surface, slope and irregular
shape that can’t be prepared by other methods.

According to different printing material and polymerization methods, principles
of 3D printing can be further classified as stereolithography (SLA) (Fig. 1.8a, b),
fused deposition method (FDM) (Fig. 1.8c), electron beam melting (EBM) and
bio-printers, the first two of which have been well exemplified [152].

1.3.3.1 Stereolithography

Stereolithography was the principle of both the first proposed 3D printing device
and the first batch of commercialized products of 3D printing, and still the most
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widely used and successful models. In 1988, Chuck Hull invented the first 3D
printing device by using UV laser to initiate liquid resin polymerization and
localized solidification. The vertical dimension of object was expanded by the
lifting of carrier platform. During printing, fresh resin was painted to the section and
then shaped by laser beam. And above procedures were repeated until the reca-
pitulation of 3D objects. The vertical resolution of stereolithography can reach sub
micrometers or tens of micrometers, while the planar resolution is determined by
the size of laser beam spot. Currently, single layer of resin being painted is 25 lm
in thickness with minimum laser beam shifting distance of 10 lm. In addition to
laser beam, digital light processing projector and LED can serve as light sources.

The advantages of stereolithography are precise patterns on 2D plane, modest
consumption of liquid material, low cost in printing and ability to produce customer
grade 3D printing devices. However, limited by printing procedures, only one
epoxy or acrylate resin can be applied during one printing operation. And
requirement of post-processing may be another disadvantage of stereolithography.
Besides, the printing process may be influenced by uncontrollable non-linear factors
such as resin polymerization around the vicinity of laser spot and temperature shift
induced polymerization. Based on the mechanism of stereolithography, researchers
developed multijet or polyjet technique to print multiple photo sensitive inks for
UV induced polymerization [153, 154]. Multijet technique has equivalent or even
better resolution comparing to conventional stereolithography, and employment of
multiple nozzles enables switch of materials during printing. The major defect of
this method is expensive hardware cost, which corresponds to 10 or 100 times of
the cost of customer grade printing devices. Besides, other derivations based on
stereolithography include digital micromirror device-based projection printing

Fig. 1.8 Schematic illustration of a Bath configuration of stereolithography, b Layer configu-
ration ofstereolithographyand c Fused deposition modeling. (Figure 1.8a–c were reprinted with
permission from Ref. [152]). d Computer model design of human ear. e 3D printed ear.
(Figure 1.8d and e were reprinted with permission from Ref. [157]). f and g 3D printed structures
(Fig. 1.8f and g were printed with permission from Ref. [158])
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(DMD-PP) and two photon polymerization (2PP). Both of these two methods have
better printing resolution than stereolithography, but the time required by pro-
cessing is prolonged.

1.3.3.2 Fused Deposition Method

In fused deposition method, melted thermoplastic material of several millimeters
diameter is squeezed out from a tiny nozzle of hundreds micrometers wide and
added to the printing structure [155]. Common printing material include polylactic
acid,polycarbonate and acrylonitrile butadiene styrene (ABS), and through mixing
stainless steel particles, wood chips, ceramic powder, carbon nanotubes and gra-
pheme into thermoplastics, hybrid materials can be obtained. After squeezing,
printing material is piled up shoulder by shoulder in the shape of cylinders,
therefore resulting in larger roughness than other 3D printing methods. Certainly,
fused deposition method has its own unique advantages, including compatibility
with various cheap and easily obtained materials, low cost in equipment, alternative
printing of several materials by integration of multiple nozzles and cost perfor-
mance allowing for development of customer grade devices. Similar with fused
deposition method, direct ink writing (DIW) uses viscoelastic ink with regulated
rheological properties and pneumatic pump controlled injection to directly paint
material to substrate [156]. For DIW, the minimum diameter of nozzle lumen can
be 1 lm, and normally used materials are ceramics, polymers and metal nano
particles.

When assessing the performance of a 3D printing device, major concerned
parameters are resolution, printing speed, material compatibility and manufacture
size. And there is huge space for further development of current printing devices in
these aspects. As for hardware, cost of printing devices is mainly ranging from
thousands or tens of thousands dollars and it is necessary to further cut down the
cost of equipment. For printing material, the choice is largely limited by the pro-
cessing procedure, and functional properties of material like biocompatibility and
transparency become subordinate factors. In the future, 3D printing technique
should provide more options when it comes to material choices and strategies for
multiple materials alternative printing (Fig. 1.8d–g) [157, 158]. Finally, the reso-
lution of 3D printing needs to be improved comparing with soft lithography [159].
And it is a large challenge to avoid significant prolonged time period when
increasing printing resolution. One feasible manner is to combine high resolution
printing and low resolution printing into one device to balance the time cost and
requirement of printing resolution [160]. Of course, the incoming problem is largely
increased cost of equipment to implement two printing system in one machine.
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1.4 Integration of Microfluidics Functional Units

The miniaturized features of microfluidic chip make possible not only the manip-
ulation of micro objects and analysis of micro volume sample, but also the inte-
gration of different functional units into one chip. Functional units on chip can
realize sample pretreatment, flow control, cell culture and sensing detection, which
greatly extend the detection capability of device. Next, we shall have some intro-
duction about the common functional units in microfluidic chips.

1.4.1 Flow Manipulation: Micropump,
Microvalve and Mixer

In microfluidic devices, flow control can be divided into two types according to the
underlain principles. The first type of control relies on the physical effects that are
significant in micro scale such as surface tension and capillary effect, and it is called
passive manipulation. The second type depends on external forces like pump to
control flow, and is called active manipulation. Common driving forces for flow
pump include electricity [161], magnetofluid power [162] and electroosmotic flow
[163]. Besides, flow driven by centrifuge force from device rotation is also subject
to active manipulation. Pump has been regarded as the pivot for flow system, and
when building microfluidic chip based analytical platform in laboratory, external
pump is often essential. The advantages of connecting a pump are obvious: precise
and steady control of flow and realization of complex programmed pump behaviors.
But in development of mobile device, external pump would harm the device
portability, and extending conductor pipe would cause dead volume and result in
sample waste. There are publications reporting integration of micropump on chip,
and according to different driving manners, passive or active pump is called
(Fig. 1.9) [164]. Principle of passive micropump is the capillary effect, while the
active pump has variety of driving forces, such as electroosmotic, electrochemical,
pneumatic peristaltic, acoustic, electrostatic and magnetic power. Electroosmotic
driving provides steady flow rate, and through switching the polarity of electrode,
flow direction can be easily reversed. Owing to mechanical-motion-free feature of
electroosmotic unit, this type of pump can be simply integrated into micro chip
[165]. Electrochemical pump relies on the generating bubbles from water elec-
trolysis to drive flow forwards [166], and pneumatic pump depends on the pressure
induced deformation of membrane to control the flow in lower channels [167].

Pump provides driving forces for fluid flowing, while valve is in charge of the
on-off of flow circuit. Microvalve on chip can also be divided into two types as
passive and active valve. Passive valves refer to those independent of mechanical
opening and closing, the typical examples of which include cantilever valve, dia-
phragm valve and diffuser valve. Active valves are oppositely dependent of
mechanical forces for the valve switching, and may be based on the principles of
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Fig. 1.9 Schematics of different type of pumps for microfluidic devices. a, b Gravity driven
pump. c Surface tension droplet pump. d Osmosis based pump. e Syringe pump. f Vacuum pump.
g Peristaltic pump. h Pneumatic peristaltic pump. i Braille pin peristaltic pump. j Electrokinetic
pump. k Centrifugal pump. (Reprinted with permission from Ref. [164])

piezoelectric ceramics, thermal pneumatic power, electrostatic forces and electro-
magnetic interaction. Currently, pneumatic membrane microvalve prepared by
PDMS is the most widely used integrated valve in microchip [168].

In the field of microfluidics, the tiny scale of channel as well as the laminar
makes solution mixing a very slow process basically through free diffusion. And
this is an unfavorable fact for mixing, but has been ingeniously applied for the
generation of concentration gradients. Methods to enhance flow mixing include
producing convection and shortening diffusion distance. For example, protruding
geometries were designed inside micro channel to effectively induce turbulent flow
and enhance solution mixing, which is easy to realize on microchip [169]. Besides,
external forces have also been employed to increase the turbulent component of
fluid flow.
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1.4.2 Concentration Gradient Generator

Biomolecules regulate the behaviors of cells such as proliferation and differentiation
among inside-body environment. There are researches indicating the close relation
between the concentration gradient of cellular factors and cancer invasion [170],
and this chemotaxis of cancer cells has been employed to develop anti-cancer
medicine. Conventional drug concentration screening experiments are conducted on
multi-well plate, and as the growing maturity and broader application of micro-
fluidic technique on biological researches, methods of concentration gradients
based on microfluidics have been rapidly developed. Advantages of concentration
gradients on chip include wider gradient ranges, more precise partition of con-
centration on space distribution, maintained gradient persistency and compatibility
with real time monitoring method of cell behaviors. Generally, the strength of chip
based concentration gradients reflects its powerful control of the cell culturing
environment. And until now, concentration gradients have played important parts in
the researches of wound healing [171], inflammation response [172] and cancer
metastasis [173] as well as chemical synthesis of drug. According to its time
dependent stability, concentration gradient can be classified as dynamic and static.
Major methods for the concentration gradient realization on chip include:

(a) Semi-permeable membrane diffusion based concentration gradient. As men-
tioned above, fluid mixing through diffusion inside a tiny channel is very slow,
which provides chance for concentration gradient creation (Fig. 1.10a) [174].
To preserve diffusion based concentration gradient, the priority is to eliminate
the convection flow through methods such as setting up semi-permeable
membrane to separate two flows [175]. Another method is to deploy narrow
connecting channels between different chambers (Fig. 1.10b) [176]. However,
normally the gradient can’t last long.

(b) Convection based concentration gradient generator. Convection is actually also
applied to create concentration gradient. Typically, convection requires rather
higher flow rate and precise flow control, which may cause harm to cell biology
due to the large shear force. On the other hand, running flow is critical for the
medicine transportation and removal of metabolic waste. Therefore the flow
rate can’t be too small. According to the equation of shear force,

s cellð Þ ¼ 6Ql=h2w

shear force is related to flow volume rate, fluid viscosity and channel dimension
(height and width). Increasing the channel height and lowering flow linear
velocity can help reduce shear force subject to cell and alleviate cell damage.
Another feature of convection based concentration gradient is that the
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formation of gradient is always perpendicular to flow direction, for example the
well-known “Christmas Tree” model (Fig. 1.10C) [15]. Christmas tree shaped
gradient generator was proposed by Jeon in 2000 [177], and by regulating flow
rates and concentrations of different flows, concentration gradients of special
and temporal variety can be created. Convection based gradients can be
preserved for a long time, and similar structures include Y-shape channel.

(c) Hydrodynamic focusing device. Through hydrodynamics related method,
externally added drugs or cell factors are confined in a predesigned area [178].

(d) Concentration gradients on micro droplets. Droplet technology is a unique
product born along with the development of microlfuidics and has been applied
in micro-volume reaction, single cell analysis and material synthesis.
Regulation of concentration in the dispersion phase can achieve a gradient
distribution over different droplets [179]. The combination of droplet technol-
ogy with concentration gradient method avoids the external interference and
provides a stable culturing environment for cells. Besides, the application of
droplet technology greatly improves the analysis throughput, which can be
further applied in drug screening.

Fig. 1.10 Concentration gradient generator. a Concentration gradient produced in a Y channel
with multiple barrier units (Reprinted with permission from Ref. [174]). b Drug concentration
gradient controlled by narrow connecting channels (Reprinted with permission from Ref. [176]).
c Tree-shape concentration gradient generator. (Reprinted with permission from Ref. [15])
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1.4.3 Cell Culture Chamber

Integration of all kinds of functional units on chip makes microfluidic chip a
platform for various research purposes rather than a specific analytical device. In
biology related researches, the functions of microchip is extended from pure
analysis of cell lysis and metabolites to construction of cell in vitro culture model,
studying intercellular interaction and single cell analysis. And one critical step
involved in the realization of above functions is the cell online culturing. Compared
to conventional cell culture methods, advantages of using microfluidics rest with the
precise control of microenvironment and targeting smaller cell population even
single cell as research subject. Cell culture experiments in petri dish normally
ignore the distinctions between different cell individuals, but rather take averaged
responses from mass amount of cells as final results. In some situations, research
concerning single cell behavior bears larger significance, for example the study of
stem cell proliferation and differentiation under certain circumstances [180]. And at
this point microfluidic chip has become one ideal candidate from not many avail-
able choices for single cell research. Series of derivative technologies concerning
cell manipulation have been developed such as 3D hydrogel encapsulated culture
and microwell capture array, which we will discuss in the later chapters.

1.4.4 Integrated Biosensors

When establishing microfluidic chip based analytical platform in laboratory,
optional external detectors include mass spectrometer, fluorescence monitor and
electrochemical detector. However, for analysis of complex biosamples, common
detecting methods usually fail to achieve high specificity and sensitivity. And to
solve this problem, specific biosensors are required and integrated into microchip to
improve analysis efficiency (Fig. 1.11a, b) [26, 181]. On chip biosensors can be
categorized as enzyme catalyzed reacting biosensor, immune biosensor, optical
detector and DNA detecting array. Integrated biosensors can effectively reduce the
consumption of sample and reagents, shorten operation time, lower detection cost
and help development of portal devices. We shall have a brief introduction of on
chip biosensors in the following content.

1.4.4.1 Enzyme Catalyzed Biosensor

For enzyme biosensor, enzymes with bioactivity are fixed inside channel or to the
electrode surface (Fig. 1.11c) [182]. When passing through detection area, the
analytes are catalyzed by enzymes, transferred to color changes or electrochemical
signals (Fig. 1.11d) [183] and detected. At present, enzyme biosensors are widely
applied in the detection of blood glucose, urea and cholesterol, among which
glucose assay is the most successful commercialized product. The first glucose
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biosensor was invented in 1962 [184], and decades since, there had been many
optimized versions while with little alternation of the basic principle of electro-
chemical detection by enzyme modified electrodes. Urea level in blood is also an
important indicator of many diseases like renal failure, nephritis, urinary obstruc-
tion and gastrointestinal bleeding. For urea detection, urease and glutamic acid
dehydrogenase are employed.

1.4.4.2 Immune Sensor

Immune sensor is a detection method based on antigen-antibody recognition and
turns the existence of analytes into fluctuation of resistance, electric current, electric
capacity and refraction index. Specificity of immune sensor is high with good
reproducibility. But the limits are high cost of monoclonal antibodies and tedious
detection cycles. Immune sensors are mainly used in on chip detection of pathogen,
bacteria, and viruses.

Fig. 1.11 On chip integrated biosensor. a Biosensor based on aptamer recognition. (Reprinted
with permission from Ref. [26]). b Circuit design of an electrode based sensing chip (Reprinted
with permission from Ref. [181]). c A dielectric analyzer for glucose detection (Reprinted with
permission from Ref. [182]). d DNA recognition and analysis on bio-sensing chip (Reprinted with
permission from Ref. [183])
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1.4.5 Microfluidic Centrifuge Device

A special type of device with the shape of laser Discs is invented with the devel-
opment of microfluidics and called microfluidic centrifuge device (Fig. 1.12a–d)
[185–188]. During operation, the high speed rotation of device generates centrifuge
force to drive sample flow into treatment chamber, without the need of connecting
to external pump. History of centrifuge device can be traced back to 1960s, when
ORNL micro analytical device was employed in clinical to transport sample
solution by centrifuge driving. But the idea of functional integration and minia-
turization hadn’t come to stage back then. After decades’ development, microfluidic
centrifuge device has become a very important tool for sample treatment and
analysis, especially in the fields of clinical detection, immune diagnosis, protein
analysis, cellular sample handling and biomarker detection.

As mentioned above, microfluidic device spares the trouble of connecting to an
external pump and allows for set up of enclosed system. Due to the removal of
external conductor system and accompanying dead volume, waste of sample is
avoided. Centrifuge device is capable of processing sample in the volume of nano
liter to milliliter, and the driving of flow in centrifuge device is continuous due to
the rotation movement of device. Other unique functionalities reflected by cen-
trifuge device include density based components separation, automatic processing

Fig. 1.12 Examples of centrifuge device. a Schematic of colorimetric foodborne pathogen
detectionon centrifugal device (Reprinted with permission from Ref. [185]). b Centrifugal device
for electrophoretic separation of DNA (Reprinted with permission from Ref. [186]). c Centrifugal
device for tumor cells separation from blood sample (Reprinted with permission from Ref. [187]).
d Centrifugal device for droplet production (Reprinted with permission from Ref. [188])
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procedures such as sample inflow and eviction under different rotation speeds and
miniaturization and integration. Generally, the working procedures of microfluidic
centrifuge device are sample addition, reagents storage and release, liquid trans-
portation, valve switch, mixing and detection. Direction of liquid transportation is
normally from center of the device to outer margin due to the centrifuge force
driving. Therefore, the sample inlet is also placed in the center of the device.
Detectors compatible with centrifuge device are mainly optical and electrochemical.
Although numerous companies have participated in the development of micro-
fluidic centrifuge devices, few commercialized products have come into the market.
The reasons for this weak commercial transformation are in two aspects. In one
hand, employment of centrifuge movement saves part of the trouble in developing
portal device by removing external pump, but also results in extra requirement for
external power supply. Therefore, centrifuge device doesn’t actually improve
portability. On the other hand, flow control by centrifuge force is apparently not as
precise or stable as flow pump does, and special liquid transporting manner causes
the chip design some problems.

1.5 Development and Outlooks

Going through the brief history of microfluidics development, we have witnessed a
path of favored diversity. In the choice of chip materials, there were different times
when inorganic and polymers taking the dominant positions. In specific formats,
there are ready-to-use test papers and analytical platforms with multiple function-
alities. Actually when speaking to the future development of microfluidics, it is hard
to cover all kinds of devices by a single standard. Each microfluidic device has its
own development according to the different functionalities. Next, we will focus on
several emerging fields of microfluidics which might have important applications in
the future.

1.5.1 Point of Care (POC)

Analytical methods of series of biomarkers have been well established in labora-
tory, which require extensive work as well as professionally trained personnel. The
common procedures include sampling, detection and results analysis. To improve
the convenience of biochemical test and shorten detection time, point of care
detection methods based on microfluidics technology have been developed. The
major detection targets of POC methods are small molecules (blood glucose and
urea), cells (CD4 + T-cell counter for AIDS diagnosis) and nucleic acids. The
purpose of POC diagnosis is to make preliminary screening test closer to patients
and may be used in community medical center, clinics, emergency center or at
home.
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Although microfluidic methods receive mass attention in academic circles and
funding supports from government and private capitals, current examples of
commercialization of POC device are still few. The major defects of POC device
are the compromised sensitivity and quantification ability in analysis of complex
biosamples comparing to laboratory large equipment. The development of POC
device largely depends on the discovery of new disease biomarkers, especially
those existing in the peripheral body fluids. For certain diseases such as cancer,
diabetes, AIDS, tuberculosis and Alzheimer’s disease, positive results have been
obtained in biomarkers discovery, but there is a lack of unified standard and the-
oretical basis for biomarker based disease diagnosis. At present, commercialized
POC devices can be classified into two types, and one is the lateral flow test that
uses test paper or semi-permeable membrane strip for protein detection. The scale
of global market for in vitro diagnosis has exceeded 40 billion dollars and 1 billion
among is occupied by test paper business. Normal working procedures for test
paper are sample addition, solution flowing through areas with labeling reagents
and capture array, and finally formation of a colored line by labeled and captured
biomarkers which can be told by raw eye observation. Typical examples are
pregnancy test and flu test. In areas suffering from lack of infrastructure, test paper
is also used for HIV diagnosis. Lateral flow based test is capable for target analysis
at lM or mM level. Lower amount of analytes requires specific amplification
strategies for detection, which may increase the complexity of device structure. In
the last decade, plenty of funds and manpower have been invested to improve test
paper performance, but little payback is obtained.

Another type of POC device is the electronic detecting instruments represented
by glucose meter. Commercialization of glucose meter is an unrivaled success,
which can be hardly duplicated by other products. There are unique favorable
factors for the market expansion of glucose meter. Firstly the content of blood
glucose in human body reaches mM level and exceeds the lower detection limit of
electrochemical methods. Secondly, frequency of glucose meter usage can be
several times a day for patients of diabetes, which provides large demands for the
consumptive test papers.

There are problems needing to be solved in the future development of POC
device.

First question is how to integrate multi-step sample treatment and analysis into
one device and realize full automation of processing from samples to diagnosis
results. Procedures of analysis include sample collection, pretreatment, analyte
reaction, signal transformation and report. Due to the vast disparities of technolo-
gies involved in different steps, it is hard to meet all requirements by one scheme.

Other questions are how to simplify operation of device and make untrained
personnel capable of operating, and how to improve test reliability.
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1.5.2 Implantable Device

First implantable device was invented in 1958, and since then numerous companies
and researchers have dedicated themselves to the development and improvement of
this field (Fig. 1.13a–d) [189–192]. The continuously emerging demand for
implantable device is related with the rise of aging population in major developed
countries. According to the research from Freedonia group, the market scale of
implantable device in America is increased with a rate of 7.7% and reached 52
billion dollars in 2005 [193], and the largest share of market is taken by implantable
rectification equipment such as artificial joints and bones. Other types of implan-
table device include cardiovascular related apparatus (cardiac pacemaker and
intravascular stent), nerve stimulator and drug delivery carrier. Though many
implantable devices of medical intention are aimed at aging population, more and
more newly emerged products are targeting at the body shaping market of young
people. Medical implantable device that is totally or partly prepared by microma-
chining has been well commercialized and applied in treatment to different diseases.
For example, acceleration sensor is equipped to cardiac pacemaker and defibrillator
to sense body location and movement. Electronic instruments of this type require

Fig. 1.13 Implantable microchip device. a An implantable microchip for intraocular pressure
monitoring. (Reprinted with permission from Ref. [189]). b Ultrathin conformal bio-integrated
electronics for brain monitoring (Reprinted with permission from Ref. [190]). c Wirelessly
controlled drug delivery microchip (Reprinted with permission from Ref. [191]). dMultifunctional
electronics with physical properties matched to the epidermis (Reprinted with permission from
Ref. [192])
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built-in power source, which occupies large space and may do harm to patient’s
health if leakage happened. Recently developed wireless charging system can avoid
the problems encountered by built-in power design and extend the validity period of
device. But the disadvantage is requirement of external supporting equipment.

Material choice of implantable device is strictly limited by several standards.
Firstly, the candidate must be biocompatible which causes no toxic, allergic,
inflammatory or immune reaction of the body. Secondly, stable must the material
maintain in sterilization treatment such as heating, chemical reagents washing,
radiation and high pressure. These treatments can’t harm the normal functionality of
device. Finally, the chosen material should possess corresponding electronic or
mechanical properties to realize full device functions.

Future development of implantable device rests with the integration of moni-
toring and treatment in one device to achieve a closed loop from diagnosis to
therapy according to the personalized situation of patients. Besides, through online
information interchange, doctors at remote terminals can receive the monitoring
data and give medical intervention in time.

1.5.3 Smart Mobile Device

Another direction for microfluidic device development is to combine microchip
portal detection with the data analysis, management and transportation of smart
phone and establish a mobile analytical platform. This concept is also called MS2

(Mobile sensing based on microfluidics and smartphone) [194]. Actually, various
built-in sensors as well as external detectors have been used to acquire health data of
user with smart phone APP. The combination of microfluidic device with smart
phone greatly expands the data acquisition ability of mobile phone (Fig. 1.14a–c)
[195–197]. At the same time, features of immediate information processing and
transportation of smart phone makes detection results no longer restricted to temporal
and regional factors and instant feedback available. Common characters shared by
two devices such as miniaturized structures, portability and simple operation enable
the successful combination and establishment of mobile analytical platform. Smart
mobile sensing can realize remote in-field monitoring, help improve family health
care and provide medical aids to resource limited areas. Its application has involved
fields of food quality monitor, regular health examination and disease diagnosis.

As a pioneer of this discipline, Martinez and coworkers from Harvard firstly
connected paper based microchip to a smart phone and applied the device to
glucose and protein detection in artificial urine sample at 2008 [198]. Then in 2009,
Lu and colleagues designed an immune test device assembled by PDMS chip and
smart phone [199]. The combination of microfluidics with mobile phone not only
provides a simple solution for portable detection, but also makes remote medical
diagnosis a reality.

However, the biggest limit of applying mobile sensing device to regular physical
examination now is that mobile device doesn’t reflect an irreplaceable detecting
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feature, and medical workers prefer to use conventional methods. Moreover, the
sampling of MS2 equipment requires additional pipette or flow pump, which largely
affects the portability and easy operation. In the future, the human-device interface
needs further optimization by integrating sample inlet directly on device, such as
installing blood taking needle or swab. Certain protection must be installed to
prevent sample contamination in a complicated working environment. And owing
to poor telecommunication and infrastructures in some regions, detection results
must be stored in device for a certain period. This limitation can be overcome by
increasing battery capacity and endurance.

Only after mass production and wide acceptance by consumers, can a value of
technology be reflected. Smart mobile sensing is an emerging territory of micro-
fluidics and we will wait and see what a role it can play in future.
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