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Abstract This article presents a comprehensive comparative assessment of the reac-
tion conditions employed in the heterogeneous and homogeneous catalytic hydroly-
sis of waste lignocellulosic biomass (WLB) for the production of fermentable sugar 
(FS) for its subsequent conversion to renewable bioethanol. The effects of catalyst 
type and reaction conditions on the selectivity of FS in catalytic hydrolysis of low-
cost WLB have been meticulously assessed. Moreover, representative radar plots 
demonstrating FS (substrate for bioethanol) yield in both homogeneous and hetero-
geneous catalytic protocols have been elucidated. An intensive global attention has 
recently been paid for the improvement of catalytic technologies pertaining to effi-
cient pretreatment and hydrolysis for conversion of WLB to FS.  Cellulose 
[(C6H10O5)n], the foremost component in WLB materials, is a biodegradable polymer 
of simple carbohydrates, consisting of β (1, 4)-linkage of d- glucose units, which can 
be depolymerized to FS for the subsequent sustainable synthesis of renewable biofu-
els. In this article, a critical assessment of the production of FS through catalytic 
pretreatment and subsequent hydrolysis of WLB resources has been elucidated. The 
abundant presence of low-cost WLB and their potential application for synthesis of 
FS (d-glucose) and other derivatives (xylose) for subsequent bioethanol, biobutanol, 
bio-H2 production can provide an economically sustainable and environmentally 
benign avenue to mitigate energy crisis and global climate change.

The present study reveals the effects of important process parameters, viz. hydro-
lysis time, catalyst concentration, temperature and water to WLB ratio on the selec-
tivity of d-glucose in both homogeneous and heterogeneous catalytic hydrolysis of 
WLB along with various advanced pretreatment intensification protocols. In order 
to improve the existing drawbacks, recent efforts have been made to develop 
advanced methods through utilization of ionic liquid, microwave, and infrared irra-
diation as well as ultrasonication to make the overall process more efficient and 
environmentally benign.
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1 Introduction

The major constituents of natural waste lignocellulosic biomass (WLB) are lig-
nin, cellulose and hemicelluloses (Somerville et al. 2004). The percentage of the 
constituents may vary according to the nature of the WLB (Carrier et  al. 2011). 
Owing to the widespread networks of inter- and intramolecular hydrogen bonding, 
cellulose is insoluble in water. It is, therefore, problematic to process and hydrolyze 
in solution (Murakami et al. 2007). Thus, it is necessary to carry out economic and 
effective pretreatment of WLB to convert it into accessible cellulose and hemicel-
luloses for subsequent catalytic hydrolysis leading to the formation of fermentable 
sugar (FS) for subsequent bioethanol production (Kumar et al. 2009; Mosier et al. 
2005).

The main objectives of the pretreatment process are (Somerville et al. 2004) to 
disrupt the crystalline structure of the cellulose present in WLB, (Carrier et al. 2011) 
to break down the complex polymer chains of lignin as well as hemicelluloses and 
(Murakami et al. 2007) to increase the porosity and the surface area of cellulose for 
better accessibility and high productivity of desired product for subsequent hydro-
lysis step (Lynd et al. 1999; Li et al. 2010). In this article, both homogeneous and 
heterogeneous catalytic pretreatment processes have been discussed. Moreover, 
recent pretreatment process intensification protocols such as the application of 
microwave radiation, ionic liquids (ILs) and ultrasound wave have been meticu-
lously reviewed.

Furthermore, the catalytic conversion of WLB to valuable chemicals faces addi-
tional difficulties owing to the inert chemical structure and complex molecular dis-
tribution of carbon, oxygen and hydrogen present in the WLB. In this context, it is 
necessary to develop new highly activated, recyclable low-cost eco-friendly hetero-
geneous solid catalysts for the yield of desired product FS (d-glucose) (Abbadi 
et al. 1998; Dhepe et al. 2005; Stocker 2008). To date, most of the research works 
related to kinetics of heterogeneous catalyzed conversion of WLB are based on the 
lignocellulosic model compounds such as synthetic crystalline cellulose, commer-
cial cellobiose and xylan (Bootsma and Shanks 2007; Lai et al. 2011; Rick et al. 
2012).

The present review mainly concerns about the production of FS (d-glucose) 
through catalytic pretreatment and subsequent hydrolysis of naturally available 
WLB resources, incorporating the significant effects of corresponding process 
parameters. The abundant presence of low-cost WLB and their potential application 
for synthesis of FS can provide sustainable environmentally benign avenue over-
coming energy crisis and mitigating global environmental problems. Additionally, 
growing endeavours are being made to integrate the multistep batch pretreatment 
and hydrolysis processes into a continuous conversion of WLB employing well- 
designed multifunctional low-cost environmentally friendly heterogeneous solid 
catalysts to achieve the desired sustainable yields of valuable products (Yan et al. 
2006).
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2  Pretreatment of WLB

In last few years, many procedures have been employed for cellulose pretreatment 
prior to hydrolysis (Hamelinck et al. 2005; Sousa et al. 2009); selected works have 
been discussed in the following sections. In Fig. 1, a schematic for pretreatment and 
subsequent processes for FS synthesis has been depicted. Moreover, various new 
advanced pretreatment processes and their different technical aspects have been 
highlighted in comparison with the existing processes in the following sections.

2.1  Homogeneous Acid-Catalyzed Pretreatment

In recent years, in addition to physical pretreatments, e.g. grinding and milling, 
many researchers applied physicochemical homogeneous acid (HCl, H3PO4)-
catalyzed pretreatment on various types of WLB (corn stover, Achyranthes aspera, 
Sida acuta) to produce FS (86.2 wt. %, 85.4 wt. %) which typically involves moder-
ate reaction time of 40  min to 1  h at a moderately high temperature range of 
60–120 °C (Siripong et al. 2016; Zu et al. 2014). Nonetheless, owing to require-
ments of elevated temperature (Kim et al. 2014; Kundu and Lee 2015) and lengthy 
time, the process involved high energy consumption in addition to equipment corro-
sion and generation of the massive acidic waste stream and difficulties in product 
separation. Thus, to augment the efficiency of the pretreatment process, 
heterogeneous catalyst(s) must be applied to overcome the difficulties pertaining to 
homogeneous acid-catalyzed pretreatment processes.

Fig. 1 Schematic for the hydrolysis of WLB to synthesize FS and subsequent bioethanol 
production
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2.2  Heterogeneous Acid-Catalyzed Pretreatment

Recently, Tan and Lee (2015) reported maximum 99.8 wt. % FS (d-glucose) from 
macroalgae cellulosic residue using Dowex™ Dr-G8 as a heterogeneous solid cata-
lyst at 120  °C for 30  min. Although solid-catalyzed pretreatment demonstrated 
remarkable performance, however, all these catalysts were synthesized using 
reagent-grade chemicals rendering expensive catalyst, which, in turn, made the pro-
cess cost-intensive.

2.3  Intensification of Pretreatment Using Recent Protocols

Recently, several researchers have reported improved new processes such as ultra-
sonication and applications of the microwave to intensify the pretreatment of the 
raw WLB; these are precisely discussed in the following sections.

2.3.1  Pretreatment Using Ionic Liquid (IL)

Pretreatment employing ILs has gained much interest in the field of WLB hydroly-
sis (Perez-Pimienta et al. 2016). Recently, Farahania et al. (2016) reported the pre-
treatment of poplar biomass with IL (1-ethyl-3-methyl-imidazolium acetate) at a 
lower temperature of 50 °C for 24 h rendering significant (80 wt. %) FS (glucose) 
yield. However, the application of ILs in WLB hydrolysis is not economically 
attractive due to its high cost, handling difficulties and problems in product 
separation.

2.3.2  Ultrasonication- and Microwave Irradiation (MI)-Assisted 
Pretreatment

In recent years, new green-pretreatment technologies were applied to augment the 
WLB hydrolysis process such as ultrasonication (Ramadoss and Muthukumar 
2014) and microwave irradiation (MI) (Diaz et al. 2015).

In ultrasonication process, ultrasound energy was employed to disrupt hydrogen 
bonds between WLB components enabling mass transport and, thus, causing 
improved WLB digestion (Li et  al. 2015). In spite of being a green technology, 
owing to the higher power consumptions (400–600 W) and relatively poor FS (glu-
cose) yields (Chen et  al. 2011) made the overall process economically less 
attractive.

On the other hand, another new eco-friendly pretreatment technique, viz. MI, has 
been applied over the last few years to intensify and enhance FS and subsequent 
bioethanol production (Ninomiya et al. 2014). Recently, Gabhane et al. (2014) used 
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banana agricultural waste for obtaining maximum FS yield around 47.33 wt. % at 
50  °C in 15 min. However, the high power requirement of MI system made the 
overall process economically unattractive for scale-up purposes.

3  Hydrolysis of WLB

The next step after pretreatment in the synthesis of FS is hydrolysis of oligosaccha-
rides, cellulose and hemicelluloses components. Various industrially important 
chemicals like FS, 5-HMF, furfural, etc. are synthesized in this step. To intensify the 
hydrolysis of WLB and to augment the desired product selectivity, various advanced 
cutting-edge technologies like ultrasonication, microwave radiation and different 
types of green solid heterogeneous solid catalysts (synthesized or commercially 
available) have been employed in the hydrolysis. The characteristics of the emerg-
ing hydrolysis processes have been enunciated in following sections.

3.1  Homogeneous Acid-Catalyzed Hydrolysis of WLB

Many industrially important fermentative products such as bioethanol, levulinic 
acid, furfural, etc. can be obtained from waste WLB hydrolysate (Jönsson et  al. 
2013). The most well-established, extensively used procedure, e.g. acid hydrolysis 
(Gütsch et al. 2012), has been found effective for WLB hydrolysis. Nonetheless, 
homogeneous acid hydrolysis has several limitations such as elevated reaction tem-
perature (170–240 °C), equipment corrosion, difficulty in product separation and 
high reaction time (Taherzadeh and Karimi 2007) making the overall process 
problematic.

3.2  Heterogeneous Solid Acid-Catalyzed Hydrolysis of WLB

Over recent past, the applications of green solid acid heterogeneous catalysts such 
as supported metals, acid resins, H-form zeolites, carbonaceous acids, functional-
ized silica, metal oxides, etc. had gained widespread interest in the WLB hydrolysis 
process. For WLB hydrolysis, Amberlyst-15, a solid acid catalyst (Meena et  al. 
2015), was found very much effective (Onda et  al. 2008; Pang et  al. 2010), and 
owing to the presence of the SO3H group, the catalyst could selectively allow pen-
etration of hydrogen ions of reactants during the hydrolysis reaction.

Notably, most of the heterogeneous solid acid catalysts applied for WLB hydro-
lysis were developed from cost-intensive reagent-grade chemicals besides requiring 
prolonged hydrolysis time and relatively elevated temperature in comparison with 
homogeneous WLB hydrolysis. Notably, the economic sustainability of hydrolysis 

Recent Trends in Catalytic Hydrolysis of Waste Lignocellulosic Biomass for Production…



18

process is greatly dependent on the efficacy, reusability and cost-effectiveness of the 
heterogeneous catalyst. In this context, low-cost catalysts which have been prelimi-
nary derived from waste biomass resources like carbon-based solid acid catalysts 
(CBSAC) are noteworthy (Suganuma et al. 2008). This catalyst rendered hydrolysis 
of untreated cellulose yielding 4 wt. % glucose at 100 °C for 3 h.

However, most of the previously mentioned research works have been performed 
on lignocellulosic model compounds, i.e. commercially available microcrystalline 
cellulose, synthetic cellobiose and xylan (Lai et al. 2011; Rick et al. 2012). Recently, 
Nata et al. (2015) achieved approximately 19.91 mg/mL of FS from hydrolysis of 
corn starch at elevated temperature (150  °C) over prolonged (6  h) reaction time 
using C4-SO3H as the solid acid catalyst. Very recently, Hu et al. (2016) have pre-
pared a magnetic carbonaceous solid acid containing chlorine (−Cl) groups as 
cellulose- binding sites and sulfonic (−SO3H) groups as cellulose-hydrolyzing sites; 
the catalyst was used for hydrolysis of rice straw in presence of ionic liquid 1-butyl- 
3-methylimidazolium chloride ([BMIM]Cl) at high reaction temperature of 130 °C 
for 4 h resulting in maximum 78.5 % of FS. Additionally, Zhong et al. (2015) and 
Sakdaronnarong et al. (2016) also investigated the efficacy of various carbon-based 
catalysts on hydrolysis of wheat straw and sugarcane bagasse, respectively.

The effects of reaction conditions on the selectivity of FS are presented in Table 1 
for heterogeneous solid acid-catalyzed systems. The yield of FS varies significantly 
from 9 wt. % to 50 wt. % through application of different types of heterogeneous 
catalysts. A poor selectivity of FS was observed using Nafion/silica catalyst, whereas 
using sulfonated silica/carbon nanocomposites, considerable improvement in sugar 
selectivity could be achieved.

On the other hand, the usage of AC-SO3H, as well as HNbMoO6, exhibited a 
moderate selectivity to FS. However, in general, high temperature and long reaction 
time remain as the major drawbacks to solid-catalyzed hydrolysis. Figure 2 demon-
strates the deviation in FS selectivity in accordance with select references.

Table 1 Overview of reaction conditions and selectivity of FS using heterogeneous catalysts

Catalyst

Reaction condition FS 
selectivity 
(%) References Remarks

Temperature 
(K)

Time 
(h)

AC-SO3H 423 24 40.5 Onda et al. 
(2008)

Elevated reaction 
temperature; long 
reaction time; poor 
FS selectivity

Sulfonated silica/
carbon 
nanocomposites

423 24 50.0 Vyver et al. 
(2010)

HNbMoO6 403 12 21.0 Takagaki 
et al. 
(2008)

Nafion/silica 463 24 9.0 Hegner 
et al. 
(2010)
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3.3  Intensification of Hydrolysis Using Recent Protocols

In recent years, several research works have been reported involving applications of 
the microwave, ultrasound and ILs to intensify the hydrolysis of the WLB for pos-
sible enhancement of FS yield. These have been briefly discussed in the following 
sections.

3.3.1  Ultrasound-Assisted (US) Hydrolysis of WLB

US hydrolysis of WLB has gained remarkable attention in the recent past. Werle 
et al. (2013) reported acid hydrolysis of waste palm leaves (Roystonea oleracea) by 
ultrasound obtaining maximum 74 % yield of FS at 65 °C for 300 min using phos-
phoric acid as catalyst. Silva et al. (2015) reported the application of ultrasound in 
enzymatic hydrolysis of sugarcane bagasse attaining maximum FS of 217 g kg−1 for 
4 h at 47 °C. On the other hand, Borah et al. (2016) reported ultrasound-assisted 
enzymatic hydrolysis of various types of WLB such as Eichhornia crassipes and 
Saccharum spontaneum, to achieve maximum 40.02  % of FS.  Nonetheless, the 
overall process was economically unattractive due to the high equipment and energy 
cost for ultrasonication.

3.3.2  Microwave Irradiation (MI)-Assisted Hydrolysis of WLB

In recent past, MI was applied to WLB hydrolysis to enhance the hydrolysis rate 
and to augment the yield of FS and consequent bioethanol production (Xue et al. 
2011). Recently, Villière et al. (2013) reported maximum 46 wt. % FS yield from 
wet potato sludge (industrial waste) in 2 h at 60 °C using combined MI and ultra-
sonication and sulphuric acid as catalyst. Moreover, the research group also stated 

Fig. 2 Radar plot 
depicting selectivity of 
fermentable sugar through 
the heterogeneous catalytic 
protocol in concurrence 
with select references
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that, during hydrolysis, rapid heat transfer was observed due to the application of 
MI, whereas mass transfer was increased at the interfacial boundary layers of solid- 
liquid hydrolysis system. Nevertheless, high microwave energy requirements 
(1 kW) might be a concern for the overall process economy.

3.3.3  Ionic Liquid (ILs)-Assisted Hydrolysis of WLB

Recently, Wang et al. (2014) reported hydrolysis of bamboo biomass using six dif-
ferent types of metal ions including Mg2+, Ca2+, Na+, K+, Cu2+ and Fe3+ obtaining 
67.1 wt. % of FS at 100 °C in 4 h with CuCl2 as co-catalyst. On the other hand, 
Ramli and Amin (2014) reported usage of 1-butyl-3-methylimidazolium bromide 
(BMIMBr) as ILs for oil palm frond and empty fruit bunch direct hydrolysis that 
resulted in maximum 27.4 wt. % and 24.8 wt. % FS yield (120 °C,4 h) using solid 
Fe/HY catalyst. Nonetheless, the process has limitations in terms of use of high-cost 
ILs and difficult product separation with lower FS yield.

3.3.4  Hydrolysis WLB Carried Out in Continuous Mode Reactors

Most of WLB hydrolyses were carried out in batch reactors. Some pioneer research 
works have been conducted in continuous-type reactors (CTR) resulting augmented 
yield of FS at mild reaction conditions using shorter residence time (Kumakura and 
Kaetsu 1978; Church and Wooldrldge 1981). Kim et al. (2005) reported hydrolysis 
of glucans from pretreated corn fibre obtaining around 90 wt. % of glucose at 160 °C 
in 3.5  min residence time in a packed-bed reactor using a cation exchanger. 
Importantly, they observed that the cost of catalyst had a significant influence on the 
overall production cost of FS and subsequent bioethanol production. To date, very 
scanty reports are available for conversion of WLB into FS in CTR (Kim et  al. 
2005) using heterogeneous catalysts. Future works should focus on enhancing the 
capacity of the FS production using continuous catalytic reactor.

3.3.5  Fast Pretreatment-Hydrolysis WLB Using Energy-Efficient 
Infrared Radiation

More recently, our research group (Chatterjee et al. 2016) has successfully achieved 
a promising high 89.87 mol% glucose (FS) yield from waste watermelon (Citrullus 
lanatus) peel at 60 °C applying energy-efficient far-infrared radiation in presence of 
heterogeneous Amberlyst-15 catalyst in one-pot pretreatment-hydrolysis system in 
much shorter time.
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4  Prospects and Conclusion

Waste lignocellulosic biomass is the most abundant renewable bioresource on earth. 
It has been considered as one of the most significant natural resources for the pro-
duction of industrially valuable products such as glucose, fructose, 5-HMF as well 
as bioethanol and biobutanol. In the past years, several pretreatments and subse-
quent hydrolysis processes have been developed. Generally, the heterogeneous pre-
treatment and hydrolysis processes are preferable over homogenous processes 
mainly due to the ease of product separation and reduced corrosion, leaching and 
handling problems. However, the invention of the heterogeneous solid catalysts 
with high catalytic activity for both pretreatment and subsequent hydrolysis pro-
cesses still faces a challenging issue mainly owing to the solid-solid contact between 
the insoluble waste lignocellulosic biomass and solid catalyst.

However, the application of ionic liquids as a solvent or as a catalyst can be con-
sidered as an alternative solution; nonetheless, high cost and difficulties associated 
with separation and recovery have made such process economically unattractive. 
On the other hand, other eco-friendly intensification protocols such as the applica-
tion of microwave and ultrasound on pretreatment and consequent hydrolysis steps 
rendered superior yields of desired products at comparatively milder operating con-
ditions in comparison with conventional heated reactors. Nevertheless, microwave 
and ultrasound processes usually require high energy inputs; the consequent incre-
ment in production cost makes the overall process economically unpleasant. 
Furthermore, the most economically sustainable avenue in terms of feedstock 
should be augmented utilization of waste lignocellulosic biomass rather than pure 
cellulose.

The present study reveals that the usage of both homogeneous and heteroge-
neous catalysts in conventional pretreatment and hydrolysis steps of waste lignocel-
lulosic biomass involve high reaction time, temperature and significantly low 
selectivity towards desired product. In order to improve the existing protocols, effort 
must be made to develop newer advanced technology involving process intensifica-
tion protocol such as energy-efficient infrared radiation. Besides, more research 
needs to be conducted on continuous mode of catalytic pretreatment and subsequent 
hydrolysis for enhanced throughput of fermentable sugar in such a way that the 
overall process remains environmentally benign as well as energy-efficient and eco-
nomically viable to render a sustainable protocol.
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