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Abstract
Foot rot disease is a very destructive disease in black pepper in Malaysia. It is 
caused by Phytophthora capsici Leonian, which is a soilborne pathogenic protist 
(phylum, Oomycota) that infects aerial and subterranean structures of many host 
plants. This pathogen is a polycyclic, such that multiple cycles of infection and 
inoculum production occur in a single growing season. It is more prevalent in the 
tropics because of the favourable environmental conditions. The utilization of 
plant growth-promoting rhizobacteria (PGPR) as a biological control agent has 
been successfully implemented in controlling many plant pathogens. Many stud-
ies on the exploration of beneficial organisms have been carried out such as 
Pseudomonas fluorescens, which is one of the best examples used for the control 
of Fusarium wilt in tomato. Similarly, P. fluorescens is found to be an effective 
biocontrol agent against the foot rot disease in black pepper. Nowadays there is 
tremendous novel increase in the species of Burkholderia with either mutualistic 
or antagonistic interactions in the environment. Burkholderia sp. is an indige-
nous PGPR capable of producing a large number of commercially important 
hydrolytic enzymes and bioactive substances that promote plant growth and 
health; are eco-friendly, biodegradable and specific in their actions; and have a 
broad spectrum of antimicrobial activity in keeping down the population of phy-
topathogens, thus playing a great role in promoting sustainable agriculture today. 
Hence, in this book chapter, the potential applications of Burkholderia sp. to 
control foot rot disease of black pepper in Malaysia, their control mechanisms, 
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plant growth promotion, commercial potentials and the future prospects as indig-
enous PGPR were discussed in relation to sustainable agriculture.
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12.1	 �Introduction

Black pepper (Piper nigrum L.) known as “the king of spices” is a historic, tradi-
tional spice and one of the most important agricultural produce in Malaysia (Anon 
2003). The ~80% of pepper is processed as black pepper, and the remaining ~20% 
is processed as white pepper. Despite the substantial contribution made by this crop 
to the socio-economy of Malaysia and other parts of the world, production poten-
tials of the crop are on the trend of decline due to the activities of pests and diseases. 
For example, a disease known as foot rot caused by Phytophthora capsici Leonian 
is a major obstacle in black pepper production in Malaysia and worldwide. The 
pathogen was first isolated and identified under P. palmivora (Holiday and Mowat 
1963) in Malaysia, but later further investigations by Kuch and Khuthubutheen 
(1985) identified the pathogen as P. capsici Leonian (Fig. 12.1a–d). Foot rot is con-
sidered as the most serious disease of black pepper causing yield reduction that 
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ranges from ~20 to 80 and up to 95% for individual farmers (Manohara et al. 2004). 
The fungus is a soilborne pathogen that causes infections on roots, leaves and fruits 
of black pepper (Fig. 12.2a–c) and other crops (Fig. 12.3a–c) in most of the tropical 
countries. Efforts have been made to check these incessant problems caused by this 
fungus. Today, the primary means of controlling the disease is through synthetic 
fungicides applications which have been effective but found to be associated with 
some drawbacks. Among the drawbacks are their high cost, carcinogenicity, terato-
genicity, high and acute residual toxicity, long degradation period, environmental 
pollution and possible side-effects on human health through the food (Wang et al. 
2011; Meena et al. 2013a, 2016a; Bahadur et al. 2014; Maurya et al. 2014; Jat et al. 
2015; Kumar et al. 2015, 2016b; Ahmad et al. 2016; Parewa et al. 2014).

These drawbacks coupled with public concern have increased interest in develop-
ing further alternative control methods, particularly those that are eco-friendly, bio-
degradable, feasible to the farmers, non-toxic to human and animals, specific in their 
actions and have a broad spectrum of antimicrobial activity (Abhishek et al. 2013). 
Thus, indigenous plant growth-promoting rhizobacteria (PGPR) have been found to 

Fig. 12.1  Typical morphological characteristics of Phytophthora capsici Leonian isolated from 
infected black pepper root: chlamydospore (a), torulose hyphae (b), lemon-shaped sporangium 
with long pedicel (c) and globose oogonia with paragynous antheridia (d)
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play a major role in keeping down the population of pathogen to a low level and can 
therefore be used as an alternative to synthetic chemicals. Some PGPR, such as 
Burkholderia sp., Pseudomonas sp. and Bacillus sp., have been found to perform 
these functions by inducing systemic resistance in plants and showing biological 

Fig. 12.2  Yellowing symptoms of foot rot disease observed on black pepper foliage (a), leaves 
defoliation (b) and collar rot (c) symptoms on infected black pepper in Sarawak

Fig. 12.3  Yellowing symptoms of foot rot disease observed on chili pepper (a), infected root of 
potatoes (b) and infected fruit of watermelon (c) (Source: Wharton et al. 2007; Sanogo 2003)
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traits like antibiosis and lysis (Eberl and Vandamme 2016; Rahamat Bivi et al. 2010; 
Prakash and Verma 2016; Priyadharsini and Muthukumar 2016; Kumar et al. 2017; 
Meena et al. 2015a, 2016b; Jaiswal et al. 2016, 2016a; Jha and Subramanian 2016).

The soil system is a natural body called “pedosphere” that served as a habitat for 
a quantum of endophytic and rhizospheric microorganisms which in turn modify 
the complex matrices of the soil especially in the root zone. Recent studies on 
microbial plant-related interactions revealed that bacterial communities called 
PGPR belonging to the genus Burkholderia are associated with the development of 
plants and are responsible for a range of physiological activities. In addition to their 
beneficial features as promoters of plant growth, they also protect plants against 
pests and pathogens (biocontrol agents) and increase plant fitness by nitrogen fixa-
tion, production of phytohormones and antimicrobial substances and induction of 
systemic resistance (Eberl and Vandamme 2016; Lodewyckx et  al. 2002). 
Additionally, they are involved directly in the plant growth through biofertilization, 
stimulation of root growth, control of plant stress through host adaptation to envi-
ronmental stress, sequestration of iron, phosphate solubilization (Raghavendra et al. 
2016; Zahedi 2016; Meena et al. 2015b, 2015f, 2016c; Rawat et al. 2016; Yasin 
et al. 2016; Saha et al. 2016a; Dominguez-Nunez et al. 2016; Dotaniya et al. 2016), 
ACC deaminase activities and quinolinate phosphoribosyltransferase activity 
(Barrett and Parker 2006; Janssen 2006; Balandreau and Mavingui 2007; Compant 
et  al. 2008) without conferring pathogenicity (Lugtenberg and Kamilova 2009; 
Compant et al. 2010; Eberl and Vandamme 2016).

These efficient bacteria are found in the “rhizosphere” which is defined as any 
volume of soil specifically influenced by plant roots and/or in association with root 
hairs and plant-produced materials (Dessaux et  al. 2009; Silveira et  al. 2012; 
Ahemad and Kibret 2014). The rhizosphere has been identified to consist of three 
major separates but interacting components that include rhizosphere (soil), the rhi-
zoplane and the root itself. The rhizosphere is the soil zone influenced by roots 
through the release of substrates that affect microbial activity. The rhizoplane is the 
root surface that consists of strongly adhering soil particles, and the root itself is a 
component of the system, where the tissues are colonize by many microorganisms 
(like endophytes) (Barea et al. 2005; Ahemad and Kibret 2014).

Colonization of the rhizoplane and rhizosphere differs from one another 
(Kloepper et al. 1991), in that microbial colonization of rhizoplane is termed as root 
colonization, whereas rhizosphere colonization is microbial colonization of the 
adjacent volume of soil under the influence of the root (Kloepper 1994; Barea et al. 
2005). Hiltner (1904) discovered that the rhizosphere is much richer in bacteria than 
the surrounding bulk soils, with composition of 10–1000 times higher than that in 
bulk soil.

The bacteria covered a small part of the root surface (Rovira 1956), and the most 
popular sites for bacterial growth are junctions between epidermal cells and areas 
where side roots appear. The effect of rhizosphere is caused by substantial amount 
of the carbon fixed by the plant, ~5–21% (Marschner 1995), which is secreted 
mainly as root exudates. In addition to facilitating water and nutrient uptake and 
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providing mechanical support to the plants, a diverse array of compounds is synthe-
sized, accumulated and secreted by plant roots (Walker et al. 2003).

The compounds secreted by the roots are generally referred to as root exudates. 
They act as attractants on diverse number of active microorganisms in the soil. In 
addition, they change the physical features and chemical compositions of the soil, 
therefore, restructuring the microorganisms in the area of the root (Eberl and 
Vandamme 2016; Dakora and Phillips 2002). They also repel microorganisms, pro-
mote symbiosis and control the growth of other unwanted plant species (Nardi et al. 
2000). Kang et al. (2010) reported that the compositions of these exudates depend 
on the species of plants, their physiological status and microorganisms present.

PGPR are species of bacteria collectively found growing around plant tissues in 
the rhizosphere that enhanced the growth of plant by a number of mechanisms 
(Vessey 2003; Lemaire et al. 2015). They are distinctively characterized by some 
inherent features that include the following: they must (i) colonize the surface of the 
root effectively; (ii) promote plant growth; (iii) be able to survive and multiply, at 
least for sometimes to exert their protection and growth-promoting activities; and 
(iv) be able to compete well with other rhizosphere microbes for nutrients secreted 
by the root and for sites that can be occupied on the root (Kloepper 1994; Lugtenberg 
and Kamilova 2009). Certain species in this extremely versatile group are capable 
of causing disease in humans and plants (Eberl and Vandamme 2016), while others 
are very effective as biological control agents, bioremediation and promotion of 
plant growth (Perin et al. 2006).

Nowadays, rigorous research are carried out globally with greater aim to explore 
a vast number of PGPR having novel characteristics that could serve as biocontrol 
agents (Eberl and Vandamme 2016; Hynes et al. 2008; Joo et al. 2005; Russo et al. 
2008) alongside with normal growth promotion characteristics like biofertilization 
(Tank and Saraf 2010; Ahemad and Khan 2012b), ACC deaminase (1-aminocyclop
ropane-1-carboxylate), production of ammonia and nitrogenase activities (Khan 
2005; Glick 2012), siderophore (Tian et al. 2009; Jahanian et al. 2012), solubiliza-
tion of phosphate and potentials in heavy metal detoxification (Ma et  al. 2011; 
Ahemad and Khan 2012b), salinity tolerance (Tank and Saraf 2010; Mayak et al. 
2004) and pesticide degradation (Ahemad and Khan 2012a). Typical examples of 
rhizobacteria that showed marvellous plant growth beneficial traits and potential as 
biological control agents against various root pathogenic microbes that are today 
used globally as bioinoculants in promoting growth and development of plant under 
different stresses such as heavy metals (Wani and Khan 2010), herbicides (Ahemad 
and Khan 2010, 2011a), insecticides and fungicides (Ahemad and Khan 2011b, 
2011c, 2012c) and salinity (Mayak et  al. 2004) include Agrobacterium sp., 
Arthrobacter sp., Azotobacter sp., Azospirillum sp., Azomonas sp., Bacillus sp., 
Caulobacter sp., Chromobacterium sp., Erwinia sp., Flavobacterium sp., 
Micrococcus sp., Pseudomonas sp., Serratia sp., Allorhizobium sp., Azorhizobium 
sp., Bradyrhizobium sp., Mesorhizobium sp., Rhizobium sp., Micromonospora sp., 
Streptomyces sp., Streptosporangium sp., Thermobifida sp., Klebsiella sp. and 
Burkholderia sp.
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The name of the genus Burkholderia was derived from “Walter H. Burkholder” 
who described Phytomonas caryophylli (Burkholder 1942) as the first Burkholderia 
sp. which was later known as Pseudomonas caryophylli. Burkholder (1950) again 
described another species named “cepacia” named after onion, which was later 
called Pseudomonas cepacia. Species of Burkholderia were included for years in 
the genus of Pseudomonas, but with the advent of molecular rRNA-DNA hybridiza-
tion analysis, considerable diversity in the genotype was noticed between the genus 
members (Compant et al. 2008), and as a result they were grouped into five rRNA 
groups (Palleroni et al. 1973). Later, genomic analysis had shown that five groups 
are related to one another. Recently, considerable numbers of species are included 
in the genus of Burkholderia (Coenye and Vandamme 2003) known as Burkholderia 
cepacia and representing complex of closely related genotypic species as confirmed 
by numerous taxonomic studies (Coenye et al. 2001; Vandamme et al. 2003; Vermis 
et al. 2004; Eberl and Vandamme 2016). The group is called as the Burkholderia 
cepacia complex and recently consists of a total of nine species that include 
Burkholderia cepacia (genomovar I), Burkholderia multivorans (genomovar II), 
Burkholderia cenocepacia (genomovar III), Burkholderia stabilis (genomovar IV), 
Burkholderia vietnamiensis (genomovar V), Burkholderia dolosa (genomovar VI), 
Burkholderia ambifaria (genomovar VII), Burkholderia anthina (genomovar VIII) 
and Burkholderia pyrrocinia (genomovar IX). The first discovery of B. cepacia by 
W.H.  Burkholder had today led to the identification of many other species of 
Burkholderia.

Currently, the genus Burkholderia includes more than 50 species that are found 
in various ecological niches, rather than in bulk soil (Coenye and Vandamme 2003; 
Luvizotto et al. 2010), most of which interact with plants in different ways resulting 
in beneficial effects to the intimate associating hosts. Finally, the potentials of PGPR 
should not be overemphasized as their application under both normal and stressed 
conditions has increased the health and productivity of different plant species and 
decreased global huge reliance on synthetic chemical pesticides that pollute the 
ecosystem (Yadav and Sidhu 2016; Saha et al. 2016b; Verma et al. 2014, 2015b; 
Masood and Bano 2016;Teotia et  al. 2016; Meena et  al. 2015e, 2016d, 2016e; 
Bahadur et al. 2016b; Das and Pradhan 2016. Therefore, in this book chapter, the 
potential application of indigenous PGPR (Burkholderia sp.) to control foot rot dis-
ease of black pepper in Malaysia, their control mechanism and plant growth promo-
tion, the commercial potential application and the future prospects for sustainable 
agriculture were discussed.

12.2	 �General Mechanisms of Action for PGPR as a Biological 
Control Agent

These PGPR generally mediated plant growth promotions in rhizosphere as biocon-
trol agents by reducing the inhibitory effects of various pathogenic microbes on 
plant growth and development (Glick 2012), and their utilization to control diseases 
as biocontrol agents is an eco-friendly approach (Lugtenberg and Kamilova 2009). 
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The following are the mechanisms that can be distinguished in PGPR as a biocon-
trol agent.

12.2.1	 �Competition for Nutrients

The first step in pathogenesis of soilborne microbes is the colonization of rhizo-
sphere and rhizoplane (Lugtenberg et  al. 2001; Compant et  al. 2010; Eberl and 
Vandamme 2016). As it is widely believed that root colonization is an important 
aspect of biocontrol, therefore, PGPR have to be highly competitive to successfully 
colonize the narrow root zone of the plant to be protected and also be able to exhaust 
the available nutrients against other microorganisms (Lugtenberg and Kamilova 
2009; Compant et al. 2010; Shehata et al. 2016). The roots produce what is known 
as root exudates which consist of food nutrients that are essentially required by 
rhizosphere microbes that include sugars, amino acids, organic acids and numerous 
compounds including enzymes, sterols, vitamins, fatty acids, putrescine, nucleo-
tides, osmoprotectants and signal molecules. In general, PGPR acted by displacing 
and suppressing the growth and development of pathogens through competition for 
the nutrients, space and essential elements ( Sharma et al. 2016; Verma et al. 2015a; 
Meena et al. 2013b, 2013c, 2014a, 2015d; Shrivastava et al. 2016;Singh et al. 2015; 
Bahadur et al. 2016a).

As a mechanism, some of the PGPR secreted siderophores and lytic enzymes 
that deter the growth of the phytopathogens present in the rhizosphere and rhizo-
plane. However, some secreted antibiotics that offer them a better chance for rhizo-
sphere and rhizoplane colonization (van Loon and Bakker 2006; Shehata et  al. 
2016) and typical examples of the antibiotics secreted include 
2,4-diacetylphloroglucinol (DAPG), rhamnolipids, hydrogen cyanide, zwittermicin 
A, oligomycin A, oomycin A, phenazine, pyoluteorin, pyrrolnitrin, thiotropocin, 
tropolone, cyclic lipopeptides, kanosamine and xanthobaccin, as well as many oth-
ers (Takeshita et al. 2015; Nielsen et al. 2002; Raaijmakers et al. 2002; de Souza 
et al. 2003; Compant et al. 2010). Fan et al. (2011) reported that successful coloni-
zation of seedlings root was achieved via root dipping in the suspension of Bacillus 
strain (FZB42) before transplanting. The biocontrol ability of Bacillus can be 
understood by the reports of Chen et al. (2009) and Malfanova et al. (2011) that 
Bacillus produces cyclic lipopeptides (cLPs) that are involved in the biological con-
trol through ISR (Ongena et al. 2007), in a mechanism that requires rhizosphere 
colonization only (Dekkers et al. 2000).

12.2.2	 �Signal Interference

Signal interference is a biocontrol mechanism employed by some PGPR to break 
the sensing ability of some virulent and/or pathogenic microbes. This is specifically 
seen in bacteria toward their ability to sense the production level of exoenzymes 
(cell wall-degrading enzymes) regulated by quorum sensing (QS) molecules such as 
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homoserinelactones (AHLs) (Lugtenberg et al. 2013; Bassler 1999). Inactivation of 
the molecule called homoserinelactones (AHLs) needed for the production of exo-
enzyme is one way of controlling the activities of pathogens that can be achieved 
through signalling interference mechanism (Dong et  al. 2004). Lactone ring-
hydrolyzing enzymes, AHL lactonases, and the amide linkage-breaking enzymes, 
AHL acylases, are the two main types of AHL-inactivating enzymes that have been 
identified (Uroz et al. 2009; Lugtenberg et al. 2013).

Typical example of signal interference mechanism is the production of AHL 
lactonases by B. thuringiensis strains which hydrolyse the lactone ring and/or AHL 
acylases that break the amide link in the pathosystem (Lugtenberg et  al. 2013). 
Volatile organic compounds (VOCs) produced by rhizospheric strains P. fluorescens 
B-4117 and S. plymuthica IC1270 have been demonstrated to be involved in the 
suppression of crown gall disease in tomato plants caused by Agrobacterium 
(Dandurishvili et al. 2011). Also VOCs produced these strains, which are capable of 
causing a noticeable decrease in the transcription of phzI and csaI genes capable of 
AHL synthesis (Chernin et  al. 2011; Velazquez et  al. 2016; Sindhu et  al. 2016; 
Meena et al. 2014b, 2015c; Singh et al. 2016).

12.2.3	 �Induced Systemic Resistance (ISR)/Systemic Acquired 
Resistance (SAR)

The phenomenon induced systemic resistance (ISR) is an activated response immu-
nity by plant that is mediated by some rhizobacteria living on or interacting with 
roots of host plants (Pierterse et al. 2009, 2014), mediated by the signalling pathway 
of jasmonic acid (JA), salicylic acid (SA) and ethylene (ET) (Van Wees et al. 2000; 
Pierterse et al. 2014) within the plant resulting in the host plant’s defence responses 
against a number of bacteria, fungi, viruses, nematodes and insects (Beneduzi et al. 
2012; Glick 2012). Labuschagne et al. (2010) showed that PGPR elicited the ISR in 
the host plants by increasing the mechanical and physical strength of the cell wall of 
the host plant as well as changing the physiological and biochemical reactions of the 
host plant. The successes of ISR rely on the plant species or cultivar (van Loon and 
Bakker 2006) and require only rhizosphere colonization as a competitive mecha-
nism (Dekkers et al. 2000; Lugtenberg et al. 2013).

It is important to note that ISR is not associated with the activation of pathogenesis-
related proteins (PRs) as was the case in systemic acquired resistance (SAR). 
Various individual bacterial-derived compounds were reported to induce ISR, such 
as bacterial molecules like lipopolysaccharides and salicylic acid; organelles such 
as flagella; metabolites like siderophores, cyclic lipopeptides and biosurfactants; 
volatiles such as 2,3-butanediol and acetoin; phenolic compounds; antibiotics; and 
the signal molecule or quorum sensing molecules (Ahemad and Kibret 2014; 
Lugtenberg et al. 2013; Beneduzi et al. 2012; Perez-Garcıa et al. 2011).

The term SAR describes a salicylic acid-defendant induced resistance caused by 
a localized infection (Vleesschauwer and Hofte 2009). Ryals et al. (1996) defined 
SAR as a defence mechanism activated in the plant following the primary infection 
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by pathogens, mediated through the accumulation of salicylic acid signalling path-
way (Beneduzi et al. 2012). The plant resists further attacks after the first infection 
that predisposes the host to subsequent attacks. The defence capacity is linked with 
the accumulation of PRs. This, therefore, suggested the relevance of these PRs in 
their contribution to increased defence ability of the infected or induced tissue 
(Beneduzi et al. 2012). The most important feature of SAR is the activation of SAR 
genes especially those encoding the PRs that are usually taken as molecular markers 
for the state of induced resistance attained (Vleesschauwer and Hofte 2009; Mandal 
and Ray 2011; Shaikh et al. 2016).

Typical examples of PRs that served as hallmarks in several plant species and 
which have also shown to contribute in the inducement of resistance are 
1,3-glucanases and chitinases that are effective in hydrolyzing fungal cell walls. 
Pieterse et  al. (1996) reported that in an experiment conducted on Arabidopsis 
plants inoculated with Pseudomonas syringae pv. tomato and/or sprayed with sali-
cylic acid, it developed PRs (PR-1, -2, and -5 mRNAs), and with this conclusion, it 
could be made that PRs are dominantly associated with induction of SAR (Beneduzi 
et al. 2012; Meena et al. 2017). Both ISR and SAR can act together in conferring 
resistance to host against pathogens and exert a protection better than each system 
alone (Van Wees et al. 2000). Salicylic acid transduction signal needs the activator 
(regulatory) protein NPR1 which works in the terminal signalling pathway of the 
SAR, and NPR1 takes part in the defence responses mediated by various signalling 
ways that act beyond the expression of pathogenesis-related genes, showing ISR 
and SAR meet at the end of the signalling pathway (Van Loon et al. 1998; Beneduzi 
et al. 2012). The transduction signal pathways leading to ISR (rhizobacteria) and 
pathogen-induced SAR in Arabidopsis thaliana are shown below (Fig. 12.4).

Plant - Rhizobacterium
interaction

Jasmonic Acid - response

Ethylene - response

Enhanced defensive capacity

ISR SAR

Pathogenesis related proteins - PRs;
Enhanced defensive capacity

Salicylic Acid - response

NahG

jar1

etr1

npr1

Plant - Pathogen
interaction

Fig. 12.4  Transduction signal pathways leading to rhizobacteria-mediated induced systemic 
resistance (ISR) and pathogen-induced systemic acquired resistance (SAR) in A. thaliana (Source: 
Van Loon et al. 1998)
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12.2.4	 �Siderophores Production to Compete for Ferric Ions

The term siderophores is a ferric ion (Fe3+)-chelating compound produced by many 
rhizobacteria in an attempt to overcome the conditions under Fe3+ limitations 
(Lugtenberg et al. 2013). Virtually, all living organisms essentially need Fe3+ for a 
variety of functions such as synthesis of ATP, formation of heme, reduction of 
ribotide precursors of DNA and for growth (Saraf et al. 2011; Lugtenberg et al. 
2013; Sermwan et al. 2015). The need for iron to support the growth of organism 
became a challenge to the organisms in a situation of shortage supply. Therefore, 
survival of the fittest became the rule to survive. As a mechanism of biocontrol 
agents, siderophore-Fe3+ complex is formed by continuous binding to Fe3+ limita-
tion receptors, and the Fe3+ ion is subsequently conveyed into the cell of bacterial 
where it becomes active as Fe2+. Those bacteria that secrete siderophores effec-
tively good enough to bind Fe3+ to a level that fungal pathogens can no longer grow 
anymore under iron limitation can act as biological control agents (Leong 1986). 
Pyoverdine is a good example of a siderophore (Lugtenberg et  al. 2013), and 
examples of bacteria that produced siderophore include P. fluorescens strains, 
Bacillus, Alcaligenes, Bradyrhizobium, Rhizobium and Enterobacter (Shaikh et al. 
2014; Shaikh and Sayyed 2015). Burkholderia cepacia was reported to produce 
siderophore called deferoxamine mesylate salt equivalent. A concentration of 
0.64 μg mL−1 is sufficient to inhibit 91.1  ±  0.5% of phytopathogen growth on 
mango (Santos Villalobos et  al. 2012). In short, increased concentration sidero-
phore production by the PGPR bacteria could trigger inhibition of phytopathogens 
due to the starvation of iron.

12.2.5	 �Antibiosis

The term antibiosis is an antagonistic association between organisms and is the 
productions of metabolic substances by one organism which is detrimental to the 
other. In addition to siderophore production, majority of rhizosphere bacteria pro-
duced metabolites with antifungal properties which are known in controlling fungal 
diseases (Shehata et al. 2016; Opelt et al. 2007). These AFMs are also known as 
antibiotics which are compounds that deter the metabolic processes or growth of 
other microorganisms (Beneduzi et al. 2012; Duffy et al. 2003). Generally, PGPR 
produced one or more antibiotic as a mechanism which gave them ability to play the 
role of antagonism against pathogens (Beneduzi et  al. 2012; Glick et  al. 2007). 
Better understanding of the phenomenon of antibiosis as the activity of biocontrol 
has come to the domain of its peak in the last two decades (Lugtenberg and Kamilova 
2009).

The possible mechanisms of action for most of these compounds are discussed 
by Haas and Defago (2005). Majority of the antibiotics have been isolated and stud-
ied, and a great diversity has been observed in their mechanisms to prevent 
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synthesis of pathogen cell walls and inhibit the formation of initiated complexes on 
the small subunit of the ribosome (Maksimov et  al. 2011). The antibiotics best 
known to involve in biological control by PGPR include bacillomycin D, phen-
azines, pyocyanin, pyrroles, pyoluteorin, pyrrolnitrin, volatile hydrogen cyanide 
(HCN), oomycin A, iturins, fengycins, surfactin, mupirocin, bacillomycin, zwitter-
micin, 2-hexyl-5-propyl resorcinol (Sindhu et al. 2009; Akhtar and Siddiqui 2010; 
Ahanger et  al. 2014; Mabood et  al. 2014; Shaikh and Sayyed 2015), volatiles 
2,3-butanediol (Ryu et al. 2003), d-gluconic acid (Kaur et al. 2006), 2-hexyl-5-pro-
pyl resorcinol (Cazorla et al. 2006), 6-pentyl-α-pyrone (Lorito et al. 2010) and poly-
myxin, circulin and colistin (Maksimov et al. 2011). Some researchers have proved 
this through analysis (mutational) followed by studies like complementation studies 
(Lugtenberg et al. 2013). Majority of these antibiotics were produced by the group 
of bacteria known as Bacillus sp. These antibiotics are found to be effective against 
phytopathogenic fungi Aspergillus flavus, Fusarium oxysporum, Alternaria solani, 
Botryosphaeria ribis, Phomopsis gossypii, Helminthosporium maydis, 
Colletotrichum gloeosporioides, etc. (Maksimov et al. 2011).

Nowadays, a detailed investigation has been carried out on the class of antibiot-
ics secreted by numerous species of bacteria, including Bacillus known as cyclic 
lipopeptides (cLPs). The cLPs consist of three major families, namely, the iturins, 
surfactins and the fengycins. Their mechanisms of beneficial action depend on 
direct antibiosis of phytopathogens (Borriss 2011; Perez-Garcıa et al. 2011). Several 
reports have been presented as evidences for the involvement of cLPs in biocontrol 
activity as exemplified by the fengycins’ activity in biological control of B. cinerea 
on apple which was traced in the infected parts of apple at some level of concentra-
tions (Toure et al. 2004). Zeriouh et al. (2011) recently proved the involvement of 
iturins in the control of Xanthomonas campestris and Pectobacterium carotovorum. 
Similarly, Yanez-Mendizabal et al. (2012) observed and reported the involvement of 
fengycins in the inhibition of peach brown rot disease with mutational analysis. 
Henry et al. (2011) also enumerated that fengycins combined with surfactins affect 
defence pathways in tomato and bean. Furthermore, cLPs are involved in biofilm 
formation, cell differentiation and cannibalism (Lopez et al. 2009).

12.2.6	 �Bacteriocins Production

Bacteriocins are proteinaceous toxins produced by some bacteria to inhibit the 
growth of similar or closely related bacterial strains which were first discovered and 
called colicine in 1925 by A. Gratia because it killed Escherichia coli (Gratia 2000). 
Bacteriocins are narrow in their action and toxic mostly to bacteria related to the 
producing species, and this is the main difference between bacteriocins and antibi-
otics (Riley and Wertz 2002). Typical examples of bacteriocins secreted by some 
bacteria especially gram negative that are lethal to related strains include cloacins 
derived from Enterobacter cloacae, pyocins from P. pyogenes, colicin from E. coli, 
megacins from B. megaterium and marcescens from Serratia marcescens (Beneduzi 
et al. 2012; Cascales et al. 2007). Abriouel et al. (2011) reported that bacteriocins 
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from Bacillus sp. have a broad spectrum against gram-positive species, gram-
negative bacteria and fungi or yeast.

12.2.7	 �Interference with the Activity in Survival, Multiplication, 
Germination, Sporulation and Spread of the Pathogen

Many bacterial strains have been harnessed and used as biocontrol agents to inter-
fere with growth of some soilborne fungal pathogens. Majority of these strains are 
from fluorescent pseudomonads including P. fluorescens, P. putida, P. aeruginosa 
and P. aureofaciens that suppressed soilborne pathogens through antibiosis, rhizo-
sphere competition and iron chelation by siderophores production (Jianbin et  al. 
2010). Pseudomonas strains, P. fluorescens WCS365 and P. putida PCL1760, have 
been reported to suppress tomato foot and root rot (TFRR) in stone wool, and their 
characteristics are well known and documented (Kamilova et al. 2006; Validov et al. 
2009). Studies on the control of tomato Fusarium root rot disease with the biologi-
cal control agent P. fluorescens strain WCS365 have indicated a positive result 
through a series of activities that interfere with the cyclic events in the growth of the 
pathogen including germination, sporulation, multiplication, survival and spread of 
the pathogen (Lugtenberg et al. 2013).

In the process of biocontrol, the hyphae of the fungus secreted fusaric acid (FA) 
which is believed to attract the cells of the strain P. fluorescens WCS365 with sub-
sequent extensive colonization of hyphae, leading to the formation of biofilms or 
microcolonies (Lugtenberg et  al. 2013; de Weert et  al. 2004). Colonization of 
hyphae and subsequent formation of biofilms make the fungus ineffective and 
inhibit its growth, reproduction and survival. In a situation where there is nutrient 
scarcity (nutrient deprivation), biocontrol strain P. fluorescens WCS365 used the 
hyphae as a food source through hyphal colonization with subsequent spore germi-
nation inhibition (Kamilova et al. 2008). This conclusively showed that in the pres-
ence of P. fluorescens WCS365, spore formation will be reduced, and, therefore, 
this will also reduce pathogen spread, thus, serving as a biocontrol agent (Kamilova 
et al. 2008; Validov et al. 2009).

12.2.8	 �Cell Lysis and Degradation

Most of the PGPR produce enzymes such as chitinases, cellulases, glucanases and 
proteases that hydrolyse polymeric compounds like chitin, cellulose, proteins, 
hemicellulose and DNA. This will help in the inhibition of phytopathogens (Shaikh 
et al. 2016). Mabood et al. (2014) reported that these enzymes are known to cause 
degradation and lysis of cell walls which help in the control of phytopathogens. For 
example, chitinases and β-1,3-glucanase-producing PGPR such as B. subtilis 
BSK17, B. suly, Paenibacillus illinoisensis, P. illinoisensis KJA-424, Pseudomonas 
sp., Enterobacter ammrenus, Pantoea dispersa and Pythium ultimum are reported to 
demonstrate some potentials in biocontrol activity (Shaikh et al. 2016). Dubbey et al. 
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(2014) reported that chitinases and β-1,3-glucanase are produced by B. subtilis 
BSK17 that assist in their root zone competition and antagonistic activity. Similarly, 
severity of Fusarium infections produced under greenhouse conditions is reduced 
through chitinase production by B. suly (Hariprasad et al. 2011). Biocontrol activity 
by Paenibacillus illinoisensis has also been demonstrated against Phytophthora 
capsici causing blight in pepper by the secretion of chitinase (Jung et al. 2005).

12.3	 �Biological Control Mechanisms in Burkholderia sp. 
Against Phytopathogens

Burkholderia species are considered beneficial in the ecosystem in that they can be 
used for biological control of diseases caused by fungi in plants, plant growth pro-
motion and bioremediation (Perin et  al. 2006; Compant et  al. 2008). Several 
Burkholderia species have shown the ability to use different mechanisms such as 
competition and secretion of allelochemicals, including antibiotics and siderophores 
known with antimicrobial activity, competition for nutrients, induced systemic 
resistance (ISR), antagonism as well as hyphal colonization. All these are good 
features of potential biocontrol agents against phytopathogenic fungi (Baldani et al. 
2000; Welbaum et al. 2004; Compant et al. 2005b; Kang et al. 1998; Hu and Young 
1998). The efficacy of these Burkholderia species as biocontrol agents has been 
shown by B. cepacia, B. ambifaria, B. pyrrocinia, B. cenocepacia, B. vietnamiensis 
and B. phytofirmans strains against Fusarium sp., P. capsici, Pythium ultimum, 
P. aphanidermatum, B. cinerea and R. solani (Compant et al. 2008; Ait Barka et al. 
2002; Cain et al. 2000; Parke and Gurian-Sherman 2001; Singh et al. 2006). Several 
reports have proved these potentials as exemplified by the report of Cuong et al. 
(2011) by the colonization activity of hyphae-colonizing Burkholderia sp. against 
R. solani causing sheath blight in rice. Some traits of Burkholderia sp. strains have 
been shown to encompass antifungal genes which enable members of the group to 
produce a wide range of secondary metabolites active against R. solani. Examples 
of the metabolites are pyrrolnitrin, phenazine, cepaciamide A (Cartwright et  al. 
1995; Rosales et al. 1995; El-Banna and Winklemann 1998; Jiao et al. 1996; Mao 
et al. 2006) and some unknown compounds (Mao et al. 2006).

Bevivino et  al. (1994) reported that Burkholderia sp. produced very efficient 
low-molecular-weight iron-chelating compounds known as siderophores which are 
shown to be involved in antibiosis mechanism against plant pathogens through iron 
competition under iron-limiting conditions. Ornibactins, cepaciacheline and 
cepabactine are the predominant siderophores produced by Burkholderia strains 
(Meyer et al. 1995; De Meyer et al. 2015). Recently, it has been reported that 1-am
inocyclopropane-1-carboxylate (ACC) deaminase-containing endophyte belonging 
to Burkholderia sp. exhibited antagonistic activity against R. solani and Sclerotinia 
sclerotiorum (Pandey et al. 2005).
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12.4	 �PGPR as a Plant Growth Promoter

Generally, plant growth-promoting mechanisms exhibited by PGPR were catego-
rized into two main groups, i.e. direct and indirect mechanisms. In the past, more 
emphasis has been laid on direct interaction rather than indirect interaction. Direct 
mechanism may involve nitrogen fixation, phosphate solubilization ability, sidero-
phore production and production of plant growth regulators. On the other hand, 
indirect mechanisms may include suppression of phytopathogens and enhancement 
of mutualisms between host plants and other symbionts (Kloepper et al. 1989).

12.4.1	 �Nitrogen Fixation

Nitrogen-fixing microbes are generally categorized into two main groups (a) sym-
biotic N2-fixing bacteria and (b) non-symbiotic bacteria. Diazotrophs are a PGPR 
that fix N2 in nonleguminous plants (Glick et al. 1999). Basically, biological nitro-
gen fixation (BNF) is restricted to prokaryotic organisms. Currently, hundreds of 
bacterial species were identified, covering most of the different biotrophic energy 
systems such as photosynthetic bacteria (e.g. Rhodospirillum rubrum), anaerobic 
bacteria (e.g. Clostridium sp.), microaerobic (Burkholderia sp.) and aerobic bacte-
ria (e.g. Azotobacter). Biological nitrogen fixation usually takes place at mild tem-
peratures (Raymond et al. 2004), so that the fixation process can occur everywhere 
on the earth (Table 12.1). The genus Burkholderia was documented as one of the 
richest N2-fixing bacteria. Among them B. vietnamiensis was the first known N2-
fixing species of this genus and was isolated from the rhizosphere of rice plants in 
Vietnam. This bacterium has attracted interest of many researchers because of its 
abilities to fix N2, promote rice plant growth and enhance grain yield.

12.4.2	 �Phosphate Solubilization

The search for an ecologically safe and economically reasonable option for improv-
ing crop production in low-phosphorus soils becomes the ultimate outcome in soil 
fertility research. In this context, phosphate-solubilizing bacteria (PSB) are consid-
ered as promising biofertilizers since they can supply plants with phosphate from 
sources otherwise poorly available by various mechanisms (Zaidi et  al. 2009). 
Excellence examples of phosphate-solubilizing bacteria are Azotobacter, Bacillus, 
Beijerinckia, Burkholderia, Enterobacter, Erwinia, Flavobacterium, 
Microbacterium, Pseudomonas, Rhizobium and Serratia (Bhattacharyya and Jha 
2012). These bacteria were reported to solubilize inorganic phosphorus through 
synthesization of the low-molecular-weight organic acids in the soil (Zaidi et al. 
2009). The mineralization of organic phosphorus occurs through the synthesis of a 
variety of different phosphatases, catalysing the hydrolysis of phosphoric esters 
(Glick 2012). Most importantly, both phosphate solubilization and mineralization 
can coexist in the same bacterial strain (Tao et al. 2008).
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12.4.3	 �Phytohormone Production

Microbial synthesis of the phytohormone, namely, auxin (indole-3-acetic acid/
indole acetic acid/IAA), was reported a long time ago. Apart from IAA, PGPR are 
also capable of synthesizing other plant hormones, such as gibberellins (GAs) and 
cytokinins (CKs) or affecting plant hormone biosynthesis (homeostasis) in planta 
(Kurepin et al. 2014). IAA plays crucial role in bacteria-host interactions (Spaepen 
and Vanderleyden 2011). It is well known that IAA affects plant physiological pro-
cesses such as cell division, extension and differentiation; stimulates seed and tuber 
germination; increases the rate of xylem and root development; controls processes 
of vegetative growth; initiates lateral and adventitious root formation; mediates 
responses to light, gravity and florescence; and affects photosynthesis, pigment 

Table 12.1  Distribution of biological nitrogen fixation system

Ecosystem
Nature of 
BNF Type Occurrence

Natural Symbiotic Root and stem nodule Legumes

Rhizobium, Frankia Actinorhizal trees/
shrubs

Mosses, lichens, 
pteridophytes

Soil, rock, tree 
surface

Insects Gut of termites

Gunnera-Nostoc Base of leaves, cycad 
root

Non-
symbiotic

Free-living saprophytes 
(numerous species, aerobes, 
microaerobes, anaerobes)

Soil and plant root 
rhizosphere bacteria 
on litters

Photosynthetic, Anabaena, 
Nostoc, etc.

On plant surfaces 
cyanobacteria 
(blue-green algae)

Photosynthetic bacteria, 
Rhodospirillum rubrum, etc.

Aquatic and marine 
bacteria

Agriculture/forestry Symbiotic Nodulated legumes Annual, perennial, 
rotation crops, green 
manure

Actinorhizal, angiosperms Plantation system

Miscellaneous symbiotic Pioneer uses, Azolla, 
sugar cane, etc.

Non-
symbiotic

Free-living saprophytes 
(numerous species, aerobes, 
microaerobes, anaerobes)

Rice paddies

Photosynthetic, Anabaena, 
Nostoc, etc.

Photosynthetic bacteria, 
Rhodospirillum rubrum, etc.

Adapted from Kennedy and Cocking 1997
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formation, biosynthesis of various metabolites and resistance to stressful condi-
tions. Burkholderia phytofirmans strain PsJN was reported capable of inducing bio-
mass growth of several crops including potato. This report showed massive root 
growth increases after inoculation, and this was associated with a twofold to three-
fold increase in IAA and CK (trans-zeatin or tZ) levels (Kurepin et al. 2015).

12.4.4	 �Harmonizing Ethylene Production

Many studies show ethylene gas is a crucial growth regulator of numerous aspects 
of plant development and physiology (Merchante et al. 2013) such as germination, 
seedling growth and morphology, fruit ripening, organ senescence and stress/
defence response (Khalid et al. 2006; Broekgaarden et al. 2015). However, under 
usual condition the ethylene gas production is always in low concentration. This is 
due to the biosynthesis of this compound which depends on transcriptional and 
post-translational mechanisms that regulate the activity levels of the biosynthetic 
enzymes (Booker and DeLong, 2015). On the other hand, if ethylene present is in 
high concentration, it may inhibit physiological activities in plant-like root elonga-
tion. In this case, PGPR are needed in harmonizing the level of ethylene in plant by 
converting 1-aminocyclopropane-1-carboxylate (ACC) into ammonia and 
α-ketobutyrate (Nascimento et al. 2014). Currently, Achromobacter, Agrobacterium, 
Alcaligenes, Acinetobacter, Azospirillum, Bacillus, Burkholderia, Enterobacter, 
Pseudomonas, Ralstonia, Serratia and Rhizobium were reported to have ability to 
harmonize ethylene gas production in plant (Kang et al. 2010; Zahir et al. 2008, 
2009). Burkholderia phytofirmans PsJN is one of the best-studied Burkholderia. 
This strain was reported to inhabit the rhizosphere and endosphere of plant, thus 
promoting growth and enhancing stress adaptation in selected herbaceous and 
woody plant species (Da et al. 2012; Fernandez et al. 2012; Kim et al. 2012; Naveed 
et al. 2014). According to Poupin et al. (2013) and Zuniga et al. (2013), B. phytofir-
mans PsJN showed excellent capability of promoting growth and accelerating the 
whole life cycle of Arabidopsis thaliana. Moreover, this strain also induces primary 
root growth and root hair development and promotes aerial growth increasing the 
epidermal cell size (Poupin et al. 2013) and induces salt stress tolerance (Pinedo 
et al. 2015) in A. thaliana.

12.5	 �Commercial Potentials of PGPR in Malaysia

Malaysia was the largest pepper-producing country in the world. However, after 
1980, Malaysia lost its top position to India and Indonesia (Azmil 1993). Currently, 
Malaysia is ranked sixth in terms of world pepper production (IPC 2012). 
Approximately 45,000 families and more than 115,000 workers are involved in the 
pepper industry in Malaysia. This crop generates about one third of Sarawak’s agri-
culture export earnings, and Sarawak is the main black pepper export producer in 
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Malaysia. Currently, production of black pepper in Sarawak showed a declining 
trend. One of the main factors is due to pests and diseases infestation. Foot rot dis-
ease is considered the most devastating disease in black pepper.

At present, no effective control measure is available to effectively manage this 
disease in the world. Application of PGPR might be one of the alternative solu-
tions to chemical control of the disease in the field. Attempt was made to find 
potential indigenous PGPR strain to control foot rot disease in vitro and in vivo. 
We found promising PGPR strains that are able to induce systemic resistance in 
black pepper as well as showing biological control traits like producing antibiot-
ics which caused lysis of the mycelial cells of P. capsici. The tested PGPR strains 
were also found to promote the growth of the treated plants. The use of PGPR 
should be a preferable method as they are internal colonizers and more efficient to 
compete in the vascular systems. Thus, this will certainly deprive P. capsici in 
terms of nutrient uptake and space for their proliferation. Based on dual culture 
test, these three PGPR strains, BPA011, BPA040 and BPA025, exhibited high 
percentage of inhibition on radial growth with recorded PIRG values as ~81, 83 
and 81%, respectively. Furthermore, in culture filtrate test, all the three strains 
exhibited 100% PIRG (Fig.  12.5 and Table  12.2). These potential strains were 
successfully identified using GC-FAME as B. cepacia, B. cenocepacia and 
Bacillus alcalophilus, respectively.

Results from in vivo test demonstrated that application of PGPR resulted in 
disease suppression and delayed disease onset on treated plant. The present study 
showed that there were significant differences in terms of disease incidence (DI) 
and disease severity index (DSI) as compared with control treatment. Our findings 
showed treated plant with B. cenocepacia showed the lowest DSI (1.67%) in the 
first month, and the severity index was increased gradually in the second month 
(5.85%), and finally the DSI remained steady at ~10% along the assessment 
period. A similar trend was observed at B. cepacia and B. alcalophilus 
treatments.

Assessment on production of inducible compounds by the host plant was also 
conducted. Our findings revealed an increased in enzymatic activity of peroxidase 
(PO), total phenolic content (TPC) and hydrogen peroxidase (H2O2) in the treated 
plants. Significant amount of inducible compounds was expressed in root, stem 
and leaf parts of the treated plants. Our findings indicated that the systemic pro-
tection was offered to the host plant by the tested PGPR strains. This event resulted 
in limiting and preventing the phytopathogens activities, even at foliar infection 
by the P. capsici. Moreover, the positive effects of PGPR on plant growth are 
always correlated with a remarkable increase in the root morphology such as lat-
eral root length, root hair number and also shoot length and yield. In our study, we 
found root, stem and leaf biomass were significantly increased in the treated 
plants, and this is generally assumed that these developmental responses are trig-
gered by phytohormones such as auxins, cytokinins and gibberellins produced by 
the PGPR strains.
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Fig. 12.5  The effect of endophytic bacteria on mycelial growth of P. capsici in dual culture and 
cultural filtrate tests at 7  days after incubation. Pure culture of P. capsici in control plate (a), 
BPA011 (b), BPA040 (c), BPA025 in dual culture test (d) and BPA011 and BPA040 in culture 
filtrate test (e and f), respectively
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12.6	 �Future Prospect

Currently, majority of black pepper farmers in Malaysia rely extensively on chemi-
cal fungicides to control foot rot disease in black pepper. Heavy reliance on chemi-
cal fungicides may lead to numerous biohazards such as environmental pollutions, 
residual effect in food and pathogen resistance and may be hazardous to beneficial 
microorganisms. From crop management perspective for sustainable agriculture, 
the control of foot rot disease in black pepper using PGPR (Burkholderia) would 
best be achieved by combining these two techniques: (i) disease control through the 
use of biocontrol agents native to black pepper farms involving continuously inocu-
lation of PGPR inoculum to increase their populations and (ii) disease control 
through application of antifungal metabolites responsible for effectiveness of the 
biocontrol agent-developed product usually more effective and easier to be used by 
farmers. Meanwhile, diminishing the biohazards is inherent in the use of intact 
microbial cells (and the associated potential risk to human health). Application of 
green technology in agriculture in Malaysia has become more evident in recent 
year. Implementation of National Green Technology Policy since 2009 contributed 
huge impact in research and development as well as in agriculture practices in 
Malaysia. One of the biggest impacts is the ability to achieve reduction in the green-
house gas intensity of gross domestic product (GDP) of 35% in 2015. Even though 
many incentives and funds were given by Malaysian government in developing new 
and effective formulations for effective delivery of PGPR, the process is still very 
slow. Formulation of biopesticides with PGPR-like Burkholderia sp. is a big chal-
lenge in practical agriculture especially in the tropical regions where the environ-
mental conditions are favourable for the pathogen to grow. Hence, improvement in 
the formulation of biopesticides is the key to the success in the development of 
sustainable agriculture.

In plant protection perspective, integrated pest management (IPM) programme is 
now adopted widely by commercial planters and farmers. With this regard, PGPR 
strains tested in this study are showing promising outcomes to be used for sustain-
able and environmentally friendly horticultural production system. The prospect 
and potential of manipulating PGPR by direct cell inoculation to increase crop yield 

Table 12.2  Potential candidates of PGPR were tested using dual culture and culture filtrate tests 
against P. capsici in vitro

Bacteria code
Dual culture test 
(% PIRG)*

Culture filtrate test 
(% PIRG)

Identification by 
CG-FAME

BPA011 81.04 ± 0.59a 100 ± 0a Burkholderia cepacia

BPA025 80.83 ± 0.09a 100 ± 0a Bacillus alcalophilus

BPA040 82.97 ± 0.47a 100 ± 0a Burkholderia cenocepacia

Means in the same column with different alphabet(s) are significantly different (p ≤ 0.05) accord-
ing to DNMRT
aPercentage inhibition of radial growth (PIRG) of P. capsici was assessed at 7  days after 
incubation
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and reduce disease pressure have shown considerable promise in laboratory and 
greenhouse studies. However, this technique is not really successful under field con-
ditions. This might be due to climatic variations, and the soil itself is an unpredict-
able environment, and an intended result is sometimes difficult to achieve. Hence, 
development of new formulation biofungicide is urgently needed to overcome the 
above-mentioned limitations as well as to effectively control phytopathogens in 
field condition. As reported by many authors, biofungicides are safe or have very 
small residues and harmless to beneficial organisms, and the most important biofun-
gicides are cost-effective to control many pests and diseases in the field.

12.7	 �Conclusions

Burkholderia sp. are promising biological control agents against the causal agent of 
foot rot disease, P. capsici Leonian, through the production of antifungal metabo-
lites, induction of disease resistance and promoting plant growth. These results sup-
port the potential use of B. cepacia or its antifungal metabolites as a microbial 
alternative to control phytopathogens involved in high losses of agricultural produc-
tion, diminishing the environmental problems caused by current practices. 
Government involvement by introducing specific policies or long-term programmes 
which is associated with “green technology” in order to monitor and protect clean 
environment is highly recommended for sustainable agriculture.
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