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Chapter 9
Therapeutic Drug Monitoring: More Than 
Avoiding Toxicity

Jana Stojanova and Sonia Luque

9.1  Introduction

Therapeutic drug monitoring (TDM) is a clinical science centered around the quan-
tification of drug concentrations in bodily fluids, most often serum or plasma derived 
from a venous blood sample. This may be for the purposes of determining lack of 
response (suspected poor compliance or dosing/administration errors, or of unknown 
cause), elevated levels following intentional or unintentional overdosing; however 
most often it is used for adjusting the course of therapy to achieve optimal concen-
trations in the systemic circulation where a “therapeutic range” or target has been 
defined. TDM is traditionally applied to a finite set of drugs including a limited 
number of antibiotics, early generation anti-epileptics, mood stabilizers and anti-
psychotics, immunosuppressants, specific anticancer agents and other, often older, 
drugs such as digoxin and theophylline. Commercially available immunoassays 
encompass the most widely used technique to determine drugs that are commonly 
monitored, principally because procedural aspects are simplified, costs are lower, 
and the turnaround time is faster.
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Professional societies and individual authors have put forward characteristics for 
drugs to be considered candidates for TDM [1]:

• There is a relationship between systemic concentrations and efficacy or toxicity, 
and this relationship has been evidenced and defined.

• Knowledge of the concentration would impact clinical decision making: adjust-
ment of dose would be difficult or impossible to perform based on clinical obser-
vation alone.

• The relationship between the dose and circulating concentrations is poor, and 
large inter-patient variability exists.

• A narrow therapeutic range; that is, the concentration required for efficacy is 
close to concentrations where toxicity might be observed.

While this list aims to orient a rational application of the discipline, it has driven 
common use to a limited list of drugs that are considered classic TDM candidates, 
primarily selected due to their narrow therapeutic indices; in other words, to avoid 
toxicity at traditionally used doses. Large inter-patient variability is an important 
criterion; however prior to market this is often evaluated during trials in healthy 
subjects or relatively homogenous target populations. Additionally, in modern drug 
development, strategies are employed to limit the causes of inter-patient variation 
observed in earlier generations of drugs, namely absorption and hepatic transforma-
tion. Care is also taken to determine toxicity at standard dosing. Thus, as concerns 
drug development, regulation, and health policy, TDM based on the definition and 
scope above has had limited clinical application, and this has continued as newer 
drugs have emerged.

The relationship between dose and systemic concentration is particularly poor 
and unpredictable in special populations liable to different and/or dynamically 
changing pharmacokinetics [2]. In these patients, it might be difficult to gauge if 
doses and administration regimens used result in appropriate systemic concentra-
tions. In general terms, they include patients at extremes of age, complex drug regi-
mens with likely interactions between co-administered drugs, pregnant women, and 
obese patients. Disease processes where pharmacokinetics may differ from an 
“average” patient chronically, and alter further with acute disease, include cystic 
fibrosis, patients with renal and hepatic disease, and hematological malignancy, 
amongst others. Acute and severe pathophysiological processes that can influence 
pharmacokinetics include sepsis, septic shock, severe burns, traumatic brain injury, 
major surgery, organ transplantation, and pancreatitis.

Adequate antimicrobial concentrations for efficacy are especially pertinent in the 
critically ill patient, in whom unique pharmacokinetic changes may result in essen-
tially diluted concentrations resulting from standard dosing regimens. Further, ill-
ness severity and disease processes may impact access to the site of infection, and 
infectious organisms are often less sensitive [3]. In this context, careful dosing 
based on drug concentrations may improve efficacy, help to avoid resistance, or 
detect and control for it if it emerges during the course of treatment [4–6]. This theo-
retical clinical need would augment the list of drugs that may require TDM beyond 
the traditional list for which immunoassays are available, provided suitable target 
concentrations can be established.
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While immunoassays are used in health care systems worldwide, clinical chem-
istry laboratories providing a specialized service based on in-house methods and 
chromatographic techniques are relatively few. Instrumentation involved can 
include High Performance Liquid Chromatography (HPLC) or LC separation, with 
ultraviolet (UV), mass spectrometry (MS), and more recently with tandem MS 
detection, which provides additional sensitivity and specificity, improved through-
put and turnaround, reduced sample volumes and analysis of multiple drugs simul-
taneously [7]. Specific drug assays, especially for older candidate TDM drugs, 
might be standardized and approved by regulatory bodies, while emerging assays 
pose challenges to standardize between centers, and participation in proficiency 
testing schemes is advocated. Development of new immunoassays and improve-
ment of existing ones by the diagnostic industry has been limited in responding to 
clinical need. In deed, insufficient analytical quality associated with specific immu-
noassays may be part of the limited acceptance of TDM in clinical practice. The 
clinical chemistry laboratory can thus provide an invaluable service when it is posi-
tioned to articulate with clinical teams. A dedicated TDM program may contribute 
to ensuring a rational approach to requests, appropriate sampling and recording of 
complementary information, and foster quality control and ongoing education.

9.2  Beyond “Numbers Only” TDM: Additional 
Considerations for Antimicrobial Drugs

Across the traditional list of TDM candidate drugs, a drug level is taken at a single 
time point, and related to a range representing a margin of efficacy and absence of 
toxicity within a given population. This is typically a trough level, taken at the end 
of a dose interval, but could be at any point during the dosing interval that best 
relates to the area under the concentration–time curve (AUC). Taking a single sam-
ple is considered convenient and cost-effective; however, timing must be precise.

Antimicrobial activity for a given class of antimicrobial drugs is best described 
by one of three pharmacokinetic/pharmacodynamic (PK/PD) models: concentration- 
dependent, contingent on the drug’s maximal concentration above the microorgan-
ism’s minimum inhibitory concentration for the same drug (Cmax/MIC); 
time-dependent, dependent on the duration that the concentration is above the 
MIC(%T > MIC); and concentration- and time-dependent, contingent on AUC/MIC 
[8]. For drugs where toxicity is observed at clinical dosing schedules, such as the 
aminoglycosides and vancomycin, this often relates to accumulated exposure and 
might be best represented by AUC.

The AUC for a given dose interval can be calculated by a variety of means; how-
ever, most involve multiple samples and require specialized knowledge. Dose adap-
tation based on Bayesian forecasting  and control, also referred to as Bayesian 
feedback and Target Concentration Intervention, promises several advantages. 
Calculations require prior information, including patient characteristics, and phar-
macokinetic parameters for the drug from a similar population to the patient being 
treated.
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Advantages of using Bayesian dose adaptation software:

• Allows calculating an initial dose or loading dose
• It is not necessary to wait for steady state to be achieved, and TDM can proceed 

from the first dosing interval
• Allows calculating the AUC, and determining AUC-based outcome measures
• AUC can be calculated with a minimum number of samples, often a single 

sample
• Time of sampling is more flexible. An inadvertently taken sample can be useful 

so long as sampling time is accurately taken into account
• If a visual representation of the concentration–time curve is provided, this is use-

ful for educating patients (when relevant) or staff involved in the TDM process
• For antimicrobial drugs, MIC can be included for an optimal PK/PD target

Beyond logistical challenges and the learning curve for implementation, one dis-
advantage of some of these software is an inability to include covariates that are not 
traditonal PK covariates. Biomarkers related to hepatic metabolism pose a particu-
lar challenge, as they are typically surrogates, and may vary between drugs. 
Examples include liver enzymes, C-reactive protein  [9], and genotypes of genes of 
metabolic enzymes that exhibit polymorphism. Some experienced practitioners use 
the population modelling software NONMEM [10] for Bayesian dose adaptation in 
individuals, but we will foscus on specific tools here.

9.2.1  Available Dose Adaptation Tools for Clinical Use

There has been an interest in dose adaption since the 1970s; however, few centers 
worldwide apply the use of dedicated software to routine TDM. While there are 
many options, we will focus on tools that employ Bayesian methods, and have rela-
tively large drug libraries or can accommodate additional models. Generally, these 
are academic initiatives, or commence as such. Most are Windows based, although 
some overcome system interoperability by providing web versions, also permitting 
use on personal smart devices. For an excellent historical review and evaluation, the 
reader is referred to Fuchs et al. [11].

USC*PACK was released in 1973 and represents an initiative from the Laboratory 
of Applied Pharmacokinetics of the University of Southern California [12]. Of the 
various software within the pack, MM-USC*PACK permits dose adaptation. The 
software has continually evolved, was briefly renamed RightDose but subsequently 
superseded by BestDose, which is currently being actively and commercially devel-
oped [13]. BestDose and predecessors are unique amongst the software described 
here in that they are based on nonparametric methods.

MWPharm was developed in 1982 at the Department of Pharmacology and 
Pharmacotherapy of the University of Groningen [14]. Mediware, a company origi-
nating from Charles University, Prague, continued development of the software 
from the late 1980s. The DOS version has been used since the 1990s in clinical 
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pharmacology departments, including the University Medical Centre of Groningen, 
and national training programs for clinical pharmacists and pharmacologists in the 
Netherlands. Windows versions of the software have been developed by Mediware, 
the latest being MWPharm++ released in 2014. It is one of the few software that 
permits interfacing with hospital inpatient systems through Mirth TM Connect 
Technology. MWPharm Online is a recently released browser version.

RxKinetics is a suite of software tools for pharmacists, including Bayesian dose 
adaptation tools, developed by Rick Tharp, pharmacist and certified developer [15]. 
Antibiotic Kinetics and APK offer one-compartment models, while Kinetics offers 
multi-compartment models. In addition to Windows versions, Antibiotic Kinetics 
and APK offer versions for smart devices, and Antibiotic Kinetics offers an inexpen-
sive iPhone application. Analyses for non-steady-state conditions are a recent initia-
tive [16]. The website fosters an online community of users.

Two commercial solutions from the United States were released in the 1990s. 
Abbott Laboratories released Abbottbase Pharmacokinetic Systems [17]; however, 
it is no longer distributed. The original software was used widely in the United 
States, and is widely cited. T.D.M.S. 2000 by Healthware Incorporated was released 
in the 1990s and continues to be distributed [18]. A trial version permits individual 
calculations without the ability to save data, and is widely used.

TCIWorks, Target Concentration Intervention software, was released in 2011 
and is a joint initiative of collaborators from the University of Otago, Dunedin, and 
the University of Queensland, Brisbane [19]. It has been widely used in Australia, 
primarily for challenging scenarios involving traditional TDM candidate drugs and 
where estimation of AUC has been advocated. TCIworks can be used on systems 
supporting JAVA applications, including Windows, Linux, and Mac, and is free of 
charge. The website is currently inaccessible and it is unclear if the software will 
continue to be developed; however, available versions of the software continue to be 
used.

DoseMe is a comprehensive software released in 2013 by an Australian propri-
etary company of the same name [20]. It appears to offer an extremely easy to use 
interface, and is supported on all platforms (Windows, Mac, Linux, Android, and 
iOS devices). Pricing is not disclosed on the website but appears to be in the format 
of an annual fee to clinical institutions. Finally, InsightRx is a recent spin-off from 
the University of California, San Fransisco, currently undergoing pilot studies for 
Busulfan and Vancomycin.

A unique initiative is the web-based service provided by the Limoges University 
Hospital, France [21]. While immunosuppressant dosing is the specialty 
(ImmunoSuppressant Bayesian dose Adjustment, ISBA platform), the more recent 
PK-JUST platform covers other drugs, including aminoglycoside and glycopeptide 
antibiotics. Clinical area is taken into account, including ICU, hematology, pediat-
rics, and aged care. Users enter drug levels through a form, modelling is performed 
and reviewed by a pharmacologist, and a report generated including dosing sugges-
tions, a modelled pharmacokinetic curve, and historical concentration plots when 
relevant. The average turnaround time is 2 h. To date, the portal is free to use for 
international users, and a small fee is applied for national requests.
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9.3  Pathophysiological Changes in the Critically Ill Patient

While other chapters of this book elaborate pathophysiological changes in the criti-
cally ill patient in greater detail, we will briefly cover some aspects here to consider 
the impact on circulating drug concentrations  (Table  9.1). Pathophysiological 
changes are dynamic in these patients, and are liable to change and influence plasma 
concentrations over the course of therapy.

Inflammatory processes in severe infection may cause third spacing, which, in addi-
tion to supportive measures, can greatly impact the volume of distribution of hydro-
philic drugs, resulting in doubled volume of distribution compared to patients who are 
not critically ill, and circulating concentrations might be lower than expected. Severe 
inflammation can also influence the metabolism of hepatically cleared drugs [9].

Hypoalbuminemia is frequently observed in the critically ill, impacting drugs that 
are highly protein bound. While a greater free fraction of the drug is available for the 
clearance of hydrophilic drugs, augmented tissue distribution can also occur, coinci-
dent with third spacing. An augmented volume of distribution is thus observed, which 
can be double that of patients without hypoalbuminemia. Renal clearance in these 
instances might be normal or augmented, leading to increased clearance of the free 
fraction, or impaired causing accumulation of the free fraction. Plasma/serum con-
centrations measured in this scenario may reflect the total rather than unbound drug, 
a challenge when making dosing decisions based on concentration measurements.

Infection and supportive measures may result in augmented renal clearance (cre-
atinine > 130 mg/min) in some patients, producing lower than expected concentra-
tions for renally cleared drugs. Progressing infection may lead to an abrupt loss of 
kidney function (acute kidney injury), necessitating a dialysis modality. Pre-existing 
renal impairment may also impact drug handling, and nephrotoxic agents may impact 
function over the course of treatment. Extracorporeal interventions, including renal 
replacement therapy, for example continuous or intermittent dialysis, sustained low-
efficiency dialysis/extended daily diafiltration, and extracorporeal membrane oxy-
genation, impact volume of distribution and clearance, particularly for hydrophilic 
drugs. The outcome on circulating concentrations is difficult to predict given differ-
ent modalities and large differences in procedural aspects between institutions.

9.4  Classic TDM Candidate Drugs: Aminoglycosides 
and Vancomycin

TDM experience with aminoglycosides and vancomycin spans several decades. 
They conform to the requisites as traditional TDM candidates, namely possessing 
narrow therapeutic indices due to nephrotoxicity and ototoxicity. Immunoassays 
have been available for individual drugs since the late 1970s, exhibit excellent sen-
sitivity and are used routinely to determine plasma concentration levels.
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9.4.1  Aminoglycosides

Aminoglycosides have broad-spectrum activity against gram-negative bacteria. 
Drugs in this class are small hydrophilic molecules, with similar pharmacokinetic 
properties between agents. Due to their concentration-dependent bactericidal 
activity, once-daily administration is the traditional dosing form in most contexts 
[22]. For patients in whom pharmacokinetic alterations are not expected, empirical 
short- term therapy with once-daily dosing will likely not require monitoring as 
adequate peak concentrations are expected to be achieved. For empirical treatment 
that extends beyond 48h, directed therapy including prolonged treatment due to 
resistance to other agents, combination therapy, or synergistic low-dose use, 
plasma concentrations should be determined to guide dosing. Higher initial dosing 
is suggested in severe sepsis (7 mg/kg up to 640 mg) due to altered volume of 
distribution [22].

In individuals with normal or augmented renal function, trough concentrations 
are likely to fall below the limit of detection by immunoassay platforms. It is rea-
sonable to measure trough concentrations in individuals with impaired renal func-
tion to avoid toxicity, especially since concentration–time profiles begin to 
approximate continuous infusions [23]. Peak concentrations are measured 30 min 
following the end of the infusion. A reasonable target is 6–10 mg/L for gentamycin 
and tobramycin, and 12–20 mg/L for amikacin [23]. If considering local biogram 
data or when microbiological data are available, a Cmax/MIC ratio of 8–10 is a 
reasonable target, although >10 might be necessary in severely ill patients. For 
Bayesian calculations, some guidelines recommend that the second level after the 
peak be taken 6–14  h following the end of the infusion to avoid undetectable 
trough levels.

An excellent narrative review describes the history of nomograms and forecast-
ing solutions for use in aminoglycoside dose adaptation [24]. Nomograms based 
on drug concentrations have been found to result in under-dosing in some patients 
[25, 26], including in the critical care setting [27]. While superior to nomograms, 
Sawchuk and Zaske’s computationally simple, one-compartment model for indi-
vidualizing dosing requires several samples [28]. Some authors report inferiority 
of this method compared to Bayesian forecasting [25]. Various software based on 
Bayesian methods are available and several have been used in the context of ami-
noglycoside treatment in critically ill patients [29–31]. Gauthier et al. highlight the 
importance of using population parameters from the appropriate population in 
critical care patients [29]. In addition to favorable sampling conditions (single 
sample, flexible timing, and not having to wait for a steady-state condition), 
Bayesian forecasting provides individual estimates for Cmax and AUC, covering 
efficacy and toxicity. While minor differences in calculations between software 
have been observed, recommendations for the purposes of dose adaptation are 
similar [11, 25, 29, 32].
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9.4.2  Dose Adaptation Tools for Aminoglycosides: Impact 
on Clinical Outcomes

Gillaizeau and colleagues performed a systematic review of clinical trials for the 
Cochrane collaboration evaluating computer-assisted dose adaptation in various 
clinical scenarios [33]. Most reports concerned anticoagulants and insulin (25/46), 
while five represented aminoglycosides [27, 34–37]. It is uncertain if TDM was 
performed in the context of once-daily dosing, although Begg, Hickling and col-
leagues targeted maximal concentrations in the range 6–10  mg/L [27, 34]. 
Interventions represented computer-supported advice from clinical pharmacists or 
pharmacologists, with the control arm representing dosing and adaptation based on 
blood levels by physicians from the treating team, either following a nomogram or 
a defined therapeutic range. Programs were based on the Sawchuk and Zaske linear 
regression model with modification [28], or Bayesian models [38, 39]. Interventions 
resulted in improved attainment of target concentrations, while the impact on treat-
ment success and length of stay was significant but minor. For nephrotoxicity, 
despite a large cohort, reduced risk was not significant. Software-based dose adapta-
tion was superior to targeting within a Cmax range in the two reports evaluating this 
outcome [27, 34].

Eleven studies involving antimicrobials were identified as within scope, but were 
not included in the review, concerning gentamycin, amikacin, and vancomycin [33]. 
Reasons cited by the authors included not randomized controlled trial, dose calcula-
tions not performed by computer, or absence of primary outcome data sought by the 
authors. Despite a before and after design, the work by Van Lent-Evers and col-
leagues represents a large, well-powered cohort and evaluation of several clinically 
important outcomes [40]. The TDM intervention involved pharmacy input in dosing 
regimens through a 24 h service, with initial dosing and adjustment calculated by 
MWPharm, although the population model was developed using the nonparametric 
NPEM2 algorithm of the USC*PACK.  The model included samples from ICU 
patients. Prior to the intervention physicians dosed according to nomograms, and 
when levels were requested, pharmacy performed dose calculations using the 
Sawchuk and Zaske method. The intervention resulted in reduced length of hospital 
stay, reduced days with signs of infection, fewer individuals with nephrotoxicity, 
and was more cost-effective. A trend toward improved survival was observed, but 
was likely underpowered.

9.4.3  Vancomycin

TDM for vancomycin has a controversial history with respect to both achieving 
efficacy and avoiding toxicity. The 2009 consensus review for TDM represents an 
effort to achieve an agreement between various organizations (American Society of 
Health-System Pharmacists, the Infectious Diseases Society of America, and the 
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Society of Infectious Diseases Pharmacists) based on the literature available to that 
date [41].

Trough levels obtained at steady state are recommended for practical reasons, 
and assume an acceptable relationship between trough and AUC.  A trough of 
15 mg/L is proposed for pathogens with an MIC 1 mg/L, to achieve an AUC/MIC 
ratio of 400 [41]. The minimum trough level of 10 mg/L required to avoid resistance 
is frequently cited, and based on observations from a case with recurrent MRSA 
bacteremia [42] and in vitro work supported by clinical relevance [43, 44]. To inter-
pret trough levels, samples should be taken at steady state, for example, following 
the fourth dose for twice-daily dosing. In patients with altered renal function, the 
observed half-life will change, thus impacting time to steady state. For pathogens 
with reduced susceptibility, for example those with MIC ≥ 2 mg/L, achievement of 
the requisite AUC > 800 would not be possible with conventional dosing (15 mg/kg 
daily based on actual body weight, ABW). A loading dose (25–30 mg/kg ABW) is 
advocated for severely ill patients, permitting attainment of target concentrations 
more rapidly; sampling in this instance can be performed following the first conven-
tional dose. These guidelines do not recommend continuous infusion, as superiority 
for patient outcomes to intermittent infusion had not been evidenced. Subsequent 
meta-analyses did not find a significant impact on clinical success [45, 46], although 
nephrotoxicity appeared reduced [45–47]. This is not significant in the work by 
Hanrahan et al., although the authors provide reasoning for this. Continuous infu-
sion may be especially useful in critically ill patients for quicker attainment of phar-
macokinetic targets, together with a loading dose 35  mg/kg to rapidly achieve 
plasma concentrations of 20 mg/L. Sampling can occur at any point during the infu-
sion, with this concentration likely to achieve the target AUC/MIC ratio of 400 in 
appropriately sensitive microorganisms.

Following the 2009 guideline, and resulting change in practice, several research 
groups have performed meta-analyses evaluating proposed targets; trough levels 
above 15 mg/L, and, as it became more frequently reported, AUC/MIC. The body 
of work represented was essentially observational, principally prospective and ret-
rospective cohort studies [48–52]. Nephrotoxicity, typically defined by a prespeci-
fied increase in creatinine, is elevated approximately twofold in individuals with 
trough levels above 15 mg/L [49, 51, 52]. Van Hal et al. highlight that a dose–
effect can be observed in studies reporting multiple dose strata [53–56], and that a 
time–effect relationship can be observed in reports noting that most nephrotoxic 
events occurred after 7 days of therapy [57–60]. Steinmetz et al. highlight that no 
cases of irreversible damage were reported amongst the reports they included. 
Concerning treatment failure, some authors report a modest effect after accounting 
for heterogeneity (OR = 0.68 (0.52–0.89), n = 611/657, high arm/low arm, respec-
tively) [51], while others only when restricting to bacteremia (RR = 0.72 (0.59–
0.88), n  =  374/420) [49], or persistent bacteremia (OR  =  0.3 (0.14–0.62), 
n = 104/129) [50].

A body of work relating AUC/MIC to outcome measures has emerged and 
recent meta-analyses have attempted to summarize findings [48, 50]. Authors of 
included reports typically calculate breakpoints determined by CART (classifica-
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tion and regression tree) analyses. Reports in which MICs are determined by the 
broth dilution method (BMD) the cutoff is around the AUC/MIC target 400 ± 15%. 
A twofold improvement in treatment failure is observed in patients with higher 
AUC/MIC breakpoints compared to lower AUC/MIC breakpoints (OR  =  0.41 
(0.31–0.53), n = 694/397, [50]; RR = 0.47 (0.30–0.73), n = 419/236, [48]). Of 
note is that the largest study included in both analyses, by the group that authored 
the 2009 guideline, detected a smaller effect size compared to other reports, influ-
encing heterogeneity [54]. This group uniquely included MICs determined by 
both BMD and Etest methods, although Men et al. also noted relatively higher 
APACHE II scores relative to other reports included in their meta-analysis. In 
contrast to trough level based comparisons, those based on AUC/MIC thresholds 
demonstrate an improvement in mortality, when reported (RR = 0.47 (0.31–0.70), 
n = 188/132) [48].

The vast but essentially observational literature concerning monitoring and 
dose adjustment for vancomycin appears to favor an AUC-based approach for 
improving patient outcomes. The target AUC/MIC ratio of 400 seems reasonable, 
though the local method used to determine MICs must be taken into account. In 
this context, a clinical trial comparing trough- and AUC-based dose adjustment is 
warranted, including patients where vancomycin TDM would be rationally 
applied.

Table 9.1 Drug properties and scenarios where circulating concentrations might be altered in the 
critically ill patient

Drug properties Clinically relevant scenarios

General: pharmacodynamics – Pathogens with reduced susceptibility
– Severe illness
– More than 3 days of treatment, directed therapy

Impaired tissue penetration 
(vancomycin, cefpirome, piperacillin, 
levofloxacin, fosfomycin)

– Severe nosocomial pneumonia
– Central nervous system infections

Hydrophilic drugs (aminoglycosides, 
glycopeptides, beta-lactams, linezolid, 
colistin, daptomycin, flucytosine, 
antivirals, fluconazole)

–  Increased volume of distribution: burns, septic 
shock, mechanical ventilation

– Augmented renal clearance
– Unstable hemodynamic and/or renal function

Renally cleared drugs with toxicities 
observed at therapeutic concentrations 
(aminoglycosides, glycopeptides, 
linezolid, colistin, daptomycin)

–  Concomitant nephrotoxic agents, or other drugs 
with similar toxicities

– Chronic renal impairment, acute kidney injury

Challenging to dose in RRT 
(aminoglycosides, glycopeptides, 
ciprofloxcin, beta-lactams)

– Extracorporeal therapies

Significant protein binding (ceftriaxone, 
flucloxacillin, ertapenem, daptomycin)

– Hypoalbumineamia
– Mechanical ventilation
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9.5  TDM for Other Antimicrobial Agents

TDM presently requiring chromatographic methods for quantification is limited to 
clinical institutions with a specialized service. Despite technical advances, turn-
around times are rate limiting for dose adaptation. In the critical care setting, there 
is concern to ensure adequate systemic concentrations, especially important for 
antimicrobials that are frequently used such as broad-spectrum beta-lactams and 
fluoroquinolones, though in principle may apply to any antimicrobial. A case for 
TDM has also been made for additionally avoiding toxicity with some drugs that are 
last-line agents or reserved for severe or resistant infections including linezolid, 
colistin, and daptomycin. TDM is becoming increasingly accepted for antifungal 
agents, and there is emerging evidence for antiviral agents; however, these are 
beyond the scope of the present work and the reader is referred to a recent review 
[61]. Selected additional antimicrobials with some evidence for a breakpoint related 
to clinical outcomes are included in Table 9.2.

Table 9.2 Pharmacokinetic/pharmacodynamics indices with evidence for clinical outcomes

Anti-infective Efficacy Toxicity

Concentration-dependent

Aminoglycosides Cmax/MIC 8–10
Severe infections Cmax/MIC > 10
Gentamycin, tobramycin Cmax 6–10 mg/L Cmin < 1 mg/L

AUC 70–120 mg h/L
Amikacin Cmax 12–20 mg/L Cmin < 5 mg/L
Time-dependent

Beta-lactams (broad spectrum) (f)T > MIC
Based on preclinical work
  Carbapenems meropenem 40%
  Cephalosporins cefepime/ceftazidime 70%
  Penicillins piperacillin–tazobactam 50%
  Based on clinical work 50–100%, 1 × MIC

50–100%, 4 × MIC
Concentration- and time-dependent

Glycopeptides AUC/MIC ≥ 400 h
Vancomycin Cmin < 20 mg/L
  Traditional Cmin 10–15 mg/L
  Avoiding resistance Cmin > 10 mg/L
  Higher MIC (MRSA, when tissue 

penetration is a concern?)
Cmin 15–20 mg/L

  Continuous infusion Cmin 20–25 mg/L
Teicoplanin Cmin > 10 mg/L
  Higher MIC (MRSA, endocarditis, 

osteomyelitis)
Cmin > 20 mg/L

(continued)
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9.5.1  Beta-Lactams

The role of TDM for beta-lactams has gained interest for wider application, princi-
pally in the critical care setting. Various authors have reflected over the relevance, 
potential benefits, and challenges of beta-lactam TDM, specifically in the critically 
ill [3, 62–64]. Important distinctions between individual drugs within the class that 
might influence TDM-directed dosing include a significant post-antimicrobial effect 
for meropenem, significant protein binding with ceftriaxone and flucloxacillin, and 
long half-life for ceftriaxone.

Beta-lactams demonstrate a time above MIC dependent effect relationship, pri-
marily evidenced through preclinical PK/PD models [8]. Several reports for clini-
cally derived PK/PD indices in recent literature contrast with preclinical work and 
suggest a longer time above MIC may be necessary [65–69]. Most reports simulate 
plasma concentrations based on creatinine clearance, typically using population 
parameters from a model involving a similar population; in one report a microbio-
logical assay was used to determine concentrations [69]. Ariano et al. report an 80% 
response rate for 60 individuals with fT > MIC: >75% for meropenem in bactere-
mia, excluding concurrent infections and renal impairment [65]. McKinnon et al. 
report an 82% clinical cure rate for individuals with T > MIC = 100% for ceftazi-
dime or cefepime in 76 patients with sepsis [68]. Individual patient data for patients 
with AUIC < 500 are presented, thus it is possible to determine clinical cure at other 

Table 9.2 (continued)

Anti-infective Efficacy Toxicity

Fluoroquinolones
Ciprofloxacin
  Gram-negative organisms AUC/MIC > 125–250h

Cmax/MIC 8–10
  Gram-positive organisms AUC/MIC > 30–40 h
Levofloxacin Cmax/MIC ≥ 12
Others
Linezolid AUC/MIC 80–120 Cmin < 6mg/L

T > MIC > 85%
Cmin > 2 mg/L

Colistin Cmin < 2.4 mg/L
Daptomycin AUC/MIC 666 h Cmin < 25 mg/L

Cmax > 100 mg/L
Cmax/MIC 59–94

Tigecycline AUC/MIC 12.8–17.9 h
Azole antifungals (treatment)
Itraconazole Cmin > 1.0 mg/L
Posaconazole Cmin > 1.0 mg/L
Voriconazole Cmin > 2 mg/L Cmin < 6 mg/L

AUC is over 24 h
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breakpoints: T > MIC: >75% results in 81%, and T > MIC: >60% results in 79.4% 
[68]. Crandon et al. arrive at a breakpoint of fT > MIC: >60% for cefepime using 
CART analysis and report a microbiological success rate of 63.8%, in 56 patients 
with an active P. aeruginosa infection (varied sites) [66]. The Etest method was 
used to determine MICs. Two reports are used to promote fT > MIC × 5 as a PK/PD 
index. Li et al. found fCmin/MIC > 5 as the only significant predictor of clinical suc-
cess in 101 adults with lower respiratory infections, the authors noting that fT > MIC 
100% was achieved in most patients [67]. Tam et al. report MIC × 4.3 as an indica-
tor for clinical success for cefepime-treated individuals with diverse gram-negative 
infections; 1/23 individuals manifested clinical failure [69]. DALI (Defining 
Antibiotic Levels in ICU patients), an international point prevalence study, explored 
outcomes at the cutoffs fT > MIC 50% and 100%, and fT > MIC × 4 50% and 100% 
[70]. Free beta-lactam concentrations in plasma were measured in a central labora-
tory, and related to clinical outcomes. Two hundred forty-eight patients were treated 
for infection, representing eight beta-lactams. MIC results were available for 34.2%, 
EUCAST MIC90 was used for 38.7%, and the highest possible MIC for the given 
beta-lactam was assumed for 27.1% of participants; the authors highlight that many 
centers lacked services to determine MIC. While prudent, this strategy may have 
influenced risk estimates related to outcomes. Positive clinical outcome was 
observed in individuals achieving 50% fT > MIC (OR = 1.02) and 100% fT > MIC 
(OR = 1.56), p  < 0.03  in the multivariable model including indices for sickness 
severity. These data empirically suggest that 100% fT > MIC is superior to 50%; 
however, the optimal index may vary between agents.

These data indicate that microbial sensitivity plays an important role in achieve-
ment of PK/PD indices. Further work is required to determine an optimal parameter 
that is both clinically useful and practical to apply. An emerging body of work dem-
onstrates that PK/PD indices are difficult to achieve in the critically ill, especially in 
the early phases of sepsis [71] and with augmented renal clearance [72–76]. Non- 
critically ill obese patients likewise present augmented renal clearance that impact 
target attainment of beta-lactams [77]. However, different target indices are used 
across reports, and some authors report a lack of relationship between augmented 
renal clearance and clinical success [73]. Tools based on creatinine clearance devel-
oped in critically ill populations, such as nomograms [78] or the augmented renal 
clearance score [79], together with optimized administration strategies (loading 
dose, extended/continuous infusions) may be sufficient for the purposes of dose 
adaptation, but further validation and wider application is warranted.

A large investigative effort has compared clinical outcomes between continuous/
extended infusions and intermittent bolus dosing. Multiple meta-analyses have 
attempted to synthesize data from observational work and clinical trials [80–87]. 
Randomized controlled trials in this setting have been critiqued for including 
patients with lower disease severity, use of inconsistent total antibiotic doses 
between comparator groups, and heterogeneity between studies, including differ-
ences in pathogens and their MICs, duration of follow-up, and definitions of out-
comes [83, 84, 88, 89]. A recent meta-analysis employed strict inclusion criteria, 
limiting inclusion to clinical trials recruiting patients with severe sepsis or septic 
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shock [83]. Mortality at 30 days was 19.6% versus 26.3% (RR 0.74 (0.56–1.00)) 
and clinical cure 55.4% versus 46.3% (RR 1.20 (1.03–1.40)), for continuous infu-
sion and intermittent bolus dosing, respectively. The authors further highlight that 
benefits of continuous infusions are especially pronounced in individuals treated for 
severe sepsis caused by non-fermenting gram-negative bacilli, and diminished in 
patients requiring renal replacement therapy where bolus dosing begins to approxi-
mate the kinetics of continuous infusions.

9.5.2  Fluoroquinolones

Fluoroquinolones have dose-dependent antimicrobial activity for the treatment of 
bacterial infections caused by gram-negative, gram-positive pathogens and myco-
bacteria. The best PK/PD index predicting efficacy is the AUC/MIC ratio, followed 
by the Cmax/MIC ratio [90, 91], and quantitatively depends on the infective patho-
gen. While for gram-positive microorganisms, such as Streptococcus pneumoniae, 
AUC/MIC has been defined to be ≥30–35, for gram-negatives it should be greater 
than 100 [92, 93]. A Cmax/MIC of 8–10 results in maximum antibacterial efficacy in 
in vivo animal models [92, 93].

Several studies have correlated an AUC/MIC of 30–60 for different fluoroquino-
lones (levofloxacin, ciprofloxacin, gatifloxacin, moxifloxacin, etc.) to in vitro antimi-
crobial activity [92–94] and improved clinical outcomes, such as bacterial eradication 
[95]. For levofloxacin, population pharmacokinetic studies have demonstrated that 
standard dosing of 500 mg/day results in inadequate achievement of target PK/PD 
indices, especially for certain  patients and  Gram-negative infections  [96, 97]. 
Moxifloxacin exhibits a better PK profile, with AUC/MIC > 35 achieved in 100% of 
patients, where strains exhibited MICs of 1 mg/L [98]. Treatment failures with fluo-
roquinolones administered at standard doses (ciprofloxacin and levofloxacin) in 
patients with respiratory tract infections due to fluoroquinolone-resistant S. pneu-
moniae have been reported, especially in patients previously treated with these anti-
microbials [99]. An increased dose of levofloxacin to 750 mg/day or 500 mg/12 h has 
been suggested. A multicenter, randomized, double-blind study demonstrated no dif-
ferences in clinical success and microbiologic eradication when comparing levoflox-
acin dosages of 750 mg/day for 5 days with the dose of 500 mg/day for 10 days for 
the treatment of mild to severe community-acquired pneumonia [100]. This high-
dose short course regimen maximizes its concentration-dependent bactericidal activ-
ity and may reduce resistance. A dose of 500 mg twice-daily of levofloxacin has been 
proposed for the treatment of early-onset ventilator-associated pneumonia in inten-
sive care patients [101, 102]. TDM for fluoroquinolones with increased dosing might 
be a complementary tool to avoid toxicity.

The declining susceptibilities to fluoroquinolones of Gram-negative isolates 
pose an important challenge [103]. Some authors have attempted to define a PK/
PD-based threshold to minimize the development of resistance. Homma et al. evalu-
ated different clinical isolates of S. pneumoniae in vitro with various MIC and MPC 
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(Mutant Prevention Concentration) values for levofloxacin and moxifloxacin, and 
propose a target AUC/MPC ≥ 13.41 or Cmax/MPC above 1.20 for complete eradica-
tion without decreased susceptibility [104].

While the PK/PD behavior of the fluoroquinolones has been widely described, 
few authors have evaluated the necessity or clinical benefit of TDM. Scaglione et al. 
report their local experience of a TDM program for ciprofloxacin, using Cmax/MIC 
of 10 as a target, but do not report clinical outcomes [105]. Pea et al. evaluated cip-
rofloxacin TDM in 89 critically ill patients and report wide and unpredictable inter-
individual pharmacokinetic variability. They conclude that fixed dosing of 200 or 
400 mg/12 h is only useful for fully susceptible microorganisms (MIC < 0.3 mg/L), 
further supporting use of higher doses and potential usefulness of TDM [106]. Other 
centers only monitor fluoroquinolones in certain patients such as obese patients or 
with significant burn injuries [107]. Restricting TDM to special populations may be 
a rational approach [108, 109].

TDM of fluoroquinolones has been more widely applied for the treatment of 
tuberculosis (TB) due to the observed high pharmacokinetic drug variability [110–
112] and the high frequency of patients with low serum concentrations [113]. 
Fluoroquinolones are used for the treatment of TB, including the multidrug- resistant 
(MDR) TB, levofloxacin and moxifloxacin being preferred due to potency and rela-
tive safety. Manika et  al. report wide variability of moxifloxacin concentrations 
amongst patients with multidrug-resistant TB receiving the same regimen (400 mg 
per day), concluding that this standard dose may not be sufficient for all patients 
[112]. A limited-sampling strategy has been proposed [114]; however, the pharma-
codynamic target for  Mycobacterium tuberculosis has not been defined. In addi-
tion, the presence of low serum concentrations of anti-MDR-TB drugs might not 
affect the 2-month sputum conversion rate [113].

9.5.3  Linezolid

Linezolid is a member of the oxazolidinones with bacteriostatic activity against 
enterococci and staphylococci, and is bactericidal for most streptococci strains. 
Recommended dosing is 600 mg twice-daily in a fixed dose formulation, irrespective 
of renal or hepatic function, and pharmacokinetic parameters are claimed to be insig-
nificantly altered by age, gender, or renal/hepatic insufficiency. Recent reports, how-
ever, evidence wide inter- and intraindividual variability [115, 116], especially 
amongst the critically ill or those with renal impairment [117–120]. Pea at al. suggest 
that TDM of linezolid may be worthwhile in 30% of individuals to avoid treatment 
failure or dose-dependent toxicity [121]. Patients with renal impairment, the elderly, 
or those with low body weight risk overexposure and toxicity, while acute illness may 
exacerbate linezolid-related hematological toxicity [119, 122–124]. On the other 
hand, critically ill patients are at risk of subtherapeutic levels, especially those with 
augmented clearance and greater volume of distribution, thus TDM might optimize 
dosing and prevent clinical failure [120]. Data concerning the pharmacokinetics of 
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linezolid in patients with excessive body weight are limited and controversial [125, 
126] and TDM may cover inconsistencies. Standard dose of linezolid results in sub-
optimal concentrations in more than 40% of pediatric patients [127]. Further, higher 
doses were required for pathogens with borderline susceptibility (MIC > 1 mg/L).

The main reason to perform TDM of linezolid is to avoid or prevent hematologi-
cal toxicity. High linezolid trough concentrations are associated with thrombocyto-
penia in patients with Gram-positive bacterial infections [128]. The trough 
concentration limit to prevent toxicity remains to be defined. Different thresholds 
have been proposed including 6.5 mg/L [124], 7–10 mg/L [117, 123, 129, 130], and 
22.1 mg/L [131]. It is surprising that this relationship between exposure and toxicity 
was not confirmed in patients receiving linezolid for the treatment of drug-resistant 
tuberculosis, in whom the AUC of linezolid did not associate with any drug-related 
adverse event [132].

Administration by continuous infusion has been proposed to optimize achieve-
ment of the PK/PD index for clinical efficacy; however, data are lacking [133]. 
Optimal linezolid plasma concentrations to achieve the highest clinical efficacy are 
unknown. Some authors have identified a trough concentration of ≥2 mg/L as a 
predictor of bacterial eradication [134] and a therapeutic range 2–7 mg/L has been 
proposed [124]. Furthermore, target concentrations should consider MIC to achieve 
an optimal PK/PD ratio: an AUC/MIC ratio between 80 and 120 is frequently cited. 
AUC calculations based on a minimal sampling strategy can be used to individual-
ize dosing [128, 135].

9.5.4  Colistin

Colistin, or polymyxin E, is a cationic polypeptide antibiotic active against gram- 
negative bacteria, including multidrug-resistant strains. Its use has reemerged 
worldwide as rescue therapy for infections caused by  multidrug-resistant bacilli, 
such as Pseudomonas aeruginosa, Acinetobacter baumannii, and Enterobacteriaceae 
species. It is administered parenterally as a prodrug, colistin methanesulfonate 
sodium (CMS), which is converted in vivo to the active compound, colistin. It exhib-
its concentration-dependent antibacterial activity. This polymyxin was developed in 
Japan in the 1940s–1950s but its clinical and parenteral use were abandoned in most 
countries due to reports of serious adverse events, such as nephrotoxicity and neu-
rotoxicity [136]. Initial dosing regimens of CMS relied on PK/PD data from older 
work that lacked appropriate methods and provided unreliable findings [137]. In 
addition, most PK/PD studies were performed in patients with cystic fibrosis which 
exhibit unique PK characteristics as a population. In recent years, specific chro-
matographic methods for the accurate analysis of CMS and colistin have been estab-
lished [138]. This has led to novel PK/PD work in animals and humans, providing 
updated data to optimize colistin dosing and improve its clinical efficacy, while 
limiting toxicities and emergence of resistance [139, 140]. This is of extreme impor-
tance in difficult-to-treat multi-resistant pathogens with no therapeutic alternatives.
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A steady-state colistin trough concentration of 2–2.5 mg/L has been proposed, 
corresponding to a target AUC 0–24 of 60 mg h/L [138, 139]. This AUC/MIC value 
is based on the results of a preclinical work testing three strains each of A. bauman-
nii and P. aeruginosa in murine thigh and lung infection models that demonstrated 
that an AUC 0–24/MIC of 60 h associated with an effect between stasis and 1-log 
kill. This target concentration of 2.5 mg/L is optimal for an MIC of 1 mg/L, and 
requires adjustment for other MIC values.

To date, this target concentration has not correlated with positive clinical out-
comes. A randomized clinical trial assessing TDM of colistin (using Cmax/CMI) 
failed to demonstrate a benefit in terms of clinical cure or 30-day mortality in 
patients with different types of multidrug-resistant gram-negative bacterial infec-
tions [141]. Yamada et al. describe a case with bacteremia due to multidrug-resistant 
Pseudomonas aeruginosa who was successfully treated with colistin in conjunction 
with TDM [142–144].

One important conclusion of recent PK work is the need to administer an initial 
loading dose and a higher CMS maintenance dose to rapidly attain therapeutic con-
centrations as the manufacturer  dosage  recommendations are  insufficient, espe-
cially in critically ill patients [139, 145, 146]. Updated dosing recommendations for 
intravenous colistin based on renal function vary between the US Food and Drug 
Administration (FDA) and the European Medicines Agency (EMA) [147]. Currently, 
newer dosage regimens are being widely implemented, although TDM is not rou-
tinely performed in the majority of centers; this could have implications for toxicity 
observed with clinical use [137]. A prospective observational cohort study demon-
strated that the trough plasma level of colistin is an independent risk factor for 
nephrotoxicity, and that acute kidney injury is best predicted at 2.42 mg/L [148]. 
This value has been validated in a prospective cohort of individuals treated for 
multidrug- resistant gram-negative infections [149]. It is clear that the therapeutic 
window for colistin is narrow, with concentrations required for efficacy being quite 
close to those in which toxicities are observed [150].

9.5.5  Daptomycin

Daptomycin is a lipoglycopeptide with a concentration-dependent antimicrobial 
activity best described by AUC/MIC [151, 152]. The mean AUC/MIC value associ-
ated with a static, 1-log killing, and 2-log killing effect against S. aureus has been 
defined as 438, 666, and 1061, respectively [153]. In addition, an AUC/MIC ratio of 
<666 was associated with increased mortality in patients with gram-positive severe 
infections [154]. Other authors have identified that an AUC/MIC > 200 is required 
to prevent S. aureus resistance [155].

The approved dose of daptomycin for soft-tissue infections is 4 mg/kg daily and 
for bacteremia 6 mg/kg daily. For infections with a high inoculum, such as endocar-
ditis, microbiological data suggest that doses higher than 6 mg/kg/daily are required, 
especially against strains with reduced daptomycin susceptibility [156]. In an 
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in vitro PD model, a dose of 10 mg/kg was required to prevent resistance [152]; 
however, further clinical data are warranted [151].

Vast variability in the pharmacokinetics of daptomycin has been observed with 
clinical use, including high-dose regimens [154, 157]. Much of the variability could 
not be accounted for by clinical factors (creatinine clearance, albumin, or dose inter-
val), suggesting the need for TDM, which may be especially useful in critical ill-
ness, severe sepsis, dynamically changing renal function, and acute kidney injury 
[153, 154, 158, 159]. Excessive exposure is related to musculoskeletal toxicity [154, 
157, 158]. Bhavnani et al. report a Cmin breakpoint of 24.3 mg/L associated with an 
elevation of creatine kinase in patients treated with standard dosing (6 mg/kg/day) 
[160]. The clinical application of TDM for daptomycin remains limited, and the 
literature is represented by only a few reports [5, 157, 161, 162].

9.6  Conclusions and Future Directions

Interest in TDM for optimizing therapy is becoming rekindled, particularly for spe-
cial populations. Antimicrobial use in the intensive care setting has received special 
attention and there is a growing body of literature to support that pathophysiological 
changes in critically ill patients influence circulating concentrations. Data concern-
ing optimal PK/PD targets for emerging TDM candidates, and the clinical impact of 
concentration guided dose adaptation, remains limited. Clinical trials exploring the 
impact of monitoring on clinical outcomes are only useful when breakpoints are 
well established; well-conducted prospective observational studies based on mea-
sured concentrations can help to determine optimal indices. Further, wider imple-
mentation and investigation is contingent on laboratories for measurement. Sensitive 
and specific immunoassays for emerging candidates would aid wider implementa-
tion but also research efforts in the clinical setting. Aptamer-based technology may 
help to overcome the challenges of antibody-based immunoassays [163], and has 
been used together with a microfluidic electrochemical detector for real-time track-
ing of circulating drug concentrations [164]. Therapeutic drug monitoring comple-
ments innovations in other areas including microbial diagnostics and response-related 
biomarkers and is an important tool in achieving personalized medicine [165, 166].
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