Effect of Newtonian Heating/Cooling
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in Alternate Conducting Vertical
Concentric Annuli
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Abstract This paper presents the effects of the Newtonian heating/cooling and the
radial magnetic field on steady hydromagnetic free convective flow of a viscous and
electrically conducting fluid between vertical concentric cylinders by neglecting
compressibility effect. The derived governing equations of the model are first recast
into the non-dimensional simultaneous ordinary differential equations using the
suitable non-dimensional variables and parameters. By obtaining the exact solution
of the simultaneous ordinary differential equations, the effects of the Hartmann
number as well as the Biot number on the velocity, induced magnetic field, induced
current density, Nusselt number, skin-friction and mass flux of the fluid are pre-
sented by the graphs and tables. The effect of the Biot number is to increase the
velocity, induced magnetic field and induced current density in the case of the
Newtonian heating and vice versa in the case of the Newtonian cooling, but
the effect of Hartmann number is to decrease all above fields. Further, graphical
representation shows that the velocity and induced magnetic field are rapidly
decreasing, with increasing the Hartmann number, when one of the cylinders is
conducting compared with when both the cylinders are non-conducting.

1 Introduction

The study of magnetohydrodynamic flow of an electrically conducting fluid with
magnetic field has wide range of its applications in the technology, industries,
geothermal power generation and metal-working processes. Such type of MHD
flows have its attracted applications in design of magnetohydrodynamic power
generators, plasma studies, nuclear reactor, the thermal recovery of oil, solar power
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collector and geological formulation etc. Globe (1959) has obtained the analytical
solution of an electrically conducting and fluid flowing between two infinite long
concentric annular cylinders under the presence of a radial magnetic field.
Ramamoorthy (1961) has analysed both classical and magnetohydrodynamic
velocity between concentric annulus of rotating cylinders in the presence of a radial
magnetic field. In the above references, authors have neglected the induced mag-
netic field in the problem. Keeping it mind, Arora and Gupta (1971) have extended
the same problem with considering the impact of induced magnetic field. The
natural convection in the vertical annular cylinders with one boundary isothermal
and opposite adiabatic boundary has analysed by El-Shaarawi and Sarhan (1981).
Further, Joshi (1987) has considered the isothermal boundaries in which the tem-
perature of inner boundary is higher than the outer boundary.

Singh et al. (1997) have studied the free convective flow in vertical concentric
annuli with more general thermal boundary conditions and radial magnetic field.
Seong and Choung (2001) have analysed the electrically conducting fluid flow past
a circular cylinder under continuous and pulsed electromagnetic forces. Fadzilah
et al. (2011) have emphasised the importance of induced magnetic field and heat
transfer on the steady, viscous and electrically conducting magnetohydrodynamic
boundary-layer flow over a stretching sheet. Singh and Singh (2012) have inves-
tigated the influence of induced magnetic field on free convective flow between
non-conducting vertical concentric annulus cylinders. Further, Kumar and Singh
(2013) have extended the same problem by considering the concentric cylinders
heated/cooled asymmetrically.

In many practical situations, such as if you turn off the breaker when you go on
vacation, then it can tell us how fast a water heater cools down and the hot water in
pipes cools off. In this case, the heat transfer from the surface of object is similar to
the local surface temperature, and we use the term Newtonian heating/cooling for
this condition. This type of flow is known as conjugate convective flow. In a
pioneered work, the influence of the Newtonian heating on free convective
boundary-layer flow over a vertical flat plate, which immersed in a viscous fluid,
was studied by Merkin (1994). An analytical solution of natural convective flow
past an oscillating vertical plate with the effects of heat and mass transfer, and the
Newtonian heating has been obtained by Hussanan et al. (2013). Very recently,
Kumar and Singh (2015) have investigated the impact of induced magnetic field on
hydromagnetic natural convective flow with the Newtonian heating/cooling in
vertical concentric annuli by obtaining the exact solution of the problem. Also,
Kumar and Singh (2016) have performed the exact study of effects of heat
source/sink and induced magnetic field on free convective flow between vertical
concentric cylinders.

Motivated with excellent science of the authors, we intend here to investigate the
effect of the Newtonian heating/cooling on hydromagnetic natural convection
between alternate conducting vertical concentric annulus cylinders with radial
magnetic field. We have analysed the model by taking three cases on the boundary
conditions of the induced magnetic field. In case (A), both cylinders are considering
as non-conducting, in case (B) the outer cylinder is conducting and inner is
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non-conducting and finally in case (C) the inner is taking as conducting and outer is
non-conducting. Here, we find the analytical solution for the temperature field and
then fluid velocity and induced magnetic field by solving the non-dimensional
governing linear simultaneous ordinary differential equations using the
non-dimensional boundary condition. Also, we find the analytical solution for the
governing differential equations at singular point Ha = 2.0. Finally, we focus on
the effects of the Biot number (Newtonian heating/cooling parameter) and the
Hartmann number on the velocity, induced magnetic, induced current density,
Nusselt number, skin-friction and mass flux using graphics and tables.

2 Mathematical Formulation

We have taken here the steady and laminar flow of a viscous, incompressible and
electrically conducting fluid in the fully developed region bounded by vertical
concentric annuli of infinite length with radial magnetic field as shown in Fig. 1.
Also, we have considered the temperature of fluid and both cylinders different to
each other. The temperatures of fluid and outer cylinder have taken as TJQ and T},
respectively. Let z’- and r/-axes denote the axis of the co-axial cylinders taken in the
vertical upward direction and the radial direction taken outward from the axis of
the cylinder. Let a and b be the radius of inner and outer cylinders, respectively.
The applied uniform magnetic field of strength {aBj,/r’} is taken as in the direction
perpendicular to the direction of flow, and the Newtonian heating/cooling condition

Fig. 1 Physical configuration 7 — axis v(r)
»

> aB'O/r'
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is applied at the inner cylinder of the annulus. Since 7'-axis is the direction of fluid
flow so the radial and tangential components of velocity are taken as zero. Due to
axial symmetry and infinite length of cylinders, the transport phenomena will
depend only on the variable r'. So, for the considered model the components of the
velocity and applied uniform magnetic fields are taken as {0,0,v/(+')} and
{aBy /7', 0,1}, respectively.

Thus, the mathematical model equations for the present physical configuration
with the usual Boussinesq approximation are as follows (Singh and Singh 2012):

&' 1dv Bladh
Ly teBaad By gy, 0
. .

a2 Fdr opv ¥ dr

d’n’  1dW  Bjald/

—+=—+ La,l, =0, (2)

dr’ r dr n rdr
&7 147
—5+57=0 3)
dr v dr

In view of the considered model, the boundary conditions corresponding to the
velocity, induced magnetic field and temperature field are obtained as:

dn’ ar’
VvV =0, on or =0, F:aT', at ¥ =a, (4)
dn’
Vv =0, FZO or =0, T'=T,, atr =b. (5)
¥

In above equations, p, u,, v, g, #, o and f§ are density of the fluid, magnetic
permeability, kinematic viscosity, acceleration due to gravity, magnetic diffusivity,
conductivity of the fluid and coefficient of thermal expansion, respectively.

To make above system of equations in non-dimensional form, we use some
dimensionless quantities given as:

/ / h/ T’ _T/
u:l’ r:’;7 ,1:7’ h = ; , U:gﬁazi(h f)7
U a a ou HyUa v
T (6)
T=——-.
(T, = T§)

Using Eq. (6), Egs. (1)—(3) in the dimensionless form are obtained as follows:

d*u 1du Hda*dh
— 4t ——+—— 4+ (T—=R)=0 7
dr? rdr+ r dr+( ) ’ (7)
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d&*h  1dh  1du

— +—— 4+ -—=0 8

dar®*  rdr  rdr (8)
&7 14T

iy} 9

dr? +rdr ©)

The boundary conditions in non-dimensional form are obtained as:

dh dTr

MZO, 520 or h=0, E:BZT atr:l, (10)
dh

u=_0, d—:O or h=0, T=(1+R) at r= 4. (11)
r

Some other dimensionless physical parameters Bi, Ha and R occurring in the
above equations are the Biot number, Hartmann number and buoyancy force dis-
tribution parameter, respectively, and they are defined as:

!
Bi=aoa, Ha= ,uEH’Oa\/E, R= # (12)
U (T, — Tf)

Here, the Biot number (Bi) and Hartmann number (Ha) have importance role on
the flow of fluid between both the cylinders at R = 1.0, i.e. 2T; = T},

3 Analytical Solution

3.1 Solution for Hartmann Number (Ha) # 2.0

The exact solution of Egs. (7)—(9) using boundary conditions (10)—(11) is obtained
as follows:

r?(1+R)

m(Bkllogr+Bk2)+Bk3r2R, (13)

u =A™+ Apr M 4+ A +

1 (1+R)
h=Ap — — (A 1™ — A rHe — IBi (1 —21 — 2B
x4 Ha( kit o1s )+4(Bilog/1+1){ 1 ogr) o}
Bk3r2R
_ DR 14
R (14)
Bil 1

T — (14 g Bilogr+l) (15)

(BilogA+1)
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Here, k = 1 is for the case when both cylinders are non-conducting; k = 2, when
outer cylindrical wall is non-conducting and inner cylindrical wall is conducting
and finally £ = 3, when inner cylindrical wall is non-conducting and outer cylin-
drical wall is conducting.

The skin-friction at outer surface of inner cylinder as well as inner surface of
outer cylinder, Nusselt number at inner cylinder, induced current density and mass
flux of fluid are obtained as:

du (I+R)
=|— = Ha(Ay — A — (B 2B 2BisR 16
Ty (dr>rl a(Ay — Ar) + Bi logi+1)( « +2Bi2) +2B3R,  (16)
du Ha—1 1—Ha—1
T) = 5 .: Ha(Akl/l 7Ak2/h )
(4R (17)
— 12} (By1logl+B By / 2B;3 R
+(Bi10g/l+1){ (Bri log A+ Bia) + By A} +2Bi3 AR,
dr Bi(1+R)
Nuy=—(°-) =827 18
" (dr)ri A(Bilogi+1)’ (18)
dh B L r(l+R)
Jo= —— = A pHe o p a1 "V TV (B B BirR
0 ar k17 + Agar + (Bi log)v—&—l)( 1 logr+ Biy) + BisrR,
(19)
A omas2 A ~Ha+2 _ A o
it D+ Chara D+ -1

0=2n

(1+R) )»4 . By By 4
BTN I g 4By — Byy) + L L PR R ).
Bilogs+1) |16 APulog/+4Be = Bu)+ 0+ 2R —1)

(20)

3.2 Solution for Hartmann number (Ha) = 2.0

Here, we have solved the governing differential equation for singular point Ha =

2.0 because the mathematical expressions By = —{ﬁ}, B, =

{@%—m} and By = m present in the above Eqs. (13) and (14)

clearly show that they have the singularity at Ha = 2.0. The velocity and induced
magnetic field expressions are given by:

(1+R)

Rr?logr
(Bi log A+ 1)

4 )
(21)

U= Cyr*+Cur 2+ Ciz + {r*log r(Dy1 logr +Di2)} +
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1 R
h= Ck4 — E(Ck1r2 — Ckzriz) + er(l — ZIOgI‘)

1+R
_ m{(DB logr+Dk4)r2 logr+Dk5r2}.

(22)

In this case, the skin-friction at surface of cylinders, induced current density and
mass flux of fluid are obtained as follows:

U+R) Dk2+§, (23)

—2(Cpy — Cp) 4 —— )
o =2(Cu k2)+(Bilogi+l) 1

. o R
1, = 2(Cpyh — Coad ) + Diad} + 7/ (2logi+1)

(1+R)
(Bi logi+1)

(24)
{24 log 2 (Dy1 log A+ Dy1 + Dya2),

(1+R)

Jo=C Cor >+
0 k7 + Car +(Bi10gA+1)

R
{rlogr(Dylogr+ D)} + Zrlog r, (25)

Q:Zn[%(/l‘l—1)+Ck210g)»+%(/12—1)-1—654{42410gi—(i4—1)}
(1+R) Dy (04 2 4 )4
T M gt log A) — 424 log A —1
(BilogA+1) | 32 {847 (log2) #log 2+ (2 )
+Dllg{4/14log/l(i4l)}}]

(26)

The constants Ay, Ak, Agss Axas Bits Bias Biss Crts Cias Cis Cxa 5Dy, Dy, Dy,
Dy4 and Dys appearing in the above equations (for k = 1, 2 and 3) are defined in
Appendix.

4 Results and Discussion

The main aim of the discussion is to bring out the impact of physical numbers such
as Biot number and Hartmann number on the velocity field profiles, induced
magnetic field profiles, induced current density field profiles, Nusselt number, sink
friction and mass flux. The influence of these parameters (such as Biot number and
Hartmann number) on the transport processes is illustrated by using the figures and
tables. Here, we consider the case (A) when both cylindrical walls are
non-conducting, case (B) when the outer cylindrical wall is conducting and inner is
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Fig. 2 Velocity profile in case one (A) for Bi = 0.1 and 2.0 at R = 1.0 and 1 = 2.0
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Fig. 3 Velocity profile in case one (A) for Bi = —0.3 and —0.9 at R = 1.0 and 4 = 2.0

non-conducting and case (C) when the inner cylindrical wall is conducting and
outer is non-conducting. As expected, it is found by numerical computations that
the case (B) and case (C) have given almost same results. Therefore, we have
discussed only two cases when both cylinders are non-conducting and when one is
conducting and another is non-conducting. Figures 2, 3, 4 and 5 show the velocity
profiles when both cylinders are non-conducting and when one cylinder is con-
ducting and other is non-conducting, respectively. It is clear from these figures that
the velocity profiles decrease with increasing values of the Hartmann number.
The influence of Biot number is to increase the velocity profiles for the
Newtonian heating and decrease the velocity profiles for the Newtonian cooling.
The region behind it is that as the Biot number increases the convective resistance
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Fig. 4 Velocity profile in case two (B) for Bi = 0.1 and 2.0 at R = 1.0 and 4 = 2.0
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Fig. 5 Velocity profile in case two (B) for Bi = —0.3 and —0.9 at R = 1.0 and 4 = 2.0

of wall reduces in the Newtonian heating while it increases in the Newtonian
cooling. A comparative study of Figs. 2 and 3 with Figs. 4 and 5 shows that the
velocity of the fluid is less when one of the cylindrical surface is conducting in
comparison to non-conducting cylindrical surfaces in case of Newtonian heating
while it is just reverse in the case of Newtonian cooling. The shape of velocity
profile is of parabolic type in upward direction.

Further, from Figs. 6, 7, 8 and 9, we have observed the influence of the
Hartmann number, the Newtonian heating/cooling parameter on the induced
magnetic field. When both the cylinders are non-conducting and when inner is
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Fig. 6 Induced magnetic field profile in case one (A) for Bi = 0.1 and 2.0 at R = 1.0 and 4 = 2.0
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Fig. 7 Induced magnetic field profile in case one (A) for Bi = —0.3 & —0.9atR = 1.0and 4 = 2.0

conducting and outer is non-conducting, the induced magnetic field increases as the
values of Biot number increases in case of the Newtonian heating while decreases
in the Newtonian cooling. The influence of the Hartmann number implies that the
induced magnetic field decrease in the both cases, i.e. when both cylinders are
non-conducting and when inner is conducting and outer is non-conducting since the
Lorentz force acts opposite to the direction of induced magnetic field. From a
comparative study of Figs. 6 with 8 and 7 with 9, we have observed that the
magnitude of induced magnetic field is less than the case when both cylindrical
walls are non-conducting compared to the case when one of the cylinders is
conducting.
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Fig. 8 Induced magnetic field profile in case two (B) for Bi = 0.1 & 2.0 at R = 1.0 and A = 2.0
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Fig. 9 Induced magnetic field profile in case two (B) for Bi = —0.3 & 0.9 atR = 1.0 and 4 = 2.0

The behaviour of the induced current density is shown in Figs. 10, 11, 12 and 13
for various values of the Hartmann number and the Biot number. We find that for
both cases, the induced current density profiles increase with increasing values of
the Biot number (Bi) in case of the Newtonian heating; while in case of the
Newtonian cooling, it reduces with improving the Biot number. From the given
figures, it can be observed that the induced current density decreases in both cases
when the value of the Hartmann number increases. Figures 10 and 11 show that the
maximum induced current density is induced in the middle region while minimum
current density near the both cylindrical walls. The modulus of current density at
the surface of the inner cylindrical wall is greater than the outer wall. Also, Figs. 12
and 13 show that the maximum current density is induced in the middle region, and
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Fig. 10 Induced current density profile in case one (A) for Bi = 0.1 and 2.0 at R = 1.0 and
A=20
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Fig. 11 Induced current density profile in case one (A) for Bi = —0.3 & —0.9 at R = 1.0 and
A=20

then it has shifting tendency in direction of inner cylinder with increasing values of
the heating/cooling parameter for the Newtonian heating while it has reverse effect
in case of the Newtonian cooling. Comparing the induced current density profiles in
Figs. 10 with 12 and 11 with 13, we observed that when one of the cylinders is
conducting, the maximum value of induced current density is greater in comparison
with if both cylindrical walls are non-conducting.

From Table 1, we can see the influence of the Hartmann number and the Biot
number on the skin-friction, mass flux and Nusselt number at the surface of
cylinders. It is observed that the skin-friction at outer surface of inlying cylindrical
wall increases when both of the cylinders are non-conducting and vice versa when
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Fig. 12 Induced current density profile in case two (B) for Bi = 0.1 & 2.0 at R = 1.0 and 4 = 2.0
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Fig. 13 Induced current density profile in case two (B) for Bi = —0.3 & —0.9 at R = 1.0 and
A=20

one of the cylindrical wall is conducting. It is also clear that with improving of the
Hartmann number, the skin-friction at interface of exterior cylinder decreases in
both cases when both cylindrical surfaces are non-conducting and one of them is
conducting.

The numerical values of the skin-friction at inner cylindrical wall increase by
increasing the value of the Biot number for the Newtonian heating and conversely
for the Newtonian cooling. Moreover, the skin-friction at outer cylinder surface
decreases by increasing the value of the Biot number for the Newtonian heating and
reverse for the Newtonian cooling. We observe that the impact of increasing the
Hartmann number is to reduce the mass flux in the cases when both cylinders are
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Table 1 Numerical values of dimensionless skin-frictions, mass flux and Nusselt number

Bi Ha |7, T; ] Nu;
Case-1 |Case-2 & 3 | Case-1 Case-2 and 3 | Case-1 | Case-2 & 3

-0.7 | 1.0 | 1.2229 |[1.1726 —0.6870 | —0.6618 1.3920 | 1.3392 1.4000
2.0 | 1.2248 |1.0476 -0.6861 | —0.5975 1.3602 | 1.1789 1.3597
3.0 | 1.2276 |0.8955 —0.6847 | —0.5187 1.3116 |0.9838 2.0204

-0.3 | 1.0 |0.7615 [0.7274 —0.5220 | —0.5050 0.9543 |0.9186 0.6000
2.0 [0.7647 | 0.6448 —0.5204 | —0.4605 0.9327 |0.8100 0.3787
3.0 |10.7696 |0.5449 -0.5179 | —0.4055 0.8996 |0.6776 0.2983

1.0 1.0 [0.3055 |0.2875 —0.3589 | —0.3499 0.5219 |0.5030 —2.0000
2.0 |10.3101 |0.2468 —0.3566 | —0.3250 0.5102 |0.4455 —0.5906
3.0 10.3171 [0.1984 —0.3531 | —0.2937 0.4924 |0.3751 -0.3176

2.0 1.0 | 0.1890 |0.1752 —0.3173 | —0.3104 0.4114 |0.3969 —4.0000
2.0 10.1940 [0.1452 —0.3148 | —0.2904 0.4023 |0.3524 —0.8381
3.0 10.2016 [0.1099 —0.3110 | —0.2652 0.3884 |0.2979 -0.4170

non-conducting and one of them is conducting. It is observed that the values of
mass flux increase with improving the Biot number in the Newtonian heating and
vice versa in the Newtonian cooling. Further, it is clear from the numerical cal-
culation that the value of Nusselt number at inner and outer cylinders increases with
increasing Biot number in case of Newtonian heating, and it is reverse in case of
Newtonian cooling. Also, it is observed that the Nusselt number at cylindrical walls
decreases with increasing ratio of outer radius to inner radius.

5 Conclusion

By obtaining analytical solution of the model, the effects of Newtonian
heating/cooling and induced magnetic on hydromagnetic free convective flow
between vertical concentric annular cylinders have been discussed. The influences
of the various governing parameters such as the Hartmann number and the Biot
number on the fluid velocity, induced magnetic field, induced current density,
skin-friction, Nusselt number and mass flux have examined. The following con-
clusions have been drawn from the present analysis:

1. The fluid velocity, induced magnetic field and induced current density profiles
have reducing tendency with increasing the Hartmann number.

2. Value of the velocity, induced magnetic field and induced current density
increases for the Newtonian heating and vice versa for the Newtonian cooling.

3. The magnitude of the fluid velocity, induced magnetic field and induced current
density profile is more if one of the cylindrical walls is conducting than if both
walls are conducting.



Effect of Newtonian Heating/Cooling on Hydromagnetic ... 205

4.

The numerical values of Nusselt number at cylindrical walls increase in case of
the Newtonian heating and vice versa in case of the Newtonian cooling with
increasing values of the Biot number.

The skin-friction at inner cylinder decreases if one of the cylindrical walls is
conducting and increases if both walls are non-conducting with increasing
Hartmann number. Moreover, the skin-friction at outer cylinder increases in
both cases with increasing Hartmann number.

The influence of Biot number is to increase/reduce the skin-friction in case of
Newtonian heating/cooling at inlying cylinder and just reverse at outer cylinder.
The mass flux for the both cases has reducing nature with increasing Hartmann
number. Further, values of mass flux increase with improve in value of Biot
number in Newtonian heating and vice versa in Newtonian cooling.
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Appendix

A = {%}An = {A10Bi6 + B17},A21 = A31 = {A19B24 + Bas},
= {A10Bis + B9}, A23 = Az = 0,App = A3y = {A19B26 + B},
Az = —{An +An +AwBn + B3R}, By = By = B3 = —{ﬁ},
A = {L (A1 —Ap) =42 (B)1 —2B1p) + B3}, Bjs = {%},
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Cp= {2?1@23“2) + lg((f;)yg)},cﬂ = (A190Da6 + D27),Ci3 = —(C11 + C12),
Ciy = Co = {3(C11 — C12) +A1oDys — &}, Cpy = (A10Dos + Do),
Cy=Cs = Oécn = (A10D36 +D37) C3, = (A1oD3g + D3o),
Cyy = B (Cn/l — CppA~ )+A10A { D3310g)»+D34) 10gi+D35} — —/L l — log)\.)}7
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