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Preface

International conference on Applications of Fluid Dynamics (ICAFD 2016) was
organized by Department of Applied Mathematics, Indian Institute of Technology
(Indian School of Mines), Dhanbad, Jharkhand, India, in association with Fluid
Mechanics Group, Department of Mathematics, Faculty of Science, University of
Botswana, Gaborone, Botswana. ICAFD 2016 at IIT(ISM) Dhanbad was third in
continuation following the first ICAFD 2012 in University of Botswana and second
ICAFD 2014 in S.V. University, Tirupati.

The aim of the conference was to provide a platform for academicians, experts,
and researchers in various disciplines of mathematics and its allied areas
exclusively in applications of fluid dynamics. This international platform provided
opportunities for eminent personnel to interact and suggest various corrective
measures for advancement of the subject and its applications in industry, science,
engineering and technology, research and development, etc. The deliberations made
by an eminent mathematicians, engineers, scientists, and young researchers
published in the form of conference proceeding entitled “Applications of Fluid
Dynamics” by Springer in Lecture Notes in Mechanical Engineering. This
international conference received overwhelming response from academicians, sci-
entists, engineers, researchers, and most importantly research scholars of various
institutions of our country such as IITs, IISc Bangalore, R&D Center, IOL, HPCL
Mumbai, NITs, Central and State Universities, and foreign countries as well such as
USA, New Zealand, West Indies, Botswana, Ostrava, South Africa, Russia. The
financial support for organizing this international conference was extended by
Jharkhand Council of Science and Technology (JCST), Ranchi, Jharkhand;
Department of Science and Technology (DST-SERB), New Delhi; Defense
Research Development Organization (DRDO), New Delhi; and Society of Applied
Mathematics (SAM) and IIT(ISM), Dhanbad.

We are thankful, rather grateful, to the Key Speakers like Sri C.K. Asnani,
Chairman and Managing Director, UCIL Jaduguda and Chief Guest of inaugural
function; Prof. Dhanush Dhari Misra, Chairman, Board of Governors, Indian
Institute of Technology (Indian School of Mines), Dhanbad; Prof. D.C. Panigrahi,
Director, Indian Institute of Technology (Indian School of Mines), Dhanbad; Prof.
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Vijay P. Singh, Guest of Honor of inaugural function and University Distinguished
Professor and Caroline and William N. Lehrer Distinguished Chair in Water
Engineering at Texas A&M University, USA; Prof. R. Panneer Selvam, James T.
Womble Professor of Computational Mechanics and Nanotechnology Modeling,
University Professor of Civil Engineering and Director of Computational
Mechanics Laboratory, University of Arkansas, USA; Prof. Venkatesh Uddameri,
Director, Water Resources Center, Texas Tech University, USA; Prof. Lakshmi
Narasimhan, University of Botswana, Botswana; Prof. Elma Annette Hernandez
Uddameri, Department of Civil, Environmental, and Construction Engineering,
Texas Tech University, USA; Dr. Raj Das, Group Leader, ‘Simulation and
Modeling’, Mechanical Engineering Department, University of Auckland, New
Zealand; Dr. Sreedhara Rao Gunakala, Lecturer (Tenure track), Department of
Mathematics, The University of the West Indies, St. Augustine, West Indies; Prof.
J. Prakash, Head, Department of Mathematics, Faculty of Science, University of
Botswana, Botswana; Prof. Sergej Hloch, Technical University of Košice in
Slovakia; Prof. Alok K. Gupta, Emeritus Professor, National Center of
Experimental Mineralogy and Petrology, University of Allahabad; Prof. B.V.
Rathish Kumar, Department of Mathematics and Statistics at Indian Institute of
Technology, Kanpur; Prof. Mridula Kanoria, Department of Applied Mathematics,
University of Calcutta, Kolkata; Prof. Naveen Kumar, Department of Mathematics,
Institute of Science, BHU, Varanasi; Dr. Shivendra Nath Rai, Chief Scientist,
(CSIR-National Geophysical Research Institute (NGRI)), Hyderabad; Prof. Ashok
Mishra, Director, “Center for Fluid Dynamics Research,” CUTM, Paralakhemundi,
Odisha; Prof. S.V.K. Varma, S.V. University, Tirupati; Dr. Sachin Saw, School of
Mathematics and Statistical Science, Botswana International University of Science
and Technology, Botswana.

On behalf of organizing committee, we express our sincere gratitude to Prof. D.
D. Misra, Chairman, BoG, IIT(ISM) and Chief Patron, ICAFD-2016 for their
encouragement. We express our sincere thanks to Prof. D.C. Panigrahi, Director,
IIT(ISM), Prof. Thabo T. Fako, Vice-Chancellor, University of Botswana,
Botswana and Patrons, ICAFD 2016 for their guidance and source of inspiration.
We also express our thanks to IIT(ISM) and University of Botswana administra-
tions for providing infrastructural support to organize an international event at such
a large scale smoothly and successfully. We acknowledge the support and moti-
vation received from each one of them who have directly or indirectly helped us to
organize this international event in a grand way. We also put on record about the
contribution of Research Associate and Scholars namely Dr. Pintu Das, Sultana
Begam, Ayan Chatterjee, Chandan Kumar Thakur, Affreen Akhter, Rakesh Kumar
Singh, Rohit Kumar, Animesh Samanta, and Manish Chaudhary for helping us to
organize an international event apart from preparing and formatting the manuscript.
Finally, the execution of international event is possible with support of one and all.

Dhanbad, India Dr. M.K. Singh
Dhanbad, India Dr. B.S. Kushvah
Dhanbad, India Prof. G.S. Seth
Gaborone, Botswana Prof. J. Prakash
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Applications of Fluid Dynamics: An Introduction

Locke has said “Mathematics is a way to settle in the mind a habit of reasoning.”
Basically, two types of reasoning exist in mathematics such as inductive and
deductive. Inductive reasoning in which statement or propositions are made on
general observation and experience while deductive reasoning based on self-evident
truth in which statements are the product of mind. Mathematics in widest sense is
the development of all types of deductive reasoning. A true lover of
MATHEMATICS should be Methodical, Analytical, Technical, Humble, Ethical,
Meritorious, Assertive and Attentive, Thoughtful and Tenacious, Introspective and
Indigenous, Cautious and Curious, Studious. Subsequently, mathematics enhances
mind power, apprehension, talent, honesty, enthusiasm, memory, ambition, thirst of
knowledge, intelligence and intricacy, confidence and clarity, and self-realization.
A genuine learner of mathematics is certainly interested in finding out the answers
of some of the questions which are as follows: Why should everybody learn
mathematics? What is the place of mathematics in any scheme of education? What
are the aims and objectives of teaching mathematics to everybody? How does it
make contribution in the development of an individual? Mathematics must
contribute toward the acquirement of the values like knowledge and skill, intel-
lectual habits and power, desirable attitude, and ideals. Moreover, it also possesses
practical value, disciplinary value and cultural value, etc., as well. As per Hamilton,
the study of mathematics cures the vice of mental distraction and cultivates the habit
of continuous attention. As we all know, mathematics demands hard work from the
learner and hardworking people are very much needed in any developing society.
We can establish the very good relation of mathematics with the other subject such
as Physics, Chemistry, Biology, Agriculture, Engineering, Social Science,
Economics, Logic. Some of the views of mathematics regarding relationship with
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the other subject were quoted as follows: Mathematics gives the final shape to the
rules of physics. Mathematical nature of the chemical equation can be explored.
The claim of any particular branch of natural philosophy to be considered as a
science can be assessed only on the basis of the amount of mathematics employed
in it. The proportions of human body are strictly mathematical. A human being’s
beauty and attractive form depends on his/her proportionate buildup. The whole
figure is six times the length of the foot which holds well for the form either is
slender or plump. For example, the Greek made all their statues according to this
rule. The hand, from the wrist to the middle finger, is one tenth of the whole stature.
The scientific calculation about the normal weight in pounds is double the height in
inches. Mathematics in engineering deals with surveying, leveling, designing,
estimating constructions, computing, etc. Applied mathematics includes fluid
mechanics in detail and explores their applications extensively in science,
engineering and technology as well.

Fluid mechanics is defined as the science that deals with the behavior of fluids at
rest (fluid statics) or in motion (fluid dynamics). Fluid mechanics is also referred to
as fluid dynamics by considering fluids at rest as a special case of motion with zero
velocity. Fluid dynamics has several subdisciplines itself, including aerodynamics
(the study of air and other gases in motion) and hydrodynamics (the study of liquids
in motion). Fluid dynamics has a wide range of applications, including calculating
forces and moments on aircraft, determining the mass flow rate of petroleum
through pipelines, predicting weather patterns, understanding nebulae in interstellar
space, and modeling fission weapon detonation. Some of its principles are even
used in traffic engineering, where traffic is treated as a continuous fluid, and crowd
dynamics. Fluid mechanics is encountered in almost every area of our physical
lives. Blood flows through our veins and arteries, a ship moves through water and
water flows through rivers, airplanes fly in the air and air flows around wind
machines, air is compressed in a compressor and steam expands around turbine
blades, a dam holds backwater, air is heated and cooled in our homes, and com-
puters require air to cool components. All engineering disciplines require some
expertise in the area of fluid mechanics. Fluid mechanics, especially fluid dynamics,
is an active field of research with many unsolved or partly solved problems. Fluid
mechanics can be mathematically complex, and can best be solved by numerical
methods, typically using computers. A modern discipline, called computational
fluid dynamics (CFD), is devoted to this approach to solving fluid mechanics
problems. The solution to a fluid dynamics problem typically involves calculating
various properties of the fluid, such as flow velocity, pressure, density, and tem-
perature, as functions of space and time. Before the twentieth century, hydrody-
namics was synonymous with fluid dynamics. This is still reflected in names of
some fluid dynamics topics, like magnetohydrodynamics and hydrodynamic sta-
bility, both of which can also be applied to gases (Munson et al. 1990; Yunus and
Cimbala 2006; Potter and Wiggert 2008).

Magnetohydrodynamics is also known as MHD or magneto-fluid dynamics or
hydromagnetics which is the study of the magnetic properties of electrically con-
ducting fluids. Examples of such magneto-fluids include plasmas (electrically
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conducting gas), liquid metals, and salt water or electrolytes. The word MHD is
derived from magneto—meaning magnetic field, hydro—meaning water, and
dynamics—meaning movement. One of the most famous scholars associated with
MHD was the Swedish Physicist Hannes Alfvén (1908–1995), who received the
Nobel Prize in Physics (1970) for fundamental work and discoveries in magneto-
hydrodynamics with fruitful applications in different parts of plasma physics. The
fundamental concept behind MHD is that magnetic fields can induce currents in a
moving conductive fluid, which in turn polarizes the fluid and reciprocally changes
the magnetic field itself. The set of equations that describe MHD are a combination
of the Navier-Stokes equations of fluid dynamics and Maxwell’s equations of
electromagnetism. These differential equations must be solved simultaneously,
either analytically or numerically.

A nanofluid is a fluid containing nanometer-sized particles, called nanoparticles.
These fluids are engineered colloidal suspensions of nanoparticles in a base fluid.
The nanoparticles used in nanofluids are typically made of metals, oxides, carbides,
or carbon nanotubes. Common base fluids include water, ethylene glycol, and oil.
Nanotechnology is being used or considered for use in many applications targeted
to provide cleaner, more efficient energy supplies and uses. While many of these
applications may not affect energy transmission directly, each has the potential to
reduce the need for the electricity, petroleum distillate fuel, or natural gas that
would otherwise be moved through energy transmission system. More efficient
energy generation and use may decrease the amount of construction, maintenance,
repair, and decommissioning activities. Examples of how nanotechnology may be
integrated into each of these technological areas are: engine cooling, engine
transmission oil, in diesel electric generator as jacket water coolant, boiler exhaust
flue gas recovery, heating and cooling of buildings, cooling of electronics, cooling
of welding, nanofluids in transformer cooling oil, nuclear systems cooling, solar
water heating, nanofluids in drilling, refrigeration (domestic refrigerator, chillers),
defense, space, high-power lasers, microwave tubes, biomedical applications,
drilling, lubrications, thermal storage, drag reductions. Nanofluids in solar collec-
tors are another application where nanofluids are employed for their tunable optical
properties.

In analysis such as computational fluid dynamics (CFD), nanofluids can be
assumed to be single-phase fluids. However, almost all of new academic papers use
two-phase assumption. Classical theory of single-phase fluids can be applied, where
physical properties of nanofluid are taken as a function of properties of both con-
stituents and their concentrations. An alternative approach simulates nanofluids
using a two-component model (Saidur et al. 2011).

The spreading of a nanofluid droplet is enhanced by the solid-like ordering
structure of nanoparticles assembled near the contact line by diffusion, which gives
rise to a structural disjoining pressure in the vicinity of the contact line. However,
such enhancement is not observed for small droplets with diameter of nanometer
scale, because the wetting time scale is much smaller than the diffusion time scale.

The problem of solute transport in porous media has become a major research
area in hydrology over the last five decades. Two fundamental worldwide issues are
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directly concerned (1) the selection of repository sites for radioactive waste in deep
geological formations, and (2) groundwater pollution in fractured/unfractured
reservoirs. The objective of this section is to investigate the roles of pore-water
velocity, water content, and soil textural properties on solute dispersion in
saturated/unsaturated porous media. There are many authors who have examined the
process of dispersion in fully saturated porous media. Their finding suggested a
linear relationship between the longitudinal dispersion coefficient and the pore-water
velocity. In this section, seepage of water through earth dams, underneath hydraulic
structures and problems related the supply of drinking water, a mathematical models
are employed to predict the fate of hazardous chemicals environmental problems.
Waterjet is a generic term used to describe equipment that uses a high-pressure
stream of water for cutting or cleaning purposes. Abrasive jet is a subcategory of
waterjet in which abrasive is introduced to accelerate the process. In other words,
abrasive jets and pure waterjet are kinds of waterjet which is a kind of machinery.
We can find the various applications in geophysics, earthquakes, astrophysics,
sensors, engineering, magnetic drug targeting, etc.
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Unsteady MHD Nanobioconvective
Stagnation Slip Flow in a Porous Medium
Due to Exponentially Stretching Sheet
Containing Microorganisms

R. Kumar and S. Sood

Abstract This communication deals with the numerical investigation of biocon-
vection induced by an unsteady MHD stagnation point flow of a nanoliquid con-
taining suspension of microorganisms over a stretching sheet. The sheet is stretched
in an exponential fashion and set at the right side of porous medium saturated with
nanofluid, and permeability of porous medium is considered to have a specified
form. The setup deals with the velocity slip and thermal slip at the sheet surface.
Here, water is considered as the carrier liquid. Similarity transformations are used to
convert the governing coupled nonlinear partial differential equations into ordinary
differential equations and solved numerically by employing implicit finite difference
scheme known as Keller box method. The effects of nanofluid parameters and
bioconvection parameters on non-dimensional velocity, temperature, nanoparticle
concentration, and motile microorganism concentration are presented through
graphs. The effects of related parameters on local skin friction, Nusselt number,
Sherwood number, and density number of microorganisms are exhibited through
tables. The substantial influence of bioconvection parameters is noticed on the
profiles of velocity, temperature, nanoparticle volume fraction, and density of
microorganisms.

1 Introduction

Bioconvection caused by the suppression of self-driven microorganisms in a base
fluid is an area in fluid mechanics which have attracted the attention of several
scientists and engineers due to its various applications in industry, technology, and
environmental sciences. It is a mesoscale phenomenon, in which the motion of
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motile microorganisms induces a macroscopic motion in the fluid. These micror-
ganisms have active response to external stimuli such as light, gravity, chemical
reactions and oxygen, and the responses are termed as ‘taxes’. The pioneering work
of Pedley et al. (1988) on the bioconvection growth patterns due to suspension of
gyrotactic microorganisms framed the basis for its detailed analysis. Later on, the
paper of Bees and Hill (1997, 1999) and Ghorai and Hill (2000) on the wavelength
of bioconvection patterns appeared in the literature. Very recently, in linear stability
analysis, Hwang and Pedley (2014) showed that uniform shear can significantly
alter the gravitaxis microorganisms. Simultaneously, the work on heat transfer
analysis of nanofluid (coined by Choi 1995) also developed to a great extent. The
suspension of metallic oxides including copper, aluminum, titanium as nanoparti-
cles in base fluid is known to enhance the thermal conductivity of the base fluid
tremendously. Moreover, nanoparticles like silver have hygiene features, and can
also be utilized in wound treatment (Lee et al. 2007) and can be used as an
anti-bacterial agent (Lee et al. 2003). The concept of bioconvection in nanofluid
was introduced by Kuznetsov (2010), in which he claimed that the self-driven
microorganisms enhance mixing and prevent nanoparticles from agglomeration in
nanofluids. The suspension of nanoparticles and motile microorganisms in base
fluid will not only be helpful in enhancing the thermal performances but would also
be useful in producing next-generation biofuels with green and sustainable features
(Chiu et al. 2011). Mutuku and Makinde (2014) presented a numerical solution on
the hydromagnetic bioconvection flow of nanofluid along a vertical permeable plate
due to gyrotactic microorganisms. Further, the introduction of porous medium into
a flow field plays a vital role in dampening the convective effects caused by bio-
convection. New developments in bioconvection in porous medium can be found in
Vadasz (2008). In this sequence, Aziz et al. (2012) investigated the effects of free
convection on the boundary layer flow of a nanofluid over a horizontal flat plate
embedded in porous medium which is filled by nanoparticles and gyrotactic
microorganisms. Shaw et al. (2014) extended this problem by analyzing the mag-
netohydrodynamics and soret effects and considering the flow across an inclined
plate to justify the influence of gravity. Their study further demonstrates the sub-
stantial effect of magnetic field on the microorganisms behavior.

In the above cited investigations, emphasis has been given on the steady-state
problem, which relies on no-slip conditions. But in certain situations, velocity may
slip on a stretching boundary when the fluid contains particulates in the form of
suspensions, polymer solutions, and emulsions. Due to this, the Navier slip model
has been employed by various researchers to depict the jump in velocity and
temperature on the surface of the wall. Navier slip effects on the MHD boundary
layer flow of a nanofluid containing gyrotactic microorganisms over a vertical plate
have been discussed by Khan et al. (2014). Very recently, Uddin et al. (2016)
investigated the Stefan blowing and multiple slip effects on the bioconvection
nanofluid flow. This study revealed that microorganisms’ propulsion can be
enhanced, higher flow velocity can be achieved, and nanoparticle distributions can
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be improved by the introduction of Stefan blowing through the stretching/shrinking
surface. On the other hand, the flow can turn out to be time dependent due to the
impulsive stretching of surface or when there is step change in the temperature of
the surface. Raees et al. (2015) analyzed unsteady mixed nanobioconvection flow in
a horizontal channel and found monotonic decrease in velocity components and
continuous decrease in temperature with increasing time. The influence of magnetic
field and bioconvection on the stagnation point flow of nanofluid over a stretching
surface has been presented by Ahmed et al. (2015).

Though many research paper can be found in literature on the nanofluid bio-
convection concepts but many characteristics of these latest fluids are yet to be
explored at fundamental level. Hence, an attempt has been made to reveal the
effects of velocity and thermal slip on the unsteady mass stagnation flow of
nanofluid over a vertical exponentially stretching sheet embedded in a porous
medium which is filled with nanoparticles and microorganisms.

2 Mathematical Formulation of the Problem

We considered an unsteady boundary layer stagnation point flow of a water-based
nanofluid having a suspension of gyrotactic microorganisms over a vertical sheet
embedded in a porous medium. The porous medium is filled with nanoparticles and
microorganisms. A Cartesian coordinate system is considered, in which x-axis is
measured along the surface and y-axis normal to it. The flow is induced by the
exponential stretching of the surface and slip effects under the following assump-
tions: (i) suspension of nanoparticles is stable and dilute; (ii) nanoparticles do not
alter the direction and velocity of swimming microorganisms; (iii) shape of
microorganisms is uniform and no extra cellular polymers are produced on the
surface of microorganisms; (iv) pore size of porous medium is significantly larger
so that microorganisms can penetrate freely through the pores; and (v) porous
matrix does not absorb microorganisms. Under above said assumptions, the
boundary layer equations utilizing Boussinesq approximation and extended Darcy
model for porous medium are as follows:
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where u and v are the respective components of velocity along x and y directions.

Here, v; l; k0; r;qf ;g; T ; a; s ¼ qCð Þp
qCð Þf ;DB;DT ;Dm;C; n; b1 and Wc are kinematic

viscosity, dynamic viscosity, permeability, electrical conductivity, density of the
base fluid, gravity, volume expansion coefficient, average volume of microorgan-
isms, temperature, thermal diffusivity, volumetric heat capacitance ratio of
nanoparticle to base fluid, coefficients of Brownian diffusion, thermophoretic dif-
fusion, microorganisms diffusion, nanoparticle volume fraction, concentration of
motile microorganisms, chemotaxis constant, and maximum swimming speed of
microorganisms, respectively.

The relevant boundary conditions are as follows:

u ¼ v ¼ 0; T ¼ T1; C ¼ C1; n ¼ n1 at t� 0;

v ¼ 0; u ¼ Uw x; tð Þþ#N1
@u
@y

; T ¼ Tw þD1
@T
@y

;

C ¼ Cw x; tð Þ; n ¼ nw x; tð Þ at y ¼ 0; ðt[ 0Þ
ð6Þ

u ¼ Ue x; tð Þ; T ¼ T1; C ¼ C1; n ¼ n1 at y ! 1; ðt[ 0Þ; ð7Þ

where N1 and D1 are the velocity and thermal slip respectively. The velocity,
temperature and concentration at the surface of the sheet are considered

in the following syntax: Uw x; tð Þ ¼ b exp x=lð Þ
1�ct ; Tw ¼ T1 þ T0 exp x=2lð Þ

1�ct ;

Cw ¼ C1 þ C0 exp x=2lð Þ
1�ct ; nw ¼ n1 þ n0 exp x=2lð Þ

1�ct , respectively. Uw x; tð Þ ¼ a exp x=lð Þ
1�ct is

external flow velocity. The following similarity transformations have been intro-
duced to reduce the set of Eqs. (1)–(7) into self-similar form:

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a exp x=lð Þ
2#L 1� ctð Þ

s
y; w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2#La exp x

l

� �
1� ctð Þ

s
f gð Þ; h gð Þ ¼ T � T1ð Þ

Tw � T1ð Þ ;

/ gð Þ ¼ C � C1ð Þ
Cw � C1ð Þ ; n gð Þ ¼ n� n1ð Þ

nw � n1ð Þ ; u ¼ @w
@y

; v ¼ � @w
@x

:

ð8Þ

In above similarity transformations, we assumed that 1� ctð Þ[ 0, and hence,
the similarity transformation is valid only for t\ 1

c.
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The following set of modified equations is obtained after the application of
above transformations:

f 000 þ ff 00 � 2f 02 þ 2þM 1� f 0ð Þ þK 1� f 0ð Þ
� A gf 00 þ 2f 0 � 2ð Þþ k h� Nr/� Rbnð Þ ¼ 0

ð9Þ

h00 � APr gh0 þ 2hð Þþ Pr h0f � f 0hð ÞþNb/0h0 þNth02 ¼ 0; ð10Þ

/00 � ASc g/0 þ 2/ð Þþ Sc /0f � f 0/ð Þþ Nt
Nb

h00 ¼ 0; ð11Þ

n00 � ALb gn0 þ 2nð Þþ Lb n0f � f 0nð Þ � Pe /00 nþxð Þþ n0/0½ � ¼ 0: ð12Þ

The boundary conditions will take the following altered form:

f 0ð Þ ¼ 0; f 0 0ð Þ ¼ b
a
þNf 00 0ð Þ;

h 0ð Þ ¼ 1þDh0 0ð Þ; / 0ð Þ ¼ 1; n 0ð Þ ¼ 1:
ð13Þ

f 0 1ð Þ ¼ 1; h 1ð Þ ¼ 0; / 1ð Þ ¼ 0; n 1ð Þ ¼ 0; ð14Þ

where prime signifies differentiation with respect to h, and in the meanwhile,

following dimensionless parameters are ensued: A ¼ Lc
Ue
;M ¼ 2rB2

0L
Ueqf

, K ¼ 2#L
kUe

,

k ¼ 2L 1�C1ð Þbg Tw�T1ð Þ
U2

e
; Nr ¼ qp�qfð Þ /w�/1ð Þ
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N ¼ N1

ffiffiffiffiffiffi
#Ue
2L

q
; D ¼ D1

ffiffiffiffiffiffi
Ue
2#L

q
which represent unsteady parameter, magnetic

parameter, permeability parameter, mixed convection parameter, buoyancy ratio
parameter, bioconvection Rayleigh number, Prandtl Number, Brownian motion
parameters, thermophoresis parameter, Schmidt number, bioconvection Lewis
number, bioconvection Peclet number, microorganisms concentration difference
parameter, velocity ratio parameter, velocity slip parameter, and thermal slip
parameter, respectively. In this study, the quantities of engineering interest are cf,
Nu, Sh, and Nn, which are termed as coefficient of skin friction, Nusselt number,
Sherwood number, and density number of motile microorganisms, respectively.
These physical quantities are defined mathematically as follows:

cf ¼ l
qf U2

e

@u
@y

� �
y¼0

; Nu ¼ � Lk
k Tw � T1ð Þ

@T
@y

� �
y¼0

;

Sh ¼ � L
Cw � C1ð Þ

@C
@y

� �
y¼0

; Nn ¼ � L
nw � n1ð Þ

@n
@y

� �
y¼0

ð15Þ
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After substituting Eq. (8) in (15), we reckoned that

cfx ¼
ffiffiffiffiffiffiffiffiffiffi
2Rex

p
cf ; Nux ¼ Nu

Rex
¼ �

ffiffiffiffiffiffi
x
2L

r
h0 0ð Þ;

Shx ¼ Sh
Rex

¼¼ �
ffiffiffiffiffiffi
x
2L

r
/0 0ð Þ; Nnx ¼ Nn

Rex
¼ �

ffiffiffiffiffiffi
x
2L

r
n0 0ð Þ

ð16Þ

Here, k is thermal conductivity of nanofluid. Above stated quantities are the local
skin friction which specifies the wall shear stress, local Nusselt number which
connotes the heat transfer rate, local Sherwood number which indicates the mass
transfer rate, and local density number of motile microorganisms which represents
the microorganisms transfer rate respectively.

3 Results and Discussion

In order to gain physical insight into the flow problem, rigorous numerical com-
putations have been performed for different values of pertinent parameters that
describe the flow features. Implicit finite difference method (IFDM) also known as
Keller box method (KBM) has been employed for the numerical solutions of
strongly coupled boundary layer equations due to the limitations of closed-form
solutions. The maximum values for g1 have been chosen as g1 ¼ 2 to g1 ¼ 7;
which lies well outside the boundary layers and provides the mesh-independent
numerical results. By choosing a grid size Dη = 0.005, the whole computational
procedure is administered with the aid of computational language MATLAB. The
numerical computations are accomplished for various values of parameters, which
have been displayed through figures and tables. During the whole computational
process, the values to related parameters are assigned as D ¼ 0:1; A ¼ M ¼ K ¼
k ¼ Sc ¼ Pe ¼ Lb ¼ 1; N ¼ e ¼ 0:5; Pr ¼ 6:2; Nr ¼ Nb ¼ Nt ¼ Rb ¼ x ¼ 0:1,
unless otherwise stated.

The variations of local skin friction coefficient f 00 0ð Þ, heat transfer coefficient,
�h0 0ð Þ, mass transfer coefficient �/0 0ð Þ, and local density number of motile
microorganisms �n0 0ð Þ with respect to nanofluid, and bioconvection parameters
have been shown in Tables 1 and 2. It is noticed that coefficient of local skin
friction f 00 0ð Þ and wall heat transfer rate �h0 0ð Þ are decreased with increasing
values of N ¼ D ¼ K ¼ M ¼ k ¼ Nr ¼ Rb ¼ Nt ¼ Sc ¼ Pe and Lb, whereas an
enhancing influence of unsteadiness parameter A is observed on f 00 0ð Þ and �h0 0ð Þ.
On the other hand, augmentation in wall mass transfer rate �/0 0ð Þ and local density
number of motile microorganisms �n0 0ð Þ is observed with an increment in the
values of parameters like A ¼ N ¼ D ¼ K ¼ M ¼ k ¼ Nr ¼ Rb ¼ Sc ¼ Pe

8 R. Kumar and S. Sood



and Lb, while on the contrary, �/0 0ð Þ and �n0 0ð Þ are depressed with increasing
thermophoresis parameter Nt. The substantial effects of nanofluid and bioconvec-
tion parameters on f 00 0ð Þ;�h0 0ð Þ;�/0 0ð Þ, and �n0 0ð Þ have been noticed due to
coupling of momentum, thermal, nanoparticle species and motile microorganism
species fields through conservation equations. The well-known influence of
velocity and thermal slips has also been observed for the flow problem (Uddin et al.
2016). Schmidt number, Sc, greater than unity depicts that momentum diffusivity is
higher than the nanoparticles’ species diffusivity, and this serves to enhance the
nanoparticles mass transfer rate in the neighborhood of the sheet. In similar manner,
Lb characterizes the ratio of momentum diffusivity to microorganisms’ species
diffusivity, and for Lb[ 1, momentum diffusivity dominates the microorganisms’
species diffusivity, and this leads to increment in microorganisms transfer rate at the
surface. Also for higher values of bioconvection Peclet number Pe, species diffu-
sivity of microorganisms is dominated by their swimming motion and this leads to
enhance the rate of microorganism transfer at the wall. This is true because Pe is the
ratio of maximum swimming speed of microorganism to its rate of diffusion. The
influence of remaining pertinent parameters has already been explained repeatedly
by many researchers such as Mutuku and Makinde (2014), Shaw et al. (2014),
Khan et al. (2014), and Uddin et al. (2016).

Table 1 Values of f 00 0ð Þ;�h0 0ð Þ;�/0 0ð Þ and �n0 0ð Þ for Pr ¼ 6:2; � ¼ 0:5;x ¼ 0:1

A N D K M k f 00 0ð Þ �h0 0ð Þ �/0 0ð Þ �n0 0ð Þ
0 0.180599 −1.251593 −0.351064 −1.345503

1 0.5 0.1 1 1 1 0.184604 −1.691026 −0.521726 −1.877642

2 0.186737 −2.010296 −0.693214 −2.348334

0.0 1.355115 −1.576390 −0.514971 −1.770079

1 0.1 0.1 1 1 1 0.583455 −1.670693 −0.507650 −1.831366

1.0 0.103086 −1.666725 −0.544509 −1.906117

0.0 0.262521 −4.147615 1.206921 −0.225112

1 0.5 0.5 1 1 1 0.143727 −0.502031 −1.361957 −2.695745

1.0 0.131642 −0.267268 −1.528455 −2.859221

0.5 0.185232 −1.724980 −0.497114 −1.853184

1 0.5 0.1 1.5 1 1 0.183832 −1.658360 −0.545380 −1.901132

3.0 0.180919 −1.567415 −0.611120 −1.966347

2.0 0.182946 −1.626912 −0.568130 −1.923711

1 0.5 0.1 1.0 3.0 1 0.180919 −1.567415 −0.611120 −1.966347

5.0 0.176268 −1.460450 −0.688262 −2.042765

2.0 0.182700 −1.626614 −0.567342 −1.922392

1 0.5 0.1 1 1 5.0 0.162550 −1.459187 −0.685097 −2.037310

10 0.092166 −1.244191 −0.834066 −2.181045

Unsteady MHD Nanobioconvective Stagnation Slip Flow … 9



3.1 Velocity Profiles

Figures 1, 2, 3, 4, 5, and 6 have been plotted to observe the influence of associated
parameters like unsteady parameter (A), bioconvection Rayleigh number (Rb),
velocity slip (N), buoyancy ratio parameter (Nr), mixed convection parameter ðkÞ,
velocity ratio parameter ð�Þ, magnetic field parameter (M), porous medium

Fig. 1 Dimensionless
velocity profiles for A and Rb

Table 2 Values of f 00 0ð Þ;�h0 0ð Þ;�/0 0ð Þ and �n0 0ð Þ for Pr ¼ 6:2; � ¼ 0:5;x ¼ 0:1

Nr Rb Nb Nt Sc Pe Lb f 00 0ð Þ �h0 0ð Þ �/0 0ð Þ �n0 0ð Þ
0.5 0.076207 −1.661378 −0.536873 −1.888408

0.8 0.1 0.1 0.1 1 1 1 −0.005006 −1.639724 −0.547799 −1.896040

1.2 −0.113221 −1.611594 −0.561809 −1.905642

0.4 0.121138 −1.669461 −0.534350 −1.888033

0.1 0.7 0.1 0.1 1 1 1 0.057776 −1.648387 −0.546618 −1.898070

1.0 −0.005494 −1.627787 −0.558540 −1.907762

0.4 0.186544 −1.589726 −1.442298 −2.776769

0.1 0.1 0.7 0.1 1 1 1 0.184816 −1.494729 −1.573194 −2.905544

1.0 0.182799 −1.405847 −1.625142 −2.956813

0.5 0.156032 −1.628604 4.008728 2.359567

0.1 0.1 0.1 1.0 1 1 1 0.116734 −1.556152 9.144095 6.655163

1.5 0.072326 −1.489247 13.763331 9.827329

2 0.178275 −1.616124 −1.412482 −2.706805

0.1 0.1 0.1 0.1 3 1 1 0.170820 −1.550161 −2.077787 −3.356267

5 0.156275 −1.435730 −3.106659 −4.393188

2 0.174764 −1.626720 −0.568007 −2.219948

0.1 0.1 0.1 0.1 1 3 1 0.166053 −1.567086 −0.610895 −2.725753

5 0.151050 −1.459943 −0.687864 −4.136866

2 0.174937 −1.626723 −0.568001 −2.606828

0.1 0.1 0.1 0.1 1 1 3 0.165647 −1.567064 −0.610847 −3.182837

5 0.149021 −1.459869 −0.687736 −4.110475
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Fig. 2 Dimensionless
velocity profiles for N and Nr

Fig. 3 Dimensionless
velocity profiles for k and �

Fig. 4 Dimensionless
velocity profiles for � and M

Fig. 5 Dimensionless
velocity profiles for Nt and K
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permeability parameter (K), thermophoresis parameter (Nt), Brownian motion
parameter (Nb), and bioconvection Peclet number (Pe) on the distribution of
velocity in the flow field. It is clear from these figures that velocity profiles are
reduced with the increasing Rb;Nr; k;Nt and Pe, whereas increasing values of
A;N; e;K;M and Nb enhance the velocity profiles. Since the upward motion of the
nanofluid is resisted due to buoyancy by the bioconvection plumes, therefore, an
increase in Rb leads to a decrease in velocity. Also increasing porous medium
permeability provides larger space for fluid particles to flow and becomes a
responsible factor in the expansion of velocity profiles.

3.2 Temperature Profiles

Figures 7, 8, 9, and 10 illustrate the influences of unsteady parameter (A), thermal
slip (D), mixed convection parameter ðkÞ, magnetic field parameter (M), Brownian
motion parameter (Nb), thermophoresis parameter (Nt), and bioconvection Rayleigh
number (Rb) on temperature profiles h gð Þð Þ of nanofluid. It is observed from these
figures that profiles of temperature and thermal boundary layer thickness are
reduced with the increase of A;D; k;M and Rb. The nanofluid thermal boundary

Fig. 6 Dimensionless
velocity profiles for A and Rb

Fig. 7 Dimensionless
temperature profiles for
A and D
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layer is strongly suppressed near the sheet by thermal slip for different values of
A and D, and weakly dampened by k and Rb. A significant fall in temperature in the
vicinity of sheet presents an increase in thermal slip, and hence, thermal slip has a
cooling effect on thermal boundary layers. However, Nb and Nt have a reversed
effect on the temperature of nanofluid inside the thermal boundary layer, i.e.,
temperature is raised with Nb and Nt. It is true because Nb and Nt enhance the
thermal conductivity of base fluid and is responsible for raising the boundary layer
thickness and temperature.

Fig. 8 Dimensionless
temperature profiles for
k and D

Fig. 9 Dimensionless
temperature profiles for
M and D

Fig. 10 Dimensionless
temperature profiles for
Nb and Rb
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3.3 Nanoparticle Concentration Profiles

Figures 11 and 12 demonstrate the effects of Brownian motion parameter (Nb),
thermophoresis parameter (Nt), unsteady parameter (A), and Schmidt number (Sc)
on the concentration profiles of nanoparticles / gð Þð Þ. Concentration profiles are
reduced with the enhancement of A; Sc, and Nb, whereas profiles are increased with
Nt. An increase in Sc significantly reduces the thickness of concentration boundary
layer. The shape of nanoparticle mass fraction profiles dramatically changes from
parabolic distribution to monotonic decay near the stretching surface when Nt
obtains the critical value Nt ¼ 0:01.

3.4 Motile Microorganisms Density Profiles

Figures 13 and 14 exhibit the impact of bioconvection Lewis number (Lb), bio-
convection Peclet number (Pe), unsteady parameter (A), and microorganisms
concentration difference parameter (x) on the motile microorganisms density
profiles. The density of motile microorganisms is diminished with the raise of
Lb;Pe;A and x. It is true because larger values of Lb present larger motile

Fig. 11 Nanoparticles
concentration profiles for
Nt and Nb

Fig. 12 Nanoparticles
concentration profiles for
A and Sc
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microorganisms diffusion rate in comparison with viscous diffusion rate. Similarly,
higher values of Pe account for higher microorganisms swimming speed than
diffusivity of microorganisms in nanofluid.

4 Conclusions

A numerical investigation for an unsteady stagnation point flow of a water-based
hydromagnetic nanofluid containing gyrotactic microorganisms over a vertical
stretching surface through porous medium was presented. Following conclusions
are derived on the basis of numerical results:

(i) Unsteady parameter diminishes temperature, concentration volume fraction,
microorganism density boundary layers, whereas velocity boundary layers
are prolonged.

(ii) Magnetic field and thermal slip diminish thermal boundary layer.
(iii) Porous medium permeability and velocity slip accelerate the velocity dis-

tribution, whereas buoyancy ratio has a reversed effect.

Fig. 13 Microorganisms
concentration profiles for
Pe and Lb

Fig. 14 Microorganisms
Concentration profiles for
A and x
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(iv) Local skin friction, local Nusselt number, local Sherwood number, and local
density number of motile microorganisms are enhanced with A.

(v) Local Sherwood number and local density number of motile microorganisms
fall with thermophoresis parameter.
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MHD Free Convection Flow Past
an Exponentially Accelerated Inclined
Plate Embedded in Porous Medium

R. Swetha, J. Prakash, G. Viswanatha Reddy
and S. Vijaya Kumar Varma

Abstract The consequences of radiation absorption and chemical reaction in the
presence of heat generation on a MHD unsteady laminar flow with mass and heat
transfer of an electrically conducting, incompressible, and viscous fluid over an
accelerated exponentially inclined vertical moving porous plate in a porous medium
are analyzed in closed form. A perfect solution for this flow problem was obtained
by resolving the resulting governing equations by the technique of Laplace trans-
forms. The exact solutions for profiles of concentration, temperature, velocity, and
the gradient of velocity are presented, and the effects of these profiles for several
values of various arguments are discussed through graphs.

1 Introduction

In recent years, flows through porous media have the considerable research activ-
ities such as the filtration of solids from liquids, the extraction of geothermal
energy, flow of liquids through ion exchange beds, chemical reactor for purification
of mixtures or economical separation and so on. These flows are also having many
applications in engineering. Many engineering applications are susceptible to MHD
analysis. In technological point of view, magnetohydrodynamic flow finds appli-
cation in the fields of aeronautics, planetary and stellar magnetospheres, solar
physics, cosmic fluid dynamics, electronics, chemical engineering, MHD genera-
tors, MHD accelerators, construction of turbines, and other centrifugal machines.
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The consequence of chemical reaction on MHD convective transient free flow past
a vertical moving plate was studied by Al-Odat and Al-Azab (2007).

Chamkha (2004) investigated the MHD unsteady convective mass and heat
transfer with heat absorption over a permeable semi-transfinite vertical moving plate.
Kafousias and Raptis (1981) continued this problem containing the leads of mass
transfer corresponding to the varying suction or injection. Magnetohydrodynamic
convective mixed flow, mass, and heat transfer with constant wall suction in porous
medium past a vertical plate was presented by Makinde and Sibanda (2008).
Muthucumaraswamy and Subramanian (2010) discussed the heat transfer conse-
quences with mass flux and varying temperature on vertical accelerated plate. Raptis
and Massalas (1998) identified the consequences of radiation in the presence of
induced magnetic field on the oscillatory flow. Raptis and Perdikis (1985) numeri-
cally analyzed the convective free flow through porous medium bounded by a
semi-transfinite vertical porous plate. Convective heat transfer with uniform free
stream in a fluid which is electrically conducting at an extending surface was dis-
cussed by Vajravelu and Hadjinicolaou (1997).

The main intension of this flow problem is to discuss the consequences of heat
source parameter, mass diffusion, chemical reaction, and radiation absorption with
the constant temperature in the presence of applied uniform magnetic field on a
magnetohydrodynamic unsteady convective free flow with mass and heat transfer
past an inclined vertical porous plate which is accelerated exponentially in a porous
medium.

2 Mathematical Analysis

For this flow problem, consider a transient mass and heat transfer flow of incom-
pressible, natural, electrically conducting, radiation absorption, and viscous fluid
with constant heat source past an inclined vertically moving porous plate which is
accelerated exponentially in a porous medium in the presence of magnetic field and
a chemical reaction. Presuming at all the points, initially in the stationary state, fluid
and the plate are maintained the equal temperature T 0

1 with level of concentration
C0
1. The y0 axis is chosen normal to the vertical plate, and x0 axis is considered

along the vertical plate. At time t0 [ 0, in its own plane, the vertical plate is
accelerated exponentially with a velocity u0ea

0t0 . And at the same time, the vertical
plate temperature raises to T 0

w, and the level of concentration is also raises to C0
w

near the plate. Also assuming that, a transverse magnetic field B0 is applied normal
to the vertical plate. Hence, the physical arguments are functions of coordinates t0

and y0 only because of the fluid flow is assumed to be in the direction of x0 axis.
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FLOW CONFIGURATION

By the usual approximation of Boussenique’s, the governing equations in
Cartesian frame of reference for this unsteady flow are
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with the conditions

�t� [ 0: �u� ¼ u0e�a
��t� ; T

� ¼ T
�
w; C

� ¼ C
�
w at �y� ¼ 0

�u� ¼ 0; T
� ! T

�
1; C

� ! C
�
1 as �y� ! 1

�t� � 0: �u� ¼ 0; T
� ¼ T

�
1; C

� ¼ C
�
1 8 �y�

9=
; ð4Þ
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And the introduced dimensionless quantities are

U ¼ �u�

u0
; t ¼ �t�u20

m
; y ¼ �y�u0

m
; Pr ¼ lCp

j
; a ¼ �a�m

u20

Gr ¼ gbm T
�
w � T

�
1

� �
u30

; h ¼ T
� � T

�
1

T
�
w � T

�
1
; Gm ¼ gbm C

�
w � C

�
1

� �
u30

C ¼ C
� � C

�
1

C
�
w � C

�
1
; K ¼ Krm

u20
; Sc ¼ m

D
; Q1 ¼

mQ
�
1 C

�
w � C

�
1

� �
u20 T

�
w � T

�
1

� �
M ¼ rB2

0m

qu20
; kp ¼ ju20

m2
; / ¼ Q0m

qCpu20

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ð5Þ

Using (5), the ruled equations (1)–(3) are reduced into the following dimen-
sionless form:

@U
@t

¼ Grh cos aþGmC cos aþ @2U
@y2

� Mþ 1
kp

� �
U ð6Þ

@h
@t

¼ 1
Pr

� �
@2h
@y2

� /hþQ1C ð7Þ

@C
@t

¼ 1
Sc

� �
@2C
@y2

� KC ð8Þ

And the corresponding conditions are

at t[ 0: U ¼ eat; h ¼ 1; C ¼ 1 at y ¼ 0
U ! 0; h ! 0; C ! 0 as y ! 1

at t� 0: U ¼ 0; h ¼ 0; C ¼ 0 8 y

9=
; ð9Þ

3 Solution of the Problem

With the conditions (9), these non-dimensional ruled equations (6)–(8) are solved
by the technique of Laplace transforms in closed form, and hence, the exact
solutions for profiles of concentration, temperature, velocity, and the gradient of
velocity are given by

C y; tð Þ ¼ A4 ð10Þ

h y; tð Þ ¼ A1 þ b
c
A2 � A1ð Þ � b

c
A3 � A4ð Þ ð11Þ
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U y; tð Þ ¼ D1 þ N1

p
D2 � D3 � D6 þD7ð Þþ bN1

pc
D3 � D7ð Þþ bN1

c c� pð Þ D4 � D8ð Þ

þ bN1

p p� cð Þ D2 � D6ð Þþ bN2

cw
D9 � D3ð Þþ bN2

c c� wð Þ D10 � D4ð Þ

þ bN2

w w� cð Þ D11 � D5ð Þþ N3

w
D5 � D3 � D11 þD9ð Þ

ð12Þ

4 Velocity Gradient

From the field of velocity, the gradient of velocity in terms of Skin friction in
dimensionless form is

s ¼ � @U
@y

� �
y¼0

ð13Þ

From (12) and (13), we get

s ¼ B1 þ N1

p
B3 � B2 þB6 � B7ð Þþ bN1

pc
B7 � B3ð Þþ bN1

c c� pð Þ B8 � B4ð Þ

þ bN1

p p� cð Þ B6 � B2ð Þþ bN2

cw
B3 � B9ð Þþ bN2

c c� wð Þ B4 � B10ð Þ

þ bN2

w w� cð Þ B5 � B11ð Þþ N3

w
B3 � B5 þB11 � B9ð Þ

ð14Þ
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5 Results and Discussion

In this flow problem, the consequences of the different profiles are discussed
through graphs in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 for both heating and
cooling of the plates. These leads are identified to illustrate the results of several
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physical arguments involved in this flow problem such as angle of inclination (a),
magnetic parameter (M), parameter of heat absorption ð/Þ, parameter of radiation
absorption (), Schmidt number (Sc), parameter of chemical reaction (k), Prandtl
number (Pr), mass Grashof number (Gm), thermal Grashof number (Gr), time (t) on
profiles of velocity, temperature, concentration, and the velocity gradient.

The consequences of velocity for several values of various arguments are studied
and presented in Figs. 1, 2, 3, 4, 5, and 6 for the both heating (Gr = −2, Gm = −4)
and cooling (Gr = 2, Gm = 4) plates. Figures 1, 2, 3, and 4 depict the results of
velocity due to variation in Sc, k, Q1, and a. It is identified that the velocity raise for
the cooling plate, and it falls decreases for the heating plate with the fall of Sc, k, a
and with the raise of Q1. The profile of velocity for various values of Kp and M is
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discussed in Figs. 5 and 6 at t = 0.4. From Fig. 5, it is found that the velocity raises
for cooling plate, whereas it raises near the plate and falls with a point of separation
moving away from the plate for heating plate with the increase of Kp. Figure 6
describes the effect of M at t = 0.4; it is noticed that the velocity raises for cooling
plate, whereas it falls near the plate and raises with a point of separation moving
away from the plate for heating plate with the fall of M.

The leads of profiles of temperature for several values of various parameters are
studied and discussed in Figs. 7, 8, 9, and 10. From these figures, it is identified that
there is a raise in temperature with the fall of Pr, / and with the raise of Q1, t.

The consequences of concentration profile for several values of various argu-
ments are studied and presented in Figs. 11 and 12. Figures 11 and 12 reveal that
there is a raise in concentration with the fall of Sc, k.

0 0.5 1 1.5 2 2.5 3
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

y

U

(M =10, 5, 1)

( )0,0 <<rG mG

( )0,0 >>rG mG

Fig. 6 Velocity results for
various values of M and
Sc = 0.22, k = 0.5, Kp = 0.1,
Q1 ¼ 0:5;Pr ¼ 0:71, / ¼ 5,
t = 0.4, a = 0.5, a = p/3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

T (Pr= 0.90, 0.71, 0.68)

Fig. 7 Temperature results
for several values of Pr and
k = 0.5, t = 0.4, Q1 = 0.5,
/ = 5, Sc = 0.22

26 R. Swetha et al.



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

T

(φ = 15, 10, 5)

Fig. 8 Effects of temperature
for different values of / and
Sc = 0.22, t = 0.4, k = 0.5,
Q1 ¼ 0:5;Pr ¼ 0:71

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

T ( 1Q = 0.5, 1.0, 1.5)

Fig. 9 Temperature effects
for different values of Q1 and
Sc = 0.22, t = 0.4, k = 0.5,
/ ¼ 5, Pr = 0.71

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

T

(t = 0.4, 0.6, 0.8)

Fig. 10 Temperature leads
for several values t and
Sc = 0.22, k = 0.5, / ¼ 5,
Q1 = 0.5, Pr = 0.71

MHD Free Convection Flow Past … 27



The gradient of velocity in terms of skin friction for several values of various
arguments is discussed and is presented in Tables 1 and 2 for both heating
(Gr = −2, Gm = −4) and cooling (Gr = 2, Gm = 4) plates. From Table 1, it is
identified that there is a raise in skin friction with the raise of Pr, Sc, Q1; also it
decreases with raise of /, K, M for cooling plate, and an opposite phenomenon was
observed for heating plate and is shown in Table 2.

The same above results are noticed for both the cases in the absence of angle of
inclination and parameter of the permeability of the porous medium. Hence, the
results are in good agreement with the results of Vijaykumar et al. (2013).
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6 Conclusion

For this flow problem, the consequences of heat source parameter, mass diffusion,
chemical reaction, and radiation absorption with the constant temperature are dis-
cussed in the presence of applied uniform magnetic field on a magnetohydrody-
namic unsteady convective free flow with mass and heat transfer past an inclined

Table 1 Cooling plates

Pr Sc / K Q1 M A Skin friction (for
cooling plate)
a = p/3, kp ¼ 0:1

Skin friction (for
cooling plate)
a = 0, kp � 0

0.68 0.22 10 0.1 0.1 3 0.5 6.918657993 6.349229616

0.71 0.22 10 0.1 0.1 3 0.5 7.140507574 7.792928778

0.9 0.22 10 0.1 0.1 3 0.5 7.845391345 8.115749037

0.68 0.3 10 0.1 0.1 3 0.5 13.18412857 12.88017077

0.68 0.6 10 0.1 0.1 3 0.5 21.68903451 20.63490472

0.68 0.22 11 0.1 0.1 3 0.5 6.774587688 6.061089007

0.68 0.22 12 0.1 0.1 3 0.5 6.749025004 6.009963639

0.68 0.22 10 0.2 0.1 3 0.5 6.878243197 6.268400025

0.68 0.22 10 0.3 0.1 3 0.5 6.838386267 6.188686165

0.68 0.22 10 0.1 0.2 3 0.5 7.347101708 7.206117046

0.68 0.22 10 0.1 0.3 3 0.5 7.775545423 8.063004476

0.68 0.22 10 0.1 0.1 4 0.5 6.530715543 6.010236618

0.68 0.22 10 0.1 0.1 5 0.5 6.486863883 5.864913622

Table 2 Heating plates

Pr Sc / K Q1 M A Skin friction (for
heating plate)
a = p/3, kp ¼ 0:1

Skin friction (for
heating plate)
a = 0, kp � 0

0.68 0.22 10 0.1 0.1 3 0.5 2.057514746 2.373056877

0.71 0.22 10 0.1 0.1 3 0.5 1.835665165 1.816756039

0.9 0.22 10 0.1 0.1 3 0.5 1.358104638 1.205914537

0.68 0.3 10 0.1 0.1 3 0.5 −4.20795583 −4.90399803

0.68 0.6 10 0.1 0.1 3 0.5 −5.015729484 −5.93614952

0.68 0.22 11 0.1 0.1 3 0.5 2.201585051 2.684916268

0.68 0.22 12 0.1 0.1 3 0.5 2.227147735 2.7137909

0.68 0.22 10 0.2 0.1 3 0.5 2.097929542 2.412227286

0.68 0.22 10 0.3 0.1 3 0.5 2.137786471 2.512513427

0.68 0.22 10 0.1 0.2 3 0.5 1.629071031 1.229944307

0.68 0.22 10 0.1 0.3 3 0.5 1.200627316 1.086831737

0.68 0.22 10 0.1 0.1 4 0.5 2.771673392 2.892152317

0.68 0.22 10 0.1 0.1 5 0.5 3.130764406 3.452714668
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vertical porous plate which is accelerated exponentially in a porous medium. The
dimensionless governing equations for velocity, temperature, and concentration are
solved by the Laplace transform technique. The effects of velocity, temperature,
concentration, and skin friction are discussed for both ammonia and water vapor,
and the conclusions are as follows:

• Velocity raises for the cooling plate, and it falls for the heating plate with the fall
of chemical reaction parameter (K) and with the raise of radiation absorption
parameter ðQ1Þ.

• Temperature raises with the fall in heat absorption parameter ð/Þ, and the
concentration raises with the raise in time (t).

• Skin friction increases for cooling plate and decreases for heating plate with the
increase in Sc and Q1.

The same results are observed in the absence of inclined plate and permeability
of the porous medium. Hence, these results are in good agreement with results of
Vijaykumar (2013).
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Radiation Effect on MHD Convective Flow
of Nanofluids over an Exponentially
Accelerated Moving Ramped Temperature
Plate

S.M. Hussain, H.J. Joshi and G.S. Seth

Abstract The effect of thermal radiation on magnetohydrodynamic free convective
flow of incompressible and viscous nanofluids, which is electrically conducting,
over an exponentially accelerated moving ramped temperature plate is studied. The
water-based nanofluids which contain the nanoparticles of copper, alumina, and
titanium oxide are taken into consideration. The mathematical model of the problem
is formulated by applying the nanoparticle volume fraction model. The governing
equations for the flow, subjected to the associated conditions, have been solved
analytically by Laplace transform method. Expressions of nanofluid velocity,
temperature, shear stress, and Nusselt number have been obtained in compact form.
Effects of controlling physical parameters on nanofluid velocity and temperature
have been displayed using various graphs, whereas, for the engineering perspective,
numerical values of shear stress are presented in table.

1 Introduction

Due to the widespread applications in industry and public endeavor, the study of
nanofluids has engrossed enormous attention of several investigators engaged in the
area of nanotechnology. Initially, the term nanofluid was coined by Choi (1995),
referring to a base fluid embedded with particles of diameter less than 100 nm. The
conventional fluids, i.e., water, polymer solutions, ethylene glycol, oils, and other
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lubricants, have feeble heat transfer characteristics because of their feeble thermal
conductivity. Moreover, thermal conductivity of the base fluid can be enhanced by
mixing small-size metallic particles in the fluid, as the thermal conductivity of the
metals is typically higher than the fluid. Nanofluid being a mixture of nanoparticles
and the base fluid is an innovative type of energy transport fluid, and their novel
property makes them tremendously useful in different processes of heat transfer
including microelectronics, automobiles, hybrid-powered engines, fuel cells,
domestic refrigerator, nuclear reactor coolant, pharmaceutical processes. Choi
(1995) was the first who pointed out that “base fluid’s thermal conductivity may be
improved radically by the uniform dispersion of nanosized particles into a fluid.”
This concept prompted many researchers toward nanofluids, and abundant studies,
analyzing the thermal properties of nanofluids, have been carried out. Notable
research studies reporting the improvement in the thermal conductivity of fluids due
to suspension of nanoparticles and its frequent applications have been presented by
Eastman et al. (1997), Kang Ki and Choi (2004), and Jang and Choi (2007).

The hydromagnetic nanofluids possess both the liquid and magnetic character-
istics and are known to have enthralling relevance to magneto-optical wavelength
filters, ink float separation, optical switches, optical gratings, nonlinear optical
materials, etc. The magnetonanofluids have wide range of applications in drug
delivery for cancer treatment. Following this, several researchers, namely Hamad
and Pop (2011), Chamkha and Aly (2011), and Hayat et al. (2016), reported their
investigation on the problems of MHD convective flow of nanofluids considering
different geometries and configurations.

Various engineering processes such as gas turbines, various propulsion devices
for aircraft, nuclear power plants, missile’s reentry, space vehicles, rocket com-
bustion, satellites, gas-cooled nuclear reactors take place at high temperatures where
the role of thermal radiation in the overall surface heat transfer is of utmost
importance. This fact has encouraged many researchers to undertake the effect of
thermal radiation on hydromagnetic convective flow of nanofluids under different
geometries and configurations. Notable research studies are due to Rashidi et al.
(2014), Haq et al. (2015), and Das et al. (2015).

In all the aforementioned investigations, numerical/analytical solutions were
obtained by considering no discontinuity in thermal conditions. But, majority of the
problems of practical interest require the velocity and temperature to satisfy dis-
continuous or arbitrary conditions at the boundary. Few relevant studies are due to
Chandran et al. (2005), Seth et al. (2011, 2013, 2014), and Khalid et al. (2015).

Intent of present paper is to analyze the influence of thermal radiation on MHD
free convective flow of electrically conducting, incompressible, and viscous
nanofluids near a ramped temperature plate which is moving with an exponential
velocity.
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2 Problem Formulation and Its Solution

Consider unsteady MHD free convection flow of optically thick radiating nano-
fluids over an exponentially accelerated vertical plate having ramped temperature
profile as shown in Fig. 1. The x0-axis is along the flow, and y0-axis is perpendicular
to it. A uniform magnetic field of intensity B0 is applied, parallel to y0-axis. Initially,
i.e., for t0 � 0; there is no movement in fluid and plate, and both are kept as uniform
temperature d01. Thereafter, the plate is provided with an exponential velocity
U0ea

0t0 in the x0 direction aligned with the gravitational field.
The plate temperature is changed to d01 þ d0w � d01

� �
t0=t0: Subsequently, i.e., at

time t0 [ t0; plate is preserved at uniform temperature d0w: Cu–water, Al2O3–water,
and TiO2–water nanofluids are considered. The shape and size of nanoparticles are
assumed to be uniform. We have also assumed the thermal equilibrium between
base fluid and nanoparticles. Also, no slip mechanism is involved.

The properties of nanoparticles and base fluid are given in Table 1.
The plate is considered to be electrically non-conducting and of inestimable level

in x0 direction, so all quantities excluding pressure are the functions of only t0 and y0.
Since for the flows of liquid metals and partially ionized fluids, the value of
magnetic Reynolds number is very small; consequently, the induced magnetic field
can comfortably be ignored. Also, the effect of electric field, owing to polarization,
is neglected because there is no electric field applied.

Fig. 1 Geometry of the
problem
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Under the conjecture made in this problem and Boussinesq approximation, the
equations for unsteady MHD free convective flow of electrically conducting, vis-
cous, and incompressible nanofluids taking into the consideration the effect of
thermal radiation reduce to

qnf
@u0

@t0
¼ lnf

@2u0

@y02
� rnf B

2
0u

0 þ g qbð Þn f d0 � d01
� �

; ð1Þ

qcp
� �

nf

@d0

@t0
¼ knf

@2d0

@y02
� @q0r

@y0
; ð2Þ

where u0; d0; qnf ; rnf ; g; lnf ; bnf ; qcp
� �

nf ; knf and q0r are the component of nanofluid

velocity in x0 direction, temperature of nanofluid, density of nanofluid, electrical
conductivity of nanofluid, acceleration due to gravity, dynamic viscosity of nano-
fluid, thermal expansion coefficient of nanofluid, heat capacitance of nanofluid,
thermal conductivity of nanofluid, and radiative heat flux, respectively.

For the nanofluids, the expressions of qnf ; lnf ; rnf ; qbð Þnf and qcp
� �

nf are given

as (Khalid et al. 2015; Das et al. 2015)

qnf ¼ 1� /ð Þqf þ/qs; lnf ¼ lf 1� /ð Þ�2:5;

qbð Þnf¼ 1� /ð Þ qbð Þf þ/ qbð Þs;
qcp
� �

nf¼ 1� /ð Þ qcp
� �

f þ/ qcp
� �

s;

rnf ¼ rf 1þ 3 r�1ð Þ/
rþ 2ð Þ� r�1ð Þ/

h i
; r ¼ rs

rf
;

9>>>>>=
>>>>>;

ð3Þ

where /; qf ; qs;lf ; bf ; bs; qcp
� �

f ; qcp
� �

s; rf and rs are, respectively, the solid vol-

ume fraction of nanoparticle, density of base fluid, density of nanoparticle, viscosity
of base fluid, thermal expansion coefficient of base fluid, thermal expansion coef-
ficient of nanoparticle, heat capacitance of base fluid, heat capacitance of
nanoparticle, electrical conductivity of base fluid, and electrical conductivity of
nanoparticle. As pointed out by Oztop and Abu-Nada (2008), the expressions
presented in Eq. (3) are limited to spherical nanoparticles, whereas it is not valid for
other shape of nanoparticles. The model for effective thermal conductivity of the
nanofluid, i.e., kn f for the spherical nanoparticles given by Hamilton and Crosser
model followed by Oztop and Abu-Nada (2008) is expressed as

Table 1 Thermo-physical properties of water and nanoparticles (Oztop and Abu-Nada 2008)

q (kg/m3) cp (J/kg K) k (W/m K) b� 105 (K−1) / r (S/m)

Water (base fluid) 997.1 4179 0.613 21 0.00 5.5 � 10−6

Cu (copper) 8933 385 401 1.67 0.05 59.6 � 106

Al2O3 (alumina) 3970 765 40 0.85 0.15 35 � 106

TiO2 (titanium oxide) 4250 686.2 8.9538 0.90 0.20 2.5 � 106
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knf ¼ kf
ks þ 2kf � 2/ kf � ks

� �
ks þ 2kf þ/ kf � ks

� �
" #

; ð4Þ

where ks and kf are respectively, thermal conductivity of nanoparticles and the base
fluid.

The associated conditions for the model are given by

u0 ¼ 0; d0 ¼ d01 for y0 � 0 and t0 � 0;
u0 ¼ U0ea

0t0 at y0 ¼ 0 for t0 [ 0;
d0 ¼ d01 þ d0w � d01

� �
t0=t0 at y0 ¼ 0 for 0\t0 � t0;

d0 ¼ d0w at y0 ¼ 0 for t0 [ t0;
u0 ! 0; d0 ! d01 as y0 ! 1 for t0 [ 0:

9>>>>>=
>>>>>;

ð5Þ

The expression for radiative heat flux for an optically thick media adopting
Rossel approximation is depicted as

q0r ¼ � 4r�

3k�
@d04

@y0
; ð6Þ

where k� is the mean absorption coefficient, and r� is the Stefan–Boltzmann con-
stant. The variation of fluid temperature d0 in the thermal boundary layer and fluid
temperature d01 in the free stream is considered to be adequately small, so that
Eq. (6) can be linearized by expressing d04 in Taylor series about d01 which, after
omitting out second- and higher-order terms, takes the following form

d04 ffi 4d031d0 � 3d041; ð7Þ

Making use of Eqs. (6) and (7) in (2), we get

qcp
� �

nf

@d0

@t0
¼ knf þ 16r�d031

3k�

� �
@2d0

@y02
: ð8Þ

To convert Eqs. (1) and (8) into dimensionless form, following dimensionless
variables and parameters are mentioned

y ¼ y0

U0t0
; u ¼ u0

U0
; t ¼ t0

t0
; d ¼ d0 � d01

� �
d0x � d01
� � ; a ¼ a0tf

U2
0
: ð9Þ

Equations (1) and (8), in dimensionless form, become

@u
@t

¼ a1
@2u
@y2

� a2M
2uþ a3Grd; ð10Þ
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@d
@t

¼ 1
a2

@2d
@y2

; ð11Þ

where

/1 ¼ 1� /ð Þþ/ qs
qf

� �h i
; /2 ¼ 1þ 3 r�1ð Þ/

rþ 2ð Þ� r�1ð Þ/
h i

; r ¼ rs
rf
;

/3 ¼ 1� /ð Þþ/ qbð Þs
qbð Þf

h i
; /4 ¼ 1� /ð Þþ/

qcpð Þs
qcpð Þf

� 	
; a1 ¼ 1

1�/ð Þ2:5/1
;

a2 ¼ /2
/1
; a3 ¼ /3

/1
; a1 ¼ kn f

kf
; M2 ¼ rf B2

0tf
qf U

2
0
; Pr ¼

qtcpð Þf
kf

;

Tr ¼ 16r�d031
3k�kf

� �
; Gr ¼ gbf tf d0w�d01ð Þ

U3
0

� 	
; a2 ¼ Pr/4

a1 þTr

h i
;

9>>>>>>>>>>=
>>>>>>>>>>;
ð12Þ

where M2;Pr; Tr and Gr are, respectively, the magnetic parameter, Prandtl number,
thermal radiation parameter, and Grashof number, and /i i ¼ 1; 2; 3; 4ð Þ are the
functions which depend on the thermo-physical properties of nanoparticles and base
fluid.

The characteristic time t0 may be defined as t0 ¼ tf =U2
0 ; where U0 is the uniform

velocity.
The associated conditions (5) in dimensionless, reduce to

u ¼ 0; d ¼ 0 for t� 0; and y� 0
u ¼ ea t at y ¼ 0 for t[ 0;
d ¼ t at y ¼ 0 for 0\t� 1;
d ¼ 1 at y ¼ 0 for t[ 1;
u ! 0; d ! 0 as y ! 1 for t[ 0:

9>>>>=
>>>>;

ð13Þ

To find the exact solution, the set of dimensionless equations (10) and (11)
together with associated conditions (13) is solved analytically employing the
Laplace transform method, and solutions for the nanofluid velocity u y; tð Þ and the
nanofluid temperature d y; tð Þ are obtained and are given as

u y; tð Þ ¼ ea t

2
f2 y; a4; a5; a; tð Þ

þ a3
2a4

F1 y; tð Þ � H t � 1ð ÞF1 y; t � 1ð Þf g;
ð14Þ

d y; tð Þ ¼ d1 y; tð Þ � H t � 1ð Þd y; t � 1ð Þ; ð15Þ
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where

a4 ¼ 1=a1; a5 ¼ M2a2 sin2 h; a3 ¼ Gra3a4=ða2 � a4Þ;
a4 ¼ a4a5=ða2 � a4Þ;

F1 y; tð Þ ¼ ea4t

a4
f2 y; a4; a5; a4; tð Þf �f2 y; a2; 0; a4; tð Þg

� f1 y; a4; a5; a4; tð Þ � 2f3 y; a2; a4; tð Þ; d1 y; tð Þ
¼ f3 y; a2; 0; tð Þ:

The expressions for fi i ¼ 1; 2; 3ð Þ are presented in Appendix.

3 Shear Stress and Nusselt Number

Expressions of shear stress s and Nusselt number Nu are mentioned in the following
forms

s ¼ eatf5 a4; a5; a; tð Þþ a3
a4

F2 tð Þ � H t � 1ð ÞF2 t � 1ð Þf g; ð16Þ

Nu ¼ 2

ffiffiffiffiffi
a2
p

r ffiffi
t

p � H t � 1ð Þ
ffiffiffiffiffiffiffiffiffiffi
t � 1

pn o
; ð17Þ

where

F2 tð Þ ¼ ea4t

a4
f5 a4; a5; a4; tð Þ � f5 a2; 0; a4; tð Þf g

� 1
2

f4 a4; a5; tð Þþ 4

ffiffiffiffiffiffi
a2t
p

r� �
� 1
a4

f5 a4; a5; 0; tð Þþ
ffiffiffiffiffi
a2
tp

r� �
:

Expressions for fi i ¼ 4; 5ð Þ are given in Appendix.

4 Results and Discussion

To highlight the influence of various physical parameters on the flow field, the
numerical computations are performed, and numerical results for the nanofluid
velocity and nanofluid temperature are elucidated with the graphical illustrations,
whereas, for engineering perspective, the numerical values of shear stress are given
in the table. The numerical values of Cu–water-based nanofluid velocity u y; tð Þ;
calculated from the solution (14), are presented by various graphs in Figs. 2, 3, 4, 5,
and 6 against magnetic field parameter M2; plate acceleration parameter a,
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nanoparticle volume fraction /; radiation parameter Tr, and time t, by setting
Pr ¼ 0:71 and Gr ¼ 4: As suggested by Das et al. (2015), the values of / are
considered in the range of 0�/� 0:2. In addition, the spherical nanoparticles with
dynamic viscosity and thermal conductivity as mentioned in Table 1 are consid-
ered. It is detected from Fig. 2 that the nanofluid velocity decreases on increasing
the values of M2:

M 2 4,6,8
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Fig. 2 Influence of M2 on
velocity profiles
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Fig. 4 Influence of / on
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It is revealed from Fig. 3 that the nanofluid velocity gets accelerated due to the
increasing values of a. This implies that the acceleration parameter of the plate has
tendency to accelerate the nanofluid velocity. It is illustrated from Fig. 4 that as /
increases, the nanofluid velocity decreases. This infers that the nanoparticle volume
fraction has a retarding effect on the nanofluid velocity. Physically, this trend is
observed due to the fact that increase in the nanoparticle volume fraction tends to
reduce the thermal conductivity of nanofluid, which in turn causes the thickness of
boundary layer to reduce and the viscosity to increase, thereby decreasing the
nanofluid velocity. It is grasped from Fig. 5 that the nanofluid velocity gets
accelerated with rising value of radiation parameter Tr. This indicates that thermal
radiation causes enrichment in the nanofluid velocity. It is revealed from Fig. 6 that
there is an upsurge in the nanofluid velocity on increasing time t. This observation
points out that the nanofluid velocity gets accelerated with the progress of time.
Figure 7 shows the comparison of velocity profiles for different types of nanofluids
containing the nanoparticles of copper (Cu), titanium oxide (TiO2), and alumina
(Al2O3). It is apparent from Fig. 7 that Cu–water-based nanofluid has highest
velocity followed by Al2O3–water and TiO2–water nanofluids. The influences of
nanoparticle volume fraction / and radiation parameter Tr considering Pr ¼ 0:71
and t = 0.5 on Cu–water-based temperature profiles are presented in Figs. 8 and 9.
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It is pervaded from Figs. 8 and 9 that an increase in either / or Tr results in
significant rise in the nanofluid fluid temperature d y; tð Þ. Physically, it is interpreted
as the thermal radiation and nanoparticles volume fraction have tendency to
increase the nanofluid temperature.

The numerical values shear stress s of Cu–water-based nanofluid computed from
Eq. (16) are mentioned in Table 2 for some values of M2;/; Tr and t by setting
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Pr ¼ 0:71;Gr ¼ 4 and a ¼ 1: It is perceived from this table that shear stress s
increases due to increase of /; whereas it decreases due to increase of M2; Tr and t:
This infers that the nanoparticle volume fraction has tendency to enhance the shear
stress, whereas magnetic field and radiation have adverse effects. As time increases,
the shear stress gets reduced.

It is exhibited from Eqs. (12) and (17) that Nusselt number Nu decreases on
increasing either nanoparticle volume fraction / or radiation parameter Tr where it
increases with the increase of t. This means that nanoparticle volume fraction and
thermal radiation have propensity to squeeze the rate of heat transfer at the plate,
and as time passes, the rate of heat transfer at plate gets improved.

5 Conclusions

Notable findings are summarized as under.
The acceleration parameter of the plate and thermal radiation lean to accelerate

the nanofluid velocity while magnetic field and nanoparticle volume fraction have a
reversal effect, and it gets speeded with the rise in time. The Cu–water-based
nanofluid has highest velocity followed by Al2O3–water and TiO2–water nano-
fluids. The nanoparticles’ volume fraction and thermal radiation lead to augment the
nanofluid temperature. The augmentation of nanoparticle volume fraction leads to
raise the shear stress, while thermal radiation and magnetic field and have a reversal
effect. The shear stress at the plate gets condensed with the progress of time. The
nanoparticles’ volume fraction and thermal radiation tend to diminish the rate of
heat transfer at the boundary, whereas it gets improved with the progress of time.

Table 2 Skin friction s for
Cu–water-based nanofluid
when Pr ¼ 0:71

M2 / Tr t s

4 0.05 1 0.5 1.42944

6 0.05 1 0.5 1.10442

8 0.05 1 0.5 0.75043

6 0.00 1 0.5 0.76661

6 0.10 1 0.5 1.32735

6 0.05 2 0.5 1.07618

6 0.05 3 0.5 1.06015

6 0.05 1 0.3 1.88059

6 0.05 1 0.7 0.56077
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Appendix

f1 c1; c2; c3; c4; c5ð Þ ¼ 1
c4

þ c5 þ c1
2

ffiffiffiffiffi
c2
c3

r� �� �
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Free-Stream-Induced Unsteady MHD
Flow with Hall Effect over Permeable Plate
in a Rotating System

G.S. Seth, N. Mahto, R. Tripathi and R. Kumar

Abstract Analytical investigations of unsteady magnetohydrodynamic flow with
Hall effect of a viscous, incompressible and electrically conducting fluid past a
porous flat plate with impulsively moving free stream in a rotating frame of ref-
erence are carried out. Exact solution for the primary and secondary fluid velocities
is obtained in closed form by Laplace transform technique. The expressions for skin
frictions due to primary and secondary flows are also derived. The numerical values
of the primary and secondary fluid velocities are displayed graphically, whereas
those of skin frictions are presented in tabular form for various values of pertinent
flow parameters. Asymptotic nature of the solution is also examined, for both small
and large values of time T, to understand the physics of the flow.

1 Introduction

Lighthill (1954) initiated the study of unsteady flow of a viscous and incom-
pressible fluid induced by time-dependent movement of free stream. In his classical
paper, Lighthill (1954) investigated the response of skin friction in laminar flow due
to fluctuations in the free-stream velocity. This research by Lighthill (1954)
prompted several researchers to study the fluid flow problems induced by
time-dependent movement of the free stream. Mention may be made of the relevant
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research studies of Stuart (1955), Lin (1957), Watson (1958) and Messiha (1966).
Gorla (1984) studied the effects of unsteady free-stream velocity and free-stream
turbulence on stagnation point flow with heat transfer. Gorla (2003) analysed
unsteady mixed convection flow from a horizontal cylinder due to time-dependent
free-stream motion. Das et al. (2014) studied unsteady mixed convective flow of a
viscous and incompressible fluid past an infinitely long vertical plate with
Newtonian heating considering impulsive, accelerated and oscillatory movements
of the free stream. Seth et al. (2014) extended the problem studied by Das et al.
(2014) by including the effect of externally applied magnetic field. Shehzad et al.
(2015) discussed the Soret and Dufour effects on hydrodynamic flow induced by
time-dependent motion of free stream. Ganapathirao et al. (2015) considered
time-dependent accelerating and decelerating free-stream flow over a vertical
wedge with heat generation/absorption in the presence of uniform suction/injection
and chemical reaction.

Investigation of magnetohydrodynamic flow in a rotating medium is of prime
importance because it helps us in understanding various cosmical and geophysical
problems such as maintenance and secular variations of Earth’s magnetic field due
to motion of Earth’s liquid core, internal rotation rate of the Sun, structure of the
rotating magnetic stars, and development of sunspots. The application of such
studies is not limited only to the problems of geophysical and cosmical phe-
nomenon, but also it has got a lot of modern-day engineering and industrial
applications, viz. rotating MHD generators, rotating drum-type separators for liquid
metal MHD applications, turbo machines, electromagnetic stirring of liquid metal in
continuous-casting machines. Realizing the significance of such study, unsteady
hydromagnetic flow past a plate in a rotating medium is investigated by several
researchers. Noteworthy research studies on the topic are due to Singh (1984),
Raptis and Singh (1985), Kythe and Puri (1988), Nanousis (1992), Singh et al.
(2009), Seth et al. (2015) and Seth and Sarkar (2015). However in all the research
studies made above for hydromagnetic rotating flow, the fluid flow is induced due
to time-dependent movement of the plate. Seth et al. (1981) investigated unsteady
hydromagnetic flow of a viscous, incompressible and electrically conducting fluid
over a horizontal porous plate in a rotating medium with time-dependent movement
of free stream. They consider two cases of physical interest, namely (i) impulsive
movement of free stream and (ii) accelerated movement of free stream.

It is noticed that when the density of an electrically conducting fluid is low
and/or applied magnetic field is strong, Hall current plays a vital role in determining
flow features of the fluid flow problems because it induces secondary flow in the
flow field. Lighthill (1960) highlighted the need to incorporate the effects of Hall
current in magnetohydrodynamic flows. Sato (1961) indicated that Hall current
induces secondary flow in the flow field whilst studying the effects of Hall current
on magnetohydrodynamic boundary layer flows. It is noteworthy that Hall
current induces secondary flow in the flow field which is also the characteristics of
Coriolis force. Therefore, it is essential to compare and contrast the effects of these
two agencies and also to study their combined effects on such fluid flow problems.
Considering these two effects, Takhar et al. (2002) obtained numerical solution of
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steady MHD flow over a moving plate in a rotating fluid in the presence of Hall
currents and uniform free-stream velocity. Ahmed and Goswami (2011) employed
Lighthill’s (1954) principle to study the effects of Hall current on unsteady MHD
forced convection flow from an infinite horizontal porous plate with dissipative heat
in a rotating system. However, the very interesting and fundamental problem of
unsteady MHD flow past a plate with time-dependent free-stream velocity (i.e.
uð1; tÞ ¼ FðtÞ) considering the dual effects of Hall current and rotation has not
garnered much attention in recent past. Recently, Seth et al. (2016) considered
combined effects of Hall current and rotation on unsteady hydromagnetic natural
convection flow with exponentially accelerated free stream near a vertical plate in a
fluid-saturated porous medium.

The objective of our present investigation is to study the effects of Hall current
and rotation on unsteady hydromagnetic flow of a viscous, incompressible and
electrically conducting fluid past a horizontal porous plate considering
time-dependent movement of the free stream. Exact solution for fluid velocity is
obtained using Laplace transform technique. In order to shed some light into the
deeper aspects of the problem, asymptotic behaviour of the solution for fluid
velocity is analysed for both small and large values of time T. Analytical solution to
the problem presented is original in nature and may have bearings on several
engineering problems, viz. aerodynamic heating, plasma confinement, geothermal
energy extraction and many more.

2 Problem Formulation

Magnetohydrodynamic flow of an electrically conducting, viscous and incom-
pressible fluid over an infinite horizontal permeable flat plate due to impulsive
movement of free stream is considered. Plate lies in xy-plane, flow is directed along
x-axis, and z-axis is normal to the plane of the plate. Initially, i.e. for time t� 0,
fluid and plate are at rest. At time t[ 0, free stream starts moving with
time-dependent velocity UðtÞ in x-direction. Fluid is permeated by a uniform
transverse magnetic field H0 acting in z-direction. It is assumed that the plate is
infinite in x- and y-directions, so all physical quantities, except pressure, depend on
z and t only. Figure 1 represents the geometry of the problem.

Keeping in view the assumptions made above, the equations of motion for
unsteady magnetohydrodynamic flow of an electrically conducting, viscous and
incompressible fluid in a rotating frame of reference are:

@u0

@t
� w0

@u0

@z
� 2Xv0 ¼ @U

@t
þ m

@2u0

@z2
þ rl2eH

2
0

qð1þm2Þ mv0 � u0 þU½ �; ð1Þ

@v0

@t
� w0

@v0

@z
þ 2X u0 � Uð Þ ¼ m

@2u0

@z2
� rl2eH

2
0

qð1þm2Þ v0 þmu0 � mU½ �; ð2Þ
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where m ¼ xese is Hall current parameter; u; v;w0; q; m; r; le;xe and se are fluid
velocity in x-direction, fluid velocity in y-direction, fluid velocity for
suction/injection normal to the plate (w0 [ 0 for suction and w0\0 for injection),
fluid density, kinematic coefficient of viscosity, electrical conductivity, magnetic
permeability, cyclotron frequency and electron collision time, respectively.

The initial and boundary conditions to be satisfied are:

u0 ¼ 0; v0 ¼ 0 for z� 0 and t� 0; ð3aÞ

u0 ¼ 0; v0 ¼ 0 at z ¼ 0 for t[ 0; ð3bÞ

u0 ! UðtÞ; v0 ! 0 as z ! 1 for t[ 0: ð3cÞ

Equations (1) and (2), in non-dimensional form, are given by:

@u
@T

� S
@u
@g

� 2K2v ¼ dF
dT

þ @2u
@g2

þ M2

1þm2ð Þ ½mv� uþF�; ð4Þ

@v
@T

� S
@v
@g

� 2K2ðu� FÞ ¼ @2v
@g2

� M2

ð1þm2Þ ½vþmu� mF�; ð5Þ

where g ¼ U0z=m; u ¼ u0=U0; v ¼ v0=U0; T ¼ U2
0 t=m; S ¼ x0=U0 is the

suction/injection parameter (S[ 0 for suction and S\0 for injection),

0H

x

u′

g
( ) ( )
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0
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u t U t
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v t

′ ∞ = ⎫⎪ >⎬′ ∞ = ⎪⎭

Porous medium

Ω
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Fig. 1 Geometry of the problem
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M2 ¼ leH0
U0

rm
q

� �1=2
is the magnetic field parameter, K2 ¼ mX=U2

0

� �1=2
is rotation

parameter, and U0 is the characteristic velocity.
The initial and boundary conditions (3a) to (3c), in non-dimensional form,

reduce to:

u ¼ 0; v ¼ 0 for g� 0 and T � 0; ð6aÞ

u ¼ 0; v ¼ 0 at g ¼ 0 for T [ 0; ð6bÞ

u ! FðTÞ; v ! 0 as g ! 1 for T [ 0; ð6cÞ

where F Tð Þ ¼ U tð Þ=U0:

3 Exact Solution

Laplace transform technique is applied to solve Eqs. (4) and (5) together with initial
and boundary conditions (6a) to (6c). Equations (4) and (5) together with initial and
boundary conditions (6a) to (6c), by taking Laplace transform, reduce to

d2f
dg2

þ S
df �

dg
� M2ð1þ imÞ

1þm2 þ 2iK2 þ s

� �
f �

¼ � M2ð1þ imÞ
ð1þm2Þ þ 2iK2 þ s

� �
F�;

ð7Þ

f � ¼ 0 at g ¼ 0
f � ¼ F� as g ! 0

�
ð8Þ

where

f ¼ uþ iv; f � ¼
Z1
0

f ðg; TÞe�sTdT and

F� ¼
Z1
0

FðTÞe�sTdT ; ðs[ 0Þ:

Solution to Eq. (7) subject to the boundary conditions (8) is given by:

f � ¼ F� 1� e
� S

2þ S2
4 þ M2

ð1þm2Þð1þ imÞþ 2iK2 þ s

� �1=2
� �

g

2
64

3
75: ð9Þ
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Primary velocity uðg; TÞ and secondary velocity vðg; TÞ are obtained by taking
inverse Laplace transform of Eq. (9) and are represented as:

uðg; TÞ ¼ FðTÞ � g
e�

S
2ð Þ g

4
ffiffiffi
p

p
ZT
0

FðT � kÞ e� akþ g2=4kð Þ þ e� bkþ g2=4kð Þn o
k�3=2dk;

ð10Þ

vðg; TÞ ¼ ig
e�

S
2ð Þ g

4
ffiffiffi
p

p
ZT
0

FðT � kÞ e� akþ g2=4kð Þ � e� bkþ g2=4kð Þn o
k�3=2dk; ð11Þ

where a ¼ aþ ibð Þ2; b ¼ a� ibð Þ2;

a ¼ 1ffiffiffi
2

p M2

1þm2 þ S2

4

	 
2

þ mM2

1þm2 þ 2K2
	 
2

( )1=2

þ M2

1þm2 þ S2

4

	 
2
4

3
5
1=2

;

ð12aÞ

b ¼ 1ffiffiffi
2

p M2

1þm2 þ S2

4

	 
2

þ mM2

1þm2 þ 2K2
	 
2

( )1=2

� M2

1þm2 þ S2

4

	 
2
4

3
5
1=2

:

ð12bÞ

Solutions (10)–(12b) represents general solution to the problem considered when
free stream moves with time-dependent velocity FðTÞ. We shall now discuss par-
ticular case of interest of the problem when there is impulsive movement of free
stream.

For this purpose, we consider

F Tð Þ ¼ DH Tð Þ ð13Þ

where D is a non-dimensional constant and H Tð Þ is Heaviside unit step function.
The general solutions (10) and (11) with the use of (13) assume the following

form:

u g; Tð Þ ¼ DH Tð Þ � 1
4
DH Tð Þe� S

2ð Þg f1 g; a; Tð Þþ f1 g; b; Tð Þ½ �; ð14Þ

v g; Tð Þ ¼ i
4
DH Tð Þe� S

2ð Þg f1 g; a; Tð Þ � f1 g; b; Tð Þ½ �: ð15Þ

The non-dimensional skin friction components, due to the primary and sec-
ondary flows, respectively, are given by:

50 G.S. Seth et al.



sxi ¼ 1
2
DH Tð Þ Sþ f2 a; Tð Þþ f2 b; Tð Þþ 1ffiffiffiffiffiffi

pT
p e�aT þ e�bT

� �� �
; ð16Þ

syi ¼ � i
2
DH Tð Þ f2 a; Tð Þ � f2 b; Tð Þþ 1ffiffiffiffiffiffi

pT
p e�aT � e�bT

� �� �
: ð17Þ

The expressions for f1 and f2 are presented in Appendix.
The displacement thickness d for impulsive movement in the free stream is given

by:

U0

tD
d ¼ 1

2
Real

1ffiffiffi
a

p 1þ S2

4 a� S2=4ð Þ
	 


erf
ffiffiffiffiffiffi
aT

p� �� ��

þ 1ffiffiffi
b

p 1þ S2

4 b� S2=4ð Þ
	 


erf
ffiffiffiffiffiffi
bT

p� �� �

� S
2 a� S2=4ð Þ 1� e� a�S2=4ð ÞTerfc S

2

ffiffiffiffi
T

p	 
� �

� S
2 b� S2=4ð Þ 1� e� b�S2=4ð ÞTerfc S

2

ffiffiffiffi
T

p	 
� ��
:

ð18Þ

Equation (18) represents the measure of the depth of modified Rayleigh layer
due to impulsive movement of the free stream which can be considered as classical
Rayleigh layer modified by Hall current, rotation, magnetic field and
suction/injection.

In the absence of Hall current and rotation (i.e. m ¼ 0 and K2 ¼ 0), Eq. (18)
reduces to

U0d
tD

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ S2

4

q 1þ S2

4M2

	 

erf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ S2

4

	 

T

s !

� S
2M2 1� e�M2T erfc

S
2

ffiffiffiffi
T

p	 
� �
:

ð19Þ

It presents the measure of the depth of modified Rayleigh layer and can be
viewed as classical Rayleigh layer modified by rotation, magnetic field and
suction/injection.

For impermeable plate (i.e. S ¼ 0), Eq. (19) displays the measure of the depth of
modified Rayleigh layer which can be viewed as classical Rayleigh layer modified
by magnetic field. In this case, Eq. (19) reduces to:

U0

tD
d ¼ 1

M
erf M

ffiffiffiffi
T

p� �
; ð20Þ
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In the absence of magnetic field (i.e. M2 ¼ 0), Eq. (20) represents the thickness
of the classical Rayleigh layer given by da

ffiffiffiffiffiffi
tT

p
.

When time T ! 1, Eq. (19) represents the thickness of modified Hartmann
layer which can be viewed as classical Hartmann layer modified by
suction/injection and is given by:

U0d
tD

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ S2

4

q 1þ S2

4M2

	 

� S2

2M2 : ð21Þ

In the absence of suction/injection (S ¼ 0), Eq. (21) represents the thickness of
classical Hartmann layer which is given by:

U0d
tD

¼ 1
M

: ð22Þ

4 Asymptotic Solutions

We shall now obtain the asymptotic solutions, valid for small and large values of
time T, from the solutions (14) and (15) to gain some physical insight into the flow
pattern.

When T is small, the solutions (14) and (15) assume the following form:

u g; Tð Þ ¼ D 1� e�
S
2ð Þg erfc g=2

ffiffiffiffi
T

p� �
� g

M2

1þm2ð Þ þ
S2

4

	 
��

� T
p

	 
1=2

e�g2=4T � 1
2
gerfc g=2

ffiffiffiffi
T

p� �( )#) ð23Þ

v g; Tð Þ ¼ D
mM2

1þm2ð Þ þ 2K2
	 


ge
Sg
2 � T

p

	 
1=2

e�g2=4T � 1
2
gerfc g=2

ffiffiffiffi
T

p� �" #

ð24Þ

It is revealed from the solutions (23) and (24) that, for small time T, the primary
fluid velocity u g; Tð Þ is independent of rotation whilst the secondary fluid velocity
v g; Tð Þ has significant effects of Hall current, magnetic field and rotation. This is
due to the fact that both Hall current and rotation generate secondary flow in the
flow field. It is also noticed from (23) and (24) that both the primary and secondary
fluid velocities have considerable effect of suction/injection. It may be noted from
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(24) that in the absence of Hall current, secondary velocity v g; Tð Þ is unaffected by
magnetic field. At initial stage, there arises a Rayleigh layer of thickness O 2

ffiffiffiffi
T

p� �
near the plate and there are no inertial oscillations in the flow field.

For large time T, the solutions (14) and (15) reduce to

uðg; TÞ ¼ D 1� e� aþ S
2ð Þg cos bgþ g

2f
ffiffiffiffiffiffi
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p e
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T sin
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T
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ð25Þ

vðg; TÞ ¼ D e� aþ S
2ð Þg sin bg� g

2f
ffiffiffiffiffiffi
pT

p e
� g
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where

f ¼ M2

1þm2 þ S2

4

	 

T � g2

4T

� �2

þ mM2

1þm2 þ 2K2
	 


T

� �2

:

The expressions (25) and (26) reveal that the flow field is in a quasi-steady state.
Steady-state flow is confined within a modified Ekman–Hartmann boundary layer
which can be viewed as Ekman–Hartmann boundary layer modified by Hall current
and suction/injection. The steady-state flow represents spatial oscillations in the
flow field affected by Hall current, magnetic field, rotation and suction/injection.
The unsteady-state flow represents inertial oscillations in the flow field which damp

out effectively in a dimensionless time O 1= M2

1þm2 þ s2
4

� �� �
when the final steady

state is developed. The frequency of these oscillations is given by
mM2=ð1þm2Þþ 2K2ð Þ:
In the absence of Hall current and rotation, there are no inertial oscillations in the

flow field. Thus, we may conclude that Hall current and rotation are responsible for
inducing inertial oscillations in the flow field. The time of decay of these oscilla-
tions is more in this case than the case in which either Hall current or
suction/injection is absent or both Hall current and suction/injection are absent.
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5 Results and Discussion

In order to gain a perspective of the physics of the flow regime, numerical com-
putations are conducted from analytical solutions (14) and (15) for the primary and
secondary velocity fields and from the analytical expressions (16) and (17) for the
primary and secondary skin frictions for various values of the physical parameters
that describe the flow characteristics.

The variation of primary velocity u and secondary velocity v, versus boundary
layer coordinate g under the influence of Hall current parameter m, magnetic
field parameter M2; rotation parameter K2 and suction/injection parameter
S (S[ 0 for suction and S\0 for injection), taking D ¼ 1:0 and T ¼ 0:3; is
depicted graphically in Figs. 2, 3, 4, 5 and 6.

It is observed from Fig. 2 that, on increasing m, u gets decelerated in the region
0� g� 0:8 and thereafter it changes its characteristics whilst v increases throughout
the boundary layer. This observation suggests that Hall current tends to retard the
primary flow in the region near the plate whereas it has a reverse effect on
the secondary flow throughout the boundary layer. Figure 3 reveals that, with the
increase in M2; u increases throughout the boundary layer whereas there is almost
no effect of M2 on v in the region 0� g\0:18 and thereafter, i.e. for g� 0:18; v
decreases on increasing M2: This implies that magnetic field accelerates the primary
flow throughout the boundary layer whereas it decelerates the secondary flow as we
move away from the plate. These characteristics of flow with respect to the influ-
ence of magnetic field are in agreement with those of Seth et al. (1981). It is inferred
from Fig. 4 that, on increasing K2, u gets accelerated throughout the boundary layer
whereas v increases in the region 0� g\0:35 and then follows a reverse pattern in

Fig. 2 Velocity profiles for K2 ¼ 3;M2 ¼ 10 and S ¼ 1
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the rest of the boundary layer region. This suggests that rotation exerts accelerating
influence on the primary flow throughout the boundary layer whereas it accelerates
the secondary flow in the region near the plate. It is evident from Fig. 5 that, on
increasing suction parameter S (S[ 0), u gets accelerated whilst a reverse pattern
occurs for v. This observation suggests that suction of fluid through the plate
accelerates the primary fluid velocity whereas it has a reverse effect on the sec-
ondary fluid velocity. Figure 6 establishes that u gets decelerated whilst a reverse
phenomenon is observed for v on increasing injection parameter S (S\0). This
implies that injection of the fluid from the plate retards the primary fluid velocity
whereas it has a reverse effect on the secondary fluid velocity.

Fig. 3 Velocity profiles for K2 ¼ 3;m ¼ 1 and S ¼ 1

Fig. 4 Velocity profiles for m ¼ 1;M2 ¼ 10 and S ¼ 1
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The nature of primary skin friction sxi and secondary skin friction syi, under the
actions of Hall current parameter m, magnetic field parameter M2; rotation
parameter K2 and suction/injection parameter S (S[ 0 for suction and S\0 for
injection) taking D ¼ 1:0 and T ¼ 0:3, is presented in Table 1. It is revealed from
Table 1 that sxi is getting reduced on increasing m and injection parameter S (S\0)
whereas it is getting enhanced on increasing M2, K2 and suction parameter
S (S[ 0). syi is getting enhanced on increasing m, M2 and K2, whereas it is getting
reduced on increasing either suction parameter S (S[ 0) or injection parameter
S (S\0). These observations from Table 1 indicate that Hall current tends to reduce
the primary skin friction whereas it has a reverse effect on the secondary skin

Fig. 5 Velocity profiles for K2 ¼ 3;M2 ¼ 10 and m ¼ 1

Fig. 6 Velocity profiles for K2 ¼ 3;M2 ¼ 10 and m ¼ 1
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friction. Intensification of magnetic field and enhancement in rotation result in the
enhancement of both the primary and secondary skin frictions. Suction of fluid
through the plate results in the enhancement of primary skin friction, whereas an
opposite pattern is observed on the secondary skin friction. Fluid injection from the
plate tends to diminish both the primary and secondary skin frictions.

6 Conclusion

Noteworthy results are summarized as follows:

• An intensification in magnetic field and suction of fluid through the plate tends
to accelerate the primary flow in the boundary layer region, whereas these
agencies have reverse effect on the secondary flow. Injection of fluid from the
plate tends to decelerate the primary flow, whereas it has a reverse effect on the
secondary flow. Primary velocity is getting retarded, on increasing the Hall
current, in most of boundary layer region, whereas its effect on secondary
velocity is of opposite nature throughout the boundary layer. Rotation exerts
accelerating influence on the primary velocity throughout the boundary layer,
whereas it accelerates the secondary flow in the region near the plate.

• Strengthening of magnetic field and enhancement in rotation result in
enhancement of both the primary and secondary skin frictions. Hall current
tends to reduce the primary skin friction, whereas it has a reverse effect on the
secondary skin friction. Suction of fluid through plate enhances the primary skin
friction, whereas its effect on the secondary skin friction is of opposite nature.
Injection of fluid from the plate results in reduction of both the primary and
secondary skin frictions.

Table 1 Primary and
secondary skin frictions

m M2 K2 S sxa sya

0.5 10 3 1 3.74929 1.53986

1.0 10 3 1 3.44079 1.88299

1.5 10 3 1 3.16363 2.01411

1.0 12 3 1 3.64094 1.92344

1.0 14 3 1 3.82727 1.96477

1.0 10 5 1 3.76520 2.32027

1.0 10 7 1 4.04695 2.68097

1.0 10 3 2 4.03390 1.82233

1.0 10 3 3 4.68857 1.73074

1.0 10 3 −1 2.44079 1.88299

1.0 10 3 −2 2.03390 1.82233

1.0 10 3 −3 1.68857 1.73074
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Appendix

f1ðc1; c2; c3Þ ¼ ec1
ffiffiffi
c2

p
erfc c1=2

ffiffiffiffiffi
c3
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c2c3
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c2
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Radiation Effect on MHD Williamson
Fluid Flow over Stretching Cylinder
Through Porous Medium with Heat
Source

Shalini Jain and Amit Parmar

Abstract In this present paper, we have investigated radiation effects on MHD
Williamson fluid flow past a stretching cylinder through porous medium. MHD
with Hall and ion-slip currents impact is taken into consideration. The governing
PDEs are transformed into BVPs by using appropriate transformations. Shooting
technique with Runge–Kutta forth-order method is used to find the solution of the
problem. The effect of various parameters such as curvature parameter c, heat
generation parameter b, Hall current parameter be, ion-slip parameter bi magnetic
parameter M, thermal conductivity e, Weissenberg number k, Eckert number Ec,
radiation parameter K and Prandtl number Pr on momentum and thermal energy
profiles are discussed and displayed graphically. Local Nusselt number and skin
friction coefficient are tabulated.

1 Introduction

Several non-Newtonian models such as power law fluid model, Casson fluid
model, Jeffery fluid model and Williamson fluid model have been predicted for
the description of rheological behavior of fluid. Williamson fluid is a
non-Newtonian fluid and holds viscoelastic property. In Williamson fluid model,
maximum viscosity ðl1Þ as well as minimum viscosity ðl0Þ both are taken into
consideration. This model fits the experimental information of polymer solution
and particle suspensions better than other Newtonian and non-Newtonian fluids
models. Williamson fluid model has been studied by several researchers under
various flow patterns. Malik et al. (2016a, b) studied Williamson fluid and
thermal energy transfer past a stretching cylinder assuming that thermal
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conductivity varies linearly with temperature. Krishnamurthy et al. (2016)
examined chemical reaction and radiative effects on the steady MHD Williamson
fluid flow. Williamson fluid flow past a nonlinearly stretching sheet with thermal
radiative effect has been investigated by Monica et al. (2016). Narayana et al.
(2015) investigated the influence of viscous dissipation on thermal energy
transfer of Magneto-Williamson nanofluid. Khan et al. (2014) studied Williamson
fluid flow with chemically reactive species using scaling conversion and
homotopy analysis method. Nadeem and Hussain (2014) analyzed Williamson
fluid flow and thermal energy analysis over exponentially stretching surface,
(PEST) and (PEHF) case.

The MHD boundary layer flow and thermal energy transfer over a stretching
cylinder have many applications in manufacturing processes, plasma studies, pet-
roleum industries, MHD power generator, boundary layer control in aerodynamics,
chilling of nuclear reactors, crystal fiber production and paper production. Chauhan
et al. (2012, 2014) investigated radiative effects on MHD flow and energy transfer
in a permeable medium toward a stretching cylinder with or without slip effects.
Salahuddin and Malik (2015) analyzed MHD Williamson fluid flow over a
stretching cylinder. Jain et al. (2017), Jain and Parmar (2017a, b), Jain and
Choudhary (2015, 2017) and Parmar (2017) investigated the Williamson fluid
and other non-Newtonian and Newtonian flow through a various permeable and
non-permeable surface. They have considered the steady and unsteady flow for
MHD and Radiative non-Newtonian fluid through porous medium. Darji and Timol
(2014) studied MHD boundary layer equations for non-Newtonian Williamson
fluid. Slip boundary layer flow on MHD peristaltic transport of a Williamson fluid
past a porous medium have been investigated by Jyothi and Rao (2013). Kumari
et al. (2012) analyzed Williamson fluid flow in a vertical channel under the effect
of a magnetic field. Osalusi et al. (2007) and Shateyi and Motsa (2010) examined
Ohmic heating and viscous dissipation on unsteady MHD with Hall and ion-slip
currents.

Heat source/sink chillers are used in renewable utilization and waste heat recovery.
Few absorption technologies are generator absorber heat exchanger, compression
absorber heat pump, discrete heating system.Sia et al. (2014) analyzedunsteadyviscous
flow and thermal energy transfer due to a porous expanding stretching cylinder. Mahdy
and Chamkha (2015) investigated the thermal energy transfer and fluid flow of a
non-Newtonian nanofluid toward an unsteady contracting cylinder employing
Buongiorno’s model. Rangi and Ahmad (2012) studied the influence of thermal energy
transfer with variable thermal conductivity past a stretching cylinder. Thermal analysis
of conducting dusty fluid flow in a porous medium over a stretching cylinder in the
presence of non-uniform source/sink was investigated by Manjunatha et al. (2014).
Mahapatra et al. (2013) have been investigated the influence of magnetic field with
thermal radiative and thermal energy generation.

Thermal conductivity changes with the disparate in energy and depends on
material. Chauhan and Sharma (2001) analyzed the heat transfer in a compressible
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fluid flow with variable viscosity and thermal conductivity through a channel
bounded by a highly porous medium. Mabood et al. (2015) have been investigated
thermal radiative on Casson fluid flow heat and mass transfer around a circular
cylinder in porous medium. Makinde et al. (2016) studied MHD variable viscosity
reacting flow past a convective heated plate in porous medium with thermophoresis
and radiative heat transfer. Hady et al. (2012) studied radiative effect on viscous
nanofluid flow and thermal energy transfer over a nonlinearly stretching sheet.
Kothandapania and Prakash (2015) examined thermal radiative and MHD on the
peristaltic motion of Williamson nanofluid.

The present investigation aimed to study radiative effects on MHD Williamson
fluid over a stretching cylinder through permeable medium with heat source. Hall
current effect and ion-slip are also taken into account.

2 Problem Statement and Mathematical Formulation

The steady incompressible two-dimensional boundary layer flow of non-Newtonian
Williamson fluid flow past a stretching cylinder is considered, as shown in Fig. 1.
The axis of the cylinder is taken along the x-axis; r is taken along radial direction.
Magnetic field is applied in radial direction, and effect of induced magnetic fluid is
taken into consideration. Cylinder is immersed into a porous medium. Fluid and
porous media are thermal equilibriums. Surface of stretching cylinder is at constant
temperature Tw and ambient fluid temperature is T1. Under above assumptions, the
continuity, momentum, and energy equations are

@ðrvÞ
@r

þ @ðruÞ
@x

¼ 0 ð1Þ

u= U(x), v=0, T=Tw  at r=R

R

v

Porous medium

Porous medium

u

B0

x
r

Fig. 1 Physical diagram of the problem
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Boundary conditions are following such as

u ¼ UðxÞ; v ¼ 0; T ¼ Tw; at r ¼ R

u ! 0; T ! T1 at r ! 1 ð4Þ

The stretching velocity is UðxÞ ¼ U0x
l , and the U0 is the reference velocity; l; T1,

and TW are the characteristic length, extrema temperature, and the wall temperature.
On expanding T4, in a Taylor series about T1, on neglecting higher order term,
we get
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The stream function is introducing u ¼ 1
r
@w
@r ; v ¼ � 1

r
@w
@x , and the similar trans-

formation for the following momentum and temperature equation are defined as

g ¼ r2 � R2

2R

ffiffiffiffiffi
U
mx

r
; w ¼

ffiffiffiffiffiffiffiffi
Umx

p
Rf ðgÞ;

h ¼ T � TW
TW � T1

and a ¼ a1 1þ ehð Þ
ð5Þ

where a1 is the thermal conductivity at a large distance away from the cylinder and
e is the small amount of thermal conductivity.
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Equations (2)–(3) using Eq. (5) to make a non-dimension form such as

f 000 ð1þ 2gcÞþ kð1þ 2gcÞ3=2f 00
� �

þ 2cf 00 þ 3
2
ckð1þ 2gcÞ1=2f 00 2

� f 0 2 þ ff 00 � aMf 0

a2 þ b2e
� Kf 0 ¼ 0

ð6Þ

h00ð1þ 2gcÞ 1þ ehþ 4R
3

� �
þPrf h0 þ 2h0c 1þ ehþ 2

3
R

� �

þ bhPrþ ð1þ 2gcÞeh02 þ MPrEcf 02

a2 þ b2e
¼ 0

ð7Þ

And boundary condition is given below

f ¼ 0 f 0 ¼ 1; h ¼ 1 at g ¼ 0

f 0 ! 0; h ! 0 at g ¼ 1 ð8Þ

The dimensionless number Pr; c; k;M;R;K and b are the Prandtl number, cur-
vature parameter, Weissenberg number, magnetic parameter, radiation parameter,
Darcy permeability parameter, and heat generation parameter, defined as

c ¼ 1
R

ffiffiffiffiffi
xm
U

r
; k ¼ C
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2U3

mx

r
; Pr ¼ m

a1
; b ¼ Qx

qUcp
;

M ¼ lB2
0

U0q
; K ¼ ml

k�U0
; R ¼ 4r�T3

1
3k1a1qcp

where r ¼ ðe2neteÞ=me: electrical conductivity; a ¼ 1þ bebi, here be ¼ xete: the
hall parameter; bi ¼ eneB0=ðð1þ ne=naÞkaiÞ: the ion-slip parameter; xe ¼ eB0=me:
the electron frequency; e: the electron charge; ne: the electron number density, te:
the electron collision time; me: the mass of the electron; cp: specific heat at constant
pressure of the fluid; na is the neutral particle number density, and kai is the friction
coefficient between ions and neutral particles.

3 Method of Solution

This system of equation has been solved using Runga–Kutta fourth-order method
with shooting technique. In order to find solution of this problem using shooting
method, equation (6)–(8) are converted into system of first-order differential
equation as given below:
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Subject to boundary conditions

f ¼ 0; z ¼ 1; h ¼ 1; at g ¼ 0

f 0 ! 0 h ! 0 at g ! 1 ð10Þ

Now, the above system is solved by iterative shooting method. In order to solve
Eq. (9) as an initial value problem, value of f 00ð0Þ and h0ð0Þ is required which is not
given in boundary conditions. For a set of certain physical parameters and g1, we
choose some initial values. In current study, we have taken guesses for f 00ð0Þ, h0ð0Þ,
and /0ð0Þ from 1.1 to 1, 0.2 to 0.3. This procedure is repeated with some higher
value of g1 until we obtain solution which satisfied given boundary conditions and
correct up to the accuracy of 10−6.

Skin friction coefficient and local Nusselt number

The skin friction coefficient is defined as

Cf ¼ sW
1
2 qU

2
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@r
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" #
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ð11Þ

In the above expression, sW represents the shear stress on the surface of cylinder.
Shear stress is defined as using Eq. (11) we get

1
2

Cf Re
1=2

� �
¼ f 00ð0Þþ k

2
f 002ð0Þ ð12Þ

Now, the local Nusselt number, qW is the measure of thermal energy transfer on
the surface of cylinder

Nux ¼ xqW
a1ðTW � T1Þ & qW ¼ �a1

@T
@r

� �
r¼R

ð13Þ

Using (13) in order to get the expression for local Nusselt number that is

NuRe�1=2
x ¼ �h0ð0Þ; Rex ¼ Ux

m
is the Reynold number: ð14Þ
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4 Results and Discussion

The effects of various flow parameters on velocity and temperature profiles are
analyzed and depicted in Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
and 18. It has been observed that results obtained are very well in agreement with
the results obtained by Malik et al. (2016a, b) on reducing the present model into
that model. This validates our observations and method of solution. Figure 2 shows
that the velocity profile increases as curvature parameter c increases. Because as
curvature parameter increases, radius of curvature decreases as result resistance
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exert on flow decreases. It is observed from Fig. 3 that c increase heat transfer rate
accelerates and temperature increase. Figures 4 and 5 shows the influence of hall
current parameter on velocity and temperature profiles. It is observed that as hall
current parameter increases velocity increases, whereas temperature decreases.
Figure 6 shows the effect of heat generation parameter b on temperature profile. It
is observed that as b increases thermal boundary layer thickness increases.
Figures 7 and 8 velocity profile whereas temperature profile the ion-slip parameter
bi increase. Figures 9 and 10 shows that increase in thermal conductivity parameter
e and Prandtl number Pr increases that temperature profile. Prandtl number Pr can
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be used to control the cooling rate of conducting fluid. Since the Prandtl number is
the rates of momentum diffusivity to thermal diffusivity, reduces thermal boundary
layer thickness. Figures 11 and 12 shows the influence of magnetic field parameter
on velocity and temperature profiles. It is observed that as magnetic field parameter
increases velocity suppresses, whereas temperature enhances. Figures 13 and 14
shows the effect of Weissenberg number k on velocity profile and temperature
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profile. Weissenberg number k increases, boundary layer thickness decreases,
whereas thermal boundary layer thickness increases. Figures 15 and 16 shows the
influence of porosity parameter K on velocity profile and temperature profile. The
porosity parameter K, velocity decreases whereas it enhances the temperature
profile. Figure 17 shows the effect of radiation on temperature. The radiation
parameter increases, the temperature profile decreases, whereas as shown in Fig. 18
an increment in Eckert number decreases the thermal boundary layer thickness.
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Tables 1.1 and 1.2 shows the effect of various physical parameters on skin
friction coefficient and Nusselt number. It is observed that the data obtained are
self-explanatory and well in agreement with the literature available.
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Table 1 Skin friction coefficient and Nusselt number for the different values of physical
parameters

c ¼ 0:2;M ¼ 0:5; b2 ¼ 1;b3 ¼ 0:5;K ¼ 0:2

S. No. c k M be bi K CfRe1=2 NuRe�1=2
x

1 0 −2.57463 0.54890

2 0.1 −2.71662 0.42418

3 0.2 −2.87173 0.34407

4 0.0 −2.55748 0.35575

5 0.1 −2.64151 0.35063

6 0.2 −2.87173 0.34407

7 0.0 −2.57611 0.38975

8 0.3 −2.75172 0.36125

9 0.5 −2.87173 0.34407

10 1 −2.87173 0.34407

11 1.5 −2.78538 0.35933

12 2 −2.73454 0.36804

13 0.5 −2.87173 0.34407

14 5 −2.67877 0.38089

15 15 −2.61554 0.38693

16 0.0 −2.61509 0.35530

17 0.2 −2.87173 0.34407

18 0.4 −3.22303 0.33462
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5 Conclusion

The velocity and heat transfer effects have investigated the Williamson fluid flow
with various conditions such as radiative effects, MHD in the attendance of Hall
current, porous medium past a stretching cylinder, thermal energy transfer with
variable thermal conductivity and heat generation. Our computations have indicated
that:

• Increase in curvature parameter c enhances both the momentum and the thermal
energy profile.

• Increase in Weissenberg number k reduces the velocity profile.
• Increase in thermal conductivity parameter e increases the thermal energy

profile.
• Rising in Prandtl number Pr reduces the thermal energy profile.
• Hall current parameter be and ion-slip parameter bi enhances the velocity and

thermal energy profile.
• Increase in magnetic field parameter M and porosity parameter K reduces the

velocity profiles.
• Increase in magnetic field M parameter and porosity K parameter increases the

temperature profiles.
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Table 2 Nusselt number for
the different values of
physical parameters

Pr ¼ 0:7;Ec ¼ 1:5;R ¼ 1; e ¼ 0:2;b1
S. No. Pr R Ec e b1 NuRe�1=2

x

1 0.7 0.34407

2 1.5 0.27573

3 4 0.34196

4 1 0.34407

5 3 0.50922

6 5 0.55869

7 1.5 0.34407

8 10 0.17625

9 15 0.07753

10 0.2 0.34407

11 0.4 0.31917

12 0.6 0.29782

13 0.0 0.50343

14 0.1 0.42872

15 0.2 0.34407
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Particle Size and Spacing Effects
on Convective Heat and Mass Transfer
of a Nanofluid in Wavy Annulus

V.P.N. Srikanth Gorti and Srinivas Gosukonda

Abstract In this paper, we attempted to study the heat and mass transfer of
nanofluid flowing into a horizontal annulus whose outer cylinder is sinusoidal.
Graham, Jang and Choi proposed expressions were considered. Various phenomena
such as magnetic parameter (M), gap of the annulus from inner cylinder to mean
position of outer wavy surface (s), heat source parameter (QH), and Darcy
parameter (1/D) are considered. The governing equations are solved by R-K sixth
order and shooting methods. The enhancement of temperature is observed for
reduction in gap of the annulus.

1 Introduction

Many engineering applications such as cooling electronic components, solar energy
collector designs, and several heat exchangers are based on convective heat and
mass transfer. In many of these applications, the wavy surface study is required.

Flow around cylindrical structure has been widely investigated for over a large
range of Reynolds numbers because of lot of their fundamental significance in flow
physics. Among the physical phenomena of the flow past cylindrical structure, the
generation and evolution of vortices in the wake region are important in practical
application of engineering (Williamson 1989, 1996; Unal and Rockwell 1977). It
produces a drag and fluctuating lift forces and vortex-induced vibration that affect
aerodynamic performances such as the mean drag and fluctuating lift forces.
Recently, Gosukonda and Gorti (2015) reported that particle spacing is directly
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proportional to flow and inversely proportional to heat distribution across the
cylindrical annulus. Thus, a number of researchers for over a period took an effort
to understand and to control the dynamics of the wake vortices with the aim of
reducing the mean drag and fluctuating lift forces (Ahmed and Bays-Muchmore
1992; Lam et al. 2004; Lam and Lin 2008; Mittal and Balachandar 1994 and Lee
and Nguyen 2007). One of some forms of three-dimensional (3-D) geometric
disturbances for passive controlling is a wavy surface of cylinder. It has the sinu-
soidal variation in the cross-sectional area along the span-wise direction to consider
its effect on the flow characteristics such as the wake vortices. Ahmed and
Bays-Muchmore (1992) investigated experimentally the transverse flow over a
wavy cylinder. They demonstrated that the sectional drag coefficient at the node
was greater than that at the saddle and that the significant span-wise pressure
gradients resulted in 3-D flow separation.

Motivated by the above, this paper describes heat and mass transfer of nanofluid
through annulus formed due to circular cylinders whose outer cylinder is sinusoidal.
Expressions derived by Graham (1981), Jang and Choi (2007) are used which suits
the motive of the study. The transverse magnetic field is applied. The gap of the
annulus from inner cylinder to mean position of outer wavy surface (s) is used for
computational purpose. Heat source and porous medium are also taken into
account.

2 Mathematical Formulation

The fully developed copper–water nanofluid flow in a porous medium in a wavy
cylindrical annulus is considered. We consider the convective flow of nanofluid
along z-axis. Both walls are assumed that they are separated by aþ se sin kzþwð Þ
distance. The outer wall of the cylinder is assumed to be wavy wall. The inner and
outer wall temperatures and concentration are assumed constant on both walls. The
heat source is also considered. The physical properties of the fluid are assumed to
be constant. The flow is due to buoyancy and of uniform axial pressure gradient.
The Boussinesq approximation is also assumed. The geometry under consideration
is as in Fig. 1.

Equations governing the flow are as follows:

@

@r
ruð Þ ¼ 0 ð1Þ

lnf
@2w
@r2

þ 1
r
@w
@r

� �
� lnf

k
wþ rB2

0

r2
wþ g qbTð Þnf T � T0ð Þþ g qbcð Þnf c� c0ð Þ ¼ 0

ð2Þ

82 V.P.N. Srikanth Gorti and S. Gosukonda



w
@T
@z

¼ anf
r

@

@r
r
@T
@r

� �
� Q

qcp
� �

nf

T � T0ð Þ ð3Þ

w
@c
@z

¼ Dnf

r
@

@r
r
@c
@r

� �
þ kl c� c0ð Þ ð4Þ

The appropriate initial and boundary conditions for the problem are given by

T ¼ T0; c ¼ c0; w ¼ 0 on r ¼ a ð5Þ

T ¼ Tm; c ¼ cm; w ¼ 0 on r ¼ aþ se sin kzþwð Þ

Thermo-physical properties are related as follows:

qnf ¼ ð1� /Þqf þ/qs; anf ¼
knf

ðqcpÞnf
;

ðqcpÞnf ¼ ð1� /ÞðqcpÞf þ/ðqcpÞs;
ðqbÞnf ¼ ð1� /ÞðqbÞf þ/ðqbÞs;

knf ¼ kf 1� /ð Þþ b1kp/þ c1
df
dp

kfRe2dp Pr/

lnf
lf

¼ 1þ 2:5/þ 4:5
h
dp

2þ h
dp

� �
1þ h

dp

� �2
" #�1

ð6Þ

We introduce the following dimensionless variables:

R ¼ r
a
; s� ¼ s

a
; Z ¼ z

a
; W ¼ w

mf
; U ¼ u

mf
;

h ¼ T � T0
Tm � T0

; C ¼ c� c0
cm � c0

ð7Þ

r                                                      

( )a+s ε sin zλ + ψ

0T , 0C

mT , mC

Za  

Fig. 1 Geometry under
consideration
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Using Eqs. (5)–(7), the Eqs. (2)–(4) can be written in the following dimen-
sionless form:

1þ 2:5/þ 4:5
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� �
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The corresponding boundary conditions (5) become:

W ¼ 0; h ¼ 0;C ¼ 0 on R ¼ 1

W ¼ 0; h ¼ 1; C ¼ 1 on R ¼ 1þ s � e sin kzþwð Þ

(We drop * in the later part)
Here Pr is the Prandtl number, M is the magnetic parameter (Hartmann number),

QH is the heat source parameter, Sc is the Schmidt number, K is the chemical
reaction parameter, D�1 is the Darcy number, Gr is the thermal Grashof number, Gc
is the molecular Grashof number, which are defined as:

Pr ¼ mf
af

; M ¼ rB2
0

lf
a; QH ¼ Q

kf
a; Sc ¼ mf

Dnf
; K ¼ kl

mf
a;

1
D
¼ a

k
;

Gr ¼ g qbTð Þ Tm � T0ð Þ
m2f

; Gc ¼ g qbcð Þ cm � c0ð Þ
m2f
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The nondimensional Nusselt number (Nu) is:

Nu ¼ � knf
kf

h0½1þ se sin kzþwð Þ�

The local Sherwood number Sh in dimensionless form:

Sh ¼ � mf
Dnf

C0½1þ se sin kzþwð Þ�

3 Solution of the Problem

Cross section of the geometry is considered for numerical analysis. All the gov-
erning parameters are evaluated using shooting and R-K sixth order methods
simultaneously using Mathematica package. The axial temperature gradient is
assumed constant. The fixed values are u: 0.02, s: 0.5, h: 4, dp: 40, Gc: 5, Gr: 5,
M: 5, QH: 5, Sc: 0.6, K: 0.5, 1/D: 5, e: 0.005.

4 Results and Discussion

The influence of various dimensionless numbers on the governing parameters is
represented graphically. The Prandtl number (Pr) kept constant as 7 (for water) and
x ¼ se sin kzþwð Þ.

Figures 2, 3, 4, 5, 6, 7, 8, 9, and 10 represent the profiles of velocity w with
various parameters mentioned above. All these profiles are bell shaped indicating
the maximum flow in mean portion of the annulus. The significant variations are
observed with u, s, h, dp, K, M, Sc, D−1, and e; for other parameters, the slight
variation in w is observed. The absence of metal particles leads to the higher
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Fig. 2 Variation of W with /

Particle Size and Spacing Effects on Convective Heat … 85



velocity, whereas the mixture of metal particles from 2 to 5% retards the flow
(Fig. 2). This occurs due to clustering of the particles. Figure 3 represents the flow
variation for gap of the annulus from inner cylinder to mean position of outer wavy
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surface (s). The flow increases with increase in gap from 20 to 100% compared with
size of inner cylinder. The interparticle spacing is one of the parameters signifi-
cantly enhancing the flow, and the Brownian motion may be the additional impact
on the flow (Fig. 4). The effect of the size of the particle (d−p) on flow has shown in
Fig. 5. The significant enhancement of flow is noticed. But the flow has increased
gradually. Figures 2, 4, and 5 show the significance of the presence of the Cu
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nanoparticles to enhance the flow. The flow is slightly reduced with magnetic
parameter (M), indicates the Lorentz force has dominated/neutralized by viscous
force (Fig. 6). Neither the absence nor the presence of magnetic field affect the
flow. The increase in diffusivity (Sc) enhances the flow slightly (Fig. 7). The Fig. 8
depicts that destructive chemical reaction (K > 0) gives more velocity when com-
pared with generative chemical reaction (K < 0). The uniform rate of increase of
velocity is observed for −0.5 < K < 0.5. Figure 9 gives the velocity profile with
Darcy parameter D−1. The flow is more for the bigger pore. The variation of
velocity with amplitude of the wave (e) is given in Fig. 10. The flow is more for e
near 0.008 and retards from 0.008 to 0.001. So the wavy boundary shows the
significant increase in flow.

Figures 11, 12, 13, 14, 15, and 16 represent the profiles of temperature with
various parameters. The effect of u, s, h, dp, Sc, K and e on temperature is more
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compared with effect of M. Except for s and e, the temperature rises near the inner
cylinder and falls, then rises near the outer cylinder to reach maximum temperature.
On the other hand, the effect of s and e on the temperature is linear. Figure 11
depicts the profile of temperature with u. The increase in solid volume fraction
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increases the temperature due to the conductivity of Cu molecules. But the variation
of temperature is not much for solid volume fraction � 5%. This may be due to the
clustering of the molecules. Figure 12 represents the effect of s on temperature. The
enhancement of temperature is observed for reduction in gap of the annulus (s).
This happens due to the Brownian motion of the particles. The increase in the
interparticle spacing (h) reduces the temperature throughout the annulus. The
cooling is observed from Fig. 13. From Fig. 14, the effect of dp on temperature is
observed. There is no much variation of temperature with increase in dp. But the
slight increase in temperature is noticed for dp. From Fig. 15, the increase in heat
source (QH) reduces the temperature in the mid-region of the annulus. However, no
effect of heat source is observed near the inner cylinder. The increase in amplitude
(e) retards the temperature as shown in Fig. 16. But the variation of temperature is
very linear with e. The cooling effect may take place when the amplitude is more
due to more disturbance of the flow along the outer cylinder.

Figures 17, 18, 19, 20, 21, 22, and 23 represent the profiles of diffusion (C) with
various parameters. The effect of u, s, h, dp, Sc, K and e. Except for s and e, the
diffusion rises and falls in the mid-region of the annulus, then rises near the outer
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cylinder to reach maximum diffusion. On the other hand, the effect of s and e on the
diffusion is very linear. Figure 17 represents the variation of C with u. The impact
of Brownian motion is clear on C, since C increases as u increases (0% < u < 5%
of Cu particles in water). From Fig. 18, the gap of the annulus should be moderate
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to get effective diffusion. The gradual reduction of diffusion is observed for increase
in interparticle spacing (h), from Fig. 19 this is due to the increase in flow. From
Fig. 20, the increase in size of the Cu particle the diffusion enhances. This happens
due to the reduction of flow. Interestingly, the increase in momentum enhances the
diffusivity throughout the annulus. The significant rise and fall of diffusion is
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observed with Sc (Fig. 21). It is occurring due to the change of momentum at the
outer wavy cylinder. Figure 22 exhibits the variation of diffusion with chemical
reaction (K). The diffusion increases with increase in K near the inner cylinder, but
the reversal effect is noticed near the outer wavy cylinder. The increase in amplitude
(e) retards the diffusion, from Fig. 23. But the diffusion profiles are very linear with
e, and the amplitude opposes the diffusion.

Table 1 displays the rate of heat transfer (Nusselt number) coefficient for various u,
h, dp, and QH calculated on the outer wavy cylinder. The impact of nanofluid is very
less in heat transfer, and the heat transfer coefficient decreases with increase in u.
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Table 1 Nusselt number

/ h ¼ 2;

dp ¼ 40;

QH ¼ 5

h ¼ 5;

dp ¼ 40;

QH ¼ 5

h ¼ 10;

dp ¼ 40;

QH ¼ 5

h ¼ 5;

dp ¼ 20;

QH ¼ 5

h ¼ 5;

dp ¼ 80;

QH ¼ 5

h ¼ 5;

dp ¼ 40;

QH ¼ 10

0 5.5123 5.5125 5.5129 5.5129 5.5124 5.7985

0.05 5.449 5.4498 5.4501 5.4501 5.4497 5.6753

0.1 5.4091 5.4092 5.4095 5.4095 5.4092 5.5954

Particle Size and Spacing Effects on Convective Heat … 93



It is due to the domination of amplitude over the momentum. The interparticle spacing
is slightly enhancing the heat transfer rate. The size of the particle reduces the heat
transfer due to the wavy surface as the movement of the particle is objected. The heat
source enhances the heat transfer naturally.

Table 2 displays the mass transfer coefficient (Sherwood number) calculated for
various K, dp, and Sc on the outer wavy cylinder. The mass transfer is more for
generative (K < 0) and less for destructive (K > 0) chemical reactions. The increase
in size of the particle is resisting the mass transfer in both chemical reactions. Sc
improves the mass transfer for generative chemical reaction and retards the mass
transfer for destructive chemical reaction. The absence of chemical reaction leads
mass transfer to be a constant almost.
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Hydrodynamics of Non-Newtonian
Spriggs Fluid Flow Past an Impulsively
Moving Plate

Atul Kumar Ray and B. Vasu

Abstract One of the fundamental problems in unsteady viscous flows is that of
impulsively started motion of a body in an infinite fluid medium which is referred
as Stokes’s first problem. On the basis of the fundamental understanding, we have
developed a mechanistic modelling and thereby to improve existing technical
applications. In this study, one of the particular non-Newtonian Spriggs fluid has
considered that it is a truncated power law type of fluid. Flow of non-Newtonian
Spriggs fluid caused by the unsteady impulsively moving plate is investigated using
a similarity transformation. The use of similarity transformation reduces the
unsteady boundary layer equations to linear and nonlinear ordinary differential
equations governed by a non-dimensional material parameter. The effect of material
parameter on velocity boundary layer is explained by an efficient and robust
Homotopy Analysis Method. Variations of the velocity profile are presented
graphically for distinct values of material constant. A physical interpretation is also
provided. The flow past a plate has received much attention because of its major
significance role in numerous disciplines which include the chemical engineering,
manufacturing industry, heat conduction problems and geophysical flows (such as
in earthquakes and fracture of ice sheets).

1 Introduction

Stokes’s first problem is very famous unsteady viscous fluid flow problem in fluid
mechanics which represents one of the few exact solutions to Navier–Stokes
equation (which are governing equation in fluid mechanics). First problem of
Stokes (1851) is also named as Rayleigh problem Tanner (1962), Soundalgekar

A.K. Ray (&) � B. Vasu
Department of Mathematics, Motilal Nehru National Institute
of Technology Allahabad, Allahabad 211004, India
e-mail: rma0215@mnnit.ac.in

B. Vasu
e-mail: bvasu@mnnit.ac.in

© Springer Nature Singapore Pte Ltd. 2018
M.K. Singh et al. (eds.), Applications of Fluid Dynamics, Lecture Notes
in Mechanical Engineering, https://doi.org/10.1007/978-981-10-5329-0_7

95



(1974), and is defined as the flow over flat plate which is initially at rest and
impulsive set into motion with constant speed. Stokes’s first problem has received
much attention due to its theoretical and practical applications, particularly in field
of polymer industries and in the manufacture of fibres in glass. Teipel (1981) and
Puri (1984) studied impulsive motion of a flat plate in a viscoelastic fluid and in a
Rivlin-Ericksen fluid, respectively. MHD flow near a wall suddenly sets in motion
non-Newtonian viscoelastic fluid studied by Cuouusv (1985). Wenchang and
Mingyu (2002) inspect Stokes’s first problem for viscoelastic fluid with fractional
Maxwell mode. Erdogan (2002) discussed some exact solution of equation of
Navier–Stokes for flows which impulsively started from rest by application of
sudden pressure gradient or by motion of a boundary. Sine transform was used for
solving the Stokes’s first problem for ordinary Oldroyd-B fluid by Fetecau and
Fetecau (2003). Transverse magnetic field effect on the unsteady flow of a gener-
alized second-grade fluid through a porous medium past an infinite flat plate was
investigated by El-Shaded (2004). Tan and Masuoka (2005) explained first problem
of Stokes for a second-grade fluid in a porous half space with heated boundary.
Exact solution was obtained corresponding to the Stokes’s first problem for
Oldroyd-B fluid by Vieru et al. (2008). Hayat et al. (2008) has given numerical
solution of first problem of Stokes, based on modified Darcy’s law, for a third-grade
fluid in a porous half space. Mistakes made in the literature of Stokes’s first
problem for some non-Newtonian fluid are identified by Christov (2010). Zaman
and Sohail (2014) elaborate first problem of Stokes for an unsteady MHD
third-grade fluid in a non-porous half space by taking hall currents into account.
The flow for thermoelectric fluid for Stokes’s first problem using the methodology
of fractional calculus is examined by Ezzat et al. (2014).

Truncated power law fluid also known as Spriggs fluid was suggested by Spriggs
(1965). Adusumilli and Hill (1984) investigated the transient laminar flow of
Spriggs fluid in pipes in which they used truncated power law to exhibit the
behaviour of real fluids undergoing the above pressure disturbance. Lavrov (2015)
explores the hydraulic fracturing application of flow of Spriggs fluid between
parallel walls and found that as compared to power law model, the truncated power
law model upgrades precision of flow computations in small and large aperture
parts of the fracture and so raising the overall accuracy and performance of
hydraulic fracturing simulation.

Homotopy Analysis Method (HAM) is proposed by Liao (1992), based on the
homotopy, a basic concept in topology. HAM is an analytic approximation tech-
nique and has been successfully applied widely to solve highly nonlinear problems
in science and engineering. HAM has many advantages as compared to traditional
analytic methods. HAM is independent on any small or large parameters, provides
suitable way to control the convergence of series solution using parameter called
convergence control parameter and also presents freedom to choose the operator
called auxiliary linear operator so as to approximate a nonlinear problem more
convincingly by means of choosing appropriate base function. Besides, it contains
other non-perturbation techniques which are proved by Liao in his book Liao
(2003).
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The aim of this paper is to analyse flow of non-Newtonian Spriggs fluid caused
by the unsteady impulsively moving plate. Similarity solution exists for flow over
semi-infinite plates, so similarity transformation is used to investigate the flow. The
transformed ordinary differential equation after using similarity transformation in
partial differential equation is solved by the Homotopy Analysis Method
(HAM) Liao (2012), (2004), (2003), (2013), Sajid and Hayat (2009). Variations of
the velocity profile and local wall shear strain term to evaluate local friction
coefficient are presented graphically for different values of material constant.

2 Mathematical Formulation

Consider a two-dimensional unsteady boundary layer flow of quiescent viscous
incompressible non-Newtonian fluid past an impulsively started semi-infinite flat
plate. A non-Newtonian Spriggs fluid is considered which is a truncated power-law
type of fluid. The plate lies on x-axis at time t ¼ 0 shown in Fig. 1a. For t[ 0,
instantaneously the plate moves with velocity U as shown in Fig. 1b. Let Uw xð Þ ¼
U denotes speed of flat plate.

Continuity and momentum equations are as follows:

@u
@x

þ @v
@y

¼ 0 ð1Þ

q
@u
@t

þ u
@u
@x

þ v
@u
@y

� �
¼ � @p

@x
þ @sxx

@x
þ @sxy

@x
ð2Þ

q
@v
@t

þ u
@v
@x

þ v
@v
@y

� �
¼ � @p

@y
þ @syx

@y
þ @syy

@y
ð3Þ

Fig. 1 Schematic diagram and coordinate system
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Subject to boundary conditions,

v ¼ 0;
@v
@x

¼ 0 ð4Þ

Using (4) stress components reduced to,

sxx ¼ syx ¼ syy ¼ 0 ð5Þ

Using (4) and (5), (3) implies

@p
@y

¼ 0 ð6Þ

As plate suddenly starts in motion and slides in its plane that is in x-direction
with constant speed U, i.e. so velocity of plate is ðU; 0Þ. Motion of fluid will also be
in x-direction. So nonzero velocity component is only u. Under these conditions,
flow velocity u at a given point depends only on its y-coordinate and time, i.e.
u ¼ u y; tð Þ; v ¼ 0

The viscosity function of Spriggs fluid (Irgens 2014) is defined as

g ¼
g0; _c� _c0 and 0\r\d1

g0
_c
_c0

� �n�1
; _c� _c0 and d1\r\d

(
ð7Þ

where d is boundary layer thickness, r is the distance away from the boundary of
plate, Newtonian model is applied up to r ¼ d1 and ðd� d1Þ is the region where
power law model is applicable.

The interface is Newtonian flow,

syx ¼ g0 _c0

at d ¼ d1
And this is related to wall stress as

sd
d
¼ syx

d1
¼ g0 _c0

d1

therefore,

d1 ¼ dg0 _c0
sd

ð8Þ
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For non-Newtonian Spriggs fluid, the respective stress component is

sxy ¼
g0

@u
@y ; _c� _c0 and 0\r\d1

g0
_c
_c0

� �n�1
@u
@y ; _c� _c0 and d1\r\d

8<
: ð9Þ

where u and v are velocity component in direction of increasing x, y, respectively,
and _c ¼ @u

@y is the shear rate. As velocity u is independent of x, so pressure will be
independent on x

@p
@x

¼ 0 ð10Þ

Equations (7) and (10) yield pressure as constant.
Using Eqs. (4), (8), (9) and (10), by introducing the boundary layer approxi-

mation,x-momentum, Eq. (2) reduces to

q
@u
@t

¼ g0

@2u
@y2 ; _c� _c0 and 0\r\d1

_c
_c0

� �n�1
@2u
@y2 ; _c� _c0 and d1\r\d

8<
: ð11Þ

Initial condition and boundary conditions are

uðy; 0Þ ¼ 0 for y[ 0 ð12Þ

uð0; tÞ ¼ 0; t� 0
U; t[ 0

�
ð13Þ

uðy; tÞ ! 0 as y ! 1 ð14Þ

Introducing the similarity transformation,

f ðgÞ ¼ u
U
; g ¼ a

y
tm

ð15Þ

From Eq. (11),

qmgU
f 0ðgÞ
t

¼ g0

a2U
t2m f 00ðgÞ; _ck� 1 and 0\r\d1

nUnanþ 1

_cn�1
0 ðnþ 1Þtðnþ 1Þm f 0n�1ðgÞf 00ðgÞ; _ck� 1 and d1\r\d

(
ð16Þ

Here, k is relaxation time. Equation (16) is not ODE for arbitrary m.
We classified the two cases as follows:
Case 1: _ck� 1 and 0\r\d1. For m ¼ 1

2, using this value of m, respective
equation reduced to
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f
00 þ qg

2g0a2
f
0 ¼ 0; _ck� 1 and 0\r\d1; m ¼ 1

2 ð17Þ

Case 2: _ck� 1 and d1\r\d. For m ¼ 1
nþ 1, respective equation, we have

f 00f 0n�1 þ q
2g0ðnþ 1Þanþ 1

_c0
U

� �n�1

f 0 ¼ 0; _ck� 1 and d1\r\d; m ¼ 1
nþ 1

ð18Þ

For simplicity, taking a ¼
ffiffiffiffiffi
q
2g0

q
for _ck� 1 and 0\r\d1; m ¼ 1

2 and a ¼
q

g0ðnþ 1Þ
� �1=nþ 1

for _ck� 1 and d1\r\d; m ¼ 1
nþ 1 and bn ¼ _c0

U

� �n�1
¼ bð Þn�1

is a non-dimensional parameter.
Now Eqs. (17) and (18) are reduced to

f 00 þ gf 0 ¼ 0; _ck� 1 and 0\r\d1 ð19Þ

f 00f 0n�1 þ gnbnf
0 ¼ 0; _ck� 1 and d1\r\d ð20Þ

which is reduced to ordinary differential equation.
For n ¼ 1: bn ¼ b and gn ¼ g also, both Eqs. (19) and (20) are equal. This is the

case of Newtonian fluid for impulsive start of flat plate which is also a well-known
Stokes’s problem.

Transformed boundary conditions are as follows:

f ð0Þ ¼ 1 and f ð1Þ ! 0 ð21Þ

The local skin friction coefficient on the surface of moving plate is given by

Cf ¼
2sxy y¼0




qU2

Now using (9) and (15), we obtained

Cf ¼ a1f 0ð0Þ; _ck� 1 and 0\r\d1
anb

n�1f 0ð0Þn; _ck� 1 and d1\r\d

�
ð22Þ

where a1 ¼ 2ma
Utm and an ¼ 2m

U
a
tm
� �n

depend on Reynolds number.
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3 Analytic Approximation by HAM

In order to solve the transformed non-dimensional Eq. (20) under the condition
(21), HAM has been employed. Liao (1998) used this technique for nonlinear
problem. HAM converts a nonlinear problem into an infinite number of linear
sub-problems, without any dependency on small or large physical parameters.
HAM provides suitable way to ensure the convergence of series solution using
convergence control parameter c0. Region of this convergence control parameter is
discussed and shown in Fig. 2.

Solutions for above two cases are as follows:
Case 1: For _ck� 1 and 0\r\d1 and m ¼ 1

2,
exact solution for Eq. (19) with the boundary condition (21), which is a solution

for Stokes’s problem for a Navier–Stokes fluid (Currie 2012), is given by

uðy; tÞ ¼ U 1� erf
y

2
ffiffiffiffi
tv

p
� �� �

Case 2: For _ck� 1 and d1\r\d and m ¼ 1
nþ 1,

to investigate the analytic solution of Eqs. (20) and (21) by using HAM, we
select the appropriate initial approximation as

f0ðgÞ ¼ e�g

which satisfy the boundary condition (21), and we select auxiliary linear operator as

Lðf Þ ¼ f 00 � f

with the property that

Fig. 2 Variation of square residual versus c0 for different order
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Lða1e�g þ a2e
gÞ ¼ 0

and define nonlinear operator as

N ½/ðg; qÞ� ¼ /00ðgÞ /0ðgÞð Þn�1 þ gnbn/
0ðgÞ

where q 2 ½0; 1� is embedding parameter and / is kind of mapping function for f .
Using these operators, zeroth order deformation equation can construct

ð1� qÞL½/ðg; qÞ � f0ðgÞ� ¼ c0qN ½ /ðg; qÞð Þ�

Subject to boundary condition,

/ð0; qÞ ¼ 1 and /ð0; qÞ ¼ 1

Homotopy series solution is as follows:

f gð Þ ¼ f0 gð Þþ
Xþ1

m¼1

fm gð Þ

where

fm gð Þ ¼ 1
m!

dm/ g; qð Þ
dqm

jq¼0

And fmðnÞ is governed by mth order deformation equation

L fm gð Þ � vmfm�1 gð Þ½ � ¼ c0Dm�1 N / g; qð Þ½ �f g

where

vm ¼ 0; m� 1
1; m[ 1

�

Subject to boundary condition,

fm 0ð Þ ¼ 1; fm 1ð Þ ¼ 0

Now let f �mðgÞ denotes the special solution of mth order deformation equation,
L�1 is inverse of linear operator L and f �m is given by
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f �mðgÞ ¼
Xm
k¼0

a�m�kfkðgÞþ c0
Xm
k¼0

bkL�1½Dm�1fN ½/ðg; qÞ�g�

so that

f �m gð Þ ¼ vmfm�1 gð Þþ c0L�1 Dm�1 N / g; qð Þ½ �f g½ �

So general solution of mth order deformation equation is given by

fm gð Þ ¼ f �m gð ÞþB0 þB1e
�g þB2e

g

Using boundary conditions of deformation equation, obtaining values of
B0;B1 and B2 and substituting these values in solution of deformation equation, we
will have

fmðgÞ ¼ f �mðgÞ � f �mð1Þþ ð1� f �mð0Þþ f �mð1ÞÞe�g

Thus, homotopy series solution of Eq. (20) subject to boundary conditions (21)
is given by

f ðgÞ ¼ f0ðgÞþ
X1
m¼1

fmðgÞ

¼ e�g þ
X1
m¼1

ff �mðgÞ � f �mð1Þþ ð1� f �mð0Þþ f �mð1ÞÞe�gg
ð23Þ

4 Results and Discussion

After introducing similarity transformation, the partial differential equation (11)
subject to boundary conditions (13) and (14) is reduce ordinary differential equa-
tions (19) and (20) subject to boundary conditions given in (21). Equation (19) is
the case of Newtonian fluid for which Muzychka and Yovanovich (2010) have
given analytic solution. It is worth mention that for n = 1, Eqs. (19) and (20) are
same. The non-linear ordinary differential equation (20) subject to boundary con-
ditions in (21) is solved via HAM, a semi-analytic method.

b 6¼ 1 g 6¼ 2
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In the present study, n = 3 is considered. The effect of c0 and b on fg is shown by
Figs. 3 and 4. The effect of c0 and b on f 0g is shown by Figs. 5 and 6 respectively.
Figure 2 depicts the variation of square residual error of different order over c0 for
finding the range of c0 for convergence of series solution.

It is clear from the Fig. 2 that region of convergence of homotopy series solution
is about �1� c0\0. We can easily get the value of c0 from this range to ensure that
the homotopy series solution is about all parameter in the whole domain 0� g\1
corresponding to 0� y\1, respectively.

The influence of parameters on the dimensionless velocity f ðgÞ is as follows:
Effect of Convergence Control Parameter c0

The velocity profiles are shown in Fig. 3.
Figure 3 stipulates the variation of velocity f ðgÞ with g at various distances from

the wall. It describes that as we move away from the moving wall, the velocity
decreases. Further, it shows the effect of convergence control parameter c0 on
velocity profile. It is found that the decrease in convergence control parameter c0
results in decrease in velocity profile.

Fig. 3 Influence of c0 on f ðgÞ

Fig. 4 Influence of c0 on
f ðgÞ
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Effect of Parameter b

The velocity profile for the solution (23) of (20) with boundary condition (21) is
shown in Fig. 4 where the parametric values are n ¼ 3 and c0 ¼ �0:5.

The discussion on effect of parameters on f 0ðgÞ is as follows:
For n ¼ 3, the local skin friction coefficient is

Cf ¼
a1f 0ð0Þ; _ck� 1 and 0\r\d1; m ¼ 1

2

a3b
2ðf 0ð0ÞÞ3; _ck� 1 and d1\r\d; m ¼ 1

nþ 1

(

Influence of Convergence Control Parameter c0

It is observed from Fig. 5 that velocity gradient f 0 changes its nature at g ¼ 1:6.

Fig. 5 Effect of c0 on f 0ðgÞ

Fig. 6 Effect of b on f 0ðgÞ
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The parametric values are n ¼ 3 and fixed b ¼ 0:5
Eq. (22) contains f 0ð0Þ that relates the local skin friction coefficient Cf and Cf

has an important physical meaning. Figure 5 examines the influence of c0 on f 0ðgÞ
with respect to g.

Influence of Parameter b

Figure 6 illustrates that with increase in b, the velocity gradient changes with the
distance from the wall at g ¼ 1:4. It shows that larger the value of b, more rapidly
the velocity. Also it is remarked that f 0ðgÞ is increasing with increase in values of b.

5 Conclusions

In this paper, we have resolute velocity field corresponding to the flow of
non-Newtonian Spriggs fluid over impulsively started flat plate. Variations of the
velocity profile f ðgÞ as well as for local skin friction coefficient f 0ðgÞ are presented
graphically for different values of material constant. The shear rate limit has
influence on unsteady viscous flow state velocity profiles of an unsteady impulsive
start of flat plate. Homotopy solution for the nonlinear problem is obtained, and
convergence of the solution is discussed.
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Effects of Heat-Generating Component
Size and Porous Layer Thickness on MHD
Mixed Convection Flow of Ag-Water
Nanofluid Through an L-Shaped Channel

Victor Job, Sreedhara Rao Gunakala, B. Rushi Kumar and R. Sivaraj

Abstract This paper focuses on the cooling of heat-generating components via
MHD mixed convection flow of silver (Ag)-water nanofluid through an L-shaped
channel with a porous inner layer. In this channel, four heat-generating components
are located on the channel wall opposite to the porous layer. The governing
equations with the given initial and boundary conditions are solved using the
stabilized mixed finite element method based on the polynomial pressure projection
technique. The effect of the thickness of the porous layer and size of the
heat-generating components on fluid flow and heat transfer within the channel is
investigated.

1 Introduction

The flow of fluids in channels with heated obstacles has been used as the canonical
model for the cooling of electronic devices for many decades. The study of elec-
tronic cooling is necessary for improved thermal design of electronic components in
order to reduce hot spots and to increase the reliability and durability of these
devices (Young and Vafai 1998; Boutina and Bessaïh 2011). Young and Vafai
(1998) examined the forced convective flow through a channel containing an array
of heated obstacles. It was determined from this study that transfer of heat into the
fluid is enhanced by a reduction in the size of the heated obstacles and an increase
in the distance between obstacles. Boutina and Bessaïh (2011) considered the
mixed convective air cooling of two isothermal electronic components in an
inclined channel. In this connection, the authors found that the heat transfer
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increases as the Reynolds number and the size of the electronic components
increase.

The study of fluid flow and heat transfer at the interface between a porous
medium and a free fluid is useful in a wide range of engineering applications. In
particular, the use of high-porosity metal foams has potential applications in the
cooling of electronic devices (Phanikumar and Mahajan 2002). In 2002,
Phanikumar and Mahajan obtained numerical and experimental results for natural
convection in high-porosity metal foams which are heated from below and sur-
rounded by a fluid. These results revealed that the heat transfer rate increases as the
foam porosity decreases. An increase in the Darcy number causes an enhancement
in heat transfer rate. Hajipour et al. (2013) analysed the unsteady two-dimensional
mixed convective flow of nanofluids in a vertical channel containing a porous inner
layer. In this study, it was observed that an increase in the permeability of the porous
medium results in an increase in flow velocity. Moreover, the velocity and tem-
perature of the nanofluid increase with an increase in nanoparticle concentration.

The vast majority of the literature on the mixed convective cooling of heated
obstacles pertains to straight channel flows. To the best of the author’s knowledge,
there is no existing study on the mixed convective nanofluid cooling of
heat-generating obstacles within a bent channel containing a porous layer. In this
chapter, the mixed convective cooling of four heat-generating components within
an L-shaped channel with a porous inner layer using Ag-water nanofluid is con-
sidered. The effects of the relevant parameters on the thermal performance of this
system are examined.

2 Mathematical Formulation

We consider the two-dimensional unsteady incompressible mixed convective flow
of Ag-water nanofluid through an L-shaped channel as depicted in Fig. 1. This
channel has width h, and the length of the inlet section and outlet section are both
equal to 3h. The porous layer has thickness h1, porosity e, and permeability
K. There are four heat-generating components on the opposite side of the porous
layer, each having area Ad and heat flux density qc. The velocity and temperature at
the channel inlet are U and T0, respectively, while the channel walls are thermally
insulated. The heat absorbed from these components by the nanofluid gives rise to
free convection within the channel. Furthermore, the flow velocity is influenced by
a magnetic field with strength B0 in the negative x-direction. In this paper, the
subscripts ‘nf’, ‘m’, ‘c1’, ‘c2’, ‘c3’ and ‘c4’ refer to the nanofluid in the free-fluid
region, the nanofluid in the porous layer and components 1, 2, 3 and 4, respectively.
The nanofluid is assumed to be a single-phase Newtonian fluid with low
nanoparticle concentration, and the nanoparticles have uniform size and are
spherical in shape. The L-shaped domain X (Fig. 2) is comprised of the free-fluid
region X1, the saturated porous layer X2 and the four heat-generating electronic
components which are located at X3, X4, X5 and X6.
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The governing equations for the nanofluid flow under the Boussinesq approxi-
mation are given by:

Continuity Equation in the Free-Fluid Region:

@unf
@x

þ @vnf
@y

¼ 0 ð1Þ

X-Momentum Equation in the Free-Fluid Region:

@unf
@t

þ unf
@unf
@x

þ vnf
@unf
@y

¼ � qf
qnf

@pnf
@x

þ lnf
lf

qf
qnf

1
Re

@2unf
@x2

þ @2unf
@y2

� �
ð2Þ

Y-Momentum Equation in the Free-Fluid Region:

@vnf
@t

þ unf
@vnf
@x

þ vnf
@vnf
@y

¼ � qf
qnf

@pnf
@y

þ lnf
lf

qf
qnf

1
Re

@2vnf
@x2

þ @2vnf
@y2

� �
� rnf

rf

qf
qnf

Ha2

Re
vnf þ

qbð Þnf
qbð Þf

qf
qnf

Gr

Re2
Tnf

ð3Þ

Fig. 1 Schematic diagram of the problem
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Energy Equation in the Free-Fluid Region:

@Tnf
@t

þ unf
@Tnf
@x

þ vnf
@Tnf
@y

¼ jnf
jf

qcp
� �

f

qcp
� �

nf

1
RePr

@2Tnf
@x2

þ @2Tnf
@y2

� �
ð4Þ

Continuity Equation in the Porous Layer:

@um
@x

þ @vm
@y

¼ 0 ð5Þ

X-Momentum Equation in the Porous Layer:

1
e
@um
@t

þ 1
e2

um
@um
@x

þ vm
@um
@y

� �
¼ � qf

qnf

@pm
@x

þ lnf
lf

qf
qnf

1
eRe

@2um
@x2

þ @2um
@y2

� �
� lnf

lf

qf
qnf

1
ReDa

um � cFffiffiffiffiffiffi
Da

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2m þ v2m

q
um

ð6Þ

Fig. 2 Diagram of the domain
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Y-Momentum Equation in the Porous Layer:

1
e
@vm
@t

þ 1
e2

um
@vm
@x

þ vm
@vm
@y

� �
¼ � qf

qnf

@pm
@y

þ lnf
lf

qf
qnf

1
eRe

@2vm
@x2

þ @2vm
@y2

� �
� lnf

lf

qf
qnf

1
ReDa

vm � cFffiffiffiffiffiffi
Da

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2m þ v2m

q
vm � rnf

rf

qf
qnf

Ha2

Re
vm þ qbð Þnf

qbð Þf
qf
qnf

Gr

Re2
Tm

ð7Þ

Energy Equation in the Porous Layer:

@Tm
@t

þ
qcp
� �

nf

qcp
� �

eff

um
@Tm
@x

þ vm
@Tm
@y

� �
¼ jeff

jf

qcp
� �

f

qcp
� �

eff

1
RePr

@2Tnf
@x2

þ @2Tnf
@y2

� �
ð8Þ

Energy Equation in Components 1–4:

@Tck
@t

¼ ar
RePr

@2Tck
@x2

þ @2Tck
@y2

þQ

� �
; k ¼ 1; 2; 3; 4 ð9Þ

where Re ¼ qf Uh
lf

is the Reynolds number, Da ¼ K
h2 is the Darcy number, Ha ¼

B0h
ffiffiffiffi
rf
lf

q
is the Hartmann number, Gr ¼ q2f bf gT0h

3

l2f
is the Grashof number, Pr ¼ lf cpð Þf

jf

is the Prandtl number and Q ¼ qch2

jcT0
is the heat-generation parameter.

The effective heat capacity qcp
� �

eff and thermal conductivity jeff of the porous
medium are given by

qcp
� �

eff ¼ 1� eð Þ qcp
� �

ps þ e qcp
� �

nf ;

jeff ¼ 1� eð Þjps þ ejnf

The above equations are non-dimensionalized using the following dimensionless
variables:

bx;by; bh1� �
¼ x; y; h1ð Þ

h
; bunf ; bum;bvnf ;bvm� �

bt ¼ h
U
t; bpnf ; bpm� � ¼ pnf ; pm

� �
qf U2 ;

bTnf ¼ Tnf � T0
T0

; bTm ¼ Tm � T0
T0

; bTck ¼ Tck � T0
T0

k ¼ 1; 2; 3; 4ð Þ;

ar ¼ jr
qcp
� �

f

qcp
� �

c

; jr ¼ jc
jf
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The following equations are used in this chapter to describe the thermophysical
properties of nanofluids (Minkowycz et al. 2013):

1. Viscosity (Brinkman):

lnf ¼
lf

1� /ð Þ2:5 ð10Þ

2. Density:

qnf ¼ 1� /ð Þqf þ/qs ð11Þ

3. Heat capacity:

qcp
� �

nf¼ 1� /ð Þ qcp
� �

f þ/ qcp
� �

s ð12Þ

4. Thermal expansion coefficient:

qbð Þnf¼ 1� /ð Þ qbð Þf þ/ qbð Þs ð13Þ

5. Thermal conductivity (Bruggerman):

jnf ¼ 3/� 1ð Þjs=jf þ 3 1� /ð Þ � 1þ ffiffiffiffi
D

p

4
jf ð14Þ

where

D ¼ 3/� 1ð Þjs=jf þ 3 1� /ð Þ � 1
	 
2 þ 8js=jf

6. Electrical conductivity (Maxwell):

rnf ¼ rf 1þ 3 rs=rf � 1
� �

/

rs=rf þ 2
� �� rs=rf � 1

� �
/

" #
ð15Þ

The thermophysical properties of pure water and Ag (Mansour et al. 2010; Ganji
and Kachapi 2015) at 52 °C are given in Table 1.

The no-slip condition is imposed at the walls of the channel and at the surface of
the components. The temperature and normal heat flux are continuous at the surface

Table 1 Thermophysical
properties of pure water and
Ag at 25 °C

Quantity Pure water Ag

q (kg m−3) 997.1 10,500

cp (J kg−1 K−1) 4179 235

j (W m−1) 0.613 429

b (K−1) 21� 10�5 1:89� 10�5

r (X−1 m−1) 0.05 6:3� 107
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of the heat-generating components and at the interface between the free-fluid region
and porous layer (Nield and Bejan 2006). Continuity of the velocity and normal and
tangential stresses at the interface between the free-fluid region and porous layer is
imposed (Laptev 2003). Thus, the dimensionless initial conditions are

unf ¼ vnf ¼ Tnf ¼ 0 on X1 � 0f g ð16Þ

um ¼ vm ¼ Tm ¼ 0 on X2 � 0f g ð17Þ

Tck ¼ 0 on Xkþ 2 � 0f g; k ¼ 1; 2; 3; 4 ð18Þ

and the dimensionless boundary conditions are

unf ¼ 0; vnf ¼ �1; Tnf ¼ 0 on C1 � 0; tdmð � ð19Þ

um ¼ 0; vm ¼ �1; Tm ¼ 0 on C2 � 0; tdmð � ð20Þ
@unf
@n

¼ @vnf
@n

¼ @Tnf
@n

¼ 0 on C3 � 0; tdmð � ð21Þ

@um
@n

¼ @vm
@n

¼ @Tm
@n

¼ 0 on C4 � 0; tdmð � ð22Þ

unf ¼ vnf ¼ 0;
@Tnf
@n

¼ 0 on C5 [C7 [C9 [C11 [C13ð Þ � 0; tdmð � ð23Þ

@Tck
@n

¼ 0 on C2kþ 4 � 0; tdmð �; k ¼ 1; 2; 3; 4 ð24Þ

um ¼ vm ¼ 0;
@Tm
@n

¼ 0 on C14 � 0; tdmð � ð25Þ

On Ckþ 14 � 0; tdmð � : unf ¼ vnf ¼ 0;

jr
jf
jnf

@Tck
@n

¼ @Tnf
@n

; Tnf ¼ Tck; k ¼ 1; 2; 3; 4
ð26Þ

On C19 � 0; tdmð � : unf ¼ um; vnf ¼ vm;

� pmnx þ
lnf
lf

1
eRe

@um
@n

¼ �pnf nx þ
lnf
lf

1
Re

@unf
@n

;

� pmny þ
lnf
lf

1
eRe

@vm
@n

¼ �pnf ny þ
lnf
lf

1
Re

@vnf
@n

;

Tnf ¼ Tm;
jeff
jnf

@Tm
@n

¼ @Tnf
@n

ð27Þ
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where tdm [ 0 is the dimensionless length of the time interval and n ¼ nx; ny
� �

is
the unit outward normal to Ckþ 14.

The removal of heat from the heat-generating components is described by

Nuav ¼ 1
4

X4
k¼1

Nuav;k ð28Þ

where

Nuav;k ¼ �
R
Ckþ 14

@Tck
@n dl

l Ckþ 14ð Þ ð29Þ

is the dimensionless average Nusselt number at the fluid–solid interface of com-
ponent k and l Ckþ 14ð Þ is the length of Ckþ 14.

3 Finite Element Method

Equations (1)–(9) with the associated initial and boundary conditions (16)–(27) are
solved numerically using the mixed finite element method with polynomial pressure
projection stabilization (PPPS). The domain of the problem is first spatially dis-
cretized into three-noded linear triangular elements, and a stabilized mixed Galerkin
formulation of the governing equations is constructed. The resulting system of
ordinary differential equations is then time-discretized using the Crank-Nicholson
scheme. This yields a system of nonlinear algebraic equations, which are solved
iteratively using MATLAB with a relative error tolerance of 10−6.

3.1 Grid-Independence Test

A grid-independence test was conducted for time tdm ¼ 1 with four different finite
element meshes with 4942, 5596, 6466 and 6996 elements. The average Nusselt
number Nuav in the case of the Cu-water nanofluid for these meshes is shown in
Table 2. It was determined from this test that a finite element mesh with 6466
elements is appropriate for the present problem.

Table 2 Grid independence test values at t ¼ 1, Pr ¼ 6:2, jps ¼ 8 W m−1, qps ¼ 200 kg m−3,
cp
� �

ps¼ 900 J kg−1 K−1, cF ¼ 0:06, Q ¼ 100, ar ¼ 10, jr ¼ 4, Re ¼ 1, Ha ¼ 1, Gr = 1,

e ¼ 0:95, Da ¼ 10�5 and / ¼ 0:02

Number of elements Nuav Time (s)

4942 4.7725 8891

5596 4.7582 11,203

6466 4.7491 12,090

6996 4.7475 13,722
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3.2 Code Validation

The present numerical scheme is validated by comparison against the work of
Nithiarasu et al. (1998) on unsteady natural convective flow and heat transfer within
an L-shaped cavity. Comparisons of the present results and those obtained by
Nithiarasu et al. are given in Table 3 and Fig. 3. It was observed that there is good
agreement between the compared results; hence, the present code may be used to
accurately solve the problem under consideration.

Table 3 Comparison of Nuav
from the present code with the
numerical solution of
Nithiarasu et al. (1998)

L2=H2 Present
work

Nithiarasu et al.
(1998)

Error
(%)

1 3.6169 3.58 1.03

0.65 3.7293 3.76 0.82

0.40 3.8270 3.80 0.71

Streamlines Isotherms
Nithiarasu et al. (1998)

Present Code

Fig. 3 Comparison between present code and that of Nithiarasu et al. (1998)
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4 Results and Discussion

The porous medium used in this study is an ERG Aerospace Duocel® open-cell
aluminium foam (ERM Aerospace Corporation 2011). This metal foam has thermal
conductivity jps ¼ 8 W m−1 K−1, density qps ¼ 200 kg m−3, specific heat capacity

cp
� �

ps¼ 900 Jkg�1 K�1 and form drag coefficient cF ¼ 0:06 (Ashby et al. 2000;

Dukhan and Minjeur 2011). Throughout the present study, the values t ¼ 1,
Pr ¼ 6:2, Q ¼ 100, ar ¼ 10, jr ¼ 4, Re ¼ 1, Ha ¼ 1, Gr = 1, e ¼ 0:95, Da ¼
10�5 and / ¼ 0:02 are assumed.

The effects of the thickness of the porous layer h1 and size of the
heat-generating components Ad are displayed in Figs. 4, 5, 6, 7, 8 and 9. These
figures reveal that the size of the circulation zone decreases as the thickness of the
porous layer h1 increases. We also note that as Ad is increased, the streamlines
become less concentrated between components 1 and 2 and between components
3 and 4. This is due to a reduction in the spacing of the components as the size of
the components increases. The isotherm plots show that the temperature of the
heat-generating components increases with increased Ad . An increase in Ad causes
an increase in the heat generated within the components, which leads to the
observed increase in temperature. We also observe that the temperature of the
fluid near components 1 and 2 increases with increased h1. The fluid temperature
near components 3 and 4 is reduced when h1 increases from 0.2 to 0.25; however,
this trend is reversed when h1 is increased from 0.25 to 0.3. This occurs as a
result of the competing effects of enhanced thermal conductivity and reduced heat
capacity within the porous layer, and a reduction in flow velocity within this layer
as its thickness increases.

Table 4 displays the average Nusselt number Nuav on the fluid–solid interface
of the electronic components for different values of Ad and h1. It is observed that
an increase in the thickness h1 of the porous layer results in a decrease in Nuav.
The average rate of heat transfer decreases with increased Ad when 0.09 �
� 0.12 and 0.135 � Ad � 0.15, but increases as Ad increases when

0.12 � Ad � 0.135. This may be explained by the competing effects of
enhanced mixing within the fluid and an increase in the temperature within the
components as Ad increases.
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Fig. 4 Streamline plots for
different values of Ad with
h1 ¼ 0:2
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Fig. 5 Streamline plots for
different values of Ad with
h1 ¼ 0:25
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Fig. 6 Streamline plots for
different values of Ad with
h1 ¼ 0:3
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Fig. 7 Isotherm plots for
different values of Ad with
h1 ¼ 0:2
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Fig. 8 Isotherm plots for
different values of Ad with
h1 ¼ 0:25
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Fig. 9 Isotherm plots for
different values of Ad with
h1 ¼ 0:3
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5 Conclusions

In this chapter, we studied the cooling of heat-generating electronic components via
the mixed convective flow of nanofluids through an L-shaped channel with an inner
porous layer. The effects of the thickness of the porous layer and the size of the
heat-generating components on fluid flow and heat transfer within the channel were
investigated. The results revealed that the size of the circulation zone near the outer
corner of the channel decreases with increased porous layer thickness. Furthermore,
an increase in the size of the components improves the heat transfer performance of
the nanofluid when 0.09 � Ad � 0.12 and 0.135 � Ad � 0.15 and diminishes
heat transfer performance when 0.12 � Ad � 0.135. Finally, an increase in the
thickness of the porous layer results in enhanced overall heat transfer performance
within the L-shaped channel.
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Hall Current and Radiation Effects
on Unsteady MHD Squeezing Nanofluid
Flow in a Rotating Channel with Lower
Stretching Permeable Wall

Shalini Jain and Shweta Bohra

Abstract In analysis of present model, we have analyzed the Hall current and
radiative effects on unsteady MHD squeezing nanofluid in a rotating channel. The
lower wall is permeable and linearly stretching, and the upper wall is squeezing
downward in the presence of MHD. By introducing similarity transformation, we
get the ordinary coupled differential equation. The transformed nonlinearly coupled
differential equations are solved numerically by bvp4c solver using software
MATLAB. We have taken nanoparticles of copper (Cu) and alumina (Al2O3) as
base fluid (water). The effect of different parameters such as magnetic field
parameter M, squeezing parameter Sq, rotational parameter x, suction parameter
w0, nanofraction parameter /, hall current parameter be, radiation parameter N on
velocity profile, and temperature profile is displayed through tables and graphs.

1 Introduction

In a rotating medium, the hydromagnetic fluid flow study is highly significant due
to its presence in various natural phenomena. It has vast number of applications in
different technological situations, such as manufacture of insulating materials, thin
plastic sheets, and paper fabrication. By considering various aspects of the problem,
many researchers made an observation for steady hydromagnetic fluid flow of a
viscous electrically conducting incompressible fluid due to channel which is
rotating on its own plane. In the presence of uniform transverse magnetic field,
Vidyaniti (1969) was the first who investigated the steady flow of rotating plate
channel which is parallel. This work was extended by Nanda and Mohanty (1971)
and Mazumder (1977); they investigated MHD flow in rotating channel. Datta and
Jana (1977) investigated the Hall current effects on MHD fluid flow and heat
transfer study in a rotating channel. Ghosh et al. (2009) studied characteristics of
heat transfer for rotating system problem. Rao et al. (1982), Pop (2001), and Seth
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(2008, 2009) investigated free and forced convective fluid flow in a rotating channel
under various flow patterns. Chauhan et al. (2009, 2010) investigated heat transfer
effects on rotating channel which partially filled or filled with porous medium using
continuity of velocity components and stress at the porous edge.

In recent past years, there has been a rising interest in the squeezing flow study
between two rigid surfaces. These types of flow occurred in many engineering
process such as compression and injection molding, lubrication theory, food
industry, blood flow due to expansion and contraction of vessels. Squeezing flows
are caused by the application of normal stresses to the running surfaces. Stefan
(1874) was the pioneer of the squeezing fluid flow study. He investigated squeezed
flow behavior of Newtonian fluid between two plates which are settled parallel and
obtained an asymptotic solution. Bhattacharyya et al. (1997) examined squeezed
flow of viscous MHD fluid between two disks which are rotating under different
boundary conditions. The heat transfer characteristics in a squeezed Newtonian
fluid flow between two horizontally parallel plates were observed by Duwairi et al.
(2004). Munawar et al. (2012) studied the three-dimensional unsteady MHD fluid
flow past a rotating channel with stretched lower wall and squeezing upper plate.
Entropy generation effects have been observed by Butt and Ali (2015) on unsteady
squeezing fluid flow past a rotating channel which has a lower stretching porous
wall.

A liquid in which nanoscale particles are suspended in a base fluid, such as
water, ethylene glycol, and propylene glycol, with low thermal conductivity is
known as ‘nanofluid.’ Choi and Eastman (1995) were the first who have pointed out
that nanofluid is a mixture of nanoparticles in base fluid. Later on, Xuan and Li
(2003) examined the volume fraction and Reynolds number of nanoparticles’
influences in turbulent flows for nanofluids in tubes experimentally. Buongiorno
(2006) observed that due to Brownian diffusion and thermophoresis, there is
enrichment in heat transfer for nanofluid. After that, Nield and Kuznetsov (2009)
studied the behavior of natural convective boundary layer fluid flow of a nanofluid
which employs Buongiorno model. Khan and Pop (2010) had been done the study
of steady boundary layer flow of a nanofluid toward a sheet which is stretched.
Makinde and Aziz (2011) analyzed fluid flow behavior for nanofluid due to a sheet
which is linearly stretched by taking convective boundary condition. Mustafa et al.
(2011) also have been given their contribution to the study of flow and heat transfer
for nanofluid near a stagnation point. They considered stretching surface for their
research. Rana and Bhargava (2012) investigated the laminar boundary layer flow
for nanofluid due to the nonlinear stretching surface. Freidoonimehr et al. (2014)
examined the three-dimensional nanofluid flow in a horizontally rotating parallel
channel. They consider upper wall of the channel is squeezed downward and lower
wall is stretched.

Pal and Mandal (2016) obtained MHD heat transfer characteristics of nanofluids
over a nonlinearly stretching or shrinking sheet by considering the Hall current
effect. Shit and Haldar (2012) illustrated the combined influences of thermal radi-
ation and the Hall current effect on MHD free convective flow and mass transfer
behavior over a stretching flat sheet by taking variable viscosity. Khidir (2013)
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examined the viscous dissipation effect, radiative influence, and ohmic heating
effect on MHD flow past a rotating disk which is embedded in a porous medium.
He considered variable properties in his research. Recently, Mahanthesh et al.
(2016) have been given the numerical solution for the problem of an unsteady
three-dimensional squeezing flow of a nanofluid in rotating vertical channel of
stretching left plane.

The purpose of the present study is to explore the combined influences of Hall
current and radiation on unsteady MHD squeezing rotating channel with lower
stretching permeable wall for nanofluid.

2 Mathematical Formulation

In this investigation, we consider unsteady, three-dimensional rotating, nanofluid
flow of an incompressible, viscous fluid between two plane walls which are infi-
nitely horizontal. Lower wall is stretched with the Uw tð Þ ¼ ax

1�ct, dependent on time
t, along x-direction, and is placed at y = 0. The upper plate is situated at variable

distance hðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
vf 1�ctð Þ

a

q
, and nanofluid is squeezed downward with velocity

Vh tð Þ ¼ dh
dt which is dependent on time as shown in Fig. 1.

In the lower plate, suction with the velocity Vw tð Þ ¼ � V0
1�ct is considered. The

fluid and the channel are rotating around y-axis with an angular velocity x� ¼ x0
1�ct.

Magnetic field B(t) with density B0ffiffiffiffiffiffiffi
1�ct

p is applied along the y-axis suggested by

Khidir (2013). The lower stretching wall of the channel is kept on temperature Tw,
and the squeezing wall has temperature Th such that Tw [ Th

x, u

z, w

y, v

y = h(t)

y = 0

Uw

Vh(t)

Fig. 1 Schematic diagram of the problem
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The governing differential equations are followed by Butt and Ali (2015):

@u
@x

þ @u
@y

¼ 0; ð1Þ

qnf
@u
@t

þ u
@u
@x

þ v
@u
@y

þ 2
x0

1� ct
w

� �

¼ � @p
@x

þ lnf
@2u
@x2

þ @2u
@y2

� �
� rnf B2

0

1� ctð Þ a2 þ b2e
� � au� bewð Þ;

ð2Þ

qnf
@v
@t

þ u
@v
@x

þ v
@v
@y

� �
¼ � @p

@y
þ lnf

@2v
@x2

þ @2v
@y2

� �
; ð3Þ

qnf
@w
@t

þ u
@w
@x

þ v
@w
@y

þ 2
x0

1� ct
u

� �

¼ lnf
@2w
@x2

þ @2w
@y2

� �
� rnf B2

0

1� ctð Þ a2 þ b2e
� � awþ beuð Þ;

ð4Þ

qCPð Þnf
@T
@t

þ u
@T
@x

þ v
@T
@y

� �
¼ knf

@2T
@x2

þ @2T
@y2

� �

þ lnf 4
@u
@x

� �2

þ @u
@y

þ @v
@x

� �2

þ @w
@x

� �2

þ @w
@y

� �2
" #

� @qr
@y

þ rnf B2
0

1� ctð Þ a2 þ b2e
� � u2 þw2

� �
;

ð5Þ

The appropriate boundary conditions are:
at

y ¼ 0

u x; y; tð Þ ¼ Uw tð Þ ¼ ax
1� ct

;

v x; y; tð Þ ¼ Vw tð Þ � V0

1� ct
;

w x; y; tð Þ ¼ 0; T x; y; tð Þ ¼ Tw;

at

y ¼ h tð Þ u x; y; tð Þ ¼ 0; v x; y; tð Þ ¼ Vh ¼ dh
dt ¼ �c

2

ffiffiffiffiffiffiffiffiffiffiffi
vf

a 1�ctð Þ
q

;

w x; y; tð Þ ¼ 0; T x; y; tð Þ ¼ Th;
ð6Þ

where u, v, and w are components of fluid velocity along x-, y-, and z-directions,
respectively. Here, the stretching rate of lower porous wall of the channel is rep-
resented by constant a[ 0; c is the parameter having dimensions of (time)−1 and
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ct\1: T is the temperature of nanofluid, and r is the electrical conductivity.
a ¼ 1þ bibe, where be ¼ xete; the Hall current parameter, depends on the mag-
netic field’s orientation which decides its positive or negative sign, and bi is the ion
slip parameter.

Further, lnf , qnf , mnf , rnf , knf , and qCPð Þnf are effective dynamic viscosity,
effective density, effective kinematic viscosity, electrical conductivity, thermal
conductivity, and the heat capacitance of the nanofluid, which are defined as fol-
lows (Pal and Mandal (2016)):

lnf ¼
lf

1� /ð Þ2:5 ; qnf ¼ 1� /ð Þqf þ/qs; mnf ¼
lnf
qnf

;

qCPð Þnf ¼ 1� /ð Þ qCPð Þf þ/ qCPð Þs;

rnf ¼ rf 1þ 3 r� 1ð Þ/
rþ 2ð Þ � r� 1ð Þ/

� �
; r ¼ rs

rf

knf
kf

¼ ks þ 2kf
� �� 2/ kf � ks

� �
ks þ 2kf
� �þ/ kf � ks

� � ;

ð7Þ

where / is the solid volume fraction of nanofluid, qf ; lf ; rf ; kf ; qCPð Þf are reference
density, dynamic viscosity, electrical conductivity, thermal conductivity, and heat
capacitance of base fluid, respectively. qs; ls; ks; rs; qCPð Þs are reference density,
dynamic viscosity, thermal conductivity, electrical conductivity, and heat capaci-
tance of solid fractions, respectively. The subscripts nf, f, and s denote the ther-
mophysical properties of nanofluid, base fluid, and solid nanoparticles, respectively
(Table 1).

For radiation effect, Rosseland approximation has been used:

qr ¼ � 4r1
3k1

@T4

@y
ð8Þ

where r1 is the Stefan–Boltzmann constant and k1 is the mean absorption coeffi-
cient. We consider that differences between the temperatures within the flow are
such that the expression T4 may be defined as a temperature’s linear function. This
is consummated by expanding T4 in a Taylor series about Th, and by avoiding
second- and higher-order terms, we get:

Table 1 Thermophysical properties of fluid and nanoparticles (Pal and Mandal 2016)

Physical properties Fluid phase Cu (copper) Al2O3 (alumina)

q (kg/m3) 997.1 8933 3970

Cp (J/kg K) 4179 385 765

r (S/m) 5.5 � 10−6 59.5 � 106 35 � 106

j (W/m K) 0.613 400 40
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T4 ffi 4T3
hT � 3T4

h ð9Þ

The following similarity transformations are used to reduce the above governing
coupled equations with boundary conditions (1–6) in a non-dimensional form as
Butt and Ali (2015):

g ¼ y
hðtÞ ; u ¼ Uwf

0 gð Þ; v ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
avf

1� ct

r
f gð Þ; w ¼ Uwg gð Þ;

h ¼ T � Tw
Tw � Th

: ð10Þ

Substituting the similarity transformations (10) into (1–6) and using (8) and (9)
in Eq. (5), the continuity equation is satisfied identically and we obtain the fol-
lowing system of nonlinear ordinary couple differential equations:

f iv � /1/2
Sq
2

3f 00 þ gf 000ð Þ þ f 0f 00 � ff 000 þ 2xg0
� �

� /1/3
M2

a2 þ b2e
� � af 00 � beg

0ð Þ ¼ 0;
ð11Þ

g00 þ/1/2 fg0 � f 0g� Sq gþ g
2
g0

	 

þ 2xf 0

h i
� /1/3

M2

a2 þ b2e
� � agþ bef

0ð Þ ¼ 0;
ð12Þ

knf
kf

þ 4N
3

� �
h00 � /4Pr

Sq
2
gh0 � f h0

� �
þ Pr

/1
Ec 4f 02 þ g2
� �þEcx f 002 þ g02

� �� �
þ/3

M2PrEcx
a2 þ b2e
� � f 02 þ g2

� � ¼ 0;

ð13Þ

where,

/1 ¼ 1� /ð Þ2:5; /2 ¼ 1� /þ/
qs
qf

 !
;

/3 ¼ 1þ 3 r� 1ð Þ/
rþ 2ð Þ � r� 1ð Þ/

� �
;/4 ¼ 1� /þ/

qCPð Þs
qCPð Þf

:
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and the boundary conditions (6) in non-dimensional form
at

g ¼ 0 f 0ð Þ ¼ w0; f 0 0ð Þ ¼ 1; g 0ð Þ ¼ 0; h 0ð Þ ¼ 1;

at

g ¼ 1 f 1ð Þ ¼ Sq
2
; f 0 1ð Þ ¼ 0; g 1ð Þ ¼ 0; h 1ð Þ ¼ 0: ð14Þ

where x ¼ x0
a is the rotation parameter, Sq ¼ c

a is the squeezing parameter, w0 ¼ V0
ah

is the suction parameter, M2 ¼ rf B2
0

aqf
is magnetic parameter, Pr ¼ lf CPð Þf

kf
is Prandtl

number, N ¼ 4r1T3
h

k1kf
is radiation parameter, Ec ¼ v2f

h2 CPð Þf Tw�Thð Þ is Eckert number, and

Ecx ¼ U2
w

CPð Þf Tw�Thð Þ is local Eckert number. In order to squeeze flow, we take Sq[ 0;

for which the upper wall is moving in downward direction with velocity Vh\0:
When Sq\0, the upper wall moves away from the lower plate at y ¼ 0: When
Sq ¼ 0; we arrive at the case where upper wall or plate is stationary and there is no
squeezing effect or there is a steady state.

In this problem, the physical quantities of interest such as local skin friction
coefficients Cf and Cg along and normal to stretching wall, respectively, and local
Nusselt number Nu at the lower wall can be defined as follows:

Cf ¼ suy
qf U2

w
; Cg ¼ swy

qf U2
w
; Nux ¼ qwx

kf Tw � Thð Þ ð15Þ

where suy and swy are shear stresses along and normal to stretching wall and qw is
the wall heat flux. Here, we have:

Cf ¼
lnf @u=@yð Þy¼0

qf U2
w

; Cg ¼
lnf @w=@yð Þy¼0

qf U2
w

; qw ¼ qr � knf
@T
@y

� �� �
y¼0

ð16Þ

Substituting Eqs. (10) and (16) into Eq. (15), we get:

Cf Rex ¼ f 00 0ð Þ
1� /ð Þ2:5 ; CgRex ¼ g0 0ð Þ

1� /ð Þ2:5 ;

Nux ¼ �x
h

knf
kf

þ 4N
3

� �
h0 0ð Þ

where Rex ¼ qf Uwh
lf

is local Reynolds number.
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3 Result and Discussion

The system of nonlinear ordinary coupled differential Eqs. (11)–(13) within the
boundary conditions (14) is solved numerically by using bvp4c with MATLAB
package. The effects of different parameters such as squeezing parameter (Sq),
nanoparticle volume fraction (/), rotation parameter (x), suction parameter (w0),
magnetic field parameter (M), Hall current parameter (be), ion slip parameter (bi),
radiation parameter (N), Prandtl number (Pr), local Eckert number (Ec), Eckert
number (Ecx) on all velocity components and temperature profile, for two different
types of nanofluids—Cu-water and Al2O3-water—have been investigated. As Cu
nanoparticle possesses higher density than other nanoparticle, we can see that Cu-
water nanofluids admit lower velocity profiles with the comparison of Al2O3–water
and same effect shows for temperature profile also. The Prandtl number of base
fluid (water) is kept 6.8. It is observed that the results obtained are very well in
agreement with the literature present as shown in Table 2.

The effect of squeezing parameter Sq on normal, axial, and transverse velocity
components is shown by Fig. 2a–c. We can see that with the increases in Sq,
normal velocity f(η) increases at the upper plate for both the nanofluids, which
shows prominent effect on the upper plate. For both nanofluids, axial velocity f′(η)
and transverse velocity g(η) also increase with increasing Sq and the increasing
effect is prominent in the middle of the channel. When upper plate moves down-
ward, a force exerted on fluid and fluid moves with more velocity. On comparing
both the fluids observed that fluid with Cu attains more velocity than with Al2O3.
Exactly reverse effect has shown when plate moves upward. Figure 3d shows the
temperature profile for metal (Cu)-based nanofluid. As upper plate moves down-
ward direction, more force exerted on fluid causes increase in temperature, and
when plate moves upward, the temperature reduces.

Figure 3a–d shows the effect of volume fraction / on all velocity components
and temperature distribution. For both nanofluids, the normal velocity reduces by
increasing value of / as well as axial velocity decreases in lower half channel while
increasing in upper half channel, and transverse velocity increases near the lower
surface, but in rest of the channel, it deceases with increasing value of /. It can be
seen that temperature rises with the higher value of / for both nanoparticle-based
fluids.

Figure 4a–b displays the effect of rotation parameter x on axial velocity com-
ponents and temperature distribution. In Fig. 4a, we can see that axial velocity
reduces in lower half channel while it shows reverse effect (approximately in the
center of the channel, g ffi 0:4) in upper wall of the channel. Temperature increases
with the increment of x which is shown in Fig. 4b due to high convection rate as a
consequence of large rotation of fluid and channel. This above result has been
presented for both nanofluids.

The effect of Hall current parameter be on velocity and temperature distribution
is plotted in Fig. 5a–d. When be increases, normal velocity increases for both
nanofluids and axial velocity also increases in lower part of the channel while
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decreases in upper part of the channel. Transverse velocity component also
increases near the lower wall, and after a point, it shows decrements in rest of the
channel. Temperature rise with the increasing value of be.

In Fig. 6, we can see that for increasing value of radiation parameter N, tem-
perature decreases for both nanofluids.

Table 3 displays the numerical value of shear stress f 00 0ð Þ and g0 0ð Þ for variation
/; Sq;w0;M; be. It is observed that f 0 0ð Þ and g0 0ð Þ increases with the increasing
value of Sq while reduces when w0;M; be decrease for both nanofluids, but when /
increases f 0 0ð Þ decreases while value of g0 0ð Þ is increased for Cu-based nanofluid,
and for Al2O3-based nanofluid, it shows reverse trend. In Table 4, we can see that
numerical value of rate of heat transfer h0 0ð Þ is increased with the increasing value
of /, w0, and be, while it is decreased when Sq, M, and N increase for both
nanofluids, Cu–water based and Al2O3–water based.
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Table 3 Variation of f 00 0ð Þ and g0 0ð Þ at the lower surface with /, Sq, w0, M, and be parameters,
when Ec = Ecx = 0.2, x = 1, Pr = 6.8, bi = 0.5

/ Sq w0 M be f″(0) g′(0)

Cu–water Al2O3–water Cu–water Al2O3–water

0 1 0.5 1 0.5 −4.537783008 −4.537783008 0.132610617 0.132610617

0.1 1 0.5 1 0.5 −4.717174224 −4.538738789 0.184297173 0.131783922

0.2 −4.764288533 −4.498242267 0.198288175 0.120234334

−1 −10.56718710 −10.41082563 −1.94501960 −1.080524248

0 −7.754140578 −7.561212083 −0.59476075 −0.362843138

1 −4.717174224 −4.538738789 0.184297173 0.131783922

2 −1.456097243 −1.347909970 0.693595628 0.494623188

0.1 −1.930999143 −1.860009037 0.607132137 0.430774139

0.5 −4.717174224 −4.538738789 0.184297173 0.131783922

1 −8.606721442 −8.166999935 −0.59461264 −0.366969368

1 −4.717174224 −4.538738789 0.184297173 0.131783922

2 −4.801433673 −4.625336497 0.165519912 0.111326820

3 −4.884904719 −4.710999912 0.145653499 0.090057871

0.5 −4.717174224 −4.538738789 0.184297173 0.131783922

1 −4.687714422 −4.508873196 0.180907091 0.128674663

5 −4.642567210 −4.462304808 0.192111423 0.141033464

Table 4 Variation of h′(0) at the lower surface with /, Sq, w0, M, be, and N parameters, when
Ec = Ecx = 0.2, x = 1, Pr = 6.8, bi = 0.5

/ Sq w0 M N be h′(0)

Cu-water Al2O3-water

0 1 0.5 1 1 0.5 0.558213427 0.491997869

0.1 1 0.5 1 1 0.5 0.989707655 0.891142260

0.2 1.490564089 1.377132409

−1 15.867700676 14.376900320

0 6.139611121 5.766924071

1 0.989707655 0.891142260

2 −0.363586476 −0.588521552

0.1 −0.049652606 −0.208843513

0.5 0.989707655 0.891142260

1 6.504295369 6.013741404

1 0.989707655 0.891142260

2 1.036967878 0.865046187

3 1.083837312 0.840625575

1 0.989707655 0.891142260

5 −0.363685916 −0.398354966

10 −0.656544714 −0.675655053

0.5 0.989707655 0.891142260

1 0.969133138 0.903961072

5 0.944689354 0.918106971
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4 Conclusion

In this paper, we have investigated three-dimensional flow of two types of
nanoparicle, Cu–water based and Al2O3–water based, in a rotating channel on a
lower permeable squeezing wall in the presence of Hall current and radiation. The
upper wall is squeezed downward. The system of non-dimensional equations is
solved numerically by bvp4c using MATLAB. It is observed that:

• Cu–water attains lower velocity and temperature profile than nanofluid Al2O3–

water with the increasing value of all parameters except Sq. For upward
squeezing Cu-water-based nanofluid admits maximum velocity and temperature
compared to Al2O3-water.

• Normal velocity component decreases when volume fraction parameter / and
magnetic field parameter M increase, whereas reverse effect was observed with
an increases in squeezing parameter Sq and Hall current parameter.

• An increase in volume fraction parameter / and magnetic field parameter
M axial velocity decreases in the lower half and increases in upper half portion
of the channel, whereas increasing value of be shows reverse trend.

• An increase in radiation parameter causes decrease in temperature profile,
whereas temperature rises as the Hall current parameter be increases.
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Part III
Heat and Mass Transfer



Natural Convection of a Micropolar
Fluid Between Two Vertical Walls
with Newtonian Heating/Cooling
and Heat Source/Sink

Arun Kumar Singh and A.K. Singh

Abstract The aim of this paper is to investigate the natural convection of a
micropolar fluid flow in two vertical walls with the Newtonian heating/cooling on
one of its walls. The governing linear differential equations with their appropriate
boundary conditions of the considered model are changed first into non-
dimensional differential equations and boundary conditions by using the dimen-
sionless parameters and variables. Analytic solutions of the non-dimensional
differential equations have been obtained one by one for several cases of source or
sink parameter. To obtain the influence of the Biot number and other physical
parameters, the numerical results of the velocity, temperature, and microrotational
velocity are finally shown in the graphs and table. It is found that the effect of the
Newtonian heating is to increase the velocity, microrotational velocity, and rate of
volume flow, while in the case of the Newtonian cooling, velocity, microrotational
velocity, and rate of volume flow have decreasing tendency.

.

Nomenclature

S Dimensionless source/sink parameter
T Dimensionless temperature
K Vertex viscosity
w Angular viscosity
y Dimensionless transverse coordinate
y′ Transverse coordinate
u Dimensionless streamwise velocity
u′ Streamwise velocity
T′ Temperature
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R Vertex viscosity parameter
Q Dimensionless volume flow rate
L Channel width
E Dimensionless total heat rate added to the fluid
G Gravitational acceleration
Gr Grashof number
w Dimensionless microrotational velocity
j Microinertia density
Bi Biot number

Greek Letters

q Density
b Coefficient of thermal expansion
c Spin gradient viscosity
l Dynamic viscosity

Subscripts

f Fluid layer
p Porous layer
c Cold wall

1 Introduction

The physical properties of many real fluids cannot be described by the Newtonian
relationship in the current scenario, and therefore, many non-Newtonian fluid
theories have been proposed to explain the property of real fluids by researchers.
The physical description of such fluids demand a new idea which is different from
the real fluids. To illustrate the complex nature of such fluids, additional balance
laws are required. A new subclass of fluid is proposed by Erigen (1966, 1972) such
as micropolar fluid which neglects the distortion of the microelements but permits
to undergo rotation. The mathematical modeling of micropolar fluid can be used to
the complex biological structures, certain polymer solutions, colloidal suspensions
and lubricating fluids.

Aung (1972) described fully developed laminar-free convection flow in vertical
parallel plate channel heated asymmetrically. Nelson and Wood (1973) obtained the
solution for the combined influence of heat and mass transfer problem of natural
convection in vertical channels. Miyatake and Fujii (1973) investigated the natural
convection between vertical parallel plates, when they are at unequal uniform
temperatures. Ravi et al. (2011) presented free convection of a micropolar fluid in
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two vertical walls by considering into account the temperature-dependent
source/sink. In some technological systems, the rate of the thermal energy trans-
fer from the medium depends on the local surface temperature. The flow of this type
is called as the conjugate convective flow, and the term Newtonian heating/cooling
is used for proportional condition of the heat transfer to the local surface temper-
ature. Using this condition, Merkin (1994) first studied the influence of Newtonian
heating on the free convective boundary layer flow of a viscous fluid past vertical
parallel flat plate. Then, several workers have used the Newtonian heating/cooling
condition in view of its application in many engineering devices. Effects of induced
magnetic field on natural convection with Newtonian heating/cooling in vertical
annuli have been investigated by Kumar and Singh (2015).

Here, the purpose of this paper is to demonstrate the influence of Newtonian
heating/cooling on the velocity and microrotation in the presence of parameters
such as heat source/sink, vertex viscosity, material parameter. We have obtained the
solution of linear simultaneous ordinary differential equations using the boundary
condition for the velocity, microrotational velocity, and temperature.

2 Mathematical Formulation

We have considered steady-state one-dimensional, natural convection of a
micropolar fluid between two vertical walls with the Newtonian heating/cooling
and heat source or sink. The distance between the vertical walls is taken as L and
having the Newtonian heating/cooling at the wall y0 ¼ 0, while the temperature of
other wall is considered as T1. One of the vertical walls is taken along x-axis and y-
axis normal to x-axis. The length of the vertical wall is supposed to be infinitely
long so that the dependent variables are free from the vertical coordinate. Using the
Boussinesq approximation, the governing equation for natural convection of a
micropolar fluid with temperature-dependent heat source or sink can be written in
non-dimensional form as follows:

ð1þRÞ d
2u
dy2

þ dw
dy

þ T ¼ 0; ð1Þ

ð1þRÞ d
2w
dy2

� BR 2wþ du
dy

� �
¼ 0; ð2Þ

d2T
dy2

þ sT ¼ 0: ð3Þ

The boundary conditions in the non-dimension form are derived as follows:
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u ¼ 0; w ¼ 0;
dT
dy

¼ BiT ; at y ¼ 0;

u ¼ 0; w ¼ 0; T ¼ 1; at y ¼ 1: ð4Þ

The dimensionless quantities used in the above equations are obtained as
follows:

y ¼ y0

L
; w ¼ w0l

qgbL T 0
1 � T 0

0

� � ; B ¼ L2

j
; u ¼ u0l

qgbL2 T 0
1 � T 0

0

� � ;

T ¼ T 0 � T 0
0

� �
T 0
1 � T 0

0

� � ; s ¼ s0L2

k
; R ¼ k

l
; Bi ¼ cL: ð5Þ

Here, velocity of the fluid along x-direction is u, the microrotational velocity is
w, density of the fluid is q, the dynamic viscosity of the fluid is µ, the gravitational
acceleration is g, and Biot number is Bi. The analytic solution of differential
Eqs. (1)–(3) depends on the Biot number Bi and source/sink parameters. The values
of s are taken as positive, negative, and zero for source, sink, and absence of
source/sink parameters, respectively. The values of Bi are negative in the presence
of the Newtonian heating and positive in the presence of the Newtonian cooling.

Case 1: When source (s > 0) is present

Analytic solutions for the velocity (u), microrotational velocity (w), and tempera-
ture (T) are derived as follows:

u ¼ k28k14 sinh
ffiffiffiffiffi
k5

p
yþ k27k14 cosh

ffiffiffiffiffi
k5

p
yþ k15 cos

ffiffi
s

p
y

þ k16 sin
ffiffi
s

p
y� 2k29yþ k30;

ð6Þ

w ¼ k29 þ k28 cosh
ffiffiffiffiffi
k5

p
yþ k27 sinh

ffiffiffiffiffi
k5

p
y� k8 sin

ffiffi
s

p
y� k9 cos

ffiffi
s

p
y; ð7Þ

T ¼ k3 cos
ffiffi
s

p
yþ k4 sin

ffiffi
s

p
y: ð8Þ

The rate of dimensionless volume flow is given by

Q ¼
Z1

0

udy ¼ k32 sinh
ffiffiffiffiffi
k5

p
þ k31 cosh

ffiffiffiffiffi
k5

p
þ k34 sin

ffiffi
s

p þ k33 cos
ffiffi
s

p þ k35: ð9Þ

Case 2: When source/sink (s = 0) is absent

In this case, analytic solutions for the velocity (u), microrotational velocity (w), and
temperature (T) are obtained as follows:
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u ¼ A23A10 sinh
ffiffiffiffiffi
A3

p
yþA22A10 cosh

ffiffiffiffiffi
A3

p
yþA9y

� A11y
3 � A6y

2 � 2A24yþA25;
ð10Þ

w ¼ A22 sinh
ffiffiffiffiffi
A3

p
yþA23 cosh

ffiffiffiffiffi
A3

p
yþA5y

2 þA6yþA24; ð11Þ

T ¼ A1yþA2: ð12Þ

The rate of dimensionless volume flow is given by

Q ¼
Z1

0

udy ¼ A27 sinh
ffiffiffiffiffi
k5

p
þA26 cosh

ffiffiffiffiffi
k5

p
þ k30: ð13Þ

Case 3: When sink (s < 0) is present

In this case, analytic solutions for the velocity (u), microrotational velocity (w), and
temperature (T) are derived as (s = −si):

u ¼ P30P14 sinh
ffiffiffiffiffi
P5

p
yþP29P14 cosh

ffiffiffiffiffi
P5

p
yþP15 cosh

ffiffi
s

p
iy

þP16 sinh
ffiffi
s

p
iy� 2P31yþP32;

ð14Þ

w ¼ P31 þP30 cosh
ffiffiffiffiffi
P5

p
yþP29 sinh

ffiffiffiffiffi
P5

p
yþP8 sinh

ffiffi
s

p
iyþP9 cosh

ffiffiffiffi
si

p
y; ð15Þ

T ¼ P3 cosh
ffiffi
s

p
iyþP4 sinh

ffiffiffiffi
si

p
y: ð16Þ

The rate of dimensionless volume flow is given by

Q ¼
Z1

0

udy ¼ P33 cosh
ffiffiffiffiffi
P5

p þP34 sinh
ffiffiffiffiffi
P5

p þP36 sinh
ffiffi
s

p
iþP35 cosh

ffiffi
s

p
iþP37;

ð17Þ

3 Results and Discussion

In order to see the influence of physical parameters, such as the material,
source/sink, and vertex viscosity as well as Biot number (Bi) on the free convective
flow with the Newtonian heating/cooling between two vertical walls, the numerical
calculations of velocity and microrotation are performed, and then, they are shown
in the graphical forms.

Graphical representation in Fig. 1 shows that the influence of the material and
source parameters on the velocity is to decrease it in case of the Newtonian cooling,
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while Fig. 2 indicates that the impact of the material and source parameters on the
velocity is to increase it in case of the Newtonian heating. Next, Fig. 3 shows that
the influence of the Newtonian cooling on the velocity is to decrease it, while Fig. 4
shows that the influence of the Newtonian heating on the velocity is to increase it.

Fig. 1 Influence of material
and source parameters on
velocity for R = 1, Bi = 0.5

Fig. 2 Influence of material
and source parameters on
velocity for R = 1, Bi = −0.5

Fig. 3 velocity profile for
B = 0.5, S = 1, and
Newtonian cooling
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The vertex viscosity parameter has a decreasing effect on the velocity in both cases
of the Newtonian heating and cooling.

Figures 5 and 6 clearly demonstrate that the impact of the material and source
parameters on the microrotational velocity is to increase it in cases of the
Newtonian heating/cooling. Figure 7 indicates an increase in the microrotational

Fig. 4 velocity profile for
B = 0.5, S = 1, and
Newtonian heating

Fig. 5 Microrotational
velocity profile for R = 1,
Bi = 0.5

Fig. 6 Microrotational
velocity profile for R = 1,
Bi = −0.5
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velocity profiles with the Biot number in case of the Newtonian heating, while
Fig. 8 reveals that the microrotational velocity decreases with the Biot number in
case of the Newtonian cooling. The influence of vertex viscosity parameter is to
increase the microrotational velocity in both cases of the Newtonian heating and
cooling.

Figures 9 and 10 show that the velocity profile increases with the material
parameter and decreases with the source parameter in cases of the Newtonian
heating/cooling. Figures 11 and 12 indicate an increase in the microrotational
velocity profiles with the material parameter and decrease in the microrotational
velocity profiles with the source parameter in both cases of the Newtonian heating
and cooling.

Table 1 clearly shows that in the presence of the Newtonian heating, the
dimensionless volume flow rate has increasing tendency while decreasing tendency
for the Newtonian cooling.

Fig. 7 Influence of vertex
viscosity and Biot number on
microrotational velocity in
case of Newtonian heating

Fig. 8 Influence of Biot
number and vertex viscosity
on microrotational velocity in
case of Newtonian cooling
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Fig. 9 Influence of source
and material parameters on
velocity for R = 1, Bi = 0.5

Fig. 10 Influence of source
and material parameters on
velocity for R = 1, Bi = −0.5

Fig. 11 Microrotational
velocity profile for Bi = 0.5,
R = 1
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Fig. 12 Microrotational
velocity profile for Bi = −0.5,
R = 1

Table 1 Numerical values of
the dimensionless volume
flow rate (Q)

R B s Bi Q

0.75 1.0 1.0 −0.5 5.629427

0.75 1.0 1.0 −0.3 1.459802

0.75 1.0 4.0 0.5 0.026529

0.75 1.0 4.0 0.6 0.074489

0.75 1.0 −1.0 −0.5 −0.301138

0.75 1.0 −1.0 −0.3 −0.206970

0.75 1.0 −4.0 0.5 −0.138105

0.75 1.0 −4.0 0.3 −0.136560

0.75 2.0 1.0 −0.5 5.851975

0.75 2.0 1.0 −0.3 1.515474

0.75 2.0 4.0 0.5 0.032255

0.75 2.0 4.0 0.6 0.083662

0.75 2.0 −1.0 −0.5 0.384068

0.75 2.0 −1.0 −0.3 0.123054

0.75 2.0 −4.0 0.5 −0.137537

0.75 2.0 −4.0 0.3 −0.136161

1.5 1.0 1.0 −0.5 4.302331

1.5 1.0 1.0 −0.3 1.112192

1.5 1.0 4.0 0.5 0.024736

1.5 1.0 4.0 0.6 0.061993

1.5 1.0 −1.0 −0.5 0.623518

1.5 1.0 −1.0 −0.3 0.232780

1.5 1.0 −4.0 0.5 −0.142913

1.5 1.0 −4.0 0.3 −0.141932

1.5 2.0 1.0 −0.5 4.533721

1.5 2.0 1.0 −0.3 1.170173

1.5 2.0 4.0 0.5 0.031948

1.5 2.0 4.0 0.6 0.073577

1.5 2.0 −1.0 −0.5 0.239298

1.5 2.0 −1.0 −0.3 0.047863

1.5 2.0 −4.0 0.5 −0.141573

1.5 2.0 −4.0 0.3 −0.141020
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4 Conclusion

The analytic solutions of the governing differential equations for the Newtonian
heating/cooling and different cases of source/sink parameter have been obtained.
The influence of Biot number parameter on the velocity and microrotational
velocity is to increase them for the Newtonian heating, while in the case of the
Newtonian cooling, the effect of Biot number is to decrease them. The dimen-
sionless volume flow rate has increasing tendency in case of the Newtonian heating
and decreasing tendency for the Newtonian cooling.
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Appendix

k1 ¼ cos
ffiffi
s

p
; k2 ¼ sin

ffiffi
s

p
; k3 ¼

ffiffi
s

p
ðk2Biþ

ffiffi
s

p
k1Þ ;

k4 ¼ Bi
k2Biþ

ffiffi
s

p
k1ð Þ ; k5 ¼ 2BR

1þR
; k6 ¼ 1

2þR
; k7 ¼ k5k6;

k8 ¼ �
ffiffi
s

p
k3k7

s sþ k5ð Þ ; k9 ¼
ffiffi
s

p
k4k7

s sþ k5ð Þ ; k10 ¼ 2þR
2BR

;

k11 ¼ k10k5 � 2; k12 ¼ 2k8 þ sk10k8; k13 ¼ 2k9 þ sk10k9;

k14 ¼ k11ffiffiffiffiffi
k5

p ; k15 ¼ � k12ffiffi
s

p ; k16 ¼ k13ffiffi
s

p ; k17 ¼ sinh
ffiffiffiffiffi
k5

p� �
;

k18 ¼ cosh
ffiffiffiffiffi
k5

p� �
; k19 ¼ k14k17; k20 ¼ k14k18; k21 ¼ k15k1 þ k16k2;

k22 ¼ � k8k2 þ k9k1ð Þ; k23 ¼ � k22 þ k9
k18 � 1

; k24 ¼ � k17
k18 � 1

;

k25 ¼ k23 k19 þ 2ð Þþ k21 � 2k9Þ; k26 ¼ k24 k19 þ 2ð Þþ k20;

k27 ¼ k15 � k25
k26 � k14

; k28 ¼ k23 þ k27k24; k29 ¼ k9 � k28;

k30 ¼ �k15 � k14k27; k31 ¼ k14k28ffiffiffiffiffi
k5

p ; k32 ¼ k14k27ffiffiffiffiffi
k5

p ; k33 ¼ �k16ffiffi
s

p ;

k34 ¼ k15ffiffi
s

p ; k35 ¼ �k29 þ k30 � k31 þ k33;
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A1 ¼ Bi
Biþ 1

; A2 ¼ 1
Biþ 1

; A3 ¼ 2BR
1þR

;

A4 ¼ 1
2þR

; A5 ¼ A4A1

2
; A6 ¼ A2A4;

A7 ¼ 2þR
2BR

; A8 ¼ A7A3 � 2; A9 ¼ 2A5A7;

A10 ¼ A8ffiffiffiffiffi
A3

p ; A11 ¼ 2
3A5

; A12 ¼ sinh
ffiffiffiffiffi
A3

p
;

A13 ¼ cosh
ffiffiffiffiffi
A3

p
; A14 ¼ A9 � A6 � A11; A15 ¼ A10A12;

A16 ¼ A10A13; A17 ¼ A5 þA6; A18 ¼ � A17

A13 � 1
;

A19 ¼ � A12

A13 � 1
; A20 ¼ A16 � A10 þ A15 þ 2ð ÞA19;

A21 ¼ A14 þðA15 þ 2ÞA18; A22 ¼ �A21

A20
;

A23 ¼ A18 þA19A22; A24 ¼ �A23; A25 ¼ �A10A22;

A26 ¼ A23ffiffiffiffiffi
A3

p ; A27 ¼ A22ffiffiffiffiffi
A3

p ; A28 ¼ A24 þ A5

3
þ A6

2
� A22ffiffiffiffiffi

A3
p ;

p1 ¼ cosh
ffiffi
s

p
i; p2 ¼ sinh

ffiffiffiffi
si

p
; p3 ¼

ffiffiffiffi
si

p

p2Biþ
ffiffi
s

p
ip1ð Þ ;

p4 ¼ Bi
p2Biþ

ffiffi
s

p
ip1ð Þ ; k5 ¼ 2BR

1þR
¼ p5; p6 ¼ 1

2þR
¼ k6;

p7 ¼ p5p6; p8 ¼ �
ffiffiffiffi
si

p
p3p7

si siþ p5ð Þ ; p9 ¼
ffiffiffiffi
si

p
p4p7

si siþ p5ð Þ ;

p10 ¼ 2þR
2BR

¼ k10; p11 ¼ p10p5 � 2; p12 ¼ �2p8 þ si p10p8;

p13 ¼ �2p9 þ si p10p9; p14 ¼ p11ffiffiffiffiffi
p5

p ; p15 ¼ p12ffiffiffiffi
si

p ;

p16 ¼ p13ffiffiffiffi
si

p ; p17 ¼ sinh
ffiffiffiffiffi
p5

p� �
; p18 ¼ cosh

ffiffiffiffiffi
p5

p� �
;

p19 ¼ p14p17; p20 ¼ p14p18; p21 ¼ p15p1 þ p16p2;

p22 ¼ p8p2 þ p9p1ð Þ; p23 ¼ �p22 þ p9
p18 � 1

; p24 ¼ p17
1� p18

;

p25 ¼ p14p17 þ 2; p26 ¼ p21 þ 2p9; p27 ¼ p25p24 þ p20;

p28 ¼ p26 þ p23p25; p29 ¼ p15 � p28
p27 � p14

; p30 ¼ p23 þ p29p24;

p31 ¼ p30 � p9; p33 ¼ p14p30ffiffiffiffiffi
p5

p ; p34 ¼ p14p29ffiffiffiffiffi
p5

p ;

p35 ¼ p16ffiffiffiffi
si

p ; p36 ¼ p15ffiffiffiffi
si

p ; p37 ¼ �p31 þ p32 � p33 þ p35;
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Influence of Thermal Radiation and Heat
Absorption of a Third-Grade Fluid
in Wire Coating Analysis Through
a Porous Medium

M.K. Nayak

Abstract In the present study, the influence of porous matrix, thermal radiation,
and internal heat absorption on wire coating using third-grade fluid like melt
polymer in the presence of constant as well as temperature-dependent viscosity has
been analyzed. The governing equations are solved numerically by employing
fourth-order Runge-Kutta method. Models such as third-grade fluid model,
Reynolds model, and Vogel’s model have been used. The results for the velocity
and temperature are displayed and discussed in detail. Porous matrix has remark-
able contributions in escalating the temperature whereas the effect of thermal
radiation is diametrically opposite to that of porous matrix in the flow region within
the die. Velocity profiles disparaged because of resistive force from medium
porosity, and thereby, momentum boundary layer shrinks. Heat absorption in
thermal boundary layer leads to decrease in temperature, and then, the associated
thermal boundary layer thickness shrinks.

List of Symbols

Rw Radius of the wire (m)
D
Dt

Substantial derivative

Uw Wire velocity (m s−1)
p Pressure (N m−2)
hw Wire temperature (K)
F Viscous force per unit volume (N m−3)
L Length of die (m)
Rd Radius of die (m)
k Thermal conductivity (W m−1 K−1)
Cp Specific heat at constant pressure (J kg−1 K−1)
qr Radiative heat flux (W m−2)
hd Die temperature (K)
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/ Dissipation function (W m−2)
Kp Non-dimensional permeability parameter
R Radiation parameter
q Velocity of fluid (m s−1)
S Extra stress tensor
Q Heat absorption parameter
h Fluid temperature (K)
b0 Non-Newtonian parameter
Br Brinkman number
k1 Mean absorption coefficient (m−1)
l0 Reference viscosity (N s m−2)
l Dynamic viscosity (N s m−2)
q Density of the fluid (kg m−3)
r1 Stefan–Boltzmann constant (W m−2 K−4)
a1; a2; b1; b2 Material constants
m Reynolds model viscosity parameter
X1 Vogel’s model viscosity parameter
Q0 Rate of volumetric heat absorption

1 Introduction

Over the years, the boundary layer behavior of a viscoelastic fluid flowing over a
continuously stretching surface is significant in view of its inevitable and important
industrial applications include polymeric extrusion, petroleum drilling, hot rolling,
and drawing of plastic films and wires. Such pristine applications in industrial and
technological processes have led to deep interest in the study of viscoelastic fluid
flow and heat transfer in the wire coating process. Wire coating process is nothing
but an industrial process to coat a wire for primary insulation, mechanical strength,
and environmental protection. Indeed, the most efficient process for wire coating is
the coaxial extrusion process.

The co-extrusion process is an operation in which either the melt polymer is
extruded on an axially traversing wire or the wire is dragged inside a die filled with
molten polymer. In this process, the velocity of wire and the melt polymer produces
high pressure that generates strong bonding between them and provides fast coating
(Han and Rao 1978; Caswell and Tanner 1978; Nayak 2015).

Many researchers, namely Tadmor and Gogos (1979), Nayak et al. (2014), Ali
and Javed (2016), have analyzed wire coating using third-grade fluid. Third-grade
fluid is used because it exhibits the phenomena such as shear thickening and shear
thinning. Also, many authors, namely Hayat et al. (2015), Daniel and Davé (2016),
Chinyoka and Makinde (2012), have studied in the field of third-grade fluid.

The flow and heat transfer in association with a porous medium is prevalent in
view of its numerous applications in diversified industries and contemporary
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technologies. Porous materials can be used to enhance the heat transfer from the
surface of the wire. The effect of porosity was examined by several authors (Jalaal
and Ganji 2010; Rashidi and Hassan 2014; Nield and Bejan 2012; Rashidi et al.
2014a, b). The flow of fluids with internal heat absorption is important practically as
well as theoretically. Because of the development of non-uniformity in the tem-
perature field, fluid motion gets developed slowly. The volumetric heat absorption
term influences strongly the flow and heat transfer with appreciably large temper-
ature difference was investigated by Chen (2010). As far as cooling process is
concerned, thermal radiation factor is a prospective candidate for consideration
(Nayak et al. 2015; Kar et al. 2014).

Shah et al. (2011) have introduced third-grade fluid as coating material in wire
coating analysis. However, they have not analyzed the influence of porous matrix,
thermal radiation, and heat absorption in their study. The objective of the present
study is to analyze the wire coating process where a coating material is modeled as
third-grade fluid such as melt polymer having constant as well as temperature-
dependent viscosities associated with Reynolds and Vogel’s models.

The most fascinating aspects of the present study are as follows:

1. The porous matrix is included because it acts as an insulator due to which the
flow and thermal processes restrain heat loss and accelerate the process of
cooling/heating like a heat exchanger.

2. Thermal radiation is considered because the effect of radiation is of vital
importance while investigating thermal effect in the processes dealing with high
absolute temperatures. Also, thermal radiation plays an important role effec-
tively in controlling the thermal boundary layers.

3. Heat absorption is included because it controls the heat transfer rates in the
thermal boundary layer appreciably.

The fourth-order Runge-Kutta method in association with shooting technique is
considered as method of solution. The influences of permeability parameter, radi-
ation parameter, and heat absorption parameter on velocity as well as temperature
profiles are well discussed and displayed diagrammatically.

2 Formulation of the Problem

Consider an incompressible flow of a third-grade fluid like polyvinyl chloride
(PVC) inside a stationary pressure-type die of length L, radius Rd, and temperature
hd: A wire of radius Rw at temperature hw is assumed to be dragged with velocity
Uw along the axis of the die as shown in Fig. 1. Assume that the fluid is acted upon

by a constant pressure gradient dpdz in the axial direction.

The wire and die are concentric where the center of the wire is considered as a
coordinate system with z- and r-axes is taken along and perpendicular to the
direction of flow, respectively.
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The design of wire coating dies greatly affects the quality of the final product.
The pressure-type die is introduced because within this die the melt polymer
meets the wire where a complex flow field prevails whose understanding is essential
for the better die design with optimum performance. In order to prevent elongation
and frequent breakage of the wire, excessive wall shear stresses at the wire are
assumed to be avoided. Assume that no slip occurs at the moving wire as well as
stationary die wall. With the aforesaid frame of reference and assumptions, the
velocity field, extra stress tensor, and temperature field are considered, respectively,

~q ¼ 0; 0;w(r)½ �; S ¼ S(r) and h ¼ h(r) ð1Þ

The governing equations of continuity, momentum, and energy for the flow of
an incompressible fluid are:

r! �~q ¼ 0 ð2Þ

q
D~q
Dt

¼ � ~rpþ~F � l~q
K�
p

ð3Þ

qCp
Dh
Dt

¼ kr2hþ/� q0r � Q0 h� hwð Þ ð4Þ

Boundary conditions are:

w ¼ Uw; h ¼ hw at r ¼ Rw;

w ¼ 0; h ¼ hd at r ¼ Rd

)
ð5Þ

For third-grade fluid, the extra stress tensor S is defined as

S ¼ lA1 þ a1A2 þ a2A
2
1 þ b1A3 þ b2 A1A2 þA2A1ð Þþ b3 tr A2

1

� �
A1

Porous 
medium

Melt flow

Melt flow

Rw 

Rd 

r

z

Wire

Fig. 1 Flow geometry
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where

A1 ¼ LT þ L and An ¼ An�1LT þ LAn�1 þ DAn�1

Dt
; n ¼ 2; 3:

Here, T denotes the transpose of the matrix and L ¼ grad q.
The nonzero components of extra tensor S are

Srr ¼ ð2a1 þ a2Þw0 2; Szz ¼ a2w
0 2; Srz ¼ lw0 þ 2ðb2 þ b3Þw0 3

The velocity field (1) satisfies the continuity Eq. (2) and indicates that the fluid
flow is possible. Using the nonzero components of S, Eqs. (1) and (5), and
assuming that the pressure gradient in the axial direction is zero, the momentum
Eq. (3) takes the form

2 b2 þ b3ð Þ
r

� d
dr

rw0 3� �þ l
r
d
dr

rw0ð Þ � lw
K�
p
¼ 0 ð6Þ

Using Rosseland approximation for thermal radiation (Brewster 1972), the
radiative heat flux is modeled as

qr ¼ � 4r1

3k1
h0 4

Expressing h4 as a linear combination of the temperature and expanding it in
Taylor series about h1 and neglecting higher order terms (Turkyilmazoglu 2011),

h4 ’ 4h31h� 3h41

and hence,

q0r ¼ � 16 r1h
3
1

3k1
h00 ð7Þ

Using Eq. (7), the energy equation (4) takes the form

k
d2

dr2
þ 1

r
d
dr

� �
hþ lw0 2 þ 2 b2 þ b3ð Þw0 4 þ 16r1h

3
1

3k1
� h00 � Q0 h� hwð Þ ¼ 0 ð8Þ

where ′ represents the differentiation with respect to r and ″ denotes the differen-
tiation two times with respect to r.

Influence of Thermal Radiation and Heat Absorption … 163



2.1 Constant Viscosity

Let us introduce the dimensionless parameters as

r� ¼ r
Rw

; w� ¼ w
Uw

; h� ¼ h�hw
hd�hw

; b0 ¼ b2 þ b3; Br ¼ lU2
w

k hd�hwð Þ ;

b�0 ¼ b0U
2
w

lR2
w
; Rd
Rw

¼ d[ 1; Kp ¼ R2
w

K�
p
; R ¼ 16r1h

3
1

3kk1
; Q ¼ Q0R2

w
k

9=
; ð9Þ

The system of Eqs. (5), (6), and (8) after dropping the asterisks becomes

rw00 þw0 � Kpwrþ 2b0 3rw00w0 2 þw0 3� � ¼ 0 ð10Þ

wð1) ¼ 1 and wðd) ¼ 0 ð11Þ

1þRð Þh00 þ 1
r
h0 þBrw

0 2 þ 2Brb0w
0 4 � Qh ¼ 0 ð12Þ

hð1Þ ¼ 0 and hðdÞ ¼ 1 ð13Þ

Numerical Scheme
Equations (10) and (12) have been solved with boundary conditions (11) and (13)
using fourth-order Runge-Kutta method along with shooting technique. For com-
putational purpose, we have taken d ¼ 2.

2.2 Variable Viscosity

2.2.1 Reynolds Model

The non-dimensional temperature-dependent viscosity is

l ¼ l0exp(� b0mh) � l0(1� b0mh) ð14Þ

r� ¼ r
Rw

;w� ¼ w
Uw

; h� ¼ h�hw
hd�hw

; b0 ¼ b2 þ b3;
Rd
Rw

¼ d[ 1;Kp ¼ R2
w

K�
p
;

Br ¼ l0U
2
w

k hd�hwð Þ ; b
�
0 ¼ b0U

2
w

l0R2
w
;R ¼ 16r1h

3
1

3kk1
;Q ¼ Q0R2

w
k

9=
; ð15Þ

Using Eqs. (14) and (15), the dimensionless momentum and temperature
equations with boundary conditions become

ð1� b0mhÞ rw00 þw0 � Kpwr
� �þ 2b0 3rw00w0 2 þw0 3� �� b0mh

0w0 ¼ 0 ð16Þ

wð1Þ ¼ 1 and wð2Þ ¼ 0 ð17Þ
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1þRð Þh00 þ 1
r
h0 þ ð1� b0m hÞBrw

0 2 þ 2Br b0w
0 4 � Q h ¼ 0 ð18Þ

hð1Þ ¼ 0 and hð2Þ ¼ 1 ð19Þ

Numerical Scheme
Equations (16) and (18) along with boundary conditions (17) and (19) have been
solved by employing a numerical scheme named as fourth-order Runge-Kutta
method along with shooting technique.

2.2.2 Vogel’s Model

The non-dimensional temperature-dependent viscosity is

l ¼ l0e
ðDB1 þ hÞ�hw ð20Þ

or

l ¼ X1 1� D
B2
1
h

� �
ð21Þ

where X1 ¼ l0e
ðD=B1Þ�hw and D;B1 are viscosity parameters in connection with

Vogel’s model.
Using Eqs. (21) and (15), the non-dimensional momentum and energy equations

are, respectively,

X1 1� D
B2
1
h

� �
rw00 þw0 � Kpwr
� �þ 2b0 3rw00w0 2 þw0 3� �� X1D

B2
1

� �
h0w0 ¼ 0

ð22Þ

wð1Þ ¼ 1 and wð2Þ ¼ 0 ð23Þ

1þRð Þh0 þ 1
r
h0 þX1 1� D

B2
1
h

� �
Brw

0 2 þ 2Br b0 w
04 � Q h ¼ 0 ð24Þ

hð1Þ ¼ 0 and hð2Þ ¼ 1 ð25Þ

Numerical Scheme
Applying fourth-order Runge-Kutta method along with shooting technique, the
numerical solutions of Eqs. (22) and (24) with the boundary condition (23) and (25)
have been obtained with D ¼ b0b. During the numerical computation, we have
taken the values of B1 ¼ 1 and D = 2.
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3 Results and Discussion

The influence of several pertinent parameters such as permeability parameter ðKpÞ,
radiation parameter (R), and heat absorption parameter (Q) in case of constant and
variable viscosities along with Reynolds and Vogel’s models related to wire coating
process using melt polymer satisfying third-grade fluid model in a pressure-type die
has been divulged in the present study.

3.1 Case of Constant Viscosity

The effect of Kp on the velocity field is observed in Fig. 2. There is a decrease in the
fluid velocities with increase in Kp for non-Newtonian fluids. This is due to the fact
that the introduction of porous matrix has a tendency to offer a resistive force to
oppose the flow. It complies with the discussion in Nield and Bejan (2012). Hence,
the permeability parameter belittles the velocity throughout the flow domain.

The influence of Kp, R, and Q on temperature distribution of third-grade fluid is
shown in Figs. 3, 4, and 5, respectively. Figure 3 displays, in rich detail, the fact
that an increase in permeability parameter causes to increase the temperature in the
region up to r < 1.6 but afterward the reverse effect is observed. This is because the
resistive force offered by porous matrix is dominated by the boundary surface
effects.

The behavior of temperature inspired by thermal radiation is depicted in Fig. 4.
If we somehow increase R, then temperature decreases throughout the flow domain

Fig. 2 Influence of Kp on velocity (constant viscosity case) for b0 ¼ 0:5;Br ¼ 1;Q ¼ 0:5;R ¼ 0:2
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(Cortell 2014). This is probably due to the fact that the mean Rosseland absorption
coefficient k1 decreases (for small thermal conductivity k) with increase in R. It is a
matter of interest to mention that temperature decreases with an increase of heat
absorption parameter as sighted in Fig. 5.

Fig. 3 Influence of Kp on temperature (constant viscosity case) for b0 ¼ 0:5;Br ¼ 1;Q ¼ 0:5;
R ¼ 0:2

Fig. 4 Influence of R on temperature (constant viscosity case) for b0 ¼ 0:5;Br ¼ 1;Q ¼ 0:5;
Kp ¼ 0:5
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3.2 Case of Variable Viscosity

3.2.1 Reynolds Model

Figure 6 delineates that the presence of porous matrix and non-Newtonian property
of the fluid favors to the enhancement of velocity of coating fluid associated with
temperature-dependent variable viscosity. However, increase of Kp slows down the
fluid motion throughout the die region. This diminution in velocity is by virtue of
resistive force offered by the porous matrix. The effects of Kp, R, and Q on the
temperature distributions of melt polymer used as coating fluid are shown in
Figs. 7, 8, and 9, respectively. An increase in porous matrix results higher tem-
perature within the layers r < 1.6; thereafter, no significant contribution of Kp is
shown (Fig. 7). However, the fluid temperature gets enhanced for moderately large
KpðKp ¼ 10Þ. It is interesting to note that an increase in thermal radiation parameter
decreases the temperature of the melt polymer in the presence of porous matrix as
well as heat absorption indicating that the coating material gets cooled with mod-
erately larger value of R (Fig. 8). So R should be kept minimum. It is to mention
that heat absorption in thermal boundary layer causes the decrease in temperature
and so reduces the thermal boundary layer thickness (Fig. 9).

3.2.2 Vogel’s Model

Figures 10 and 11 illustrate, respectively, the velocity profiles of coating fluid
influenced by Kp and Q. Velocity distributions, indicating retardation offered by the

Fig. 5 Influence of Q on temperature (constant viscosity case) for b0 ¼ 0:5;Br ¼ 1;R ¼ 0:2;
Kp ¼ 0:5
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resistive force of porous matrix in the presence of thermal radiation and heat
absorption, are observed (Fig. 10). Figure 11 portrays the significance of heat
absorption in fluid motion where the velocity of the coating fluid gets reduced due
to increase in Q. However, the fall is significant for higher Q. The effects of Kp;Q,
and R on temperature distributions are obtained from Figs. 12, 13, and 14,
respectively. The effect of porous matrix with viscous heating or variable viscosity
enhances the temperature just immediate from the surface of the wire, but thereafter

Fig. 6 Influence of Kp on velocity (Reynolds model) for b0 ¼ 0:1;Br ¼ 1;R ¼ 0:2;Q ¼ 0:5;
m ¼ 1

Fig. 7 Influence of Kp on temperature (Reynolds model) for b0 ¼ 0:1;m ¼ 1;Br ¼ 1;Q ¼ 0:5;
R ¼ 0:2
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the reverse effect is visualized (Fig. 12). The effect of heat absorption parameter on
temperature distribution by setting the fixed values of six parameters
b0;Kp;Br;X1;R;B1, and D is portrayed in Fig. 13. It shows that heat absorption
causes the temperature to fall leading to enhancement in heat transfer rate and hence
shrinks the thermal boundary layer. This is in good agreement with Nayak (2016).
However, large value of Q (Q = 10) attributes to the nonlinearity and significant fall
in temperature. A uniform decline in temperature due to increase in radiation

Fig. 8 Influence of R on temperature (Reynolds model) for b0 ¼ 0:1;Kp ¼ 0:2;Br ¼ 1;m ¼ 1;
Q ¼ 0:5

Fig. 9 Influence of Q on temperature (Reynolds model) for b0 ¼ 0:1;Kp ¼ 0:2;Br ¼ 1;m ¼ 1;
R ¼ 0:2

170 M.K. Nayak



parameter (R) indicates that thermal radiation is to be enhanced so as to make the
cooling process faster in the presence of heat absorption (Fig. 14). It is in good
agreement with Cortell (2014).

Fig. 10 Influence of Kp on velocity (Vogel’s model) for b0 ¼ 1:0;Br ¼ 1;R ¼ 0:2;X1 ¼ 1;
Q ¼ 0:5;D ¼ 2;B1 ¼ 1

Fig. 11 Influence of Q on velocity (Vogel’s model) for b0 ¼ 0:1;Kp ¼ 0:2;Br ¼ 1;X1 ¼ 1;
R ¼ 0:2;B1 ¼ 1;D ¼ 2
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Fig. 12 Influence of Kp on temperature (Vogel’s model) for b0 ¼ 1:0;Br ¼ 1;X1 ¼ 1;R ¼ 0:2;
B1 ¼ 1;D ¼ 2;Q ¼ 0:5

Fig. 13 Influence of Q on temperature (Vogel’s model) for b0 ¼ 0:1;Kp ¼ 0:2;Br ¼ 1;X1 ¼ 1;
R ¼ 0:2;B1 ¼ 1;D ¼ 2
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4 Conclusion

An interesting consequence of the influence of thermal radiation as well as heat
absorption in the presence of porous matrix is that they control the momentum and
heat transfer rates in their respective ways so as to achieve a controlled cooling
system which in turn determines the quality of the final products (such as coated
wire) of wire coating process involved in industries. The major outcomes of the
present study are mentioned below:

4.1 Case of Constant Viscosity

Porous matrix causes a reduction in the velocity of the coating fluid such as melt
polymer.

4.2 Case of Variable Viscosity

Reynolds Model

• Temperature distribution in the flow region is enhanced by the effect of porosity.
• Increase in thermal radiation decreases the temperature profiles, and then, the

thermal boundary layer thickness shrinks.

Fig. 14 Influence of R on temperature (Vogel’s model) for b0 ¼ 0:1;Kp ¼ 0:2;Br ¼ 1;X1 ¼ 1;
B1 ¼ 1;D ¼ 2;Q ¼ 0:5
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• Heat absorption in thermal boundary layer leads to decrease in temperature. This
is in good agreement with Chen (2010) and Nayak (2016).

Vogel’s Model

• Velocity distribution exhibits diminution on account of resistive force offered by
porous matrix in constant viscosity as well as variable viscosity.

• Reynolds and Vogel’s models provide the same behavior to porous matrix in the
fashion that the temperature nearer to the wire surface enhances and possesses
transition in the middle of the annular region.

• Temperature distribution in the flow region within the die gets reduced due to
increase in radiation parameter (R). This investigation is in good agreement with
Cortell (2014).

• Heat absorption causes the temperature to fall leading to diminution of thermal
boundary layer thickness. This observation is compatible with the results as
reported earlier by Chen (2010) and Nayak (2016).
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Entropy Generation Analysis in a Vertical
Porous Channel with Navier Slip
and Viscous Dissipation

M. Sukumar, S.V.K. Varma, R. Swetha and R.V.M.S.S. Kiran Kumar

Abstract The intension of this paper is to investigate the effects of Navier slip and
buoyancy force on the entropy in a vertical generation porous channel with
suction/injection. This problem is solved analytically by perturbation technique.
Closed form solutions are obtained for the fluid velocity and the temperature. The
leads of slip parameter, injection/suction Reynolds number, Peclet number and
Brinkmann number on the fluid velocity, temperature profiles, Bejan number, and
rate of entropy generation are showed graphically and quantitatively discussed.

1 Introduction

Entropy generation has been studied several decades for ensuring optimal thermal
systems in contemporary industrial and technological fields like heat exchangers,
geothermal systems, and electronic cooling to name a few. All thermal systems
confront with entropy generation. The entropy generation resulting from tempera-
ture differences has remained untreated by classical thermodynamics. Since entropy
generation is the measure of the destruction of available work of the system, the
determination of the active factors motivating the entropy generation is important in
upgrading the system performances. Analysis of entropy generation in slip regime
on thermal micro-Couette flows was reported by Chen and Tian (2010). Chauhan
and Kumar (2009) described the slip conditions on entropy generation and forced
convection in a circular channel occupied by a highly porous medium. Flow of
entropy generation and thermal characteristics inside a porous channel with viscous
dissipation was noticed by Mahmud and Fraser (2005). Heat transfer and entropy
generation effects in a channel on a compressible fluid flow with porous medium
were made by Chauhan and Kumar (2011).
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Moreover, Chauhan and Rastogi (2011) investigated the entropy generation and
heat transfer in MHD flow past a stretching sheet through a porous medium.
Chinyoka et al. (2013) have discussed the analysis of entropy on an unsteady MHD
magnetic flow with buoyancy effects through a porous pipe. Hooman et al. (2007)
have analyzed entropy generation optimization and heat transfer of forced con-
vection in a porous-saturated duct of rectangular cross section. Makinde (2011)
studied the analysis of second law for variable viscosity on MHD flow with
Newtonian heating and thermal radiation. Chen (2011) and Chen and Du (2011)
were discussed the entropy generation of double-diffusive convection in the pres-
ence of rotation and in rectangular cavity. Das and Jana (2014) presented the
entropy generation in a porous channel due to MHD flow with Navier slip.

In this paper, our motto is to investigate the effects of Navier slip and buoyancy
force on the entropy in a vertical generation porous channel with suction/injection
under constant pressure gradient. A parametric study is carried out to see how the
pertinent parameters of the problem affect the flow field and temperature field, and
the entropy generation is studied by closed form and discussed graphically.

2 Mathematical Formulation

Consider the laminar viscous incompressible fluid bounded by a porous vertical
channel with suction at the right wall, injection at the left wall, and nonuniform
temperature under the effects of Navier slip, and buoyancy forces are considered. It
is shown in Fig. 1.

The motion and energy equations are

V
du
dy

¼ � 1
q
dP
dx

þ l
q
d2u
dy2

þ gb T � T0ð Þ ð1Þ

x

y

Fig. 1 Physical modal
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V
dT
dy

¼ a
d2T
dy2

þ l
qcp

du
dy

� �2

ð2Þ

The boundary conditions are

vð0Þ ¼ V ; uð0Þ ¼ c1
duð0Þ
dy

; Tð0Þ ¼ T0

vðhÞ ¼ V ; uðhÞ ¼ c2
duðhÞ
dy

; TðhÞ ¼ Th

9>>=
>>; ð3Þ

Introducing dimensionless quantities are

h ¼ T � T0
Th � T0

; K ¼ � dP
d��x

; ��x ¼ x
h
; P ¼ Ph

lV
; W ¼ u

V

g ¼ y
h
; Re ¼ Vqh

l
; Pe ¼ Vh

a
; Br ¼ V2l

qcpa Th � T0ð Þ

Gr ¼ gbqh2 Th � T0ð Þ
lV

; b1 ¼
c1
h
; b2 ¼

c2
h

Equations (1)–(3) become

d2W
dg2

� Re
dW
dg

þKþGrh ¼ 0 ð4Þ

d2h
dg2

� Pe
dh
dg

þBr
dW
dg

� �2

¼ 0 ð5Þ

The boundary conditions are

Wð0Þ ¼ b1
dWð0Þ
dg

; hð0Þ ¼ 0

Wð1Þ ¼ b2
dWð1Þ
dg

; hð1Þ ¼ 1

9>>=
>>; ð6Þ

Finally, Eqs. (4) and (5) are solved with the condition (6) by using perturbation
technique:

WðgÞ ¼ W0ðgÞþBrW1ðgÞ
hðgÞ ¼ h0ðgÞþBrh1ðgÞ
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on substituting these values in Eqs. (4)–(6), and on equating the corresponding
coefficients on both sides, then we get the equations for velocity and temperature as
follows:

W11
0 � ReW1

0 þGrh0 þK ¼ 0 ð7Þ

W11
1 � ReW1

1 þGrh1 ¼ 0 ð8Þ

h110 � Pe h10 ¼ 0 ð9Þ

h111 � Pe h11 þW12
0 ¼ 0 ð10Þ

And conditions are

W0ð0Þ ¼ b1W
1
0 ð0Þ; W1ð0Þ ¼ b1W

1
1 ð0Þ; h0ð0Þ ¼ 0; h1ð0Þ ¼ 0

W0ð1Þ ¼ b2W
1
0 ð1Þ; W1ð1Þ ¼ b2W

1
1 ð1Þ; h0ð1Þ ¼ 1; h1ð1Þ ¼ 0

)
ð11Þ

With the help of condition (11), we get solutions for temperature and velocity of
the ordinary differential equations (7)–(10) as follows:

h ¼ exp Pe gð Þ � 1
exp Peð Þ � 1

� �
þBr

C3 þC4 exp Pe gð ÞþE1 exp Re gð Þ
þE2 g exp Pe gð ÞþE3 exp 2Re gð ÞþE4 exp 2Pe gð Þ
þE5 exp ReþPeð Þgð ÞþE6 g

2
64

3
75

W ¼ C1 þC2 exp Re gð Þ � Gr2 exp Pe gð Þ � K2 g

þBr

C5 þC6 exp Re gð Þ � Gr E2 exp Pe gð Þ
Pe Pe� Reð Þ g� 2Pe� Re

Pe Pe� Reð Þ
� �

þ Gr C3 g
Re

� Gr C4 exp Pe gð Þ
Pe Pe� Reð Þ � Gr E1 g exp Re gð Þ

Re
� Gr E3 exp 2Re gð Þ

2Re2

� Gr E4 exp 2Pe gð Þ
2Pe 2Pe� Reð Þ � Gr E5 exp ReþPeð Þgð Þ

Pe PeþReð Þð Þ þ GrE6

Re
g2

2
þ g

Re

� �

2
666666664

3
777777775

The velocity gradient referring to skin friction at the channel walls is

Sf ¼ l
du
dy

����
y¼0;h

then, the skin friction coefficient by the nondimensional quantity (4) is

Cf ¼ h
Vl

¼ dW
dg

����
g¼0;1
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and the heat transfer rate at the wall in nondimensional form is

Nu ¼ �dh
dg

����
g¼0;1

Entropy Generation
Entropy generation is associated with thermodynamic irreversibility. It is impera-
tive to determine the rate of entropy generation in a system, in order to optimize
energy for efficient operation in the system. The convection process in a channel is
inherently irreversible, and this causes continuous entropy generation.

The volumetric entropy is

EG ¼ k
T2
0

dT
dx

� �2

þ dT
dy

� �2
 !

þ l
T0

2
du
dx

� �2

þ dv
dy

� �2
( )

þ du
dy

þ dv
dx

� �2
" #

The temperature and velocity distributions are simplified, then

EG ¼ k
T2
0

dT
dy

� �2

þ l
T0

du
dy

� �2

ð12Þ

Equations (4) and (12) reduces to

NS ¼ T2
0h

2EG

k Th � T0ð Þ2 ¼
dh
dg

� �2

þ Br
X

dW
dg

� �2

ð13Þ

Here, X ¼ Th�T0
T0

is the temperature difference parameter and

N1 ¼ dh
dg

� �2

; N2 ¼ Br
X

dW
dg

� �2

ð14Þ

where N1 gives heat transfer irreversibility and N2 represents entropy generation.
The irreversibility ratio is defined as

u ¼ N2

N1
ð15Þ

If u[ 1, then the entropy generation due to viscous dissipation dominates and
the irreversibility due to heat transfer dominates if 0\u\1, but both of them
equally contribute for u ¼ 1.

Hence, the Bejan number is defined as

Be ¼ N1

NS
¼ 1

1þu
ð16Þ
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Irreversibility due to heat transfer dominates at the limit Be ¼ 1, irreversibility
due to fluid friction dominates at the limit Be ¼ 0, and the limit Be ¼ 1=2 implies
that both of them equally contribute.

3 Results and Discussions

We studied the vertical lines at g ¼ 0 as injection and at g ¼ 1 as suction wall. The
consequences of velocity profile for different values of various parameters are shown
in Figs. 2, 3, 4, 5, and 6. In these, we consider nondimensional distance along X-axis
and dimensionless velocity along Y-axis. From Figs. 4, 5, 6, and 7, it is observed that
the velocity decreases at the suction wall and increases at the injection wall with the
increase in Grashoff number and slip parameter b1, and the other parameters are
constant. The flow attains maximum velocity near to the central line. Figure 3 shows
the effect velocity for various values of Re. The velocity decreases at both walls with
increase of Re. The leads of velocity for different values of Pe are shown in Fig. 4. Pe
rises the velocity falls at injection wall and raises at suction wall. Figure 6 shows the
consequences of b2. As b2 increases, the velocity decreases more at suction wall and
less at injection wall. The effect of temperature for several values of Pe is shown in
Fig. 7. In this, dimensionless distance is taken along X-axis and nondimensional
temperature is taken along Y-axis. The temperature increases at both suction and
injection walls with the decrease in Pe.

The consequences of entropy generation for different values of various argu-
ments are shown in Figs. 8, 9, 10, 11, and 12. In these, we consider nondimensional
distance along X-axis and entropy generation along Y-axis. Figures 8, 9, and 10
depict the effect of entropy generation for several values of Br X−1, Gr, and K. It is
identified that the entropy generation increases more at the suction wall and less at
injection wall. It indicates that the there is more restrictive medium at the suction
wall and less restrictive medium at injection wall. The effect slip parameters are
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Fig. 7 Temperature effects
for Pe, Gr ¼ 1;Br ¼ 0:1;
Re ¼ 2, K ¼ 0:1; b1 ¼ 0:1,
and b2 ¼ 0:1
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Re ¼ 2;Br ¼ 0:1;Pe ¼ 3,
X ¼ 1;K ¼ 0:1; b1 ¼ 0:1,
and b2 ¼ 0:1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Distance

En
tro

py
 G

en
er

at
io

n

( )0.1,0.2,0.3,0.4K =

Fig. 10 Entropy generation
effects for K, with
Re ¼ 2;Br ¼ 0:1;Pe ¼ 3,
X ¼ 1; Gr ¼ 1; b1 ¼ 0:1,
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shown in Figs. 11 and 12. From Fig. 11, it is noticed that there is a more restrictive
medium at the suction wall and less restrictive medium at injection wall with
increase of slip parameter b1 and from Fig. 12, it is identified that as b2 increases,
the entropy generation also increases and more effect exists at suction wall.

The leads of Bejan number for several values of various parameters are shown in
Figs. 13, 14, 15, 16, and 17. In these also, we consider nondimensional distance
along X-axis and Bejan number along Y-axis. Figure 13 depicts the effect of entropy
generation for several values of Re. As Re decreases, Bejan number Be also
decreases at injection wall and increases at suction wall. From Figs. 14 and 15, it is
identified that the decreases at both the walls with the increasing values of Br X−1,
K, and more effect are noticed at injection wall and less effect is noticed at suction
wall. The leads of slip parameters are shown in Figs. 16 and 17. It is observed that
the Bejan number decreases at suction wall and increases at injection wall with the
increase of slip parameters b1 and b2. Moreover, more effect is observed for b1 and
less effect is identified for b2.
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Fig. 12 Entropy generation
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4 Conclusions

The combined effect of Navier slip and buoyancy force on the entropy generation
rate through a vertical porous channel with injection/suction wall was analyzed.
Bejan number also decreases at injection wall and increases at suction wall with the
increasing values of Re. Also Bejan number decreases at suction wall and increases
at injection wall with the increase of slip parameters b1 and b2. Moreover, more
effect is observed for b1 and less effect is identified for b2. Theses analytical results
obtained by using perturbation method are in good agreement with the results done
by the authors (Ananthaswamy et al. 2016) by using homotopy perturbation
method and are also in good agreement with the effects done by authors Eegunjobi
and Makinde (2012) by using Runge–Kutta–Fehlberg method with shooting
technique.

Appendix

K2 ¼ K1

Re
; K1 ¼ Gr1 � K; Gr1 ¼ Gr

expðPeÞ � 1ð Þ ; Gr2 ¼ Gr1
Pe Pe� Reð Þ ;

J ¼ 1� b2Reð Þ; a1 ¼ 1� b1Re; a2 ¼ b1K2 þ b1PeGr2 � Gr2;

b1 ¼ expðReÞ 1� b2 Reð Þð Þ;
b2 ¼ b2K2 þ b2PeGr2 expðPeÞ � Gr2 expðPeÞ � K2;

d1 ¼ 2K2PeC2; d2 ¼ �2K2PeGr2; d3 ¼ �Re2C2
2;

d4 ¼ �Pe2Gr22 ; d5 ¼ 2RePeGr2C2; d6 ¼ �K2
2
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Fig. 17 Bejan number effects
for b2, with
Re ¼ 2;Br ¼ 0:1;Pe ¼ 1,
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E1 ¼ d1
Re Re� Peð Þ ; E2 ¼ d2

Pe
; E3 ¼ d3

2Re 2Re� Peð Þ ; E4 ¼ d4
2Pe2

;

E5 ¼ d5
Re ReþPeð Þ ; E6 ¼ � d6

Pe
; F ¼ E1 þE3 þE4 þE5; H ¼ 1� b1Reð Þ

I ¼ �GrC3b1
Re

þ GrC4

Pe Pe� Reð Þ Peb1 � 1ð Þþ GrE1b1
Re

þ GrE3

Re
b1 �

1
2Re

� �

þ GrE2

Pe Pe� Reð Þ
b1 þ

2Pe� Re
Pe Pe� Reð Þ

� b1 2Pe� Reð Þ
Pe� Re

2
664

3
775þ GrE4

2Pe 2Pe� Reð Þ 2Peb1 � 1ð Þ

þ GrE5

Pe PeþReð Þ b1 ReþPeð Þ � 1½ � � GrE6b1
Re2

K ¼ GrC3

Re
1� b2Reð Þþ GrC4 expðPeÞ

Pe Pe� Reð Þ Peb2 � 1ð Þþ GrE1 expðReÞ
Re

b2 þReb2 � 1ð Þ

þ GrE3 exp 2Reð Þ
2Re2

2b2Re� 1ð Þþ GrE4 exp 2Peð Þ
2Pe 2Pe� Reð Þ 2Peb2 � 1ð Þ

þ GrE2 expðPeÞ
Pe Pe� Reð Þ b2 þ b2Pe� 1þ 2Pe� Re

Pe Pe� Reð Þ �
b2 2Pe� Reð Þ

Pe� Re

� �

þ GrE5 exp ReþPeð Þ
Pe PeþReð Þ b2 ReþPeð Þ � 1½ �

þ GrE6

Re
1
2
� b2

� �
þ GrE6

Re2
1� b2ð Þ

G ¼ E1 expðReÞþE2 expðPeÞþE3 expð2ReÞ
þE4 expð2PeÞþE5 exp ReþPeð ÞþE6

C1 ¼ a1b2 � a2b1
b1 � a1

; C2 ¼ a2 � b2
b1 � a1

; C3 ¼ G� F expðPeÞð Þ
expðPeÞ � 1

;

C4 ¼ F � G
expðPeÞ � 1

; C5 ¼ HK � JI expðReÞð Þ
expðReÞ � H

; C6
I � K

expðReÞ � H
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Effect of Newtonian Heating/Cooling
on Hydromagnetic Free Convection
in Alternate Conducting Vertical
Concentric Annuli

Dileep Kumar and A.K. Singh

Abstract This paper presents the effects of the Newtonian heating/cooling and the
radial magnetic field on steady hydromagnetic free convective flow of a viscous and
electrically conducting fluid between vertical concentric cylinders by neglecting
compressibility effect. The derived governing equations of the model are first recast
into the non-dimensional simultaneous ordinary differential equations using the
suitable non-dimensional variables and parameters. By obtaining the exact solution
of the simultaneous ordinary differential equations, the effects of the Hartmann
number as well as the Biot number on the velocity, induced magnetic field, induced
current density, Nusselt number, skin-friction and mass flux of the fluid are pre-
sented by the graphs and tables. The effect of the Biot number is to increase the
velocity, induced magnetic field and induced current density in the case of the
Newtonian heating and vice versa in the case of the Newtonian cooling, but
the effect of Hartmann number is to decrease all above fields. Further, graphical
representation shows that the velocity and induced magnetic field are rapidly
decreasing, with increasing the Hartmann number, when one of the cylinders is
conducting compared with when both the cylinders are non-conducting.

1 Introduction

The study of magnetohydrodynamic flow of an electrically conducting fluid with
magnetic field has wide range of its applications in the technology, industries,
geothermal power generation and metal-working processes. Such type of MHD
flows have its attracted applications in design of magnetohydrodynamic power
generators, plasma studies, nuclear reactor, the thermal recovery of oil, solar power

D. Kumar (&) � A.K. Singh
Department of Mathematics, Institute of Science, Banaras Hindu University,
Varanasi 221005, India
e-mail: dileepyadav02april@gmail.com

A.K. Singh
e-mail: ashok@bhu.ac.in

© Springer Nature Singapore Pte Ltd. 2018
M.K. Singh et al. (eds.), Applications of Fluid Dynamics, Lecture Notes
in Mechanical Engineering, https://doi.org/10.1007/978-981-10-5329-0_13

191



collector and geological formulation etc. Globe (1959) has obtained the analytical
solution of an electrically conducting and fluid flowing between two infinite long
concentric annular cylinders under the presence of a radial magnetic field.
Ramamoorthy (1961) has analysed both classical and magnetohydrodynamic
velocity between concentric annulus of rotating cylinders in the presence of a radial
magnetic field. In the above references, authors have neglected the induced mag-
netic field in the problem. Keeping it mind, Arora and Gupta (1971) have extended
the same problem with considering the impact of induced magnetic field. The
natural convection in the vertical annular cylinders with one boundary isothermal
and opposite adiabatic boundary has analysed by El-Shaarawi and Sarhan (1981).
Further, Joshi (1987) has considered the isothermal boundaries in which the tem-
perature of inner boundary is higher than the outer boundary.

Singh et al. (1997) have studied the free convective flow in vertical concentric
annuli with more general thermal boundary conditions and radial magnetic field.
Seong and Choung (2001) have analysed the electrically conducting fluid flow past
a circular cylinder under continuous and pulsed electromagnetic forces. Fadzilah
et al. (2011) have emphasised the importance of induced magnetic field and heat
transfer on the steady, viscous and electrically conducting magnetohydrodynamic
boundary-layer flow over a stretching sheet. Singh and Singh (2012) have inves-
tigated the influence of induced magnetic field on free convective flow between
non-conducting vertical concentric annulus cylinders. Further, Kumar and Singh
(2013) have extended the same problem by considering the concentric cylinders
heated/cooled asymmetrically.

In many practical situations, such as if you turn off the breaker when you go on
vacation, then it can tell us how fast a water heater cools down and the hot water in
pipes cools off. In this case, the heat transfer from the surface of object is similar to
the local surface temperature, and we use the term Newtonian heating/cooling for
this condition. This type of flow is known as conjugate convective flow. In a
pioneered work, the influence of the Newtonian heating on free convective
boundary-layer flow over a vertical flat plate, which immersed in a viscous fluid,
was studied by Merkin (1994). An analytical solution of natural convective flow
past an oscillating vertical plate with the effects of heat and mass transfer, and the
Newtonian heating has been obtained by Hussanan et al. (2013). Very recently,
Kumar and Singh (2015) have investigated the impact of induced magnetic field on
hydromagnetic natural convective flow with the Newtonian heating/cooling in
vertical concentric annuli by obtaining the exact solution of the problem. Also,
Kumar and Singh (2016) have performed the exact study of effects of heat
source/sink and induced magnetic field on free convective flow between vertical
concentric cylinders.

Motivated with excellent science of the authors, we intend here to investigate the
effect of the Newtonian heating/cooling on hydromagnetic natural convection
between alternate conducting vertical concentric annulus cylinders with radial
magnetic field. We have analysed the model by taking three cases on the boundary
conditions of the induced magnetic field. In case (A), both cylinders are considering
as non-conducting, in case (B) the outer cylinder is conducting and inner is
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non-conducting and finally in case (C) the inner is taking as conducting and outer is
non-conducting. Here, we find the analytical solution for the temperature field and
then fluid velocity and induced magnetic field by solving the non-dimensional
governing linear simultaneous ordinary differential equations using the
non-dimensional boundary condition. Also, we find the analytical solution for the
governing differential equations at singular point Ha = 2.0. Finally, we focus on
the effects of the Biot number (Newtonian heating/cooling parameter) and the
Hartmann number on the velocity, induced magnetic, induced current density,
Nusselt number, skin-friction and mass flux using graphics and tables.

2 Mathematical Formulation

We have taken here the steady and laminar flow of a viscous, incompressible and
electrically conducting fluid in the fully developed region bounded by vertical
concentric annuli of infinite length with radial magnetic field as shown in Fig. 1.
Also, we have considered the temperature of fluid and both cylinders different to
each other. The temperatures of fluid and outer cylinder have taken as T 0

f and T 0
b,

respectively. Let z0- and r0-axes denote the axis of the co-axial cylinders taken in the
vertical upward direction and the radial direction taken outward from the axis of
the cylinder. Let a and b be the radius of inner and outer cylinders, respectively.
The applied uniform magnetic field of strength aB0

0=r
0� �

is taken as in the direction
perpendicular to the direction of flow, and the Newtonian heating/cooling condition

Fig. 1 Physical configuration
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is applied at the inner cylinder of the annulus. Since z0-axis is the direction of fluid
flow so the radial and tangential components of velocity are taken as zero. Due to
axial symmetry and infinite length of cylinders, the transport phenomena will
depend only on the variable r0: So, for the considered model the components of the
velocity and applied uniform magnetic fields are taken as f0; 0; v0ðr0Þg and
faB0

0=r
0; 0; h0g, respectively.

Thus, the mathematical model equations for the present physical configuration
with the usual Boussinesq approximation are as follows (Singh and Singh 2012):

d2v0

dr0 2
þ 1

r0
dv0

dr0
þ le

qm
B0
0a
r0

dh0

dr0
þ gb

m
ðT 0 � T 0

f Þ ¼ 0; ð1Þ

d2h0

dr0 2
þ 1

r0
dh0

dr0
þ B0

0a
g

1
r
dv0

dr0
¼ 0; ð2Þ

d2T 0

dr0 2
þ 1

r0
dT 0

dr0
¼ 0: ð3Þ

In view of the considered model, the boundary conditions corresponding to the
velocity, induced magnetic field and temperature field are obtained as:

v0 ¼ 0;
dh0

dr0
¼ 0 or h0 ¼ 0;

dT 0

dr0
¼ aT 0; at r0 ¼ a; ð4Þ

v0 ¼ 0;
dh0

dr0
¼ 0 or h0 ¼ 0; T 0 ¼ T 0

b; at r0 ¼ b: ð5Þ

In above equations, q; le; m; g, g; r and b are density of the fluid, magnetic
permeability, kinematic viscosity, acceleration due to gravity, magnetic diffusivity,
conductivity of the fluid and coefficient of thermal expansion, respectively.

To make above system of equations in non-dimensional form, we use some
dimensionless quantities given as:

u ¼ v0

U
; r ¼ r0

a
; k ¼ b

a
; h ¼ h0

rleH
0
0Ua

; U ¼ gb a2
ðT 0

b � T 0
f Þ

m
;

T ¼ T 0

ðT 0
b � T 0

f Þ
:

ð6Þ

Using Eq. (6), Eqs. (1)–(3) in the dimensionless form are obtained as follows:

d2u

dr2
þ 1

r
du
dr

þ Ha2

r
dh
dr

þðT � RÞ ¼ 0; ð7Þ
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d2h

dr2
þ 1

r
dh
dr

þ 1
r
du
dr

¼ 0; ð8Þ

d2T

dr2
þ 1

r
dT
dr

¼ 0: ð9Þ

The boundary conditions in non-dimensional form are obtained as:

u ¼ 0;
dh
dr

¼ 0 or h ¼ 0;
dT
dr

¼ Bi T at r ¼ 1; ð10Þ

u ¼ 0;
dh
dr

¼ 0 or h ¼ 0; T ¼ ð1þRÞ at r ¼ k: ð11Þ

Some other dimensionless physical parameters Bi, Ha and R occurring in the
above equations are the Biot number, Hartmann number and buoyancy force dis-
tribution parameter, respectively, and they are defined as:

Bi ¼ a a; Ha ¼ leH
0
0a

ffiffiffi
r
l

r
; R ¼ T 0

f

ðT 0
b � T 0

f Þ
: ð12Þ

Here, the Biot number (Bi) and Hartmann number (Ha) have importance role on
the flow of fluid between both the cylinders at R ¼ 1:0, i.e. 2T 0

f ¼ T 0
b.

3 Analytical Solution

3.1 Solution for Hartmann Number (Ha) 6¼ 2.0

The exact solution of Eqs. (7)–(9) using boundary conditions (10)–(11) is obtained
as follows:

u ¼ Ak1r
Ha þAk2r

�Ha þAk3 þ r2ð1þRÞ
ðBi log kþ 1Þ ðBk1log rþBk2ÞþBk3r

2R; ð13Þ

h ¼ Ak4 � 1
Ha

ðAk1r
Ha � Ak2r

�HaÞþ r2ð1þRÞ
4ðBi log kþ 1Þ Bk1ð1� 2 log rÞ � 2Bk2f g

� Bk3r2R
2

; ð14Þ

T ¼ ð1þRÞ ðBi log rþ 1Þ
ðBi log kþ 1Þ : ð15Þ
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Here, k ¼ 1 is for the case when both cylinders are non-conducting; k ¼ 2; when
outer cylindrical wall is non-conducting and inner cylindrical wall is conducting
and finally k ¼ 3; when inner cylindrical wall is non-conducting and outer cylin-
drical wall is conducting.

The skin-friction at outer surface of inner cylinder as well as inner surface of
outer cylinder, Nusselt number at inner cylinder, induced current density and mass
flux of fluid are obtained as:

s1 ¼ du
dr

� �
r¼1

¼ HaðAk1 � Ak2Þþ ð1þRÞ
ðBi log kþ 1Þ ðBk1 þ 2Bk2Þþ 2Bk3R; ð16Þ

sk ¼ du
dr

� �
r¼k

¼ HaðAk1k
Ha�1 � Ak2k

�Ha�1Þ

þ ð1þRÞ
ðBi log kþ 1Þ f2k ðBk1 log kþBk2ÞþBk1kgþ 2Bk3kR;

ð17Þ

Nuk ¼ � dT
dr

� �
r¼k

¼ Bið1þRÞ
kðBi log kþ 1Þ ; ð18Þ

Jh ¼ � dh
dr

¼ Ak1r
Ha�1 þAk2r

�Ha�1 þ rð1þRÞ
ðBi log kþ 1Þ ðBk1 log rþBk2ÞþBk3rR;

ð19Þ

Q ¼ 2p

Ak1

ðHaþ 2Þ ðk
Haþ 2 � 1Þþ Ak2

ð�Haþ 2Þ ðk
�Haþ 2 � 1Þþ Ak3

2
ðk2 � 1Þ

þ 1þRð Þ
ðBi log kþ 1Þ

k4

16
ð4Bk1 log kþ 4Bk2 � Bk1Þþ Bk1

16

� �
þ Bk3

4
Rðk4 � 1Þ:

2
6664

3
7775

ð20Þ

3.2 Solution for Hartmann number (Ha) = 2.0

Here, we have solved the governing differential equation for singular point Ha ¼
2:0 because the mathematical expressions Bk1 ¼ � Bi

ð4�Ha2Þ
n o

; Bk2 ¼
4Bi

ð4�Ha2Þ2 � 1
ð4�Ha2Þ

n o
and Bk3 ¼ 1

ð4�Ha2Þ present in the above Eqs. (13) and (14)

clearly show that they have the singularity at Ha ¼ 2:0: The velocity and induced
magnetic field expressions are given by:

u ¼ Ck1r
2 þCk2r

�2 þCk3 þ ð1þRÞ
ðBi log kþ 1Þ fr

2 log rðDk1 log rþDk2Þgþ Rr2 log r
4

;

ð21Þ
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h ¼ Ck4 � 1
2
ðCk1r

2 � Ck2r
�2Þþ R

16
r2ð1� 2 log rÞ

� ð1þRÞ
ðBi log kþ 1Þ fðDk3 log rþDk4Þr2 log rþDk5r2g: ð22Þ

In this case, the skin-friction at surface of cylinders, induced current density and
mass flux of fluid are obtained as follows:

s1 ¼ 2ðCk1 � Ck2Þþ ð1þRÞ
ðBi log kþ 1ÞDk2 þ R

4
; ð23Þ

sk ¼ 2ðCk1k� Ck2k
�3ÞþDk2kgþ R

4
kð2 log kþ 1Þ

þ ð1þRÞ
ðBi log kþ 1Þ f2k log k ðDk1 log kþDk1 þDk2Þ;

ð24Þ

Jh ¼ Ck1rþCk2r
�3 þ ð1þRÞ

ðBi log kþ 1Þ fr log rðDk1 log rþDk2Þgþ R
4
r log r; ð25Þ

Q ¼ 2p
Ck1

4
ðk4 � 1ÞþCk2 log kþ Ck3

2
ðk2 � 1Þþ R

64
f4k4 log k� ðk4 � 1Þg

	

þ ð1þRÞ
ðBi log kþ 1Þ

Dk1

32
f8k4ðlog kÞ2 � 4k4 log kþðk4 � 1Þg

�

þDk2

16
f4k4 log k� ðk4 � 1Þg

�


ð26Þ

The constants Ak1, Ak2, Ak3, Ak4, Bk1, Bk2, Bk3, Ck1, Ck2, Ck3, Ck4 ,Dk1, Dk2, Dk3,
Dk4 and Dk5 appearing in the above equations (for k = 1, 2 and 3) are defined in
Appendix.

4 Results and Discussion

The main aim of the discussion is to bring out the impact of physical numbers such
as Biot number and Hartmann number on the velocity field profiles, induced
magnetic field profiles, induced current density field profiles, Nusselt number, sink
friction and mass flux. The influence of these parameters (such as Biot number and
Hartmann number) on the transport processes is illustrated by using the figures and
tables. Here, we consider the case (A) when both cylindrical walls are
non-conducting, case (B) when the outer cylindrical wall is conducting and inner is
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non-conducting and case (C) when the inner cylindrical wall is conducting and
outer is non-conducting. As expected, it is found by numerical computations that
the case (B) and case (C) have given almost same results. Therefore, we have
discussed only two cases when both cylinders are non-conducting and when one is
conducting and another is non-conducting. Figures 2, 3, 4 and 5 show the velocity
profiles when both cylinders are non-conducting and when one cylinder is con-
ducting and other is non-conducting, respectively. It is clear from these figures that
the velocity profiles decrease with increasing values of the Hartmann number.

The influence of Biot number is to increase the velocity profiles for the
Newtonian heating and decrease the velocity profiles for the Newtonian cooling.
The region behind it is that as the Biot number increases the convective resistance
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Ha=4.0, Bi=0.1

Ha=6.0, Bi=0.1

Ha=2.0, Bi=2.0
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Ha=6.0, Bi=2.0

1.0 1.2 1.4 1.6 1.8 2.0
0.00
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0.10

r

u

Fig. 2 Velocity profile in case one (A) for Bi = 0.1 and 2.0 at R = 1.0 and k = 2.0
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Fig. 3 Velocity profile in case one (A) for Bi = −0.3 and −0.9 at R = 1.0 and k = 2.0
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of wall reduces in the Newtonian heating while it increases in the Newtonian
cooling. A comparative study of Figs. 2 and 3 with Figs. 4 and 5 shows that the
velocity of the fluid is less when one of the cylindrical surface is conducting in
comparison to non-conducting cylindrical surfaces in case of Newtonian heating
while it is just reverse in the case of Newtonian cooling. The shape of velocity
profile is of parabolic type in upward direction.

Further, from Figs. 6, 7, 8 and 9, we have observed the influence of the
Hartmann number, the Newtonian heating/cooling parameter on the induced
magnetic field. When both the cylinders are non-conducting and when inner is
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Fig. 4 Velocity profile in case two (B) for Bi = 0.1 and 2.0 at R = 1.0 and k = 2.0
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Fig. 5 Velocity profile in case two (B) for Bi = −0.3 and −0.9 at R = 1.0 and k = 2.0
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conducting and outer is non-conducting, the induced magnetic field increases as the
values of Biot number increases in case of the Newtonian heating while decreases
in the Newtonian cooling. The influence of the Hartmann number implies that the
induced magnetic field decrease in the both cases, i.e. when both cylinders are
non-conducting and when inner is conducting and outer is non-conducting since the
Lorentz force acts opposite to the direction of induced magnetic field. From a
comparative study of Figs. 6 with 8 and 7 with 9, we have observed that the
magnitude of induced magnetic field is less than the case when both cylindrical
walls are non-conducting compared to the case when one of the cylinders is
conducting.

Ha=2.0, Bi=0.1
Ha=4.0, Bi=0.1

Ha=6.0, Bi=0.1
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Fig. 6 Induced magnetic field profile in case one (A) for Bi = 0.1 and 2.0 at R = 1.0 and k = 2.0
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Fig. 7 Induced magnetic field profile in case one (A) for Bi = −0.3 & −0.9 at R = 1.0 and k = 2.0
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The behaviour of the induced current density is shown in Figs. 10, 11, 12 and 13
for various values of the Hartmann number and the Biot number. We find that for
both cases, the induced current density profiles increase with increasing values of
the Biot number (Bi) in case of the Newtonian heating; while in case of the
Newtonian cooling, it reduces with improving the Biot number. From the given
figures, it can be observed that the induced current density decreases in both cases
when the value of the Hartmann number increases. Figures 10 and 11 show that the
maximum induced current density is induced in the middle region while minimum
current density near the both cylindrical walls. The modulus of current density at
the surface of the inner cylindrical wall is greater than the outer wall. Also, Figs. 12
and 13 show that the maximum current density is induced in the middle region, and
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Fig. 8 Induced magnetic field profile in case two (B) for Bi = 0.1 & 2.0 at R = 1.0 and k = 2.0
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Fig. 9 Induced magnetic field profile in case two (B) for Bi = −0.3 & −0.9 at R = 1.0 and k = 2.0
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then it has shifting tendency in direction of inner cylinder with increasing values of
the heating/cooling parameter for the Newtonian heating while it has reverse effect
in case of the Newtonian cooling. Comparing the induced current density profiles in
Figs. 10 with 12 and 11 with 13, we observed that when one of the cylinders is
conducting, the maximum value of induced current density is greater in comparison
with if both cylindrical walls are non-conducting.

From Table 1, we can see the influence of the Hartmann number and the Biot
number on the skin-friction, mass flux and Nusselt number at the surface of
cylinders. It is observed that the skin-friction at outer surface of inlying cylindrical
wall increases when both of the cylinders are non-conducting and vice versa when
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Ha=6.0, Bi=0.1

Ha=2.0, Bi=2.0

Ha=4.0, Bi=2.0

Ha=6.0, Bi=2.0

1.0 1.2 1.4 1.6 1.8 2.0

0.06

0.04

0.02

0.00

0.02

r

J

Fig. 10 Induced current density profile in case one (A) for Bi = 0.1 and 2.0 at R = 1.0 and
k = 2.0
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Fig. 11 Induced current density profile in case one (A) for Bi = −0.3 & −0.9 at R = 1.0 and
k = 2.0
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one of the cylindrical wall is conducting. It is also clear that with improving of the
Hartmann number, the skin-friction at interface of exterior cylinder decreases in
both cases when both cylindrical surfaces are non-conducting and one of them is
conducting.

The numerical values of the skin-friction at inner cylindrical wall increase by
increasing the value of the Biot number for the Newtonian heating and conversely
for the Newtonian cooling. Moreover, the skin-friction at outer cylinder surface
decreases by increasing the value of the Biot number for the Newtonian heating and
reverse for the Newtonian cooling. We observe that the impact of increasing the
Hartmann number is to reduce the mass flux in the cases when both cylinders are
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Fig. 12 Induced current density profile in case two (B) for Bi = 0.1 & 2.0 at R = 1.0 and k = 2.0
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Fig. 13 Induced current density profile in case two (B) for Bi = −0.3 & −0.9 at R = 1.0 and
k = 2.0
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non-conducting and one of them is conducting. It is observed that the values of
mass flux increase with improving the Biot number in the Newtonian heating and
vice versa in the Newtonian cooling. Further, it is clear from the numerical cal-
culation that the value of Nusselt number at inner and outer cylinders increases with
increasing Biot number in case of Newtonian heating, and it is reverse in case of
Newtonian cooling. Also, it is observed that the Nusselt number at cylindrical walls
decreases with increasing ratio of outer radius to inner radius.

5 Conclusion

By obtaining analytical solution of the model, the effects of Newtonian
heating/cooling and induced magnetic on hydromagnetic free convective flow
between vertical concentric annular cylinders have been discussed. The influences
of the various governing parameters such as the Hartmann number and the Biot
number on the fluid velocity, induced magnetic field, induced current density,
skin-friction, Nusselt number and mass flux have examined. The following con-
clusions have been drawn from the present analysis:

1. The fluid velocity, induced magnetic field and induced current density profiles
have reducing tendency with increasing the Hartmann number.

2. Value of the velocity, induced magnetic field and induced current density
increases for the Newtonian heating and vice versa for the Newtonian cooling.

3. The magnitude of the fluid velocity, induced magnetic field and induced current
density profile is more if one of the cylindrical walls is conducting than if both
walls are conducting.

Table 1 Numerical values of dimensionless skin-frictions, mass flux and Nusselt number

Bi Ha s1 sk Q Nuk
Case-1 Case-2 & 3 Case-1 Case-2 and 3 Case-1 Case-2 & 3

−0.7 1.0
2.0
3.0

1.2229
1.2248
1.2276

1.1726
1.0476
0.8955

−0.6870
−0.6861
−0.6847

−0.6618
−0.5975
−0.5187

1.3920
1.3602
1.3116

1.3392
1.1789
0.9838

1.4000
1.3597
2.0204

−0.3 1.0
2.0
3.0

0.7615
0.7647
0.7696

0.7274
0.6448
0.5449

−0.5220
−0.5204
−0.5179

−0.5050
−0.4605
−0.4055

0.9543
0.9327
0.8996

0.9186
0.8100
0.6776

0.6000
0.3787
0.2983

1.0 1.0
2.0
3.0

0.3055
0.3101
0.3171

0.2875
0.2468
0.1984

−0.3589
−0.3566
−0.3531

−0.3499
−0.3250
−0.2937

0.5219
0.5102
0.4924

0.5030
0.4455
0.3751

−2.0000
−0.5906
−0.3176

2.0 1.0
2.0
3.0

0.1890
0.1940
0.2016

0.1752
0.1452
0.1099

−0.3173
−0.3148
−0.3110

−0.3104
−0.2904
−0.2652

0.4114
0.4023
0.3884

0.3969
0.3524
0.2979

−4.0000
−0.8381
−0.4170
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4. The numerical values of Nusselt number at cylindrical walls increase in case of
the Newtonian heating and vice versa in case of the Newtonian cooling with
increasing values of the Biot number.

5. The skin-friction at inner cylinder decreases if one of the cylindrical walls is
conducting and increases if both walls are non-conducting with increasing
Hartmann number. Moreover, the skin-friction at outer cylinder increases in
both cases with increasing Hartmann number.

6. The influence of Biot number is to increase/reduce the skin-friction in case of
Newtonian heating/cooling at inlying cylinder and just reverse at outer cylinder.

7. The mass flux for the both cases has reducing nature with increasing Hartmann
number. Further, values of mass flux increase with improve in value of Biot
number in Newtonian heating and vice versa in Newtonian cooling.
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Appendix

A10 ¼ ð1þRÞ
ðBi log kþ 1Þ

n o
;A11 ¼ A10B16 þB17f g;A21 ¼ A31 ¼ A10B24 þB25f g;

A12 ¼ A10B18 þB19f g;A23 ¼ A33 ¼ 0;A22 ¼ A32 ¼ A10B26 þB27f g;
A13 ¼ � A11 þA12 þA10B12 þB13Rf g;B11 ¼ B21 ¼ B31 ¼ � Bi

ð4�Ha2Þ
n o

;

A14 ¼ 1
Ha ðA11 � A12Þ � A10

4 ðB11 � 2B12Þþ R
2 B13

� �
;B16 ¼ ðB14 þB15Þ

2ð1�kHaÞ

n o
;

A24 ¼ 1
Ha ðA21 � A22Þ � A10

4 ðB11 � 2B12Þþ R
2 B13

� �
;D27 ¼ Rk2log k

4ðk�2�k2Þ

n o
;

A34 ¼ 1
Ha ðA31k

Ha � A32k
�HaÞ � A10k

2

4 B11ð1� 2 log kÞ � 2B12f gþB38Rk
2

h i
;

B12 ¼ B22 ¼ B32 ¼ 4Bi
ð4�Ha2Þ2 � 1

ð4�Ha2Þ
n o

;B13 ¼ B23 ¼ B33 ¼ 1
ð4�Ha2Þ

n o
;

B14 ¼ B11k
2log kþB12ðk2 � 1Þ� �

;B24 ¼ B34 ¼ B11k
2log kþB12ðk2�k�HaÞ

ðk�Ha�kHaÞ

n o
;

B15 ¼ M
4 ð2B12 � B11Þðk2 � 1Þþ 2B11k

2log k
� �

;B25 ¼ B35 ¼ B13Rðk2�k�HaÞ
ðk�Ha�kHaÞ

n o
;

B26 ¼ B36 ¼ B11k
2log kþB12ðk2�kHaÞ
ðkHa�k�HaÞ

n o
;B17 ¼ B13Rðk2�1Þ 1þ Ha

2ð Þ
2ð1�kHaÞ

� �
;

B27 ¼ B37 ¼ B13Rðk2�kHaÞ
ðkHa�k�HaÞ

n o
;B18 ¼ ðB14�B15Þ

2ð1�k�HaÞ

n o
;B38 ¼ B13

2

� �
;

B19 ¼ B13Rðk2�1Þ 1�Ha
2ð Þ

2ð1�k�HaÞ

� �
;C11 ¼ A10D17

2ð1�k2Þ þ
Rð1�k2 þ 4k2log kÞ

16ð1�k2Þ

n o
;
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C12 ¼ A10D16

2ð1�k�2Þ þ
Rðk2�1Þ
16ð1�k�2Þ

n o
;C21 ¼ ðA10D26 þD27Þ;C13 ¼ �ðC11 þC12Þ;

C14 ¼ C24 ¼ 1
2 ðC11 � C12ÞþA10D15 � R

16

� �
;C22 ¼ ðA10D28 þD29Þ;

C23 ¼ C33 ¼ 0;C31 ¼ ðA10D36 þD37Þ;C32 ¼ ðA10D38 þD39Þ;
C34 ¼ 1

2 ðC11k
2 � C12k

�2ÞþA10k
2 ðD33log kþD34Þ log kþD35
� �� R

16 k
2ð1� log kÞ �

;

D11 ¼ D21 ¼ D31 ¼ � Bi
8

� �
;D29 ¼ Rk2log k

4ðk2�k�2Þ

n o
;D12 ¼ D22 ¼ D32 ¼ Bi

16 � 1
4

� �
;

D13 ¼ D23 ¼ D33 ¼ D11
2

� �
;D14 ¼ D24 ¼ D34 ¼ ðD12�D11Þ

2

n o
;

D15 ¼ D25 ¼ D35 ¼ ðD11�D12Þ
4

n o
;D28 ¼ k2log kðD21log kþD22Þ

ðk2�k�2Þ

n o
;

D16 ¼ D11k
2ðlog kÞ2 þD12k

2log k� 2k2log kðD13log kþD14Þ � 2D15ðk2 � 1Þ
n o

;

D17 ¼ D11k
2ðlog kÞ2 þD12k

2log kþ 2k2log kðD13log kþD14Þþ 2D15ðk2 � 1Þ
n o

;

D26 ¼ k2log kðD21log kþD22Þ
ðk�2�k2Þ

n o
;D36 ¼ k2log k

ðk�2�k2Þ ðD31log kþD32Þ
n o

;

D37 ¼ Rk2log k
4ðk�2�k2Þ

n o
;D38 ¼ k2log k

ðk2�k�2Þ ðD31log kþD32Þ
n o

;D39 ¼ Rk2log k
4ðk2�k�2Þ

n o
:
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Heat and Mass Transfer on Unsteady
MHD Oscillatory Flow of Blood Through
Porous Arteriole

M. Veera Krishna, B.V. Swarnalathamma and J. Prakash

Abstract We have considered the unsteady two-dimensional MHD oscillatory
flow of blood in a porous arteriole under the influence of uniform transverse
magnetic field in a planar channel. Heat and mass transfer during arterial blood flow
through a porous medium are also studied. A mathematical model is developed for
unsteady state situations using slip conditions. Analytical expressions for the
velocity, temperature, and concentration profiles have been obtained and compu-
tationally discussed with respect to the non-dimensional parameters.

1 Introduction

Rates of many physiological functions, including the flow through blood vessels, are
affected by drugs. The rates of different biochemical reactions that are responsible
for the contraction muscles, secretion of different materials such as insulin, mucus,
and stomach acid by the glands, and the transmission of messages by the nerves can
be accelerated/decelerated by the action of drugs. The rate at which the kidney cells
perform the regulation of the volume of water/salts in the body is affected by drugs.
Several drugs (e.g. antacids) produce effects, where the function of a cell remains
unchanged and a receptor does not have any cognition. Most of the antacids are
bases that interact with stomach acid to neutralize it. Thus, stomach acid is reduced
simply through chemical reactions. The strength (potency in medical terms) of a
drug is the quantity that is required to be applied in order to have a visible effect
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(e.g., reduction of blood pressure, relief of pain); efficacy of a drug refers to its
capacity to produce an effect (reduction in blood pressure, e.g.), while a drug’s
effectiveness is determined by how well a drug works in the medical treatment of a
patient. It may so happen that a drug having higher efficacy (say, in reducing blood
pressure) may be less effective. The reason behind this, the drug may have too many
side effects and patient will be highly reluctant to take it. Such a drug is not at all
suitable in real world life. Although oxygen binds with blood hemoglobin and does
not react, the discussion on drug dynamics made above emphasizes the need for
paying importance to the presence of chemical reactions during various physio-
logical functions. Many researchers, including the present authors, have studied
various aspects of blood flow in normal/diseased arteries. Misra et al. (2008) studied
blood flow through an arterial segment having multiple stenoses. They presented a
schematic diagram of the physical problem and developed an appropriate model.
The effects of viscosity variation subject to the action of an external magnetic field
were investigated by Sinha and Misra (2014a, b). In the realm offlow through porous
media, in one of their recent studies dealing with MHD flow through a porous
medium with stretching wall, Misra and Sinha (2013) made an important observa-
tion that both Hall current and thermal radiation play significant roles in controlling
the temperature of blood. A fundamental problem concerning biomagnetic fluid flow
through a porous medium was solved by Misra et al. (2010), by employing the
principles of ferro-dynamics and biomagnetic fluid dynamics (BFD). The study
shows that the presence of a magnetic dipole affects the characteristics of arterial
blood flow significantly during electromagnetic hyperthermia. In a recent study,
Adesanya et al. (2015) found that hyperviscosity of blood considerably affects the
flow and pressure pulse wave propagation. The effect of viscous dissipation on the
pulsating flow of a fluid was analyzed by Adesanya et al. (2015) by using a domain
decomposition method, while the problem of heat transfer to MHD couple stress
pulsatile flow between two parallel porous plates was investigated by Adesanya and
Makinde (2012). By using advection–diffusion equations applicable for porous
media, Ai and Vafai (2006) presented a mathematical model for the transport of
macromolecules. Wade and Karino (2000) reported a computational study on LDL
transfer from flowing blood to the wall tissues of arteries. The role of porous media
in different studies of the mechanics of different biological organs and tissues is
enormous. Khaled and Vafai (2003) in a review paper explained the role of porous
media in studies related to the flow and heat transfer in biological tissues. The flow
characteristics of a Casson fluid in a tube filled with a homogeneous porous medium
were examined by Dash et al. (1996). On the basis of an experimental study, Beavers
and Joseph (1967) proposed a theory according to which the effect of the boundary
layer can be replaced by a slip velocity that is proportional to the exterior velocity
gradient. Subsequently, Beavers et al. (1970) carried out experiments to study the
laminar flow in a channel bounded by two parallel plates, one of whose bounding
walls is a porous medium. They made an observation that owing to the presence of
the porous wall, the mass flow increases. Further experiments were conducted by
Beavers et al. (1974) with an aim to validate the slip boundary condition in the case
of gas flows and to ascertain whether the fluid has a considerable influence on the
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value of the slip parameter. Rivlin and Ericksen (1955) model of second-order fluids
is one of several such fluid models that has drawn interest of fluid mechanics
researchers. Oscillatory flow of a viscous fluid in a channel was studied by Makinde
and Mhone (2005). Ram (1990) investigated the effect of Hall current and wall
temperature oscillation in a plate where the fluid is rotating. Bastman (1982) con-
sidered low Reynolds number flow of blood in arteries of slowly varying cross
section, treating blood as a second-order fluid. The unsteady flow of blood through
vessels was studied by Misra and Sahu (1989) and Misra et al. (1998) by treating
blood as a second-order viscoelastic fluid. Electrically conducting viscoelastic fluid
flow and heat transfer in a parallel plate channel with stretching walls under the
action of an external magnetic field were investigated by Misra and Shit (2008).
Subsequently, Misra and Shit (2009) conducted another study on the flow of a
biomagnetic viscoelastic fluid in the presence of a magnetic field generated by a
magnetic dipole. In this study, the non-Newtonian character of blood was repre-
sented by Walter’s liquid B model. Peristaltic motion of blood in the microcircu-
latory system was studied by Misra and Maiti (2012), by considering the arterioles to
be of varying cross section. Sinha and Misra (2014b) developed a numerical model
to perform a study on mixed convection hydromagnetic flow over an inclined
nonlinear porous stretching sheet. Misra and Sinha (2013) also investigated the
unsteady flow and temperature fields in a diseased capillary, its lumen being porous
and wall permeable. Thermal radiation, velocity slip, and thermal slip were incor-
porated in the study. However, in none of the aforesaid studies mentioned above, the
effect of chemical reaction has been incorporated. Xu et al. (2009) developed a
theoretical model to study the impact of blood flow on rhombus growth, by con-
sidering the interaction between different constituents of blood and chemical reac-
tion. Coulson and Hernandez (1983) carried out an experimental study that depicts
the metabolic activities in the presence of chemical reactions. They made an
important observation due to injection of certain drugs, hormones, and metabolites,
and there occurs considerable increase in plasma concentration of reactants. Heat
and mass transfer in magneto-micropolar fluid in a porous plate were studied by
Chaudhary and Jain (2007). In their study, they considered the radiation term in the
heat transfer equation. Das et al. (1994) considered the effects of a first-order
chemical reaction on the flow past an impulsively started infinite vertical plate.
Muthucumarswamy and Ganesan (2001) as well as Muthucumarswamy (2002)
studied the first-order homogeneous chemical reactions. Recently, Kandasamy et al.
(2005) discussed the heat and mass transfer effect along a wedge with a heat source.
Chaudhary and Jain (2000) studied the effect of chemical reactions on MHD
micropolar fluid flow past a vertical plate in slip-flow regime. Chemical physiology
of Blood flow regulation by red cells was discussed by Singel and Stemler (2005).
Recently, Veera Krishna and Swarnalathamma (2016c) discussed the peristaltic
MHD flow of Williamson fluid. Swarnalathamma and Veera Krishna (2016) dis-
cussed the theoretical and computational study of peristaltic hemodynamic flow of
couple stress fluids. Veera Krishna and Reddy (2016a) discussed MHD-free con-
vective rotating flow. Veera Krishna and Reddy (2016b) discussed unsteady MHD
convective flow of second-grade fluid.
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The aim of the present investigation was to study the effect of chemical reaction,
as well as heat and mass transfer on the oscillatory MHD flow of blood, under a
single framework, treating blood as a second-grade fluid.

2 Formulation and Solution of the Problem

The circulatory system mainly consists of three-dimensional cylindrical vessels.
However, in some cases, such as in microvessels of the lungs, motion of blood can be
approximately considered as channel flow. With this consideration, as in many other
similar theoretical studies the formulation analysis that follows, we use Cartesian
co-ordinates. The flow is considered symmetric about the axis of the channel and
driven by the stretching of the channel wall, such that the velocity of each wall is
proportional to the axial coordinate. In order to study the second-order effects of
unsteady MHD flow of blood, let us first consider the flow of a second-order fluid
between two parallel plates at z ¼ 0 and z ¼ h, where the x-axis is taken parallel length
to plates and z-axis along a direction perpendicular to the plates.

The physical sketch of the problem is as shown in Fig. 1. Taking into account
the existence of sleep between the velocity of blood and the arterial wall tissues, the
relative velocity between blood and the arterial wall is assumed to be proportional
to the shear rate at the wall. Blood is considered as a suspension of erythrocytes and
other micro-elements in plasma. It is assumed that in the segment under consid-
eration, blood is uniformly dense. A magnetic field of constant intensity B0 is
considered to be applied in the y-direction.

The unsteady hydromagnetic equations of the momentum, heat transfer, and
mass transfer for the MHD oscillatory flow of second-grade fluid through a porous
arteriole in the parallel plate system are considered in the form

z

z = h

p Porous medium

x 0z =

y 0 

0

H

Fig. 1 Physical configuration of the problem
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where the meanings of all the symbols appearing in the equations are listed in the
nomenclature. The presence of red cell-slip at the boundary wall of the blood
vessels reported by Brunn (1975) and Nubar (1971), the boundary conditions for
the problem under consideration are given by

The corresponding boundary conditions are

u ¼ k
@u
@z

; v ¼ k
@v
@z

; T ¼ T0 þðTw � T0Þeixt;
C ¼ C0 þðCw � C0Þeixt at z ¼ h

ð5Þ

u ¼ k
@u
@z

; v ¼ k
@v
@z

; T ¼ T0; C ¼ C0 at z ¼ 0 ð6Þ

Using Rosseland approximation (Perdikis and Raptis 1996), the radiative
transfer term qr in Eq. (3) may be expressed as

qr ¼ � 4r�

3ar

@T4

@z
ð7Þ

We assume that the temperature differences within the flow are such that T4 can
be expressed as a linear function of the temperature T. This is accomplished by
expanding T4 in a Taylor series about T0 (which is assumed to be independent of z)
and neglecting powers of T higher than the first. Thus, we have

T4 ¼ 4T3
0T � 3T4

0 ð8Þ

Then, the heat transfer equation becomes

@T
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¼ K1

qCp

@2T
@z2

� 16r�T3
0
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ð9Þ
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Combining Eqs. (1) and (2), q ¼ uþ iv, and we obtain
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q
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@z2@t

� rB2
0

q
q� m
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We now introduce the following non-dimensional variables:

x� ¼ x
h
, y� ¼ y

h
, z� ¼ z

h
, q� ¼ q

U0
, t� ¼ tU0

h
, h ¼ T � T0

Tw � T0
,

/ ¼ C � C0

Cw � C0
, x� ¼ xh

U0
, t� ¼ tw2

0

m
, n� ¼ n

h
, p� ¼ p

qU2
0

Making use of non-dimensional quantities (dropping asterisks), the governing
Eqs. (10), (2), and (3) can be written as

Re
@q
@t

¼ � @p
@n

þ @2q
@z2

þ a
@3q
@z2@t

� M2 þ 1
K

� �
qþGrhþGc/ ð11Þ
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¼ (1þR)
@2h
@z2

ð12Þ

Sc
@/
@t

¼ @2/
@z2

� Kc/ ð13Þ

The corresponding non-dimensional boundary conditions assume the form

q ¼ k
@q
@z

, h ¼ eixt, / ¼ eixt at z ¼ 1 ð14Þ

q ¼ k
@q
@z

, h ¼ 0; / ¼ 0 at z ¼ 0 ð15Þ

where M2 ¼ rB2
0h

2

qm is the Hartmann number (magnetic field parameter), K ¼ k
h2q is

the permeability parameter, a ¼ a1U0
mh is the second-grade fluid parameter, Gr ¼

gb(Tw�T0)h2
mU0

is the thermal Grashof number, Gc ¼ gb�(Cw�C0)h2
mU0

is the mass Grashof

number, Pr ¼ qCp

K1
is Prandtl parameter, R ¼ 16r�T3

0
3arK1

is the radiation parameter, Kc ¼
DKc(Cw � C0) is the chemical reaction parameter, and Sc ¼ m

D is the Schmidt
number.

From Eq. (11), it follows that @p=@n is a function of t only. We consider it to be
of the form
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@p
@n

¼ Peixt ð16Þ

To solve Eqs. (11), (12), and (13) subject to the boundary conditions (14) and
(15), we further write the velocity, temperature, and concentration as

q(z; t) ¼ q1eixt ð17Þ

h(z; t) ¼ h1eixt ð18Þ

/(z; t) ¼ /1e
ixt ð19Þ

Substituting these expressions (17), (18), and (19) in (11), (12), and (13),
respectively, and comparing the coefficient of like terms, we have the equations:
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With corresponding boundary conditions

q ¼ k
@q1
@z

, h1 ¼ 1, /1 ¼ 1 at z ¼ 1 ð23Þ

q ¼ k
@q1
@z

, h1 ¼ 0; /1 ¼ 0 at z ¼ 0 ð24Þ

Solving (20)–(22) subject to the conditions (23) and (24), we have velocity field,
temperature, concentration, respectively, where the expressions for the constants
mi(i ¼ 1,2,. . .,6) and ai(i ¼ 1,2,. . .,6) are given in Appendix.
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hðz; tÞ ¼ 1
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The volumetric flow rate is calculated as
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The wall shear stress at the wall of the upper plate representing the upper wall of
the blood vessel is found as
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The rates of heat and mass transfer across the upper plate (upper wall) are
calculated as

Nu ¼ � @h
@z

� �
z¼1

¼ � 1
em3 � em4

m3em3 � m4em4ð Þeixt ð30Þ

and

Sh ¼ � @/
@z

� �
z¼1

¼ � 1
em5 � em6

m5em5 � m6em6ð Þeixt ð31Þ

3 Results and Discussion

A new mathematical model is accessible here to swat up the effects of chemical
reaction as well as heat and mass transfer on the MHD oscillatory flow of blood
through porous medium. Deliberation is made of the velocity slip of erythrocytes. It
is significant to note that the pulsatility of blood flow owes its origin to the inter-
mittent ejection of blood into the arterial network by the muscular pumping action
(systolic and diastolic) of the heart. The analysis is applicable to pertinent problems
of physiological fluids and fluid dynamical problems encountered in various
industrial processes. However, the computational study has been carried out by
using data which conform to those of blood flow in a diseased blood vessel. On the
lower wall of the vessel, both the temperature and concentration of blood mass are
maintained constant, while the variation of both of them is of oscillatory nature on
the upper wall. These values/ranges of values of the parameters are mostly repre-
sentative of blood flow, when a chemical reaction sets in. By using these values, the
analytical expressions derived in the previous section have been computed by
employing suitable software, viz. Mathematica. Variation in the distributions of
velocity, temperature, concentration, and volumetric flow rate and wall shear stress
has been investigated numerically, with respect to different governing parameters.
Role of the same parameters in executing heat and mass transfer in the blood mass
has also been investigated.

All the computational data have been presented in graphical/tabular form. The
flow is governed by the non-dimensional parameters such as M Hartmann number,
permeability parameter K, Re the Reynolds number, a viscoelastic parameter,
R radiation parameter, Gr thermal Grashof number, Gc mass Grashof number, Sc
Schmidt number, x the frequency of oscillation, k slip velocity parameter, Kc the
chemical reaction parameter. The velocity, temperature, concentration, the shear
stresses at the boundaries, Nusselt number (Nu), Sherwood number (Sh), and the
volumetric flow rate (discharge) between the plates are evaluated analytically using
regular perturbation technique and computationally discussed for different varia-
tions in the governing parameters. Figures 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12
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represent the velocity profiles for u and v; Fig. 13 represents the temperature
profiles for h; Fig. 14 represents the concentration profiles for /.

From Fig. 2, we noticed that both the velocity components u and v reduce with
increasing the intensity of the magnetic field or Hartmann numberM. Also, we have
seen that the resultant velocity is experiencing retardation throughout the fluid
region. The velocity component u increases and v reduces with increasing

Fig. 2 Velocity profiles for u and v against M with t = 1, Re = 1, K = 1, a = 0.5, Pr = 0.71,
Gr = 2, Gc = 5, R = 0.5, Sc = 0.22, x = p/4, k = 0.002, Kc = 1

Fig. 3 Velocity profiles for u and v against K with t = 1, Re = 1, M = 1, a = 0.5, Pr = 0.71,
Gr = 2, Gc = 5, R = 0.5, Sc = 0.22, x = p/4, k = 0.002, Kc = 1

Fig. 4 Velocity profiles for u and v against a with t = 1, Re = 1, K = 1, M = 1, Pr = 0.71,
Gr = 2, Gc = 5, R = 0.5, Sc = 0.22, x = p/4, k = 0.002, Kc = 1
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permeability parameter K. The resultant velocity enhances with increasing K in the
flow field. We also noticed that lower the permeability, lesser the fluid speed is
observed the entire fluid region (Fig. 3). The similar behavior is observed for the
velocity components with radiation parameter R (Fig. 8). This gives an idea of the
influence of chemical reaction on the velocity distribution under identical condition
of heat radiation. The magnitude of the velocity components u and v as well as

Fig. 5 Velocity profile for u and v against Pr with t = 1, Re = 1, K = 1, a = 0.5, Gr = 2, Gc = 5,
R = 0.5, Sc = 0.22, x = p/4, k = 0.002, Kc=1

Fig. 6 Velocity profiles for u and v against Gr with t = 1, Re = 1, K = 1, a = 0.5, Pr = 0.71,
M = 1, Gc = 5, R = 0.5, Sc = 0.22, x = p/4, k = 0.002, Kc = 0.5

Fig. 7 Velocity profiles for u and v against Gc with t = 1, Re = 1, K = 1, a = 0.5, Pr = 0.71,
Gr = 2, M = 1, R = 0.5, Sc = 0.22, x = p/4, k = 0.002, Kc = 0.5

Heat and Mass Transfer on Unsteady MHD Oscillatory … 217



resultant velocity reduces in the entire fluid region with increasing second-grade
fluid parameter a, Pr, Sc, and Kc (Figs. 4, 5, 9, and 12). Also, it indicates that at a
particular instant of time, blood velocity reduces as blood viscoelasticity (a)
increases. From Figs. 6, 7, and 11, the velocity components u and v as well as
resultant velocity increase with increasing thermal Grashof number Gr, mass
Grashof number Gc, or k. There is no indication of flow separation in the absence of

Fig. 8 Velocity profiles for u and v against R with t = 1, Re = 1, K = 1, a = 0.5, Pr = 0.71,
Gr = 2, Gc = 5, M = 1, Sc = 0.22, x = p/4, k = 0.002, Kc = 0.5

Fig. 9 Velocity profiles for u and v against Sc with t = 1, Re = 1, K = 1, a = 0.5, Pr = 0.71,
Gr = 2, Gc = 5, R = 0.5, M=1, x = p/4, k = 0.002, Kc = 0.5

Fig. 10 Velocity profiles for u and v against x with t = 1, Re = 1, K = 1, a = 0.5, Pr = 0.71,
Gr = 2, Gc = 5, R = 0.5, Sc = 0.22, M = 1, k = 0.002, Kc = 0.5
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slip velocity at the wall, but flow separation does take place whenever there is
velocity slip at the boundary. It is important to note that the extent of flow sepa-
ration increases with the increase in the slip velocity parameter k. We also find that
the magnitude of the velocity component u reduces and v enhances with increasing
the frequency of oscillation x. The resultant velocity reduces throughout the fluid
region with increasing the frequency of oscillation (Fig 10).

Fig. 11 Velocity profiles for u and v against k with t = 1, Re = 1, K = 1, a = 0.5, Pr = 0.71,
Gr = 2, Gc = 5, R = 0.5, Sc = 0.22, x = p/4, M=1, Kc = 0.5

Fig. 12 Velocity profiles for u and v against Kc with t = 1, Re = 1, K = 1, a = 0.5, Pr = 0.71,
Gr = 2, Gc = 5, R = 0.5, Sc = 0.22, x = p/4, k = 0.002, M = 1

Fig. 13 Temperature profiles for h against R and Pr with x = 5p/12, t = 0.1
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We noticed that from Fig. 13, the magnitude of the temperature reduces with
increasing radiation parameter R, whereas the reversal behavior is observed
throughout the fluid region with increasing Prandtl number Pr. Also, we found that
from Fig. 14, the magnitude of the concentration increases with increasing Schmidt
number Sc, whereas the reversal behavior is observed throughout the fluid region
with increasing chemical reaction parameter Kc. Finally, these reveal that under the
purview of the present computational study, at any given distance the
temperature/concentration reduces as the thermal radiation/chemical reaction
parameter increases. Further, it reveals that for any particular values of thermal
radiation/chemical reaction parameter, both the temperature and the concentration
increase as we move further and further from the lower wall to the upper one.

The frictional force is determined at the upper wall and is presented in Table 1.
This shows that in the absence of any magnetic field, the wall shear stress increases
with increase in the value of the Reynolds number, and there occurs a sharp
reduction in the wall shear stress, which changes its nature from tensile to com-
pressive. A similar nature of the shear stress is observed, even in the presence of a
magnetic field of unit strength (M); however, the change from tensile to com-
pressive is somewhat smooth. The magnitude of the stress components sx and sy
enhances with increasing K, Gr, Gc, and k. The opposite nature is observed for the
same components with increasing M and Kc. The magnitude of the stress com-
ponent sx reduces and sy increases with increasing a, x, and R. The reversal
behavior is for the components sx and sy with increasing Pr and Sc. We also noticed
that from Table 2 the Nusselt number Nu enhances with increasing Radiation
parameter R and Prandtl number Pr. Likewise, the rate of mass transfer reduces
with increasing Schmidt number Sc and increases with increasing chemical reaction
parameter Kc (Table 3). From Table 4, we observed that volumetric flow rate
enhances with increasing K, Gr, Gc, k, and R as well as it reduces to M, Pr, Kc, Sc,
a, and x.

Fig. 14 Concentration profiles for / against Kc and Sc with x = 5p/12, t = 0.1
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Table 1 Skin friction

M K a R Pr Gr Gc Sc x k Kc sx sy

1 1 0.5 0.5 0.71 2 5 0.3 p/4 0.002 0.5 −1.15824 −1.11049

2 1 0.5 0.5 0.71 2 5 0.3 p/4 0.002 0.5 −0.99349 −1.03204

3 1 0.5 0.5 0.71 2 5 0.3 p/4 0.002 0.5 −0.82503 −0.92514

1 2 0.5 0.5 0.71 2 5 0.3 p/4 0.002 0.5 −1.19415 −1.12444

1 3 0.5 0.5 0.71 2 5 0.3 p/4 0.002 0.5 −1.20699 −1.12914

1 1 0.8 0.5 0.71 2 5 0.3 p/4 0.002 0.5 −1.15094 −1.14180

1 1 1 0.5 0.71 2 5 0.3 p/4 0.002 0.5 −1.14122 −1.16036

1 1 0.5 1 0.71 2 5 0.3 p/4 0.002 0.5 −1.15595 −1.11309

1 1 0.5 1.5 0.71 2 5 0.3 p/4 0.002 0.5 −1.15456 −1.11464

1 1 0.5 0.5 3 2 5 0.3 p/4 0.002 0.5 −1.18323 −1.67388

1 1 0.5 0.5 7 2 5 0.3 p/4 0.002 0.5 −1.20522 −1.00436

1 1 0.5 0.5 0.71 3 5 0.3 p/4 0.002 0.5 −1.37321 −1.31567

1 1 0.5 0.5 0.71 4 5 0.3 p/4 0.002 0.5 −1.58818 −1.52084

1 1 0.5 0.5 0.71 2 6 0.3 p/4 0.002 0.5 −1.36496 −1.31158

1 1 0.5 0.5 0.71 2 7 0.3 p/4 0.002 0.5 −1.57168 −1.51267

1 1 0.5 0.5 0.71 2 5 0.6 p/4 0.002 0.5 −1.17133 −1.09545

1 1 0.5 0.5 0.71 2 5 0.78 p/4 0.002 0.5 −1.17886 −1.08614

1 1 0.5 0.5 0.71 2 5 0.3 p/3 0.002 0.5 −0.84071 −1.36616

1 1 0.5 0.5 0.71 2 5 0.3 p/2 0.002 0.5 −0.06741 −1.60135

1 1 0.5 0.5 0.71 2 5 0.3 p/4 0.008 0.5 −1.17648 −1.12958

1 1 0.5 0.5 0.71 2 5 0.3 p/4 0.01 0.5 −1.18263 −1.13601

1 1 0.5 0.5 0.71 2 5 0.3 p/4 0.002 1 −1.12842 −1.08348

1 1 0.5 0.5 0.71 2 5 0.3 p/4 0.002 1.5 −1.10104 −1.06013

Table 2 Nusselt number R Pr x Nu

0.5 0.71 5p/12 −0.062010

1 0.71 5p/12 −0.110643

1.5 0.71 5p/12 −0.140021

2 0.71 5p/12 −0.159684

0.5 3 5p/12 0.512785

0.5 7 5p/12 1.209667

Table 3 Sherwood number Sc Kc x Sh

0.3 0.5 5p/12 −0.182881

0.6 0.5 5p/12 −0.067315

0.78 0.5 5p/12 0.000764

1 0.5 5p/12 0.082496

0.3 1 5p/12 −0.228894

0.3 1.5 5p/12 −0.271903

Heat and Mass Transfer on Unsteady MHD Oscillatory … 221



4 Conclusions

The analysis is applicable to pertinent problems of physiological fluids and fluid
dynamical problems encountered in various industrial processes. However, the
computational study has been carried out by using data which conform to those of
blood flow in a diseased blood vessel. The study enables us to conclude the
following:

1. The velocity reduces with increasing Hartmann number M and enhances with
permeability parameter K.

2. Blood viscoelasticity lesser flow velocity significantly.
3. The resultant velocity enhances with increasing thermal Grashof number, mass

Grashof number, and slip parameter.
4. The wall shear stress is strongly pretentious by the Reynolds number.
5. At any particular location as the thermal radiation increases, both heat transfer

rate and temperature are reduced to an appreciable extent. However, the velocity
is not significantly affected by thermal radiation.

Table 4 Volumetric flow rate

M K a R Pr Gr Gc Sc x k Kc Q

1 1 0.5 0.5 0.71 2 5 0.3 p/4 0.002 0.5 6.483422

2 1 0.5 0.5 0.71 2 5 0.3 p/4 0.002 0.5 2.500108

3 1 0.5 0.5 0.71 2 5 0.3 p/4 0.002 0.5 1.254794

1 2 0.5 0.5 0.71 2 5 0.3 p/4 0.002 0.5 8.864866

1 3 0.5 0.5 0.71 2 5 0.3 p/4 0.002 0.5 10.07539

1 1 0.8 0.5 0.71 2 5 0.3 p/4 0.002 0.5 6.295777

1 1 1 0.5 0.71 2 5 0.3 p/4 0.002 0.5 6.142751

1 1 0.5 1 0.71 2 5 0.3 p/4 0.002 0.5 6.827244

1 1 0.5 1.5 0.71 2 5 0.3 p/4 0.002 0.5 7.166520

1 1 0.5 0.5 3 2 5 0.3 p/4 0.002 0.5 5.569850

1 1 0.5 0.5 7 2 5 0.3 p/4 0.002 0.5 5.321241

1 1 0.5 0.5 0.71 3 5 0.3 p/4 0.002 0.5 7.138641

1 1 0.5 0.5 0.71 4 5 0.3 p/4 0.002 0.5 7.793860

1 1 0.5 0.5 0.71 2 6 0.3 p/4 0.002 0.5 7.529665

1 1 0.5 0.5 0.71 2 7 0.3 p/4 0.002 0.5 8.575909

1 1 0.5 0.5 0.71 2 5 0.6 p/4 0.002 0.5 5.334855

1 1 0.5 0.5 0.71 2 5 0.78 p/4 0.002 0.5 4.679888

1 1 0.5 0.5 0.71 2 5 0.3 p/3 0.002 0.5 5.728721

1 1 0.5 0.5 0.71 2 5 0.3 p/2 0.002 0.5 4.099391

1 1 0.5 0.5 0.71 2 5 0.3 p/4 0.008 0.5 6.492027

1 1 0.5 0.5 0.71 2 5 0.3 p/4 0.01 0.5 6.494928

1 1 0.5 0.5 0.71 2 5 0.3 p/4 0.002 1 4.881600

1 1 0.5 0.5 0.71 2 5 0.3 p/4 0.002 1.5 4.836282
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6. The rate of heat transfer boosts with increasing Prandtl number.
7. Concentration and rate of mass transfer are abridged due to chemical reaction.

Comparatively, the velocity distribution is less affected due to chemical reaction.
8. The rate of mass transfer is enhanced, as the mass diffusivity reduces (i.e., as the

Schmidt number increases).
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Numerical Simulation of Partially
Covered Hartmann Whistle
in a Sonic-Underexpanded Jet

Arnab Samanta, S. Narayanan, Ashish Narayan
and Shailesh Kumar Jha

Abstract The current study provides numerical investigation into the use of
“Hartmann whistle” as an effective passive flow control device by covering the
major area between the nozzle exit and cavity inlet using a cylindrical shield. The
passive control is accomplished by allowing the pulsating jet to exit through two
small openings in the shield so that it can be utilized for various flow control
applications such as mixing enhancement, drag reduction, noise mitigation. The
current study numerically investigates the effect of partially covered cylindrical
shield on the shock as well as regurgitant oscillation characteristics of a Hartmann
whistle when the pulsating jet exits through the two small openings of the cylin-
drical shield. The relevant parameters that modify the flow/shock oscillations of the
Hartmann whistle are the cavity standoff distance, nozzle pressure ratio, cavity
length, cavity shield, etc. The studies were performed for various standoff distances
values of 10, 20, and 30 mm to demonstrate the role of standoff distance in effective
flow control. The modifications in the shock as well as regurgitant oscillation
features of partially covered Hartmann whistles are systematically compared using
transient velocity vectors, Mach number contours, etc. for various standoff dis-
tances. The velocity vectors indicate flow diversion features near the cavity mouth
as well as inflow and outflow jet regurgitant phases. The Mach contours of partially
shielded Hartmann whistles indicate shock structures, zones of flow deceleration
and re-acceleration. It also clearly demonstrates that the resonant oscillations are
primarily driven by jet regurgitance at smaller standoff distances, but at higher
standoff distances they are primarily driven by the fluid column oscillations in the
shock-cells, shield as well as in the cavity zones. Thus, the current study reveals
that the standoff distance is a crucial parameter that controls the strength of shock,
regurgitant as well as fluid column oscillations in a partially covered Hartmann
whistle in order to achieve an effectual flow control.

A. Samanta � S. Narayanan (&) � A. Narayan � S.K. Jha
Department of Mechanical Engineering, Indian Institute of Technology
(Indian School of Mines), Dhanbad 826004, Jharkhand, India
e-mail: snarayan.1979@gmail.com

A. Samanta
e-mail: arnab.samanta91@gmail.com

© Springer Nature Singapore Pte Ltd. 2018
M.K. Singh et al. (eds.), Applications of Fluid Dynamics, Lecture Notes
in Mechanical Engineering, https://doi.org/10.1007/978-981-10-5329-0_15

227



List of Symbols

Dc Cavity diameter (m)
Dfej Fully expanded jet diameter (m)
Dj Jet exit diameter (m)
H Height of the cylindrical shield measured from the jet axis (m)
L Cavity length (m)
Lshock Length of shock-cell (m)
Mj Mach number at the nozzle exit
Pa Ambient pressure (pa)
Po Stagnation pressure (pa)
R Nozzle pressure ratio (Po/Pa)
S Standoff distance (m)
vj Jet velocity at nozzle exit (m/s)

1 Introduction

The resonating air-jet devices such as Hartmann whistle have been found useful in
flow and noise control applications and have assumed importance. “Hartmann
whistle” is an open-closed cylindrical cavity, wherein high-speed jet impinges at its
open end which is closed at the back end. When the cavity mouth is kept at certain
regions (i.e., expansion, compression, and termination regions) of the underex-
panded jet, intense flow/shock oscillations occur. The pertinent parameters that
control the flow/shock oscillation features and its fundamental timbre frequency are
its cavity standoff distance, cavity length, nozzle pressure ratio, etc. It is well
known that Hartmann resonator can generate high intensity sonic as well as
ultrasonic energy in a gaseous medium which finds immense applications in var-
ious industrial processes. The presence of complex flow patterns such as
shock-cells, oscillations of flow/shock near the cavity inlet, other instabilities (i.e.,
shear-layer instabilities) in Hartmann resonator might be responsible for intensi-
fying the energy of the gaseous medium and thus leading to the generation of
sturdy and directed acoustic emissions from the cavity. In the field of flow controls,
the most relevant part is the nature of the pulsating jet coming out of the Hartmann
cavity. The pulsating jet is generally used to improve the performance of flight
vehicles by reducing drag, delaying stall, suppressing acoustical disturbances, etc.
In fact, there is hardly any literature which demonstrates the effect of partially
covered cylindrical shield on the flow/shock oscillation features of a Hartmann
whistle which forms the specific objective of the current work. Therefore, a
detailed numerical simulation is carried out in the current study to predict the
flow/shock oscillation characteristics of Hartmann whistle by partially covering the
area between the jet exit and the cavity inlet. Some of the relevant literatures on
Hartmann whistles are discussed below.
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Gravitt (1959) investigated experimentally and theoretically the mechanism
responsible for strong vibrations in the Hartmann tube. He found that the pressure
instabilities were observed to act as the source of the forced oscillations of an air
plug in the cavity. Theoretical results obtained agreed well with the experiments by
incorporating viscous reaction and heat transfer during the plug oscillations.

Iwamoto (1990) studied the self-excited oscillation of a rectangular
Hartmann-Sprenger (H-S) tube by flow visualization. It was found that the neces-
sary conditions for commencing and sustaining a steady resonance in a Hartmann
cavity were the existence of a positive pressure gradient in the vicinity of the open
end of the cavity and a low-pressure region on the outside surface of the cavity wall.

Chang and Lee (2001) proposed a simplified model for the jet regurgitant mode
of the Hartmann whistle and determined that its resonant behavior was mainly
dependent on the wavelength of resonant wave and length of the tube. They studied
numerically the effect of four most important parameters such as forcing frequency,
oscillatory amplitude of the Mach number, separation distance between oscillatory
position and tube inlet, and tube length on the regurgitant mode.

2 Computational Domain and Grid

The computational domain and boundary conditions for the jet flow impinging on a
partially covered Hartmann whistle are shown in Fig. 1. The computational domain
(Fig. 1) is limited to 20 Dj and 10 Dj in the axial and radial directions for simulating
the Hartmann whistle, flow in order to capture the complex shock structures, flow
oscillations, recirculation zones, spill-over features, etc. The computational grid with
varying mesh size for is shown in Fig. 2. The grid was constructed using
ANSYS CFD for predicting the flow features of the Hartmann cavity. The fine grids
were used in the regions of shock-cells to resolve and capture the shocks without
allowing it to diffuse, and coarse grids were used in those regions where flow effects
were absent. A transient axisymmetric imitation was carried out with the help of
commercial package ANSYS FLUENT 14 with a density-based implicit solver. The
fluid was considered as compressible (i.e., ideal gas) for the present simulations with
no slip boundary condition enforced at the walls. A total of about 1,36,521 cells were
used in the present simulations. The simple one equation Spalart-Allmaras turbu-
lence model with standard values of model constants (rm = 2/3, Cb1 = 0.1355,
Cb2 = 0.622, k = 0.42, Cw1 = 3.21, Cw2 = 0.3, Cw3 = 2.0, Cm1 = 7.1) was used for
modeling turbulence. The Spalart-Allmaras turbulence model is essentially intended
for aerodynamic applications generally observed in high speed flows past airfoils,
boundary layers, etc. Also, this one equation model has been observed to give good
results with reduced computational time for problems involving wall-bounded flows
as well as boundary layers subjected to adverse pressure gradients Spalart and
Allmaras (1992).
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2.1 Governing Equations

The 2D axisymmetric governing equations which control the occurrence of the
physical phenomena when a sonic-underexpanded jet impinges a Hartmann whistle
are given below.

Fig. 1 Computational domain and boundary conditions

Fig. 2 Computational grid
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2.1.1 Mass Conservation Equation

x is the axial coordinate, r is the radial coordinate, ux is the axial velocity, and ur is
the radial velocity in the present simulation.

@

@x
ðquxÞþ @

@r
ðqurÞþ qur

r
¼ 0: ð1Þ

2.1.2 Axial Momentum Conservation Equation

@

@t
ðquxÞþ 1

r
@

@x
ðrquxuxÞþ 1

r
@

@r
ðrquruxÞ ¼ � @p

@x
þ 1

r
@

@x
rl 2

@ux
@x

� 2
3

r � u!� �� �� �

þ 1
r
@

@r
rl 2

@ux
@r

þ @ur
@x

� �� �
þFx:

ð2Þ

2.1.3 Radial Momentum Conservation Equation
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Fx and Fr comprise external body forces, model-dependent sources terms as well
as user-defined sources, and uz is the swirl velocity.

2.1.4 Energy Conservation Equation
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where keff is the effective thermal conductivity (keff = k + kt), and kt is the turbulent
thermal conductivity defined based on the turbulence model. The first three terms on
the right-hand side of Eq. (4) represent energy transfer due to conduction, species
diffusion (~Jj represents diffusion flux of species j), and viscous dissipation. In the
current study, the first term and second term on the right-hand side are also zero due
to the adiabatic boundary condition to the wall as well as no diffusion of species.
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2.1.5 Equation of State

p ¼ qRcT ð5Þ

2.2 Grid-Sensitivity Study

The grid-sensitivity studies carried out by varying the number of cells 100,522,
136,521, and 164,778 revealed that the current results obtained with 136,521 cells
for an S/Dj value of 2.86 are almost invariant to further grid refinement. The
variation of static pressure with position along the axis for various grids is shown in
Fig. 3.

2.3 Validation

In order to establish that the predictions are right, the length of the first shock-cell
normalized with jet diameter (Lshock-cell/Dj) for S/Dj = 2.86, L/Dj = 2.86 for R = 5,
obtained from the present computations is compared with the shock-cell length
predicted by Edin et al. (2015) for a fully shielded Hartmann whistle as well as
those estimated using Prandtl’s expression Tam (1995) for a free jet, as shown in
Table 1. The shock-cell length Lshock-cell is determined using Eq. (6)

Lshock�cell ¼ 3:14

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Me � 1

p
2:405

Dfej ð6Þ

The fully expanded jet diameter Dfej is estimated from using Eq. (7) proposed by
Tam and Tanna (1982),

Fig. 3 Axial variation of static pressure of a partially covered Hartmann whistle (L/Dj = 2.86,
R = 5, S/Dj = 2.86) for various grids showing grid sensitivity

232 A. Samanta et al.



Dfej ¼ 1þ 0:5ðc� 1ÞM2
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The shock-cell length obtained from present computation show good agreement
with the shock-cell length predicted by Edin et al. (2015) as well as those obtained
using the analytical expression given by Tam (1995) within about 9%. The minor
discrepancy observed between the frequency obtained from the present computa-
tion and those predicted by Edin et al. (2015) may be due to the difference in the
two problems since Edin et al. (2015) simulated fully shielded Hartmann whistle,
and the flow cannot exit out from the shield, whereas the present computation
focuses in simulating the Hartmann whistle by covering it partially using a cylin-
drical shield so that the shield directs the flow to exit from the two controlled
orifices (i) near the cavity mouth and (ii) away from the cavity mouth which can be
used for effective flow control applications. The schematic of flow field around a
cylindrical Hartmann whistle is shown in Fig. 4.

The Mach number contours obtained at S/Dj = 2.86, L/Dj = 2.86, R = 5 from
predictions of a partially covered Hartmann whistle are compared with the corre-
sponding shadowgraph image sequences of an un-shielded Hartmann whistle

Table 1 Comparison of length of the first shock-cell (Lshock/Dj) obtained from present simulation
for a partially covered cavity (S/Dj = 2.86, L/Dj = 2.86 and R = 5) with shock-cell length
predicted by Edin et al. (2015), and theory at the same parametric conditions

First shock-cell length
(Lshock/Dj) from
present computation at
for partially covered
cavity

First shock-cell length
(Lshock/Dj) obtained for
Edin et al. (2015) for
fully shielded
Hartmann

First shock-cell
length
(Lshock/Dj)
from theory
(Prandtl’s
expression)

% deviation
between Edin
et al. (2015)
and present
simulation

% deviation
between
theory and
present
simulation

1.91 1.84 2.09 3.8 8.61

Fig. 4 Schematic of flow field around a cylindrical Hartmann whistle
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roughly at the same relative time instances (Fig. 5). The flow/shock structures such
as expansion, compression and termination regions of the underexpanded
shock-cells as shown in Fig. 4, location of the Mach disk, regurgitant oscillations of
the cavity etc. obtained from numerical predictions match very well with those
observed in the shadowgraph image sequences, thus corroborates our numerical
predictions.

Fig. 5 Comparison Mach contours showing shock structures of a partially covered Hartmann
whistle (L/Dj = 2.86, R = 5, S/Dj = 2.86) with the corresponding shadowgraph image sequences
of un-shielded Hartmann whistle for the same relative time instances, a 6.45 ms, b 6.53 ms
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3 Results and Discussions

3.1 Comparison of Mach Number Contours and Velocity
Vectors for Different Standoff Distances

The comparison of Mach number contours and transient velocity vectors of a
partially covered Hartmann whistle is shown in Fig. 6 in order to understand the
modifications imparted to the flow/shock structure when cavity moves through
different S/Dj values of 1.43, 2.86, and 4.28. When S/Dj is varied, the cavity passes
through various zones (compression, expansion, and termination zones) of the
underexpanded shock-cell structure. The compression and expansion regions of the
shock-cell structure are clearly depicted in Fig. 6. The Mach number contour at
small S/Dj value of 1.43 as shown in the left of Fig. 6a reveals the pattern of the
shock structures in the flow field, where the cavity positions in the compression
region of the first shock-cell. At this standoff distance, the complete expansion of
the jet to form one full shock-cell is prevented by the cavity which makes the entire
shock-cell formed to undergo severe oscillations thereby diverting most of the flow
to exit through the control orifices positioned near and away from the cavity mouth
thus eliminating the formation of conical oscillating shock near the cavity mouth.
The velocity vector as shown in the right of the Fig. 6a depicts the corresponding
flow direction patterns. Increase of S/Dj to 2.86 positions the cavity in the beginning
of the expansion region of the second shock-cell (i.e., cavity mouth lies close to the
termination region of the first shock-cell), thus permitting the formation of one full
shock-cell as well as intense oscillating shock near the cavity mouth. The presents
of oscillating shock may limit the pulsating flow through the control orifice thus
providing an effective control. Further, increase of S/Dj to 4.28 puts the cavity in the
expansion region of the third shock-cell, thus permitting the formation of one full
shock-cell as mentioned earlier but reduces the strength of the oscillating shock near
the cavity mouth thus providing weak regurgitant oscillations. The movement of
cavity through various zones (i.e., compression, expansion and termination zones,
etc.) of the shock-cells at different S/Dj’s reveals the existence of resonant oscil-
lations due to different operating modes of the cavity such as strong/weak regur-
gitant oscillations.

3.2 Effect of Standoff Distances on the Flow/Shock
Characteristics of a Partially Covered Hartmann
Whistle

The locations of shocks at different S/Dj values are shown in Mach number and
static pressure plots (Fig. 7). The Mach number and static pressure plots as shown
in Fig. 7a, b clearly show the absence of second oscillating shock at small S/Dj of
1.43 as compared to higher S/Dj’s of 2.86 and 4.28 which exhibits an oscillating
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conical shock near the cavity mouth following the first shock-cell as shown in
Fig. 7a, b. This shows that the regurgitant oscillations at small S/Dj (i.e., 1.43) are
primarily due to the oscillations of the partially formed first shock-cell structure as
shown in Fig. 7a, b, thus diverting most of the jet flow toward the control orifices.
At higher S/Dj’s of 2.86 and 4.28, the regurgitant oscillations are observed to be
solely driven by the conical shock oscillating near the cavity mouth without causing
much change in the location of the first shock as shown in Fig. 7a, b.

Fig. 6 Comparison of Mach number contours and transient velocity vectors of a partially covered
Hartmann whistle (L/Dj = 2.86, R = 5) at S/Dj’s of a 1.43, b 2.86, and c 4.28, for the same relative
time instance of 7 ms
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4 Conclusions

A detailed computation of the interaction of the jet flow with a partially covered
cylindrical Hartmann whistle was carried out to understand the shock as well as the
regurgitant oscillation characteristics of a partially Hartmann whistle for various
normalized standoff distances. The relevant parameters that modify the shock as
well as regurgitant oscillations of the Hartmann whistle are the cavity standoff
distance, nozzle pressure ratio, cavity length, cavity shield, etc. The computations
were done for various values of normalized standoff distances S/Dj’s of 1.43, 2.86,
and 4.28 with cavity length, cylindrical shield height as well as nozzle pressure ratio
as constant. The current study focuses on understanding the shock as well as
regurgitant oscillation characteristics of the Hartmann whistle when the pulsating jet
exits through the two small openings (i) near the cavity mouth and (ii) away from
the cavity mouth by preventing the huge spillover. The modifications imparted to
the shock as well as regurgitant oscillation features of partially covered Hartmann
whistles are systematically compared using transient velocity vectors, Mach number

Fig. 7 Variation of Mach number and static pressure with position along the axis of a partially
covered Hartmann whistle (L/Dj = 2.86, R = 5) at S/Dj’s of a 1.43, b 2.86, and c 4.28, for the same
relative time instance of 7 ms
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contours, etc. for various standoff distances. The velocity vectors show flow
diversion features as well as inflow and outflow phases of the jet regurgitant
oscillations. The Mach contours of partially shielded Hartmann whistles indicate
the underexpanded shock-cell structure as well as the regions of flow deceleration
and re-acceleration. It also shows that the resonant oscillations are chiefly driven by
jet regurgitance at smaller standoff distances, but at higher standoff distances the
resonant oscillations are primarily driven by the fluid column oscillations in the
shock-cells, shield as well as in the cavity zones. Thus, the current computations
reveal that the standoff distance is a key factor that controls the strength of shock,
fluid column as well as regurgitant oscillations in a partially covered Hartmann
whistle for achieving effective flow control.
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Numerical Investigation of Hypersonic
Flow Past a Spherically Blunted
Nose Cone

Ashish Narayan, Rakesh Kumar and S. Narayanan

Abstract This paper numerically investigates the flow past a spherically blunted
nose cone at a hypersonic Mach number of 5.8. The present study focuses in
determining the flow/shock characteristics of the nose cone such as pressure
coefficient, shock detachment distance and location and shape of bow shock formed
ahead of the spherically blunted nose cone etc. The shock detachment distance,
pressure coefficient, location and shape of bow shock in spherically blunted cones
have numerous applications in the design of high speed aerodynamic vehicles such
as space shuttles, missiles, rockets etc. The design of geometric parameters in
hypervelocity vehicles are very important and are highly challenging for improving
its performance and hence to alleviate the aerodynamic heating. The key parameters
that play a significant role in affecting the aerodynamic characteristics of nose cone
are semi-cone angle, bluntness ratios etc. Therefore, the present study focuses to
investigate the effect of semi-cone angles of 5° and 20° and bluntness ratios of 0.4
and 0.8, in order to understand the aerodynamic performance characteristics of the
spherically blunted nose cones. The velocity vector shows the flow direction which
indicate clearly the deceleration near the nose, re-acceleration through the sideways
of the nose cone as well the formation of recirculation zone behind the cone base.
The shape and location of the bow shock formed ahead of the nose as well as the
shock detachment distance is shown with the help of the Mach number contour. It is
observed that the pressure coefficient decreases rapidly up to a certain distance
along the wall and thereafter it remains almost constant for both the bluntness ratios
(0.4 and 0.8) and semi cone angles (5° and 20°). It is observed that there is no
significant variation in the shock detachment distance observed for both the
bluntness ratios (0.4 and 0.8) and semi cone angles (5° and 20°) studied. In general,
it is observed that increase in temperature is more for small semi cone angles and
bluntness ratios and it decreases for higher bluntness ratios and cone angles. The
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increase in temperature may be due to viscous dissipation which arises due to
curved shocks which makes the flow rotational due to the existence of large entropy
gradients. A minimum temperature is achieved for a bluntness ratio of 0.8 and 20°
semi cone angle. Thus, this paper sufficiently demonstrates the effect of different
bluntness ratios and semi cone angles on the aerodynamic as well as heating
characteristics of a spherically blunted nose cone.

1 Introduction

The spherically blunted nose cones are amongst the configurations of interest with
numerous applications in the design of high speed aerodynamic vehicles (i.e., entry
vehicles) such as space shuttles, rockets etc. These configurations have been under
investigation for the last few decades in order enhance the performance by reducing
the drag and to alleviate the aerodynamic heating Ali et al. (2012). The shape of
bow shock formed ahead of the nose cone, shock detachment distance etc. play a
significant role in controlling the performance (i.e., drag reduction characteristics)
of the nose cones. The generation of high temperature at the cone surfaces in
re-entry vehicles due to aerodynamic heating forms one of the major design con-
siderations of nose cone geometries. The prediction of aerodynamic drag and its
reduction by making proper nose cone geometry is highly challenging. Some of the
relevant literatures of flow past nose cones are given below.

Harris (1967) investigated the aerodynamic characteristics and the pressure dis-
tributions for a spherically blunted cone at 25° semi-cone angle and a bluntness ratio
of 0.2. He observed that pressure coefficients determined using modified Newtonian
theory showed good agreement with those obtained on the nose portion but it showed
variance on the conical portion of the body. He also noticed that the results obtained
with tangent-cone theory agreed well on the rearward portion of the conical body.

O’Bryant (1956) found that the shock standoff distance between the body and
the bow shock formed ahead of a spherically blunted nose cone in hypersonic flow
varies linearly with nose radius.

Menezes et al. (2005) experimentally investigated the effect of multi step base on
the overall drag characteristics of a missile shaped body with a flat base configu-
ration, at a hypersonic Mach number of 5.75. It was observed that the after body
with multi step base showed about 8% reduction in the overall drag as compared to
the flat base configuration.

Albeit several researchers have investigated the flow past a spherically blunted
nose cone at hypersonic Mach numbers but the detailed computational study to
compare the effect of different parameters such as semi-cone angles (5° and 20°)
and bluntness ratios (0.4 and 0.8) on the aerodynamic behaviors (i.e., flow/shock)
such as drag, pressure coefficient, detachment distance etc. are scarce. Thus, an
exhaustive numerical simulation is carried out in the current study to predict the
aerodynamic characteristics of spherically blunted nose cones of different config-
urations, which forms the key objective of the present study.
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2 Computational Domain and Grid

The physical geometry, domain of computation, and boundary conditions for the
problem are shown in Fig. 1. The computational domain (Fig. 1) is fixed as 600 and
420 mm in the axial and radial directions in order to capture the complex
flow/shock structures and the aerodynamic characteristics. The grid is constructed
using ANSYS CFD. The computational grid with varying mesh size is shown in
Fig. 2. Fine grids were used in the regions of large gradients so as to accurately
capture the complex shock structures. A steady axisymmetric simulation is carried
out using the commercial software ANSYS FLUENT 15 with an implicit density
based solver. The fluid is considered as a compressible (i.e., ideal gas) for the
present simulations with no slip boundary condition enforced at the walls. A total of
about 150,000 cells are used in the present simulations. The simple one equation
Spalart-Allmaras turbulence model with standard values of model constants (rm =
2/3, Cb1 = 0.1355, Cb2 = 0.622, k = 0.42, Cw1 = 3.21, Cw2 = 0.3, Cw3 = 2.0,
Cm1 = 7.1) are used for modelling turbulence. The Spalart-Allmaras turbulence
model is essentially intended for aerodynamic applications generally observed in
high speed flows past airfoils, boundary-layers etc. Also, this one equation model
has been observed to give good results with reduced computational time for
problems involving wall bounded flows as well as boundary layers subjected to
adverse pressure gradients Spalart and Allmaras (1992).

600 mm

42
0 

 m
mr

R

Fig. 1 Computational
domain

(b)

(a)

Axis

Jet flow

Fig. 2 a Computational grid.
b Enlarged view of the grid
near the nose cone
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2.1 Governing Equations

The 2D steady axisymmetric governing equations which control the occurrence of
the physical phenomena when a hypersonic flow past a nose cone are as follows.

2.1.1 Mass Conservation Equation
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where, x is the axial coordinate, r is the radial coordinate, ux is the axial velocity, ur
is the radial velocity.
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2.1.3 Radial Momentum Conservation Equation
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Fx and Fr comprises external body forces, model-dependent sources terms as
well as user-defined sources, uz is the swirl velocity.

2.1.4 Energy Conservation Equation
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here, keff is the effective thermal conductivity (keff = k + kt). The first three terms on
the right-hand side of Eq. (4) represent energy transfer by conduction, species
diffusion (~Jj represents diffusion flux of species j) and viscous dissipation. In the
current study the second term on the right hand side is zero since there is no
diffusion of species.

2.1.5 Equation of State

p ¼ qRcT : ð5Þ

2.2 Grid-Sensitivity Study

The type and number of grids used in the simulation significantly influences the
accuracy of the numerical predictions and hence it becomes extremely important
to do grid-sensitivity test before going for the productive simulations. Therefore,
the grid sensitivity studies were carried out by varying the number of cells as:
150,000, 175,000 and 200,000. The variation of Mach number with position along
the axis for various grids for r/R = 0.2 at 5° is shown in Fig. 3 showing grid
sensitivity. The study revealed that the current results obtained with 150,000 cells
are almost invariant to further grid refinement. Further, the boundary layer near the
wall of the nose cone is resolved by restricting the maximum wall y+ value within
about 4.
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Fig. 3 Axial variation of Mach number with position along the axis for various grids showing
grid sensitivity
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2.3 Validation

In order to ensure that the predictions are right, the maximum pressure coefficient for
(r/R = 0.4 and 0.8) and cone angles (5° and 20°) at M = 5.8, obtained from the
present computations is compared with Allen and Eggers (1953), Menezes et al.
(2005), and O’Bryant (1956) (Eq. 6) in Tables 1 and 2 for two different cone angles
of 5° and 20°. The Cp,max obtained from present computation (r/R = 0.4 and 0.8) and
cone angles (5° and 20°) show excellent agreement with those predicted by Harris
(1964), Harris (1967), and Wells and Armstrong (1962) (Eq. 6) within about 1%.

cp;max ¼ cþ 3
cþ 1

1� 2
M2

1ðcþ 3Þ
� �

: ð6Þ

3 Results and Discussions

3.1 Variations of Pressure Coefficient and Mach Number
with Position Along the Axis for Different Bluntness
Ratios and Semi Cone Angles

The variation of pressure coefficient on the wall with distance is shown in Figs. 4
and 5 for different cone angles (5° and 20°) at bluntness ratios of 0.4 and 0.8. It is
noticed that pressure coefficient decreases hastily up to a certain distance along the
wall and thereafter it remains almost constant, for the bluntness ratios and cone
angles studied. Another striking feature observed here is that the maximum pressure
coefficient of around 1.8 obtained at the nose is almost independent of bluntness
ratios and cone angles. Also it is observed that the large cone angles possess higher
value of pressure coefficients as compared to smaller ones for all the bluntness ratios
studied even though their maximum pressure coefficients are same Harris (1967).

Table 1 Comparative study of maximum pressure coefficient value for analytical and numerical
at 5° semi cone angle for bluntness ratio 0.4 & 0.8

S. No. r/R ratio
at 5°

Analytical value of pressure
coefficient

Numerical value of pressure
coefficient

%
error

1 0.4 1.81 1.83 1.1

2 0.8 1.81 1.81 –

Table 2 Comparative study of maximum pressure coefficient value for analytical and numerical
at 20° semi cone angle for bluntness ratio 0.4 & 0.8

S. No. r/R ratio
at 20°

Analytical value of pressure
coefficient

Numerical value of pressure
coefficient

%
error

1 0.4 1.81 1.83 1.1

2 0.8 1.81 1.81 –

244 A. Narayan et al.



0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4
0

0.5

1

1.5

2

Position along the axis (m)

Pr
es

su
re

 C
oe

ff
ic

ie
nt

r/R=0.4 at 50

r/R=0.4 at 200

Fig. 4 Variation of pressure coefficient on the wall at 5° and 20° for r/R = 0.4
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Fig. 5 Variation of pressure coefficient on the wall at 5° and 20° for r/R = 0.8
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The variation of Mach number with position along the axis for different cone
angles (5° and 20°) at bluntness ratios of 0.4 and 0.8 is shown in Figs. 6 and 7. It is
observed that the shock detachment distance increases with increase in cone angles
for both the bluntness ratios studied. It is seen that for both the r/R values the shock
is steeper at smaller cone angles as compared to larger ones. Thus, the current study
reveals that the shock detachment distance is observed to be a strong function of
bluntness ratios and cone angles.

3.2 Variations of Temperature with Position Along the Wall
of a Spherically Blunted Nose Cone for Different
Bluntness Ratios and Semi Cone Angles

The variation of temperature with position along the wall of a spherically blunted
cone is shown in Figs. 8 and 9 for various bluntness ratios (a) 0.2 (b) 0.4 at different
semi cone angles (hc = 5° and 20°). The increase of fluid temperature (due to
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Fig. 7 Variation of Mach number with position along the axis for 5° and 20° at r/R 0.8
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friction heat) is due to the conversion of kinetic energy of the flow into thermal
energy via a process called viscous dissipation. The static temperature increases
hastily and attains a maximum value and thereafter it follows decreasing trend for
all bluntness ratios and semi cone angles studied Allen and Eggers (1953).

3.3 Numerical Prediction of Flow/Shock Structures Around
a Spherically Blunted Nose Cone

In order to understand flow/shock features clearly the velocity vector and Mach
contour for r/R = 0.2, semi cone angle 5°, is shown in Figs. 10 and 11. The velocity
vector (Fig. 10) clearly depicts the flow features such as deceleration near the nose
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and re-acceleration through the sideways of the spherically blunted nose cone. It
also reveals the formation of recirculation zone behind the base of the nose cone.
The Mach number contour (Fig. 11) shows the shape and location of bow shock
formed ahead of the nose cone. The enlarged view of Mach contour (Fig. 11b)
depicts the shock detachment distance.

4 Conclusions

A detailed computational study was conducted to study the influence of different
nose cone parameters such as semi-cone angles, bluntness ratios on the aerodynamic
characteristics of the spherically blunted nose cones at a mach number of 5.8. the two
different bluntness ratios (0.4 and 0.8) and semi-cone angles (5° and 20°) are
investigated in the current study to determine the influence of nose cone parameters
on the aerodynamic characteristics such as pressure coefficient, shock detachment
distance, static temperature, location and shape of bow shock etc., which finds huge
applications in the design of entry vehicles such as space shuttles, missiles etc. the
velocity vector (Fig. 10) obtained from the preliminary studies represents the flow
deceleration ahead of the nose followed by re-acceleration through the sideways. It
also portrays the existence of flow recirculation behind the nose cone. The detach-
ment distance as well as the structure of bow shock formed ahead of the nose cone is
well represented by the Mach number contour (Fig. 11). The current study reveals
that the pressure coefficient shows a sharp decrease up to a certain distance along the
wall thereafter it follows a constant behavior. There is no significant variance in the
shock detachment distance is observed for the semi cone angles (5° and 20°) and
bluntness ratios (0.4 and 0.8) studied. It is observed that the static temperature

(b)

Shock               
detachment distance

Nose  
Jet

Bow 

(a)

Fig. 11 a Mach number contour. b Enlarged view of Mach contour showing shock detachment
distance
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increases with increase in distance along the wall. Further, the increase in static
temperature is observed to be higher for smaller semi cone angles and bluntness
ratios whereas it decreases for higher bluntness ratios and cone angles. The increase
in static temperature may be due to viscous dissipation near the wall as well as due to
the curved shocks which makes the flow rotational due to the existence of large
entropy gradients. Thus, this paper sufficiently demonstrates the effect of different
nose cone geometries (semi cone angles and bluntness ratio) on the aerodynamic as
well as heating characteristics of a spherically blunted nose cone.
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Numerical Investigation of Subsonic Flow
Past a Flat Plate Aerofoil

Shailesh Kumar Jha, S. Narayanan and L.A. Kumaraswamidhas

Abstract The present work numerically investigates the effect of two different
trailing edge geometries such as sharp as well as blunt on the aerodynamic char-
acteristics of a flat plate aerofoil. The modifications in the flow as well as aero-
dynamic characteristics of sharp and blunted trailing edge configurations of a flat
plate aerofoil are systematically compared using pressure coefficient, lift coefficient,
vortex shedding, etc. The study was conducted for a chord-wise Reynolds number
of 4.99 � 105 at an angle of attack of 25°. The large difference in the pressure
coefficient observed between the top and bottom surface in the case of blunt trailing
edge as compared to sharp ones indicates that the blunted trailing edge geometry
generates higher lift than the sharp trailing edge ones. It is observed from spectra
that the vortex shedding for both the blunted and sharp trailing edge geometries
occurs at a Strouhal number of around 0.34. The increase of energy as well as
broader wake in the blunted trailing edge geometry indicates higher drag as com-
pared to the sharp trailing edge geometry. Thus, this paper sufficiently demonstrates
the effect of sharp and blunted trailing edge geometries on the aerodynamic char-
acteristics of a flat plate aerofoil.

List of Symbols

BS Bottom surface
BTE Blunt trailing edge
c Chord length of the flat plate airfoil (m)
Cd Coefficient of drag
Cl Coefficient of lift
St Strouhal number (fc/U)
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STE Sharp trailing edge
TS Top surface
U Free stream velocity (m/s)
a Geometric angle of attack (degrees)
X Position along the chord (m)

1 Introduction

The flow past bluff bodies have been investigated by the several researches for the
past few decades due to its immense applications in aviation, mechanical, civil, etc.,
such as flow past an aircraft wing, flow over tube bundles in heat exchangers, and
around bridges. From fluid mechanics viewpoint, the flow over bluff body com-
prises several corporal phenomena such as vortex formation, vortex shedding, flow
separation. Lam and Wei (2010) studied the physics behind fluctuating lift and drag
of the inclined flat plate aerofoil and developed a correlation between fluctuating
aerodynamic forces and vortex shedding. Yang et al. (2012) investigated the
asymmetric wake patterns behind the flat plate inclined in the post-stall domain.
They found the strengths of the vortices from the trailing and leading edges and
determined that the intrinsic instability in a fluid is due to low angle of attack rather
than low Reynolds number (Re). Grid-generated turbulence effect on sectional lift
force over circular cylinder has been studied by Blackburn and Melbourne (1996).
They found that in low-intensity turbulence flow the vortices are disorganised while
they found organised vortices in high turbulence intensity flow. Vortex shedding
behind a long flat plate at various incidence angles was experimentally studied by
Lam and Leung (2005). They found a train of vortices from leading and trailing
edges behind the flat plate airfoil. They also observed that trailing edge vortex has
higher peak vorticity level at its center and induces more fluid circulation with high
Reynolds stress than the leading edge vortex. Even though several studies on flat
plate aerofoils are available a detailed comparative study to understand the flow and
aerodynamic characteristics such as pressure coefficient, vortex shedding mecha-
nisms, wake profiles on two different flat plate trailing edge configurations such as
sharp and blunt to determine the geometry for better performance are scarce which
forms the specific objective of the current study.
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2 Computational Domain, Boundary Condition, and Grid

The physical geometry, computational domain, and boundary conditions for the
present study were shown in Fig. 1. The computational domain (Fig. 1) was kept as
−6c and 14c in the stream-wise direction and ±5c normal to the stream-wise
direction. The structured grid (Fig. 2) with varying mesh size was constructed using
ANSYS CFD. Fine grids were used near flat plate aerofoil where the flow effects
are significant in order to resolve the boundary layer properly and grids were made
uncouth in those regions where flow effects are absent. The computations were
done using pressure-based implicit solver. The fluid was considered as incom-
pressible (i.e., constant density) in the present computation. The one-equation
Spalart and Allmaras (1992) turbulence model with standard values of model
constants (rv ¼ 2

3, Cb1 ¼ 0:1355, Cb2 ¼ 0:622, k ¼ 0:42, Cw1 ¼ 3:21, Cw2 ¼ 0:3,
Cw3 ¼ 2:0, Cv1 ¼ 7:1) was used for present computation. Spalart and Allmaras
(1992) mode is fairly a simple one-equation model and has been shown to give
good results for problems involving wall bounded flows as well as boundary layers
subjected to unfavorable pressure gradients with reduced computational time.

2.1 Governing Equations

The 2D incompressible flow equations for the flow past a flat plate airfoil is given
below.

Fig. 1 Computational domain
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2.1.1 Mass Conservation Equation

The equation for conservation of mass can be written as follows:

@u
@x

þ @v
@y

¼ 0 ð1Þ

where, u, v are velocity along x- and y-axis, respectively.

2.1.2 Momentum Conservation Equation

(a) Along x-axis

@u
@t

þ @ u2ð Þ
@x

þ @ umð Þ
@y

¼ � 1
q
@P
@x

þ t
@2u
@x2

þ @2u
@y2

� �
ð2Þ

Fig. 2 Computational grid
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(b) Along y-axis

@m
@t

þ @ umð Þ
@x

þ @ v2ð Þ
@y

¼ � 1
q
@P
@x

þ t
@2v
@x2

þ @2v
@y2

� �
ð3Þ

where, u, v are velocity along x- and y-axis, respectively, P is the pressure, q is the
fluid density which is constant for the present work since flow is considered as
incompressible and t is the kinematic viscosity of the fluid.

2.2 Validation

The variation of pressure coefficient with position along the wall of the flat plate
aerofoil obtained from present computation is compared with those of Yang et al.
(2012) in Fig. 3 for the same parametric conditions. It clearly shows the pressure
coefficient obtained from the present computation on both the top and bottom
surface of the flat plate aerofoil matches very well with those given by Yang et al.
(2012). Also the comparison of Cl, Cd values obtained from the present compu-
tation for 20° and 30° angles of attack show reasonably good agreement with those
given by Lam and Wei (2010) and are compared in Tables 1 and 2.

Fig. 3 Distribution of pressure coefficient Cp along the plate surface inclined at a = 25°, obtained
from two-dimensional simulation of present work and three-dimensional simulation by Yang et al.
(2012)
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2.3 Grid Independence Study

The grid sensitivity test was carried out by varying the number of cells as: 103,792,
157,254, and 219,774 and found that the current results obtained with 103,792 cells
are almost invariant to further grid refinement. The variation of pressure coefficient
with position along the length of the flat plate is shown in Fig. 4 representing grid
sensitivity.

Table 1 Comparison of
present study lift coefficient
value with the value obtained
by Lam and Wei (2010)

a Cl (present
CFD data)

Cl (Lam
and Wei)

Error (%)

20° 3.02 3.24 7.28%

30° 2.98 3.02 1.34

Table 2 Comparison of
present study drag coefficient
value with the value obtained
by Lam and Wei (2010)

a Cd (present
CFD data)

Cd (Lam
and Wei)

Error (%)

20° 1.17 1.20 3

30° 1.72 1.76 4

Fig. 4 Variation of pressure coefficient with position along the length of the plate for various
grids showing grid sensitivity
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3 Results and Discussions

3.1 Variation of Pressure Coefficient with Position Along
the Length of the Flat Plate for Different Trailing Edge
Geometry

The variation of pressure coefficient with position along the length for different
trailing edge geometry is shown in Fig. 5. The difference in the pressure coefficient
of top and bottom surface is higher in the case of blunt trailing edge as compared to
sharp ones, and this difference decreases with increase in distance along the chord.
Another striking feature observed here is that the Cp at the bottom surface of both
sharp and blunt geometries falls rapidly from a maximum value to minimum where
it is almost constant for both the trailing edge geometries at the top surface. Thus, it
reveals that the lift generation will be more for blunt trailing edge as compared to
sharp ones.

3.2 Power Spectral Density

The frequency spectra of the lift coefficient fluctuation over the top surface of the
plate for different trailing edge geometry are shown in Fig. 6. For blunt trailing
edge, two peaks (a) are observed with low variation while sharp trailing edge has
single peak (b). The vortex shedding for both the blunted and sharp trailing edge
geometries occurs roughly at a Strouhal number of around 0.34 and is indicated in
Fig. 6. Spectra of blunted trailing edge show more energy up to a Strouhal number

Fig. 5 Variation of pressure coefficient with position along the length of the plate for different
trailing edge geometry at 2.281 s
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of 2 thereafter it falls below the sharp trailing edge geometry. The increase of
energy in the blunted geometry as compared to sharp ones represents broader wake
and higher drag which is discussed in the following section.

3.3 Velocity Vector for Blunt and Sharp Trailing Edge
Geometry

The comparison of velocity vectors between blunted and sharp trailing edge
geometries are shown in Fig. 7. It is seen that a set of counter-rotating vortices are
formed from leading and trailing edges of the blunt and sharp trailing edge
geometries. The size of the vortex generated from the leading edge is large com-
pared to those generated from the trailing edge for both the blunt and sharp
geometries as shown in Fig. 7. More vortices are generated from trailing edge of
blunt which leads to high drag than the sharp edge.

3.4 Wake Velocity Profiles for Sharp and Blunted Trailing
Edge Configurations

The variation of wake profile showing velocity deficit for blunted and sharp trailing
edge configuration is shown in Fig. 8. It is observed that the velocity deficit is more
for blunted trailing edge than sharp ones which indicates more drag in blunted

Fig. 6 Spectra of fluctuating lift coefficient at U = 5 m/s, AOA = 25°
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edge 
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Fig. 7 Velocity vectors showing vortex shedding in a BTE, and b STE flat plate at 1.37 s

Fig. 8 Wake velocity profile for BTE and STE geometry at 2.281 s
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geometry. This is further confirmed by determining the wake width which is given
below. The width of the wake (W) for blunted trailing edge geometry is around
0.1185 m, whereas it is about 0.1094 m for sharp ones. The increase of wake width
in blunted trailing edge geometry indicates that it generates broader wake than
sharp ones. The presence of broader wake in the blunted geometry represents that it
generates higher drag as compared to the sharp ones.

4 Conclusions

A detailed numerical study was conducted to understand the effect of different
trailing edge geometries such as sharp, blunt on the flow, and aerodynamics
characteristics of the flat plate aerofoil at a Reynolds number of (Re) of 4.99 � 104.
The pressure coefficient shows the sharp decrease along the length of the bottom
surface, while it is almost constant along the top surface for both the sharp and
blunted trailing edge geometries. The difference in the pressure coefficient between
the top and bottom surface is higher in the case of blunt trailing edge as compared
to sharp ones, and this difference decreases with increase in distance along the
chord. The spectra show the vortex shedding for both the blunted and sharp trailing
edge geometries occurs at a Strouhal number of around 0.34. The existence of
broader wake in the blunted geometry reveals that it generates higher drag as
compared to the sharp ones. Thus, the current paper adequately exemplifies the
effect of different trailing edge geometries such as sharp and blunted profiles on the
aerodynamic characteristics of the flat plate aerofoil.
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Compare Tornado Force Coefficients
on Dome and Prism Building Using
Three-Dimensional Computational Fluid
Dynamics Model

Majdi A.A. Yousef and R. Panneer Selvam

Abstract Wind loads on structures have been investigated for the last five decades.
For straight line (SL) wind, the forces on buildings are available from standards and
wind tunnel testing. Few studies have been conducted to investigate tornado forces
on cubical buildings and to distinguish between tornadic wind loads and SL wind
loads. In the tornado-damaged areas, dome buildings seem to have less damage.
However, few studies have been investigated to study a tornado interaction with a
dome building. In this work, the forces on a dome are computed using computa-
tional fluid dynamics (CFD) for tornadic and SL wind. Then, the interaction of a
tornado on a dome and a prism building are compared and analyzed. This work
describes the results of the tornado wind effect on a dome building. The conclusions
drawn from this study are illustrated by various visualizations. The tornado force
coefficients on a dome building are larger than force due to SL wind, about 40%
more in x-direction and 120% more in z-direction. The tornado maximum pressure
coefficients also are higher than SL wind by 130%. The tornado force coefficients
on the prism are larger than the forces on the dome, about 150% more in x-direction
and about 110% more in z-direction. The tornado maximum pressure coefficients on
prism also are greater, by 200%. Hence, a dome building has less tornadic load than
a prism because of its aerodynamic shape.

1 Introduction

Every year in the USA, more than 1,000 tornadoes cause about 65 fatalities,
1,500 injuries, and at least 400 million dollars in economic damage, as reported by
the American National Weather Service (NWS 2011). In order to mitigate this
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damage, it is necessary to design buildings that are more resistant to tornadoes. The
first requirement for accomplishing this goal is a better understanding of tornado–
structure interaction and tornado-induced loads on buildings. The development in
tornado wind modeling can lead to a better prediction of tornado maximum forces.
Then, the outcome can be implemented for improving the design standards. Past
research has focused on the influence of tornado forces on different structures, such
as gable-roofed, rectangular, and cubic or tall buildings. Selvam and Millett (2003)
and Millett (2003) did pioneering work on computer modeling simulations of
tornado interaction with a cubic structure. They showed that the tornado produced
twice the force coefficient on the roof of a cubic structure compared to the SL wind
flow. Iowa State University (ISU) group has investigated in the laboratory the
interaction between a translating tornado and a low rise gabled-roofed structure or a
tall structure (Sarkar et al. 2006; Yang et al. 2011; Zang and Sarkar 2010; Hann
et al. 2010; Hu et al. 2011). Their study has shown that the tornado produced two to
three times the force coefficients on the roof compared to the SL flow.

A literature review of tornado damage investigation shows that the structures
were partially or completely destroyed by tornadoes, except the dome structures. In
one instance, a thin shell concrete dome, in Blanchard, OK was hit by an EF5
tornado (Parker 2013). Although badly damaged by heavy, flying debris, the dome
shell survived (Fig. 1a). In another instance, a wood dome house in Texas survived
after it was hit by the EF5 tornado as shown in Fig. 1b (Age Dome 2015). From this
observation, one can say that the shape may reduce the forces on structure.

2 Objectives

A literature review of tornado–structure interaction shows that the wind effects of
tornadoes on dome building has not been sufficiently explored, which justifies the
necessity of the research in this study. Therefore, a numerical simulation is con-
ducted to study in detail the interaction of a tornado on a dome structure. Then, the
numerical results are compared with those due to SL wind. In addition, the results

Fig. 1 a Survived concrete dome (Parker 2013) and b survived wood dome (Age Dome 2015)
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are compared with those that are computed for prism building. The detail of the
objective is listed below:

1. Use the computer model for making some flow visualizations to understand the
flow behavior around the dome and rectangular prism.

2. Use the computer model for computing the forces and pressure coefficients on
dome and prism building due to straight-line wind and tornado-type wind.

3. Compare the force and pressure coefficients on dome and prism buildings due to
straight line and tornadic wind.

3 Tornado Wind Field Modeling

The Rankine combined vortex model (RCVM) is the simplest model that can satisfy
the Navier–Stokes (NS) equations, as reported by Lewellen (1993). This model
consists of two different flow fields, which are the force vortex region and free
vortex region as shown in Fig. 2. In the force vortex region, the tangential velocity
of tornado, Vh, increases linearly with the distance from the tornado center, r, where
r � rmax. In the free vortex region, the tangential velocity is decreasing inversely
to the radius the region where r > rmax. In this computational simulation, a trans-
lational velocity, Vt, with respect to the building is superimposed onto the RCVM
wind field, in addition to a vertical logarithmic variation to account for the
boundary layer, as reported by Selvam (1993). More detail about RCVM can be
found in Selvam and Millett (2005).

4 Fluid–Structure Interaction Modeling

The flow around the structure is computed by solving the Navier–Stokes
(NS) equations. The turbulence is modeled using large eddy simulation (LES). The
flow equations are approximated by either finite element method (FEM) or finite

Fig. 2 Rankine combined
vortex of tornado velocity
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different method (FDM). The FDM code has been used previously by Selvam and
Millett (2005) to study flow over cubic prism. This is based on orthogonal grid
system, and it is computationally very efficient. The same code is used to compute
the forces around the rectangular prism (Alrasheedi and Selvam 2011; Gorecki and
Selvam 2015). The FDM code based on body fitted was developed to study flow
around a dome, but it had more error in transporting the tornado-like vortex. Hence,
the FEM code based on body fitted was developed to study flow around a dome.
Ahmad and Selvam (2015) used this numerical model to study the tornado–terrain
interaction. They validated this numerical model by comparing the results with
experimental. The detail of the equations and methods of solving are documented in
the above references. The superiority of FEM to FDM in transporting vortices is
reported in Selvam (1998). The FEM code takes more computer time, and hence
parallel computing is utilized. More detail about parallel computing can be found in
Ahmad and Selvam (2015).

5 Problem Geometry and Boundary Conditions

The structure (the hemispherical dome or rectangular prism) is located on the path
of the translating vortex. The counterclockwise rotating vortex travels along x-axis
with a constant velocity (Vt) as shown in Fig. 3. The structure is located at rea-
sonable distance from the boundary of the computational domain, to not inhibit the
flow-structure. On the surface of the structure either dome or prism, the velocities
are considered to be zero, i.e., no-slip condition. At each time step, the interior
velocities and pressures are computed by solving the NS equations. More details
about the boundary conditions can be found in Selvam and Millet (2005). The
parameters of the tornado are presented in Table 1.

Table 2 includes the sizes of the hemispherical dome, rectangular prism, and
computational domain, in both the dimensionless and the SI units. The classifica-
tions for the dome and prism dimensions are presented in Fig. 4. The height and
projected area of the dome and prism are assumed to be same. Instead of taking
projected area of the dome and prism same, in future study, the volume of the dome

Fig. 3 Schematic of path
translating tornado with
building
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and prism also will be taken as the same. Here the focus is on same projected area
and height. The x and y plane of the used grids, across the dome and prism, are
established in Fig. 5. The grid spacing from the building is increased by 1.2 times
the previous spacing until it reaches 0.25D spacing. The 0.5 spacing is applied only
on the 6 � rmax wide lane on the vortex path and around the dome and prism.

Table 1 Rankine combined vortex parameters and the ground roughness

Units a rmax Vt Vh Vmax = Vt + Vh Z0
Non-dimensional 1.0 3.0 1.0 3.0 4.0 0.045

SI units 1.0 s−1 30 m 10 m s−1 30 m s−1 40 m s−1 0.00375

Where Z0 is the ground roughness

Table 2 Dome, prism, and domain size

Dome (model
1)

Prism (model 2) Domain size

Units D H L D H LD WD HD

SI units (m) 20.0 10.0 17.72 17.72 10.0 600 600 450

Non-dimensional 2.0 1.0 1.772 1.772 1.0 60 60 45

Fig. 4 Nomenclature; a dome building dimension; b prism building dimension

Fig. 5 Computational grid in xy-plane; a vortex–dome building interaction; b vortex–prism
building interaction
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Outside the path the grid spacing is equal to 0.5D units. The fine grid spacing inside
and outside the path is recommended by Gorecki and Selvam (2015). The dome and
prism boundary layer is resolved by fine grid refinement. The first grid spacing next
or close to the dome and prism buildings is assumed to be 0.005D as suggested by
Selvam and Millet (2005), where D is a structure’s width. The Reynolds number
based on the height of the dome and prism is Re = 1.2 � 106.

Nomenclature

The force coefficients are calculated using the following equations:

CX ¼ Fx= 0:5qV2A
� � ð1Þ

Cy ¼ Fy= 0:5qV2A
� � ð2Þ

Cz ¼ Fz= 0:5qV2A
� � ð3Þ

Cp ¼ Dp= 0:5qV2� � ð4Þ

where Cx, Cy, and Cz are the computed force coefficients in the x, y, and z,
respectively. The Fx, Fy, and Fz are respective forces in x, y, and z directions, q is
the density of air, V is the reference velocity, and m is the kinematic viscosity of air.
Cp is the mean pressure coefficient, Dp is the pressure difference, and P − Pref.
(Pref. is equal to 0.0). The reference velocity in the tornado wind field is the
maximum velocity, which is equal to Vh + Vt. By integrating the pressure in each
direction on the surface, the forces are computed.

6 Results and Discussion

6.1 Tornado Vortex Interaction with the Dome
and the Prism, Described by Contours
and Pressure Iso-Surface

The primary advantage of CFD modeling of the tornado–structure interaction is the
capability to investigate the wind characteristics for any building shape at any
instant in time. Figure 6 displays the interaction of tornado wind with the dome and
the prism at various instances of non-dimensional time (t = 10, 24, 45). Before the
interaction of the vortex with the structures, the vortex in front of the dome and the
prism at time 10 exhibits a regular uninterrupted cylindrical shape as shown in
Fig. 6a, b. At time 24, the low-level part of the vortex starts to interact with the
building. As the vortex travels ahead: the vortex over the dome transports smoothly
until it passes the building, whereas the vortex over the prism starts to separate until
it passes the building as illustrated in Fig. 6c, d. Since the prism building has
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angles, sharp corners, and flat surfaces, they give the wind something to lift or push
against it. Therefore, the vortex separates when it travels over the prism. However,
the dome building does not have those features. The dome has smooth and rounded
surfaces that make the vortex transfer smoothly over it. As the vortex moves away

Fig. 6 Isometric view of tornado vortex–dome and prism interaction in pressure iso-surface at
various times a, b 10, c, d 24, and e, f 45 unite
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from the dome and the prism building at time 45, it straightens up and starts to
recover its initial cylindrical shape in Fig. 6e, f.

The x and the z plane velocities vector in pressure contours for the dome and the
prism building at time 24 are illustrated in Fig. 7. The tornado vortex generates
large amounts of vertical wind around each building. With the dome and prism
building interactions, the wind is changed from horizontal to vertical wind all
around the roof of the buildings. As the high-pressure vertical wind flows past the
corners of the prism building, flow separation occurs just above the entire roof
surface as seen by the turbulent wake above the building. However, with the dome
building interaction, the wind travels smoothly over the dome building since the
dome does not have multiple sharp corners like the prism building. Therefore, the
rotational wind due to tornadoes may create higher forces on the prism than
the dome.

6.2 Tornado Force and Pressure Coefficients over the Dome
and the Prism

The three-dimensional contours of the pressures for the dome and the prism
building are illustrated in Fig. 8. The absolute maximum pressure on the dome is—
2.0. The maximum effect of the negative pressure is seen close to the top of the
dome. The absolute maximum pressure on the prism is—6.0. The maximum effect
of the negative pressure is seen on the roof and walls of the prism close to the sharp
edge and corners. The prism mode makes higher pressure than the dome model,
about 200%. The dome created less pressure since the dome does not have multiple
sharp corners like the prism building.

The tornado force coefficients for dome and prism presented in Fig. 9 are cal-
culated by integrating pressure all over the buildings. These tornado forces are
compared with forces due to SL wind that are illustrated in Fig. 10. It is found that
the force coefficients on dome due to the tornado wind are larger than those due to

Fig. 7 Close view of xz-plane of tornado vortex dome (a) and prism (b) interaction in pressure
contours at time 24 s

268 M.A.A. Yousef and R. Panneer Selvam



the SL wind, about 40% more in x-direction and about 120. Also, it is found that the
force coefficients on prism due to the tornado wind are larger than those due to the
SL wind, about 60% more in x-direction and about 130% more in z-direction.

The maximum Cx, Cy, Cz values due to tornado for the dome building and prism
building are compared. It was found that the prism model makes higher force

Fig. 8 a and b Absolute maximum pressure coefficient contour plots under the influence of
tornado wind of dome and prism buildings, respectively; c xy-plane of dome building pressure;
d exploded faces of the prism building pressure coefficients

Fig. 9 Maximum force coefficients on prism due to a SL wind and b tornado wind
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coefficients than the dome model, about 150% more in x-direction and 110% more
in the z-direction. In our comparison the coefficients are calculated for the same
maximum velocities and hence for the same maximum wind speed of the tornado
wind.

7 Conclusions

In this paper, the effect of force and pressure coefficients on dome and rectangular
prism building having same height and projected surface area is compared.
A three-dimensional CFD simulation, based on large eddy simulation, is applied to
numerically simulated tornado–structure interaction using computational fluid
dynamics. The conclusions arrived from the accomplished work are listed below.

1. The tornado force coefficients on the dome building are larger than forces due to
SL wind, about 40% more in x-direction and 120% more in z-direction. The
tornado pressure coefficients are larger than pressure due to SL wind, about
130% more.

2. The force coefficients on prism due to the tornado wind are larger than those due
to the SL wind, about 60% more in x-direction and about 130% more in z-
direction. The tornado pressure coefficients are greater, about 140% more.

3. The translating tornado wind produces higher overall forces coefficients on the
prism than dome, about 150% more in x-direction and 110% more in z-direction.
The tornado pressure coefficients on prisms are greater, about 200% more.

Fig. 10 Maximum force coefficients on dome due to a SL wind and b tornado wind
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Mathematical Study of Peristalsis
in the Presence of Electrokinetic Transport
in Parallel Plate Microchannel

D. Tripathi, Shashi Bhushan, Ashu Yadav and Ashish Sharma

Abstract Electrokinetic transport of fluids through microchannel by micropump-
ing and microperistaltic pumping has much interest for many engineering, medical,
and industrial applications. Motivated in part by the need of mathematical model to
study the electrokinetic transport by peristaltic pumping, an analytical approach is
presented. A non-integral number of wave propagation is considered for trans-
portation of fluid bolus along the channel length. Debye-Hückel linearization is
employed to find out the potential function. A non-dimensional analysis is
employed to simplify the governing equations. Low Reynolds number and large
wavelength approximations are taken into account. The effects of characteristic
electrical double layer (EDL) thickness and maximum electroosmotic velocity on
pumping characteristics are discussed by computational results.

1 Introduction

The recent emerging microfluidic technologies such as microfluidics devices,
micropumping, and peristaltic micropumping have been reported in detail by
Iverson and Garimella (2008). Without moving mechanical parts, an electroosmotic
pump which generates high pressure and flow is intended by Goodson et al. (2005).
An electroosmosis modulated microperistaltic pump is engineered by Xie et al.
(2004) on the basis of peristalsis phenomenon. Another peristaltic micropump is
also engineered by Brettschneider and Dorrer (2013). In same direction, some more
microfluidic peristaltic pumps are also fabricated and discussed by Chou et al.
(2015) and Zhang et al. (2015). An analytical approach is adopted to study the
electromagnetohydrodynamic flow of viscoelastic fluids with Jeffrey model through
two parallel microchannels which are presented by Si and Jian (2015). Peristalsis is
a physiological mechanism in which the physiological fluids like food bolus, blood,

D. Tripathi (&) � S. Bhushan � A. Yadav � A. Sharma
Department of Mechanical Engineering, Manipal University Jaipur,
Jaipur 303007, Rajasthan, India
e-mail: dharmtri@gmail.com

© Springer Nature Singapore Pte Ltd. 2018
M.K. Singh et al. (eds.), Applications of Fluid Dynamics, Lecture Notes
in Mechanical Engineering, https://doi.org/10.1007/978-981-10-5329-0_19

273



urine, bile and sperm are being transported by continuous muscle contractions and
relaxation. This mechanism is automatic process. The muscles contract and relax
due to chemical mechanism. It was being studied in physiology; however, some
interesting fluid mechanical investigations are reported subsequently by Burns and
Parkes (1967), Fung and Yih (1968), Jaffrin and Shapiro (1971), Li and Brasseur
(1993), Pozrikidis (1987), Shapiro et al. (1969), Shukla et al. (1980), Takabatake
and Ayukawa (1982). These studies are limited for Newtonian fluids, so further
modifications for non-Newtonian fluids, MHD fluids, heat transfer fluids, and
nanofluids are required. Considering these facts, Tripathi and Bég (2014) presented
a model for viscoelastic fluids, in another study Tripathi and Bég (2013) for MHD
couple stress fluids; Blanchette (2014) discussed the effects of suspended drops on
peristaltic transport; Ellahi et al. (2014) reported the heat transfer analysis on
peristaltic pumping; Tripathi and Anwar Bég (2014) investigated for nanofluids;
Kothandapani and Prakash (2015) extended for MHD nanofluids; and Akbar et al.
(2015) further improved for MHD nanofluids through permeable channels.

Nowadays, the interdisciplinary works (mathematical biosciences) and multi-
disciplinary works (a mathematical study of electroosmotic flow in physiological
systems) have been most demanded and attracted to research communities. Most of
the above works present a mathematical model of peristaltic transport in various
physical aspects and constraints. However the electrokinetic theory was not intro-
duced in peristaltic transport model, first time Chakraborty (2006) focused the
electrokinetic effects on peristaltic transport. He considered thin electric double
layer phenomenon where electroosmotic slip boundary condition is taken into
account. Electrokinetic is the study of a group of phenomena, i.e., electrophoresis,
electroosmosis, diffusiophoresis, capillary osmosis, sedimentation potential,
streaming potential/current, colloid vibration current, electric sonic amplitude that
occur in particles (solid, liquid or gas) containing fluids due to intrinsic or extrinsic
electric field. Inspired from the wide applications of electrokinetic in various
fields, an electroosmotic flow in microchannel with electric double layer (EDL)
phenomenon is reported by Dey et al. (2012) where external electric field is con-
sidered. A dielectrophoresis (H-DC-iDEP) microfluidic blood plasma separation is
also analyzed by Mohammadi et al. (2015). However these models are formulated
mathematically and ignored the experimental observations of peristaltic/oscillating
flow nature of physiological movements.

Considering the huge applications of both peristaltic and electrokinetic mecha-
nisms in fabrication of biomedical devices and peristaltic micropumps, a mathe-
matical model is designed to discuss the effects of Helmholtz-Smoluchowski
velocity and Debye length on peristaltic transport of Newtonian fluids through
microchannel. We consider the sinusoidal flow regime where the non-integral
number of waves is propagating along the microchannel length. This study answers
the mechanism of peristaltic pumping under the influence of electrokinetic transport
like “How peristaltic pumping can be controlled by electrokinetic mechanisms?”
This model is new concept and applicable in the field of microfluidics transport
process.
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2 Mathematical Formulation

A schematic representation of flow regime with finite length (L) channel is depicted
in Fig. 1, and it is mathematically expressed as:

�hð�n;�tÞ ¼ a� b cos2
p
k
ð�n� c�tÞ 8x 2 0; L½ � ð1Þ

where a, b, k, �n, c, �t, and L are the half width at the inlet, amplitude, wavelength,
axial coordinate, wave velocity, time, and channel length, respectively.

The governing equations for two-dimensional incompressible flow with an
axially applied electrokinetic body force are given as:
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where q; �u;�v; �p; l; and Ef denote the fluid density, axial velocity, transverse velocity,
pressure, fluid viscosity, and elctrokinetic body force. The Poisson-Boltzmann’s
equation is defined as:

Fig. 1 Geometry of non-integral peristaltic wave propagation induced by electroosmotic flow
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r2 �U ¼ � �qe
e

ð5Þ

in which qe is the density of the total ionic change and e is the permittivity. For a
symmetric (z:z) electrolyte, the density of the total ionic energy, qe, is given by,
qe ¼ ezðnþ � n�Þ, in which nþ and n� are the number of densities of cations and
anions, respectively, and are given by Boltzmann distribution (considering no EDL

overlap) n� ¼ n0Exp � ez�U
KBT

h i
, where n0 represents the concentration of ions at the

bulk, which is independent of surface electrochemistry, e is the electronic charge, z
is charge balance, KB is the Boltzmann constant, and T is the average temperature
of the electrolytic solution.

Introduce the following non-dimensional parameters;
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where d is wave number, Re is the Reynolds number, and f is the zeta potential.
Applying long wavelength and low Reynolds number approximations, the above
Eqs. (2)–(4) reduce to
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where m ¼ aez
ffiffiffiffiffiffiffiffiffi
2n0
eKBT

q
¼ a

kd
is known as the electroosmotic parameter and kd is

Debye length or characteristic thickness of electrical double layer (EDL) and UHS ¼
� Enef

l c is the Helmholtz-Smoluchowski velocity or maximum electroosmotic

velocity. Applying Debye-Hückel linearization approximation sinh ezU
KBT

� �
� ezU

KBT
,

Eq. (5) reduces to:
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The boundary conditions are:
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ð11Þ

Integrating twice Eq. (10) and using the boundary conditions, the potential
function is obtained as:

U ¼ coshðmgÞ
coshðmhÞ ð12Þ

Integrating Eq. (8) and using boundary conditions (11), the axial velocity is
obtained as:

u ¼ 1
2
@p
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 �
ð13Þ

Using the Eq. (13) and boundary condition (11), the transverse velocity from
continuity equation is obtained as:
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Using Eq. (14) and boundary conditions (11), the pressure gradient is obtained
as:

@p
@n

¼ 1
h3

G0ðtÞþ 3
Z

@h
@t

dnþUHS h� tanhðmhÞ
m

� �
 �� 
ð15Þ

where G0ðtÞ is arbitrary function of t to be evaluated by using finite length boundary
conditions (11). The pressure difference can be computed along the axial length by

Dp ¼ pðn; tÞ � pð0; tÞ ¼
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and G0ðtÞ is expressed as:
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The present model can be reduced for a particular case (UHS ¼ 0) where peri-
staltic transport of viscous fluids through finite length channel can be studied. It can
also be reduced for another case (m ! 1) where electroosmotic flow of Newtonian
fluids in the presence of peristalsis with very thin electric double layer can be
discussed.

3 Numerical Results and Discussion

In this section, the numerical results to discuss the effects of characteristic thickness
of electric double layer (kd / 1=m) and external electric field (En / UHS) on
potential profile, velocity profile, pressure distribution, local wall shear stress, and
trapping are illustrated through Figs. (2, 3, 4, and 5). Figure 1 is drawn for
geometry of peristaltic flow regime.

Figure 2a, b shows the potential profile, i.e., potential function versus transverse
coordinate. It is seen that the potential profile is parabolic shape, i.e., it is minimum
at origin and asymptotes are g ¼ const.

Fig. 2 Potential profile at n ¼ 1:0; t ¼ 0 for a u ¼ 0:6; b m ¼ 1

Fig. 3 Velocity profile (axial velocity vs. transverse coordinate) at
u ¼ 0:5; n ¼ 1:0; t ¼ 0; @p@n ¼ 1
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Figure 2a shows the effect of thickness of EDL on potential profile, and it is noticed
that magnitude of potential function enhances with reducing the thickness of EDL.
Figure 2b depicts the influence of amplitude of wave on potential profile. It is pointed
out that potential function enhances with increasing the amplitude of the wave.

Fig. 4 Pressure difference versus axial channel length at u ¼ 0:8; l ¼ 1:8; pl ¼ p0 ¼ 0;UHS ¼ 1
for different values of Debye length at a t ¼ 0, b t ¼ 0:2, c t ¼ 0:4, d t ¼ 0:6

Fig. 5 Pressure difference versus axial channel length at u ¼ 0:8; l ¼ 1:8; pl ¼ p0 ¼ 0;m ¼ 1 for
different values of Helmholtz-Smoluchowski velocity at a t ¼ 0, b t ¼ 0:2, c t ¼ 0:4, d t ¼ 0:6
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Figures 3a, b illustrates the effects of EDL thickness and external electric field on
velocity profile. It is seen that velocity profiles are in parabolic nature. Figure 3a
depicts the effect of EDL thickness on velocity profile, and it is revealed that the
velocity profile is shifted from parabolic shape to trapezoid shape when EDL
thickness goes down. This shifting tendency explains the effects of electrokinetic in
the form of changing the nature from Stokes’ flow profile (parabolic) to electroos-
motic flow profile (trapezoid). Figure 3b depicts a comparative study for velocity
profile with and without external electric field, and it is remarked that the velocity
profile is positively parabolic without external electric field, whereas it is negatively
parabolic with external electric field. It is further concluded that the vertex of
parabolic velocity profile expands with enhancing the external electric field effects.

Figure 4a–d are plotted for pressure difference against the axial length to discuss
the effects of EDL thickness and external electric field. Non-integral number of train
waves are considered to propagate along the channel length, i.e., length of channel
is considered as 1.8 multiple of wavelength of peristaltic wave. The pressures at
both end of channel are taken zero, and four different steps of moving fluid bolus
are shown at different time instants t ¼ 0, t ¼ 0:2, t ¼ 0:4, t ¼ 0:6. From Figures, it
is pointed out that the pressure difference is not uniform at fully contracted walls; in
Fig. 4a, the pressure at first contracted walls position is less in comparison with
pressure at second contracted walls, while it reverse in Fig. 4b; in Fig. 4c, it is
uniform along the channel length, but in Fig. 4d, it is similar to Fig. 4a but direction
is opposite. It is also revealed that the pressure enlarges for thicker EDL
phenomenon

Figure 5a–d are drawn for pressure difference against the axial channel length of
channel to compute the effects of external electric field. Same considerations like
Fig. 4 have been adopted. It is found that pressure diminishes with enhancing the
electric field effects. It is also noticed that the pressure is more for peristaltic
pumping without external electric field and vice versa.

4 Concluding Remarks

We analyze the effect of external electric field on peristaltic transport of Newtonian
fluids through finite length channel which is studied to discuss how to control the
physiological flow by adding and opposing the pressure-driven flow by effect of
electric double layer phenomena. On the basis of the computational results, the
concluding remarks are:

• Potential function enhances with reducing the thickness of EDL, whereas
potential function enhances with increasing the amplitude of the wave.

• Velocity profile increases with increasing the magnitude of external electric
field.

• Pressure rises for thicker EDL formation, and the pressure is more with reducing
the effect of external electric field.
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Journal Bearing Lubrication of Power
Law Fluid with Consistency Variation
Including Convection

Dhaneshwar Prasad, Sudam Sekhar Panda
and Venkata Subrahmanyam Sajja

Abstract An effort is made to discuss the vital effects of temperature on
hydrodynamic lubrication of journal bearing by non-Newtonian power law lubri-
cants. Boundary surfaces are assumed to be rigid and isothermal. It is assumed that
the consistency of the lubricant varies with film temperature and pressure, as
considered by some researchers. The employed equations of motion and the
continuity are solved numerically and analytically. For the numerical solution,
Runge–Kutta–Fehlberg method is employed with adequate tolerance. The effects of
temperature and pressure are analyzed through various table and graphs as func-
tions of the consistency index of the lubricant velocity and journal velocity.

1 Introduction

In general, in a heavily loaded lubricated bearing, high pressure and temperature
plays significant role. The lubricant properties do not remain constant, and it
depends on pressure and temperature. However, solving Reynolds and energy
equation simultaneously and analytically is a complicated task, and one has to work
out numerically. Sometimes the convergence of solution is so poor that getting one
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feasible solution is difficult. In view of these situations, one may attempt this by
making some appropriate assumption to get a feasible solution.

Johnson and Mangkoesoebroto (1993) built up a theory of lubrication for the
power law fluid and investigated it intricately. Just the infinite width gap is mea-
sured. Here the flow is considered between rigid walls of subjective shape under
consolidated coquet and crushing movement with a pressure gradient.
A mathematical equation for the pressure gradient is formed by combining these
mathematical statements. To show the hypothesis, it is utilized to compute the
pressure dispersion for a parabolic slider bearing and the pressure inclination and
velocity distribution when the mass flux is recommended. Nessil et al. (2013)
studied the lubrication of journal bearings by utilizing non-Newtonian liquids
which are depicted by a power law model. The performance qualities of the journal
bearings are resolved for different estimations of the non-Newtonian power law
index ‘n’ which lie between 0.9 and 1.1 including Newtonian. The obtained
numerical results demonstrate that for the dilatants liquids (n > 1), the load con-
veying limit, the pressure, the temperature, and the frictional power increases while
for the pseudoplastic liquids (n < 1), the outcome is reversed. The impact of the
temperature consequences for these qualities is critical at higher estimations of the
flow behavior index ‘n’.

Mongkolwongrojn and Aiumpornsin (2010) analyzed the static and dynamic
qualities of journal bearing greased up with non-Newtonian oils in view of Carreau
viscosity model. The unsteady state modified Reynolds, and the non-adiabatic
energy equations have been figured in light of non-Newtonian Carreau liquids to
acquire the static and dynamic qualities of journal bearing in thermohydrodynamic
oil administration. The Reynolds and energy equations including the heat con-
duction equation are simultaneously solved together numerically with the given
boundary conditions using finite difference method. Khonsari and Brewe (1989)
concentrated on the performance parameters for a finite length journal bearing
lubricated with micropolar liquids. Results demonstrate that the load conveying
limit is significantly higher than the Newtonian liquids which rely upon the size of
material characteristic length and the coupling number. It is also explained that in
spite of the fact that the frictional force connected with micropolar liquids is higher
than that of a Newtonian liquid, the friction coefficient of micropolar liquids has a
tendency to be lower than that of the Newtonian. Kango et al. (2014) studied about
the impacts of viscous heat dispersal and non-Newtonian rheology of oil on the
performance parameters of microtextured journal bearing. The finite difference
technique is used to solve this model by the help of mass conservation algorithm
(JFO limit conditions) and oil blending temperature ideas. Yang et al. (2014)
analyzed the rheological properties of bubbly oil under comparatively low-to-high
shear rates using a rheometer. A model equation where cavitation algorithm is
applied which includes shear rate and temperature to develop the bubbly lubrication
model of journal bearings. Furthermore, results show that as volume fraction
increases, maximum pressure, load capacity, friction force, and leak flow increase
slightly at lower shear rates, decline obviously at higher shear rates, but increase to
a peak and then decrease at intermediate shear rates.
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Boncompain et al. (1986) presented a general THD theory and a comparison
between theoretical and experimental results. The generalized Reynolds equation,
the energy equation in the film, and the heat transfer equation in the bush and the
shaft are solved simultaneously. The cavitation in the film, the lubricant recircu-
lation, and the reversed flow at the inlet are taken into account. Along with addition,
the thermo-elastic deformations are also calculated in order to define the film
thickness. Mongkolwongrojn and Aiumpornsin (1960) investigated the effects of
temperature variations within the oil film thickness, and the coming about consis-
tency variation along and over the film which are thought to be in charge of the lift
in parallel surface bearing. A numerical solution for a special bearing is acquired for
various heat limit conditions, and a result comparison of the traditional analysis is
made. Exceptionally impressive contrasts from the traditional analysis are acquired.
A few solutions of the heat balance in bearing are likewise displayed. Gao et al.
(2014) discussed the impacts of eccentricity ratio by utilizing computational fluid
dynamics (CFD) and considering the contrasts between the physical properties of
the water and of the oil on pressure distribution of water lubricant film. At that point
numerical analysis of journal bearings with various measurements is embraced
under various rotational velocities. In view of the analysis, under the given load and
rotational velocity, a situation is arised for selecting the initial diameter dimension
which is utilized to plan a productive water-greased up plain bearing.

Ahmad et al. (2014) presented an experimental work to determine the effect of
oil groove location on the temperature and pressure in hydrodynamic journal
bearings. Measurements of temperature and pressure were obtained for speeds of
300, 500, and 800 rpm at different radial loads. Changes in oil groove location were
shown to affect the temperature and pressure to some extent.

In light of the above discussion, an effort has been made in this work to include
the heat of convection in the energy equation. Solutions are obtained for pressure,
temperature, and delta for circular coordinate.

2 Mathematical Model

2.1 Flow Equations

The flow equations of the hydrodynamic lubrication of journal bearing are con-
sidered as—Sing et al. (2008a, b):

dp
dx

¼ @
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where

m ¼ m0ea p�bðTm�T0Þ ð3Þ

with

Tm ¼ 1
h

Zh
0

T dy ð4Þ

h ¼ c ð1� e cos h Þ ð5Þ

Prescribed boundary conditions are mentioned below for the above equations as:

u ¼ U at y ¼ h; and u ¼ 0 at y ¼ 0 ð6Þ

where U is the velocities of the journal
From geometry given in Fig. 1, one may observe that for each h, @u

@y = 0 at
y ¼ d ð�p � h� pÞ in both the regions:

I : �p� h\� h1 and II : �h1\h� p:

Further, four subregions are formed by d profile having velocities u1, u2, u3, and
u4 from the two regions. The velocity boundary conditions for the undertaken
geometry are:

Fig. 1 Journal bearing geometry with delta profile shown in dotted line
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@u1
@y

� 0; d� y� h;
@u2
@y

� 0; 0� y� d; I:� p� h\� h1 ð7Þ

@u3
@y

� 0; 0� y� d;
@u4
@y

� 0; d� y� h; II:� h1\h� p ð8Þ

Integration of Eq. (1) twice for the region: �p � h\ � h1; leads to,

u1 ¼ Uþ n
nþ 1

� �
1
m1

dp1
dx

� �1=n

ðy� dÞnþ 1
n � h� dð Þnþ 1

n

h i
; d� y� h ð9Þ

u2 ¼ n
nþ 1

� �
1
m1

dp1
dx

� �1=n

ðd� yÞnþ 1
n � dð Þnþ 1

n

h i
; 0� y� d ð10Þ

Similarly, for the region �h1 \ h � p:

u3 ¼ n
nþ 1

� �
� 1
m2

dp2
dx

� �1=n

ðdÞnþ 1
n � d� yð Þnþ 1

n

h i
; 0� y� d ð11Þ

u4 ¼ Uþ n
nþ 1

� �
� 1
m2

dp2
dx

� �1=n

ðh� dÞnþ 1
n � y� dð Þnþ 1

n

h i
; d� y� h ð12Þ

Again Q, the volume flux which is obtained by solving Eq. (2) for the region:
�p � h\ � h1, as

@
@x

Rh
0
u dy ¼ 0 ) dQ

dx ¼ 0 where Q =
Rh
0
u dy

Q ¼
Zd
0

u2dyþ
Zh
d

u1dy

¼Uðh� dÞ � n
2nþ 1

� �
1
m1

dp1
dx

� �1=n

ðdÞ2nþ 1
n þðh� dÞ2nþ 1

n

h i ð13Þ

The flux Q may be taken at h = −h1, because it is constant everywhere in the
region, where x = Rh,

Q ¼ Rh
0
udy ¼ c1, say

with the condition dp
dx ¼ 0; at h ¼ �h1; h ¼ h1 in (1) and calculate Q where (1)

reduces to
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0 ¼ @
@y m @u

@y

��� ���n�1
@u
@y

� �
, We get the volume flux at h ¼ �h1 is U h1=2.

Hence, Qð�h1Þ ¼
Rh1
0
u dy ¼ Uh1

2 ¼ c1 and

dp1
dx

¼ m1
2nþ 1

n

� �n Uðh� dÞ � Uðh1=2Þ
ðdÞ2nþ 1

n þðh� dÞ2nþ 1
n

" #n
; �p� h\� h1 ð14Þ

dp2
dx

¼ �m2
2nþ 1

n

� �n Uðh1=2Þ � Uðh� dÞ
ðdÞ2nþ 1

n þðh� dÞ2nþ 1
n

" #n
; �h1\h� p ð15Þ

By taking x ¼ Rh; dx ¼ Rdh we get

dp1
dh

¼ m1R
2nþ 1

n

� �n Uðh� dÞ � Uðh1=2Þ
ðdÞ2nþ 1

n þðh� dÞ2nþ 1
n

" #n
; �p� h\� h1 ð16Þ

In the same way, one can obtained in other region as:

dp2
dh

¼ �m2R
2nþ 1

n

� �n Uðh1=2Þ � Uðh� dÞ
ðdÞ2nþ 1

n þðh� dÞ2nþ 1
n

" #n
; �h1\h� p ð17Þ

Using the velocity matching conditions: u1 = u2 and u3 = u4 at y = d, one can
obtain a single relationship as:

2nþ 1
nþ 1

� � ðh� d� h1=2Þ½ � ðh� dÞnþ 1
n � ðdÞnþ 1

n

h i
ð dÞ2nþ 1

n þðh� dÞ2nþ 1
n

2
4

3
5 ¼ 1 ð18Þ

It may be emphasized that Eq. (18) cannot be used to evaluate d in the region
h ¼ �h1 � e1 and h ¼ �h1 þ e1 since @u

@y 6¼ 0 at these points at all. Hence it can be
calculated using circular coordinate as

r � r1 ¼ r2 � r1ð Þ
h2 � h1ð Þ h� h1ð Þ ð19Þ
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2.2 Energy Equation

The temperature equation of the fluid flow with normal assumptions for this
problem is taken as Tropea et al. (2007)

k
@2T
@y2

þm
@u
@y

����
����
n�1

@u
@y

� �2

¼ qCs um
dTm
dx

� �

k
@2T
@y2

þm
@u
@y

����
����
n�1

@u
@y

� �2

¼ /ðxÞ;where/ðxÞ ¼ qCs um
dTm
dx

� � ð20Þ

For this equation, the boundary conditions are taken as

T1 ¼ T11 at y ¼ h;T2 ¼ T12 at y ¼ 0 ð21Þ

Applying these above conditions in the region, �p � h\ � h1, T11, and T12
are calculated as:

T1 ¼ y2

2k
/ðxÞ � m1

k

� � 1
m1

dp1
dx

� �nþ 1
n n2

ð2nþ 1Þð3nþ 1Þ ðy� dÞ3nþ 1
n

þ c2yþ d2; d� y� h

ð22Þ

T2 ¼ y2

2k
/ðxÞ � m1

k

� � 1
m1

dp1
dx

� �nþ 1
n n2

ð2nþ 1Þð3nþ 1Þ ðd� yÞ3nþ 1
n

þ c3yþ d3; 0� y� d

ð23Þ

By using the matching heat flux condition and temperature matching condition
k @T1

@y ¼ k @T2
@y at y ¼ d, T11 = T12 at y = d and in (22) and (23), one may get

c1 ¼ c2 ¼ c (say) and d1 ¼ d2 ¼ d (say), hence using (21), (22), (23) give

c ¼ 1
h

c ¼ T11 � T12 � h2

2k
/ðxÞþ m1

k

� � n2

ð2nþ 1Þð3nþ 1Þ
1
m1

dp1
dx

� �nþ 1
n

"

ðh� dÞ3nþ 1
n � ðdÞ3nþ 1

n

h ii ð24Þ

d ¼ T12 þ m1

k

� � n2

ð2nþ 1Þð3nþ 1Þ
1
m1

dp1
dx

� �nþ 1
n

d
3nþ 1

n ð25Þ

In the same way, one can get in the region �h1\h� p
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T3 ¼ � m2

k

� �
� 1
m2

dp2
dx

� �nþ 1
n n2

ð2nþ 1Þð3nþ 1Þ ðd� yÞ3nþ 1
n þ a1yþ b1 ð26Þ

T4 ¼ � m2

k

� �
� 1
m2

dp1
dx

� �nþ 1
n n2

ð2nþ 1Þð3nþ 1Þ ðy� dÞ3nþ 1
n þ a2yþ b2 ð27Þ

Use of the matching heat flux condition and temperature matching condition
k @T3

@y ¼ k @T4
@y at y ¼ d, T11 = T12 at y = d, in (26) and (27) with a1 ¼ a2 ¼

a; and b1 ¼ b2 ¼ b one can get

a ¼ 1
h

T11 � T12 � h2

2k
/ðxÞþ m2

k

� � n2

ð2nþ 1Þð3nþ 1Þ � 1
m2

dp
dx

� �nþ 1
n

"

ðh� dÞ3nþ 1
n � ðdÞ3nþ 1

n

h ii ð28Þ

b ¼ T12 þ m2

k

� � n2

ð2nþ 1Þð3nþ 1Þ � 1
m1

dp2
dx

� �nþ 1
n

d
3nþ 1

n ð29Þ

At last as defined in (4), the mean temperatures Tm1 and Tm2 are:

Tm ¼ 1
h

Zh
0

T dy ¼ 1
h

Zd
0

T2 dyþ 1
h

Zh
d

T1 dy; or

Tm1 ¼ 1
2

T11 þ T12ð Þ � h2

12k
/ðxÞ � nA

ð4nþ 1Þ
ðh� dÞ4nþ 1

n þðdÞ4nþ 1
n

h

" #

þA
ðdÞ3nþ 1

n þðh� dÞ3nþ 1
n

2

" #
; �p� h\� h1

ð30Þ

where A = � m1
k

	 

1
m1

dp1
dx

� �nþ 1
n n2

ð2nþ 1Þð3nþ 1Þ
� �

, Similarly,

Tm2 ¼ 1
2

T11 þ T12ð Þ � h2

12k
/ðxÞ � nB

ð4nþ 1Þ
ðh� dÞ4nþ 1

n þðdÞ4nþ 1
n

h

" #

þB
ðdÞ3nþ 1

n þðh� dÞ3nþ 1
n

2

" #
; �h1\h� p

ð31Þ

where B = � m2
k

	 
 � 1
m2

dp2
dx

� �nþ 1
n n2

ð2nþ 1Þð3nþ 1Þ
� �

:
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2.3 Dimensionless Schemes

Using dimensionless scheme Prasad et al. (2014), the Eqs. (16), (17), (30), and (31)
can be written as

dp1
dh

¼ m f
	 
n

; �p� h\� h1 ð32Þ

dp2
dh

¼ �m �f
	 
n

; �h1\h� p ð33Þ

dTm1

dh
¼ TA � Tm1 � n

3nþ 1

� �
prm f
	 
nþ 1

g

� �
= pecð Þ; �p� h\� h1 ð34Þ

dTm2

dh
¼ TA � Tm2 � n

3nþ 1

� �
prm �f
	 
nþ 1

g

� �
= pecð Þ; �h1\h� p ð35Þ

where g ¼ n
4nþ 1

h�dð Þ4nþ 1
n þ d

4nþ 1
n

h

 !
� h�dð Þ3nþ 1

n þ d
3nþ 1

n

2

 !" #
, m ¼ mcna etc.;

cn ¼ U
c

� �n 2nþ 1
n

� �n R
c

� �
, f ¼ ðh� dÞ � h1=2

h� d
	 
2nþ 1

n þ d
2nþ 1

n

pe ¼ qCpUc
K

; pr ¼ bUc
K a

c
R

� �
; c ¼ hh1

24R
; TA ¼ T11 þ T12

2

here Pe and Pr are modified Peclet and Prandtl numbers.

2.4 Load

The load components W is calculated as

W ¼ 2
Zp
0

p cos hR dh ¼ �2R
Zp
0

sin h
dp
dh

dh

W ¼ 2
Zp
0

p cos h dh;where W ¼ Wa
R

;W ¼ �2
Zp
0

sin h
dp
dh

dh
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3 Numerical Calculation

Theoretical approach of numerically calculated results for pressure and temperature
regarding the flow characteristics index n and the velocity ratio U/c is exhibited
through figures and tables. We consider the estimation of n in the middle of
0.4 and 1.15. For computing, the following sets of values are used: �R ¼ 12:0;
a ¼ 1:6� 10�9dyne�1m2, e ¼ 0:701;Pe ¼ 400:9;U ¼ 44000=s. The simultaneous
Eqs. (32, 34) and (33, 35) are numerically solved for dimensionless temperature �Tm
and pressure �P and by Runge–Kutta–Fehlberg method to analyze the qualitative
behavior of lubricants. The difference of �P and �Tm is presented, respectively, in
Figs. 2 and 3. One can observe that one feature is common in every case that the
general shape of the profile does not changed if n varies.

-0.15

-0.1

-0.05

0 

0.05

0.1

0.15

-4 -2 0 2 4 

n = 1.15

n=1.0

n = 0.545

n=0.4

P

q

Fig. 2 At different values of
n, h versus pressure profile

1 

1.05

1.1

1.15

1.2

1.25

-4 -2 0 2 4 

u/c=  3000

u/c =15000

u/c =30000

u/c= 40000

u/c= 50000

q

Tm

Fig. 3 Temperature at
n = 1.15, at different velocity
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3.1 Pressure Distribution

For various values of n, the pressure distribution �P versus h has been shown in
Fig. 2. �P increases constantly when h increases from −p to −h1. The pressure profile
�P then decreases from here to +h1 then again increases up to h = p Wang et al.
(2001), Thomsen and Klit (2011), and Balasoiu et al. (2013). The increase of
pressure with n is similar to that of Peng and Khonsari (2006), Singh et al. (2008a,
b), Xiong and Wang (2012), and Chen et al. (2013).

3.2 Temperature Distribution

For various values of U/c, the mean temperature distributions �Tm are shown in
Fig. 3. It is exciting to observe that �Tm increases with h except in the neighborhood
of zero where the trend is somewhat zigzag. The same feature is seen by Liu et al.
(2008). Further, temperature �Tm is studied for different values of n.

Table 1 Load U/c N Theta1 Load Traction

44,000 1.15 0.52675 0.092651 0.092906

1 0.559 0.032125 0.032201

0.545 0.659 0.020373 0.022046

0.4 0.7095 0.005891 0.006734

40,000 1.15 0.5268 0.086423 0.086503

1 0.56 0.029728 0.029742

0.545 0.659 0.019424 0.021032

0.4 0.7094 0.005666 0.006492

36,000 1.15 0.528 0.079721 0.079579

1 0.561 0.027276 0.027166

0.545 0.66 0.018353 0.019991

0.4 0.711 0.005453 0.006218

32,000 1.15 0.5293 0.072685 0.072381

1 0.5616 0.024634 0.024566

0.545 0.6602 0.017345 0.018863

0.4 0.7107 0.005193 0.005952

28,000 1.15 0.53094 0.065245 0.064864

1 0.564 0.016996 0.01685

0.545 0.66099 0.016222 0.017671

0.4 0.711 0.004929 0.005644
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3.3 Load

Load is shown in Table 1. It can be seen from the table that the load increases with
n and U/c both. Load increases with n shows that dilatant fluid exerts more pressure
than that of pseudoplastic fluids (Prasad et al. 2014). Further, increase of load with
U/c shows that higher velocity is responsible for higher pressure.

4 Conclusion

An additional effort has been made to include the heat of convection in the energy
equation. Solutions are obtained for pressure, the mean temperature, and delta for
circular coordinate. The following conclusions may be drawn:

• The pressure �P increases when the power law index n increases.
• The mean temperature �Tm increases with n for fixed Pe.
• Temperature �Tm decreases as Pe increases, for fixed n.
• Load and traction decrease when the values of n decrease for a fixed value of

U/c.
• For a fixed value of n, load increases with U/c.
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Numerical Simulation of Flow Around
Square Cylinder with an Inlet Shear
in a Closed Channel

Atendra Kumar and Rajendra K. Ray

Abstract In this paper, two-dimensional unsteady flow of incompressible fluid
past a square cylinder placed in a closed finite domain is studied in the presence of
an inlet linear shear velocity profile. The flow has been investigated for Reynolds
number Re ¼ 100 and shear rate K ¼ 0:0; 0:05; 0:1. The governing equations are
solved by using the higher order compact (HOC) finite difference scheme. The
purpose of the present study is to elaborate the influence of shear rate on the vortex
shedding phenomenon behind the square cylinder. The results are presented in
terms of streamline pattern, vorticity contours, lift–drag coefficients, and their
corresponding power spectra. It is observed that the vortex shedding phenomenon
strongly depends on Re as well as K. The strength and size of vortices vary as a
function of Re and K, but not significantly for the current values of parameters.

1 Introduction

The subject of flow around solid objects is applicable to many practical as well as
industrial applications such as skyscrapers, suspension bridges, towers, tides and
currents, offshore structures. In past few years, so many numerical and experimental
studies have been declared in the literature with new observations. However, most
of the research is done for uniform free-stream flow past circular and square
cylinders. However, the fluid–solid interaction is different for shear flow than
uniform flow because of embedded vorticity or turbulence in the inlet flow (Cheng
et al. 2007; Hawang and Sue 1997; Kumar and Ray 2015). The confined flow past a
square cylinder mounted inside a closed channel was investigated by Breuer et al.
(2000). The results were computed by two different numerical techniques, a
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lattice-Boltzmann automata (LBA) and a finite volume method (FVM) for Re ¼
300 by assuming the flow to be two-dimensional. By comparing the results com-
puted from both techniques, excellent agreement is found between the LBA and
FVM.

The higher order compact (HOC) finite difference methods are popularly known
for the solution of the problems involving fluid flow because of their high accuracy
and compact difference stencil. Kalita et al. (2004) developed this type of HOC
scheme on Cartesian non-uniform grids for the steady 2D convection–diffusion
equation with variable coefficients without any transformation. As time goes on,
this scheme has extended on non-uniform polar grids by (Kalita and Ray 2009; Ray
and Kalita 2010) to figure out the flow phenomenon around circular cylinder, lift–
drag forces, which can be easily extended for curvilinear coordinates. Later on,
Lankadasu and Vengadesan (2010) and Kumar and Ray (2015) apply this scheme
to understand the vortex shedding phenomenon for shear flow around square
cylinder placed in an infinite physical domain at Re ¼ 100; 200. The accuracy and
efficiency of HOC scheme have already been confirmed in the case of flow past
cylinder problem. Till now, this scheme is not tested for the problem of shear flow
around square cylinder placed in a closed finite domain.

2 Mathematical Formulation

2.1 Governing Equations

The problem of unsteady, incompressible shear flow past an impulsively started
square cylinder of side length “a” placed in a closed domain is considered in this
paper. The schematic flow diagram of the physical problem is shown in Fig. 1.

Fig. 1 Schematic diagram of the shear flow past square cylinder
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The flow is governed by the incompressible Navier–Stokes equations. The
dimensionless stream function-vorticity w� xð Þ form of the N–S equations in
Cartesian coordinates x; yð Þ is given by

@2x
@x2

þ @2x
@y2

¼ Re u
@x
@x

þ v
@x
@y

þ @x
@t

� �
ð1Þ

@2w
@x2

þ @2w
@y2

¼ �x ð2Þ

Here, x represents vorticity and w for stream function, and u and v represent the
x-direction and y-direction velocity components, respectively. The velocity com-
ponents u; v in terms of stream function w can be written as

u ¼ @w
@y

; v ¼ � @w
@x

ð3Þ

And vorticity x is

x ¼ @v
@x

� @u
@y

ð4Þ

For the physical boundary conditions, at inlet, a linear shear velocity profile has
been applied,

u ¼ Uc þKy; v ¼ 0 ð5Þ

whereUc is the centerline velocity of inflow andK is the shear parameter. For making
the problem computationally efficient, the artificial outflow boundaries of the com-
putational domain are considered sufficiently far from the cylinder boundary to
minimize their effect on the characteristics of the flow near the surface of square
cylinder. In the present study, the outflow is considered 30a distant from the cylinder.

No-slip boundary conditions are considered on the surface of the cylinder, and
top–bottom boundaries of the domain and convective boundary condition are
applied at the outflow (Kumar and Ray 2016).

@/
@t

þUc
@/
@x

¼ 0 ð6Þ

2.2 Numerical Discretization

We discretized the governing equations using higher order compact (HOC) scheme
on Cartesian grids. Thus, the HOC discretizations of the governing Eqs. (1 and 2) at
i; jð Þth grid point of the computational domain are given as
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ReþA11ijd
2
x þA12ijd

2
y þA13ijdx þA14ijdy þA15ijdxdy

h

þA16ijdxd
2
y þA17ijd

2
xdy þA18ijd

2
xd

2
y

i
xnþ 1

ij ¼ ReþA21ijd
2
x

�
þA22ijd

2
y þA23ijdx þA24ijdy þA25ijdxdy þA26ijdxd

2
y

þA27ijd
2
xdy þA28ijd

2
xd

2
y

i
xn

ij

ð7Þ

and

d2x þ d2y � H2þK2ð Þd2xd2y
h i

wij ¼ �1þH2d2x þK2d2y
h i

xij ð8Þ

respectively, where the coefficients are defined as

A11ij ¼ �H12Re� 0:5DtA1ij;A12 ¼ �K12Re� 0:5DtA2ij;

A13ij ¼ �H11Re� H12uijRe2 � 0:5DtA3ij;

A14ij ¼ �K11Re� K12vijRe2 � 0:5DtA4ij;

A15ij ¼ �0:5DtA5ij;A16ij ¼ �0:5DtA6ij;

A17ij ¼ �0:5DtA7ij;A18ij ¼ �0:5DtA8ij;

where

A1ij ¼ 1þH11Reuij þH12Re2u2ij þ 2H12Re uxð Þij;
A2ij ¼ 1þK11Revij þK12Re2v2ij þ 2K12Re vy

� �
ij;

A3ij ¼ �Reuij þH11Re uxð Þij þK11Re uy
� �

ij þH12Re2uij uxð Þij
þH12Re uxxð Þij þK12Re uyy

� �
ij þK12Re2vij uy

� �
ij;

A4ij ¼ �Revij þH11Re vxð Þij þK11Re vy
� �

ij þH12Re2uij vxð Þij
þH12Re vxxð Þij þK12Re vyy

� �
ij þK12Re2vij vy

� �
ij;

A5ij ¼ H11Revij þK11Reuij þH12Re2uijvij þ 2H12Re vxð Þij
þ 2K12Re uy

� �
ij þK12Re2uijvij;

A6ij ¼ �H11� H12Reuij þK12Reuij;

A7ij ¼ �K11þH12Revij � K12Revij;A8ij ¼ �H12� K12;

The detailed explanation of the discretization leading to Eqs. (7) and (8) and
finite difference operators can be found in Kumar and Ray (2015).
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3 Results and Discussion

At Re ¼ 100, an extensive investigation of the wake flow behind the cylinder at
different shear parameter Kð Þ values is presented in this paper. In this study, we
consider blockage ratio to be B ¼ 8d (B is domain width) for understanding the
domain boundary effect on the flow phenomenon. For the computation, a uniform
grid of size 1001� 161 is to be used. Figure 2 shows the vorticity contours and the
streakline patterns for different K values to describe the flow phenomenon. For
K ¼ 0:0, vorticity contours shown in Fig. 2a, it is clear that size and strength of the
positive and negative vortices developed in this case are same. The vortices shed
behind the cylinder in a regular alternating arrangement. This is also clear from the
streakline pattern shown in Fig. 2b. For K ¼ 0:05, Fig. 2c, d shows the vorticity
contours and streakline evolution, respectively. In this case, the sizes of the negative
vortices are different than those of positive vortices but not significantly for the
current value of K. We have seen this effect significantly with increasing in K value,
i.e., K ¼ 0:1 in Fig. 2e. The flow becomes asymmetric behind the cylinder; vortices
shed from the bottom surface of the cylinder are of slender shape. The fluid layers
passing through upper surface have more relative velocity than the bottom surface
of the cylinder because of significant shear effect in the incoming flow. The
streakline pattern for K ¼ 0:1 shown in Fig. 2f describes the similar flow
phenomenon.

The fluid flowing past a solid body exerts a force on it. The tangential com-
ponent of this force is called drag force and normal component is called lift force. In
Fig. 3, lift coefficient fluctuation with time and their corresponding power spectra

Fig. 2 Vortcity contours (left) and streakline pattern (right) for Re ¼ 100. a, b K ¼ 0:0;
c, d K ¼ 0:05; and e, f K ¼ 0:1
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for Re ¼ 100 are plotted at three different shear parameter values as
K ¼ 0:0; 0:05; 0:1. For K ¼ 0:0, Fig. 3a shows a single peak value in lift coefficient
and their corresponding power spectra; this means vortices shed behind the cylinder
of the same frequency. When K ¼ 0:05, Fig. 3c shows the lift coefficient variation
with time, and no significant change occurs from the previous case, and the
amplitude of fluctuation is approximately constant. Power spectrum shows a single
peak in Fig. 3d. However, increasing the K value to 0:1 shows similar lift coeffi-
cient pattern in Fig. 3e with decreasing vortex shedding frequency. It is clear from
power spectra plot shown in Fig. 3f, where frequency corresponding to peak value
defines vortex shedding frequency (Strouhal number).

Another most important characteristic quantity of the flow past square cylinder is
the drag coefficient shown in Fig. 4 for K ¼ 0:0; 0:05; 0:1. The periodic fluctuation
corresponds to alternate vortex shedding phenomenon. When K ¼ 0:0, Fig. 4a

Fig. 3 Lift coefficient fluctuation with time and their corresponding power spectrum for Re ¼ 100
at different K values

302 A. Kumar and R.K. Ray



shows that drag coefficient fluctuates with approximate constant amplitude.
Figure 4b shows no significant change in the drag coefficient fluctuation for K ¼
0:05 except initial stage of the flow. However, mean value of the drag coefficient
decreases with increasing K value. For K ¼ 0:0, drag coefficient variation with time
shown in Fig. 4c, it is observed that mean value of drag coefficient decreases. The
amplitude of fluctuation is nearly same with the previous K values.

4 Conclusion

In this paper, a higher order compact numerical simulation of shear flow past square
cylinder placed in a closed domain is carried out. The computational results are
shown for Re ¼ 100 and K ¼ 0:0; 0:05; 0:1 in terms of vorticity contours, drag
coefficients, lift coefficients, and their corresponding power spectra. It is found that
vortex shedding phenomenon depends significantly on K as well as Re value. The
frequency of vortex shedding decreases with increasing K values. We have studied
the effect of shear rate on the flow phenomenon near the surface of the square
cylinder for a long range of shear parameter values, but the full study is not in the
scope of this paper.
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Fig. 4 Drag coefficient fluctuation with time for Re ¼ 100 at different K values
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Fluidic Logic Element Performance
Calculation

V.N. Samsonov, E.I. Kurkin, O.E. Lukyanov and V.G. Shakhov

Abstract The results of gas-dynamic characteristic studies of logic chips jet ele-
ment are considered. The study carried out by numerical method is based on the
integration of the Navier–Stokes equations. For closure of simultaneous equations
in this research, the two-region hybrid turbulence model of transfer of tangential
stress is used. The model of compressed viscous gas is applied. Its properties
correspond to properties of air of standard atmosphere at the height of mean sea
level. The main characteristics of the switching logic element output signals,
depending on the influence of control signals, were found. It is shown that relative
rate in the output channels depends on the relative pressure in the control channels.
It is calculated the required values of pressure in control channels of logic element
necessary for switching of an output signal. Because of viscous properties of
working body, the Coanda effect which is used for sticking of feeding air current to
channel walls for purpose of steady work logical device is realized. Zones of flow
contraction are installed in channels of device
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1 Introduction

Development of automation and its extended application in all industries set a task
to create the cheap, reliable and simple control systems capable to carry out difficult
functions (Zalmanzon 1969). Some classification and general design of fluidic
elements were shown in Olivotto (2010). The possible solution of this task is the
use of pneumonic hydro-automatics (Leskiewicz and Zaremba 1980). Development
of pneumatic automation led to creation of wide scale of devices (Ferner 1954),
carrying out such functions as information acquisition (sensors with pneumatic exit,
pneumatic switches, and others) (Prusenko 1965), transformation and information
storage (pneumatic regulators, optimizers, analog computing device, relay systems)
(Fudim 1973, Slovar’ po kibernetike 1989) information presentation (recording
devices, indicators) (Berends et al. 1968), embodiment of control action (pneumatic
actuating devices). In Russia has been consistently developed the modular pneu-
matic control system containing a number of blocks, implementing independent
automatic control function, united to solve complex logical tasks. The systems
known under general name “Fluidics” or “Pneumonic” are not containing moving
components (Yeaple 1960) and using the principle of direct interaction of flows.
They have the following advantages: they can be much cheaper and reliable in
comparison with systems containing moving mechanical components and they can
be used under more difficult operating conditions compared to electronic compo-
nents. The much attention in since and industry of many countries is given to
fluidics (Korotkov 1972; Bowles et al. 1960). Development of new logic devices of
pneumatic automation is possible not only on the basis of field researches (Wilson
et al. 1969), but also with mobilization of resources of computing aero hydrody-
namics. The main purpose of this article is to evaluate the possibility of determining
the characteristics of fluidic logical elements using the methods of computational
aerodynamics.

Research subject in this article is the element of fluidics carrying out logical
operation “OR-NOT-OR” presented on Fig. 1. According to (Chaplygin 1989), the
similar devices use small working pressure about 0.5 kPa. The device is equipped
with channel for air/gas feed, control channels, output channels, and communica-
tion channels with atmosphere. To feed channel, the air with a certain pressure is
supply. The control channels are designed to giving of air control signals for
purpose of deviation of feed channel air jet to the left or to the right to corre-
sponding output channels. At pressure application to the left control channel, the air
current directed from feed channel sticks to the right wall of extending internal
channel of trigger and, thus, gets to the right output channel of pneumatic device
which forms a certain logical signal. For redirection of air current in left output
channel for the purpose of change of logic instruction, it is necessary to apply
pressure to the right control channel that will entail “exfoliation” gas flow from the
right wall of internal channel of device, “sticking” to the left wall of channel and,
respectively, giving of air current in left output channel.
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Computational fluid dynamics approach has been used for numerical study of
bistable amplifiers fluidic element (Roger 2003). Main goal of our research is to
obtain performance characteristic of fluidic logic element “OR-NOT-OR” type
using ANSYS CFX software.

2 Research Technique. Mathematical Models

The mathematical model of finite volume method based on solution of Navier–
Stokes equations is applied for theoretical research of operation process of con-
sidered device (Wilcox 2006). For closure of simultaneous equations in this
research, the turbulence model of transfer of tangential stress (SST) is used (Lantry
et al. 2005). On the basis of three-dimensional geometrical model (see Fig. 1), the
working area by digitization of working volume of logic element on final volumes
forming in total a computational grid (Fig. 2) is generated.

Geometric singularities of considered logic element allow using the structured
computational grids for calculation that provides the best grid repeatability, reduces
estimation time, and gives big accuracy at smaller quantity of cells. The ordered
regular structure of grid has block character (Fig. 3). The similar structure in round
channels prevents appearance of acute-angled cells which are badly affecting the
process of repeatability and stability of decision.

For modeling of viscous interaction of channels’ wall and gas, the gradient
growth of thickness of cells from surface of channel is provided. The choice of
thickness of first cell on surface of internal channels of device is carried out, relying

Fig. 1 Scheme of logic
element
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on ensuring the recommended value of relative thickness of first cell yþ . A number
of scoping calculations for analysis of grid repeatability and definition of distri-
bution of value yþ on walls of element model which value should not exceed five
units for chosen turbulence model (Fig. 4) are carried out. The calculation area
consists of 2,700,000 cells which provides good convergence and repeatability of
the results obtained.

Fig. 2 Computational grid in sectional view

Fig. 3 Computational grid in sectional view of output channel
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3 Performance Calculation of Control Element

According to technical characteristics of similar devices (Chaplygin 1989),
boundary conditions of element model have been set. On feed channel inlet, the
velocity of flow was set 18 m/s, and on control channels, the pressure was set from
0 to 400 Pa depending on set element operating mode. On output channels of
element, the condition of lack of excessive pressure was set. Drainage channel
outputs allow to flow of gas in both directions. The model of compressed viscous
gas with constant dynamic viscosity is used. When carrying out numerical exper-
iment, the gas current in channels of logic element for purpose of impact assessment
of pressure value of control signals upon deviation of air current of feed channel
creating consumption in this or that output channel of element is simulated. The
calculation distributed (velocity fields and pressure fields) and integrated (con-
sumption, pressure) gas-dynamic characteristics of considered logic element is
carried out for variants of pressure application serially in left and right control
channels from 0 to 450 Pa. On Fig. 5, the velocity field in channels of logic element
at pressure application of 350 Pa upon the left control channel is presented.

Pressure was distributed on element channels, as shown on Fig. 6. Increase of
pressure is observed in place of gas contraction in input channel.

In calculations, the model of compressed gas was used, therefore the gas density
which reached 1.24 kg/m3 (Fig. 7) also grows in zones of an elevated pressure.

After switching off of control signal as Coanda effect is realized, the air current
remains stuck to the right wall of the channel. It is well visible on velocity field in
element channels presented on Fig. 8.

Switching the jet back requires overcoming the Coanda effect—redirection of
the jet from the right side of the element in other output channel needs apply
pressure to the right control channel (Figs. 9 and 10). Switching of a signal happens

Fig. 4 Distribution of
relative thickness of first cell
yþ on surface of walls of
model channel
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not at once as for air current separation from the right wall of channel, it is
necessary to overcome viscosity forces, having given considerable pressure to the
right control channel.

For considered case, it was required apply pressure to the right control channel
of 400 Pa to carry out switching of signal, having created an air consumption in the
left output channel (see Fig. 11).

Fig. 5 The velocity field in
channels of logic element
(pressure in left control
channel is 350 Pa), m/s

Fig. 6 The pressure field in
channels of logic element
(pressure in left control
channel is 350 Pa), Pa
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Similarly, for switching of a signal back in the right output channel, it is nec-
essary to give to the left control channel the pressure is 400 Pa. At switched-off
control signals, the feeding air current steadily provides air consumption in the
same output channel.

On Fig. 12, the schedules of dependences of relative consumptions in output
channels from relative pressure in control channels are reported. The continuous
line corresponds to change of air consumption in the left output channel Wвыx

Fig. 7 Distribution of gas
density in channels of trigger
(the left control signal is
350 Pa), kg/m3

Fig. 8 The velocity field in
air channels of trigger (the
control signals are
disconnected), m/s
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depending on pressure of the control channel Pyпp, correlated to consumption in
feed channel Wпит and to pressure in the feed channel Pпит. The dot line corre-
sponds to change of air consumption in the right output channel depending on the
pressure of control channel. The reduced schedule well reflects the process of
switching of signal of a logic element which as a result of properties of viscous gas
possesses a hysteresis.

Fig. 9 The velocity field in
air channels of trigger (the
right control signal is
increased to 150 Pa), m/s

Fig. 10 The velocity field in
air channels of trigger (the
right control signal is
increased to 300 Pa), m/s
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Fig. 11 The velocity field in channel of logic element (pressure in the right control channel is
400 Pa), m/s

Fig. 12 Schedules of dependences of relative consumptions in output channels from relative
pressure in control channels

Fluidic Logic Element Performance Calculation 313



4 Conclusion

The analysis of results of researches allows to draw conclusion that such property of
gas as viscosity, at its current in channels of logic device can realize Coanda effect.
Pressure application to one of control channels of element is reason of “sticking” of
feeding gas current to opposite wall of central channel of element that creates
consumption in one of output channels. Control signal cutoff does not entail no
switching of output signal as the current of viscous gas remains stuck to opposite
wall of central channel. For switching of output signal, it is necessary to apply
pressure to other control channels that will cause sticking of gas current to other
wall of central channel and formation of air consumption in other output channel.
The process of functioning of element is visible on Fig. 5 in form of schedule
forming hysteresis loops.
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Numerical Investigation of Extremely
Viscous Short Fibers-Reinforced
Multiphase Anisotropic Fluid Flow
in Flat Channel

E.I. Kurkin and V.O. Sadykova

Abstract In this chapter, the parameters of molding of thermoplastics reinforced
with short high-strength fibers are considered on the example of plate molding from
PEEK 90HMF20 material. Modeling of thermoplastic molding was done in
Moldex3D system. The setting of three-dimensional geometrical model of gating
area, characteristics of system of heat supply of tool, and also molding process
parameters: temperature condition, pressure, and filling time are presented.
Hydrodynamic calculation of plate molding is executed. The field of distribution of
casting front, temperature, and pressure is obtained. The vector field of orientation of
reinforcing fibers is calculated that allows to consider anisotropy of characteristics of
composite material when carrying out strength calculations. It is noted that facial
layers have more ordered structure in comparison with inside layer because the fibers
are turned under the influence of shear flow (so-called main effect) that confirms
good agreement with carried-out calculations to theoretically known character of
current. The technology of export of data about fiber orientation from Moldex3D in
Digimat system is shown. This technology allows calculation of stress-strain state of
structures from short-reinforced composite materials in ANSYS Mechanical using
Digimat Wizard taking into account the orientation of the reinforcing fibers.

1 Introduction

The composite materials reinforced with short fibers combine high strength and
weight efficiency inherent of traditional polymer composite materials and high
technological capabilities of production by injection molding. Composite material
on the basis of short carbon fibers (PEEK/CF) possesses highest mechanical
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characteristics. Such material has the high modulus of elasticity and at the same
time big strength limit. This article is devoted to the development of methods of
product design from PEEK/CF and calculation of casting parameters.

Stiffness and strength of created material significantly changes according to the
change in orientation and concentration of fibers. The formation of products rein-
forced with short fibers in many cases is made by injection methods during which
there is current of material which is inevitably leading to change in orientation of
reinforcing fibers. In product, there can be areas in which fibers are located along the
direction of casting flow, and areas in which they have accidental orientation.
Concentration of reinforcing fibers can also become uneven and requires forecast-
ing. For example, increasing the concentration of reinforcing particles is usually
observed near the walls of the mold which the flow reflects, and near injection hole.
Properties of the product material from short fiber reinforced composite made by
injection molding can change considerably in different areas of the structure. For
forecasting mechanical characteristics of the materials reinforced with short fibers,
there is the need for mathematical modeling of molding process of non-Newtonian
fluids with the subsequent experimental verification of received results.

Modeling of plate molding was carried out in the Moldex3D software, widely
applied for simulation of structures molding from short fiber reinforced materials
(Advani 1994; Gupta and Wang 1993). The program complex Moldex3D is
intended for modeling of hydraulic processes of casting under pressure of the
thermoplastic materials reinforced with short fibers. Non-Newtonian character is a
feature of these materials. Viscosity of short-reinforced composites is high
and depends on the speed of casting. Moldex3D allows to define orientation of
short fibers in material in process of casting and after polymerization (Foss 2004).
Creation of control technology of melt flow and arrangement of fibers in composite
materials allow to achieve the set of mechanical characteristics of product in the
required directions. As the thermoflexible composite is used, the products possess
possibility of repeated material recovery in case of melting and repeated casting.

Orientation problems in fiber-reinforced thermoplastic composites processing
are difficult for solving without simplification. Modeling polymers behavior at
completing forms considered in (Wang 2007). The model of fiber orientation is
important for accurate forecast of characteristics. The Folgar–Tucker model
(Advani and Tucker 1987) is used extensively to definite the state change of fiber
orientation. The predicted rate of change of fiber orientation with respect to time is
higher than experimentally observed. To eliminate this difference, Wang et al.
(2008) developed a new model, which is called the reduced strain closure
(RSC) model. This model is an upgraded Folgar–Tucker model in which the scalar
factor reduces own velocity of orientation tensor values in absence of changes in
own velocity vectors. Phelps and Tucker (2009) proposed the use of
two-dimensional diffusion tensor on the surface of spherical coordinate system for
anisotropic rotary diffusion orientation equation. The anisotropic rotary diffusion
(ARD) model is characterized by a second-order tensor. Phelps and Tucker
(2009) suggest ARD-RSC fiber orientation model, consisting of a combination of
equations of ARD and RSC models, to improve predictions of fiber orientation in
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injection molded long-fiber thermoplastic composites. Tseng et al. (2012) devel-
oped a new model of fiber orientation which is called Improved Anisotropic Rotary
Diffusion model combined with Retarding Principal Rate model (iARD-RPR). The
iARD model describes the anisotropic properties of the fiber orientation, and the
RPR model reduces the rate of change of orientation. This model has been used by
Moldex3DVR-R11 from CoreTech System Co, Ltd.

2 Tool Construction for Plate Casting

The tool geometry for plate casting consists of drop gate and filled form. On the
basis of geometrical characteristics of plate and drop gate (Fig. 1), the
three-dimensional geometrical model of gating area is created (Fig. 2). The sizes of
plate were chosen on the basis of the requirements for the possibility of cutting
samples for mechanical characteristics tests, including tensile tests in longitudinal
and transverse direction according to the ISO 527-2:2012 standard. The sizes of
plate are chosen proceeding from schemes of pattern cutoff 150 � 200 mm. Graded
plate thickness is supposed equal to 4 mm.

Fig. 1 Main projections of
gating area of product (flat
plate)

Fig. 2 Three-dimensional
geometrical model of gating
area of product (flat plate)
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Three-dimensional geometrical models of product are imported from CAD
system to Moldex3D through a data exchange STEP format between systems of
CAE (*.stp file).

3 Flow Simulation of Tool in Program Complex
Moldex3D

After loading three-dimensional geometrical model of computational area in pro-
gram Moldex3D eDesign, the characteristics of heat exchange system of designed
gating tool are set: quantity of tubes of transfer of heat carrier, their diameter, and
arrangement which were optimized on the basis of further modeling (Fig. 3).

The optimum combination of geometrical parameters of tool allows to receive the
greatest velocity and completeness offilling of form at molding. It provides the rational
distribution of flows preventing the effect of incomplete injection, buildup of weld
lines, and minimizing molding cycle time by reducing a buckling and shrinkage loss.

Plate and runner mesh was constructed in Moldex3D Designer system (Fig. 4).

4 Material Characteristics in Program Complex
Moldex3D

For research of molding process of material containing reinforcing fibers, the
Moldex3D Flow and Fiber modules are used.

Fig. 3 Assignment of
characteristics of heat
exchange system of tool in
program complex Moldex3D
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Moldex3D Flow module gives a solution of filling problem. Moldex3D Fiber
module provides validated modeling of three-dimensional fiber orientation in the
molding process using the Folgar-Tucker model and its modification for long fiber
reinforcement. Characteristics of material are submitted in Figs. 5, 6, 7, and 8.

Fig. 4 Plate and runner Moldex3D mesh

Fig. 5 Parameters of reinforcement PEEK 90HMF20
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Fig. 6 Viscosity of material
PEEK 90HMF20

Fig. 7 Parameter of material
temperature expansion PEEK
90HMF20

Fig. 8 Specific volume of
material PEEK 90HMF20
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5 Assignment of Parameters of Molding Technological
Process in Program Complex Moldex3D

Technological parameters of molding process are set in Moldex3D by means of
master of technological mode. The parameter setting of modeling is most approa-
ched to parameter setting of casting in control system of molding machine Negri
Bossi—VE 210-1700 (Fig. 9).

For calculation of molding of thermoplastic material in Moldex3D sys-
tem, molding process parameters are set: temperature condition (Fig. 10), pressure
and time of the process (Fig. 11).

6 Hydrodynamic Calculation of Plate
Molding in Program Complex Moldex3D

Hydrodynamic calculation of plate molding in Moldex3D showed full passing of
casting front (Fig. 12). The filling time of plate is 4.7 s. Results of calculation give
detailed information on the process of filling of casting mold. Temperature

Fig. 9 Assignment of parameters of molding machine
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Fig. 10 Temperature conditions of molding

Fig. 11 Parameters of molding: pressure and time of the process
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Fig. 12 Casting front of plate

Fig. 13 Temperature
distribution of hot-melt
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distribution of hot-melt is presented in Fig. 13, and pressure distribution of hot-melt
is presented in Fig. 14 The maximum temperature in molding process is 358 °C,
and pressure is 96 MPa.

7 Estimation of High-Strength Reinforcement Fiber
Orientation in Program Complex Moldex3D

In Fig. 15 is presented the degree of fiber orientation expressed through an orien-
tation tensor in longitudinally upper (Fig. 15a) and bottom surfaces of the plate
(Fig. 15b).

In Fig. 16 is presented the degree of fiber orientation in center body section of
plate expressed through an orientation tensor.

Facial layers have more ordered structure in comparison with inside layer
because the fibers are turned under the influence of shear flow (so-called main
effect, as shown in Fig. 17). If the injection velocity is higher, the gradients of
velocities on thickness are higher and the difference in orientation of facial and
inside layers is stronger. Stiffness and strength of pattern is proportional to degree
of order, or degree of fiber orientation. This phenomenon was confirmed with

Fig. 14 Pressure distribution
of hot-melt
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computational researches in Moldex3D. The reinforcement structure in center body
section of plate, confirming character of such current, is presented in Fig. 18.

The results of calculation of fiber orientation are kept in the file of orientation *.
o2d, allowing to consider fiber orientation in strength analysis of products from
made material (Fig. 19).

8 Conclusion

The calculation methodology of parameters of casting of thermoplastics reinforced
with short high-strength fibers is developed.

Methodology of short fibers-reinforced multiphase anisotropic fluid flow mod-
eling in Moldex3D system is shown in example of plate molding from PEEK
90HMF20 material. The setting of three-dimensional geometrical model of gating
area, characteristics of system of heat supply of tool, and also molding process
parameters: temperature condition, pressure, and filling time are presented.

Fig. 15 Degree of fiber orientation in longitudinally upper (a) and bottom surfaces of plate (b)
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Hydrodynamic calculation of plate molding in program complex Moldex3D
showed full passing of casting front and allowed to define detailed information
about the molding process, including temperature distribution and pressure distri-
bution of hot-melt.

The carried-out hydrodynamic calculation allowed to define the orientation of
reinforcing fibers that allow to consider correctly anisotropy of characteristics of
composite material when carrying out strength calculations. The technology of
export of data about fiber orientation to programs for carrying out strength
researches on example of information transfer about reinforcing of plate from
Moldex3D in Digimat system is shown.

Fig. 16 Degree of fiber
orientation in center body
section of plate

Fig. 17 Pattern of hot-melt
flow on through-thickness of
plate
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It is noted that facial layers have more ordered structure in comparison with
inside layer because the fibers are turned under the influence of shear flow
(so-called main effect) that confirms good agreement with carried-out calculations
to theoretically known character of current.

Acknowledgements The reported study was funded by RFBR according to the research project
No. 16-31-60093 mol_a_dk.

Fig. 18 Reinforcement structure in center body section of plate

Fig. 19 Export of orientation field of reinforcement fiber in system Digimat for orientation
accounting in stiffness and strength analyzes of pattern
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Hybrid Finite Difference-Finite Volume
Schemes on Non-uniform Grid

A. Arun Govind Neelan and Manoj T. Nair

Abstract High aspect ratio, skewness, non-orthogonality, and non-uniformity of
grids have been a major issue for mesh developers for a long time. In this present
work, we have taken an initial step for a numerical scheme that can handle any kind
of mesh. Problems associated with non-uniformity of the grid (that can be related to
aspect ratio in higher dimension) and achieving high order accuracy in those grids
are discussed. A Hybrid Finite Difference-Finite Volume Method (Hybrid
FD-FVM) which can retain high order accuracy on an arbitrary mesh by combining
the advantage of higher order convergence property of finite difference method
(FDM) and conservativeness property of FVM is presented. Though higher order
version of FVM is available, they work well only on uniform meshes or slightly
perturbed unstructured grid or gradually stretched grid. Smooth variation in meshes
is recommended for CFD packages to obtain good accuracy—the reasons are
discussed in the paper. FVM on the arbitrary mesh is at most second order accurate
and are generally about first order accurate. Our method ensures higher order
convergence on arbitrary non-uniform non-overlapped mesh but does not ensure
complete numerical conservativeness on the non-uniform mesh for problems
without shocks. The present work does not use volume averaging which is com-
monly used in FVM. The volume averaging works well in uniform mesh and can
severely affect the result on the arbitrary varying non-uniform mesh. That also
discussed here.

1 Introduction

Finite difference method, finite volume method, and finite element method
(FEM) are popular tools used to solve problems in fluid dynamics. Though they are
derived from the family—Method of Weighted Residual, they differ in the
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derivation procedure so they have their unique advantage as well as disadvantage.
FDM assumes weight is an impulse function centered at that point. FVM assumes
weight is one inside the evaluating cell and zero everywhere else. Petrov
Galerkin-Finite Element Method assumes shape functions as its weight. FDM is the
simplest method, can be extended to higher order easily. FVM ensures conserva-
tiveness at each cell, so they are ideal for fluid dynamics problem. FEM is based on
minimizing energy, and they are good for structural mechanics and relatively more
accurate than other methods on most of the grids.

Roe (1987), Jureti and Gosman (2010), Diskin and Thomas (2010) and Bouche
et al. (2005) have shown that FVM gives lower order convergence on non-uniform
meshes. This may be because of averaging process, poor gradient calculation,
skewness, etc. Please refer paper by Jureti and Gosman (2010) to get an overall
picture of the different source of errors in FVM and various error estimators. Higher
order methods are essential to get a high accurate result. One class of
high-resolution scheme is WENO. More detailed of this class can be found in paper
by Jiang and Wu (1999), Shu (2003), Henrick et al. (2005). Initially, WENO
scheme is derived for uniform mesh and then extended to non-uniform mesh. They
may not work well on all kind of non-uniform mesh. WENO method in the arbi-
trary grid using mapping procedure was studied by Dumbser and Kser (2007),
Dumbser et al. (2013), but the reliability of those methods to achieve higher order
accuracy on any kind of arbitrary grid is limited. Another class of higher order
method is compact schemes. They have a good spectral resolution. Lele (1992),
Pereira et al. (2001), Gaitonde and Shang (1997) studied compact schemes vigor-
ously but extending that to the arbitrary grid is a challenging task. So FVM on
unstructured mesh with higher order accuracy is not a well-developed one.

In this work, we have formulated a hybrid method, which retains the advantage
of FDM, that is, it can maintain higher order accuracy on non-uniform grids. Here
we have considered non-uniformity in the grid; we have assumed that other
essential grid properties like orthogonality and low skewness have been taken into
account. Use higher order methods developed for the uniform grid on uniformly
stretched grid results in loss of accuracy. More details and examples on uniform and
non-uniform grids can be found in a book by Shashkov (1995). Highly stretched
grid or non-uniform grid may produce wiggles in solution. Both the issues will be
discussed in this work. Spalart and Streett (2001) pointed out that, to improve the
accuracy of the solution and reduce computational cost in high gradient zones like
boundary layers, high aspect ratio mesh is required.

Another important issue is if Neumann boundary condition is not resolved well
that error will propagate inside the domain and reduce or even decay the solution
especially for the elliptic equation. This lower order treatment of Neumann
boundary condition will also reduce the order of convergence rate of the solution
even if we use higher order methods inside the domain. Pirozzoli (2002) stated that
using bad numerical schemes, oscillations will also propagate from the boundary as
well as initial conditions. Hill and Pullin (2004) has shown that the accuracy of
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large eddy simulation (LES) depends not only on sub-grid stress model but also on
how the derivative term is treated. In all those situation high aspect ratio mesh is
unavoidable where our method is ideal.

2 Motivation

Basic nomenclature given for non-uniform grid is shown in Fig. 1. Following
Diskin and Thomas (2010), non-uniform grid is generated by perturbing a uniform
grid with grid spacing Dx by a value that is generated using pseudo-random number
in between �0:4Dx.

2.1 FDM on Uniform and Non-uniform Grid

First derivative representation of FDM on uniform grid with second-order accuracy
can be represented as

du
dx

¼ 3ui � 4ui�1 þ 2uiþ 1

2Dx
ð1Þ

Let us take a simple function and its derivative:

uðxÞ ¼ cosðkxÞ � 2p� x� 2p ð2aÞ
du
dx

¼ �k sinðkxÞ ð2bÞ

The order of convergence for this function using the discretization given in
Eq. (1) is approximately two, as shown in Fig. 2. The behavior of Eq. (1) for
non-uniform grid is not satisfactory. It gives unwanted oscillations in the result with
almost zero order convergence if we use an average Dx of the domain for Dx in
Eq. (1). Diffused results are obtained if we use an average of Dx�1 and Dx�2 for Dx

Fig. 1 Grid nomenclature
used in this work
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in Eq. (1). It may be because of Dx ¼ Dx�1 þDx�2
2 acts like a Laplace operator (dif-

fusive operator).
Now we shall explore the effect of uniformly varying grid. One kind of such grid

is arithmetic progression (AP) grid that has grid spacing in AP series. Figure 3
shows the solution of uniform FDM on AP grid. AP grid does not produce
unwanted oscillations like in arbitrary non-uniform grids, but it provides interesting
results. It gives diffused result if we use average of Dx�1 and Dx�2 for Dx and also
gives diffused result for an average Dxi of the domain. However, it produces a better

Fig. 2 First derivative of cos
(x) using uniform FDM on the
non-uniform grid

Fig. 3 First derivative of cos
(x) using uniform FDM in AP
grid
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result if we replace Dx in Eq. (1) by Dx�1. Though the scheme is second order
accurate it is able to produce more than second-order convergence for Fourier basis
(sinðaxÞ and cosðaxÞ) for some value of a in AP series. The optimum value of a for
better convergence is about 1.128 Dx. On that optimal grid, Eq. (1) gives a root
mean square (rms) error convergence of −2.66, the convergence rate of maximum
error (L1) is −2.60, and convergence rate of minimum error is −3.64. This kind of
higher convergence is observed only for Fourier basis not seen in polynomial basis.

2.2 Issues of FVM on Non-uniform Grid

Let say Q is the variable in the control volume, then the averaged value of Q over
the cell is given by

Q ¼ 1
V

Z

V

Qdv ð3Þ

For more details of this method please refer books by LeVeque and Randall
(2002), Lomax et al. (2013). Derivation of third-order dual volume FVM in
non-uniform Dx1, Dx�1, Dx�2, and Dx�3 grids as follows where volume averaged
term can be written as,

ui ¼ 2
Dx1 þDx 1

ZDx12

Dx�1
2

uðnÞdn ð4aÞ

ui�1 ¼ 2
Dx�2

Z�Dx�1
2

�Dx�1 þDx�2
2

uðnÞdn ð4bÞ

ui�2 ¼ 2
Dx�3 � Dx�1

Z�Dx�1 þDx�2
2

�Dx�1 þDx�2
2

uðnÞdn ð4cÞ

For third-order approximation, numerical flux can be written as

uðnÞ ¼ aþ bnþ cn2 ð5Þ

Coefficients a, b, and c are determined using Eq. (4a). Here, face fluxes are
calculated using following equations.
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uiþ 0:5 ¼ uð0:5Dx1Þ ð6aÞ

ui�0:5 ¼ uð0:5Dx�1Þ ð6bÞ

Then the derivative for non-uniform mesh can be approximated as

du
dx

¼ 2
uiþ 0:5 � ui�0:5

Dx�1 þDx1
ð7Þ

Substituting expanded Eq. (6a) in Eq. (7) we get Eq. (8)
Equation (8) gives second-order accuracy on uniform grid and produce wiggles in

non-uniform grid. Even if we use higher order polynomial in Eq. (5), this procedure
will give at most second-order accuracy on uniform grid. Wiggles observed in
non-uniform mesh are due to averaging procedure. If we skip the averaging proce-
dure, it will give wiggle-less result which can go maximum up to second-order
convergence. So averaging process that is commonly used in FVM for non-uniform
grid is not recommended. Another interesting feature of this method is that it is able to
achieve wiggle-less second-order accuracy on gradually stretched grid like AP grid
(please see Fig. 4). This may be one of the reasons, why most of the FVM packages
give an accurate result on the smooth mesh and poor result in abrupt varying grids.

du
dx

¼ 8Dx2�2ui � 2Dx2�1ui þ 4Dx2�3ui � 2Dx21ui�1 þ 2Dx21ui�2

ðDx1 þDx�1 þDx�2ÞðDx1 þDx�3 þDx�2ÞðDx�2 � Dx�1 þDx�3Þ

þ 2Dx2�1ui�2 � 12Dx2�2ui�1 þ 4Dx2�2ui�2 � 4Dx2�3ui�1 � 6Dx1Dx�1ui
ðDx1 þDx�1 þDx�2ÞðDx1 þDx�3 þDx�2ÞðDx�2 � Dx�1 þDx�3Þ

þ 6Dx1Dx�2ui�2 þ 6Dx1Dx�3ui � 6Dx�1Dx�2ui � 2Dx�1Dx�3ui�1

ðDx1 þDx�1 þDx�2ÞðDx1 þDx�3 þDx�2ÞðDx�2 � Dx�1 þDx�3Þ
þ 12Dx�3Dx�2ui þ 2Dx1Dx�1ui�1 þ 4Dx�1Dx1ui�2 � 12Dx1Dx�2ui�1

ðDx1 þDx�1 þDx�2ÞðDx1 þDx�3 þDx�2ÞðDx�2 � Dx�1 þDx�3Þ
þ 6Dx1Dx�2ui�2 � 6Dx1Dx�3ui�1 þ 6Dx�1Dx�2ui�2 � 6Dx1Dx�1ui

ðDx1 þDx�1 þDx�2ÞðDx1 þDx�3 þDx�2ÞðDx�2 � Dx�1 þDx�3Þ
þ 2Dx�1Dx�3ui�1 � 12Dx�2Dx�3ui�1

ðDx1 þDx�1 þDx�2ÞðDx1 þDx�3 þDx�2ÞðDx�2 � Dx�1 þDx�3Þ

ð8Þ

3 Hybrid FD-FVM on Uniform Grid

Fourth-order accurate FD scheme on non-uniform mesh on i� 2; i� 1; i;
iþ 1 and iþ 2 with grid spacing Dx�2;Dx�1;Dx1 and Dx2, respectively, is
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du
dx

¼ � Dx1Dx2Dx�1

Dx�2ðDx1 þDx�2ÞðDx2 þDx�2ÞðDx�1 � Dx�2Þ ui�2

þ Dx1Dx2Dx�2

Dx�1ðDx1 þDx�1ÞðDx2 þDx�1ÞðDx�1 � Dx�2Þ ui�1

þ Dx1Dx2Dx�1 þDx1Dx2Dx�2 � Dx1Dx�2Dx�1 � Dx�1Dx2Dx�2

Dx1Dx2Dx�1Dx�2
ui

� Dx2Dx�1Dx�2

Dx1ðDx1 þDx�1ÞðDx�2 þDx1ÞðDx1 � Dx2Þ uiþ 1

þ Dx1Dx�1Dx�2

Dx2ðDx2 þDx�1ÞðDx�2 þDx2ÞðDx1 � Dx2Þ uiþ 2 ð9Þ

In FVM, we write derivative of fluxes as

du
dx

¼ 2
uiþ 0:5 � ui�0:5

Dx�1 þDx1
¼ a�2ui�2 þ a�1ui�1 þ a0ui þ a1uiþ 1 þ a2uiþ 2 ð10Þ

We shall write fluxes as

uiþ 0:5 ¼ ar2uiþ 2 þ ar1uiþ 1 þ ar0ui þ ar�1ui�1 ð11aÞ

ui�0:5 ¼ al1uiþ 1 þ al0ui þ al�1ui�1 þ al�2ui�2 ð11bÞ

For shock-free flows, the solutions should be smooth and there should not be any
discontinuity in fluxes. Left interface flux of ith cell should equal to right interface
flux of i� 1th cell. To satisfy that, apart from using integral foam of conservative
equation, it should satisfy the “telescoping property.” Numerical schemes are

Fig. 4 First derivative of cos
(x) using non-uniform FVM
on uniform and non-uniform
grids
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expected to satisfy “telescoping property” at least in steady state condition.
Conditions required for that is:

ar2 ¼ a2
al1 ¼ ar2
ar1 ¼ a1 þ al1
al0 ¼ ar1
ar0 ¼ a0 þ al0
al�1 ¼ ar0
ar�1 ¼ a�1 þ al�1

al�2 ¼ ar�1 ¼ �a�2 ð12Þ

But in non-uniform mesh to satisfy “telescoping property” ari should be function
of Dx2;Dx1 and Dx�1 and ali should be function of Dx1;Dx�1 and Dx�2 and also

ariðDxi�1;Dxi;Dxiþ 1;Dxiþ 2Þ ¼ ali�1ðDxi�2;Dxi�1;Dxi;Dxiþ 1Þ ð13Þ

The first condition is easy to achieve, but second condition (Eq. 13) is not easy,
maybe impossible to achieve. So we use the basic condition of “telescoping
property” in uniform mesh (Eq. 12) to ensure our method is free from any
unwanted source term in discretization, at least in uniform mesh. Since this will not
satisfy Eq. (13) it may have some source term left in non-uniform discretization;
however, it will retain the order, unlike other FVM. Comparing Eqs. 9 and 12 gives

ar2 ¼ Dx1Dx�1Dx�2

Dx2ðDx2 þDx�1ÞðDx2 þDx�2ÞðDx1 � Dx2Þ

ar1 ¼ Dx�1Dx�2ðDx1 þDx22 þDx21Dx2 þDx21Dx�1 þDx21Dx�2Þ
Dx1Dx2ðDx1 þDx�1ÞðDx1 þDx�2ÞðDx2 þDx�1ÞðDx2 þDx�2Þ

þ Dx�1Dx�2ðDx22Dx�2 þDx31 þDx32 þDx2Dx1Dx�1 þDx22Dx�1Þ
Dx1Dx2ðDx1 þDx�1ÞðDx1 þDx�2ÞðDx2 þDx�1ÞðDx2 þDx�2Þ

þ Dx�1Dx�2ðDx2Dx1Dx�2 þDx�1Dx1Dx�2 þDx2Dx�2Dx�1Þ
Dx1Dx2ðDx1 þDx�1ÞðDx1 þDx�2ÞðDx2 þDx�1ÞðDx2 þDx�2Þ

ar0 ¼ Dx�1Dx�2ðDx1 þDx22 þDx21Dx2 þDx21Dx�1Þ
Dx1Dx2ðDx1 þDx�1ÞðDx1 þDx�2ÞðDx2 þDx�1ÞðDx2 þDx�2Þ
þ Dx�1Dx�2ðDx2Dx1Dx�2 þDx�1Dx1Dx�2 þDx2Dx�1Dx�2Þ

Dx1Dx2ðDx1 þDx�1ÞðDx1 þDx�2ÞðDx2 þDx�1ÞðDx2 þDx�2Þ

þ Dx�1Dx�2ðDx22Dx�1 þDx22Dx�2 þDx31 þDx32Þ
Dx1Dx2ðDx1 þDx�1ÞðDx1 þDx�2ÞðDx2 þDx�1ÞðDx2 þDx�2Þ

þ Dx�1Dx�2ðDx21Dx�2 þDx22Dx�1 þDx1Dx2Dx�1Þ
Dx1Dx2ðDx1 þDx�1ÞðDx1 þDx�2ÞðDx2 þDx�1ÞðDx2 þDx�2Þ
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al1 ¼ ar2
al0 ¼ ar1

al�1 ¼ ar0

al�2 ¼ Dx1Dx2Dx�1

Dx�2ðDx1 þDx�2ÞðDx2 þDx�2ÞðDx�1 � Dx�2Þ

ar�1 ¼ Dx�2ðDx21 þDx2�1 þDx1Dx
2
�1Dx2 þDx21Dx

2
2 � Dx21Dx2Dx�1Þ

Dx1Dx2Dx�1ðDx�2 þDx1ÞðDx�2 þDx2ÞðDx�1 þDx�2Þ

þ Dx�2ðDx21Dx�1Dx�2 � Dx1Dx
2
2Dx�1 þDx1Dx

2
2Dx�2Þ

Dx1Dx2Dx�1ðDx�2 þDx1ÞðDx�2 þDx2ÞðDx�1 þDx�2Þ

þ Dx�2ð�Dx1Dx�1Dx
2
�2 � 2Dx1Dx2Dx�1Dx�2 þDx1Dx2Dx

2
�2Þ

Dx1Dx2Dx�1ðDx�2 þDx1ÞðDx�2 þDx2ÞðDx�1 þDx�2Þ

þ Dx�2ðDx22Dx2�1 � Dx22Dx�1Dx�2 þDx2Dx
2
�1Dx�2Þ

Dx1Dx2Dx�1ðDx�2 þDx1ÞðDx�2 þDx2ÞðDx�1 þDx�2Þ

þ Dx�2ðDx21Dx�2Dx2 � Dx2Dx�1Dx
2
�2 þDx1Dx

2
�1Dx�2Þ

Dx1Dx2Dx�1ðDx�2 þDx1ÞðDx�2 þDx2ÞðDx�1 þDx�2Þ

ð14Þ

Equation (10) with coefficient in Eq. (14) is fourth-order accurate Hybrid
FD-FV scheme that can ensure conservativeness as well as order on uniform mesh.
This kind of scheme can be used in direct numerical simulation (DNS) where all
kind of error should be minimized.

4 Result and Discussion

We have tested our schemes on linear advection equation and nonlinear Burgers
equation. General form of equation used for test case is

@u
@t

þ c
@u
@x

¼ l
@2u
@x2

For wave equation c ¼ 1 l ¼ 0 and for Burgers equation c ¼ u l ¼ 0:1. Initial
condition for 1D wave equation is

uð0; xÞ ¼ expð� ln 2 x=3ð Þ2Þ

Initial condition for 1D Burgers equation is

uð0; xÞ ¼ 1þ sinð4pxÞ 0:5� x� 1

uð0; xÞ ¼ 1 else where
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Figure 5 shows unwanted small oscillations are seen in convection equation
when we use FDM developed for the uniform grid on non-uniform grids. That can
be rectified using Hybrid FD-FVM. In convection problems, for some high wave
number initial condition(IC) because of restriction of grid size due to numerical
dispersion or dissipation, we will be working on very fine grids. In those fine grids,
those oscillations are negligible that can be seen in Fig. 6. Since our spatial dis-
cretization scheme is central, RK method proposed in paper by Neelan and Nair
(2016) is used for time discretization. For high wave number problems, RK
methods proposed in paper by Neelan et al. (2016) can be used. Similar results are
observed in Burgers equation. We refine grid in numerical analysis when oscilla-
tions are observed. Figure 7 shows that refining the grid reduces amplitude of
oscillation in uniform FDM but Hybrid FD-FVM is oscillation-free (Fig. 8) even on
course grid.

Fig. 5 Numerical results of
advection equation in two
different grids show
oscillations

Fig. 6 Numerical results
advection equation in two
different grids doesn’t show
oscillations
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5 Conclusion

Hybrid FD-FVM of fourth-order accuracy on non-uniform mesh is proposed. The
advantage of this method is it can retain conservativeness on uniform grid as well as
convergence on non-uniform grid. Our method is ideal, if there is abrupt
non-uniformity found in mesh especially near boundary layer or high gradient of
flow field variable is present. It is not recommended in the smooth area because of
computational cost. We have pointed out the limitations of FVM and FDM
developed for uniform meshes on non-uniform mesh and some special cases where
we can use FVM developed for uniform grid on non-uniform grids like gradually
stretched AP grid and very slightly perturbed non-uniform grids. We have also
discussed the limitation of higher order FVM on non-uniform grid and drawback of
averaging procedure in FVM.

Fig. 7 Effect of grid refining
of FDM on non-uniform grids

Fig. 8 Numerical results of
Burgers equation on uniform
FD versus H-FD-FVM
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Numerical Solution of Unsteady Free
Convective Flow Past a Vertical Plate
with Heat and Mass Fluxes Considering
Chemical Reaction and Heat Absorption

G.S. Seth, Thirupathi Thumma and M.K. Mishra

Abstract Laminar boundary layer natural convection flow with heat and mass
transfer of an optically thick heat-radiating and heat-absorbing fluid along with
first-order chemical reaction has been investigated numerically. The partial differ-
ential equations (PDEs) governing the flow model are non-dimensionalized and
solved using finite element technique. A grid independence analysis is carried out to
ensure the convergence of solutions, and the code has been validated by comparing
the results obtained via utilized method with those of earlier published results. To
gain a better perspective of flow field, the solution of non-dimensional velocity,
temperature, and concentration of the fluid is presented in a graphical form. Fluid
temperature is observed to decrease through-out the thermal boundary layer on
increasing the heat absorption. Chemical reaction has an adverse effect on species
concentration.

1 Introduction

In nature, natural convection or free convection flows arise frequently either due to
temperature differences or concentration differences, or also due to both. Natural
convective flows along with the heat and mass transport arise in many natural and
engineering processes such as convection in Earth’s mantle, formation of convec-
tion cells due to sunlight, evaporation at the surface of a water body, drying, flow in
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a desert cooler, and energy transfer in a wet cooling tower and have, therefore,
attained a considerable attention by researchers in recent years. Owing to its
inescapable application in various industries, viz. chemical, petroleum, biological,
and agricultural industries, a great deal of importance has been given to study the
simultaneous effects of heat and mass transfer due to natural convection by various
researchers considering different aspects of flow geometry, thermal and solutal
boundary conditions and various parameters affecting the flow. Some of the
research articles by Mathers et al. (1957), Soundalgekar and Ganesan (1981),
Narahari and Nayan (2011), Narahari and Dutta (2012), Hussanan et al. (2013), Jain
(2013) are worth mentioning. A rigorous review of the literature concerning con-
vective flow with heat and mass transfer problems is given in the books of Kays
et al. (2012) and Bergman et al. (2011).

Gas turbines, nuclear power plants and numerous propulsion devices such as
aircrafts, satellites, space vehicles, and missiles are some of the examples which
require a very high temperature, and thus, the role of thermal radiation becomes
indispensable (Sparrow and Cess 1978). A considerable amount of interest has been
shown in the study of radiation interaction with free convection flow. Some of the
relevant studies are due to Cess (1966), Hossain and Takhar (1996), Chamkha
(1997), Muthucumaraswamy and Ganesan (2003), Seth et al. (2011), and Das et al.
(2015).

Heat absorption phenomena become relevant in a non-isothermal flow domain,
and consideration of heat absorption is significant while studying the heat transfer
characteristics. Further, the study of chemical reaction phenomenon cannot be
ignored while studying the transportation of heat mass with fluid flow due to its
immense importance in industries of hydrometallurgical, chemical, polymer pro-
duction, food processing, etc. Previous investigations dealing with heat
absorption/generation and chemical reaction can be found in the works of Das et al.
(1994), Takhar et al. (2000), Chamkha and Khaled (2001), Chamkha (2004), Seth
et al (2015, 2016), Raju et al. (2016), Srinivasacharya and Reddy (2016).

The present study deals with time-dependent free convective fluid flow along
with heat and mass transfer past a vertical flat plate of an infinite length under the
influence of radiation, heat absorption (heat sink), and chemical reaction with
uniform wall temperature/ uniform heat flux and variable mass flux, which have
been investigated numerically. A careful survey of the literature suggests that no
attempt has been made to study the above-mentioned fluid flow model.

2 Mathematical Formulation

Consider the time-dependent natural convection flow of a viscous, incompressible,
and optically thick heat-radiating and heat-absorbing fluid past an infinite vertical
plate in the presence of first-order chemical reaction between the fluid and species
concentration. The schematic model of the coordinate system of the problem is
depicted in Fig. 1.
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Initially at time t0 � 0, both the plate and the fluid are maintained at uniform
temperature T 0

1 and uniform concentration C0
1. For t0 [ 0, the plate temperature is

raised or lowered to T 0
w for uniform wall temperature (UWT) case and heat transfer

rate at the surface of plate is considered constant for uniform heat flux (UHF) case.
Also, the mass transfer rate at the plate is proportional to the species concentration.
The flow is generated solely due to thermal and solutal buoyancy forces. Since plate
is assumed to be of an infinite length along x0 and z0 axes, all the physical quantities
are dependent of t0 and y0 only. The radiative heat flux along x0-axis is considered to
be insignificant in comparison to the radiative heat flux along y0-axis (Sparrow and
Cess 1978).

By considering the aforementioned assumptions, the dimensional governing
Prandtl’s boundary layer equations for unsteady natural convective flow of viscous,
incompressible, chemically reacting, heat-absorbing, and radiative fluid under
Boussinesq approximations are given by:

@u0

@t0
¼ � 1

q
@p
@x0

þ t
@2u0

@y02
þ gbTðT 0 � T 0

1Þþ gbCðC0 � C0
1Þ; ð1Þ

� 1
q
@p
@y0

¼ 0; ð2Þ

@T 0

@t0
¼ k

qCp

@2T 0

@y02
� 1
qCp

@qr
@y0

� QH

qCp
ðT 0 � T 0

1Þ; ð3Þ

@C0

@t0
¼ D

@2C0

@y02
� krðC0 � C0

1Þ: ð4Þ

where u0 represents the fluid velocity along x′-axis, T 0 is the temperature of the fluid,
bT is the coefficient of thermal expansion, g is the acceleration due to gravitational,
bC is the volumetric expansion coefficient, t is the kinematic viscosity, q is the fluid
density, k is the thermal conductivity, Cp is the specific heat at constant pressure,

Fig. 1 Schematic diagram of
the problem
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D is the mass diffusivity, qr is the radiative heat flux, QH is the heat absorption
coefficient, and Kr is the first-order chemical reaction coefficient.

The initial and boundary conditions (Das et al. 2015) of the problem as described
above are as follows:

for t0 � 0 f8 y0 � 0 u0ðy0; t0Þ ¼ 0; T 0 ¼ T 0
1; C0 ¼ C0

1

for t0 [ 0

y0 ¼ 0 u0ð0; t0Þ ¼ 0; @T 0
@y0 ¼ � q0

k ðUHFÞ;
T 0 ¼ T 0

wðUWTÞ; @C0
@y0 ¼ � q�

D� C0

y0 ! 1 u0ð1; t0Þ ! 0; T 0ð1; t0Þ ! T 0
1;

C0ð1; t0Þ ! C0
1

8>>>>><
>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

ð5Þ

where q and q� represents the heat and mass fluxes at the surface.
It is concluded from Eq. (1) that pressure p is independent of y0, so the value of

flow pressure is same throughout the boundary layer and in the free stream.
Therefore, from Eq. (1) and initial and boundary conditions (5), we have
� 1

q
@p
@x0 ¼ 0, and thus Eq. (1) takes the form

@u0

@t0
¼ t

@2u0

@y02
þ g bTðT 0 � T 0

1Þþ bCðC0 � C0
1Þ� �

: ð6Þ

Applying Rosseland approximation (Raptis 1998), the net radiative heat flux
term can be written as follows:

qr ¼ �4r�

3k�
@T 04

@y0
ð7Þ

where r� and k� are Stefan–Boltzmann constant and Roseland mean absorption
coefficient, respectively. One can linearize the nonlinear term T 04 occurring in
Eq. (10) with the help of Taylor series by assuming a small variation between the
boundary layer fluid temperature and ambient fluid temperature, retaining terms up
to first order only. Thus, T 04 can be represented as follows:

T 04 ffi 4T 03
1T 0 � 3T 04

1 ð8Þ

Using Eqs. (7) and (8), Eq. (3) becomes:

@T 0

@t0
¼ k

qCp

@2T 0

@y02
þ 1

qCp

16r�T 0
1

k�
@2T 0

@y02
� QH

qCp
ðT 0 � T 0

1Þ: ð9Þ

The dimensional partial differential Eqs. (4), (6), and (9) are converted into
dimensionless form with the help of following dimensionless variables:
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y ¼ q�y0

D
; u ¼ u0D�

mq�
; t ¼ q�2t0m

D2 ; h ¼ T 0 � T 0
1

T 0
w � T 01

ðUWTÞ;

h ¼ ðT 0 � T 0
1Þq�k

q0D� ðUHFÞ; C ¼ C0 � C0
1

C01

ð10Þ

The highly coupled, dimensionless governing partial differential equations are
given by:

@u
@t

¼ @2u
@y2

þGrhþGcC; ð11Þ

@h
@t

¼ 1
Pr

1þ 4R
3

� �
@2h
@y2

� Qh; ð12Þ

@C
@t

¼ 1
Sc

@2C
@y2

� KrC ð13Þ

where R ¼ 4r�T 03
1

kk� is radiation parameter, Gr ¼ gbT ðT 0
w�T 0

1ÞD3

t2q�2 ðUWTÞ is the thermal

Grashof number for uniform wall temperature case, Gr ¼ gbTqD
4

t2kq�4 ðUHFÞ is the

thermal Grashof number for uniform heat flux case, Gc ¼ gbCD
3C0

1
t2q�3 is the solutal

Grashof number, Pr ¼ tqCp

k is the Prandtl number, Sc ¼ t
D is the Schmidt number,

Kr ¼ krD2

tq�2 is the chemical reaction parameter, and Q ¼ QHD2

tqCpq�2
is the heat absorption

parameter.
Corresponding transformed non-dimensional initial and boundary conditions are

given as follows:

for t� 0 f8 y� 0 uðy; tÞ ¼ 0; hðy; tÞ ¼ 0; Cðy; tÞ ¼ 0

for t[ 0

at y ¼ 0 uð0; tÞ ¼ 0; @h
@y ¼ �1 ðUHFÞ;

hð0; tÞ ¼ 1 ðUWTÞ; @C
@y ¼ �ð1þCÞ

as y ! 1 uð1; tÞ ! 0; hð1; tÞ ! 0;

Cð1; tÞ ! 0

8>>><
>>>:

9>>>>>>=
>>>>>>;

ð14Þ

3 Solution Methodology

The transformed system of linear, coupled, and dimensionless PDEs (11) to (13)
along with the initial and boundary conditions (14) is solved numerically for fluid
velocity, fluid temperature, and species concentration with the help of extensively
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validated and robust finite element technique. A typical finite element technique
involves 5 fundamental steps which are domain discretization, derivation of the
element equations, assembly of element equations, imposition of boundary condi-
tions, and solution of the assembled equations. An excellent description of these
steps is presented in the textbooks by Reddy (2006).

4 Grid Independence Study

The grid independence analysis is conducted by dividing the entire domain into
successively sized grids 131� 131; 151� 151 and 171� 171, which are presented
in Table 1. The free stream boundary conditions are replaced by an appropriate
large value where the fluid velocity, fluid temperature, and concentration profiles
approach to zero asymptotically. We executed the developed code for different step
sizes and found very good agreement between the results for all the profiles. After
many trials for computational flexibility, we imposed ymax ¼ 8 where ymax ! 1.
We adopted for all the computations 150 intervals of equal step size 0.053. At every
node, four unknowns are to be found so that, after the assembly of element
equations, a set of 453 algebraic equations are formed; consequently, an iterative
method is adopted and, by introducing boundary conditions, the system of algebraic
equations are solved. The solution is expected to be converged when the difference
between two successive iterates satisfies the desired accuracy 10−4. An excellent
convergence for all the results is achieved.

Table 1 Grid independence analysis for fluid velocity, fluid temperature (UWT case), and species
concentration at distinct points of boundary layer coordinate y

Velocity—u (UWT) Temperature—T (UWT) Concentration—C

No. of grid points

131 151 171 131 151 171 131 151 171

0 0 0 1 1 1 0.9 0.9 0.9

0.7146 0.7146 0.7146 0.9828 0.9828 0.9828 0.8821 0.8821 0.8821

1.3541 1.3541 1.3541 0.9655 0.9655 0.9655 0.8642 0.8642 0.8642

1.9231 1.9231 1.9231 0.9483 0.9483 0.9483 0.8463 0.8463 0.8463

2.426 2.426 2.426 0.9312 0.9312 0.9312 0.8285 0.8285 0.8285

2.8671 2.8671 2.8671 0.914 0.914 0.914 0.8107 0.8107 0.8107

3.2509 3.2509 3.2509 0.897 0.897 0.897 0.793 0.793 0.793

3.5814 3.5814 3.5814 0.8799 0.8799 0.8799 0.7753 0.7753 0.7753

3.8628 3.8628 3.8628 0.863 0.863 0.863 0.7578 0.7578 0.7578

4.099 4.099 4.099 0.8461 0.8461 0.8461 0.7403 0.7403 0.7403
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5 Validation of Numerical Results

To establish the correctness of these numerical results which are obtained through
MATLAB code, we compared the present results for skin friction with the results
obtained through analytical approach. It should be noted that solution approaches to the
solution of Das et al. (2015) when Kr ¼ Q ¼ 0, which are shown in Table 2. These
comparisons confirm that the present results are in agreement with the published
reports. Therefore, these favorable comparisons gives us a great confidence and
subsequently the developed code can be used in presenting the results graphically.

6 Results and Discussion

The primary aim of this paper is to study the transient chemically reacting and
optically thick heat-radiating natural convective boundary layer flow of viscous,
incompressible fluid past a vertically upward plate with heat absorption effect by

Table 2 Comparison of shear stress for various parameter values when t ¼ 0:5; R ¼ 2; Q ¼ 0
and Kr ¼ 0

Gr Gc Sc Pr
Das et al.  
(2015)

Present results

UHF UWT UHF UWT
2 3 2.62 0.71 1.5819 1.1376 1.5818780 1.1376051
4 3 2.62 0.71 2.5089 1.6204 2.5089312 1.6203853
6 3 2.62 0.71 3.4360 2.1032 3.4359844 2.1031656
8 3 2.62 0.71 4.3630 2.5859 4.3630375 2.5859459
5 2 2.62 0.71 1.9046 0.7940 1.9046495 0.7939672
5 4 2.62 0.71 4.0403 2.9296 4.0402661 2.9295838
5 6 2.62 0.71 6.1759 5.0652 6.1758827 5.0652004
5 8 2.62 0.71 8.3115 7.2008 8.3114993 7.2008170
5 3 0.24 0.71 7.5091 6.3984 7.5090717 6.3983894
5 3 0.45 0.71 2.8036 1.6929 2.8035536 1.6928713
5 3 0.62 0.71 2.3596 1.2490 2.3596397 1.2489574
5 3 0.78 0.71 2.2919 1.1813 2.2919329 1.1812506
5 3 2.62 0.72 2.9499 1.8584 2.9499460 1.8584397
5 3 2.62 2 1.7439 1.6068 1.7439382 1.6067521
5 3 2.62 5 1.1831 1.3849 1.1831369 1.3849398
5 3 2.62 7.1 1.0501 1.3058 1.0501457 1.3058452
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employing finite element method with Galerkin weighted residual scheme.
Additionally, the influences of Gc;Gr;R;Q; Sc; and Kr on the flow field variables,
viz. fluid velocity, fluid temperature, and species concentration distributions, are
discussed and represented graphically in Figs. 2, 3, 4, 5, 6, 7, 8, and 9. In this paper,
we present the solutions for the above physical parameters by adopting the default
values Gr ¼ 5;Gc ¼ 3; t ¼ 0:5, Pr ¼ 0:71;R ¼ 2;Q ¼ 5; Sc ¼ 2:62, and Kr ¼ 1
for finite element computation.

All the figures for fluid velocity u and fluid temperature T have been plotted for
both cases of thermal boundary condition, i.e., for UHF and UWT conditions. It is
seen that for all the flow parameters, the velocity rises from zero and obtains a peak
value and then decreases exponentially as non-dimensional coordinate y approaches
toward free stream.

Fig. 2 Velocity profiles
against y for different values
of Gc

Fig. 3 Velocity profiles
against y for different values
of Gr
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Figure 2 is plotted for dimensionless velocity versus the non-dimensional
boundary layer coordinate y for increasing values of Gc. The solutal Grashof
number represents the ratio between solutal buoyancy force and viscous force; thus,
the strength of buoyancy force gets stronger with the increasing value of Gc. The
figure indicates that for both cases of thermal boundary conditions, the fluid
velocity starts from zero and approaches to peak values in the proximity of plate
and then decreases exponentially to zero as y approaches to the free stream. It is
seen from Fig. 2 that the fluid velocity gets accelerated as Gc increases.

Thermal Grashof number, Gr, represents the ratio of thermal bouncy force to
viscous force; thus, Gr is directly proportional to the thermal buoyancy force. An
increase in Gr leads to a higher buoyancy force which leads the fluid to move with
higher velocity. This phenomenon can be seen in the Fig. 3 which is plotted for

Fig. 4 Velocity profiles
against y for different values
of Q

Fig. 5 Velocity profiles
against y for different values
of Kr
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both cases of thermal boundary conditions, i.e., for UHF and UWT. It is interesting
to see that the flow direction gets reversed for negative values of thermal Grashof
number.

Effects of heat absorption Q and chemical reaction Kr over dimensionless fluid
velocity have been characterized in Figs. 4 and 5. These figures exhibit that the
velocity has a declining nature for increasing value of both chemical reaction and
heat absorption parameters. Since chemical reaction and heat absorption act as a
destructing force for temperature and species concentration (Figs. 7 and 9), which
results in a slow distribution of temperature and species concentration throughout
the temperature and concentration boundary layers, respectively. It results in small

Fig. 6 Temperature profiles
against y for different values
of R

Fig. 7 Temperature profiles
against y for different values
of Q
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temperature and species concentration differences and consequently a weak buoy-
ancy force, which ultimately reduces the velocity.

Effect of radiation over dimensionless temperature distribution is shown in
Fig. 6. The tendency of thermal radiation for optically thick heat-radiating fluid is
to increases the temperature which is clearly evident from the figure.

Behavior of temperature corresponding to the heat absorption is shown in Fig. 7.
Physically, the tendency of heat absorption effect is to diminish the fluid temper-
ature, which is also evident from the figure.

Figure 8 exhibits that the surface concentration as well as concentration within
its boundary layer reduces rapidly with increasing value of Sc. Since Schmidt

Fig. 8 Concentration profiles
against y for different values
of Sc

Fig. 9 Concentration profiles
against y for different values
of Kr
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number Sc is inversely proportional to mass diffusivity, an increase in Sc results in a
weaker mass diffusion which reduces the concentration within the boundary layer.

Effect of chemical reaction Kr over the species concentration C has been
demonstrated in Fig. 9, and it is clear from the figure that the species concentration
falls with the increasing effect of chemical reaction.

It is important to note that the non-dimensional velocity is found to be higher in
case of UWT condition than that for the UHF boundary condition for all pertinent
flow parameters.

7 Conclusion

The present article investigates the flow characteristics of an unsteady laminar
boundary layer free convective flow with heat and mass transfer of a viscous,
incompressible, chemically reactive, heat-absorbing, and radiative fluid past a flat
plate. The problem is investigated under two cases of thermal boundary conditions,
i.e., for UWT and UHF conditions. The noteworthy findings of the investigation
reveal that:

The fluid velocity is found higher in case of uniform wall temperature condition
than that of uniform heat flux condition for all flow pertinent parameters. The flow
is generated solely due to the buoyancy forces, and it found to be increasing with
the increasing strength of buoyancy forces. The increasing strength of the heat
absorption reduces the temperature as well as the fluid velocity. Optically thick
heat-radiating fluids temperature is found to be increasing with the increasing
strength of thermal radiation. Tendency of chemical reaction is to lessen the con-
centration distribution and also the fluid velocity. The concentration distribution
within the boundary layer has decreasing tendency corresponding to the increasing
strength of mass diffusion and chemical reaction.
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Numerical Analysis of Unsteady MHD
Mixed Convection Flow in a Lid-Driven
Square Cavity with Central Heating
on Left Vertical Wall

K. Venkatadri, S. Gouse Mohiddin and M. Suryanarayana Reddy

Abstract The article presents a numerical study performed on analysis of unsteady
magneto-convective heat transfer in a square enclosure with partial active wall. The
thermally insulated top and bottom wall while the left vertical wall is heated at Centre
the rest of the left vertical wall is adiabatic and right vertical wall maintained at a lower
temperature Tc. MAC (Marker-and-Cell) method is used to solve numerically set of
dimensionless governing partial differential equations. The effect of local heat source
on left wall is evaluated. The influence of the governing of thermophysical parame-
ters, namely Prandtl number, Rayleigh number Rað Þ, Hartmann number Hað Þ,
Grashof number Grð Þ and Reynolds number Reð Þ, is obtained. The results of
streamlines and temperature are presented graphically and discussed.

Nomenclature

Ha Hartmann number
g Acceleration due to gravity, m s−2

k Thermal conductivity, Wm−1 K−1

H Height square cavity, m
K Permeability, m2

N Total number of nodes
Nu Local Nusselt number
Gr Grashof number
T Temperature, K
u x component of velocity, m s−1

U x component of dimensionless velocity
U0 x lid velocity, m s−1
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V y component of dimensionless velocity
X Dimensionless distance along x
Y Dimensionless distance along y
v y component of velocity, m s−1

p Pressure, Pa
P Dimensionless pressure
Pr Prandtl number
Re Reynolds number
Ri Richardson number

Greek symbols

a Thermal diffusivity, m2s−1

b Volume expansion coefficient, K−1

c Penalty parameter
T Dimensionless temperature
t Kinematic viscosity, m2s−1

q Density, kg m−3

W Stream function

1 Introduction

Mixed convection flow and heat transfer in lid-driven cavity is one of the interesting
problems for researchers in various thermal boundary conditions. This problem is
commonly focused on a variety of wide technical applications. Such applications
include lubrication technologies, cooling of electronic devices, food processing,
drying technologies, float glass production, flow and heat transfer in solar ponds,
dynamics of lakes and thermal hydraulics of nuclear reactors. The
magneto-convective heat transfer and the mixed convective flow of the fluid in an
enclosure are very important in the field of engineering. Mohamad and Viskanta
(1995) examined the influence of a vibrating lid on the fluid flow in a shallow cavity
with thermal structures. Several numerical studies on lid-driven enclosure flows are
observed by research investigators and few of them can be found from Refs. (Gupta
and Manohar 1979; Benjamin and Denny 1979; Ghia et al. 1982; Schreiber and
Keller 1983; Barragy and Carey 1997; Aydin and Fener 2001; Peng et al. 2003;
Erturk et al. 2005).

The study of cavity flows with an oscillating lid has been done by some research
investigators (Soh and Goodrich 1988; Iwatsu et al. 1992; Nishimura and
Kunitsugu 1997; Sriram et al. 2006; Khanafer et al. 2007). Davis and Jones (1983)
conducted a numerical study on pure natural convection with linearly heated walls;
Nguyen and Prudhomme (2001) examined the natural convection flow in a
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rectangular lid-driven cavity submitted to a constant heat flux at the top and bottom
walls and also in side walls. Prasad and Koseff (1996) conducted an experimental
analysis of combined forced and natural convection in a lid-driven rectangle cavity;
in this study, the horizontal top wall moves with uniform speed at low temperature,
and both vertical walls are adiabatic, with a maintained temperature difference (DT)
1–8 °C, thermal parameters Gr ¼ 107 � 5� 109, and Re ¼ 0� 12� 103. Also Ri
changes between 10�1 and 103. The computed Nusselt number was correlated to
Re;Ri and depth-wise aspect ratio. They observed that the heat transfer is insen-
sitive to Gr

�
Re2, and the flow patterns are observed with various aspect ratios 1:1,

2:1, 3:1 and 4:1. Sharif et al. (2004) studied numerically the combined, forced and
free convection in rectangular cavity with different thermal aspect ratios under the
effect of heat flux at the bottom wall, in the presence of moving vertical walls. They
observed that the maximum dimensionless temperature decreases in different
locations of the heat source and the average Nusselt number enhanced as the heat
source is moved from left to right wall for various aspect ratios with fixed Reynolds
number Re ¼ 100ð Þ. Chamkha (2002) analyzed a numerical analysis on internal
heat generation or absorption influence with MHD mixed convection in a square
cavity and found that the vertically moving lid of cavity flow and heat transfer
inside the enclosure is affected with magnetic field strongly. The present study
observed the mixed convection in a lid-driven square cavity in the presence of
magnetic field with partial heating of left vertical wall for two different positions in
the presence of magnetic field parallel to gravity. The heated portion is moved to
middle and bottom of the left wall and maintained uniform dimensionless tem-
perature in right wall. The heat transfer rate is maximum for high Hartmann number
and minimum for low Ha. The computed results are presented graphically in the
form of stream functions and isotherms (temperature), also for dimensionless
temperature with the influence of Hartmann number (Ha).

2 Mathematical Modelling and Simulation

The regime under investigation is illustrated in Fig. 1. Consider a
two-dimensional square cavity where the walls are thermally insulated except the
right and partially active left walls. The left vertical wall is partially heated and
rest of the wall is adiabatic. The right vertical wall is maintained uniformly at
cold temperature. The lid velocity of the cavity is u ¼ U0. Thermo-physical
properties of the fluid such as thermal conductivity, viscosity, specific heat and
thermal expansion coefficient are treated as constant. The governing equations for
the unsteady two-dimensional natural convection of mass, momentum and energy
in the enclosure (cavity) by invoking Boussinesq approximation can be written in
non-dimensional form as:
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@u
@x

þ @v
@y

¼ 0 ð1Þ

@u
@t

þ u
@u
@x

þ v
@u
@y

¼ � @p
@x

þ 1
Re

@2u
@x2

þ @2u
@y2

� �
� Ha2

Re
u ð2Þ

@v
@t

þ u
@v
@x

þ v
@v
@y

¼ � @p
@y

þ 1
Re

@2v
@x2

þ @2v
@y2

� �
þRi � T ð3Þ

@T
@t

þ u
@T
@x

þ v
@T
@y

¼ 1
Re Pr

@2T
@x2

þ @2T
@y2

� �
ð4Þ

The initial and boundary conditions in dimensionless form are:

t ¼ 0 : u ¼ v ¼ 0; 0� x� 1; 0� y� 1;

t[ 0 : u ¼ v ¼ 0;
@T
@y

¼ 0; at x ¼ y ¼ 0 and y ¼ 1;

T ¼ 1; Active part
@T
@x

¼ 0; x ¼ 0; and T ¼ 0 for x ¼ 1

ð5Þ

The dimensionless variables and parameters are defined as:

x ¼ X=H; y ¼ Y=H; u ¼ U=Uo; u ¼ V=Uo; h ¼ T � Tc
Th � Tc

;

p ¼ P
qU2

0
; Pr ¼ m

a
; Re ¼ UoL

m
; Gr ¼ gbðTh � TcÞL3

m2

ð6Þ

Fig. 1 Schematic diagram of
enclosure heat transfer system
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Here, X and Y are dimensionless x-coordinates and y-coordinates, respectively,
U is dimensionless velocity along the direction of x-coordinates, V is dimensionless
velocity along the direction of y-coordinates, h is dimensionless temperature
function, P is pressure (dimensionless), Pr is Prandtl number, Re is Reynolds
number, Gr is Grashof number, Tc is cold wall temperature, Th is hot wall tem-
perature, T is dimensional temperature, p is dimensional pressure, g is gravity, q is
fluid density, a is thermal diffusivity, m is kinematic viscosity, H is height of
enclosure (cavity wall dimension), and t is dimensional time. We note that the
emerging thermal Grashof number encompasses the relative influence of mixed
convection forces to viscous forces in the regime.

3 Marker-and-Cell (Mac) Numerical Solution
and Validation

The unsteady dimensionless governing partial Eqs. (2)–(4) have been solved by the
MAC method (Harlow and Welch 1965). The pressure distribution is obtained by
making use of continuity equation (Mohamad and Viskanta 1995); the numerical
solutions are carried out in terms of the non-dimensional velocity components ðu; vÞ
and stream functions ðwÞ(Batchelor 1967). As per the Cauchy–Riemann equations,
stream function ðwÞ is defined as u ¼ @w

@y and v ¼ � @w
@x , where positive and negative

signs of w denote anticlockwise and clockwise circulations, respectively. In the
MAC approach, although we consider viscous flow, viscosity is not actually
required for numerical stability (Harlow and Welch 1965). Cell boundaries are
labelled with half-integer values in the finite difference discretization. The marker
particles do not participate in the calculation. Here, we elaborate on the numerical
discretization procedure. Based on the weak conservative form of the unsteady
two-dimensional Navier–Stokes equations and heat conservation equation as
defined by Eqs. (1)–(4), we implement a grid meshing procedure using the fol-
lowing notation at the centre of a cell:

ui�1=2;j ¼ 1
2

ui�1;j þ ui;j
� � ð7Þ

From X-momentum conservation Eq. (2), we have:
Advection terms:

@ðuuÞ
@x

¼ uu1� uu2
Dx

ð8Þ

where
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uu1 ¼ 1
2

ui;j þ uiþ 1;j
� �	 
2

uu2 ¼ 1
2

ui�1;j þ ui;j
� �	 
2 ð9Þ

Similarly, we have:

@ðuvÞ
@y

¼ uv1� uv2
Dy

ð10Þ

where

uv1 ¼ 1
2

ui;j þ ui;jþ 1
� �

:
1
2

vi;j þ viþ 1;j
� �

uv2 ¼ 1
2

ui;j þ ui;j�1
� �

:
1
2

vi;j�1 þ viþ 1;j�1
� � ð11Þ

The following central difference formula is used for the second-order
derivatives:

r2u ¼ @2u
@x2

þ @2u
@y2

r2u ¼ ui�1;j � 2ui;j þ uiþ 1;j

Dx2
þ ui;j�1 � 2ui;j þ ui;jþ 1

Dy2
ð12Þ

Applying to the y-direction momentum conservation Eq. (3), we have:
Advection term:

@ðvuÞ
@x

¼ vu1� vu2
Dx

ð13Þ

Here, the following notation applies for convection term:

uv1 ¼ 1
2

ui;jþ 1 þ ui;j
� � � 1

2
vi;j þ viþ 1;j
� �

uv2 ¼ 1
2

ui�1;jþ 1 þ ui�1;j
� � � 1

2
vi;j þ vi�1;j
� �

@ðvvÞ
@y

¼ vv1� vv2
Dy
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vv1 ¼ 1
2

vi;jþ 1 þ vi;j
� �	 
2

vv2 ¼ 1
2

vi;j�1 þ vi;j
� �	 
2 ð14Þ

The central difference formula for the Laplacian operator is given by:

r2v ¼ @2v
@x2

þ @2v
@y2

r2v ¼ vi�1;j � 2vi;j þ viþ 1;j

Dx2
þ vi;j�1 � 2vi;j þ vi;jþ 1

Dy2

ð15Þ

Effectively, the x-momentum equation discretization technique can be summa-
rized as:

unþ 1 ¼ un þDt �u
@u
@x

� v
@u
@y

þ 1
Re

@2u
@x2

þ @2u
@y2

� �
� Ha2

Re
u

� �
ð16Þ

There is a slight modification needed in the y-momentum equation due to the
addition of a new term. Therefore, this term must be included in the discretized
equation and we have:

vnþ 1 ¼ vn þDt � �u
@v
@x

� v
@v
@y

þ 1
Re

@2v
@x2

þ @2v
@y2

� �
þRi � T

� �
ð17Þ

Pressure is calculated with elliptical pressure Poisson’s equation:

r � unþ 1

Dt
¼ r2pnþ 1

Updated velocities with pressure are:

u ¼ unþ 1 � Dt
Dx

pnþ 1
iþ 1;j � pnþ 1

i;j

� �

v ¼ vnþ 1 � Dt
Dx

pnþ 1
iþ 1;j � pnþ 1

i;j

� �

It is further noteworthy that the temperature term T is co-located such that it
coincides with velocity before using it in the above equation to account for the
staggered grid. After unþ 1 and vnþ 1 are projected to get u and v, we can use
the discretized temperature equation to get T at next time level ðTnþ 1Þ via the
algorithm:
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Tnþ 1 ¼ Tn þDt � �u
@T
@x

� v
@T
@y

þ 1
Re Pr

@2T
@x2

þ @2T
@y2

� �� �
ð18Þ

Now, integrate in time by an incremental time step Dt in every iteration, and this
cycle continues until the final time t ¼ 1:0 reached. The variables are co-located
and plotted. Modern variants of the MAC method utilize the conjugate gradient
schemes which solve the Poisson equation. Further details are provided in Harlow
and Welch (1965). To confirm mesh independence, a grid-independence study is

Table 1 Grid independent
study

Grid size Average Nusselt number (Nu)

51 � 51 0.17437

61 � 61 0.17798

71 � 71 0.17319

81 � 81 0.17562

Kandaswamy et al. (2008)  Present MAC results

Fig. 2 Comparison of contour plots for bottom–bottom vertical walls with Pr ¼ 0:71; Gr = 105,
Ha ¼ 10
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conducted. In computational fluid dynamics, of which finite difference simulation is
merely one methodology, once a mesh provides a solution which is invariant with
the finer meshes, the coarser mesh can be adopted. This reduces computational cost
but retains the necessary accuracy. Table 1 shows that accuracy to three decimal
places is achieved for computed Nusselt number at the horizontal bottom wall with
a mesh of 61 � 61 which is sufficient for heat transfer computations, and therefore,
this is adopted for all subsequent simulations.

Furthermore to validate the present computations, visualizations of the temper-
ature (isotherm) and stream function distributions are provided. These replicate the
solutions of Kandaswamy et al. (2008). The results are in very close correlation, as
observed in Fig. 2 and confidence in the present MAC computational code is
therefore justifiably high.

4 MAC Numerical Results and Discussion

The computational simulation studies are performed based on 51 � 51 grids. The
numerical solutions are obtained forGr ¼ 104 � 105,Pr ¼ 0:71 and Re ¼ 10� 102.
Top and bottom walls of the cavity are thermally insulated while the left vertical wall
is partially heated and right vertical wall is maintained uniformly at cold temperature.
Also the horizontal top wall has uniform velocityU ¼ 1. In the current investigation,
the MAC method gives the smooth solutions at the interior domain including mag-
netic effect. Figure 3a–c shows the contours of stream function and isotherms for the
active portion (centre of the left wall) for Pr ¼ 0:71;Gr ¼ 105;Re ¼ 10 and different
values of magnetic field, Ha ¼ 10� 102. In case of heat portion on centre of the left
wall with magnetic effect, Ha ¼ 10, the stream function forms two fully rotating
vertices. The mixed convective force which arises with the particles of fluid are
heated close to the hot portion acts equally to the hot portion to move diagonally and
descend towards the isothermal wall, the corresponding temperature patterns are
almost parallel to the horizontal walls at middle of the enclosure as the flow is
stagnant at the core. To increase the Ha ¼ 50. The stream function is symmetric of
stream function Fig. 3a. The corresponding isotherms in Fig. 3b shows that the
convective heat transfer is less at top corner of heat portion wall and bottom corner of
cold wall. The stream function contours are decrease for Ha ¼ 102 the isotherms are
spread equally to the cavity.

In Figs. 4a–c and 5a–d, the stream function and isotherms contours are more at
the bottom active portion of left side wall with the increase in the magnetic fields
with Ha ¼ 10; 15; 20; 30; 40; 50; 70 and 100. The influence of active portion of left
wall and magnetic field effects is depicted. Two convective circulations are formed
in the core with a large cell around them with flow all over the cavity, and the

Numerical Analysis of Unsteady MHD Mixed Convection Flow … 363



nx
ny

nyny
ny

Temperature

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

nx

streamfunction

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

nx

Temperature

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

nx

ny
streamfunction

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

nx

streamfunction

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

nx

ny

Temperature

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (a)

(b)

(c) (c)

(b)

Fig. 3 Stream functions (left side) and isotherms (right side) for Pr ¼ 0:7;Re ¼ 10;Gr ¼ 105.
a Ha = 10, b Ha = 50, c Ha = 100

364 K. Venkatadri et al.



nx

ny
streamfunction

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

nx

ny

Temperature

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

nx

ny

streamfunction

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

nx

ny
Temperature

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

nx

ny

streamfunction

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

nx

ny

Temperature

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) (a)

(b) (b)

(c) (c)

Fig. 4 Stream functions and isotherms for Pr ¼ 0:71;Re ¼ 10;Gr ¼ 105. a Ha = 10, b Ha = 15,
c Ha = 30
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convective cells move (rotate anticlockwise) to active portion with the increase in
Hartmann number. Streamline contours decrease with high magnetic effect
ðHa ¼ 100Þ. From the isotherm contours (see Fig. 4), it is observed that the iso-
therm lines are nearly same for different Ha numbers with fixed Ri; the formation of
thermal boundary layer at heating portion reduces for increasing the magnetic field
(see Figs. 4 and 5); the temperature gradient reduces as low magnetic field.
Figure 5d indicates that the isotherms are low concentrated at active region the hot
particles transport same energy in all regions of the cavity.

In bottom active region of left wall in Fig. 6a shows the effect of magnetic field
ðHa ¼ 100Þ and the Reynolds number ðRe ¼ 100Þ on isotherms concentration. The
left wall of top corner in Fig. 6b indicates the effect of Hartmann number ðHa ¼
50Þ and fixed Re the heat transfer made with convection in the hot portion (bottom)
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Fig. 5 Stream functions and isotherms for Pr ¼ 0:71;Re ¼ 10;Gr ¼ 105. a Ha = 40, b Ha = 50,
c Ha = 70, d Ha = 100
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and cold wall of the cavity is thermally active. The boundary layer formation at
close to active part and cold wall of the cavity is observed in Fig. 6c and d with
Ha ¼ 10, and the convective heat transfer in active regions in top (left side) of the
lid-driven cavity is thermally inactive. The isotherms for different values of Ha with
Ri ¼ 1 are depicted in Fig. 7 in the isotherms pattern are almost equal for all values
of Hartmann number except in Fig. 7a.
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Fig. 5 (continued)
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Fig. 6 Isotherms for Pr ¼ 0:71;Gr ¼ 105;Re ¼ 100;Ri ¼ 10. a Ha = 100, b Ha = 50,
c Ha = 10, d Ha = 0
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5 Conclusions

A numerical investigation of unsteady heat transfer in a Newtonian fluid occupying a
square cavity has been conducted. The governing dimensionless equations have been
solved numerically with the Marked and Cell (MAC) finite difference approach. The
magneto-convective fluid flow in a cavity has been simulated with a partial heating
on vertical side (left) wall and thermal insulation of top and bottom walls in presence
of magnetic field. It is found that the heat transfer rate is enhanced in the centre
thermally active region for high Ha. The rate of flow also increases for low Ha. The
isotherm patterns are unchanged for Re ¼ 100;Gr ¼ 104 with fixed Pr for different
Hartmann numbers. The MAC numerical scheme apparently achieves efficient and
accurate solutions for transient enclosure of thermal mixed convection.

nx

ny
Temperature

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

nx

ny

Temperature

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

nx

ny

Temperature

0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

nx

ny
Temperature

0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b)

(c) (d)

Fig. 7 Isotherms for Pr ¼ 0:71;Gr ¼ 104;Re ¼ 100;Ri ¼ 1. a Ha = 0, b Ha = 10, c Ha = 50,
d Ha = 100

Numerical Analysis of Unsteady MHD Mixed Convection Flow … 369



References

Aydin M, Fener RT (2001) Boundary element analysis of driven cavity flow for low and moderate
Reynolds numbers. Int J Numer Methods Fluids 37:45–64

Barragy E, Carey GF (1997) Stream function-vorticity driven cavity solutions using p finite
elements. Comput Fluids 26:453–468

Batchelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, UK
Benjamin AS, Denny VE (1979) On the convergence of numerical solutions for 2-D flows in a

cavity at large Re. J Comput Phys 33:340–358
Chamkha AJ (2002) Hydromagnetic mixed convection flow with vertical lid driven cavity in

presence of internal heat generation or absorption. Numer Heat Transfer A 41:529–546
Davis GD, Jones IP (1983) Natural convection in a square cavity: a comparison exercise. Int J

Numer Methods Fluids 3:227–248
Erturk E, Corke TC, GÄokcÄol C (2005) Numerical solutions of 2-D steady incompressible

driven cavity flow at high Reynolds numbers. Int J Numer Methods Fluids 48:747–774
Ghia U, Ghia KN, Shin CT (1982) High-Re solutions for incompressible flow using the

Navier-Stokes equations and a multigrid method. J Comput Phys 48:387–411
Guo Guanghong, Sharif Muhammad AR (2004) The study of mixed convection in rectangular

cavity moving cold vertical walls with various aspect ratios in presence of linear flux heat
source on the bottom wall. Int J Therm Sci 43:465–475

Gupta MM, Manohar RP (1979) Boundary approximations and accuracy in viscous flow
computations. J Comput Phys 31:265–288

Harlow FH, Welch JE (1965) Numerical calculation of time-dependent viscous incompressible
flow of fluid with free surface. Phys Fluids 8:2182–2190

Iwatsu R, Hyun JM, Kuwahara K (1992) Numerical simulation of flows driven by a
torsionally-oscillating lid. J Fluid Eng 114:143–151

Kandaswamy P, Muthtamilselvan M, Lee J (2008) Prandtl number effects on mixed Convection in
a lid-driven porous cavity. J Porous Media 11:791–801

Khanafer KM, Al-Amiri AM, Pop I (2007) Numerical simulation of unsteady convection in a
driven cavity using an externally exited sliding lid. Eur J Mech B/Fluids 26:669–687

Mohamad AA, Viskanta R (1995) Flow and heat transfer in a lid-driven cavity filled with a stably
stratified fluid. Appl Math Model 19:465–472

Nguyen TH, Prudhomme M (2001) Bifurcation of convection flows in a rectangular cavity
subjected to uniform heat fluxes. Int Comm Heat Mass Transfer 28:23–30

Nishimura T, Kunitsugu K (1997) Fluid mixing and mass transfer in two-dimensional cavities with
time-periodic lid velocity. Int J Heat Fluid Flow 18:497–506

Peng YF, Shiau YH, Hwang RR (2003) Transition in a 2-D lid-driven cavity flow. Comput Fluids
32:337–352

Prasad AK, Koseff JR (1996) Mixed convection heat transfer in a deep lid-driven cavity flow with
cold top wall moving constant velocity. Int J Heat Fluid Flow 17:460–467

Schreiber R, Keller HB (1983) Driven cavity flows by efficient numerical techniques. J Comput
Phys 49:310–333

Soh WH, Goodrich JW (1988) Unsteady solution of incompressible Navier-Stokes equations.
J Comput Phys 79:113–134

Sriram S, Deshpande AP, Pushpavanam S (2006) Analysis of spatiotemporal variations and flow
structures in a periodically driven cavity. J Fluid Eng 128:413–420

370 K. Venkatadri et al.



Numerical Simulation of Dynamics
of the Drop Formation at a Vertical
Capillary Tube

Pardeep, Mayank Srivastava and M.K. Sinha

Abstract The objective of this work is to study the parametric effects on the drop
formation. For this, an experimentally verified computational domain that gives an
accurate result is developed in the commercial software, FLUENT version 14.0.
The numerical simulation of the Navier–Stokes equation has been obtained by
combining the volume of fluid model with the finite volume method. To obtain the
precise results in the finite volume technique, fine meshing is developed to track the
movement of droplet in the air interface. The shape of drop formation obtained
through the computational method is being verified with the experimental results
available in the literature. The effect of parameters, i.e., viscosity and flow rate, is
investigated in detail and also validated with the previous research works. The
effect of viscosity on the development of satellite drop formation is also studied.
This work is quite good agreement with the experimental work.

1 Introduction

A drop is a little section of fluid, limited totally or just about totally by free surfaces.
A drop may frame when fluid collects at the lower end of a tube or other surface
limit, creating a hanging drop called a pendant drop. Drops might likewise be
framed by the buildup of a vapor or by atomization of a bigger mass of fluid. During
the drop formation, the primary droplet is the largest drop that is ejected from the
capillary tube. Along with primary droplets, some extra droplets (known as satellite
droplet) are occasionally generated due to the collapse of the liquid column by
surface tension. These satellite droplets are usually smaller than intended primary
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droplet. Dynamic of drop depends upon various factors such as viscosity of the
liquid, surface tension between the liquid and atmospheric medium, density of the
liquid, flow rate of the liquid in the capillary tube. Drop formation is widely used in
chemical processing, printing technology, medical application, soldering, metal-
lurgical work, and spraying.

The source of drop formation was recognized about 200 years ago by Felix
Savart in Paris. In 1833, he observed experimentally about the drop formation
during flow of water through a nozzle as shown in Fig. 1. Small drops in between
the two bigger drops are named as ‘satellite drop’. Basaran (2002) and Bhat (2008)
explained different methods of drop formation and its application. Many researchers
uncovered the various characteristics of drop before detachment and after detach-
ment through experimental and numerical techniques. Different aspects of dripping,
jetting, liquid bridge, and various stability factors that occur in the drop formation
were explained by Egger (1997, 2006).

Viscosity is the most important parameter considered for drop formation.
According to Zhang and Basaran (1995), viscosity plays a great role in stabilizing
the pendant drop. Due to this reason, for high viscous liquid, the pendant drop’s
thread length (Ld) increases, and this was similar to Zhang and Stone (1997). They
studied the dynamics of drop formation for low Reynolds number (Re) by using
boundary integral method. According to them, satellite drop formation depends on
the thread length of the pendant drop. At low value of viscosity ratio, thread length
is low, and hence, there is no satellite drop formation. As stated by Zhang (1998,
1999), the value of thread length increases with respect to an increase in the
viscosity ratio. He analyzed the dynamics of 2-ethyl 1-hexagonal drop by contin-
uum surface method. Rothert et al. (2003) and Wehking (2014) experimentally
proved that pinch-off process slows down with increasing viscosity. Drop formation
is the outcome of stability between the viscosity and surface tension stated by
Vladimir and Marko (2005). According to Zhang and Basaran (1995), for the
stagnant value of viscosity ratio (k) and variable value of capillary ratio, breakoff
length faintly depends on gravitational bond number (b). Varieties of analytical and
numerical methods were applied for the determination of dynamic of methods by
Dravid (2008), Joseph et al. (1999), Pan and Suga (2003), Renardy and Renardy
(2002), and Tirtaatmadja et al. (2006). Nowadays, the most commonly used method
is volume of fluid for the simulation of the dynamics of drop formation.

A large number of experimental works are available on this topic but still more
investigation is required. The objective of this paper is to validate the volume of
fluid with the numerical analysis of Wilkes (1999). This paper presents the effects
of different parameters on the dynamics of drop formation.

Fig. 1 Drop formation in Savort’s experiment
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2 CFD Analysis of Drop Formation

2.1 Physical Description of the Problem

The domain consists of two regions: a 85% glycerin chamber (capillary tube) and
an air chamber with coordinate system as shown in Fig. 2. The surface inside the
capillary is neutrally wettable, while the surface surrounding the capillary orifice is
non-wettable. We consider different compositions of glycerin as our base fluid
which is being incompressible and Newtonian fluid as shown in Table 1.

To analyze the drop formation process from capillary tube into ambient air, we
use ‘volume of fluid model,’ i.e., VOF model in FLUENT version 14.0.

At time zero, 85% glycerin fills the capillary tube, while the rest of the domain is
filled with the air. Both fluids are assumed to be at rest. To initiate the ejection, the

Fig. 2 Physical diagram of
nozzle

Table 1 Physical properties of glycerin (Wilkes 1999)

Liquid Density (g/cm3) Viscosity (poise) Surface tension (dyne/cm)

85% glycerin 1.223 1.129 66.0

70% glycerin 1.182 0.229 68.5

50% glycerin 1.272 0.061 70.0

20% glycerin 1.048 0.018 72.4
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85% glycerin velocity at the inlet boundary suddenly rises from 0 to 1 ml/min with
fully developed profile. Gravity force which acts toward z direction is also included
in the simulation. Due to the axial symmetry of the problem, a 2D geometry is used.

2.2 Mathematical Modeling

For free surface flow, the detachment process of a drop depends upon a lot of
factors which include the flow rate through the capillary, viscosity of liquid phase
(l), density of both phases (q), surface tension between liquid and air (r), and the
diameter of capillary tube.

The assumptions made in the mathematical formulation and the solution process
are the following based on which the governing equations are written.

1. The fluid flows are laminar and Newtonian.
2. The model is axisymmetric.
3. The surrounding air can be considered as incompressible.
4. The liquid properties are known and constant.
5. The evaporation of the liquid is neglected.
6. At the inlet of the capillary tube, fluid flow is assumed to be fully developed

flow.
7. The thickness of the nozzle is neglected.

With the above assumptions, the Navier–Stokes equation in non-dimensional
form for the transient motion of the liquid is given as

r � v ¼ 0; ð1Þ

Re
@v
@t

þ v � rv
� �

¼ r � sþ G
Ca

� �
j ð2Þ

s ¼ �pIþ ½rvþðrvÞT� ð3Þ

The variable in Eq. (1), i.e.,r, is the gradient operator; v is the resultant velocity
vector. Similarly, in Eq. (2), s is the stress tensor; j is the unit vector in z direction.
In Eq. (3), p represents the dimensionless pressure, and I is the identity tensor.

Also during the non-dimensionalization process, three-dimensionless numbers
are introduced in Eq. (2),
Reynolds number, Re = qUD/l, gravitational bond number, G = qgR2/r,
Capillary number, Ca = lU/r.

The flow is consider as fully developed, so its velocity profile becomes
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vz ¼ 2Q
pR2 1� r

R

� �2
� �

; 0� r�R ð4Þ

where r is the radial coordinate of drop phase, and vz is the flow velocity in z
direction.

The maximum velocity of liquid-phase flow for the fully developed flow is
given as

U ¼ 2Q
pR2 ð5Þ

2.3 Initial and Boundary Conditions

The boundary conditions for the solution of Eqs. (1) and (2) are shown in Fig. 3,
which is stated as:

1. Inlet of the domain is velocity inlet.
2. Flow rate is 1 ml/min.
3. The fluid must obey conditions of no slip and no penetration along the inner

wall of the capillary.
4. Outlet of the computational domain is pressure outlet.

Fig. 3 Physical domain with
boundary conditions
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3 Results and Discussion

3.1 Grid Sensitivity Test

Grid sensitivity test is performed to check the effect of meshing on the computation
results. In the grid sensitivity test, we change the number of cells for the same
computational domain as shown in Table 2. After the number of cells reaches 7000,
the thread length increases quite slowly, but increases the time period of the
computational process relatively more. Therefore, for the numerical analysis, we
have chosen the total number of cells around 7000 which gives accurate thread
length as compared to the experimental result reported by Wilkes (1999) and Zhang
and Basaran (1995).

3.2 A Comparison of Drop Detachment Profile
with Experimental

Wilkes (1999) reported a sequence of drop formation of 85% glycerin from a nozzle
which is fed from an Orion Sage Model M361 pump. This pump has the capability
of producing flow rate from 0.03 ml/h to 60 ml/min. Data are collected with the
help of Kodak EktaPro-intensified imager which can record 12,000 frames per
second. Kodak EktaProHi-Sec processor is used to save the images. Further, for the
extraction of data, Kodak EktaPro system or Sigma Scan Pro 4.0 image analyzer
software is being used.

Figure 4 shows the comparison of different sequences of drop formation
obtained from experimental method and VOF numerical method. The actual
detachment time of the 85% glycerin drop in air is 5.07 s (from initial) and 2.29 s
(after previous drop’s detachment), which is within 3% error as compared with the
Wilkes (1999) and Zhang and Basaran (1995). Furthermore, the above image
proves that the VOF method also provides the precise information regarding the
motion of drop during the detachment process.

Figure 5 shows the variation of the thread length with various composition of
glycerin. It shows that the thread length variation is quite similar to the experi-
mental work. It also proves the validation of CFD work with the experimental work.

Table 2 Variation of thread
length with the number of
cells

S. No. No. of cells Thread length (mm)

1 2000 7.12

2 7000 7.39

3 15,000 7.43
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3.3 Drop Elongation and Breakup

After the validation of the present computation with the experimental results, we are
screening the variation of the dimensionless thread length at various flow rates
regarding the detachment time, i.e., td − t is shown in Fig. 6.

Figure 6 shows that the lower the flow rate, more time is spent by the droplet
during the detachment process. The value of dimensionless drop elongation just

Fig. 4 Comparison of detachment profile of pendant drop at various time sequences

Fig. 5 Variation of thread
lengths as a function of
various glycerin compositions
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before the detachment is more with low flow rate as compared to higher flow rate.
The reason behind this is that at high flow rate pendant drop loses its equilibrium
prior to low flow rate. The liquid flow rate also toughens the occurrence of drop
fabrication. Similar development is also reported by Zhang and Basaran (1995).

3.4 Effect of Viscosity

According to Kumar and Kuloor (1970), there is a very little effect of viscosity
variation on the volume of detached drop. However, it actively influences the drop
formation process especially during necking and detachment period.

To safeguard the damping interfacial oscillations of the detaching drop, viscosity
of the liquid drop plays a great role. The interface variation developed in the drop
just before breaking becomes smooth. When the value of viscosity increases, the
thread length of the drop also increases as shown in Fig. 7.

When drop dynamic system is compared with spring balance system, we can say
that the damping force of spring balance system is similar to the viscosity of drop
formation. It means that if we increase the viscosity in the list of various properties
of liquid droplet, it will eliminate the oscillation that rises during the drop formation
process. It will also increase the detachment process of the drop. Also, the viscosity
leads to the process of satellite drop formation. Satellite drop is formed only due to
viscosity of the liquid drop. It can be said that a high value of viscosity liquid drop
has long thread before the breakoff. So when this long thread breaks, a large
shrinking force is generated in the thread which in turn will generate the small
satellite drops as shown in Fig. 8. Hence, liquid bridge is the only source of satellite
drop formation.

Fig. 6 Dimensionless length
of drop growing out of a tube
of radius R = 1.6 mm with
detachment time at various
flow rates
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Fig. 7 Comparison of 70 and 85% glycerin at various time steps

Fig. 8 Formation of satellite
drops after breakoff for 85%
glycerin
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Due to the high recoil force on both ends of the thread, both upper part and lower
part of the thread shrink and convert it into small droplets. The conversion is shown
in Fig. 8.

4 Conclusion

In the present work, an experimentally verified computational model is being
developed to study the various parameter effects on the dynamics of drop formation.
The volume of fluid (VOF) method is used for the numerical simulation of the
computational domain. VOF method is one of the best methods for studying the
free surface problems.

Through numerical analysis, the sequences of detachment profile of drop for-
mation for various viscosities are compared with the experimental source. It is
found that for low viscosity liquid, thread length variation is negligible. While for
higher viscosity liquids, thread length variation is exponentially increased. Also, as
the viscosity of the liquid increases, the thread length is also increased which further
disintegrates into small droplets, i.e., satellite droplets of the high recoil force
developed in the liquid thread. Similarly, when the flow rate of the dripping
increases, dimensionless thread length starts decreasing because at higher flow rate,
thread length is less as compared to the lower flow rate.

This investigation also proves that the CFD tools are quite efficient and accurate
for the free surface flow problems.
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Squeezing of Bingham Fluid Between
Two Plane Annuli

Singeetham Pavan Kumar and Kadaba Puttanna Vishwanath

Abstract In this study, the presence of Bingham fluid between two parallel plane
annuli with constant squeeze motion is theoretically analyzed. The effect of radius
of separation on core thickness, pressure distribution, and squeeze force for dif-
ferent values of Bingham number has been investigated. By considering equilib-
rium of an element of the core in the fluid, thickness of the rigid plug core has been
calculated numerically. The properties of the squeeze film are investigated through
the non-Newtonian effects on the squeeze force of the plane for various annular
spaces.

Nomenclature

h� Squeeze film thickness
H ¼ h�=h� ¼ 1 Dimensionless squeeze film thickness
r� Radial coordinate
r ¼ r�

�
r�2 Dimensionless radial coordinate

z� Axial coordinate
z ¼ z�=h� Dimensionless axial coordinate
r�1 Inner radius
r�2 Outer radius
v�r Radial velocity component
v�z Axial velocity component
p� Pressure
p Dimensionless pressure
_h� ¼ �vs Squeeze velocity
r�0 Radius of separation
k ¼ r�0=r

�
2 Dimensionless radius of separation

k ¼ r�1=r
�
2 Ratio of inner and outer radius

p�a Ambient pressure
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pa Dimensionless ambient pressure
srz Dimensionless shear stress
s0 Yield stress
l Newtonian viscosity

B ¼ s0ðh�Þ2
lvsr�2

Bingham number

h�11 ; h
�
21 Boundaries of core thickness in r�1 � r� � r�0

h�12 ; h
�
22 Boundaries of core thickness in r�0 � r� � r�2

h�c1 Core thickness in the region r�1 � r� � r�0
h�c2 Core thickness in the region r�0 � r� � r�2
H1;H2 Dimensionless boundaries of the core thickness
H11 ;H21 Dimensionless boundaries of the core thickness in k� r� k
H12 ;H22 Dimensionless boundaries of the core thickness in k� r� 1
Hc ¼ Hc1 Dimensionless core thickness in the region k� r� k
Hc ¼ Hc2 Dimensionless core thickness in the region k� r� 1
w� Squeeze force
w Dimensionless squeeze force
wðk;NÞ Dimensionless squeeze force of Newtonian fluid

1 Introduction

Recent studies of squeezing flows are considered as an important role due to its
practical applications in physical, biophysical, chemical engineering, polymer
processing, and food industry, among many others. Further, there has been an
increasing interest in the usage of non-Newtonian viscoplastic fluid as lubricants.

In general, viscoplastic fluid behavior is differentiated by the existence of yield
stress sy, which must be applied for the fluid to deform or flow. Three commonly
used mathematical models for viscoplastic fluids are Bingham, Herschel–Bulkley,
and Casson model. In the present work, we characterize the rheological properties
of viscoplastic fluid considering Bingham model. The constitutive equation for a
Bingham model in three-dimensional form is as follows:

s ¼ lþ sy
c
�j j

� �
c
�

for sj j[ sy;

c
� ¼ 0 for sj j � sy;

where c
���� ��� ¼ 1

2 c
�
: c
�

� �� �1
2

is the magnitude of the symmetric rate-of-strain tensor

c
� ¼ r�vþðr�vÞT .
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Earlier some of the researchers (Turns 1983; Singh et al. 1990; Lin 1996; Usha
and Vimala 2003) analyzed flow of Newtonian fluid in squeeze film between
circular plane annuli. Some of the examiners (Archibald 1956; Shukla 1964;
Elkouh et al. 1982; Lin and Hung 2008) considered the power law fluid model to
observe the squeeze film performance in circular or annular disks with couple
stress. Several investigators (Wilson 1993; Balmforth and Craster 1999;
Alexandrou et al. 2001; Smyrnaios and Tsamopoulos 2001; Walicka 2011)
examined the flow of viscoplastic Bingham fluid in squeeze film bearing in the
presence of rigid plug core.

In the present work, the problem of squeezing Bingham fluid between two
parallel plane annuli with constant squeeze has been analyzed. Viscoplastic is
characterized by the existence of yield value, which leads to the formation of rigid
plug core in the flow region (Vishwanath and Kandasamy 2010). The effects of
radius of separation on core thickness, pressure distribution, and squeeze force have
been investigated. By considering equilibrium of an element of the core in the fluid,
the thickness of rigid plug core has been calculated numerically for various values
of Bingham number. Expressions for core thickness, pressure distribution, and
squeeze force are presented. Numerical solutions have been obtained for the
characteristics of squeeze motion such as pressure distribution, squeeze force for
different values of Bingham number, and annular space. The properties of the
squeeze motion are investigated through the non-Newtonian effects of Bingham
fluid on the squeeze force for various annuli.

2 Mathematical Formulation of the Problem

The schematics of the problem are as shown in Figs. 1 and 2. We consider an
isothermal, incompressible, steady flow of a time-independent viscoplastic fluid
squeezed between parallel plane annulus separated by a distance h�. Let r�1 and r�2
be the two inner and outer radii of the plane annulus. The planes are approaching
each other with a constant squeeze velocity vs under a squeeze force w�.

We consider cylindrical polar coordinates ðr�; h�; z�Þ with axial symmetry and
the origin fixed at the center of the lower plane. Here r� represents the distance
measured along the radial direction and z� along the axis normal to the parallel
plane. Let v�r and v�z be the velocity components in the radial ðr�Þ and axial
directions ðz�Þ, respectively. Let p� denote the pressure which is a function of r�

only and p�a is the ambient pressure. It is assumed that there is no sliding motion of
the two planes. Let the boundaries of the core be given by z ¼ h�1ðr�Þ and z ¼
h�2ðr�Þ as shown in Fig. 3.

Under the assumptions of the theory of lubrication, neglecting inertia terms, one
gets the following governing equations in non-dimensional form for the flow sys-
tem as shown in Fig. 1:
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0 ¼ � @p
@r

þ @srz
@z

ð1Þ

0 ¼ @p
@z

ð2Þ

Fig. 1 Schematic
representation of
annular squeeze film

Fig. 2 Schematic representation of pressure distribution

388 S. Pavan Kumar and K.P. Vishwanath



0 ¼ 1
r
@

@r
rvrð Þþ @vz

@z
ð3Þ

where srz is the shear stress, @p
@r is the pressure gradient.

The non-dimensional form of constitutive equation for Bingham fluid is given by

srz ¼ Bþ @vr
@z

ð4Þ

where @vr
@z is the rate of deformation and B ¼ s0 h�ð Þ2

lvsr�2
is the Bingham number.

The boundary conditions are

vrðr; 0Þ ¼ vrðr; 1Þ ¼ 0;
vzðr; 0Þ ¼ 0;
vzðr; 1Þ ¼ �vs;

and

pðkÞ ¼ pð1Þ ¼ pa ¼ 1;

where k ¼ r�1
�
r�2, H ¼ h�=h� ¼ 1.

Fig. 3 Schematic representation of core thickness
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3 Solution to the Problem

The distribution of the radial component of velocity obtained by integrating Eq. (1),
using boundary conditions on vr and assuming vr and @vr

@z are continuous at z ¼ H1

and z ¼ H2, is given by

vr ¼ 1
2
@p
@r

ðz� H1Þ2 � H2
1

� 	
in 0� z�H1 ð5Þ

vr ¼ 1
2
@p
@r

ðz� H2Þ2 � ð1� H2Þ2
� 	

in H2 � z� 1 ð6Þ

and the core velocity as,

vc ¼ 1
2
@p
@r

�H2
1


 � ¼ 1
2
@p
@r

�ð1� H2Þ2
� 	

in H1 � z�H2 ð7Þ

The integral form of continuity equation, obtained from Eq. (3) and applying the
boundary conditions on vz, is

ðr2 � k2Þ ¼ 4
Z1=2
0

rvrdz ð8Þ

where k ¼ r�0
�
r�2 is the radius of separation which is a function of k and B. In this

study r�0 represents the radius of a fixed cylindrical stream surface that divides the
flow into two regions whose radial velocity components are of opposite signs.

Substituting vr from Eqs. (5) and (7) in (8), by taking H1 ¼ 1�Hc
2 from Fig. 3,

yields the expressions for pressure gradient:

@p
@r

¼
12 k2

r � r
� 	

1� Hc1ð Þ2 2þHc1ð Þ in k� r� k ð9Þ

and

@p
@r

¼
�12 r � k2

r

� 	
1� Hc2ð Þ2 2þHc2ð Þ in k� r� 1 ð10Þ

The above equations show that the pressure gradient is continuous at r ¼ k and
the values are equal to zero.

Considering the equilibrium of an element of the core in the fluid, we get
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@p
@r

¼ 2B
Hc1

in k� r� k ð11Þ

and

@p
@r

¼ � 2B
Hc2

in k� r� 1 ð12Þ

Eliminating @p
@r from Eqs. (9) and (11), rearranging the equation, we get

H3
c1 �

6
B

k2

r
� r

� �
þ 3

� �
Hc1 þ 2 ¼ 0 in k� r� k ð13Þ

Doing the same process for Eqs. (10) and (12), we get

H3
c2 �

6
B

r � k2

r

� �
þ 3

� �
Hc2 þ 2 ¼ 0 in k� r� 1 ð14Þ

The above two Eqs. (13) and (14) are called equations of core thickness, where
Hc1 ¼ Hc1ðr;BÞ and Hc21 ¼ Hc2ðr;BÞ can be evaluated by using any numerical
iterative technique.

Integrating Eqs. (9) and (10) with respect to r and applying the boundary con-
ditions on p, we get the following expressions for pressure distribution:

pðrÞ � 1 ¼ 12�
Zr
k

k2

r � r
� 	

1� Hc1ð Þ2ð2þHc1Þ
dr in k� r� k ð15Þ

and

pðrÞ � 1 ¼ 12�
Z1
r

r � k2

r

� 	
1� Hc2ð Þ2ð2þHc2Þ

dr in k� r� 1 ð16Þ

Since the pressure distribution is continuous at ‘r ¼ k’, one can obtain the
dimensionless radius of separation ‘k’ using Eqs. (15) and (16).

Zk
k

k2

r � r
� 	

1� Hc1ð Þ2ð2þHc1Þ
dr �

Z1
k

r � k2

r

� 	
1� Hc2ð Þ2ð2þHc2Þ

dr ¼ 0 ð17Þ

The root of above equation, ‘k’, is only a function of k and B. Equation (17) has
been solved numerically by using Newton–Raphson iterative technique and
Simpson’s rule of integration.
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Substituting Eqs. (9) and (10) in Eqs. (5) and (7) respectively, we get
In k� r� k, 0� z�H11

vr ¼
6 k2

r � r
� 	

1� Hc1ð Þ2 2þHc1ð Þ z� 1� Hc1

2

� �2

� 1� Hc1

2

� �2
 !

ð18Þ

In k� r� k, H11 � z�H=2

vc ¼
6 k2

r � r
� 	

1� Hc1ð Þ2 2þHc1ð Þ � 1� Hc1

2

� �2
 !

; ð19Þ

In k� r� 1,0� z�H12

vr ¼
�6 r � k2

r

� 	
1� Hc2ð Þ2 2þHc2ð Þ z� 1� Hc2

2

� �2

� 1� Hc2

2

� �2
 !

ð20Þ

In k� r� 1, H12 � z�H=2

vc ¼
�6 r � k2

r

� 	
1� Hc2ð Þ2 2þHc2ð Þ � 1� Hc2

2

� �2
 !

ð21Þ

where H11 , H12 are core heights in both regions. The above Eqs. (18)–(21) show
that vr ¼ 0 at r ¼ k, the surface of separation.

The squeeze force is obtained by integrating the pressure difference over the area
of the plane annulus, that is,

w ¼ 2p
Z1
k

ðp� 1Þr dr ð22Þ

Substituting for ðp� 1Þ from Eqs. (15) and (16), we get

w ¼ 24p
Zk
k

r
Zr
k

k2

r � r
� 	

ð1� Hc1Þ2ð2þHc1Þ
dr

0
@

1
Adrþ

Z1
k

r
Z1
r

r � k2

r

� 	
ð1� Hc2Þ2ð2þHc2Þ

dr

0
@

1
Adr

2
4

3
5

One can find these squeeze force values by using any of the numerical techniques.
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4 Results and Discussion

The core thickness for different values of inner wall radius (k) and Bingham number
(B) have been computed, and the results are shown in Figs. 4 and 5. From these
figures, we can observe that, firstly, core thickness for different values of Bingham
number increases from the inner wall to the point of separation and further
decreases along the radius to the periphery. The rate of change of core thickness for
different values of Bingham number decreases along the radius from the wall to the
point of separation and further again increases up to the periphery with increase in
inner wall radius. Hence, the core thickness in general for fluids with higher
Bingham numbers is more than the fluids with lower Bingham numbers. Further,
core thickness increases with the increase in the inner wall radius and the point of
separation shifts slightly toward the periphery.

The pressure distribution for different values of inner wall radius (k) and
Bingham number have been computed, and the results are depicted in Figs. 6 and 7.
From these figures, we can observe that pressure distribution for different values of

Fig. 4 Core thickness
distribution for inner radius
k = 0.1

Fig. 5 Core thickness
distribution for inner radius
k = 0.2
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Bingham number increases from the inner wall to the point of separation and further
decreases along the radius to the periphery.

Further, the rate of change of pressure distribution for different values of
Bingham number increases along the radius from the wall to the point of separation
and further again decreases up to the periphery with increase in inner wall radius.
Further, pressure distribution decreases with the increase in the inner wall radius.

The squeeze force distribution for different values of inner wall radius (k) and
Bingham number have been calculated, and values are shown in Table 1. Further,
squeeze force decreases with the increase in the inner wall radius. It can be noticed
that the rate of change of the squeeze force of different values of Bingham number
increases with increase in inner wall radius. Hence, the squeeze force in general for
fluids with higher Bingham numbers is more than the fluids with lower Bingham
numbers.

Fig. 6 Pressure distribution
for inner radius k = 0.1

Fig. 7 Pressure distribution
for inner radius k = 0.2

394 S. Pavan Kumar and K.P. Vishwanath



5 Conclusion

The shape of the rigid core formation along the radial direction is determined
numerically for various values of Bingham number and inner wall radius. It is
found that core thickness reaches maximum value at the point of separation.
Pressure distribution for different values of Bingham number and inner wall radius
has been calculated. It is observed that pressure increases along the radius from the
wall to the radius of separation and further again decreases up to the periphery. It is
noticed that core thickness and pressure distribution are not symmetric about radius
of separation. The rate of change of the squeeze force for different values of
Bingham number increases with increase in inner wall radius. Further, squeeze
force increases with increase in Bingham number.
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Capturing the Transient Behaviour
of MHD Double-Diffusive Free Convection
in Vertical Channel with Adiabatic
and Isothermal Walls and Mass Inflow
at Adiabatic Wall

G.S. Seth, S. Sarkar and A.K. Singha

Abstract An investigation has been undertaken to capture the transient behaviour
of MHD heat and mass transfer double-diffusive free convection flow of a viscous,
incompressible and electrically conducting fluid in vertical channel with adiabatic
and isothermal walls amid mass inflow at the adiabatic wall. Semi-analytical
solutions to the governing equations representing the flow are found by first
applying Laplace transformation and then inverting by INVLAP routine of
MATLAB. The numerical solution for fluid temperature, species concentration,
fluid velocity, Nusselt number, Sherwood number and skin friction are represented
by figures for a range of pertinent flow parameters. Behavioural changes on the flow
profiles occurring due to change in physical entities during transition from unsteady
to steady state are captured and discussed. Formation of boundary layers near the
channel walls for small values of time and their transition into main flow due to
large values of time are depicted.

1 Introduction

Study of hydrodynamic free convection flows within a vertical channel has drawn
attention of several researchers for the duration of past few decades due to its
diversified applications in natural phenomena and in a number of industrial

G.S. Seth � A.K. Singha
Department of Applied Mathematics, Indian Institute of Technology
(Indian School of Mines) Dhanbad, Dhanbad 826004, Jharkhand, India
e-mail: gsseth_ism@yahoo.com

A.K. Singha
e-mail: adityakumarsingha@gmail.com

S. Sarkar (&)
Department of Mathematics, School of Applied Sciences,
KIIT University, Bhubaneshwar 751024, India
e-mail: sarkar.ism@gmail.com

© Springer Nature Singapore Pte Ltd. 2018
M.K. Singh et al. (eds.), Applications of Fluid Dynamics, Lecture Notes
in Mechanical Engineering, https://doi.org/10.1007/978-981-10-5329-0_29

397



processes such as cross-hatching on ablative surfaces, transpiration, heat pipes in
thermal conduction of spacecrafts and rocket boosters, film vaporization in incin-
eration chambers, etc. Due to its wide applications, numerous investigations have
been done towards the understanding of hydrodynamic flows in a vertical channel.
One of the earliest studies on hydrodynamic convective flow was reported by Tao
(1960). Aung and Worku (1985) presented a numerical study dealing with mixed
convection in a vertical channel through asymmetric wall heating with uniform heat
flux. Hamadah and Wirtz (1991) studied the laminar fully developed mixed con-
vective flow in a vertical channel where direction of buoyancy force is opposite to
that of main flow. Guria and Jana (2006) analyzed two-dimensional mixed con-
vective flow and heat transfer in a vertical curly channel subjected to passing heat
waves. Lin et al. (2009) simulated the flow of fluids inside a vertical microchannel.
Recently, Adesanya (2015) investigated the unsteady natural convection flow of
heat breeding fluid through a porous vertical channel with temperature jump and
velocity slip.

Investigation of magnetohydrodynamic (MHD) flow of an electrically con-
ducting fluid within a channel is of massive curiosity because it has innumerable
practical applications in astrophysical and geophysical fluid dynamics, plasma
aerodynamics, nuclear engineering, MHD power generator and manufacturing
process in industry. Motivated by such applications, Bathaiah (1980) analyzed the
unsteady two-dimensional flow through a straight channel with porous flat walls
under uniform transverse magnetic field. Hernandez and Zamora (2005) discussed
different aspects of laminar air flow induced by free convection in a vertical channel
under non-uniform heating. Umavathi and Malashetty (2005) investigated MHD
mixed convection in a vertical channel using perturbation technique and consid-
ering Ohmic and viscous dissipations. Barletta and Celli (2008) studied forced and
free convective flow in a vertical channel with isothermal and adiabatic walls. Seth
and Ansari (2009) studied the effects of Hall current and rotation on magnetohy-
drodynamic convective flow in a channel. Seth et al. (2010) examined unsteady
MHD convection flow within two parallel plates rotating about a vertical axis
including heat source/sink, porous medium and slip boundary conditions. Srinivas
and Muthuraj (2010) analyzed MHD mixed convection radiative flow in a vertical
channel implanted in a porous medium using HAM. Das et al. (2015) studied mixed
convective MHD nanofluid flow in a vertical channel. Seth et al. (2016) investi-
gated the effects of Hall current and rotation on unsteady magnetohydrodynamic
convective flow of a heat absorbing fluid embedded in a fluid-saturated porous
medium. Seth et al. (2016) also investigated joint forced and free convection
Couette–Hartmann flow inside a rotating channel incorporating Hall effects and
finitely conducting walls.

The goal of the present work is directed to study the transient behaviour of
hydromagnetic double-diffusive free convection flow of a viscous, incompressible
and electrically conducting fluid in a vertical channel with adiabatic and isothermal
walls, taking mass inflow at adiabatic wall into account. The main feature of this
research is to capture the time-bound effects of different essential parameters on
boundary layer formation, fluid flow, heat transfer and mass transfer.
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2 Problem Formulation and Its Solution

Consider transient hydromagnetic free convection flow with heat and mass transfer
of an electrically conducting, viscous and incompressible fluid within an infinite
vertical channel of width L. Coordinate system is opted in such a way that x0-axis is
directed upward along the walls and y0-axis at right angles to plane of the walls in
the fluid. Externally, an uniform transverse magnetic field B0 (parallel to y0-axis) is
applied across the walls. Initially, i.e. at time t0 � 0, fluid is at rest and the walls of
the channel are maintained at uniform temperature T 0

0 and uniform species con-
centration C0

0. When t0 [ 0, the temperature of the wall at y0 ¼ L is raised to
uniform temperature T 0

w and maintained thereafter (isothermal), whereas no heat is
allowed to escape to surrounding at the wall y0 ¼ 0, i.e. @T

0
@y0 ¼ 0 (adiabatic). Also, at

time t0 [ 0; there is uniform mass inflow at the adiabatic wall y0 ¼ 0 which
increases species concentration at the surface of the wall y0 ¼ 0 to regular species
concentration C0

w and is maintained subsequently while the species concentration at
the surface of the wall y0 ¼ L is maintained at C0

0. A schematic diagram of the
problem is illustrated in Fig. 1.

Taking into consideration all the aforementioned suppositions, the governing
equations for transient hydromagnetic free convection double-diffusive flow of an
electrically conducting, viscous and incompressible fluid are given by

@u0

@t0
¼ m

@2u0

@y0 2
� rB2

0

q
u0 þ gb1 T 0 � T 0

0

� �þ gb2 C0 � C0
0

� �
; ð1Þ

qcp
@T 0

@t0
¼ k

@2T 0

@y0 2
; ð2Þ

@C0

@t0
¼ D

@2C0

@y0 2
; ð3Þ

Fig. 1 Geometry of the
problem
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where u0; T 0;C0; cp;D; g; k; b1; b2; m; q and r are, respectively, fluid velocity in
x0-direction, fluid temperature, species concentration, specific heat at constant
pressure, chemical molecular diffusivity, acceleration due to gravity, thermal con-
ductivity of the fluid, volumetric coefficient of thermal expansion, volumetric
coefficient of expansion for species concentration, kinematic coefficient of viscos-
ity, fluid density and electrical conductivity.

Initial and boundary conditions for the problem describing the fluid flow are
delineated underneath

u0 ¼ 0; T 0 ¼ T 0
0; C0 ¼ C0

0 for 0� y0 � L and t0 � 0; ð4aÞ

u0 ¼ 0;
@T 0

@y0
¼ 0; C0 ¼ C0

w at y0 ¼ 0 and t0 [ 0; ð4bÞ

u0 ¼ 0; T 0 ¼ T 0
w; C0 ¼ C0

0 at y0 ¼ L and t0 [ 0; ð4cÞ

Equations (1)–(3), in non-dimensional form, could be outlined as

@u
@t

¼ @2u
@g2

�M2uþGr T þGcC; ð5Þ

@T
@t

¼ 1
Pr

@2T
@g2

; ð6Þ

@C
@t

¼ 1
Sc

@2C
@g2

; ð7Þ

where

g ¼ y0=L; u ¼ u0L=m; t ¼ t0m=L2; T ¼ T 0 � T 0
0

� �
= T 0

w � T 0
0

� �
; C ¼ C0 � C0

0

� �
= C0

w � C0
0

� �
;

Gr ¼ gb1L
3 T 0

w � T 0
0

� �
=m2; Gc ¼ gb2L

3 C0
w � C0

0

� �
=m2; M2 ¼ rB2

0L
2=qm

where M2;Gr;Gc;Pr and Sc are, respectively, magnetic parameter, thermal Grashof
number, solutal Grashof number, Prandtl number and Schmidt number.

Initial and boundary conditions (4a)–(4c), in dimensionless form, could be
scripted as

u ¼ 0; T ¼ 0; C ¼ 0 for 0� g� 1 and t� 0; ð8aÞ

u ¼ 0;
@T
@g

¼ 0; C ¼ 1 at g ¼ 0 and t[ 0; ð8bÞ

u ¼ 0; T ¼ 1; C ¼ 0 at g ¼ 1 and t[ 0; ð8cÞ
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Equations (5)–(7), after taking Laplace transform and using initial conditions
(8a), become

d2�u
dg2

� sþM2� �
�uþGr T þGcC ¼ 0; ð9Þ

d2T
dg2

� Pr sT ¼ 0; ð10Þ

d2 �C
dg2

� Sc s �C ¼ 0; ð11Þ

where �uðg; sÞ ¼ R1
0 uðg; tÞe�stdt, Tðg; sÞ ¼ R1

0 Tðg; tÞe�stdt, Cðg; sÞ ¼ R1
0 Cðg; tÞ

e�stdt and s[ 0 (s being Laplace transform parameter).
Boundary conditions (8b) and (8c), upon the application of Laplace transfor-

mation, take the following shape

�u ¼ 0;
@T
@g

¼ 0; C ¼ 1=s at g ¼ 0 ð12aÞ

�u ¼ 0; T ¼ 1=s; C ¼ 0 at g ¼ 1 ð12bÞ

Solution of Eqs. (9)–(11) put through the boundary conditions (12a) and (12b) is
given by

�uðg; sÞ ¼ �u1ðg; sÞþ �u2ðg; sÞþ �u3ðg; sÞ; ð13Þ

Tðg; sÞ ¼ cosh
ffiffiffiffiffiffiffiffi
s Pr

p ðgÞ� �

s cosh
ffiffiffiffiffiffiffiffi
s Pr

p� � ; ð14Þ

Cðg; sÞ ¼ sinh
ffiffiffiffiffiffiffiffi
s Sc

p ð1� gÞ� �

s sinh
ffiffiffiffiffiffiffiffi
s Sc

p� � ; ð15Þ

where

�u1ðg; sÞ ¼ �G1 sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþM2

p
ð1� gÞ

� �
= cosh

ffiffiffiffiffiffiffiffi
Pr s

p� �
sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþM2

p� �� �
;

�u2ðg; sÞ ¼ �G1 sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþM2

p
ðgÞ

� �
= sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþM2

p� �
þG1 cosh

ffiffiffiffiffiffiffiffi
s Pr

p
ðgÞ

� �
= cosh

ffiffiffiffiffiffiffiffi
s Pr

p� �
;

�u3ðg; sÞ ¼ �G2 sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþM2

p
ð1� gÞ

� �
= sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþM2

p� �
þG2 sinh

ffiffiffiffiffiffiffiffi
s Sc

p
ð1� gÞ

� �
= sinh

ffiffiffiffiffiffiffiffi
s Sc

p� �
;

G1 ¼ Gr
s sð1� PrÞþM2ð Þ ; G2 ¼ Gc

s sð1� ScÞþM2ð Þ
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The Laplace inverse of solutions (13)–(15) cannot be obtained analytically in
terms of known elementary functions. Therefore, we have resorted to the most
popular tool for evaluating the inverse of Laplace transformation—the INVLAP
subroutine of MATLAB to find the inverse Laplace of solutions (13)–(15)
numerically. Now, skin friction ðsÞ and rate of heat transfer (Nu) and rate of mass
transfer (Sh) are given by:

s0 ¼ @u
@g

����
g¼0

; s1 ¼ @u
@g

����
g¼1

; ð16Þ

Nu ¼ Nu1 ¼ @T
@g

����
g¼1

and Nu0 ¼ 0; ðSince wall g ¼ 0 is a diabaticÞ ð17Þ

Sh0 ¼ @C
@g

����
g¼0

; Sh1 ¼ @C
@g

����
g¼1

ð18Þ

In order to find s0; s1;Nu; Sh0 and Sh1, the solutions (13)–(15) are first differ-
entiated analytically w.r.t. η and then inverted using INVLAP.

3 Discussion of Results

With the purpose of examining behavioural changes on the flow profiles occurring
due to change in physical entities during unsteady state to steady state transition,
numerical values of fluid velocity u, fluid temperature T, species concentration C,
rate of mass transfer (Sh), rate of heat transfer (Nu) and skin friction (s) are com-
puted using INVLAP subroutine of MATLAB and are illustrated in Figs. 2, 3, 4, 5,
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Fig. 2 Temperature profiles
when Pr = 0.71
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Fig. 10 Rate of mass transfer
(Sh) versus time (t) at η = 0

Fig. 11 Rate of mass transfer
(Sh) versus time (t) at η = 1

Fig. 12 Rate of heat transfer
(Nu) versus time (t) at η = 1
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6, 7, 8, 9, 10, 11, 12, 13 and 14 for a supposed range of values of pertinent flow
parameters.

Indeed, Figs. 2, 3 and 4 offer a luminous sight into the formation of thermal,
solutal and hydrodynamic boundary layers near the channel walls for small values
of time. It is evident from Fig. 2 that as t increases, T increases throughout the
channel. It is also perceived that temperature profiles show a gradual rise in tem-
perature with time near the adiabatic wall (g = 0) while it falls uniformly from its
maximum value at the isothermal wall (g = 1). It is noted from Fig. 3 that
C increases as t increases. Due to uniform species inflow at g = 0 for t > 0, species
concentration is maximum at g = 0 and it uniformly decreases to its minimum value
at g = 1. The steepness of concentration profiles from g = 0 to g = 1 decreases with
the increase in time.

Figure 4a, b depicts velocity profiles for small values and large values of time
t correspondingly. It is perceived from Fig. 4a that as t increases there is a sharp rise
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Fig. 13 Skin friction at η = 0, a skin friction at η = 0 when Pr = 0.71, Sc = 0.6, b skin friction at
η = 0 when Gr = 2, Gc = 2, M2 = 4

0 0.5 1 1.5
-0.5

0

0.5

1

1.5

2

2.5

3

1

2

3

4
5

6
7-τ

1

t

F=F(Gr,Gc,M2) 1. F(2,2,2)2. F(3,2,2)3. F(4,2,2)4. F(2,3,2)5. F(2,4,2)6. F(2,2,4)7. F(2,2,6)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-1

-0.5

0

0.5

1

1.5

1
23

4

5-τ
1

t

F=F(Pr,Sc) 1. F(0.1, 0.6)2. F(0.5, 0.6)3. F(0.71,0.6)4. F(0.71,0.22)5. F(0.71,0.96)/4

(a) (b)

Fig. 14 Skin friction at η = 1, a skin friction at η = 1 when Pr = 0.71, Sc = 0.6, b skin friction at
η = 1 when Gr = 2, Gc = 2, M2 = 4

406 G.S. Seth et al.



in u near the walls of the channel which induces a gradual rise in u in rest of the
region of the channel. This is due to the fact that adiabatic and isothermal wall
conditions at g = 0 and g = 1 cause a rise in temperature at the walls, and there is a
rise in species concentration due to species inflow at g = 0. This pilots a significant
thrust in fluid velocity as time progresses. The rise in fluid velocity happens
gradually which leads to the formation of beautiful hydrodynamic boundary layers
near the walls of the channel for small values of time t which then continuously
transfer their velocity gradients to the rest of the channel and finally merge to form
the main flow (Fig. 4b). Figure 4a, b candidly explains the phenomena of the
transition of boundary layer flow to main flow, where it is perceived from Fig. 4b
that fluid velocity has reached steady state where there is negligible increase in fluid
velocity for increase in time and flow within the channel is symmetric and in
equilibrium.

Figure 5a, b illustrates the effect of thermal buoyancy force on fluid velocity for
small and large values of time. Perceivably, u increases on increasing Gr
throughout the channel as fluid flow is assisted by the thermal buoyancy force.
However, for small values of time t, higher velocity peaks are observed near the
isothermal wall (g = 1) (when Gr > 2) since temperature rises gradually at the
adiabatic wall (g = 0). This leads to the formation of boundary layers near the walls
of the channel for small values of time. Moreover, at Gr = 2 (and Gc = 2 fixed) the
thermal and solutal diffusions are of equal strength so comparable velocity peaks at
both walls g = 0 and g = 1 are expected but adiabatic wall condition at g = 0 gives
impetus to fluid velocity near g = 0, so a higher velocity peak is observed. As time
increases (see Fig. 5b), the effect of thermal buoyancy force becomes uniform
throughout the channel and velocity peaks which were titled towards isothermal
wall gradually tend to assume a uniform peak when approaching steady state.

Figure 6a, b demonstrates the consequences of solutal buoyancy force on fluid
velocity for small and large values of time. It is noticed that u increases on
increasing Gc throughout the channel as fluid flow is assisted by the solutal
buoyancy force. However, for small values of time t, higher velocity peaks are
observed near the adiabatic wall (g = 0) (when Gc > 2) due to uniform species
inflow and boundary layers are noted. As time increases (see Fig. 6b), velocity
peaks which were titled towards adiabatic wall gradually tend to assume a uniform
peak in order to approach steady state. This feature is comparable with the earlier
result as effect of solutal buoyancy force like thermal buoyancy force becomes
uniform throughout the channel along with the passing of time.

Figure 7 describes the effect of magnetic field on fluid velocity for small and large
values of time. It is evident that u decreases on increasing M2 throughout the
channel. Therefore, it is implicative that magnetic field tends to reduce fluid velocity
throughout the channel which is due to the action of Lorentz force. It is also seen that
velocity profiles are flattened in the most of the region of the channel for higher
values of magnetic field which supports the popular notion that magnetic field helps
in controlling undulations in boundary layer flow by making the fluid flow laminar.
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Figures 8 and 9 portray the effects of thermal and solutal diffusions on fluid
velocity for small time. It is apparent that u decreases throughout the channel on
increasing Pr and Sc, respectively. Pr is the quotient of the viscosity to thermal
diffusivity, and Sc is the quotient of viscosity to solutal (molecular) diffusivity. This
implies that thermal and solutal diffusions step up fluid velocity throughout the
channel. Figures 10 and 11 present the rate of mass transfer (Sh) at the adiabatic
(g ¼ 0) and isothermal (g ¼ 1) walls of the channel w.r.t. time t for various values of
Sc. It is perceived from Fig. 10 that for small values of time t, Sh is lower for lower
values of Sc at g ¼ 0, but it is seen from Fig. 11 that Sh is elevated for lower values of
Sc at g ¼ 1. However, for large values of time t, Sh at both the walls reaches steady
state earlier for lesser values of Sc than for greater values of Sc. This observation is in
concurrence with the fact that fluids with higher solutal diffusivity (low Sc) will
transfer mass more rapidly than fluids with lower solutal diffusivity (higher Sc).

Figure 12 presents the rate of heat transfer (Nu) at the isothermal wall (g ¼ 1)
w.r.t. time t for different values of Pr. It is observed from Fig. 12 that for small
values of time t, Nu is higher for higher values of Pr. It is also illustrious that for
higher values of time t, Nu for lower values of Pr, tends to zero earlier than that
for higher values of Pr. This observation is in concurrence with the fact that fluids
with higher thermal diffusivity (low Pr) will loose (transfer) heat at a greater rate
than fluids with lower thermal diffusivity (higher Pr).

Figures 13 and 14 present skin friction at the adiabatic (g ¼ 0) and isothermal
(g ¼ 1) walls with respect to time t for a given choice of pertinent flow parametric
vales. It is evident from Figs. 13a to 14b that s0 and s1 increase in magnitude as Gr
and Gc increase, whereas it decreases in magnitude as M2, Pr and Sc increase. This
implies that thermal and solutal buoyancy force and thermal and solutal diffusivities
enrich skin friction, whereas magnetic field decreases it. Such kind of an outcome
could be easily deciphered by the fact that buoyancy forces be it thermal or solutal
and diffusivities related to thermal and mass are albeit excellent boosters for fluid
velocity. The more the velocity, the more is the friction with the walls and,
therefore, skin friction is more. For a higher magnetic field, the value of skin
friction reaches steady state at a faster rate which is in concurrence with the fact that
magnetic field resists the flow by virtue of Lorentz force.

4 Conclusions

Transient behaviour of MHD heat and mass transfer double-diffusive free con-
vection flow of a viscous, incompressible and electrically conducting fluid in ver-
tical channel with adiabatic and isothermal walls amid mass inflow at the adiabatic
wall is captured. A marvellous insight into the formation of thermal, solutal and
hydrodynamic boundary layers near the channel walls for small values of time is
provided through figures, and their behavioural changes with respect to pertinent
flow parameters is recorded. The rise in fluid velocity happens gradually which
leads to the formation of beautiful hydrodynamic boundary layers near the walls of
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the channel for small values of time t which then continuously transfer their
velocity gradients to the rest of the channel and finally merge to form the main flow.
Thermal and solutal buoyancy forces and thermal and solutal diffusivities tend to
enhance fluid velocity, whereas magnetic field has a reverse effect on it. Higher
magnetic field suppresses velocity and aids in reaching steady state.
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Effect of Newtonian Cooling/Heating
on MHD Free Convective Flow Between
Vertical Walls with Induced Magnetic
Field

Sarveshanand and A.K. Singh

Abstract An analysis is performed for the steady MHD free convective flow
between two vertical walls assuming that the fluid is viscous, incompressible, and
electrically conducting. The impacts of the Newtonian cooling/heating and induced
magnetic field have been considered in the mathematical formulation of the prob-
lem. The nondimensionalized simultaneous differential equations, governing the
problem, have been solved analytically for the temperature, the velocity, and the
induced magnetic field. The manifestations have been made for the induced current
density, the skin-friction, and the mass flux. The impact of the Hartmann number,
the Biot number, and the magnetic Prandtl number on the velocity, the induced
magnetic field, and the induced current density diagrams have been presented by
considering a temperature-dependent source/sink. It is inspected that the velocity,
the induced magnetic field, and the induced current density diagrams have
decreasing tendency with rise in the value of the Hartmann number. Further, it is
also noticed that with enhancement in the magnetic Prandtl number the velocity
diagram decreases, but the induced magnetic field and the induced current density
diagrams have increasing nature. It is beheld that the impression of Newtonian
cooling/heating is to reduce/raise the velocity as well as the induced magnetic field
and the induced current density. The impacts of the governing parameters on the
skin-friction and mass flux have also been concluded dealing with their numerical
values given in the tables.
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1 Introduction

A substantial meditation has been obtained in explications on the natural convective
flows of electrically conducting, viscous, and incompressible fluids in the existence
of external magnetic fields. Such flows in the literature attracted many researchers
because of their enterprising utilities in varied subdivisions of the science and
technology. Branches having practical applications of such specious flows are
geophysics, nuclear science, medical science, combustion modeling, etc. By
enforcing an external magnetic field on such type of fluid motions, the heat transfer
and the skin-friction can be reduced. Falling under the complexity of the problems,
the free convection studies have been handled theoretically as well numerically and
thus studied repeatedly due to its industrial and geophysical applications. These
analyses have frequently focused on the flow geometry and the dynamical pro-
cesses. Further, many good considerations in the literature have been received in the
studies of free convective flows of electrically conducting fluids in the presence of
external magnetic field. Such coupled flows, deals with the governing equations,
which carry more complexity than the nonmagnetic fluid flow equations. In one of
the earlier finding in MHD, Hartmann et al. (1937) deliberated theoretical as well as
an experimental description by considering the hydromagnetic flow between par-
allel plates. This work provided an underlying intellectuality for flourish of various
hydromagnetic devices. Further, Ostrach (1952) analyzed the steady laminar con-
vection between two vertical walls of a viscous incompressible fluid. There are
other related earlier fabrications in free convective deliberations of the flow between
vertical walls by paying attention on the impact of a uniform external magnetic field
(Osterle and Young 1961; Nath 1974; Mishra and Mohapatra 1975; Jha 1991;
Singh and Singh 1991; Paul et al. 1996). Sacheti et al. (1994) focused on an
unsteady hydromagnetic natural convective flow with stationary heat flux and
deliberated a precise solution. A unified view to the analytical solutions of a
magnetohydrodynamic free convective flow has been described by Chandran et al.
(2001).

In most of the discussed explorations related to the magnetohydrodynamic natural
convective flows, the authors have ignored the impact of induced magnetic field for
simple mathematical analysis of the problem. However, the induced electric current
develops a magnetic field in the fluid due to which its motion alters the actual
magnetic field; simultaneously their flow in the magnetic field develops mechanical
forces which are responsible to change the motion of fluid. So, it is required to
include, in various physical circumstances, the impact of induced magnetic field
while formulating magnetohydrodynamic equations. Various analysis of MHD
natural convective flows between vertical walls with the induced magnetic field have
been presented by taking into account different aspects of the flow formation (Ghosh
et al. 2010; Singh et al. 2010; Kwanza and Balakiyema 2012; Kumar and Singh
2013; Sarveshanand and Singh 2015). Recently, the impact of induced magnetic
field on the free convection with the Newtonian heating/cooling in vertical con-
centric annuli has been explored by Kumar and Singh (2015).
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The present paper analyzes the steady magnetohydrodynamic natural convective
flow between two vertical walls of a viscous, incompressible, and electrically
conducting fluid by considering the impacts induced magnetic field as well as the
Newtonian cooling/heating in the visitation of a temperature-dependent source/sink.
The expressions for the velocity field, the induced magnetic field, the temperature
field, the induced current density, the skin-friction, and the mass flux in dimen-
sionless form have been obtained by solving the governing equations analytically.
The impact of the Hartmann number, the Biot number, and the magnetic Prandtl
number on alteration of the velocity, the induced magnetic field, and the induced
current density profiles have been demonstrated in the graphs. The influences of
various parameters on the numerical values of the skin-friction and mass flux have
been discussed by means of the tabulated values.

2 Mathematical Formulation

We are paying attention the steady two-dimensional natural convective flow of a
viscous, incompressible, and electrically conducting fluid between two vertical
walls separated by a distance h, by considering the impact of the Newtonian
cooling/heating as well as the induced magnetic field in the presence of source/sink.
The x0-axis is taken along the left wall, vertically in the upward direction and
perpendicular to this direction into the fluid, the y0-axis is taken. In the y0-direction,
a uniform magnetic field has employed of with strength B0

0. At the wall y
0 ¼ 0, the

impact of the Newtonian cooling/heating and at the wall y0 ¼ h, a constant tem-
perature T 0

h have been considered. The dependency of the variables representing the
flow has considered only on the co-ordinate y0, as the walls are assumed to be of
infinite length. Let u0 be the velocity component along x0-direction. Thus, the
velocity and magnetic fields are decomposed as ðu0; 0; 0Þ and Bx0 ;B0

0; 0
� �

,
respectively.

The Physical model is shown in Fig. 1. Under these considerations and with the
boundary layer and the Boussinesq approximations, the governing equations for the
model are given by

#
d2u0

dy0 2
þ gb T 0 � T 0

0

� �þ leB
0
0

q
dBx0

dy0
¼ 0; ð1Þ

B0
0
du0

dy0
þ 1

rle

d2Bx0

dy0 2
¼ 0; ð2Þ

d2T 0

dy0 2
þ s0

qcp
T 0 � T 0

0

� � ¼ 0; ð3Þ
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and the boundary conditions are given by

u0 ¼ Bx0 ¼ 0; dT 0

dy0 ¼ a T 0 � T 0
0

� �
; at y0 ¼ 0;

u0 ¼ Bx0 ¼ 0; T 0 ¼ T 0
h; at y0 ¼ h:

(
ð4Þ

To obtain the governing equations in dimensionless form, we use the nondi-
mensional parameters given as

y ¼ y0

h
; u ¼ #u0

gbh2 T 0 � T 0
0

� � ; T ¼ T 0 � T 0
0

T 0
h � T 0

0
; B ¼ #2Bx0

gbh3B0
0 T 0 � T 0

0

� � ; ð5Þ

The dimensionless forms of the governing equations are obtained as

d2u
dy2

þHa2
dB
dy

þ T ¼ 0; ð6Þ

d2B
dy2

þPm
du
dy

¼ 0; ð7Þ

d2T
dy2

þ ST ¼ 0; ð8Þ

with nondimensionalized form of the boundary conditions as

u ¼ B ¼ 0; dT
dy ¼ BiT ; at y ¼ 0;

u ¼ B ¼ 0; T ¼ 1; at y ¼ 1

(
ð9Þ

Fig. 1 Physical model
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In the above equations, the physical parameters in dimensionless form are

S ¼ s0L2

qCP
; Ha2 ¼ leh

2B0 2
0

#2q
; Pm ¼ #rle; Bi ¼ ah: ð10Þ

Serially the source/sink parameter, the Hartmann number, the magnetic Prandtl
number, and the Biot number.

3 Method of Solution

Equations (6)–(9) have been solved analytically by the theory of simultaneous
ODE. Due to the dependency, the solution of Eq. (8) on the value of the source/sink
parameter S, according as it takes positive or negative values, we have considered
the cases when there is a temperature-dependent source or sink.

3.1 Case I—When Temperature-Dependent-Source
is Present (S[ 0)

The demonstrations for u, B, and T in dimensionless form are as

u ¼ E26 exp E3yð ÞþE25 exp �E3yð ÞþE4 cosð
ffiffiffi
S

p
yÞ

þE5 sin
ffiffiffi
S

p
y

� �
þE27;

ð11Þ

B ¼ E28 exp E3yð ÞþE29 exp �E3yð ÞþE8 cosð
ffiffiffi
S

p
yÞ

þE9 sin
ffiffiffi
S

p
y

� �
þE24;

ð12Þ

T ¼ E1 cosð
ffiffiffi
S

p
yÞþE2 sin

ffiffiffi
S

p
y

� �
: ð13Þ

The induced current density is demonstrated as

J ¼ � dB
dy

¼ �E3E28 exp E3yð ÞþE3E29 exp �E3yð Þ

þE8

ffiffiffi
S

p
sinð

ffiffiffi
S

p
yÞþE9

ffiffiffi
S

p
:

ð14Þ

The expressions for the skin-friction on both the walls are given by
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s1 ¼ du
dy

� �
y¼0

¼ E3ðE26 � E25ÞþE5

ffiffiffi
S

p
; ð15Þ

s2 ¼ � du
dy

� �
y¼1

¼ E3 E25 exp �E3ð Þ � E26 exp E3ð Þf g

þ
ffiffiffi
S

p
E4 sin

ffiffiffi
S

p� �
� E5 cosð

ffiffiffi
S

p
Þ

n o
:

ð16Þ

The expression for the mass flux is given by

Q ¼
Z1

0

udy ¼ E26 exp E3ð Þ � 1f g
E3

þ E25 1� exp �E3ð Þf g
E3

þ E5 1� cosð ffiffiffi
S

p Þ	 

ffiffiffi
S

p

þ E4 sin
ffiffiffi
S

p� �
ffiffiffi
S

p þE27:

ð17Þ

3.2 Case II—When Temperature-Dependent Sink is Present
(S\0)

If S\0, then S ¼ �F, where F[ 0. So in nondimensional form, the expressions
for u, B, T, and the induced current density are given by

u ¼ F24 exp F3yð ÞþF23 exp �F3yð ÞþF4 coshð
ffiffiffiffi
F

p
yÞ

þF5 sinh
ffiffiffiffi
F

p
y

� �
þF25;

ð18Þ

B ¼ F26 exp F3yð ÞþF27 exp �F3yð ÞþF7 coshð
ffiffiffiffi
F

p
yÞ

þF8 sinh
ffiffiffiffi
F

p
y

� �
þF22;

ð19Þ

T ¼ F1 coshð
ffiffiffiffi
F

p
yÞþF2 sinh

ffiffiffiffi
F

p
y

� �
; ð20Þ

J ¼ �F3F26 exp F3yð ÞþF3F27 exp �F3yð Þ � F7

ffiffiffiffi
F

p
sinhð

ffiffiffiffi
F

p
yÞ

� F8

ffiffiffiffi
F

p
cosh

ffiffiffiffi
F

p
y

� �
:

ð21Þ

Further, the skin-friction and mass flux in this case are given by
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s1 ¼ F3ðF24 � F23ÞþF5

ffiffiffiffi
F

p
; ð22Þ

s2 ¼ F3 F23 exp �F3ð Þ � F24 exp F3ð Þf g
�

ffiffiffiffi
F

p
F4 sinh

ffiffiffiffi
F

p� �
þF5 coshð

ffiffiffiffi
F

p
Þ

n o
;

ð23Þ

Q ¼ F24 exp F3ð Þ � 1f g
F3

þ F23 1� exp �F3ð Þf g
F3

þ F5 cosh
ffiffiffiffi
F

p� �� 1
	 


ffiffiffiffi
F

p

þ F4 sinh
ffiffiffiffi
F

p� �
ffiffiffiffi
F

p þF25:

ð24Þ

Here the constant used are given in the appendix.

4 Results and Discussion

The considered MHD natural convective model is characterized by a number of
physical parameters. We restrict us by considering two cases and taking two simple
numerical values of the source/sink parameter as S ¼ 1 and S ¼ �1, respectively,
showing that there is source or sink. This leads simply to analyze the effect of most
significant parameters of the problem such as the Hartmann number, the Biot
number, and the magnetic Prandtl number.

Figure 2 shows the variation of velocity profile with the Hartmann number for
varied values of the Biot number by considering the temperature-dependent source.
The graph clearly shows that the velocity profile decreases with rise in the value of
Hartmann number. It is also noticed that with rise in the positive value of the Biot
number the velocity profile is found to be a deceasing nature showing that
the velocity profile has diminishing character in case of Newtonian cooling. With
enhancement in the negative value of Biot number, the velocity profile is found to be
growing nature showing that the velocity profile rises in case of Newtonian heating.

Fig. 2 Velocity profile for Bi
and Ha ðS[ 0Þ
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A similar behavior from the velocity diagram is noticed with the Hartmann
number and Biot number as plotted in Fig. 3 showing the case when there is a
temperature-dependent sink. It is observed that in this case also the velocity profile
has a decreasing tendency with the rise in the value of Hartmann number as well as
the positive value of the Biot number while has a reverse aptitude with the rise in
the negative value of the Biot number.

Figures 4 and 5 exhibit the alteration of velocity profile with the magnetic
Prandtl number for multiple values of the Biot number by considering the presence
of source/sink. For these cases, it is apparent from the graphs that the velocity
reduces with growth in the magnetic Prandtl number.

Figures 6 and 7 show the nature of the velocity profile for the higher positive
values of the Biot number. In both the cases, when there is a source or sink, the
graphs display that the Newtonian cooling at higher level gives almost same
velocity profiles.

Figures 8 and 9 show a similar behavior of the velocity profile at the very low
negative values of the Biot number. These graphs clearly also show that the velocity
profile follows the nearly the same curves in case of Newtonian heating to a higher
level.

Fig. 3 Velocity profile for Bi
and Ha ðS\0Þ

Fig. 4 Velocity profile for Bi
and Pm ðS[ 0Þ
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Figures 10 and 11 display the change in the magnetic field diagram with
Hartmann number and the Biot number having, respectively, the existence of source
and sink. It is seen from the graphs that with expansion in the value of Hartmann
number, the induced magnetic field profile decreases. Also, with rise in the negative
value of Biot number, the induced magnetic field profile is found to be an

Fig. 5 Velocity profile for Bi
and Pm ðS\0Þ

Fig. 6 Velocity profile at
high Bi ðS[ 0Þ

Fig. 7 Velocity profile at
high Bi ðS\0Þ
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increasing nature showing that induced magnetic field profile increases in case of
heating. But with the growth in the positive value of Biot number, the induced
magnetic field profile is found to be a diminishing nature which shows that the
cooling leads to decrease the induced magnetic field profile.

Fig. 8 Velocity profile at
low Bi ðS[ 0Þ

Fig. 9 Velocity profile at
low Bi ðS\0Þ

Fig. 10 Induced magnetic
field profile for Bi and Ha
ðS[ 0Þ
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Figures 12 and 13 specify the alteration of magnetic field diagram with the
magnetic Prandtl number having a source/sink. When there is a source or sink, it is
inspected that the induced magnetic profile decreases with rise in the value of
magnetic Prandtl number. The character of the induced magnetic profile for the
higher positive values of the Biot number has been demonstrated in Figs. 14 and
15. The presence of source or sink shows that the Newtonian cooling at higher level

Fig. 11 Induced magnetic
field profile for Bi and Ha
ðS\0Þ

Fig. 12 Induced magnetic
field profile for Bi and Pm
ðS[ 0Þ

Fig. 13 Induced magnetic
field profile for Bi and Pm
ðS\0Þ
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leads the nearly the same induced magnetic profile. Figures 16 and 17 show an
identical behavior of the magnetic field profile at the very low negative values of the
Biot number. The graphs clearly gesture that the induced magnetic field profile
approaches the nearly same curves with Newtonian heating at higher level. The
appearance of the induced magnetic field profile near the wall at y = 0 is parabolic
in upward direction, but near the wall at y = 1 it is parabolic downward exposing
that the direction of the induced magnetic field has changed.

Fig. 14 Induced magnetic
field profile at high Bi ðS[ 0Þ

Fig. 15 Induced magnetic
field profile at high Bi ðS\0Þ

Fig. 16 Induced magnetic
field profile at low Bi ðS[ 0Þ
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Figures 18 and 19 point out the change of induced current density profile with
varied values of the Biot number and the Hartmann number keeping a source/sink.
It is noticed that the current density diagram reduces with rise in the value of
Hartmann number. With magnification in the negative value of Biot number, the
current density diagram is found to be an increasing character showing that heating
leads to enhance the induced current density profile.

Fig. 17 Induced magnetic
field profile at low Bi ðS\0Þ

Fig. 18 Induced current
density profile for Bi and Ha
ðS[ 0Þ

Fig. 19 Induced current
density profile for Bi and Ha
S\0ð Þ

Effect of Newtonian Cooling/Heating on MHD Free Convective Flow … 423



Further, it is observed that with rise in the positive value of the Biot number, the
current density diagram is found to be of a diminishing character which shows that
with cooling current density diagram decreases. Figures 20 and 21 show the change
of current density graphs with the magnetic Prandtl number having a source/sink. It
is found that as the value of magnetic Prandtl number rises, the current density
diagram increases not only in the presence of source but also in the presence of
sink.

Figures 22 and 23 show the nature of the induced current density diagram for the
Newtonian cooling at higher level. The graphs notify that with cooling at higher
level there is no difference in the behavior of the induced current density profile in
the existence of source/sink. A very similar behavior of the induced current density
diagram at the very low negative values of the Biot number is shown in Figs. 24
and 25.

Figures 24 and 25 clearly show that the current density diagram is almost same
for higher level heating. It is also noticed from the induced current density profile
that positive value of the current density founded maximum nearly in the middle of
the two walls and the nearly identical negative value is attended on left as well as on
the right wall.

Fig. 20 Induced current
density profile for Bi and Pm
ðS[ 0Þ

Fig. 21 Induced current
density profile for Bi and Pm
ðS[ 0Þ
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For various values the parameters, the skin-friction on the walls and mass flux
have represented in Table 1. When there is a temperature-dependent source, table
clearly demonstrates that the skin-friction on the left wall reduces with rise in the
values of the Hartmann number but on the right wall, it raises with Hartmann

Fig. 22 Induced current
density profile at high Bi
ðS[ 0Þ

Fig. 23 Induced current
density profile at high Bi
S\0ð Þ

Fig. 24 Induced current
density profile at low Bi
ðS[ 0Þ
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Fig. 25 Induced current
density profile at low Bi
S\0ð Þ

Table 1 Numerical values of
skin-friction and mass flux
ðs[ 0Þ

Bi Pm Ha S = 1

s1 s2 Q

0.1 0.6 2 0.759609 0.661548 0.115861

3 0.757455 0.663702 0.110771

5 0.752057 0.669100 0.098016

0.7 2 0.759305 0.661852 0.115143

3 0.756861 0.664297 0.109366

5 0.750928 0.670229 0.095347

0.5 0.6 2 0.560682 0.554071 0.090881

3 0.560537 0.554217 0.086889

5 0.560173 0.554580 0.076883

0.7 2 0.560661 0.554092 0.090318

3 0.560490 0.554257 0.085786

5 0.560097 0.554657 0.074790

−0.1 0.6 2 0.969161 0.774765 0.141294

3 0.964892 0.779035 0.135929

5 0.954191 0.789736 0.120277

0.7 2 0.968559 0.775367 0.142175

3 0.963713 0.780214 0.134205

5 0.951952 0.791975 0.117002

−0.5 0.6 2 3.157980 1.957340 0.417030

3 3.131600 1.983710 0.398711

5 3.065510 2.049800 0.352798

0.7 2 3.154260 1.96106 0.414447

3 3.124320 1.99099 0.393653

5 3.051680 2.06363 0.343191
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number. On the left wall, the skin-friction reduces with growth in the value of the
magnetic Prandtl number, whereas it raises on the right wall. Whenever the positive
values of the Biot number get raised, the skin-friction decreases on both the walls
show that cooling leads to decrement in the skin-friction. Further, it is noticed that
the rise in the negative values of the Biot number leads to rise in value of the
skin-friction on both the walls which shows that heating leads to enhance the
skin-friction.

Table 2 shows that the skin-friction on the wall at y = 0 get enhanced with rise
in the values of the Hartmann number while it reduces with Hartmann number on
the wall at y = 1. Further, on the wall at y = 0 the skin-friction rises with rise in the

Table 2 Numerical values of
skin-friction and mass flux
ðs\0Þ

Bi Pm Ha S = −1

s1 s1 s1
0.1 0.6 2 0.338815 0.338815 0.338815

3 0.340174 0.340174 0.340174

5 0.343582 0.343582 0.343582

0.7 2 0.339006 0.339006 0.339006

3 0.340549 0.340549 0.340549

5 0.344296 0.344296 0.344296

0.5 0.6 2 0.297635 0.297635 0.297635

3 0.299447 0.299447 0.299447

5 0.303994 0.303994 0.303994

0.7 2 0.297890 0.297890 0.297890

3 0.299480 0.299480 0.299480

5 0.304946 0.304946 0.304946

−0.1 0.6 2 0.369589 0.369589 0.369589

3 0.370609 0.370609 0.370609

5 0.373167 0.373167 0.373167

0.7 2 0.369733 0.369733 0.369733

3 0.370890 0.370890 0.370890

5 0.373702 0.373702 0.373702

−0.5 0.6 2 0.476559 0.476559 0.476559

3 0.476400 0.476400 0.476400

5 0.476001 0.476001 0.476001

0.7 2 0.476537 0.476537 0.476537

3 0.476356 0.476356 0.476356

5 0.475917 0.475917 0.475917
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magnetic Prandtl number but opposite nature is noticed on the wall at y = 1. In the
existence of a temperature-dependent sink also, cooling leads to decrease the
skin-friction and heating leads to magnify the skin-friction. It is also clear from
the table that the value of mass flux has diminishing nature with growth in the value
of Hartmann number and the magnetic Prandtl number. In case when there is
source/sink the mass flux decreases by cooling, while it increases by the heating.

5 Conclusions

It is found that the velocity profile has a diminishing nature with rise in the value of
Hartmann number. With Newtonian heating the velocity profile increases, while it
has a decreasing nature with Newtonian cooling. The induced magnetic field graph
as well as the induced current density graph has diminishing tendency with rise in
the value of the Hartmann number. The impact of the magnetic Prandtl number is to
reduce the velocity profile but to enhance the induced magnetic field and the
induced current density profiles. The influence of Newtonian cooling/heating is to
reduce/raise the velocity, the induced magnetic field, and the induced current
density diagrams. The skin-friction at one wall reduces, while rises on the other
with rise in the value of the Hartmann number in the existence of source, but there
is a reverse nature when there is a sink. With the Magnetic Prandtl number, a
similar behavior is noticed. It is noticed that skin-friction decreases/increases with
Newtonian cooling/heating. The mass flux reduces with rise in the value of the
Hartmann number as well as the value of the magnetic Prandtl number. Newtonian
cooling leads to decrease the mass flux, while effect of heating is to increase the
mass flux.

Symbols:

u0—the velocity along x0-direction, u—the velocity dimensionless form, Bx0—the
induced magnetic field along x0-direction, B0

0—the applied external magnetic field
in the y0-direction, B—dimensionless induced magnetic field, T 0

0—the ambient
temperature, T 0—the temperature of the fluid, T—the temperature of the fluid in
dimensionless form, #—the kinematic viscosity, le—the magnetic permeability,
g—the acceleration due to gravity, b—the coefficient of volume expansion, q—the
density of the fluid, cp—the specific heat at constant pressure, k—the thermal
conductivity of the fluid, r—conductivity of the fluid, s0—the source/sink variable,
S—the source/sink parameter, a—constant, h—the characteristic length, Bi—the
Biot number, Ha—the Hartmann number, Pm—the magnetic Prandtl number.
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Appendix

E1 ¼
ffiffi
S

p
Bi sin

ffiffi
S

p þ ffiffi
S

p
cos

ffiffi
S

p ; E3 ¼ Ha
ffiffiffiffiffiffiffi
Pm

p
; E15 ¼ 1

2E7
;

E2 ¼ Bi
Bi sin

ffiffi
S

p þ ffiffi
S

p
cos

ffiffi
S

p ; E4 ¼ E1
SþE2

3
; E5 ¼ E2

SþE2
3
;

E16 ¼ E6
2 ; E11 ¼ E6

exp E3ð Þ ; E12 ¼ � E4 cos
ffiffi
S

pð ÞþE5 sin
ffiffi
S

pð Þ
exp E3ð Þ ;

E13 ¼ � 1
E7 exp E3ð Þ ; E17 ¼ � E4E7 þE8

2E7
; E18 ¼ E6

2 � E6�E11
1�E10

;

E14 ¼ E8 cos
ffiffi
S

pð ÞþE9 sin
ffiffi
S

pð Þ
E7 exp E3ð Þ ; E19 ¼ E4 þE12

1�E10
� E4E7 þE8

2E7
;

E20 ¼ E15 þ E13
1þE10

; E21 ¼ E6
2 � E6

1þE10
; E22 ¼ E4 þE14

1þE10
� E4E7 þE8

2E7
;

E23 ¼ E19E20�E15E22
E18E20�E15E21

; E24 ¼ E19�E18E23
E15

; E25 ¼ E17 � E15E24 � E16E23;
E26 ¼ �E4 � E25 � E6E23; E27 ¼ E6E23; E28 ¼ �E7E26; E29 ¼ E7E25

F ¼ �S; F3 ¼ Ha
ffiffiffiffiffiffiffi
Pm

p
; F1 ¼

ffiffiffi
F

p
Bi sinh

ffiffiffi
F

p þ ffiffiffi
F

p
cosh

ffiffiffi
F

p ;

F2 ¼ Bi
Bi sinh

ffiffiffi
F

p þ ffiffiffi
F

p
cosh

ffiffiffi
F

p ; F4 ¼ � F1
F�F2

3
; F5 ¼ � F2

F�F2
3
;

F6 ¼ � Pm
F3
; F7 ¼ � F5Pmffiffiffi

F
p ; F8 ¼ � F4Pmffiffiffi

F
p ; F9 ¼ exp �2F3ð Þ;

F10 ¼ 1
Pm exp F3ð Þ ; F14 ¼ � 1

2F6
; F11 ¼ � F4 cosh

ffiffiffi
F

p þF5 sinh
ffiffiffi
F

p
exp F3ð Þ ;

F12 ¼ 1
F6 exp F3ð Þ ; F17 ¼ 2F12F6�F9�1

2F6ð1þF9Þ ; F18 ¼ F9�1
2Pmð1þF9Þ ;

F13 ¼ � F7 cosh
ffiffiffi
F

p þF8 sinh
ffiffiffi
F

p
F6 exp F3ð Þ ; F25 ¼ F21

Pm ; F15 ¼ 2F10Pm�F9�1
2Pmð1�F9Þ ;

F16 ¼ 2F11F6 þF4F6F9 þF4F6 þF7�F7F9
2F6ð1�F9Þ ; F24 ¼ � F21

Pm � F23 � F4;

F19 ¼ 2F13F6 þF4F6 þF7F9 þF7�F4F6F9
2F6ð1þF9Þ ; F21 ¼ F16F17�F14F19

F15F17�F14F18
;

F22 ¼ F16�F15F21
F14

; F20 ¼ F7�F4F6
2F6

; F23 ¼ F20 � F14F19 � F21
2Pm ;

F26 ¼ F24F6; F27 ¼ �F23F6:
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Radial Vibrations in Unbounded
Micropolar Elastic Solid with Fluid
Loaded Spherical Cavity

R. Srinivas and K. Somaiah

Abstract In this paper, the radial vibrations in unbounded micropolar elastic solid
with fluid loaded spherical cavity have been investigated. The micropolar elastic
solid is homogeneous and isotropic, while the loaded fluid is homogenous,
isotropic, and inviscid. The frequency equation for radial vibrations of
macro-displacements is derived and which is influenced by the loaded fluid, while
the vibrations for micro-rotations are not influenced by the loaded fluid and these
have been coinciding with the results of Somaiah (Comput Sci Math Biol 47–50,
2016). The dispersion relation for macro-displacements is obtained as particular
case of this investigation. Further, numerical computations have been performed
and have also been shown graphically to understand the behavior of phase speed
and dispersion equations in the medium.

1 Introduction

The study of radial vibrations is most important generalization of theoretical and
practical applications in several fields like geophysics, seismology, and synthetic
porous materials. Ghosh (1975) discussed the radial vibrations of isotropic elastic
sphere and hollow sphere. Love (1944) treatise contains an account of the forced
vibrations of a sphere due to body forces derivable from a potential. Sphere
problem in connection with the problems of geodynamics was considered by Love
(1926). The complete solution of sphere subject to dynamic surface tractions and
computed natural frequencies of the free oscillations by Grey and Eringen (1955).
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Many authors like Blake (1952) and Eringen (1957) have discussed the problems of
elastic waves from a spherical cavity situated in an unbounded elastic medium. The
vibrations of fluid filled elastic spherical and spheroidal shells were discussed by
Rang and Dimaggio (1967). Radial vibrations due to a spherical cavity in
micropolar elastic solid were studied by Tomar and Singh (2003). Recently,
Somaiah (2016) studied the effect of rotation and micropolarity on radial vibrations.

In this paper, we derived the dispersion equation for the radial vibrations in
unbounded micropolar elastic solid with fluid loaded spherical cavity. It is observed
that the dispersion equation is not encountered in classical theory of elasticity.
Further, the results of classical case are obtained as particular case of it.

2 Basic Equations

The basic governing equations of homogeneous isotropic micropolar elastic solid
are given by Eringen and Suhubi (1964).

The balance of momentum equation is

ðkþ lÞul;lk þðlþ jÞuk;ll þ jeklm/m;l þ q fk � €ukð Þ ¼ 0 ð1Þ

The balance of the stress moment equation is

ðaþ bÞ/l;lk þ c/k;ll þ jeklmum:l � 2j/k þ q lk � j€/k

� �
¼ 0 ð2Þ

The stress tensor tkl and couple stress tensor mkl are given by

tkl ¼ kur;rdkl þ l uk;l þ ul:k
� �þ j ul;k � eklr/r

� � ð3Þ

mkl ¼ a/r;rdkl þ b/k;l þ c/l;k ð4Þ

In the above equations, �u is displacement vector, �f is the body force,�l is the body
couple vector, q is the density, j is the micro-inertia, dkl is the Kronecker delta, eklr
is the permutation symbol, an index (say k) following a comma indicates partial
differentiation with respect to the coordinate ðxkÞ, dot superposed on a symbol
denotes partial differentiation with respect to the time t, and k; l; j; a; b; c are the
material coefficients which satisfy the following inequalities.

3kþ 2lþ j� 0; 2lþ j� 0; j� 0

3aþ bþ c� 0; �c� b� c; c� 0
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3 Formulation and Solution of the Problem

We consider a spherical cavity of radius a in a uniform micropolar elastic solid of
infinite extent. We are interested only in radial vibrations. The radial displacement~u

and the radial micro-rotation ~/ depend only on the radial distance r from the origin
and time, and the other components uh; uq;/h and /q are zero. Hence, we take

~u ¼ uðr; tÞer ð5Þ
~/ ¼ /ðr; tÞer ð6Þ

where er is the unit vector at the position vector in the direction of the tangent to the
r-curve.

In view of Eqs. (5) and (6) and under the absence of body forces and body
couples, the equations of motion (1)–(4) would reduce to

@2u
@r2

þ 2
r
@u
@r

� 2
r2
u ¼ q

kþ 2lþ jð Þ
@2u
@t2

ð7Þ

@2/
@r2

þ 2
r
@/
@r

� 2
r2
/� 2j

aþ bþ cð Þ/ ¼ q j
aþ bþ cð Þ

@2/
@t2

ð8Þ

trr ¼ kþ 2lþ jð Þ @u
@r

þ 2k
r
u ð9Þ

mrr ¼ aþ bþ cð Þ @/
@r

þ 2a
r
/ ð10Þ

Now, we shall derive the dispersive equation for the radial vibrations in an
unbounded micropolar elastic solid having a spherical cavity filled with homoge-
neous inviscid fluid of density qðf Þ. The field equations and the constitutive relations
for homogeneous inviscid fluid are given by Kumar et al. (2013).

r r � uðf Þ
� �

¼ qðf Þ

nðf Þ
@2uðf Þ

@t2
ð11Þ

and

tðf Þrr ¼ nðf Þ r � uðf Þ
� �

drr ð12Þ

where uðf Þ is displacement vector of the medium corresponding the fluid in the
medium, nðf Þ and qðf Þ are the bulk modulus and density of the fluid, respectively.
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For the radial vibrations, we take

uðf Þ ¼ uðf Þ; 0 ; 0
� �

with

uðf Þ ¼ @wðf Þ

@r
ð13Þ

where wðf Þ is the potential of the fluid. Making use of Eq. (13) in Eqs. (11) and
(12), the displacement potential wðf Þ in the liquid medium satisfies the equation

r2wðf Þ ¼ qðf Þ

nðf Þ
@2wðf Þ

@t2
ð14Þ

and

tðf Þrr ¼ nðf Þr2wðf Þ ð15Þ

where r2 ¼ @2

@r2 þ 2
r
@
@r.

We seek the solution of Eq. (14) in the form of

wðf Þðr; tÞ ¼ WðrÞeixt ð16Þ

where x is the angular frequency. Substituting Eq. (16) in Eq. (14), we obtain

r2Wþ l2W ¼ 0 ð17Þ

where

l ¼ x

ffiffiffiffiffiffiffi
qðf Þ

nðf Þ

s
ð18Þ

Let

WðrÞ ¼ 1ffiffi
r

p TðrÞ ð19Þ

Inserting Eq. (19) in Eq. (17), we get

r2T 00ðrÞþ rT 0ðrÞþ ðlrÞ2 � 1
2

� �2
 !

TðrÞ ¼ 0 ð20Þ
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which is a Bessel equation, and the solution of Eq. (20) is

TðrÞ ¼ B0J1
2
ðlrÞþBY1

2
ðlrÞ ð21Þ

where B0;B are arbitrary constants, J1
2
and Y1

2
are modified Bessel functions of order

1
2.

Substituting Eqs. (19) and (21) in Eq. (16), we get

wðf Þðr; tÞ ¼ 1ffiffi
r

p B0J1
2
ðlrÞþBY1

2
ðlrÞ

h i
eixt ð22Þ

Since wðf Þ ! 0 as r ! 1 and it is possible only if B0 ¼ 0.
For large values of z, we have Y1

2
zð Þ ¼ ffiffiffip

2z

p
e�z

So,

Y1
2
ðlrÞ ¼

ffiffiffiffiffiffi
p
2lr

r
e�lr ð23Þ

Substituting Eq. (23) in Eq. (22), we get

wðf Þðr; tÞ ¼ B

ffiffiffiffi
p
2l

r
e�lr 1

r
eixt ð24Þ

The presence of liquid Pðf Þ and radial displacements are given by

Pðf Þ ¼ �tðf Þrr ¼ B

ffiffiffiffi
p
2l

r
qðf Þ

x2

r
eixt�lr ð25Þ

uðf Þ ¼ @wðf Þ

@r
¼ �B

ffiffiffiffi
p
2l

r
qðf Þ

r2
eixt�lr ð26Þ

The appropriate boundary condition is

trr ¼ �Pðf Þ at r ¼ a ð27Þ

Now, we seek the solution of Eq. (7) of the form

u r; tð Þ ¼ RðrÞ eixt ð28Þ

On using Eq. (28) in Eq. (7), we obtain

d2R
dr2

þ 2
r
dR
dr

� 2
r2
Rþ x2q

kþ 2lþ j
R ¼ 0 ð29Þ
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Suppose

x ¼ hr ð30Þ

where

h2 ¼ x2q
kþ 2lþ j

ð31Þ

Using Eqs. (30) and (31), Eq. (29) can be expressed as

d2R
dx2

þ 2
x
dR
dx

� 2
x2

RþR ¼ 0 ð32Þ

The general solution of Eq. (32) is

RðxÞ ¼ A
d
dx

eix

x

� �

Hence,

uðr; tÞ ¼ A
i
hr

� 1

ðhrÞ2
" #

eiðxtþ hrÞ ð33Þ

where x in terms of r is given by Eq. (30) and A is an arbitrary constant.
Substituting Eqs. (33) and (25) in the boundary condition (27), we obtain

A kþ 2lþ jð Þ 2ik
ha2

þ 2ð1� kÞ
h2a3

� 1
a
þ 2i

ha2

� �	 

eiðh�ilÞa þB

ffiffiffiffiffiffiffi
p
2la

r
qðf Þx2 ¼ 0 ð34Þ

which is the dispersive equation for radial macro-displacements of the solid and it
depends on the loaded fluid in the cavity. The frequency of classical case can be
obtained as a particular case of it by allowing j tending to zero in Eq. (32). All
these results coincide with the results of Somaiah (2016) in empty non-rotating
solid. Also, the additional dispersive equation for radial micro-rotations coincides
with the result obtained by Somaiah (2016).

4 Numerical Results and Discussion

In order to study numerically the dispersive Eq. (34) and square phase speed t2 ¼ x2a2
p2

of radial displacement for h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q
kþ 2lþ j

q
x0 with non-dimensional value x0 ¼ 0:8

and for non-dimensional amplitude ratios of A
B, we have taken the relevant values of
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aluminum epoxy as solid material from Deswal and Kumar (2010) and liquid values
from Ewing et al. (1957) as follows:

A
B
¼ 0:4; 0:6; 1:5; k ¼ 7:59� 109 N=m2; l ¼ 1:89� 109 N=m2;

j ¼ 0:015� 109 N=m2; q ¼ 2:192� 103 kg=m3; j ¼ 0:196� 10�6 m2;

nðf Þ ¼ 2:14� 109 N=m2 and qðf Þ ¼ 1:0� 103 kg=m3:

We study the variation of frequency, square phase speed versus non-dimensional
radius a with 13� 107 � a� 14� 107. The variation of frequency versus radius

Fig. 1 Frequency versus
Radius

Fig. 2 Phase speed versus
Radius
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a for non-dimensional amplitude ratios of A
B is shown in Fig. 1, and the phase speed

curves for non-dimensional amplitude ratios of A
B and radius a ¼ 13:55� 107 are

shown in Fig. 2. From Figs. 1 and 2, we observed that phase speed and frequency
are zero for non-dimensional amplitude ratio is A

B ¼ 0:6.

5 Conclusions

This paper considers an unbounded micropolar elastic solid having a fluid loaded
spherical cavity of measurable radius. In the study of radial vibrations, it is
observed that

(i) The frequency equation for radial macro-displacements is derived which
depends on the loaded fluid in the cavity.

(ii) An additional frequency equation for radial micro-rotations coincides with the
results of Somaiah (2016), and comparative results are shown in graphically.

References

Blake FG (1952) Spherial wave propagation in solid media. J Acoust Soc Am 24:211–215
Deswal S, Kumar R (2010) Wave motion in a viscous fluid filled bore in a micropolar elastic

medium with voids. Proc Natl Acad Sci India A80:223–234
Eringen AC (1957) Elasto-dynamic problem concerning the spherical cavity. Q J Mech Appl

Mech 10:257–270
Eringen AC, Suhubi ES (1964) Non-linear theory of simple micro-elastic solids-I. Int J Eng Sci

2:189–203
Ewing WM, Jardetzky WS, Press F (1957) Elastic waves in layered media. The Mac-Graw Hill

Company, New York
Ghosh PK (1975) The mathematics of waves and vibration. The Mac-Million Company of India

Limited, India
Grey RM, Eringen AC (1955) The elastic sphere under dynamic and impact loads, ONR Technical

Report Number 8. Purdue University, Lafayette, Indiana
Kumar R, Divya, Kumar K (2013) Propagation of wave through cylindrical bore in a swelling

porous elastic media. Mater Phys Mech 16:135–143
Love AEH (1926) Some problems of geodynamics. Cambridge University Press, London
Love AEH (1944) A treatise on mathematical theory of elasticity, 4th edn. Dover Publications,

New York
Rang R, Dimaggio F (1967) Vibrations of fluid filled spherical and spheroidal shells. J Acoust Soc

Am 42:1278–1286
Somaiah K (2016) Effect of rotation and micropolarity in an unbounded micropolar elastic solid

having a spherical cavity. Comput Sci Math Biol (Special issue) 47–50
Tomar SK, Singh H (2003) Radial vibrations due to a spherical cavity in micropolar elastic solid.

Indian J Pure Appl Math 34(12):1785–1796

438 R. Srinivas and K. Somaiah



Unsteady Mixed Convective Flow
in a Porous Lid-Driven Cavity
with Constant Heat Flux

B. Md. Hidayathulla Khan, V. Ramachandra Prasad
and R. Bhuvana Vijaya

Abstract In this paper, we present the numerical analysis of mixed convection in a
square cavity filled with porous medium. The left wall of the enclosure is kept at a
constant heat flux, and the dimensionless governing equations are solved numeri-
cally with Marker and Cell (MAC) method. The numerical results are discussed
graphically with the effect of Darcy number, Prandtl number, Rayleigh number,
Grashof number, Reynolds number, temperature and streamlines.

Nomenclature

Da Darcy number
g Acceleration due to gravity, m s−2

k Thermal conductivity, Wm−1 K−1

L Length of the square cavity, m
K Permeability, m2

N Total number of nodes
Nu Local Nusselt number
Gr Grashof number
T Temperature, K
U x component of velocity, m s−1

U x component of dimensionless velocity
U0 x lid velocity, m s−1

V y component of dimensionless velocity
X Dimensionless distance along x-coordinate
Y Dimensionless distance along y-coordinate
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V y component of velocity, m s−1

p Pressure, Pa
P Dimensionless pressure
Pr Prandtl number
Re Reynolds number
Ri Richardson number

Greek symbols

a Thermal diffusivity, m2 s−1

b Volume expansion coefficient, K−1

c Penalty parameter
h Dimensionless temperature
t Kinematic viscosity, m2 s−1

q Density, kg m−3

U Basis functions
W Stream function

1 Introduction

Mixed convection is generally the combination of free convection and forced
convection. Mixed convection, in permeable medium flowing within enclosures, is
found in a variety of applications in engineering and geophysical systems like
lubrication technologies, cooling of electronic gadgets, drying technologies. The
flow and heat transmission caused by shear and buoyancy forces in cavities have
been investigated in the literature. An analysis reveals that there are two kinds of
studies: the first one is horizontally sliding lid at the upper wall (Iwatsu and Hyun
1995; Mohamad and Viskanta 1991; Prasad and koseff 1996; Freitas and Street
1988; Mohamad and Viskanta 1995; Khanafer and Chamkha 1999; Sharif 2007),
and the second one is horizontally sliding lid at the bottom wall (Chen et al. 1981)
or oscillating lid (Iwatsu et al. 1992a, b; Nield and Bejan 2006). The bounding case
Ri ! 0 and Ri ! 1 relates to the forced and natural convection flows separately.
The details of Ri in convective stream with permeable medium are discussed well in
the books by Pop and Ingham (2001), Bejan et al. (2004), Ingham and Pop (2005),
Nield and Bejan (2006) and Vafai (2000, 2005).

Al-Amiri (2000) numerically investigated the energy transfer in a lid-driven
square enclosure filled with permeable medium. Stable thermal stratification
structure has been observed by introducing a temperature gradient. Nusselt number
is correlated within the parameter ranges Da ¼ 10�3 � 100 and Ri ¼ 10�2 � 101
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for fixed value of Gr ¼ 105. A numerical study has been conducted by Khanafer
and Vafai (2002) on mixed convection heat and mass transfer in a lid-driven square
enclosure filled with a non-Darcian fluid-saturated permeable medium.
Finite-volume technique as well as alternating direction implicit (ADI) method has
been used for solving the governing equations numerically. Chin et al. (2007)
examined the mixed convection flow past a vertical surface inserted in a permeable
medium when the viscosity of the fluid changes with temperature conversely. The
influence of oscillating lid temperature on transient mixed convection heat
exchange from a permeable vertical surface inserted in a saturated permeable
medium with internal heat generation or absorption is studied by Duwairi et al.
(2007), and Galerkin finite element method is used to solve the Navier–Stokes
equations. Kandaswamy et al. (2008a, b) performed a numerical investigation on
mixed convection heat exchange in a square enclosure filled with a fluid-saturated
permeable medium. The vertical walls of the cavity are insulated when the top and
bottom walls are kept at constant with distinct temperatures. The walls of the
lid-driven enclosure are fixed except the top horizontal wall which is moving at a
constant speed.

2 Mathematical Modelling and Simulation

The regime under investigation is illustrated in Fig. 1. Consider a two-dimensional
square cavity where the walls are thermally insulated except the left wall which is
maintained at constant heat flux. The upper wall of the cavity is assumed to move
from left to right with uniform velocity, U0. Thermo-physical properties of the fluid

Fig. 1 Schematic diagram of
enclosure heat transfer system
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such as thermal conductivity, viscosity, specific heat and thermal expansion coef-
ficient are treated as constant. The governing equations for the unsteady
two-dimensional natural convection of mass, momentum and energy in the
enclosure (cavity) by invoking Boussinesq approximation can be written in
non-dimensional form as:

@u
@x

þ @v
@y

¼ 0: ð1Þ

@u
@t

þ u
@u
@x

þ v
@u
@y

¼ � @p
@x

þ 1
Re

@2u
@x2

þ @2u
@y2

� �
� 1
Re:Da

u: ð2Þ

@v
@t

þ u
@v
@x

þ v
@v
@y

¼ � @p
@y

þ 1
Re

@2v
@x2

þ @2v
@y2

� �
� 1
Re:Da

vþRi:T : ð3Þ

@T
@t

þ u
@T
@x

þ v
@T
@y

¼ 1
Re Pr

@2T
@x2

þ @2T
@y2

� �
: ð4Þ

The transformed primary and secondary velocity and also thermal boundary
conditions are:

uðx; 1Þ ¼ 1; uðx; 0Þ ¼ u ¼ uð0; yÞ ¼ uð1; yÞ ¼ 0;

vðx; 1Þ ¼ vðx; 0Þ ¼ vð0; yÞ ¼ vð1; yÞ ¼ 0;
@T
@x ð0; yÞ ¼ �1; @T

@x ð1; yÞ ¼ 0; @T
@y ðx; 0Þ ¼ @T

@y ðx; 1Þ ¼ 0
ð5Þ

The dimensionless variables and parameters are defined as:

x ¼ X=H; y ¼ Y=H; u ¼ U=U0; u ¼ V=U0; h ¼ T � Tc
Th � Tc

;

p ¼ P
qU2

0
; Pr ¼ m

a
; Re ¼ U0L

m
; Ri ¼ Gr

Re2
; Gr ¼ gbðTh � TcÞL3

m2
:

ð6Þ

Here X is dimensionless x-coordinate, Y is dimensionless y-coordinate, U is
dimensionless x-direction velocity, V is dimensionless y-direction velocity, h is
dimensionless temperature function, P is dimensionless pressure, Pr is Prandtl
number, Re is Reynolds number, Ri is Richardson number, Gr is Grashof number,
T is dimensional temperature, p is dimensional pressure, g is gravity, q is fluid
density, a is thermal diffusivity, m is kinematic viscosity, H is height of enclosure
(cavity wall dimension), and t is dimensional time. We note that the emerging
thermal Grashof number encompasses the relative influence of gravity (buoyancy)
forces to viscous forces in the regime.
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3 MAC Numerical Solution and Validation

The momentum and energy balance Eqs. (2)–(4) have been solved using the
Marker and Cell (MAC) method (Amsden and Harlow 1970). The pressure dis-
tribution is obtained by making use of continuity Eq. (1). The numerical solutions
are carried out in terms of the velocity components ðu; vÞ and stream functions ðwÞ .
As per the Cauchy–Riemann equations, stream function ðwÞ is defined as u ¼ @w

@y

and v ¼ � @w
@x , where positive and negative signs of w denote anticlockwise and

clockwise circulations, respectively. In the MAC approach, although we consider
viscous flow, viscosity is not actually required for numerical stability (Amsden and
Harlow 1970). Cell boundaries are labelled with half-integer values in the finite
difference discretization. The marker particles do not participate in the calculation.
Here we elaborate on the numerical discretization procedure. Based on the weak
conservative form of the unsteady two-dimensional Navier–Stokes equations and
heat conservation equation as defined by Eqs. (1)–(4), we implement a grid
meshing procedure using the following notation at the centre of a cell:

ui�1=2;j ¼
1
2

ui�1;j þ ui;j
� �

: ð7Þ

Applying to the x-direction momentum conservation Eq. (2) we have:

Discretized advection terms:

@ðuuÞ
@x

¼ uu1� uu2
Dx

ð8Þ

where

uu1 ¼ 1
2

ui;j þ uiþ 1;j
� �� 	2

uu2 ¼ 1
2

ui�1;j þ ui;j
� �� 	2 ð9Þ

Similarly, we have:

@ðuvÞ
@y

¼ uv1� uv2
Dy

ð10Þ

where

uv1 ¼ 1
2

ui;j þ ui;jþ 1
� �

:
1
2

vi;j þ viþ 1;j
� �

uv2 ¼ 1
2

ui;j þ ui;j�1
� �

:
1
2

vi;j�1 þ viþ 1;j�1
� � ð11Þ
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The following central difference formula is used for the second-order
derivatives:

r2u ¼ @2u
@x2

þ @2u
@y2

r2u ¼ ui�1;j � 2ui;j þ uiþ 1;j

Dx2
þ ui;j�1 � 2ui;j þ ui;jþ 1

Dy2

ð12Þ

Applying to the y-direction momentum conservation Eq. (3) we have:

Advection term:

@ðvuÞ
@x

¼ vu1� vu2
Dx

ð13Þ

Here the following notation applies:

uv1 ¼ 1
2

ui;jþ 1 þ ui;j
� �

:
1
2

vi;j þ viþ 1;j
� �

uv2 ¼ 1
2

ui�1;jþ 1 þ ui�1;j
� �

:
1
2

vi;j þ vi�1;j
� �

@ðvvÞ
@y

¼ vv1� vv2
Dy

vv1 ¼ 1
2

vi;jþ 1 þ vi;j
� �� 	2

:

vv2 ¼ 1
2

vi;j�1 þ vi;j
� �� 	2 ð14Þ

The central difference formula for the Laplacian operator is given by:

r2v ¼ @2v
@x2

þ @2v
@y2

r2v ¼ vi�1;j � 2vi;j þ viþ 1;j

Dx2
þ vi;j�1 � 2vi;j þ vi;jþ 1

Dy2

ð15Þ

Effectively, the x-momentum equation discretization technique can be summa-
rized as:

~u ¼ un þ dt: � u
@u
@x

þ v
@u
@y

� �
þ a1

@2u
@x2

þ @2u
@y2

� �
� a2u

� 	
ð16Þ

where a1 ¼ 1=Re and a2 ¼ 1=Re:Da. There is a slight modification needed in the y-
momentum equation due to the addition of a new term. Therefore, this term must be
included in the discretized equation, and we have:
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~v ¼ vn þ dt: � u
@v
@x

þ v
@v
@y

� 	
þ a1

@2v
@x2

þ @2v
@y2

� �
� a2vþ b:T

� �
ð17Þ

where a1 ¼ 1=Re, a2 ¼ 1=Re:Da, and b ¼ Gr=Re2. It is further noteworthy that the
temperature term T is co-located such that it coincides with velocity before using it
in the above equation to account for the staggered grid. After ~u and ~v are projected
to get u and v by Poisson pressure equation.

r:u�

dt
¼ r2p

We can use the discretized temperature equation to get T at next time level
ðTnþ 1Þ via the algorithm:

Tnþ 1 ¼ Tn þDt: � u
@T
@x

þ v
@T
@y

� �
þ v

@2T
@x2

þ @2T
@y2

� �� 	
ð18Þ

where v ¼ 1
RePr. Next, we integrate in time by an incremental step dt in each

iteration until the final time t ¼ 1:0 is reached. The variables are co-located and
plotted. Modern variants of the MAC method utilize the conjugate gradient
schemes which solve the Poisson equation. Further details are provided in Amsden
and Harlow (1970). To confirm mesh independence, a Grid Independence Study is
conducted. In computational fluid dynamics, of which finite difference simulation is
merely one methodology, once a mesh provides a solution which is invariant with
the finer meshes, the coarser mesh can be adopted. This reduces computational cost
but retains the necessary accuracy. Table 1 shows that accuracy to three decimal
places is achieved for Nusselt number at the left wall with a mesh of 61 � 61 which
is sufficient for heat transfer computations, and therefore, this is adopted for all
subsequent simulations.

Furthermore to corroborate the present computations, visualizations of the
temperature (isotherm) and streamline distributions for two special cases have been
provided. These replicate the solutions of Kandaswamy et al. (2008a, b). The
equivalent Rayleigh number used in Kandaswamy et al. (2008a, b) is merely the
product of the thermal Grashof number and Prandtl number used in the present
model (i.e. Ra = Gr Pr). Generally, very close correlation is attained as observed in
Figs. 2 and 3, and confidence in the present MAC computational code is therefore
justifiably high.

Table 1 Grid Independence
Study

Grid size Average Nusselt number (Nu)

21 � 21 0.1500

31 � 31 0.1525

41 � 41 0.1554

51 � 51 0.1587

61 � 61 0.1592
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4 MAC Numerical Results and Discussion

In this present investigation, the Reynolds number is kept constant at Re = 100.
Numerical solutions of flow and temperature fields are obtained for various values
of DaðDa ¼ 10�3 � 100Þ, PrðPr ¼ 0:71Þ, and RiðRi ¼ 0:01� 10Þ within a
lid-driven permeable square cavity. The heat transfer in the lid-driven porous cavity
is convection for values of parameters ðRe;Pr;GrÞ for any Da. Figures 4, 5 and 6a–
d show the streamlines and temperature contours for heat flux of left wall, and
remaining walls are thermally insulated with different Ri. Figure 3 shows the effect
of Darcy number for Pr ¼ 0:71;Re ¼ 100 and Gr ¼ 102. At low Richardson
Number RiðRi ¼ 10�3Þ, the effect of mixed convection seems to be dominant.
Figure 3a indicates the primary streamline circulation occupies the cavity fully;
however, the strength of the circulation is weak at Da ¼ 10�3. The corresponding
isotherms are parallel to the vertical wall at the left-side portion of the driven cavity
as the flow is stagnant. Figure 3b shows that the primary streamline cell moves to

P.Kandaswamy et.al [22] Present MAC results

Fig. 2 Comparison contour plots, for bottom–bottom thermal condition vertical walls with
Pr ¼ 0:71;Gr ¼ 105;Ha ¼ 10
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Fig. 3 Streamlines and isotherms forRe ¼ 100;Ri ¼ 0:01, aDa = 0.001,bDa = 0.01, cDa = 0.1,
d Da = 1

Unsteady Mixed Convective Flow in a Porous Lid-Driven Cavity … 447



the right wall of top corner under the effect of Darcy number Da ¼ 10�2. The
corresponding isotherms are more concentrated at the left vertical wall. Figure 3c
shows the streamlines for the effect of Darcy number Da ¼ 10�1. The single
enlarged cell moves towards the right vertical wall, and the corresponding iso-
therms indicate that the convective heat transfer is zero at the bottom right vertical
wall. The nature of streamlines is same in Fig. 3c, and the corresponding isotherms
in Fig. 3d reveal the convective mode of heat transfer at the bottom region of the
right wall of the enclosure is thermally inactive.

Figure 4 shows the effect for various Darcy numbers for Pr ¼ 0:71 and fixed
RiðRi ¼ 0:1Þ. It will repeat same contours.

Figure 5 shows the effect for various Darcy numbers for Pr ¼ 0:71, Re ¼ 100
and fixed RiðRi ¼ 1Þ. Two developed clockwise-rotating vortices are seen inside
the cavity in Fig. 5a: first one is the fully formed vortex on top wall, and second one
is very small vortex formed at the left side of the bottom wall. The corresponding
isotherms are parallel to the left wall of the cavity by the effect of Darcy number
Da ¼ 0:001. Figure 5b–d shows the effect of Darcy numbers Da ¼ 0:01; 0:1; 1.
The streamlines are formed as two rotating vortices: fully formed vortex cell is
located near top wall, and a small vortex cell is formed at left-side corner of bottom
wall of the cavity, the size of the small vortex increases as the Darcy number is
increased. The corresponding isotherms are more concentrated near the heat flux
wall with the formation of thermal boundary layer, the energy is transferred in right
corner of bottom wall, and right vertical wall of lid-driven cavity is thermally
inactive.

Figure 6 shows the effect for various Darcy numbers for Pr ¼ 0:71, Re ¼ 100
and fixed RiðRi ¼ 10Þ. The mirror image effect is shown in Fig. 6a for streamline
contours with Darcy number Da ¼ 0:001. The corresponding isotherms indicate the
heat transfer is decreased at the right side of the vertical wall and the rate of heat
transfer is high at the left wall and top moving lid. Figure 6b–c, shows that two
fully developed clockwise circulations are formed in the cavity, the primary cir-
culation is formed at the right side of the corner top wall and top corner right side
walls, and also secondary circulation is formed at the bottom of left vertical wall
and left side of bottom wall. The corresponding isotherms indicate that the iso-
therms occupy only left and moving top wall. The convective heat transfer is zero at
the right wall and right side of the bottom wall of lid-driven porous cavity by the
effect of Darcy number Da ¼ 0:01;Da ¼ 0:1. The influence of Darcy number
Da ¼ 1 on porous cavity shows that the streamlines are formed in two circulations
diagonally as shown in Fig. 6d. Mixed convection is lesser due to less thermal
gradient induced by thermal mixing.
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Fig. 4 Streamlines and isotherms for Re ¼ 100;Ri ¼ 0:1, a Da = 0.001, b Da = 0.01,
c Da = 0.1, d Da = 1

Unsteady Mixed Convective Flow in a Porous Lid-Driven Cavity … 449



(a)

(b)

(c)

(d)

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

nx

ny

streamlines

nx

ny

Temperature

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

nx

ny

streamlines

nx

ny

Temperature

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

nx

ny

streamlines

nx

ny

Temperature

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

nx

ny

streamlines

nx

ny

Temperature

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 5 Streamlines and isotherms for Re ¼ 100;Ri ¼ 1, a Da = 0.001, b Da = 0.01, c Da = 0.1,
d Da = 1
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Fig. 6 Streamlines and isotherms for Re ¼ 100;Ri ¼ 10, a Da = 0.001, b Da = 0.01,
c Da = 0.1, d Da = 1
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5 Conclusions

The influence of heat flux on the left wall and the remaining walls is adiabatic on
the flow, and heat exchange characteristics due to lid-driven mixed convection flow
within a permeable square cavity have been studied in the present investigation. It is
observed that the heat exchange rate is decreased for high Ri with Darcy number
Da ¼ 1. Heat transfer rate is enhanced for low Ri Ri ¼ 0:01ð Þ and Darcy number
DaðDa ¼ 0:001Þ. The flow rate is increased for decrease in Darcy number. For
increase in the Richardson number Ri in all cases, the flow rate is also enhanced.
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Chemically Reactive-Free
Convective MHD Flow of Rivlin-Ericksen
Fluid Past a Movable Vertical Plate
Enriched in Porous Material

Pooja Sharma and Ruchi Saboo

Abstract The chemically reactive viscous incompressible electrically conducting
free convective flow of Rivlin-Ericksen fluid along a vertical semi-infinite moving
permeable plate enriched in the porous material with existence of crosswise mag-
netic field and pressure gradient in the presence of variable suction has been
considered. The study of heat transfer due to magnetic field is also done. The heat,
continuity, and mass equations are solved, and their respective results are shown
through graphs. In addition to that, Nusselt number, skin friction coefficient, and
Sherwood number are also measured and depicted through tables. It was concluded
from the actual study that highly chemically reacting Rivlin-Ericksen fluid flow
becomes slow, but it can be accelerated for the values of high mass buoyancy.

Nomenclature

C Species concentration
�t Time
�u Fluid velocity along the plate
y Non-dimensional distance along y-axis
b Volumetric coefficient of expansion with species concentration
M Hartmann number
K1 Chemical reaction parameter
a Thermal diffusivity
Kp Porosity parameter
g Acceleration due to gravity
c Chemical reaction coefficient
2 A small positive constant
q Fluid density
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B0 Magnetic field of even strength
t Kinematic viscosity
Sc Schmidt number
s Skin friction
v Non-dimensional velocity normal the plate
Cw Species concentration at wall
T1 Fluid temperature far from the surface
Tw Wall temperature
Kp Permeability of the medium
T Temperature of the fluid
�y Distance along y-axis
h Dimensionless fluid temperature
Rc Dimensionless viscoelastic parameter of the Rivlin-Ericksen fluid
t Non-dimensional time
u Non-dimensional velocity along the plate
Ec Eckert number
U1 Free stream velocity
D Mass diffusivity
Up Constant velocity of moving plate
�v Velocity of the fluid in y direction
Nu Nusselt number
Gc Grashof number for mass transfer
Sh Sherwood number
Pr Prandtl number
Cf Skin friction coefficient
r Electrical conductivity
C Non-dimensional species of concentration
C1 Species concentration far from the surface
K0 Kinematic viscoelasticity

1 Introduction

The study of energy and mass transfer in the fluid flow through various geometries
entrenched in porous medium has numerous industrial and geophysical usages like
dehydrating of porous solids, thermal insulations, cooling of electronics system,
nuclear reactors, abstraction of crude oil, many chemical processes, filtration of
ground water, granular insulation.

Chamkha (1996) discussed the natural convection past a vertical surface
immersed in a porous medium with magnetic effects. In the same external condi-
tions, Eldabe and Mohamed (2002) analyzed the flow of the non-Newtonian fluid in
the presence of heat source.
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The flow of chemically reactive fluid with many external environmental con-
ditions has the significance in process industries and has consequently a substantial
extent of attraction in last decays. MHD boundary layer flow is of extensive
attention in MHD power generation systems and liquid metal fluids. Due to its wide
range of submissions, many researchers have explored the magnetic field effect on
the fluid problems.

Ananda et al. (2009) examined the ohmic heated flow with hydromagnetic
conditions. Sharma et al. (2011) also discussed the chemically reactive and radiative
flow along the vertical porous wall with the same environments. Sahin and Zueco
(2010) analyzed the problem of flow in vertically upward direction with the impact
of external heat source and chemical reaction. Then, Sharma et al. (2015) extended
the same study for viscoelastic fluid (Walter’s liquid model-B).

Darcy’s law represents the gross effect, when a porous material permeated by a
fluid. Therefore, the general viscous term in Rivlin-Ericksen fluid equation is

presented by � 1
�k �lþ �l� @q�

@t�

� �h i
, where �l is the viscosity of the fluid, �l� is vis-

coelasticity of Rivlin-Ericksen fluid, q� is the fluid velocity due to Darcy effect, and
�j is the permeability of medium. In the physical world, the study of the
Rivlin-Ericksen fluid flow through a porous medium has become a major appli-
cation recapture of crude oil from the pores of reservoir rocks.

In view of that, Daleep and Ajaib (2012) discussed the rate of complex growth in
the flow of Rivlin-Ericksen viscoelastic fluid in porous medium. Rana (2012)
extended his work to demonstrate the thermal instability in rotating fluid saturated
with suspended dust particles. Kumar et al. (2013) discussed the Rivlin-Ericksen
viscoelastic flow past an impulsively started vertical plate with variable temperature
and concentration. Then, Rana and Chand (2013) further studied the Rivlin-Ericksen
double-diffusive convection fluid flow in a Brinkman porous medium.

In recent years, Popoola et al. (2016) analyzed the effect of MHD viscoelastic
fluid flow in the presence of heat and mass transfers with chemical reaction. Then,
Ravikumar et al. (2014) extend the work of Kumar et al. (2013) by considering the
same flow with MHD and variable suction.

In above of the mentioned work, the chemical reaction effect on mass transfer
has not been analyzed in Rivlin-Ericksen fluid flow. In the present paper, the impact
of chemical reaction and variable temperature has been studied in unsteady fluid
flow along a semi-infinite vertical moving permeable plate entrenched in the porous
medium with uniform transverse magnetic field and suction.

2 Mathematical Formulation

Unsteady flow of viscous immiscible incompressible electrically conducting
Rivlin-Ericksen fluid flow along a moveable vertical semi-infinite porous plate
enriched is considered in a uniform porous medium subjected to constant transverse
magnetic field (Fig. 1).
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Let �x-axis be vertically upward along the plate and in the direction of flow, and
�y-axis is existing in its crosswise direction. In the beginning of the fluid flow, we are
presuming that the vertical surface and existing fluid have the equal temperature
T and concentration C throughout the fluid flow region. When time increases
(t > 0), Tw and Cw are the new temperature and mass concentration, respectively, of
the fluid nearby the plate.

The following postulation is made throughout the fluid flow:

(i) The applied magnetic field is perpendicular to the direction of flow, and
induced magnetic field is supposed to be insignificant in comparison with the
applied magnetic field; therefore, the Reynolds number becomes negligible.

(ii) The vertical permeable plate is supposed to move by a persistent rate of
speed in the fluid flow way from downward to upward direction in positive x-
axis. Free stream velocity, wall temperature, and species concentration at
plate are following the small perturbation law in terms of the exponentially
increasing order.

(iii) Dissipation due to viscosity and magnetic field is supposed to be neglected in
the study.

By using these statements, the fluid flow regulating differential equations are as
follows:

@�v
@�y

¼ 0; ð1Þ

@�u
@�t

þ�v
@�u
@�y

¼ � 1
q
@�p
@�x

þ t
@2�u
@�y2

þ gb C � C1
� �� t

�u

Kp
� rB2

0

q
�u

� K0

q
@3�u
@�t@�y2

þ�v
@3�u
@�y3

� �
;

ð2Þ

Fig. 1 Geomaterical configuration
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@T
@�t

þ�v
@T
@�y

¼ j
qCp

@2T
@�y2

þ rB2
0

qCp
�u2 þ l

KpqCp
�u2; ð3Þ

@C
@�t

þ�v
@C
@�y

¼ D
@2C
@�y2

� Kl C � C1
� �

; ð4Þ

Then, the boundary conditions are shown as follows:

�y ! 1 : �u ! U1 ¼ U0 1þ 2 e�n�t
� �

; T ! T1; C ! C1;

�y ¼ 0 : �u ¼ �up; T ¼ Tw þ 2 Tw � T1
� �

e�n�t; C ¼ Cw þ 2 Cw � C1
� �

e�n�t;

ð5Þ

The suction velocity at the plate surface is time dependent and given as

�v ¼ �V0 1þ 2 Ae�n�t
� �

; ð6Þ

where V0 is the mean suction velocity, A real constant, and 2 A � 1. For the
outside region of the boundary layer, Eq. (2) follows

� 1
q
@�p
@�x

¼ dU1
d�t

þ v

Kp
U1 þ r

q
B2
0U1: ð7Þ

3 Method of Solution

By taking the subsequent dimensionless quantities

u ¼ �u
U0

; v ¼ �v
V0

; y ¼ V0�y
v

; U1 ¼ U1
U0

; Up ¼ �up
U0

;

h ¼ T � T1
Tw � T1

; Kp ¼ KpV2
0

v2
; Pr ¼ v

a
; M ¼ rB2

0v
qV2

0
;

Rc ¼ K0V2
0

v2
; c ¼ Klt

V2
0
; Ec ¼ U2

0

Cp Tw � T1
� � ; N ¼ Mþ 1

Kp
;

C ¼ C � C1
Cw � C1

; t ¼ �tV2
0

v
; Sc ¼ v

D
; Gc ¼ vgb Cw � C1

� �
U0V2

0
; n ¼ �nv

V2
0
;

ð8Þ

into Eqs. (1)–(4) with Eqs. (6) and (7), we get
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@u
@t

� 1þ 2 Aentð Þ @u
@y

¼ dU1
dt

þ @2u
@y2

þGcCþN U1 � uð Þ

� Rc
@3u
@t@y2

� 1þ 2 Aentð Þ @
3u

@y3

� 	
;

ð9Þ

@h
@t

� 1þ 2 Aentð Þ @h
@y

¼ 1
Pr

@2h
@y2

þMEcu2 þ Ec
Kp

u2; ð10Þ

@C
@t

� 1þ 2 Aentð Þ @C
@y

¼ 1
Sc

@2C
@y2

� cC; ð11Þ

The boundary conditions (5) are changed into

y ¼ 0 : u ¼ Up; h ¼ 1þ 2 ent; C ¼ 1þ 2 ent;

y ! 1 : u ! U1; h ! 0; C ! 0;
ð12Þ

The Eqs. (9)–(11) are the non-linear partial differential equations and to solve
them we separate the steady and unsteady parts of velocity field, temperature field
and concentration field by using the following expressions.

uðy; tÞ ¼ u0ðyÞþ 2 u1ðyÞent þO 22
� �þ � � � ; ð13Þ

hðy; tÞ ¼ h0ðyÞþ 2 h1ðyÞent þO 22� �þ � � � ; ð14Þ

Cðy; tÞ ¼ C0ðyÞþ 2 C1ðyÞent þO 22� �þ � � � ; ð15Þ

where u0; h0;C0 denote steady parts and u1; h1;C1 denote unsteady parts.
Equations (13)–(15) are substituted into the Eqs. (9)–(11), and then, harmonic and
non-harmonic terms are equated. Here, we are assuming to neglect the higher order
term of 2.
Zeroth-order equations

Rc u���0 þ u��0 þ u�0 � N u0 ¼ �GcC0 � N; ð16Þ

h��0 þ h�0Pr ¼ �MEcPr u20 �
Ec
Kp

Pru20; ð17Þ

C��
0 þC�

0Sc� cSc C0 ¼ 0; ð18Þ
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First-order equations

Rc u���1 þ 1� Rc nð Þu��1 þ u�1 � N u1 � n u1 ¼ n� GcC1 � N � Rc u���0 � A u�0;

ð19Þ

h��1 þPr h�1 � n Pr h1 ¼ �APr h�0 � 2MEcPru0u1 � 2
Ec Pr
Kp

u0u1; ð20Þ

C��
1 þC�

1Sc� nþ cð ÞSc C1 ¼ �AC�
0 ; ð21Þ

where star (*) refers the rate of change in reference of y.
The followed boundary conditions are given as

y ¼ 0 : u0 ¼ Up; u1 ¼ 0; h0 ¼ 1; h1 ¼ 1; C0 ¼ 1; C1 ¼ 1;

y ! 1 : u0 ¼ 1; u1 ¼ 1; h0 ! 0; h1 ! 0; C0 ! 0; C1 ! 0;
ð22Þ

Equations (18) and (21) are solvable with (22). Through straightforward cal-
culations, the solution of C0 and C1 is known but not given here due the sake of
brevity.

Equations (16) and (19) are still third-order coupled differential equations;
however, only two boundary conditions are available. Assuming Rc 6¼ 0, then u0
and u1 can be expanded in the powers of Rc as given below:

u0 ¼ u01 þRc u02 þO Rc2
� �

; ð23Þ

u1 ¼ u11 þRc u12 þO Rc2
� �

: ð24Þ

Using Eqs. (23) and (24) into Eqs. (16) and (19), the zeroth-order and first-order
equations are given as

Zeroth-order equations

u��01 þ u�01 � N u01 ¼ �GcC0 � N; ð25Þ

u��02 þ u�02 � N u02 ¼ �u���01 ; ð26Þ

First-order equations

u��11 þ u�11 � Nþ nð Þu11 ¼ �A u�01 � n� N � GcC1; ð27Þ

u��12 þ u�12 � N þ nð Þu12 ¼ �u���11 þ n u��11 � u���01 � A u�02; ð28Þ

And the boundary condition is as follows:
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y ¼ 0 : u01 ¼ Up; u02 ¼ 0; u11 ¼ 0; u12 ¼ 0;

y ! 1 : u01 ¼ 1; u02 ¼ 0; u11 ¼ 1; u12 ¼ 0:
ð29Þ

The differential Eqs. (25)–(28) are solvable through straight forward calculation
and their results are shown through the graphs.

4 Coefficient of Skin Friction

The rate of velocity field in terms of skin friction coefficient at the plate is expressed
by

Cf ¼ sw
qv20

� 	
y¼0

¼ @u
@y

� �
y¼0

¼ @u0
@y

� �
y¼0

þ 2 ent
@u1
@y

� �
y¼0

: ð30Þ

5 Nusselt Number

The rate of heat transfer in terms of Nusselt number at the plate is expressed by

Nu ¼ � @h
@y

� �
y¼0

¼ � @h0
@y

þ 2 ent
@h1
@y

� �
y¼0

: ð31Þ

6 Sherwood Number

The Sherwood number at the plate is referred by

Sh ¼ � @C
@y

� �
y¼0

¼ @C0

@y
þ 2 ent

@C1

@y

� �
y¼0

: ð32Þ

7 Result and Discussion

The numerical computation followed to carry out the study of velocity field, tem-
perature field, and concentration field governs the fluid flow, and their results are
expressed through the graph.

In order to study the of velocity, temperature, and concentration fields, numerical
computations are carried out for various values of porosity parameter, Hartman

462 P. Sharma and R. Saboo



number, mass buoyancy, Schmidt number, Eckert number, Prandtl number, and
chemical reaction parameters which describe the flow characteristics and the results
are reported in terms of graphs.

Figure 2 shows the effects of Grashof number for mass transfer, magnetic field
parameter, and permeability on the velocity field. It is seen that velocity diminishes
with the upsurge of Hartman number through the boundary layer. Opposite char-
acteristic is observed in the case of Grashof number for mass transfer and perme-
ability parameter.

Figure 3 exhibits the effetcs of visco-elastic parameter, chemical reaction
parameter and Schmidt number on the fluid velocity. It is seen that their presence
reduce the velocity at all the points of flow region. The same result of this agree-
ment is found by Ravikumar et al. (2014).

We observed from Fig. 4 mass buoyancy and permeability parameter enhancing
the fluid temperature. For the free stream, it is approaching to zero which is a
representation of cooling effect in the fluid flow. Besides this due to the increase of
intensity of magnetic field, fluid temperature is reducing rapidly throughout the
flow region.

Fig. 2 Velocity distribution
along direction y when
Rc = 1.5, A = 0.5, j = 0.5,
Sc = 0.22, e = 0.25, and
c = 1

Fig. 3 Velocity distribution
along direction y when
Gc = 3, A = 0.5, j = 0.5,
Kp = 1.5, M = 2 and e = 0.25
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The consequence of chemical reaction parameter, viscoelastic parameter, and
Schmidt number is expressed from Fig. 5. Due to upsurging in the elastic parameter
of the fluid, the fluid temperature is declining continuously in the flow region.
Similarly when Schmidt number and chemical reaction parameter rises then the
fluid temperature become less.

From Fig. 6 it is seen that small growth in Prandtl number and Eckert number
decreases the fluid temperature. Eckert number, which is the characteristic of heat
dissipation enhances the fluid temperature throughout the fluid region.

Figures 7 and 8 demonstrate the rate of mass transfer. We see that the fluid
species become less concentrate with the rising values of Sc and c.

The impact of all physical parameters on skin friction coefficient, Nusselt
number, and Sherwood number for various values of the pertinent parameters is
displayed in Tables 1, 2, and 3. It can be noted that from Table 1, the effects of Gc
are to increase the magnitude of skin friction. But we get quite opposite results for
other parameters.

Fig. 4 Temperature
distribution along direction
y when Rc = 1.5, A = 0.5,
j = 0.5, Sc = 0.22, c = 1,
Ec = 1, e = 0.25 and Pr = 10

Fig. 5 Temperature
distribution along direction
y when Gc = 3, M = 2,
A = 0.5, j = 0.5, Kp = 1.5,
Ec = 1, e = 0.25 and Pr = 10
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Fig. 6 Temperature distribution along direction y when Rc = 1.5, A = 0.5, j = 0.5, Sc = 0.22,
c = 1, Gc = 3, M = 3 and Kp = 1.5

Fig. 7 Concentration distribution along direction y when A = 0.5, c = 1 and e = 0.25

Fig. 8 Concentration distribution along direction y when A = 0.5, Sc = 0.22 and e = 0.25
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On careful study of Table 2, it is observed that the Nusselt number rises with
upsurge values of permeability parameter while decreases for other parameters.

From Table 3, it is depicted that the Sherwood number, which determines the
rate of solute concentration at the plate surface, is reaching to its high values with
upsurged values of Schmidt number and parameter due to chemical reaction.

8 Conclusions

In this research article, the effects of chemical reaction on the MHD free convective
flow of Rivlin-Ericksen fluid along a vertical porous plate have been considered.
The resultant nonlinear differential equations are solved with suitable boundary
conditions. The impacts of various physical parameters which are regulating the

Table 1 Skin friction
coefficient at the plate for
various parameters as n = 1
and t = 1

S. No. Rc Sc M Kp Gc C Cf

1. 1 0.22 3 1.5 3 1.5 2.6758

2. 3 0.22 3 1.5 3 1.5 0.2681

3. 1 0.30 3 1.5 3 1.5 1.334

4. 1 0.22 5 1.5 3 1.5 0.5831

5. 1 0.22 3 2.5 3 1.5 1.5495

6. 1 0.22 3 1.5 5 1.5 6.0408

7. 1 0.22 3 1.5 3 3 0.9839

Table 2 Coefficient of
Nusselt number at the plate
for various parameters as
n = 1 and t = 1

S.
No.

Rc Sc M Kp Gc C Ec Pr Nu

1. 1 0.22 3 1.5 3 1.5 0.5 0.71 −67.98

2. 3 0.22 3 1.5 3 1.5 0.5 0.71 −211.67

3. 1 0.30 3 1.5 3 1.5 0.5 0.71 −70.21

4. 1 0.22 5 1.5 3 1.5 0.5 0.71 −127.41

5. 1 0.22 3 2.5 3 1.5 0.5 0.71 −67.00

6. 1 0.22 3 1.5 5 1.5 0.5 0.71 −132.33

7. 1 0.22 3 1.5 3 3 0.5 0.71 −72.29

8. 1 0.22 3 1.5 3 1.5 1 0.71 −68.52

10. 1 0.22 3 1.5 3 1.5 0.5 7.0 109.64

Table 3 Coefficient of
Sherwood number at the plate
for various parameters as
n = 1 and t = 1

S. No Sc c Sh

1. 0.22 1.5 1.0440

2. 0.30 1.5 1.2405

3. 0.78 1.5 2.2031

4. 0.22 3 1.3476
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fluid flow are discussed under results and discussion. By using the obtained results,
the following conclusions are made:

(i) The flow of Rivlin-Ericksen fluid is highly effected by elasticity parameter
and mass buoyancy. The high elastic fluid flow is slow under the other stable
environment. Beside this, mass buoyancy accelerates the fluid flow and fluid
temperature but extremely chemically reactive Rivlin-Ericksen fluid flow is
comparatively slow throughout flow region.

(ii) The permeability of the porous region supports the fluid velocity as well as
fluid temperature which is caused by less obstacles in fluid flow.

(iii) In highly chemically reactive Rivlin-Ericksen fluid flow, the fluid tempera-
ture is reduced rapidly. Similarly, intensity of the applied magnetic field
precisely regulates the fluid flow and temperature field. This is a better cause
for reducing both of them.

(iv) The species concentration is reduced by high chemically reactive fluids.
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A Three-Dimensional CFD Simulation
for the Nonlinear Parallel Flow
Phenomena Through Coarse Granular
Porous Media

Ashes Banerjee, Srinivas Pasupuleti, G.N. Pradeep Kumar
and Sekhar Chandra Dutta

Abstract Among many of the nonlinear equations presented throughout the dec-
ade, Forchheimer equation is the most widely experimented and investigated. In
this study, a simple CFD model created using ANSYS Fluent 15.0 has been used in
order to predict the flow through a parallel flow permeameter packed with crushed
stone of three different sizes. The results obtained were compared with the exper-
imental results obtained from a similar kind of experimental set under similar type
of field and media conditions. Furthermore, the statistical validation of the simu-
lation results with the experimentally obtained results suggests that this type of
model can be used for analysing the flow though porous media as a substitute of the
complex laboratory experiments with a reasonable precision.

1 Introduction

The relationship between the hydraulic gradient and velocity in the porous media
has not been defined properly when flow exceeds the laminar regime. The studies of
post laminar flow conditions through porous media are very important in order to
predict the flow in aquifer, flow through filter media, flow through rock fill dam and
in the case of oil and gas well etc. As flow passes the laminar regime in all these
cases, the actual head loss often exceeds the value of the same obtained by the
Darcy’s law, proposed by Henry Darcy in the year 1856 as

V ¼ ki ð1Þ
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where ‘k’ is the coefficient of permeability, V is the superficial velocity of flow, and
i is the hydraulic gradient. However, this linear relationship is not applicable when
the Reynolds number exceeds the value of 10 which has been described as the
post-laminar regime Kovacs (1971, 1981). Hence, number of nonlinear forms of
equations has been proposed by various researchers such as Forchheimer (1901),
Blake (1923), Ergun (1952), Wilkins (1955), Scheidegger (1958), Barr (2001)
considering the effect of inertia for flow at higher Reynolds number. Among all
these equations, the Forchheimer equation is the mostly studied and debated. The
equation is in a form of simple quadratic equation, i.e.

i ¼ aV þ bV2 ð2Þ

where ɑ and b are Darcy and non-Darcy coefficients, V = superficial velocity of
flow through the porous media, and i = hydraulic gradient. Later, Eq. (2) has been
modified by Forchheimer (Scheidegger 1958) adding a third term to account for
transitional conditions as

i ¼ aV þ bV2 þ cV3 ð3Þ

This equation was further modified in order to take into account the effect of
transitional conditions of seepage flow as

i ¼ aV þ bV2 þ cV1:5 ð4Þ

where c is a coefficient.
Equation (4) was again generalized by Polubarinova-Kochina (Scheidegger

1958) to contain a time-dependent term as

i ¼ aV þ bV2 þ c
dV
dt

ð5Þ

Equation (5) has been used in case of oscillatory flows through porous media
(Andersen and Burcharth 1995; Hall et al. 1995; Van Gent 1995). For steady flow
condition, Eq. (5) reduces to Eq. (2). Although Eqs. (3) and (4) contain all three of
linear, turbulent, and transitional regimes, according to McCorquodale, these
equations are slightly better than Eq. (2). As per him, Eq. (3) yields almost same
value of ‘i’ for Reynolds number 600–4000. But for its simplicity and reliability,
Eq. (2) is mostly used in computation (Pasupuleti et al. 2014).

With the development of the computational technology, the flow through porous
media can now be calculated very easily by solving the Navier–Stokes equation
using computational fluid mechanics (CFD) even in the turbulent regime. A very
detailed solution can be capitulated containing the local values of variables such as
pressure, velocity, temperature, viscosity, shear stress. Such detailed solutions can
be of great importance in understanding the phenomena as an alternative of the
experimental process.
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In this paper, a numerical model has been created in order to check the appli-
cability of the Forchheimer equation for non linear parallel flow through porous
media. Furthermore, the simulation results have been compared with the experi-
mental results statistically in order to validate the simulation results.

2 Numerical Modelling

In order to simulate the flow through porous media in a parallel flow permeameter,
a simple CFD model has been created using the ANSYS Fluent 15.0. Using CFD
approach means numerically solving the continuity equation (Eq. 6) and momen-
tum conservation equation or the Navier–Stokes equation (Eq. 7) using the desired
boundary conditions.

@ui

@xi
¼ 0 ð6Þ

ui is the velocity in the xi direction.

quj
@ui
@xj

¼ � @P
@xi

þ @

@xi
l
@ui
@xi

� �
þ qgi ð7Þ

With P = total pressure, q = fluid density, l = molecular viscosity, and
g = gravitational acceleration (Versteeg and Malalasekera 2007).

Turbulence modelling has been used in the present study as the Reynolds
number of flow lies within the range of 1736–7194 which represents the turbulent
flow as per the definition of Kovacs (1971, 1981). In order to model turbulence, the
Reynolds-averaged Navier–Stokes (RANS) equation has been used where Eqs. (6)
and (7) have been averaged assuming that the turbulent quantities generate aver-
aged quantities amplified by fluctuant ones described as Eqs. (8) and (9).

uj ¼ uj þ u0j ð8Þ

p ¼ �pþ p0 ð9Þ

where uj and p are the turbulent velocity and pressure and uj, �p and u0j, p
0 are the

average and fluctuant components of velocity and pressure, respectively. However,
it does not close the equation, generating a new term named ‘Reynolds Stresses’

�pu0iu
0
j

� �
, which can be again defined by the Boussinesq hypothesis, i.e.

�qu0iu
0
j ¼ lt

@ui
@xj

þ @uj
@xi

� �
� 2
3

qkþ ut
@ui
@xi

� �
dij ð10Þ
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where lt is the turbulent viscosity, k is the turbulent kinetic energy, and dij is the
Kronecker symbol. The value of lt can be calculated using Eq. (11).

lt ¼ q:Cl
k2

e
ð11Þ

with Cl ¼ 0:09 for standard k-e model.
In order to close the equation system, two new equations were introduced

defining the values of turbulent kinetic energy (k) and turbulent dissipation rate (e)
named as k-e model. The ‘realizable k-e model’ (Shih et al. 1995) is a revised
version of the standard k-e model (Jones and Launder 1972) containing a new
formulation for dissipation rate ɛ and has been used in this study in order to close
the equation system because of its superior performance over a large variety of
conditions such as flows involving rotation, boundary layers under strong adverse
pressure gradients, separation, recirculation, and its applicability over a wide range
of flow (Shih et al. 1995; ANSYS 2013).

3 Model Description

The geometric model was created with ANSYS Fluent 15.0 software containing a
tank, a cylindrical parallel flow permeameter, and an inlet pipe using geometry
option. The different selections such as inlet, wall, outlet, and the contact regimes
were selected carefully. The permeameter has been created as porous media.
A homogeneous porous media has been created in order to reduce the complicacy
and the time taken for the calculation; however, the porosity has been given as it
was obtained during the experimentation. The porous media have been character-
ized by two coefficients, the viscous resistance factor ð1=aÞ and inertial resistance
factor ðC2Þ which were calculated (ANSYS 2013) as

DP ¼ aV þ bV2 ð12Þ

where

a ¼ l
a

and b ¼ 1
2
qC2 ð13Þ

Table 1 Values of the viscous and inertial resistance for different media sizes

Media size
(mm)

Porosity
(%)

Darcy
coefficient

Non-Darcy
coefficient

Viscous
resistance

Inertial
resistance

29.8 44.84 1078 68,510 1778261.659 226.4793388

34.78 43.1 1871 61,912 3086389.205 204.6677686

41.59 43.62 2125 58,343 3505385.922 192.8694215
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where DP and V are the average pressure drop and velocity through the porous
medium calculated from the experimental results. Values of the viscous and inertial
resistance factors are presented in Table 1.

4 Boundary Conditions

The boundary conditions have been selected carefully as it influences the result
significantly. The inlet velocity was calculated by dividing the discharge measured
during the experimentation by the area of the inlet pipe. As described earlier, the
turbulent kinetic energy (k) and turbulent dissipation rate (e) are required to inject in
order to close the equation system. Equations (14) and (15) have been used to
calculate the value of the same based on the turbulent intensity I (depending on the
Reynolds number Re), the turbulence length scale l (depending on the hydraulic
diameter Dh), and the inlet velocity V (ANSYS 2013).

k ¼ 3
2
ðV :IÞ2 with I ¼ 0:16ðReÞ�ð1=8Þ ð14Þ

where Re is the Reynolds number for pipe flow defined as qVd
l

e ¼ C3=4
l

k3=2

l
with l ¼ 0:07Dh ð15Þ

The outlet has been designed as an outflow boundary assuming that the flow is
completely developed and where the diffusion flux for all the flow variables in the
exit direction is zero.

5 Meshing

The continuous domain has been discretized using structured mesh in order to
substitute it with the finite number of volumes (meshes). The size of the mesh has a
great influence on the simulation results; therefore, in order to finalize the
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Fig. 1 Value of pressure
drop for different mesh sizes
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Table 2 Detail of the mesh used for simulation

Mesh size Nodes Elements Skewness Orthogonal quality

0.0181406 37,683 32,998 Max. Min. Average Max. Min Average

0.55 5.79 � 10−4 9.06 � 10−2 0.99 0.71 0.982

Fig. 2 a Variation of total
pressure with vertical axis for
29.8-mm crushed stones.
b Variation of velocity with
vertical axis for 29.8-mm
crushed stones

appropriate mesh size, a mesh convergence study has been performed with 15
different mesh sizes and the result has been presented in Fig. 1. Based on the effect
of the simulation results and time taken for the simulation, a mesh size of
0.01814066 m has been selected. Table 2 provides the detail of the created mesh.
Values of the parameters such as skewness and orthogonal quality were checked for
the selected mesh size, and all the values were found to be within acceptable range.

6 Results

The value of the pressure loss through the porous media and the velocity through
the porous media has been simulated. The pressure drop and the velocity distri-
bution obtained from the simulation are shown in Figs. 2a, b, 3a, b, and Fig. 4a, b
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for media size of 29.8, 34.78, and 41.59 mm with a porosity of 44.48, 43.10, and
43.62% and for a discharge of 399.3919, 420.4125, and 350.4688 cc/sec, respec-
tively. Same type of plot has been obtained for other discharges. The pressure plots
clearly show the loss in head as the flow advances through porous media The
negative sign in the total pressure appears because the operating pressure has been
set to 0 Pa (to cut down rounding errors) and flow is assumed to be incompressible.
As Navier–Stokes equations contain the pressure gradient hence pressure differ-
ences drive the flow therefore, in regions of separated flow, the low pressure inside
that region will be relative to the lowest fixed pressure in the system and may go
negative. The velocity plots represent a fluctuating velocity in the tank section and
an average superficial velocity in the permeameter section.

Fig. 3 a Variation of total
pressure with vertical axis for
34.78-mm crushed stones.
b Variation of velocity with
vertical axis for 34.78-mm
crushed stones
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7 Experimental Set-up

Experimentation has been performed in a parallel flow permeameter of 250 mm dia.
with three different media sizes 29.8, 34.78, and 41.59 mm. The accessories such as
a header tank (1000 mm � 300 mm � 300 mm) and centrifugal pump have been
attached with the permeameter. The velocity of the flow has been calculated after
measuring the discharge using a triangular notch. A manometer board has been
attached in order to measure the head loss with tapings at an interval of every
50 mm. The water is allowed to flow under a constant head. Temperature has been
recorded after every run to calculate the viscosity of the fluid.

Fig. 4 a Value of total
pressure with z-axis for
41.59-mm crushed stones.
b Value of velocity with z-
axis for 41.59-mm crushed
stones
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8 Comparison Between Experimental and Simulation
Result

Obtained experimental and the simulation results have been plotted in Figs. 5, 6,
and 7. The results obtained from the CFD simulation are found to be in a good
agreement with the experimental results for all three media sizes. Finally, the results
were validated statistically using the standard ‘z-test’ for all three samples.

Fig. 5 Comparison of
simulation and experimental
results for 29.8-mm crushed
stones

Fig. 6 Comparison of
simulation and experimental
results for 34.78-mm crushed
stones

Fig. 7 Comparison of
simulation and experimental
results for 41.59-mm crushed
stones
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9 Statistical Validation

The agreement between the experimental and simulated results has been investi-
gated using the standard ‘z-test’ (Mann and Lacke 2010; Chen and Nadarajah 2014;
Camblor 2014). The hypothesis was introduced in order to check the validity as
presented in Eq. (16).

H0 : l1 ¼ l2
H1 : l1 6¼ l2

ð16Þ

where l1 and l2 are the population mean of the experimental and simulation results.
To validate the result, the null hypothesis H0 must be accepted at a level of sig-
nificance (a) of 5% or at a considered confidence level of 95% (Mann and Lacke
2010). The present study deals with a two tailed hypothesis, and therefore,
a ¼ 0:05

2 ¼ 0:025. The corresponding value Zcritical is �1:96 (from z table). So the
value of Zcalculated should be within this range [−1.96, 1.96]. The Zcalculated can be
calculated from Eq. (17).

Zcalculated ¼ ðx1 � x2Þ � ðl1 � l2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
ND

þ r22
ND

q ð17Þ

where x1, x2 and l1, l2 are the sample and population mean for the experimental
and simulation result, ND is the total number of data points (sample) r1, r2 are the
standard deviation for the experimental and simulation result.

Table 3 Values from the z-test for different media size

Media size
(mm)

x1 x2 r1 r2 ND Z value

29.80 0.081 0.081242 0.071453432 0.070066613 250 0.051

34.78 0.077 0.077295 0.06677038 0.065459479 250 0.0445

41.59 12 12.95693 10.66377842 11.49681807 250 0.964135

1.96+=criticalz1.96−=criticalz 0.051z
calculated =

Fig. 8 Binomial distribution curve for z-test of 29.8-mm crushed stones

478 A. Banerjee et al.



The result of the z-test for three different media sizes are presented in Table 3
which shows that the value of Zcalculated is within the acceptable range [−1.96, 1.96]
for all three media sizes; therefore, the null hypothesis is accepted, and the simu-
lation results can be accepted. Furthermore, the results have been plotted in the
binomial distribution diagram (Tian et al. 2015; Liu and Hong 2015) and presented
in Figs. 8, 9, and 10.

10 Conclusions

The present study shows a simple a nonlinear CFD model created using commercial
software ANSYS Fluent 15.0 to predict the velocity and pressure drop for parallel
flow through a coarse granular media. The results obtained from the simulation
were compared with the experimental results, and finally, they were validated using

criticalzcriticalz 1.96+=1.96−= 0.0445z
calculated =

Fig. 9 Binomial distribution curve for z-test of 34.78-mm crushed stones

1.96+=criticalz1.96−=criticalz .96z
calculated =

Fig. 10 Binomial distribution curve for z-test of 41.59-mm crushed stones
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the standard z-test statistically. The values of the Zcalculated for all three media sizes
were found to be within the acceptable limit [−1.96, 1.96] validating the accept-
ability of the simulation results. This type of model can be very useful in order to
simulate the flow for different field and media conditions and therefore to inves-
tigate the effect of those conditions on the pressure drop velocity relation.
Furthermore, this type of model can be useful to predict the head loss and to
visualize the flow for different conditions instead of performing complex experi-
ments in the laboratory.
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Part VI
Solute Transport Modeling and Water Jet



Dust Ion Acoustic Solitary Waves
in Quantum Dusty Plasmas: A New
Approach to Obtain Sagdeev Potential

Gadadhar Banerjee and Sarit Maitra

Abstract Quantum hydrodynamic model is used to study the existence and
propagation of dust ion acoustic solitary waves (DIASWs). Here, Sagdeev’s non-
perturbative method is used, and the Sagdeev potential is obtained numerically by
using fourth-order Runge–Kutta method. A critical Mach number is observed for
the existence of DIASWs. The numerical simulation results indicate that the dust
grains may influence not only the amplitude and width but also the existence
domain of the soliton. The quantum effects on the solitary waves are also
mentioned.

1 Introduction

For the past few decades, a great involvement has been seen in studying quantum
transport models in dusty plasmas. The classical plasmas are often associated with
high temperature and low particle density modes. But in some situations like
superdense astrophysical bodies (Jung 2001; Chabrier et al. 2002), nonlinear
quantum optics (Gloge and Marcuse 1969), ultra small electronics devices
(Marklund and Shukla 2006), metallic nanostructures (Manfredi 2005), the exis-
tence of low temperature and high particle number density has been observed,
where the de Broglie wavelength of the plasma particles is comparable to the
dimension of the system and so the quantum effects cannot be ignored. Quantum
plasmas are studied mainly by two approaches, viz. quantum kinetic approach and
quantum hydrodynamic (QHD) approach. The kinetic approach is needed to discuss
the Landau damping (Suh et al. 1991) of waves in quantum plasmas. The most
widely used approach for studying quantum plasmas is QHD approach. Madelung
(1926) was the first to give the mathematical derivation of QHD model. The
hydrodynamic equations can be derived by using the Schrödinger–Poisson system
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of equations (Haas 2011). Due to the quantum tunneling effects, a new force in
terms of the gradient of Bohm potential (Gardner and Ringhofer 1996) appears in
the momentum equation. As the plasma particles obey Fermi–Dirac distribution, the
pressure term in the momentum equation is described by the Fermi pressure law,
which includes the quantum statistical effects. Thus, mathematical formulation for
classical plasmas is suitably modified by including these two quantum
characteristics.

QHD model has been used by several authors for studying quantum plasmas.
The existence of quantum ion acoustic (QIA) wave was first studied by Haas et al.
(2003) in unmagnetized quantum plasmas by using the one-dimensional QHD
model. Later, the QHD model has been applied on studying various linear and
nonlinear features of QIA (Ali et al. 2007; Haas 2005), quantum electron acoustic
(Sah and Manta 2009; Mahmood and Masood 2008; Misra et al. 2007) and
quantum positron acoustic (Metref and Tribeche 2014) solitary waves (SWs) in
different plasma regimes. Quantum ion acoustic waves have been investigated also
in carbon nanostructures (Wei and Wang 2007) and metallic nanowires (Moradi
2015) by using the QHD model. However, due to contamination, dust impurities
may exist in quantum plasmas like the microelectronic devices or metallic nanos-
tructures. The various linear and nonlinear phenomena of quantum dust acoustic
(DA) (Ali and Shukla 2006; Misra and Chowdhury 2006; El-Taibany and Wadati
2007; Wang et al. 2012) and dust ion acoustic (DIA) (Masood et al. 2007; Khan and
Mushtaq 2007) waves have been investigated by several authors. Treating the
charged carbon nanotubes as the charged dust which is surrounded by electron and
ion, Shukla (2009) derived the dispersion relation of DA waves. The existence of
DIA wave has been theoretically reported in metallic multiwalled carbon nanotubes
(Fathalian and Nikjo 2010).

Most of these studies in quantum plasmas have been made by applying the
reductive perturbation technique. Recently, Hanif et al. (2014) employed a
numerical technique to study ion acoustic (IA) shock waves in dense quantum
plasmas. Sagdeev’s method is applied in order to observe the existence of arbitrary
amplitude solitary wave. The inclusion of Bohm potential term in the momentum
equation makes the task of finding the closed-form analytical expression of pseu-
dopotential difficult. However, Mahmood and Mushtaq (2008) studied IA wave
propagation in an unmagnetized quantum plasma by using Sagdeev’s pseudopo-
tential approach under quasi-neutrality condition. Later, Mahmood (2008)
employed the same method to study the DIA waves in dense Fermi plasmas.

In this work, pseudopotential method has been employed to study arbitrary
amplitude quantum DIA waves together with the Poisson equation. In order to find
pseudopotential function, a different technique is being used. Different sections of
this article are organized as follows: In Sect. 2, basic equations are given, and in
Sect. 3, expression for pseudopotential is derived. The results and discussion are
presented in Sects. 4 and 5 presents conclusions.
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2 Basic Equations

Here, a quantum plasma with electrons, ions, and dust particles is considered. The
dust grains are negatively charged and do not move as they are highly massive.
Owing to small mass, the electrons are supposed to be inertialess. The system of
equations describing the dynamics is as follows:

@ni
@t

þ @

@x
ðniviÞ ¼ 0; ð1aÞ

@vi
@t

þ vi
@vi
@x

þ e
mi

@/
@x

¼ 0; ð1bÞ

0 ¼ e
@/
@x

� 1
ne

@pe
@x

þ �h2

2me

@

@x
1ffiffiffiffiffi
ne

p @2

@x2
ffiffiffiffiffi
ne

pð Þ
� �

; ð1cÞ

@2/
@x2

¼ 4pe ne þ Zd0nd0 � nið Þ; ð1dÞ

where ns; vs;ms are the number density, velocity, and mass of electron ðs ¼ eÞ and
ion ðs ¼ iÞ, respectively. / is the electrostatic potential. nd0 and Zd0 are the number
densities and charge numbers of dust grains at equilibrium, respectively. �h is the
Planck’s constant and �eðeÞ is the electron (ion) charge. Here, the electrons are
assumed to follow the one-dimensional zero-temperature Fermi gas pressure law
(Haas et al. 2003).

pe ¼ mev2Fe
3n2e0

n3e ; ð2Þ

where the Fermi electron velocity is given by vFe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KBTFe=me

p
, KB and TFe are

the Boltzmann constant and Fermi temperature, respectively. The charge neutrality
condition at equilibrium is given by

ni0 ¼ ne0 þ Zd0nd0: ð3Þ

Equations (1a)–(1d) are written in the normalized form as follows:

@ni
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0 ¼ @/
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� ne
@ne
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þ H2
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1ffiffiffiffiffi
ne

p @2

@x2
ffiffiffiffiffi
ne

pð Þ
� �

; ð4cÞ

@2/
@x2

¼ dne þ d � ni; ð4dÞ

where the potential / is normalized by 2KBTFe
e , vi and ns are normalized by C0 ¼

2KBTFe
mi

� �1
2
and ns0 s ¼ e; ið Þ, respectively. The space and time coordinates are nor-

malized by the ion Fermi wave length k ¼ 2KBTFe
4pni0e2

� �1
2
and ion plasma period

x�1
pi ¼ mi

4pni0e2

� �1
2
, respectively. Here, the dust density parameter d ¼ Zd0nd0

ni0
, d ¼ ne0

ni0
,

electron plasma period xpe ¼ 4pne0e2

me

� �1
2
, and the nondimensional quantum param-

eter H is defined as H ¼ �hxpe

2KBTFe
. The charge neutrality condition (3) implies

d ¼ 1� d.

3 Arbitrary Amplitude Solitons

To obtain the traveling wave solutions of the Eqs. (4a)–(4d) that are stationary in a
frame moving with a velocity M, it is considered that all the dependent variables
depend on n ¼ x�Mt, M being the Mach number normalized to the quantum ion
acoustic speed C0. Then, Eqs. (4a) and (4b) reduce to

ni ¼ M
M � vi

; ð5aÞ

vi �Mð Þ2¼ M2 � 2/; ð5bÞ

where the boundary conditions as n ! �1, ni ! 1; vi ! 0, and / ! 0 are used.
Then, Eqs. (5a) and (5b) imply that

ni ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2/

M2

q ; ð6Þ

Equation (4c) reduces to

n2e ¼ 1þ 2/þ H2

d
1ffiffiffiffiffi
ne

p @2

@n2
ffiffiffiffiffi
ne

pð Þ
� �

; ð7Þ
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imposing the boundary conditions / ! 0; ne ! 1, and @2

@n2
ffiffiffiffiffi
ne

p� � ! 0 as n ! �1.

Then, first neglecting the quantum diffraction effect (i.e., H ¼ 0) from Eq. (7), we

get ne ¼ 1þ 2/ð Þ12, which when plugged again in the Bohm potential term of
Eq. (7), the following density expression for electron is obtained (Misra and
Chowdhury 2006).

n2e ¼ 1þ 2/þ H2

d
ð1þ 2/Þ�1

4
@2

@n2
ð1þ 2/Þ14

� �
: ð8Þ

Equation (8), which expresses the electron density as a function of the elec-
trostatic potential, is derived on the basis of semiclassical limit for the small value
of H.

Now substituting the density expressions from Eqs. (6) and (8) in Poisson
equation, we obtain

d2/

dn2
¼ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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þ d � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2/
M2

q : ð9Þ

Using the boundary condition / ! 0; d/dn ! 0 and d2
/

dn2 ! 0 as n ! �1, we

obtain pseudopotential Vð/Þ as

Vð/Þ ¼ � 1
2

d/
dn

	 
2

ð10aÞ

where the charge neutrality condition gives

Vð0Þ ¼ V 0ð0Þ ¼ 0: ð10bÞ

Equation (10a) implies

V 0ð/Þ ¼ � d2/

dn2
: ð11Þ

Making use of Eqs. (11) and (10a), Eq. (9) reduces to

V 0ð/Þ ¼ �d
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Equation (12) implies

dV
d/

¼ A� D
2
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BþCV þ D2

4
� AD

r
ð13Þ

where

A ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
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q � d; B ¼ d2 1þ 2/ð Þ;

C ¼ 3H2d

2 1þ 2/ð Þ2 and D ¼ H2d
2 1þ 2/ð Þ :

ð14Þ

Here, making use of the charge neutrality condition (10b) in Eq. (12), we have

dV
d/

¼ A� D
2

	 

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BþCV þ D2

4
� AD

r
: ð15Þ

Equation (15) represents a first-order ordinary differential equation in / with
initial condition Vð0Þ ¼ 0 which has been solved by using fourth-order Runge–
Kutta method to obtain Vð/Þ: It is observed from the density expressions (6) and
(8) that in order to prevent wave braking, there are limitations on / that
� 1

2\/\M2

2 . For the existence of SWs, Vð/Þ need to satisfy the following
Sagdeev’s conditions:

(i) V 00ð/Þ\0 at / ¼ 0, so that the fixed point at the origin is unstable.
(ii) 9 a nonzero /m, the maximum (or minimum) value of /, at which Vð/Þ ¼ 0:
(iii) Vð/Þ\0, for 0\ /j j\ /mj j.
Condition (i) gives the lower limit of M for the existence of SWs as M[Mc,

where

Mc ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1� d

p : ð16Þ

Now here for d ! 0, Mc ! 1 which is same as obtained for simple electron-ion
plasmas.
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4 Results and Discussion

In this section, the obtained numerical results have been discussed. The values of
the parameter are taken as (Misra and Chowdhury 2006; Masood et al. 2007)
ne0 � 5� 1029, ni0 � 2� 1030, Zd0 � 103, and TFe � 102K. It is observed from the
Eq. (16) that the critical Mach number Mc for the existence of a solitary wave
depends upon the dust density parameter d. The variation Mc with the dust con-
centration d is plotted in Fig. 1. It is observed that Mc increases with an increase in
d. It should be pointed here that as the value of M depends upon a specific nor-
malization, some care should be taken to interpret the results physically. The true
Mach number is defined by the ratio M=Mc. From this ratio, the reference speed C0

used in normalization of M disappears (Baluku et al. 2010; Baluku and Hellberg
2012). Thus, the existence condition, M[Mc for solitary waves, implies that the
true Mach number M=Mc [ 1. In Fig. 2a, the pseudopotential Vð/Þs are plotted for
three values of d, where H ¼ 0:4 and M=Mc ¼ 1:2, and corresponding potential
profiles are plotted in Fig. 2b. It is found that as d increases, both the amplitude and
width of the SWs increase which is in agreement with what has been reported by
Khan and Mushtaq (2007). Vð/Þs are plotted in Fig. 3a for different values of the
quantum diffraction parameter H, and corresponding potential profiles are plotted in
Fig. 3b. The small effect of H is observed on the width of the solitary wave.
However, Haas (2005) pointed out that for moderate H, quantum diffraction effects
can be negligible if the density is slowly varying in comparison with typical length
scale. Here also the small effect of the quantum diffraction parameter is found. It is
found that for a small increase in the parameter H, the amplitude does not differ but
the width decreases. Next in Fig. 4a, Vð/Þs are plotted for different values ofM=Mc

and respective potential profiles are plotted in Fig. 4b. It is seen that both the
amplitude and width of the soliton increase as the true Mach number increases.

Fig. 1 Plot of Mc against d
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Fig. 2 a Plot of Vð/Þ for
different values of d. b Plot of
corresponding potential
profiles. Here, ¼ 0:4;
M=Mc ¼ 1:2
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Fig. 3 a Plot of Vð/Þ for
different values of H. b Plot of
corresponding potential
profiles. Here, d ¼ 0:25 and
M=Mc ¼ 1:2
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5 Conclusion

In this article, the propagation of DIASWs has been studied by applying Sagdeev’s
pseudopotential approach in an unmagnetized quantum dusty plasma together with
the Poisson equation. The pseudopotential function is obtained numerically by
using fourth-order Runge–Kutta method. A numerical investigation is carried out to
observe the effects of different parameters. It is observed that the amplitude and
width of the DIA waves are modified due to the presence of dust particles, which is
in agreement with what has been reported by Khan and Mushtaq (2007). It is also
found that the width of the solitary wave decreases due to increase in quantum
diffraction parameter but amplitude does not differ.

Fig. 4 a Plot of Vð/Þ for
different values of M=Mc.
b Plot of corresponding
potential profiles. Here,
d ¼ 0:25 and H ¼ 0:4
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Influence of Abrasive Water Jet Turning
Parameters on Variation of Diameter
of Hybrid Metal Matrix Composite

Akash Nag, Ashish Kumar Srivastava, Amit Rai Dixit,
Somnath Chattopadhyaya, Amitava Mandal, Dagmar Klichová,
Petr Hlaváček, Michal Zeleňák and Sergej Hloch

Abstract Abrasive water jet turning is one of the recently developed manufac-
turing technologies. It has gained its importance due to its capability to machine
difficult-to-cut material with advantages such as absence of thermal effects, high
machining flexibility and little cutting force. In this study, the influence of water jet
turning parameters such as abrasive type and abrasive mass flow rate has been
analysed on the variation of diameter with the target diameter of metal matrix
composite. Composite material A359/Al2O3/B4C fabricated by electromagnetic stir
casting process was used in the experiment. To select the level of parameter,
one-variable-at-a-time analysis was used. The results revealed that the abrasive type
had a greater influence on the deviation of diameter from the target diameter as
compared to mass flow rate.
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List of Symbols and Abbreviations

MMC Metal matrix composite
AWJM Abrasive water jet machining
AWJ Abrasive water jet
AJWT Abrasive water jet turning
OVAT One variable at a time

1 Introduction

A metal matrix composite (MMC) consist of at least two constituents, one being
necessarily a metal and the other material may be a different metal or another
material, such as ceramic or organic compound. When three or more materials are
present, it is called a hybrid composite (Clyne 2000). MMCs offer higher specific
strength and stiffness, higher working temperature and higher wear resistance.
Aluminium composites are used in various engineering applications for its high
strength-to-weight ratio particularly in aircraft and automobile parts such as
cylinder blocks and cylinder liners. Miller et al. (2000), Dinwoodie (1987), Rohatgi
(1991). However, MMCs also have some disadvantages compared with metals.
Chief among these are high abrasiveness of the reinforcing fibres, its heterogeneity
and heat sensitiveness Kök (2009), Abrate and Walton (1992), Sahin et al. (2002).
Conventional tool material cannot be used for machining MMC’s due to high tool
wear rate and long machining time Santhanakrishnan et al. (1989), Sakuma and
Seto (1983, 1981), Ramulu et al. (1991). However, non conventional methods such
as abrasive water jet machining (AWJM), electrical discharge machining (EDM),
laser beam machining (LBM) and plasma beam machining (PBM) are successful in
machining these materials because the process machinability does not depend upon
material hardness and strength. Abrasive water jet machining is a process in which
material removal is done by impact erosion of concentrated high-velocity stream of
abrasive particle entrained in high-velocity water stream. In abrasive water jet,
turning the abrasive water jet is fed by the nozzle, along specific distance and axis,
and the workpiece rotates around an axis. The schematic diagram of turning setup is
shown in Fig. 1. This paper investigates the machinability of B4C- and Al2O3-
reinforced aluminium alloy matrix composite using abrasive water jet turning and
the influence of process parameters such as abrasive grain type and abrasive mass
flow rate on the final diameter of the machined surface.
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2 State-of-the-Art Analysis

Hashish (1987) was first to develop abrasive water jet turning. He studied the
influence of traverse speed, water pressure, rotational speed, abrasive size, type of
abrasive, jet angle, abrasive flow rate and lateral feed increment on surface wavi-
ness. He reported that there was a decline in the performance with very high mass
flow rate due to overloading of the water jet with abrasives and the dimensional
tolerances can be improved by steadiness of process parameters. Machined surface
with abrasive water jet (AWJ) did not showed any change in microstructure of the
specimen, and tensile test of AWJ-turned sample also stated that the process did not
affected the tensile characteristic of the material.

Finnie (1960) investigated erosion of surfaces by solid particles. He predicted a
model for angle of impact which leads to maximum erosion and showed velocity
dependence on erosion for ductile material.

Manu and Babu (2009) developed a mathematical model based on erosion
model of Finnie for predicting final diameter of the machined workpiece. They
considered impact angle, traverse speed and nozzle diameter as a function of the
decreased diameter. They found out that most of the prediction based on the model
was matched by experimental results.

Zohourkari and Zohoor (2010) developed a mathematical model to estimate the
final diameter of the cylindrical workpiece machined by abrasive water jet turning
(AWJT). They stated that MRR achieved according to Hashish model is less as
compared to Finnie. The proposed model by them predicted desired geometry with
high correlation with the experimental geometry.

Fig. 1 Schematic diagram of abrasive water jet turning
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Yue et al. (2014) worked on optimizing machining parameters such as water
pressure, jet feed speed, abrasive flow rate, surface speed and nozzle tilt angle over
surface roughness and MRR. He observed that in offset radial mode of turning, the
actual depth of cut achieved was less than desired.

Kumar et al. (2016) used AWJM to cut friction stir welding joints. They con-
cluded that AWJ cutting generated regular cut surface topography and did not
generate any heat-affected zone (HAZ). It was also observed that the cut surface by
AWJ was not affected by the rotational speed of the tool.

3 Material and Method

The material used in this paper is hybrid metal matrix composite (MMC) which
consist of A359 aluminium alloy as base metal matrix, 2% B4C and 2% Al2O3 as
reinforce components. It was fabricated using electromagnetic stir casting process
(Srivastava et al. 2016a, b). A359 aluminium alloy was used for its good casting
and wettability properties. Composition of the alloy is shown in Table 1. B4C is the
third hardest material and has low specific gravity and impact resistance. Al2O3

have a high dielectric properties and good conductivity. The properties of the
constituents of the hybrid MMC are shown in Table 2.

The experimental turning was performed on a 2D X–Y cutting table, which had
a cutting head specially designed for the AWJ cutting. The water pressure was
generated by a PTV pump with two pressure intensifiers. The MMC workpiece was
fixed in the 3-jaw-mounted chuck device, which enabled the rotation of the
workpiece. Water is pumped at a sufficiently high pressure and is passed through
orifice which converts the potential energy of water into kinetic energy. This yields
high-velocity jet of water. Abrasive particles are added to the water jet to enhance
its cutting ability.

Table 1 Composition of A359 aluminium alloy

Elements Si Cu Mg Mn Fe Zn Ti Al

Percentage (%) 8.5–9.5 0.2 0.5–0.7 0.1 0.2 0.1 0.2 Remaining

Table 2 Basic properties of constituents of hybrid MMC Srivastava et al. (2016a, b)

Constituents A359 (Base metal) 2% Al2O3 2% B4C

Density (g/cm3) 2.66 3.2 2.52

Thermal conductivity (W/mK) 152 100 30–42

Specific gravity (g/cm3) 2.68 3.7 2.51

Melting point (°C) 600 2072 2445
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The abrasive particles are allowed to entrain in water jet to form abrasive water
jet with sufficient high velocity. Such high-velocity abrasive jet can machine almost
all material. The nozzle was first given the desired depth of cut and then was made
to travel along the length of the workpiece. The machine had to be calibrated each
time when new abrasive grains were used for machining. AWJ setup and machining
zone is shown in Fig. 2a, b.

One-variable-at-a-time analysis (OVAT) was used in this experiment. In OVAT
analysis, one process parameter is varied at a time from lower to higher value by
keeping all other process parameter constant, and we measure the effect of
parameter change on the final diameter. In this work, we took abrasive type and
mass flow rate as input machining parameters to see its effect on the final diameter
of the workpiece. Two types of abrasives were selected, and four levels of mass
flow rates were used. The experimental conditions used during the experiment are
shown in the Table 3.

Fig. 2 a AWJ setup. b AWJ
machining zone of MMC
material
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4 Results and Discussion

The machined surface image is shown in Fig. 3a, b. The final diameter of the
machined surface was measured at 4 different places for every experiment by using
vernier calliper to avoid any error in the measurement. Mean values of the diameter
were taken to calculate the deviation between desired and actual final diameter. The
observation table is shown in Table 4.

Table 3 Experimental
conditions

Factors Values

Cutting head type Slice II by PTV

Pressure p (MPa) 300

MESH 80

Angle of attack ɸ (°) 90

Standoff distance z (mm) 15

Depth of cut ap (mm) 2

Revolution rpm (r/min) 400

Traverse speed v (mm min−1) 10

Abrasive type Barton garnet, Olivine

Abrasive mass flow rate ma (g/min) 100, 200, 300, 400

Fig. 3 a Machined
workpiece using Barton
garnet grains, b machined
workpiece using olivine
grains
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DD ¼ Mean Final Diameter Actualð Þ � Final Diameter Desiredð Þ
DD% ¼ DD� Final Diameter Desiredð Þ

It was observed that the final diameter reduced as we increased the abrasive mass
flow rate for both the abrasive grains while the depth of cut was kept constant
throughout the experiment. It may be due to the fact that by increasing the abrasive
mass flow rate, amount of abrasive interacting or involving in cutting process

Table 4 Observation table of abrasive water jet turning

Abrasive Exp. No. Abrasive
mass flow
rate (g/min)

Initial
diameter

Final
diameter
(desired)

Final
diameter
(actual)

Final
diameter
(mean)

ΔD ΔD
(%)

Barton
garnet
(1)

B1 400 25.45 21.45 20.73 20.69 0.76 3.54

20.67

20.66

20.71

B2 300 25.45 21.45 20.88 20.88 0.57 2.66

20.86

20.90

20.87

B3 200 25.45 21.45 21.10 21.10 0.36 1.63

21.06

21.09

21.13

B4 100 25.45 21.45 21.63 21.60 −0.15 −0.70

21.57

21.59

21.62

Olivine
(2)

O1 400 25.45 21.45 20.87 20.91 0.54 2.52

20.89

20.92

20.96

O2 300 25.45 21.45 20.95 20.98 0.47 2.19

20.98

21.00

20.99

O3 200 25.45 21.45 21.15 21.16 0.29 1.35

21.16

21.14

21.18

O4 100 25.45 21.45 21.73 21.74 −0.29 −1.35

21.75

21.77

21.72
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increases. Due to which more amount of material erosion takes place for same
machining length and time. It was also observed from the results that the final
diameter was less than the desired diameter for higher values of abrasive flow rate.
The deviation of actual final diameter from desired diameter followed an inversely
linear trend with the abrasive mass flow rate. The result also highlighted an
observation that while turning with olivine abrasive, the difference in diameters
obtained was not large and was similar for high flow rates, but for Barton garnet
abrasive, it varied evenly with the abrasive mass flow rates. Moreover, Barton
garnet gave a larger range of diameter deviation than that obtained by olivine
grains. It may be due to the change in their crystalline structure which generates
coarser and smoother cuts. The graph of the actual diameter obtained and desired
diameter with different abrasive grain and different abrasive mass flow rate has been
plot and shown in Fig. 4a, b.
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Fig. 4 Desired and actual
diameter obtained using
a Barton garnet abrasive
grains, b olivine abrasive
grains
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5 Conclusion and Future Scope

Based on the experiments, it can be concluded that

• AWJT can be used successfully to turn hybrid metal matrix composite by
eliminating the problem of tool wear which occurs during conventional turning.

• Due to the absence of any temperature rise in the machining area, no change in
the microstructure or physical properties of the machined surface takes place.

• Proper control of the required dimension can be obtained by setting appropriate
machining parameters.

• Increase in abrasive flow rate increases the interaction of abrasive with the
material leading to higher material removal.

• Use of different abrasive grains makes the surface smoother or coarser
depending on their shape and physical properties.

• Olivine abrasive grains give better dimensional control than Barton garnet
grains.

Further investigation on the machined surface finish and study of surface
topography of the machined surface obtained by varying the machining parameters
can be done. Moreover, influence of other machining parameters on the machin-
ability of difficult-to-machine material like Hybrid MMC’s can be investigated.
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Peristaltic Flow of a Bingham Fluid
in Contact with a Jeffrey Fluid

R. Saravana, P. Hariprabakaran, R. Hemadri Reddy and S. Sreenadh

Abstract The article concerns the peristaltic transport of two-layered fluid, con-
sisting of a Bingham fluid in the core region and a Jeffrey fluid in the peripheral
region through a channel. The flow is analyzed in the wave of reference under the
assumptions of long wavelength and low Reynolds number. The analytical
expressions for stream function, pressure rise, and the frictional force per wave-
length in both the regions are obtained. The effect of physical parameters namely
yield stress, Jeffrey parameter associated with the flow are presented graphically.
This model helps to understand the behavior of two immiscible physiological fluids
in living structures and in modeling the biomechanical instruments.

1 Introduction

The mechanism of peristalsis takes place in the food bolus transport through
esophagus, chyme movement in the gastrointestinal tract, lymph transport in the
lymphatic vessels, urine transport from kidney to bladder through the ureter, and in
the vasomotion of small blood vessels. In mechanical aspects, the peristaltic pumps
are modeled to transport the corrosive liquids in nuclear industries and to filter blood
in dialysis machine. A few investigations on the peristaltic flow of physiological
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fluids have been reported in the literature (Nadeem and Akram 2009; Saravana et al.
2011; Vajravelu et al. 2013). The behavior of blood flow through small vessels
represents two-layered flow which includes plasma peripheral layer and suspension
of all erythrocytes in core region. Brasseur et al. (1987) reported the influence of
Newtonian peripheral layer of different viscosities on the peristaltic pumping. Usha
and Ramachandra Rao (1997) investigated the two-layered peristaltic flows with
long wavelength and low Reynolds number assumptions. Narahari and Sreenadh
(2010) analyzed the peristaltic pumping of a Bingham fluid with Newtonian
peripheral region, and Hari Prabakaran et al. (2013) extended this work through an
inclined channel. Very recently, Kavitha et al. (2015) addressed the peristaltic
pumping of a Jeffrey fluid in contact with a Newtonian fluid in an inclined channel.

Keeping all these aspects in mind, we investigated the peristaltic flow of a
Bingham fluid in the core region in contact with a Jeffrey fluid in the peripheral
region. The analytical expressions for two-layered flow are obtained under the long
wavelength and low Reynolds number assumptions. The effect of yield stress
parameter and Jeffrey parameter on the flow and the shape of interface is presented
graphically.

2 Mathematical Formulation

Consider the two-layered peristaltic flow of an incompressible Bingham fluid occu-
pying core region and an incompressible Jeffrey fluid occupying peripheral region
through a two-dimensional channel. For simplicity and without loss of symmetricity,
we restrict our analysis to the half width of the channel and it is shown in Fig. 1. In the
Cartesian coordinate system X; Yð Þ, the flexible channel walls are modeled as

Y ¼ H X; tð Þ ¼ aþ b sin
2p
k

X � ctð Þ ð1Þ

Fig. 1 Physical model
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The letters a; b; c, and t denote half width of the channel, amplitude, speed of
the wave, and time, respectively. The Greek letter k represents wavelength.

The deformation separating the core and peripheral layers is represented by
H1 X; tð Þ:

The stress tensor model for Bingham fluid in core region following (Chen et al.
2004; Frigaard and Ryan 2004) are

s1 ¼ l1
du1
dy

þ s0sign
du1
dy

� �
; s1j j[ s0; ð2Þ

du1
dy

¼ 0; s1j j\s0 ð3Þ

and the corresponding stress tensor for Jeffrey fluid in peripheral region following
Hayat and Ali (2008) are

s2 ¼ l2
1þ k1

_cþ k2€cð Þ; ð4Þ

where si i ¼ 1; 2ð Þ and li i ¼ 1; 2ð Þ represent the stress tensors and viscosities in the
core and peripheral regions, respectively, u1 denotes the velocity in the central
region, s0 is the yield stress, k1 is the ratio of relaxation to retardation times, k2 is
the delay time, _c is shear rate, and dots over the quantity indicate differentiation
with respect to time.

The transformation between the laboratory frame X; Yð Þ and wave frame ðx; yÞ is
given by

x ¼ X � ct; y ¼ Y ; u x; yð Þ ¼ U X � ct; Yð Þ � c;
v x; yð Þ ¼ V X � ct; Yð Þ; p xð Þ ¼ P X; tð Þ; w ¼ W� Y

�
ð5Þ

where w and W are the stream functions in the wave frame and laboratory frame,
respectively.

We define the non-dimensional quantities as follows:

�x ¼ x
k
; �y ¼ y

a
; �h ¼ h

a
; �h1 ¼ h1

a
; �t ¼ ct

k
; �P ¼ Pa2

l1kc
;

/ ¼ b
a
; �si ¼ a

l1c
si; �wi ¼

wi

ac
;

�s0 ¼ a
l1c

s0; �q ¼ q
ac

; �F ¼ Fa
l1kc

; �ui ¼ ui
c
¼ @wi

@�y
; �vi ¼ vik

ac
¼ �@wi

@�x
i ¼ 1; 2ð Þ;

�l ¼
1; 0��y� �h1

l ¼ l2
l1

� �
; �h1 ��y� �h

(

ð6Þ
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Here �ui and �vi are the velocity components in the wave frame along �x and �y
directions.

The governing equations of motion of immiscible flow in both the core and
peripheral layer, under the assumptions of long wavelength and low Reynolds
number (dropping bars), are

@

@y
�s0 þ @2w1

@y2

� �
¼ @p

@x
; 0� y� h1 ð7Þ

0 ¼ @p
@y

; ð8Þ

@

@y
l

1þ k1

@2w2

@y2

� �
¼ @p

@x
; h1 � y� h ð9Þ

The corresponding boundary conditions are

w1 ¼ 0 at y ¼ 0 ð10Þ

w1ð Þyy¼ s0 at y ¼ 0 ð11Þ

w2 ¼ q ¼ constant at y ¼ h ð12Þ

w1 ¼ w2 ¼ q1 ¼ constant at y ¼ h1 ð13Þ

w2ð Þy¼ �1 at y ¼ h ð14Þ

The letters q and q1 indicate the total and the core fluxes across any cross section
in the wave frame, respectively. In addition, shear stress and velocity are continuous
across the interface. The peripheral layer flux is given by q2 ¼ q� q1. The
incompressibility of the fluids follows that q; q1 and q2 are independent of x. The
dimensionless average volume flow rate Q over one period T ¼ k

c

	 

of the peristaltic

wave is defined as

Q ¼ qþ 1: ð15Þ

3 Solution of the Two-Fluid System

Solve Eqs. (7)–(9) together with the boundary conditions (10)–(14) and

w1 ¼ w1ð Þp at y ¼ y0 ð16Þ
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w1ð Þp¼ 0 at y ¼ 0 ð17Þ

where y0 is the upper limit of the plug flow region and w1ð Þp is the plug flow region
stream function.

The stream functions in the core (plug flow and non-plug flow regions) and
peripheral region are obtained as

w1ð Þp ¼ y �1� s0 h1 � y0ð Þþ 1þ k1ð ÞF2 � ly20
	 
 6 qþ hð Þþ 3s0 h21 � y20

	 

4 1þ k1ð ÞF3 � ly30
	 


" #" #

for 0� y� y0

ð18Þ

w1 ¼ �y� s0h1yþ s0
2

y2 þ y20
	 
þ 2 qþ hð Þþ s0 h21 � y20

	 

8 1þ k1ð ÞF3 � ly30
	 


" #

6 1þ k1ð ÞF2y� 2l y3 þ 2y30
	 
� �

for y0 � y� h1

ð19Þ

w2 ¼ �yþðqþ hÞþ 6 qþ hð Þþ 3s0 h21 � y20
	 
� �

3yh2 � y3 � 2h3½ �
12 F3 � ly30

	 

for h1 � y� h

ð20Þ

where

1þ k1ð ÞFj ¼ 1þ k1ð Þh j þ l� 1þ k1ð Þð Þh j
1 j ¼ 2; 3ð Þ

The axial pressure gradient is given by

dp
dx

¼ � 6l qþ hð Þþ 3ls0 h21 � y20
	 


2 1þ k1ð ÞF3 � ly30
	 


" #
ð21Þ

3.1 Interface Equation

The unknown interface h1 xð Þ is solved from (19) using the boundary condition (10).
Thus, we get the algebraic equation governing the interface h1 xð Þ as

s0 1þ k1ð Þh51 þ 4 l� 1þ k1ð Þð Þh41 � 2 qþ hð Þ 2l� 3 1þ k1ð Þð Þð
�4q1 l� 1þ k1ð Þð Þþ s0 1þ k1ð Þ 3h2 þ y20

	 


h31

þ 2s0 1þ k1ð Þ h3	 

h21 � 6qh2 þ 2h3 � 3s0y20h

2	 

1þ k1ð Þþ 4ly30

	 

h1

þ 4q1 � 2s0y20
	 


h3 1þ k1ð Þ � 4q1ly30 þ 4 qþ hð Þly30 ¼ 0

ð22Þ
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where q and q1 are independent of x.
Using the condition h1 ¼ a; y0 ¼ a1 at x ¼ 0 in Eq. (22), we get

q1 ¼

s0 1þ k1ð Þa5 þ 4 l� 1þ k1ð Þð Þa4
� 2ðqþ 1Þ 2l� 3 1þ k1ð Þð Þþ s0 1þ k1ð Þ a21 þ 3

	 
	 

a3

þ 2s0 1þ k1ð Þ a2 � a21
	 
þ 4 qþ 1ð Þla31

� 6q 1þ k1ð Þþ 4la21 � 3s0 1þ k1ð Þa21 þ 2 1þ k1ð Þ	 

a

0
BB@

1
CCA

4la31 � 4 l� 1þ k1ð Þð Þa3 � 4 1þ k1ð Þ ð23Þ

3.2 The Pumping Characteristics

Integrating Eq. (21) with respect to x over one cycle of the wavelength, we get the
pressure rise (drop) as

DP ¼ �3l Q� 1
	 


I1 � 3lI2 � 3
2
ls0I3 ð24Þ

where

I1 ¼
Z1

0

1
F3 1þ k1ð Þ � ly30

dx; I2 ¼
Z1

0

h
F3 1þ k1ð Þ � ly30

dx;

I3 ¼
Z1

0

h21 � y20
F3 1þ k1ð Þ � ly30

dx

4 Graphical Results and Discussion

In wave frame analysis, the interface is also known as streamline and is calculated
by using Eq. (22). The variations in interface shape for yield stress, Jeffrey
parameter, and the ratio of viscosity are plotted in Figs. 2, 3, and 4. From Fig. 2, we
notice that the decrease in yield stress results the thinner peripheral layer in the
dilated region. Figure 3 shows that an increase in Jeffrey parameter yields the
thicker peripheral layer in the dilated region. The streamlines for viscosity ratio are
shown in Fig. 4. From the figure, we have seen that the high viscosity ratio gives
rise in the thinner peripheral layer in the dilated region. Also, we find that the shape
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Fig. 2 Interface shape for yield stress with / ¼ 0:6, l ¼ 0:9, Q ¼ 0:1, a ¼ 0:7, k1 ¼ 1

Fig. 3 Interface shape for Jeffrey parameter with / ¼ 0:6, l ¼ 0:9, Q ¼ 0:1, a ¼ 0:7, s0 ¼ 0:1

Fig. 4 Interface shape for ratio of viscosity with / ¼ 0:6, k1 ¼ 1, Q ¼ 0:1, a ¼ 0:7, s0 ¼ 0:1

Peristaltic Flow of a Bingham Fluid in Contact … 511



of interface between the two fluids is not unique. The relation between pressure rise
and volume flow rate is determined from Eq. (24). The effect of yield stress and
Jeffrey parameter on the pumping characteristics is presented graphically in Figs. 5
and 6. Figure 5 depicts that for a given flux Q, the pressure rise decreases with
increasing yield stress. Figure 6 illustrates that for a given flux Q, the pressure rise
increases with increasing the Jeffrey parameter. In addition, we observe that the
relation between pressure rise and volume flow rate is linear. In the absence of yield
stress and Jeffrey parameter, the equations and the corresponding results of present
study were found to be good in agreement with those of Brasseur et al. (1987).
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Fig. 5 DP versus Q for different yield stress parameters with / ¼ 0:6, l ¼ 0:9, k1 ¼ 0:1, a ¼ 0:7
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5 Conclusion

The analytical solution for the peristaltic pumping of a Bingham fluid in contact
with a Jeffrey fluid has been derived. The numerical computed results are presented
graphically. The results of present study reveal that the decrease in yield stress
results the thinner peripheral layer and an increase in Jeffrey parameter yields the
thicker peripheral layer in the dilated region. The study shows that for pumping
region DP[ 0ð Þ, the flow rate and pressure difference are lowered for higher values
of yield stress, whereas the flow rate and pressure difference increase by increasing
the Jeffrey parameter.
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Performance Analysis of Pulsating Water
Jet Machining During Disintegration
of Rocks by Means of Acoustic Emission

Rupam Tripathi, Madhulika Srivastava, Sergej Hloch,
Somnath Chattopadhyaya, Alok Kumar Das, Alokesh Pramanik,
Dagmar Klichová and Pavel Adamcik

Abstract Over the decades, water jet cutting has been widely used for rock dis-
integration in mining operations and quarrying purposes. The impact of
high-pressure water jet on hard material like rock, coal ruins the original structure of
the material; therefore, low-pressure water jet comes into the existence. In recent
year, pulsating water jet has been applied in numerous ways such as surface
cleaning, exclusion of damaged material layers, preparation of surfaces, and dis-
integration of materials. It has also a great potential for application in hard rock
breakage as conventional methods are cumbersome, not readily accessible and have
economical limitations. The performance of the jet increases significantly by the
generation of pulses causing disintegration of material at a relatively lower energy
and costs. This paper focuses on the study of the disintegration processes of marble
and granite by pulsating water jet subjected to erosion via acoustic emission. The
experiments are performed by using pulsating water jet with modulation frequency
of 20.20 kHz. The MVT circular nozzle with an orifice diameter of 0.9 mm,
standoff distance from the target material 6 mm, traverse speed varied from 2 to
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16 mm/s, and pump pressure 60 MPa was used for water jetting. The topography of
granites and marble on the cut depth and surface quality were investigated by the
optical profile meter. Moreover, dependable relations between some physical and
mechanical properties of the rocks and the depth of cut were observed. The online
monitoring of acoustic emission shows the change in response to the pulse fre-
quency at different time intervals.

Abbreviations

PWJ Pulsating water jet
AE Acoustic emission
WJ Water jet
FFT Fast fourier transform
Ra Mean arithmetic deviation of roughness
Rq Root-mean-square deviation of the profile
Rz Maximum height of the roughness profile
Sq Root-mean-square roughness
f Frequency (kHz)
d Diameter of the nozzle (mm)
v Traverse speed (mm/s)
p Pressure (MPa)
z Standoff distance (mm)

1 Introduction

Water jet offers wide range of solutions in rock cutting and has greatly been used
for disintegration of rocks. Manipulation of large volume of water at low pressure
as a tool can be done efficiently and effectively (Knill et al. 1968).

Over several decades, granite is being actively used as a building material due to
its exceptional properties like resistance to aesthetic properties and environmental
effects (Zelenak et al. 2015). Though granite is compatible with the environmental
conditions, it has limited industrial application. Since 1960, rock breakage tech-
nology is using high-pressure, low volume jet-gained popularity in scientific
research and industrial applications and pulsed water jet provided new direction for
hard rock breakage (Karakurt et al. 2012). Various studies has been reported related
to the design of nozzle but only few are concerned with the parametric study like
traverse speed, pressure etc. The present study focus on studying the variation of
traverse speed of nozzle during disintegration of rocks.

In the past two decades, the use of natural stone has been made more significant.
The growing commercial market and competition for natural stone have resulted in
increased demand for innovative manufacturing process (Tripathi et al. 2016).
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Due to the composition of natural stone (granite, shale, concrete), especially granite
machining and processing with traditional system have some difficulties. Therefore,
new technology comes in the picture that is pulsating water jet machining. Due to
this, increase machining efficiency by minimizing production time and cost
required. Among the innovative manufacturing process, water jet has developed
broad application (Knill et al. 1968).

WJ has been widely used in exclusion of damaged material layers, surface
cleaning, breakage of biological material, and many other applications (Srivastava
et al. 2016; Foldyna et al. 2012). The formation of pulses in pulsating water jet is
based upon the generation of acoustic waves using a transducer which acts on the
pressurized liquid and transmits it to the actuators in acoustic chamber filled with
pressurized liquid. These acoustic waves are then amplified using a mechanical
amplifier and transferred to the nozzle with the help of a liquid waveguide (Zelenak
et al. 2015; Lehocka et al. 2016).

The impact of the highly energized liquid mass stream on the solid surface
causes the disintegration of the surface due to the formation of short pressure
transients.

This phenomenon of disintegration consists of two main stages: (a) Initially, the
water hammer pressures are generated due to the compressive nature of the liquid.
These pressures cause the most serious damages to the surface. (b) As this impact
pressure releases, liquid starts flowing away from the point of impact. The velocity
with which the liquid flows tangentially is five times the impact velocity (Foldyna
et al. 2012).

Nowaday’s acoustic emission phenomenon is one of the best phenomena. It is
nondestructive testing of highly stressed material as a result of internal deformation
mechanism may be used to examine the deformation and failure of rocks under
load. Therefore, it has been used in laboratory on the material such as gold crystal
and wooden beams. It has been also found many applications in model studies of
the earthquake and testing of the missiles casings. This method can be used in
material research which is metal or nonmetal (Knill et al. 1968). The method and
inspection of surface quality by continuous control (online) still remain the issue
(Hloch et al. 2013a, b; Delijaicov et al. 2010; Fowler et al. 2005; Hassan et al. 2004;
Hloch et al. 2011). In accordance with the performed measurements, we are
searching for the dependence between acoustic emission and its factors of the WJ
factor.

Hloch et al. (2013a, b) investigated during the analysis of acoustic emission
hydroabrasive cutting for indirect control that the behavior with the exactly
scheduled change of the cutting condition and cutting head transverse and analysis
and comparison of the examined section of the experimentation through FFT
spectral analysis. They performed the experimental procedure on the single variable
factor of the AWJ, to be analyzed the C sample monitored as solely i.e., the
represent part of the large experiment. Application of the remaining sample A, B, D
shows dependency on the variable factor changing speed, abrasive mass flow rate
ma, and focusing tube diameter df. These dependency or regulation equations are
monitored through the online control process. Zelenak et al. (2015) investigated to
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visualize of the high-speed pulsating and continuous water jet structures and
velocity flow vector field to test the applicability of the shadowgraph technique
combined with PIV processing algorithms.

The main aim of this work is to study the erosion effects caused during the
disintegration of rock or mining material by pulsating water jet. The acoustic
emission was measured during the experimentation using the LabVIEW to describe
the surface phenomena and studying the effects of parameters. In addition to this,
the surface roughness of the obtained traces was evaluated using non-contact type
optical profile meter Microprof FTR and to determine the effects of parameters on
the depth of cut.

2 Experimental Study

The experiment was conducted at Institute of Geonics of the CAS, Ostrava-Poruba.
In order to study the disintegration processes of marble and granite by pulsating
water jet via acoustic emission and vibration, we used Software National
Instruments (NI), LabVIEW 2012 SP1 f5 ver. 12.0.1, Sound and Vibration
Measurement Suite 12.0.0, Spectral Measurements Toolkit 2.6.3, Advanced Signal
Processing Toolkit 12.0.0, and hardware (NI) accelerometer WR712F-M4 up to
65 kHz. The technological setup includes: (a) plunger pump Hammelmann HDP
253 (b) Robot ABB IRB 6640-180 for handling the pulsating water head (Fig. 1).

Water stream  
ultrasonically 

fortified

Fig. 1 Water stream ultrasonically fortified on the left—without pulsation, on the right—with
pulsation 20 kHz (Zelenak et al. 2015)
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Table 1 shows the experimental condition. An Ecoson WJ-UG_630-40 generator
was used as a source of acoustic waves for the generation of pulsating water jet.

The experiments were performed with the modulation frequency of 20.2 kHz
(Fig. 2).

Table 1 Experimental condition (Tripathi et al. 2016)

f (kHz) p (MPa) d (mm) z (mm) v (mm/s) Material A
(mm)

P
(W)

Liquid

20.2 60 0.9 30 2, 4, 6, 8, 10, 12,
14, 16

marble 6 380 H2O

20.2 60 0.9 30 2, 4, 6, 8, 10, 12,
14, 16

granite 6 380 H2O

(c) (d)

(a) (b)

Fig. 2 a Experimental setup. b Monitoring the process. c Rock sample with black granite.
d White marble (Tripathi et al. 2016)
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3 Result and Discussion

The surface roughness of the disintegrated samples of granite was measured using
optical MicroProf FRT profilometer at the Institute of Geonics AS CR, v.v.i.
Ostrava. The 3D plots of the surface were evaluated for samples disintegrated under
following conditions: two grooves were performed by continuous water jet using
circular nozzle orifice diameter d = 0.9 mm at pressure levels p = 60 MPa visible
traces were observed only in case of PWJ.

Figure 3 shows the setup of the optical profilometer using which 3D and 2D
profiles of the granite and marble samples are traced also, the depth and width of cut
during disintegration were evaluated.

A high level of isotropy was observed from the parameter analysis of the dis-
integrated samples. From the topographical analysis of the surface of the grooves, it
was observed that a lower value of surface roughness Ra, Rq, and Rz was achieved
at v = 2 mm/s and v = 4 mm/s. In Fig. 3, uneven values of surface roughness were
observed in the form of peaks and valleys. It was observed that as the feed rate was
increased, the values of the surface roughness were increased.

On comparing the traces of the pulsating and continuous water jet, it was
observed that the traces created by the pulsating water jet were much deeper than
continuous water jet. These depths generated by the circular nozzle during disin-
tegration are shown in the Fig. 4a–d. It is observed that the material is squeezed out

Fig. 3 Optical Profilometer
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above the edge of groove of the sample. Figure 4c, d shows the maximum depth of
the groove.

The average value of roughness was calculated in the SPIP 6.6.1 program. The
final average values of surface roughness are stated above in the Fig. 5a, b. It
follows from the aforementioned case that a lower surface roughness can be
achieved by the pulsating water jet with the higher transverse speed.

The figure below shows the frequency pulse versus time graph of marble and
granite samples disintegrated by pulsating and continuous water jet. From the
experimental data, the difference during the time course of disintegration of granite
by water jet and pulsating water jet by vibration can be seen in Figs. 6, 7, and 8.
During the disintegration of rock by pulsating water jet, the link between the
material being cut and the optimum frequency of the pulse for different materials
can show the change in response to the pulse frequency.

The above graphs show that a more stable region was observed in case of
samples treated with PWJ than continuous water jet.

Fig. 4 Non-contact type Profilometer. a 3D profile record during granite disintegration by
pulsating water jet, b 3D profile record during granite disintegration by continuous water jet, c 3D
profile record during marble disintegration by pulsating water jet, d 3D profile record during
marble disintegration by continuous water jet
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Grooves:1 
Ra [μm]=301.82 
Rq [μm]=558.27 
Rz [μm] =3375.9 

Grooves:1 
Ra [μm] 292.73 
Rq [μm] 698.88 
Rz [μm] 4012.7 

(a)

(b)

Fig. 5 a Graphical illustration of disintegrated grooves with pulsating water jet. b Graphical
illustration of disintegrated grooves without pulsating water jet

Fig. 6 Time course of disintegration of marble by pulsating water jet by vibration

522 R. Tripathi et al.



4 Conclusion and Future Scope

This technology has been increasingly used in manufacturing field as well as the
material is disintegrated by the shock impact waves (Tripathi et al. 2016, Srivastava
et al. 2016). The capacity of the pulsating water jet in rocks was experimentally
investigated. The main conclusion of the study can be summarized as follows:

• From the preliminary experimental data, the difference during the time course of
disintegration of granite and marble by water jet and pulsating water jet by
vibration can be seen in Figs. 6, 7 and 8.

• Deeper traces were observed in pulsating water jet as compare to the continuos
water jet with the help of the SPIP 6.6.0 software.

• Additionally, the effect of the acoustic emission is used to relate the techno-
logical conditions with the other control parameters to disintegrate in the
materials.

Over the years, WJ and AWJ have shown some technological and economical
limitations in industrial application of rock and coal cutting (Sharma et al. 2011).

Fig. 7 Time course of disintegration of granite by pulsating water jet

Fig. 8 Time course of disintegration of granite by water jet
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Therefore, the technology is trending toward the disintegration of these materials at
lower pressures for which pulsating WJ is the solution. This technology has
potential to be used in wide variety of applications like stone carving, 3D printing,
biomedical application, and architectures with much more efficiency as compare to
other WJ machining process.
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Three-Dimensional Solute Transport
Problems in an Aquifer: Numerical
Approaches

Mritunjay Kumar Singh, Rakesh Kumar Singh and Vijay P. Singh

Abstract The solution of solute transport problem in an aquifer with suitable
boundary conditions has been dealt by various analytical methods in the past. But,
the analytical approach becomes more difficult to apply when either dealing with
complex boundary conditions or higher order solute transport problems. The dif-
ficulty may be reduced by handling the problem by numerical approaches as in the
present paper, forward in time centered in space (FTCS) finite-difference scheme is
used to solve the three-dimensional advection-dispersion equation (ADE) with
Dirichlet and Neumann boundary conditions. The Dirichlet boundary conditions are
taken temporally dependent. The numerical solution is obtained graphically with
the help of MATLAB software package, and further under a special case, the
numerical solution obtained by FTCS scheme is validated with the solution
obtained by PDEtool which is based on the finite-element method.

1 Introduction

By various ways, the solutes or pollutants enter into the groundwater system through
porous formation. Once these solutes or pollutants enter into the groundwater system,
these pollutants will be transported by flowing groundwater and may degrade water
quality at nearby wells and streams (Wexler 1992). The solute transport problem has
been described by advection-dispersion equation (ADE) with initial and boundary
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conditions. The difficulty level of solute transport problem depends on the various
factors affecting during the solute transportation in an aquifer, the dimension of the
ADE describing solute transport problem, and type of initial and boundary conditions
taken. A large number of papers, based on the analytical solution of ADEs, have been
published in the past. But, due to the large variability offlow and transport properties
in the medium and the nonideal nature of applicable initial and boundary conditions,
the usefulness of analytical solution is often limited and, therefore, numerical method
may be needed (Leij et al. 1991). The analytical solute transport models are not
capable of handling all kinds of solute transport problems that come across in practice
due to the fact that almost all analytical solute transport models in the literature are
based on unidirectional flow fields as well as other restrictive assumptions (Batu
2005). Hence, numerical approach may be applicable in those cases.

Leij et al. (1991) presented the several analytical solutions for three-dimensional
solute transport in semi-infinite porous medium with unidirectional flow using
first-type and third-type boundary conditions. Many papers have been published
which discuss the analytical solution of one-, two-, and three-dimensional solute
transport in groundwater system with finite and infinite aquifer length (Wexler
1992; Park and Zhan 2001; Yeh 1981). Dehghan (2004) discussed the various
explicit and implicit finite-difference approximations for the numerical solution of
three-dimensional advection-diffusion equation with Dirichlet boundary condition
and also discussed the stability condition in each case for the corresponding
finite-difference equations by using Von Neumann stability method. Tamsir et al.
(2016) solved the three-dimensional ADE by using modified cubic B-spline dif-
ferential quadrature method that converted the ADE into a system of first-order
ODEs. Yadav et al. (2012) presented the analytical solution of three-dimensional
model for nonreactive solute transport in semi-infinite homogeneous porous media.
They have considered the concentration in liquid and solid phase and taken the
dispersion coefficient as temporally dependent. Sankarnaraynan et al. (1998) have
solved the three-dimensional convective-dispersive equation by using higher order
upwind scheme for convective term to minimize the numerical diffusion.

The main objective of this paper is to derive numerical solution for the
three-dimensional ADE during two-dimensional flow in a three-dimensional finite
medium using finite-difference method.

2 Numerical Solution of Solute Transport Problem

The three-dimensional solute transport problem for homogeneous and isotropic
medium with time-dependent boundary conditions is as follows:

@c
@t

¼ �v1
@c
@x

� v2
@c
@y

þDx
@2c
@x2

þDy
@2c
@y2

þDz
@2c
@z2

; ð1Þ

526 M.K. Singh et al.



where c is solute concentration [M L−3], v1 and v2 are average linear velocities
[L T−1], Dx;Dx and Dx are constant dispersion coefficients [L2 T−1], t is time [T],
and x, y, and z are spatial variables [L].

Initial condition:

c x; y; z; tð Þ ¼ 0; 0� x; y; z� L; t ¼ 0 ð2Þ

Boundary conditions:

c x; y; z; tð Þ ¼ exp �m1tð Þ; 0� y; z� L; x ¼ 0; t[ 0 ð3Þ

c x; y; z; tð Þ ¼ exp �m2tð Þ; 0� x; z� L; y ¼ 0; t[ 0 ð4Þ

c x; y; z; tð Þ ¼ 0; 0� x; y� L; z ¼ 0; t[ 0 ð5Þ
@c
@x

¼ @c
@y

¼ @c
@z

¼ 0; x ¼ y ¼ z ¼ L; t[ 0; ð6Þ

where m1 and m2 are parameters called flow resistance coefficient [T−1].
Here, we solve the three-dimensional advection-dispersion Eq. (1) by using

forward in time centered in space (FTCS) scheme which is based on
finite-difference method.

Let the domain of three-dimensional space be divided into a network of cubes of
sides Dx ¼ Dy ¼ Dz ¼ h, by drawing the set of lines x ¼ ih; i ¼ 0; 1; 2; . . .; y ¼
jh; j ¼ 0; 1; 2; . . . and z ¼ kh; k ¼ 0; 1; 2; . . .. The points of intersection of these
lines are called grid points, or we may call block corner points. The diagram of
three-dimensional space with finite-difference grids is shown in Fig. 1. Let the

Fig. 1 Three-dimensional space with finite-difference grid points
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coordinates of an intersecting point x; y; zð Þ are represented as i; j; kð Þ. Similarly the
points say xþ h; y; zð Þ, x; yþ h; zð Þ, and x; y; zþ hð Þ are represented as iþ 1; j; kð Þ,
i; jþ 1; kð Þ, and i; j; kþ 1ð Þ, respectively.
Now, let the time domain for the problem is 0� t� T covered by a plane of

blocks of uniformly spaced with interval Dt along vertical axis. Again let Dx, Dy,
and Dz be the space intervals in x-, y-, and z-directions, respectively. Let M, N, and
Q are the total number of intervals in x-, y-, and z-directions, respectively, and L is
the space length along x-, y-, and z-directions, then we have Dx = L/M, Dy = L/N,
and Dz = L/Q.

Now approximating Eq. (1), by using first-order forward-difference in time and
second-order central-difference in space at the intersecting point i; j; k; nð Þ, we get

cnþ 1
i;j;k � cni;j;k

Dt
¼ �v1

cniþ 1;j;k � cni�1;j;k

2Dx

� �
� v2

cni;jþ 1;k � cni;j�1;k

2Dy

� �
þDx

cniþ 1;j;k � 2cni;j;k þ cni�1;j;k

Dxð Þ2
" #

þDy
cni;jþ 1;k � 2cni;j;k þ cni;j�1;k

Dyð Þ2
" #

þDz
cni;j;kþ 1 � 2cni;j;k þ cni;j;k�1

Dzð Þ2
" #

:

ð7Þ

After rearrangement, Eq. (7) takes the form

cnþ 1
i;j;k ¼ r1 þ r4

2

� �
cni�1;j;k þ r2 þ r5

2

� �
cni;j�1;k þ r3c

n
i;j;k�1 � 2r1 þ 2r2 þ 2r3 � 1ð Þcni;j;k

þ r1 � r4
2

� �
cniþ 1;j;k þ r2 � r5

2

� �
cni;jþ 1;k þ r3c

n
i;j;kþ 1;

i ¼ 1; 2; . . .;M � 1; j ¼ 1; 2; . . .;N � 1; k ¼ 1; 2; . . .;Q� 1; ð8Þ

where r1 ¼ DxDt
Dxð Þ2, r2 ¼

DyDt

Dyð Þ2, r3 ¼
DzDt
Dzð Þ2 ; r4 ¼

v1Dt
Dx , and r5 ¼ v2Dt

Dy .

Approximating the given three derivative boundary conditions in Eq. (6) at the
boundary points i ¼ M; j ¼ N and k ¼ Q, respectively, we have

cniþ 1;j;k ¼ cni�1;j;k; i ¼ M ð9Þ

cni;jþ 1;k ¼ cni;j�1;k; j ¼ N ð10Þ

and

cni;j;kþ 1 ¼ cni;j;k�1; k ¼ Q ð11Þ
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Using relation (11) in Eq. (8) gives

cnþ 1
i;j;k ¼ r1 þ r4

2

� �
cni�1;j;k þ r2 þ r5

2

� �
cni;j�1;k þ 2r3cni;j;k�1

� 2r1 þ 2r2 þ 2r3 � 1ð Þcni;j;k þ r1 � r4
2

� �
cniþ 1;j;k þ r2 � r5

2

� �
cni;jþ 1;k;

i ¼ 1; 2; . . .;M � 1; j ¼ 1; 2; . . .;N � 1; k ¼ Q ð12Þ

Using relations (10) and (11) in Eq. (8) gives

cnþ 1
i;j;k ¼ r1 þ r4

2

� �
cni�1;j;k þ 2r2cni;j�1;k þ 2r3cni;j;k�1

� 2r1 þ 2r2 þ 2r3 � 1ð Þcni;j;k þ r1 � r4
2

� �
cniþ 1;j;k;

i ¼ 1; 2; . . .;M � 1; j ¼ N; k ¼ Q ð13Þ

Using (9) and (11) in Eq. (8) gives

cnþ 1
i;j;k ¼ 2r1cni�1;j;k þ r2 þ r5

2

� �
cni;j�1;k þ 2r3cni;j;k�1

� 2r1 þ 2r2 þ 2r3 � 1ð Þcni;j;k þ r2 � r5
2

� �
cni;jþ 1;k;

i ¼ M; j ¼ 1; 2; . . .;N � 1; k ¼ Q ð14Þ

Using (10) in Eq. (8) gives

cnþ 1
i;j;k ¼ r1 þ r4

2

� �
cni�1;j;k þ 2r2cni;j�1;k þ r3cni;j;k�1

� 2r1 þ 2r2 þ 2r3 � 1ð Þcni;j;k þ r1 � r4
2

� �
cniþ 1;j;k þ r3c

n
i;j;kþ 1;

i ¼ 1; 2; . . .;M � 1; j ¼ N; k ¼ 1; 2; . . .;Q� 1 ð15Þ

Using (9) in Eq. (8) gives

cnþ 1
i;j;k ¼ 2r1cni�1;j;k þ r2 þ r5

2

� �
cni;j�1;k þ r3c

n
i;j;k�1

� 2r1 þ 2r2 þ 2r3 � 1ð Þcni;j;k þ r2 � r5
2

� �
cni;jþ 1;k þ r3c

n
i;j;kþ 1;

i ¼ M; j ¼ 1; 2; . . .;N � 1; k ¼ 1; 2; . . .;Q� 1 ð16Þ
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Using (9) and (10) in Eq. (8) gives

cnþ 1
i;j;k ¼ 2r1cni�1;j;k þ 2r2cni;j�1;k þ r3c

n
i;j;k�1

� 2r1 þ 2r2 þ 2r3 � 1ð Þcni;j;k þ r3c
n
i;j;kþ 1;

i ¼ M; j ¼ N; k ¼ 1; 2; . . .;Q� 1 ð17Þ

And at the last, using (9), (10), and (11) in Eq. (8) gives

cnþ 1
i;j;k ¼ 2r1cni�1;j;k þ 2r2cni;j�1;k þ 2r3cni;j;k�1

� 2r1 þ 2r2 þ 2r3 � 1ð Þcni;j;k;

i ¼ M; j ¼ N; k ¼ Q ð18Þ

All the eight explicit Eqs. (8), (12)–(18) together will give the solution of the
three-dimensional ADE (1).

Now to solve the ADE (1), consider v1 ¼ 0:3 km/year, v2 ¼ 0:4 km/year,
d1 ¼ 0:01 km2/year, d2 ¼ 0:02 km2/year, d3 ¼ 0:03 km2/year, M ¼ 20; N ¼ 20;
Q ¼ 20; T ¼ 1 year, L ¼ 1 km, Dt ¼ 0:02 year, m1 ¼ 0:0006 year−1, m2 ¼
0:0003 year−1.

It should be noted that the above all eight explicit equations must satisfy the
stability criteria (Hoffman 1992; Mehdi 2004). Here, the spatial and temporal steps
have been taken carefully so that the stability condition should not vanish.

Numerical solution of the above eight explicit equations manually will take too
much time and will be tedious when higher degree of accuracy required. Therefore,
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Fig. 2 Numerical solution of the three-dimensional ADE (1)

530 M.K. Singh et al.



Table 1 Numerical results for the solution of ADE (1) at the time t = 1 year

Value of solute concentration c(x, y, z, t) in 3D space at t = 1 year corresponding to x-, y-, and z-coordinates

0.9994 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997

0.9994 0.9995 0.9995 0.9995 0.9993 0.9990 0.9986 0.9980 0.9974 0.9967 0.9960

0.9994 0.9994 0.9992 0.9987 0.9979 0.9966 0.9948 0.9925 0.9898 0.9868 0.9838

0.9994 0.9991 0.9984 0.9970 0.9946 0.9909 0.9859 0.9796 0.9722 0.9641 0.9559

0.9994 0.9987 0.9970 0.9939 0.9886 0.9807 0.9698 0.9562 0.9402 0.9230 0.9057

0.9994 0.9980 0.9950 0.9892 0.9796 0.9652 0.9457 0.9213 0.8928 0.8623 0.8316

0.9994 0.9972 0.9923 0.9832 0.9681 0.9457 0.9154 0.8774 0.8336 0.7867 0.7400

0.9994 0.9963 0.9894 0.9767 0.9557 0.9246 0.8826 0.8303 0.7702 0.7062 0.6429

0.9994 0.9955 0.9867 0.9705 0.9439 0.9047 0.8518 0.7863 0.7113 0.6319 0.5536

0.9994 0.9947 0.9844 0.9653 0.9341 0.8882 0.8264 0.7502 0.6633 0.5716 0.4818

0.9994 0.9942 0.9827 0.9615 0.9269 0.8761 0.8079 0.7240 0.6287 0.5284 0.4306

0.9994 0.9939 0.9816 0.9590 0.9222 0.8682 0.7959 0.7071 0.6064 0.5008 0.3981

0.9994 0.9936 0.9810 0.9575 0.9194 0.8635 0.7889 0.6973 0.5936 0.4850 0.3796

0.9994 0.9935 0.9806 0.9567 0.9179 0.8610 0.7851 0.6921 0.5869 0.4769 0.3701

0.9994 0.9935 0.9804 0.9563 0.9172 0.8599 0.7834 0.6897 0.5838 0.4731 0.3658

0.9994 0.9934 0.9803 0.9562 0.9169 0.8593 0.7826 0.6886 0.5824 0.4715 0.3639

0.9994 0.9934 0.9803 0.9561 0.9167 0.8591 0.7823 0.6882 0.5819 0.4708 0.3632

0.9994 0.9934 0.9803 0.9561 0.9167 0.8591 0.7822 0.6880 0.5817 0.4706 0.3629

0.9994 0.9934 0.9803 0.9561 0.9167 0.8590 0.7821 0.6880 0.5817 0.4705 0.3629

0.9994 0.9934 0.9803 0.9561 0.9167 0.8590 0.7821 0.6880 0.5816 0.4705 0.3628

0.9994 0.9934 0.9803 0.9561 0.9167 0.8590 0.7821 0.6880 0.5816 0.4705 0.3628

0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997

0.9953 0.9947 0.9942 0.9938 0.9935 0.9933 0.9932 0.9931 0.9931 0.9931

0.9810 0.9785 0.9764 0.9748 0.9736 0.9728 0.9723 0.9720 0.9719 0.9718

0.9482 0.9414 0.9358 0.9315 0.9284 0.9263 0.9250 0.9242 0.9238 0.9236

0.8894 0.8751 0.8635 0.8546 0.8482 0.8439 0.8413 0.8397 0.8389 0.8385

0.8031 0.7782 0.7581 0.7428 0.7320 0.7248 0.7203 0.7178 0.7164 0.7159

0.6967 0.6593 0.6292 0.6066 0.5907 0.5803 0.5739 0.5702 0.5683 0.5675

0.5845 0.5346 0.4946 0.4648 0.4440 0.4306 0.4224 0.4177 0.4153 0.4143

0.4821 0.4211 0.3727 0.3369 0.3121 0.2962 0.2866 0.2812 0.2784 0.2773

0.4000 0.3307 0.2760 0.2358 0.2082 0.1905 0.1799 0.1740 0.1710 0.1698

0.3419 0.2671 0.2083 0.1652 0.1358 0.1170 0.1059 0.0997 0.0965 0.0953

0.3052 0.2271 0.1659 0.1213 0.0909 0.0715 0.0601 0.0538 0.0505 0.0492

0.2845 0.2047 0.1422 0.0968 0.0659 0.0463 0.0347 0.0283 0.0250 0.0237

0.2739 0.1933 0.1303 0.0845 0.0534 0.0337 0.0220 0.0156 0.0123 0.0110

0.2691 0.1881 0.1249 0.0789 0.0477 0.0279 0.0163 0.0098 0.0065 0.0052

0.2670 0.1859 0.1226 0.0766 0.0453 0.0256 0.0139 0.0075 0.0042 0.0029

0.2663 0.1851 0.1217 0.0757 0.0445 0.0247 0.0130 0.0066 0.0033 0.0020

0.2660 0.1848 0.1215 0.0754 0.0442 0.0244 0.0127 0.0063 0.0030 0.0017

0.2659 0.1847 0.1214 0.0753 0.0441 0.0243 0.0126 0.0062 0.0029 0.0016

0.2659 0.1847 0.1213 0.0753 0.0440 0.0243 0.0126 0.0061 0.0029 0.0016

0.2659 0.1847 0.1213 0.0753 0.0440 0.0243 0.0126 0.0061 0.0029 0.0016
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the solution has been obtained graphically with the help of MATLAB software as
shown in Fig. 2.

In Fig. 2, the solute concentration is distributed in the three-dimensional space
from the initial planes xz and yz toward the final boundary planes xz and yz due to
advection in x- and y-directions and dispersion in x-, y-, and z-directions. The
solute concentration has been taken zero on the initial plane xy as showing dark
blue color at the bottom of the space.

The numerical results obtained for the solution of the ADE (1) have been shown
in Table 1.

In Table 1, the 21 columns and 21 rows are representing the values of solute
concentration distributed in the three-dimensional space at the time t = 1 year
corresponding to x-, y-, and z-coordinates.

2.1 Special Case

When there is only diffusion in the x- and y- directions and no advection in any
direction, then the obtained graphical solutions of the ADE (1) by FTCS scheme
and finite element method (PDEtool), have been shown in Figs. 3 and 4,
respectively.

From Figs. 3 and 4, we observed that there is good agreement between the
numerical solutions obtained by FTCS scheme and PDEtool.
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Fig. 3 Numerical solution of the three-dimensional ADE (1) by FTCS scheme when there is no
advection
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3 Conclusions

Three-dimensional ADE has been solved by using FTCS explicit method, and its
numerical solution has been obtained successfully by MATLAB software. Also
under a special case when diffusion coefficient in the z-direction supposed as zero
and taken no advection in any direction, the numerical solution obtained by FTCS
method has been found with good agreement to the solution obtained by finite
element method. The numerical solutions obtained in this work may be helpful for
researchers to understand the solute transport phenomenon in the three-dimensional
space.
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Surface Treatment of AISI 304 Using
Pulsating Water Jet Peening

Madhulika Srivastava, Rupam Tripathi, Sergej Hloch, Ayush Rajput,
Drupad Khublani, Somnath Chattopadhyaya, Amit Rai Dixit,
Josef Foldyna, Pavel Adamčík, Jiri Klich, Michal Zelenak
and Dagmar Klichová

Abstract Water jet peening has gained attention as a potential surface treatment
process for improving the fatigue life of a component. The tensile residual stress in
the component initiates the stress corrosion cracking and reduces its fatigue life.
The mitigation of this tensile residual stress can be effectively achieved by water jet
peening process due to its resistance to corrosion, flexibility in treating complex
areas and capability to maintain the eco-friendly environment. In the present work,
the AISI 304 plates were treated with pulsating water jet (actuator frequency
f = 20.19 Hz) at the pressure of p = 20 MPa with traverse speed of v = 0.5 mm/s
and v = 2.5 mm/s using two different types of nozzles; flat nozzle of diameter
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d = 1 mm (HAMMELMANN) and circular nozzle of diameter d = 1.9 mm
(STONEAGE). The microstructural analysis of the treated and untreated region was
conducted to analyse the effect of traverse speed and the type of nozzle on the
erosion process. The study revealed that more erosion occurs at lower traverse
speed; however, fewer surface depressions were observed in the case of flat nozzles.
The X-ray diffraction technique was also used to analyse the effect of traverse speed
and the type of nozzle on the residual stress of the samples. In addition to this, the
acoustic emission during the ongoing process was monitored using LabView 2012
SP1 f5 ver. 12.0.1. The results indicate that acoustically monitored pulsating water
jet peening process can be used as tool for the controlled local treatment process
arising from the impact of the pulsed water jet on the surface of sample.

Abbreviations and Symbols

WJP Water jet peening
PWJ Pulsating water jet
XRD X-ray diffraction
FESEM Field emission scanning electron microscope
AE Acoustic emission
f Frequency (kHz)
d Diameter of the nozzle (mm)
v Traverse speed (mm/s)
p Pressure (MPa)
z Stand-off distance (mm)

1 Introduction

Austenitic stainless steel (AISI 304) has wide mechanical, automotive and nuclear
applications as it inherits magnificent properties such as high toughness, better
corrosion resistance, high ductility, drawability and formability. These components
possess residual stress, which has the tendency to improve or deteriorate the
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component depending on their magnitude and nature. The positive effect of com-
pressive residual stress is widely used in industries. Over the years, possible
methods are being adopted to improve the adverse effect of the residual stresses
such as shot peening, laser shock peening and water jet peening (Meguid et al.
1999). Water jet peening has emerged as a promising technique for mitigating the
stress corrosion cracking which results into the improvement of the residual stresses
and the fatigue life of the component (Srivastava et al. 2016). The possible
drawbacks associated with shot peening, i.e. defects and rough surface, which has
pernicious effects to fatigue crack initiation have been eliminated in the water jet
peening process (Eftekhari et al. 1995). In addition to this, WJP method does not
involve any thermal effects as in laser peening (Ding and Ye 2006). In the WJP
process, the droplets of water are impinged against the surface being treated. The
impact of the droplets generates a surface pressure distribution that exceeds
the yield strength of the material. A localized plastic deformation is induced by the
peak loads that are constrained by the surrounding material thereby inducing high
compressive residual stress (Hashimoto et al. 2013) (Fig. 1).

Water jet technology in recent times is being used in varieties of applications
such as cleaning, cutting, paint removal, surface textures and increasing fatigue life
of the component by imposing positive effects compressive residual stress in the
subsurface layer (Mochizuki et al. 1993). Water jet as a tool for surface treatment
refers to any process that is used to modify, enhance or remove the exposed
surfaces of a component or structure. The applications that require surface treatment
range from low-precision process like rust removal from ship hulls to control
processes such as texture automotive cylinder bores to promote the adhesion of
thermal spray coatings. A continuous water jet has several modifications like AWJ
and PWJ (Foldyna et al. 2004, 2009, 2012). WJ and AWJ are presently being used
in industries and have some economic and technological limitations. The current

Fig. 1 Mechanism of water jet peening
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industry is trending towards erosion of materials at lower pressures for different
applications. This could be achieved by using pulsating water jet (Lehocka et al.
2016; Zelenak et al. 2015). Pulsating water jet involves initially a continuous jet
exiting from the nozzle which later turns into individual clusters of fluid.
Eventually, the material is then treated with high-energy droplets. Over the years,
attempts are being made to attain the discontinuity of the jet, but the modification of
continuous jet in form of pulses is found to be most advantageous (Lehocka et al.
2016). The pulsating water jet is practically being investigated for disintegration of
rocks (Vijay and Foldyna 1994; Tripathi et al. 2016), redevelopment of concrete
structures (Foldyna 2011), scale removal from steels (Hnizdil and Raudensky
2010), erosion of metals (Foldyna et al. 2012) and in medicine for dental hygiene
(Sharma et al. 2008), orthopaedics and traumatology (Hloch et al. 2013a, b) and
dermal medicine (Akbari and Shafii 2002). In this study, an attempt has been made
to utilize the effectiveness of PWJ for the surface treatment process.

In the past decades, possible attempts had been made to analyse the effect of
various process parameters such as jet pressure p (MPa) and traverse speed
v (mm/min) on the residual stress, the roughness and the erosion of the component.
Colosimo et al. (2000) explained the empirical relation between the peening
parameters, residual stress and surface roughness of the material. Ramulu et al.
(2000) evaluated the effect of high-pressure water jet on the surface integrity and
texture of the metal through an experimental study. The residual stress fields
obtained after the treatment were analysed to distinguish the influence of material
properties. Arola et al. (2001) observed that the residual stress on the surface of
titanium alloy after water jet peening increased with increasing pressure, and also
negligible change in roughness was observed. The experimental study of water jet
peening at 600 MPa (Hashish et al. 2005) revealed that plastic deformation was
achieved at much deeper layers in case of water jet peening than laser peening. The
degree of the deformation was found to be dependent on the peening parameters
and the desired surface roughness. Also, a comparative study between water jet
peening and shot peening on aluminium alloy depicted that the compressive stress
induced near the strengthened surface by water jet peening was higher than shot
peening, thereby more increase in the fatigue life was observed in case of
water-jet-peened surface. Though many works had been reported regarding the
effect of residual stress on the surface treated by water jet, efforts are required to
cover the large range of materials and to analyse the variation of the changing
process parameters.

Online monitoring of acoustic emission in the recent years has been used
effectively for defect analysis during the ongoing process (Hloch et al. 2013a, b).
Valicek and Hloch (2010) utilized the negative characteristic of noise as a source of
information to describe the ongoing process. The appropriate application of sensors
monitors the AE generated during the process for the fault detection. For instance,
in the case of abrasive water jet cutting insufficient cutting depth, choked orifice,
etc. was detected by using acoustic emission as an indirect monitoring tool (Hassan
et al. 2004). Hreha et al. (2012) attempted to monitor the vibrations generated
during the hydro-abrasive cutting of stainless steel and observed that fault
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conditions like broken focussing tube, fractured water nozzle can be detected and
controlled during the online monitoring of acoustic emission. Similarly, Hreha et al.
(2015) during the online monitoring of AWJ cutting of AISI 309 analysed the
dependency of the surface topography of the material being cut on the emission
spectrum arising during the process. The online monitoring of AE involves mea-
surement and evaluation of the ongoing phenomenon which helps in the charac-
terization of the processes accurately. It involves the collection and evaluation of
the AE (Tripathi et al. 2016). The data evaluated from the acoustic emission spectra
helps to predict the ongoing process and determine the state of PWJ during the time
of its exposure to the material. This information can be applied to any position
during the ongoing experiment on the surface of the material. The solution is highly
influenced by the input parameters of the technological process in order to achieve
the optimal parameters for preventing the disintegration of the material (Chen 2008;
Natarajan et al. 2011; Chen et al. 2011; Salak et al. 2006; Sharma 2011).

In this work, the surface of AISI 304 is treated using pulsating water jet using
two different types of nozzles; flat nozzle and circular nozzle. The microstructural
analysis was conducted to evaluate the effect of plastic deformation on the treated
surface. In order to analyse the effect of type of nozzle on the residual stress
improvement, the surface residual stresses will be measured using X-ray diffraction
method. Also, during the treatment of AISI 304 samples, indirect monitoring of
acoustic emission using LabView 2012 SP1 f5 ver. 12.0.1 was performed. The aim
of using the acoustic emission as an indirect monitoring tool is to use it as a source
of information during the ongoing process for a better control over the treatment
process.

2 Material and Experimentation

The water jet peening was performed on the surface of AISI 304 plate having
mechanical properties and composition given in Tables 1 and 2, respectively.
The AISI 304 plate (350 mm � 50 mm � 5 mm) was clamped on the fixture
which was attached to the frame of the machine (Fig. 3). The technological set-up
(Fig. 2) includes—plunger pump HAMMELMANN HDP 253 (maximum operat-
ing pressure—150 MPa, maximum flow rate 67 l min−1) and robot ABB IRB
6640-180 for handling the pulsating water head. The acoustic waves are generated
by ultrasonic generator Ecoson WO-UG_630-20 specially designed for pulsating
water jetting. The treatment process was performed in a linear direction along the
width of the sample using two types of nozzles: flat (HAMMELMANN) (Fig. 2a)
and circular (STONEAGE) (Fig. 2b) with the experimental conditions stated in
Table 3. Sufficient gap was maintained between the consecutive treatments in order
to avoid the overlap of the treated surface (Fig. 4). As the flat nozzle exit is
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elliptical in shape, it forms a wider jet at a spray angle of 10° and resulted in
rectangular cross section on the surface of the workpiece after the treatment process.
In contrast to this, the circular nozzle exit is circular in shape and resulted in circular
cross section on the surface of the workpiece.

The acoustic emission generated during the peening process was measured using
Spectral Measurements Toolkit 2.6.3 with accelerometer WR712F-M4 capable of
measuring up to 65 kHz. The AE parameters were obtained by processing the raw
AE signal using Advanced Signal Processing Toolkit 12.0.0 by LabView 2012 SP1
f5 ver. 12.0.1 (National Instrument). A piezoelectric accelerometer was fixed at the
back side of the workpiece before clamping. The two other accelerometer sensors
were also fixed for sensing the pressure in the chamber at the time of impact.

Fig. 2 Principle of technological set-up: a flat nozzle, b circular nozzle

Table 1 Composition of AISI 304

Element C (%) Mn (%) S (%) Si (%) P (%) Ni (%) Cr (%)

SS (AISI 304) 0.08 2.00 0.03 1.0 0.04 8–10.5 18–20

Table 2 Mechanical properties of AISI 304

STN W. Nr. Grade Tensile strength
Rm (N-mm−2)

Yield
strength

Elongation
(%)

HR
Bmax.

Structure

Rp0,2 Rp1
17.240 1.4301 304 500/900 175 210 45 88 Austenitic
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3 Results and Discussion

3.1 AE Analysis

The acoustic emission was recorded during the peening process caused by the
impact of the pulsed water jet with the surface of the sample. These signals were

Fig. 3 Experimental set-up

Table 3 Experimental conditions

S. No. Type of nozzle d (mm) f (kHz) Z (mm) p (MPa) v (mm/s)

1. Flat 1 20 30 20 0.5
2.5

2. Circular 1.9 20 30 20 0.5
2.5

Fig. 4 Treated AISI 304
samples by pulsating water jet
using flat nozzle d = 1 mm
10° and round nozzle
d = 1.9 mm
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recorded from the commencement of the peening process till the width of the
sample was covered (Fig. 5).

Figure 6a–d shows the acoustic emission signals recorded at different traverse
speed at pressure of 20 MPa using flat and circular nozzles. According to the

Fig. 5 Position on the sample for AE analysis

Fig. 6 Acoustic emission signal behaviour: (a) flat nozzle, v = 0.5 mm/s; (b) flat nozzle,
v = 2.5 mm/s; (c) circular nozzle, v = 0.5 mm/s; (d) circular nozzle, v = 2.5 mm/s
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analysis of measured acoustic emission, it is possible to conclude that the signal
intensity measurement during peening with the circular nozzle is two times bigger
than using flat nozzle due to water dispersion under angle 10° of flat nozzle. As
shown in Fig. 6, the peak values of amplitude are achieved after few seconds of the
beginning of the peening process due to the commencement of the repeated impact
of the pulsed water jet on the surface of sample. The traverse speed has shown
influential behaviour in the waveform, i.e. the signal obtained using traverse speed
v = 0.5 mm/s has convex shape, while at higher traverse speed v = 2.5 mm/s it
showed a concave behaviour. At higher traverse speed v = 2.5 mm/s, the signal
intensity increases abruptly in the case of flat nozzle. However, the circular nozzle
showed a significant change in which the low traverse speed v = 0.5 mm/s causes
low actuation particular in the middle part of the sample and high traverse speed
v = 2.5 mm/s actuates middle part of the sample to the edge of the sample more.
The possible reason behind this variation could be the plastic deformation that
occurs more at lower traverse speed. The present results show the important dif-
ference in the shape of the signals with the variation in the traverse speed.

Fig. 6 (continued)
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Therefore, these acoustic emission results can be used as important source infor-
mation about the ongoing plastic deformation during the surface treatment process.

3.2 Surface Erosion

After the treatment of AISI 304 by pulsating water jet, the microstructural analysis
of the surface was examined using FESEM (FESEM Supra 55 having resolution of
0.8 nm at 15 kV, and 1.6 nm at 1 kV; 12-1000000X magnification; 100 V to
30 kV acceleration voltage; and Schottky field emission electron gun.). These
micrographs were taken at 500� magnification as shown in Fig. 7a–e. The
microstructure of AISI 304 surface indicates noticeable erosion in the treated region
in form of small depressions. These depressions are more visible for the treatments
subjected to lower traverse speed (Fig. 7b, c). Therefore, it can be interpreted that
the erosion mechanism is dependent upon the duration of the impact of pulsed
water jet with the target material which, in turn, is dependent upon the traverse
speed. From Fig. 7a (original surface) and Fig. 7b–e (treated surface), it can be
noted that substantial amount of erosion occurs on the surface after the treatment
process. For the same parameter, the treatments carried out with flat nozzle
(Fig. 7b, d) showed fewer surface depressions or less severe erosions as compared
to treatments carried out using circular nozzle (Fig. 7c, e). In Fig. 7c, it was
observed that disintegration of material occurs in case of circular nozzles when
treated at traverse speed of 0.5 mm/s; however, under same parameter, the
micrograph of flat nozzle showed the occurrence of surface depressions Fig. 7b.

Figure 7f was observed at 1000� magnification which shows the main impact
zone and cavities created after the treatment process. These cavities are the result of
peening mechanism in which the droplets impact the surface being treated and lead
to plastic deformation which is constraint by the surrounding material.

3.3 Residual Stress Measurement

The residual stress measurements are conducted using X-ray diffraction method by
Panalytical High Resolution XRD-I, PW 3040/60 (Fig. 8). The measurements will
be conducted on the surface of samples treated with round and flat nozzles as shown
in Fig. 9.

The residual stresses will be measured on the surface of the untreated and treated
regions to evaluate the changes before and after the treatment process and also to
evaluate the influence of geometry of nozzle on the residual stress improvement.
Due to certain limitations, these tests could not be conducted at present, but in
future the results will be evaluated and reported.
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(a) Untreated surface (b) Flat nozzle (v=0.5m/s, P=20MPa)

(c) Circula rnozzle ( v=0.5m/s, P=20MPa) (d) Flat nozzle (v=2.5m/s, P=20MPa)

(e) Circular nozzle ( v=2.5m/s, P=20MPa) (f) Circular nozzle (v=2.5m/s, P=20MPa)

Fig. 7 FESEM images of treated and untreated AISI 304 samples
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4 Conclusion and Future Scope

This experimental investigation presents a new and effective method for the surface
treatment process. The AISI 304 plates are treated using pulsating water jet using
two different types of nozzles, flat and circular, at different set of parameters. From
the present study, the following conclusions can be made:

(i) The microstructural analysis of the treated samples revealed that more ero-
sion or surface depressions were observed on the surface of the samples that
are treated at lower traverse speed.

(ii) Considering the effect of geometry of the nozzle on the surface erosion, it
was observed the flat nozzle leads to less surface erosions as compared to
circular nozzle when treated under same conditions.

(iii) The acoustic emission signals recorded during the peening process showed a
influential behaviour on the traverse speed. The waveform showed convex
behaviour for low traverse speed and concave behaviour for high traverse
speed.

Fig. 8 X-ray diffraction
machine

Fig. 9 Sample for residual
stress measurement

546 M. Srivastava et al.



(iv) The signal intensity obtained for circular nozzle was more than the flat nozzle
due to water dispersion at an angle of 10°.

(v) These acoustic emission results can be used as important source information
for performing a controlled treatment process on the surface of the specimen.

Further, in the future, the effect of treatment on the residual stress will be
evaluated to check the effectiveness of the process as a surface treatment technique.
Also, the acoustic emission recorded during the peening process is interpreted
according to the residual stress results obtained in order to present an effective way
to control the parameters hence, maintaining the surface integrity.
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Pollutant Transport in a Semi-infinite
Heterogeneous Porous Media

S. Begam, S. Ahamad and Chandan Kumar Thakur

Abstract This study proposed an analytical model of contaminant solute transport
with an impact of elemental recharge rate of aquifer. The domain of study is
considered as a heterogeneous porous media. Dispersion is directly proportional to
the square of the seepage velocity, whereas the velocity is a function of both time
and distance variables. Initially, the aquifer is not pollutant free; some background
concentration is present there. Temporally dependent exponentially decreasing
input source is considered, and the concentration gradient is assumed to be zero at
the exit boundary. Laplace transform technique (LTT) is used to obtain the ana-
lytical solution and is validated with the numerical solution which is obtained using
explicit finite difference method.

1 Introduction

To describe the contaminant transport in porous media, advection–dispersion
equation (ADE) is generally used in which dispersion coefficient plays an important
role. Generally, while ADE is solved, the dispersion is assumed to be constant, but
according to the results of some field studies (Taylor and Howard 1987; Domenico
and Robbins 1984; Toride et al. 1995), dispersion is distance-dependent; i.e., it
increases with distance ‘x’ from the source of contamination. Sposito et al. (1986)
showed that dispersion coefficient increases with distance or travel time. Wang et al.
(1998) suggested that to have a good model of solute transport, it was necessary to
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consider scale-dependent dispersion coefficient. Watson et al. (2002) pointed out
that the hydrodynamic dispersion coefficient was a nonlinear function of the
seepage velocity.

A large number of analytical and numerical solutions have been developed for
ADE with scale-dependent dispersion in heterogeneous medium (Khan and Jury
1990; Zhang et al. 1994; Logan 1996; Pang and Hunt 2001; Gao et al. 2010;
Natarajan and Suresh Kumar 2014). A semi-analytical solution was derived by You
and Zhan (2013) for contaminant transport in a finite aquifer with linear asymptotic
or exponential scale-dependent dispersion and time-dependent sources. Sharma et al.
(2014) proposed a reactive solute transport model used in heterogeneous porous
media with time-dependent and distance-dependent dispersion using finite-volume
method. Natarajan (2015) presented a numerical model using implicit finite differ-
ence method in which the effect of nonlinear sorption and time-dependent as well as
distance-dependent dispersion was shown.

In this paper, an analytical solution for ADE with the impact of an extra source
term is derived and is compared with the numerical solution. A source of con-
tamination such as an ash pond, dump site, or industrial disposal site lies above the
aquifer; there could be a possibility of pollution reaching the underlying aquifer
(Rastogi 2007). To represent that physical situation, an extra source term c0w

h is
added with the regular advection–dispersion equation (Rastogi 2007). Here, w is
elemental recharge rate with solute concentration c′, and h is the effective porosity
of the aquifer. The ADE is solved with Dirichlet-type boundary condition and
distance-dependent dispersion. It is considered that the aquifer is not solute-free
initially, and it is represented by a linear expression of the initial source with an
exponentially deceasing function of distance variable x. One end of the domain, the
time-dependent decreasing source is injected, and solute mass is ejected from the
other end of the domain, and so, flux is supposed to be zero. Dispersion is directly
proportional to the square of the seepage velocity. To analyse the impact of the
added source term with AD equation is one of the objective of this paper.

2 Mathematical Model

The models for predicting solute transport in porous media are generally based on
the advection–dispersion-type transport equations. For one-dimensional solute
transport process in an isotropic semi-infinite heterogeneous aquifer with an
external source of contamination, the transport equation may be written as follows

@C
@t

¼ @

@x
Dðx; tÞ @C

@x
� uðx; tÞC

� �
þ c0w

h
ð1Þ

where Cðx; tÞ [ML−3] is the contaminant concentration, u [LT−1] is the groundwater
velocity or seepage velocity, D [L2T−1] is the dispersion coefficient, t [T] is time,
and x [L] is distance variable.
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The suitable initial and boundary conditions are

C x; tð Þ ¼ c0 þ ci exp �cxð Þ; x� 0; t ¼ 0 ð2Þ

C x; tð Þ ¼ c0 þ c0 exp �kstð Þ; x ¼ 0; t[ 0 ð3Þ
@C
@x

¼ 0; x ! 1; t[ 0 ð4Þ

where ci [MT−3] is initial background solute concentration, c [L−1] is a constant
decay parameter with space, and ks [T

−1] is decay constant parameter with time.

3 Analytical Solution

As we considered the seepage velocity is a time- and distance-dependent function
and dispersion is directly proportional to square of the velocity, the expressions for
dispersion and seepage velocity are written as follows

uðx; tÞ ¼ u 0 f ðmtÞð1þ axÞ and Dðx; tÞ ¼ D 0 f ðmtÞ2ð1þ axÞ2 ð5Þ

where u0 [LT−1] is initial groundwater velocity, D0 [L2T−1] is initial dispersion
coefficient, m [T−1] is flow resistance coefficient, a [L−1] is inhomogeneity
parameter along the longitudinal direction, and f(mt) is an arbitrary function.

Using Eq. (5) in Eq. (1), one can get

@C
@t

¼ D0f ðmtÞ2 @
2C
@x2

� u0f ðmtÞ @C
@x

þ c0w
h

ð6Þ

Introduce one new space variable Z with the following transformation:

Z ¼ 1
a
logð1þ axÞ ð7Þ

@C
@t

¼ D0f ðmtÞ2 @
2C

@Z2 � u0f ðmtÞf1ðmtÞ @C
@Z

� au0f ðmtÞCþ c0w
h

ð8Þ

where, f1ðmtÞ ¼ 1� aD0
u0

f ðmtÞ
Again, after using the following transformation

X ¼ f1ðmtÞ
f ðmtÞ Z ð9Þ

Pollutant Transport in a Semi-infinite Heterogeneous Porous Media 551



Equation (8) becomes

1

f1ðmtÞ2
@C
@t

¼ D0
@2C
@X2 � u0

@C
@X

� au0
f ðmtÞ
f1ðmtÞ2

Cþ c0w
h

1

f1ðmtÞ2
ð10Þ

Introducing a new time variable T using the following transformation

T ¼
Z t

0

f1ðmtÞ2dt ð11Þ

we reduce Eq. (10) into

@C
@T

¼ D0
@2C
@X2 � u0

@C
@X

� au0
f ðmtÞ
f1ðmtÞ2

Cþ c0w
h

1

f1ðmtÞ2
ð12Þ

Corresponding initial and boundary conditions are

CðX; TÞ ¼ c0 þ ci expð�cXÞ; X� 0; T ¼ 0 ð13Þ

CðX;TÞ ¼ c0 þ c0 expð�ksTÞ; X ¼ 0; T [ 0 ð14Þ

@C
@X

¼ 0; X ! 1; T [ 0 ð15Þ

Now, to remove the convective term from Eq. (12), we use the following
transformation

CðX; TÞ ¼ KðX; TÞ exp u0
2D0

X � u20
4D0

þ af ðmtÞ
f1ðmtÞ2

u0

( )
T

" #
þ c0w

au0h
1

f ðmtÞ ð16Þ

Equation (12) becomes

@C
@T

¼ D0
@2C
@X2 ð17Þ

The corresponding initial and boundary conditions in Eqs. (13)–(15) become

KðX; TÞ ¼ c0 þ ci expð�cXÞ � c0w
au0h

� �
exp � u0

2D0
X

� �
; X� 0; T ¼ 0 ð18Þ

KðX; TÞ ¼ c0 þ ci expð�ksTÞ � qf g exp /ð Þ; X ¼ 0; T [ 0 ð19Þ
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@K
@X

þ u0
2D0

K ¼ 0; X ! 1; t[ 0 ð20Þ

where,

q ¼ c0w
au0h

1
f ðmtÞ and / ¼ u20

4D0
þ af ðmtÞ

f1ðmtÞ2
u0

 !
T

( )

Using Laplace transform and inverse Laplace transform, we obtain the solution
for above model which is as follows:

CðX; TÞ ¼ ½EðX; TÞþFðX; TÞ � GðX; TÞ � HðX; TÞþ JðX; TÞ� ð21Þ

where

EðX; TÞ ¼ ðc0 � qÞ
2

exp
u0
2D0

�
ffiffiffiffiffiffi
/
D0

s !
X

( )
erfc

X
2
ffiffiffiffiffiffiffiffiffi
D0T

p �
ffiffiffiffiffiffiffi
/T

p� �"

þ exp
u0
2D0

þ
ffiffiffiffiffiffi
/
D0

s !
X

( )
erfc

X
2
ffiffiffiffiffiffiffiffiffi
D0T

p þ
ffiffiffiffiffiffiffi
/T

p� �# ð22aÞ

FðX; TÞ ¼ c0
2

exp k0 � /ð ÞT þ u0
2D0

�
ffiffiffiffiffiffi
k0
D0

s !
X

( )
erfc

X
2
ffiffiffiffiffiffiffiffiffi
D0T

p �
ffiffiffiffiffiffiffiffi
k0T

p� �"

þ exp k0 � /ð ÞT þ u0
2D0

þ
ffiffiffiffiffiffi
k0
D0

s !
X

( )
erfc

X
2
ffiffiffiffiffiffiffiffiffi
D0T

p þ
ffiffiffiffiffiffiffiffi
k0T

p� �#

ð22bÞ

GðX; TÞ ¼ b
2

exp
u20
4D0

� /

� �
T

� �
erfc

X
2
ffiffiffiffiffiffiffiffiffi
D0T

p � u0
2

ffiffiffiffiffiffi
T
D0

r� ��

þ exp
u0
D0

Xþ u20
4D0

� /

� �
T

� �
erfc

X
2
ffiffiffiffiffiffiffiffiffi
D0T

p þ u0
2

ffiffiffiffiffiffi
T
D0

r� �� ð22cÞ

HðX; TÞ ¼ ci
2

exp
u0
2D0

� affiffiffiffiffiffi
D0

p
� �

Xþ a2 � /
	 


T

� �
erfc

X
2
ffiffiffiffiffiffiffiffiffi
D0T

p � a
ffiffiffiffi
T

p� ��

þ exp
u0
2D0

þ affiffiffiffiffiffi
D0

p
� �

Xþ a2 � /
	 


T

� �
erfc

X
2
ffiffiffiffiffiffiffiffiffi
D0T

p þ a
ffiffiffiffi
T

p� ��
ð22dÞ
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and

JðX; TÞ ¼ bexp
u20
4D0

� /

� �
T

� �
þ ciexp a� /ð ÞT � cþ u0

D0

� �
X

� �
þ c0w

au0h
1

f ðmtÞ
ð22eÞ

Here,

a2 ¼ D0 cþ u0
2D0

� �2

; b ¼ c0 � c0w
au0h

� �
; k0 ¼ /� ksð Þ:

4 Numerical Solution

Explicit finite difference method is used to obtain the numerical solution of the
problem. For that, the semi-infinite domain needs to convert into a finite one. The
following transformation is used to convert the domain

Y ¼ 1� expð�XÞ ð23Þ

Apply Eq. (23) in the ADE Eq. (12) and corresponding initial and boundary
conditions in Eqs. (13)–(15), Eqs. (12)–(15) reduced to

@C
@T

¼ D0ð1� YÞ2 @
2C

@Y2 � ðu0 þD0Þð1� YÞ @C
@Y

� qCþ r ð24Þ

CðY ; TÞ ¼ c0 þ ciwð1� YÞ; Y � 0; T ¼ 0 ð25Þ

CðY ; TÞ ¼ c0 þ c0expð�ksTÞ; Y ¼ 0; T [ 0 ð26Þ
@C
@Y

¼ 0; Y ! 1; T [ 0 ð27Þ

where q ¼ au0
f ðmtÞ
f1ðmtÞ2 ; r ¼ c0w

h
1

f ðmtÞ :

The domains Y and t are divided into equal number of subintervals and repre-
sented as follows:

Yi ¼ Yi�1 þDY ; i ¼ 1; 2; . . .;M; DY ¼ 0:04 ð28Þ

Tj ¼ Tj�1 þDT; j ¼ 1; 2; . . .;N; DT ¼ 0:0001 ð29Þ

Here, i and j represent the distance and time, respectively. DY is the step of
distance, and DT is the time step. The contaminant concentration at a point Yi at jth
subinterval of time T is denoted as Ci;j. The first- and second-order space derivative
in Eq. (24) is approximated by central difference approximation, and first-order
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time derivative is approximated by forward difference approximation, respectively.
Using two-level explicit finite difference method in Eqs. (24)–(27), one can get

Ci;jþ 1 ¼ Ci;j � qCi;jDT þ rDT þD0 1� Yið Þ2 Ciþ 1;j � 2Ci;j þCi�1;j
	 
 DT

DY 02

� u0 þD0ð Þ 1� Yið Þ Ciþ 1;j � Ci�1;j
	 
 DT

2DY 0

ð30Þ

Ci;0 ¼ c0 þwci 1� Yið Þ; i[ 0 ð31Þ

C0;j ¼ c0 þ c0exp �ksTj
	 


; j[ 0 ð32Þ

CM;j ¼ CM�1;j; j[ 0 ð33Þ

5 Result and Discussion

The contaminant concentration values are computed for the analytical solution
described by Eq. (21) in a finite domain 0� x� 1 km of semi-infinite region. The
input values are taken as follows ci ¼ 0:0001; c0 ¼ 0:01; c0 ¼ 0:9; D0 ¼
0:05 km2=year

	 

; u0 ¼ 0:5 km/yearð Þ; m ¼ 0:6 ð=yearÞ; ks ¼ 0:01 ð=yearÞ; c ¼

0:01 (/km), w ¼ 0:0002; h ¼ 0:32; a ¼ 1:3; f ðmtÞ ¼ expð�mtÞ. The numerical
approximation is done using explicit finite difference method (forward time centre
space—FTCS), and for the numerical approximations, we take DY ¼ 0:04 and
DT ¼ 0:0001.

In Fig. 1, contaminant concentration is predicted for three different time duration
t ¼ 2; 3; 4 years and it is observed that as time increases concentration decreases.
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Fig. 1 Contaminant
concentration pattern for three
different duration t ¼ 2; 3; 4
years
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Maybe this is happened because of the external source term which has been added
with the ADE. The contaminant concentration values decrease with distance too
and become zero after travelling a long distance. So, we can say that as solute
travels away from the source of contamination, it becomes harmless. The com-
parison between analytical and numerical results of concentration is shown in
Fig. 2. It is observed that the patterns of both graphs are same, but they deviate
from each other with some numerical values. Initially, numerical values are higher
than the analytical values, but after x ¼ 0:3 (km), they get the reverse pattern.
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Concentration values for varying seepage velocity u0 ¼ 0:5; 0:8; 1:0 are pre-
dicted for t ¼ 1 year in Fig. 3. It is observed that as the seepage velocity increases,
contaminant concentration increases. Figure 4 depicts the concentration behaviour
for varying flow resistance coefficient m ¼ 0:2; 0:6; 0:8 during t ¼ 1 year. It can be
seen from the figure that as m increases, concentration decreases. Inhomogeneity
parameter a plays an important role for solute transport model in heterogeneous
medium. So, the impact of a is shown in Fig. 5. Concentration values are predicted
for a ¼ 1:1; 1:3; 1:5. It can be seen from the figure that as the values of inhomo-
geneity parameter a increase, concentration decreases.
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6 Summary and Conclusions

An analytical study of scale-dependent solute dispersion in heterogeneous porous
media is discussed through this work. An external source term is included with the
regular ADE. The solute transport is studied for Dirichlet-type boundary condition
and is compared with the analytical solution obtained by using explicit finite dif-
ference method. It is observed from this study that contaminant concentration
decreases with time as well as with distance. So, we can say as the solute travels far
away from the source of contamination, it becomes harmless.
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Solution to Advection–Dispersion
Equation for the Heterogeneous
Medium Using Duhamel’s Principle

Amit Kumar Pandey, Rohit Kumar and Mritunjay Kumar Singh

Abstract This work dealt with advection–dispersion problem in heterogeneous
medium while the medium is initially considered to be polluted as a functional
combination of source term and zero-order production term with distance. Further,
Dirichlet-type boundary condition is employed to get insight to the realistic situa-
tion for achieving practical solution to the problem. Duhamel’s integration tech-
nique has been applied to solve the system. Non-dimensional numbers responsible
for the domination of advection and dispersion in the transport of solute have been
explored through appropriate graphs. Variability of velocity field and dispersion of
the solute due to heterogeneity of the medium has also been taken into consider-
ation while solving the system. The comparison has been made between the dif-
ferent outcomes significantly using graphical approach.

1 Introduction

Due to increasing human activities on the surface and subsurface of earth, it has
been proved important to get deep insight into the flow problems concerned with
pollutant concentration distribution due to atmospheric dispersion. People from the
field of hydrology, civil engineering, and mathematical modeling have been
showing significantly great interest in the problems related to solute transport.
Behavior of concentration distribution through an open medium such as lakes and
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rivers and porous medium like aquifer can be well predicted using a mathematical
model containing advection–dispersion term to provide more realistic picture of
solute transport and on the basis of which remedial processes may be imposed to
reduce or eliminate the damages. It also has broad applications in the disciplines
such as soil physics, chemical engineering, biosciences, and petroleum engineering.
To explore the effect of dispersion, the sequence of study and research, narrowed
the work to the problem of longitudinal dispersion for a periodically varying input.
Ogata and Banks (1961) discussed advection–dispersion with constant initial
concentration for different boundary conditions. Harleman and Rumer (1963)
worked on the effect of longitudinal and lateral dispersion in an isotropic porous
medium. Marino (1974) studied distribution of contaminants in porous medium.
Niamiand and Rushton (1977) studied flow analysis against dispersion in porous
media for different initial and boundary conditions. Kumar (1983) obtained solution
to advection–dispersion problem for unsteady flow against dispersion in finite
porous media with linear isotherm. Genuchten and Parker (1984) focused their
work on the boundary conditions for displacement experiments through short
laboratory soil columns, and Barry and Sposito (1989) presented analytical solution
of a convection–dispersion model with time-dependent transport coefficients. Yates
obtained analytical solutions for describing the transport of dissolved substances in
heterogeneous semi-infinite porous medium with the dispersion dependent on
distance and of exponential nature along the uniform flow (Yates 1990, 1992). Leij
et al. (1991) obtained analytical solution for three-dimensional semi-infinite med-
ium. Batu and van Genuchten (1993) presented analytical solutions for
non-equilibrium solute transport with first-order decay and zero-order production
term. Fry et al. (1993) obtained analytical solutions to the solute transport with
rate-limited desorption and decay. Fred (1995) obtained analytical solutions of
unsaturated flow in groundwater in one-, two- and three-dimensions. Huang et al.
(1996) narrowed their work to the exact solutions for one-dimensional transport
equation with asymptotic scale-dependent dispersion. Zoppou and Knight (1997)
focused their work on analytical solutions for advection–diffusion equation with
spatially variable coefficients. Singh et al. (2008) studied longitudinal dispersion
with time-dependent source concentration in semi-infinite medium. Singh et al.
(2009) studied conservative solute transport in one-dimensional homogeneous
porous media with velocity varying with respect to time. Singh et al. (2010) worked
to obtain analytical solution for two-dimensional solute transport in finite aquifer
with time-dependent boundary conditions. Guerrero and Skaggs (2010) focused
their work on analytical solutions of the one-dimensional advection–dispersion
solute transport equation with time-dependent boundary conditions coefficients in a
finite domain. The objective of present study is to extend Duhamel’s theorem to
one-dimensional advection–dispersion solute transport problems for a heteroge-
neous medium where spatial variable and time variable are taken into consideration
with time-dependent boundary conditions. The equations developed in this paper
hence may be used to extend existing solutions to situations where the boundary
conditions are time-dependent.
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2 Problem Formulation and Solution

As far as the heterogeneous porous medium is concerned, the transport equation for
solute is formulated by considering spatial as well as temporal variability of seepage
velocity and solute dispersion. The partial differential equation describing advec-
tion–dispersion effects in a heterogeneous semi-infinite medium can be expressed as

@C
@t

þ 1� n
n

@F
@t

¼ @

@x
D
@C
@x

� uC

� �
þ c ð1Þ

where D [L2 T−1] is the longitudinal dispersion coefficient, C [M L−3] is the vol-
ume averaged dispersing solute concentration (liquid phase), u [L T−1] is the
unsteady pore seepage velocity, F [M L−3] is the solute concentration (solid phase),
c [M L−3 T−1] is the zero-order production rate coefficient for solute production in
the liquid phase, n is the porosity of different geological formations, t and x are
temporal and distance variables, respectively.

Let us consider linear isotherm F ¼ Kdc where F is the solid-phase solute
concentration, C is the liquid-phase solute concentration, and Kd is isotherm con-

stant mg
g

� �
dm3=gð Þn related to adsorption capacity.

Equation (1) is considered with the following initial and boundary conditions.

cðx; 0Þ ¼ cif ðaxÞþ cxgðaxÞ
u

ð2Þ

Considering

f ðaxÞ ¼ 1; gðaxÞ ¼ 0 ð3Þ

Equation (2) becomes

cðx; 0Þ ¼ ci ð4Þ

cð0; tÞ ¼ ci þ c0e�dt; t[ 0 ð5Þ
@c
@x

¼ 0; x ! 1 ð6Þ

where dimension of a is L−1, and k [t−1] is decay constant.
Using the relation F ¼ KdC in Eq. (1), we get

1þ 1� n
n

Kd

� �
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D
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þ c ð7Þ
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� u0f ðptÞð1þ bxÞc

� �
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where

r ¼ 1þ 1� n
n

Kd ð9Þ

Now, if the velocity field varies linearly with distance and the dispersion
coefficient is proportional to the square of the velocity is employed with modified
form as (Zoppou and Knight, 1997; Kumar, 2009 )

u ¼ u0f ðptÞð1þ bxÞ ð10Þ

Relation between dispersion parameter and the seepage velocity (due to
heterogeneity of the medium) is

D ¼ D0ðf ðptÞÞ2ð1þ bxÞ2 ð11Þ

Now, Eq. (6) can be written as

r
@c
@t�
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� u0ð1þ bxÞc
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where

t� ¼
Z t

0

f ðptÞdt; c
f ðptÞ ¼ c� ð13Þ

By using the transformation y ¼ logð1þ bxÞ2 and proceeding, we get.
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where
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u0
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ð15Þ

Consider

z ¼ 1
2

Z
gðptÞ
f ðptÞ dy ð16Þ
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Equation (14) turns to
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Equation (17) becomes
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Using the transformation

cðz; t��Þ ¼ kðz; t��Þ exp u0
2D0

z� 1
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Equation (19) turns to be
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where
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and corresponding initial and boundary conditions

c�f ðptÞu0
g2ðptÞ ð1� b�Þ ¼ /1 ð23Þ

k 0; t��ð Þ ¼ ci � c�
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To solve Eq. (23), we use Duhamel’s theorem.
Let u(x, t**; r) [M L−3] be the auxiliary solution of Eq. (23) where r is a

parameter. Therefore, Eq. (23) takes the form
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Now
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Consider the transformation

u z; t��; rð Þ ¼ w z; t��ð Þ ci � c�
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þ c0e�dr

� �
expð/rÞ ð32Þ

where wðZ; t��Þ is dimensionless. Now, Eq. (32) together with Eqs. from (26) to
(29) turns to be

r
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and the initial and boundary conditions be
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w 0; t��ð Þ ¼ 1 ð35Þ
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And Eq. (30) becomes
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Solving Eq. (33) gives
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and subsequently, we obtain the following.
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and therefore the required solution is obtained and given in Eq. (41) and shown
below in Table 1.
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c z; t��ð Þ ¼ k z; t��ð Þ exp u0
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3 Results and Discussion

The input values available in the hydrological literature are reported by Singh and
Kumari (2014). Ci = 0.01, C0 = 1.0, u0 = 0.7 (km/year), D0 = 0.1 (km2/year),
c0 = 0.0005 (km), k = 0.002 (/year), Kd = 2.5, n = 0.32 (gravel), n = 0.35 (sand),
n = 0.55, m = 0.001 (/year) have been used to compute the analytical solution
given in Eq. (41); (1), (2), and (3) represents concentration distribution for sand,
gravel, and clay medium for the time period t = 2 years, t = 3 years, and t = 4
years; and it has been observed that for the velocity pattern of fluid flow in the
negative direction of x-axis, concentration decreases smoothly with increasing time
period as well as with increasing spatial variable at each position, and it further
reduces to a saturated level tending to zero. It has also been observed that at each
position corresponding value of concentration in gravel medium is more than that in
sand medium and in clay medium as well. It indicates that concentration of solute
for the clay medium is most sensitive than that for the sand medium and gravel
medium (Figs. 1, 2 and 3).

Figure 4 represents concentration profile for different values of Peclet number
for gravel, sand, and clay medium for the time period of t = 1 year, and it has been
observed that the curves are normal curves with different values of flatness. Up to a
certain distance, it has been observed that concentration at each position increases
with increasing value of Peclet number (i.e., with increasing value of advection).
High Peclet number denotes highly advective system, and low Peclet number
denotes highly dispersive system (low advective system). Therefore, it is observed
that concentration increases with increasing value of dispersivity and with
decreasing value of advection at each position and that approaches to a saturated
level tending to zero.

Figure 5 represents concentration distribution for different values of Courant
numbers for the gravel, sand, and clay mediums for the time period of t = 2 years;
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Gravel Medium
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it has been observed that up to a certain distance concentration increases at each
position with increasing value of Courant number, and then, it reverses its behavior
and starts increasing with decreasing value of Courant number at each position and
that further approaches to a saturated level tending to zero. This change in the
behavior may be due to different porosities of the mediums as well as the velocity
pattern of solute transport.

Figure 6 represents concentration distribution for different values of Courant
numbers for the gravel, sand, and clay mediums for the time period of t = 1 year, it
has been observed that the concentration for gravel, sand, and clay mediums for
t = 2 year is more than that for t = 1 year at each position, and it tends to a
saturated level that further tends to zero for the value of spatial variable less than
that for t = 2 years.

Figure 7 represents concentration distribution for gravel, sand, and clay medi-
ums for different values of Peclet number for the time period of t = 1 year and for
velocity pattern in the negative direction of x-axis; it is observed that up to a
distance concentration at each position increases with increasing value of Peclet
number and after that it starts decreasing with increasing value of Peclet number,
concentration further settles to a saturated level tending to zero; and it can be said
that up to a distance advection dominates the concentration and after that its dis-
persion dominates the concentration of solute.

Figure 8 represents concentration profile for gravel, sand, and clay mediums
with corresponding values of Courant number for the time period of t = 2 years. It
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has been observed that concentration increases with increasing value of Courant
number at each position up to a certain distance, and then, it starts decreasing with
increasing value of Courant number. This is due to the negative velocity pattern and
the porosity of the mediums. The concentration further reduces to a saturated level
tending to zero.

4 Conclusions

(1) Application of Duhamel’s theorem was extended for advection–dispersion
transport problem for time-dependent boundary conditions, and concentration
values at a distance x = 1 unit have been obtained for different velocity patterns
and for velocity in the negative direction of the distance.

(2) Concentration distribution for different values of Peclet numbers and Courant
numbers has been shown by suitable graphs for the gravel, sand, and clay
mediums and for exponentially increasing/decreasing velocity patterns as well
as for the velocity in the negative direction of x-axis.

(3) A good agreement between the concentration values obtained by Duhamel’s
principle and that obtained by Laplace transform technique for gravel sand and
clay mediums has been observed.

(4) The kinetic nature of the solute transport into the groundwater predicted for
gravel, sand, and clay type geological formation with a good comparison set by
appropriate graphs.
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Two-Dimensional Solute Transports
with Periodic Input Source
in Semi-infinite Aquifer

Affreen Akhter, Chandan Kumar Thakur
and Mritunjay Kumar Singh

Abstract The present study deals with two-dimensional solute transport equation
with time-dependent source in homogeneous semi-infinite aquifer. Linear isotherm
is taken into consideration due to interaction between solid and liquid phases.
Initially, the domain is not solute-free. Initially, space-dependent exponentially
increasing form with initial concentration is taken into consideration. At the one end
of the domain, time-dependent source concentration is taken into account. Due to
no mass flux at the other end of the domain concentration gradient is assumed to be
zero. Laplace integral transform technique (LITT) is used for analytical solution,
whereas explicit finite difference (EFD) scheme is used for numerical approxima-
tion. The exponentially decreasing and asymptotic form velocity function is taken
into consideration for the graphical representation of the solutions.

1 Introduction

Ordinary resources and waste production in modern society often pose a threat to
the groundwater quality and already have resulted in many incidents of ground-
water pollutants. The groundwater contaminants can originate from point source or
nonpoint sources. Contaminants are dissolved in groundwater due to complex
physical and chemical processes such as advection, diffusion, chemical reactions,
adsorption, and biodegradation and decay. The prediction of contaminants is
described in mathematical form which is represented as advection-dispersion
equation (ADE).
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Analytical solutions of one-dimensional solute transport problems, subject to
different initial and boundary conditions, infinite, semi-finite domain have been
reported in the literature (e.g., vanGenuchten and Alves 1982; Lindstorm and
Boersma 1989; Fry et al. 1993; Singh and Das 2015). Ogata and Banks (1961)
discussed the solution of ADE equation for the constant input concentration with
moving boundary coordinate. Banks and Ali (1964) discussed dispersion and
adsorption in solute transport modeling through porous media flow. Kumar (1983)
discussed an analytical solution of advection-dispersion equation in finite nonad-
sorbing and adsorbing porous media. Crank (1975) established a moving boundary
problems for the transport modeling in groundwater. Putti et al. (1990) developed
the triangular finite volume technique for solving the solute transport equation.
Yates (1992) explored the linear growth of the dispersion process in heterogeneous
porous media with the effect of scale-dependent dispersivity in solute transport
modeling. Zoppou and Knight (1997) proposed analytical solutions for
advection-diffusion equation with spatially variable coefficients. Lin and Ball
(1998) proposed an analytical solution for solute transport in a multi-layered porous
medium by using Green’s function technique with the help of arbitrary boundary
condition and initial condition. Kartha and Srivastava (2008) discussed the com-
parison between numerical and analytical solution with the effect of immobile water
content on advection-dispersion equation in unsaturated zone. Singh et al. (2008)
introduced an analytical solution with time-dependent source in semi-infinite
aquifer. Kaya (2010) developed a numerical solution of the advection-diffusion
equation solved using the differential quadrature method with the help of explicit
and implicit finite difference method. Chen et al. (2012) introduced a novel method
for analytical solution of multi-species advective-dispersive transport equation.
They showed the effect of sequentially coupled first-order decay reactions. Jiao and
Zhang (2014) developed two-dimensional physical-based inverse method in con-
fined and unconfined aquifers under unknown boundary conditions. Majdalani et al.
(2015) discussed solute transport in periodical heterogeneous porous medium with
scale-dependent dispersion at high degree of heterogeneity variation.

This paper describes two-dimensional advection-dispersion equation solved with
the effect of linear isotherm and zero-order production term in semi-infinite domain.
Initially, the domain is not solute-free. Initially, exponentially increasing source
with initial concentration is taken into consideration. At one end of the domain,
linear expression of periodic source concentration is taken into consideration.
Laplace integral transform technique (LITT) is used for analytical solution, whereas
explicit finite difference (EFD) approximation is used for numerical solution. The
dispersion directly proportional to the seepage velocity concept is used for the
solutions. Time-dependent velocity pattern is used for graphical representation of
the solutions.

574 A. Akhter et al.



2 Mathematical Modeling

During the past decades, solute transport model is used for predicting the fate and
transport of contaminant constituents in surface, subsurface, and groundwater flow
system due to accidental spills and municipal, industrial, and hazardous waste
materials. Solute transport modeling frequently relies on analytical and numerical
solutions of advection-dispersion (AD) equation. The governing two-dimensional
advection-dispersion (AD) equation is as follows

@c
@t

þ b
1� /
/

� �
@c�

@t
¼Dx

@2c
@x2

þDy
@2c
@y2

� uðtÞ @c
@x

� vðtÞ @c
@y

� q
/
c� b

/
c� þ q

ð1Þ

where Dx½L2T�1� and Dy½L2T�1� are the dispersion coefficient along longitudinal
and transverse direction of the flow. c½ML�3� is the solute concentration in the
liquid phase. c�½ML�3� is the solute concentration in the solid phases. u½LT�1� and
v½LT�1� are the groundwater velocity along longitudinal and transverse direction of
the flow. q½MLT�1� is the zero-order production which represents the frequent
growth of the solute. b½ML�3� is the bulk density of the solid matrix. q is the
volumetric flux, and x½L� and y½L� are the length. t½T � is the time, and / is the
porosity of the aquifer.

The solid–liquid phases are interconnected as

c� ¼ kdc ð2Þ

Initially, the domain is not solute-free, i.e., some initial background concentra-
tion exists in the domain in the form of exponentially increasing space-dependent
function.

cðx; 0Þ ¼ cieðxþ yÞ x[ 0; t ¼ 0 ð3Þ

At the origin, the input point source concentration is taken as a periodic function
in the form of Dirichlet-type boundary conditions. At the other end of the domain,
concentration gradient is assumed to be zero.

cð0; tÞ ¼ c0
2
ð1þ cosðmtÞÞ x ¼ 0; t[ 0 ð4Þ

@c
@x

¼ 0
@c
@y

¼ 0 x ! 1; y ! 1 ð5Þ
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In this study, u and v can be expressed as

u ¼ u0f ðmtÞ v ¼ v0f ðmtÞ ð6aÞ

where u0 and v0 are the initial value of u and v.
It is assumed that dispersion coefficient is directly proportional to the initial

seepage velocity

Dx ¼ Dx0 f ðmtÞDy ¼ Dy0 f ðmtÞ ð6bÞ

Again using the transformation

T ¼
Z t

0

f mtð Þdt ð7aÞ

z ¼ xþ y ð7bÞ

Using Eqs. (2), (6a),( 6b),(7a), and (7b) in Eq. (1), we can write

R
@c
@T

¼ D
@2c
@z2

� u
@c
@z

� w0c� q0 ð8aÞ

and

R ¼ 1þ 1� /
/

� �
bkd;w0 ¼ 1

f ðmtÞ
q
/
þ b

/
lkd

� �
and q0 ¼ b

f ðmtÞ ð8bÞ

where kd is distribution coefficient and R is the retardation factor.
According to the transformations, our initial and boundary conditions can be

written as

cðz; 0Þ ¼ cið1þ zÞ; z[ 0 T ¼ 0 ð9Þ

cð0; TÞ ¼ c0
4

4� m2T2� �
z ¼ 0; T [ 0 ð10Þ

@c
@z

¼ 0; z ! 1; T [ 0 ð11Þ

Further using new transformation

c z; Tð Þ ¼ k z; Tð Þe uz
2D�1

R
u2
4Dþw0

� �
T

� �
þ q0

w0
ð12Þ
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In Eq. (8a), corresponding initial and boundary conditions in Eqs. (9)–(11) and
solve by Laplace transformation technique (LTT); we obtain the final result as
follows:

c z; Tð Þ ¼ c0 � q0
w0

� �
F1 z; Tð Þþ c0m2

2
F2 z; Tð Þ

�
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where
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3 Numerical Solution

Numerical solution of solute transport modeling is used for prediction of transport
of contaminants in nonhomogeneous and anisotropic media under different con-
ditions. Ataie-Ashtiani et al. (1999) developed the truncation error through the
Taylor series expansion of the one-dimensional advection-dispersion equation.
Bakker (1999) has established analytical and numerical solution for groundwater
flow in a multi-aquifer system.

The numerical solution of advection-dispersion equation in Eq. (8a) with the
initial and boundary condition (9)–(11) in semi-infinite domain is obtained by
changing into finite domain. In order to solve numerically, the domain is changed
into the finite domain by using the transformation

X ¼ 1� e�x ð20Þ

and

Y ¼ 1� e�y ð21Þ

Using Eqs. (20) and (21), Eq. (8a) can be written as

R
@c
@T

¼ ð1� XÞ2Dx0
@2c
@X2 þð1� YÞ2Dy0

@2c
@Y2

� nð1� XÞ @c
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� gð1� YÞ @c
@Y

� w0cþ q0

ð22Þ

where; n ¼ Dx0 þ u0 and g ¼ Dy0 þ v0
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The corresponding initial and boundary conditions in Eqs. (9)–(11) can be
written as

cðX; Y ; 0Þ ¼ ci
ð1� XÞð1� YÞ X[ 0; Y [ 0; T ¼ 0 ð23Þ

cð0; 0; TÞ ¼ c0
4

4� m2T2� �
X ¼ 0; Y ¼ 0; T [ 0 ð24Þ

@c
@X

¼ 0;
@c
@Y

¼ 0 X ! 1; Y ! 1;T [ 0 ð25Þ

The finite difference method is derived by using Taylor expansion. In the present
work, we used the general form of explicit finite difference approximation with a
forward time and central space forward difference scheme, and then Eqs. (22)–(25)
can be written as

ci;j;kþ 1 ¼ 1� 1� x0

R

� �
ci;j;k þ Dx0 1� Xið Þ

R
ciþ 1;j;k � 2ci;j;k þ ci�1;j;k
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ci;jþ 1;k � 2ci;j;k þ ci;j�1;k
� �

� DT
DY2 �
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R
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� � DT

2DY
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Initial and boundary conditions can be written as

ci;j;k ¼ ci
1� Xið Þ 1� Yj

� � i[ 0; j[ 0; T ¼ 0 ð27Þ

c0;0;j ¼ c0
4

4� m2T2
k

� �
k[ 0 ð28Þ

cM;j;k ¼ cM�1;j;k and ci;N;k ¼ ci;N�1;k ð29Þ

where the subscripts i, j, and k refers to space and time variables respectively. Also,
DT is the time increment whereas DX and DY are space increments in Eq. (26).

The space variables ðX; YÞ and time domain T are discretized by a rectangular
grid points Xi; Yj; Tk

� �
with mesh size as follows

Xi ¼ Xi�1 þDX i ¼ 1; 2; 3. . .M: X0 ¼ 0; DX ¼ 0:005

Yj ¼ Yj�1 þDY j ¼ 1; 2; 3. . .N: Y0 ¼ 0; DY ¼ 0:005

Two-Dimensional Solute Transports with Periodic Input … 579



Tk ¼ Tk�1 þDT k ¼ 1; 2; 3. . .I T0 ¼ 0; DT ¼ 0:001

where M, N, and I are integers.

ci;j;k be the contaminant concentration at a point for the space domain Xi and Yj
with time domain Tk.

4 Stability Condition

The numerical solution using finite difference scheme is said to be convergent if the
stability condition is satisfied. In finite difference technique, we used the forward
difference in time for the first-order derivative with respect to time which contains
the first-order accuracy. With the help of finite difference scheme, our governing
Eq. (8a) can be written as

ci;j;kþ 1 ¼ a1 þ b1ð Þci�1;j;k þ c1 þ d1ð Þci;j�1;k

þ 1� f� 2a1 � 2c1ð Þci;j;k þ a1 � b1ð Þciþ 1;j;k

þ c1 � d1ð Þci;jþ 1;k þ q0DT
R

ð30Þ

where

a1 ¼ Dx0DT
RDX2 ; b1 ¼

u0DT
2RDX

; c1 ¼
Dy0DT
RDY2 ; d1 ¼ v0DT

2RDY
and f ¼ x0DT

R

Equation (30) can be written in matrix form as

c½ �kþ 1¼ A c½ �k ð31Þ

where A is the matrix that contains all the constraints. The finite difference scheme
is stable if the eigenvalues of A must have modulus values less than or equal to
unity.

After using the Gerschgorin circle method, the time step can be written as

DT � 1
Dx0
RDX2 þ Dx0

RDX2 þ Dy0
RDY2 þ u0

2RDX þ v0
2RDY

� 	 ð32Þ
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5 Numerical Result and Discussion

The analytical and numerical solutions for the two-dimensional advection-
dispersion equation are computed for the given set of input data:

c0 ¼ 1:0, ci ¼ 0:1, q0 ¼ 0:0002, u0 ¼ 0:002, v0 ¼ 0:002, Dx0 ¼ 0:005,
Dy0 ¼ 0:005, n ¼ 0:25, kd ¼ 0:02.

The contaminant concentration distribution pattern has been predicted for tem-
porally dependent velocity pattern such as exponentially increasing and asymptotic
form of velocity pattern. Mathematically, these velocity patterns can be written as:

ðaÞ f ðmtÞ ¼ 1� expð�mtÞ; T ¼ 1
m

expð�mtÞ � 1ð Þþ t ð33Þ

ðbÞ f ðmtÞ ¼ 1þ mt
1þm2t2ð Þ ; T ¼ 1

2m
logð1þm2t2Þ� �þ t ð34Þ

where m is the flow resistance coefficient.
The contaminant concentration distribution pattern has been predicted for the

finite domain 0� x� 0:5 and 0� y� 0:5.
Figure 1 is predicted for the concentration distribution pattern of clay medium

with exponentially decreasing velocity pattern. As time increases, the concentration
pattern increases, but with respect to space the concentration pattern follows its
minimum value of harmless concentration. The entire concentration pattern for the
different time interval 1, 2, and 3 years, respectively, attains the same value at the
end of the domain. Similarly, type concentration pattern is predicted in Fig. 2 for
the asymptotic form of the velocity pattern with clay medium. The concentration
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Fig. 1 Concentration distribution pattern for exponentially decreasing velocity patterns with clay
medium
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pattern follows the increasing nature with respect to time, but it attains its minimum
harmless concentration with respect to distance.

The surface concentration graph is predicted in Figs. 3 and 4 for the different
velocity patterns with particular time period of 3 years. Figure 3 is predicted for the
exponentially decreasing velocity pattern in which concentration pattern follows the
decreasing nature with respect to space. Initially, it attains the maximum level of
concentration, but it follows the minimum harmless concentration level after cov-
ering some distance in the region 0� x� 0:5 and 0� y� 0:5. Similarly, Fig. 4 is
predicted for the asymptotic form of the velocity pattern with particular time period
of 3 years. Initially, it attains its maximum level of concentration values, but it
decreases with respect to the longitudinal as well as transversal direction of the
flow.
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Fig. 2 Concentration distribution pattern for asymptotic velocity patterns with clay medium
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Tables 1 and 2 provide the concentration values at different zero-order pro-
duction terms for the different velocity patterns. In Table 1, initially concentration
values attain higher in exponentially decreasing velocity pattern as compared to the
asymptotic form velocity pattern. It follows the reverse pattern for distance 0.05 to
0.2. Similar trend is attained in Table 2 for q0 ¼ 0:003. In Table 1 less concen-
tration values are attained at each of the points for the different velocity pattern as
compared to Table 2, but for every value of q0 concentration value decreases with
respect to space.

6 Summary and Conclusions

Two-dimensional advection-dispersion equation (ADE) is solved analytically and
numerically by using the Laplace transform technique and explicit finite difference
approximation, respectively. The effect of the zero-order production term has been
explored. Solute concentration pattern is predicted for the clay medium, in which
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Fig. 4 Surface contaminant concentration for asymptotic velocity pattern at time t = 3 year

Table 1 Concentration values at time t = 3 year for zero-order production q0 ¼ 0:002

X (km) 0.0 0.05 0.10 0.15 0.20

Exponentially decreasing 1.0015 0.3723 0.1278 0.0495 0.0250

Asymptotic 1.0007 0.3774 0.1314 0.0512 0.0258

Table 2 Concentration values at time t = 3 year zero-order production q0 ¼ 0:003

X (km) 0.0 0.05 0.10 0.15 0.20

Exponentially decreasing 1.0025 0.3680 0.1235 0.0452 0.0208

Asymptotic 1.0018 0.3731 0.1271 0.0470 0.0216
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concentration pattern increases with respect to time and decreases with respect to
space. Exponentially decreasing and asymptotic form temporally dependent
velocity pattern has been used.
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Mathematical Modeling
of One-Dimensional Advection Dispersion
Equation in Groundwater Contamination
Using Different Velocity and Dispersion
for Different Zones

Mritunjay Kumar Singh, Ayan Chatterjee and Priyanka Kumari

Abstract Groundwater contamination problem is modeled using advection disper-
sion equation with different phase velocity and dispersion. This type offlow problem
can be occurred or visualized depending upon the geometry as the surface of the
aquifer ismade of various soilmaterials.We consider different velocity and dispersion
for different zones. Initially, the aquifer is contamination free, and advection disper-
sion equation is used to model the system subject to the condition that the source is
acting at origin and contaminant concentration flux is zero at the semi-infinite part of
the boundary. Laplace transform technique is used to solve the system analytically,
and graphs are plotted to show the effect in the aquifer with multiphase.

1 Introduction

Groundwater is one of the most useful resources for the most of the people of rural
India. But day by day groundwater is contaminated and becomes useless for daily
purposes. From last few decades, advection dispersion equation is used to model
the contaminant concentration flow in the aquifer system. Kaluarachchi and Parker
(1989) discussed an efficient finite element method for modeling multiphase flow in
groundwater contamination problem. Logan (1996) presented an extension of the
work of Yates (1992) for solute transport in porous media with scale-dependent
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dispersion and periodic boundary conditions. Huyakorn et al. (1994) explored
formulation of three-dimensional multiphase flow model for assessing NAPL
contamination in porous and fractured media. Aral and Liao (1996) obtained a
general analytical solution for an infinite domain aquifer, where two-dimensional
solute transport equation with time-dependent dispersion coefficient was used. Batu
(1996) explored multiple sources for generalized three-dimensional solute transport
model. Arbogast et al. (1996) derived mathematical formulation and some
numerical approximation techniques for a system of coupled partial differential and
algebraic equations to describe multiphase flow in groundwater contamination
problem. Lewis and Ghafouri (1997) developed a novel finite element double
porosity model for multiphase flow through deformable fractured porous media.
Rahman and Lewis (1999) used finite element modeling of multiphase immiscible
flow in deforming porous media for subsurface systems. One-dimensional simu-
lation of solute transfer in saturated–unsaturated porous media using the discon-
tinuous finite element method was discussed by Diwa et al.(2001). Rubin and
Atkinson (2001) explored various properties of environmental fluid flow modeling
in environmental fluid mechanics. Lewis and Pao (2002) described numerical
simulation of three-phase flow in deforming fractured reservoirs. Younes (2003)
presented multidimensional fluid flow and heat or mass transport in porous media.
Klubertanz et al. (2003) developed a miscible and immiscible multiphase flow in
deformable porous media. Wortmann et al. (2005) and Moreira et al. (2005) used
the generalized integral Laplace transform technique for the simulation of pollutant
dispersion in the atmosphere and solved the advection dispersion equation ana-
lytically. Sander and Braddock (2005) explored analytical solution to the transient,
unsaturated transport of water and contaminants through horizontal porous media.
Oliaei et al. (2009) described some numerical issues using element-free Galerkin
meshless method for coupled hydromechanical problems. Khoei and
Mohammadnejad (2011) described numerical modeling of multiphase fluid flow in
deforming porous media, in which they compared between two- and three-phase
models for seismic analysis of earth and rockfill dams. Ngien et al. (2011) explored
numerical modeling of multiphase immiscible flow in double porosity featured
groundwater systems. Zamani and Bombardelli (2013) presented analytical solu-
tions of nonlinear and variable-parameter transport equations to verify the numer-
ical solver. Singh and Kumari (2014) and Singh et al. (2014) discussed longitudinal
dispersion with time-dependent source concentration along unsteady groundwater
flow in a semi-infinite aquifer with time-dependent velocity and dispersion.

In most of the available literature, authors used space dependency directly in the
problems to model the system. Actually, if we carefully observe the
space-time-dependent velocity and dispersion in groundwater system, then we see
that it can only be happen when the geometry of the system changes with distance,
i.e., the space dependency is zonal. It is well known that the boundary of the aquifer
is made of various soil materials like clay, gravel. We are also well aware of the fact
that velocity and dispersion differ from medium to medium. So we solve advection
dispersion equation in semi-infinite medium with constant source acting at the
origin in an initially contamination-free aquifer. As we are going to discuss the flow
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problem using space-time-dependent dispersion and velocity, then we solve the
ADE with source acting at any point in the domain, and using this solution, we may
be able to find the contaminant concentration for each phase. Laplace transform
technique is used to solve the problem analytically, and MATLAB is used to draw
the graphs.

2 Mathematical Formulation

We consider one-dimensional advection dispersion equation (ADE) to model the
multiphase contamination flow in the aquifer system, where the single source is
acting at the origin of the system. To ensure the space dependency in the ground-
water flow, we have to consider the dispersion and velocity profile in such a way that
when the formation of the medium changes like rock, clay, then velocity and dis-
persion also vary. We want to solve the ADE with single source acting at any point in
the domain. We consider that the concentration gradient tends to zero at semi-infinite
part of the boundary. So the modeled system can be written as (Fig. 1)

@C
@T

¼ DðTÞ @
2C
@x2

� uðTÞ @C
@x

ð1Þ

with the following conditions:

Cðx; TÞ ¼ 0; T ¼ 0; x� 0; ð2Þ

Cðx; TÞ ¼ c0; x ¼ a; T � 0; ð3Þ

@C
@x

¼ 0; as x ! 1: ð4Þ

Fig. 1 Geometry of the problem
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where Cðx; TÞ is the contaminant concentration, c0 are the constant concentrations,
DðTÞ is the dispersion along positive x direction, and uðTÞ is the velocity profile of
groundwater.

By using the solution of advection dispersion equation of single model system,
we can predict the contaminant concentration in aquifer through different zones of
soil. For that we have considered different velocity and dispersion coefficiennts in
soil zones.

3 Analytical Solution

We assume that u ¼ u0 f ðTÞ and D ¼ D0 f ðTÞ. Here, f ðTÞ is either exponentially
decreasing or sinusoidal or constant.

Consider t ¼ R T
0 f ðTÞdT

@C
@t

¼ D0
@2C
@x2

� u0
@C
@x

: ð5Þ

The corresponding initial and boundary conditions given by Eqs. (2), (3), and
(4) can also be written as follows:

Cðx; tÞ ¼ 0; x� 0; t ¼ 0 ð6Þ

Cðx; tÞ ¼ c0; t� 0; x ¼ a ð7Þ
@C
@x

¼ 0; x ! 1 ð8Þ

Now, we consider that Cðx; tÞ ¼ Kðx; tÞe
u0x
2D0

� u2
0
t

4D0

� �
, and by substituting in Eqs. (5)–

(8), one can get the transform equation as follows:

1
D0

@K
@t

¼ @2K
@x2

ð9Þ

Also, the corresponding initial and boundary condition changes to

Kðx; tÞ ¼ 0; t ¼ 0; x� 0 ð10Þ

Kðx; tÞ ¼ c0 exp � u0x
2D0

þ u20t
4D0

� �
; x ¼ a; t[ 0 ð11Þ

@K
@x

þ u0K
2D0

¼ 0; when x ! 1 ð12Þ
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Using the Laplace transform technique, we get the solution of Eq. (9) with initial
and boundary conditions (10–12) as follows:

KðX; TÞ ¼ c0
2
exp � u0a

2D0

� �
exp

u20t
4D0

� u0ðx� aÞ
2D0

� �
erfc

x� a
2

ffiffiffiffiffiffiffi
tD0

p � u0
ffiffi
t

p

2
ffiffiffiffi
D

p
0

� ��

þ exp
u20t
4D0

þ u0ðx� aÞ
2D0

� �
erfc

x� a
2

ffiffiffiffiffiffiffi
tD0

p þ u0
ffiffi
t

p

2
ffiffiffiffi
D

p
0

� ��

ð13Þ

Now using the transformation, we get the solution as follows:

Cðx; tÞ ¼ c0
2
exp

u0ðx� aÞ
2D0

� u20t
4D0

� �
exp

u20t
4D0

� u0ðx� aÞ
2D0

� �
erfc

x� a
2

ffiffiffiffiffiffiffi
tD0

p � u0
ffiffi
t

p

2
ffiffiffiffi
D

p
0

� ��

þ exp
u20t
4D0

þ u0ðx� aÞ
2D0

� �
erfc

x� a
2

ffiffiffiffiffiffiffi
tD0

p þ u0
ffiffi
t

p

2
ffiffiffiffi
D

p
0

� ��

ð14Þ

4 Discussion

Using the solution (14), we want to interoperate multizone flow in one dimension.
If the geometry of the system changes, then velocity and dispersion become spa-
tially dependent. It is a well-known fact that in gravel medium, the velocity and
dispersion differ from clay and other mediums. Boundary surfaces of an aquifer can
be made of using various medium with different materials and that can create a
zonal flow problem. Suppose one source of contamination occurs at the origin of
the aquifer, then the flow of the contaminant goes through the various material
zones, where dispersion and velocity coefficients are different from the previous
one. So if we come to know the effect of contaminant concentration at the end of
one zone then we can also find the impact of the same in the next zone.

Five equal size zones of various materials are considered and studied with various
dispersion and velocity coefficients. The single source is acting at the origin of the
aquifer with constant contaminant concentration one. We consider that the length of
the each zone as 0.1 km, and dispersion and velocity of the five zones are as follows:
u0 ¼ 0:11;D0 ¼ 0:0022, u0 ¼ 0:10;D0 ¼ 0:002, u0 ¼ 0:12;D0 ¼ 0:0024, u0 ¼
0:09;D0 ¼ 0:0018, and u0 ¼ 0:07;D0 ¼ 0:0014. It is clear from Fig. 2 that the
contaminant concentration decreases slowly with distance depending upon the
phases.

In Fig. 3, we have shown the comparison between multizone and single-zone
contaminant flow problem. It is clear from the study that in single-zone flow, the
contaminant concentration decreases more rapidly than multizone flow problem. So
we can say that in the case of the multizone flow contaminant shows more effect
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Fig. 2 Multizone flow
modeling: concentration with
distance at fixed time t = 3

Fig. 3 Comparison of
single-zone and multizone
concentration with distance at
fixed time t = 3

Fig. 4 Concentration with
time for a fixed distance
x = 0.2
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than single-zone flow and causes more casualties as it shows its effect for a longer
distance.

From Fig. 4, it is clear that the contaminant concentration increases for a fixed
point (x = 0.2 km) with time and achieves its maximum concentration level when
t = 4. The same velocity and dispersion coefficients are considered
(u0 ¼ 0:10;D0 ¼ 0:002) according to the position of the point.

5 Conclusion

One new type of multizone flow model is derived and solved analytically using
Laplace transform technique. Multizone contaminant flow solution shows more
impact than single-phase contaminant flow solution in the aquifer, as it covers more
distance than single-zone contaminant flow. Space dependency is incorporated
using different zones. Using analytical solution, we can get a closed form of the
solution, and we may be able to use it to consider some remedial measure to
eliminate the contaminant concentration from the aquifer system.
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Solute Dispersion Along Unsteady
Groundwater Flow in a Semi-infinite
Homogeneous Aquifer Using Linguistic
Hedge by Mamdani Model

Abhijit Debnath, Umesh Prasad and Mritunjay Kumar Singh

Abstract In the present study, the analytical solutions for dispersion of contami-
nants along unsteady flow of groundwater through semi-infinite aquifer are repre-
sented by fuzzy linguistic hedges. The sources of pollution are both a point input at
origin and a spatially distributed background source. The analytical solutions thus
obtained are put into Mamdani model with different linguistic variables, and the
model thus formed gives the result of solute concentration in literal sense in dif-
ferent point of time and space. The MATLAB code has been generated to simulate
the Mamdani Model and to find the fuzziness of the solution of AD equation
(Advection-Dispersion Equation) along unsteady flow.

1 Introduction

It has been investigated that, in India, the groundwater flow and the level varies
seasonally. We know the groundwater velocity and level remains maximum after
the rainy season and becomes minimum at summer. In tropical region such as India,
groundwater flow shows a sinusoidal nature throughout the year. There are a
considerable body of literature available on solute transport which may be enlisted
and are related with AD equation since last four or five decades. The AD equation
represents a standard model to predict the solute movement in groundwater based
on conservation of mass and Fick’s law of diffusion Fried and Combarnous (1971),
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Bear (1972), Chrysikopoulos et al. (1990) conducted a series of experiments to
investigate longitudinal dispersion of reactive contaminants through natural chan-
nels. Van Genuchten (1981) solved a 1D advection-dispersion equation with
adsorption, zero-order production and first-order decay. Van Genuchten and Alves
(1982) obtained analytical solution by Laplace transform method with third-type
boundary condition. Using Fourier transform and superposition method, Valocchi
and Roberts (1983) obtained a solution of 1D advection-dispersion equation in
semi-infinite and infinite domains for continuous input of periodically fluctuating
concentration and finite duration input of pulse-type concentration.

In the present study, one-dimensional solute dispersion along unsteady
groundwater flow in a homogeneous aquifer is considered. Sinusoidal time-
dependent expression for groundwater velocity is considered separately. Rumer
(1962) found that a relationship for steady flow was also valid for unsteady flow
with sinusoidally varying velocity through porous media. Earlier, all the analytical
solution or the numerical solution of AD equation gives the numeral value of
concentration at certain space and time. In this study, the decision in language for
the solute concentration is obtained by the application of fuzzy inference. This study
deals with the amount of solute concentration (high or medium or low) in linguistic
terms. The solution obtained for the one-dimensional AD equation is put into fuzzy
inference engine to get the solution in terms of linguistic variables.

2 Dispersion in Homogeneous Aquifer

The contaminants from instantaneous point source (spills), such as septic tanks,
cemeteries,mine spoils over the ground, infiltrate to groundwater and spread along the
flow. The solute concentration distribution in one-dimensional space with zero-order
liquid phase source is defined by Scheidegger (1961), Bachmat and Bear (1964)

@c�

@t
¼ @

@x
D
@c�

@x
� uc�

� �
þ c� ð1Þ

An appropriate initial condition has been chosen as

c�ðx; 0Þ ¼ C1 þ c�x
u

; x� 0 ð2Þ

The first boundary condition is taken as at x = 0,

�ð1� dÞD
u
@c�

@x
þ c� ¼ C0f ðtÞ; 0\t� t0 ð3aÞ

¼ 0; t[ t0 ð3bÞ
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another boundary condition is taken as

@c�

@x
¼ finite as x ! 1 ð4Þ

where c� is solute concentration in liquid phase, D is the dispersion coefficient and
u is the groundwater velocity at position x and time t. c� is the zero-order pro-
duction. The unsteady flow of groundwater is taken as

uðtÞ ¼ u0ð1� sinmtÞ ð5Þ

Here, m is flow resistance coefficient and u0 is the initial velocity. As D and u are
independent of x, for a homogeneous aquifer Eq. (1) may be written as

@c�

@t
¼ D

d2c�

@x2
� u

@c�

@x
þ c� ð6Þ

3 Mamdani Model for Fuzzy Inference

When the input variables are mapped into output space by using the fuzzy logic
deduction mechanism which includes IF-THEN rules, fuzzy logical operators and
variables, then the total process is called fuzzy inference. As the human reasoning is
quite compatiblewith IF-THEN rules and human languagemay be approximatedwith
fuzzy logic, the inference process converts the crisp values onto human language
resulting to the huge acceptance to any people who does not know the mathematics
behind it. Mamdani-type fuzzy inference process contains following steps:

Step 1. Input variables are to be fuzzified
Step 2. Application of fuzzy operators
Step 3. Different implication methods
Step 4. Suitable method of aggregation
Step 5. Suitable method of defuzzification.

Here, the input variables are considered to be mt and x. The solute concentration
is considered to be the output variable. In this study, the most common logical
operators such as AND operator and OR operator are used, and to formulate the
logical operations, the function min and max are taken into consideration. A fuzzy
output set has been generated after application of IF-THEN Rules. Then, the
method of aggregation is being implemented for combination of these fuzzy sets
which represent the outputs as a single result so that decision can be made upon the
result. The final combined fuzzy set is the output of aggregation process. In the final
step, the defuzzification process is done where the combined fuzzy set from
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aggregation process will output a single scalar quantity. In this study the centroid
method of defuzzification has been taken.

In this study, TISO (Two-input single-output) model of Mamdani is being
applied. For simplification, the input variable x (space) has been classified with 3
membership functions “source”, “midway” and “far”; the output variable has 3
membership functions “low”, “medium” and “high”. The time input variable (mt)
has been divided into two parts of any year “(A) before rainy season” and “(B) after
rainy season” taken as input variables, and each of them are classified with 3
membership functions “early”, “mid” and “late”. The output variable C (Solute
concentration variable) whose range in universe of discourse is taken to be [0.1,
0.3] w.r.t variable A and range w.r.t variable B is [0.1, 0.4].

The fuzzification of the input variable x (space) has been taken in the interval [0,
10] and for both the input variables (A) and (B) are taken in the interval of [0, 6].
The fuzzification is done under the Gaussian membership function (Figs. 1, 2, 3, 4
and 5).

Month of June is considered to be the initial of “after rainy season”, and month
of January will be considered as initial of “before rainy season”. From the analytical

Fig. 1 Fuzzification of space (x) input variable

Fig. 2 Membership function of input variable A
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solution of Eq. (1) under (2), (3a, b), (4) and (5), a sample of concentration is
derived from MATLAB given in the following Table 1 and initial velocity is taken
as 0.01 km/per day. Table 1 contains the data for solute concentration in “after
rainy season”.

Fig. 3 Membership function of input variable B

Fig. 4 Fuzzification of output variable C (After rainy season)

Fig. 5 Fuzzification of
output variable C (Before
rainy season)
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Model I

First, we set up inference rule between B, x and C. We set up a logic flow for the
TISO Mamdani model where two input “space (x)” and “after rainy season (B)”
gives output “solute concentration (C)”.
Rule 1. If x is source or B is early, then C is high.
Rule 2. If x is midway or B is early, then C is medium.
Rule 3. If x is far or B is early, then C is Low.
Rule 4. If x is source and B is mid, then C is medium.
Rule 5. If x is midway or B is mid, then C is low.
Rule 6. If x is far or B is mid, then C is low.
Rule 7. X is source and B is future, then C is high.
Rule 8. If x is midway or B is future, then C is medium.
Rule 9. If x is far or B is future, then C is low.
The logic flow of TISO inference system is given in Fig. 6:

.
Using fuzzy toolbox of MATLAB by Mamdani model, Figs. 7 and 8 have been

drawn. Figure 7 shows the solute concentration “after rainy season” in first year in
different space, and Fig. 8 shows the relationship in fuzzy model between solute
concentration and space in first year (Fig. 9).

Model II

Next, we consider the input variable “before rainy season (A)”, space (x) and the
output variable “solute concentration (C)”. In the universe of discourse, the inter-
vals for A, x and C are considered to be [0, 6], [0, 10] and [0.1, 0.4], respectively.
Table 2 shows the analytical solution of Eq. (1) for solute concentration in first year
for “before rainy season”.

The inference rule for the variables x, A and C are given as follows:

1. If x is source and A is early, then C is high
2. If x is source and A is mid, then C is high
3. If x is source and A is future, then C is high
4. If x is midway and A is early, then C is low
5. If x is midway and A is mid, then C is low
6. If x is midway and A is future, then C is medium
7. If x is far and A is early, then C is medium
8. If x is far and A is mid, then C is low
9. If x is far and A is future, then C is low

Figure 11 shows the defuzzified value of solute concentration in the first year of
“before rainy season” in the space of 10-km span. Figure 10 shows a relationship
between the solute concentration and space in defuzzified form in the span of mt
[6, 8]. All the defuzzification occurs in centroid method (Fig. 12).
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Rule 1. If x is source or B is early then C is 

Input x (0-10)
Rule 2. x is midway  or B is early then C is 
medium.

medium.

Rule 3.  If x is far or B is early then C is Low

Rule 4If x is source and B is mid then C is

Rule 5. If x is midway or B is mid then C is low

Rule 6. If x is far or B is mid then C is low

Input B(0-6) Rule 7. X is source and B is future then C is high

Rule 8. If x is midway or B is future then C is 
medium

Output
C (0.1, 0. 35)

Rule 9. If x is far or B is future then C is low.

Fig. 6 Logic flow chart of TISO inference model I

Fig. 7 Solute concentration
for first year “after rainy
season”
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Fig. 8 Solute concentration with space

Fig. 9 Rule viewer for Mamdani model I

Fig. 10 Concentratrion with
space
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Table 2 Solute concentration in first year for “before rainy season”

Space
(s)

mt
(time)

Conc
(c)

Space
(s)

mt
(time)

Conc
(c)

Space
(s)

mt
(time)

Conc
(c)

0 6 0.3296 0 7 0.3433 0 8 0.345

0.05 6 0.2974 0.05 7 0.3117 0.05 8 0.3134

0.1 6 0.2681 0.1 7 0.2825 0.1 8 0.2843

0.15 6 0.2418 0.15 7 0.2562 0.15 8 0.2579

0.2 6 0.2187 0.2 7 0.2326 0.2 8 0.2343

0.25 6 0.1989 0.25 7 0.212 0.25 8 0.2136

0.3 6 0.1822 0.3 7 0.1943 0.3 8 0.1959

0.35 6 0.1687 0.35 7 0.1796 0.35 8 0.181

0.4 6 0.1581 0.4 7 0.1676 0.4 8 0.1688

0.45 6 0.1501 0.45 7 0.1583 0.45 8 0.1593

0.5 6 0.1445 0.5 7 0.1512 0.5 8 0.1521

0.55 6 0.1409 0.55 7 0.1463 0.55 8 0.147

0.6 6 0.139 0.6 7 0.1432 0.6 8 0.1438

0.65 6 0.1383 0.65 7 0.1415 0.65 8 0.1419

0.7 6 0.1387 0.7 7 0.141 0.7 8 0.1413

0.75 6 0.1397 0.75 7 0.1414 0.75 8 0.1416

0.8 6 0.1413 0.8 7 0.1424 0.8 8 0.1426

0.85 6 0.1433 0.85 7 0.144 0.85 8 0.1441

0.9 6 0.1454 0.9 7 0.1459 0.9 8 0.146

0.95 6 0.1477 0.95 7 0.148 0.95 8 0.1481

1 6 0.1501 1 7 0.1503 1 8 0.1503

Fig. 11 Solute concentration
for first year “before rainy
season”
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4 Conclusion

The present study considers two variable input space and time, although the
groundwater velocity is considered to be time dependent. Kumar and Kumar (1997)
derived numerical and analytical solution of the AD equation with appropriate
initial and boundary condition by using suitable nondimensionalisation of param-
eters. The concentration pattern for the solution of Kumar and Kumar (1997)
showed the seasonal behaviour with respect to time as well as space. The solution
shows that for a concentrated point input at the origin with time-dependent velocity
in sinusoidal nature in homogeneous porous media, the solute concentration follows
a seasonal pattern over a year in tropical region. But the amount of solute con-
centration in linguistic terms could not be defined there. The present study forms a
linguistic model of solute concentration in seasonal pattern. The results in crisp
values are at par with the analytical solution of the AD equation under third-type
boundary condition with time-dependent velocity. This model could be further
modified to a MISO (multi-input single-output) model of Mamdani inference rule
so that in practical field of heterogeneous medium, the solute concentration could
be defined in linguistic terms.
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Effect of Water Pressure During Abrasive
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and Michal Zeleňák

Abstract The pressure of the waterjet influences the overall performance of the
abrasive waterjet cutting system through operational and phenomenological effects.
In this study, the effect of water pressure in surface quality of Mg-based
nanocomposite was investigated. The as-machined surfaces were examined by field
emission scanning electron microscope to determine the surface morphology. The
surface topography of selected nanocomposite was examined and compared. The
results show that the surface quality is better at higher pressure. However, at lower
water pressure, there is too much interaction among the low-energy abrasive par-
ticles and this may cause insufficient material removal. Abrasive waterjet cutting
seems to be promising tool for machining metal matrix composites in terms of no
thermal damages, no micro-structural changes and negligible sub-surface damages
on the machined surface.
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1 Introduction

Abrasive waterjets (AWJs) are mainly formed by high-velocity waterjet, operated at
pressure of up to 400 MPa to produce a water stream travelling in a speed of
915 m/s. A stream of abrasive particles is introduced and entrained in the waterjet
in such a manner that the waterjet’s momentum is transferred to the abrasives. The
coherent, abrasive waterjet is produced for propulsion of abrasive particle with high
velocity (Benedict 1987). This jet is then directed towards the working area to do
the cutting.

The abrasive waterjet machining (AWJM) is an advanced technique that was
successfully used for processing wide range of materials such as AA5083-H32
aluminium alloy (Yuvaraja and Kumar 2015), brass-360 (Babu and Muthukrishnan
2014), nickel-based superalloy (Uthayakumar et al. 2016), stainless steel AISI 304
(Singh and Chaturvedi 2014). However, very few literatures are available on
AWJM of metal matrix composite materials. Kumar and Kumaresan (2015) pre-
sented the investigation on machinability of SiC particle reinforced metal matrix
composite during AWJ cutting. They studied the influence of water pressure, tra-
verse rate and standoff distance on surface roughness (SR). They applied the
Taguchi’s design of experiments to collect surface roughness values. Selvan and
Raju (2012) experimented AWJ machining of grey cast iron, to examine the
influence of water pressure, traverse speed, nozzle standoff distance and abrasive
mass flow rate on surface roughness. They used Taguchi method to find out opti-
mum process parameters. The main observation was all the operational parameters
have direct effect on SR but water pressure has the most effect on SR. They
discussed that SR values decrease with the increase in pressure due to number of
impacting particles increases in machining zone. Hashish (1989) presented the
exhaustive review on pressure effects of AWJM. He discussed the influence of
pressure on the parameters of cutting performances (depth of cut, specific area
generation, maximum cutting traverse rate, surface waviness and cost of cutting)
and nozzle operational characteristics (jet spreading characteristics, abrasive parti-
cle fragmentation, suction capability, wear of mixing tubes and mixing efficiency).
He reported that increasing the pressure will allow the suction of more abrasive
flow, with an associated increase in cutting capability. Liu et al. (2003) attempted a
computational fluid dynamics (CFD) simulation study on the dynamic character-
istics of the abrasive waterjet. They calculated the abrasive particle velocities and
trajectories based on the three-phase turbulent flow. They also discussed the dis-
tribution of pressure and velocity in the jet axial as well as radial direction. They
found that the cutting performance is independent for a typical nozzle standoff
distance from 2 to 5 mm, and variation in velocity and dynamic pressure is not
significant for 80–90% of the jet diameter. Caydas and Hascalik (2008) developed
artificial neural network (ANN) and regression model to predict surface roughness
in AWJ machining. The traverse speed, waterjet pressure, standoff distance, abra-
sive grit size and abrasive flow rate were used as machining parameters. They also
conducted the Taguchi’s design of experiments for collecting the roughness values.
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The main finding was the waterjet pressure found as most dominant parameter on
SR followed by traverse speed. They reported that the surface waviness and surface
roughness increase with jet pressure.

2 Materials and Methods

In this study, the 6% Al (99.9% purity) balanced by Mg (99.9% purity) supplied by
Alfa Aesar (Massachusetts, USA) was taken as matrix material and 0.66 wt%
Al2O3 nanoparticles supplied by Baikowski (Japan) was taken as reinforcement
material. The material was processed by novel manufacturing method, i.e. disin-
tegrated melt deposition method followed by hot extrusion (Hassan et al. 2008).
The present method brings together the advantages of both conventional casting
and spray deposition to produce bulk material. The benefits of using this method are
uniform distribution of particles, fine equiaxed grains and low porosity due to the
rapid solidification of the atomized melt leading to improved properties (Gupta and
Wong 2015). The basic physical and mechanical property of the constituents of
selected nanocomposite is shown in Table 1. The density of the material was
measured by Archimedes principle. The hardness and elastic modulus of the
mirror-polished samples were measured by nanoindentation testing using
XP-nanoindenter (Agilent, USA) in continuous stiffness mode (CSM).

Table 1 Physical and mechanical properties of Mg-6Al/0.66% Al2O3 nanocomposite

Material Density (g/cm3) Hardness (GPa) Elastic modulus (GPa)

Mg-6Al/0.66 Al2O3 1.751204 0.8–1.2 47–51

Table 2 Machining condition of AWJ cutting

AWJ device for cutting by PTV: CNC WJ2020B-1Z-D

Material: Mg-6Al/0.66% Al2O3

Parameters Symbols Unit Value

Pressure of water P MPa 400, 100

Traverse speed vt mm/min 40, 20

Thickness of sample H mm 8

Abrasive mass flow rate ma g/min 300, 200

Abrasive size – mesh 80

Water nozzle diameter ⌀do mm 0.33

Focusing tube diameter ⌀df mm 0.9

Standoff distance Z mm 2

Position of cutting head u ° 90

Abrasives used – – Australian garnet
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2.1 Abrasive Waterjet Machining

The AWJM process was performed on PTV: CNC WJ2020B-1Z-D machine. The
machining condition during AWJ cutting is shown in Table 2. Figure 1 illustrates
the experimental set-up of AWJ machine. After machining, the machined surfaces
were examined by Olympus LEXT OLS 3100 laser confocal microscope and field
emission scanning electron microscope (FESEM) for better resolution.

3 Results and Discussion

The AWJ surfaces were examined in terms of topography and surface roughness.
Surface topography of AWJ surfaces was examined by Olympus LEXT OLS 3100
laser confocal microscope, and for better resolution surfaces were further investi-
gated by field emission scanning electron microscope (FESEM).

3.1 Surface Topography

Figure 2a, b shows the as-machined AWJ surfaces generated at different pressures.
From figure, the cutting traces are apparent and abrasive scooping and ploughing
action can also be seen. The surfaces are full of irregular depressions, valleys and
peaks. The cutting traces are sometimes interrupted or overlapped by other traces
due to collision occurs between abrasives. During high pressure in Fig. 2a, traces
are comparatively longer, narrower and approximately parallel than the traces at

Fixture

Work-piece

AWJ nozzle

Catcher tank

Mixing 
chamber

Abrasive 

Water inlet

Fig. 1 Experimental set-up
for AWJ cutting
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low pressure. Since, higher jet pressure results into the continuous stream of the
abrasive particles with higher kinetic energy. The 3D surface detail of AWJ
machined surface was illustrated in Fig. 3. The FESEM micrographs (Fig. 5)
clearly show the regular surface generated with high jet pressure compared to the
surface at low pressure. The possible reason behind this fact is at increased water
pressure the fragmentation of brittle abrasive particles takes place. Therefore, the
smaller abrasive particles along with high kinetic energy produce smoother surface.
In Fig. 4b, topography shows some deep cutting traces at lower jet pressure, and
this may be due to the too much interaction between low-energy abrasive particles
which was not observed in surface generated at higher pressure Fig. 4a. The sur-
faces were also characterized in terms of surface finish that has been discussed in
next section.

Fig. 2 2D surface detail of as-machined AWJ cutting surface a p = 400 MPa, ma = 300 g/min,
vt = 20 mm/min, b p = 100 MPa, ma = 200 g/min, vt = 40 mm/min

p= 400 MPa, ma= 300 g/min, vt= 20 
mm/min

p= 100 MPa, ma= 200 g/min, vt= 40
mm/min

(a) (b)

Fig. 3 3D surface detail (Olympus LEXT OLS 3100 laser confocal microscope)
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3.2 Surface Roughness

The surface finish of selected material machined with abrasive waterjet cutting was
characterized in terms of average surface roughness (Ra). Surface roughness is one
of the important response parameters which helps us to determine the micro-effects
of each impacting particles. Ra was measured using an optical profilometer
MicroProf FRT at the Institute of Geonics AS CR, v.v.i. On the machined surface,
response value was measured by 10 numbers of lines spaced by 0.5 mm. The effect
of water pressure on surface roughness is shown in Fig. 5. It is evident from the
figure that there is big difference in Ra values as the water pressure changes from
100 to 400 MPa. The values are around 3.4 µm when the water pressure is
400 MPa whereas at 100 MPa pressure, it varies between 5 and 6 µm. The higher
value of Ra at low pressure indicates insufficient material removal due to low
kinetic energy of the abrasive particles. On the other hand, more kinetic energy
during 400 MPa waterjet pressure removes maximum amount of material providing

Deep cutting traces(a) (b)

Fig. 4 FESEM micrograph of AWJ machined surface a p = 400 MPa, ma = 300 g/min,
vt = 20 mm/min, b p = 100 MPa, ma = 200 g/min, vt = 40 mm/min
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Fig. 5 Effect of water
pressure as a function of
surface roughness values
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a smooth finish and thus reducing the roughness value. These results can also be
correlated with the FESEM micrograph. Since the size of abrasive particle
(177 µm) is much bigger than size of reinforcement particle (50 nm), therefore no
noticeable effect of nanoparticles on surface roughness was seen.

The surface quality was evaluated using the surface profiles obtained from
optical profilometry. Figure 6 shows typical surface profiles obtained under two
different experimental conditions. As shown in Fig. 6a, the surface profile for the
low pressure AWJM specimen demonstrates irregularly spaced, non-uniform peaks
and valleys relative to Fig. 6b. Moreover, the surface profile seems as more random
than periodic and this higher degree of randomness indicates a high degree of
roughness. Whereas, the surface profile obtained for the 400 MPa waterjet pressure,
shown in Fig. 6b, was much more uniform and the variance in peak to valley height
is smaller. That indicates comparatively good surface finish.

4 Conclusions and Future Scope

Experimental investigations have been carried out on the surface topography and
surface roughness in abrasive waterjet machining of Mg-based nanocomposite. The
effects of water pressure on surface roughness have been investigated.

As a result of this study, it is observed that irregular surface finish, deep cutting
traces, insufficient cutting and material removal result from low water pressure. On
the contrary, the high waterjet pressure leads to increase in kinetic energy of the
abrasive particles at maximum level. That results into higher removal of material
from the surface. The surface roughness measurement also shows the higher value
of Ra at lower waterjet pressure, and the decreased value of Ra was seen during

Fig. 6 Profile height (µm) versus transverse length (mm): a surface profile for setting parameter,
p = 100 MPa, ma = 200 g/min, vt = 40 mm/min, b surface profile for setting parameter,
p = 400 MPa, ma = 300 g/min, vt = 20 mm/min
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machining at high waterjet pressure. This indicates that high waterjet pressure is
recommended for good surface finish.

Further investigation regarding plastic deformation of this material due to high
pressure waterjet machining can be done. The change in residual stress due to
variation in water pressure can also be investigated.

Acknowledgements The authors would like to acknowledge to the Institute of Geonics, Ostrava,
70800, the Czech Republic and the Institute of Materials Research, Slovak Academy of Science,
Watsonova 47, 04001 Kosice, Slovakia for their support in some experimental work to carry out.
This article was written in connection with the project of the Institute of Clean Technologies for
Mining and the Utilization of Raw Materials for Energy Use—Sustainability program, reg. no.
LO1406 financed by the Ministry of Education, Youth and Sports of the Czech Republic, and with
support for the long-term conceptual development of the research institution RVO: 68145535.

References

Babu MN, Muthukrishnan N (2014) Investigation on surface roughness in abrasive water jet
machining by the response surface method. Mater Manuf Process 29(11–12):1422–1428

Benedict GF (1987) Non-traditional manufacturing processes. Manufacturing engineering and
material processing, vol 19. Marcel dekker, Inc.

Caydas U, Hascalik A (2008) A study on surface roughness in abrasive waterjet machining process
using artificial neural networks and regression analysis method. J Mater Process Technol
202:574–582

Gupta M, Wong WLE (2015) Magnesium-based nanocomposites: lightweight materials of the
future. Mater Charact 105:30–46

Hashish M (1989) Pressure effects in abrasive waterjet (AWJ) machining. J Eng Mater Technol
111:221–228

Hassan SF, Tan MJ, Gupta M (2008) High-temperature tensile properties of Mg/Al2O3

nanocomposite. Mater Sci Eng A 486:56–62
Kumar BA, Kumaresan G (2015) Abrasive water jet machining of aluminum-silicon carbide

particulate metal matrix composites. Mater Sci Forum 830–831:83–86
Liu H, Wang J, Brown RJ, Kelson N (2003) Computational fluid dynamics (CFD) simulation of

ultrahigh velocity abrasive waterjet. Key Eng Mater 233–236:477–482
Selvan MCP, Raju NMS (2012) Analysis of surface roughness in abrasive water jet cutting of cast

iron. Int J Sci Environ Technol 1(3):174–182
Singh D, Chaturvedi V (2014) Investigation of optimal processing condition for abrasive water jet

machining for stainless steel AISI 304 using grey relational analysis coupled with S/N ratio.
Appl Mech Mater 592–594:438–443

Uthayakumar M, Khan MA, Kumaran ST, Slota A, Zajac J (2016) Machinability of nickel based
superalloy by abrasive water jet machining. Mater Manuf Process 31(13):1733–1739

Yuvaraja N, Kumar MP (2015) Multiresponse optimization of abrasive water jet cutting process
parameters using TOPSIS approach. Mater Manuf Process 30(7):882–889

612 K.B. Mardi et al.



Analytical Solution for Solute Transport
Influenced by Spatially Dependent
Dispersion Along Spatiotemporally
Dependent Porous Media Flow

Abhishek Sanskrityayn and Vinod Kumar Bharati

Abstract One-dimensional pollutant’s solute transport originating from the
instantaneous source and the continuous point source is studied in aquifer through
the analytical solutions of the advection–diffusion equation (ADE). Dispersion
coefficient is considered spatially dependent, and flow velocity is considered spa-
tially and temporally dependent. The solution is obtained in infinite domain using
Green’s Function Method (GFM). To use this method, the variable coefficients of
the ADE are reduced into constant coefficients through a pertinently developed
coordinate transformation equation. The analytical solutions are validated through
previously existing analytical solutions.

1 Introduction

Pollutants originating from continuous or instantaneous sources in the form of
industrial and municipal wastes are being discharged into the nearby water bodies
of rivers and lakes. Pollutants get infiltrated from rivers and lakes and from
dumping garbage sites, mines, etc., into the adjoining groundwater aquifer system.
One way to study the transport of such pollutant’s mass down the stream of such
water bodies and its attenuation with position and time is being studied through
analytical and numerical solutions of linear advection diffusion equation
(ADE) based on Fick’s first and second laws of diffusion.

The heterogeneity of the natural porous media such as aquifer and oil reservoir
has been delineated by spatially dependent or temporally dependent dispersion
coefficient in the linear ADE. Pickens and Grisak (1981) modeled the heterogeneity
of the medium by time-dependent dispersion coefficient of arbitrary forms. Basha
and El-Habel (1993) obtained the analytical solution of the one-dimensional
advection–diffusion equation (ADE) with time-dependent dispersion coefficient
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using GFM (Green’s Function Method). Later, this work was extended by Aral and
Liao (1996) in two dimensions, and the analytical solutions were obtained using the
same method. Some analytical solutions of the ADE have been obtained using
linear expressions in position variable for the velocity (Zoppou and Knight 1997;
Kumar et al. 2010). Chen et al. (2008) have used an asymptotic function for the
dispersion and have solved one- and two-dimensional ADEs using extended power
series method coupled with Laplace transform. They have cited a long list of
references of the papers using scale-dependent or time-dependent dispersion
coefficient. Singh et al. (2009) have obtained the analytical solution of the
one-dimensional ADE with sinusoidally varying and exponentially decreasing
time-dependent velocity. Guerrero and Skaggs (2010) presented a general analytical
solution of one-dimensional ADE using GITT (generalized integral transform
technique) with distance-dependent coefficients. Suk (2013) have presented
semi-analytical solution for multispecies transport coupled with a sequential
first-order reaction network under variable flow velocities and dispersion coeffi-
cients by employing GITT and general linear transformation method. You and Zhan
(2013) derived solutions for solute transport in one-dimensional finite domains with
distance-dependent dispersion coefficient and time-dependent source and compared
them with the corresponding solutions for semi-infinite domain to investigate the
effects of outer boundary conditions. A significant contribution has been made
through a recent paper (Zamani and Bombardelli 2014) by getting analytical
solutions of nonlinear advection–diffusion equation with spatiotemporal variability
of the velocity and dispersion coefficient.

In an earlier pioneer work using GFM, Yeh (1981) developed a generalized
analytical transient, one-, two-, and/or three-dimensional (AT 123D) computer code
for estimating the transport of wastes in the groundwater aquifer system. Sternberg
et al. (1996) have suggested that the heterogeneity of the porous media along with
the effects of velocity fluctuations on dispersive mixing may be modeled more
effectively through a dispersion coefficient parameter of the ADE as a function of
both space and time. On the basis of this paper, Su et al. (2005) have obtained the
analytical solutions of one-dimensional ADE by taking the dispersivity in the form
of separable power—law dependence on both time and scale. Selvadurai (2004) has
obtained the analytical solution of the ADE with uniform dispersion coefficient and
exponentially decaying time-dependent flow velocity, suggesting that if either the
porous medium is deformable or the pore fluid is compressible, then flow velocity
will be both space- and time-dependent. Jia et al. (2013) presented the
semi-analytical solution of the two novel ADE model: one model considered a
uniform diffusion coefficient and a linearly increasing flow velocity with position,
and the other one considered both transport coefficients linearly increasing with
position variable. Sanskrityayn and Kumar (2016) described the heterogeneity of
the medium through the temporally dependent dispersion coefficient and spatially
and temporally dependent flow velocity and have obtained the analytical solutions
using GFM.

In the present study, dispersion coefficient is considered spatially dependent and
velocity is considered spatially and temporally dependent. The spatial dependence
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delineates the heterogeneity of the medium, and the temporal dependence is con-
sidered in the unsteady flow domain. Spatial dependence of dispersion coefficient is
considered proportional to the square of that of velocity (Scheidegger 1957). The
analytical solutions of the ADE with such parameters as its coefficients are obtained
for instantaneous and continuous type sources using GFM. To use this method,
ADE is reduced into diffusion equation with source term and constant coefficient
through pertinently developed coordinate transformation equation.

2 Mathematical Formulation and Analytical Solution

The transport of solutes in porous media has generally been considered a Fickian
diffusive process that is a mechanism governed by the advection–diffusion equation
(ADE). The linear ADE in 1D infinite medium in the general form (Scheidegger
1954; Bear and Bachmat 1967; Fried 1975; Matheron and de Marsily 1980) may be
written as:

@c
@t

¼ @

@x
Dðx; tÞ @c

@x
� uðx; tÞc

� �
þ qðx; tÞ; �1\x\1; t[ 0 ð1Þ

where c is the solute concentration in the domain ðx; tÞ of position and time vari-
ables, qðx; tÞ represents an instantaneous source or continuous source of the dis-
persing mass introduced in the infinite porous domain. Dispersion coefficient is
considered to be spatially dependent and velocity to be spatially and temporally
dependent. The spatial dependence owes to heterogeneity of the medium (Pickens
and Grisak 1981), and temporal dependence is due to transient flow. Hence, both
may be written as Dðx; tÞ ¼ D0f1ðxÞ and uðx; tÞ ¼ u0f2ðx; tÞ, where D0 and u0 may
be referred to as dispersion coefficient and velocity, respectively, in the homoge-
neous medium. ADE in Eq. (1) is reduced into a solvable form in a new domain of
position and time variables, ðX; t0Þ, through appropriate transformation equations

X ¼ Xðx; tÞ; t0 ¼ t ð2Þ

In that case ADE in Eq. (1) in terms of new dependent variable CðX; t0Þ may be
obtained as

@C
@t0

¼ D0f1
@X
@x

� �2@2C
@X2 � u0f2

@X
@x

þ @X
@t0

� D0
@

@x
f1
@X
@x

� �� �
@C
@X

� u0
@f2
@x

Cþ q1ðX; t0Þ ð3Þ

As this partial differential equation contains both f1ðxÞ and f2ðx; tÞ so to get it in a
solvable form we have to proceed with assuming an expression for one of the two
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and get another one in the process. Let the expression for the dispersion coefficient
be considered as

Dðx; tÞ ¼ D0f1ðxÞ ¼ D0 1þ axð Þ2; ð4Þ

In the process of getting a suitable transformation X in terms of ðx; tÞ, an
expression for the velocity is introduced as follows (see the Appendix)

uðx; tÞ ¼ u0f2ðx; tÞ ¼ u0ð1þ axÞwðmtÞ ð5Þ

The constants a and m occurring in the above expressions are referred to as
spatial parameter and temporal parameter, respectively, of dimensions so that ax
and mt are dimensionless. Using the expressions in Eqs. (4) and (5), the ADE in the
domain �1\x\1 and t[ 0 may be written as

@c
@t

¼ @

@x
D0ð1þ axÞ2 @c

@x
� u0ð1þ axÞwðmtÞc

� �
þ qðx; tÞ ð6Þ

To get its analytical solution, an initial condition is assumed as

cðx; t ¼ 0Þ ¼ CixðxÞ ð7Þ

The ADE in Eq. (6) is reduced into a solvable form

@C
@t0

¼ D0
@2C
@X2 � u0

@C
@X

� au0wðmt0ÞCþ q1ðX; t0Þ; ð8Þ

by developing a coordinate transformation equations (see the Appendix)

X ¼ 1
a
log 1þ axj j þ

Z t

0

ðu0 þ aD0 � u0wÞdv; t0 ¼ t ð9Þ

Further using following transformations (now onwards t0 is written as t simply
for convenience)

g ¼ X � u0t; ð10Þ

Kðg; tÞ ¼ Cðg; tÞbðtÞ; ð11Þ

where

bðtÞ ¼ exp au0

Z t

0

wðmvÞdv
0
@

1
A; ð12Þ
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one by one, ADE in Eq. (8) may be reduced in a diffusion equation with constant
coefficient

@K
@T

¼ D0
@2K
@g2

þQðg; TÞbðtÞ; ð13Þ

where the non-homogeneous term Qðg; TÞ is the source term in the new domain of
position and time. The initial condition may be written as

Kðg; T ¼ 0Þ ¼ Cix1 gð Þ �1\g\1; T [ 0 ð14Þ

Now, the solution of the problem comprising of Eqs. (13) and (14) in the infinite
domain may be obtained by using the Green’s Function Method (Haberman 1987;
Basha and El-Habel 1993) as

Kðg; TÞ ¼
Z t

0

Z1
�1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pD0ðt � t0Þ

p exp � ðg� vÞ2
4D0ðt � t0Þ

( )
Qðv; fÞbðfÞdvdf

þCi

Z1
�1

1ffiffiffiffiffiffiffiffiffiffiffiffi
4pD0t

p exp �ðg� vÞ
4D0t

2
( )

x1 vð Þdv
ð15Þ

where v and f are the dummy variables.
Using back the transformations used above, the desired solution cðx; tÞ may be

written as

cðx; tÞ ¼
Z t

0

Z1
�1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pD0ðt � t0Þ

p exp � 1
4D0ðt � t0Þ

1
a log

1þ ax
an

þ Rt
t0

aD0 � u0wð Þdv

8><
>:

9>=
>;

2
2
664

3
775Q1ðn; t0Þbðt0Þ

anbðtÞ dndt0

þ Ciffiffiffiffiffiffiffiffiffiffiffiffi
4pD0t

p
Z1
�1

exp �ðg� vÞ
4D0t

2
( )

x1 vð Þ
bðtÞ dv;

ð16Þ

where

Q1 n; t0ð Þ ¼ q n� 1
a
; t0

� �
; ð17Þ

x1 vð Þ ¼ x exp avð Þ � 1
a

� �
ð18Þ

The injected source may be instantaneous, pulse type, or continuous. In the first
type of point source, the time of injection is very small; in the second type of
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source, it is for a finite period of time; and in the last type, the source exists
continuously. Solutions are obtained for the instantaneous source and the contin-
uous source, respectively. For discussion and illustration of the solutions in dif-
ferent cases, the domain is considered initially solute-free that is Ci ¼ 0 is
considered in Eq. (7).

2.1 Instantaneous Point Injection

The instantaneous source introduced at the origin is defined as

qðx; tÞ ¼ MdðxÞdðtÞ ð19Þ

where M is the injected pollutant mass in the water body, dðxÞ is the Dirac delta
function. In the present study, dðxÞ is considered. From analytical solution (16), we
may have

cðx; tÞ ¼ 1
bðtÞ

1ffiffiffiffiffiffiffiffiffiffiffiffi
4pD0t

p exp � 1
4D0t

1
a
log 1þ axð Þþ

Z t

0

aD0 � u0wð Þdv
8<
:

9=
;

22
4

3
5
ð20Þ

2.2 Continuous Point Injection

Continuous source introduced at the origin of the temporally dependent flow
domain may be defined as

qðx; tÞ ¼ C0uð0; tÞdðxÞ; t[ 0 ð21Þ

where uðx; tÞ is the velocity at each position x at a time t. The solution for the solute
transport from continuous source may be obtained from that in Eq. (16) as

cðx; tÞ ¼ C0

Z t

0

uð0; t0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pD0ðt � t0Þ

p exp � 1
4D0ðt � t0Þ

�
1
a
log 1þ axð Þ

�

þ
Z t

t0

aD0 � u0wð Þdv
9=
;

23
5� bðt0Þ

bðtÞ dt0

ð22Þ

As a ! 0 (spatially independent velocity and dispersion coefficient), the two
solutions in Eqs. (20) and (22) reduce to those in Eqs. (30) and (32) of
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Sanskrityayn and Kumar (2016) under the limit a ¼ 0 and temporally independent
dispersion coefficient, for instantaneous and continuous sources, respectively. Four
expressions of wðmtÞ are considered and the respective solutions are obtained as
follows:

(i) wðmtÞ ¼ 1. Using Eqs. (20) and (22), the respective solutions for instantaneous
and continuous injection sources may be obtained as

cðx; tÞ ¼ expð�au0tÞffiffiffiffiffiffiffiffiffiffiffiffi
4pD0t

p exp � 1
4D0t

1
a
log 1þ axð Þþ aD0 � u0ð Þt

� �2
" #

ð23Þ

and

cðx; tÞ ¼ C0

Z t

0

u0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pD0ðt � t0Þ

p exp � 1
4D0ðt � t0Þ

�
1
a
log 1þ axð Þ

�

þ aD0 � u0ð Þðt � t0Þg2
i
� expðau0t0Þ

expðau0tÞ dt0

ð24Þ

(ii) wðmtÞ ¼ expð�mtÞ. It is an exponentially decelerating function. This
expression is also considered by Selvadurai (2004) to describe the solute
transport from a continuous source of uniform dispersion coefficient in the
temporally dependent porous medium flow. Using Eqs. (20) and (22), the
respective solutions for instantaneous and continuous injection sources may be
obtained as

cðx; tÞ ¼ 1
bðtÞ ffiffiffiffiffiffiffiffiffiffiffiffi

4pD0t
p exp � 1

4D0t
1
a
logð1þ axÞþ aD0t � u0

m
1� expð�mtÞð Þ

� �2
" #

ð25Þ

and

cðx; tÞ ¼ C0u0
bðtÞ

Z t

0

expð�mt0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pD0ðt � t0Þ

p exp � 1
4D0ðt � t0Þ

�
1
a
logð1þ axÞ

�

þ aD0ðt � t0Þ � u0
m

expð�mt0Þ � expð�mtÞð Þ
o2

�
� bðt0Þdt0;

ð26Þ
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where bðtÞ ¼ exp au0ð1� e�mtÞ=mf g and m represents the temporally dependent
parameter. As a ! 0, the solution in Eq. (26) reduces to the solution obtained by
Selvadurai (2004).

(iii) wðmtÞ ¼ expðmtÞ. It is an exponentially accelerating function. Using
Eqs. (20) and (22), the respective solutions for instantaneous and continuous
injection sources may be obtained as

cðx; tÞ ¼ 1
bðtÞ ffiffiffiffiffiffiffiffiffiffiffiffi

4pD0t
p exp � 1

4D0t
1
a
logð1þ axÞþ aD0tþ u0

m
1� expðmtÞð Þ

� �2
" #

ð27Þ

and

cðx; tÞ ¼ C0u0
bðtÞ

Z t

0

expðmt0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pD0ðt � t0Þ

p exp � 1
4D0ðt � t0Þ

�
1
a
logð1þ axÞ

�

þ aD0ðt � t0Þþ u0
m

expðmt0Þ � expðmtÞð Þ
o
2	bðt0Þdt0;

ð28Þ

where bðtÞ ¼ exp au0ðemt � 1Þ=mf g.
(iv) wðmtÞ ¼ ð1þmtÞ�1. It is decelerating asymptotically from 1 at t = 0 to 0 as

t ! 1. Using Eqs. (20) and (22), we obtain the respective solutions for
instantaneous and continuous injection sources as

cðx; tÞ ¼ 1
bðtÞ ffiffiffiffiffiffiffiffiffiffiffiffi

4pD0t
p exp � 1

4D0t
1
a
logðaxþ 1Þþ aD0t � u0

m
logð1þmtÞ

� �2
" #

ð29Þ

and

cðx; tÞ ¼ C0u0
bðtÞ

Z t

0

ð1þmt0Þ�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pD0ðt � t0Þ

p exp � 1
4D0ðt � t0Þ

�
1
a
logð1þ axÞ

�

þ aD0ðt � t0Þ � u0
m
log

1þmt
1þmt0

� ��2
#
bðt0Þdt0

ð30Þ

where bðtÞ ¼ 1þmtð Þ
au0
m :
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In all the above solution as a ! 0, the dispersion coefficient becomes uniform
and velocity becomes temporally dependent.

3 Results and Discussion

To illustrate the analytical solutions obtained in the different cases, the values of
dispersion coefficient and velocity in homogeneous medium are considered to be
D0 ¼ 0:2 m2/day and u0 ¼ 0:25 m/day, respectively. The domain for illustration is
considered to be 0� xðmÞ� 100. To describe the heterogeneous medium and
homogeneous medium, two values of the spatial-dependent parameter are considered
to be aðm�1Þ ¼ 0:1; 0:0001), respectively, while for representing transient and steady
flow, two values of temporally dependent parameter mðday�1Þ ¼ 0:05; 0:0001,
respectively, are considered. The former value of a means the pollutant has spatially
dependent dispersion coefficient and the flow has spatially and temporally dependent
velocity. The latter value of a represents the uniform dispersion coefficient and
temporally dependent velocity. In all the figures, the solid curves represent the solute
transport through heterogeneous medium along spatially and temporally dependent
flow, and the dashed curves represent the same through the homogeneous medium
along the transient flow. These curves describe the solution in Eq. (20) for instanta-
neous source or Eq. (22) for continuous source, obtained in the present study in the
general form. The dotted curves in all thefigures represent the solute transport through
homogenous medium along the uniform flow, obtained from the two solutions in
Eqs. (20) and (22) for the smaller values of the spatial and temporal parameters, given
at the outset of this section. These solutions are validated by comparing the proposed
solutions with the existing solutions (obtained from the proposed ones as special
cases) for instantaneous source and continuous source.

Figure 1 exhibits the solution for the instantaneous source given in Eq. (25) for
exponentially decelerating function. The solid and dashed curves, drawn at the time
tðdaysÞ ¼ 25 and tðdaysÞ ¼ 50, represent the concentration level in both hetero-
geneous a ¼ 0:1ð Þ and homogeneous medium a ¼ 0:0001ð Þ, respectively. As
evident from the figure, the input concentration (concentration at the origin)
decreases very fast with time. The peak value of a concentration curve lowers down
with time, but the curve acquires longer domain. This trend of a curve shows that
the pollutant is originating from an instantaneous source. These curves reflect that
the pollutant transport is faster in heterogeneous medium a ¼ 0:1ð Þ characterized
by the lower peak concentration than that in the homogeneous medium
(a ¼ 0:0001) characterized by the higher peak. It is due to increased value of
dispersion coefficient and the velocity at each position in the former medium than in
the latter medium.

Figure 2 illustrates the solutions given in Eqs. (23), (27), and (29) discussed for
instantaneous source for three expressions of wðmtÞ: uniform function, exponen-
tially accelerating function, and asymptotically decelerating function, respectively,
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at t ¼ 25 days. As evident from the figure, the peak concentration values are equal
for the two latter expressions of wðmtÞ in the homogeneous medium (dashed
curves) due to uniform dispersion coefficient. Also the solute transport is faster in
case velocity is exponentially accelerating than that in case of asymptotically
decelerating flow due to temporally dependent flow velocity in the homogeneous
medium a ¼ 0:0001ð Þ. It may further be observed that in the heterogeneous
medium a ¼ 0:1ð Þ, the concentration peak values are lower than the homogeneous
medium due to increased value of dispersion coefficient and velocity at each
position of the former medium than those in the latter medium. Hence, the con-
centration peak values for wðmtÞ ¼ 1 is lying between the peak values for other two
expressions of wðmtÞ. Under the limit a ! 0, the proposed analytical solution in
Eq. (20) becomes the solution of Sanskrityayn and Kumar (2016). Both the solu-
tions are illustrated in this figure for the same three temporal functions stated above.
The proposed solutions represented by dashed curves match perfectly with the
respective solutions of Sanskrityayn and Kumar (2016) represented by curves
marked with circles.

Figure 3 exhibits the solutions for the continuous source given in Eqs. (24),
(26), and (28) for the three expressions of wðmtÞ, uniform function, exponentially
decelerating function, and exponentially accelerating function, respectively, at
t ¼ 25 days. The dotted curves represent these solutions describing the solute
transport due to uniform dispersion coefficient along steady flow in the homoge-
neous medium, and the dashed curves represent the solute transport due to uniform
dispersion along unsteady flow through the same medium. As evident from the
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Fig. 1 Concentration level evaluated from the solution (25) due to instantaneous source along
unsteady flow in the heterogeneous medium (solid curves) and homogeneous medium (dashed
curves)
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Fig. 2 Effect of heterogeneity on the solute transport from the instantaneous source shown by
solid and dashed curves representing proposed solutions in Eqs. (23), (27), and (29) for two values
of spatial parameter a, respectively, along with comparison of proposed solution with an existing
solution (Sanskrityayn and Kumar 2016)
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Fig. 3 Effect of heterogeneity on the solute transport due to continuous source demonstrated by
the proposed solutions in Eqs. (24), (26), and (28) for two values of a, respectively, along with
comparison of proposed solution with an existing solution (Sanskrityayn and Kumar 2016)
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figure, in the homogeneous medium, the solute transport along exponentially
decelerating flow is slower than that along the steady flow, but it is faster along the
exponentially accelerating flow. It is due to temporal dependence of flow velocity.
The solid curves represent these solutions describing the solute transport due to
spatially dependent dispersion coefficient along spatially and temporally dependent
steady flow in the heterogeneous medium. Due to increasing spatial dependence,
the values of dispersion coefficient and velocity at each position in the heteroge-
neous medium will be higher than those in the homogeneous medium. Hence, the
solute transport is faster in the heterogeneous medium (solid curves) than that in the
homogeneous medium (dashed and dotted curves). The concentration values
decreases in the vicinity of the origin (source location) in heterogeneous medium
than that in the homogeneous medium. As a ! 0, the proposed analytical solution
in Eq. (22) becomes the solution of Sanskrityayn and Kumar (2016). Both the
solutions are illustrated in this figure for the same three temporal functions stated
above. The proposed solutions represented by dashed curves match perfectly with
the respective solutions of Sanskrityayn and Kumar (2016) represented by curves
marked with circles. Figure 4 verifies the proposed analytical solution in Eq. (26)
with previous existing solution of Selvadurai (2004). To draw the present figure, the
value of dispersion coefficient and velocity in the homogeneous medium are con-
sidered to be D0 ¼ 0:005 m2/day and u0 ¼ 0:25 m/day, respectively. The solid
curves and curves marked with circles drawn, at the time tðdaysÞ ¼ 5; tðdaysÞ ¼ 25
and tðdaysÞ ¼ 50, represent the proposed solution and the solution of Selvadurai
(2004) in the homogeneous medium, respectively. As evident from the figure, both
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Fig. 4 Comparison of the solution of Selvadurai (2004) shown by curves marked with circles
with the proposed solution in Eq. (26) shown by solid curves for a continuous source
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the solution curves perfectly match with each other. Hence, the analytical solutions
developed in the present study are apropos to more general hydrological conditions
influencing the solute transport in groundwater originating from instantaneous and
continuous sources.

4 Conclusion

Green’s Function Method (GFM) is used to solve a one-dimensional ADE with the
source term and with the variable coefficients. The variability of the coefficients
describes the heterogeneity of the medium of particulate type in more general way
apropos to the theories and experimental field observations (Pickens and Grisak
1981; Scheidegger 1957; Sternberg et al. 1996). The ADE with such coefficients is
reduced into a solvable form through a pertinently developed transformation
equation defining a new space variable. How the variability of dispersion coefficient
with position and velocity with position and time is influencing the solute transport
pattern is assimilated through figures. The analytical solutions of the present paper
are verified with the previous existing analytical solution. Some known solutions
are derived as particular cases from the solutions of the present paper. It accom-
plishes the validation of the mathematical formulations and analytical procedures
obtaining the solutions. Though an ADE with such variable coefficients may be
solved using Fourier and Laplace integral transformations in a combined way, in
the present study it is not possible due to the fact that it is possible to apply Laplace
integral transform on the non-homogeneous source term of the ADE in the trans-
formed independent variables. Hence, GFM is the only option to get the analytical
solution.

Acknowledgements The first author acknowledges his gratitude to University Grants
Commission, Government of India for financial and academic assistance in the form of Senior
Research Fellowship.

Appendix

If the ADEs in Eqs. (3) and (8) are same, then we have

f1
@X
@x

� �2

¼ 1; ð31Þ

u0f2
@X
@x

þ @X
@t

� D0
@

@x
f1
@X
@x

� �
¼ u0; ð32Þ

Analytical Solution for Solute Transport Influenced … 625



and

@f2
@x

¼ awðtÞ ð33Þ

Solving (33), we get f2ðx; tÞ; hence, we have

uðx; tÞ ¼ u0f2ðx; tÞ ¼ au0wðtÞxþ u0/ðtÞ ð34Þ

Using Eqs. (31) and (34), Eq. (32) will become

D0

2
ffiffiffiffi
f1

p @f1
@x

� au0wðtÞxþ u0/ðtÞð Þ 1ffiffiffiffi
f1

p � @X
@t

¼ �u0 ð35Þ

Integrating Eq. (31) with respect to x, we have

X ¼
Z

dxffiffiffiffi
f1

p þ/1 tð Þ ð36Þ

Using it in Eq. (35), we get

u0 þ D0

2
ffiffiffiffi
f1

p @f1
@x

� au0wðtÞxþ u0/ðtÞð Þ 1ffiffiffiffi
f1

p ¼ @

@t

Z
dxffiffiffiffi
f1

p þ/1ðtÞ
� �

ð37Þ

For the expression of f1ðx; tÞ in Eq. (2), above Eq. (37) will become

ðu0 þ aD0Þð1þ axÞ � ðau0wðtÞxþ u0/Þ ¼ d/1

dt
ð1þ axÞ ð38Þ

Above equation holds good for

aðu0 þ aD0Þ � au0w ¼ a
d/1

dt
; ð39Þ

and

ðu0 þ aD0Þ � u0/ ¼ d/1

dt
ð40Þ

From Eq. (39), we have

/1ðtÞ ¼
Z t

0

ðu0 þ aD0 � u0wÞdv ð41Þ
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Using above equation in (40), we get

u0/ ¼ u0w ð42Þ

So using Eqs. (34) and (42), we have the expression for velocity as in Eq. (5).
Also, we may get the transformation equation being used as given in Eq. (9) by
using Eq. (2) and Eq. (41) in Eq. (36).
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Surface Wave Propagation
in Inhomogeneous Liquid Layer
over a Heterogeneous Anisotropic
Elastic Half Space

Pasupati Paul, Santimoy Kundu and Dinbandhu Mandal

Abstract The effect of the inhomogeneity and homogeneity on the dispersion of
the Rayleigh-type surface waves in an inhomogeneous liquid layer over a hetero-
geneous transversely isotopic elastic half space has been discussed. The frequency
equation is obtained. The dispersion curve of variation of phase velocity with the
wave number is observed and depicted graphically. Also various particular cases
have been considered.

1 Introduction

The earth surface structure is not always uniform; one portion of the crust is land, and
other three portions are filled by liquid (mainly water). Oceans, rivers contain
homogeneous or inhomogeneous liquid. Many researchers have central interest to
investigate surface wave propagation in shallow and deep ocean. The study of surface
waves has always attracted the interest of the scientific community because of the
importance and complexity of the waves that propagate in liquid–solid interfaces.

At earlier, Stoneley (1926), Biot (1952), and Tolstoy (1954) discussed the
propagation of elastic waves in an oceanic model consisting of a liquid layer of
finite depth lying over an isotropic homogeneous half space. Abubakar and Hudson
(1961) studied the dispersive property of liquid overlying a semi-infinite
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homogeneous anisotropic layer. Scholte (1961, 1962), Scott (1970) analyzed the
elastic wave propagation in inhomogeneous layer. Gogna (1979), Sharma et al.
(1990, 1991), Kaushik and Tomar (1994), Saini and Tomar (1995) studied the
surface wave propagation in uniform liquid layer overlying two solid elastic layers.
Sharma et al. (1990, 1991), Samal and Chattaraj (2011), Pal and Mandal (2012)
investigated surface propagation in the combination of a porous layer and an elastic
solid layer under uniform liquid layer. Kumar and Hundal (2007) solved the surface
wave propagation by considering incompressible porous half space under a
homogeneous finite liquid layer. Kumar et al. (2002), Kumar and Hundal (2007)
gave the discussion on inhomogeneous liquid layer over a homogeneous liquid
layer and liquid saturated porous half space. Dong and Hovem (2011) studied the
interface wave as like fluid–solid interface wave (Scholte wave).

In the present work, we have considered the problem of surface wave propa-
gation (two-dimensional) in an inhomogeneous liquid layer lying over a
semi-infinite heterogeneous anisotropic (transversely isotropic) elastic half space.
This appears in realistic model of the structure of ocean or river. Here, the waves are
termed as Rayleigh-type waves which are propagated in the bottom of ocean. For
deep ocean, this interface wave is called Scholte wave. We have assumed the
vertically heterogeneity of both layers in which the elastic constants of solid space
vary exponentially with the depth.

2 Formulation of the Problem

Here, we have considered an inhomogeneous liquid layer (M1) of thickness h
(ocean) over a heterogeneous anisotropic elastic solid half space (M2). In the

Fig. 1 Geometry of the problem
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rectangular Cartesian coordinate system, we have taken the z-axis vertically
downwards and x-axis along the interface between two layers. The origin O is
chosen on the interface (Fig. 1). Therefore, the media M1 and M2 occupy the
regions �h� z\0; 0� z, respectively.

Since we are discussing the Rayleigh-type surface wave with wave fronts par-
allel to yz-plane, the components of displacement along the x and z directions are
independent of the y coordinate and the displacement components along the y
direction are zero.

2.1 Inhomogeneous Liquid Layer (M1)

For the liquid layer, following Gogna (1969), we consider inhomogeneity varying
with depth as

k1 ¼ k0ð1þ azÞ; q1 ¼ q0ð1þ azÞ; ð1Þ

where k0 and q0 are bulk modulus and density at the interface respectively,a is
inhomogeneity factor. Let u1ðx; z; tÞ;w1ðx; z; tÞ are the displacement components of
liquid particle along the direction of x; z-axis, respectively.

The Equations of motion of liquid are given by

@

@x
ðk1hÞ ¼ q1

@2u1
@t2

;
@

@z
ðk1hÞ ¼ q1

@2w1

@t2
ð2Þ

where h ¼ @u1
@x þ @w1

@z :

Equation (2) reduces as

@2u1
@x2

þ @2w1

@x@z
¼ 1

c21

@2u1
@t2

@2u1
@x@z

þ @2w1

@z2
þ @u1

@x
þ @w1

@z

� �
a

1þ az

� �
¼ 1

c21

@2w1

@t2

9>>=
>>;

ð3Þ

where c21 ¼ k0
q0

and since the direction of surface waves propagation is in positive

direction of x-axis with a phase velocity c and wave number k, we assume the
solutions of Eq. (3) are

u1 ¼ U1ðzÞeikðx�ctÞ; w1 ¼ W1ðzÞeikðx�ctÞ ð4Þ

Using (4) in the first equation of (3), we have

dW1

dz
þ ia2

k
U1 ¼ 0 ð5Þ
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where a2 ¼ k2ð1� c2

c21
Þ:

Again using second equation of (3), (4), and (5), we get

d2W1

dz2
þ a

1þ az

� �
dW1

dz
� a2W1 ¼ 0 ð6Þ

We take transformation as p ¼ a 1þ az
a , and then Eq. (6) reduces to

d2W1

dp2
þ 1

p
dW1

dz
�W1 ¼ 0 ð7Þ

This is Modified Bessel’s equation of order zero.
Then using the solutions of (7) and (5), we get displacement components of (4)

as following

u1 ¼ ik
a

L1I1 a
1þ az
a

� �
� L2K1 a

1þ az
a

� �� �
eikðx�ctÞ

w1 ¼ L1I0 a
1þ az
a

� �
þ L2K0 a

1þ az
a

� �� �
eikðx�ctÞ

9>>=
>>;

ð8Þ

Here L1; L2 are arbitrary constants. I0ðzÞ;K0ðzÞ are modified Bessel’s functions
first and second kind of order zero and I1ðzÞ;K1ðzÞ are modified Bessel’s functions
first and second kind of order one.

2.2 Heterogeneous Anisotropic Elastic Solid Half Space
(M2)

The strain energy function for transversely isotropic elastic medium is given by
Love (1944).

2W� ¼ Aðe2xx þ e2yyÞþBe2zz þ 2Cðexx þ eyyÞezz þ 2ðA� 2EÞexxeyy
þDðe2yz þ e2zxÞþEe2xy

ð9Þ

where A;B;C;D and E are real and positive elastic parameters, exx; eyy, etc., are the
components of strain. Then the components of stress at any point are given by

sij ¼ @W�

@eij
; ði; j ¼ x; y; zÞ ð10Þ

Let the displacement components in this media are u2 ¼ u2ðx; z; tÞ;
v2 ¼ 0; w2 ¼ w2ðx; z; tÞ:
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We assume the elastic property of heterogeneous half space varying exponen-
tially, so

A;B;C;D; q2f g ¼ A0;B0;C0;D0; q02f gebz ð11Þ

and A, B>D
Then the equation of motion for the surface waves without body forces is given

by

@sxx
@x

þ @sxz
@z

¼ q2
@2u2
@t2

;
@sxz
@x

þ @szz
@z

¼ q2
@2w2

@t2
ð12Þ

Using (9), (10), and (11) in Eqs. (12), we get

A0
@2u2
@x2

þD0
@2u2
@z2

þðC0 þD0Þ @
2w2

@x@z
þ bD0

@u2
@z

þ @w2

@x

� �
¼ q02

@2u2
@t2

D0
@2w2

@x2
þB0

@2w2

@z2
þðC0 þD0Þ @

2u2
@x@z

þ b C0
@u2
@x

þB0
@w2

@z

� �
¼ q02

@2w2

@t2

9>>=
>>;
ð13Þ

For the propagation of surface wave in the positive x direction, we have

u2 ¼ Me�kmzeikðx�ctÞ; w2 ¼ Ne�kmzeikðx�ctÞ ð14Þ

where M;N are constants, m is real and positive.
From (13) and (14), we get

Mk D0ðkm2 � bmÞþ ðq02c2 � A0Þk½ � � Nik kmðC0 þD0Þ � bD0½ � ¼ 0
Mik ðC0 þD0Þkm� bC0½ � � Nk B0ðkm2 � bmÞþ ðq02c2 � D0Þk½ � ¼ 0

�
ð15Þ

Eliminating M;N, we have

D0ðkm2 � bmÞþ ðq02c2 � A0Þk �i kmðC0 þD0Þ � bD0½ �
�i ðC0 þD0Þkm� bC0½ � B0ðkm2 � bmÞþ ðq02c2 � D0Þk

����
���� ¼ 0 ð16Þ

or

B0D0 km2 � bm
� 	2 þ kG0 km2 � bm

� 	þH0 ¼ 0 ð17Þ

which is the quadratic equation of km2 � bm, where G0 ¼ q02c
2 B0 þD0ð Þþ

2C0D0 � A0B0 þC2
0 and H0 ¼ q02c

2 � A0ð Þ q02c
2 � D0ð Þk2 þ b2C0D0:
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Hence km2 � bm ¼ �kG0�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2G2

0�4B0D0H0

p
2B0D0

¼ R1;2 where upper sign corresponds to
R1 and the lower one corresponds to R2.

Then we have

km2 � bm� R1 ¼ 0
km2 � bm� R2 ¼ 0

�
ð18Þ

Let m1;m2 be two positive and real roots of above two equations.
Then

m1 ¼ bþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4kR1

p

2k
; m2 ¼ bþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ 4kR2
p

2k

So following (14), we get

u2 ¼ M1e�km1z þM2e�km2z
� 	

eikðx�ctÞ

w2 ¼ n1M1e�km1z þ n2M2e�km2z
� 	

eikðx�ctÞ

�
ð19Þ

where N
M ¼ Nj

Mj
¼ D0ðkm2

j �bmjÞþ ðq02c2�A0Þk
i kmjðC0 þD0Þ�bD0½ � ¼ nj; j ¼ 1; 2ð Þ:

3 Boundary Conditions

The relative boundary conditions are as follows

(a) Vanishing of normal stress component at the free surface of the liquid layer,
z ¼ �h

i.e., szzð Þ1¼ k1h ¼ 0

(b) Continuity of normal displacement and stress components, vanishing of shear
stress at the interface z ¼ 0

i.e., w1ð Þ1¼ w2ð Þ2; szzð Þ1¼ szzð Þ2; sxzð Þ2¼ 0
Here, the indexes 1, 2 indicate the liquid layer and solid half space, respectively.

4 Dispersion Relation

Using Eqs. (8) and (19) in the above boundary conditions and eliminating
L1; L2;M1;M2, we get a 4� 4 determinant equation as follows
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I1ðp1Þ �K1ðp1Þ 0 0
I0 a

a

� 	
K0

a
a

� 	 �n1 �n2
k0I1 a

a

� 	 �k0K1
a
a

� 	
2k B0n1m1 � iC0ð Þ 2k B0n2m2 � iC0ð Þ

0 0 ikn1 � m1 ikn2 � m2

��������

��������
¼ 0 ð20Þ

i.e.,

S1 I1ðp1ÞK1
a
a

� �
� K1ðp1ÞI1 a

a

� �h i
þ 2S2ik I1ðp1ÞK0

a
a

� �
þK1ðp1ÞI0 a

a

� �h i
¼ 0

ð21Þ

where

p1 ¼ a
1� ah

a
; S1 ¼ k0 n1m2 � n2m1ð Þ;

S2 ¼ ðm1 � m2Þ B0kn1n2 � C0ð Þþ iðn1 � n2Þ B0m1m2 � C0kð Þ

Equation (21) is called dispersion equation of surface wave propagation in the
present model. It is the relation of phase velocity of surface wave to its wave
number, multivalued function of phase velocity.

5 Particular Cases

I. If h ¼ 0, in the absence of liquid layer, the boundary conditions are reduced
to szzð Þ2¼ 0; sxzð Þ2¼ 0 at z ¼ 0. Then the simplest form of Eq. (21) is

S2 ¼ 0: ð22Þ

This equation is the frequency equation of Rayleigh waves on the free sur-
face of heterogeneous anisotropic elastic half space.

II. If a ¼ 0; b ¼ 0, then the model will represent the propagation of surface
wave in homogeneous liquid overlying a homogeneous anisotropic elastic
half space.

III. If a ¼ 0; b 6¼ 0, the frequency equation will represent the model consisting
uniform liquid layer overlying inhomogeneous transversely isotropic elastic
half space.

IV. If a 6¼ 0; b ¼ 0, the structure of the oceanic crust layer will be of inho-
mogeneous liquid layer overlying homogeneous transversely isotropic elastic
half space.

V. If h ¼ 1 i.e., for deep liquid layer (in deep ocean), then the Rayleigh-type
wave termed as Scholte wave, because it propagates at an interface between a
fluid and an elastic solid medium.
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6 Numerical Result and Discussion

Here, we have investigated the possibility of the propagation of surface waves
discussed above along the x-direction for the present model and some particular
cases. We have drawn the graph of the ratio of phase velocity (c) of the surface
waves to the velocity (c1) of the dilatation wave in liquid versus the wave number
(kh), which are showing that the surface wave is dispersive.

For liquid layer, we have followed Ewing et al. (1957), the following values

k0 ¼ 0:214� 1011dyn=cm2; q0 ¼ 1:01g/cm3

For heterogeneous anisotropic layer, following Love (1944), the values are

A0 ¼ 26:94� 1011 dyn/cm2;

B0 ¼ 23:63� 1011 dyn/cm2;

C0 ¼ 6:53� 1011 dyn/cm2;

D0 ¼ 6:61� 1011 dyn/cm2;

q02 ¼ 2:7 g=cm3

Gogna (1979), Sharma et al. (1990), Kaushik and Tomar (1994), Saini and
Tomar (1995) have also considered the same values in their research paper.

In Figs. 2, 3, and 4, we see that the variation of phase velocity has changed for
smaller value of kh and negligible for large value of kh with the different depth of

Fig. 2 Variation of phase
velocity with wave number
a ¼ 0:025; b ¼ 0:001ð Þ
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liquid layer by the effect of inhomogeneity of both layers a ¼ 0:025; b ¼ 0:001ð Þ,
inhomogeneity of liquid layer and homogeneity of half space a ¼ 0:025; b ¼ 0:0ð Þ
and homogeneity of both layers ah ¼ 0:0; b ¼ 0:0ð Þ, respectively. Figures 5 and 6
show that when one of the medium is homogeneous a ¼ 0:0 or b ¼ 0:0ð Þ, the phase
velocity is greater than when same medium is inhomogeneous ( a ¼ 0:5 orð b ¼
0:005Þ for fixed value of kh.

Fig. 3 Variation of phase
velocity with wave number
a ¼ 0:025; b ¼ 0:0ð Þ

Fig. 4 Variation of phase
velocity with wave number
ah ¼ 0:0; b ¼ 0:0ð Þ
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7 Conclusion

We conclude that effect of inhomogeneity, homogeneity of both layer and the
variation of depth of liquid layer has changed the phase velocity for different
frequencies. Thus, using such experiment, we could calculate the dispersion curves
and compare them with observed values.

Fig. 5 Variation of phase
velocity with wave number
h ¼ 2 KM; b ¼ 0:001ð Þ

Fig. 6 Variation of phase
velocity with wave number
h ¼ 4 KM; a ¼ 0:5ð Þ
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The surface wave propagation in an oceanic crust model has important possible
applications in the field of oceanography, seismology, civil engineering, and geo-
sciences aspects. The effect of these waves in shallow or deep ocean on this
inhomogeneous structure during earthquakes is a very interesting field of study and
research in theoretical seismology. This work can be extended for another structure
of oceanic crust model.
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Qualitative Analysis of a Three Species
Predator–Prey Model with Stochastic
Fluctuation

Soumen Kundu and Sarit Maitra

Abstract In this paper, a multi-team predator–prey model, with two preys and one
predator species, has been considered within stochastically fluctuating environment.
In the first part, we have studied the stability of the model around the equilibrium
points and later, introducing white noise terms to the deterministic model, the
effects of stochastic fluctuating environment are studied. Numerical simulations
have been performed to examine the stability and other properties of the stochastic
model.

1 Introduction

Predator–prey interactions are one of the most important issues of ecology. It can
determine the distributions of different species as well as the stability of an
ecosystem. Lotka–Volterra model gives a simple mathematical description of the
predator–prey interaction. The generalized Lotka–Volterra model involving k preys
and k predators is:

dxi
dt

¼ xi ai �
Xk
j¼1

bijyj

 !

dyi
dt

¼ yi
Xk
j¼1

cijyj � di

 !
i ¼ 1; 2; . . .; k ð1:1Þ

where constants ai; di are growth rate for the preys and natural death rate for the
predators respectively, and bij; cij (i; j ¼ 1; 2; . . .; k) are interaction constants.
Though the two species prey–predator model (k ¼ 2) has been studied a lot in
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different contexts, the investigation of the system with three or more species are
rather less in number. Freedman and Waltman (1984) considered the case with
predator-mediated coexistence in Lotka–Volterra ordinary differential equation
model for two competing species that are preyed by a common predator and
showed that the addition of a predator can lead to persistence of the system. Zhang
and Zhang (2011) have discussed the dynamical behavior of a stage-structured
population model involving gestation delay within stochastically fluctuating envi-
ronment and harvesting. Saha and Bandyopadhyay (2008) presented the dynamical
analysis of a delayed ratio-dependent prey–predator model in fluctuating environ-
ment. They pointed out that the gestation delay with large magnitude has the ability
to drive the system from a stable to an unstable one. Elettreby (2009) studied the
local stability of the predator–prey model in which the prey teams help each other
and also studied the global stability and persistence in the absence of cooperation.
A lot of literature have discussed the predator-prey interaction in both deterministic
and stochastic environment (Choudhury 1992; Kot 2001; Carletti et al. 2004;
Bandyopadhyay et al. 2008). Bandyopadhyay and Chattopadhyay (2005) gave a
detailed discussion about the stability of a ratio-dependent predator–prey model and
the effect of the environmental fluctuation on the stability of the model. Here, in this
work we have considered a three species population with two teams of preys with
densities x tð Þ and y tð Þ interacting with a team of predator with density z tð Þ. Now
assume the model as follows:

dx tð Þ
dt

¼ a1x tð Þ 1� x tð Þð Þ � a2x tð Þz tð Þþ a3x tð Þy tð Þz tð Þ
dy tð Þ
dt

¼ b1y tð Þ 1� y tð Þð Þ � b2y tð Þz tð Þþ a3x tð Þy tð Þz tð Þ
dz tð Þ
dt

¼ �c1z2 tð Þþ c2x tð Þz tð Þþ c3y tð Þz tð Þ

ð1:2Þ

where a1; a2; a3; b1; b2; c1; c2; c3 are positive constants and x 0ð Þ[ 0; y 0ð Þ[ 0;
z 0ð Þ[ 0. The terms a1x tð Þ 1� x tð Þð Þ and b1y tð Þ 1� y tð Þð Þ denote the logistic
growth of prey species in the absence of predation. The effect of the predation is to
reduce the prey growth rate by a term proportional to the prey and predator pop-
ulations; so the terms �a2x tð Þz tð Þ and �b2y tð Þz tð Þ exist. The term a3x tð Þy tð Þz tð Þ
represents the cooperation due to presence of the predation. In the absence of any
prey, the predator’s death rate results in inverse decay which is given by the term
�c1z2 tð Þ. Now the terms c2x tð Þz tð Þ and c3y tð Þz tð Þ are the prey’s contribution to the
predator’s growth rate. All the parameter values are measured in units of per day.

In this paper, firstly, in the absence of stochastic fluctuation we have studied the
stability of the equilibrium points of the model and then incorporating white noise
to the model (1.2), the effects of stochastic fluctuating environment are studied.
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2 Deterministic Model and Its Stability Analysis

Linear stability implies that a system is stable over small short-lived disturbances.
To check the linear stability, consider the Jacobian matrix of the system (1.2) as
follows:

J x; y; zð Þ ¼
a1 1� 2xð Þ � z a2 � a3yð Þ a3xz �x a1 � a3yð Þ

a3yz b1 1� 2yð Þ � z b2 � a3xð Þ �y b2 � a3xð Þ
c2z c3z �2c1zþ c2xþ c3y

0
B@

1
CA

ð2:1Þ

The characteristic equation for the model (1.2) is given by-

J x; y; zð Þ � kIj j ¼ 0 ð2:2Þ

For the system (1.2), we get several equilibrium points like:

E0 0; 0; 0ð Þ;E1 1; 0; 0ð Þ;E2 0; 1; 0ð Þ;E3 1; 1; 0ð Þ;E4 0;
c1b1

b2c3 þ c1b1
;

c3b1
b2c3 þ c1b1

� �
;

E5 c1a1
a2c2 þ a1c1

; 0; a1c2
a2c2 þ a1c1

� �
and the interior equilibrium point E6 x�; y�; z�ð Þ where

x� ¼
b1
ffiffiffiffiffiffiffi
a1b1

p
c1c2

a2
þ a1b1c1c3

a2
þ c22

ffiffiffiffiffiffiffiffiffi
a1b1

p þ b1c2c3 þ a1c23 þ c23
ffiffiffiffiffiffiffiffiffi
a1b1

p� �
a1c23 � b1c22

;

y� ¼
a1b1c1c2

a2
þ ffiffiffiffiffiffiffiffiffi

a1b1
p

c22 þ b1c22 þ a1
ffiffiffiffiffiffiffi
a1b1

p
c1c3

a2
þ a1c2c3 þ

ffiffiffiffiffiffiffiffiffi
a1b1

p
c2c3

b1c22 � a1c23
;

z� ¼
ffiffiffiffiffiffiffiffiffi
a1b1

p
a2

Now we calculate the eigen value of (2.2) at the equilibrium points. For the point
E0 0; 0; 0ð Þ the eigen values are

k ¼ 0; a1; b1: ð2:3Þ

Since a1; b1 [ 0, it is an unstable equilibrium point. Similarly, for

E1 1; 0; 0ð Þ we get the eigen values,

k ¼ �a1; b1; c2 ð2:4Þ
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Due to b1; c2 [ 0, E1 is an unstable equilibrium point. Now for E2 0; 1; 0ð Þ we
get

k ¼ a1;�b1; c3 ð2:5Þ

As a1; c3 [ 0, it is an unstable equilibrium point. Now for E3 1; 1; 0ð Þ we get

k ¼ �a1;�b1; c2 þ c3: ð2:6Þ

As c2 þ c3 [ 0, it is an unstable equilibrium point. Thus, all of the equilibrium

points E0;E1;E2;E3 are unstable equilibrium points. Now E4 0; c1b1
b2c3 þ c1b1

; c3b1
b2c3 þ c1b1

� �
will be locally asymptotically stable if J 0; c1b1

b2c3 þ c1b1
; c3b1
b2c3 þ c1b1

� ���� ���\0, i.e., if

a1\
c3b1 a2b2c3 þ a2c1b1 � a3c1b1ð Þ

b2c3 þ c1b1ð Þ2 : ð2:7Þ

Similarly, E5 a1c1
a1c1 þ a2c2

; 0; a1c3
a1c1 þ a2c2

� �
will be locally asymptotically stable if

b1\
c2a1 a2b2c2 þ b2c1a1 � a3c1a1ð Þ

a1c1 þ a2c2ð Þ2 : ð2:8Þ

and E6 x�; y�; z�ð Þ will be locally asymptotically stable if

a1b1 [
1
c31

�a2a3c2c3c1 � a2a3c
2
3c1 � b2a3c

2
2c1 � a2a3c2c3c1

�
þ 2b2a3c23c1 þ 4b2a3c1c2c3 � 2a2b2c22c1 þ 2a2a3c23c1

þ 2b2a3c22c1 � 4a2b2c1c2c3 þ 4a2a3c1c2c3 � 2a2b2c22c1

þ 2a2a3c22c1 þ b2c2c
2
1a1 � a3c

2
1a1 � 2b2c3c21a1 þ 2a3c3c21a1

� 2b2c2c21a1 þ 2a3c2c21a1 � a3c3c
2
1b1 þ a2c3c

2
1b1 þ 2a3c3c21b1

þ 2a3c2c21b1 � 2a2c3c21b1 � 2a2c2c21b1
	
:

ð2:9Þ

Now if a3 ¼ 0, i.e., no mutual help among the preys are occurring against the
predator, then E6 will be locally asymptotically stable if

a1b1 [
1
c31

�2a2b2c22c1 � 4a2b2c1c2c3 � 2a2b2c22c1 þ b2c2c
2
1a1

�
�2b2c3c21a1 � 2b2c2c21a1 þ a2c3c

2
1b1 � 2a2c3c21b1 � 2a2c2c21b1

	 ð2:10Þ

a1; b1 are the logistic growth rates of species x tð Þ; y tð Þ, respectively.
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3 Effects of Fluctuating Environment on the System

In this section, the effects of the presence of stochastic fluctuation are studied. We
introduce white noises in each of the equations of the system (1.2) to take into
account the effect of randomly fluctuating environment. Here the effect of the
fluctuating environment is manifested due to the variations for the cooperation,
predation terms. The stochastic version corresponding to the deterministic model
(1.2) with random environment fluctuation takes the following form:

dx tð Þ
dt

¼ a1x tð Þ 1� x tð Þð Þ � a2x tð Þz tð Þþ a3x tð Þy tð Þz tð Þþ r1n1 tð Þ
dy tð Þ
dt

¼ b1y tð Þ 1� y tð Þð Þ � b2y tð Þz tð Þþ a3x tð Þy tð Þz tð Þþ r2n2 tð Þ
dz tð Þ
dt

¼ �c1z
2 tð Þþ c2x tð Þz tð Þþ c3y tð Þz tð Þþ r3n3 tð Þ

ð3:1Þ

where ri, i ¼ 1; 2; 3 are real constants expressing the environmental driving forces
and the so-called perturbed terms ni tð Þ, i ¼ 1; 2; 3 are mutually independent
Gaussian white noises with ni tð Þh i ¼ 0 and ni tð Þnj t1ð Þ
 � ¼ dijd t � t1ð Þ,
i; j ¼ 1; 2; 3: �h i. represents the ensemble average due to the effect of the environ-
mental fluctuation, dij is the Kronecker delta expressing the spectral density of the
white noise, and d is the Dirac delta function with t and t1 being the distinct time.
Now we study the dynamic behavior around the interior equilibrium point
E6 x�; y�; z�ð Þ.

Introducing a transformation of the form �x ¼ x� x�;�y ¼ y� y�;�z ¼ z� z� in
Eq. (3.1), we get the following linearized system:

d�x
dt

¼ a11�xþ a12�yþ a13�zþ r1n1 tð Þ
d�y
dt

¼ a21�xþ a22�yþ a23�zþ r2n2 tð Þ
d�z
dt

¼ a31�xþ a32�yþ a33�zþ r3n3 tð Þ

ð3:2Þ

where a11 ¼ a1 � 2a1x� � a2z� þ a3y�z�, a12 ¼ a3x�z�, a13 ¼ a3x�y� � a2x�,
a21 ¼ a3y�z�, a22 ¼ b1 � 2b1y� � b2z� þ a3x�z�; a23 ¼ a3x�y� � b2y�, a31 ¼ c2z�,
a32 ¼ c3z�, and a33 ¼ c3y� þ c2x� � 2c1z�

The system of Langevin equations in (3.2) can be written into the matrix form
as:

d
dt
X tð Þ ¼ AX tð ÞþCn tð Þ ð3:3Þ
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where

X tð Þ ¼
�x tð Þ
�y tð Þ
�z tð Þ

0
B@

1
CA A ¼

a11 a12 a13
a21 a22 a23
a31 a32 a33

0
B@

1
CA;

C ¼
r1 0 0
0 r2 0
0 0 r3

0
@

1
A and n tð Þ ¼

n1 tð Þ
n2 tð Þ
n3 tð Þ

0
@

1
A:

The solution of (3.3) with the nonnegative initial condition X 0ð Þ ¼

�x0
�y0
�z0

0
@

1
A; �x0;�y0;�z0ð Þ[ 0 is given by

X tð Þ ¼ eAtX 0ð Þþ
Z t

0

eA t�t1ð ÞCn t1ð Þdt1 ð3:4Þ

Here

eAt ¼ 1
D

K11 K12 K13

K21 K22 K23

K31 K32 K33

0
@

1
A ð3:5Þ

where

D ¼ k1 � k2ð Þ k2 � k3ð Þ k3 � k1ð Þ a213a21 þ a13a23 a22 � a11ð Þ � a12a223
� 

a12a21 þ a11 � k1ð Þ k1 � a22ð Þ½ � a12a21 þ a11 � k2ð Þ k2 � a22ð Þ½ � a12a21 þ a11 � k3ð Þ k3 � a22ð Þ½ �

k1; k2; k3 are the eigen values for the matrix A, and K11;K12;K13;K21;K22;K23;
K31;K32;K33 are given by
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K11 ¼ a12a23 þ a13 k1 � a22ð Þ½ �T11ek1t � a12a23 þ a13ðk2½
� a22Þ�T12ek2t þ a12a23 þ a13 k3 � a22ð Þ½ �T13ek3t

K12 ¼ � a12a23 þ a13 k1 � a22ð Þ½ �T21ek1t þ a12a23½
þ a13 k2 � a22ð Þ�T22ek2t � a12a23 þ a13 k3 � a22ð Þ½ �T23ek3t

K13 ¼ � a12a23 þ a13 k1 � a22ð Þ½ �T31ek1t þ a12a23½
þ a13 k2 � a22ð Þ�T32ek2t � a12a23 þ a13 k3 � a22ð Þ½ �T33ek3t

K21 ¼ a13a21 þ a23 k1 � a11ð Þ½ �T11ek1t � a13a21 þ a23½
k2 � a11ð Þ�T12ek2t þ a13a21 þ a23 k3 � a11ð Þ½ �T13ek3t

K22 ¼ � a13a21 þ a23 k1 � a11ð Þ½ �T21ek1t þ ½a13a21
þ a23 k2 � a11ð Þ�T22ek2t � a13a21 þ k3 � a11ð Þ½ �T23ek3t

K23 ¼ � a13a21 þ a23 k1 � a11ð Þ½ �T31ek1t þ a13a21½
þ a23 k2 � a11ð ÞT32ek2t � a13a21 þ a23 k3 � a11ð Þ½ �T33ek3t

K31 ¼ �T11ek1t þ T12ek2t � T13ek3t

K32 ¼ T21ek1t � T22ek2t þ T23ek3t

K33 ¼ T31ek1t � T32ek2t þ T33ek3t

and

T11 ¼
k2 � k3ð Þ a211a23 þ a13a21 k2 þ k3 � a22ð Þþ a23 k2k3 þ a12a21ð Þ � a11 a!3a21 þ a23 k2þ k3ð Þf g� 
a12a21 � k1 � a11ð Þ k1 � a22ð Þ½ � a12a21 � k2 � a11ð Þ k2 � a22ð Þ½ � a12a21 � k3 � a11ð Þ k3 � a22ð Þ½ �

T12 ¼
k1 � k3ð Þ a211a23 þ a13a21 k1 þ k3 � a22ð Þþ a23 k1k3 þ a12a21ð Þ � a11 a!3a21 þ a23 k1þ k3ð Þf g� 
a12a21 � k1 � a11ð Þ k1 � a22ð Þ½ � a12a21 � k2 � a11ð Þ k2 � a22ð Þ½ � a12a21 � k3 � a11ð Þ k3 � a22ð Þ½ �

T13 ¼
k1 � k2ð Þ a211a23 þ a13a21 k2 þ k1 � a22ð Þþ a23 k2k1 þ a12a21ð Þ � a11 a!3a21 þ a23 k2þ k1ð Þf g� 
a12a21 � k1 � a11ð Þ k1 � a22ð Þ½ � a12a21 � k2 � a11ð Þ k2 � a22ð Þ½ � a12a21 � k3 � a11ð Þ k3 � a22ð Þ½ �

T21 ¼ k2 � k3ð Þ a13 k2 � a22ð Þ k3 � a22ð Þþ a12 a13a21 þ a23 k2 þ k3 � a11 � a22ð Þf g½ �
a12a21 � k1 � a11ð Þ k1 � a22ð Þ½ � a12a21 � k2 � a11ð Þ k2 � a22ð Þ½ � a12a21 � k3 � a11ð Þ k3 � a22ð Þ½ �

T22 ¼ k1 � k3ð Þ a13 k1 � a22ð Þ k3 � a22ð Þþ a12 a13a21 þ a23 k1 þ k3 � a11 � a22ð Þf g½ �
a12a21 � k1 � a11ð Þ k1 � a22ð Þ½ � a12a21 � k2 � a11ð Þ k2 � a22ð Þ½ � a12a21 � k3 � a11ð Þ k3 � a22ð Þ½ �

T23 ¼ k1 � k2ð Þ a13 k2 � a22ð Þ k1 � a22ð Þþ a12 a13a21 þ a23 k2 þ k1 � a11 � a22ð Þf g½ �
a12a21 � k1 � a11ð Þ k1 � a22ð Þ½ � a12a21 � k2 � a11ð Þ k2 � a22ð Þ½ � a12a21 � k3 � a11ð Þ k3 � a22ð Þ½ �

T31 ¼
k2 � k3ð Þ a213a21 þ a13a23 a22 � a11ð Þ � a12a223

� 
a12a21 � k1 � a11ð Þ k1 � a22ð Þ½ � a12a21 � k2 � a11ð Þ k2 � a22ð Þ½ � a12a21 � k3 � a11ð Þ k3 � a22ð Þ½ �

T32 ¼
k1 � k3ð Þ a213a21 þ a13a23 a22 � a11ð Þ � a12a223

� 
a12a21 � k1 � a11ð Þ k1 � a22ð Þ½ � a12a21 � k2 � a11ð Þ k2 � a22ð Þ½ � a12a21 � k3 � a11ð Þ k3 � a22ð Þ½ �

T33 ¼
k1 � k2ð Þ a213a21 þ a13a23 a22 � a11ð Þ � a12a223

� 
a12a21 � k1 � a11ð Þ k1 � a22ð Þ½ � a12a21 � k2 � a11ð Þ k2 � a22ð Þ½ � a12a21 � k3 � a11ð Þ k3 � a22ð Þ½ �
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Thus we can write the solution of Eq. (3.3) in the form

�x tð Þ
�y tð Þ
�z tð Þ

0
@

1
A ¼ 1

D

K11 K12 K13

K21 K22 K23

K31 K32 K33

0
@

1
A �x0

�y0
�z0

0
@

1
Aþ

Z t

0

eA t�t1ð ÞCn t1ð Þdt1: ð3:6Þ

where eA t�t1ð Þ can be obtained by putting t ¼ t � t1 in the expression of eAt. Now
using the condition of Gaussian white noises ni tð Þh i ¼ 0; i ¼ 1; 2; 3, we get
X tð Þh i ¼ eAtX 0ð Þ. Considering another result ni tð Þnj t1ð Þ
 � ¼ dijd t � t1ð Þ, and using

the property of Dirac delta function
R t2
t1
f tð Þd t � að Þdt ¼ f að Þ, for t1\t\t2, we get

the population variances as:

r2�x ¼ �x2 tð Þ
 �� �x tð Þh i2

¼ � 1

D2 P2
11

T2
11 1� e2k1t
� 	þ T2

21 1� e2k1t
� 	þ T2

31 1� e2k1t
� 	

2k1

� ��

þP2
12

T2
12 1� e2k2t
� 	þ T2

22 1� e2k2t
� 	þ T2

32 1� e2k2t
� 	

2k2

� �

þP2
13

T2
13 1� e2k3t
� 	þ T2

23 1� e2k3t
� 	þ T2

33 1� e2k3t
� 	

2k3

� �

þ 2P11P12
T11T12 1� e k1 þ k2ð Þt� 	þ T21T22 1� e k1 þ k2ð Þt� 	þ T31T32 1� e k1 þ k2ð Þt� 	

k1 þ k2

( )

þ 2P11P13
T11T13 1� e k1 þ k3ð Þt� 	þ T21T23 1� e k1 þ k3ð Þt� 	þ T31T33 1� e k1 þ k3ð Þt� 	

k1 þ k3

( )

þ 2P12P13
T12T13 1� e k2 þ k3ð Þt� 	þ T23T22 1� e k3 þ k2ð Þt� 	þ T33T32 1� e k3 þ k2ð Þt� 	

k3 þ k2

( )#

ð3:7aÞ
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r2�y ¼ �y2 tð Þ
 �� �y tð Þh i2

¼ � 1

D2 Q2
11

T2
11 1� e2k1t
� 	þ T2

21 1� e2k1t
� 	þ T2

31 1� e2k1t
� 	

2k1

� ��

þQ2
12

T2
12 1� e2k2t
� 	þ T2

22 1� e2k2t
� 	þ T2

32 1� e2k2t
� 	

2k2

� �

þQ2
13

T2
13 1� e2k3t
� 	þ T2

23 1� e2k3t
� 	þ T2

33 1� e2k3t
� 	

2k3

� �

þ 2Q11Q12
T11T12 1� e k1 þ k2ð Þt� 	þ T21T22 1� e k1 þ k2ð Þt� 	þ T31T32 1� e k1 þ k2ð Þt� 	

k1 þ k2

( )

þ 2Q11Q13
T11T13 1� e k1 þ k3ð Þt� 	þ T21T23 1� e k1 þ k3ð Þt� 	þ T31T33 1� e k1 þ k3ð Þt� 	

k1 þ k3

( )

þ 2Q12Q13
T12T13 1� e k2 þ k3ð Þt� 	þ T23T22 1� e k3 þ k2ð Þt� 	þ T33T32 1� e k3 þ k2ð Þt� 	

k3 þ k2

( )#

ð3:7bÞ

r2�z ¼ �z2 tð Þ
 �� �z tð Þh i2

¼ � 1

D2 R2
11

T2
11 1� e2k1t
� 	þ T2

21 1� e2k1t
� 	þ T2

31 1� e2k1t
� 	

2k1

� ��

þR2
12

T2
12 1� e2k2t
� 	þ T2

22 1� e2k2t
� 	þ T2

32 1� e2k2t
� 	

2k2

� �

þR2
13

T2
13 1� e2k3t
� 	þ T2

23 1� e2k3t
� 	þ T2

33 1� e2k3t
� 	

2k3

� �

þ 2R11R12
T11T12 1� e k1 þ k2ð Þt� 	þ T21T22 1� e k1 þ k2ð Þt� 	þ T31T32 1� e k1 þ k2ð Þt� 	

k1 þ k2

( )

þ 2R11R13
T11T13 1� e k1 þ k3ð Þt� 	þ T21T23 1� e k1 þ k3ð Þt� 	þ T31T33 1� e k1 þ k3ð Þt� 	

k1 þ k3

( )

þ 2R12R13
T12T13 1� e k2 þ k3ð Þt� 	þ T23T22 1� e k3 þ k2ð Þt� 	þ T33T32 1� e k3 þ k2ð Þt� 	

k3 þ k2

( )#

ð3:7cÞ

where P11 ¼ a12a23 þ a13 k1 � a22ð Þ, P12 ¼ a12a23 þ a13 k2 � a22ð Þ, P13 ¼ a12a23
þ a13 k3 � a22ð Þ, Q11 ¼ a13a21 þ a23 k1 � a11ð Þ, Q12 ¼ a13a21 þ a23 k2 � a11ð Þ,
Q13 ¼ a13a21 þ a23 k3 � a11ð Þ, R11 ¼ 1, R12 ¼ 1, R13 ¼ 1.
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Relations (3.7a), (3.7b), (3.7c) show that environmental noises ri; i ¼ 1; 2; 3
affect the fluctuation strength of the populations. Due to the increase of environ-
mental noises, the amplitude of oscillations for the population densities also
increase, which can be exhibited through Figs. 10 and 12. The numerical solutions
for both the deterministic and stochastic models are presented in the next section
with the suitable set of parameter values.

4 Numerical Simulations

In the previous sections, we have discussed analytically the stability of the non-
linear differential equation models in the absence and then in the presence of the
environmental noises. We now present some simulation work for better under-
standing of our analytical results. Here we have considered different values of the
environmental noises ri; i ¼ 1; 2; 3ð Þ to observe biologically different dynamical
scenarios of the model. Here the parameter values are taken from Elettreby (2009),
and a2; b2; a3 are chosen in such a way that they satisfy condition (2.7), (2.8), and
(2.9).

In Figs. 1 and 2, x tð Þ; y tð Þ; z tð Þ have been plotted with time ‘t’ using the set of
differential equations (3.1) with the set of parameter values a1 ¼ 1; b1 ¼ 2;
c1 ¼ 0:1; c2 ¼ 1:0; c3 ¼ 1:4; a2 ¼ 1:1; b2 ¼ 1:5; a3 ¼ 0:8. Here the equilibrium
point E4 is seen to be locally asymptotically stable. Figure 3 shows the phase
portrait near E4.

Fig. 1 Time series plot of x tð Þ; y tð Þ; z tð Þ for the model (3.1), when ri ¼ 0; i ¼ 1; 2; 3 and E4 is the
equilibrium point, which is stable
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Also using the set of differential equations (3.1) the point E5 with the
set of parameter values a1 ¼ 1; b1 ¼ 0:4; c1 ¼ 0:3; c2 ¼ 1:0; c3 ¼ 1:4; a2 ¼ 1:1;
b2 ¼ 1:5; a3 ¼ 0:8 is seen to be locally asymptotically stable (see Figs. 4, 5 and 7),
and Figs. 6 and 8 are the phase portraits around E5.

Now in Figs. 9, 10 and 12, x tð Þ; y tð Þ; z tð Þ have been plotted with time ‘t’ using
the set of differential Eq. (3.1) with the set of parameter value a1 ¼ 1; b1 ¼ 2;

Fig. 2 Time series plot of x tð Þ; y tð Þ; z tð Þ for the model (3.1), when ri ¼ 0:005; i ¼ 1; 2; 3 and E4

as the equilibrium point, which is stochastically stable

Fig. 3 Phase portrait of the model system (3.1) when ri ¼ 0:005; i ¼ 1; 2; 3
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Fig. 4 Stable solution of x tð Þ; y tð Þ; z tð Þ for the model (3.1) when ri ¼ 0; i ¼ 1; 2; 3

Fig. 5 Stochastically stable solution of x tð Þ; y tð Þ; z tð Þ for the model (3.1), when ri ¼ 0:005; i ¼
1; 2; 3
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c1 ¼ 2:0; c2 ¼ 1:0; c3 ¼ 1:6; a2 ¼ 1:1; b2 ¼ 1:5; a3 ¼ 0:8. Here the equilibrium
point E6 is seen to be locally asymptotically stable. Figures 11 and 13 show the
phase portraits around E6.

5 Conclusion

In this paper, we have shown the effect of environmental fluctuations on a three
species predator–prey model. This work is an extension of the work by Elettreby
(2009), by introducing white noise terms in each of the equations. In natural

Fig. 6 Phase portrait of the model system (3.1) when ri ¼ 0:005; i ¼ 1; 2; 3

Fig. 7 Large amount of fluctuations in x tð Þ; y tð Þ; z tð Þ for the model (3.1), when ri ¼ 0:05; i ¼
1; 2; 3

Qualitative Analysis of a Three Species Predator-Prey Model … 655



Fig. 8 Phase portrait of the model system (3.1) when ri ¼ 0:05; i ¼ 1; 2; 3

Fig. 9 Time series plot of x tð Þ; y tð Þ; z tð Þ for the model (3.1), when ri ¼ 0; i ¼ 1; 2; 3 and E6,
which is stable
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environment, the environmental fluctuation is one of the important components for
ecological systems. First in the absence of environmental fluctuation, we have
obtained the conditions for local asymptotical stability. Next we have studied the
local stability behavior around E6 for the three species predator–prey model within
deterministic environment. Finally by the numerical method, we have discussed the
stochastic model by introducing Gaussian white noise terms to each of the deter-
ministic equations. For the stochastic model, numerical results indicate that the

Fig. 10 Stochastically stable solution of x tð Þ; y tð Þ; z tð Þ for the model (3.1), when ri ¼ 0:005; i ¼
1; 2; 3

Fig. 11 Phase portrait of the model system (3.1) when ri ¼ 0:005; i ¼ 1; 2; 3
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system is asymptotically stable. With the increase of the environmental forces, the
frequency and amplitude of oscillation for the population density are also increased.
These indicate that the magnitude of environmental forces play an important role to
determine the magnitude of oscillation of the three species predator–prey model
within a fluctuating environment.

Fig. 12 Large amount of fluctuation in x tð Þ; y tð Þ; z tð Þ for the model (3.1), when ri ¼ 0:05; i ¼
1; 2; 3

Fig. 13 Phase portrait of the model system (3.1) when ri ¼ 0:05; i ¼ 1; 2; 3
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Plane Wave Propagation in a Rotating
Micropolar Microstretch Elastic Solid
in Special Case

K. Somaiah

Abstract The present work investigates the propagation of plane waves in a
rotating micropolar microstretch elastic solid in a case of irrotational macro-
displacements and zero micro-rotations. Three types of basic waves consisting of
transverse microstretch waves, transverse micropolar waves, and coupled longitu-
dinal waves are propagated. All these waves are frequency-dependent and hence,
dispersive in nature. Except microstretch waves, all these waves are effected by
angular rotation of the solid. The variation of these waves with angular frequency
and angular rotations has also been depicted graphically for specific models.

1 Introduction

The generalization theory of micropolar elasticity (1966) is called microstretch
elasticity, and this theory was introduced by Eringen (1971). The material points of
microstretch solids can stretch and can contract independently of their translations
and rotations. In these solids, the motion is characterized by seven degrees of
freedom, namely three for translation, three for rotation, and one for stretch. The
theory of microstretch elastic solid differs from the theory of micropolar elasticity in
the sense that there is an additional degree of freedom called stretch and there is an
additional kind of stress called microstretch vector. The microstretch elastic solids
are asphalt, composite fibers, porous elastic material filled with gas or in viscid
fluid, etc.

Singh (2002) studied the reflection of plane waves from free surface of micro-
stretch elastic solid. Gravitational effect on plane waves in a generalized
thermo-microstretch elastic solid was studied by Othman et al. (2013). Recently,
Somaiah and Srinivas (2015) studied plane longitudinal waves in a micropolar
elastic solid. Effect of rotation on longitudinal wave propagation was studied by
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Sreelakshmi et al. (2015). The present investigations are the plane longitudinal and
plane transverse waves in case of irrotational macro-displacements and vanishing
micro-rotations in a rotating micropolar microstretch elastic solid.

2 Basic Equations

The equations of motion in a rotating homogeneous isotropic generalized
micropolar microstretch elastic solid in the absence of body forces, body couples,
and stretch free are given by Eringen (1999), Green and Lindsay (1972) as follows:

kþ 2lþKð Þr r: u
!� �

� lþKð Þr �r� u
! þKr� /

!
þ kor/�

¼ q
@2 u

!

@t2
þ X

!
� X

!
� u

!
� �" # ð1Þ

aþ bþ cð Þr r � /
!� �

� cr� ðr � uÞ
!

þKr� u
!�2K /

!
¼ qJ

@2 /
!

@t2
ð2Þ

a0r2/� � k1/
� � k0r � u! ¼ qJ0

2
@2/�

@t2
ð3Þ

where k; l Lame’s constants, K is the elastic constant, a; b; c are micro-rotational
parameter, a0; k0; k1 are microstretch elastic constants, q is density, J is the micro

inertia, J0 is the micro inertia of micro element, u
!
is macro displacement vector, /

!

is the micro-rotation vector, /� is the microstretch scalar which are satisfy the
following inequalities: 3kþ 2lþK � 0; 2lþK� 0; K� 0; 3aþ bþ c� 0;

�c� b� c; c� 0; and X
!
� X

!
� u

!
� �

is the time dependent part of centripetal

acceleration.

3 Formulation of the Problem

We use the rectangular coordinate system (x, y, z), and medium is assumed to be
rotating about z-axis with a constant rate with constant angular velocity

X
!
¼ 0; 0;Xð Þ, where X is the component of rotation. The displacement vector u

!

and micro-rotation vector /
!

are taken as u
! ¼ u1; u2; 0ð Þ, /

!
¼ 0; 0;/ð Þ. We write

Eqs. (1) and (2) in terms of dilation D and micro-rotation dilation D0 with
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D ¼ @u1
@x

þ @u2
@y

ð4Þ

D0 ¼ @/
@z

ð5Þ

are given by

kþ 2lþKð Þ @

@x
D� lþKð Þr2u1 � K

@/
@y

þ k0
@/�

@x
¼ q

@2u1
@t2

� X2u1

� �
ð6Þ

kþ 2lþKð Þ @

@y
D� lþKð Þr2u2 þK

@/
@x

þ k0
@/�

@y
¼ q

@2u2
@t2

� X2u2

� �
ð7Þ

aþ bþ cð Þr2/� c
@

@z
D0 þK u2;1 � u1;2

� 	� K/ ¼ qJ
@2/
@t2

ð8Þ

where r2 ¼ @2

@x2 þ @2

@y2 (Fig. 1).

4 Propagation of Waves in Case of Irrotational
Macro-displacements and Zero Micro-rotation

We consider the propagation of waves in micropolar microstretch elastic solid, in
which irrotational macro-displacements and zero micro-rotation. This means

/
!
¼ 0; 0;/ð Þ ¼ 0 ð9Þ

z

→
Ω

 y 

O  

x 

Fig. 1 Geometry of the
problem
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and r� u
! ¼ 0

!
becomes

@u2
@x

¼ @u1
@y

ð10Þ

The condition (10) satisfied if the displacements u1; u2 are derivable and

@D
@x

¼ r2u1 ð11Þ

@D
@y

¼ r2u2 ð12Þ

On using conditions (9)–(12), Eqs. (6)–(8) leads to

kþ lð Þr2u1 þ k0
@/�

@x
¼ q

@2u1
@t2

� X2u1

� �
ð13Þ

kþ lð Þr2u2 þ k0
@/�

@y
¼ q

@2u2
@t2

� X2u2

� �
ð14Þ

Adding Eqs. (13) and (14), we obtain

c1r2 u
! þ c2e/

� ¼ @2 u
!

@t2
� X2 u

! ð15Þ

Equation (3) may be written as

a1r2/� � a2/
� � a3r � u! ¼ @2/�

@t2
ð16Þ

where

c1 ¼ kþ l
q

; c2 ¼ k0
q
; a1 ¼ 2a0

qJ0
; a2 ¼ 2k1

qJ0
; a3 ¼ 2k0

qJ0
;

and

e ¼ @

@x
þ @

@y
: ð17Þ

We observe that Eqs. (15) and (16) are coupled in u
!
;/�.

Plane waves advancing in the positive direction of unit vector n̂ may be
expressed as
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u
!
;/�

h i
¼ A

!
;B

h i
exp ik n̂ � r!�vt

� �h i
ð18Þ

where A
!
;B are amplitudes, k is the wave number, and r

!
is the position vector.

Thus,

k ¼ 2p
l

ð19Þ

and

r
! ¼ xkik ð20Þ

where l is the wavelength and xk is the component of r
!
. Inserting Eq. (18) in

Eqs. (15) and (16) we obtain,

k2 v2 � c1
� 	þX2
 �

A
! þ c2ik n1 þ n2ð ÞB ¼ 0 ð21Þ

and

�a3ik A
! �n̂þ k2 v2 � a1

� 	þ a2

 �

B ¼ 0 ð22Þ

where n1; n2 are unit vector components of normal n̂ in xy-plane, so we take
n1 ¼ n2 ¼ 1ffiffi

2
p in Eq. (21), we obtain

k2 v2 � c1
� 	þX2
 �

A
! þ

ffiffiffi
2

p
c2ikB ¼ 0 ð23Þ

Solving Eq. (23) for B we obtain,

B ¼ � k2 v2 � c1ð ÞþX2ffiffiffi
2

p
c2ik

� �
A
! ð24Þ

After inserting Eq. (24) in Eq. (22) leads to

ffiffiffi
2

p
a3c2k2 A

! � n̂
� �

þ k2 v2 � a1
� 	þ a2


 �
k2 c1 � v2
� 	� X2
 �

A
! ¼ 0 ð25Þ

4.1 Plane Transverse Waves

For plane transverse waves take A
! � n̂ ¼ 0 in Eq. (25) we obtain the speed of

transverse waves are:
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v2T1 ¼
a1x2

x2 þ a2
ð26Þ

and

v2T2 ¼
c1x2

x2 þX2 ð27Þ

where v ¼ x
k .

Equation (26) is the phase velocity of transverse microstretch wave and Eq. (27)
is the phase velocity of transverse micropolar wave.

4.2 Plane Longitudinal Waves

For plane longitudinal waves, we have A
! �n̂
  ¼ A

!  ¼ A in Eq. (25) we obtain the

following quadratic equation in v2;

v2
� 	2 þBv2 þC ¼ 0 ð28Þ

where

B ¼ �x2 a1 x2 þ a2
� 	�1 þ c1 x2 þX2� 	�1

h i

and

C ¼ x2 a1c1x
2 �

ffiffiffi
2

p
a3c2

h i
x2 þ a2
� 	�1

x2 þX2� 	�1
: ð29Þ

The speed of coupled longitudinal waves are

v2L1;2 ¼
�B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4C

p

2
ð30Þ

where + sign for v2L1 and − sign for v2L2 .

Particular case

(i) On neglecting of microstretch parameters (that means a1 ¼ a2 ¼ 0), Eq. (28)
reduces to
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v2 ¼ c1x2

x2 þX2 ¼ v2T2 :

(ii) On neglecting of micropolar parameters (that means c1 ¼ c2 ¼ 0), Eq. (28)
reduces to

v2 ¼ a1x2

x2 þ a2
¼ v2T1 :

5 Numerical Results and Discussion

To study the effect of angular rotation on coupled longitudinal waves and effect of
angular frequency on transverse microstretch waves, transverse micropolar waves,
we consider two material values. Material-I values (2013) and material-II values
(2016) as follows:

Material-I:

k ¼ 9 � 4� 1010 N/m2; l ¼ 4 � 0� 1010 N/m2; q ¼ 1 � 74� 103 kg/m3;

J ¼ 2� 10�2 m2; J0 ¼ 0:19� 10�17 m2; a0 ¼ 0:00008� 10�5N;

k0 ¼ 0:21� 1011N/m2; k1 ¼ 0:007� 1012 N/m2

Material-II:

k ¼ 7:59� 109 N/m2; l ¼ 1:90� 109N/m2; q ¼ 2:192� 103 kg/m3;

j ¼ 0:196� 10�6 m2; J0 ¼ 0:196� 10�6 m2; a0 ¼ 15:947� 103 N;

k ¼ 0:57702� 103 N/m2; k1 ¼ 34:650� 103 N:

The effect of angular rotation on coupled longitudinal phase speeds v2L1;2 for
material-I are shown in Figs. 2 and 3, respectively, and Fig. 4 shows that effect of
angular rotation on both phase speeds. The phase speeds v2L1 are inverse propor-
tional, while v2L2 are proportional to angular rotations.

The variation of non-dimensional angular frequency x with range 0:5�x� 5
versus phase speed (v2T2 ) of transverse micropolar wave for material-I for angular
rotation X ¼ 5 and 20 are shown in Figs. 5 and 6 respectively. From Fig 7, we
observe that micropolar transverse waves propagate slowly under the effect of high
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Fig. 2 Variation of coupled
longitudinal phase speed v2L1
versus angular rotation

Fig. 3 Variation of coupled
longitudinal phase speed v2L2
versus angular rotation

Fig. 4 Variation of coupled
longitudinal phase speeds v2L1;2
versus angular rotation
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angular rotation in the given range of angular frequency. The variation of
non-dimensional angular frequency x for the same range versus phase speed (v2T1 )
of transverse microstretch waves for microstretch materials I and II are shown in
Figs. 8 and 9, respectively. From Fig. 10, we observed that transverse microstretch
waves propagate slowly in low density material-I than high density material-II.

Fig. 5 Variation of
micropolar transverse phase
speed versus non-dimensional
frequency for X ¼ 5

Fig. 6 Variation of
micropolar transverse phase
speed versus non-dimensional
frequency for X ¼ 20
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6 Conclusions

The plane wave propagation in a rotating micropolar microstretch elastic solid with
a special case has been studied in this present paper. In these investigations, we
conclude that:

(i) Three sets of waves, namely transverse microstretch, transverse micropolar,
and coupled longitudinal plane waves are propagated in a solid.

(ii) The angular rotation is not effected on the transverse microstretch waves.

Fig. 7 Variation of
micropolar transverse phase
speed versus non-dimensional
frequency for X ¼ 5; 20

Fig. 8 Variation of
microstretch transverse phase
speed versus non-dimensional
frequency for material-I
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(iii) All these waves are dependent on the angular frequency, so they are dis-
persive in nature.

(iv) From numerical discussion, we say that micropolar transverse waves prop-
agate with high speed under low angular rotation in any model, and
microstretch transverse waves propagate with high speed in high density
model.

Fig. 9 Variation of
microstretch transverse phase
speed versus non-dimensional
frequency for material-II

Fig. 10 Variation of
microstretch transverse phase
speed versus non-dimensional
frequency for material-I and II
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Possibility and Causes of Backward
Bifurcation in a Cholera Model

Sandeep Sharma and Nitu Kumari

Abstract Backward bifurcation in an epidemiological model is a phenomenon in
which the model possesses stable endemic equilibria together with a stable
disease-free equilibrium. Till now, this phenomenon has been observed in a number
of epidemic models. In this work, we investigate the possibility of backward
bifurcation in a cholera model. We also explore the role of various factors, which
induce backward bifurcation in other epidemic models. We believe the present
work provides an insight of the dynamics of a cholera model and possible causes of
backward bifurcation in the same.

1 Introduction

Occurrence of various infectious diseases (like dengue, tuberculosis, cholera) posed
a major challenge in front of the modern society. The event of infectious disease
results in huge loss of lives and other resources. Despite our increased under-
standing of infectious diseases and development of medical sciences, the infectious
diseases caused millions of deaths and disabilities across the globe. Hence, people
from different corners of science and medicine are working to find some robust
mechanism to prevent the spread of infectious diseases. Compartmental mathe-
matical models have emerged as a useful tool in this direction. The information
provided by these models helps in reducing or eliminating the epidemics. However,
the success of an epidemic model to predict the future course of the epidemic lies in
the assumptions involved in the formulation of the model.

Waterborne diseases (e.g., cholera, typhoid, hepatitis) are outcome of scarcity of
safe drinking water. The possibility of multiple transmission of disease makes the
study of waterborne disease more challenging. Among all the diseases which
belong to the class of waterborne diseases, cholera attracts more attention. This
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accounts to 3–5 million cholera cases and 100,000–120,000 deaths around the
globe.

Cholera is caused by the bacterium Vibrio cholera. The bacteria enter into the
human body through ingestion of contaminated water and food. Cholera can
transmit directly, from human to human, and also indirectly, from environment to
human. At primary stage, there may be no symptoms of the infection but in long
term, it may turn fatal and cause leg cramps, vomiting, and watery diarrhea (Mwasa
and Tchuenche 2011). In the absence of proper treatment, the infection results in
circulatory collapse, rapid dehydration, and death within 12–24 h (Sanchez et al.
1994). Despite several efforts, cholera is still an endemic in many parts of the world
(Safi et al. 2013). Accounts to this, a number of mathematical models are proposed
and analyzed to comprehend the dynamics of cholera. To study the spread of 1973
cholera in Mediterranean, a mathematical model was proposed and analyzed by
Capasso and Fontana (1979). In Codeço (2001), an extension of the general SIR
epidemic model is proposed by incorporating environmental component to under-
stand the dynamics of cholera. Hartley et al. (2005) extended the model proposed in
Codeço (2001) by introducing the concept of hyperinfectivity. The mathematical
model proposed in Mukandavire et al. (2011) considers both human-to-human and
environment-to-human transmission of cholera to study the patterns of disease
transmission in Zimbabwe. The model proposed in Mwasa and Tchuenche (2011),
and Posny et al. (2015) investigate the role of public health interventions to prevent
the spread of epidemics. As vaccination is a significant tool to reduce the size of the
epidemic, therefore a number of models pertaining to cholera address the role of
vaccination on the spread of cholera (Safi et al. 2013; Zhou et al. 2012; Zhou and
Cui 2011). The use of disinfectants is another potential method to prevent the
spread of cholera. Hence, mathematical models are also used to study the impact of
disinfectants on the dynamics of cholera (Misra and Singh 2012; Misra et al. 2012).

The manuscript is organized in four sections. A survey on possible causes of
backward bifurcation in epidemic models is performed in Sect. 2. The existence of
backward bifurcation is explored in Sect. 3. The manuscript ends with a conclusion
of our study in Sect. 4.

2 Backward Bifurcation

The basic reproduction number helps us to comprehend the dynamics of a com-
partmental epidemic model. In general, the diseases can be eliminated (or
disease-free equilibrium will be stable) by making R0 \1:, while disease persists in
the population (or endemic equilibrium will be stable) if R0 [ 1. But for some
model, the dynamics will be more complicated. In such models, an stable endemic
equilibrium exists even when R0 \1. This phenomenon is termed as backward
bifurcation. In other words, in case of backward bifurcation, making R0 < 1 does
not ascertain that the disease will eliminate. An extensive detail on backward
bifurcation can be found in Brauer (2004, 2011) and Dushoff et al. (1998).
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The schematic diagram of forward bifurcation and backward bifurcation is given in
Figs. 1 and 2, respectively. In short, we can conclude that the study of backward
bifurcation is necessary due to the following two facts:

(i) The control of disease requires more efforts whenever the backward bifurca-
tion occurs. This particular reason relates it directly to the health management
programs implemented by the authorities.

(ii) The backward bifurcation gives rise to more complicated dynamics and thus
requires more mathematical efforts to deal with the particular model.

Fig. 1 Forward bifurcation

Fig. 2 Backward bifurcation

Possibility and Causes of Backward Bifurcation in a Cholera Model 675



Due to the above-mentioned reasons, the possibility of backward bifurcation
have been explored in different epidemic models of tuberculosis (Gerberry 2016;
Chavez and Song 2004; Buonomo and Lacitignola 2010), malaria (Chitnis et al.
2006; Buonomo and Vargas-De-León 2013; Mukandavire et al. 2009), Chlamydia
trachomatis (Sharomi and Gumel 2011a, b, 2009), and dengue (Garba et al. 2008).
Apart from this, the backward bifurcation also exists for model with different
epidemiological phenomena such as vaccination (Arino et al. 2003; Buonomo and
Lacitignola 2011; Zaleta and Hernandez 2000; Sharomi et al. 2007), types of
transmission rate (Buonomo and Lacitignola 2012; Alexander and Moghadas
2004), and types of treatment functions (Wang 2006; Zhang and Liu 2008).

3 Backward Bifurcation in Cholera Model

As we have discussed in Sect. 1, the dynamics of cholera is complicated due to the
possibility of multiple transmission pathways. To inculcate this, a number of
mathematical models are proposed to capture the dynamics of cholera. Despite this,
backward bifurcation is generally absent in the cholera model. A number of vac-
cination models exhibit backward bifurcation. But, the same is not true for cholera
models with vaccination (discussed in 1).

In particular, the model studied in Zhou et al. (2012) seems a suitable candidate
for backward bifurcation, as it consists of both saturation transmission rate and
imperfect vaccination.

dS
dt

¼ 1� qð ÞA� bSB
K þBð Þ � /Sþ hV � l1S

dV
dt

¼ qA� rbVB
KþBð Þ þ/S� hV � l1V

dI
dt

¼ bSB
K þBð Þ þ

rbVB
KþBð Þ � dþ aþ l1ð Þ

dB
dt

¼ gI � l2B

ð1Þ

The details of assumptions and parameters of the model can be find in Zhou et al.
(2012).

The model possesses two equilibrium points, namely disease free and endemic.
The disease-free equilibrium point is given as E0 ¼ S0;V0; 0; 0ð Þ where,

S0 ¼ A hþ 1� qð Þl1½ �
l1 l1 þ hþ/ð Þ and V0 ¼ A /þ ql1ð Þ

l1 l1 þ hþ/ð Þ :
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For the model (1), the basic reproduction number is obtained as

Rv ¼ gbA hþ 1� qð Þl1 þ r/þ rl1q½ �
Kl1l2 l1 þ hþ/ð Þ l1 þ aþ dð Þ

Moreover, the existence of endemic equilibrium has been established by the
following quadratic equation

A1I
2 þA2IþA3 ¼ 0

where,

A1 ¼ l2 l1 þ dþ að Þ l21 þ l1hþ l1/þ l1bþ l1brþ b2rþ bhþ b/r
� �

A2 ¼ Kl1 2l21 þ 2l1hþ 2l1/þ bl1 þ b/rþ bhþ l1rb
� �

� Abr rbþ l1rqþ l1 þ hþ/r� ql1ð Þ
A3 ¼ Kl1l2 l1 þ dþ að Þ l1 þ hþ/ð Þ 1� Rvð Þ

There is possibility of backward bifurcation when A2\0 and Rv\1. But, in
Sect. 5 of Zhou et al. (2012), it is shown that both conditions are not satisfied
simultaneously. This is probably due the absence of the reinfection.

Similarly, the other vaccination models proposed in Safi et al. (2013) and Cui
et al. (2014) do not exhibit backward bifurcation, while the other analogous generic
vaccination models (e.g., Brauer 2004; Arino et al. 2003; Buonomo and Lacitignola
2011) depict the existence of backward bifurcation. From this discussion, it appears
that the backward bifurcation may not be possible in cholera model. But, the
cholera model with saturated recovery proposed in Zhou et al. (2017) shows the
existence of backward bifurcation.

We proceed with a short discussion of the model presented in Zhou et al. (2017).
The model is;

dS
dt

¼ A� bSB
K þB

� l1Sþ rI þ cI
bþ I

dI
dt

¼ bSB
K þB

� rþ l1 þ dð ÞI � cI
bþ I

dB
dt

¼ gI � l2B

ð2Þ

The existence of endemic equilibrium has been established by the following
quadratic equation

P1I2 þP2IþP3 ¼ 0
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Here,

P1 ¼ g l1rþ l21 þ bdþ bl1 þ l1d
� �

P2 ¼ Kl1l2rþKl1l2dþKl21l2 þ gl1bbþ gdbbþ bgrl1
þ l21bgþ l1dgbþAbg

P3 ¼ Kl1l2 bl1 þ cþ rbþ dbð Þ 1� R0ð Þ

Motivated from this, we propose a new model with saturated removal rate cI
bþ I as

follows

dS
dt

¼ A� bSB
KþB

� dS

dI
dt

¼ bSB
K þB

� rþ dþ dð ÞI � cI
bþ I

dR
dt

¼ cI
bþ I

þ rI � dR

dB
dt

¼ gI � lB

ð3Þ

In the model (3), A represents the total recruitment rate (including immigrants and
newborns). bSB

KþB is the disease transmission rate, where K is the concentration of the
bacteria that yields 50% chance of catching infection. Themodel also involves natural
recovery rate r. The natural death rate d is same for individuals of each compartment,
while the disease-related death rate is d. η is the rate at which infected population
contribute to the concentration of bacteria. The natural decay rate of the bacteria is µ.

The basic difference between models (2) and (3) is movement of the recovered
individuals. In model (2), the recovered individuals join the susceptible class and
may again get infected, while in model (3) recovered individuals join the removed
class and do not become infected, once recovered. Similar studies are available in
literature on generic compartmental models (Wang 2006, 2009).

Now, we obtain the disease-free equilibrium point as E0 ¼ A
d ; 0; 0
� �

: Next, we
calculate the basic reproduction number of the model using the next-generation
matrix method given by Van den Driessche and Watmough (2002) as

R0 ¼ Agbb
Kld rbþ bdþ dbþ cð Þ

The existence of endemic equilibrium is established by the following quadratic
equation

AI2 þBI þC ¼ 0
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where,

A ¼ g drþ d2 þ bdþ bdþ ddþ br
� �

B ¼ gbbdþ gbbdþ gbbrþ gbcþ lKd2 þ lKddþ lKdr

þ gbd2 þ gbddþ gbdrþ gcd � Abg

C ¼ Kld bdþ cþ rbþ dbð Þ 1� R0ð Þ

Here, we state the following result for the existence of endemic equilibrium

Theorem 3.1 The proposed model system (3) has

(i) a unique endemic equilibrium whenever R0 [ 1;
(ii) a unique endemic equilibrium whenever R0 ¼ 1 and B < 0;
(iii) two endemic equilibriums if R0\1, B < 0 and B2 � 4AC[ 0;
(iv) no endemic equilibrium otherwise.

Now, we discuss graphically the possibility of the backward bifurcation in
Fig. 3.

The infectious population at equilibria versus R0 shows a backward bifurcation
when Rc\R0\1, leading to the existence of multiple endemic equilibria. The
saddle-node bifurcation occurs at R0 ¼ Rc, where the stable endemic equilibria
collide with other unstable endemic equilibria.

Although reinfection is not involved here, still the model shows the possibility of
the backward bifurcation.

Fig. 3 Bifurcation diagram of the model system (3)
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4 Conclusion

The phenomena of backward bifurcation poses a serious health challenge as
bringing R0 below unity is not enough to eradicate the disease. Due to this, it is a
general tendency to avoid the backward bifurcation while modeling the disease, if
possible. But, the study performed in Gerberry (2016) made some contradictory
remarks to this general belief. The study observes that the factors (e.g., vaccination)
implemented to eliminate the disease increase the size of the region where the
backward bifurcation occurs. However, the number of infected individuals reduces
significantly in the presence of such interventions. The discussion on backward
bifurcation on cholera model yields that saturated recovery/treatment cause back-
ward bifurcation. This makes the scenario worse whenever the spread of cholera
takes place. Given the situation of the complicated dynamics and rapid spread of
cholera, efforts should be made to prevent the existence of backward bifurcation.
Moreover, the factors which induce the backward bifurcation in cholera model are
limited treatment capacity which in no case reduces the size of the epidemic as
discussed in Gerberry (2016).

Thus, present study brought forth an important fact that whenever the cholera
outbreak occurs, we should enforce maximum possible medical arrangements to
reduce the size of the epidemics. Such actions preclude the existence of backward
bifurcation and will also reduce the mortalities.
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Insights into Ventilation Demand
Estimation for High-Speed
Supercavitating Underwater Vehicles

Ashish Karn, Vishal Narula, Roger E.A. Arndt and Jiarong Hong

Abstract The difference between the typical peak speeds of an aerial and an
underwater vehicle is enormous. Evidently, the reason behind this huge disparity
lies in the tremendous skin friction drag experienced by an underwater vehicle.
However, this difference can be bridged if the underwater vehicles were somehow
engulfed by elongated gas/vapor bubbles or cavities as these vehicles travel
underwater. Such huge cavities or ‘supercavities’ can be generated via two different
approaches—cavitation or ventilation. Among the two, the generation of a super-
cavity through ventilation is more interesting, since it can be accomplished at much
lower speeds. For the operation of such underwater vehicles in the ventilation
mode, it is imperative to determine the ventilation demand, or the amount of gas to
be carried on board. The present study reports some interesting insights into the
factors that determine the estimation of this ventilation demand. Two most
important factors governing the estimation of ventilation demand are the ventilation
requirement for the formation and sustenance of a supercavity. These two factors, in
turn, are dependent upon the operational conditions of a vehicle, as well as unsteady
state conditions prevailing under the ocean. The current work explores the
dependence of the formation and sustenance air entrainment rates of a supercavity
at different operational conditions of the supercavitating vehicle.
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Nomenclature

P1 Ambient pressure
Pc Internal cavity pressure
Fr Froude number
U Flow velocity
dc Cavitator size
g Gravitational acceleration
CQ Gas entrainment coefficient
_Q Gas ventilation rate
CQform Formation air entrainment coefficient
CQsust Collapse gas entrainment coefficient
Pin Pressure inside at the supercavity rear portion
Pout Pressure outside at the supercavity rear portion
D~P Nondimensional pressure difference

D~Pest Estimated nondimensional pressure difference
DT Diameter of the water tunnel
CD Drag coefficient

Greek Symbols

r Cavitation number
q Water density

1 Introduction

The difference between the typical peak speeds of an aerial and an underwater
vehicle is enormous. Evidently, the reason behind this huge disparity lies in the
tremendous skin friction drag experienced by an underwater vehicle (Karn et al.
2015a). However, this difference can be bridged if the underwater vehicles were
somehow engulfed by elongated gas/vapor bubbles or cavities as these vehicles
travel underwater. Such huge cavities or ‘supercavities’ (shown in Fig. 1) can be

Fig. 1 Laser-illuminated supercavity formed around a disk cavitator with a body present inside
the supercavity
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generated via two different approaches—cavitation or ventilation. Supercavitation
is a special case of cavitation which can be employed to create a bubble of
gas/vapor inside water, large enough to encompass a vehicle traveling through the
water. The phenomenon of supercavitation is generally characterized by nondi-
mensional parameters like cavitation number, r ¼ 2 P1 � Pcð Þ=qU2 and Froude
number Fr ¼ U=

ffiffiffiffiffiffiffi

gdc
pð Þ where P1; Pc; q; U, g, and dc denote the ambient pres-

sure, the internal cavity pressure, water density, flow velocity, gravitational
acceleration, and cavitator size, respectively. A ventilated supercavity is generated
by blowing noncondensable gas into the low-pressure region near the nose of the
vehicle. Ventilated supercavitation has numerous advantages over natural super-
cavitation including the requirement of low speed, greater adaptability for vehicle
maneuvering and control. Further, it also avoids the problems associated with
attainment of high speed that is required for supercavity formation through cavi-
tation, such as surface damage, buffeting, and vibrations (Kinzel et al. 2009). The
ventilation requirements for a supercavity are characterized by the gas entrainment
coefficient, CQ ¼ _Q=Ud2c , where _Q denotes the gas ventilation rate. The determi-
nation of the gas storage requirements for a ventilated supercavitating vehicle
requires information on gas supply rate to form and sustain a steady supercavity at
different flow conditions.

A question may be raised here, as to what causes the difference between the air
entrainment rates required to form and sustain a supercavity. The answer to this
intriguing question lies in the fundamental physics of the process, in particular, the
hysteresis behavior shown by the ventilation process. Ventilation hysteresis refers

Fig. 2 Typical ventilation hysteresis curve observed in our experiments for a cavitator of 20 mm
in diameter (adapted from Karn et al. 2016a). RJ, IV and QV refer to reentrant jet, interacting
vortex, quad vortex, and FC denotes a foamy cavity
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to a phenomenon, whereby the supercavity can be sustained at much lower values
of gas entrainment than required for its formation, as shown in Fig. 2. Ventilation
hysteresis is closely related to the formation and collapse gas entrainments, and
studies on ventilation hysteresis have been reported before (Karn et al. 2016a).

As Fig. 2 shows, a foamy cavity shows a decrement in r and an increase in
length when CQ is increased. This process continues till a supercavity is established
(CQ equals CQform, formation air entrainment coefficient), after which no further
reduction in r is possible upon change in CQ: However, the supercavity is main-
tained even as CQ drops down to very low values. Eventually, when CQ drops
below CQsust (collapse gas entrainment coefficient), the supercavity transitions back
into a foamy cavity. Recently, Karn et al. (2016a) discussed the phenomenon of
ventilation hysteresis, particularly focusing on the transition of closure modes of a
supercavity and relating ventilation hysteresis to the internal flows in a supercavity.
However, the gas entrainment rate at the formation and collapse of a supercavity
has not yet been examined in detail, and thus, is the subject of the current study.

2 Experimental Setup and Procedures

Experiments are conducted to measure ventilation flow rates and formation and
collapse processes of a ventilated supercavity under different flow conditions. The
experiments are carried out in the high-speed water tunnel at the Saint Anthony
Falls Laboratory. This water tunnel is a closed recirculating facility with a

Fig. 3 Schematic of a SAFL water tunnel facility, b backward-facing model, c a close view of the
backward-facing model showing the ventilation line and hypodermic tube for pressure
measurement
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horizontal test section of 1.20 m (length) � 0.19 m (width) � 0.19 m (height).
This tunnel is specifically designed for cavitation and gas ventilation studies and is
capable of operating at a maximum velocity of 20 m/s.

Figure 3 shows a schematic of the experimental facility. A disk cavitator with its
back surface facing the incomingflowandmounteddownstreamof a hydrofoil-shaped
strut (referred to as ‘backward-facing model’ in Kawakami and Arndt 2011) is
employed in the current experiments. Figure 3 illustrates the backward-facing model
within the test section. The gas flow rate is controlled by a mass flow controller and is
kept steady during the experiments. During the experiments, the ventilation flow rates
for the process of supercavity formation and collapse are measured, and the corre-
sponding high-speed videos of this process are recorded to obtain physical insights
into the phenomena. The measurements ofCQform and CQsust are repeated for different
cavitator sizes and flow conditions. A cavitator of 20 mm in diameter is used, and
CQform and CQsust are measured at a fixed Fr.

3 Results and Discussion

The gas entrainment behaviors at steady state are studied first for the 20 mm
cavitator by varying Fr in the range of 5–25. Figure 4 shows a typical variation of
CQform with Fr. As Fig. 4 shows, CQform initially increases, attains a maximum, and
then decreases, as Fr is increased. Two separate regimes can be identified around
the maximum obtained in this curve, which are related to the concentration of
individual bubbles in the flow. Fr less than nine corresponds to a low bubble
concentration regime, whereas higher Fr characterizes a high bubble concentration
zone. This trend can be explained based on the assertion that the supercavity
formation process is driven by bubble coalescence, as suggested by previous studies
(Karn et al. 2016a). For a fixed cavitator size, an increase in Fr implies an increase
in flow turbulence. This increased turbulence generally breaks up the individual

Fig. 4 Dependence of CQform

upon Fr for the 20 mm
cavitator
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bubbles into smaller sizes as reported by previous wake studies. Our previous
observations have shown that there are lesser number of bubbles at low Fr and an
increase in Fr results in smaller individual bubbles, and an increase in the number
of bubbles (Karn et al. 2015b, 2016b). With increasing Fr, the formation of a
supercavity necessitates the coalescence of these resulting smaller individual bub-
bles. Thus, there is an increased ventilation requirement to increase the size and
number of bubbles to form a coalesced supercavity. Previous studies have reported
that an increase in CQ results in an increment in both number and size of bubbles
(Karn et al. 2015b, 2016b). However, in the high-concentration regime, this effect
of increased number of bubbles offsets the reduction in the size of individual
bubbles. In this regime, the bubble concentration becomes so high that bubbles are
closely packed together in the bubble cloud. Due to the restricted free space for
bubble movement and the concomitant increase in bubble collision frequency, the
coalescence process is favored, resulting in decreased gas entrainment requirement
for supercavity formation with increasing Fr.

The dependence of CQsust upon Fr is presented in Fig. 5. As Fig. 5 shows, CQsust

initially decreases sharply with Fr and then stays constant. This trend of supercavity
collapse can be explained using the postulated framework of supercavity closure
presented in Karn et al. (2016a). According to them, the supercavity closure is
determined by a balance of pressure inside Pinð Þ and outside Poutð Þ at the super-
cavity rear portion. The nondimensional pressure difference defined as,
D~P ¼ 2 Pout � Pinð Þ=qU2, characterizes different supercavity closure modes (e.g.,
twin-vortex, reentrant jet) as well as the foamy state of a cavity. Their data sug-
gested that D~P for a foamy cavity is significantly larger than for a supercavity. In
other words, when Pout far exceeds Pin;, the high pressure difference forces water jet
to gush inside the supercavity, causing it collapse. Thus, at a high D~P;, larger gas
entrainment is required to inhibit the growth of reentrant jet and maintain a stable
supercavity. Further, based on their results, D~P can be estimated from the
momentum balance for the supercavity as (neglecting the pressure drop due to

Fig. 5 Dependence of CQsust

upon Fr for the 20 mm
cavitator
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viscosity) D~Pest ¼ r� CD d=DTð Þ2; where DT represents the diameter of the water
tunnel. As shown in Fig. 6, D~Pest exhibits a similar trend with respect to Fr as that
of CQsust: Thus, larger the D~Pest; the more the supercavity is susceptible to collapse,
and consequently a greater gas entrainment is required to prevent such a collapse. It
is noteworthy that similar to formation gas entrainment curve, the collapse gas
entrainment curve can also be divided into two separate regimes. Our experiments
have shown that the regime in which D~Pest does not change significantly with Fr
corresponds to supercavities with stable twin-vortex closure at CQsust: On the other
hand, the region in which D~P decreases sharply with Fr is characterized by other
closure modes at CQsust; including reentrant jet, quad-vortex, or unstable closure
modes as reported by Karn et al. (2016a).

4 Conclusions

In the current study, some interesting insights into the gas entrainment behaviors in
the formation and collapse of a ventilated supercavity are presented for steady
flows. Our experiments have shown that the gas entrainment required to establish a
supercavity is much greater than the minimum gas entrainment required to sustain
it. Further, these gas entrainment values depend on Fr. Specifically, the measure-
ments of the formation gas entrainment coefficients under different Fr numbers
indicate that it does not monotonically increase with Fr but displays increasing and
decreasing trends in different regimes of Fr. These trends can be attributed to the
variation in coalescence efficiency with bubble concentration at different flow
conditions. On the other hand, the collapse air entrainment coefficient initially
decreases with Fr and then approaches a constant. This trend has been shown to be
related to the change in the nondimensional pressure inside and outside the cavity at
the supercavity rear portion.

Fig. 6 Dependence of D~Pest

upon Fr for the 20 mm
cavitator
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