
Chapter 3
Sensitivity to Temporal and Topological
Misinformation in Predictions of Epidemic
Outbreaks

Petter Holme and Luis E.C. Rocha

Abstract Structures both in the network of who interact with whom, and the
timing of these contacts, affect epidemic outbreaks. In practical applications, such
information would frequently be inaccurate. In this work, we explore how the
accuracy in the prediction of the final outbreak size and the time to extinction of the
outbreak depend on the quality of the contact information. We find a fairly general
stretched exponential dependence of the deviation from the true outbreak sizes
and extinction times on the frequency of errors in both temporal and topological
information.

3.1 Introduction

The propagation of infectious diseases in populations is an emergent property of the
interaction between people and pathogens [1, 2]. Temporal networks is a stylized
framework for describing the interaction within a population [3, 4]. It records who
is in contact with whom, at what time, but omits information about the details of
the encounters. In principle such details could also be important since individual,
social and environmental variations affect contagion [5–7], but since our interest
is to investigate the importance of temporal network structure, rather than accurate
prediction, we leave them out by assuming identical individuals.

The theme of this book is to understand the role of structures in time and network
topology on disease spreading. At the time of writing there are several different
data sets recording the temporal contact networks of human proximity in which
for example airborne diseases spread. Empirical data however is typically noisy
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either due to reporting or recording errors. This random information added to data
affects the correlations in contact patterns and can potentially result in errors when
analysing the data. In this chapter, we look at the sensitivity of epidemic variables
with respect to simulated temporal and topological noise. Our work connects to
the general questions about predictability of disease spreading [8, 9]. In this area,
researchers have studied how different limitations to the models of disease spreading
or incompleteness of the data affect the prediction results [10, 11]. Furthermore,
researchers have investigated the internal fluctuations in the timings of contacts on
the prediction of epidemic outbreaks [12–14]. The novel angle in our approach is to
contrast two different types of misinformation—temporal and topological—and two
different characteristics of an outbreak—the outbreak size and the time to extinction.

We use empirical, temporal proximity networks as the underlying contact
structures for the disease spreading. Then we study the effects of inaccurate labeling
of the nodes or time stamps on the predicted outbreak size and extinction time
of susceptible-infectious-recovered (SIR) simulations on these modified data sets.
The SIR model is the canonical compartmental model for diseases that gives
immunity upon recovery [1]. It could be used to model e.g. HIV infection in case of
treatment, that is, where the infectious individual becomes recovered after starting
anti-retroviral treatment, Ebola in case of high death rate, measles and chickenpox.
Simulations start with the entire population being susceptible. Then, at some point,
one of the individuals becomes infectious. During this state, the infectious can
spread the infection to other susceptible individuals that he or she is in contact
with. As in other compartmental models, one assumes such a contagion to happen
with a fixed probability per contact. After being infected for some fixed time, the
infected individuals recover. When there are no infectious individuals, the outbreak
is extinct. The severity of an outbreak can be quantified by various parameters. We
use the outbreak size ˝ (the fraction of recovered individual after the outbreak is
extinct) and the extinction time � (the duration of the outbreak in the population)
as measures of the outbreak severity. In the remainder of this chapter, we will go
over the background theory and technical details before we present our simulation
results.

3.2 Preliminaries

3.2.1 Definitions

We represent the temporal network G as a sequence of contacts .i; j; t/—to be
interpreted as individual i being in contact with individual j at time t [3, 4]. The
number of individuals N (or nodes) is called the size of the temporal network. We
use C to represent the number of contacts and M the number of pairs of individuals
that are in contact at least one time. Furthermore, we let T represent the duration of
the data (the time between the first and last contacts).
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Table 3.1 Basic statistics of the network data sets. N is the number of individuals; C is the number
of contacts; T is the total sampling time; �t is the time resolution of the data set and M is the
number of links in the projected static networks. We also list the original reference to the data

Data set N C T �t M Ref.

Prostitution 16,730 50,632 6.00 y 1 d 39,044 [15]

Conference 113 20,818 2.50 d 20 s 2,196 [16]

Hospital 75 32,424 96.5 h 20 s 1,139 [17]

School 236 60,623 8.64 h 20 s 5,901 [18]

Gallery 200 5,943 7.80 h 20 s 714 [19]

Office 92 9,827 11.4 d 20 s 755 [20]

3.2.2 Contact Networks

We base our study on empirical data sets of human proximity. In other words, they
capture when two persons are in close proximity, and who they are. Such data
sets represent the structure over which infectious diseases spread. We list the basic
statistics—sizes, sampling durations, etc.—of the data sets in Table 3.1.

Several of our data sets come from the Sociopatterns project (sociopatterns.org).
These data sets are recorded by radio-frequency identification sensors that detect
contacts between people within 1–1.5 m. One of these datasets comes from a
conference [16] (Conference), another from a school (School) [18], a third from
a hospital (Hospital) [17], a fourth from an art gallery (Gallery) [19] and a fifth
from office (Office) [20]. The Gallery and School data sets comprise several days.
We use the first day in both cases. Finally, the Prostitution data comes from self-
reported sexual contacts between female sex-workers and their clients [15]. Since
the contacts represent more than just proximity (i.e. sexual activity), this is a special
form of proximity network.

3.2.3 Epidemic Simulation

The SIR simulations proceed as follows. First, all individuals are initialized to S
(susceptible). Then, one node i0 is selected randomly to become the seed of the
infection. i0 is made infectious at a random time t0 between 0 and T . Then we go
through the contacts of the data from the first to last. If the contact happens to be
between a susceptible and an infectious individual, then, with a probability � the
susceptible becomes infectious. An infectious individual stays infectious ıT time
steps (in units of �t) before turning recovered. In other words, ı is the fraction of the
duration of the data set that a node is infectious. When there are no more infectious
individuals the outbreak is considered extinct. This definition is slightly different
from the most common [1], where an infectious individual has the same chance of
getting recovered every time step. Our model is justified since the distribution of
infectious times is narrow in real life [21] and this approach is also algorithmically
simpler [22].
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3.2.4 Controlling Misinformation

To model temporal misinformation, we replace a (randomly selected) fraction �

of the time stamps of the contacts of G by random times in the interval Œ1; T�.
Similarly, for investigating the sensitivity with respect to the graph information,
we randomly replace a fraction f of the node id-numbers by random numbers in
the interval Œ1; N�. The only two constraints we impose in this randomization is that
the resulting contacts should not be between a node and itself, and not already be
present in the data. If a drawn node-id number does not satisfy the constraint, we
redraw the node-id.

Technically, this approach is similar to randomization techniques [23, 24] where
the temporal network structure is investigated by systematically replacing some
aspect—like the timing of events—by random values and studying the response
to quantities characterizing the functionality of the network (like average spreading
speed, etc.). The difference is that we tune up the randomization, starting from zero
(i.e. the original network).

3.2.5 Measuring Sensitivity to Misinformation

The two epidemiological variables we use to characterize an outbreak are the
average final outbreak size ˝—the fraction of the population that are in state R
after the outbreak is over—and the extinction time �—the time between the first
and last presence of an infected individual in the population. Let

�˝t.�; ı; �/ D h˝.G�t; ı; �/i � ˝.G; ı; �/; (3.1)

where h � i denotes the average over an ensemble of networks G�t in which a fraction
� of misinformation has been imposed to the time stamps of the contacts (according
to the preceding section) and G is the original network. Analogously, we define �˝n

for the deviation of outbreak sizes with respect to topological misinformation (i.e.
rewiring of contacts generating network G�n), and �� t and ��n, for the deviations in
the prediction of extinction times in the presence of temporal and topological noise
respectively.

In principle, � (in any version) could be negative, but for our data sets that rarely
happens—the practical minimum is � D 0 for � D 0. To study the � dependence
of �, we need to look at a summary statistic over the SIR parameter space. In this
work, we will focus on the worst case scenario. We will use the summary statistic

!.�/ D max
ı;�

�.�; ı; �/ � min
ı;�

�.�; ı; �/: (3.2)

I.e. the difference in the range of � values. This quantity will be dominated by
maxı;� �, but also give a slight extra weight to networks with a negative minı;� �.
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Fig. 3.1 Heatmap of the difference �˝ between the average outbreak size ˝ for the Hospital
manipulated data set, where we vary a fraction � of misinformation in the node identities, and the
original data set. The different panels represent different values of the error rate �

3.3 Results

3.3.1 Impact of Misinformation Throughout the SIR
Parameter Space

As a first numerical study, we investigate �˝n.�; ı; �/ (Fig. 3.1) and ��n.�; ı; �/

(Fig. 3.2) for the Hospital data set. We chose this data set as a case study because it
is of intermediate size and heterogeneity both in the temporal and topological struc-
ture. It is also highly relevant for the spread of healthcare associated infections [25].
We study an exponential sequence of �-values—� D 10�3; 10�2; 10�1; 1—and,
in the first place, only misinformation concerning the node identities. As seen in
Fig. 3.1, the response to the noise is a non-linear function of both �, ı and �. For
� D 10�4, the impact is less than �˝n < 0:1 throughout the SIR parameter space.
For � D 10�3, it reaches values around 0:2, while for larger �-values, �˝n > 0:5 for
a large part of the parameter space. The shape of the region of high deviation also
changes with �. It seems, rather universally, the case that � reaches its maximum
for large ı-values, but for large �, also relatively small ı-values can show large
deviations.
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Fig. 3.2 Heat map of the difference �� between the average time to extinction � for the Hospital
manipulated data set, where we vary a fraction � of misinformation in the node identities, and the
original data set. The different panels represent different values of the error rate �

For prediction of the extinction times, the absolute values of � are smaller for
temporal misinformation in comparison to topological misinformation (Fig. 3.2).
In other words, in the worst case, the prediction is somewhat better for � than ˝.
Furthermore, the parameter dependence is quite different. The maximal deviations
happen for small ı-values. This is not so surprising—for relatively high values of
ı and �, the outbreak will last as long as the length T of the data set, thus making
� small. If ı is small enough, the disease will die out without spreading much and
thus � will also be rather small for small ı-values—the largest �� thus happens for
intermediate ı.

The impact of temporal misinformation follows a similar picture to the impact
of topological misinformation. The average outbreak sizes ˝ differs most from the
unperturbed network when the disease duration is as long as possible (Fig. 3.3). The
impact changes non-linearly with both ı and �. For the extinction time (Fig. 3.4),
the situation is a bit different however. Now the largest impact does not necessarily
happen for the largest ı-values. Whereas for � � 10�2 it does happen at the largest
ı, when � > 10�2 the maximum is located at lower ı-values.

Several of the observations for the Hospital network holds for other data sets as
well. However, the Prostitution network has a fairly different pattern (with negative
�˝t values for a large part of the parameter space). The origin of this anomalous
behavior comes from the growth of the data (the number of contacts per time
unit and the number of individuals present) was first pointed out in Ref. [14] and
discussed further in Ref. [26].
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Fig. 3.3 Heat map corresponding to Fig. 3.1, but for misinformation about the timing of contacts

3.3.2 Impact of Error Rate on Prediction

To better understand the response of the level of misinformation on the prediction
accuracy, we study !.�/—the difference between the largest and smallest �-values
(Eq. 3.2). The results for this quantity are displayed in Figs. 3.5 (for ˝) and 3.6
(for � ). The lower limit of ! is trivially !.� D 0/ D 0. The shape of the !.�/ is
concave (meaning the effect of increasing � is largest for small �). In fact, we find
the functional form fitting well to a stretched exponential convergence

e!.�/ D !max
�

1 � exp.�a�b/
�

; (3.3)

where a and b are fitting parameters. The parameter b (typically in the interval 0 <

b < 1) is called the stretching exponent and its deviation from one indicates how
much the tail is stretched compared to an exponential decay [27]. As far as we
can see, there is no simple explanation for this functional form. Rather, we believe
that in general the !.�/-curves can have other shapes than stretched exponentials.
Indeed, the points that are off the fitting curves (e.g. the second point in the Gallery
graph of Fig. 3.6) are probably not a result of bad convergence, but structures in the
data sets. The three fitting parameters of Eq. 3.3 are nevertheless concise ways of
summarizing the shapes of the !.�/-curves and revealing how the temporal network
structure influences the impact of misinformation.
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Fig. 3.4 Heat map corresponding to Fig. 3.2, but for misinformation about the timing of contacts

As alluded to, the perhaps most interesting parameter of the stretched exponential
fits is the stretching exponent b. If b D 1, the decay is exponential. If b < 1

the decay is stretched (or slower than exponential). For a given error rate �, the
difference � is larger for small b. As seen in Fig. 3.7, it is indeed the case for
all scenarios and data sets that 0 < b < 1. The sparsest data set (in terms of
number of contacts per individual), Prostitution, has a stretching exponent close
to one. For the other data sets there is at least one exponent that is far off from one.
There is, however, no straightforward explanation for the values of the stretching
exponents in terms of the basic parameters of the temporal network data sets (as
listed in Table 3.1). In future work, we will seek explanations in terms of quantities
describing the temporal network structure [26, 28]. The smaller values of b for the
Conference and Hospital data sets in case of �t happen because if we redistribute
the time stamps, there will be less chance for the epidemics to die in comparison
to the original data in which contacts are more concentrated at certain intervals of
time. Note that in both cases, we consider night periods that correspond to absence
of activity in the original data set. For the School data set, where individuals are
clustered into network communities (i.e. the classes) the outbreak in the manipulated
network is much larger since a weak randomization of id-numbers is sufficient to
better distribute the links, making the network more random and thus facilitating the
disease spread to the entire network. Note that in this case, there are many links at a
given time step and thus the distribution of time stamps will not be much affected.
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Fig. 3.5 !˝ , the difference between the largest and smallest � values over the SIR parameter
space as a function of the node-identity misinformation frequency �. The curves are Levenberg–
Marquardt fits to a stretched exponential form, !max.1 � e�a�b

/

Gallery is a special case because groups of individuals visit the museum at fixed time
slots. Possibly in this case, the disease spreads for longer times after redistributing
the nodes because new links are now made between early and late museum visitors.
This effect may sustain the disease for longer times and also affect the outbreak size.
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Fig. 3.6 The figure corresponding to Fig. 3.5 but for extinction times � rather than outbreak
sizes ˝

However, redistributing the time stamps will have little impact since individuals
were not uniformly active during the day, for example, a new time stamp may occur
at time t D 10 for an originally late visitor, i.e. all other connections are made at
later times, therefore this new link does not contribute much to the disease spread.
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Fig. 3.7 The the exponent b
of the stretched exponential
fits in Figs. 3.5 and 3.6. As
elsewhere, ˝n relates to the
response to the prediction of
the average outbreak size ˝

in the case of misinformation
in the node identity
information. Error bars
represent standard errors
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3.4 Discussion

In this work, we have investigated the ability to predict outbreaks of disease given
imperfect data on the temporal contacts of a population. We contrast misinformation
in the identities of the individuals and the time stamps of the contacts. For both
misinformation scenarios, the deviation from the accurate prediction can reach 80%
for 100% error frequency �. Even for small errors, the deviation may differ 10 to
20% for some epidemiological parameters. However, the area in the parameter space
of such a bad prediction is rather small. Furthermore, the functional dependency
of the degree of mis-prediction on � is similar for the two scenarios—a stretched
exponential decay. At this point, we do not have any explanation for this behavior.
It would be interesting to know the conditions on the temporal network structure for
such a stretched exponential decay to occur.

In a wider context, this work further illustrates the importance of temporal
structure for predicting disease spreading—it seems as important as the topological
information. This is along the lines of observations in e.g. Refs. [26, 29–31], and a
further reason for theoretical epidemiologists to investigate the role of the temporal
structure in human contact patterns for disease spreading.

It would be interesting to explore this problem with alternative models for the
misinformation. In real contact patterns, there would probably be more missing
contacts [11] than false contacts—i.e. the assumption that the number of contacts is
preserved as � increases could probably be relaxed. Another step towards increased
realism would be to assume the time stamps deviate from their true value by some
random variable. This is expected in data collection surveys where participants have
to remember the dates of events, for example, of sexual contacts [32], or when the
date of the event is recorded at random times after the actual date of the event [15].
There are many other directions to proceed towards an understanding of the relation
of incomplete information and the prediction of epidemics.
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