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Chapter 1
Introduction to Temporal Network
Epidemiology

Naoki Masuda and Petter Holme

Abstract In this introductory chapter, we start by briefly summarising temporal
and adaptive networks, and epidemic process models frequently used in this volume.
Then, we introduce a couple of what we think are key studies in the field, which are
fundamental for various chapters in this volume. Finally, we give an overview of
each chapter and discuss future work.

1.1 Introduction

Epidemic processes are one of the most studied type of dynamics on networks for
at least two reasons. First, pandemic occurs on both global and local scales in every
part of the world and very frequently. Some infectious diseases are fatal. Even
if not, infectious diseases are health burdens to infected individuals, and societal
economic burdens to their families and the whole society. Therefore, understanding
them and devising efficient intervention methods are of a paramount importance
to the whole society. Furthermore, computer viruses and viral information spread
in a similar fashion (but with some notable differences) to biological contagions.
Networks of individuals that specify who is connected to whom are a significant
determinant of how epidemic processes behave. Second, relatively simple dynamics
models of epidemic processes tell us how infection spreads in a population, often at
a realistic level, in terms of quantities such as the epidemic threshold, the fraction of
infected individuals in the equilibrium or at the final stage of spreading, and speed
of spreading. The development of network epidemiology and perhaps the whole of
mathematical epidemiology may have been very different if basic epidemic process
models were already too complicated to accommodate mathematical analysis or
they were analytically tractable but too far away from the reality.
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2 N. Masuda and P. Holme

The present volume is a collection of recent developments on network epi-
demiology when networks are themselves dynamic in nature. Such temporal or
adaptive networks (distinctions between them are given in Sect. 1.2.2) are not just
for theoretical curiosity. Most empirical networks to which epidemic processes
are relevant are dynamic, and dynamics of networks probably make epidemic
dynamics different from the same epidemic dynamics occurring on static networks.
Seminal work on epidemic dynamics in temporally varying populations already
appeared in 1980s and early 1990s [5, 35], which can be regarded as precursors
of the field of research presented in this volume. One can also argue that the
concept of concurrency—that was developed in the 1990s in the context of HIV
epidemiology—has a temporal component [19]. It emphasizes the number of other
persons that, at a given point in time, a person had sex with before and will have sex
with again. More research on temporal and adaptive networks is ongoing, supported
by an increasing amount of temporally varying network data and developments of
new theory, algorithms, measurements and concepts.

In the present introductory chapter, we start by explaining basics of temporal
and adaptive networks and epidemic process models. Then, we discuss some key
studies in the field, briefly summarise what each chapter is about, and conclude by
discussing some future directions.

1.2 Prelimianries

1.2.1 Temporal Networks

Contact networks between individual humans and animals as well as many other
networks are dynamic in nature. Static networks, which are studied in a majority
of empirical and theoretical/computational work, including work on epidemics,
neglect temporal variations of the contacts (links or edges in network terminology).
Temporal networks or time-varying networks are a modelling and data analysis
framework where we explicitly take into account the time of contacts. There are
comprehensive reviews [12, 14], a volume collecting recent advancements [15], a
monograph on mathematical and computational tools [22], and reviews focussing
on epidemics [1, 21] on temporal networks.

There are different representations of temporal network data [12]. A major one of
which is a list of events, where each event is specified by the two nodes that form an
event, an event time, and additionally the duration of the event if the information is
available. It should be noted that events and edges are now distinguished, because an
edge formed between a given pair of nodes generally has multiple events at different
times. In a static network representation, we simply count the number of events and
use it as the weight of the edge. In a temporal network representation, we are usually
interested in specific time of the events so we do not aggregate the events on an edge
into the edge weight.
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(a)

(b)

time

Fig. 1.1 (a) Bursty and (b) non-bursty event sequences with the same number of events, n D 30

Temporal information contained in network data may change dynamics of
epidemic processes and designs of efficient intervention methods that have predom-
inantly been based on models and data of static networks. Although there are plenty
of factors of temporal networks that would affect epidemic dynamics on networks,
here we explain a few of them. See [12, 14, 22] for more.

First, inter-event times (i.e., interval between consecutive contacts between a
given pair of nodes, i.e., individuals, or that between consecutive contact events for
a given node) are quite often heterogeneously distributed. Empirical distributions of
inter-event times are typically long-tailed (Fig. 1.1a). Then, there are some bursts
of events with short inter-event times, and some inter-event times are very large. In
contrast, epidemic process models on static networks (Sect. 1.2.3) implicitly assume
that events on each edge occur as a Poisson process. This assumption is equivalent to
inter-event times obeying an exponential distribution, lacking bursts and very long
inter-event times (Fig. 1.1b). In addition, if data are recorded across different days,
events tends to be more frequent during the daytime than the night. Similarly, the
frequency of events is typically different between weekdays and weekends. Second,
the duration of contacts can also be long-tailed, even between the same pair of
nodes. Third, events on different edges are often correlated. For example, suppose
that nodes v1 and v2 meet at a certain point of time. Then, it may be more likely
that v2 contacts a specific node v3 rather than v4 within a short time, as compared
to the expectation from the static network ignoring temporal information. Fourth,
nodes and edges may enter or leave the network during the observation period.
For example, an individual may register to an online networking service that we
are monitoring, in the middle of the recording period. As another example, an edge
between two workmates may be lost permanently in the middle of recording because
one of the two individuals has changed the job.
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1.2.2 Adaptive Networks

Adaptive networks are also a family of networks where edges or their weights
vary over time. A common classification is that, in contrast to temporal networks,
dynamics of edges in adaptive networks are assumed to be influenced by dynamics
occurring on networks such as epidemic processes [7, 9, 28]. For example, if an
infected person has noticed that he/she is unwell and has decided to stay home, then
edges connected to this infected individual are temporarily deactivated, changing
the structure of the network. In temporal network frameworks, we usually assume
that network dynamics are given exogenously, by a time series of events given by a
data set or produced by a generative model.

Considering adaptive networks is important for better understanding epidemics
for at least two reasons. First, people may proactively adapt their edges according to
their status (e.g., upon contracting an infection) and other input (e.g., news). Such
proactive behavioural changes may considerably change the extent of epidemic
spreading. Second, intervention strategies, which can depend on the history of
epidemic dynamics and network dynamics up to the current time point, may induce
changes in the network structure thereafter (e.g., specific individuals quanrantined
by an authority for a certain period of time). These adaptive changes in social
networks caused by intentional or unintentional behaviour of individuals, or by
interventions implemented at an institution level, are collectively called social
distancing [6, 18, 25].

1.2.3 Basic Epidemic Process Models

In contemporary temporal and adaptive network epidemiology (as well as static
network cases), we have been primarily studying stochastic variants of the fol-
lowing three so-called compartmental models of epidemic processes [10], e.g.,
the susceptible-infected-susceptible (SIS) model, the susceptible-infected-recovered
(SIR) model and the susceptible-infected (SI) model. The rules of the three models
are schematically summarised in Fig. 1.2. Most of the chapters in this volume also
use some of the three models.

The SIS model assumes two states: susceptible (i.e., healthy) and infected,
for each node. When a susceptible node interacts with an infected node, the
susceptible node changes its state from susceptible to infected at rate ˇ. In a
discrete-time representation, the probability that a susceptible node gets infected
in time �t.� 1/ is equal to ˇ�t. If a susceptible node is adjacent to k infected
neighbours, the transition rate is equal to kˇ (Fig. 1.2b). An infected node recovers
at rate � irrespectively of the neighbours’ states, and then enters the susceptible
state. Therefore, a node may be reinfected in the SIS model.
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(a)

(b)

Fig. 1.2 (a) Infection and recovery rates in three epidemic process models. (b) Infection rate when
a susceptible node is surrounded by two susceptible nodes and two infected nodes

In a sufficiently large well-mixed population (i.e., no network structure), where
each node is adjacent to each other with a normalised weight 1=N, the deterministic
SIS dynamics are given by

dI.t/

dt
D ˇS.t/I.t/ � �I.t/; (1.1)

where I.t/ is the fraction of infected individuals at time t, and S.t/ D 1 � I.t/ is the
fraction of susceptible individuals at time t. By setting dI.t/=dt D 0, we obtain the
fraction of infected individuals in the equilibrium, I�, as follows:

I�.ˇS� � �/ D 0; (1.2)

where S� D 1 � I�, which leads to

I� D 1 �
�

ˇ
(1.3)

or I� D 0. We obtain I� > 0 if and only if

ˇ

�
> 1: (1.4)

Therefore, the epidemic threshold in terms of ˇ=� is equal to unity in the well-
mixed population. If the infection rate ˇ is larger than the recovery rate �, the
infection can stay in the population. Otherwise, it will die out after a transient.
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The epidemic threshold depends on the network structure. A central result for
static networks is that in uncorrelated random networks with a general degree
distribution, the epidemic threshold is equal to hki=hk2i, where h�i denotes the mean
and k is the degree [23, 24]. For scale-free networks (i.e., with a power-law degree
distribution), the epidemic threshold can be very small (theoretically can be zero)
because hk2i can be much larger than hki. Therefore, infection is likely to persist in
scale-free networks as compared to well-mixed populations.

The SIR model assumes three states, i.e., susceptible, infected and recovered.
The only difference to the SIS model is that when an infected node recovers at rate
�, it enters the recovered state, not going back to the susceptible state. A recovered
node will not infect others or will not be reinfected. The recovered state can also
be interpreted as the dead state because a dead node would not infect others or
be infected. Different from the SIS model, the infected state gets extinct in the
end in the SIR dynamics. The final population always consists of susceptible and
recovered nodes, but not infected nodes. We typically start the SIR model from a
single infected node or a small fraction of infected nodes, and all the other nodes are
initially in the susceptible state. Main interests for the SIR model are the final size,
i.e., the number of recovered individuals (who have undergone infection) when the
dynamics have terminated, and the speed at which infection spreads in the network.

A primary concern of the SIS model is the equilibrum. In contrast, SIR model
is suitable for describing transient contagion dynamics of a population triggered
by an initial set of infected individuals. Because such one-shot epidemic dynamics
are relevant to many real phenomena, including outbreaks of various emerging
infectious diseases and viral spreading in online media, the SIR model and its
variants are probably more frequently used than the SIS model unless births and
deaths of individuals are relevant on the simulated time scale.

The deterministic SIR dynamics for an infinitely large well-mixed population are
described by

dI.t/

dt
D �I.t/S.t/ � �I.t/; (1.5)

dR.t/

dt
D �I.t/; (1.6)

where R.t/ is the fraction of recovered individuals and S.t/ D 1 � I.t/ � R.t/. If
and only if dI.t/=dt > 0 at t D 0, the number of infectious individuals increases
to a macroscopic (i.e., O.N/) number before they recover. Therefore, the epidemic
threshold is given by dI.t/=dtjtD0 D 0, resulting in the same epidemic threshold as
that for the SIS model (Eq. (1.4)). For uncorrelated random heterogeneous networks,
the epidemic threshold in terms of ˇ=� is equal to hki=.hk2i � hki/ [23, 24], which
is similar to the case of the SIS model if the degree is sufficiently heterogeneous
(i.e., hk2i � hki).

The SI model is a simplified version of the SIR model and assumes two states,
i.e., susceptible and infected states, for each node. Infection occurs in the same
manner as in the SIS and SIR models. Different from the SIS and SIR models, an
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infected node never recovers in the SI model. Therefore, if dynamics start from a
single infected node in a connected static network, all nodes will be infected in the
end. Therefore, the final size is not a relevant question for the SI model unless the
time horizon is relatively short (as determined by the length of a temporal network
data set) or a network is composed of multiple connected components. It should
be noted that a finite observation period is typical in temporal network data, such
that the final size is often a relevant question to the SI model on temporal networks.
Likewise, the epidemic threshold is also an irrelevant issue for the SI model. Instead,
we are interested in the speed at which infection propagates. The dynamics in the
well-mixed population are described by

dI.t/

dt
D �S.t/I.t/: (1.7)

The SI model is unrealistic in many scenarios. However, we often employ it
in studies of epidemic processes in temporal networks. This is probably because
temporal network data are already complicated objects so we want to simplify the
epidemic process model to gain better insight into epidemic dynamics on temporal
networks. If we start the SIR dynamics from a small number of infected individuals,
we obtain S.t/ � 1 and I.t/;R.t/ � 0 in an early stage of dynamics. Then, Eq. (1.5)
coincides with Eq. (1.7). Therefore, the dynamics of the SI model approximates that
of the SIR model in an early stage. This feature of the SI model was exploited to
derive the speed of spreading of infection in an early stage of dynamics in the SIR
as well as SI model on static scale-free networks [3].

As already touched upon, these and other epidemic processes have been studied
on various networks. A majority of books and reviews on network science devote
much text to epidemic processes because they are one of the most studied type of
dynamics for networks. Influential books and reviews extensively discussing (static)
network epidemiology include [2, 17, 24].

1.3 Computational Considerations

In addition to solving compartmental models analytically one can simulate them.
It is fairly straightforward, but there are some technicalities worth mentioning.
First, as an alternative to the constant recovery rate introduced above, many
computational studies use a fixed period of infection, mostly because it allows some
program simplifications and speed-up [11]. From an epidemiological point of view,
these are both rather large simplifications. A constant recovery rate assumes an
exponential distribution of disease durations, which is not much closer to reality
than a constant duration [20]. On the other hand, one can expect other aspects of
epidemic simulations to have a larger impact.

Another technicality worth pointing out is that the seed of the outbreak should
be only one node at one time. There are two reasons for this. First, real epidemic
outbreaks are thought to start from only one person. For example, the handful known
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strains of HIV are thought to have originated from each occasion the simian immun-
odeficiency virus infected a human and started spreading in the population [29].
Since the compartmental models above assume a closed population, it follows that
it would be misleading to have more than one seed (except some special scenarios
e.g. bioterrorism). The early period can also provide great insights. Essentially any
early outbreak has two possible fates—either it dies out immediately, or it spreads to
a substantial part of the population. In the real world, we cannot study the first case
directly—so that is one motivation for not leaving the initial phase out. Furthermore,
the early phase is heavily dependent on the number of infection seeds.

For temporal networks, one also needs to choose a time of the first infection.
The most principled way would be to pick a time at random between the beginning
and the end of the sampling time. This would lead to many outbreaks not spreading
beyond the seed—if the seed infection time is late, then it might not be involved in
many more contacts. This also means that the possible duration of the infections will
vary much. One can argue that this would be the case if one studies a limited time
of a real system. However, for some types of epidemiological questions this could
be a problem, leading to biased statistics. Then, some authors have studied infection
seeds in the beginning of the sampling time of the temporal networks (e.g. Ref. [26])
or at the moment the seed node enters the data (e.g. Ref. [13]). Qualitative results,
like the existence of an epidemic phase, should be independent of such choices, but
quantitative results are not, which is important to keep in mind.

Finally, we note that there are many ways of speeding up epidemiological
simulations. For temporal networks the disease can spread over a contact only once.
This means that one can prune the temporal network—delete a random fraction
1 � � contacts that would not spread the disease—and then simulate the SIR or SI
dynamics with infection probability one on these pruned data sets. The simulated
outbreaks of one pruned network is then exceptionally fast, meaning that one can
allow averages over many simulations per pruned network, and the averages over
prunings will be the computational bottleneck. For temporal network models one
can perform very fast exact simulations by the temporal Gillespie algorithm of
Vestergaard and Génois [32]. If one allows some approximations, another approach
is the individual-based approximation [27, 31]. When we consider the SIS dynamics
on a temporal network data set, we have to assume periodic boundary conditions in
time or random sampling of events. This is because the endemicity is the concern of
the SIS model and therefore we have to generate infinitely long temporal networks
to use the SIS model.

1.4 A Few Key Papers in Temporal and Adaptive Network
Epidemiology

This book introduces recent key advances in temporal and adaptive network
epidemiology, from theoretical, computational and data-analysis perspectives. In
this section, we briefly explain just a few papers that we think are key theoretical
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and computational papers in the field, which underlie many of the chapters in this
volume directly and indirectly. Our choice is necessarily biased (but not in favour of
our own work), and we are aware that there are many more important and interesting
papers than can be presented here.

Karsai et al. numerically investigated how temporal nature of empirical contact
data affects the speed of epidemic spreading using the SI model [16]. They shuffled
time stamps of contact events on edges according to various rules to create artificial
temporal networks and compared the speed at which infection spreads on an original
temporal network and on synthesised temporal networks created by the shuffling.
For example, if one randomly shuffles inter-event times on each edge, temporal
correlation on each edge and across different edges is lost, whereas the distribution
of inter-event times is preserved. If one redraws the event times on each edge
from a Poisson process such that the (mean) number of events agrees between the
original and synthesised temporal networks, the distribution of inter-event times in
addition to temporal correlation is destroyed, whereas the structure of the network
as static network is still conserved. A main finding in the article is that bursty
activity patterns of humans present in empirical temporal network data slow down
epidemic spreading. Now, various types of randomisation (shuffling and other ways
of randomisation) of events and edges (and other quantities) are a popularly used
tool for examining factors of temporal networks that contribute to epidemic and
other dynamics [12, 14].

Volz and Meyers proposed a so-called neighbour exchange model of network
dynamics combined with epidemic spreading [33]. Network dynamics are modelled
by edge swapping involving two pairs of connected dyads (hence four nodes in
total). In other words, an arbitrary pair of edges (v1, v2) and (v3, v4) is replaced
by two new edges (v1, v3) and (v2, v4) at a fixed rate. The network is assumed
to be undirected and unweighted. Link swapping does not alter the degree of
any node. Therefore, this model allows us to examine the effect of network
dynamics (i.e., temporal network, because edge swapping occurs independently of
epidemic dynamics), here modelled as edge swapping, on the final size and other
quantities, with the aggregate network (i.e., time average of the network) fixed.
Using generation function formalisms, the authors semi-analytically examined the
dynamics of the SIR model on the neighbour exchange model. They developed an
accurate approximation to the epidemic dynamics by a set of ODEs with a small
number of variables, which were solved numerically. Their approximation is a type
of pair approximation, which has been widely used for analysing epidemic processes
on networks [24] and beyond. They showed that edge swapping, i.e., temporality of
networks, suppresses epidemic spreading. For further theoretical approaches to the
model, see [34]. For an analysis of a simplified case, see [22].

Gross et al. studied SIS epidemic dynamics on a model of adaptive networks,
where susceptible nodes actively avoid to be adjacent to infected nodes, a type
of social distancing [8]. On top of the behavioural rules defining the SIS model,
they assumed that each edge having a susceptible node on one end and an infected
node on the other end is severed by the susceptible node at a constant rate (or
probability). Then, the susceptible node reconnects to another susceptible node
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selected uniformly at random, dynamically changing the network structure. They
found that the epidemic threshold increases as the rewiring rate increases. In other
words, rewiring behaviour of susceptible individuals suppresses epidemics, which is
intuitive. Susceptible nodes tend to be connected to susceptible nodes and infected
nodes to other infected nodes as time goes by. The mean degree is larger for
susceptible than for infected nodes. They also developed a pair approximation to
analytically determine the bifurcation diagram, revealing oscillations, hysteresis
(implying bistability), and first-order phase transitions among other things.

1.5 What This Book Is About

The present book is a collection of recent advancements in temporal and adaptive
network epidemiology, focussing on theoretical, computational, modelling, and
data-analytic approaches. The organisation of the volume is as follows.

The following seven chapters discuss theoretical and computational aspects of
epidemic processes on temporal networks.

In Chap. 2, Gorochowski and Richardson proposed an agent-based simulation
model on a two-dimensional arena to investigate effects of indirect pathways of
disease spreading. The indirect pathway means that an infected individual leaves a
trail that acts like a “pheromone”, such as a pathogen whose infectiousness decays
exponentially in time once it is placed. Then, if a susceptible individual visits the
same site within a relatively short time, the individual may contract infection owing
to the remaining pathogen. Because a trail is disposed randomly according to the
assumed random movement of each agent and the infectiousness of a deposited
pathogen decays over time, agents are effectively connected as a temporal network.
Even if such indirect pathways are absent, a system of randomly walking agents
creates a temporal network, where infection is transmitted from agent to agent when
the two agents are physically close to each other (direct pathway). The authors found
that the effects of indirect pathways in addition to direct ones were massive.

In Chap. 3, Holme and Rocha analysed effects of imperfect information about
temporal networks on the behaviour of the SIR model. This is a practical concern
because it is probably a norm rather than exception that one cannot collect some
information about social networks that underly epidemic processes. In temporal
networks, the information that one can gain may be imperfect in terms of temporal
properties of the network as well as static properties of the network. If results of
running epidemic processes, either numerically or theoretically, are highly sensitive
to such perturbation, we have to be cautious in interpreting the obtained results
because the results may drastically change if we gain a little bit more information
about temporal networks. The authors explored the effects of lacking some temporal
and structural information about networks on SIR dynamics by numerical means.

In Chap. 4, Bramson et al. proposed a framework to analyse temporal network
data, called temporal webs. The idea is to consider a network in which a directed
edge is placed from node v1 at time t to node v2 at time t C 1 to represent a causal
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relationship. A node in this representation does not necessarily correspond to a node
in the original network data, such as an individual human/animal. In this way, a
temporal network data is transformed to a directed acyclic graph, or frankly a feed-
forward network, where the direction of the entire network is shaped by the arrow
of time. This framework is useful in representing chains of causal events including
spread of infectious diseases (as in the SI and SIR models). For example, the out-
component of node v at time t in the temporal web tells us how many nodes can be
infected by v and when. They applied the methods to alliance networks in an online
game, interbank loan network data, and Twitter social networks, in each of which
propagation of “infection”, such as frustration, bankrupcy, and mood is a salient
question.

In Chap. 5, Leung et al. analytically studied continuous-time dynamics of
temporal networks in which nodes form and dissolve pairs at given rates. Each node
is assumed to have binding sites, or stubs, which the node can use to connect to other
nodes, as in the configuration model of static networks. In particular, they assessed
when their mean field assumption exactly holds. When demographic turnover of
nodes (i.e., death and birth) is added on top of dynamics of networks, the mean
field assumption is only approximate. In this situation, positive degree correlation
between adjacent nodes emerges through positive age (i.e., time since the birth of
the node) correlation between them, although the amount of positive correlation
is admittedly small in realistic situations. As they discuss in a dedicated section,
analytical knowledge of such network dynamics derived in this chapter (though not
combined with disease dynamics) brings useful insights into epidemic dynamics on
top of the network dynamics.

In Chap. 6, Li et al. analysed the SI model dynamics on metapopulation
models. In metapopulation models, a node is container of individual agents, i.e.,
a subpopulation or location, not an individual agent. Individuals diffuse from
subpopulation (i.e., node) to another randomly or according to a mobility rule.
Although the relationship between metapopulation models and temporal networks
have not actively been explored, metapopulation models can be regarded as
temporal networks for individual agents, because individuals are assumed to interact
only when they are visiting the same subpopulation. The authors took analytical
approaches to provide algorithms to infer transmission pathways on networks of
subpopulations and parameter values of the model such as the infection rate.

In Chap. 7, Speidel et al. analysed the SIS model on temporal network models,
in which static networks switch from one to another at constant time intervals.
By modulating the switching interval, they tuned the timescale of the network
dynamics relative to that of epidemic dynamics. They took analytical and numerical
approaches to suggest that the epidemic threshold is small when the switching
interval is long, corresponding to the temporal network because infinitesimally fast
switching corresponds to the aggregate network. This result is contrary to some
known results in previous literature on SIR and SI Models on temporal networks.
They also suggested that whether different adjacency matrices commute or not (and
deviation from the perfect commutation) was a key indicator to predict the epidemic
threshold in the temporal networks.
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In Chap. 8, Karsai and Perra reviewed immunisation strategies on temporal
networks. An immunisation strategy is commonly defined as a rank order of nodes
according to which one immunises nodes, i.e., one removes the selected nodes from
the network before an epidemic spreading possibly happens. They distinguished
global and local immunisation strategies depending on the amount of information
that one can use. They started with discussing the case of static networks, then the
activity-driven model of temporal networks, and then several heuristic immunisation
strategies assessed on empirical temporal networks. As the authors also discuss in
the concluding section, we still do not have a solid understanding of immunisation
strategies on temporal networks and also on adaptive networks, which contrasts to
the situation of static networks.

The following two chapters discuss anaylsis of unique data sets to which
epidemic spreading and temporal networks are both relevant.

In Chap. 9, Belik et al. analysed a data set of hospital referral networks, which
were generated by a record of time-stamped relocation events of patients from a
hospital to another. The data were provided by a major insurance provider of a
federal state in Germany and mainly covered that region, involving approximately
one million patients and three years. Such a hospital network provides information
complementary to that provided by within-hospital contact networks of individuals.
They investigated the heterogeneity in activity in days of the week, the network
structure and then the SIS, SIR and SI dynamics on the networks of hospitals. They
particularly examined the following practical scenario: Patients dismissed from a
hospital may be readmitted to a hospital after some time. Because that individual
spent some time in community, he/she may have acquired infection, which is
introduced to the hospital upon the readmission of this individual.

In Chap. 10, Schirdewahn et al. analysed an empirical temporal network of pig
trades in Germany. They regarded each premise (e.g., farm, slaughterhouse) rather
than a single pig as a node. Time-stamped edges are defined by trades of animals
between two premises. They investigated epidemic spreading using a deterministic
SIR model, where a time-stamped edge was assumed to always transmit infection.
They provided methods to identify sentinels, i.e., nodes to be monitored for early
detection of epidemic outbreaks. Understanding of infectious diseases in livestocks
and their early detection, as studied in this chapter, has huge economic as well as
health implications.

The following four chapters discuss adaptive networks, at least partly in the
chapter.

In Chap. 11, Ogura and Preciado analytically bounded the epidemic threshold for
the SIS model on temporal and adaptive networks, which occur as continuous-time
Markovian dynamics of networks. Then, they formulated the problem of optimal
allocation of containment resources as modelled by a decrease in the infection rate,
an increase in the recovery rate, and rate to cut undesired edges (in the case of
adaptive networks), each of which came at a cost. They connected their optimi-
sation problems to geometric programmes, which can be converted to a convex
optimisation problem and hence solved with realistic computational resources. They
demonstrated that different optimisation problems yielded considerably different
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optimal allocations of resources at nodes. The proposed formulation is expected to
inform various other intervention methods, many of which so far rely on agent-based
numerical simulations, in particular for networks changing over time.

In Chap. 12, Kiss et al. presented analytical approaches to the SIS epidemic
model on adaptive networks. To analyse such dynamics with an improved accuracy,
one has to track the fraction of pairs of connected nodes that have certain states
(e.g., susceptible or infected) and certain connectivity (e.g., degree) as well as
the fraction of nodes in certain states as used in the mean field theory. The
authors used an approximation scheme to close the set of differential equations
composed of the variables coding the state of nodes and pairs. This is generally
called a pair approximation. Using the resulting closed system, the authors mapped
out oscillatory and bistability regimes in the epidemic dynamics and revealed
bifurcations in network structure. Crucially, such rich dynamics are caused by the
interplay between epidemic dynamics on the network and the dynamics of the
network. They also make a case for more emphasis on extending the bifurcation
analysis of the epidemic dynamics to mapping out changes in the dynamic network,
either in the transient regime or at the steady state.

In Chap. 13, Pacheco et al. developed analytical approaches to investigate the
SIS, SIR and SI models on adaptive networks. They assumed that an individual has
information to be able to cut an edge to an infected neighbour at a higher rate than an
edge to a non-infected neighbour. Link creation occurred randomly for simplicity.
They found that the disease was less likely to progress as compared to the case
of the non-adaptive network. Hinted from the theory of evolutionary dynamics in
finite populations, the authors particularly focussed on stochastic disease dynamics
in finite populations, which were boiled down to one or two dimensional biased
random walks. For example, the state of the chain was specified by the number of
the infected individuals in the case of the SIS or SI model. This analytical framework
makes it possible to understand the effect of population size on epidemic dynamics
on adaptive networks, as well as the effect of other main parameters such as the rate
to sever edges.

In Chap. 14, Rizzo and Porfiri extended and applied the SIS model on activity-
driven network models of temporal networks in three strands. First, they extended
the model by considering individual agent’s behaviour. For example, infected
individuals were assumed to reduce connectivity because of quarantine or their
compromised health condition. In a different scenario, susceptible individuals were
assumed to reduce connectivity when the prevalence in the population increased. By
exploiting the analytical tractability of the activity-driven model, the authors derived
the epidemic threshold in these and other adaptive network scenarios. Second, they
further extended the epidemic dynamics to a seven-state compartmental model,
taking into account the reality of the Ebola, and fitted the model to the 2014–2015
Ebola outbreak in Liberia. The model offered a reasonable fit to the field data and a
one-year prediction of the number of infected individuals. Third, going back to the
basic activity-driven model, the authors provided a continuous-time variant of the
model that enabled analytical estimation of the dynamics of the SIS model.



14 N. Masuda and P. Holme

1.6 Future Work

We conclude this chapter by discussing some challenges in this research field.
Strong intervention methods exploiting temporal and/or adaptive nature of

networks should be developed. For example, what is an efficient vaccination strategy
(to prioritise nodes to be vaccinated before an epidemic dynamic occurs) given
statistics of temporal network data? Or, can we design a vaccination strategy
that allocates resources in a manner responsive to ongoing epidemic dynamics to
achieve an efficient containment (using adaptive networks)? How about quarantine
strategies? Designing of transportation systems and traffic flows of passengers and
cattles? Can we do better by using temporal/adaptive networks as compared to static
networks? There questions have already been addressed by many articles including
Chap. 8 of this volume, and we expect more in coming years.

A large part of temporality of network structure is contributed by mobility
of individuals. They simply move on various time scales to which epidemic
dynamics is relevant, changing partners to interact with. Metapopulation models
are a powerful framework to model mobility coupled with epidemic dynamics
[4], as discussed in Chap. 6 of this volume. How can temporal/adaptive network
epidemiology approaches marry with those and other mobility models? When
should we take temporal/adaptive network approaches (without metapopulation
components) rather than metapopulation approaches? Interacting random walks
on the Euclidean space (e.g., two-dimensional arena) are also a promising tool to
connect mobility of individuals and temporal networks [30].

Working together with real epidemiologists and practitioners would benefit both
fields. The data analyses presented in Chaps. 9 and 10 are towards this direction.
Admittedly, this research field has been mostly contributed by theoreticians in a
broad sense, having backgrounds in, e.g., mathematics, statistical physics, computer
science and engineering, and affiliations with such departments. For instance, we
tend to publish relevant papers in physics journals (e.g., Physical Review E or
Physical Review Letters), mathematical or computational, biology or epidemiology
journals (e.g., PLOS Computational Biology, Journal of Theoretical Biology, or
Mathematical Biosciences), or general audience journals (e.g., Proc. Natl. Acad.
Sci. USA, Nature Communications, Scientific Reports, PLOS ONE). Medical epi-
demiologists may prefer different sorts of journal including specialist journals
in epidemiology. Some people including authors of the present volume are now
collaborating with epidemiologists and publishing in epidemiology and medicine
journals. Hopefully more and more temporal/adaptive network epidemiology ideas
and analysis tools will be exploited in field and clinical epidemiology contexts in a
near future.
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Chapter 2
How Behaviour and the Environment Influence
Transmission in Mobile Groups

Thomas E. Gorochowski and Thomas O. Richardson

Abstract The movement of individuals living in groups leads to the formation of
physical interaction networks over which signals such as information or disease
can be transmitted. Direct contacts represent the most obvious opportunities for a
signal to be transmitted. However, because signals that persist after being deposited
into the environment may later be acquired by other group members, indirect
environmentally-mediated transmission is also possible. To date, studies of signal
transmission within groups have focused on direct physical interactions and ignored
the role of indirect pathways. Here, we use an agent-based model to study how
the movement of individuals and characteristics of the signal being transmitted
modulate transmission. By analysing the dynamic interaction networks generated
from these simulations, we show that the addition of indirect pathways speeds up
signal transmission, while the addition of physically-realistic collisions between
individuals in densely packed environments hampers it. Furthermore, the inclusion
of spatial biases that induce the formation of individual territories, reveals the
existence of a trade-off such that optimal signal transmission at the group level
is only achieved when territories are of intermediate sizes. Our findings provide
insight into the selective pressures guiding the evolution of behavioural traits in
natural groups, and offer a means by which multi-agent systems can be engineered
to achieve desired transmission capabilities.
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2.1 Introduction

Animal societies consist of many individuals that must interact to coordinate their
actions. The cohesion of such groups is typically achieved through a distributed
network of short-range ‘direct’ interactions between neighbouring individuals.
These serve to rapidly transmit information throughout the group [61, 92]. Short-
range contacts also represent a channel for the transmission of harmful pathogens,
with the potential for large-scale epidemics being closely linked to the structure of
the group interaction network [72, 77, 80, 81, 89]. Whilst information often spreads
via dedicated interactions that have evolved for the purpose of communication,
diseases often ‘piggyback’ over a diverse range of different interaction types that
have evolved for other purposes, such as sexual contacts [67, 86] or face-to-face
conversations [96, 107]. Furthermore, while information and disease play different
roles, they may both be viewed as ‘signals’ that can be transmitted across a group.
Although direct interactions based on physical contact are the most obvious means
by which such signals can spread, other forms of transmission are possible. For
example, some signals remain viable after being deposited into the environment. If
such a signal is still viable when that location is later visited by another individual,
then the second individual could acquire the signal. As this pathway does not require
the sender and receiver to be present at the same time, this is termed ‘indirect’
transmission [23, 38, 84].

Indirect communication is ubiquitous. It is found in species where individuals are
generally solitary (Fig. 2.1a), as well as in highly cooperative species where individ-
uals live together in tightly-knit societies (Fig. 2.1b–e). A commonly used example
is that of pheromone trails in ant colonies where individual workers deposit chemical
markers that recruit nestmates to rewarding food sources [30] (Fig. 2.1c). Disease
can also exploit indirect pathways for transmission. Pathogens such as smallpox
and influenza are able to remain intact outside a host for extended periods of time in
‘environmental reservoirs’ (Fig. 2.1f). These increase the number of opportunities
for transmission and can lead to multiple waves of infection. Whilst researchers of
animal behaviour have long appreciated that the shared environment can act as a
substrate for indirect communication [29, 32, 46, 73, 98, 115], epidemiologists are
only starting to quantify the important role that indirect transmission has during
disease spread [2, 19, 28, 58, 87, 88, 103, 114, 116].

Over the last decade there has been an increasing number of studies focusing
on the transmission properties of contact networks in humans [31, 56, 69, 95, 105–
108] and other social animals [1, 14, 17, 17, 21, 75, 77, 94, 101]. Similarly, there
has been a rapid growth in the effort devoted to understanding how adaptive
collective behaviours such as swarming, flocking and shoaling [6, 22, 74, 92]
emerge from the underlying peer-to-peer interactions. To date, these studies have
exclusively focused on the role of direct interactions, without considering the
potential for indirect transmission of materials or information. Although there are
many species in which environmentally-mediated transmission is not viable because
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(a) (b)

(d) (e)
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Fig. 2.1 Indirect transmission of information and disease. (a) Territorial bear markings on a tree
in Paradise Valley, Montana, USA (Image attribution: Suzanna Soileau, USGS). (b) Eurasian Wolf
(Canis lupus) marking its territory. (c) Pheromone trails of Argentine ants (Linepithema humile)
used to coordinate colony behaviours such as foraging [82]. (d) Modern graffiti. (e) Ancient human
murals from the Chauvet cave. (f) Influenza A (H1N1) virus more commonly known as swine
flu that can be transmitted indirectly through the air and infected surfaces (Image attribution:
Cybercobra at English Wikipedia)

the environment cannot physically support such transmission (e.g. flocking birds),
there are many species for which the potential is clear (e.g. those living within or
upon the ground).

To address this shortcoming, we previously developed an analytical framework
that combines both direct and indirect interactions within a single dynamic network
representation [84]. Individuals are represented by nodes and weighted edges rep-
resent direct and indirect interactions (Fig. 2.2a). When a direct physical interaction
occurs between two individuals, an edge with a weight of 1 is drawn between them.
As both individuals are at the same place at the same time, they may both play
the role of either sender or receiver, hence the edge is bidirectional. In contrast,
indirect interactions occur when an individual j visits a location previously visited
by another individual i. Assuming that i carries some signal (information or disease)
that it deposits into the environment, that the signal decays at a rate ˛, and that j
visits the location at time t, this indirect interaction is represented by a directed edge
from i to j with weight,

!i!j.t/ D e�˛�i!j.t/: (2.1)

Here, �i!j.t/ is the time delay between the visits of i and j, which is used to calculate
the proportion of the signal that would remain viable given its environmental
decay (Fig. 2.2b). This formalism allows any given time point to be represented
as a static network ‘slice’ consisting of both strongly weighted direct interactions
and more weekly weighted indirect interactions. Over time edges are created and
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Fig. 2.2 Extracting a dynamic network containing direct and indirect interactions from the paths
of mobile agents. Example shows an indirect interaction between an infected (red) and susceptible
(grey) agent. (a) Methodology for calculating edge weights for the dynamic interaction network.
A susceptible agent j intersects a previously visited location of an infected agent i at t D 3. This
gives an intersection delay of �i!j.3/ D 2 time steps. The shaded circle represents the maximum
distance over which the signal can be transmitted. The edge weight is calculated using both the
intersection delay �i!j and decay rate ˛ of the signal. Positions at time points 1 to 4 are denoted i0,
i1, i2 and i3 for agent i and j0, j1 and j2, and j3 for agent j, respectively. (b) The weight of an indirect
interaction is modulated by the decay rate ˛ of the transmitted signal. Fast decay of a signal in the
environment leads to weak trails and weakly weighted edges. Conversely, slow decay of a signal
produces strong trails and highly weighted edges (Figure adapted from Ref. [84])

destroyed. Direct edges appear and disappear whenever two agents make and
break contact. An indirect edge appears when one agent (the receiver) visits a
location that was previously visited by another agent (the sender), and disappears
when the receiving agent leaves that location. As such events are intermittent,
the instantaneous static network slices are typically sparse. The overall network
structure consists of a sequence of static slices, with direct interactions linking
nodes within each slice, and with indirect edges linking nodes between slices. In the
literature, such networks have been referred to as multi-slice, multiplex, dynamic,
time-ordered, and temporal.

In our previous work [84], we used this approach to study the transmission
properties of interactions within a colony of ants. Trajectories of individual worker
ants were collected and used to create temporal networks where edges represented
the direct and indirect interactions between the workers (referred to as ‘combined’
networks). To investigate the transmission properties of these temporal networks,
we ran simulations inspired by susceptible-infected (SI) models of epidemiological
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processes [52, 54]. In addition to simulating disease spread, SI models and their
variants have been used to simulate transmission processes over a wide range of
social and technological networks, including infrastructure networks [4], email and
mobile phone call records [59, 62], and face-to-face conversation logs [56, 107].
In an SI model each individual may take one of two states; infected (I) or
susceptible (S). Once an individual is infected it carries the signal of interest. The
model is initiated with one node infected, and all others susceptible. To represent
transmission between individuals, an infected individual i that interacts (either
directly or indirectly) with a susceptible individual j, may result in j changing its
state to infected. The probability that this state-change occurs is given by,

Pr.j ! I j i 2 I ^ j 2 S/ D ps!i!j.t/; (2.2)

where ps is the transmission probability for direct interactions, and !i!j.t/ is the
edge weight defined above. Because the edge weight !i!j.t/ decreases as a negative
exponential function of the time delay �i!j.t/, direct interactions (which all have
�i!j.t/ D 0) are much more likely to result in transmission than indirect interactions
(which have �i!j.t/ > 0).

This SI model was applied to the ant colony interaction networks using the
NetEvo software library [41, 42]. By systematically varying the transmission
probability ps and signal decay rate ˛, we were able to analyse how the transmission
properties of the ant interaction networks changed depending upon the characteris-
tics of the signal being transmitted. We showed that both signal characteristics—the
decay rate and transmission probability—significantly influenced the speed of signal
transmission over the ant interaction networks. But do real-world signals exhibit
such characteristics?

Signals that have evolved for the purpose of delimiting the borders of an animal
territory or home-range, are expected to have a low environmental decay rate,
particularly if the population is small or widely-spaced. In such cases, a small decay
rate is essential, otherwise the territory-holder would need to allocate all of their
time to re-marking. Whilst data concerning the environmental persistence of such
signals is scarce, the prions that cause Chronic Wasting Disease (CWD) in deer can
persist in the environment for several years [2], and the visual scratch marks used by
some vertebrates to indicate territory borders (Fig. 2.1a) are essentially permanent
(i.e. ˛ � 0). Similarly, the scent- and scat-marks made by other vertebrates [25, 79]
to indicate territory (Fig. 2.1b) and the pheromone marks used by invertebrates
[57, 64] for communication (Fig. 2.1c), typically dissipate after a few days or weeks,
and therefore correspond to signals with intermediate values of ˛. At the other end
of the scale, there are many examples of pathogens that decay so quickly that they
cannot readily persist within the environment at all, and are therefore constrained to
spreading by direct interactions (i.e. ˛ D 1). Most sexually-transmitted diseases
fall into this category.

The second key characteristic of a signal is the transmission probability, which
reflects the ability of a given signal to spread from one host to another when
given the chance to do so. Diseases such as SARS which have evolved to have
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a high virulence also have a very high probability of spreading during close-
proximity interactions [76]. In terms of information transmission, unambiguous or
high intensity signals such as elaborate courtship displays or eye-catching billboards
(Fig. 2.1d, e) are unlikely to be missed or misinterpreted by the targeted recipient,
and should therefore also have a high transmission probability. Interestingly,
examples of signals with low transmission probabilities are scarce, probably because
both information-bearing signals and pathogens have evolved to efficiently utilize
any and all available transmission opportunities.

Whilst our previous study provided a mechanistic understanding of how the
mixture of direct and indirect interactions produced by a real animal society
determines how different types of signal may spread through it [84], we could not
directly control the motion of the ants. Therefore, we were not able to provide a
causal understanding of how individual-level behaviours determine the transmission
properties of the overall interaction network. In this chapter, we overcome this
limitation by defining an agent-based model in which the movement of virtual
individuals (referred to as ‘agents’) is systematically varied. The motion of each
agent takes the form of a parameterisable two-dimensional random walk. The
environment within which these move also contains a spatially-explicit ‘signal
field’ representing signals deposited by infected agents. This field is dynamically
updated to reflect signal decay. By feeding the interaction data produced by this
more physically realistic agent-based model into our previous network abstraction
[84], we are able to establish a causal link between the behaviours of the individuals
and the emergent group-level transmission properties.

2.2 Modelling Approaches

Numerous modelling approaches and formalisms have been developed to identify
the key factors influencing the transmission of information and disease within
populations of interacting individuals. In this section, we provide a brief overview
of some of the most commonly used and discuss the benefits and limitations of each
approach.

2.2.1 Compartment Models

Many of the earliest attempts to provide a quantitative description of spreading
processes involve the use of compartment models. These employ deterministic or
stochastic mathematical equations to describe contagious transmission of a signal
(typically disease) through a population that is divided into compartments. In
epidemiology, these compartments typically reflect an individual’s clinical status,
for example, susceptible, exposed, infected or recovered [60, 102].
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Compartment models remain popular today because their precise mathematical
formulation can allow for the derivation of exact analytical solutions [55]. However,
many simplifying assumptions are often made to ensure a tractable solution.
For this reason, these models generally use deterministic differential equations
to represent the flux of individuals between different states and assume that the
population is infinite and well-mixed [66]. These simplifications are often not a
good approximation for real-world systems where a finite number of individuals are
non-uniformly distributed across space and behave stochastically rather than deter-
ministically [7]. Furthermore, the physical laws governing real-world environments
impose severe limits on how individuals can move and interact, yet compartment
models assume no such constraints. Some attempts have been made to extend this
approach to incorporate network structures that capture the heterogeneous mixing
of populations, but generally such changes come at the cost of reduced analytical
tractability.

2.2.2 Network Models

More recently, it has become popular to treat the spread of information or disease
through spatially structured populations, as a contagious process propagating over
a network. Nodes represent individuals and edges capture the interactions or
contacts between them [15]. Although space is not explicitly modelled, the ability
to constrain the interactions present between individuals allows for the effective
description of the heterogeneous connectivity observed in many real-world systems
(e.g. long-tailed degree distributions [9–11]). This has lead to network-based
approaches becoming common not only in epidemiology, but in a huge variety
of different fields where contagious processes are observed, from the spread of
rumours and gossip over social networks [68, 93], to cascading failures in power
distribution networks [4, 20]. Attempts have also been made to combine the benefits
of network models with other modelling approaches. For example, the GLobal
Epidemic and Mobility (GLEaM) model makes use of structured metapopulation
simulations that are linked to realistic networks capturing known mobility links
(e.g. train and airline routes). Simulations using this combined model are able to
accurately simulate the spatial propagation of disease pandemics at both regional
and global scales [4, 5, 112].

The vast majority of network-based epidemic models investigate transmission
using static networks where the structure is fixed over time. Doing so ignores the
fact that in almost every real-world system the connectivity between individuals
varies with time. For example, studies of the contact networks of both humans and
other animals, have shown that interactions can be ’bursty’ [9] or even cyclical [85],
with large numbers of interactions concentrated in a short period of time. In cases
where the dynamics of the epidemic process is much slower than the evolution of the
network, this is not a problem as time-scale separation makes it possible to consider
an ‘annealed’ network describing the averaged structure the process will encounter
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[113]. However, if the process has a similar time-scale to the network dynamics, it
is essential that both these aspects are modelled concurrently. Temporal networks
are well suited to describing such intermittent fluctuations, as they represent the
dynamics as a sequence of static network slices [15, 43, 53, 54]. Other approaches
have also been developed to describe networks with dynamic topologies. Adaptive
networks [49] and evolving dynamic networks [27, 43] make use of dynamical
equations and stochastic rules to describe how the strength of each edge varies
with time, whilst also allowing for changes in the size of the network through the
birth and death of nodes. Although these more complex approaches can capture an
even richer range of behaviours, they are a challenge to apply to real-world systems
because a unified and accepted theory of time-varying networks is still emerging
and new forms of analysis are often required [44].

2.2.3 Agent-Based Models

Agent-based models attempt to simplify the description of real-world systems by
modelling the behaviours of large numbers of autonomous ‘agents’ that move and
interact within a virtual environment [40, 51] (Fig. 2.3). Unlike compartmental and
network models, they provide a spatially- and physically-explicit representation
of a population of mobile interacting individuals. As an agent-based model is
essentially a physical representation of a given system, it is considerably more
detailed than the compartmental and network abstractions described above. Agents
can be used to represent any autonomous entity, from cells [45] to animals [110].
Each agent typically follows a prescribed set of rules controlling their behaviour
and interactions with their peers. In a cellular context, these rules might represent
the genetic circuits that control the expression of key genes in response to particular
stimuli [71, 109], whereas in the context of shoals of fish or swarms of insects
they would embody the behavioural responses each member makes in response to
neighbouring individuals [22].

A major benefit of using an agent-based approach, as opposed to considering
averaged group behaviours, is that the system is modelled as a set of discrete
elements. This makes it possible to directly include heterogeneity and stochasticity
into the behaviour of agents. Moreover, agent-based models allow for environmental
processes (e.g. diffusion of a chemical) to be more easily described and incorporated
using known physical laws [43, 51]. Including such processes in other more abstract
methodologies, such as network models, is difficult due to the simplifications that
are made.

Agent-based models are also ideally suited to the study of how complex group-
level features emerge from the behaviour of the individuals and their use of a shared
environment. By varying the rules that agents follow and observing the changes
in the group-level behaviours, it is possible to understand how these organisational
levels are linked and the causal factors controlling them. It is important to note that
by representing the discrete individuals in a system, we are able to capture features
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that averaging across the population would miss. For example, cells often exploit
noise and stochastic effects to differentiate their behaviours. A famous example of
this is the lac operon that encodes genes required for the transport and metabolism
of lactose [78]. In this system, cells that are genetically homogeneous use stochastic
noise to differentiate themselves into two separate populations: those that are active
and strongly expressing the lac operon, and those that are not. The fraction of cells
in an active state varies depending on the concentration of lactose. However, two
separate populations are always maintained. If an average of lac operon expression
was taken across the entire population, it would look as if each cell was tuning its
expression to match the concentration. Only when the individual cells are modelled,
as is done when using agent-based modelling, is a accurate understanding of the
bistable structure of the system gained.

The need to capture the dynamics of each component of a system results in
agent-based models being computationally expensive to run. While this limited
their use initially, recent advances in high-performance computing have opened up
the possibility to efficiently simulate large complex systems consisting of millions
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of interacting components [40, 51]. In many cases this is sufficient to provide an
accurate representation of real-world systems, and as a result, agent-based models
are now commonplace in many different fields including social behaviour [3],
ecology [48], microbiology [51] and economics [111]. The major difficulty that
remains is the requirement for a detailed understanding of the individual-level rules,
as such information is often unavailable.

2.3 Studying Signal Transmission Using an Agent-Based
Model

In this section we describe the agent-based model we use to assess how high-
level properties of the group, such as the transmission properties of the interaction
network, emerge from the underlying behaviours of the individual agents. This
model enables us to parameterise the random walk performed by each agent as
well as environmental properties such as physical collisions and the decay rate of
any signals deposited into the environment. We apply this model to a number of
different scenarios to explore the role of these factors and link the observed changes
in transmission to characteristics of the underlying interaction networks that are
generated.

2.3.1 Agent-Based Model Definition

The agent-based model consists of a population of N agents, each performing a
random walk in a two-dimensional environment with periodic boundary conditions.
Each agent is defined by a set of four variables describing its current infection
state s (either susceptible ‘S’ or infected ‘I’), its position within the environment
x stored as a two-dimensional vector, its two-dimensional heading vector O� (of unit
length, arbitrary length units), and the time remaining tr before a new heading is
randomly selected. Each agent is represented as a circle of unit radius r D 1, unit
mass (arbitrary mass units), and can propel itself with a constant force of 0.3 force
units per time unit in the direction it is heading. Furthermore, agents display no
inertia (i.e. the velocity of an agent will be zero when no force is applied) and no
friction is present in the environment. Parameter values and variables for the model
are shown in Table 2.1.

In order to allow indirect signal transmission via the shared environment, the
model includes a ‘signal field’ that records the signal strength at every location
within the environment. As an infected agent moves through the environment, it
leaves a ‘trail’ of the signal behind it, which is modelled as a local increase in the
signal field strength (Fig. 2.3b). At each time step ts D 0:02 time units, we begin
by updating the field to simulate signal decay. Assuming the signal has decay rate ˛
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Table 2.1 Model features and parameters

Aspect Parameter Description Value(s) Units
Simulation ts Simulation time step 0.02 Time unit

Environment N Number of agents 2–1500 –

– Environment dimensions 100� 100, 25� 25 Length unit2

– Boundary conditions Periodic, Solid –

– Physical collisions between agents On, Off –

Agent r Radius of agent 1 Length unit

� Turn-angle distribution bias – –

s Infection state S, I –

� Strength of attraction 0.001–0.2 –

Signal ps Transmission probability 0.01–1.0 –

˛ Decay rate 0.001–1.0 Time unit�1

per time unit, then the value of the field at each position has ˛tsF subtracted, where
F is the current value of the field. Next, we cycle through each agent and if tr > 0

then their position is updated according to x C 0:3 O�ts and ts is subtracted from tr.
Otherwise, if tr has reached zero, a new heading O� is chosen by generating a unit
length vector in the direction of a randomly selected angle over the interval [�� ,
�]. In addition, tr is set to a constant agent movement time (default is 1 time unit)
and the agent is then moved as described above. Finally, if the agent is infected, we
update the signal field to have a value of 1 for the entire space covered by the agent.
Conversely, if the agent is susceptible, then a transition to an infected state occurs
with probability psF, where ps is the signals’ probability of transmission through a
direct contact, and F is the maximum value of the signal field for the space occupied
by the agent. Because the path of each agent is determined by random sampling of
the heading vectors, agents move independently of one another.

In addition to agents following simple random walks, we also extended the model
to allow each agent to have its own point of attraction, which enabled the formation
of territories in space. When an agent is close to its point of attraction it moves
randomly, but as the distance from the point of attraction increases, the heading
distribution (which in the basic model is uniformly distributed around the circle),
becomes increasingly biased towards the point of attraction. This allowed us to
constrain the motion of each individual to a limited region of space. To implement
this behaviour we adapted the basic model such that new headings for agents were
sampled using a circular normal (von Mises) distribution over the range [�� , �].
The probability density function was given by,

f .x j �; �/ D
e� cos.x��/

2�I0.�/
; (2.3)

where � is the mean, � is the bias (analogous to the variance of a normal
distribution), and I0.�/ is the modified Bessel function of order zero [70]. This
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distribution was orientated such that its mean value � pointed from the agent
towards its’ point of attraction. The bias of the distribution around the mean was
then given by � D da� , where da is the distance between the agent and the point
of attraction, and � is a parameter governing the strength of attraction (Table 2.1).
Hence, the further away the agent is from its point of attraction, the more strongly
its heading will be biased towards it.

Although in the model described above, each agent occupies a non-zero area in
space, agents do not physically interact with one another. Hence, two agents are
allowed to occupy the same position at the same time. Clearly this is not realistic, as
packing constraints impose an upper limit on real world animal population densities.
Therefore, we optionally allow for the inclusion of physical collisions between
agents. To implement this feature a reaction force was applied whenever two agents’
boundaries touched one another. For a distance d between the boundaries of two
agents, a reaction force of Rf D 25d � log.d=2r/ was applied to both agents in
opposing directions. For the chosen parameters of our simulations (Table 2.1) this
enabled some limited overlap of agents, but prevented agents passing through one
another.

We initiated each simulation by randomly-selecting a single ‘seed’ individual
whose state was set to infected. We then followed the propagation of the infection
across the rest of the population. As transmission was stochastic, 1000 simulations
were run for each parameter combination and the average of these runs was used to
calculate the proportion of the population infected over time.

2.3.2 Role of Indirect Transmission Pathways

Interaction networks composed of both direct and indirect interactions (referred to
as ‘combined’ networks) have been shown to have fundamentally different transmis-
sion characteristics from those composed solely of direct interactions (referred to as
‘direct-only’ networks) [84]. To confirm that the addition of indirect interactions
affects the transmission properties of the group, we measured the progression of
signals spreading across the combined interaction networks generated by the agent
based model. This was then compared to signals spreading across groups where
the agents could only interact by direct physical contacts. Signal progression over
both network types was quantified by simulating SI transmission of a wide range of
signals that varied in both their transmission probability ps and their decay rate ˛.

For both network types and for all combinations of transmission probability ps,
and decay rate ˛ of a signal, the SI model produced sigmoid shaped infection curves
(Fig. 2.4a). Sigmoidal curves are a hallmark of density-dependent processes, such as
the spread of information or disease through a finite population. The early explosive
growth is due to the exponential nature of the SI dynamics where contact between
one infected and one susceptible agent can result in two infected agents. The later
slowing of spread arises from the gradual depletion of the pool of uninfected agents.
To compare the transmission among different types of signals, it is necessary to
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Fig. 2.4 Influence of indirect pathways on transmission rate. (a) The spread of three different
signals are shown. In one, the signal decays immediately (i.e. ˛ D 1) and so infections can
only spread via direct interactions. In the other two, the signals have decay rates of ˛ D 0:1 and
0.001, respectively, making indirect transmission possible. All three signals have a transmission
probability ps D 0:1. Small panels above show a time point from the agent-based model for
a representative simulation. Agents are shown by circles, which are grey if susceptible and red
if infected. The background colour denotes the strength of the environmental signal field; dark
red = 1 to white = 0. (b) Illustration of the static network ‘slice’ for a single point in time.
Circles denote agents, thick black edges denote direct interactions and thinner grey edges denote
indirect interactions. Line thickness corresponds to edge strength. (c) Average time to reach 50%
of the population infected tc for a range of signal decay rates ˛ and transmission probabilities
ps. (d) Comparison of the log2 fold change difference in tc between simulations using only direct
interactions and those incorporating both direct and indirect interactions. Simulations for all panels
contained 250 agents and are the average of 1000 simulations

define a feature of each growth curve that reflects the overall transmission speed.
We chose to use the time taken for 50% of the population to become infected to
define the characteristic time of infection tc. Larger tc values correspond to slower
transmission through a population. In order to more easily assess the size of changes
in transmission, we normalized (divided) the tc for the combined networks by the
respective tc times for the direct-only networks. This provided a fold change in the
tc value that could then be compared for all signal decay rates ˛ and transmission
probabilities ps (Fig. 2.4d). Positive log fold changes would indicate that collisions
lead to a slower transmission, whereas negative values correspond to an accelerated
transmission rate.
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A comparison of the tc times between the direct-only and combined networks
revealed that transmission was considerably slower in the direct-only networks for
signals with identical transmission probabilities (Fig. 2.4c). The addition of indirect
interactions reduced the tc time by up to 80% for signals with a low transmission
probability and small decay rate (Fig. 2.4d; ps D 0:01, ˛ D 0:001). In contrast,
for signals with high transmission probability and rapid decay rate, the addition
of indirect interactions had a much weaker effect, reducing the tc times by only
15% (Fig. 2.4d; ps D 1, ˛ D 1). Therefore, the addition of indirect transmission
opportunities greatly increases the speed of transmission between group members.

This accelerated transmission derives from the impact of indirect interactions
upon the connectivity (i.e. the degree) of the agents. When direct interactions are
possible, the transmission rate is fully dependent on the rate of physical contacts
generated by the random walks performed by each member of the population to
transmit the signal. Moreover, this rate scales linearly as the number of infected
individuals grows. In contrast, when indirect transmission becomes possible because
an infected agent deposits a signal into the environment, the effective area for
indirect transmission grows. It is as though the size of the agent grows over
time, and has the effect of increasing the number of interactions, and therefore
the connectivity, of infected agents. For fast decaying signals, this effect will be
constrained as the signal trail will be of a limited length (see Fig. 2.4a, ˛ D 0:1

top panels). However, if the decay rate of a signal is sufficiently small, the trail
will continue to grow enabling the entire environment to quickly become a potential
transmission pathway, even though the infected agents only take up a small fraction
of the total area (see Fig. 2.4a, ˛ D 0:001 top panels). In all cases, the increased
connectivity that is gained by the indirect pathways will lower the overall diameter
of the interaction network and help accelerate transmission [84].

Another major factor influencing the interaction rate between individuals in a
group is their density. To assess how the density of individuals affects the rate of
transmission, we produced combined networks from the agent based simulations
as before, but with 10, 50 and 250 agents. As the size of the environment was
fixed, the agent density varied over an order of magnitude (0.3–8% of the total
area). For all agent densities, we again found that the transmission speed over
combined networks was increased relative to networks composed of direct edges;
signals with a low transmission probability and small decay rate saw the greatest
enhancement in transmission for the combined networks (Fig. 2.5). Furthermore,
the agent density also modulated the magnitude of the transmission enhancement
brought about by the addition of indirect edges; at low agent densities, the strength
of the enhancement was maximal (Fig. 2.5, N D 10), whereas at high agent densities
the enhancement was weaker (Fig. 2.5, N D 250). In the case of a slow decaying
signal with high transmission probability (˛ D 0:001, ps D 1:0), the difference in
tc between direct and combined networks rose from 1.4-fold to 2.3-fold for 250 to
10 agents, respectively. This suggests that the beneficial role of indirect pathways
has a greater impact when agents are sparse, raising the interesting possibility that
natural populations broadly distributed in space will more heavily rely on indirect
transmission pathways [25].
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The reason for this density dependence derives from the presence of indirect
edges. At low agent densities infected agents will have a low rate of physical
contacts, whereas they may frequently visit locations that were previously visited
by other agents. Hence, at low agent densities indirect interactions are the primary
channel for transmission. As the density of the agents increases, so does the contact
rate. Therefore, transmission at high agent densities will occur primarily via the
strongly-weighted direct interactions.

2.3.3 Role of Territories in Space

Studies of the mobility patterns of humans and other animals have shown that
individuals often revisit specific locations over time [18] and maintain specific
areas as territories. In humans, examples include homes, workplaces, restaurants,
and the transit routes that connect them [108]. In other animals these locations
take the form of watering holes, foraging patches, leks, valuable resources that
must be defended, or nesting areas where there are brood that must be regularly
provisioned. Depending upon the system and context, biases towards particular
locations have been given many different names, including recurrence [18, 39, 104],
recursion [8, 12, 13, 33], site tenacity [50], site allegiance [26], site recognition
[97], site fidelity [36, 37, 65, 83, 99], spatial fidelity [100], ortstreue [91] and route
fidelity [90].

The pervasive nature of this phenomenon across so many different animal species
was the motivation for the first extension of the basic random walk model, to
allow for the formation of territories. The aim was to investigate how individual-
level spatial preferences influence transmission of a signal across the population.
We hypothesized that compared to a population in which all agents perform
random walks, a population of agents that exhibit spatial fidelity should display
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slower transmission over the group-level interaction network. This is because a
system composed of spatially constrained agents should intuitively be dominated
by short-range local interactions. Put another way, when each agent interacts
with only a small set of nearest neighbours, transmission should be slower than
when agents move freely as then all agents can potentially interact with all
other agents.

We used a simple model of territory formation where each agent performs a
random walk biased towards a single point of attraction (method described above).
A unique point of attraction was used for each of the 100 agents, and the points
of attraction were arranged as a uniformly spaced grid within an environment with
periodic boundary conditions. Simulations were then run for various territory sizes
by varying the strength of attraction � . This resulted in a range of agent movement,
from distinct territories formed by agents that remained very close to their point of
attraction (� D 0:2), to nearly non-existent territories formed by agents that were
only slightly attracted to their point of attraction, and which therefore moved much
like a random walker (� D 0:001). Examples of a representative simulation output
and the paths taken by each agent are shown in Fig. 2.6a.

To measure the effect of territories upon signal transmission, we compared the tc
time of the combined networks with territories to those of the original agent-based
model in which agents performed an unbiased random work. For high strengths
of attraction (� D 0:2), we observed a more than 2-fold increase in tc for all signal
decay rates and transmission probabilities (Fig. 2.6c). This confirmed our hypothesis
that spatially structured populations (i.e. those where an agent’s movement is
spatially restricted) also experience reduced transmission speeds. We also found
that this increase was greater for signals with lower transmission probabilities and
larger decay rates. Under these conditions, agents were so highly constrained to the
vicinity of their point of attraction that they only had very limited connectivity to
their nearest neighbours (Fig. 2.6a). This led to interaction networks that were highly
compartmentalised with multiple sparsely connected components (Fig. 2.6b). These
features reduce mixing of the agents and hamper the ability for a signal to propagate
throughout the entire population [95] (Fig. 2.6c).

For low strengths of attraction (� D 0:001), the tc times were very similar to
the original agent-based model in which agents performed unbiased random walks
(Fig. 2.6c). This is to be expected given that as the strength of attraction decreases,
a movement similar to an unbiased random walk is produced. Interestingly, for
intermediate strengths of attraction (� D 0:05), both decreases and increases in
transmission speed were observed, depending on the signal transmission and decay
characteristics (Fig. 2.6c). Slower transmission was found when signals had large
decay rates (˛ D 1) and low transmission probabilities (ps D 0:01). Such signals
will find it difficult to exploit indirect pathways. Faster transmission occurred for
signals with low decay rates, as such signals are better able to use indirect pathways.
Furthermore, the speed of transmission also increased for higher transmission
probabilities, even when the signal decay rate was high.

The presence of both enhancement and inhibition of transmission at intermediate
attraction strengths can be explained by considering the relation between the average



2 How Behaviour and the Environment Influence Transmission in Mobile Groups 33

(a)

(c)

 = 0.2  = 0.05  = 0.001

(b)

Si
gn

al
 d

ec
ay

 r
at

e,
 100

10

10

10

100

10

10

10

100

10

10

10

Si
gn

al
 d

ec
ay

 r
at

e,
 

Si
gn

al
 d

ec
ay

 r
at

e,
 

0.90.70.50.30.1
Transmission probability, ps

0.90.70.50.30.1
Transmission probability, ps

0.90.70.50.30.1
Transmission probability, ps

= 0.2 = 0.05 = 0.001

lo
g 2

(f
ol

d 
ch

an
ge

)2.0

1.5

0.5

0.0

Fig. 2.6 Influence of agent territories on transmission rate. (a) Agent-based simulations shown
at t D 500 time units for 100 agents with uniformly spaced points of attraction and attraction
strengths � D 0:2, 0.05 and 0.001. Black circles denote the starting point of the agent, which
also acts as the point of attraction. Gray lines show the path of each agent with darker grey
regions denoting an overlap between multiple agents. Red line in each simulation shows the path
of a single agent. (b) Illustrative time averaged interaction networks generated by the agent-
based simulations. Circles denote agents, thick black edges denote direct interactions and grey
edges denote indirect interactions. Line darkness and thickness corresponds to edge strength, with
darker and thicker edges corresponding to stronger edges. (c) Comparison of the log2 fold change
difference in tc between simulations where the territory is present and those where agents perform
random walks

number of interaction partners of each agent (their degree), and the average strength
of their interactions (edge weights). At low attraction strengths (� D 0:001), agents
can move freely throughout the entire environment (Fig. 2.6a, right panel). This
allows them to interact with potentially all other agents, but on average it results
in weak interactions between any given pair of agents. This produces interaction
networks in which agents have a high degree with many long-range links (i.e. links
between agents with points of attraction very far from each other), but where the
majority of these links are weak (Fig. 2.6c, right panel). In contrast, intermediate
attraction strengths (� D 0:05) lead to the formation of territories that significantly
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overlap with all nearest neighbours, and potentially more distant agents (Fig. 2.6a,
middle panel). In this scenario, an agent’s movement is restricted to a much smaller
area, resulting in a greater number of repeated interactions with neighbours over
shorter periods of time. This generates an interaction network where each agent is
connected by strongly weighted edges to it’s neighbours (Fig. 2.6c, middle panel).
Varying the attraction strength alters the size of the territory and so also the number
of neighbours it includes. However, as the attraction strength is reduced the potential
area for movement also increases. This reduces the interaction rate between the
agents and thus leads to an interaction network containing weaker edge strengths.
Optimal transmission rates are achieved by trading-off these factors to generate
a network in which the weighted diameter is minimised, which occurs when the
shortest paths between agent pairs typically consist of a small number of strongly
weighted edges.

2.3.4 Role of Physical Collisions Between Agents

Across the natural world, there are numerous examples of populations in which
the individuals are so crowded that movement becomes difficult. For example,
in bacterial colonies, nests of social insects [47], penguin huddles [117], and
human crowds [16], the individuals may be so densely-packed together that the
group itself becomes ‘jammed’ with some individuals unable to move. Most
models of transmission over animal contact networks have ignored such physical
considerations [63].

To assess how physical collisions between agents might influence signal trans-
mission in mobile groups, we considered a simulated environment of 25 � 25 length
units2 with solid boundary conditions to allow for higher agent densities than in
previous simulations. We ran three sets of simulations containing 10, 25 and 50
agents (densities of 5%, 12.5% and 25% of the total area, respectively) and measured
tc for each set. We hypothesized that the introduction of collisions would reduce
transmission speeds via the constraint it places on an agent’s movement, and that
this slowing-down would be exaggerated at high agent densities.

As expected, we found that collisions slowed transmission for all types of
signal (Fig. 2.7a). The magnitude of this effect was greater at high agent densities
(Fig. 2.7b), and showed a non-linear dependence upon the signal characteristics
(Fig. 2.7a). Specifically, for signals with a low transmission probability and high
decay rate (ps D 0:01, ˛ D 1), a more than 2-fold increase in the tc time was
observed.

An obvious explanation for the slower transmission when agents can collide is
that the dense packing severely reduces individual movement, and constrains both
direct and indirect interactions towards the immediate neighbours (Fig. 2.7c). This
is in stark contrast to when collisions are absent, where infected agents can move
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Fig. 2.7 Role of physical collisions between agents on transmission rate. (a) Comparison of the
log2 fold change difference in tc between simulations where collisions between agents are present
and those where collisions are absent. (b) Infection time course for a signal with decay rate ˛ D
0:1 and transmission probability ps D 0:1 (highlighted as black point in panel above) where
simulations contained 10, 25 and 50 agents. (c) Illustration of simulations with physical collisions
between agents absent and present. Hypothetical simulations are shown over time with circles
representing agents that are susceptible if grey or infected if red. When collisions are absent, agents
can overlap with one another. Networks below each simulation illustrate the general structural
features over time. Circles denote agents, thick black edges denote direct interactions and grey
edges denote indirect interactions. Line darkness and thickness corresponds to edge strength, with
darker and thicker edges corresponding to stronger edges

throughout the environment to generate direct and indirect interactions with all
other members of the population. As described previously, such increased mixing
greatly reduces the overall diameter of the network and increases transmission
speeds [84]. Long-range interactions also allow for a signal to be seeded at many
different locations within the environment, leading to a rapid transmission across
the entire population (Fig. 2.7c). Conversely, when collisions are present individuals
become confined to a local area due to physical exclusion by nearby agents, hence an
infected individual can only infect its nearest neighbours (Fig. 2.7c). At the highest
densities, the interaction network is essentially a direct reflection of the agents’
spatial locations, with the all edges reflecting short-range interactions between
immediate neighbours. Such networks only allow transmission in the form of a
moving infection ‘front’ passing through the densely-packed population. This limits
the role of indirect transmission in ‘seeding’ infections in new areas and results in a
slowing-down of transmission.
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2.4 Conclusions and Future Directions

To understand how the behaviour of an individual within a group can affect the trans-
mission of a signal, it is essential to establish causal relationships between these two
organizational levels. In previous work, we applied a dynamic network methodology
to an empirical dataset describing the movement and interactions of individual ants
living within a communal nest [84]. However, because the behaviour of individuals
could only be observed and not controlled, it was impossible to establish a direct
link between individual-level behaviours and group-level transmission properties.
Here, we used an agent-based model to simulate populations of individuals whose
behaviour can be precisely controlled. This allowed for direct links to be made
between an individual’s behaviour (e.g. movement), environmental factors (e.g.
signal decay rate, agent density and physical collisions), and transmission properties
of the system.

Our simulations have revealed that indirect transmission pathways can play a
significant role in shaping the spread of infections with differing environmental
decay rates; even signals with a very low probability of transmission can when
deposited into the environment propagate quickly throughout an entire group, if
they are able to remain viable for some period of time. Both individual behaviour
and group density also play an important role in the transmission capabilities of
the group. Higher agent densities led to the faster spread of an infection. However,
at very high densities, if physical collisions are considered then the movement
of each individual becomes sufficiently impaired to reduce the ability for long-
range interactions to form and slows transmission. More complex behaviours
such as territory formation also modulated transmission rate, with a trade-off
observed between maintaining stronger but shorter range interactions for smaller
territories, or weaker but longer range interactions when an individual is free to
diffuse throughout the entire environment. Optimal transmission was found when
individuals maintained territories of intermediate size.

The focus of this work has been to simulate the transmission of a contagious
signal across a group of mobile agents whose behavioural rule remains fixed
over time. This idealised ‘toy’ model is deliberately simple to allow for an easier
interpretation of the results and to provide clearer links between the behaviours
of individuals and high-level collective transmission properties. Nevertheless, it is
important to recognise that these simplifications ignore the fact that individuals
in many real-world animal populations do exhibit strong behavioural responses
to the presence of disease [35] and that these changes can significantly alter the
transmission properties of the group [34]. Indeed, many animal species exhibit
strong aversive behaviour to others that appear to be disease-carriers [24], and in
highly social species, responses to the presence of disease may also be implemented
by coordinated group-level responses. For examples, in human societies quarantines
and curfews are used to reduce the potential for interactions between susceptible and
infected individuals. Incorporating some form of adaptive behaviour would offer an
interesting future direction for this work that the methodology is ideally suited to
tackle.
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This work was made possible by the availability of high-performance computing
resources that enable large-scale simulations to be performed. A challenge often
faced when using this type of approach is that the complexity of the underlying
model makes interpretation of the results difficult. Here, we have exploited the
wealth of knowledge in network theory to better understand how the structural
features of the dynamic interaction networks generated by simulations influence the
general transmission properties of the system. Such a combined approach offers a
powerful means to bring together both numerical methods and proven mathematical
theories to understand the role of direct and indirect pathways in natural systems,
and provides a means to engineer new distributed systems with desired transmission
capabilities.
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Chapter 3
Sensitivity to Temporal and Topological
Misinformation in Predictions of Epidemic
Outbreaks

Petter Holme and Luis E.C. Rocha

Abstract Structures both in the network of who interact with whom, and the
timing of these contacts, affect epidemic outbreaks. In practical applications, such
information would frequently be inaccurate. In this work, we explore how the
accuracy in the prediction of the final outbreak size and the time to extinction of the
outbreak depend on the quality of the contact information. We find a fairly general
stretched exponential dependence of the deviation from the true outbreak sizes
and extinction times on the frequency of errors in both temporal and topological
information.

3.1 Introduction

The propagation of infectious diseases in populations is an emergent property of the
interaction between people and pathogens [1, 2]. Temporal networks is a stylized
framework for describing the interaction within a population [3, 4]. It records who
is in contact with whom, at what time, but omits information about the details of
the encounters. In principle such details could also be important since individual,
social and environmental variations affect contagion [5–7], but since our interest
is to investigate the importance of temporal network structure, rather than accurate
prediction, we leave them out by assuming identical individuals.

The theme of this book is to understand the role of structures in time and network
topology on disease spreading. At the time of writing there are several different
data sets recording the temporal contact networks of human proximity in which
for example airborne diseases spread. Empirical data however is typically noisy
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either due to reporting or recording errors. This random information added to data
affects the correlations in contact patterns and can potentially result in errors when
analysing the data. In this chapter, we look at the sensitivity of epidemic variables
with respect to simulated temporal and topological noise. Our work connects to
the general questions about predictability of disease spreading [8, 9]. In this area,
researchers have studied how different limitations to the models of disease spreading
or incompleteness of the data affect the prediction results [10, 11]. Furthermore,
researchers have investigated the internal fluctuations in the timings of contacts on
the prediction of epidemic outbreaks [12–14]. The novel angle in our approach is to
contrast two different types of misinformation—temporal and topological—and two
different characteristics of an outbreak—the outbreak size and the time to extinction.

We use empirical, temporal proximity networks as the underlying contact
structures for the disease spreading. Then we study the effects of inaccurate labeling
of the nodes or time stamps on the predicted outbreak size and extinction time
of susceptible-infectious-recovered (SIR) simulations on these modified data sets.
The SIR model is the canonical compartmental model for diseases that gives
immunity upon recovery [1]. It could be used to model e.g. HIV infection in case of
treatment, that is, where the infectious individual becomes recovered after starting
anti-retroviral treatment, Ebola in case of high death rate, measles and chickenpox.
Simulations start with the entire population being susceptible. Then, at some point,
one of the individuals becomes infectious. During this state, the infectious can
spread the infection to other susceptible individuals that he or she is in contact
with. As in other compartmental models, one assumes such a contagion to happen
with a fixed probability per contact. After being infected for some fixed time, the
infected individuals recover. When there are no infectious individuals, the outbreak
is extinct. The severity of an outbreak can be quantified by various parameters. We
use the outbreak size ˝ (the fraction of recovered individual after the outbreak is
extinct) and the extinction time � (the duration of the outbreak in the population)
as measures of the outbreak severity. In the remainder of this chapter, we will go
over the background theory and technical details before we present our simulation
results.

3.2 Preliminaries

3.2.1 Definitions

We represent the temporal network G as a sequence of contacts .i; j; t/—to be
interpreted as individual i being in contact with individual j at time t [3, 4]. The
number of individuals N (or nodes) is called the size of the temporal network. We
use C to represent the number of contacts and M the number of pairs of individuals
that are in contact at least one time. Furthermore, we let T represent the duration of
the data (the time between the first and last contacts).
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Table 3.1 Basic statistics of the network data sets. N is the number of individuals; C is the number
of contacts; T is the total sampling time; 	t is the time resolution of the data set and M is the
number of links in the projected static networks. We also list the original reference to the data

Data set N C T 	t M Ref.

Prostitution 16,730 50,632 6.00 y 1 d 39,044 [15]

Conference 113 20,818 2.50 d 20 s 2,196 [16]

Hospital 75 32,424 96.5 h 20 s 1,139 [17]

School 236 60,623 8.64 h 20 s 5,901 [18]

Gallery 200 5,943 7.80 h 20 s 714 [19]

Office 92 9,827 11.4 d 20 s 755 [20]

3.2.2 Contact Networks

We base our study on empirical data sets of human proximity. In other words, they
capture when two persons are in close proximity, and who they are. Such data
sets represent the structure over which infectious diseases spread. We list the basic
statistics—sizes, sampling durations, etc.—of the data sets in Table 3.1.

Several of our data sets come from the Sociopatterns project (sociopatterns.org).
These data sets are recorded by radio-frequency identification sensors that detect
contacts between people within 1–1.5 m. One of these datasets comes from a
conference [16] (Conference), another from a school (School) [18], a third from
a hospital (Hospital) [17], a fourth from an art gallery (Gallery) [19] and a fifth
from office (Office) [20]. The Gallery and School data sets comprise several days.
We use the first day in both cases. Finally, the Prostitution data comes from self-
reported sexual contacts between female sex-workers and their clients [15]. Since
the contacts represent more than just proximity (i.e. sexual activity), this is a special
form of proximity network.

3.2.3 Epidemic Simulation

The SIR simulations proceed as follows. First, all individuals are initialized to S
(susceptible). Then, one node i0 is selected randomly to become the seed of the
infection. i0 is made infectious at a random time t0 between 0 and T . Then we go
through the contacts of the data from the first to last. If the contact happens to be
between a susceptible and an infectious individual, then, with a probability � the
susceptible becomes infectious. An infectious individual stays infectious ıT time
steps (in units of	t) before turning recovered. In other words, ı is the fraction of the
duration of the data set that a node is infectious. When there are no more infectious
individuals the outbreak is considered extinct. This definition is slightly different
from the most common [1], where an infectious individual has the same chance of
getting recovered every time step. Our model is justified since the distribution of
infectious times is narrow in real life [21] and this approach is also algorithmically
simpler [22].
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3.2.4 Controlling Misinformation

To model temporal misinformation, we replace a (randomly selected) fraction 

of the time stamps of the contacts of G by random times in the interval Œ1;T�.
Similarly, for investigating the sensitivity with respect to the graph information,
we randomly replace a fraction f of the node id-numbers by random numbers in
the interval Œ1;N�. The only two constraints we impose in this randomization is that
the resulting contacts should not be between a node and itself, and not already be
present in the data. If a drawn node-id number does not satisfy the constraint, we
redraw the node-id.

Technically, this approach is similar to randomization techniques [23, 24] where
the temporal network structure is investigated by systematically replacing some
aspect—like the timing of events—by random values and studying the response
to quantities characterizing the functionality of the network (like average spreading
speed, etc.). The difference is that we tune up the randomization, starting from zero
(i.e. the original network).

3.2.5 Measuring Sensitivity to Misinformation

The two epidemiological variables we use to characterize an outbreak are the
average final outbreak size ˝—the fraction of the population that are in state R
after the outbreak is over—and the extinction time �—the time between the first
and last presence of an infected individual in the population. Let

	˝t.
; ı; �/ D h˝.G
t; ı; �/i �˝.G; ı; �/; (3.1)

where h � i denotes the average over an ensemble of networks G
t in which a fraction

 of misinformation has been imposed to the time stamps of the contacts (according
to the preceding section) and G is the original network. Analogously, we define	˝n

for the deviation of outbreak sizes with respect to topological misinformation (i.e.
rewiring of contacts generating network G
n), and	� t and	�n, for the deviations in
the prediction of extinction times in the presence of temporal and topological noise
respectively.

In principle,	 (in any version) could be negative, but for our data sets that rarely
happens—the practical minimum is 	 D 0 for � D 0. To study the 
 dependence
of 	, we need to look at a summary statistic over the SIR parameter space. In this
work, we will focus on the worst case scenario. We will use the summary statistic

!.
/ D max
ı;�

	.
; ı; �/ � min
ı;�

	.
; ı; �/: (3.2)

I.e. the difference in the range of 	 values. This quantity will be dominated by
maxı;� 	, but also give a slight extra weight to networks with a negative minı;� 	.
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Fig. 3.1 Heatmap of the difference 	˝ between the average outbreak size ˝ for the Hospital
manipulated data set, where we vary a fraction 
 of misinformation in the node identities, and the
original data set. The different panels represent different values of the error rate 


3.3 Results

3.3.1 Impact of Misinformation Throughout the SIR
Parameter Space

As a first numerical study, we investigate 	˝n.
; ı; �/ (Fig. 3.1) and 	�n.
; ı; �/

(Fig. 3.2) for the Hospital data set. We chose this data set as a case study because it
is of intermediate size and heterogeneity both in the temporal and topological struc-
ture. It is also highly relevant for the spread of healthcare associated infections [25].
We study an exponential sequence of 
-values—
 D 10�3; 10�2; 10�1; 1—and,
in the first place, only misinformation concerning the node identities. As seen in
Fig. 3.1, the response to the noise is a non-linear function of both 
, ı and �. For

 D 10�4, the impact is less than 	˝n < 0:1 throughout the SIR parameter space.
For 
 D 10�3, it reaches values around 0:2, while for larger 
-values,	˝n > 0:5 for
a large part of the parameter space. The shape of the region of high deviation also
changes with 
. It seems, rather universally, the case that 	 reaches its maximum
for large ı-values, but for large 
, also relatively small ı-values can show large
deviations.
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Fig. 3.2 Heat map of the difference 	� between the average time to extinction � for the Hospital
manipulated data set, where we vary a fraction 
 of misinformation in the node identities, and the
original data set. The different panels represent different values of the error rate 


For prediction of the extinction times, the absolute values of 	 are smaller for
temporal misinformation in comparison to topological misinformation (Fig. 3.2).
In other words, in the worst case, the prediction is somewhat better for � than ˝.
Furthermore, the parameter dependence is quite different. The maximal deviations
happen for small ı-values. This is not so surprising—for relatively high values of
ı and �, the outbreak will last as long as the length T of the data set, thus making
	 small. If ı is small enough, the disease will die out without spreading much and
thus 	 will also be rather small for small ı-values—the largest 	� thus happens for
intermediate ı.

The impact of temporal misinformation follows a similar picture to the impact
of topological misinformation. The average outbreak sizes ˝ differs most from the
unperturbed network when the disease duration is as long as possible (Fig. 3.3). The
impact changes non-linearly with both ı and �. For the extinction time (Fig. 3.4),
the situation is a bit different however. Now the largest impact does not necessarily
happen for the largest ı-values. Whereas for 
 � 10�2 it does happen at the largest
ı, when 
 > 10�2 the maximum is located at lower ı-values.

Several of the observations for the Hospital network holds for other data sets as
well. However, the Prostitution network has a fairly different pattern (with negative
	˝t values for a large part of the parameter space). The origin of this anomalous
behavior comes from the growth of the data (the number of contacts per time
unit and the number of individuals present) was first pointed out in Ref. [14] and
discussed further in Ref. [26].
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Fig. 3.3 Heat map corresponding to Fig. 3.1, but for misinformation about the timing of contacts

3.3.2 Impact of Error Rate on Prediction

To better understand the response of the level of misinformation on the prediction
accuracy, we study !.
/—the difference between the largest and smallest 	-values
(Eq. 3.2). The results for this quantity are displayed in Figs. 3.5 (for ˝) and 3.6
(for � ). The lower limit of ! is trivially !.
 D 0/ D 0. The shape of the !.
/ is
concave (meaning the effect of increasing 
 is largest for small 
). In fact, we find
the functional form fitting well to a stretched exponential convergence

e!.
/ D !max
�

1 � exp.�a
b/
�

; (3.3)

where a and b are fitting parameters. The parameter b (typically in the interval 0 <
b < 1) is called the stretching exponent and its deviation from one indicates how
much the tail is stretched compared to an exponential decay [27]. As far as we
can see, there is no simple explanation for this functional form. Rather, we believe
that in general the !.
/-curves can have other shapes than stretched exponentials.
Indeed, the points that are off the fitting curves (e.g. the second point in the Gallery
graph of Fig. 3.6) are probably not a result of bad convergence, but structures in the
data sets. The three fitting parameters of Eq. 3.3 are nevertheless concise ways of
summarizing the shapes of the !.
/-curves and revealing how the temporal network
structure influences the impact of misinformation.
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Fig. 3.4 Heat map corresponding to Fig. 3.2, but for misinformation about the timing of contacts

As alluded to, the perhaps most interesting parameter of the stretched exponential
fits is the stretching exponent b. If b D 1, the decay is exponential. If b < 1

the decay is stretched (or slower than exponential). For a given error rate 
, the
difference 	 is larger for small b. As seen in Fig. 3.7, it is indeed the case for
all scenarios and data sets that 0 < b < 1. The sparsest data set (in terms of
number of contacts per individual), Prostitution, has a stretching exponent close
to one. For the other data sets there is at least one exponent that is far off from one.
There is, however, no straightforward explanation for the values of the stretching
exponents in terms of the basic parameters of the temporal network data sets (as
listed in Table 3.1). In future work, we will seek explanations in terms of quantities
describing the temporal network structure [26, 28]. The smaller values of b for the
Conference and Hospital data sets in case of �t happen because if we redistribute
the time stamps, there will be less chance for the epidemics to die in comparison
to the original data in which contacts are more concentrated at certain intervals of
time. Note that in both cases, we consider night periods that correspond to absence
of activity in the original data set. For the School data set, where individuals are
clustered into network communities (i.e. the classes) the outbreak in the manipulated
network is much larger since a weak randomization of id-numbers is sufficient to
better distribute the links, making the network more random and thus facilitating the
disease spread to the entire network. Note that in this case, there are many links at a
given time step and thus the distribution of time stamps will not be much affected.



3 Prediction Sensitivity in Temporal Network Epidemiology 51

10–4

10–3

10–2

0.1

1

10–3 10–2 0.1 1

time
network

Hospital Conference
10–4

10–3

10–2

0.1

1

10–3 10–2 0.1 1

10–4

10–3

10–2

0.1

1

10–3 10–2 0.1 1

Office
10–4

10–3

10–2

0.1

1

10–3 10–2 0.1 1

School

10–4

10–3

10–2

0.1

1

10–3 10–2 0.1 1

Prostitution
10–4

10–3

10–2

0.1

1

10–3 10–2 0.1 1
Gallery

error frequency, ε error frequency, ε

error frequency, ε error frequency, ε

error frequency, εerror frequency, ε

de
vi

at
io

n,
 ω

de
vi

at
io

n,
 ω

de
vi

at
io

n,
 ω

de
vi

at
io

n,
 ω

de
vi

at
io

n,
 ω

de
vi

at
io

n,
 ω

Fig. 3.5 !˝ , the difference between the largest and smallest 	 values over the SIR parameter
space as a function of the node-identity misinformation frequency 
. The curves are Levenberg–
Marquardt fits to a stretched exponential form, !max.1� e�a
b

/

Gallery is a special case because groups of individuals visit the museum at fixed time
slots. Possibly in this case, the disease spreads for longer times after redistributing
the nodes because new links are now made between early and late museum visitors.
This effect may sustain the disease for longer times and also affect the outbreak size.
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Fig. 3.6 The figure corresponding to Fig. 3.5 but for extinction times � rather than outbreak
sizes ˝

However, redistributing the time stamps will have little impact since individuals
were not uniformly active during the day, for example, a new time stamp may occur
at time t D 10 for an originally late visitor, i.e. all other connections are made at
later times, therefore this new link does not contribute much to the disease spread.
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Fig. 3.7 The the exponent b
of the stretched exponential
fits in Figs. 3.5 and 3.6. As
elsewhere, ˝n relates to the
response to the prediction of
the average outbreak size ˝
in the case of misinformation
in the node identity
information. Error bars
represent standard errors
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3.4 Discussion

In this work, we have investigated the ability to predict outbreaks of disease given
imperfect data on the temporal contacts of a population. We contrast misinformation
in the identities of the individuals and the time stamps of the contacts. For both
misinformation scenarios, the deviation from the accurate prediction can reach 80%
for 100% error frequency 
. Even for small errors, the deviation may differ 10 to
20% for some epidemiological parameters. However, the area in the parameter space
of such a bad prediction is rather small. Furthermore, the functional dependency
of the degree of mis-prediction on 
 is similar for the two scenarios—a stretched
exponential decay. At this point, we do not have any explanation for this behavior.
It would be interesting to know the conditions on the temporal network structure for
such a stretched exponential decay to occur.

In a wider context, this work further illustrates the importance of temporal
structure for predicting disease spreading—it seems as important as the topological
information. This is along the lines of observations in e.g. Refs. [26, 29–31], and a
further reason for theoretical epidemiologists to investigate the role of the temporal
structure in human contact patterns for disease spreading.

It would be interesting to explore this problem with alternative models for the
misinformation. In real contact patterns, there would probably be more missing
contacts [11] than false contacts—i.e. the assumption that the number of contacts is
preserved as 
 increases could probably be relaxed. Another step towards increased
realism would be to assume the time stamps deviate from their true value by some
random variable. This is expected in data collection surveys where participants have
to remember the dates of events, for example, of sexual contacts [32], or when the
date of the event is recorded at random times after the actual date of the event [15].
There are many other directions to proceed towards an understanding of the relation
of incomplete information and the prediction of epidemics.
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Chapter 4
Measuring Propagation with Temporal Webs

Aaron Bramson, Kevin Hoefman, Milan van den Heuvel,
Benjamin Vandermarliere, and Koen Schoors

Abstract We present a form of temporal network called a “temporal web” that
connects nodes across time into a single temporally extended acyclic directed
graph as a way to capture contingent behaviors. This representation is especially
useful for uncovering and measuring social influence. We first present the general
temporal web technique and then use it to analyze three empirical datasets: political
relationships in the game EVE Online, interbank loans of the Russian banking
system, and Twitter posts regarding the H1N1 vaccine. For each dataset we provide a
detailed breakdown of the contingent behaviors using an approach we call temporal
influence abduction. We then construct a temporal web for each one and describe
the patterns of propagation found. Based on these patterns of propagation we infer
more general properties of influence and the impact of certain types of behaviors in
each system.

4.1 Introduction

Tracking and measuring the propagation of diseases, ideas, etc. across a population
is an academic problem of great interest as well as a practical problem with
important implications. There are many approaches using system dynamics and/or
network contagion – and the use of various kinds of temporal networks is the
latest advancement in this effort. Even within temporal networks there is significant
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variation among approaches, as exemplified by the papers in this volume. Multiple
demands of analysis have lead researchers towards temporal networks [31, 32]; two
major pulls are preserving the time ordering of interactions [24, 39, 48, 58, 60] and
constructing centrality measures for dynamic networks [8, 53, 55, 72].

Contributers to the field of temporal networks are still sorting out best practices
and identifying which construction is most appropriate for which questions, and
towards that end we demonstrate the use of a version of temporal networks
and related measures called “temporal webs” to capture and analyze a variety
of problems. Temporal webs are distinguished by their use of cross-temporal
interaction and/or inheritance links. So, rather than being a sequence of network
time slices connected by node membership, they are always monolithic graphs of
the interaction structures across time. Similar, or perhaps even identical, structures
have presumably gone by other names; we are not trying to make a serious
nomenclature stake, just to identify the set of constructs we are addressing here. A
pure temporal web has only cross-temporal edges to create a single acyclic directed
graph. This construction has certain advantages in communication networks for
which transmission and reception may take several time steps. It also embodies
some specific advantages for analysis through the availability of approaches that
work on large, sparse directed adjacency matrices.

In what follows we first describe the specifics in building one of the temporal
web-style networks and some analysis approaches for them. The focus here is on
how to approach problems, and especially the question of influence, by thinking
about dynamic interactions as a temporal web. We then go on to demonstrate this
approach by applying it to a variety of propagation problems on empirical networks.
In this paper we use temporal webs to describe cascades of animosity on political
alliance networks in the game EVE Online, understand risk propagation on the
Russian interbank loan network, and the diffusion of emotional affect in the Twitter
social network. Although we interpret the results in light of each subject matter, our
focus here is on the methodology rather than the substantive issues, so no domain
knowledge into these subjects is expected or required.

Temporal web thinking is particularly useful for identifying the most influential
nodes in a network – one of the key pursuits in network epidemiology and network
theory more generally [9, 12, 14, 19, 38, 40, 41, 47, 51, 52, 57, 66, 72, 73]. One can
think of influence in two ways, one is to identify the role that an individual plays in a
particular chain of events, and the other is to identify its potential role in all possible
chains of events. In the first case it is specific to a sequence of observations and in
the second it is a dispositional property (like being fragile or brave) that can only
be assessed hypothetically (e.g., how much propagation would it cause under thus
and such a scenario). In this paper we address the former concept of influence by
examining the propagation of node characteristics in empirical temporal networks
to assess the influence in that particular chain of events.
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4.2 What Are Temporal Webs?

The general description of a temporal network is a mathematical structure that
captures interactions across time. In the case of dynamic networks the key feature
is that the conduits of interactions (i.e., the network edges) change across time so
that the graph structure itself must be time-indexed. One can simulate dynamics
across these networks, but the network properties of the nodes (e.g., how many
friends one has) change over time and complicate the analysis. In contrast, a time-
layered network typically has a static potential interaction structure and each layer
reveals the interactions which occurred during that time step (e.g., how many friends
one actually talked to). The difference between the two is fuzzy: if one captures
a corporation’s email sent each day as a temporal network it can be considered
as either (1) a changing collection of interaction patterns or (2) a base set of
cooperating colleagues and their de facto communications. This ambiguity is due
largely to the primary strength of networks: the edges can represent any relationship
among any objects, loosely defined. One is free to interpret the time-varying
connections as changes in the link structure or activity across a link structure.

Here we describe a version of temporal networks that emphasizes the activity
aspect, and especially transmission activity across time. Instead of capturing the
interactions occurring within a time slice for each slice of time, a temporal web
traces a link across time from the cause to effect. Although this may represent
several different scenarios, it is most natural to think of it in terms of simulations
with simultaneous updating in which an agent at time t has an effect on other agents
at time t C 1. Each agent (whatever a node represents) has certain information (its
state) at time t and that dictates its behavior, including its interaction behavior, at
that time. Then each agent may change its state based on its behavior and input from
other agents to reach a new state at tC1. Thought of in this way it is obvious that for
this situation the best representation is to have nodes at t interacting with (affecting)
nodes at t C 1 instead of nodes at t. As mentioned earlier, one distinguishing feature
of this approach is that the result is always a single acyclic digraph rather than
connected layers of time-slice networks.

Naturally there is no limitation to discrete, integer, or uniform time increments;
although that case is the simplest to represent.1 It is possible, for example, that a
message sent on Monday is read on Tuesday by some people, but on Wednesday or
Friday by others. It is simple to incorporate links that connect a node at t to other
nodes at t C s (s > 0) for possibly heterogeneous s as long as the s times are discrete
time steps. This is so because these connections would fit naturally into a temporal
web adjacency matrix filling in spots outside the superdiagonal blocks of the t to

1There is also no strict limitation that the interactions be instantaneous – they may be spans of time
in which the agents are related – but that is a further extension beyond what we cover here. See
[70, 71] for more information on link-stream graphs.
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t C 1 connections. Allowing for continuous time dynamics is also possible, but it
requires a switch in representation and an accompanying change in algorithms to
analyze propagation dynamics, so we leave that out of the current work.

Pure temporal webs are a representation choice that is only appropriate for some
purposes and datasets. Temporal webs can obviously be generated from temporally
layered symmetric graphs by changing a link between nodes A and B at time t to a
pair of directed links from A.t/ to B.t C 1/ and from B.t/ to A.t C 1/. But such a
conversion naturally carries with it the assumptions and interpretation of temporal
webs, which may or may not be appropriate for a particular temporally layered
graph. Specifically, temporal webs (as interpreted here) are best used for actions
such as the spread of a disease or communication of an idea and less appropriate
for other relationships if those are not connections that happen across time (like co-
location, club membership, or being connected by a road). In many cases actions
are instantaneous in their effects, and a chosen time resolution (e.g., daily updates)
masks the true behavioral pattern by obscuring the temporal ordering of events.
Some of our methods presented below are designed to address exactly these issues
by creating temporal webs from data so that they make the best of the actual
influence relationships across time, even if that isn’t a pure temporal network, and
performing analyses using the general temporal web thinking as appropriate.

4.3 Analyzing Temporal Webs

Because pure temporal webs generate a single acyclic digraph from the entire
system behavior over time, there are many off-the-shelf directed network measures
that can be immediately applied. However, although these measures will return a
value, the interpretation of that number is often twisted or impossible. They fail to
actually inform our understanding of the system’s dynamics. By analogy, I can find
the average value of a list of phone numbers, but that doesn’t mean the result is a
viable phone number or meaningful in any other way.

As a specific example, the diameter of a temporal web is always equal to the time
duration T (or infinity when some node at t D 0 has no time-order preserving path
to some node at t D T). This is so because for any propagation there must be at least
T steps along any path when the duration of the run is T to reach the final step. At
each step all links connect from t to t C 1, meaning that along any path from A.0/ to
B.T/ it can only make one network step per time step. So, even though diameter is a
generally useful measure for assessing connectivity (even in acyclic directed social
networks), it is not useful for temporal webs due to their specific construction.

Other measures, such as betweenness centrality and clustering coefficients are
similarly uninformative for temporal webs for reasons discussed in [8]. There
has been considerable attention paid to centrality measures on temporally layered
networks [7, 32, 39, 61] as well as temporal clustering [16, 55]. The merits of
these measures for those structures are still being evaluated, but their value after
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adapting them for temporal webs is much more suspect. Certainly there is a desire
for measures of centrality, clustering, communities and other network features on
temporal webs, but they mean something slightly different than on other temporal
networks and must be differently formulated. We do not put forward or test such
temporal network measures in this work, but rather propose a way of thinking about
transtemporal interaction data to ground the development of such measures.

4.3.1 Temporal Knockout

In order to benchmark the success of network measures in capturing all-things-
considered influence, a measure called temporal knockout score (TKO) was pre-
sented in [8] and refined in [9]. At the limit of an infinite number of possible disease
scenarios, this measure considers every possible disease transmission trajectory
among a population, and then for each of those trajectories it tests how much
the disease morbidity changes when each agent at each time is removed from the
population. Because each agent at each time is represented as a node in a temporal
web, these “agent-time” nodes constitute the unit of measure for infections. The
agent-times (temporal nodes) that consistently have the greatest effect on the disease
magnitude have the largest TKO score. Because this measure exhaustively covers all
possible disease trajectories, it fully captures potential influence. By narrowing the
set of test scenarios it can provide a more focused contingency analysis, such as
to particular initial agents or particular interaction structures, and measure context-
dependent influence.

Temporal knockout does not strictly depend on the temporal web structure, but
the temporal magnitude measure of disease morbidity that it uses does depend
on transtemporal records of the agent states. For example, in a hybrid temporal
web in which the effects of interactions within a time-step are represented as a
change in state during that period, then the interaction edges are not transtemporal;
however, as long as there is inheritance of states across time it is possible to calculate
the magnitude of the spread and therefore TKO. TKO does have its drawbacks
however. Because it analyzes the removal of every agent at every time and reruns the
dynamics in that counterfactual scenario it is extremely computationally intensive.
Furthermore, the approach is intrinsically mechanistic. After the removal of an
agent-time one must rerun the dynamics from that point forward, and doing so
requires using some mechanism to change the agents’ states. The mechanism can
be as simple as a probability of infection, but the resulting measure of influence
is dependent on the mechanism used. In the case of the empirical temporal webs
used in this analysis, we do not know the mechanism that produced the observed
propagation, so we must either infer a mechanism and use that to determine TKO,
or we can apply an alternative technique that still captures the essence of contingent
marginal change in propagation magnitude.
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4.3.2 Temporal Out Component Paths and Refinements

As a way to partially ameliorate the prohibitively long computational times of
TKO analyses, [8] explored the use of various proxy measures on temporal webs
of simulated disease spread. One class of such measures utilizes variations on the
temporal out component of a node; i.e., all the nodes reachable from a given agent
at a given time. One branch of variations included different ways of weighting the
future: the number of reachable temporal nodes, the total length of all paths to
those nodes, or the out component paths divided by the number of infections at that
time step. Another branch of variations looked at ways to adjust the out component
measures based on the history up to that point: weighing the contribution of each
node in the out component by its in-degree, its in-component size, or the number
of redundant paths leading to it. That paper also introduced a measure called nexus
centrality as the sum of the lengths of all the paths running through that node as a
way to capture bottlenecks.

Previously these measures were applied to simulated disease dynamics on a vari-
ety of network topologies to determine how well they matched TKO identifications.
The results presented in [8] indicate that the temporal out component paths (TOCP)
measures was highly correlated with TKO over 1000 simulations in both SEIR
and SEIS dynamics. Although TOCP techniques consistently and drastically out-
performed other network measures calculated on the base interaction network on
average, the TKO values for temporal nodes is highly variable from run to run –
sometimes even having negative values. Negative values occur when removing an
agent at a certain time results in more overall infection. Though perhaps unintuitive,
this results from the time varying network connections: the neighbors infected early
on spread to only a few of their neighbors, but when infected later through another
pathway they infect many more.

In addition to being much faster to calculate than TKO, the use of out component
paths does not require a mechanism to evaluate influence. These measures can
be calculated on the kinds of empirical networks examined below to provide an
indication of influence. Although we won’t have the TKO measure to benchmark
against, it is still possible to assign a score to each temporal node for its potential
impact (the full network) or actual impact (just through nodes that are “infected”)
based on the temporal out components. In this chapter we analyze behavior by
types of nodes rather than particular nodes and thus use aggregated measures of
out component paths to assess patterns in propagation potential.

Another advantage of these out component based proxy measures for TKO is
the ease of converting them into measures for quantitative (rather than categorical)
propagation and to continuous time flows (rather than discrete time steps). Instead of
counting the number of infected agent-time nodes in a temporal out component one
can calculate the product of the time and quantity for each reachable agent-stream.
This is essentially the area under the curve for the property across time starting after
their interaction with the focal agent-time. The details depend on the nature of that
property; for example, the calculation could use the value of the property at the time
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of interaction as a baseline value and thus determine whether the interaction has had
a net positive or negative effect on the property. These considerations are taken up
in other work that explores continuous time temporal webs, but here we continue
using temporally coarse-grained data.

4.3.3 Temporal Influence Abduction

When analyzing influence on empirical temporal webs, i.e., ones for which there is
a particular thing that already happened, we need to rework the idea of temporal
knockout to fit the application. We still would like to know how much of the
propagation each agent at each time is uniquely responsible for, but the data provides
what is essentially the result of one run of a simulation. In order to assess influence
(rather than just the luck of how things turned out), we need to compare the observed
system behavior to counterfactual behavior. As already mentioned, one way to do
this is to model a generative mechanism that recreates the observed behavior and use
it to populate hypothetical system behavior for comparison. Many machine learning
techniques (such as Bayesian networks and Markov models) use this approach, and
something like this could be developed that is specifically adapted to temporal webs.
Although here we take a more direct statistical approach to describe consistent
patterns in the dynamics, the behavioral patterns we uncover could very well be
used for such a generative model in the future.

The general approach described here, called temporal influence abduction (TIA),
uncovers the particular impact each agent has on the others conditional on its state
(or its changing state). This is abductive because it infers the likely influence pattern
as the best supported explanation for the available evidence, without proposing a
mechanism by which the influence occurs. Take disease spreading as a familiar
example. We can examine several relationships among nodes and their disease
states to uncover whether they are playing a key role in spreading the disease: How
many of one’s neighbors become infected after interacting with an infected focal
agent? How different is this proportion from the proportion when the focal agent is
uninfected? How consistently do the each of disease states have this difference in
effect across time? How similar are all the agents in these effects? Given these ideas
about how influence would effect the actual spread, we can generate hypotheses
about who is the most influential agent and quantitatively test them for being the
best explanation.

A more concrete example makes this clearer. For categorical data, conditional
infection rate can be assessed by collecting for each agent the number of (or
proportion of infectable) neighbors that become infected each time step that the
focal agent is infected. That is one distribution of values for each agent and across
agents. Then do the same for when the agent is not infected. Those distributions can
be compared using a Kolmogorov-Smirnov two-sample test to determine whether
they are significantly different; the z-score acts as a measure of their being different
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patterns. Of course one must also confirm that the distribution mean is higher when
agents are infected than when uninfected because we are generating hypotheses
about disease propagation. To check the consistency of the effect we can look at the
dispersion of the two distributions; if the distribution is tight then it is more likely
to be a systematic feature of propagation rather than a spurious connection. Finally,
for a particular agent to be a key player in the spread of disease, an agent would also
need to have consistently higher scores on all these measures than other agents.

Temporal influence abduction can also be performed on quantitative (rather than
categorical) agent properties. Rather than a disease state of susceptible or infectious,
one might be interested in how much confidence each person has in some idea and
how that level of confidence spreads. In this case we can measure how much the
confidence level of neighbors changes towards the confidence of a focal agent (total
delta absolute distance) multiplied by the confidence of that focal agent (because a
lack of confidence does not spread). With these values calculated at each time step
we can also derive a distribution of values, but without categories we must discern
patterns in the distribution endogenously. The details of such an analysis will vary
from dataset to dataset depending on what the property is; for example, a lack of
confidence should be down-weighted because a lack of something cannot propagate,
but other properties (even other epistemic properties) may be just as contagious at
every level. In what follows we provide hybrid TIA analyses of three datasets via a
coarse-graining of the value ranges with the plan to follow up each one with a more
in-depth continuous quantitative analysis in future work.

4.3.4 Measuring Empirical Propagation of Observed
Properties

Measuring the influence of agents and times on the spread of hypothetical diseases
on an abstracted social network is useful for many theoretical reasons. But capturing
and understanding the observed spread of a property across an empirical network
requires a distinct set of measures and methods. For one, rather than being in one
or another disease state, the nodes in these systems may have multiple relevant
properties that each take a range of values. Additionally, rather than probabilities
of transmission, what we have is particular actual transmissions. Although we
know which transmissions/interactions actually take place, we often don’t have
the potential interaction structure nor its implicit properties such as edge density
or degree distribution. Furthermore, although we can trace the temporal node
properties across the temporal web and provide measures of influence in terms
of increased and decreased marginal spread, we cannot (as is usual in empirical
science) bridge the correlation-causation divide nor eliminate exogenous influences.

Despite these limitations, the temporal web techniques described above can
shed some new light on observed propagation dynamics. Below we examine three
temporal network datasets with propagation, demonstrate the kind of conditional
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effect analysis required for temporal influence abduction, examine the temporal
out components of types of actors in each system, and tie these results back into
substantive insights into each system.

4.4 Propagation of Frustration on Political Relation
Networks

Our first dataset is a temporal web extension of Structural Balance Theory (SBT)
[11, 28, 29] that makes the propagation dynamics of frustration explicit. SBT
utilizes networks of positive and negative relationships among some sets of agents
(typically people or countries) and provides a characterization of when such a signed
social network is balanced or how frustrated it is. The implication is that frustrated
relationships are more likely to change than balanced ones, and so the theory is
implicitly one about the driver of signed social network dynamics. There exist
analyses of how much the aggregate frustration changes over time according to
generated dynamics [2, 33] or empirical networks [21, 49, 67], but no approaches
that directly track the spread of frustration from triad to triad.

According to strict SBT a triad of nodes is frustrated whenever there is an odd
number of negative links among them.2 Thus if a triad of agents A, B, and C is
frustrated then exactly one or exactly all three of its edges are negative. When any
single edge (say A� B) changes valence, the triad becomes balanced – regardless
of whether that edge was originally positive or negative. Now consider that agents A
and B were also in a triad with agent D, and that the

�
ABD triad was balanced. When

the edge A� B changes valence to balance the triad
�

ABC, this necessarily causes
the neighboring triad

�
ABD to become unbalanced (that is, frustrated3). In fact, all

triads using the A � B edge will flip between balanced and frustrated. In some
cases these local changes can balance a large number of frustrated triads, increasing
overall stability. This change can also create a large number of newly frustrated
triads. These newly frustrated triads will likely then change other edge valences to
become balanced, which serves to push the frustration starting with

�
ABC through

the social network. The methods presented in this section aim to track this frustration
propagation using a temporal web of the network of triads.

2Originally it was formulated as an odd number of links across all paths, but the triad version has
become dominant [1], cf. [22].
3For our analysis below we distinguish among strongly and weakly balanced and frustrated. Thus
for us being unbalanced implies being one of the two kinds of frustrated, but that is not the only
terminology. ‘Balanced’ can also refer to what we call ‘strongly balanced’, and hence our ‘weakly
balanced’ would be ‘unbalanced’ but not frustrated.
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4.4.1 Constructing a Network of Triads

In our general temporal web approach, the nodes carry the properties that are
propagated, so to apply this technique to structural balance theory we first convert
the social network with signed edges to one in which the nodes are frustrated or
balanced. Our way of doing this is to construct a triadic node for each connected
triplet of agents in the network that holds a property for the state of the triad (e.g.,
how many positive and negative edges or whether it is frustrated). Triadic nodes are
connected by an edge whenever the triads they represent have an edge in common,
but the triadic graph edge representing A � B in the original graph will occur
as many times in the triadic graph as that edge is shared by triads.4 Although the
number of triadic nodes depends on the structure of the network, and especially
the edge density and clustering coefficient, because edges can be reused in many
different triads, there are typically many times as many triadic nodes as there are
agents in the social network. An example of converting a signed social network into
such a triadic network appears in Fig. 4.1

In nearly all SBT analyses the network structure is static and only the sign of the
links changes. For applications to empirical data, however, the approach must also
accommodate dynamic networks to reflect both new or lost edges among existing

Fig. 4.1 An example of converting a signed social network into a triadic network with node
properties corresponding to the frustration property of each triad in the alliance network. Dark
blue is strongly balanced, light blue is weakly balanced; likewise dark red and pink are strongly
and weakly frustrated, respectively. The frustrated triad

�
136 can become balanced by changing

any one of the edges c, g, or h. Note that although changing c will balance
�
136, that edge is also

used by the triads
�
123 and

�
135 and so such a change will force both them to become frustrated. If�

135 then rebalances itself by changing edge f this will propagate by balancing
�
145 and making�

156 unbalanced. The triad network makes clear the level of frustration and the consequences of
particular edge flips

4Triads can only share one or zero edges. If two triads share two edges, then they both also include
the nodes that are the source and target of those edges. The minimum number of source and target
nodes for two edges (in a non-reflexive and non-multigraph network) is three. If two triads share
three nodes, then they are identical triads.
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agents as well as agents entering and leaving the system. Just as a single edge sign
flip can alter the frustration of a large number of triads that include that edge, the
addition/deletion of a single new edge may sharply increase/decrease the number
of triads; however, these changes cannot change the frustration of existing triads.
In addition to frustration propagation we must therefore also consider exogenous
events in both the changing of edge valences as well as edge creation and deletion.
An aggregate approach to measuring system-wide frustration is inadequate for that
task, so we focus on marginal changes in frustration in the temporal out component
of state-changing triadic nodes conditional on each type of state change.

If the network is balanced, any cascade must be initiated by an exogenous change.
Even in an unbalanced network, exogenous events can flip edge valences. However,
as we will soon see, empirical political relationships are more tolerant to long-term
frustration than SBT implies they should. Regardless of the spark, a single edge sign
change will reveal itself as a change in state for all triadic nodes that use that edge.
Then when any triadic node switches state – whether from frustrated to balanced or
vice versa – all the neighboring triads must also flip their state unless: (1) an even
number of changes occurs via multiple changing neighbors, or (2) a link is removed
thus dissipating the triad.

4.4.2 Description of the Dataset

Here we apply our social frustration tracking technique to data of political standings
from Eve Online (EVE), a massively multiplayer online game. Players in the game
can create and run corporations, which have between zero and more than 10,000
player members. The leader (or an elected group of directors) of a corporation
has complete power to determine corporate policies and represent the corporation.
Corporations can (and usually do) form official collectives known as alliances. The
number and sizes of alliances change over time, but most alliances have a few
thousand character members (some are empty and the largest alliances include more
than 17,000 members spread out over hundreds of corporations). The leadership of
one of the member corporations will control the alliance and has the sole authority to
set the lists of enemies, competitors, non-aggressors, and allies. These standings are
set on a scale from �10 (enemy) to 10 (friend); setting it to zero means actively
neutral (which is in effect like being an enemy), but they can also be removed
completely. These alliance standings need not be reciprocal, though they almost
always are. In the game, the icons for ships of an enemy alliance will show up as
red on the screen, alerting players that they are both potential predators and potential
prey. Friendly alliance ships appear green, while the icons for ships in alliances
with unset standings appear white (as do asteroids, space bases, and other unaligned
game objects). Attacking members of friendly alliances is possible, but such players
are typically punished by their own alliance by paying a fine or being kicked out
(potentially losing access to their personal assets).
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The game environment is broken into 7930 solar systems of which 3524 are
conquerable by the players. These conquerable systems are where the alliances can
hold sovereignty over a system and ownership of its stations. Ownership allows
them to decide who is allowed to place and retrieve resources from its stations,
collect taxes on transactions occurring in that system, and have access to the natural
resources in that system. There are many alliances that do not hold sovereignty over
any systems, and therefore the political standings of these alliances only serve to
establish conflict permissions. Here we perform an analysis of all alliances with
more than 200 player members (which includes all sovereign alliances and many
large alliances holding no territory).5

As already mentioned, the size and number of alliances change over time
depending on player actions. We analyze the alliance standings data from 2/4/2015
to 4/17/2016 and within this time frame there are 606 unique alliances with 200
player members or more at some point during our time frame. On average there
were 328 large alliances in play each day, which means there is a lot of turn-over
among the alliance with 200C members. Each alliance can set its standing to every
other alliance, but in practice the standings matrix is quite sparse. The alliance
matrix also reveals a block structure showing coalitions of alliances: an unofficial
collection of alliances that agree to support each other without any mechanism in
the game to associate them. Because the standings relationships are nearly perfectly
reciprocated, we construct the triad network from a symmetric version of the
standings matrix by setting the links to be negative if either direction is negative
and positive if both directions are positive.6

We primarily make use of a looser variation of SBT for determining frustration
in signed social networks that seems more appropriate for EVE. Part of the fun of
a multiplayer game like EVE is attacking other players, so the stable outcome of
globally friendly relationships is not expected here. Furthermore, in (game and real-
world) politics we expect there to be long-standing mutual animosities among more
than just two coalitions [17]. These coalitions may form temporary truces with each
other to team up against a mutual and otherwise unbeatable enemy, but then go back
to being enemies when the immediate threat is over. This is true for world politics
[3] and we should expect the same for EVE. Thus in the looser version of SBT
we consider the triple negative triads as being weakly frustrated (essentially non-
frustrated but non-balanced) compared to strongly frustrated single negative triads
[17, 67]. We can also consider triple positive triads as being more strongly balanced
than the weaker “mutual enemy” single positive triads; however, in the current

5In future work we will compare these results to the subset of sovereign alliances. Because the
standings of sovereign alliances have a larger effect on the players, we expect there to be a stricter
adherence to structural balance, but here we are primarily interested in whether the temporal web
approach can capture and detect frustration propagation.
6A more nuanced approach involving continuous-time analyses of frustration dynamics also
weights the edges by both the value set and considering both directions. Presenting such an analysis
requires details into EVE and into structural balance considerations not pertinent to our goal here
of demonstrating the use of temporal webs to track frustration propagation.
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Fig. 4.2 Time series showing the proportions of each state of triad each day. Although the number
of triads more than tripled during this period the relative proportions are strongly persistent.
Roughly half are balanced “mutual enemy” relations while a third are weakly frustrated triple
negative triads. Their consistent presence bolsters the claim that within EVE these triads do not
actually cause political frustration. Triple positive triads, which are the norm within coalitions, are
overall underrepresented. On average across time less than 6% of the triads are truly frustrated,
lending evidence to a loose structural balance mechanism in this context that is consistent with
anecdotal accounts within the game

analysis we count them both equally as balanced. As you can see in Fig. 4.2, the
triple negative weakly frustrated triads make up roughly a third of the triads across
time. Within coalitions everybody is friendly with each other and they all share the
same enemies, but nearly everybody in coalition X is aggressive to everybody in
both coalitions Y and Z.

4.4.3 Temporal Web Analysis Results

The set of alliances having at least 200 members went from 311 at the beginning,
peaked at 349 in the middle of the dataset, and dropped to 312 at the end, but the
number of triads steadily (though nonmonotonically) grew from 50,491 to 170,296.
The disproportionate increase in the number of triads comes from an increase in
edge density in the alliance network. So the network here is dynamic both in the
sense that nodes come in and drop out of the system and that the edges among
them also form, dissolve, and change sign. This poses no difficulties for a temporal
web analysis because each agent at each period is a distinct temporal node object.
They are only connected to future selves through a chain of cross-temporal links.
And because our temporal nodes are the triads, this opens the possibility to identify
cases when ending a relationship that is part of a frustrated triad is used instead of
balancing it.
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Table 4.1 Summary results showing the proportion of the triad states when they are created, that
exist in the system over time, and when they are removed. This only includes adding and removing
triads through link creation and destruction; i.e., excluding nodes entering/leaving. Approximately
8% of newly formed triads are strongly frustrated. The type proportions at creation closely match
the overall number in the system with a bit less strong frustration (�5:8%) and a bit more weak
frustration. The proportions of eliminated triad types show a greater focus on strongly balanced
and strongly frustrated triads (�12%), and a tendency against dissolving weakly frustrated triads

Scenario

Triadic node creation 0.185 0.0799 0.491 0.244

Triadic node persistence 0.146 0.0584 0.484 0.312

Triadic node dissolution 0.228 0.123 0.443 0.206

In order to determine whether alliances use link elimination as a strategy for
frustration elimination, we look at the difference in rates of triad dissolution for
triads of each of the four kinds of frustration. Because relationship changes may
be motivated by a variety of game considerations besides political frustration, there
will be a base rate of dissolution. The hypothesis is that dissolution counts as a
strategy only if the rate for strongly frustrated triads is significantly greater than the
base rate. Although the overall number of triads increases over time, there are still
116,799 cases of standings links being removed. Removing a standings link from
the alliance network removes all the triadic nodes and triadic links that utilize it,
and doing so cannot affect the state of the remaining triads. Conversely, we can
look at how many frustrated triads are generated when (1) a new alliance enters the
considered set or (2) a new link is generated between existing alliances.

From the results in Table 4.1 we can see that around 8% of new triads formed
through link creation inject strong frustration into the system. This proportion is not
much higher than the proportion of strongly frustrated triads across time, meaning
both that on average the frustration introduced is partially resolved (possibly through
the removal of the links that created the strongly frustrated triads) and that this
process is potentially responsible for injecting all of the observed frustration.
However, recall that if this is the case then it would also mean that frustration
rarely propagates and is instead sequestered to the original frustrated triad until it is
dissolved. To determine to what degree frustration propagates we need to look both
at state transition behavior and neighbor behavior.

Table 4.2 shows the relative rates of triad state transformations to reveal biases in
how the different triads states change their states. Most notably we see how stable
the triads’ states are: on average more than 99% of all triad states stay the same from
day to day. Strongly frustrated triads are the least stable, but only by a small margin.
Because the political standings, and therefore triad states, can be long lasting even
when there is frustration, we also look at the next state of the triad conditional on
some change occurring in Table 4.3.

Table 4.3 shows the same counts as Table 4.2 but renormalized without including
the static entries. From this we can more clearly see the changes that occur when
they actually occur. The first observation is the large proportions of triads that are



4 Measuring Propagation with Temporal Webs 71

Table 4.2 Summary results of the proportions of triad state changes including though the deletion
of edges (but not nodes). Blue edges are positive, red edges are negative, and gray triads are
nonexistent. The large proportions along the diagonal indicate that alliance standings are highly
stable and therefore from day to day all triad states are likely to persist. Notably the strongly
frustrated triads are the least stable while the weakly frustrated (triple negative) are the most stable
by tiny margins

Triad state at time t C 1

Triad state at time t

➞ ? 0.993 0.00251 0.000624 0.00000171 0.00415

➞ ? 0.00346 0.987 0.00408 0.000119 0.00561

➞ ? 0.0000480 0.000372 0.996 0.00125 0.00243

➞ ? 0.000000729 0.00000627 0.00129 0.997 0.00175

Table 4.3 Summary results of the proportions of conditional triad state changes including through
the creation and deletion of edges (but not nodes). Blue edges are positive, red edges are negative,
and gray triads are nonexistent. Although it is possible for triads to change multiple edge valences
in one step because of our use of daily data, we see here that most changes are one edge flip away.
However, in the first row we can see that nearly 8.5% of changes from strongly balanced triads
go to weakly balanced within a day. This is seven times more frequent than the next largest 2-step
change (from weakly balanced straight to strongly balanced). Similarly, weakly balanced triads
are more than three times more likely to become weakly frustrated than strongly frustrated. This
evidence supports a claim of general avoidance of strong frustration

Triad state at time t C 1

Triad state at time t

➞ ? 0.344 0.0856 0.000235 0.570

➞ ? 0.261 0.307 0.00895 0.423

➞ ? 0.0117 0.0907 0.305 0.592

➞ ? 0.000240 0.00206 0.423 0.575

dissolved through link removal; except for strongly frustrated triads they are more
likely to be removed than changed. The second observation is that when a triad does
change state it is proportionally more often to be a single valence flip away. Note
that because of our daily time resolution, it is possible for many edges to change to
occur in one step, but what we see is that this is a rare occurrence. This is consistent
with the high level of standing persistence seen in Table 4.2.

Looking in more detail at the differences among triads states, we can see that
when single negative (strongly frustrated) triads change they are split similarly
between becoming triple positive or weakly balanced triads and the least likely to
dissolve. In contrast, the single positive (weakly balanced) triads are three times
more likely to switch to weakly frustrated than to strongly frustrated and are the
most likely to be dissolved. This may indicate a conscious aversion to making
changes that generate strongly frustrated triads, so much so that it is better to
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dissolve the relationship than to make it frustrated. All of this helps us understand
the dynamics of frustration changes in the dataset, but does not yet address the
question of propagation.

We can look more directly at the propagation effects in Fig. 4.3. The cases in
which non-existent triads stay non-existent (bottom row) act as baseline rates for
the transitions of neighbors because the neighbors are not reacting to anything.7

In the row showing proportions of strongly frustrated triads becoming strongly
balanced ( ➞ ) the 14:3% of neighbors also changing from strongly frustrated
to strongly balanced (red highlight in Fig. 4.3) is much higher than the baseline
(0:02%). These are mostly neighbors sharing the negative edge, so when it becomes
positive all triads using it gain an extra positive edge. This change also balances
neighboring weakly frustrated triads by converting one negative link to a positive
link (13:2% of neighbors). You can also see in that row that 5:34% of neighbors
change from weakly balanced to strongly frustrated (green highlight in Fig. 4.3).
While this number is small, it is still a considerable number of new strongly
frustrated triads and much larger than the base line rate. This is one side of the
propagation phenomenon we are looking for – the side of balancing by changing
from negative to positive.

Because frustrated triads can also become (weakly) balanced by changing
one of the positive links to a negative, there is another side of the propagation
story. Specifically, in the row of strongly frustrated changing to weakly balanced
( ➞ ) we see that 7:6% of the neighboring triads go from strongly balanced to
strongly frustrated (blue highlight in Fig. 4.3), while 10:36% change from strongly
frustrated to weakly balanced (yellow highlight in Fig. 4.3). So for both directions
of edge changes, more neighboring triads become balanced than become frustrated.
Together this indicates that whether it is an explicit decision or an implicit pressure,
it is the case that changes in standings tend to reduce the overall (strong) frustration
of the system. This tentative conclusion stands as evidence in defense of loose
structural balance.

Looking at the behaviors of individual triads is probably not insightful, so we
focused on characterizing the behavior/influence of triad types. The proportions
of conditional reactions in Fig. 4.3 combined with the proportion of behaviors in
Tables 4.1 and 4.2 go far in capturing the behavior of the system. These state
and rate proportions provide the necessary information to generate simulations
with similar behaviors and/or perform a Bayesian-style analysis of the alliances’
behavior. However, as stated in Sect. 4.3.3, we are taking a more direct descriptive
approach in this work.

7One can include all static focal node states, but the number of cases of triads staying non-existent
overwhelms the effect of including the others so that the largest differences is one in ten thousand.
Furthermore, a comparison of the existent static to the non-existent static cases shows that the
neighbor transition proportions are similar to within one in a thousand, bolstering our claim that
these static cases can act as a baseline.
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Proportion of neighbor triad state changes
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Fig. 4.3 Summary results of the triad states changes among neighbors, contingent on each type
of focal node state change (including creation through new links and no change). Specifically, for
each focal triad’s change from t to t C 1, the figure shows the proportion of each type of triad
state changes of those triads that share an edge in the standings data during that same period (i.e.
neighbors in the network of triadic nodes). The construction of the triad network requires that when
an edge in the standings network changes state, all triads containing (and connected by) that edge
also change state. Boxed cells are discussed in more detail in the text

Collectively the results show that, based on immediate neighbors, frustration
does propagate to some degree, but it loses momentum with each step as more
stabilize than become frustrated. These averages across all system dynamics are
used to detect global tendencies, but below we use the out components of balancing
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triads to track the trajectories of each frustration cascade to see if these conditional
neighbor changes chain together. Before moving on to that topic, we make some
other conclusions directly related to structural balance theory.

Edge Elimination Strategy. We can discern from the results so far the degree to
which edge removal is used by the alliances as an (implicit or explicit) strategy to
reduce political frustration. This can be seen both from strongly frustrated triads
transitioning into nonexistent ones, and also the relative frequency of transitioning
into a nonexistent state instead of a frustrated one. Table 4.2 shows that strongly
frustrated triads have the highest rate (by a small margin) of being dissolved
(0.00561), indicating that eliminating the triads makes up some of the difference
of their lower stability. Table 4.3 shows that conditional on being in the strongly
frustrated state, the triads are relatively more likely to switch to a neighboring state
(i.e., change one edge valence) than to eliminate the frustrated triad through edge
deletion. This result is counter to the hypothesis of an explicit edge elimination
strategy.

Now recall that when a triad changes state to balance itself, that edge valence
change will unbalance any other balanced triads also using that edge. Table 4.3
shows that these balanced triads tend to dissolve rather than become strongly
frustrated, lending evidence to a claim that edge elimination may count as a strategy
for frustration avoidance rather than frustration removal. One way to think of
this is that when a strongly frustrated triad is forced to change it is usually to
one form of balanced triad, so there is little pressure to dissolve it unless players
were consciously considering the aftershocks it would create. The observed change
pattern thus provides evidence that the players commanding alliances in EVE are
largely obeying the tenets of structural balance implicitly but not purposefully.

Temporal Influence Abduction. The results described above comprise the basis
of the temporal influence abduction analysis described in Sect. 4.3.3. Rather than
assessing whether any particular alliance, or any particular triad, is responsible for
propagating frustration, we have investigated the behaviors of each type of triad
state. We are interested in whether a frustrated triad is more likely than not to
cause other triads to become frustrated in an effort to balance itself. To do this we
need to look at the neighbors of changing triads to see what effects they have, and
specifically we are interested in triads that change from (strongly) frustrated triads
to balanced triads. Figure 4.3 shows the proportions of all changes in neighbors
immediately effected by changes in (or lack thereof) of each agent at each period.
Although standings among persistent alliances are rather stable (indicated by the low
variance in proportions for the rows with unchanging focal frustration), when there
is a change the nature of structural balance forces a change in the frustration/stability
of some neighboring triads. So this reflects less the behavior of the players and more
the rules of structural balance. However, we can confirm that certain transitions are
more likely than others to shift frustrations to other triads.

A strongly frustrated triad has one negative edge and it can become balanced by
either changing that negative one to a positive one (26.1%) or by changing one of
the positive edges to another negative one (30.7%). When changing to a positive
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one, that would propagate by converting weakly balanced neighboring triads into
strongly frustrated ones, but this doesn’t happen often (9.1%). Strongly balanced
triple positive triads convert to strongly frustrated triads 24.4% of the time, thus
they are the main vehicle for frustration propagation. In fact, from Table 4.3 you can
see that the strongly balanced triads are 3.8 times more likely to become strongly
frustrated, and even then 57% of the time they do change, they are dissolved instead.

Triple positive triads are common among the alliances within a coalition, and
when a pair of such alliances have a falling out all of the other alliances in the
coalition are still friends with both. This causes an upswell in frustration: 62% of
neighbors stay the same (mostly because they weren’t using the edge that went
negative) but 15% become strongly frustrated. When a triple positive instead skips
over the strongly frustrated step and directly becomes weakly balanced (adding two
negative), 12% of its coalition partner’s triads become strongly frustrated, although
22% also skip the frustration step and pick sides within a day. From this it doesn’t
seem that balancing triads is the main source of frustration propagation, but we can
look from another perspective to make sure.

These probabilities so far have been conditional on the focal triad dynamic,
but we get a slightly different view when we normalize by all the events that
could directly create a frustrated neighbor (i.e., proportions down the column of
all focal triad transitions that result in strongly frustrated neighbors). Frustrated
focal agents spreading frustration when they become (either kind of) balanced only
make up 13.6% of the frustration injection into the system. 27.3% comes from
triple positives gaining a negative edge just mentioned above, 21.5% comes from
weakly balanced triads becoming weakly frustrated, and 9.4% comes from when
weakly balanced triads become frustrated. All other transitions induce 5% or less
of the frustration into the system. From this data we see that changes to balance the
network do happen, but they tend to remove frustration rather than spread it. Most
frustration injection comes from pairs of alliances in a coalition becoming enemies;
this destabilizes both their internal coalition triads and their mutual enemy triads.

Temporal Out Components. The above analysis looks at immediate changes
to understand how well the micro-dynamics conform to structural balance, but
propagation is a macro-dynamic that can only be discerned by looking at longer-
term patterns. This is where we pull in the temporal out component. We want
to understand how far the effects of correcting for frustration ripple through the
network. There is a trigger event (the reduction in frustration of a triad) that
causes immediate flips in the frustration state of some neighboring triads. If any
neighboring triads become frustrated from these flips, then that counts as part of
the magnitude of the trigger node. We follow all these frustrated triads across time
(because they need not react immediately) to see if they balance themselves and
push the frustration to their neighbors (potentially back to the original trigger). We
count both the number of triads that are frustrated (cumulative cases) and the number
of frustrated temporal nodes (magnitude) that could be the result of that trigger.

Of course there are also link deletions that cut off frustration without propagation
and multiple trajectories in which changes from triggers effect the same downstream
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temporal nodes. For deletions we do not need any adjustment; whether it is a
conscious strategy of the alliance leaders or an implicit reaction to their situation,
deleting an edge involved in a frustrated triad simply removes the frustration
without propagating it. For frustrated triads in overlapping out components (i.e.,
causal overdetermination) we have three choices: count it for both because either is
sufficient (common to cumulative cases conditional on the initial agent), weight the
contribution by the amount of inflow redundancy (like in [8]), or count it for neither
because neither uniquely contributes to the spread (like TKO in [9]). Really, we can
parameterize the weighting to run the spectrum from counting none or all of the
redundant inflow, but conceptually there is a difference here compared to disease
propagation: one edge flip frustrates a balanced triad, but a second one balances
it again. Thus redundant paths of frustration propagation combine in structural
balance in a way that is very different from most other systems in which it merely
accumulates. Because of this a frustrated triad would not be doubly caused by
frustration coming in from two paths, the two sources of frustration would instead
combine to balance the triad. So we can ignore redundancy here and simply look at
the number of strongly frustrated triads in the frustrated subgraph of the temporal
out component of each trigger event.

As shown in Fig. 4.4, each cascade event is triggered by a frustrated triad
becoming balanced and pushing that frustration to neighboring triads. The duration
of a cascade event is the maximal path length between the trigger and all the nodes in
its temporal out component (i.e., the longest branch). The cumulative cases measure
counts the number of distinct triads that become frustrated as a result of the trigger
event, and only counts itself if it again becomes frustrated. Magnitude counts the
distinct temporal nodes in the temporal out component that are “infected” by the
trigger event.

You can see in Fig. 4.5 the duration (length) and magnitude (color) of each
cascade in our time period. If multiple triads trigger the exact same changes in
neighboring triads, then that is recorded as a single cascade. The blocks seen
in the figure are the result of separate, but related, cascades in which initially
different subsets of triads were affected by the initial trigger events (because of
slightly different sets of neighboring triads) that typically converge on one chain of
propagation causing them to end at the same time.

The duration of the infections is 45% correlated with the magnitude, and the
cumulative cases measure is 91.9% correlated. The maximum value for magnitude
equals cumulative cases times duration, and indeed that combination is 94.9%
correlated with magnitude. In general, the correlation with cumulative cases dimin-
ishes as the amount of reinfection increases, thus indicating that in this dataset the
reinfection rate is low. We already know that persistence of state is high for triads;
however, with frustration lasting as long it does here, there would be ample time for
reinfection and we do not see it.

Because the cumulative cases measure correlates much better with magnitude
than duration, we can infer that the breadth of the infection makes up the greatest
volume of the cascade size despite the apparent long durations. In this case the
maximal path length is much longer than the average path length across all the
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Fig. 4.4 This diagram represents an idealized version of the triad network being analyzed to
demonstrate key points in the analysis (non-active triad links and weakly frustration details are
left off for clarity). (1) A trigger event occurs whenever a triad converts from strongly frustrated
to either kind of balanced triad and that change is not part of a chain of events originating earlier.
(2) The frustration may propagate to neighboring triads if they become strongly frustrated while
the triggering nodes becomes balanced. (3) It is possible that the frustration will get pushed back
onto the originating node. (4) In some cases multiple node balancing events may lead into a new
frustrated triad; in such cases both are considered responsible and the propagation calculations
are considered independently. (5) If the neighboring node is already frustrated then this does not
count as spreading and path ends there. (6) In some cases a triad will balance without spreading
frustration at all, which also marks the end of the path. (7) Multiple balancing events can initiate
the same series of spread events, in which case they are all considered triggers. Focusing on the
trigger event at (1), we can calculate the cumulative cases (8 distinct triads including itself due
to reinfection), the longevity (6 time steps for the longest path), and the magnitude (12 frustrated
temporal nodes in the frustrated subgraph of its temporal out component)

branches. It could be that weighting the triads’ frustration by their importance will
reveal that the propagation pushes the frustration to corners of the systems where it
doesn’t interfere with players’ activities (more below).

There are 439 days in the dataset, but because triggers and propagations require
changes in triad and neighboring triad states, there are two fewer time steps for
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Fig. 4.5 Each cascade event is represented by a horizontal line from its trigger day to its end day.
Colors represent the eventual magnitude of that event. As mentioned earlier, there is a baseline
level of frustration in the system and 98.7% of strongly frustrated triads stay that way; this can be
seen from the long durations of the cascades even when the magnitude (and hence the number of
cumulative cases) is low
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this analysis. For there to be several events with magnitudes reaching past 300,000
temporal nodes, many hundreds or thousands of distinct triads must be involved.
Recall that the dense connectivity within a coalition of just a couple dozen alliances
is already thousands of triads, and most edges are used by many triads. When one
alliance in such a coalition changes its political position towards another, all of those
triads become frustrated. Over a few days the other alliances align to either eject the
defector or create a schism in the coalition. Some of the frustration may never be
ameliorated, but most of it is. Earlier we sought the source of frustration in the
system, and it does indeed seem that these events can inject frustration and spread
it to other triads, many of which do not become balanced even a year later.

4.4.4 Conclusions on Structural Balance Propagation

We have presented a detailed analysis of the conditional behaviors of alliance
standings changes based on the frustration of the triads formed according to an
appropriately loose version of structural balance theory. Although only the temporal
out component segment explicitly uses the temporal web formulation to measure
influence properties of types of triads, the other behavioral measures provides
necessary background understanding. Temporal influence abduction contrasts the
kinds of results derived from the temporally extruded representation from what can
be done using aggregate behavior. By utilizing the contingent behavior proportions
we can construct a generative model of triad changes and compare the temporal web
results. Such tests are necessary to bridge the knowledge gap between the kinds of
analyses we are accustomed to and those enabled by temporal networks.

Among the things we learned is that propagation in structural balance has two
components: the first is mechanistic changes in triads that share an edge when that
edge changes sign, and the second is how players respond to those changes. Because
our empirical dataset came from a virtual online world, we do not have problems of
dirty or missing data, but it is still necessary to separate signal from noise. In this
analysis we defined our trigger events via an exogenous shock of frustrated triads
becoming balanced without being an adaptation to the states of neighboring triads.
We then traced the shock through neighbors of the trigger balancing themselves and
frustrating their neighbors, and so forth through time and across the network. That
is not the only possible trigger event, and not the kind of event that accounts for
most frustration injection into the system. By changing the analysis to other triggers
we will find different propagation patterns within the same dataset. Although the
propagation results are clear, there are competing explanations that can also be
explored using the technique demonstrated above.

For now we can tentatively conclude that frustration does in fact propagate
through the network, and players do respond to frustration in the system in a way
that is consistent with structural balance theory. However, our analysis also revealed
that this adherence to SBT is likely to be implicit rather than through the conscious
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decisions of players to balance their standings. Furthermore, the short temporal path
lengths and the patterns of contingent dynamics indicate that players more strongly
work to avoid frustration than they do ameliorate it once it arrives. In a game based
on conflict it is not strange to think that some frustration would persist, but the strong
role of cooperation and coordination across alliances suffices to pressure players into
forming stable and coherent political relationships.

4.4.5 Other Considerations for Future Work

As a further refinement we consider a measure of frustration weighted in several
ways. As already mentioned, we are extending this analysis to the subset of
sovereign alliances to determine whether they more strongly conform to the tenets
of structural balance. We can do this as a separate category, and we can also do
this by weighting alliances using various functions of the number of systems they
hold sovereignty over. The reasoning is that the larger the alliance’s territory, the
more pressure it would feel from its players to have a consistent political policy. For
similar reasons of importance, it is also natural to include all alliances and weight
them by their membership.

Another obvious weight is the distance between the alliances. The game universe
of EVE is large, and in some cases the territories of aggressive alliances are far
away from each other. In such cases there may be little push to adjust the standings
because they have little effect on the actions of the players. The effective frustration
among alliances captures this feature by down-weighting the frustration by the
distance between the centroids of their sovereign territory. We are interested in the
difference in the amount of frustration, the speed at which it is ameliorated, and any
differences in the specifics of the dynamics. Through these and other weightings
we can explore whether frustration propagates in such a way that it also minimizes
effective frustrations, such as trading frustration with larger sovereign alliances with
frustration with smaller landless alliances. That is, even if the number of frustrated
triads increases, the total level of frustration may still be decreasing.

Signed social network analysis beyond structural balance has gaining increased
interest [13, 15, 20], but it is still not yet a well-developed field. Although we
pursue some measures of signed temporal networks in other forthcoming work, here
we focused on the propagation of frustration encoded in nodes representing triads,
an approach that itself does not require specifically signed network measures. The
richness of the EVE dataset will open up more opportunities to develop and refine
augmented temporal network measures for multi-graphs as well because alliances
have many different relations to each other beyond their political standings.

A major practical consideration here, and one shared by temporal network
research more generally, is the time resolution of events. Most of the players who
are in charge of large alliances log into the game nearly every day and update their
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standings quickly in response to events. In this analysis we do coarse-graining by
using values at the time of daily server maintenance, but a perturbation may arise,
propagate, and dissolve within a day and therefore not be detected. In future work
we explore the use of a continuous time version that incorporates each standings
change as it happens.

Finally, here we analyzed a temporal network of the political triads, and showed
how frustration propagates across the political network via changes in shared edges.
Another way to do the conversion, which we apply elsewhere, is to keep the alliances
as the nodes and count the number/proportion of frustrated triads that each alliance
is a member of. In this case, rather than tracking which relationships are influential
in spreading frustration through the system, this alliance-centric version determines
which agents are responsible for pushing frustration to other agents. In order to
do this, however, one must have a measure of influence that can handle quanti-
tative changes (rather than just categorical changes), which is reserved for future
work.

4.5 Propagation of Risk Factors on Interbank Networks

Our second dataset will showcase the use of the temporal web technique in order to
study the propagation of systemic risk in interbank loan networks. During the recent
financial crisis, the interbank lending market proved to be one of the most important
channels of financial risk contagion and hence of systemic risk. The malfunctioning
of this overly interconnected market caused a liquidity drought across financial
markets with consequences reverberating throughout the entire economy. Since
then, research into interbank markets has proliferated. The dominant subject is
to uncover the topology of interbank markets, to understand how they function,
and how they could catalyze a systemic meltdown. There are many approaches to
understanding the problem and recommending solutions, but the most promising
ones are grounded in network science and/or agent-based modeling [10, 23, 26, 34].

In this chapter we approach these matters by analyzing interbank lending as
a temporal web. This technique will not only enable us to quantify the extent of
cascades of bank troubles but it will also enable us to have a better understanding
of the micro dynamics of the spreading process. We will use temporal influence
abduction and out components to address questions like: Does lending to an
unhealthy bank tend to negatively effect the lender? Do unhealthy banks only
interact with other unhealthy banks or not? Are there lending patterns specific to
at-risk banks? Are there lending practices that act as firewalls to contain a risk
cascade? This section starts with a description of the dataset, then moves on to a
discussion of the uncovered micro dynamics and ends with the insights garnered
from the temporal web.
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4.5.1 Description of Dataset

We use a dataset on the Russian interbank market provided by the private financial
information agency Mobile for the period from August 1998 to October 2004. This
dataset has two parts; the first part contains monthly bank balances for most Russian
banks (described in detail in [36]). From this first part we take two variables: total
bank assets and capital. The second part of the dataset contains monthly reports “On
Interbank Loans and Deposits” and represents a register of all interbank loans issued
in the Russian market. For each loan we know its size, interest rate, issuer, receiver,
reporting date, and maturity date.8 More details on the dataset can be found in [37]
and [69].

Because the balance sheet data is only reported monthly, we aggregate the loans
to be on the same time scale. One way to encode this interbank lending scenario as
a temporal web is that if bank A lent money to bank B in a given month t there is a
directed link from bank B at month t to bank A at month t C 1. The link expresses
the fact that bank A has an exposure to bank B in month t and hence, for example,
a deterioration in the state of bank B at month t might trigger a deterioration in the
state of bank A in month t C 1. For the time being we only work with unweighted
links (instead of weighted by the amount of the loan) to keep the analysis simple.9

Figure 4.6 shows the time series of the number of banks active on the interbank
market (solid green line) and the number of issued loans (dotted gray line). During
the 1998–2002 period the interbank network experiences growth: we observe a
steady and comparable increase in the number of active banks and of issued loans.
Starting around 2002 the interbank network gradually matures as revealed by the
number of active banks flattening out while the number of loans per bank continues
to grow. Note, however, the strong variation in the number of issued loans from the
second half of 2003 onwards.

As is indicated in Fig. 4.6, our sample period includes two crises: one in August
1998 and one in the summer of 2004. Both crises resulted in a partial meltdown of
the Russian interbank market. They coincide with the edges of the sample period
and are clearly marked by a reduction in the number of active banks and issued
loans. The first crisis got triggered on August 17, 1998 when Russia abandoned
its exchange rate regime, defaulted on its domestic public debt and declared a
moratorium on all private foreign liabilities. The second crisis was ignited by an

8In this chapter, we restrict ourselves to short-term loans, defined as loans with a maturity of less
than a week. These account for more than 80% of the transactions both in terms of the number and
of the volume. The reasons for this restriction is because the data provide information about the
repayment date and not about the issuance date of the loans. This makes it hard to infer the exact
duration of the connection between two banks for the long-term loans.
9Because the loans we are using have a maturity of less than one week, it may not be the case that
A still has an exposure to B in month t C 1 if the loan was initiated in t. However, we do not know
the conditions of that repayment. The idea is that lending to a bank that is at risk of default does
not immediately elevate the lender’s risk; failing to be paid back or having a high-risk asset on the
books however may elevate a lender’s risk, and that shows up in the next balance sheet.
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Fig. 4.6 The time
dependence of the number of
active banks (solid green line)
and the number of interbank
loans (dashed line) in the
Russian interbank network
between 1998 and 2005. Data
are aggregated over a month.
The arrows indicate the start
of the two “crises” (Figure
reused from [69] with
permission)

Table 4.4 For the current
analysis we apply a
coarse-graining of the data
into these five categories by
their equity ratio

Bank state Equity ratio Percent of banks

Healthy+ (+) 14% � E 0.743

Healthy (H) 7 � E < 14% 0.191

Stressed (S) 0 � E < 7% 0.0507

Zombie (Z) E < 0% 0.0149

Dead (D) NA NA

investigation of banks accused of money laundering and sponsorship of terrorism.
This gave rise to a wave of distrust among banks and a consequent liquidity drought.

4.5.2 Temporal Web Analysis Results

Before we are able to track the propagation of risk in interbank networks, we first
need a measure of a bank’s riskiness. A commonly used measure to express risk is
the equity ratio of a bank: the total equity held by a bank divided by its total assets.
The higher this ratio, the more a bank will be able to cushion shocks to its balance
sheet. A continuous value-based analysis could look at any changes in the banks’
equity ratios, but for the current analysis we apply a coarse-graining of the banks’
equity ratios into the five categories defined in Table 4.4. During most of the period
under analysis the Russian banking system had an equity ratio requirement of 7%.
Banks above that are considered healthy, but many banks are well above that (up to
100%) and their behavior is distinct from merely healthy banks. The final column
in Table 4.4 shows the proportion of banks that are in the corresponding equity ratio
category across time. Zombie banks are banks with negative equity, meaning they
are past bankrupt, but which still have a license to operate and hence still appear in
the dataset. Although the percent of Zombie banks is small, their effect on system
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Table 4.5 Summary results of the proportions of bank state changes from t to t C 1 compiled
across the entire dataset

Bank state
at time t

Bank state at time t C 1

Healthy+ Healthy Stressed Zombie Dead

Healthy+ 0.952 0.0419 0.00222 0.000422 0.00376

Healthy 0.145 0.802 0.0482 0.00154 0.00387

Stressed 0.0465 0.155 0.763 0.0221 0.0130

Zombie 0.0273 0.0143 0.0463 0.834 0.0777

risk may not be. Dead banks are the ones that have closed (or not yet opened), and
so have neither an equity ratio nor a temporal node.

Having categorized banks by our measure of financial riskiness, we can now look
at the aggregate changes in their risk categories. Table 4.5 shows the proportions of
month to month bank state transformations. We find a high level of consistency
from period to period (76:3–95:2%), with Healthy+ banks as the most stable and
Stressed banks the least. Unsurprisingly, Zombie banks have the highest proportions
of closures (7.8%), but more than 1.4% of Stressed banks also close without going
through the Zombie state first. Also note that a large number (but small proportion)
of Healthy and Healthy+ banks also close directly without becoming Stressed or
Zombie banks.

Other results gleaned from Table 4.5 include that somewhat surprisingly 8.8%
of the banks that are Zombies at t actually recover into positive equity ratios the
next month. The Stressed banks improve the following month in 20:2% of cases
across time and only 3:5% become Zombies or close. Banks may stay Stressed for
a while, but when they transition it is usually for the better. With the exception of
Zombie banks becoming Healthy+, we can see that banks are much more likely
to change incrementally through the adjacent categories rather than jump. These
figures provide a foundation for understanding risk level changes in the system and
the base transformation rates needed to create a simulation with similar aggregate
behavior.

Temporal Influence Abduction. The next step in the analysis is to investigate
whether the interbank lending network actually is a channel of risk propagation by
looking at the conditional changes of lenders. Lending money exposes the lender to
the situation of the borrower because a (sudden) drop in the health of the borrower
might mean that the money will never be returned. This in turn influences the
balance sheet of the lender and could result in a drop of the health of the lender
too. When a bank lends to an unhealthy bank and then itself becomes less healthy,
we can interpret this as the financial risk spreading from the borrower to the lender.
Table 4.6 gives an exhaustive overview of the state changes of lenders from t to
t C 1 conditional on the state of the borrower at t. The results are compiled across
the entire dataset and reflect the micro dynamics of possible risk propagation.

The boxed entries in Table 4.6 highlight the cases in which the state of the lending
bank dropped after lending to a risky borrower. Comparing values down those
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Table 4.7 This table focuses on the type of borrowing bank for cases in which the lender becomes
more risky. The first data column shows the proportions of lenders having their equity ratios drop
at least one category (including death). Banks lending to Zombie banks are the most likely to
see a reduction in stability. However also note that because there are so many more Healthy+
and Healthy banks than Stressed and Zombie banks, most decreases in equity ratios happen after
borrowing from Healthy+ and Healthy banks. The effect revealed here is that, conditional upon
lending to an at-risk bank, a lending bank is marginally more likely to become at risk itself

Borrower type Got worse Below 7%

Healthy+ 0.0467 0.0106

Healthy 0.0475 0.0129

Stressed 0.0497 0.0165

Zombie 0.0796 0.0333

columns it is clear that lending to a Stressed or Zombie bank has a comparatively
higher rate of decreasing the risk status of lending banks, but comparing across rows
shows that these are still low proportions. So this finding corroborates the idea that
risk can propagate via the interbank lending network. However, we can also see
that Stressed and Zombie banks recover proportionately more after borrowing from
other Stressed and Zombie banks. This may have more to do with who is willing to
lend to these banks than the effect of the loans on equity ratios.

To further test the risk spread hypothesis we can focus on those entries in which
the banks’ risk status got worse. These figures are summarized in Table 4.7. The
first data column shows the proportions of lenders having their equity ratios drop
at least one category (including death). Banks lending to Zombie banks are the
most likely to see a reduction in stability. Some of those stability changes are from
Healthy+ to Healthy, or from Healthy+ to Dead (although presumably they likely
died for other reasons). So the second data column shows the proportions of lenders
having their equity ratio dropped into the Stressed or Zombie categories, or from
the Stressed to Zombie category. This also reveals a slightly larger proportion of
banks becoming stressed contingent upon lending to Zombie. From these combined
results we tentatively conclude that based on immediate neighbors, financial risk
does spread to some degree across the interbank lending network.

Temporal Out Components. Temporal influence abduction indicates that finan-
cial risk can spread from a borrowing bank to a lending bank, its “neighbors” in the
temporal web of the interbank market. In turn, these neighbors can also affect their
neighbors in a cascade of risk propagation. Hence an initial bad loan of a bank can
ripple through the bank system to increase overall system risk. In this section, our
goal is to see whether the conditional neighbor changes seen above can indeed be
chained together into risk-propagating cascades.

First it is important to understand the dynamics of bank lending, bank risk, and
how they translate into a temporal web. Figure 4.7 shows an idealized scenario for
a temporal web of an interbank loan network. In this case a trigger event is when a
non-risky bank borrows from a risky (Stressed or Zombie) bank and then becomes
risky itself. The infecting bank is not itself infected because it was already risky. The
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Fig. 4.7 This diagram represents an idealized version of the interbank loan temporal web to
demonstrate the events that trigger and propagate financial risk through the system. (1) A trigger
event occurs when a risky bank (with equity ratio below 7%) borrows money from another bank
and that bank’s equity status becomes worse. (2) The risk injected by that trigger is not counted
when maintained by the triggering borrower, but it accumulated through paths of contagion. (3) If
a lending bank does not become riskier in the next period it is not counted as part of the cascade,
even if it becomes riskier later without additional inputs. (4) A bank may lend to multiple risky
banks and turn riskier; this counts in the magnitude of the contagion for each borrower. (5) The
trigger node maintaining risk does not add to magnitude, but recovering and then becoming risky
again does add to the magnitude if it occurs in the bank’s own temporal out component. In this
case the focal bank produces 6 cumulative cases (including itself through reinfection), a duration
of 6 periods, and a magnitude of 14 temporal nodes

infected bank is also infectious as long as it stays in one of the risky states; any bank
lending to it and becoming risky also becomes infected and infectious and added to
the cascade originating from the trigger. A chain ends whenever an infected bank
recovers into a healthy state or closes.

In this scenario the cumulative cases measure captures the number of unique
banks involved in a cascade (excluding the trigger unless it becomes healthy and
then reinfected by lending to a risky bank in the cascade that it started). In the
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Fig. 4.8 This figure shows each of the 160 cascades from their start date to their end date color
coded by cascade magnitude. Unlike the EVE structural balance analysis nearly all the cascades
finish within the data time frame because most stressed and Zombie banks either recover or die
over several months

widest chain there were 38 unique banks involved, but on average 3.59 banks are
involved per cascade with most involving just one or two banks. The longest chain
of infections lasted 40 months, but the average was 6.89 months (remembering that
our data was in monthly time increments).

The cascade patterns for this temporal web are also distinct from the structural
balance data in several key ways as can be seen in Fig. 4.8. There are a few small
blocks of related cascades, but most are distinct events with separate subsets of
banks involved. The most striking thing about these results is how regular they are.
There is no burstiness in cascade creation and long cascades occur throughout the
period of analysis. Considering the number of banks and interbank loans in the
dataset, the cascade results indicate that they are actually rare events.
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Magnitude is the number of infected bank-months (temporal nodes) and so
incorporates how long those banks stay in a risky state after infection (and
also includes reinfection). For this dataset magnitude and cumulative cases are
96.4% correlated, and magnitude is 97.7% correlated with cumulative cases times
max duration. Duration itself is 82.2% correlated with magnitude. These high
correlations indicate that the more banks that are infected the more time some bank
is infected because the set of infected banks is staggered. It also implies that the
reinfection rate is low. There are a few cascades that last a long time (38 months)
involving only a few banks, but most larger cascades are ones that are both longer
and involve more banks.

4.5.3 Conclusions on Propagation of Risk Factors in Interbank
Networks

As many other studies have found before us (see [34] for an excellent review),
our temporal web analysis lets us tentatively conclude that interbank lending is
a channel of systemic risk. Next to highlighting the micro dynamics, we were
able to expose chains of risk propagating throughout the interbank system. We
acknowledge the exploratory nature of this analysis and offer this as a demonstration
of how to apply temporal webs to a field of increasing importance.

Across all cascades a total of 574 banks were involved with a total magnitude
of 2646 temporal nodes. As we saw in Fig. 4.8 most cascades were short lived
and involved few banks, and only a few were large-scale events. In some cases
individual banks become infected and stay stressed for more than a year, but the
longest cascades involve multiple chains in which one bank passes off the infection
to another bank that carries it forward. Perhaps counterintuitively, the largest chains
originate in and last through the healthiest part of the bank system history. Although
not many new cascades start during the second crisis, it is the case that several
cascades last until that period, perhaps indicating that it is a build-up effect rather
than a spontaneous reaction to a particular trigger.

Of course we are not claiming that the infecting loan was the only, or the primary,
source of the increased bank risk among infected banks. Specifically we do not
account for the size of the loans in this demonstration. By weighting the edges by
the size of the loans we could generate a size-weighted magnitude score that more
accurately reflects the spread of financial risk. Such an analysis is a natural pairing
to a move to a continuous values of bank risk instead of categories. Furthermore
the equity ratio is not the only measure of riskiness, so that is another avenue
of expansion. Even with these limitations of the current analysis, there is a clear
propagation pattern in the interbank loan network. Risk does seem to spread from
risky banks to healthy banks through bad loans at least some of the time. The harm
is usually quickly ameliorated, but in some cases (probably in concordance with
exogenous factors) the bad loan does in fact trigger a cascade of reduced financial
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stability. These cascades are, we argue, best captured and measured with temporal
webs because they make explicit the chains of events that constitute such cascades.

4.6 Propagation of Emotional Affect on Twitter Networks

Micro-blogging is an easy way for people to share information and opinions about a
variety of subjects. Twitter is currently the largest micro-blogging platform on which
millions of people voice their opinions and share information daily using messages
(tweets) within the 140 character limit. The content of these tweets creates a massive
stream of data with possible uses in subjects such as public opinion [5, 6, 35, 46, 56],
information dissemination [18, 59, 65, 74], and even event tracking [25, 42, 45].

To utilize these messages to measure opinion or intention it is essential to know
the sentiment of the tweets; this is the first step in transforming tweets into useful
data. We will not go into detail about the many techniques that exist for this
sentiment extraction as this is not our focus, but instead refer to the large body
of work on automated sentiment analysis [50, 62]. Most of these techniques use
some sort of natural language recognition, either by the use of dictionaries or trained
neural networks, to map words, word combinations, and symbols onto emotions.

The role of sentiment on the probability of online material going viral has
gathered much attention in the last years, especially for market research purposes.
Various social media platforms play an important role in this spreading of content
and every platform has its own characteristics that are used to different ends. By
analyzing the sharing of articles in “The New York Times” Berger and Milkman
found that content virality is positively correlated to its positivity and emotions
linked to activation of arousal (awe, anxiety and anger) and negatively correlated
to sadness [4]. However, their dataset might contain only a limited type of content
and not be representative of all platforms, especially considering these results seem
to be in contradiction with the folk theory that negative news sells.

Hansen et al. looked into this conflict in [27] using retweets in twitter, which
is part social media and part news and information dissemination. They found that
there was a difference between news content and non-news content. News content’s
virality was connected to negative sentiment content, while for non-news content
positive sentiments supports virality. Heimbach extended these results and found
that the connection between positivity and virality was non-linear and thus interacts
in a more complicated way as first suggested by classic theories [30].

Previous analyses have only looked at the conditional behavior of content based
on sentiment to make generalization about the effects of sentiment on spreadability.
This is similar to aspects of temporal influence abduction, but by using temporal
webs, we can follow and study its longer-term propagation through the system
and find the most important spreaders (and bottlenecks) of positive (and negative)
sentiment. Sentiment is of importance in various subjects because it is an indicator
of intention towards acting [5, 44, 63, 64] – people that have a positive sentiment
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towards vaccination or a presidential candidate will more likely get vaccinated or
vote for this candidate. Understanding the dynamics behind sentiment propagation
can thus contribute to the precision of predictions about future behavior.

To uncover features of the propagation of a property like sentiment through a
network, it is necessary to include chains through time. This is especially so in the
case of social networks wherein the time-order of communication plays an essential
role in social contagion. There has been some work on Twitter data using dynamical
network techniques and temporal analysis [43, 54, 68], but to our knowledge there
has not yet been explicitly temporal network analyses research conducted on it
(perhaps for reasons of computational limitations). Below we present a temporal
web analysis of one Twitter dataset that includes the network of followers, the tweets
sent, and the encoded sentiment of those tweets.

4.6.1 Description of the Dataset

The dataset used here was shared with us by Prof. Marcel Salathé who used it in
[63, 64]. The dataset contains 411,720 tweets between August 2009 and January
2010 from users based in the United states which contain keywords pertaining to
vaccination.10 The 4,793,160 follower-followee connections between the 101,852
authors of these tweets were also gathered. By combining these sources we have
a social network in which the nodes are people tweeting about vaccines and the
directed edges are tweets that go from the author to all his or her followers.

In his papers Salathé et al. investigated the characteristics and dynamics of health
behavior sentiments towards the then novel influenza A(H1N1) vaccine (the time
window of the data coincides with the fall wave of the swine flu pandemic). To
obtain the sentiment of the collected tweets they utilized an ensemble method
combining a naive Bayes and a maximum entropy classifier. The training set was
generated by students that all together rated 88,237 tweets and 47,143 unique tweets.
They were presented with four options for every tweet: “positive”, “negative”,
“neutral”, and “irrelevant”. Irrelevant tweets were those that were not about the
influenza vaccine and the others reflect the emotional valence of the sentiment. They
report an accuracy of 84.29% for this ensemble classifier, and while the quality of
the sentiment detection effects our results we simply take their results as given to
demonstrate the temporal web approach on this kind of dataset. We refer to [63] for
the details of their sentiment encoding methodology.

10This includes retweets in both the old and the current form. The old form of retweet was
just copy-pasting the other person’s text and manually adding RT. The current form of retweets
was rolled out for everyone on Nov 19, 2009. The keywords included are: vaccine, vaccinated,
vaccinate, vaccinating, immunized, immunize, immunization, and immunizing.
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It is important to mention that the potential contact network is taken to be static.
If at any moment within the dataset user B is a follower of user A, there is a
corresponding edge between them in the constructed social network. Changes in
followers and followees are thus not taken into account. Furthermore, we do not
currently have a measure of the rate of change in followers to judge how much this
feature of the data may be affecting our results. The concern is that our method
expects the sentiment of tweets by A to effect the sentiment of tweets of A’s
followers. If we find that this is not true for some B, we don’t know whether that
is because B is unaffected or because B wasn’t actually a follower for much of the
dataset. While acknowledging this weakness in the current dataset we can still assess
the qualitative tendency of sender sentiment to effect followers (even if the specific
values of our propagation measures are off by some unknown quantity).

In what follows we present an analysis of the data using temporal influence
abduction to uncover the sentiment of tweets conditional on the tweets they see from
the people they follow. Then, using temporal webs we investigate the propagation
of this sentiment within the network of vaccine-related tweets. With this technique,
we are able to find longer patterns in the dynamics of sentiment propagation; we can
move from “Does sentiment affects immediate virality?” to “Is it really infectious?”.

4.6.2 Constructing the Temporal Web

Our first move is to cull the data by only including tweets related to the topic of
vaccines and thus exclude the tweets tagged as “irrelevant”. Because we are leaving
a continuous time version of the temporal web technique for future work, we have to
choose a coarse-graining of the data to construct a temporal web from the data. To
do this we aggregate the tweets by day so that each time step represents all persons
active in the network and their tweets within a certain day.

Although there are some alternatives to analyzing the spread of sentiment in this
dataset, our goal here is to determine whether a person who is exposed to a lot of
negative tweets increases that person’s negativity, and whether exposure to positive
messages increases the positivity of tweets made. To do this we need to establish
the mood of a person based on their tweets. There are three sentiments that can be
expressed in a tweet: “positive”, “negative”, and “neutral”. The mood of a person is
therefore uniquely represented by two numbers:

Mood Positivity D
number of positive tweets sent

total number of tweets sent
(4.1)

Mood Negativity D
number of negative tweets sent

total number of tweets sent
(4.2)
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One could calculate the ratio of these two to get a single index, but that would hide
the proportion of tweets with sentiment compared to all tweets.11 Furthermore, for
the purpose of comparing whether negativity or positivity is more contagious, the
separate scores are more useful.

Using these equations we calculate a mood for each person at each time step
based on their activity. If we look at time step t and a person has not tweeted up to
that point, that person is coded as not having a mood (a null value that is different
from being neutral). A person who does not tweet in time step t, but has tweeted
in a previous time step, is assigned the mood from the previous time step. We call
this temporal inheritance and reflects a (sometimes explicit, sometimes implicit)
connection from an agent to its immediate future self. This convention is common
in disease and epistemic temporal networks to reflect that the agent’s state stays
the same unless acted upon, but is less clearly appropriate for moods of people on
Twitter.

The next step is to construct the temporal web from the flow of information
in the system. We use the follower network and connect each followee at time t
to all of his/her followers at time t C 1. The edges are cross-temporal to reflect
the effect of the tweets on the calculated moods of the receivers even though the
tweets themselves may have been seen immediately. To answer the question of
sentiment spread, we calculate the positivity and negativity of a person’s feed, which
is based on the collection of all tweets a person is exposed to from all the people
followed. This aggregation again leads to two numbers that characterize the mood
of a person’s feed:

Feed Positivity D
number of positive tweets exposed to

total number of tweets exposed to
(4.3)

Feed Negativity D
number of negative exposed to

total number of tweets exposed to
(4.4)

We generated histograms of the distributions of each person’s mood and (rather
surprisingly) both the positivity and negativity are distributed almost entirely into
three narrow spikes: one near zero, one near the center, and one at the extreme. We
repeated this for the feed sentiment values and found a high concentration on and
near zero (though more dispersed than for mood), a narrow spike near the center,
and a narrow spike on the extreme. Thus both mood and feed can be cleanly broken
down into distinct categories according to the scheme in Table 4.8.

11If both positivity and negativity have 5 tweets out of 10, then the sentiment ratio is 1:1. If they
both have 5 out of 1000 then again the ratio is 1:1. However, in the former case they both have
medium sentiment levels and in the later case they both have low sentiment levels. In other work
we provide a combined sentiment measurement, but the added complication is beyond the scope
of this work.
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Table 4.8 Categorization schemes for both mood and feed positivity and negativity based on the
proportion of tweets having emotional affect for that day

Category Range

Low 0 � m � 1
3

Medium 1
3
< m < 2

3

High 2
3

� m � 1

Table 4.9 The distributions of both moods and feeds for each category separated into positives
and negatives. Most tweets lack sentiment, but there is a notably higher level of highly positive
tweet writers despite a lack of highly positive tweet readers. For each group the value for the
medium category is the lowest, but especially for the moods

Category Mood negativity Feed negativity Mood positivity Feed positivity

Low 0:903 0:933 0:853 0:955

Medium 0:0106 0:0324 0:0101 0:0201

High 0:0868 0:0347 0:137 0:0251

In Table 4.9 we show the distribution of the mood and feed negativity and
positivity among the three categories of Table 4.8. We thus see that the spikes near
zero make the low category by far the largest of the three. That feed negativity
has a higher value for the medium category and lower value for the high category
compared to mood negativity indicates that most people, even if they have a highly
negative mood, do not only follow other people with a highly negative mood,
but will also follow people that either send out purely informative tweets (low
negativity) or that are more positive on average.

4.6.3 Temporal Web Analysis Results

The first step is to look at the transitions in mood from time step t to time step t C 1

by type, shown in Table 4.10. Here we separately analyze the positive and negative
moods since there might be an asymmetry in the propagation. We see that there is
high stability in moods, with the low level being the most stable. We also see that for
both positive and negative moods there is nearly an order of magnitude difference
between the probability of going from one extreme to the other than going to an
adjacent (medium) level. For medium we see it is much more likely to transition to
low than it is to high.

The conditional state changes in Table 4.10 highlight both the similarity of
positive and negative mood changes and the pattern of changing directly between
high and low instead of through medium. Low sentiment is three times more likely
to transition to high than medium levels, and high sentiment is 24 times (positive
sentiment) or 15 times (negative sentiment) more likely to transition into low than
medium levels. Mediums levels are roughly six times more likely to drop than
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Table 4.10 Summary results of the proportions of mood changes from t to t C 1 compiled across
the entire dataset. Tables (a) and (b) show all states for positivity and negativity respectively.
Although all three levels are extremely stable, medium levels are the least stable and low levels
are the most stable. Subtables (c) and (d) renormalize the data conditional on there being a change
to highlight what those changes are

All states

(a) Negative sentiment

Mood at
time t

Mood at t C 1

Low Medium High

Low 0:999 0:000208 0:000674

Medium 0:0198 0:976 0:00373

High 0:00511 0:000281 0:995

(b) Positive sentiment

Mood at
time t

Mood at t C 1

Low Medium High

Low 0:999 0:000236 0:000823

Medium 0:0191 0:978 0:00294

High 0:00283 0:000108 0:997

Conditional on transition

(c) Negative sentiment

Mood at
time t

Mood at t C 1

Low Medium High

Low 0:236 0.764

Medium 0.842 0.158

High 0.948 0:0521

(d) Positive sentiment

Mood at
time t

Mood at t C 1

Low Medium High

Low 0:223 0.777

Medium 0.869 0.134

High 0.963 0:0368

to increase. Despite these lower levels, the medium level sentiment holders could
play a key role in propagation if they are typically low level sentiment people with
temporary spikes of higher sentimentality. To discern whether or not this is the case,
we need to look at the conditional changes in sentiment level.

Temporal Influence Abduction. To start looking at the effect of the exposed
positivity and negativity on the mood of a person, we present the mood change
proportions per feed sentiment level they get exposed to in Table 4.11. As before,
we see that most people stay in the low sentiment category (regardless of the feed
level) and the next largest group stays in the high category. This raises the idea
that there are two dominant types of Twitter users: broadcasters of information and
opinion pushers. Their behavior is changed little by the inputs they receive. The feed
sentiment level does not have a large influence on these trends on an aggregate level
but threads of propagation might be buried in the noise.

By looking deeper at the contingent behaviors we can uncover a few other details
that hint at the presence of influence propagation. For example, for the positive
posts, people with a medium level are much more likely to switch to a high sentiment
level given a high feed sentiment level compared to other feed levels. In the negative
sentiment case, people with a low sentiment mood are twice as likely to switch to
a high level after receiving a high-level feed than they are to stay low or go to
medium. Negative medium level people are also marginally most likely to switch to
a high level given a high feed level. Because most people stay in the same category,
these small marginal differences may indicate the influence of the feed on one’s
sentiment level, but it is difficult to perform meaningful statistical tests to check for
the significance of these small differences due to the structure of the data across
people, their networks, and time.
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Temporal Out Component Analysis. As before, to really see whether a property
spreads across the network, one must look at the network across time and chain
together the changes of interest. Given the large size of the network (101,852
nodes and 4,793,160 edges at each daily time step) the small conditional change
probabilities might still constitute cascades of influence across the temporal web.
The first step is to refine our definition of what it means for a person to be influenced
by another in this context.

We use the following criteria to identify sentiment propagation. If person B is a
follower of person A, and person A has an upwards change in sentiment from t � 1

to t, then we say there is propagation along the edge from A to B if person B shows a
change in sentiment in the same direction as A from t to t C 1. One can think of the
temporal web as a transformation of the data into a structure in which the temporal
nodes are changes in sentiment levels with a property value of ‘increased’, ‘static’,
or ‘decreased’. Temporal node ˛ at layer L connects to temporal node ˇ at layer
L C 1 if and only if ˇ follows ˛ and ˛ tweets something on both times t � 1 and t. If
A’s proportion of sentiment-having tweets is higher at t than t � 1, then the ˛ node
at L has the property ‘increased’ and is considered infectious. If person B sends a
larger number of emotional tweets in t C 1 compared to t then the temporal node ˇ
has the ‘increased’ property at layer L C 1 and we say that propagation occurs from
A to B between t and t C 1.

Unlike the previous two analyses, in the Twitter case there is a separation between
being infectious and being infected. Nodes are only infectious on the time steps
after an increase in their proportion of sentiment-laden tweets. Agents only become
infected when they perceive such an increase, and then increase their sentiment level
themselves in response. At that point they are both infected and infectious. If they
remain in the elevated state then they remain infected, but because their sentiment
level is constant they are not infectious. Because we have three levels of sentiment,
it is possible for a person to go from low to medium, and then from medium to high.
Both increases will make them infectious, but after reaching the high state there is
nowhere to go except to stay high or drop. Once the level decreases from the elevated
state the person is considered recovered and is no longer infected. Recall that states
are inherited across times without tweets, this allows us to identify changes from
past moods to judge increases and decreases, but their mood can only change if they
actively tweet something that day.

We can perform separate analysis for the subset of nodes that are infectious and
the ones that are infected. This distinction produces some interesting insights into
the flow of sentiment on the Twitter temporal web, but for now we abbreviate these
analysis to present only the core results. The main difference is that when all infected
nodes are included, the magnitude and duration last as long as somebody stays in a
heightened state, and this sometimes lasts until the end of the dataset. By contrast,
when only the infectious nodes are included there is a strict limit on the length of
time a particular cascade can dwell in a node (one or two days). The difference is
just one of bookkeeping and measurement; whether to perform an analysis of the
infectiousness of sentiment or of the social impact of sentiment spread.
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Fig. 4.9 Scatter plots for propagation of positivity (left) and negativity (right) in which each disk
represents a distinct cascade. The disk’s location indicates its duration and cumulative cases, while
the color and size indicate magnitude. Note the difference in scaling, especially the y-axis

Here we will focus on whether sentiment propagates on the Twitter network and,
if it does, whether positivity or negativity propagates better? We found 539 distinct
cascades in the positive sentiment temporal web and 653 distinct cascades in the
negative sentiment temporal web. As you can see in Fig. 4.9 most of these cascades
were small, infecting fewer than a dozen people. In the case of the negativity spread
(right scatter plot) there is a large conspicuous series of cascades of increasing
magnitude, cumulative cases, and duration. Starting on September 15, 2009 there is
a single chain of sentiment spread that on each day infects between one and dozens
of people and lasts until November 29, 2009. Although there are three slightly
different sets of initially infected agents that form three different triggers (hence
distinct cascades), the paths leading from those events quickly converge. As the
chain progresses through time there are dozens of other trigger events along the way
that converge into this one main stream. It is like many small tributaries feeding a
main river. So although each independent trigger counts as a distinct cascade, nearly
all the nodes involved in the cascades are shared.

Looking at the timelines for the infectious cascades this is even more conspicuous
because all those cascades start at different times but end on the same day. If we
count the overlap differently, therefore, we would get very different quantitative
results for magnitude and cumulative cases. We revisit this point below. The
convergence of chains of propagation is not uncommon, in fact it happens to a lesser
scale four other times in the negativity cascades and there are five small cases of
convergence in the positivity cascades, but we didn’t expect to see any chains this
long or broad from this dataset. To discover such a long chain, and one that has
so many independent triggers, means that not only does large scale propagation of
sentiment occur on the Twitter networks, large scale propagation is inevitable (at
least on this subset of Twitter).
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Table 4.12 Comparison of the cascade features of positive and negative sentiment propagation.
A Kolmogorov-Smirnov two-sample test reveals that these distributions are different with an
extremely high significance, which is already clear from these summary statistics

Positivity cascades Negativity cascades

Number of cascade events 539 653

Mean duration 25.2 46.6

Max duration 127 146

Mean cumulative cases 14.5 225.7

Max cumulative cases 190 965

Mean magnitude 340.3 5620.1

Max magnitude 5355 25,993

Now we address the question of whether positivity or negativity is more viral.
The scatter plots in Fig. 4.9 share some features, but also have some clear differ-
ences. The summary statistics of the positivity and negativity cascades presented
in Table 4.12 demonstrate clearly that negativity is more successful in spreading in
this Twitter data. The cascades of negativity are more frequent, larger, and longer
lasting. This is in line with what Salathé et al. found in their papers, namely that
negative sentiment spreads much more easily than positive. However, the bulk of
the magnitude of negativity is contained in that one huge chain, whereas the chains
in positivity are more diverse. If we change the way we account for out component
overlap it could drastically effect this result; we revisit this issue in the next section.

Although infectiousness has a very limited time frame, specifically the period
after a mood change, the magnitude is calculated throughout the infected period. If
people undergo long-term changes in their posting sentiment propensities then the
durations and magnitudes will be greater, and magnitude will correlate less with
cumulative cases. What we find is that for positivity, magnitude and cumulative
cases are 98.2% correlated, while in negativity they are 99.9% correlated. Durations
are 59.6% and 82.3% correlated with magnitude for positivity and negativity
respectively. This means that spreading to new people dominates the magnitude
measure and changes are short-lived. It also means that cumulative cases times
duration is actually slightly less correlated with magnitude than cumulative cases
alone. This finding is consistent with the earlier claim that people are generally
either spreaders of information or of opinion; they may change their style based on
a particular issue, but quickly return to their base rate.

4.6.4 Conclusions on Propagation of Sentiment on a Twitter
Network

Here we showed that propagation of the type similar to sentiment propagation, in
which person A changes his/her mind from time t � 1 to t, causing person B to
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change his/her mind from time t to t C 1 (which is a different type of propagation
than the last two types), can easily be tracked and quantified within the presented
temporal web framework without losing information in aggregation. Although the
aggregated change proportions showed little evidence of spread, the temporal web
analysis shows that cascades of change actually play a large role in who changes
sentiment and when.

The particular chain patterns found in this dataset are quite interesting and
unexpected. The single long chain in the negativity propagation brings to the
forefront questions about how to count overlapping out components. As mentioned
above, in this work we are treating them as distinct cascades, multiply counting each
infected temporal node for each independent event that could have infected them.
This measures, for each trigger, its potential to spread sentiment; i.e., what sentiment
it would have spread even if all other cascade events were eliminated. However,
this is a poor measure of the marginal effect on sentiment spread because most of
infections are infecting the already infected. To capture marginal effect one needs to
identify each cascade’s unique influence by identifying temporal nodes that would
not have been infected without that event. The intermediate approach of weighting
each path from each trigger event node potentially best captures the contribution of
each temporal node in each event, but the appropriate weighting may depend on the
application and the distribution of events.

The reason this is important ties back to the principal use of temporal webs to
measure influence. The next step in such an analysis is to compare the score each
trigger node achieves according to various (temporal and static) network measures
to the magnitude it generates. Alternate ways of measuring impact on the temporal
web will produce different comparisons and highlight different network features.
This then feeds back into the role that capturing temporally extruded cascades plays
in identifying useful network measures of influence.

Moving forward with the Twitter analysis, a natural addition is to combine
the two sides of the sentiment to also analyze the interplay between positive
and negative sentiment. For example, here we determined whether having a more
positive feed leads to more positive tweets, and we can extend this to include having
fewer negative tweets as well. The current dataset on the avian flu is rather limited in
its scope and has features that we believe are particular to this topic. By applying this
technique to a variety of Twitter subgraphs on a variety of unrelated topics we can
make broader claims about general features of propagation on this social network
platform.

4.7 Summary

This chapter provided a general description of measuring influence on dynamic
social networks using a temporal web structure of the interactions across time.
We also proposed a way to derive the rules that people use via a technique called
temporal influence abduction. This approach uses aggregated contingent behaviors
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to uncover the kinds of information one would need to build a simulation that
recreates data like the single observed one. In future work we will use these
contingent behavior rules to generate multiple alternate counterfactual histories
for each dataset and compare the propagation patterns of the real and simulated
temporal web. One motivation to do this is to determine the role of luck (i.e.,
a convergence of probabilistically rare events) in the appearance of large-scale
cascades and/or to determine to what degree some amount of propagation is
inevitable in dynamic networked systems.

For each of the datasets analyzed here cumulative cases (and cumulative cases
times duration) were very highly correlated with magnitude. This is not generally
true based on previous work with disease simulations, and so reflects a substantive
feature of spread on these networks. The improved accuracy of the magnitude
measure is one of the proposed benefits of the temporal web approach over running
dynamics on static networks or analyzing flattened networks. In the three cases
presented above, this benefit is limited because the easier and more traditional
measures act as reasonable proxies for the temporal web measure. This is generally
the case when either cumulative cases or the duration is the main driving factor of
total spread size, and less so when both factors play a significant role. There are
many techniques useful for studying propagation, studies like this help us home in
on the features of network contagion for which the temporal web approach provides
unique insights.

Although work on this method is still fresh, it is gaining momentum. Demon-
strations of how to use temporal networks (beyond just temporal webs) and the
benefits of such applications are critical to them gaining a wider acceptance. Our
sincere hope is that this detailed analysis of three applications of temporal webs
to empirical data provides such an example. These datasets are already large, and
because each agent at each period is encoded as a temporal node, analyzing them
requires especially efficient algorithms to run. Although this may act as a barrier
to entry for some researchers, we are eager to collaborate with interested parties in
extending our applications of temporal webs.
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Chapter 5
Mean Field at Distance One

Ka Yin Leung, Mirjam Kretzschmar, and Odo Diekmann

Abstract To be able to understand how infectious diseases spread on networks, it
is important to understand the network structure itself in the absence of infection.
In this text we consider dynamic network models that are inspired by the (static)
configuration network. The networks are described by population-level averages
such as the fraction of the population with k partners, k D 0; 1; 2; : : : This means
that the bookkeeping contains information about individuals and their partners, but
no information about partners of partners. Can we average over the population to
obtain information about partners of partners? The answer is ‘it depends’, and this
is where the mean field at distance one assumption comes into play. In this text
we explain that, yes, we may average over the population (in the right way) in
the static network. Moreover, we provide evidence in support of a positive answer
for the network model that is dynamic due to partnership changes. If, however, we
additionally allow for demographic changes, dependencies between partners arise.
In earlier work we used the slogan ‘mean field at distance one’ as a justification
of simply ignoring the dependencies. Here we discuss the subtleties that come with
the mean field at distance one assumption, especially when demography is involved.
Particular attention is given to the accuracy of the approximation in the setting with
demography. Next, the mean field at distance one assumption is discussed in the
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context of an infection superimposed on the network. We end with the conjecture
that an extension of the bookkeeping leads to an exact description of the network
structure.

5.1 Introduction

Consider a large population of individuals who engage in partnerships. These
partnerships make up the network structure of the population. The network evolves
over time due to both demographic and partnership changes. Rather than keeping
track of all individuals and partnerships over time, we are interested in a statistical
description of the network at a particular point in time by characterizing population-
level (p-level) quantities of interest, e.g. the fraction of the population having k
partners, k D 0; 1; 2; : : :, and use these p-level averages to describe the disease
dynamics in the population. In general, it is not possible to use such a statistical
description to predict the future spread of the disease. Indeed, the precise network
structure influences how the disease is transmitted on the network. A statistical
description of p-level fractions generally does not provide enough information to
recover the structure of the network. But, by making assumptions about the structure
of the network, e.g. by assuming a (static) configuration network, such a statistical
description may be possible.

The construction of the (static) configuration network guarantees the absence of
degree-degree correlation. As a consequence it is easy to describe the transmission
dynamics of an infectious disease across the network in the course of time, even
for rather general infectivity functions, see [1, Section 2.5] and [2]. The dynamic
network models that we consider in this text (and previous work [1]) are inspired by
the (static) configuration network.

An essential feature of the network models under consideration are the ‘binding
sites’ (in the static setting these are often referred to as half-edges or stubs; these
were most cleverly used to describe transmission dynamics of an SIR infection
in the static setting by Volz in [3] and in subsequent work by Miller, Volz, and
coauthors (e.g. [4] and references therein)): each individual consists of a number
of (conditionally) independent binding sites. In the static configuration network,
binding sites are paired in a uniform way. Two binding sites that are paired form a
partnership between their owners. Note that, while the construction of the network
may lead to self-loops and multiple partnerships between the same individuals, the
proportions are such that we may ignore these in the infinite population limit, see
e.g. [5, 6] for precise statements and proofs.

We distinguish three different levels in the network: (i) binding sites, (ii)
individuals, and (iii) the population. Systematic model formulation relates the three
levels to each other. At the binding-site and individual level (i-level) we have
a Markov chain description with p-level influences captured by environmental
variables. We work in the large population limit, so the description at the p-level
is deterministic. The binding sites are the essential building blocks of the model and
allow us to understand the dynamics at the p-level.
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In [1] we formulated models for the spread of an infectious disease over two
dynamic variants of the static configuration network. Here we reconsider these
dynamic networks while focusing on the mean field at distance one assumption.
First, in Sect. 5.2, we allow for partnership formation and separation. Next, in
Sect. 5.3, we also incorporate demographic turnover. The key question, central to
the mean field at distance one assumption, is: what information about partners of
partners can we recover from a bookkeeping scheme that only contains information
about individuals and their partners?

In the case of a static configuration network this question is readily answered.
There is independence in the degrees of partners. Therefore, the probability that a
partner has k partners is simply obtained from the size-biased degree distribution,
i.e. if Pk is the probability that a randomly chosen individual has k partners, then
kPk=

P

l lPl is the probability that a randomly chosen partner has k partners (where
P

l lPl serves as a normalization constant). We show in Sect. 5.2 that this property
is also shared by the dynamic network without demography, but, as we show
in Sect. 5.3, things are more subtle in the dynamic network with demography.
In fact, in Sect. 5.3, we show that degree dependencies arise as a result of age
dependencies, and we quantify the dependency between the degrees of partners by
the correlation coefficient. In Sect. 5.4 we discuss the mean field at distance one
assumption in the context of an infectious disease superimposed on the network, and
we explain where additional complications arise. Finally, in Sect. 5.5, we end with a
discussion and some conclusions. We conjecture that changing the bookkeeping of
partners to include age allows for an exact description of the dynamic network with
demography.

5.2 Dynamic Network Without Demography

5.2.1 Model Formulation

To obtain a first dynamic configuration network we assume:

• occupied binding sites become free at rate �
• free binding sites form partnerships at rate F where F is the fraction of binding

sites that are free (mass action / supply and demand)

cf. [1, Section 3]. Let the partnership capacity n of an individual be the maximum
number of partners it may have at any given time. The actual number of partners
(a.k.a. the degree) of the individual changes over time according to the per-binding-
site rules specified in the two bullets above. In principle, the partnership capacity
n is a random variable with a specified distribution (with finite first and second
moments). Here, for the sake of exposition, we assume that the distribution is
concentrated in one point (also denoted by n). In other words, all individuals
have exactly the same partnership capacity n. As a consequence, the degree of an
individual follows a binomial distribution, see Eq. (5.2) below.
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The network dynamics entail that binding sites of an individual behave indepen-
dently of one another in partnership changes. One can describe the dynamics of
the fraction F of free binding sites with the following ordinary differential equation
(ODE):

dF

dt
D �F2 C �.1 � F/:

As a consequence, we find that F stabilizes at a value characterized by the identity

F D
�

F C �
: (5.1)

Solving for F in terms of � and  yields

F D

p

�.4C �/ � �

2
:

Therefore, we assume that F is constant and satisfies Eq. (5.1). This assumption for
F ensures that the network structure is stationary even though the network itself is
changing over time due to partnership dynamics. As a matter of fact, we assume that
we start in stationarity.

5.2.2 Independence in the Degrees of Partners

We adopt the convention that the joint degree of two partners refers to the total
number of partners of each of the individuals (including their known partner). We
calculate the joint degree distribution �k;l.�/ of two partners at partnership duration
� , given that they remain partners for this period of time; see Table 5.1 for an
overview. If our derivations seem overly detailed, please bear in mind that these
details serve to prepare for the analysis in Sect. 5.3 of a more subtle situation.

Table 5.1 Overview of distributions that are used in Sect. 5.2

Variable Description

.Pk/
n
kD0 Degree distribution for a randomly chosen individual,

Pn
kD0 Pk D 1

.qk/
n
kD1 Degree distribution for a newly acquired partner,

Pn
kD1 qk D 1

'.�/ D F Probability that a binding site is free at time � after its owner acquired a partner
at a different binding site

.�k;l.�//
n
k;lD1 Joint degree distribution of two partners at time � after partnership formation,

Pn
k;lD1 �k;l D 1
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First, by combinatorics, we find that the probability Pk that a randomly chosen
individual in the population has k partners is simply

Pk D

 

n

k

!

Fn�k.1 � F/k; (5.2)

i.e. the degree distribution .Pk/ is a binomial distribution with parameters n and
1 � F.

The probability qk that a newly acquired partner has k partners (in total) is .n �

kC1/Pk�1=
P

l.n� l/Pl (a potential partner in state k�1 has .n�kC1/ free binding
sites; immediately after partner formation, it will be in state k). Here the sum serves
to renormalize into a probability distribution. Working this out, we find that

qk D .n � k C 1/

 

n

k � 1

!

Fn�kC1.1 � F/k�1

,

X

l

.n � l/Pl

D n

 

n � 1

k � 1

!

Fn�kC1.1 � F/k�1

,

nF

D

 

n � 1

k � 1

!

Fn�k.1 � F/k�1: (5.3)

So, we find that a newly acquired partner has at least one occupied binding site and
the other n�1 binding sites are free with probability F and occupied with probability
1 � F. Hence, qk is equal to the probability that a randomly chosen partner has k
partners.

Next, let ' denote the probability that a binding site is free at time � after partner
acquisition at another binding site of the same owner. Then '.�/ D F, since binding
sites behave independently of one another. On the other hand, ' satisfies

d'

d�
D �F' C �.1 � '/; (5.4)

'.0/ D F:

Solving for ' we find that

'.�/ D
�

F C �
C
F2 � �.1 � F/

F C �
e�.FC�/� D F; (5.5)

where we used identity (5.1) for F in the second equality. In particular, this confirms
our intuition that partnership duration � is not relevant.



110 K.Y. Leung et al.

We are now ready to consider the probability �k;l.�/ that u and v have k and l
partners in total at time � after they formed a partnership, given that u and v remain
partners in the period under consideration. First of all, note that

�k;l.0/ D qkql; (5.6)

with qj given by Eq. (5.3) (partnerships are formed at random between free binding
sites in the population), i.e. there is independence in the degrees of the individuals in
a newly formed partnership. Furthermore, both u and v have exactly one binding site
occupied by their known partner and n � 1 other binding sites at which partnership
formation and separation can take place. Taking into account partnership-formation
and -separation at the other binding sites, and conditioning on the existence of
partnership uv in the period under consideration, we find that �k;l satisfies

d�k;l

d�
D �F.n � k/�k;l � F.n � l/�k;l � �.k � 1/�k;l � �.l � 1/�k;l

C F.n � k C 1/�k�1;l C F.n � l C 1/�k;l�1 C �k�kC1;l C � l�k;lC1;
(5.7)

with initial condition (5.6). Let

pk;l.�/ �

 

n � 1

k � 1

!

'.�/n�k.1 � '.�//k�1

 

n � 1

l � 1

!

'.�/n�l.1 � '.�//l�1: (5.8)

We claim that �k;l.�/ D pk;l.�/. Indeed, differentiating pk;l.�/ with respect to � and
using Eq. (5.4), we find that the ODE (5.7) for �k;l is indeed satisfied. Since these
are straightforward calculations, we omit the details, and only note that the relations
.n � k/

�n�1
k�1

�

D k
�n�1

k

�

and .k � 1/
�n�1

k�1

�

D .n � k C 1/
�n�1

k�2

�

yield the desired result.
On the other hand, since '.�/ D F (see Eq. (5.5)), from Eq. (5.8), we find that

pk;l.�/ D qkql. Hence the joint degree distribution of two partners at time � after
partnership formation is given by

�k;l.�/ D qkql:

In particular, we find that there is independence in the degrees of two partners.
Moreover, the joint degree of two individuals in a partnership is the same (i) at
partnership formation, (ii) at a specific partnership duration � of their partnership,
and (iii) at a randomly chosen time in their partnership. The only information that
such a partnership gives us about the degree of the partners is that both partners have
at least one occupied binding site.
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5.3 Dynamic Network with Demography

5.3.1 Model Formulation

A next dynamic variant of the static configuration network model is obtained by
adding demographic turnover to the partnership changes of Sect. 5.2, cf. [7] and [1,
Section 4]. We additionally assume that

• life length is exponentially distributed with parameter �
• newborn individuals appear at a constant rate (which is equal to � if we consider

fractions, i.e. normalize the total population size to 1)
• at birth, individuals enter the population without any partners

In other words, we assume a stationary age distribution with density a 7! �e��a.
Note that our assumptions on demography imply that the rate at which occupied
binding sites become free is � C � where � corresponds to ‘separation’ and � to
‘death of the partner’. The fraction F of binding sites that are free now satisfies

dF

dt
D � � �F � F2 C .� C �/.1 � F/:

Again, as in Sect. 5.2, F stabilizes to a constant that satisfies

F2 � .� C 2�/.1 � F/ D 0: (5.9)

Therefore, we assume that F is constant. In terms of the model parameters this
constant F equals

F D

p

.� C 2�/.4C � C 2�/ � .� C 2�/

2
: (5.10)

As a consequence, although the network itself changes due to partnership dynamics
and demographic turnover, the population structure is statistically stable. In partic-
ular, the degree distribution does not change with time. We assume that the network
starts in stationarity.

In subsequent subsections we show that, contrary to the static network and the
dynamic network without demography, there is no longer independence in degrees
in the dynamic network with demography. We do so by showing that age-age
dependence and age-degree dependence exist, leading to the conjecture that demo-
graphic turnover causes degree-degree dependence. We verify the conjecture, and
compute the correlation coefficient and study how it depends on the parameters. For
convenience an overview of the probabilities and distributions relevant to Sect. 5.3
are given in Table 5.2. A related dynamic network incorporating demography (in a
growing population) is considered in [8, 9], where also the degree-degree correlation
is determined.
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Table 5.2 Overview of probabilities and densities that are used in Sect. 5.3. By assumption,
whenever we write ‘at age a’ (or just ‘age a’), the individual under consideration remains alive
in the period between being born and reaching age a

Variable Description

'.a/ Probability that a binding site is free given that its owner has age a

�0.a/ Density function for the age of the owner of a randomly chosen free binding site

�1.a/ Density function for the age of the owner of a randomly chosen occupied binding
site

H.a; ˛/ Density function for the ages of two partners in a randomly chosen partnership

pk.a/ Probability that an individual has k partners at age a, k D 0; : : : ; n

qk.a/ Probability that a partner of age a has k partners in total, k D 1; : : : ; n

P.k; l/ Probability that the joint degree of a randomly chosen partnership is .k; l/,
k; l D 1; : : : ; n

Finally, as always, the assumptions matter. Here we model demography so that
individuals enter the population without any partners. After its birth, an individual
may acquire and lose partners according to the rules assumed in Sect. 5.2. Therefore,
the number of partners of an individual contains information about the age of that
individual. One may think of different ways of modelling demography that may
not necessarily lead to age dependencies. Indeed, an assumption for the numbers
of partners of newborn individuals made in [10] achieves that age dependencies are
absent.

5.3.2 Age-Age and Age-Degree Dependencies

We show that there is dependence between the ages of partners by reasoning at the
binding site and partnership level (compare with the derivation of the correlation
coefficient for the related model in [9, Section 3.3]). Whenever we write ‘at age a’
(or just ‘age a’), the individual under consideration has, by assumption, survived
until that age. First, consider a binding site (see also [1, Section 4]). Let '.a/ denote
the probability that a binding site is free at age a. Then ' satisfies the ODE

d'

da
D �F' C .� C �/.1 � '/;

with birth condition '.0/ D 1, so

'.a/ D
� C �

F C � C �
C

F

F C � C �
e�.FC�C�/a: (5.11)
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We have the identity

F D

Z 1

0

�e��a'.a/da

for the fraction of free binding sites ( one can use Eq. (5.9) to check that this identity
holds). Then the probability density function of the age of (the owner of) a free
binding site is given by

�0.a/ D
�e��a'.a/

F
: (5.12)

Similarly, the probability density function for the age of a randomly chosen
occupied binding site is

�1.a/ D
�e��a.1 � '.a//

1 � F
: (5.13)

Next, observe that, due to independence at partner formation, the joint age density
function of two partners at partner formation is the product �0.a/�0.˛/ of age
density functions of free binding sites. Two free binding sites are paired at rate
F2, and a partnership dissolves at rate � C 2�. Furthermore, newborn individuals
(at age 0) have no partners. Therefore, the density function for the ages of two
partners in a randomly chosen partnership satisfies

@p

@a
C
@p

@˛
D F2�0.a/�0.˛/ � .� C 2�/p;

p.0; ˛/ D 0 D p.a; 0/:

Solving for p and normalizing into a probability density function H.a; ˛/ for the
ages of two partners in a randomly chosen partnership yields

H.a; ˛/ D
p.a; ˛/

R1

0

R1

0
p.b; ˇ/dbdˇ

D

R min .a;˛/
0

F2�0.a � �/�0.˛ � �/e�.�C2�/�d�

1 � F
: (5.14)

Here we used that
R1

aD0

R1

˛D0 p.a; ˛/dad˛ D 1 � F in the second equality (use
Eq. (5.20) in Lemma A.1 of “Appendix 1: Relationship Between �1.a/ and H”).

Note that we can also reason directly from the interpretation of the model
to obtain Eq. (5.14). Consider a randomly chosen partnership of duration � with
partners of age a and ˛, then at partnership formation these individuals had ages
a�� and ˛�� . At partnership formation, their ages are independent and the densities
are �0.a � �/ and �0.˛� �/. The rate at which a partnership is formed is F2. Next,
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the probability that a partnership has duration of at least � is e�.�C2�/� . Obviously,
the partnership duration � satisfies 0 � � � min.a; ˛/. Finally, the probability that a
binding site is occupied is 1 � F, yielding the normalizing constant. By combining
these elements we obtain Eq. (5.14).

Finally, the expression for H.a; ˛/ allows us to conclude that there is dependence
in the ages of two partners. Indeed, if these were independent of one another, then
the probability density function for the ages of two partners in a randomly chosen
partnership would be the product of the probability density functions for the age of a
randomly chosen occupied binding site, i.e. �1.a/�1.˛/with �1 given by Eq. (5.13).
Since H.a; ˛/ ¤ �1.a/�1.˛/, we conclude that demographic turnover (in the way
that we have modelled it) induces age dependence.

In order to show that the age and degree of an individual are correlated, we relate
the binding site level to the i-level. Let pk.a/ denote the probability that an individual
has k partners at age a. Then, by the independence assumption for binding sites,
combinatorics yields

pk.a/ D

 

n

k

!

'.a/n�k.1 � '.a//k:

In particular, we find that information about the age of an individual helps to predict
its degree. Since we also have dependence in the ages of two partners, we expect that
there is dependence in the degrees of two partners. This dependence is quantified by
means of the degree correlation coefficient in the next subsection.

5.3.3 Quantifying the Degree-Degree Dependence

5.3.3.1 Joint Degree Distribution

Let P.k; l/ denote the probability that a randomly chosen partnership has joint
degree .k; l/, 1 � k; l � n, i.e. the probability that two individuals have degrees
k and l given that they are partners.

Next, we consider the probability that an individual u has k partners at age a,
given that it is a partner of an individual v with age ˛. By assumption, given the age
of the owner, the binding sites of an individual are independent of one another as
long as the owner does not die. Therefore, the fact that u of age a is in a partnership
with individual v simply means that one of the n binding sites of u is already
occupied. The probability that any other binding site of u is free is '.a/ with '.a/
given by Eq. (5.11). Combinatorics yields that the probability that u has, at age a, k
partners in total, given partner v with age ˛, is equal to

qk.a/ D

 

n � 1

k � 1

!

'.a/n�k.1 � '.a//k�1; (5.15)
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where 1 � k � n, a > 0. Conditioning on u having age a and v having age ˛, the
probability that the joint degree of u and v is .k; l/ is simply

qk.a/ql.˛/: (5.16)

The probability density function for the ages of the partners in a randomly chosen
partnership is H.a; ˛/ (see Eq. (5.14)). By integrating over all possible ages a and ˛
we obtain the probability P.k; l/ that two individuals u and v in a randomly chosen
partnership have k and l partners:

P.k; l/ D

Z 1

˛D0

Z 1

aD0

qk.a/ql.˛/H.a; ˛/dad˛ (5.17)

Note that two individuals in a randomly chosen partnership are identically dis-
tributed (with respect to age as well as with respect to number of partners) so P is
symmetric in k and l, i.e. P.k; l/ D P.l; k/. Furthermore, note that both the qk.a/ and
�0.a/ are functions of '.a/ with '.a/ given by Eq. (5.11). By algebraic expansion
of the powers of the form .x C y/m one can rewrite these probabilities qk as

qk.a/ D

 

n � 1

k � 1

!

n�k
X

jD0

k�1
X

iD0

 

n � k

j

! 

k � 1

i

!

.�1/i

�

� C �

F C � C �

�k�1Cj �
F

F C � C �

�n�k�j

e�.FC�C�/.iCj/a:

So Eq. (5.17) can be written as the sum of integrals over exponential functions. By
working out these integrals one obtains an explicit expression for P.k; l/ in terms of
the model parameters. In this paper, our aim is to quantify the dependence between
the degrees of partners by means of the correlation coefficient, and we are not that
much interested in the specific probabilities P.k; l/ for specific k and l. Therefore,
we do not write down the explicit expression for P.k; l/. Rather, when considering
the correlation coefficient in Sect. 5.3.3.2, the sum

P

klP.k; l/ plays an important
role, which, among other sums, is worked out in “Appendix 3: The Correlation
Coefficient as a Function of Model Parameters”. Finally, we can obtain the marginal
degree distribution .Qk/ from the joint degree distribution P.k; l/, and this leads
to the same expression for Qk as the one derived from the degree distribution in
the population (see our previous work [7]); see “Appendix 2: The Marginal Degree
Distribution Qk D

P
l P.k; l/” for details.

Remark 1 (Binding site or i-level perspective) Note that one could also obtain the
probability P.k; l/ by taking the perspective of individuals in a partnership rather
than binding sites. This is exactly what we have done in [11, Appendix B] for n D 2.
We calculated probability (5.17) for n D 2 using the number of partners of two
individuals in a partnership without taking into account their ages. While in principle
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this is not more difficult than the reasoning in this section, generalizing to n > 2

quickly becomes quite involved as the number of possible .k; l/ pairs grows quickly
with n. This is also the reason that we only worked out n D 2 in the appendix
of [11]: for n D 2 only the inverse of a 3 � 3 matrix is needed, but the size of this
matrix quickly grows with n. Nevertheless, one can check that Eq. (5.17) coincides
with Eq. (51) of [11] for n D 2 (e.g. by using Mathematica and identity (20) in [7]
for F).

5.3.3.2 Correlation Coefficient

Choose a partnership at random and consider one of the partners. The probability
that this individual has k partners is Qk where Qk is given by Eq. (5.22). On
the other hand, the probability that the randomly chosen partnership has joint degree
.k; l/ is P.k; l/ with P.k; l/ given by Eq. (5.17). In [1, 11] we approximated the
network structure by pretending that there is independence between partners of two
individuals that are in a partnership, i.e. we approximated P.k; l/ by QkQl. That
this is really an approximation, i.e. that P.k; l/ ¤ QkQl, was shown by way of
explicit calculations for n D 2 in [11, Appendix B]. In this section we investigate
the approximation in more detail.

We use the correlation coefficient to quantify the dependence (this coefficient
is often denoted by  but since we have already reserved this symbol for the
partnership formation rate we will simply write corr). Let Du and Dv be the random
variables denoting the degrees of the individuals u and v in a randomly chosen
partnership. Then the joint probability distribution of Du and Dv is .P.k; l//. The
degree correlation coefficient is given by

corr D
E.DuDv/ � E.Du/E.Dv/
p

Var.Du/Var.Dv/
D

Cov.Du;Dv/

Var.Du/
D

A � B2

C � B2
: (5.18)

where Cov.Du;Dv/ is the covariance of Du and Dv , and

A D
X

k;l

klP.k; l/; B D
X

k

kQk; and C D
X

k

k2Qk: (5.19)

The correlation coefficient satisfies �1 � corr � 1, where corr D �1 corresponds
to fully disassortative mixing in the degrees of partners and corr D 1 corresponds
to fully assortative mixing. In case the degrees of partners are independent of one
another, the correlation coefficient is zero. Note that for n D 1, i.e. in the case of
monogamous pair formation, the degree of a partner is always 1, i.e. Q1 D 1 and
P.1; 1/ D 1. The correlation coefficient is not defined for this case. We are only
interested in n D 2; 3; : : :

We are interested in the behaviour of corr as a function of the four model
parameters n (partnership capacity), � (partnership separation rate),  (partnership
formation rate), and � (death rate). An explicit expression for corr in terms of the
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model parameters is found by working out A, B, and C (defined by Eq. (5.19)) at
the right-hand side of Eq. (5.18). These can all be expressed as integrals of simple
functions of '.a/, which we then can evaluate (note that F is also a function of
model parameters � , , and �; see Eq. (5.10)). We work this out in “Appendix 3:
The Correlation Coefficient as a Function of Model Parameters”.

The calculations in [11, Appendix B] already showed that there is dependence for
n D 2 with corr > 0. So for n D 2 there is assortativity with respect to the degrees
of partners. For general n, the expression (5.27) in “Appendix 3: The Correlation
Coefficient as a Function of Model Parameters” in this text shows that corr > 0. So,
in accordance with our expectation in Sect. 5.3.2, there is dependence in the degrees
of partners. Moreover, corr > 0 for all ; �; � > 0, and n > 1. In other words, for all
n > 1, the network is assortative in the degree: partners tend to have similar degrees.
We study how corr depends on the model parameters in the next subsection.

Remark 2 (Limiting behaviour � ! 0) Note that lim�!0 corr D 0 (use the explicit
expression for corr calculated in “Appendix 3: The Correlation Coefficient as a
Function of Model Parameters”), in complete accordance with the independence in
degrees in the dynamic network model without demography of Sect. 5.2.

Remark 3 (Degree-degree correlation) Degree correlation does occur in some real
world networks and constructive procedures to generate networks with prescribed
degree-degree correlation have been devised, see [12–14] and references therein.
As has been shown here, a dynamic network model incorporating demographic
turnover can exhibit degree-degree correlation as a consequence of age-age cor-
relation. This provides a possible mechanistic interpretation of emergent assortative
mixing.

5.3.3.3 The Effect of Demographic Changes on the Correlation Coefficient

Now that we have an explicit expression for corr, we can ask how it depends on the
model parameters. Our main interest is in the relative time scales of demographic
changes compared to partnership changes. Therefore, we are interested in �=� 2

.0; 1�. In particular, we are interested in the limit �=� ! 0, i.e. in the limit
that partnership changes are much faster than any demographic changes, while at
the same time =� remains constant, i.e. the partnership formation rate  and the
separation rate � are on the same time scale.

The formula (5.18) for corr and the expressions (5.24), (5.25), and (5.26) allow
for an explicit expression of corr in terms of model parameters n, � , , and �. To
eliminate one parameter, we rewrite the correlation coefficient corr as a function of
n, Q D =� , and Q� D �=� :

corr D
a

b
;
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Fig. 5.1 Correlation coefficient as a function of Q� (x-axis) and Q (y-axis) for n D 3 and n D 30.
Note that the colour scales are different in the two figures: for n D 3 the scale is between 0 and
0.018 and for n D 30 the scale is between 0 and 0.12

with

a D Q�2.n � 1/.2 Q�C 3x C 3/
�

4 Q�2 C 2 Q2 C Q�.8 Q � 2x C 4/ � 2 Q.x � 2/ � x C 1
�

;

b D 2.�2 Q�C x � 1/.2 Q�C x C 2/
˚

� 4 Q�3.n C 1/C 2 Q�2.n.�3 QC x � 2/

� 9 QC x � 3/C Q�.n. Q.x � 3/C x � 1/ � 23 QC 7 Qx C 2x � 2/C 6 Q.x � 1/
�

;

x D
p

.1C 2 Q�/.4 QC 1C 2 Q�/:

Next, by considering the derivative of corr with respect to the parameters n, Q,
and Q�, we find that corr is strictly increasing in n and Q, and Q�. In Sect. 5.3.3.2
we also observed that corr > 0 so the network is assortative in degree. Further-
more, since corr is strictly increasing in n, Q, and Q�, by considering the limit
limn!1; Q!1; Q�!1 corr D 1=4, we find that the correlation coefficient is at most
1/4, for all n 	 2, Q > 0, and Q� 2 .0; 1�.

Finally, we investigate corr numerically. For fixed n, we investigate the corre-
lation coefficient as a function of Q� and Q. As we are interested in the relative
time scales of demographic changes compared to partnership changes, we consider
Q� 2 .0; 1� and Q 2 .0;1/. In general, we find that the correlation coefficient is
close to zero; see Fig. 5.1 for n D 3 and n D 30. So, although there is dependence,
the dependence is generally not very strong. The correlation coefficient corr is
largest when the time scales of demographic and partnership changes are close to
each other. Moreover, the higher the partnership formation rate is compared to the
separation rate, the larger corr is.

Next, we compare the effect of different n values while keeping Q fixed in
Fig. 5.2. While the correlation coefficient increases as a function of n, for relatively
small values of n, corr remains relatively close to 0 (compared to the supremum
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Fig. 5.2 Correlation coefficient as a function of the ratio Q� for n D 2; 3; 4, n D 30, and n D 3000

and Q D 10. The corresponding fraction F of free binding sites is monotonically decreasing from
� 0:41 for Q�=1 to � 0:27 for Q� D 0

value of 1/4). For all n, it holds that the faster partnership changes are compared to
demographic changes, i.e. the smaller Q� is, the smaller corr is. We find that corr
tends to zero quite rapidly as Q� ! 0.

5.4 The Mean Field at Distance One Assumption and the
Spread of an SIR Infectious Disease on the Network

In this text we have so far considered the static configuration network and two
dynamic variants, one without and one with demographic turnover (Sects. 5.2
and 5.3, respectively). If we describe the network by only labelling individuals
by their degree, i.e. by their numbers of partners, then no information about the
partners of partners is included in the bookkeeping. However, in both the static
network and the dynamic network without demography, we know that there is
independence in the degrees of partners. Therefore, although not explicitly included
in our bookkeeping, statistical information about the number of partners of partners
of an individual with k partners is readily available in the form of the size-biased
degree distribution.

This is not the case for the dynamic network model with demographic turnover.
We have seen in Sect. 5.3 that in this dynamic network model there is dependence
in degrees of partners. Therefore, the degree of the individual under consideration
cannot be ignored when considering the degree of the partner. But in previous
work [1, 11] we did exactly that. We pretended that the degree of the partner was
independent of the degree of the focus individual, and we termed the approximation
the ‘mean field at distance one assumption’ (more appropriately we should have
called it the mean field at distance one approximation). This mean field at distance
one assumption allowed us to formulate a model for the spread of infection on
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the dynamic network with demography. It enabled us to write down a closed system
of equations that is analytically tractable. Therefore, while we were well aware that
an approximation was made by this assumption, it was very convenient to do so.

Information about partners of partners of an individual is crucial in describing
the disease dynamics on the network. In the remainder of this section we elaborate
on this point. Consider the spread of an SIR (Susceptible!Infectious!Recovered)
infection superimposed on the network. We label each individual by (i) its disease
status, (ii) the number of partners it has, and (iii) the disease status of each of these
partners. Then, in order to describe the disease dynamics in the population, we need
to make statements about partners of partners of an individual. Indeed, suppose we
have an individual with a susceptible partner, then the rate at which this susceptible
partner becomes infected depends on the total number of infectious partners it has.
However, this kind of information is exactly what we do not have in our description.
In fact, such information would only be available if we have a complete description
of the entire network. Indeed, suppose we would incorporate partners of partners in
our description. Then we would also need to know about the number of infectious
partners of susceptible partners of partners, etcetera. This is where the mean field
at distance one assumption comes into play. This is the assumption that we may
average over the population in a certain way and consider the expected number of
infectious partners of a susceptible partner instead.

In the static network and the dynamic network without demography, with
independence in degrees, averaging is done as follows. Consider an individual u
with disease status d (either susceptible, infectious, or recovered), and consider a
susceptible partner v of u. Then we take into account that u has disease status d but
not the degree of u (here we use independence of degrees): the expected number of
infectious partners of v is the expected number of infectious partners of a susceptible
partner of an individual with disease status d. The latter is the expected number at
the p-level. In fact, we can apply the mean field at distance one assumption purely
at the binding site level. The probability that v has k partners is given by the size-
biased degree distribution. Individual v has one special binding site for which the
transmission rate along this binding site is determined by the disease status of u.
The k � 1 other binding sites of v are indistinguishable. The transmission rate along
each of these other k�1 binding sites is determined by the probability that a binding
site of v is occupied by an infectious partner.

In the static network case one can prove that the mean field at distance
one description is exact: the deterministic description can be obtained as the
large population limit of a stochastic model (under suitable technical conditions),
see [2, 15, 16]. For the dynamic network without demography we conjecture that
this is also true and we pose this as an open problem in [1]. In Sect. 5.2 we provided
evidence in support of this conjecture by showing that, as in the static setting, there is
independence in the degrees of partners. In the dynamic network with demography
we know that we need to take into account the dependence in degrees.

In Sect. 5.3.3 we quantified the dependence between degrees through the cor-
relation coefficient that we subsequently studied numerically. While the degree
correlation is always larger than zero in case of demographic turnover, in general, we
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found the correlation coefficient to be quite small. So, even though an approximation
is made by ignoring knowledge about the degree of an individual u when considering
the degree of a partner v, this approximation may not be that bad. Yet, we wonder
whether it is possible to give an exact statistical description of the disease dynamics
on the network. We conjecture that this is in fact possible and that the key to this
is age.

As we have seen in Sect. 5.3, degree-degree correlation can be deduced from
age-age correlation. If we incorporate the age of partners in the bookkeeping
of individuals, we can use that age to predict the number of partners of those
partners. More concretely, consider a binding site belonging to an individual with
age a. This binding site is either free or occupied by a partner with age ˛. If the
binding site is, at age a, occupied by a partner with age ˛, then this partner has k
partners with probability qk.˛/, where qk.˛/ is given by Eq. (5.15). In particular,
no approximation needs to be made. We conjecture that this carries over to the
setting with an infectious disease superimposed on the network: by including in
our bookkeeping not only the disease status and age of the binding site under
consideration and the disease status of any partner, but also the ages of these
partners, one can again employ the mean field at distance one assumption without
making an approximation, i.e. average over the population in the correct way: we
may consider the expected number of infectious partners of a susceptible partner
of age ˛ of an individual with disease status d and age a (which is part of the
description of the model if the bookkeeping includes age of partners).

Proving this claim about the bookkeeping with the age of partners included is
both outside the scope of this text and outside our area of expertise. Rather we
conclude this section by highlighting some aspects of the mean field at distance
one assumption by considering the basic reproduction number R0. The traditional
perspective that one takes for R0 is that of an infectious case: R0 can be interpreted
as the expected number of secondary cases generated by one typical newly infected
case at the beginning of an epidemic. As we explained in [1], it can be advan-
tageous to take the different perspective of ‘reproduction opportunities’ (where
‘reproduction’ corresponds to transmission of the infectious agent to another host).
In this context reproduction opportunities consist of �C links, i.e. partnerships
between susceptible (�) and infectious (C) individuals. This different perspective
does not change the expression that one obtains for R0. So we can interpret R0 as
the expected number of �C links generated by one typical newly formed �C link
at the beginning of an epidemic.

The reasoning in [1, Section 4.3] was as follows. At the beginning of an epidemic,
for an SIR infection, there are two birth-types of �C links:

Type 0 the �C link was formed when a � binding site and a C binding site got
connected

Type 1 the �C link is a transformed �� link (one of the two owners got infected
by one of its other partners)
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Note that the density of the age distribution of the owner of a binding site is �0 upon
partner formation (see Eq. (5.12)). Therefore, the density of the age distribution of
the � binding site of Type 0 �C links is �0. However, the age of the � binding site
of Type-1 �C links is correlated to the age of its C partner. In [1], we approximated
the age of the � binding site in the Type-1 link by ignoring the correlation with
the age of its C partner. We approximated the density of the age distribution of the
� binding site in the Type-1 link by �1 where �1 is given by Eq. (5.13) (see [1,
Section 4.3] for details). These densities �0 and �1 for the ages of binding sites
are key in characterizing R0. One ends up with a characterization of R0 as the
dominant eigenvalue of a 2 � 2 next-generation matrix K where entry Kij of K can
be interpreted as the expected number of secondary cases with state-at-infection i
caused by one newly infected individual with state-at-infection j at the beginning of
an epidemic [17, Chapter 7].

However, if we include the age of partners in our bookkeeping, then this also
needs to be included in our characterization of R0. While nothing changes for the
� binding sites in the Type-0 links in terms of the density of the age distribution,
we can no longer simply consider Type-1 links. Rather, one needs to keep track
of age at the moment that the Type-1 �C link is born. This leads to an infinite-
dimensional problem rather than the simple setting of two types that arise from
the approximation. Clearly from the point of view of the characterization of R0 it
is attractive to make an approximation by ignoring age correlation i.e. assuming
independence. One only deals with two types (and the dominant eigenvalue of a
2�2 next-generation matrix) rather than infinitely many types (and a corresponding
next-generation operator and its spectral radius).

Is the mathematical tractability then lost by including ages of partners in the
bookkeeping? No, not necessarily. But the R0-characterization does illustrate that
including the age of partners in the bookkeeping will make the model formulation
and analysis far less straightforward than in the static network or the dynamic
network without demography.

5.5 Conclusion

In this text we discussed the mean field at distance one assumption for two dynamic
network models of [1] that are inspired by the (static) configuration network. The
first dynamic network model includes partnership formation and separation, while
the second dynamic network model additionally includes demographic turnover.
We concerned ourselves with a description that only includes individuals and their
partners, without any information about partners of partners in the bookkeeping. The
mean field at distance one assumption concerns itself with these partners of partners.
It states that one can average over the population in a well-defined way to obtain the
relevant information. In case of a static configuration network the mean field at
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distance one assumption holds as there is independence in the degrees of partners.
This independence in degrees of partners is shared by the dynamic network model
without demography; see Sect. 5.2. This independence result suggests that we can
describe the spread of infection on the dynamic network without demography using
the mean field at distance one approach (as indeed conjectured in [1]).

However, degree dependence between partners arises in the dynamic network
model with demography. We showed this via the existing age dependence between
partners in Sect. 5.3.2. As discussed in Sect. 5.4, in previous work we ignored these
dependencies between the partners [1, 11]. In the current text we investigated the
dependency between partners by means of the degree correlation coefficient. In
general this degree correlation coefficient is positive but reasonably small. This
is especially the case if demographic and partnership changes are on somewhat
different time scales, and partnership formation and separation are on comparable
time scales, and partnership capacity n is not too large, which are quite reasonable
assumptions to make.

Clearly there are advantages to approximating the true process by ignoring these
dependencies between partners. Especially if the degree correlation is rather small,
then it is attractive to do so. The goal of this text is not to advocate that one should
never concern oneself with approximations (clearly not as this is exactly what we
have done in previous work). Rather, our point is that it is important to be aware of
the assumptions that one makes when formulating models and the limitations and
consequences of the assumptions.

Ideally, one can provide a statistical description for transmission dynamics
on a network without making approximations (whether it is desirable to still
make approximations, e.g. for computational convenience, is a different issue).
In Sect. 5.4, we speculated that by incorporating age of partners in the dynamic
network with demography, one can avoid making approximations. But, as we also
outlined in the same section, this probably comes at a price. It may be that the
analysis of the model becomes much harder. How to formulate and analyse the
model that includes ages of partners is outside of the scope of this text and is left for
future work. Here we end with the conjecture that bookkeeping that takes the age
of partners into account allows for an exact description of the spread of infectious
diseases on the dynamic network with demography. We hope that this text motivates
some probabilists to take up the challenge of proving (or, unexpectedly, disproving)
the conjecture.
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Appendix 1: Relationship Between  1.a/ and H

The probability density function �1.a/ for the age of an occupied binding site (see
Eq. (5.13)) is related to the probability density function H.a; ˛/ for the ages of two
partners u and v in a randomly chosen partnership. This relation is formulated in
Eq. (5.20).

Lemma A.1
Z 1

˛D0

H.a; ˛/d˛ D �1.a/: (5.20)

Proof First note that we can rewrite H.a; ˛/ as

H.a; ˛/ D
�e��a

1 � F

Z min .a;˛/

�D0

F'.a � �/�0.˛ � �/e�.�C�/�d�:

Next, one finds that

Z 1

˛D0

Z min .a;˛/

�D0

F'.a � �/�0.˛ � �/e�.�C�/�d�d˛ D 1 � '.a/; (5.21)

by direct calculations using Eqs. (5.11) and (5.13) for ' and �0, and we conclude
that Eq. (5.20) holds. One can also reason as follows for Eq. (5.21): F'.a �

�/�0.˛ � �/e�.�C�/� is the probability that a binding site with age a has a partner
with age ˛ and partnership duration � given that the owner of the binding site under
consideration does not die. By integrating over all possible partnership durations
0 � � � min.a; ˛/, we obtain the probability that a binding site with age a has a
partner with age ˛ (given that the owner does not die):

R min.a;˛/
0

F'.a � �/�0.˛ �

�/e�.�C�/�d� . Then finally, by integrating over all possible ˛ 	 0 we obtain the
probability 1 � '.a/ that a binding site with age a is occupied.

Appendix 2: The Marginal Degree Distribution
Qk D

P
l P.k; l/

We obtain the probability Qk that an individual involved in a randomly chosen
partnership has degree k from the joint probability distribution P.k; l/, cf. (5.17),
by summing over all l D 1; : : : ; n, i.e. Qk D

Pn
lD1 P.k; l/. On the other hand, in

previous work [7] we have derived an expression for Qk from the stable degree
distribution .Pk/k in the population: Qk D kPk=n.1 � F/. We show that both ways
of arriving at Qk yield the same expression, i.e.
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Qk D

n
X

lD1

P.k; l/ D kPk=n.1 � F/: (5.22)

First, we work out the right-hand side. Pk is expressed in terms of the probability
'.a/ as follows:

Pk D

 

n

k

!

Z 1

0

�e��a'.a/n�k.1 � '.a//kda:

On the other hand, we can simplify
Pn

lD1 P.k; l/. First of all, note that since ql.a/ is
a probability distribution,

Pn
lD1 ql.˛/ D 1. Therefore

n
X

lD1

P.k; l/

D

n
X

lD1

Z 1

aD0

Z 1

˛D0

Z min.a;˛/

0

qk.a/ql.˛/
F2�0.a � �/�0.˛ � �/e�.�C2�/�

1 � F
d�d˛da

D

Z 1

aD0

Z 1

˛D0

Z min.a;˛/

0

qk.a/
F2�0.a � �/�0.˛ � �/e�.�C2�/�

1 � F
d�d˛da: (5.23)

Next, note that we can simplify Eq. (5.23) as follows:

n
X

lD1

P.k; l/

D
k
�n

k

�

n.1 � F/

Z 1

aD0

�e��a'.a/n�k.1 � '.a//k.1 � '.a//�1

Z 1

˛D0

Z min.a;˛/

�D0

F2e��
'.a � �/

F

�e��.˛��/'.˛ � �/

F
e�.�C2�/�d�d˛da

D
k
�n

k

�

n.1 � F/

Z 1

aD0

�e��a'.a/n�k.1 � '.a//k.1 � '.a//�1

Z 1

˛D0

Z min.a;˛/

0

F'.a � �/�0.˛ � �/e�.�C�/�d�d˛da

D
k
�n

k

�

n.1 � F/

Z 1

aD0

�e��a'.a/n�k.1 � '.a//k.1 � '.a//�1.1 � '.a//da:

Here we used Eq. (5.20) in the third equality. So we find that Eq. (5.22) indeed holds.
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Appendix 3: The Correlation Coefficient as a Function
of Model Parameters

We work out Eq. (5.18) by computing A, B, and C, defined by Eq. (5.19).

A D

n
X

kD1

n
X

lD1

klP.k; l/ D

Z 1

aD0

Z 1

˛D0

n
X

kD1

kqk.a/
n
X

lD1

lql.˛/H.a; ˛/dad˛

D

Z 1

aD0

Z 1

˛D0

�

n.1 � '.a//C '.a/
��

n.1 � '.˛//C '.˛/
�

H.a; ˛/dad˛

D
1

.1 � F/.F C � C 2�/2.2F C 3� C 4�/.2.F C � C �/C �/2

n

.�2
�

2F2.n.33n C 46/C 1/C 2F�.92n C 33/C 179�2/

C4�.Fn C �/.42F2n C 10F�.n C 1/C 19�2
�

C 6�3.2F.8n C 3/C 31�/C 4�.2F C 3�/.Fn C �/2 C 72�4/
o

;

(5.24)

where the last equality is calculated using Mathematica.
We already calculated the mean B D

Pn
kD1 kQk in [7, eq. (23)]. For complete-

ness, we work it out using the probability distribution .P.k; l//.

B D

n
X

kD1

kQk D

n
X

kD1

k
n
X

lD1

P.k; l/

D

Z 1

aD0

n
X

kD1

kqk.a/
Z 1

˛D0

n
X

lD1

ql.˛/H.a; ˛/d˛da

D

Z 1

aD0

�

n.1 � '.a//C '.a/
�

Z 1

˛D0

H.a; ˛/d˛da

D

Z 1

aD0

�

n.1 � '.a//C '.a/
�

�1.a/da

D 1C
2F.n � 1/

2.F C � C �/C �
: (5.25)

In the first equality we used that .Qk/ is the marginal distribution of .P.k; l//, and in
the fifth equality we used identity (5.20).
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Finally, we consider the second moment C D
Pn

kD1 k2Qk:

C D

n
X

kD1

k2Qk D

n
X

kD1

k2
n
X

lD1

P.k; l/

D

Z 1

aD0

n
X

kD1

k2qk.a/
Z 1

˛D0

n
X

lD1

ql.˛/H.a; ˛/d˛da

D

Z 1

aD0

�

n2.1 � '.a//2 C '.a/..3n � 1/.1 � '.a//C '.a//
�

Z 1

˛D0

H.a; ˛/d˛da

D

Z 1

aD0

�

n2.1 � '.a//2 C '.a/..3n � 1/.1 � '.a//C '.a//�1.a/da

D
F.�.12�C F.24n � 7/C 17�/C 6.2F2n2 C F.3n � 1/� C �2//

.1 � F/.F C � C 2�/.2.F C � C �/C �/.3.F C � C �/C �/
:

(5.26)

Inserting Eqs. (5.24), (5.25), and (5.26) together in Eq. (5.18), we find an explicit
expression for the correlation coefficient corr. Note that the variance of a random
variable is always nonnegative (and nonzero if the random variable is not equal to
a constant). Therefore, we find that the sign of Cov.Du;Dv/ D A � B2 determines
the sign of the correlation coefficient corr in Eq. (5.18). Note that identity (5.9) for
F allows us to express � in terms of the other parameters: � D F2=.1 � F/ � 2�.
For clarity, we use this identity for � in the numerator (but not in the denominator)
in the simplification of Cov.Du;Dv/. We find that

A � B2 D
�23F2.1 � F/.n � 1/2

.1 � F/2.F C � C 2�/2.2F C 3� C 4�/.2F C 2� C 3�/2
:

(5.27)

In particular, the covariance (and therefore the correlation coefficient corr) is strictly
larger than zero if  > 0, � > 0, � > 0, and n > 1.
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Chapter 6
Towards Identifying and Predicting Spatial
Epidemics on Complex Meta-population
Networks

Xiang Li, Jian-Bo Wang, and Cong Li

Abstract In the past decade, the network science community has witnessed huge
advances in the threshold theory, prediction and control of epidemic dynamics on
complex networks. While along with the understanding of spatial epidemics on
meta-population networks achieved so far, more challenges have opened the door
to identify, retrospect, and predict the epidemic invasion process. This chapter
reviews the recent progress towards identifying susceptible-infected compartment
parameters and spatial invasion pathways on a meta-population network as well
as the minimal case of two-subpopulation version, which may also extend to the
prediction of spatial epidemics as well. The artificial and empirical meta-population
networks verify the effectiveness of our proposed solutions to the concerned
problems. Finally, the whole chapter concludes with the outlook of future research.

6.1 Introduction

After around 70 years of the seminal work of Norbert Wiener “Cybernetics: or the
Control and Communication in the Animal and the Machine” [1], Wiener’s great
thinking still presents fundamental impacts to many folds of the human society
in the era of networking world and Big Data today, ranging from modelling and
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feedback-loop analysis to stability and control of categories of systems and subjects,
whatever large-scale or simply structured, linear or nonlinear, low dimensional or
extremely high dimensional. The communications among humans and machines
in the eyes of Norbert Wiener in 1950s were generally assumed as point-to-point
or neglected as regularly structured in the scope of classic graph theory [2, 3].
Afterwards, Erdős and Rényi extended the graph description with uncertainty and
randomness, and proposed the random graph theory in 1960s [4]. In the following
decades the flourishing information and communication techniques have pushed the
whole human society to a networking village of today, while the understanding of
dominant yet hidden connectivity patterns of the communications among humans
and machines were not revisited until recently.

The discovery of small-world and scale-free features in 1998–1999 has been
verified in ubiquitous complex networks [5, 6], which have attracted the world-wide
attention to the new emergence of network science. The popular concerns cover
not only the topological complexity of a large-scale complex network system but
also the interdependence between the infrastructure and the collective performance
of such networks [7–10]. Typically, from the viewpoint of system and control,
the precise mathematic description and appropriate models of a complex network
play a significant role to achieve the desirable performance in return. However, in
the situations of large-scale spatial prevalence of diseases in human populations,
for example, such a solution may be infeasible if the availability of accurate data
collections is far from sufficiently satisfactory.

Nevertheless the global outbreaks of prevalent infectious diseases in recent
decades have led to great social, economic, and public health loss [11–14], which is
partially due to the urbanization process and, in particular, the wide-establishment
of long-distance public transportation networks (e.g., world-wide air-line web)
and urban public commuting systems (e.g., subway and metro networks) to
facilitate the dissemination of pathogens accompanied with passengers [15, 16].
Academia has witnessed that prediction and control of epidemic dynamics in
networks as a flourishing research topic with interdisciplinary approaches [17–
20]. However, more challenging problems arising from the epidemic prevalence
on a meta-population network have not received adequate attentions, such as
identifying the parameters of epidemic network systems and the epidemic invasion
pathways on a meta-population network, which, ignored previously, certainly play
important roles in evaluating the intensity of outbreak of epidemics among human
patches/populations.

Assume the seed of a disease/virus as the input signal to the whole human
population system, and the observed patient samples as the system output. Then,
the spatial invasion of the disease inside the human population is obscure as a black
box to be identified, and this system combines many factors such as human mobility
patterns (commuting and long-distance traveling) and mathematical epidemiology
as well. Therefore, identifying such an epidemic process with the interplay of
complex networks and the human population is a challenge to public health-care
administrative agency when predicting the large-scale spatial prevalence of a disease
and announcing counter strategies.
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The theory of system identification has been used to estimate the epidemic
parameters of a complex system which are described by ordinary differential equa-
tions (ODE) such as HIV/AIDS epidemic dynamics [21]. Another related topic is
inferring network topology by utilizing the information about a dynamics process on
networks [22, 23]. Note that system identification and network inference techniques
are not fit to handle the epidemic process on meta-population networks which
are stochastic, high-dimensional, and multi-scale. Besides, source identification
on complex networks is a close and popular topic. Some source identification
algorithms [24, 25] have been designed for information/contact networks, but they
are not feasible in identifying the invasion processes on meta-population networks.

Many instructive methods have also been proposed to explore the spatial spread
of an epidemic process on meta-population networks. Maeno [26] inferred the
epidemic network between eleven countries and areas during SARS in 2003
by analysing the epidemic time series. Reference [27] extracted the most likely
epidemic transmission trees of the 1918 influenza pandemic in England, Wales and
the United States. Some methods based on machine learning were also proposed
to infer the epidemic networks from surveillance data [28–30]. Gautreau et al.
presented a measure of the average arrival time to characterize the minimum-
distance path from subpopulation i to subpopulation j over all possible paths [31],
and the average arrival time-based shortest path tree is constructed by assembling
all the shortest paths from the seed subpopulation to any other subpopulation in
a networked meta-population. Balcan et al. proposed a Monte Carlo maximum
likelihood method to produce a most likely infection tree [32]. They constructed
the minimum spanning tree from the seed subpopulation to minimize the distance.
Recently, Brockmann and Helbing [15] proposed a new concept called “effective
distance” to predict the disease arrival time. From node/location i to node/location j,
the effective distance Dij is defined as the minimum sum of effective lengths over all
reachable branches along this path. The set of shortest paths to all other nodes from
seed node i constitutes a shortest path tree, illustrating the most probable paths from
the root to other nodes. On the other hand, approaches based on machine learning
such as genetic algorithm [28–30] has been used to extract epidemic transmission
networks.

Note that some of the above works didn’t distinguish epidemic transmission
network and invasion pathways/trees. In fact, these two concepts are a bit different,
and very few work has discussed the parameter identification of a meta-population
network system. Here a natural problem poses itself that whether the parameters and
epidemic invasion process can be identified from the infection data of populations
and network topology? To get a better understanding of how the contagion diffuses
via an invasion process on network, more topics deserve further efforts: (i) So far,
there are few works on identification of parameters of a meta-population network
which an epidemic is occurring on. New questions such as the following ones are
raised: How to use the data from the limited epidemic realizations to infer the system
parameters as accurate as possible? Does a more appropriate model of individual
mobility exist? (ii) Identification of spatial invasion pathways is to uncover the
channels by which the hosts transmit viruses in a spatially structured population with
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the infection data. In a large-scale meta-population network, the complex pattern of
pathways challenges the methodology to identify the epidemic invasion pathways
in a meta-population network.

In this chapter, we review our series of work in recent years [33–37] on iden-
tifying parameters of the susceptible-infected model and spatial invasion pathways
on a meta-population network as well as the minimal case of two-subpopulation
version, which may also extend to the prediction of spatial epidemics as well. The
remainder of this chapter is arranged as follows. Section 6.2 gives the detailed
description of preliminaries. Section 6.3 introduces the parameter identification
of epidemic models on a meta-population network. Section 6.4 contributes the
inference of epidemic invasion pathways in a meta-population network with both
methodologically and example verifications. In Sect. 6.5, extending the steps of
the previous sections, the prediction of spatial epidemic transmission comes with
several feasible methods. Finally, Sect. 6.6 concludes the whole chapter with
outlook in future research.

6.2 Preliminary

A meta-population network, which was originated from the meta-population model
proposed by Richard Levins [38] to explore spatial ecology, embeds public trans-
portation networking systems to model and uncover nontrivial patterns of spatial
prevalence of global infectious diseases in the past years [15, 31, 32, 39, 40]. In
this section, we introduce the meta-population network model and the susceptible-
infected (SI) compartment epidemic dynamic as well. In this chapter, we consider
the discrete-time dynamics.

6.2.1 The Compartment Model with SI Reaction Dynamics

The well-known susceptible-infected (SI) compartment model (Fig. 6.1), which is
the simplest version in the epidemic compartment family, generally describes the
early stage of prevalence of viruses/pathogen [24, 25, 41], especially in the situation
of non-recovery. In such a population, the states of individuals are stratified into two
compartments (classes): susceptible to the infection of the pathogen; and infected by
the pathogen. Generally, we assume that all individuals are homogenously mixing
in the population. The state transition of an individual between two compartments

Susceptible Infected

Fig. 6.1 Schematic illustration of the SI compartment model, where ˇ denotes the infection rate
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is governed by the following reaction process: When a susceptible individual meets
(i.e., has the contacts) with an infected individual in a unit time, the susceptible
individual will be infected with an infection rate ˇ.

6.2.2 The Two-Subpopulation Version of a Meta-population
Network

Before describing a general meta-population network, we first introduce a minimal
meta-population network containing two subpopulations (labelled as 1 and 2 as
shown in Fig. 6.2) with SI epidemic compartments. We assume the infection process
evolves as a discrete-time system, and subpopulation 1 is infected initially (In this
case of simulation, we assume 1 individual is infected among all 10,000 individuals
in subpopulation 1). During each time step, the reaction takes place in each
subpopulation if it contains two classes of individuals (susceptible and infected).
Denote p12 (p21) the diffusion rate of individuals transferring from subpopulation 1
to 2 (2 to 1), which are often not symmetric, i.e., p12 ¤ p21. Besides, an individual
in subpopulation 1 (2) chooses jumping to subpopulation 2 (1) at diffusion rate p12
(p21), i.e., the so-called diffusion process. Therefore, the probability an individual
stays in subpopulation 1 (2) is 1 � p12 (1 � p21).

Therefore, without considering the diffusion of new increment of infected
individuals after reaction, the whole evolution dynamics is described as

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

hI1.t C 1/ � I1.t/i D ˇI1.t/
S1.t/

N1.t/
C p21I2.t/ � p12I1.t/;

hI2.t C 1/ � I2.t/i D ˇI2.t/
S2.t/

N2.t/
C p12I1.t/ � p21I2.t/;

(6.1)

where h�i represents the expectation of the corresponding terms, N1.t/ (N2.t/)
denotes the number of individuals in subpopulation 1 (2) at time t, I1.t/ (I2.t/)
denotes the number of infected individuals in subpopulation 1 (2), S1.t/ (S2.t/)

N1

N2

p12

p21

I
S

Fig. 6.2 Schematic representation of a minimal meta-population network with the SI model. At
initial time, subpopulation 1 is infected (containing at least one infected individual (red)), and
subpopulation 2 is susceptible (all are susceptible individuals (blue)) (From Wang et al. [33])
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denotes the number of susceptible individuals in subpopulation 1 (2). The first term
of the right-hand side (RHS) in Eq. (6.1) represents the new increment of infected
individuals h�RIi.t/i D ˇIi.t/

Si.t/
Ni.t/

; i D 1; 2, after reaction from t to tC1. The second
and third terms of RHS in Eq. (6.1) represent the diffusion of infected individuals in
the diffusion process. As mentioned above, we do not consider the diffusion of new
increment of infected individuals after reaction in this case. Besides, the evolution
of susceptible individuals is similar with the infected individuals.

6.2.3 The General Description of a Meta-population Network

Extending the minimal version as two subpopulations to the general case of a meta-
population network, we divide the whole population (generally, such a population
covers a large-scale spatial region of a country or the whole world) into a number
of subpopulations. In a meta-population network, a subpopulation is connected with
others via a public transportation network, e.g., the air-line web, the high-way web
to form the backbone of such a meta-population network. A subpopulation as a
node in the network contains a number of individuals homogeneously mixed, and
individuals travel between two subpopulations (nodes) via the public transportation
means (edge) with some (fixed) diffusion rate. All edges are directed.

With the SI dynamics, the disease propagates in subpopulations and spreads
among neighbouring subpopulations via the reaction-diffusion process in a unit
time, as illustrated in Fig. 6.3. Denote N the number of subpopulations (nodes)
of a meta-population network, and Ni.t/ D Si.t/ C Ii.t/ is the population size of

i

j

S
I

Diffusive
Mobility

i

j

(a)

(b)

Fig. 6.3 Illustration of a networked meta-population model, which comprises six subpopulations
that are coupled by the mobility of individuals. In each subpopulation, each individual can be in
one of the two states (susceptible, infected), as shown in different colours. Grey ones represent
susceptible subpopulations. Red ones represent infected subpopulations. Light red subpopulations
denote less number of infected individuals than the dark red ones. Each individual can travel
between the connected subpopulations. (a) A networked meta-population. (b) Two subpopulations
(From Wang et al. [35])
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subpopulation i at time t, where Si.t/ is the number of susceptible individuals, and
Ii.t/ is the number of infected individuals of subpopulation i at time t, respectively.
Therefore, the intra-population epidemic dynamics in subpopulation i is governed
by the SI model. Per unit time, the risk of infection of a susceptible individual
within subpopulation i is characterized by �i.t/ D ˇIi.t/=Ni.t/ during the reaction
process. Denote the probability that an individual (S or I) of subpopulation i moves
to its neighbouring subpopulation j as diffusion rate pij, which describes the inter-

population mobility dynamics. The symbol of diffusion rate 0 � pij D
hwiji

hNii
< 1,

where wij is the number of individuals moving from subpopulation i to j per unit
time (0 � hwiji < hNii).

Therefore, if we do not consider the diffusion of new increment of infected
individuals after the reaction process, the evolution of an infected subpopulation
i is described as follows:

hIi.t C 1/ � Ii.t/i D ˇIi.t/
Si.t/

Ni.t/
C

N
X

jD1;j¤i

pjiIj.t/ �

N
X

jD1;j¤i

pijIi.t/; (6.2)

which is investigated in Sect. 6.4.
When we consider the diffusion of new increment of infected individuals after

the reaction, the evolution is described by

hIi.t C 1/ � Ii.t/i DˇIi.t/Si.t/=Ni.t/

C
X

j¤i

˚

pjiŒIj.t/C h�RIj.t/i� � pijŒIi.t/C h�RIi.t/i�
�

;
(6.3)

where �RIj.t/ is the increment of Ij.t/ after the reaction from t to t C 1. We give the
extensive investigation of the dynamics given by Eq. (6.3) in Sect. 6.5.

We now discuss the individual mobility operator to handle the presence of
stochasticity and independence of individual mobility, where the number of suc-
cessful migration of individuals between adjacent subpopulations is quantified by a
binomial or a multinomial process, respectively. If the focal subpopulation i only has
one neighbouring subpopulation j, the number of individuals in a given compartment
X (X 2 fS; Ig and

P

X Xi D Ni) transferred from i to j per unit time, Tij.Xi/, is
generated from a binomial distribution with probability pij representing the diffusion
rate and the number of trials Xi, i.e.,

Binomial.Tij;Xi; pij/ D
XiŠ

TijŠ.Xi � Tij/Š
p

Tij

ij .1 � pij/
.Xi�Tij/; (6.4)

where 1 � pij denotes the probability of an individual staying in subpopulation i.
If the focal subpopulation i has multiple neighbouring subpopulations

j1; j2; : : : ; jk, with k representing i’s degree, the numbers of individuals in a given
compartment X moving from i to j1; j2; : : : ; jk are generated from a multinomial
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distribution with probabilities pij1 ; pij2 ; : : : ; pijk representing the diffusion rates on
the edges emanated from subpopulation i and the number of trails Xi, i.e.,

Multinominal.fTij`g;Xi; fpij`g/

D
XiŠ

Q

` Tij` Š.Xi �
P

` Tij` /Š
.
Y

`

p
Tij`
ij`
/.1 �

X

`

pij` /
.Xi�

P

` Tij` /;
(6.5)

where integer ` 2 Œ1; k�, term 1 �
P

` pij` denotes the probability of an individual
staying in subpopulation i.

6.3 Epidemic Parameter Identification

The epidemic parameters of a networked meta-population include the infection
rate and diffusion rate, which play an important role in the SI dynamics, while
the stochastic epidemic dynamics and the limit of available data make such an
identification task more difficult. In this section, we review the method to identify
both parameters for a two-subpopulation network and an estimation of infection rate
for a general network version.

6.3.1 The Case of Two-Subpopulation Model

We first describe one realization of the invasion process evolving as follows. At the
beginning, subpopulation 1 has been initialized with one infected individual in this
case. When time evolves, the number of infected individuals I1.t/ of subpopulation 1
increases due to the SI reaction dynamics in this subpopulation. The epidemic arrival
time (EAT) is defined as the first arrival time of infected individuals from an infected
subpopulation moving to a neighbouring susceptible subpopulation. To address the
EAT, some infected individual(s) will move (diffuse) to subpopulation 2, which
finally succeed in infecting subpopulation 2. Therefore, recording the infection data
(the number of infected individuals in subpopulation i at time t, i.e., Ii.t/; i D 1; 2) of
each subpopulation as the available data, we need to identify the unknown infection
rate ˇ and diffusion rate p12.

At the early stage of epidemic dynamics, we can approximate Si.t/ � Ni.t/; i D

1; 2 (Ii.0/ � Ni.0/) and therefore simplify Eq. (6.1) as

hI1.t C 1/ � I1.t/i C hI2.t C 1/ � I2.t/i � ˇ.I1.t/C I2.t//: (6.6)

Denote I.t/ the number of infected individuals in all subpopulations at time t,
i.e., I.t/ D I1.t/ C I2.t/. Traditionally, the RHS of the above equation accounts
for an exponential growth of the number of infected individuals, and ˇ is regarded



6 Towards Identifying and Predicting Spatial Epidemics on Complex Meta-. . . 137

as the Malthusian growth rate. Thus, we rewrite Eq. (6.6) in the compact form as
I.t/ � eˇ.t�0/I.0/. Considering lnŒI.0/� � lnŒI.t/�, .0 � t/, we have ˇ 
 lnŒI.t/�

t .
Therefore, we estimate the infection rate ˇ by fitting the slope of lnŒI.t/�.

We now discuss how to identify diffusion rate p12. Repeat the invasion of
subpopulation 2 from subpopulation 1 until we record the epidemic arrival time
to subpopulation 2, i.e., the disease/virus finally lands in subpopulation 2 and starts
the local infection. We investigate the period from the initial time (t D 0) to the
epidemic arrival time (tEAT ) that the first H individuals from subpopulation 1 invade
subpopulation 2. From tEAT � 1 to tEAT , we get

8

<

:

hI1.tEAT/ � I1.tEAT � 1/i D ˇI1.tEAT � 1/ � p12I1.tEAT � 1/;

hI2.tEAT/ � I2.tEAT � 1/i D p12I1.tEAT � 1/:

(6.7)

The likelihood function about the first H infected individuals from subpopula-
tion 1 traveling to subpopulation 2 at time tEAT is

P.H ; tEAT � 1/ D CH
I1.tEAT �1/.1 � p12/

I1.tEAT �1/�H pH
12 �

��1
Y

iD1

.1 � p12/
I1.i/; (6.8)

where tEAT � 1 D �, �.� 	 1/ is an integer. If there are s (s 	 1) rounds of repeated
realizations of invasion processes, the joint likelihood function is given by

P.H f1g; t1I H
f2g; t2I � � � I H fsg; ts/ (6.9)

D P.H f1g; t1/ � P.H f2g; t2/ � � � � P.H fsg; ts/;

where s is the number of rounds of repeated simulation realizations of epidemic
invasion processes. Take the logarithm of Eq. (6.9), the joint likelihood function
yields L.P/ D ln.P.H f1g; t1I H f2g; t2I � � � I H fsg; ts//:

Therefore, by means of the maximum likelihood estimation, we have dL.P/
dp12

D

1
p12�1

.
Ps

iD1 .I
fig
1 .�i/ � H fig/ C

Ps
iD1

P�i�1
jD1 Ifig

1 .j// C 1
p12

Ps
iD1 H fig. Letting

dL.P/
dp12

D 0, we finally have

Op12 D

Ps
iD1 H fig

Ps
iD1

h

Ifig
1 .�i/ � H fig C H fig C

P�i�1
jD1 Ifig

1 .j/
i D

Ps
iD1 H fig

Ps
iD1

P�i
jD1I

fig
1 .j/

;

(6.10)
where Op12 represents the estimation of diffusion rate p12.
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6.3.2 The Case of a Meta-population Network

Mathematically, the estimation of diffusion rates requires the availability of a large
number of epidemic realizations for a given meta-population network. However, the
availability of such repeated data for emergent infectious diseases is rather limited
in reality. Therefore, the estimation of diffusion rates in the general case of a meta-
population network is infeasible due to the computational complexity and the limit
of available data, which generally can be alternatively obtained from the statistics of
public transportation section. The estimation of infection rate ˇ in the general case
of a meta-population network is addressed here.

Summing the number of infected individuals in Eq. (6.3) over all subpopulations
i, we have

P

ihIi.t C 1/ � Ii.t/i D
PN

iD1 ˇIi.t/Si.t/=Ni.t/. Since Ii.t/ � Ni.t/ at
the early epidemic stage, it is simplified as

P

ihIi.t C 1/ � Ii.t/i � ˇ
P

i Ii.t/. The
term Ii.t C 1/ � Ii.t/ fluctuates around its mathematical expectation, and we have
the approximation as

ˇ 


P

i.Ii.t C 1/ � Ii.t//
P

i Ii.t/
: (6.11)

Thus, given all recorded times t1; t2; : : : ; tm0 , the infection rate Ǒ is estimated as

Ǒ D arg min
ˇ�

tm0

X

tDt1

j.I.t C 1/ � I.t// � ˇ�I.t/j2 D .X>X/�1X>Y; (6.12)

where X> represents the transposition of X, and X D ŒI.t1/; I.t2/; : : : ; I.tm0/��1,
Y D Œ.I.t1 C 1/ � I.t1//; .I.t2 C 1/ � I.t2//; : : : ; .I.tm0 C 1/ � I.tm0//��1.

6.3.3 Example: Identifying the Diffusion Rate p12

In this subsection, we only illustrate the identification performance of estimating
diffusion rate p12 on a two-subpopulation SI model as an example. A more
general case (in the sense of an arbitrary number of subpopulations) of example of
identification performance of infection rate ˇ will be investigated in Sect. 6.5. In the
two-subpopulation case, statistic information of p12 is embedded in the surveillance
infection data of the two subpopulations during the epidemic invasion process. As
shown in Fig. 6.4, the estimation of p12 approaches the real value if the number of
realizations increase, and the estimation error jOp12 � p12j is less than 5% of p12.
Finally the estimation of p12 as Op12 tends to the real value.



6 Towards Identifying and Predicting Spatial Epidemics on Complex Meta-. . . 139

s
0 100 200 300 400 500 600 700 800 900 1000

|p̂ 1
2
−

p 1
2|

×10-3

0

0.5

1

1.5

2

2.5

3

estimation error of p12

Fig. 6.4 The estimation error of diffusion rate p12 versus the number of realizations of the invasion
process, and the error finally converges to zero. Op12 is the estimated value of p12. The actual value
of diffusion rate p12 is 0.01

6.4 Identification of Invasion Pathways

During a real spatial cascade of an infectious disease, the spatial invasion pathways
are the collection of directed transmission paths of an infectious disease rooted in
the infected source subpopulation invading their susceptible neighbouring subpopu-
lations. Actually, no one can predict such spatial invasion pathways to suppress the
spreading processes at its infant prevalence. With the data availability of epidemic
arrival time (EAT), i.e., the first invasion time discussed in the previous section, we
may infer the patterns of invasion pathways.

Suppose one subpopulation is initially infected containing several infected
individuals. As time evolves, the infected individuals of the seed subpopulation
travel to the neighbouring subpopulations and try to infect their individuals. The suc-
cessful invasion brings more invaded subpopulations with the cascade of infections.
Therefore, the focus of interest is that when a subpopulation is invaded/infected by
its m.m 	 2/ infected neighbours with the available EAT data, how can we infer
the culprit(s) and identify the invasion pathways in such a cascade infection? In the
concerned situation, we assume that the surveillance infection data (the number of
infected individuals of each subpopulation at each time t) is available as well as the
topology of the meta-population network (including diffusion rates).
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6.4.1 Invasion Partition and Types of Invasion Cases

We categorize all candidates of invasion pathways via the so-called invasion
partition (INP) into four types of invasion cases (INCs), as shown in Fig. 6.5. An
invasion case contains two sets, i.e., S and I. Subpopulations which are not infected
at tEAT � 1 but infected at tEAT are put in set S, and their neighbours which are
infected at tEAT � 1 are put in set I. All four types of invasion cases are defined.

(i) I 7! S: In this case, both I and S only have one subpopulation. That is to say,
a susceptible subpopulation is infected at tEAT by the first arrival of infected
individual(s) from its unique neighbouring infected subpopulation at tEAT � 1,
and this infected subpopulation has no other newly infected neighbours at tEAT .

(ii) I 7! nS.n > 1/: In this case, I contains one infected subpopulation, and S

contains n.n > 1/ subpopulations. That is to say, an infected subpopulation

Invasion
Edges

Sn

S2

S1

...
Invasion
Edges S1

I1

(a) (b)

S1

I1

I1

I2

Im

Invasion
Edges

......

Sn

...
S1

I1

I2

Im
Invasion

Edges

(c) (d)

Fig. 6.5 (a) Example of I 7! S INC, in which the infected individuals of only one infected
subpopulation invades one susceptible subpopulation. The infected subpopulation is represented
in red, while the plain patch is the subpopulation that remains susceptible before time tEAT but
will be infected between tEAT � 1 to tEAT due to the arrival of infected individuals from the
upstream infected subpopulation. (b) Example of I 7! nS INC, in which the infected individuals
of only one infected subpopulation invades n.n � 2/ susceptible subpopulations. (c) Example of
mI 7! S INC, in which the infected individuals of m infected subpopulations invade one susceptible
subpopulation. (d) Example of mI 7! nS INC, in which the infected individuals of m.m � 2/

infected subpopulations invade n.n � 2/ susceptible subpopulations (From Wang et al. [35])
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simultaneously infects its n.n > 1/ susceptible neighbours, each of which has
only one infected neighbouring subpopulation.

(iii) mI 7! S.m > 1/: In this case, I consists of m.m > 1/ subpopulations,
and S only contains one single subpopulation. That is to say, a susceptible
subpopulation is infected by the first arrival of infected individual(s) coming
from its m.m > 1/ infected neighbouring subpopulation, which has no other
newly infected neighbours at this time.

(iv) mI 7! nS.m; n > 1/: In this case, sets S and I both contain more than
one subpopulation. The edges from I to S form a connected subgraph. Each
previously susceptible subpopulation in S is infected by the new arrival of
infected individual(s) from at least one of the m infected subpopulations in
I. Each subpopulation in I has no other newly infected neighbours except the
susbpopulations in S at this time.

Figure 6.5 illustrates such four types of invasion cases as I 7! S, mI 7! nS.n >
1/, mI 7! S.m > 1/ and mI 7! nS.m; n > 1/. Besides, we define the directed
edges from infected subpopulation i in I to susceptible subpopulations in S as
invasion edges, which are the candidates of invasion pathways. Therefore, we define
a decomposition procedure invasion partition (INP) to achieve the task of dividing
subpopulations and edges into such invasion cases. As summarized in Algorithm 1,
we propose a heuristic algorithm to achieve the INP task.

Algorithm 1 Invasion Partition (INP)
1: At an epidemic arrival time, collect all newly infected subpopulations as initial S and their
previously infected neighbours as I;
2: Start with an arbitrary element Si in set S, to compose the initial S�;
3: Find all neighbors of Si in set I to compose the set I� ;
4: For each new member in I

�, find its new neighbours in the S to update S
� if any;

5: For each new member in S
�, find its new neighbours in the I to update I

� if any;
6: Repeat the above two steps until we cannot find any new neighbours in S and I, we get an
invasion case consisting of I� and S

�, then update the S and I;
7: Repeat steps 2–6 to get new invasion cases until there are no elements in S.

6.4.2 Observability of a Subpopulation and an Edge

We further classify the observability of a subpopulation and an edge. Observability
of a subpopulation is defined by comparing the number of infected individuals of
subpopulation i at time tEAT � 1 and tEAT , which reflects the information held for the
inference of relevant invasion pathway. Observability of an directed edge emanated
from an infected subpopulation can be defined by the types of subpopulations it
connects to.
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Fig. 6.6 Illustration of subpopulation observability: (a) observable subpopulations, (b) partially
observable subpopulation, and (c) unobservable subpopulation. Here time t is tEAT (From Wang
et al. [35])

(i) Observable Subpopulation: From tEAT � 1 to tEAT , subpopulation i is an
observable subpopulation if it experiences one of the following three state
transitions. The first is Si ! Ii, which indicates that this subpopulation has
been infected (for the first time) during this period by infected individuals
(because Ii.t/ is available). The second is Ii ! Si. We know how many infected
individuals diffused from this subpopulation in this case. The third is Si ! Si.
This case represents subpopulation i keeps its susceptible status.

(ii) Partially Observable Subpopulation: The number of infected individuals of an
infected subpopulation may decrease, that is to say Ii.tEAT/ < Ii.tEAT � 1/ and
Ii.tEAT/ > 0. We call subpopulation i is a partially observable subpopulation,
because we know at least �Ii.tEAT/ D jIi.tEAT/ � Ii.tEAT � 1/j infected
individuals leave i.

(iii) Unobservable Subpopulation: If the number of infected individuals does not
decrease, i.e., Ii.tEAT/ 	 Ii.tEAT � 1/, it is difficult to judge whether and
how many infected hosts leave subpopulation i. We call it unobservable
subpopulation.

Here the observability of a subpopulation indicates the diffusion information
of this subpopulation. Figure 6.6a–c illustrate the above cases. Together with the
observability of a subpopulation, the directed edges emanated from an infected
subpopulation (here denoted i) in set I can be classified into three types, i.e.,
observable edges, partially observable edges and unobservable edges:

(i) Observable Edges: Any directed edge from i to observable subpopulation j
whose transition is Sj ! Sj or Ij ! Sj from tEAT � 1 to tEAT . This edge implies
no infected hosts move from i.
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(ii) Partially Observable Edges: If an directed edge emanated from infected
subpopulation i to a partially observable subpopulation, the edge is partially
observable.

(iii) Unobservable Edges: If infected subpopulation i connects with an unobserv-
able subpopulation, this directed edge from i is an unobservable edge.

6.4.3 Accurate Identification of Invasion Pathways

We now consider to accurately identify the invasion pathways. Among the four types
of invasion cases (INCs), since the two types of INCs (I 7! S and I 7! nS, n 	 2)
have the unique invasion edge(s) from the neighboring infected subpopulation, the
invasion pathways therefore are easy to identify accurately. We only need concern
the other two types of INCs, i.e., mI 7! S and mI 7! nS.

6.4.3.1 The Case of mI 7! S .m > 1/

A representative mI 7! S.m > 1/ INC (Fig. 6.5c) consists of two sets. Set I D

fI1; I2; : : : ; Img is composed of the infected subpopulations at tEAT � 1, and set S D

fS1g is composed of the susceptible subpopulation(s) at tEAT �1which are infected at
tEAT . Assume subpopulation S1 is infected at tEAT by the first arrival of H infected
individuals coming from some of the infected subpopulations in I, where H is a
positive integer.

Suppose Hi1 is the actual number of infected individuals travelling from an
infected subpopulation Ii in set I, and we have

m
X

iD1

Hi1 D H ; (6.13)

where 0 � Hi1 � H , Hi1 � Ii.tEAT � 1/, and 0 � i � m. H is available from the
infection data, while we do not know Hi1. To reach the unique solution of Eq. (6.13)
which corresponds to a set of invasion pathways of mI 7! S.m > 1/, we give
Theorem 1 to accurately identify the invasion pathways of INC mI 7! S.m > 1/.

Theorem 1 The invasion pathways of the invasion case mI 7! S.m > 1/ can be
accurately identified, given the following two conditions are satisfied: (1) among m
possible sources illustrated in set I, there are only m0.m0 � m/ partially observable
subpopulations I

0, whose neighbouring subpopulations j (excluding the invasion
destination S1) only experience the transition Sj ! Sj or Ij ! Sj at that EAT,
(2)

P

i2I0
�

Ii.tEAT � 1/ � Ii.tEAT/
�

D H .

Proof According to the definition of observability, in an INC, the number of
local infected individuals in an partially observable source i will be decreased by
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�

Ii.tEAT � 1/ � Ii.tEAT/
�

due to the movement of infected individuals. If the
subpopulations j in the neighbourhood of i only experience the transition of Sj ! Sj

or Ij ! Sj from tEAT � 1 to tEAT , they do not to receive the infected individuals
from subpopulation i. Therefore, the newly infected subpopulation S1 is the only
destination for those infected individuals departing from the partially observable
sources. Since m0 � m, the second condition guarantees that Eq. (6.13) only has
a unique solution, which corresponds to the accurate identification of invasion
pathways of this invasion case. ut

6.4.3.2 The Case of mI 7! nS.m > 1; n > 1/

The final typical INC mI 7! nS as shown in Fig. 6.5d includes set I D fIiji D

1; 2; : : : ;mg and S D fSiji D 1; 2; : : : ; ng. Denote fHiji D 1; 2; : : : ; ng the number
of the first arrival of infected individuals to susceptible subpopulation Si in set S,
and Ui.i D 1; 2; : : : ;m/ the subset of susceptible neighbouring subpopulations in
set S of infected subpopulation Ii , and Yj.j D 1; 2; : : : ; n/ the subset of infected
neighbouring subpopulations in set I of susceptible subpopulation Sj.

Define � D ffHi1ji 2 Y1g; : : : ; fHinji 2 Yngg as a potential solution for the
mI 7! nS, if � is subject to the following two conditions: (i)

X

i2Yk

Hik D Hk; (6.14)

where Hik.	 0/ is the number of infected hosts invading subpopulation Sk from Ii

at tEAT ; (ii) For any Hik, we have
P

k2Ui
Hik � Ii.tEAT � 1/, where 1 � i � m; 1 �

k � n.
Suppose an mI 7! nS has M potential solutions, and �j D ffH

.j/
i1 ji 2

Y1g; : : : ; fH
.j/

in ji 2 Yngg .1 � j � M/ represents one of the solutions.
Given some specific prerequisites (as the conditions of Theorem 2), Eq. (6.14)

has a unique solution, which implies that the invasion pathway(s) can be identified
accurately. Theorem 2 elucidates this scenario.

Theorem 2 The invasion pathway(s) of the invasion case mI 7! nS.m; n > 1/ can
be identified accurately, given the following three conditions are satisfied: (1) the
number of invasion edges Ein � n C m, (2) the neighbouring subpopulations j of
each subpopulation in set I are with the transition Sj ! Sj or Ij ! Sj except their
neighbouring subpopulations in set S during tEAT � 1 to tEAT , (3)

Pm
iD1 	Ii.tEAT/ D

Pn
kD1 Hk.

Proof Since the number of infected individuals in the partially observable subpopu-
lation i reduces at time tEAT , i.e., Ii.tEAT/ < Ii.tEAT � 1/, Ii.tEAT/ > 0, it is inevitable
that a few infected individuals diffuse away from subpopulation i. Occurring the
state transitions of Sj ! Sj or Ij ! Sj from tEAT � 1 to tEAT , subpopulations j in
the neighbourhood of i (excluding the new infected subpopulation j) cannot receive
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infected individuals. Therefore, the only possible destination for those infected
individuals is subpopulation Sk in S.

The conditions Ein � nCm and
Pm

iD1 �Ii.tEAT/ D
Pn

kD1 Hk make the equations
P

i2Yk
Hik D Hk and

P

k2Ui
Hik D �Ii.tEAT/ have the unique solution � D

ffHi1ji 2 Y1g; : : : ; fHinji 2 Yngg. The reason is that rank(Acoef )=Ein, where Acoef is
the coefficient matrix of equations

P

i2Yk
Hik D Hk and

P

k2Ui
Hik D �Ii.tEAT/.

Thus the invasion pathway(s) of this mI 7! nS.m; n > 1/ can be identified
accurately. ut

6.4.4 Identification for Potential Invasion Pathways

Now we are in the position to construct the whole framework of identifying
invasion pathways, namely, the invasion pathways identification (IPI) algorithm as
summarized as below.

(i) Invasion partition: Twhole invasion pathways is defined as the whole invasion path-
ways of an invasion process. At each EAT, we get four types of invasion
cases (i.e. I 7! S; I 7! nS;mI 7! S;mI 7! nS.m > 1; n > 1//. Suppose
Twhole invasion pathways is contained in all ƒ INCs. Denote by Oai the identified
invasion pathways of INCi, which can be optimally solved by (stochastic)
dynamic programming as

Twhole invasion pathways D opt
ƒ
X

iD1

Oai; (6.15)

where “opt” represents the optimal solution via dynamic programming.
(ii) Accurate identification: For the two cases of I 7! S, I 7! nS, it is easy to

reach the accurate identification of invasion pathways. In the other two cases
of mI 7! S;mI 7! nS, we first evaluate whether mI 7! S or mI 7! nS can
be accurately identified or not. If yes, Theorems 1 and 2 work out the accurate
identification.

(iii) Identification of potential invasion pathways: If accurate identification is not
feasible, we propose an efficient optimization method based on the maximum
likelihood estimation to identify the most likely invasion pathways. We define
the maximum likelihood (ML) estimator as

Oai D arg max
ai2INCi

P.aijINCi/; (6.16)

where P.aijINCi/ is the likelihood of uncovering the potential pathway ai,
supposing the actual pathway is a�

i . Therefore, we evaluate P.aijINCi/ and
choose the maximal likelihood one as a�

i from all potential pathways ai 2 INCi.
(iv) The whole spatial invasion pathways can be reconstructed by assembling all

invasion cases chronologically.
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Therefore, in the situations where accurate identification of invasion pathways is
not feasible, e.g., the conditions of Theorems 1 and 2 are not satisfied, Eqs. (6.13)
and (6.14) may have a number of potential solutions which correspond to a set of
potential invasion pathways. Therefore, we propose the identification algorithm to
infer the most likely pathways among all potential invasion pathways. Herein we
unify mI 7! S.m > 1/ and mI 7! nS.m > 1; n > 1/ as mI 7! nS.m > 1; n 	 1/.

Denote�.H .j/
kk�
/ the transfer estimator of infected subpopulation Ik in I, k� 2 Yk.

Here the transfer estimator is used to estimate the diffusion likelihood if Ik diffuses
H

.j/
kk�

infected individuals to Sk� . Thus, the likelihood of potential solution �j of an
INC mI 7! nS.m > 1; n 	 1/ is presented by

P.�jjINCmInS/ D

m
Y

kD1

�.H
.j/

kk�
/
.

M
X

iD1

m
Y

kD1

�.H
.i/

kk�
/; (6.17)

where M represents the number of solution �j.
We now consider the events from tEAT � 1 to tEAT , and give some definitions.

We assume an infected subpopulation Ii in I emanates ki edges in total, among
which there are i.1 � i � n/ invasion edge(s) labeled as 1; 2; : : : ; i with the
corresponding diffusion rates p�; � 2 Œ1; i�, � is an integer. We suppose Hii�
infected hosts invade its neighbouring subpopulations in the subset fYi D i�g at
tEAT . Assume there are `i unobservable and partially observable edges, labelled
as 1 C i; : : : ; `i C i. Along each unobservable or partially observable edge, the
traveling rate is p`, ` 2 Œ1; `i�, and x` infected hosts leave Ii. Accordingly, in total
�i D

P

` x` infected individuals leave Ii through the unobservable and partially
observable edges. Now there remain ki � `i � i observable edges, labelled as
`i C i C 1; : : : ; ki. Along each observable edge, the diffusion rate is p@, integer
@ 2 Œ`i C i C 1; ki�, and x@ infected individuals leave Ii. With probability
pi D 1 �

P

�
p� �

P

` p` �
P

@ p@, an infected individual keeps staying at
subpopulation Ii. There are xi infected individuals staying in subpopulation Ii

with probability pi. Because Ii connects the unobservable and partially observable
infected subpopulations, we obtain

P

` x` C xi D �0.
Therefore, we have the transfer likelihood estimator� of Ii in the following three

parts.

(a) Unobservable Subpopulation Ii: It is difficult to estimate whether and how
many infected hosts move to which neighbours due to �Ii.tEAT/ D Ii.tEAT �

1/ � Ii.tEAT/ � 0 (we have Ii.tEAT � 1/ � Ii.tEAT/ because unobservable
subpopulation Ii). We write the transfer likelihood estimator of Ii as

�u.Hii�/ D P.Hii� ; p�; � D Œ1; 2; : : : ; �I x`; p`; ` D Œ1C ; 2C ;

: : : ; l C �I x@; p@;@ D Œl C C 1; l C C 2; : : : ; k�I xi; pi/:
(6.18)

With the definition of observable edges, the transfer likelihood estimator is
simplified as
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�u D
Ii.t � 1/Š
Q

�
Hii� Š�

0
iŠ

Y

�

p
Hii�
�

h
X

`

p` C pi

i�0

i
: (6.19)

(b) Observable Subpopulation Ii .Ii ! Si/: Given an I ! S observable subpop-
ulation Ii, the infected individuals Hi D fHii� j� D 1; 2; : : : ; g moved out of
subpopulation Ii to Si� are all from the term of �Ii.tEAT/. Therefore, its transfer
likelihood estimator is derived as

�ob D �Ii.t/Š
Q

� Hii� Š.�Ii.t/�
P

� Hii� /Š

Q

�
. p�
PlC

kD1 pk
/
H 00

ii� �

.
P

` p`
PlC

jD1 pj
/�Ii.t/�

P

� Hii� ; (6.20)

where �Ii.tEAT/ D Ii.tEAT � 1/ � Ii.tEAT/ D Ii.tEAT � 1/ (we have Ii.tEAT/ D 0

because observable subpopulation Ii (Ii ! Si)).
(c) Partially Observable Subpopulation Ii: Because �Ii.tEAT/ D Ii.tEAT � 1/ �

Ii.tEAT/ > 0, at least �Ii.tEAT/ infected individuals leave subpopulation Ii from
tEAT �1 to tEAT according to the definition of partially observable subpopulation.
Hi D fHii� j� D 1; : : : ; g is decomposed into two subsets: H0

i D fH 0
ii�

j� D

1; : : : ; g and H00
i D fH 00

ii�
j� D 1; 2; : : : ; g, H 0

ii�
C H 00

ii�
D Hii� , where

H 0
ii�

	 0;H 00
ii�

	 0. H0
i D fH 0

ii�
j� D 1; : : : ; g represents the set of infected

individuals departing from Ii.tEAT � �t/ � �Ii.tEAT/, and H00
i D fH 00

ii�
j� D

1; : : : ; g denote the infected individuals departing from �Ii.tEAT/. We then
have the transfer likelihood estimator in the following two cases.

Case 1:
P

�
Hii� 	 �Ii.tEAT/

The transfer likelihood estimator is

�pu D

�Ii.tEAT /
X

�D0

X

P

H 00

ii�
D�

P1P2; (6.21)

where

P1 D
�Ii.tEAT/Š

Q

�
H 00

ii�
Š.�Ii.tEAT/ � �/Š

Y

�

.
p�

PlC
kD1 pk

/
H 00

ii� .

P

` p`
PlC

jD1 pj

/�Ii.tEAT /��;

P2 D .Ii.tEAT ��t/��Ii.tEAT //Š
Q

� H 0

ii�
Š.Ii.tEAT ��t/��Ii.tEAT /�

P

� Hii�C�/Š

Q

�
p

H 0

ii�
�

�.
P

` p` C pi/
Ii.tEAT ��t/��Ii.tEAT /�

P

� Hii�C�:
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Here, � D
P

�
H 00

ii�.0 � � � �Ii.tEAT//, which represents the sum of infected
individuals travelling from subpopulation Ii to Si� . For a given �, we need to
enumerate all possible sets H00

i D fH 00
iij

jj D 1; : : : ; g to calculate the �pu.

Case 2:
P

�
Hii� < �Ii.t/

Denote � D
P

�
H 00

ii�.0 � � �
P

�
Hii�/. Similar to Case 1, we should

enumerate all possible permutations of H00
i D fH 00

iij
jj D 1; : : : ; g for a fixed �.

Therefore, in this case we have the transfer likelihood estimator of Ii as

�pu D

P

� Hii�
X

�D0

X

P

H 00

ii�
D�

P1P2; (6.22)

where P1 and P2 are the same as those in Eq. (6.21).
According to Eq. (6.17), the most likely invasion pathways for an INC mI 7!

nS.m > 1; n 	 1/ are identified as

OamI 7!nS D arg max
�i

P.�ijINCmI 7!nS/ D arg max
ai

P.aijINCmI 7!nS/: (6.23)

If the number of the first arrival infected individuals Hij 	 3, multiple potential
solutions may correspond to the same set of potential pathway(s). In this case, we
merge the transfer likelihood of all potential solutions of this INC if they belong to
the same invasion pathways. Then we find out the most likely invasion pathways
corresponding to the maximum likelihood.

After identifying the potential invasion pathways, the whole invasion pathway
Twhole invasion pathways can be reconstructed chronologically by assembling all INCs.
Finally, we depict the IPI algorithm explicitly with the pseudocodes as outlined in
Algorithm 2.

Algorithm 2 Invasion Pathways Identification (IPI)
1: Inputs: the time series of infection data Ii.t/ and topology of network G
2: Find all EAT data
3: for each EAT
4: Invasion partition to find out the I 7! S , I 7! nS, mI 7! S and mI 7! nS.
5: for each mI 7! S or mI 7! nS
6: if it satisfies conditions of Th 1 or Th 2
7: Compute the unique invasion pathway
8: else It does not satisfy conditions of Th 1 or Th 2
9: Find all M potential solutions �j

10: Compute the P.�jjINCmI 7!S/ or P.�jjINCmI 7!nS/

11: Merge the P.�jjINCmI 7!S/ or P.�jjINCmI 7!nS/ of �j corresponding to same pathway(s)
12: end if
13: end for
14: Find invasion pathway amI 7!S or amI 7!nS that maximize P.�jjINCmI 7!S/ or P.�jjINCmI 7!nS/

15: end for
16: Reconstruct the whole invasion pathways (T) by assembling each invasion case chronologically
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6.4.5 Identifiability of Invasion Pathways

We now evaluate the identifiability of invasion pathways of all invasion cases.
Denote � the likelihood corresponding to the most likely pathways for a given
invasion case. Therefore we have

�.�/ D sup
�i

fP.�ijINC/g: (6.24)

Property 1 Given an invasion case ‘mI 7! S’ or ‘mI 7! nS’, P.�jjINC/ D
Qm

kD1 �
PM

iD1

Qm
kD1 �

, there must exist Pmin and Pmax satisfying

Pmin � �.�/ � Pmax: (6.25)

Proof Suppose that P.�1jINC/ � : : : � P.�MjINC/, where M is the number of
potential solutions. Thus Pmax D .P.�MjINC/=P.�2jINC/ C : : : C P.�MjINC//;
Because �.�/ 	 1=M, let Pmin D maxf1=M;P.�MjINC/=.P.�1jINC/ C
PM

jD1 P.�jjINC//g. We have Pmin � �.�/ � Pmax. ut

We define an entropy to characterize the likelihood vector of M potential
pathways of an INC.

Definition 1 (Entropy of Likelihoods of M Potential Solutions) Define the nor-
malized entropy of transfer likelihood P.�1jINC/; : : : ;P.�MjINC/ as

S D �
1

log M

M
X

iD1

P.�ijINC/ log P.�ijINC/: (6.26)

This likelihood entropy S tells the information embedded in the likelihood vector
of the potential solutions of a given INC.

Definition 2 (Identifiability of Invasion Pathways) Define the identifiability of
invasion pathways to characterize the feasibility to identify an invasion case as

… D �.�/.1 � S /: (6.27)

Definition 2 tells that the bigger �.�/ and the smaller entropy S , the easier to
identify the epidemic invasion pathways for an invasion case.

6.4.6 Examples

We illustrate the performance of our proposed IPI algorithm to identify the invasion
pathways, with the maximal connected component of the American airports network
(AAN, Fig. 6.7) to form a meta-population network. Note that the data to construct
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Fig. 6.7 Illustration of an American airports network (From Brockmann et al. [42])

the AAN was collected from the U.S. demographic statistical data and domestic
air transportation [35, 43]. Here, the AAN is a weighted and directed graph having
V D 404 nodes (airports) and E D 6480 weighted and directed edges representing
flight routes. The weight of edge Eij is defined as diffusion rate pij D

hwiji

hNii
, where

hwiji is the daily amount of passengers of the flight from i to j, hNii is the population
of serving areas [43] of airport i. The average degree of the AAN is hki � 16,
and the range of degree k is [1,158]. The range of distributions of hwiji and pij is
Œ1; 9100� and Œ7:4 � 10�8; 0:03�, respectively. The range of distribution of hNii is
Œ6100; 1:907 � 107�, and the total population of the AAN is Ntotal � 0:243 � 109,
i.e., approximately the whole population of the United States of America. Therefore,
the AAN as the sample of a meta-population network shows high heterogeneity of
connectivity patterns, traffic capacities as well as the population distribution [43].

To verify the performance of the proposed IPI algorithm, we select three
methods [15, 31, 32] as the benchmark for comparison, which generate the
shortest path trees or minimum spanning trees of a meta-population network. In
more detail, [31] generates the average-arrival-time-based (ARR) shortest path tree,
and [15] generates the effective-distance-based (EFF) most probable paths, and
[32] generates the Monte-Carlo-Maximum-Likelihood-based (MCML) most likely
epidemic invasion tree.

We define the identifying accuracy as the ratio of the number of correctly
identified invasion pathways by each method to the number of true invasion
pathways. We also compute the accuracy of accumulative INCs of mI 7! S and
mI 7! nS, which is defined as the ratio of the number of correctly identified
invasion pathways by each method to the number of true invasion pathways in this
INC. Besides, we also make the comparison of the identification accuracy at the
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Fig. 6.8 (Top) The wholly identifying accuracy of the invasion pathways on the AAN with 20
rounds of independent realizations. (Middle) The identifying accuracy of the invasion pathways for
the early stage (before infecting 50 subpopulations) on the AAN with 20 rounds of independent
realizations. (Bottom) The accumulative identifying accuracy of invasion cases (mI 7! S and
mI 7! nS) for the early stage and the whole invasion pathways on the AAN. Here “mIS” and
“mInS” stand for mI 7! S and mI 7! nS, respectively (From Wang et al. [35])

early stage of epidemic dynamics, which is defined as the period when the first
50 subpopulation have been infected. In the top and middle panels of Fig. 6.8,
we observe the whole identification accuracy and the early-stage identification
accuracy, while the bottom panel of Fig. 6.8 presents the early and whole accu-
mulative identification accuracy of mI 7! S and mI 7! nS through 20 independent
realizations on the AAN, respectively. Here the whole identification accuracy means
the identification accuracy of whole meta-population network has been infected.
The seed subpopulation in all such independent realizations is set as the Sun Valley
Airport in Bullhead City, Arizona. We clearly observe that the IPI algorithm is more
accurate at identifying the invasion pathways than other benchmark methods.

We then visualize the identified invasion pathways (the lower panel of Fig. 6.9)
during the early stage of a realization compared with the actual invasion pathways
(the upper panel of Fig. 6.9). The weights (diffusion rates) of invasion edges are
shown by the thicknesses of lines, and arrows represent the directions of invasions.
We observe that most of the invasion pathways are correctly identified to form the
invasive backbone of this realization of an epidemic dynamics, while there still
exist some wrongly identified pathways in some INCs, indicating the necessity of
defining the identifiability of an INC.
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Fig. 6.9 Illustration of the actual invasion pathways (the upper panel) and the identified invasion
pathways (the lower panel), during the early stage of a realization (before the appearance of 50
infected subpopulations) on the AAN. Subpopulation 1 is the seed (Sun Valley Airport in Bullhead
City, Arizona) (From Wang et al. [35])

We finally examine the identifiability of an invasion case. Figure 6.10 shows
the entropy and identifiability of wrongly identified mI 7! S of 20 independent
realizations on the AAN. The smaller the identifiability of an invasion case is, the
more prone it is to be wrongly identified. The identifiability depicts the wrongly
identified mI 7! S more reasonably than the likelihoods entropy. The frequency
of identifiability of INCs descends obviously, but that of the likelihood entropy of
INCs does not clearly ascend. This statistical result indicates that the identifiability
… has a better performance to distinguish whether an invasion case is difficult to
identify or not than the distinction performance of the likelihood entropy, and also
tells that why some invasion cases are easy to identify, whose … are more than 0.5,
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Fig. 6.10 Statistical analysis of the likelihoods entropy and identifiability of wrongly identified
mI 7! S in 20 realizations of epidemic spreading on the AAN (From Wang et al. [35])

and why some invasion cases are difficult to identify, whose … are much less than
0.5. Here 0.5 is an empirical value.

6.5 Predicting the Epidemic Transmission

As the final part of this chapter, we now move a step further to predict the early
stage of an epidemic transmission. Suppose the epidemic process starts from the
patient 0 subpopulation. This subpopulation invades and infects its neighbours, and
the cascading transmission proceeds. At the early epidemic stage, the time series
of the number of infected individuals in each subpopulation Ii.t/ (i.e., the infection
data) is recorded. Assume the topology of the meta-population network (including
population sizes and diffusion rates, as Sect. 6.4) and the time series of the recorded
infection data Ii.t/ until time t are available, and the focus of interest in this section
is to predict which subpopulations will be infected at time step tC1. We consider the
SI model with the diffusion of new increment of infected individuals after reaction
(see Sect. 6.2 Eq. (6.3)).
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6.5.1 A Prediction Algorithm

The growth of infected individuals in an infected subpopulation is governed by the
infected rate ˇ, while the diffusion process is ruled by the parameters of multinomial
distribution. We first identify the infection rate ˇ by using the method in Sect. 6.3.2,
then estimate the increment �RIi.t/ of Ii.t/ of subpopulation i after the reaction
from t to t C 1. Statistically, h�RIi.t/i D ˇIi.t/Si.t/=Ni.t/. To keep the population
balance of each subpopulation, we assume hwiji D hwjii, i.e., hNi.t/piji D hNj.t/pjii,
where wij is the number of individuals that have moved from subpopulation i to
subpopulation j in a unit time (e.g., a day). Thus we have hNj.t/i D hNj.t C 1/i. At
the early stage, Nj.t/ � Sj.t/, and Nj.t/ is included in the population information of
each subpopulation of meta-population network. Therefore, we estimate �RIj.t/ by
�RIj.t/ � ˇIj.t/=Nj.t/.

Next we give the algorithm predicting n.n 	 1/ subpopulations infected from t
to t C 1 during the diffusion process. At time step t, all susceptible subpopulations
having at least one infected neighbouring subpopulation comprise set S. We discuss
the two cases of n D 1 and n > 1 in the following, and Algorithm 3 presents the
pseudocode for the prediction algorithm.

(i) n D 1;

In this case, there is only one susceptible subpopulation infected at time t C 1.
The likelihood Li.t C 1/ that subpopulation i in set S is infected at time t C 1 is
derived as

Li.t C 1/ D1 � .1 � p1i/
I1.t/C�RIi.t/.1 � p2i/

I2.t/C�RI2.t/

: : : .1 � pmi/
Im.t/C�RIm.t/;

(6.28)

where m is the number of infected neighbouring subpopulations of i at time step t.
We label infected neighbouring subpopulations of i as 1; 2; : : : ;m.

Accordingly, the most likely infected subpopulation Ov is predicted as

Ov D arg max
i

Li

Y

j¤i;j2S

L j; (6.29)

where L j D 1 � Lj.

(ii) n 	 2;

The most likely n.n 	 2/ infected subpopulations in S can be predicted as

Ovn D arg max
ik

Li1Li2 : : :Lin

Y

j¤ik ;kD1;2;:::;n;j2S

L j: (6.30)
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Algorithm 3 Prediction Algorithm
1: Inputs: time series of infection data Ii.t/ and topology of network G
2: Estimate the infection rate ˇ
3: for each time step t
4: find all possible candidate subpopulations (set S)
5: compute the likelihood Li.t C 1/ of each subpopulation i 2 S
6: rank all subpopulations i by their likelihoods Li.t C 1/

7: end for
8: Choose the subpopulation i corresponding to the maximal likelihood Li.tC1/ as the most likely
infected i in the next time step

Note that the above method only presents the most likely infected subpopulations
at the next time step. Generally, the number of possibly infected subpopulations
increases sharply during the epidemic dynamics. In this case, the likelihood of the
most likely infected subpopulation may be very small. Therefore, we shall rank
the likelihoods and investigate the top ranking subpopulations, which help us to
judge which subpopulations are prone to be infected. Let Pi D Li

Q

j¤i;j2S L j

in Eq. (6.29). We define the infected likelihood vector fP1;P2; : : : ;PZg of all
Z candidate subpopulations in set S, where Pi is the likelihood the susceptible
subpopulation i gets infected in the next time step as Eq. (6.29), i D 1; 2; : : : ;Z.
Then we define the infected likelihood entropy E as

E D �
1

log M

M
X

iD1

Pi log Pi: (6.31)

This entropy tells the extent of prediction difficulty at each time step. The smaller
E , the easier the prediction.

6.5.2 Examples

This time we select an artificial meta-population network as the simulation example
of spatial epidemic prediction. We generate a scale-free network with the BA
model [6], then design the diffusion rate of each edge. Note that empirically the
diffusion rates [44] of air transportation networks depend on the degree of the nodes.
We define the diffusion rate from node i to node j as

pij D
bijk

O�
j

P

l bilk
O�
l

C; (6.32)

where bij stands for the elements of the adjacency matrix (bij D 1 if i connects to j,
and bij D 0 otherwise), C is a constant (C is assumed as available, and set as 0.005),
and O� is a parameter. We assume that parameter � follows the Gaussian distribution
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� 
 N. O�; ı2/ D 1p
2�ı

exp.� . O���/2

2ı2
/ for each subpopulation. By setting constant C

and computing the population of each subpopulation at equilibrium, the polynomial
regression is employed to evaluate parameters O� and ı2 based on the empirical rule
of T 0 
 kˇ

0

; ˇ0 ' 1:5˙0:1, (where T 0 D
P

l wjl, and ˇ0 is approximately linear with
O� (observed in simulations). Assume O� D a0ˇ0 C b0, we can obtain O� , where a0; b0

are parameters). Therefore we can determine the diffusion rate pij along each edge.
We set the whole BA meta-population network having 404 nodes (subpopulation),
and fix hki D 16 .m0

0 D 9;m0 D 8/ as the average degree of the BA meta-population
network. The initial size of each subpopulation is N1 D N2 D � � � D NN D 6 � 105,
and the total population of the whole meta-population network is Ntotal D 6� 105 �

404 D 2:424 � 108.
As illustrated in Fig. 6.11, the estimation of ˇ is close to the actual infection

rate. We compare our prediction algorithm with the randomization prediction, i.e.,
we randomly choose a susceptible subpopulation in S as the most likely infected
subpopulation at the next time step. Ranking distance is defined as the difference of
rank of likelihood L .t C 1/ between the investigated two subpopulations i and j.
In Fig. 6.12, “RankError” means the ranking distance of the corresponding infected
likelihood between the predicted candidate and the actual infected subpopulation.
“RandError” means the ranking distance of the corresponding infected likelihood
between the randomly selected candidate and the actual infected subpopulation. As
shown in Fig. 6.12, the subpopulations predicted by our algorithm are closer to the
actual infected subpopulations at the next time step compared with those randomly
selected subpopulations.

We further investigate why the accurate prediction of the infected subpopulation
is difficult to achieve. At time step t, if any new subpopulation(s) will be infected
in this realization at the next time step, t C 1 is called the prediction time. As
shown in Fig. 6.13, we observe that the number of possible infected candidates
Z increases sharply, and the infected likelihood entropy also increases (generally

Fig. 6.11 The estimation of
the infection rate ˇ on a BA
meta-population network
with 404 subpopulations. The
actual value of ˇ D 0:05.
Inset: The evolution of I(t) in
a linear scale (From Wang
et al. [36])
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Fig. 6.12 (Top) The distribution of the RankError from t to t C 1 at the early stage of a realization
(one run) of epidemic dynamics. (Bottom) The distribution of the RandError from t to t C 1 at the
early stage of the same realization of epidemic dynamics. Here t C 1 is each time of prediction. In
the realization, the infection rate ˇ D 0:05 (From Wang et al. [36])

E > 0:5) during the time evolution. Because the likelihoods of possibly infected
subpopulations become more homogeneous as the infection prevails, indicating the
infected likelihoods in the likelihood vector are not significantly different from each
other, the infected likelihood entropy herein becomes large, suggesting the difficulty
of accurately predicting the next infected subpopulation.

6.6 Outlook

As only a snapshot of the emergent frontier in the exciting network science,
some latest advances on identification and prediction of epidemic meta-population
networks have been introduced in this chapter. The future steps along this line may
involve the following aspects: (1) The adaptiveness of humans deserves sufficient
respect when facing the modelling, analyses and prediction of a large-scale spatial
pandemic situation, and an appropriately designed role with the feedback-loop
of human adaptiveness into such a complex networking system will be much
appreciated. (2) The power of Big Data and cloud computing may help embed high-
resolution records of human behavioural dynamics (including mobility, interaction
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Fig. 6.13 (Top) The evolution of the number of possibly infected candidates Z with each
prediction time. (Bottom) The entropy of likelihoods vector. The epidemic realization is run on
a BA meta-population network with 404 subpopulations with the infection rate ˇ D 0:05 (From
Wang et al. [36])

and other non-private profiles) into the study. Nevertheless, abuse of data should
be carefully avoided. (3) The verification even for the prediction of an infectious
process requires the precise control means and public strategy in the viewpoints of
not only mathematical results but also implementations in practice. Finally comes
the end of this chapter, which may still stands at the beginning of the long journey
in this exciting and challenging direction.
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Chapter 7
Epidemic Threshold in Temporally-Switching
Networks

Leo Speidel, Konstantin Klemm, Víctor M. Eguíluz, and Naoki Masuda

Abstract Infectious diseases have been modelled on networks that summarise
physical contacts or close proximity of individuals. These networks are known to
be complex in both their structure and how they change over time. We present an
overview of recent progress in numerically determining the epidemic threshold in
temporally-switching networks, and illustrate that slower switching of snapshots
relative to epidemic dynamics lowers the epidemic threshold. Therefore, ignoring
the temporally-varying nature of networks may underestimate endemicity. We also
identify a predictor for the magnitude of this shift which is based on the commutator
norm of snapshot adjacency matrices.

7.1 Introduction

Mathematical models of epidemics on networks describe transmission of infectious
diseases through dyadic connections between individuals [2, 21, 31]. Depending
on the disease, individuals may assume different states, such as being susceptible,
infected, recovered or immune. A common assumption is that infected individuals
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transmit the disease to adjacent susceptible individuals at some constant infection
rate ˇ. For many epidemic models, increasing the infection rate relative to other
parameters results in a phase transition from a disease-free state to an epidemic
(i.e., a macroscopic number of nodes can be eventually infected) or an endemic
(i.e., a macroscopic number of nodes is infected in the equilibrium) phase. The
critical infection rate ˇc is called the epidemic threshold. Efficiently realising
ˇ < ˇc to prevent a large-scale outbreak by immunising networks or engineering
network structure has received substantial attention over the years [2, 22, 28, 31].
A prerequisite for such studies is a good understanding for what influences ˇc. For
instance, network properties such as the degree distribution have been shown to
influence the value of ˇc [31].

Epidemics spread on networks of communication, physical contacts, or close
proximity between humans or animals. These networks vary over time on different
time scales, forming temporal networks, which can alter the effect of networks
on epidemic processes [1, 18, 19, 25, 27]. Valdano and colleagues presented a
theory to calculate the epidemic threshold in temporal networks for the discrete-
time susceptible-infected-susceptible (SIS) epidemic model in which each node is
either in the susceptible or infected state [40]. In Ref. [36], we adapted their theory to
the continuous-time SIS model. We found that the epidemic threshold in temporal
networks is smaller compared to the corresponding value in the time-aggregated
static network. Therefore, ignoring the time-varying nature of networks would lead
to underestimation of endemicity. In this chapter, we will summarise these recent
findings in a pedagogical manner and provide further numerical evidence.

7.2 Representations of Temporal Networks

There are several ways to represent temporal networks and which representation
is preferable over others depends on a number of factors. For instance, to adapt
techniques of static networks, temporal networks are represented as a sequence of
static networks; alternatively, to borrow techniques from time series analysis, node
or link activities are represented as time series. Computational advantages of one
representation over another are also worth considering. We point to review articles
for more detailed discussion [18, 19].

Data of temporal networks quite often come in the form of time-stamped
links. Time stamps indicate the time of appearance (and disappearance) of a link.
An example in terms of a node-centric time line is visualised in Fig. 7.1a. To
investigate epidemic spreading on temporal networks, let us aggregate links over
intervals of length � . We refer to each network representing a time interval as a
snapshot and call the sequence of snapshots a temporally-switching network. For
empirical temporal networks, the sequence of snapshots is finite. One technique
to elongate the sequence of snapshots is to periodically repeat the empirical
sequence, where the first snapshot follows the last snapshot. Temporally-switching
networks are common for studying synchronization processes [23, 26, 29]. The
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Fig. 7.1 Different
representations of temporal
networks. (a) Schematic of a
node-centric time line of time
stamped links. Nodes 1 and 2
interact first, then nodes 3 and
4, nodes 1 and 4, and so forth.
(b) A temporally-switching
network obtained by the
aggregation of the temporal
network shown in (a) over
time windows of size � . (c)
The aggregate network
corresponding to (b). The link
weight in the aggregate
adjacency matrix, A�, is
equal to the sum of the link
weight over the four
snapshots divided by four
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(c) aggregate network
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temporally-switching network constructed by the aggregation of the links in
Fig. 7.1a is shown in Fig. 7.1b. It should be noted that some of the information
contained in the data is lost in the process of creating a temporally-switching
network from the list of time-stamped links, unless we choose � to be equal to
the temporal resolution of the data. Non-constant � is discussed in Sect. 7.6.

7.3 Epidemic Threshold of the SIS Model in Static Networks

Before we start investigating the epidemic threshold in temporal networks, we
recapture how to calculate the epidemic threshold in static networks. We denote the
epidemic threshold of the discrete-time and continuous-time models by ˇdisc

c and
ˇcont

c , respectively. Already for static networks, exact estimates of ˇdisc
c and ˇcont

c are
not known for general network structures and one has to rely on approximations.
Different approximation schemes have been developed [4, 31, 33]. Here, we
calculate ˇcont

c using the so-called individual-based approximation (IBA) [5, 7]. One
can verify that for the SIS model the IBA leads to ˇdisc

c D ˇcont
c .

In the continuous-time SIS model, an infected node transmits the disease to a
susceptible node at rate ˇ, and it recovers to the susceptible state at rate � . A proxy
to this continuous time version is the discrete-time SIS model, in which infection
and recovery happens in synchronised time steps of duration �t with probabilities
ˇ�t and ��t for some �t > 0, respectively.

We assign each node i a variable Xi.t/ indicating its state at time t. In the
SIS model, Xi.t/ assumes values S and I for the susceptible and infected states,
respectively. We denote the probability that node i is infected at time t by xi.t/ D
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P.Xi D I/. On a static network defined by the adjacency matrix A, the time evolution
of xi.t/ is described by a system of ordinary differential equations (ODEs) given by

dxi.t/

dt
D ˇ

N
X

jD1

AijP.Xi.t/ D S;Xj.t/ D I/ � �xi.t/: (7.1)

An exact solution for xi.t/ is practically unavailable for general A. Therefore,
different approximation schemes have been developed [31, 33]. The IBA assumes
independence between the events Xi.t/ D S and Xj.t/ D I such that

P.Xi.t/ D S;Xj.t/ D I/ � Œ1 � xi.t/� xj.t/: (7.2)

Substitution of Eq. (7.2) in Eq. (7.1) yields

dxi.t/

dt
D ˇ

N
X

jD1

Aij Œ1 � xi.t/� xj.t/ � �xi.t/; (7.3)

which is now a system of ODEs that is closed in terms of x.t/ D .x1.t/; : : : ; xN.t//>,
where > is the transposition.

The IBA leads to ˇcont
c D �=˛max, where ˛max is the largest eigenvalue of A [5,

7, 31]. This result is obtained by linearising Eq. (7.3) around the disease-free state
given by xi.t/ D 0 (i D 1; : : : ;N), which yields

dx.t/
dt

� .ˇA � � I/x.t/C o.x.t//; (7.4)

where I is the identity matrix. The largest eigenvalue of ˇA � � I equals 0 at ˇ D

ˇcont
c . Equation (7.4) indicates that x.t/ exponentially decays in time if ˇ < ˇcont

c .
If ˇ > ˇcont

c , x.t/ exponentially grows in time as long as the initial condition is
not orthogonal to the eigenvector corresponding to the largest eigenvalue of A.
Therefore, one obtains ˇcont

c D �=˛max. The epidemic threshold ˇcont
c depends on

˛max, which is determined by the structure of the network.

7.4 Epidemic Threshold of the SIS Model
in Temporally-Switching Networks

We show how one can use the IBA to calculate the epidemic threshold in temporally-
switching networks. This approach for temporal networks was pioneered by Valdano
and colleagues for the discrete-time SIS model [40]. We developed a similar
approach for the continuous-time SIS model [36].
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We are given a temporally-switching network defined by an infinite sequence of
snapshot adjacency matrices fA.0/;A.1/; : : :g (see Sect. 7.2). We sequentially apply
each snapshot for time � . Within these intervals of length � , the network is static and
we run an epidemic process on top of it. We regard � as a free parameter that controls
the relative time scale between epidemic dynamics and temporal switching of the
network. If we decrease � , snapshots change faster relative to epidemic dynamics,
and vice versa if we increase � .

7.4.1 Continuous Time

In continuous time, we apply snapshot A.`
0/ for t 2 Œ`0�; .`0 C 1/�/. As before, the

infection rate is given by ˇ and the recovery rate by � . Because changing .�; ˇ; �/ to
.c�; ˇ=c; �=c/ for any c > 0 does not change the dynamics, we assume that � D 1

without loss of generality.
The probabilities xi.t/ (1 � i � N) evolve according to the following dynamics:

dxi.t/

dt
D ˇ

N
X

jD1

A.`
0/

ij P.Xi.t/ D S;Xj.t/ D I/ � xi.t/; (7.5)

where `0 is such that `0� � t � .`0 C 1/� . To obtain a closed system, we use the
IBA and obtain

dxi.t/

dt
� ˇ

N
X

jD1

A.`
0/

ij Œ1 � xi.t/� xj.t/ � xi.t/: (7.6)

To find the epidemic threshold, we linearise Eq. (7.6) around the disease-free state,
which is given by xi D 0 (i D 1; : : : ;N), and obtain

dx.t/
dt

D .ˇA.`
0/ � I/x.t/C o.x.t//: (7.7)

The solution of Eq. (7.7) is given by

x.`�/ � Tcont.�/x.0/; (7.8)

where

Tcont.�/ D
Y

`0D`�1;:::;0

exp
h

.ˇA.`
0/ � I/�

i

: (7.9)

The product of matrices is evaluated in the indicated order, i.e., in descending order
from `0 D ` to `0 D 0. The disease-free state is stable as long as the largest
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eigenvalue of Tcont.�/, which we denote by �cont
c , is less than 1. The epidemic

threshold ˇcont
c satisfies �cont

c D 1.
If the network does not change in time, Eq. (7.8) is reduced to

Tcont.�/ D exp Œ.ˇA � I/`�� ; (7.10)

where A is the adjacency matrix of the static network. The largest eigenvalue of
Tcont.�/ is given by �cont

c D expŒ.ˇ˛max � 1/`��. Therefore, we reproduce ˇcont
c D

1=˛max derived in Sect. 7.3 for static networks.
Decreasing � makes switching of snapshots faster compared to epidemic dynam-

ics. In the limit � ! 0, the dynamics are effectively the same as those on the
aggregate network defined by adjacency matrix A� D lim`!1 1=`

P`�1
`0D0 A.`

0/ (see
Fig. 7.1c) [26, 36]. It follows that lim�!0 ˇ

cont
c D 1=˛�

max, where 1=˛�
max is the

epidemic threshold of the aggregate network with ˛�
max being the largest eigenvalue

of A�.
In Fig. 7.2a, we compare stochastic simulations of the continuous-time SIS

model (solid lines) and the theoretical epidemic threshold ˇcont
c (arrows) on an

empirical temporal network. For the numerical results, we estimated the position
of the epidemic threshold as the peak of the susceptibility defined by � �

N
�

h2i � hi2
�

=hi, where  was the fraction of infected nodes in the equilib-
rium [12]. We measured  at the end of each cycle (i.e., right after the ` snapshots
had been applied). The dashed lines in Fig. 7.2a represent �. The figure suggests
that the epidemic threshold is roughly given by the peak of � unless � is too small.
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Fig. 7.2 Stochastic simulations of (a) the continuous-time SIS model and (b) the discrete-
time SIS model on the sexual contact data set [34]. We imposed periodic boundary condi-
tions. Solid lines show the mean fraction of infected nodes, hi. Dashed lines show � �
N
�

h2i � hi2
�

=hi [12], normalised such that the peaks are at 0:02 in the plot. The epidemic
threshold obtained using a bisection method on the largest eigenvalue of Tcont.�/ and Tdisc.�/ is
indicated by the arrows. To obtain the ˇcont

c value in (a), we expanded each matrix exponential
in Tcont.�/ up to the term of the order of O.�10/. The largest eigenvalue was calculated using the
power method
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7.4.2 Discrete Time

In discrete time, we apply a new snapshot from an infinite sequence fA.0/;A.1/; : : :g
in each time step. The probability that an infected node infects an adjacent
susceptible node in a time step is set to ˇ� , and the probability that an infected
node recovers in a time step to � .

The probabilities xi.t/ (i D 1; : : : ;N) obey the following dynamics:

xi.t C 1/ D xi.t/C ˇ�

N
X

jD1

A.t/ij P.Xi.t/ D S;Xj.t/ D I/ � �xi.t/: (7.11)

By using the IBA, we obtain

xi.t C 1/ D xi.t/C ˇ�

N
X

jD1

A.t/ij Œ1 � xi.t/� xj.t/ � �xi.t/: (7.12)

To find the epidemic threshold, we linearise Eq. (7.12) around the disease-free state
and obtain

x.t C 1/ D
�

.1 � �/I C ˇ�A.t/
�

x.t/C o.x.t//: (7.13)

The solution of Eq. (7.13) is given by

x.t/ � Tdisc.�/x.0/; (7.14)

where

Tdisc.�/ D
Y

t0Dt�1;:::;0

h

.1 � �/I C ˇ�A.t
0/
i

: (7.15)

The disease-free state is stable if the largest eigenvalue of Tdisc.�/, which we denote
by �disc

c , is less than one. The epidemic threshold ˇdisc
c satisfies �disc

c D 1.
One obtains Eq. (7.11) by approximating the derivative in Eq. (7.5) as dxi.t/=dt �

Œxi.t C �/ � xi.t/� =� . This approximation is exact as � ! 0. Therefore, the limit
� ! 0 in the discrete-time SIS model corresponds to epidemic spreading on the
aggregate network, and we obtain lim�!0 ˇ

disc
c D 1=˛�

max. Usually, we consider
the discrete-time SIS model as a proxy to the continuous-time counterpart which
is sometimes more realistic. For instance, the discrete-time SIS model implicitly
assumes that, for time � , each node is allowed to make at most one transition
between the susceptible and infected states. This is not the case in the continuous-
time framework.
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In Fig. 7.2b, we compare stochastic simulations of the discrete-time SIS model
and the ˇdisc

c values predicted by the IBA. The figure shows that the prediction is
again reasonably accurate unless � is too small.

7.5 Epidemic Threshold as a Function of �

In Sect. 7.4, we presented a numerical scheme to calculate, respectively, ˇcont
c and

ˇdisc
c for the continuous-time and discrete-time SIS models in temporally-switching

networks. We have seen that the dynamics in the limit � ! 0 are effectively the
same as those on the aggregate network, yielding lim�!0 ˇ

cont
c D lim�!0 ˇ

disc
c D

1=˛�
max. Focussing on continuoue-time dynamics, we now study the dependency of

ˇcont
c on � .

7.5.1 General Networks

In Fig. 7.2a, the arrows indicate ˇcont
c for � D 0, 0:2, and 0:4 in the sexual contact

temporal network data set. These numerical results and those on nine other temporal
network data sets [36] indicate that the epidemic threshold decreases as � increases
in the continuous-time SIS model, i.e.,

ˇcont
c � ˇcont

c .� D 0/ D 1=˛�
max: (7.16)

So far, we have not encountered any counterexample for Eq. (7.16). However, a
mathematical proof is still missing.

Equation (7.16) has the following theoretical supports. First, Eq. (7.16) is true
for two solvable temporal network models (Sect. 7.5.2). Second, Eq. (7.16) holds
for two snapshots A.0/ and A.1/ applied alternatingly. A theorem (theorem 1 in
Ref. [8]) states that any real-valued, continuous spectral function � that acts on the
spectrum of its matrix argument and only attains finite values satisfies �.eM1eM2 / 	

�.eM1CM2 / for arbitrary symmetric matrices M1 and M2. We let M1 D �ˇA.0/ and
M2 D �ˇA.1/, and let � be the spectral radius. By applying the theorem, we obtain

�.e�ˇA.0/e�ˇA.1/ / 	 �.e2�ˇA�

/; (7.17)

where A� D .A.0/ C A.1//=2 is the adjacency matrix of the aggregate network. By
multiplying both sides of Eq. (7.17) with e�2� , we obtain

�cont
c D �.e.ˇA.0/�I/�e.ˇA.1/�I/� / 	 �.e.ˇA��I/2� /: (7.18)
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0 τ 2τ 3τ

time

Fig. 7.3 Schematic showing a temporally-switching network composed of disjoint links

Equation (7.18) implies that �cont
c 	 1 at ˇ D 1=˛�

max and therefore Eq. (7.16) holds
true. To generalise the above argument to more than two snapshots, we require the

inequality �.
Q`

iD1 eMi/ 	 �.e
P`

iD1 Mi/ to be valid for ` > 2. When matrices Mi have
negative entries, counterexamples exist for ` > 2 [39]. However, it seems that, up to
our numerical efforts, the inequality holds true for general ` if each Mi permits only
non-negative entries.

If the IBA is not accurate, the epidemic threshold in temporal networks may not
be smaller than in the aggregate network. One such example is the case in which
snapshots are composed of disjoint links, such that every node has either degree
zero or one (Fig. 7.3). In this case, the epidemic threshold is larger in temporal
than aggregate networks [36]. The deterministic approximation using the IBA is
inaccurate in this situation because the probability that the epidemic is extinguished
by stochastic effects is not negligible. We developed a theory that accounts for
this stochasticity for the case of a single link and N D 2 nodes (Appendix B of
Ref. [36]). As � ! 1, stochastic effects become relevant also in snapshots with
larger connected components. If � exceeds the typical time of reaching the absorbing
state for a connected component, the epidemic dynamics would be absorbed to the
disease-free state due to stochasticity. Our theory therefore requires that connected
components contained in snapshots are large enough and that � is not too large so
that stochastic effects play negligible roles.

7.5.2 Epidemic Threshold in Model Temporal Networks

We previously derived expressions for the epidemic threshold for two model
temporal networks [36]. Here we elaborate on how the epidemic threshold depends
on parameters that influence the aggregate network or composition of snapshots. We
find that the epidemic threshold decreases with variance in the number of links of
the snapshots.

In these network models, we assume that snapshots are drawn uniformly
and independently with replacement from a set of possible snapshots. To derive
expressions for the epidemic threshold, we approximate Tcont by its expectation to
obtain
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(a)

(b)

0 τ 2τ 3τ

time

Fig. 7.4 Schematic showing temporally-switching networks with (a) clique snapshots (dcl D 5)
and (b) the activity driven model (dhub D 5)

OTcont.�/ D
1

r

X

A

exp Œ.ˇA � I/�� ; (7.19)

where the summation runs over all possible snapshots and r is the number of
possible snapshots. We denote the leading eigenvalue of OTcont.�/ by O�c and by Ǒcont

c

the value of ˇ that satisfies O�c D 1. In Ref. [36], we showed that Ǒcont
c � ˇcont

c and
verified numerically that Ǒcont

c � ˇcont
c .

7.5.2.1 Networks with Clique Snapshots

In the first model, each snapshot consists of a union of cliques and isolated nodes.
Each clique has dcl C 1 nodes, where the size of a clique remains the same across
different cliques and snapshots. The number of cliques may depend on a snapshot.
It should be noted that cliques in a snapshot may overlap and that a snapshot may
contain multiedges. An example of a temporally-switching network generated from
this model is shown in Fig. 7.4a. We obtain

Ǒcont
c �

1

�dcl
ln

	

1C
dcl

˛�
max

.e� � 1/




; (7.20)

whose accuracy when overlaps of cliques are sufficiently rare has been verified by
numerical simulations [36].
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Fig. 7.5 Epidemic
threshold, Ǒcont

c , as a function
of � for networks with clique
snapshots and the activity
driven model. Plotted is
Eq. (7.21) for x D 2; 4; 16

and ˛�

max D 1
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βĉ
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We rewrite Eq. (7.20) as

Ǒcont
c �

˛�
max

�x
ln Œ1C x.e� � 1/� ; (7.21)

where x D dcl=˛
�
max, and plot Eq. (7.21) in Fig. 7.5. The figure indicates that

the epidemic threshold decreases as � increases, verifying that temporality of the
networks as modelled by switching networks decreases the epidemic threshold.
Figure 7.5 also indicates that the epidemic threshold decreases as dcl or x increases
when the aggregate network, and therefore ˛�

max, is kept fixed.
This result suggests that it is not sufficient to measure the aggregate network to

predict the epidemic threshold. Rather, one needs to account for the composition
of snapshots. In Fig. 7.6a, we show that a larger value of dcl makes snapshots more
variable in the sense that some snapshots have many links and others have only few
links. Higher variability of snapshots may be one contributing factor for a smaller
epidemic threshold.

7.5.2.2 Activity Driven Model

In the second model, each snapshot consists of a union of stars. We assume that each
star has one hub node connected to dhub leaves. We assume that the size of the stars
is the same for different stars and snapshots. The number of stars may vary across
different snapshots. An example of a temporally-switching network generated from
this model is shown in Fig. 7.4b. As compared to the previous model, the present
model allows snapshots to be more heterogeneous in terms of the node’s degree.

As a special case, we study the discrete-time version of the activity driven
model [24, 32]. We assign a probability ai to each node which plays a similar role
to that in the previous model but is distinct from it. In each snapshot, node i is
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Fig. 7.6 Number of links in each snapshot normalised by the mean number of links across
all snapshots for (a) the clique network model with dcl D 10; 15, and 20 and (b) the activity
driven model with dhub D 10; 15, and 30. In the clique network model, we assign every node i a
probability ai that i is activated in a snapshot. We assume that every node is activated independently
of other nodes. Once activated, a node triggers a clique of size dcl C 1 by involving dcl other nodes
selected uniformly at random. For all networks generated by either of the two models, we set
N D 2000, r D 500, and let each ai obey the power-law distribution with the probability density
function .1 � �/a��

i =.1 � "1��/, where " � ai � 1. We set � D 3 and adjusted " to ensure
hai D 0:0025

activated with probability ai independently of other nodes. If activated, i connects
to dhub other nodes that are drawn with equal probability.

The epidemic threshold for the activity driven model is approximately given
by [36]

Ǒcont
c �

1

�
p

dhub
ln

	

1C

p
dhub

˛�
max

.e� � 1/




: (7.22)

Equation (7.22) is remarkably similar to Eq. (7.20). In fact, Eq. (7.22) is equivalent
to Eq. (7.21) with x D

p
dhub=˛

�
max. Therefore, the epidemic threshold depends

on the composition of snapshots in a similar way to the case of clique snapshots.
A larger dhub decreases the epidemic threshold if the aggregate network is kept
fixed. Figure 7.6b suggests that a larger dhub value makes snapshots temporally more
variable. This result is consistent with the results for the previous model with clique
snapshots (Fig. 7.6a).

7.5.3 Non-commutativity of Snapshot Adjacency Matrices

In the continuous-time SIS model, increasing � lowered the epidemic threshold
in all instances that we considered [36]. In fact, the magnitude of the shift in the
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Fig. 7.7 Normalised epidemic threshold ˛�
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c as a function of � for empirical temporal

networks whose properties are summarised in Table 7.1. The C value for each network is shown to
the right. We used periodic boundary conditions

epidemic threshold is dependent on the data set, as shown in Fig. 7.7. In Ref. [36],
we proposed a quantity C to predict the magnitude of this shift when the temporal
rather than aggregate network is considered. Firstly, we introduce the degree of non-
commutativity of snapshot adjacency matrices by using the commutator bracket as
follows:

ŒM1;M2� � M1M2 � M2M1; (7.23)

where M1 and M2 are two matrices. Then, to summarise the degree of non-
commutativity between all snapshot pairs, we define

C �
1

.`˛�
max/

2

`�1
X

`0D1

`0�1
X

`00D0

�

�

�

h

A.`
0/;A.`

00/
i�

�

�

2
; (7.24)

where k � k2 is the spectral norm given by kMk2 D
p

�.MM>/. The multiplicative

constant
�

1=˛�
max

�2
in Eq. (7.24) normalises the leading eigenvalue of the aggregate

network to unity.
Commutator brackets between snapshot adjacency matrices appear when we

expand Tcont.�/ using Zassenhaus’ formula as follows:
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Table 7.1 Properties of empirical temporal networks used for Figs. 7.2 and 7.7. The number of
nodes (N), that of links (M), that of events (Mevent), that of snapshots (r), and the length of the
aggregating time window are shown. We used the largest connected component of the aggregate
undirected network for each data set

Data N M Mevent r Aggregating window

Hospital ward [41] 75 1,139 32,424 97 1 h

School2014 [14, 37] 242 8,317 125,773 33 1 h

Online message [30] 1,892 13,835 59,831 195 1 day

Hospital [11] 5,607 60,177 936,101 105 7 days

Sexual contact [34] 15,810 38,540 50,116 75 30 days

exp
�

.ˇA� � I/`�
�

D Tcont.�/

`�1
Y

`0D1

Y

n�2

exp

2

4.�ˇ/n Cn

0

@A.`
0/;

`0�1
X

`00D0

A.`
00/

1

A

3

5 ;

(7.25)

where s D �ˇ and matrices Cn.M1;M2/ (n 	 2) are given by linear combinations
of nested commutator brackets of M1 and M2. For instance, we obtain

C2.M1;M2/ D �
1

2
ŒM1;M2� (7.26)

and

C3.M1;M2/ D
1

6
.2ŒM2; ŒM1;M2��C ŒM1; ŒM1;M2��/ : (7.27)

When all pairs of snapshot adjacency matrices commute, Cn � 0 for all n 	 2,
implying C D 0. In this case, we obtain Tcont.�/ D exp Œ.ˇA� � I/`�� and therefore
ˇcont

c D 1=˛�
max, irrespectively of � . If C > 0, some pairs of snapshot adjacency

matrices do not commute and we expect a gap between 1=˛�
max and ˇcont

c .
The values of C for the data sets summarised in Table 7.1 are shown in Fig. 7.7.

We observe that the magnitude in the shift of the epidemic threshold is larger for
data sets with larger C as well as for larger � .

7.6 Discussion

In this chapter, we explained recent progresses in determining the epidemic thresh-
old in the susceptible-infected-susceptible (SIS) model on temporally-switching
networks. In particular, we presented evidence that the epidemic threshold for
temporal networks is smaller than that for the corresponding aggregate networks.
We then introduced quantity C as a measure of non-commutativity of snapshots in
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a sequence. Quantity C is strongly correlated with the magnitude in the shift of the
epidemic threshold induced by temporality of networks.

The individual-based approximation (IBA) can in principle be applied to any
epidemic model. However, the IBA neglects correlations between the states of
nodes. Although dynamics of networks may decrease the correlation, the IBA may
yield inaccurate results. More sophisticated approximation schemes, such as the pair
approximations (e.g., [9]) or the approximate master equation approach [15] may
be useful for more accurately describing epidemic dynamics on temporal networks.
How to compute the epidemic threshold in epidemic models other than the SIS
model also needs further investigation (e.g., [35]).

In this contribution we have addressed the dependence of the critical threshold in
epidemic spreading on the temporality of the link sequence. To obtain analytical
results we have considered the case where links last for the same time � , each
of them starting at a given time t and ending at t C � . Empirical evidence shows
that the duration of the interactions and/or the time between interactions do not
follow such a regular pattern; both quantities in general obey broad distributions
[6]. A more general framework is needed to account for these properties of data
[20, 42]. In addition, consecutive � values are often positively correlated [16, 27].
To address these issues, a common practice would be to compare dynamics on real
sequences of pairwise interaction and time-shuffled sequences [18, 20]. It may also
be useful to consider generative models of temporal networks with which effects of
different distributions of � on dynamics can be tested [3, 10, 17, 38]. Real systems
are generically construed as a sequence of diverse interactions. Thus, understanding
of epidemic processes in real systems will require the combination of temporal and
multilayer networks. Data in this direction starts to be available [13].
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Chapter 8
Control Strategies of Contagion Processes in
Time-Varying Networks

Márton Karsai and Nicola Perra

Abstract The vast majority of strategies aimed at controlling contagion processes
on networks consider a timescale separation between the evolution of the system and
the unfolding of the process. However, in the real world, many networks are highly
dynamical and evolve, in time, concurrently to the contagion phenomena. Here,
we review the most commonly used immunization strategies on networks. In the
first part of the chapter, we focus on controlling strategies in the limit of timescale
separation. In the second part instead, we introduce results and methods that relax
this approximation. In doing so, we summarize the main findings considering both
numerical and analytically approaches in real as well as synthetic time-varying
networks.

8.1 Introduction

A wide range of real-world phenomena such as the spreading of ideas, memes,
infectious diseases, and malwares can be effectively modeled as contagion processes
on networks [1–5]. An intense research on the subject allowed to identify a
set of network features that affect such processes. In particular, two properties
have been thoroughly investigated. The first is the heterogeneity observed in the
distribution of networks’ metrics. Examples are the number of connections per node,
degree, and the intensity of contacts, weight. These quantities follow distributions
characterized by heavy-tails, which imply the absence of characteristic scales and
the presence of large fluctuations with respect to the average [6]. The second is
the higher-order organization of connectivity patterns associated to the presence of
clusters/communities or to the correlation between node’s features [2, 7].
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The understanding of these properties and their effects on spreading phenomena
has spurred the creation of strategies aimed at controlling or promoting diffusion
processes. These can be classified in two main categories [8]. In the first, we
find global strategies that rely on the full knowledge of the network structure.
In the second instead, we find local strategies which relax this, often unrealistic,
assumption. In order to better understand the problem set-up, let us imagine that
we want to protect a network of computers against the spreading of malwares. The
trivial solution is clearly to immunize all computers. However, this strategy is very
costly and often impractical. The problem then is finding a way to immunize just a
fraction p of nodes and still effectively protect the entire network. Each prescription
for the selection of this fraction constitutes what we call a strategy. To this end,
global strategies use centrality measures such as degree, k-core, betweenness and
PageRank to rank the importance of each node [1, 2, 9, 10]. Local strategies instead
infer the role of nodes by local explorations and samples [11].

One common assumption in the majority of related works is to consider a
timescale separation between the changes in network structures, �G, and the
contagion process �P. Indeed, spreading processes have been typically considered to
take place in either static (�P � �G) or annealed (�P � �G) networks. While these
approximations can be used to study a range of processes such as the spreading
of some diseases in contact networks or the propagation of energy in power grids it
fails to describe many other phenomena in which the two timescales are comparable
[12–40]. In these cases, such as the spreading of ideas, memes, information and
some type of diseases the diffusion processes take place in time-varying networks
[41–43]. Thus their study and modeling needs to consider the interplay between the
two simultaneously unfolding dynamics.

In this chapter, we will first review the main strategies to control contagion
processes in static and annealed networks. We will then focus on time-varying
graphs and discuss the recent body of research based on numerical simulations
of contagious processes on real and synthetic temporal networks. Finally, we
will consider spreading processes unfolding on a particular class of time-varying
networks called activity-driven networks which allows the analytical study of
different global and local strategies of immunization. As prototypical example of
contagion processes we will consider the Susceptible-Infected-Susceptible (SIS)
model [1, 44, 45]. SIS dynamics are characterized by two transitions between the

two different mutually exclusive states of nodes S C I
ˇ
�! 2I, I

�
�! S. The stationary

state of the process is described by two different behaviors. Above the epidemic
threshold an endemic state is reached where the density of nodes in the class I
reaches a balance, I1, determined by the balance of the spreading and recovery
rates. Below the threshold the spreading is not able to sustain itself and dies out,
thus in the stationary state of the process the number of nodes in the class I is zero.
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8.2 Controlling Contagion Processes in Static/Annealed
Networks

How can we protect a network from the spreading of an infectious disease? While
this is the underlying question of the chapter, in this section we will first focus on
two timescale separation limits. In order to devise effective control strategies it is
crucial to understand how contagion processes spread on networks. In particular, it
is important to determine how the properties of networks affect such phenomena.
As mentioned above, the topology of real-world networks is typically characterized
by broad degree distributions often approximated by power laws i.e. P.k/ 
 k�� .
The heterogeneities that these distributions have genuine effects on the unfolding of
contagion processes. Indeed, it has been shown [46] that the epidemic threshold of
a SIS process spreading on uncorrelated annealed networks is:

ˇ

�
>

hki

hk2i
; (8.1)

thus it vanishes as the second moment of the degree distribution hk2i ! 1. The
derivation of the threshold is performed by means of heterogeneous mean-field
(HMF) theory which assumes that nodes with the same degree are statistically
equivalent. In this perspective connections between nodes are continuously reshuf-
fled such that the degree distribution P.k/ and the probability of having connections
between nodes with degree k and k0, P.k0jk/, are kept constant [15]. The timescale
describing this shuffling is much faster than the timescale describing the spreading
process. Consequently, the disease spreads in an effective network where all these
connections are available routes of contagion. Interestingly, in the case of networks
with exponent 2 < � < 3 the second moment of the degree distribution diverges as
N ! 1, which implies a vanishing epidemic threshold: any virus with a spreading
rate larger than zero will be able to affect a macroscopic fraction of the network.
In finite networks where only finite fluctuations are possible, none of the moments
diverge thus the threshold is larger than zero. However, the presence of nodes with
degree much larger than the average, hubs, pushes the threshold to values much
smaller than in the case of corresponding homogeneous networks with the same
size (number of nodes) and average connectivity. Indeed, among other effects, hubs
decrease the shortest paths between any pair of nodes in the network and once
infected, they dramatically accelerate the diffusion by virtue of their large number
of connections.

In case of static networks the timescale describing the evolution of the contagion
process is much faster than the timescale of the network, thus the contagion
phenomena evolves in a frozen, quenched structure. The threshold of an SIS model
in this case is tied to the spectral properties of the adjacency matrix Aij coding the
static network structure. Indeed, for an arbitrary network the epidemic threshold is
inversely proportional to the largest eigenvalue �1 [47–49] of the matrix. In case
of uncorrelated networks, we have �1 


p
kmax, thus the threshold is associated
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to the largest degree in the system. It is interesting to notice that the analytical
results for uncorrelated annealed and static scale-free graphs are equivalent if the
degree exponent � < 2:5, while for � > 2:5, the results obtained with the HMF
theory deviate from those obtained in static networks. Although the study of such
deviation is fascinating, it is beyond the scope of this chapter, and we refer the
interested reader to the following recent papers on the subject [50–53].

Now that we understand in some details how contagion processes spread on
networks we can shift the attention towards controlling/vaccination strategies.
Interestingly, this problem is closely related to the robustness of a network structure
against attacks [54], which further maps to a site percolation in networks [3]. In
both cases the objective is to identify a critical fraction of nodes which removal
would decouple the network structure and thus disrupt the spreading of a contagion
process. In case of vaccination this translates to the identification of a critical
pc fraction of nodes to immunize in order to push the epidemics to an inactive
phase i.e. below the threshold. Studies discussed above suggest that nodes in
heterogeneous networks have very different roles in sustaining spreading processes
and have indisputable effects on the epidemic threshold. In order to demonstrate
this observation, let us consider the simplest vaccination strategy which involves
a fraction p of randomly selected nodes. This strategy is agnostic to the features
of the networks and has been shown to simply re-scale the effective spreading rate
ˇ ! ˇ.1�p/ [10, 55]. For uncorrelated annealed networks, the threshold becomes:

ˇ

�
.1 � pc/ D

hki

hk2i
: (8.2)

In this case, the large fluctuations typical of heavy-tailed degree distributions push
the critical immunization fraction pc to values close to one as N ! 1. In other
words, in order to protect heterogeneous networks against infectious diseases a
random immunization strategy is inefficient as it requires a large fraction of nodes
to be vaccinated.

Can we do better, and if yes, how? The answer to this question depends on the
amount of information available about the network structure. Let us first consider
a scenario in which we have full access to the structure and features of the nodes.
In this case, we can implement targeted immunization strategies based on global
knowledge. These rely on different centrality measures which have been developed
to characterize and rank the importance of nodes in a network [1, 2]. Interestingly,
many of these are defined via diffusion processes [56], thus the importance of nodes
is explicitly associated to their role in sustaining spreading phenomena.

One of the simplest centrality measure is the degree centrality, which indicates
hubs in the network. By removing nodes with the highest degree it is possible to
reduce degree fluctuations which in turn increases the epidemic threshold. Here the
critical fraction pc to arrest the epidemic spreading is determined by a critical kc.p/
degree, which corresponds (for annealed uncorrelated networks) to the critical point
hki2pc

=hk2ipc D ˇ=�. For graphs with degree exponent � D 3 the critical fraction pc

of immunization to arrest epidemics appears as

pc 
 e�2�=kminˇ; (8.3)



8 Control Strategies of Contagion Processes in Time-Varying Networks 183

where kmin assigns the smallest degree in the network [10, 55]. As clear from the
exponential dependence on the kmin and ˇ, targeted vaccination strategy based
on degree centrality provides a very efficient way to control epidemic spreading.
Similar conclusions can be drawn by applying other centrality measures, such as
betweenness and k-core centrality, or memberships, for the selection of immunized
nodes [9, 57–61].

Let us consider now the case in which we do not have access to the global
structure of the network and to the features of all nodes. Immunization strategies
developed under this very realistic assumption are typically called local strategies
as they are based on local exploration and sampling of the network structure.

One of the most notable local methods is the acquaintance vaccination [11].
This relies on the so called “friendship paradox”: your friends on average have
more friends that you do. In the case of uncorrelated heterogeneous networks it is
very easy to prove that this counterintuitive fact holds true [1, 2]. Several studies
performed in real-world networks confirm the paradox as a genuine feature tied to
the large fluctuations in degree observed across a wide range of graphs [62–64].

Cohen et al. realized how this feature can be used to find highly connected nodes
in the system via a local exploration. In the acquaintance strategy we first select
randomly an f fraction of probe nodes. However, instead of vaccinating them, we
choose randomly one of their neighbors as target of our vaccination. Note that the
local search from different probes can lead to the same neighbor i.e. p � f . The
critical fraction of nodes is:

pc D 1 �
P

k P.k/�k
fc
; (8.4)

where �f D he�f=kik is the probability that an acquaintance is not selected in a
single attempt, while fc denotes the critical fraction of random probes which can
be determined numerically as shown in [3, 11, 65, 66]. The critical immunization
fraction of this method is always pc < 1 and considerably smaller for scale-
free networks with any degree exponent as compared to the random vaccination
strategy [11].

Note that other variations of the acquaintance vaccination strategy were proposed
by optimizing the neighbor selection [67]. At the same time immunization was
also studied on meta-population networks [68]. In other studies, it has been argued
that efficient immunization strategies can be developed by considering the higher-
order organization of connectivity patterns [57, 69–74]. Further studies proposed
vaccination strategies using evolutionary games [75], or considering complex
contagion processes [76]. For a recent review on the subject we refer the readers
to Ref. [8].
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8.3 Controlling Contagion Processes in Time-Varying
Networks

We now move away from the limits of timescale separation and study spreading
processes and immunization strategies on time-varying networks in which the
timescales driving the evolution of the system and of the spreading process are
comparable. As done before for annealed and static networks, we will first study
the epidemic threshold. We will then use this knowledge to present and better
understand immunization strategies aimed at controlling contagion phenomena.

A closed formula for the epidemic threshold of a SIS epidemic process unfolding
on any time-varying has been derived [77]. In this approach the time-varying
network is considered as a sequence of adjacency matrices A1;A2; : : : ;AT which
describe the evolution of the network in time. Prakash et al. showed that the disease
will not be able to spread in the system if

�Q
i Si < 1; (8.5)

where Si D .1 � �/I C ˛Ai, and ˛ is the transmission rate per contact. In
other words, the disease will die out if the largest eigenvalue of the system-matrix
S D

Q

i Si is smaller than one. This result have been recently confirmed with
a different approach [78]. It is interesting to note that in both static and time-
varying networks the largest eigenvalue, of the adjacency matrix in one case and
of the system matrix in the other, determines the unfolding of the disease. Despite
the generality and the practical importance of this result, the computation of the
threshold needs to be done numerically. Also, the condition obtained hinders the
effects of temporal connectivity patterns on spreading processes. For this reason, in
the next subsections we will consider SIS processes unfolding on a particular type
of time-varying networks. In doing so, we will be able to derive a more explicit
condition for the spreading and thus better understand the efficiency of different
immunization strategies.

8.3.1 Epidemic Threshold on Activity-Driven Networks

In activity-driven networks, each node i is characterized by an activity rate ai.
This quantity encodes the probability per unit time to establish contacts with other
nodes. The activity rates are assigned according to a given probability distribution
F.a/. Observations in a wide range of different real-world networks show that
activities follow heavy-tailed distributions [29, 32, 33, 79, 80]. We approximate such
distributions as power laws, i.e., F.a/ D Ba�� with activities restricted in the region
a 2 Œ
; 1� to avoid divergences for a ! 0. In these settings, the generative network
evolution process is defined according to the following rules (see Fig. 8.1a, b):

• At each discrete time step t, the network Gt starts with N disconnected vertices;
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Fig. 8.1 Schematic representation of activity driven model and control strategies. (a), (b) Tem-
poral network at two different time steps T1 and T2. (c) Integrated network over a certain period
of time. The size of each node describes its activity, while the width of each link describes the
weight. (d)–(f) Random, targeted, and egocentric control strategy respectively. Immunized nodes
are plotted as squares; probes as triangles
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• With probability ai�t, each vertex i becomes active and generates m links that
are connected to m other randomly selected vertices;

• At the next time step t C�t, all the edges in the network Gt are deleted.

All interactions have a constant duration �t. In the following, without loss of
generality, we will set �t D 1. Activity-driven networks in their simplest form are
random and memoryless. We refer the reader interested in more realistic extensions
of the model to the following references [29, 79–82]. The full dynamics of the
network and its ensuing structure are driven by the activity distribution F.a/.
Moreover, it is possible to prove that integrating activity-driven networks in finite
time windows such that T � N and k � N (where T is the size of the time window
and k the degree) yield graphs characterized by degree distributions following the
functional form F.a/ [32, 83].

Let us now consider a SIS model unfolding on activity-driven networks. Using
the HMF theory we group nodes according to their activity assuming that nodes in
the same class are statistically equivalent. At the mean-field level, the spreading
process can be described by the number of infected individuals in the class of
activity a at time t, i.e., It

a [32]. Following Ref. [32], the number of infected
individuals of class a at time t C 1 given by:

ItC1
a D It

a � �It
a C ˛m.Na � It

a/a
Z

da0 It
a0

N
C ˛m.Na � It

a/

Z

da0 It
a0a0

N
; (8.6)

where Na is the total number of individuals with activity rate a (which is constant
over time). Each term in the Eq. (8.6) has a clear physical interpretation. In fact, the
number of infected nodes in the class a at time t C 1 is given by: the number of
infected nodes in this class at time t (first term), minus the number of nodes that
recover and going back to the class Sa (second term), plus the number of infected
individuals generated when nodes in the class St

a D Na � It
a are active and connect

with infected nodes in the other activity classes (third term), plus the number of
infected nodes generated when nodes in the class St

a are linked by active infected
nodes in other activity classes.

Summing on all of the classes and ignoring the second order terms we can write:
Z

daItC1
a D ItC1 D It � �It C ˛mhaiIt C ˛m� t; (8.7)

where � t D
R

da0It
a0a0. Multiplying both sides of Eq. (8.6) by a and integrating we

obtain:

� tC1 D � t � �� t C ˛mha2iIt C ˛mhai� t: (8.8)

In the continuous time limit, we can write Eqs. (8.6) and (8.8) in a differential form:

@tI D ��I C ˛mhaiI C ˛m�; (8.9)

@t� D ��� C ˛mha2iI C ˛mhai�: (8.10)
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The Jacobian matrix of this set of linear differential equations takes the form

J D

�

��C ˛mhai ˛m
˛mha2i ��C ˛mhai

�

;

and has eigenvalues

ƒ.1;2/ D hai˛m � �˙ ˛m
p

ha2i: (8.11)

The threshold is obtained by requiring the largest eigenvalue to be larger than 0,
which leads to:

˛

�
	
1

m

1

hai C
p

ha2i
: (8.12)

Considering the per capita spreading rate ˇ D ˛hki we can write the threshold for
the SIS process, �SIS, as:

ˇ

�
	 �SIS �

2hai

hai C
p

ha2i
: (8.13)

In words, the epidemic threshold is a function of the first and second moment of
the activity distribution. Due to the co-evolution of the network structure and the
spreading processes the threshold is not dependent on time-aggregated metrics such
as the degree. It is defined by the interplay between the timescale of the contagion
process and the convolution of the network timescales encoded in the moments of
the activity distribution.

8.3.2 Controlling Contagion Processes in Activity-Driven
Networks

We can now study different immunization strategies. Following Ref. [84] and what
has been presented above for annealed and static networks we will consider three
main strategies: random, global and local. In all the cases, we introduce a fraction p
of nodes as immunized. To account for this new class of nodes, we introduce a new
compartment, R, in the classic SIS scheme. Thus, the Eq. (8.6) becomes:

ItC1
a D It

a � �It
a C ˛m.Na � It

a � Rt
a/a

Z

da0 It
a0

N
C (8.14)

C ˛m.Na � It
a � Rt

a/

Z

da0 It
a0a0

N
;
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First, let us consider the random strategy (RS) in which a fraction p of nodes is
immunized with an uniform probability (see Fig. 8.1d) [84]. In this case, the system
of equations describing the dynamic process in activity-driven networks can be
obtained by setting Ra D pNa. The epidemic threshold condition changes as

ˇ

�
	 �RS �

1

1 � p

2hai

hai C
p

ha2i
D

�SIS

1 � p
: (8.15)

Consistently with what we found for annealed and static networks, when a fraction
p of nodes is randomly immunized, the epidemic threshold can be written as
the threshold with no intervention, �SIS, rescaled by the number of nodes still
available to the spreading process. Indeed, immunizing random nodes is equivalent
to rescaling the per capita spreading rate by the fraction of available nodes ˇ !

ˇ.1 � p/. Another important quantity is the critical value of immunized nodes, pc,
necessary to halt the contagion process. This quantity is a function of network’s
structure and the specific features of the contagion process. The explicit value of
pc can be obtained by inverting Eq. (8.15). In Fig. 8.2a, we show pc as a function
of ˇ=�. The values on the heat map are the average asymptotic density of infected
nodes, Ip

1. The phase space of the diffusion process is divided into two different
regions separated by the black solid line that represents pc as derived by Eq. (8.15).
In the region below the curve, the spreading process will take over, p < pc. However,
in the region above the curve, the fraction of removed/immunized nodes is large
enough to completely stop the spreading process, p 	 pc. To assess the efficiency
of the immunization strategy in Fig. 8.2d (triangles) we plot, as a function of the
density of removed nodes p, the ratio Ip

1=I01 where I01 is the asymptotic density of
infected nodes when no-intervention is implemented. As shown clearly in the figure,
the random strategy allows a reduction in the fraction of infected nodes just for large
values of p.

In activity-driven networks a natural way to implement a global immunization
strategy is to target high-activity nodes. Indeed, from the study of the epidemic
threshold without intervention, we saw the importance of the moments of the
activity distribution. By targeting high-activity nodes we can reduce the average and
the fluctuations of activity and thus move the threshold to higher values. Following
this strategy we rank nodes in decreasing order of activity, immunizing the top
ranking pN nodes (see Fig. 8.1e). This method is equivalent to fix a value ac so
that any node with activity a 	 ac is immune to the contagion process.1 Also,
for this scheme, it is possible to derive the analytic expression for the epidemic
threshold [84]:

ˇ

�
	 �TS �

2hai

haic C
p

.1 � p/ha2ic
; (8.16)

1The value of p and ac are linked by the relation p D
R 1

ac
F.a/da.
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Fig. 8.2 Panels (a), (b), and (c) show the phase space of an SIS process under random, targeted,
and egocentric control strategy, respectively. Considering N D 104, m D 3, 
 D 10�3, activity
distributed as F.a/ � a�2:2, we plot I1 as a function of ˇ=� and p. Black curves represent
the critical value pc. Panel (d) shows the comparison of the stationary state of a SIS model with
and without control strategy, Ip

1=I0
1

, as a function of p when ˇ=� D 0:81. Using triangles, we
consider the random strategy, with diamonds the targeted strategy, and with circles the egocentric
strategy. Each plot is made by averaging 102 independent simulations started with 1% of random
seeds

where �TS indicates the threshold in the case of the targeted control strategy. In
the above expression, we define hanic D

R ac



anF.a/da as the moments of the

activity distribution discounting the immunized nodes. Consistently to what has
been found for annealed and static networks, Eq. (8.16) is not a simple rescaling of
the expression of the original threshold and implies a drastic change in the behavior
of the contagion process. In order to define the critical value of p necessary to
completely stop the spreading, we have to invert Eq. (8.16). The moments of the
distribution of the remaining nodes are a function of p through ac thus it is not
possible to derive explicitly pc. However, it can be easily evaluated numerically by
solving the equation �TS � ˇ=� D 0 for different values of ˇ=�. In Fig. 8.2b, we
show pc (black line) as a function of ˇ=�. The efficiency of the targeted strategy
is clear, which is also confirmed in Fig. 8.2d (diamonds) where we plot the ratio
Ip
1=I01. Immunizing a very small fraction of the most active nodes is enough to stop

the contagion process. Indeed, by immunizing just the top 1% of nodes is enough to
halt the disease.

As discussed above, the network-wide knowledge required to implement targeted
control strategies is generally not available [11]. In the case of evolving networks,
this issue is even more pronounced as node’s characterization depends on how
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long it is possible to observe the network dynamics. It is possible to generalize
the acquaintance immunization strategy to activity-driven networks. A fraction f of
randomly selected nodes act as “probes”. During an observation time T , we monitor
their egocentric network generated by their interactions in the network. After the
observation window, we select randomly a node in the egocentric network of each
probe and immunizing it (as shown in Fig. 8.1f). For the sake of comparison with
the previous control strategies, we define the fraction of actual immunized nodes as
p (in general f ¤ p2), and the epidemic starts after nodes have been immunized.
In this scheme, the probability of immunization for one node with activity a after a
time step is:

Pa D af
Z

da0 mNa0

N
C f

Z

da0a0 mNa0

N

1

m
: (8.17)

The first term on the r.h.s. considers the probability that a node of class a is active
and reaches one of the probes; the second term, instead, takes into account the
probability that one node of class a gets a connection from one active probe.
Solving the integrals in Eq. (8.17), we can write Pa D f .am C hai/. Thus, the
probability of immunization of one node in the activity class a after t time steps
is Pt

a D 1 � .1 � Pa/
t, and therefore, summing over all the activity classes, we

can estimate the total number of immunized individuals as RT D
P

a NaPT
a D

P

a Na
�

1 � .1 � Pa/
T
�

. The equation for Pa does not consider the depletion of
nodes in each class due to the immunization process. The formulation is then a good
approximation for small f and T , when the probability that a probe is selected more
than once is very small. In these settings, the epidemic threshold for the egocentric
sampling strategy (ESS) can be written [84] as:

ˇ

�
	 �ESS �

2hai

‰T
1 C

q

‰T
0 ‰

T
2

; (8.18)

where we define ‰T
n D

R

da an.1 � Pa/
TF.a/. This last integral is a function of

the observation time window T , the probability of immunization of each class and
the activity distribution. We evaluate each‰ term through numerical integration. As
done for the other two cases, we define the critical value of p by solving numerically
the equation �ESS � ˇ=� D 0 for different values of ˇ=�. In Fig. 8.2c, we show pc

(black line) as a function of ˇ=�, and in Fig. 8.2d we plot the ratio Ip
1=I01 (dots).

From these figures it is clear how this strategy is much more efficient than the
random one, although not as performant as the targeted scheme. The efficiency of
this strategy is due to the ability to reach active nodes by a local exploration done
observing the systems for few time steps.

2In order to guarantee that a fraction f of nodes is immunized the systems need to be observed for
more than one time step. We define T� as the average time needed for all the probes to have at
least one interaction with other nodes. For any observation time T < T� the fraction of immunized
nodes will be in general p � f .



8 Control Strategies of Contagion Processes in Time-Varying Networks 191

8.3.3 Controlling Contagion Processes in Real Temporal
Networks

Real-world time-varying networks are characterized by a range of complex features
such as heterogeneous activity patterns, correlations among nodes, persistence of
links, and burstiness just to cite a few. For detailed reviews on the topic we refer the
reader to Refs. [41–43]. Over the last years an increasing body of literature has been
focused on the study of such properties and their relation to effective controlling
strategies. Here, we will summarize some of the main results.

In their work, Prakash et al. [77] used their analytical derivation of the epidemic
threshold in a general time-varying network mentioned above, to study the efficiency
of different controlling strategies in a real network obtained from the MIT Reality
Mining project [85]. This dataset describes the interactions of 104 students recorded
via Bluetooth. The authors consider several global and local strategies immunizing:
(1) the top ranked nodes for degree in each temporal snapshot of the network,
(2) the top ranked nodes for degree in the average adjacency matrix defined as
Aaverage D T�1

P

iD1;T Ai, (3) nodes selected via the acquaintance method applied
to the average adjacency matrix, (4) the nodes that sequentially (greedy method)
induce the largest drop to the largest eigenvalue of the system’s adjacency matrix,
(5) nodes in a sequence that provide the largest (optimal method) reduction to the
largest eigenvalue of the system matrix. Interestingly, they found strategies 1, 2
and 4 to have similar performance with respect to the optimal strategy. Instead, the
acquaintance strategy was found, not surprisingly, to perform significantly worst. It
is important to notice that they used as objective metric to benchmark each strategy
the change in the largest eigenvalue of the system matrix.

Lee et al. [86] compared the acquaintance strategy against two proposed
variations of it, which include the temporal dynamics on the networks. In particular,
they considered strategies in which either the most recent or the most frequent
contacts of randomly selected nodes are immunized. They studied the efficiency
of each method in four different datasets: an online forum describing sexual
interactions with prostitutes [87], proximity interactions in hospital wards [88],
email exchanges [89], and online dating [90]. They considered scenarios in which
an immunization campaign can be applied in an initial time window of size �T .
Interestingly, they found that the two extensions of the acquaintance method have
a larger impact on the disease spreading as the original strategy. Furthermore, in
three of the four datasets the strategy based on the most recent contacts outperforms
the method based on the most frequent contacts. As an objective measure of
performance they used was “the average upper bound of outbreak size” obtained
by running epidemic spreading with ˛ D 1 i.e. where the probability of infection
per contact is one.

Starnini et al. [91] studied several immunization strategies in different
face-to-face networks obtained via RFID tags in the SocioPatterns collabora-
tion [92]. As done by Lee et al. [86] they introduced an immunization campaign
in the first �T time steps. They considered strategies in which the nodes to be
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immunized are selected considering: (1) the degree, (2) the betweenness, (3) the
acquaintance method, (4) the frequency of activation of each link,3 (5) the latest
activated contacts in the time window,3 and (6) randomly selected nodes. It is
important to notice how this study contrasts global and local strategies considering
both structural and temporal features. In the comparisons, the authors considered
as objective metrics the speed of the spreading and the final number of infected
nodes. Overall they found strategies that target nodes according to their degree and
betweenness centrality to be more efficient. Furthermore, the authors observed a
saturation effect for increasing sizes of the time window �T . In principle, longer
time windows should allow to gather more information and thus should be linked
to better immunization performances. However, the observations showed that this
is true only up to a certain point. The authors linked such unexpected behavior
to the emergence of central nodes at early stages in the system’s dynamics. It is
important to notice that even the considered datasets provide a very high temporal
resolution, 20 s, they were recorded over typically a few days, thus they do not
provide observations of long temporal trends of contact networks.

Tang et al. [93] studied the spreading of malwares via bluetooth and efficient way
to contain them. They considered three different datasets: the MIT reality mining
project mentioned before, the interaction between researchers at the University of
Cambridge [94], and those between participants in a conference [95]. Interestingly,
they found that strategies based on temporal betweenness centrality do not perform
as expected. Although this metric provides the quantitative measure of the number
of diffusion routes between nodes, the immunization of top ranked nodes does not
necessarily stop the spreading as many alternative routes might exist. They proposed
an immunization strategy in which the patch necessary to protect phones in the
network is in competition with the malware. In their approach, the selection of nodes
to immunize is done via the temporal closeness centrality measure which ranks node
considering the speed at which each node can disseminate a message in the network.
They showed how such strategy is efficient in terms of the consumption of network
resources and time necessary to protect the system.

Liu et al. [84] studied the efficiency of the three different strategies introduced
in Sect. 8.3.2 in a mobile phone call data network. Interestingly, the numerical
simulations confirm qualitatively the analytical results obtained in activity-driven
networks. In particular, the strategy that targets high-active nodes is the most
efficient, followed by the generalization of the acquaintance methods: the egocentric
sampling strategy. The objective measure adopted to judge the efficiency of each
strategy is the ratio between the stationary state of a SIS model with and without
control strategy, i.e. Ip

1=I01.

3As proposed by Lee et al. [86].
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8.4 Conclusions and Outlook

We presented a summary of strategies to control contagion processes in annealed,
static, and time-varying networks. In doing so, we considered a range of different
analytical and numerical results. We observed how heterogeneities that characterize
many features of real-world networks make targeted global strategies extremely
efficient. However, these strategies assume complete knowledge of the networks’
topology and their dynamical evolution. Local strategies based on local exploration
and sampling of the networks are in general less efficient than global methods but are
more realistic and provide a higher performance with respect to random strategies.

We considered scenarios where the dynamics of networks (temporal evolution
of networks’ structure) affect the dynamics on networks (contagion processes).
In general also the opposite is true. For example, the spreading of an infectious
disease might induce changes in the evolution of a contact network [96, 97] or the
spreading of information on an online social network might affect its structure and
evolution [98]. In this case the dynamics on the networks affect the dynamics of the
network. In the literature the study of this reverse problem (with respect to what we
considered here) is found under the umbrella of adaptive networks. We invite the
interested reader to several other chapters of this book for details.

Generally speaking, the dynamics of and on networks are intertwined. Net-
works are subject to natural temporal dynamics which are perturbed by contagion
processes. In turn, contagion processes are subject to the natural evolution of
networks and are affected by the changes they induce. The understanding of these
intricacies is still very limited and requires the development of methods to model
and mathematically describe complex coupled dynamics, possibly acting at different
timescales. Furthermore, it requires the availability of high resolution data that
capture all these processes and their interplay. Despite the unprecedented access
to large-scale datasets of human interactions in recent times, the observation of the
feedback loop between the dynamics of and on networks is typically indirect and
thus the casual link between the two, necessary to inform or test models, is often
missing.

We believe that addressing all these challenges is of extreme importance to better
understand the spreading of contagion processes on real networks and to develop
efficient methods to control them. Doing so will require an interdisciplinary effort
from a set of disciplines ranging from network and data science to sociology and
applied mathematics.

Acknowledgements The results presented in Sect. 8.3.2 are adapted from Ref. [84] and obtained
in collaboration with S. Liu and A. Vespignani.
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Chapter 9
Leveraging Topological and Temporal
Structure of Hospital Referral Networks
for Epidemic Control

Vitaly Belik, André Karch, Philipp Hövel, and Rafael Mikolajczyk

Abstract Antimicrobial-resistant pathogens constitute a major threat for health
care systems worldwide. The hospital-related pathway is a key mechanism of
their spread. Contrary to intra-hospital transmission data that requires sophisticated
contact tracing technologies, data on inter-hospital transmission is collected on
a regular basis. We investigate the dataset of patient referrals between hospitals
in a large region of Germany. This dataset contains approximately one million
patients over a 3-year period. The dataset is used to build a dynamic network of
hospitals where nodes are hospitals and edges represent movements of patients
between them. We consider the worst-case scenario of a highly contagious disease
corresponding to deterministic infection dynamics. Furthermore, we investigate the
impact on epidemic processes of the correction to the temporal network due to
home (or community) visits of possibly contagious patients returning to hospi-
tals. Moreover, we implement an extensive stochastic agent-based computational
model of epidemics on this network. By leveraging the topological and temporal
network structure for epidemic control, we propose intervention schemes able to
hinder spread. Our approach can be used to design optimal control strategies for
containment of nosocomial diseases in health-care networks.
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9.1 Introduction

Nosocomial or healthcare-associated infections are a significant mortality and
morbidity factor in Europe and across the globe [1, 2]. As an additional challenge,
many of these are caused by pathogens which are drug-resistant. Annually, up to
700.000 deaths worldwide can be attributed to antimicrobial resistances [2]. The
administrative data on patient hospital admission and discharge constitute referral
patterns and is routinely collected by healthcare providers. This data could be used
to identify factors facilitating the spread of nosocomial diseases in a healthcare
system. For this purpose it is important to consider patient-resolved data, because
the identity and causal order of movement events have significant implications
for the spreading dynamics [3–6]. From the data the underlying hospital referral
network could be reconstructed, with vertices being hospitals and edges being
movements of patients between hospitals. The patient movements occur only on
some days and thus the edges of the referral network appear and disappear on daily
basis. Such networks changing form one time instance to another are known as
temporal or dynamic [7, 8].

Note that some aspects of epidemics on hospital referral networks from different
countries were considered in Refs. [9–13]. One crucial assumption in such models
concerns the disease-free status of patients discharged from hospitals, which may
not hold. If such patients return to hospitals, still carrying the pathogen, they may
facilitate the further spread of pathogens. Another frequently neglected aspect are
temporal and topological correlations [14–16]. In Germany only one small regional
network of hospitals was considered on a descriptive level without modeling
epidemic spread on it [17]. In the present study we consider referral patterns in a
big region in Germany with almost one million patients over 3 years and investigate
epidemics on the corresponding network.

In this chapter, we begin by discussing structural properties of the static and
the temporal representations of the referral network of hospitals. Then, we present
results on the analysis of generic deterministic worst-case spreading phenomena (SI
and SIR epidemics) in the static and the temporal frameworks. Finally, we present
results of extensive numeric simulations of an endemic disease (modeled as SIS
epidemics) and evaluate the effect of various control measures.

9.2 Dataset on Hospital Referrals

From patient referral data we extract a network with vertices being hospitals and
edges between hospitals corresponding to direct relocations of patients between two
hospitals. One should note, that direct relocations between hospitals correspond only
to approximately 3% of referrals in the system. The rest are relocations from or into
the community (non hospital whereabouts of patients). We consider only relocations
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Fig. 9.1 The average number of referral events for every day of the week. Left panel: admission
frequency. Right panel: discharge frequency. Error bars correspond to the standard deviation

between two hospitals on a single day, which is the majority of cases.1 The dataset
was preprocessed to exclude overlapping stays in different hospitals and overlapping
stays in a single hospitals were merged together.

9.2.1 Referral Patterns

The dataset spans from the 1st of January 2009 until the 31st of December 2011.
Each data record corresponds to a hospital stay and includes the day of admission tin,
the day of discharge tout, the anonymized hospital ID and the anonymized patient ID.
In our dataset we have 2,037,460 records for 917,834 individuals. The dataset con-
tains patients that were in the system on the 1st of January 2009 (9,874 individuals).
The first admission date mentioned in the dataset is the 30th of November 2005.
Admission patterns manifest strong temporal regularities (Fig. 9.1). The number
of admissions is maximal on Monday (around 2200) and continuously decreases
until it reaches a minimum around 700 on Saturday. The number of discharges is
minimal on Sunday (around 600), increases until Wednesday, has a small decrease
on Thursday and reaches a maximum on Friday (around 2500).2

There were 1654 hospital IDs in the data. However because the data comes from
a major insurance provider of the federal state under consideration (Lower Saxony)
it makes sense to restrict ourselves only to hospitals located in Lower Saxony. This is
done by considering only hospitals with a maximal number of patients per hospital
per day larger than 30 (as estimated from the data). This results in 185 vertices
(Fig. 9.2, see also Ref. [18] for justification of the procedure).

1However there were around 300 patients which were apparently transferred between 3 hospitals
in one single day. We exclude those from the network reconstruction.
2This weekly dynamics will be also reflected in the epidemic dynamics (Fig. 9.6).
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Fig. 9.2 Visualization of the aggregated network of hospitals obtained by considering direct
movements of patients between hospitals as edges. The size of vertices is proportional to their
in-degree

9.2.2 Network Properties

If we consider the whole available time span and aggregate the temporal edges,
we obtain an unweighted static network. In this case, a static edge between two
vertices is present, if a temporal edge occurred at least once. In the resulting static
network there are 4,949 directed edges. The average in/out-degree is 27 (˙17 and
˙13 respectively, ˙ denotes standard deviation) with the diameter equal to 3. In
Fig. 9.3 the distributions of in- and out-degrees are presented. Note that the in-
degrees show a less heterogeneous distribution, than the out-degrees. The chance to
be taken out of a hospital into another one is more less heterogeneouly distributed
than the chance of being admitted to a hospital from another hospital – there are
just a few major hospitals admitting patients from other hospitals. Note that degree
distributions resemble an exponential distribution characteristic of random Erdős-
Rényi networks (in the limit of a large network size).

So far we considered the aggregated network of hospitals, where we were not
concerned with the temporal order of edges. Now we consider a temporal network
and review its basic temporal properties.
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Fig. 9.3 The complementary
cumulative probability
distribution function of
in-degrees (circles) and
out-degrees (squares). Note
that the in-degrees are more
broadly distributed than the
out-degrees. This reveals a
hierarchy of hospitals in the
healthcare network with a few
large broadly specialized
clinics receiving the majority
of patients
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Fig. 9.4 Daily properties of the temporal referral network of hospitals. Histogram of the number
of edges per day (left). The bimodal distribution corresponds to the small number of edges (around
30) on weekends and large number of edges (around 90) during the rest of the week. This becomes
clear from the plot of the average number of edges versus day of the week (right). Error bars
correspond to standard deviations

After data preprocessing we obtain about 67,000 temporal edges (edges with the
corresponding timestamps of their occurrence) for 1,099 days. On average there
were 61˙22 edges per day. However, in the distribution of the daily number of
edges there are two peaks attributable to particular week days (Fig. 9.4).

We define the activity of an edge j ! i as the number of its occurrences
!ij in a temporal network. In a directed graph an edge could be an incoming
edge for a recipient node or an outgoing edge for a donor node. The number of
occurrences (or activity) of incoming/outgoing edges for a node reads ain

i D
P

j !ij

and aout
i D

P

j !ji respectively. Distributions of !ij, ain
i , and aout

i over the whole time
span are presented in Fig. 9.5. Concerning activity of incoming/outgoing edges, we
see the picture similar to the in/out-degree distribution (Fig. 9.3) – there are less
vertices (hospitals) with the high recipient activity. Activity of outgoing edges is
distributed more homogeneously. As it could be seen from the semi-logarithmic
plot, the activity distributions resemble the exponential distribution.
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Fig. 9.5 Left: The complementary cumulative distribution of the node activity ain
i and aout

i over the
whole time span of outgoing (“out”) and incoming (“in”) edges of a node respectively. Right: The
complementary cumulative distribution of the activity of directed edges !ij over the whole time
span of a node

9.3 Epidemic Dynamics

In the next sections we investigate on epidemic dynamics on the network of
hospitals. First, we examine the network of hospitals as a directed contact network,
considering a hospital as a single unit being in one of the susceptible, infected or
recovered states. Second, we take into account the detailed referral patterns of single
individuals, but assume the well-mixed approximation for the stochastic infection
dynamics within a single hospital.

9.3.1 Deterministic SI Model

First of all we consider a deterministic (corresponding to the worst-case scenario)
disease with no recovery or an infinite infectious period. Such an SI (susceptible-
infected) process has the kinetics

S C I ! 2I;

where a susceptible node becomes immediately infected upon contact (via temporal
edge) with an infectious node.

The spread of a deterministic SI process during t days in a static network could
be described by the reachability or accessibility matrix

Pt D

t
[

nD1

An; (9.1)
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where A denotes the adjacency matrix3 of the static network and [ denotes the
Boolean operator OR (a Boolean analog of the matrix multiplication). Elements of
this matrix are non zero if there is a path from the vertex i to the vertex j — a
connected sequence of edges, where the target vertex of the previous edge (i ! j,
i ¤ j) is the start vertex of the next one (j ! k, j ¤ k). Equation (9.1) is easy
to understand if we recall, that all possible paths up to the length t are given by
Pt

nD1 An. Equation (9.1) is just the Boolean version of the last relation. Analogously
the spread of a deterministic SI process on a temporal network could be described
by the temporal accessibility matrix

Pt D

t
\

nD1

.1 [ An/;

where [ is the Boolean operator AND (a Boolean analog of the matrix addition),
1 is the identity matrix and An is the adjacency matrix for the n-th snapshot (on
the n-th day) of the temporal network [19]. The temporal accessibility contains all
possible spreading paths of duration less or equal to t of a deterministic infection
with the infinite infectious period started at all vertices. The elements of the temporal
accessibility matrix are non-zero, when there is a time respecting path from the
vertex i to the vertex j — a connected sequence of temporal edges, where the target
vertex of the previous edge (n W i ! j, i ¤ j) is the start vertex of the next one
(n C � W j ! k, j ¤ k, 0 < � � t).

The density .Pt/ (fraction of non-zero elements) of the accessibility matrix
gives a cumulative distribution Ft of the number of shortest paths of duration less
or equal than t between any two nodes [19]. Thus the difference between two
successive values of the cumulative distribution Ft � Ft�1, F0 � 0 gives us the
probability distribution of shortest paths of duration t. It is shown in Fig. 9.6. As
it is clear from Fig. 9.6, the characteristic time scale of the spread in this network
is around 80 day (corresponding to the peak position). The total duration of the
spreading activity is around 100 days.

Not all paths possible in a static aggregated network are present in the temporal
one. The causal fidelity gives the fraction of paths present in the temporal network
relative to the paths in the corresponding static (aggregated) network [19]

c.t/ D .Pt/=.Pt/; (9.2)

where Pt is the accessibility in the static aggregated case with all daily network
snapshots being the same. It tells us how important the temporal resolution is
compared with the aggregated network. The dependence of the causal fidelity on
time is depicted in Fig. 9.7. As it can be clearly seen, if the time scale (e.g. infectious
period) of a dynamic process on the network is larger than approximately 300 days,
we can consider the aggregated network as a static network.

3Its element aij D 1 if there is the edge j ! i and zero otherwise.
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Fig. 9.6 Left: the density (fraction of non-zero elements) of the accessibility matrix .Pt/ of the
temporal referral network of hospitals. Right: the difference between successive values of the
accessibility density .Pt/ corresponding to the distribution of shortest path durations [19]

Fig. 9.7 The causal fidelity
is given by the fraction of
time respecting causal paths
present in the aggregated
static network, Eq. (9.2)
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9.3.2 Deterministic SIR Model

So far we considered a deterministic infection without recovery. However the causal
chain of contacts of a temporal network manifests itself even stronger in the case of
a disease with a finite fixed infectious period. If vertices become immune to the
disease after infection, the following kinetics can be used

S C I ! 2I

I ! R:

Note that we again consider the deterministic case, and thus upon contact with an
infected, a susceptible individual becomes infected for sure. For a general analysis
of deterministic SIR epidemics on temporal networks see [20]. As a quantity of
interest we consider an out-component of the vertex i – a set of vertices which
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Fig. 9.8 Sizes of the
out-components hCoutit0 for
all of the 185 nodes in the
referral network of hospitals
in dependence on the
infectious period k. Averaging
was performed over initial
time of infection t0
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could be reached by an epidemic with the infectious period k started from the given
node i at the initial time t0 by following all temporal edges respecting their time
order [21]. We denote the size of the out-component by Cout.i; k; t0/ which can be
also considered as an upper bound for the number of infected nodes in the case of a
stochastic disease transmission.

In Fig. 9.8 the out-components sizes averaged over initial times t0 are presented
for all nodes in the referral network of hospitals in dependence on the infectious
period. We observe, that except for a few nodes, the majority of out-components
reaches the size of the whole network for a disease with the infectious period of
k 
 100 days. Note that in the case of MRSA (Methicillin-resistant Staphylococcus
aureus), the carriage of the pathogens could be even longer than 100 days. Figure
9.8 could not immediately reveal how long it would take to actually reach all
the nodes in the out-component. Furthermore, we rank 185 hospitals according to
their out-component size (Fig. 9.9, left panel) for different infectious periods. We
observe a strong heterogeneity in the rank due to changes in tied values of the out-
components for small (for k 
 3 days there is a maximum number of ranks) and
intermediate values of the infectious period. For high values of the infectious period
the rank becomes very similar for all nodes. Small values of infectious period lead to
highly fluctuating rank due to the high importance of the precise timing of outgoing
links from the given node and small sizes of the resulting out-components.

We also average the ranks over all considered infectious periods (Fig. 9.9, right
panel) and observe a strongly heterogeneous distribution – only a few nodes have a
small rank, the majority has high rank values.

To analyze the robustness of the rank we considered the entropy of the rank
distribution values for different infectious periods

H D
X

i

pi ln pi; (9.3)
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Fig. 9.9 Left: The node ranking according to the size of their out-component, averaged over initial
times t0. In the case of tied values the minimal rank values are taken. Right: Node ranks averaged
over both initial time t0 and infectious period �

Fig. 9.10 The entropy
Eq.(9.3) of the
out-component rank
distribution averaged over
initial time t0 versus the
infectious period
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where pi is the probability of the out-component hCoutit0 to have rank i (Fig. 9.10).
High entropy values correspond to strong heterogeneity. We observe a peculiar
behavior – the entropy oscillates with the infectious period, especially for very low
and very high values of k. It may be due to some “resonance” effect. Some values
of the infectious period lead to similar out-components corresponding to the low
entropy.

9.3.3 Network Correction Due to Community Stays

Until now we neglected the community stays and considered only direct transfers
of patients between hospitals as edges in a dynamic network. This holds under
the assumption of the complete recovery of a patient after a hospital visit. This
approach was also adopted e.g. in Ref. [10]. If patients are not pathogen-free upon
discharge from the hospital n, they could still carry pathogens when they return to
the hospital m from the community. This happens, if the time spent in the community
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is less than the infectious period of the pathogen: tin
m � tout

n < k, where subsripts of
discharge and admission times denote the corresponding hospital. Now we relax
this assumption and allow patients to carry the pathogens also in the community
(without transmission) and adjust the corresponding effective dynamic network and
quantify the impact of the pathogen carriage during community stays.

We call the network of direct patients transfers between two hospitals consid-
ered above an H-network. The H-network with additional edges due to possible
transmission events after stays in the community is a C-network. In the C-network
we include the edge between a hospital visited before the community stay and
a hospital visited afterwards, if the duration of the community stay is less than
the infectious period. Out-components QCout in the C-network are larger than the
out-components Cout in the H-network, because the H-network is a subset of the
C-network (Fig. 9.11), left panel). In Fig. 9.11, right panel, the difference between
h QCoutit0;h and hCoutit0;h is shown. We see a pronounced peak around the infectious
period of k � 7 days. For this infectious period, using only the H-network we
underestimate the actual out-component by 20%.

This difference could be clarified if we look on the Jaccard coefficient ‚.k/
between the edges of H- and C-networks given by

‚.k/ D
jEH \ ECj

jEH [ ECj
; (9.4)

where j � j denotes the cardinality of a set (number of its elements) and EH and EC are
set of edges in H- and C-networks respectively. The Jaccard coefficient quantifies
the relative overlap of two sets. It is maximal (equal to one), if two sets coincide
and is zero if two sets are disjoint. In Fig. 9.12, left panel, we observe that maximal
overlap is reached at the value of the infectious period k 
 7 days. Additional
increase of the infectious period does not lead to higher Jaccard index. This effect
could be explained if we look on the denominator and the numerator in Eq. (9.4)
separately (Fig. 9.12, right panel). Both the total number of edges in the C-network
jEH \ ECj and the number of edges common in both C- and H-networks jEH [

ECj increases with the infectious period k. However, the former increases first sub-
linearly but after the value of k 
 7 days it increases in a super-linear manner.
The latter increases first in a super-linear way but after the value of k 
 7 days it
increases sub-linearly. Together this leads to the peak in the Jaccard coefficient.

So far, in the epidemic analysis we considered the network extracted from the
available dataset as a ground truth. However, we actually observe only around
50% of individuals [18] due to the market share limitations. This could lead to
the underestimation of epidemic effects, such as timescales of the spread and the
number of affected nodes. On the other hand, because we considered deterministic
epidemics, we overestimated the epidemic effects. To account for both deficiencies
– missing data and stochasticity of the transmission events, in the next section we
consider a fully stochastic, discrete-event, and agent-based computational model of
a disease with total recovery but no immunity and implement control measures.
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Fig. 9.11 Left: The effect of community stays on the out-component averaged over different initial
times t0 and over different hospitals h. QCout and Cout denote the out-components of the C and H-
network respectively. Right: The difference between h QCoutit0;h and the out-component hCoutit0;h.
Note that we consider the whole dataset (with initial time starting from the beginning of the data).
Insets show the same dependences as the main plot in semi-logarithmic coordinates
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Fig. 9.12 The effect of community stays. Left: The relative overlap of the aggregated network is
measured by the Jaccard coefficient ‚.k/, Eq. (9.4) versus the infectious period k. Right: the total
number of edges in C-network and the number of edges common in both C- and H-networks versus
the infectious period k. Insets show the same dependences as the main plots in semi-logarithmic
coordinates

9.3.4 Agent-Based Computational Model

In this section we introduce the computational framework for modeling the disease
spread in a network of hospitals. In a single hospital we assume a randomly mixed
situation, i.e. every patient could encounter every other patient. Information on
healthcare workers was not available and they are assumed not to contribute to
epidemic dynamics. We consider an endemic disease modeled by the standard SIS
kinetics

S C I
˛

! 2I (9.5)

I
ˇ

! S:
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Here the number of infected individuals I in a single hospital increases due to
encounters with susceptibles S at the per capita rate ˛. The infecteds could become
susceptible again at the rate ˇ. The spread of some nosocomial diseases such as
resistant pathogens reached an extent of an endemic with the prevalence for the
MRSA around 4% in hospitals [22]. To ensure the prevalence of 4%, we use the
following parameter values: ˛ D 0:023 day�1 and ˇ D 0:0027 day�1 corresponding
to half a year of carriage of the pathogens before recovery.

For our computational model, we need an artificial or a surrogate population
due to the incompleteness of the data (only around 50% of the total population
is included in the data), privacy reasons and to make projection into the future.
Generation of a surrogate population is a non-trivial task, because the data is highly
spatially and temporally correlated which is usually neglected. E.g. in the study by
Donker and colleagues [10], hospital stays, separated by a community stay, were
considered uncorrelated which makes sense only for patients healthy at discharge
from a hospital. See also Ref. [23] for related issues in intra-hospital contact tracing.
To produce the surrogate population and to keep the correlations present in the
original dataset, we use the following bootstrapping procedure.

For every surrogate patient, we randomly choose a patient from the original
dataset considering only the middle year ŒT; 2T� (out of three) for bootstrapping,
where T D 365 days as counted from the beginning of the dataset (the 1st of January
2009). We randomly from a uniform distribution choose the day t 2 .T; 2T� of the
first appearance of the surrogate patient within the interval .T; 2T� and replicate
individual referral history periodically, n times.4 To account for vital (birth/death)
dynamics we need M – the total number of patients staying in hospitals during the
year – for every annual period Œ.k � 1/T; kT�; k � n. We choose randomly �M
patients at a random time point within the current k-th time interval ..k � 1/T; kT�,
exchange their IDs by new ones and reset their infection status to susceptible for the
next hospital stay in the future. Here � D 0:25 is the turnover rate of the population
(disappearance and appearance of patients) in the censored period of time.

The simulation was implemented using a modified stochastic Gillespie algo-
rithm [24] for epidemic dynamics within a hospital, combined together with
explicitly scheduled patient transfer events. All relevant events were implemented as
a priority queue data structure [25]. The health status of all the patients in the system
was tracked. We let the system equilibrate to a stationary level before starting the
epidemic simulation.

Using the above computational model we can easily access the effect of different
intervention measures based on the topological and temporal properties of the
patient referral network. We choose two exemplary intervention scenarios. In both
of them the resources for random screening of 50% of incoming patients and
subsequent decolonization (this reduces the rest recovery time 3-fold) and isolation
were allocated to the selected 10% of hospitals with the highest ranks. The ranking

4Since hospital stays could fall outside the interval .T; 2T�, we choose to cut the stays to fit into
the interval.
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Fig. 9.13 Impact of interventions. Results of the numerical simulations of an agent based model,
Eq. (9.5) with interventions – allocation of resources for screening and subsequent decontamination
and isolation to 10% of hospitals (prioritized according to the out-component hCoutit0;k of nodes
(blue) and according to the aggregated in-degree kin of a node (red)). For the fit an exponential
function Eq. (9.6) was chosen. The in-degree ranking seems to be more efficient to reduce the
prevalence than the time-averaged out-component ranking

was performed (i) according to the deterministic out-component hCoutit0 of a node
and (ii) according to the in-degree of a node in the aggregated network. In Fig. 9.13
the time course of the prevalence, averaged over all hospitals, after intervention were
applied, is presented for both scenarios. The comparison shows, that the in-degree
ranking is more appropriate for the prevalence reduction than the out-component.
The deviation in the final prevalences is up to 20% ˙ 10%. As an estimate for the
final prevalence y0 we took the limit t ! 1 of the fit function to the prevalence
time series y.t/ of the form

y D y0 �
�

�� � y0
�

e�a.t�t0/; (9.6)

where �� D 0:4 is the baseline prevalence. This curve describes an abrupt
prevalence decrease after intervention, afterwards slowly approaching the endemic
prevalence level. We obtain for the ranking by the out-component y0 D 0:30 and for
the in-degree y0 D 0:24. Note also that allocation of limited resources only to some
hospitals usually leads to reduction of the prevalence but not to (almost) eradication
of the disease, which could be achieved if the intervention measures were applied
at all the hospitals. This supports the hypothesis, that in the network of hospitals
the prevalence reduction is achieved immediately in the hospitals where control
measures are implemented (high in-degree selects hospitals with a lot of incoming
patients) and not due to the indirect effects of the reduction of disease transmission
to other hospitals (which corresponds to the high out-component).
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9.4 Conclusion

We have investigated patient referral patterns in a large federal state in Germany.
We extracted the underlying network of hospitals and investigated its properties
with respect to pathogen spread. For the worst case scenario of a highly contagious
pathogen with and without recovery we examined the time scales and, in the
presence of recovery, sizes of an outbreak dependent on the infectious period. We
investigated the role of patients returning to hospitals but still carrying the pathogen
acquired during previous hospital visits. We showed that this results in a deviation
(underestimate) of the size of the out-components (or outbreak size) up to 20%
for the values of the infectious period of one week without patient returns. By
deploying an agent- and discrete event-based computational model of an endemic
disease (MRSA), we assessed the impact of intervention strategies based on the
out-component size and the in-degree resource allocation. Our analysis showed the
advantage of the in-degree based allocation.

There is still the need for generic models of contacts patterns, to account for
the missing data as well as to project the results into the future. Recently some
additional epidemic control strategies based on the temporal aspects of the network
were proposed as a promising direction for the future research [26, 27]. Prioritization
scheme according to the risk of disease introduction should be used based on novel
network distance measures [28, 29]. Our approach helps to understand the spread of
infections in a network of hospitals and could be used to plan preventive measures
as well as to design informed clinical studies.
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Chapter 10
Surveillance for Outbreak Detection
in Livestock-Trade Networks

Frederik Schirdewahn, Vittoria Colizza, Hartmut H. K. Lentz,
Andreas Koher, Vitaly Belik, and Philipp Hövel

Abstract We analyze an empirical, temporal network of livestock trade and present
numerical results of epidemiological dynamics. The considered network is the
backbone of the pig trade in Germany, which forms a major route of disease
spreading between agricultural premises. The network is comprised of farms that
are connected by a link, if animals are traded between them. We propose a concept
for epidemic surveillance, which is generally performed on a subset of the system
due to limited resources. The goal is to identify agricultural holdings that are more
likely to be infected during the early phase of an epidemic outbreak. These farms,
which we call sentinels, are excellent candidates to monitor the whole network. To
identify potential sentinel nodes, we determine most probable transmission routes
by calculating functional clusters. These clusters are formed by nodes that – chosen
as seed for an outbreak – have similar invasion paths. We find that it is indeed
possible to group the German pig-trade network in such clusters. Furthermore, we
select sentinels by choosing nodes out of every cluster. We argue that any epidemic
outbreak can be reliably detected at an early stage by monitoring a small number
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of those sentinels. Considering a susceptible-infected-recovered model, we show
that an outbreak can be detected with only 18 sentinels out of almost 100,000 farms
with a probability of 65% in approximately 13 days after first infection. This finding
can be further improved by including nodes with the largest in-component (highest
vulnerability), which increases the detection probability to 86% within 8 days after
first occurrence of the disease.

10.1 Introduction

Diseases in livestock holdings have been a major challenge in the industrial meat
production and related economy in the last decades. For example, the foot-and-
mouth disease (FMD), which broke out in Great Britain in 2001 in herds of cloven
hoofed animals, caused estimated costs of 8 billion British Pound [1]. In rare
occasions FMD could even pose a health risk to humans, which means that it
becomes zoonotic, that is, it can be transferred from animals to humans. In general,
outbreaks of animal-related diseases should be prevented for multiple reasons: They
diminish animal well-being, reduce productivity, cause great economic losses, and
might be transferable to human.

The study of spreading livestock diseases contributes to a better understanding
of contagion processes in general [2]. To model an infection many mathematical
models have been successfully investigated such as the SIR (susceptible-infected-
recovered), SIS (susceptible-infected-susceptible) or SI (susceptible-infected)
model [1, 3–5]. Major transmission routes of disease spread may be geographical
proximity, where aerial transmission is the main carrier. In addition, arthropods
(mosquitoes or ticks) can be vectors. We will focus on the trade of livestock, which
was the main route due to direct transmission between animals, for instance, during
a swine-fever outbreak in Germany in the 1990s [6]. The disease transmission
between animal holdings takes place, if an infected animal is transported from one
farm to the next. To model and analyze the impact of disease spread due to livestock
trade, we use concepts from network science [7].

Since livestock-trade networks span tens of thousands of agricultural holdings, it
is not possible to examine every single farm for an infection due to limited resources.
Examinations should therefore focus on some premises with a high probability of
being infected in case of an outbreak. In Ref. [8], Bajardi et al. analyzed the Italian
cattle-trade network and presented a novel surveillance concept. We will apply the
same framework to identify special nodes, the so called sentinels, that may be
affected by a potential outbreak occurring in the system with a high probability. We
will demonstrate that the number of sentinel nodes is several orders of magnitude
smaller than the total number of animal holdings. For this purpose, we consider
different selection protocols and show that surveillance can be made much more
efficient by concentrating resources on a few nodes.
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This chapter focuses on the data of the German pork industry, which is one of
the largest in the world. Every year, five million tons of pork meat are produced and
the rate is increasing.1 Therefore, investigating efficient detection schemes on the
underlying network is of great relevance.

The rest of this chapter is organized as follows: In Sect. 10.2, we will introduce
the susceptible-infected-recovered model and some concepts from network science.
We will show how an invasion path evolves on a temporal network allowing to define
functional clusters. In Sect. 10.3, we describe the data under consideration and
summarize the steps taken to analyze the network on a temporal basis. Furthermore,
we apply strategies proposed in Ref. [8] to the network and discuss the possibility
to identify sentinel nodes. Finally, we conclude with a summary in Sect. 10.4.

10.2 Theory

In the following, we will review basic aspects of the susceptible-infected-recovered
(SIR) model (Sect. 10.2.1) and discuss how an epidemic can spread in a network
via invasion paths (Sect. 10.2.2). We provide details on our numerical simulation
in Sect. 10.2.3. The characterization of different nodes in the network according to
their in- and out-components will be the topic of Sect. 10.2.4 and we will elaborate
how clusters evolve from different invasion paths in Sect. 10.2.5.

10.2.1 Deterministic Susceptible-Infected-Recovered-Model

To describe the spreading of an infectious disease in a population, we need a model
for its progression [1]. Let us assume that size of the population is constant and that it
can be divided in susceptible (or healthy) S, infected (and therefore infectious) I and
recovered (and hence immunized) individuals R. Following the transition scheme

S
˛

! I
ˇ

! R

a susceptible individual becomes infected with a probability ˛ upon contact with
an infected. After an infectious period of ˇ�1, where ˇ denotes the recovery rate,
an infected individual turns into a recovered one. Note that this scheme does not
account for births, deaths, or migration. In our study, we consider a deterministic
version of the SIR model with a fixed recovery time and guaranteed infection upon

1Agrarpolitischer Bericht der Bundesregierung (2015). Bundesministerium für Ernährung und
Landwirtschaft (BMEL), available as http://www.bmel.de/SharedDocs/Downloads/Broschueren/
Agrarbericht2015.html

http://www.bmel.de/SharedDocs/Downloads/Broschueren/Agrarbericht2015.html
http://www.bmel.de/SharedDocs/Downloads/Broschueren/Agrarbericht2015.html
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contact, that is, ˛ D 1 [8, 9]. Alternatively, the SIR dynamics can also be written as
a set of differential equations [10].

Livestock diseases may spread directly between animals. Here, we model a
corresponding contagion process on a broader perspective by considering the
agricultural holding as epidemiological unit. Our main goal is not to investigate a
detailed model for the local disease dynamics within a farm. Instead, we assume that
every infected animal will transmit the disease immediately to the whole population,
when it arrives at another farm. In the beginning of each simulation, all premises are
considered as susceptible or disease free except for a single node [8, 11], which
we call the seed. The infection is transmitted in each time step along outgoing links
connected to susceptible neighbors, which then transmit the disease in the following
time step further in the network via their susceptible neighbors and so on. In short,
the considered model consists of two dynamical mechanisms [8]:

1. A susceptible farm will be infected with a probability ˛ D 1, if it receives an
animal from an infected farm.

2. A farm stays infected for a duration of � days, which we call the infectious period.
We set this value to � D ˇ�1 D 7 days. Afterwards, the farm recovers and cannot
be infected again.

Note that the first mechanism implicitly accounts for directionality. Opposed to
other mobility scenarios such as commuting, only the node at the end of an edge
is at risk to become infected in a production chain. If a susceptible farm sells an
animal to an infected one, it still maintains its disease-free status. The advantage
of such a deterministic model is a significant reduction of computational effort.
It allows us to consider all nodes as a possible starting point of an outbreak.
In short, our numerical findings provide information in terms of a worst-case
scenario. Bajardi et al. also obtained similar results using a stochastic modeling
approach [8].

The next sections describe how an infection takes place on a temporal network
and how the algorithm used in this study is implemented.

10.2.2 Temporal Networks

As Vernon and Keeling pointed out in Ref. [12], the spread of infectious diseases is
only predicted correctly, if the chronology of contacts is accurately accounted for.
For a realistic model of disease transmission, we therefore consider a directed tem-
poral network, because typical trade connections take place on different timescales
and a disease can only be transmitted along time-respecting paths.

Next, we will give a short introduction into the mathematical description of
temporal networks [13–15]. We define G D (V, E) as a directed, temporal graph
consisting of a set of nodes V and time-stamped edges E connecting these nodes.
For further reading, in particular connected to livestock-trade networks, we refer to
[8, 9, 12, 16, 11, 17, 18].
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Fig. 10.1 Snapshot of a schematic network for three different times. Initially node v1 is infected
(indicated by the red dot) and the disease can spread to node v3, which is susceptible (indicated by
the black dot), via v2

If an outbreak at a node vi can reach a node vj, there has to be either a direct
link, that is, an edge, or an indirect connection. The latter case is described by
a path from one to the other. Such a path Pij consists of a sequence of edges
via intermediate nodes vk, where no node is visited twice. Therefore, a path is
given by:

Pij D
�

.vi; v1; t0/ ; .v1; v2; t1/ ; : : : ;
�

vn�1; vj; tn�1

��

:

The length of the path is the number of edges n. Note that we introduce a time
stamp to each edge of the path. Hence, a time-respecting path satisfies: t0 < t1 < � � �

< tn�1. Between a pair of nodes, there might be a large number of paths of different
lengths [19]. We stress that a path with the smallest number of edges might not be
the fastest depending on the specific timing of its edges [20]. For a disease spread
between two nodes, the earliest arrival time is of particular importance. We call the
set of directed, time-respecting edges starting at a particular seed node invasion path
� . In the considered deterministic SIR model, just the first contact with the disease
infects the node. Recurrent infections will have no effect as repeated infections are
not possible.

Figures 10.1, 10.2 and 10.3 provide different perspectives of a spreading process
on a temporal network. The disease starts at a single infected node v1. While
Fig. 10.1 depicts a series of snapshots at different times, Fig. 10.2 shows an overlay
of the snapshots, where the times, when an edge is active, are explicitly given. In
this schematic example, an invasion path � 13 D [(v1, v2, t D 2), (v2, v3, t D 3)]
exists between the initially infected seed node v1 and node v3 via v2. Node v4,
however, cannot be infected, because the connection P24 takes place, before the
outbreak reaches v2. Hence, the path P14 D [(v1, v2, t D 2), (v2, v4, t D 1)] is not
time-respecting and violates causality. The notion of an invasion path includes the
possibility of branching into tree-like transmission routes. A time-layered aspect is
depicted in Fig. 10.3. Here, the number of nodes that are going to be infected in
every time step, so called incidences, is easy to see.
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Fig. 10.2 Overlay of
snapshots of a temporal
network (cf. Fig. 10.1). A
time-respecting path leads
from node v1 to v3. If one
aggregates the network over
all times, however, a path
between v1 and v4 emerges
that does not exist in the
temporal case v1

v4

v2 v3

t=2

t=3

t=1

Fig. 10.3 The same temporal
network as in Figs. 10.1 and
10.2, but in a layered
representation. In time step
tD1 two susceptible nodes
have contact. Only in step
tD2 and tD3 the disease can
be transmitted

v1

v4

v2

v3

t=2 t=3t=1

10.2.3 Modelling an Infection on the Network

To model the spread of an infectious disease on the network, we use an algorithm
of breadth-first-search type to iteratively simulate the deterministic SIR dynamics
introduced in Sect. 10.2.1. The main steps are the following: We start at a seed
node vi 2 V and mark it as infected at time t0. In every time step tn, we identify all
edges (vi, vj, tn) that start at the initially infected node vi (or in further steps at nodes
along the production chain originating from vi) and lead to a susceptible node vj.
All nodes that can be reached this way are marked as infected, that is, we assume a
transmissibility of 100%. A node can transmit the disease as long as it is infected.
After having acquired an infection, the node stays infected and infectious for a fixed
period, which we choose as � D 7 days. Subsequently, we iterate over all infected
nodes vi and mark those, which have recovered, as removed. In the next step the time
tn is incremented by one corresponding to the temporal resolution of the available
data and the process will be repeated, until no more infected nodes are present. The
time that it takes from the beginning of the outbreak to its termination is called the
outbreak duration.
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In the next section, we will summarize some measures of a temporal network,
which help to characterize its structure.

10.2.4 Measure of Centrality

There is a large number of measures that quantify the centrality of nodes in a
network [21–23]. For epidemiological purposes, central nodes may have a high
chance to become infected or may transmit a disease to large parts of the network.
In this section, we will focus on some of those measures that have a direct
epidemiological relevance.

In network terminology, the out-component cout(vi, � , t0) of a node vi is given
by a set of nodes that can be reached from a primary infected node vi 2 V. The
parameter � is the finite infectious period introduced in Sect. 10.2.1 and t0 denotes
the starting time of the epidemic. In general, a large infectious period � produces
more secondary outbreaks and leads therefore to a greater probability to reach
more nodes in the network [11]. cout(vi, � , t0) can be calculated as the union of
the sets of nodes along all possible invasion paths originating from vi at time
t0. This out-component corresponds to the final size of an epidemic, which is an
important quantity in epidemiology. It indicates the accumulated number of all
infected individuals during an epidemic. The impact of a node in terms of the size
of its out-component can be interpreted as a measure of centrality.

Another important network property is the set of nodes, from which a particular
node vj, 2 V can be infected. This is called in-component cin(vj, � , t0). The size
of the in-component can be used as a measure for the vulnerability of a node [11].
Furthermore, we define the out-degree kout

i and in-degree kin
i of node vi as the number

of edges, which leave a node (selling events) or arrive at a node (buying events)
aggregated over the whole observation time, respectively.

After this brief excursion to notions from network science connected to epi-
demiology, we will introduce additional aspects such as seed clusters, which
contain nodes with similar invasion paths and spreading behavior, in the next
section.

10.2.5 Invasion Path and Seed Clusters

If we consider a node v as infectious and if it has contact with susceptible
nodes during its infectious period over some directed links e, the disease will be
transmitted in the framework of the considered deterministic SIR model. If this node
is the origin of the disease, we call it a seed. All nodes, which will be infected as
time goes on, are part of one of its invasion paths at least. As defined in Sect. 10.2.2,
an invasion path of length n 2 N consists of a set of directed edges fe0, ..., en�1g �

E connecting a set of nodes fv0, ..., vng � V at times t0 < � � � < tn�1.
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The invasion paths depend strongly on the initial conditions given by the starting
time t0 and seeding node vi. To explore the dependence of the spreading process
on the initial conditions, we aim to identify similar spreading patterns. For this
purpose, we use the unions � 1 and � 2 of invasion paths of two seeds at a fixed
starting time t0 to compute the similarity between them. We define the Jaccard
index �12 as the relative overlap of the two sets measured by the number of their
common nodes:

�12 D
j�1 \ �2j

j�1 [ �2j
; (10.1)

where j� j denotes the number of nodes. In words, we calculate the fraction of
the sizes of the intersection between the two node sets and their union. Consider
Fig. 10.4, where a schematic example of two invasion paths � 1 D [(v1, v3), (v3, v4),
(v4, v6), (v6, v8)] and � 2 D [(v2, v3), (v3, v4), (v4, v6), (v6, v9)] is shown in blue and
red, respectively. We find a Jaccard index of �12 D j� 1 \ � 2j/j� 1 [ � 2j D 3/7 as
the relative overlap of the two paths.

Since the disease can in principle start from any node, we need to consider every
node pair at a fixed starting time t0 and evaluate the similarity of their invasion
paths. If we calculate this overlap �ij between every pair of potential seeds (vi, vj),
it is possible to construct a weighted and undirected network, which is called the
initial-condition similarity network (see Fig. 10.5). In that network, nodes refer to
invasion paths, which are determined by their seed. The strength of a link between
two invasion paths � i and � j is given by the overlap �ij 2 [0, 1]. This gives rise to

v4

v2

v3

v5

v1

v6

v7

v8

v9

Γ1

Γ2

Γ3

Γ4

Γ5

v0

Fig. 10.4 Overlap between invasion paths � 1 D [(v1, v3), (v3, v4), (v4, v6), (v6, v8)] (blue), � 2 D
[(v2, v3), (v3, v4), (v4, v6), (v6, v9)] (red), � 3 D [(v0, v2), (v2, v3), (v3, v4), (v4, v7), (v7, v9)] (green),
� 4 D [(v5, v8)] (orange), and � 5 D [(v6, v8)] (pink). The paths � 1 and � 2 have nodes v3, v4, and
v6 in common, which results in a Jaccard index �12 D 3/7.The value �23 D 4/7 is found for � 2

and � 3, but not for � 1 and � 3, which is �13 D 2/9. The connection of two nodes v5 and v6 to the
same final node v8 with the paths � 4 and � 5 can be seen as a triadic motif for a relatively high
Jaccard index of �45 D 1/3. The Jaccard index between � 1 and � 4 is �14 D 1/6
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Fig. 10.5 Top: the undirected
and weighted similarity
network according Fig. 10.4
based on different initial
conditions emerges out of the
overlap of the respective
invasion paths (only non-zero
overlap shown). The network
is weighted by the overlap
(Jaccard index). Bottom:
exemplary depiction of the
emergence of cluster if a
threshold of �th2 (1/3, 2/5]
is applied. In this example
one cluster contains the
seeding nodes v1, v2, and v6

of the invasion paths � 1, � 2,
� 3, and � 5. A second cluster
refers to just one seeding
node v5 of the invasion
path � 4
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an all-to-all connected network. If we apply a threshold �th to the edge weights in
that network and disregard smaller ones, the resulting network disintegrates and we
obtain subsets of nodes with similar invasion paths � . This thresholding can lead
to disconnected subgraphs and we call their connected componenents clusters. The
bottom panel of Fig. 10.5 depicts the two clusters obtained for invasions paths of
Fig. 10.4 for a threshold of 1/3 < �th � 2/5. We define the size of a cluster by the
number of seed nodes at the origin of the invasion paths that lead to the formation
of that cluster.

Note that it is not required that all nodes in the same cluster are connected with
each other by an invasion path. If two nodes vi � V and vj � V belong to the same
cluster, it simply means that there is a set of other nodes fv1, v2, ..., vpg � V that
have an overlap �i1, �12, � � � , �pj greater than the threshold, but not necessarily
that the overlap �ij is greater than �th. See, for instance, the Jaccard index for the
two pairs of invasion paths (� 1, � 2) and (� 2, � 3) in Fig. 10.4. The respective
overlaps are �12 D 3/7 and �23 D 2/3, although the Jaccard index between � 1

and � 3 is smaller: �13 D 1/4. It is also important to note that these different
clusters evolve over time. Invasion paths, from which clusters are computed, refer
to the same starting time t0. Since an invasion path depends on t0, the clusters
are time dependent, too. The robustness of the clusters will be the topic of
Sect. 10.3.6.

Based on our numerical simulations, we measure the overlap of every possible
pair of seeds to group nodes in clusters. Note that geographical proximity is not a
necessary initial condition for this network-based procedure. Therefore, two nodes
that have a great geographical distance can be part of the same cluster because of
their similar invasion paths.
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Many nodes considered as seeds for an outbreak lead to short infection paths
[8, 19], but high Jaccard indexes. See, for instance, the triadic motif depicted in
Fig. 10.4. Two premises (node v5 and v6) are just connected to the same dead end
(node v8), that is most likely, a slaughterhouse, which yields an overlap of 1/3. To
avoid these misleading high values, we consider only infection paths that contain at
least 10 nodes. Both of these restrictions still lead to the emergence of non-trivial
clusters of initial conditions, that is, other than single, isolated nodes. Nodes with an
out-component jcoutj 	 10 nodes have a high spreading potential and usually belong
to a part of the network that is called giant in-component (GIC) or giant strongly
connected component (GSCC) [19]. The latter is defined as a set of nodes, in which
any pair of nodes is connected by a directed, time-respecting path. The GIC consists
of an additional set of nodes that are not part of the GSCC, but are connected to the
GSCC via time-respecting paths.

In the next section, we will present the methodology to compare clusters obtained
for different starting times. This will lead to the analysis of the robustness of the
clusters.

10.2.6 Measurement of the Robustness of the Clusters
Over Time

The method described in the last section leads to a partition fC1(t0), C2(t0), � � � g

of different clusters based on the similarity of invasion paths with starting time t0
[8]. We will consider only the M largest clusters in the following. To measure the
robustness of a cluster Ci(t0) at a later time t, we compute the relative change of the
cluster size in comparison to any of the M largest clusters:

ij .t0; t/ D
j Ci .t0/ \ Cj.t/ j

j Ci .t0/ j
: (10.2)

This M � M matrix fij g represents in every row i(t0, t) the fraction of nodes of
Ci(t0) present in the cluster Cj (t), which is computed according to invasion paths
starting at time t. If the cluster Ci(t0) persists or becomes part of one larger cluster,
the row i(t0, t) will have one entry equal to 1, and all others will be zero. Similarly,
when all nodes of Ci(t0) are redistributed over the M largest clusters, the sum over
the i-th row will be unity. Following this intuition, we define a robustness measure
by �i .t0; t/ D

PM
jD1ij .t0; t/. This quantity will be smaller than 1, if some nodes of

cluster Ci(t0) are not present in any of the M largest clusters at time t. Note that for
t0 ¤ t, the matrix fijg does not need to be symmetric, because the M largest clusters
might differ considerably in size and node set for different times.
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For further quantitative analysis, we compute the conditional entropy of the i-th
cluster defined as

Hi .t0; t/ D

PM
jD1 ij .t0; t/ log

�

ij .t0; t/
�

�i .t0; t/ log �i.t0;t/
M

: (10.3)

The entropy quantifies the redistribution among the M largest clusters at time t in
comparison to an earlier time t0. The entropy vanishes (Hi D 0), if Ci(t0) is also a
cluster at time t. Apart from this extreme case of stationary clusters, the minimum
entropy is given by Hmin,i(t0, t) D [1 � log(M)/ log(� i)]�1, if all nodes of Ci(t0) are
found in exactly one cluster Ck (t) at time t except a fraction (1 � � i) of them that
do not belong to any of the M largest clusters anymore. This configuration yields:
ik (t0, t) D � i(t0, t) and ij (t0, t) D 0 for j ¤ k and we find indeed

Hi .t0; t/ D
1

1 � log.M/
logŒ�i.t0;t/�

: (10.4)

In case that all nodes of Ci(t0) are equally distributed over the M largest clusters or
if no node of Ci(t0) is anymore found in one of them, i.e., ij (t0, t) D 0 and thus
� i(t0, t) D 0, we have Hi D 1 [8].

10.3 Results for the German Pig-Trade Network

This section provides an overview of the characteristics of the considered livestock-
trade network in Sect. 10.3.1. Then, we will apply the deterministic SIR model to
this particular time-varying network (cf. Sects. 10.2.1 and 10.2.3) and thereby calcu-
late different seed clusters (Sect. 10.3.3). In Sect. 10.3.4, we present different ways
to identify sentinel nodes and finally, we will exploit the underlying mechanism to
design a detection scheme for possible outbreaks in Sect. 10.3.5.

10.3.1 From Data to Network

In the present study, anonymized data on pig-trade movements are analyzed in
collaboration with the Friedrich-Loeffler-Institut. The dataset spans the period
from January 1, 2011 to December 31, 2014 and is extracted from the HI-Tier
database.2 Within this 4-year period, each German pig holding recorded the number

2Bayerisches Staatsministerium für Ernährung, Landwirtschaft und Forsten (StMELF).
Herkunftssicherungs- und Informationssystem für Tiere, available from: www.hi-tier.de

http://www.hi-tier.de/
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Fig. 10.6 Schematics of the
production chain forming the
pig trade [19]. The dashed
arrows refer to deviations
from this chain, which are
present in the data, because
the network contains more
edges than the minimal
production-chain forest

breeding

piglet production
raising

fattening

slaughter

T = 180 days

of pigs of every purchase so that we can infer the corresponding movements of
livestock within Germany from the dataset. Note that only the aggregated trading
volume (batches) is recorded in the database. The available resolution for this time-
dependent network is 1 day. Farmers are required to register each transaction within
7 days, which sets the upper bound for the uncertainty of data accuracy. Every trade
record includes the premises of origin and destination via anonymized IDs, the
date, and the number of delivered pigs. From a graph-theoretical perspective, the
dataset can be interpreted as a dynamical network, where nodes, directed edges, and
edge weights correspond to farms, trading events, and the number of traded animals,
respectively. For a detailed, time-resolved analysis of this dataset, see Ref. [19].

Figure 10.6 depicts an illustration of the production chain of the underlying
farming system, which is composed of different farm types. Different stages of
the production chain refer to breeding, piglet production, raising, fattening, and
slaughter. In addition, trades can also be mediated by brokers. These are part of
the recorded transaction in the database, but do not own a farm themselves. The
lifetime of a pig is 180 days, which sets the timescale of the total production chain.
Each farm has an anonymized ID from 0 to 97,980. The considered period of 4 years
contains more than 6.3 million movements with a total trade volume of 615 million
pigs. In the year 2014, 28 million pigs have been bred. This implies that each animal
is traded roughly five times along the product chain indicating a high specialization
and different farm types. Some basic characteristics of the time-aggregated network
are summarized in Table 10.1.

Next, we will present the main results of our numerical simulations.

10.3.2 Outbreak Duration and Size

In our simulations, we consider all nodes as seed and choose the first Monday in
each month as starting time t0 or, if it is a holiday, we use the following working day.
In previous studies, these days have been found to show the highest trade activity
in the network and are therefore the days for which the largest outbreak size can be
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Table 10.1 Standard
network properties of the
static, i.e., time-aggregated,
German pig-trade network

Property Value

Number of nodes 97,980
Number of edges 315,333
Edge density 3.2 � 10�5

Size of GSCC 28 %
Diameter 18
Average shortest path length 5.5
Path density 0.24
Median and average trade volume of a premises
on a day 32.0, 113.4
in a month 88.0, 355.0
in a year 280.0, 2587.6

Diameter and shortest path length are computed for
the giant strongly connected component (GSCC)
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Fig. 10.7 Panel (a): Normalized distribution for the outbreak duration. Duration for a fixed
starting time averaged over all possible seed nodes (red): 41.6 days; median (cyan) 40 days. Panel
(b): Normalized distribution of outbreak size. Average size (red): 149 nodes; median (cyan): 84
nodes. All nodes with an out-component jcoutj � 10 are considered as seed. The starting times
t0 are chosen as the first Monday in each month or, if it is a holiday, we use the following
working day

expected. In this sense, they cause the most harm to the network [19]. Since we are
interested in nodes that can trigger outbreaks of a considerable size, we restrict the
pool of potential sentinels to nodes with an out-component jcoutj 	 10.

In Fig. 10.7a, one can see the normalized distribution that an outbreak lasts a
certain number of days in the network. Panel (b) shows the normalized distribution
of the size of an outbreak. Average and mean values are also indicated by red and
cyan bars, respectively. We find that the average outbreak lasts 41.6 days, during
which 149 nodes are infected.

Using a deterministic SIR model on a network to explore a worst-case scenario
(cf. Sects. 10.2.1 and 10.2.3), we find that all outbreaks eventually come to an
end in our simulations. As we show later in Sect. 10.3.3 we observe outbreak
durations of around 60 days for the considered infectious period of 7 days. This
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Fig. 10.8 Distribution of
overlap of invasion paths
calculated based on the
Jaccard index. A minimum is
found at a value of � D 0.8
(red line), which we choose
as a threshold to define
clusters

is much shorter than the 4 years observation time of the network. In other words, we
measure the complete out-components. Therefore, we conclude that we capture the
entire dynamical process by the proposed modelling framework. See Ref. [13] for a
discussion of finite observation periods for a temporal network.

In the next section, we demonstrate how clusters introduced in Sect. 10.2.5 can
be constructed from the numerical results.

10.3.3 Seed Clusters

Our aim is to design a surveillance scheme that requires only a small number of
nodes. For this purpose, we identify similar spreading patterns and partition the
network in functional clusters. In our simulations, we consider every node in the
network with jcoutj 	 10 as starting point of an outbreak and consider different
starting times as well. Next, however, we discuss the results obtained for the starting
time t0 D January 3, 2011, as an example.

Figure 10.8 shows the distribution of the Jaccard index. As mentioned above,
it describes the overlap of different invasion paths. Therefore, a matrix � with
elements �ij will be calculated out of invasion paths i and j. For the cluster
calculation, we consider just overlaps greater than the threshold value �th D

0.8, which corresponds to the minimum in the distribution of overlaps (red line).
Therefore, all overlaps with a larger Jaccard index are considered in the following.
For further information on this subject see Refs. [19, 24]. This choice coincides with
the threshold reported in Ref. [8].

Figure 10.9 shows a ranking of cluster sizes for this threshold (red dots) and
the cumulative cluster-size distribution (blue triangles). We find that there are many
small clusters. More than half of the clusters consist of at most ten seed nodes.
The largest cluster is formed by 284 seed nodes. In the following, we consider only
the largest 18 clusters. They contain at least 79 seed nodes (red horizontal line)
and together cover 31.7% of all seed nodes that can be grouped in clusters (blue
horizontal line).
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Fig. 10.9 Ranking of cluster size (red dots). For the initial time t0 D January 3, 2011 and
the threshold �th D 0.8, we find 491 clusters. The blue triangles refer to the cumulative
distribution of cluster sizes. The green line marks the 18 largest clusters. The blue line marks
the cumulative cluster distribution of the 18 largest cluster (green vertical line). The size of the
18th largest cluster is indicated by the red line. There are in total 8490 seed nodes in the observed
491 clusters

Next, we compute the outbreak size triggered from each cluster. It is given by
the number of nodes, which can be reached by an infection starting at the seed
nodes that form the respective cluster. We call the corresponding percentage network
coverage. Furthermore, we calculate the power of each cluster to detect an outbreak.
This is quantified by the percentage of outbreaks (detection probability) that involve
any node of the respective cluster. Table 10.2 shows the cluster size, the network
coverage (in %), and the detection probability (in %). In general, we find that
the numbers fluctuate in both the network coverage and detection probability. For
example, there are clusters whose invasion paths appear to be rather isolated in the
network, which results in a small detection probability. Other clusters that do not
necessarily consist of a large number of seed nodes have a much higher probability
to detect an outbreak. For comparison to our findings, consider the results on the 18
largest cluster of the Italian cattle-trade network presented in Ref. [8].

Figure 10.10 depicts numerical results for the 18 largest clusters, which are
computed via the Jaccard coefficient of all invasion paths starting at t0 D January
3, 2011. For each cluster, the time series of the prevalence is shown for every node
of the cluster considered as seed (red curves). The black curve refers to the average
of all prevalence curves originating from the cluster. The blue curves correspond to
the size of the epidemic measured by the number of recovered nodes and the black
curve shows again the average.

In general, all time series exhibit a qualitatively similar behavior: an increasing
number of infections leading to a peak, beyond which the curve decreases again
and the outbreak eventually terminates. These qualitative features are in line with
the expected dynamics of the SIR model. All premises within one cluster show a
similar spreading pattern, which means that for a given initial condition of seed
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Table 10.2 Cluster size, network coverage (in %), and detection probability (in %) of the 18
largest clusters

Cluster Size
Network
coverage

Network
coverage of
nodes with
jcoutj � 10

Detection
probability

Cumulative
detection
probability

1 284 0.5 3.2 38.2 38.2
2 283 0.9 5.8 3.4 38.7
3 245 1.6 9.9 13.8 43.9
4 214 1.3 8.1 10.8 47.7
5 199 0.7 4.4 10.0 49.6
6 191 0.4 2.8 4.0 50.2
7 146 0.6 3.9 4.5 50.5
8 140 0.5 3.0 25.2 53.7
9 128 0.7 4.7 19.1 56.0
10 121 0.8 4.9 25.4 57.9
11 120 0.4 2.8 23.2 58.4
12 106 0.8 5.0 14.7 59.1
13 103 0.3 1.8 0.9 59.2
14 88 0.2 1.2 43.4 61.2
15 82 0.2 0.9 26.0 65.0
16 81 0.2 1.1 0.5 65.1
17 79 0.2 1.0 0.2 65.1
18 79 0.3 1.7 0.001 65.1

Starting time t0 D January 3, 2011

and time (vi, t0) the number of infected premises is roughly the same. We also
find that the timing of the peak does not vary much between the different clusters.
There are, however, considerable quantitative differences between prevalence curves
of different clusters. Consider, for instance, the duration of an outbreak, the peak
number of infected nodes (maximum prevalence), or the total number of infected
nodes. The mean outbreak duration hıii in the i-th cluster and we obtain that it
varies between 30 and 76 days. The average duration of infection for all 18 largest
clusters is 55 days.

Recall that each cluster refers to a set of seed nodes. Since the out-component of
a cluster is given by the nodes in the network that can be infected from its seeds, the
out-component can be larger than the size of the cluster itself, that is, the number of
its seed nodes. For some clusters (cf. cluster 3 or 4), even the peak of the prevalence
is larger. In order to design an efficient surveillance protocol, we have to make sure
that the infection will be detected very early before the outbreak reaches large parts
of the potential out-component.

After the construction of clusters of similar invasion paths, we will show in the
next section, how this can be used to select a small number of sentinel nodes for
surveillance of the whole network.
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Fig. 10.10 SIR dynamics on the German pig-trade network for the 18 largest clusters. The red
curves refer to the time series of the number of infected nodes for all nodes in the respective
cluster taken as seed. The blue curves represent the number of recovered nodes over time. The
black curves show their average of each cluster. ıi is the mean duration of outbreaks in the i-th
cluster. For the starting time t0 D January 3, 2011, the mean outbreak mean duration of all nodes
in the 18 largest clusters is ı D 55 days. Parameter: infectious period � D 7 days
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10.3.4 Sentinel Nodes

For an identification of potential sentinel nodes, we propose two approaches and
evaluate them in terms of detection probability, fast detection, and minimum number
of infected nodes until detection. The selection of an optimal, that is, minimum, set
is an open question related to set cover problems in combinatorial geometry and has
recently been linked to optimal percolation. See Ref. [26] and references therein.
This family of problems is known to be NP hard. The methods used here serve as
heuristics for the exact problem.

The first protocol consists of the following strategy: Choose the node of largest
or second-largest sum of in- and out-degree of each cluster. This results in 18 or 36
sentinel nodes, respectively. We conjecture that these hubs are good candidates for
the following reason: Hubs are known to be infected at an early stage of outbreaks on
scale-free networks and thus key players for the spreading [25]. The set of sentinel
nodes will be most likely part of the GSCC, because they need to receive and send
livestock from/to many different nodes to meet the selection criterion. Therefore,
they are expected to have a large out-component.

Figure 10.11 shows, how in- and out-degree varies in the two largest clusters.
Nodes with the largest sum of in- and out-degree can be found on the upper,
right side in the figures. The candidate nodes to serve as sentinels (red square and
diamond) are well separated from the rest of the seed nodes that form the respective
cluster (green dots).

As a second approach, we apply the algorithm introduced in Sect. 10.2.3 to infect
all nodes of the network at the starting time t0 and then rank them according to how
often each node appears in an invasion paths. This way, we exploit the size jcinj

of the in-component, which is equivalent to the vulnerability of a node. The set of
sentinel nodes is given by the top ranked nodes.

Following Ref. [8], we are interested in the nodes that are part of the outcom-
ponent of a large number of nodes. These nodes will be hit by many epidemics
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Fig. 10.11 In- and out-degree for all seed nodes of the two largest clusters. We choose sentinel
nodes based on the largest sum of in- and out-degree. These nodes can be found in the upper, right
part of the panels
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starting at different nodes. Therefore, nodes that have a high jcinj are more
vulnerable than nodes with smaller in-component. Some of these nodes, however,
are slaughterhouses and are found at the end of the production chain. They are not
suitable as sentinel nodes for early disease detection, because the damage of an
outbreak would have been done already and could not be contained. These nodes
can easily be excluded, because they have an out-degree kout

i D 0. In addition,
sentinel nodes should have a significant spreading potential. Therefore, we consider
only nodes as sentinels that at the same time have an out-degree of kout

i 	 5. We
choose 18 of these, which we call most infected nodes, and take those 18 most
infected nodes together with the 18 nodes of the largest sum of in- and out-degree
in each cluster to define the set of sentinel nodes. In an additional protocol, we also
consider the 36 nodes with the largest in-component for comparison.

Next, we will investigate, how the different protocols to select sentinel nodes
perform in terms of detection probability, detection time and how many nodes
become infected until detection.

10.3.5 Disease Detection with Sentinel Nodes and Results

Applying different protocols to select sentinel nodes as introduced in Sect. 10.3.4,
we calculate the probability to detect an outbreak for every starting day. See
Fig. 10.12, where panel (a) depicts this detection probability based on 18 (blue
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Fig. 10.12 Detection probability of 18 (blue triangles) and 36 (red dots) sentinel nodes based on
(a) largest and second-largest sum of in- and out-degree out of each cluster, (b) 18 nodes based on
highest vulnerability (blue triangles) and additionally 18 nodes out of each cluster with the largest
sum of in- and out-degree (red dots). The mean value is depicted by the solid and dashed lines,
respectively: (a) 65% and 70.9%; (b) 82.7% and 86.2%. Each dot refers to the starting time t0 (day
of initial infection), which is chosen as the first Monday in each month or, if it is a holiday, we use
the following working day. All nodes with an out-component jcoutj � 10 are considered as seed
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Table 10.3 Detection probability, time until detection, and number of infected nodes until
detection for the considered selection protocols to determine the set of sentinel nodes

Protocol
Detection
probability Detection time / days Outbreak size

18 nodes based on sum of
in- and out-degree

65.1% 12.5 43.6

36 nodes based on sum of
in- and out-degree

71.0% 10.5 31.2

18 nodes based on highest
vulnerability

82.7% 9.0 22.2

36 nodes based on highest
vulnerability

83.1% 8.9 21.4

18 nodes based on highest
vulnerability and 18 nodes
based on in- and
out-degree

86.2% 7.8 15.4

triangles) and 36 (red dots) sentinel nodes with the largest sum of in- and out-
degree in each cluster, respectively. The blue solid and red dashed lines represent the
average probability of a disease detection, which is 65% and 70.9%, respectively.
Similarly, Fig. 10.12b depicts the protocol, where 18 sentinel nodes are selected
based on the highest vulnerability (blue triangles) or additional 18 nodes with the
largest sum of in- and out-degree for each cluster (red dots). This results in average
detection probabilities of 82.7% and 86.2%, respectively.

Table 10.3 provides an overview of the obtained results for all proposed selection
schemes. Considering twice as many sentinel nodes improves all considered
quantities: a higher detection probability, a shorter detection time, and a smaller
number of infections until detection. An earlier detection by 2 days results in a
reduction of the epidemiological impact by about 25%. This is in agreement with
findings of Ref. [8]: The information provided by the sentinel nodes is meaningful
as long as the detection occurs rather early during an outbreak. This result is not
only important for surveillance, but also for identifying the initial outbreak location,
because it enhances the chances to trace the invasion path back to the seed. An even
stronger improvement can be obtained, if the selection of sentinels is based on the
highest vulnerability. This advantage can be further improved in combination with
nodes of largest in- and out-degree. Then, the detection probability is larger than
86% with an average detection time of 7.8 days and an average outbreak size of 15.4
nodes. This gives a larger benefit than choosing 36 nodes with highest vulnerability,
for example.
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10.3.6 Cluster Development in Time

In this section, we will investigate the temporal stability of the clusters given their
importance in the identification of sentinel nodes. Consider a pair of seed nodes,
which are a part of the same cluster at one instance in time. They might, however,
not belong to the same or any other cluster at a later time. In detail, we consider
the development of the 18 largest clusters. Based on two partitions of clusters at
different times, that is, P(t0) D fC1(t0), C2(t0), � � � , C18(t0)g and P(t) D fC1(t),
C2(t), � � � , C18(t)g, we calculate the relative overlap via ij D jCi(t0) \ Cj (t)j/jCi(t0)j
2 [0, 1]. We expect ij D 0, if the clusters Ci(t0) and Cj (t) do not have a single node
in common, and unity, if clusters persist or expand.

Figure 10.13 shows the matrix fij g for different times. Trivially, we find the
identity matrix for t D t0 due to disjoint clusters corresponding to disconnected
subgraphs. The clusters evolve and change their nodes over time. For subsequent
times t, nodes belonging at t0 to the same cluster can be redistributed in multiple
clusters, which might consist of additional nodes, or might not be a part of any other
subsequent cluster. One can see that for times t D 7, t D 14, and t D 21, there is no
significant overlap anymore. This can also be seen in the bottom panels, which show
a distribution of the overlap between the 18 initial clusters and the 18 subsequent
clusters.

Fig. 10.13 Change of the cluster partitions. The color code refers to the relative overlap of the 18
largest clusters at different times in comparison with t0 D 0 corresponding to January 3, 2011. The
top left figure shows the comparison from the cluster t0 D 0 with itself, that is, a trivial perfect
overlap along the diagonal. The lower four figures show the distribution of the cluster overlap at
respective times
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How rapidly and to which extent the node set of the clusters changes can be
calculated with the entropy function (cf. Sect. 10.2.6), which will be the topic of the
next section.

10.3.7 Entropy of Clusters

In order to quantify the robustness of a cluster, we compute the conditional entropy
Hi(t0, t) of each cluster Ci(t0) given by Eq. (10.3) comparing different times. This
provides insight, how much the nodes of a cluster of time t0 are redistributed among
the M largest clusters at a later time t. Recall that Hi(t0, t) vanishes, if the set of seed
nodes forming a cluster does not change over time. We have Hi(t0, t) D 1, if no node
is part of any of the M largest clusters at time t. For comparison, we also calculate
the minimum entropy Hmin, which corresponds to the case that a fraction of nodes
of a cluster still form a cluster and the rest does not belong to any of the M largest
clusters.

Figure 10.14 depicts the entropy H(t0, t) (red dots), the minimum entropy Hmin

(blue circles), and the difference between them (yellow bar) for exemplary clusters
4 and 15. The difference H(t0, t) � Hmin can be interpreted as the robustness of the
cluster. A cluster is more robust, if that difference is smaller (and the entropy is not
equal to one as in cluster 15), because many nodes from the starting time are still
found in one of the 18 largest clusters. Cluster 4, for instance, remains stable over
the first 30 weeks.

In cluster 15 we can see that H D 1 at 11 different times due to the peculiarities
of the cluster development. Cluster 15 has such a high entropy for many weeks,
because its nodes do not belong to any of the 18 largest clusters at these times. In

Fig. 10.14 Entropy H(t0, t) of cluster 4 and 15 over time (red dots), minimum entropy (blue empty
dots), and their difference (yellow bars)
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contrast to the fluctuating entropy of cluster 15, cluster 4 is quite stable over the
first 30 weeks. The time-resolved entropy of the 16 largest clusters is added in the
appendix as Figs. 10.15 and 10.16 for comparison.

10.4 Conclusion and Outlook

We have applied the concept of sentinel nodes proposed in Ref. [8] to the
German pig-trade network. For this purpose, we have implemented a deterministic
susceptible-infected-recovered model and computed invasion paths for different
seed nodes and starting times. Our results have shown that the approach of seed
clusters, which was initially applied to the Italian cattle-trade network, can indeed
be transferred to the considered dataset. The clustering method can be used to design
an optimized surveillance system and allows for rapid and efficient containment
strategies.

Large delays between the start of the outbreak and its detection results in larger
outbreak sizes. After a few days, the outbreak often reaches a number of nodes far
greater than the size of the cluster (number of seed nodes identified to yield a similar
outbreak pattern), where it started. Then, the disease is able to infect large fractions
of the network. In addition, high temporal variability and the complex nature of
the network make identification of the possible origin of the outbreak a particularly
difficult task. Recently, some approaches using the concept of effective distance
have been proposed [27, 28].

Following a network-based analysis, we have identified farms that are at a high
risk of becoming infected and subsequently promote the spreading the disease
further. We have conjectured that these farms are good candidates to detect an
outbreak early in its evolution. Therefore, we have chosen one or two nodes
with the largest sum of in- and out-degree for each cluster. In addition, we
have also considered farms that have the largest in-component in the network.
These nodes are very vulnerable, because they can be infected from a large
number of outbreak origins. We have found out that these farms, when consid-
ered as sentinel nodes, have the highest detection probability and the shortest
detection time. As a consequence, the outbreak size before detection can be
considerably reduced. This can be further improved by combining both selection
protocols.
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A.1 Appendix

Fig. 10.15 Entropy H(t0, t) of the eight largest clusters not mentioned in the main text (for cluster
4 see Fig. 10.14) over time (red dots), minimum entropy (blue empty dots), and their difference
(yellow bars)
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Fig. 10.16 Entropy H(t0, t) of the clusters 9–18 except for cluster 15, which is shown in Fig.
10.14, over time (red dots), minimum entropy (blue empty dots), and their difference (yellow bars)
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Chapter 11
Optimal Containment of Epidemics in Temporal
and Adaptive Networks

Masaki Ogura and Victor M. Preciado

Abstract In this chapter, we focus on the problem of containing the spread of
diseases taking place on both temporal and adaptive networks (i.e., networks whose
structure changes as a result of the epidemic). We specifically focus on the problem
of finding the optimal allocation of containment resources (e.g., vaccines, medical
personnel, traffic control resources, etc.) to eradicate epidemic outbreaks over the
following three models of temporal and adaptive networks: (i) Markovian temporal
networks, (ii) aggregated-Markovian temporal networks, and (iii) stochastically
adaptive network models. For each model, we present a rigorous and tractable
mathematical framework to efficiently find the optimal distribution of control
resources to eliminate the disease. In contrast with other existing results, our results
are not based on heuristic control strategies, but on a disciplined analysis using tools
from dynamical systems and convex optimization.

11.1 Introduction

The containment of spreading processes taking place on complex networks is
a major research area with applications in social, biological, and technological
systems [3, 31, 71]. The spread of information in on-line social networks, the
evolution of epidemic outbreaks in human contact networks, and the dynamics of
cascading failures in the electrical grid are relevant examples of these processes.
While major advances have been made in this field (see, for example, [34, 42] and
references therein), most current results are specifically tailored to study spreading
processes taking place on static networks. Cohen et al. [13] proposed a heuristic
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vaccination strategy called acquaintance immunization policy and proved it to be
much more efficient than random vaccine allocation. In [5], Borgs et al. studied
theoretical limits in the control of spreading processes in undirected network with
a non-homogeneous distribution of antidotes. Chung et al. [11] studied a heuristic
immunization strategy based on the PageRank vector of the contact graph. Preciado
et al. [44, 47] studied the problem of determining the optimal allocation of control
resources over static networks to efficiently eradicate epidemics described by
the networked SIS (Susceptible-Infected-Susceptible) model. This work was later
extended in [10, 32, 35, 38, 45, 46, 69, 70] by considering more general epidemic
models. Wan et al. developed in [67] a control theoretic framework for disease
spreading, which has been recently extended to the case of sparse control strategies
in [58]. Optimal control problems over networks have also been considered in
[25, 26]. Drakopoulos et al. proposed in [14] an efficient curing policy based on
graph cuts. Decentralized algorithms for epidemic control have been proposed in
[48, 59] using a game-theoretic framework to evaluate the effectiveness of protection
strategies against SIS virus spreads. An optimization framework to achieve resource
allocations that are robust to stochastic uncertainties in nodal activities was proposed
in [40].

Most epidemic processes of practical interest take place on temporal networks
[29], having time-varying topologies [20]. In the context of temporal networks, we
are interested in the interplay between the epidemiological dynamics on networks
(i.e., the dynamics of epidemic processes taking place on the network) and the
dynamics of networks (i.e., the temporal evolution of the network structure).
Although the dynamics on and of networks are usually studied separately, there are
many cases in which the evolution of the network structure is heavily influenced
by the dynamics of epidemic processes taking place on the network. This can
be illustrated by a phenomenon called social distancing [4, 16], where healthy
individuals avoid contact with infected individuals in order to protect themselves
against the disease. As a consequence of social distancing, the structure of the
network adapts to the dynamics of the epidemics taking place on the network.
Similar adaptation mechanisms have been studied in the context of the power
grid [53], biological systems [51] and on-line social networks [2].

We can find a plethora of studies dedicated to the analysis of epidemic spreading
processes over temporal networks based on either extensive numerical simula-
tions [21, 23, 30, 49, 63, 64] or rigorous theoretical analyses [43, 52, 57, 65].
However, there is a lack of methodologies for containing epidemic outbreaks on
temporal networks (except the work [28] for activity driven networks). This is also
the case for adaptive networks. In this latter case, various methods for the analysis
of the behavior of spreading processes evolving over adaptively changing temporal
networks [17, 18, 50, 56, 60, 61, 68] exist. However, these heavily rely on extensive
numerical simulations (except the work [54] based on a compartmental model).
This suggests a lack of rigorous analytical tools for working out effective control
strategies in the context of temporal or adaptive networks.
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Nevertheless, in recent years, we have witnessed an emerging effort towards
the efficient containment of epidemic processes in temporal and adaptive networks
using tools from the field of control theory. The aim of this chapter is to give
an overview of this research thrust by focusing on optimal resource allocation
problems for efficient eradication of epidemic outbreaks. We specifically focus
the scope of this chapter on the following three classes of temporal and adaptive
networks: (1) Markovian temporal networks [37], (2) aggregated-Markovian edge-
independent temporal networks [33, 41], and (3) SIS models on adaptive networks
[18, 39]. We see that the optimal resource allocation problem in these three cases can
be reduced to an efficiently solvable class of optimization problems called convex
programming [7] (more precisely, geometric programming [6]).

This chapter is organized as follows. In Sect. 11.2, we study the optimal resource
allocation problem in Markovian temporal networks. We then focus our exposition
on a specific class of Markovian temporal networks, called aggregated-Markovian
edge-independent temporal networks, in Sect. 11.3. We finally present recent results
in the context of SIS models on adaptive network models in Sect. 11.4.

Notation We denote the identity matrix by I. The maximum real part of the
eigenvalues of a square matrix A is denoted by �max.A/. For matrices A1, : : : ,
Am, we denote by

Lm
iD1 Ai the block-diagonal matrix containing A1, : : : , Am as its

diagonal blocks. If the matrices A1, : : : , Am have the same number of columns, then
the matrix obtained by vertically stacking A1, : : : , Am is denoted by colmiD1 Ai. An
undirected graph is defined as the pair G D .V; E/, where V D f1; : : : ; ng is a set of
nodes and E is a set of edges, defined as unordered pairs of nodes. The adjacency
matrix A D Œaij�i;j of G is defined as the n � n matrix such that aij D aji D 1 if
fi; jg 2 E , and aij D 0 otherwise.

11.2 Markovian Temporal Networks

Since the dynamics of realistic temporal networks has intrinsic uncertainties in,
for example, the appearance or disappearance of edges, the durations of temporal
interactions, and inter-event times, most mathematical models of temporal networks
in the literature have been written in terms of stochastic processes. In particular,
many stochastic models of temporal networks (see, e.g., [12, 24, 43, 65]) employ
Markov processes due to their simplicity, including time-homogeneity and mem-
oryless properties. The aim of this section is to present a rigorous and tractable
framework for the analysis and control of epidemics taking place in Markovian
temporal networks. We remark that, throughout this chapter, we shall focus on the
specific type of spreading processes described by the SIS epidemic model, among
other epidemic models (see, e.g., [42]).
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11.2.1 Model

In this subsection, we present the model of disease spread and temporal networks
studied in this section. We start our exposition from reviewing a model of spreading
processes over static networks called the Heterogeneous Networked SIS (HeNeSIS)
model [47], which is an extension of the popular N-intertwined SIS model [62]
to the case of nodes with heterogeneous spreading rates. Let G be an undirected
graph having n nodes, where nodes in G represent individuals and edges represent
interactions between them. At a given time t 	 0, each node can be in one of two
possible states: susceptible or infected. In the HeNeSIS model, when a node i is
infected, it can randomly transition to the susceptible state with an instantaneous
rate ıi > 0, called the recovery rate of node i. On the other hand, if a neighbor
of node i is in the infected state, then the neighbor can infect node i with the
instantaneous rate ˇi, where ˇi > 0 is called the infection rate of node i. We define
the variable xi.t/ as xi.t/ D 1 if node i is infected at time t, and xi.t/ D 0 if i
is susceptible; then, the transition probabilities of the HeNeSIS model in the time
window Œt; t C h� can be written as

Pr.xi.t C h/ D 1 j xi.t/ D 0/ D ˇi

X

j2Ni

xj.t/h C o.h/;

Pr.xi.t C h/ D 0 j xi.t/ D 1/ D ıih C o.h/;

(11.1)

where Ni is the set of neighbors of node i and o.h/=h ! 0 as h ! 0.
Although the collection of variables .x1; : : : ; xn/ is simply a Markov process,

this process presents a total of 2n possible states (two states per node). Therefore, its
analysis is very hard for arbitrary contact networks of large size. A popular approach
to simplify the analysis of this type of Markov processes is to consider upper-
bounding linear models, as described below. Let A denote the adjacency matrix of G.
Define the vector p D .p1; : : : ; pn/

> and the diagonal matrices B D
L

.ˇ1; : : : ; ˇn/

and D D
L

.ı1; : : : ; ın/. Then, it is known [47] that the solutions pi.t/ (i D 1, : : : , n)
of the vectorial linear differential equation

dp=dt D .BA � D/p (11.2)

upper-bound the evolution of the infection probabilities Pr.i isinfectedattime t/ from
the exact Markov process with 2n states. Thus, if the solution of (11.2) satisfies
p.t/ ! 0 exponentially fast as t ! 1, then the infection dies out in the exact
Markov process exponentially fast as well. Since the differential equation (11.2) is
a linear system, the maximum real eigenvalue �max.BA � D/ of the matrix BA � D
determines the asymptotic behavior of the solution. The above considerations show
that the spreading process dies out exponentially fast if

�max.BA � D/ < 0: (11.3)
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In the special case of homogeneous infection and recovery rates, i.e., ˇi D ˇ and
ıi D ı for all nodes i, condition (11.3) yields the following well-known extinction
condition (see, e.g., [1, 27])

ˇ

ı
<

1

�max.A/
: (11.4)

However, conditions (11.3) and (11.4) are not applicable to the case of temporal
networks having time-varying adjacency matrices. In this section, we focus on the
case where the dynamics of the temporal network is modeled by a Markov process.
In order to specify a Markovian temporal network, we need the following two
ingredients. The first one is the set of ‘graph configurations’ that can be achieved by
the temporal network. Let those configurations (static and undirected networks) be
G1, : : : , GL. This implies that, at each time t 	 0, the temporal network always
takes one of the configurations G1, : : : , GL. The other ingredient is the set of
stochastic transition rates between graph configurations. Specifically, we let �k`

denote the stochastic transition rate from configuration Gk to G`. This implies that, if
the configuration of the temporal network at time t is Gk, then the probability of the
temporal network having another configuration G` at time t C h equals �k`h C o.h/,
independent of t. A schematic diagram of a Markovian temporal network is shown
in Fig. 11.1.

We now describe the model of disease spread considered in this section. Let G.t/
be a Markovian temporal network (as a continuous-time function of t 	 0). Let Ni.t/
be the set of neighbors of node i at time t in graph G.t/. Then, we can reformulate
the transition probabilities (11.1) of the HeNeSIS model as

Pr.xi.t C h/ D 1 j xi.t/ D 0/ D ˇi

X

j2Ni.t/

xj.t/h C o.h/;

Pr.xi.t C h/ D 0 j xi.t/ D 1/ D ıih C o.h/:

(11.5)

Fig. 11.1 Markovian
temporal network having
three possible configurations
(G1, G2, and G3), and the
corresponding stochastic
transition rates
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Notice that, in the first equation, the infection probability is dependent not only on
the infection states of the other nodes but also the connectivity of the network, i.e.,
Ni in (11.1) changes to Ni.t/. Then, we can formulate an upper-bounding model for
the HeNeSIS model over the Markovian temporal network G.t/ as

dp=dt D .BA.t/ � D/ p.t/;

where A.t/ denotes the adjacency matrix of G.t/.

11.2.2 Optimal Resource Distribution

Let us consider the following epidemiological problem [47]: Assume that we have
access to vaccines that can be used to reduce the infection rates of individuals in
the network, as well as antidotes that can be used to increase their recovery rates.
Assuming that both vaccines and antidotes have an associated cost and that we are
given a fixed budget, how should we distribute vaccines and antidotes throughout
the individuals in the network in order to eradicate an epidemic outbreak at the
maximum decay rate? In what follows, we state this question in rigorous terms
and present an optimal solution using an efficient optimization framework called
geometric programming [6].

Assume that we have to pay f .ˇi/ unit of cost to tune the infection rate of
node i to ˇi. Likewise, we assume that the cost for tuning the recovery rate
of node i to ıi equals g.ıi/. Notice that the total cost of tuning the collection
of infection rates .ˇ1; : : : ; ˇn/ and recovery rates .ı1; : : : ; ın/ in the network is
given by

R D

n
X

iD1

.f .ˇi/C g.ıi//:

We further assume that these rates can be tuned within the following feasibility
intervals:

0 <
N
ˇ � ˇi � Ň; 0 <

N
ı � ıi � Nı: (11.6)

We can now state our optimal resource allocation problem as follows:

Problem 1 Consider a HeNeSIS spreading process over a Markovian temporal
network. Given a budget NR > 0, tune the infection and recovery rates ˇi and
ıi in the network in such a way that the exponential decay rate of the infection
probabilities is maximized while satisfying the budget constraint R � NR and the box
constraints (11.6).
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In order to solve this problem, we first present an analytical framework for
quantifying the decay rate of the infection probabilities, given the parameters in
the HeNeSIS model and the Markovian temporal network. In fact, using tools from
control theory [36], it is possible to prove the following upper-bound on the decay
rate of infection probabilities in the HeNeSIS model:

Proposition 1 Consider the HeNeSIS spreading process over a Markovian tempo-
ral network. Let �`` D �

P

`¤k �`k. If

�max.A1/ < 0

for the matrix

A1 D

2

6

6

6

6

6

6

4

BA1 � D C �11I �21I � � � �L1I

�12I
: : :

: : :
:::

:::
: : :

: : : �L;L�1I

�1LI � � � �L�1;LI BAL � D C �LLI

3

7

7

7

7

7

7

5

;

then the infection probabilities of nodes converge to zero exponentially fast with an
exponential decay rate of j�max.A1/j.

Besides providing an analytical method for quantifying the rate of convergence
to the disease-free state, this proposition allows us to optimally minimize the decay
rate of the epidemic by minimizing the maximum real eigenvalue �max.A1/ of
the Metzler matrix A1. In fact, by employing the celebrated Perron-Frobenius
theory [22] for nonnegative matrices, we are able to solve Problem 1 via a class
of optimization problems called geometric programming [47, Proposition 10],
briefly reviewed below [6]. Let x1, : : : , xn denote positive variables and define
x D .x1; : : : ; xn/. In the context of geometric programming, a real function g.x/
is a monomial if there exist a c 	 0 and a1; : : : ; an 2 R such that g.x/ D

cxa1
1 � � � xan

n . Also, we say that a function f .x/ is a posynomial if it is a sum of
monomials of x (we point the readers to [6] for more details). Given a collection
of posynomials f0.x/, : : : , fp.x/ and monomials g1.x/, : : : , gq.x/, the optimization
problem

minimize
x>0

f0.x/

subjectto fi.x/ � 1; i D 1; : : : ; p;

gj.x/ D 1; j D 1; : : : ; q;

is called a geometric program. A constraint of the form f .x/ � 1 with f .x/ being a
posynomial is called a posynomial constraint. It is known [6] that a geometric
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program can be efficiently converted into an equivalent convex optimization
problem, which can be solved in polynomial time [7].

We can now state the first main result of this chapter:

Theorem 1 ([37, Section VI]) Assume that the cost function f is a posynomial and,
also, there exists Oı > Nı such that the function Qg. Qı/ D g. Oı � Qı/ is a posynomial in Qı.
Then, the infection and recovery rates that solve Problem 1 are given by fˇ?i gn

iD1

and fOı � Qı?i gn
iD1, where the starred variables solve the optimization problem

minimize
ˇi; Qıi; v>0; �>0

1=�

subject to A1v � ��v;

n
X

iD1

.f .ˇi/C Qg. Qıi// � NR;

N
ˇ � ˇi � Ň;

Oı � Nı � Qıi � Oı �
N
ı:

(11.7)

Moreover, this optimization problem can be equivalently converted to a geometric
program.

In the optimization problem (11.7), the variable � becomes equal to ��max.A1/ at
optimality by Perron-Frobenius theory. It is rather straightforward to verify that the
optimization problem (11.7) can be converted to a geometric program. For example,
one can easily confirm that the vectorial constraint A1v � ��v is equivalent to the
following set of posynomial constraints

.
P

k¤` �k`vki/C ˇi
Pn

jD1ŒA`�ijv`j C Qıiv`i C �v`i

. Oıi � �`/v`i
� 1;

for all i D 1, : : : , n and ` D 1, : : : , L. We refer the interested readers to the
references [37, 47] for details.

11.2.3 Numerical Simulations

To illustrate the results presented in this section, we consider the HeNeSIS model
over a Markovian temporal network based on the well-known Zachary Karate
Club [72]. In order to construct a Markovian temporal network from this static
network, we first identify two clusters (i.e., a division of the set of nodes into two
disjoint subsets) in the network using the spectral clustering technique (see, e.g.,
[66]). We then classify the edges in the static network into the following three
classes: edges within the first cluster (E .1/), within the second cluster (E .2/), and
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between distinct clusters (E .3/). We then consider the following stochastic temporal
behavior for the network structure: edges in each class E .i/ (i D 1; 2; 3) appear
or disappear simultaneously, with an activation rate pi and a deactivation rate qi,
respectively. Notice that, in this setting, the temporal network has a total of 23 D 8

configurations G` D .V; E`/ (` D 1, : : : , 8) having the sets of edges listed
below:

E1 D E .1/ [ E .2/ [ E .3/;

E2 D E .1/ [ E .2/; E3 D E .2/ [ E .3/; E4 D E .1/ [ E .3/;

E5 D E .1/; E6 D E .2/; E7 D E .3/;
E8 D ;:

We show the transition diagram of the resulting Markovian temporal network
(called the Markovian Karate network) in Fig. 11.2, where solid (dashed) arrows
indicate transitions involving the activation (deactivation) of edges.

Using Proposition 1, we first illustrate how the time-variability of the Markovian
Karate network affects the behavior of the epidemic threshold. We let the activation
and deactivation rates of the edges be

p1 D p2 D 0:1; q1 D q2 D 1; p3 D 0:02; and q3 D 5: (11.8)

Fig. 11.2 Transition diagram of the Markovian Karate Club network. Circles and triangles
represent nodes belonging to the first and second clusters, respectively
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Fig. 11.3 The epidemic
threshold ˇc of the Markovian
Karate Club network versus
the recovery rate ı
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As for the HeNeSIS model, we first assume that all the nodes have the same
transmission rate ˇ and the recovery rate ı. For each value of ı 2 Œ0; 2�, we use a
bisection search to find the supremum ˇc of the transmission rate ˇ that guarantees
the exponentially fast extinction of the disease spread (i.e., �max.A1/ < 0). We
show the obtained values of ˇc versus ı in Fig. 11.3. We can observe that, unlike in
the case of static network, the threshold value ˇc in our case exhibits a nonlinear
dependence on ı.

We then move to the cost-optimal eradication of epidemic outbreaks over the
Markovian Karate network. Let us fix

N
ı D p1=2 D 0:05 and Ň D ˇc, which are

considered to be the ‘natural’ recovery and infection rates of the nodes. We then
assume that a full dose of vaccinations and antidotes can improve these rates at
most 20%, i.e., we let

N
ˇ D .0:8/ Ň; Nı D .1:2/

N
ı:

The cost functions for tuning the rates are set to be

f .ˇ/ D c1 C c2=ˇ
q; g.ı/ D c3 C c4=. Oı � ı/r; (11.9)

where q and r are positive parameters that allow us to tune the shape of the cost
functions; c1, : : : , c4 are constants to normalize the cost functions in such a way
that f .

N
ˇ/ D 1=2, f . Ň/ D 0, g.

N
ı/ D 0, and g.

N
ı/ D 1=2. Notice that, with this

choice of the normalization constants, we have R D 0 if .ˇi; ıi/ D . Ň;
N
ı/ for

every node i (i.e., all nodes keep their natural infection and transmission rates),
while R D n (full protection) if .ˇi; ıi/ D .

N
ˇ; Nı/ for every i (i.e., all nodes receive

the full amount of vaccinations and antidotes). Plots of the cost defined above are
shown for various values of q and r in Fig. 11.4, when Oı D 2 Nı. In our numerical
simulation, we use the values q D r D 0:1, in which case the cost functions become
almost linear (solid lines in Fig. 11.4). Setting the available budget as NR D n=2, we
solve the optimization problem in Theorem 1 and numerically obtain the optimal
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Fig. 11.4 Left: Cost function
(f ) for transmission rates.
Solid: q D 0:1, dashed:
q D 10, dotted: q D 50.
Right: Cost function (g) for
recovery rates. Solid:
r D 0:1, dashed: r D 10,
dotted: r D 50

β

β̄

β
Cost

δ

δ̄

δ

0 1/2 0 1/2
Cost

Table 11.1 Optimal investments for (a) infection rates and (b) recovery rates in the case of (1) the
Markovian network and (2) time-aggregated network, respectively. Darker node colors represent
heavier investments (i.e., either f .ˇ?i / or g.ı?i /) to vaccinate/antidote the node, while white nodes
do not receive any investment. The ‘boundary’ nodes receiving no investment in the Markovian
case, as well as those nodes receiving full investment in the time-aggregated case, are emphasized
with circles

(a) Infection rates (b) Recovery rates

(1) Markovian
network

�����

�����

�����

�����

(2) Time-
aggregated
network

�����

�����

�����

�����

resource allocation over the Markovian Karate network (illustrated in the first row
of Table 11.1). We can observe that the nodes at the ‘boundaries’ of clusters do not
receive much investment. This is reasonable because the first and second clusters are
effectively disconnected (due to the low activation rate p3 and the high deactivation
rate q3 of edges between clusters) and, therefore, the risk of infection across different
clusters is low.
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For the sake of comparison, we solve the same resource allocation problem for
the original (static) Karate Club network using the framework presented in [47] and
obtain another allocation of vaccines and antidotes over the network (shown in the
second row of Table 11.1). We can see that, in the latter allocation of resources,
some of the nodes (the circled nodes) at the boundaries of the clusters receive a full
investment, unlike in the Markovian case. This observation shows that, by taking
into account the time-variability of temporal networks, we are able to distribute
resources in a more efficient manner.

11.3 Edge-Independent Networks

Although the framework presented in the previous section can theoretically deal
with epidemic control on temporal networks presenting the Markovian property, the
framework is not necessarily applicable to some realistic temporal networks having
a large number of graph configurations (i.e., when the number L is large under
the notation in Sect. 11.2.1). For example, in the situation studied in Sect. 11.2.3,
it would be more realistic to assume that the activations and deactivations of edges
within a cluster or between clusters occur not simultaneously (as assumed in the
example) but rather respectively (or, independently of each other). However, if
we allow independent edge activations and deactivations for all the 78 edges in
the network, we would end up obtaining a Markovian temporal network having
L D 278 > 1023 possible graph configurations, which makes the optimization
problem (11.7) computationally untractable to solve.

The aim of this section is to present an optimization framework to contain
epidemic outbreaks over temporal networks where edges are allowed to activate and
deactivate independently of each other. We specifically focus on the HeNeSIS model
evolving over aggregated-Markovian edge-independent (AMEI) temporal networks
introduced in [41]. We present an efficient method for tuning the infection and
recovery rates of the nodes in the network for containing epidemic outbreak in
AMEI temporal networks. Unlike the optimization problem (11.7), the computa-
tional complexity for solving the optimization problem presented in this section
does not grow with respect to the number L of graph configurations. We also
remark that another advantage of the AMEI temporal networks is its ability of
modeling non-exponential, heavy-tail distributions of inter-event times found in
several experimental studies [9, 55].

11.3.1 Model

We start by presenting the definition of the aggregated-Markovian edge-independent
(AMEI) temporal network model [41]. For simplicity in our exposition, we shall
adopt a formulation slightly simpler than the original one in [41].
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Time

a2
a1

b) Sample path of edge-dynamics

d1

d2

i j

a1 a2

d1 d2

a) State-transition 
diagram of hij

Fig. 11.5 Example of the stochastic transitions of a particular edge fi; jg in an AMEI model with
the active set A D fa1; a2g and the inactive set D D fd1; d2g. Left: State-transition diagram of the
Markov process hij. Right: a sample path of the time-evolution of the edge fi; jg

Definition 1 ([41]) We say that a random and undirected temporal network G.t/ is
an aggregated-Markovian edge-independent (AMEI for short) temporal network if
there exist

• disjoint and finite sets A and D, and
• stochastically independent .A[D/-valued Markov processes hij for each distinct

and unordered pair fi; jg of nodes,

such that

(

edge fi; jg ispresentattime t; if hij.t/ 2 A;
edge fi; jg isnotpresentattime t; if hij.t/ 2 D:

We call A and D the active set and inactive set, respectively (see Fig. 11.5 for an
illustration).

A few remarks on the AMEI temporal networks are in order. First, the indepen-
dence of the Markov processes hij for all pairs of nodes ensures the independent
dynamics of the connectivity of any node-pairs, unlike in the example presented in
Sect. 11.2.3. Secondly, in the special case where both A and D consist of a single
element, AMEI temporal networks reduce to the well-known model of temporal
networks called the edge-Markovian model [12]. Thirdly, AMEI temporal networks
in fact allow us to model a wider class of temporal networks. For example, in an
edge-Markovian graph, the time it takes for an edge to switch from connected to
disconnected (or vice versa) must follow an exponential distribution. In contrast, in
an AMEI temporal network, we can design the active and inactive sets A;D as well
as the Markov process hij to fit any desired distribution for the contact durations
with an arbitrary precision [41, Example 1]. Finally, since all the processes hij are
Markovian, the dynamics of an AMEI temporal network can be described by the
collection h D .hij/i;j, which is again a Markov process.
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11.3.2 Optimal Resource Allocation

In this section, we consider the same epidemiological problem as Problem 1:

Problem 2 ([33]) Consider a HeNeSIS model over an AMEI temporal network.
Given a budget NR > 0, tune the infection and recovery rates ˇi and ıi in the network
in such a way that the exponential decay rate of the infection probabilities is mini-
mized while satisfying the budget constraint R � NR and the box constraints (11.6).

Although Problem 2 is a particular case of Problem 1 for general Markovian
temporal networks since an AMEI temporal network is Markovian, we cannot
necessarily apply the optimization framework presented in Theorem 1 to the current
case for the following reason. Notice that an AMEI temporal network allows a total
of 2m graph configurations, where m D 2n.n�1/=2 is the number of the undirected
edges that can exist in the network. This implies that the dimension of the vector-
valued decision variable v in the optimization problem (11.7), nL D n2m, grows
exponentially fast with respect to n, making it very hard to efficiently solve the
optimization problem (11.7) even for small-scale networks. We further emphasize
that this difficulty cannot be relaxed as long as we rely on the estimate on the
decay rate of infection probabilities presented in Proposition 1, because the estimate
already relies on a matrix of dimensions .nL/ � .nL/. This observation motivates
us to derive an alternative, computationally efficient method for estimating the
decay rate of infection probabilities. In this direction, using tools from random
matrix theory, we are able to derive an alternative, tractable extinction condition
for spreading processes over AMEI temporal networks [41]:

Proposition 2 ([41, Theorem 3.4]) For positive constants b and d, define the
decreasing function �.s/ D n exp.s=b/Œ.bs C d/=d��.bsCd/=b2 for s 	 0. Let us
consider the HeNeSIS spreading process over an AMEI temporal network. Define
the n � n matrix NA D ŒNaij�i;j by

Naij D lim
t!1

Pr.aij.t/ D 1/: (11.10)

Let	 D max1�i�n
Pn

jD1

�

ˇiˇj NAij.1 � NAij/
�

and c D �max.B.sgn NA/�D/���1
ˇmax;	

.1/,
where sgn.�/ denotes the entry-wise application of the sign function and ˇmax D

max1�i�n ˇi. If

�max.A2/ < �; (11.11)

where

A2 D B NA � D

and

� D max
s2.��1

ˇmax ;	
.1/;

N
ıC.jcj�c/=2�

�

�
s C c�ˇmax;	.s/

1 � �ˇmax;	.s/

�

;

then the infection probabilities converge to zero exponentially fast, almost surely.
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The extinction condition (11.11) is comparable with the condition in (11.3) for
static networks. Roughly speaking, we can understand NA defined in (11.10) as the
adjacency matrix of a weighted static network NG ‘representing’ the original AMEI
temporal network, while � can be regarded as a safety margin we have to impose
as a penalty for the simplification. We further notice that the static network NG arises
by taking a long-time limit of the original AMEI temporal network [41]. We finally
remark that it is possible to upper-bound the decay rate of the convergence of infec-
tion probabilities using the maximum real eigenvalue of A2 (for details, see [41]).

Proposition 2 gives us the following two alternative options to solve Problem 2
for a given HeNeSIS spreading process over an AMEI temporal network: (1) to
increase � or (2) to decrease �max.A2/. Among these two options, the former
is not realistic because � has a complicated expression and depends on relevant
parameters in a highly complex manner. On the other hand, the maximum real
eigenvalue �max.A2/ is easily tractable by the framework used in Sect. 11.2.2. This
consideration leads us to the following solution to Problem 2:

Theorem 2 ([37, Section VI]) Assume that the cost function f is a posynomial and,
also, there exists Oı > Nı such that the function Qg. Qı/ D g. Oı � Qı/ is a posynomial in Qı.
Then, the infection and recovery rates that optimally solve Problem 2 are given
by fˇ?i gn

iD1 and fOı � Qı?i gn
iD1, where the starred variables solve the optimization

problem

minimize
ˇi; Qıi; v>0; �>0

1=�

subject to A2v � ��v;

n
X

iD1

.f .ˇi/C Qg. Qıi// � NR;

N
ˇ � ˇi � Ň;

Oı � Nı � Qıi � Oı �
N
ı:

Moreover, this optimization problem can be equivalently converted to a geometric
program.

11.3.3 Numerical Simulation

In this subsection, we illustrate the optimization framework for the optimal resource
allocation over AMEI temporal networks presented in Theorem 2. For simplicity
in the presentation, and to be consistent with the Markovian case in the previous
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section, we focus on the case where A and D are singletons (although the
following analysis can be applied to the general non-Markovian case where the
edge-dynamics is explained by Markov processes hij). In this subsection, we
consider the HeNeSIS spreading model over an AMEI temporal network based
on the static Karate network. Recall that, in the Markovian Karate network, the
activations and deactivations of edges within a cluster (or between clusters) must
occur simultaneously. In this numerical simulation, we assume that these activations
and deactivations occur independently of other edges. We specifically construct our
AMEI temporal network as follows. For an edge fi; jg between the nodes belonging
to the first (or second) cluster, we let hij be the two-state Markov process whose
activation and deactivation rates are given by p1 and q1 (p2 and q2, respectively).
Also, we let the activation and deactivation rates of edges between different clusters
to be p3 and q3. The values of these activation and deactivation rates are the same
as in (11.8). Finally, for a pair fi; jg of nodes not connected in the static Karate Club
network, we let their activation and deactivation rates to be 0 and 1, respectively.
This choice guarantees that edges not present in the static network do not appear in
our AMEI Karate network.

Using the cost function in (11.9), as well as the box constraints (11.6) and
budget NR D n=2 used in Sect. 11.2.3, we numerically solve Problem 2 by using
Theorem 2. The obtained resource distribution is illustrated in Fig. 11.6. As for the
infection rates, we observe that nodes at the ‘boundaries’ of the clusters receive
small investments, as already observed in the Markovian case. On the other hand,
we cannot clearly observe this phenomenon for recovery rates. We finally notice
that, in this specific numerical simulation, the resulting investment heavily leans
towards increasing recovery rates, not decreasing infection rates.

Fig. 11.6 Optimal resource allocation for the AMEI Karate Club network. Circles and triangles
represent different clusters. Left: costs for transmission rates. Right: costs for recovery rates. Darker
colors represent heavier investments, while white nodes do not receive any investment
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11.4 Adaptive Networks

In the case of epidemic outbreaks, it is commonly observed that the connectivity of
human networks is significantly influenced by the progress of the disease spread.
This phenomenon, called social distancing [4, 16], is known to help societies cope
with epidemics. A key feature of temporal networks of this type is their dependence
on the nodal infection states. However, this structural dependence (or adaptation)
cannot be well captured by the Markovian temporal networks because, in those
networks, the dynamics of the network structure is assumed to be independent of
the nodal states. In this direction, the aim of the current section is to present the
so-called Adaptive SIS (ASIS) model [18, 39], which is able to replicate adaptation
mechanisms found in realistic networks. We first present a tight extinction condition
of epidemic outbreaks evolving in the ASIS model. Based on this extinction
condition, we then illustrate how one can tune the adaptation rates of networks to
eradicate epidemic outbreaks over the ASIS model.

11.4.1 Model

In this section, we first describe the heterogeneous ASIS model [39]. As in the
HeNeSIS model over Markovian temporal networks (studied in the previous two
sections), the ASIS model consists of the following two components: the f0; 1g-
valued nodal states xi.t/ and a temporal network G.t/. While the nodal states in
the ASIS model have the same transition probabilities as in (11.5), the transition
probabilities of the network G.t/ in the ASIS model are quite different from
Markovian temporal networks because the probabilities depend on the states of the
nodes, as described below. Let G.0/ D .V; E.0// be an initial connected contact
graph with adjacency matrix A.0/ D Œaij.0/�i;j. Then, edges in the initial graph G.0/
appear and disappear over time according to the following transition probabilities:

Pr.aij.t C h/ D 0 j aij.t/ D 1/ D �ixi.t/h C �jxj.t/h C o.h/; (11.12)

Pr.aij.t C h/ D 1 j aij.t/ D 0/ D aij.0/ ijh C o.h/; (11.13)

where the parameters �i > 0 and  ij D  ji > 0 are called the cutting and
reconnecting rates, respectively. Notice that the transition rate in (11.12) depends
on the nodal states xi and xj, inducing an adaptation mechanism of the network
structure to the state of the epidemics. The transition probability in (11.12) can be
interpreted as a protection mechanism in which edge fi; jg is stochastically removed
from the network if either node i or j is infected. More specifically, because of
the first summand (respectively, the second summand) in (11.12), whenever node i
(respectively, node j) is infected, edge fi; jg is removed from the network according
to a Poisson process with rate �i (respectively, rate �j). On the other hand, the
transition probability in (11.13) describes a mechanism for which a ‘cut’ edge
fi; jg is ‘reconnected’ into the network according to a Poisson process with rate
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Fig. 11.7 Adaptation
mechanisms in the Adaptive
SIS model
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 ij (see Fig. 11.7). Notice that we include the term aij.0/ in (11.13) to guarantee
that only edges present in the initial contact graph G.0/ can be added later on by the
reconnecting process. In other words, we constrain the set of edges in the adaptive
network to be a part of the arbitrary contact graph G.0/.

11.4.2 Optimal Resource Allocation

In this section, we consider the situation in which we can tune the values of the
cutting rates in the network by incurring a cost. In particular, we can tune the value
of the cutting rate of node i to �i by incurring a cost of h.�i/. The total tuning cost
is therefore given by

R D

n
X

iD1

h.�i/:

Although the problem of tuning the reconnection rates ij for keeping the connectiv-
ity of the whole network is another important problem [54], in this chapter we focus
on the eradication of epidemics. In this setup, we can state the following optimal
resource allocation problem:

Problem 3 Consider a heterogeneous ASIS model. Given a budget NR, tune the
cutting rates �i in the network in such a way that the exponential decay rate of the
infection probabilities is maximized while satisfying the budget constraint R � NR
and the box-constraint 0 <

N
� � �i � N�.

In order to solve this problem, we shall follow the same path as we did in
the previous sections: we first find an analytical estimate of the decay rate of the
infection probabilities in the ASIS model. For this purpose, we first represent the
ASIS model by a set of stochastic differential equations described below (see [39]
for details). For � > 0, let N� denote a Poisson counter with rate � [15]. Then,
from the two equations in (11.5), the evolution of the nodal states can be exactly
described by the following stochastic differential equation:

dxi D �xi dNıi C .1 � xi/
X

j2Ni.0/

aijxj dNˇi ; (11.14)
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for all nodes i. Similarly, from (11.12) and (11.13), the evolution of the edges can
be exactly described by

daij D �aij.xi dN�i C xj dN�j/C .1 � aij/ dN ij ; (11.15)

for all fi; jg 2 E.0/. Then, by (11.14), the expectation EŒxi� obeys the differential
equation .d=dt/EŒxi� D �ıiEŒxi�C ˇi

P

k2Ni.0/
EŒ.1 � xi/aikxk�. Let pi.t/ D EŒxi.t/�

and qij.t/ D EŒaij.t/xi.t/�. Then, it follows that

dpi

dt
D �ıipi C ˇi

X

j2Ni.0/

qji � fi; (11.16)

where fi D ˇi
P

k2Ni.0/
EŒxixkaik� contains positive higher-order terms. Similarly,

from (11.14) and (11.15), the Ito formula for stochastic differential equations (see,
e.g., [19]) shows that

dqij

dt
D � �ipij C  ij.pi � qij/ � ıiqij C ˇi

X

k2Ni.0/

qki � gij; (11.17)

where gij D �jEŒxixjaij� C ˇi
P

k2Ni.0/
EŒxixkaik C .1 � aij/aikxk� contains positive

higher-order terms. We remark that the differential equations (11.16) and (11.17)
exactly describe the joint evolution of the spreading process and the network
structure without relying on mean-field approximations.

Based on the above derivation, we are able to prove the following proposition:

Proposition 3 ([39]) Let Ti be the unique row-vector satisfying Tiq D
P

k2Ni.0/
qki.

Define the matrices

B1 D col
1�i�n

.ˇiTi/; B2 D col
1�i�n

.ˇi1di ˝ Ti/; D1 D

n
M

iD1

ıi; D2 D

n
M

iD1

.ıiIdi/;

˚ D

n
M

iD1

.�iIdj/; �1 D

n
M

iD1

. col
j2Ni.0/

 ij/; �2 D

n
M

iD1

M

j2Ni.0/

 ij;

where di denotes the degree of node i in the initial graph G.0/, ˝ denotes the
Kronecker product [8] of matrices, and 1n denotes the all-one vector of length n. If
the matrix

A3 D

	

�D1 B1
�1 B2 � D2 � ˚ � �2






260 M. Ogura and V.M. Preciado

satisfies

�max.A3/ < 0; (11.18)

then the infection probabilities in the heterogeneous ASIS model converge to zero
exponentially fast with an exponential decay rate j�max.A3/j.

We remark that, in the homogeneous case, where all the nodes share the same
infection rate ˇ > 0 and recovery rate ı > 0, and all the edges share the same cutting
rate � > 0 and reconnecting rate  > 0, the condition in (11.18) reduces [39] to the
following simple inequality:

ˇ

ı
<

1C !

�max.A.0//
; (11.19)

where! D �=.ı C  / is called the effective cutting rate. The proof of this reduction
can be found in [39, Appendix B]. We remark that, in the special case when the
network does not adapt to the prevalence of infection, i.e., when � D 0, we have
that ! D 0 and, therefore, the condition in (11.19) is identical to the extinction
condition (11.4) corresponding to the homogeneous networked SIS model over a
static network [62].

Now, based on Proposition 3, one can give the following solution to Problem 3
based on geometric programming:

Theorem 3 ([39, Section IV]) Assume that there exists O� > N� such that the
function Qh. Q�/ D h. O� � Q�/ is a posynomial in Q�. Then, the cutting rates that
solve Problem 3 are given by f O� � Q�?i gn

iD1, where the starred variables solve the
optimization problem:

minimize
Q�i; v>0; �>0

1=�

subject to A3v � ��v;

n
X

iD1

Qh. Q�i/ � NR;

O� � N� � Q�i � O� �
N
�:

Moreover, this optimization problem can be equivalently converted to a geometric
programming.

11.4.3 Numerical Simulations

In this section, we illustrate the results presented in this section. Let the initial
graph G.0/ be the Zachary Karate Club. We first consider the homogeneous case,
and fix the recovery rate and the reconnecting rate in the network to be ı D 1 and
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Fig. 11.8 The meta-stable
(quasi-stationary) number of
the infected nodes y� versus
ˇ and �, with ı D 1 and
 D 2. The dashed straight
lines show the analytically
derived lower bound
.1C !/=�max.A.0// D ˇ on
the epidemic threshold

 D 2 for all nodes in the graph, for the purpose of illustration. We then compute
the meta-stable (i.e., quasi-stationary) value y� of the infected nodes in the network
for various values of ˇ and � (for the details of this simulation and its parameters,
see [39]). The obtained numbers are shown as a contour plot in Fig. 11.8. We see
how the analytical threshold ˇ=ı D .1C !/=�max.A.0// from (11.19) (represented
as a dashed straight line in Fig. 11.8) is in good agreement with the numerically
found threshold y� D 1.

We then consider the optimal resource distribution stated in Problem 3. We
assume that all the nodes share the same infection rate ˇc and recovery rate 0:05
that were used in the previous examples. We also assume that the reconnection rates
are given by

 ij D

8

ˆ

ˆ

<

ˆ

ˆ

:

p1; if i and j belongtothefirstcluster;

p2; if i and j belongtothesecondcluster;

p3; otherwise;

for the values given in (11.8). In this simulation, we use the cost function h.�/ D

c5Cc6=. O���/s similar to the one used in (11.9), where s is a positive parameter for
tuning the shape of the cost function, O� is a constant larger than N�, and c5 and c6 are
constants such that h.

N
�/ D 0 and h. N�/ D 1. We let

N
� D 0:5, N� D 1:5, O� D 100 N�,

and s D 1, for which the resulting cost function resembles a linear function as
in the case of Markovian temporal networks. Using these cost functions and the
budget NR D n=2, we numerically solve the optimization problem in Theorem 3 to
find the optimal distribution of resource over the network (illustrated in Fig. 11.9).
Interestingly, unlike in the Markovian cases in Sects. 11.2 and 11.3, we cannot
clearly observe the phenomenon where nodes at the boundaries of the clusters
receive relatively less investments.

Finally, in Fig. 11.10, we summarize the amount of optimal resource distributions
obtained for the Markovian, AMEI, and ASIS Karate Club networks. We see that,
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Fig. 11.9 The distribution of
the resource for tuning the
cutting rates in the ASIS
Karate network. Darker
colors represent heavier
investments, while white
nodes do not receive any
investment

Fig. 11.10 Optimal intervention on nodes. In each circle (node), the upper-right, lower, and
upper-left colors indicate the investments according to the Markovian, AMEI, and ASIS formu-
lations, respectively. Darker colors represent heavier investments, while white color indicates no
investment

although the three allocations share a certain tendency such as concentration of
resource on high-degree nodes, they are not necessarily qualitatively equal. This
observation confirms the necessity of appropriately incorporating the characteristics
of temporal/adaptive networks into our mechanism of resource distributions.
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11.5 Conclusion

In this chapter, we have given an overview of recent progress on the problem of
containing epidemics taking place on temporal and adaptive complex networks.
Specifically, we have presented analytical frameworks for finding the optimal
distribution of resources over Markovian temporal networks, aggregated-Markovian
edge-independent temporal networks, and in the Adaptive SIS model. For each of
the cases, we have seen that the optimal resource distribution problems can be
reduced to an efficiently solvable class of convex optimization problems called
geometric programming. We have illustrated the results with several numerical
simulations based on the well-studied Zachary Karate Club.
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Chapter 12
Mapping Out Emerging Network Structures
in Dynamic Network Models Coupled
with Epidemics

István Z. Kiss, Luc Berthouze, Joel C. Miller, and Péter L. Simon

Abstract We consider the susceptible – infected – susceptible (SIS) epidemic on
a dynamic network model with addition and deletion of links depending on node
status. We analyse the resulting pairwise model using classical bifurcation theory
to map out the spectrum of all possible epidemic behaviours. However, the major
focus of the chapter is on the evolution and possible equilibria of the resulting
networks. Whereas most studies are driven by determining system-level outcomes,
e.g., whether the epidemic dies out or becomes endemic, with little regard for the
emerging network structure, here, we want to buck this trend by augmenting the
system-level results with mapping out of the structure and properties of the resulting
networks. We find that depending on parameter values the network can become
disconnected and show bistable-like behaviour whereas the endemic steady state
sees the emergence of networks with qualitatively different degree distributions. In
particular, we observe de-phased oscillations of both prevalence and network degree
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during which there is role reversal between the level and nature of the connectivity
of susceptible and infected nodes. We conclude with an attempt at describing what
a potential bifurcation theory for networks would look like.

12.1 Introduction

Networks have been and remain extremely useful in modelling complex systems.
Their use has led to rapid progress in the study of stochastic spreading processes
such as information, rumour and epidemics. The role of contact heterogeneity,
preferential mixing and (to a lesser extent) of clustering is now well understood [3,
11, 17]. Mean-field models ranging from heterogenous mean-field [17], pairwise
[5, 9, 10] and effective-degree [1, 13] to edge-based compartmental models [15, 16]
have proved crucial in circumventing the technical analysis of the underlying
stochastic process. This shifts the focus onto the analysis of low-dimensional sys-
tems of ordinary differential equations, where variables are system-level expected
values such as the the number of nodes and edges of different statuses.

Attempting to account for more realistic features of spreading processes (e.g.,
non-exponentially-distributed waiting times) or networks (e.g., clustered and/or
with higher-order structure, time-varying or embedded in some space) leads to
models that are more complex, harder to analyse and less transparent. Indeed,
this typically requires (i) more complex network models, including a better under-
standing of the properties of empirical networks, or (ii) the derivation of new or
refined mean-field models which may require sophisticated mathematical tools or
techniques.

In this chapter we focus on the latter and consider a model where the epidemic
dynamics on the network is coupled with a network which evolves in time. Several
studies have already made important observations regarding how coupling the
dynamics on the network with that of the network may change or enrich the outcome
of the epidemic. For example, [7] showed that for a rewiring process that preserved
the number of links (“link number-preserving”) where susceptible nodes cut links to
infected nodes and instantaneously reconnect to a random susceptible node, can lead
to oscillations, albeit over a very narrow area of the parameter space [8]. This model
was later refined and extended either by considering a different rewiring mechanism
(e.g., non link-preserving rewiring but still dependent on link status [19, 22, 24, 25])
or by modelling the same process but with more sophisticated models such as the
effective degree [14]. For reviews on this topic, we refer the reader to [6, 20].

Such dynamic or adaptive networks present several challenges in that usually
the resulting mean-field models are of a higher dimension than the static network
equivalent. In many cases, this is explained by the fact that closures now involve
dynamic or time-varying quantities (e.g., the average degree of the network) that
need to be tracked via their own equations. But perhaps more important is the fact
such coupled dynamics lead to correlations that usually violate the assumptions
behind even the more complex closures. Still, mean-field models have an important
role to play in providing a qualitative picture of the different behaviours of the
system, and to guide a more rigorous analysis.
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Despite ongoing progress in model refinement and accounting for more realistic
scenarios of dynamic contact structures, very few studies focus on understanding
and mapping out the structure of the emerging networks. While there is detailed
information about when an epidemic dies out, there is value in knowing whether
the epidemic died out due to the network being poorly connected or due to an
unfavourable ratio of infection to recovery rates despite the network being well
connected. Other important insights may come from knowing whether the fluctua-
tions in prevelance can lead to fluctuation in average degree of the network, whether
the network can fall apart into disjointed components isolating the infection; or,
finally, what the degree distribution will be at the endemic equilibrium or during
oscillations in prevalence. In this chapter we set out to map out the structure of
the emerging networks for an SIS epidemic coupled with a link status-dependent
link addition and deletion model, where existing links are deleted and new links are
created depending on the disease status of the nodes that these links connect.

The chapter is structured as follows. After formulating the model in Sect. 12.2,
we provide a bifurcation analysis of the simple pairwise model describing the cou-
pled epidemic and dynamic network model in Sect. 12.3. Section 12.4 is dedicated
to mapping out the emerging network structure by using the compact pairwise model
which tracks the degree of the nodes and by relying on explicit stochastic network
simulations. We conclude with a discussion of our results identifying open questions
and new directions for further research.

12.2 Model Formulation

This chapter considers SIS (susceptible-infected-susceptible) epidemic propagation
on an adaptive network with link status-dependent link activation and deletion.
Specifically, the model incorporates the following independent Poisson processes:

• Infection: Infection is transmitted across each contact between an I and an S
node, or .I � S/ link, at rate � ,

• Recovery: Each I node recovers (becoming an S node) at rate � independently
of the network,

• Link activation: A non-existing link between a node of status A and another of
status B is activated at rate ˛AB, with A;B 2 fS; Ig,

• Link deletion: An existing link between a node of status A and another of status
B is terminated at rate !AB, with A;B 2 fS; Ig.

This model is significantly different from ‘smart’ rewiring [6], where S nodes have
full knowledge of the status of all other nodes and choose to minimise their exposure
to infection by cutting links to I neighbours and immediately rewiring to a randomly
chosen S node. This latter approach conserves the number of links in the network
and simplifies the analysis of the resulting system, by not having to consider an
evolving average degree.
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Here, we set out to explore and explain the spectrum of system behaviours
with special focus on understanding and mapping the evolution of the network
structure and attainable network equilibria. The first task is carried out via classical
bifurcation analysis at system level and focuses on identifying regimes such as die-
out, endemic equilibria and oscillations.

In order to do this, we will employ a number of approaches including: (i) two
different types of pairwise or pair-based mean-field ODE models, and (ii) full
network-based stochastic simulation. Regarding the rewiring parameters we focus
on two scenarios, namely:

A. ˛SI D ˛II D ˛SS D ˛ and !SI D !II D !SS D !, and
B. ˛SI D ˛II D 0 and ˛SS ¤ 0, and !II D !SS D 0 and !SI ¤ 0.

While the first is link status-independent and leads to simpler and more tractable
models, the second is motivated by practical considerations, such as those used in
the ‘smart’ rewiring – where nodes aim to minimise the risk of becoming infected
while maintaining their connectivity to the network.

We start by formulating the pairwise model for the expected number of nodes
and pairs of different statuses. As was shown in [12], this gives rise to

PŒI� D �ŒSI� � �ŒI�; (12.1a)

PŒSI� D �.ŒII� � ŒSI�/C �.ŒSSI� � ŒISI� � ŒSI�/C ˛SI
�

ŒS�ŒI� � ŒSI�
�

� !SI ŒSI�;

(12.1b)

PŒII� D �2�ŒII�C 2�.ŒISI�C ŒSI�/C ˛II
�

ŒI�.ŒI� � 1/ � ŒII�
�

� !II ŒII�; (12.1c)

PŒSS� D 2�ŒSI� � 2�ŒSSI�C ˛SS
�

ŒS�.ŒS� � 1/ � ŒSS�
�

� !SSŒSS�: (12.1d)

These equations can be interpreted using Fig. 12.1. The basic idea of pairwise
models is to derive evolution equations for the expected number of nodes of different
statuses, i.e., ŒX�where X 2 fS; Ig. However, looking at the evolution equation of ŒI�,
see equation (12.1a), we note that this depends on the expected number of ŒSI� pairs,
and hence equations for this and other pairs, e.g., ŒSS� and ŒII�, are also needed. The
evolution equations of pairs will then depend on the expected number of triples with
nodes of certain statuses, i.e., ŒSSI� and ŒISI�. This leads to a hierarchical dependence
of pairs on triples and then of triples on quadruples, and so on. This is obviously
not practical due to the combinatorial explosion in number of equations. Hence, a
closure is needed which in this case approximates triples in terms of singles and
pairs. From the model it follows that ŒS�C ŒI� D N, and that the closure requires the
time-dependent expected average degree of S nodes. This is given by

kS.t/ D
ŒSS�C ŒSI�

ŒS�
: (12.2)
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Fig. 12.1 A flow diagram leading to system (12.1). (top) The relevant flows for the individual-
level variables. The solid line denotes an infection, while the sinuous line denotes a recovery.
The rate of new infecteds depends on ŒSI�, and so we require pair-level variables. (bottom) The
relevant flows for the pair-level variables. The colours denote the status of the “first” node in the
edge. The solid lines denote infections, the sinuous lines denote recoveries, and the dashed lines
denote addition or removal of edges. Some of the infection events involve triples, and so we need
triple-level variables or a closure

The well-known closure [10] is used, namely

ŒSSI� D
.kS � 1/ŒSS�ŒSI�

kSŒS�
and ŒISI� D

.kS � 1/ŒSI�ŒSI�

kSŒS�
: (12.3)

Upon applying these closures, a self-consistent system with 4 ODEs is obtained.
This can be analysed using classical bifurcation theory techniques.

It is worth noting that the pairwise model above makes some implicit assump-
tions. First, it assumes that pairs and triples are counted multiple times. This for
example implies that ŒSI� D ŒIS� and that ŒSS� stands for twice the number of singly
counted edges connecting susceptible nodes. Similarly, ŒISI� is a multiple count of
arrangements such as nodes i, j and k, with susceptible node j being connected
to infected nodes i and k. Second, our model does not explicitly account for the
degree of nodes and thus degree-degree correlations are omitted. Finally, we note
that closures use the time-dependent excess degree of susceptible nodes, kS.t/, rather
than the average degree of the network, hki, as it is done for static network models.
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12.3 Bifurcation Analysis of the Epidemic

12.3.1 Bifurcation Analysis of the System Behaviour for
Scenario A

Turning to scenario A, i.e., the case in which edges are added or removed
independently of node status (˛SS D ˛SI D ˛II WD ˛ and !SS D !SI D !II WD !),
we determine the steady states and the local behaviour around them. In [12] it was
shown that the network becomes an Erdős-Rényi type random graph at the steady
state and the probability an edge is active is p D ˛

˛C!
. So the average degree at

equilibrium is

hki D .N � 1/
˛

˛ C !

In this case the coordinates of the disease-free steady state are ŒI� D 0, ŒSI� D 0,
ŒII� D 0 and ŒSS� D N.N�1/˛

!C˛
. The Jacobian matrix corresponding to this steady

state is

J D

0

B

B

@

�� � 0 0

˛N �.hki � 2/ � ˛ � � � ! � 0

�˛ 2� �2� � ˛ � ! 0

˛.�2N C 1/ 2� � 2�.hki � 1/ 0 �˛ � !

1

C

C

A

;

Solving the equation det J D 0 for � shows that a transcritical bifurcation occurs at

�c D
�.2� C ˛ C !/

˛N C 2�.hki � 1/
; (12.4)

which is derived in [23]. Numerical investigation shows that for � < �c the solutions
of the system tend to the disease-free steady state, while for � > �c the solutions
converge to the endemic steady state. Oscillations were not observed in this case,
see [23].

An approximation to this bifurcation curve can be determined by theoretical
considerations. The simplest way of approximating the transcritical bifurcation
curve, which separates the endemic and disease-free regions, is to start from the
steady state equation �ŒSI� D �ŒI� and make an additional assumption (the pair
closure) ŒSI� � hki

N�1
ŒS�ŒI�. Substituting this into the steady state equation with

hki D N˛=.˛ C !/, then dividing by ŒI� and substituting ŒS� D N, which holds
at the boundary of the endemic region, we arrive at

�pc D �
˛ C !

N˛
;
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Fig. 12.2 Four behaviours observed in simulations of scenario A in the .�; !/ parameter space
and the theoretical bifurcation curves for ˛ D 0:01, N D 200, � D 1. The horizontal (dash-
dotted line) represents the boundary of the parameter domain where the graph transitions from
connected to disconnected. In the simulation, networks which on average had at least 3 disjointed
components were considered disconnected. The other two curves are the transcritical bifurcation
curves obtained from the mean-field approximation (continuous diagonal line) and from the
pairwise approximation (12.4) (dashed line). The markers are as follows: � – connected, epidemic,
� – connected, no epidemic, ı – disconnected, epidemic, and ı – disconnected, no epidemic

where the subscript ‘pc’ denotes pairwise closure. This bifurcation curve and that
given by the pairwise model, see (12.4), are shown in Fig. 12.2. As expected
the agreement is only partial since the pairwise model provides a more accurate
approximation of the true stochastic model.

12.3.2 Bifurcation Analysis of the System Behaviour for
Scenario B

Focusing on scenario B, the system admits two equilibria: (a) a disease-free
equilibrium .ŒS�; ŒI�; ŒSI�; ŒII�; ŒSS�/ D .N; 0; 0; 0;N.N � 1// and (ii) an endemic
equilibrium which emerges from the solution of a quartic equation.

The linearisation around the disease-free steady state gives rise to a 4 � 4

Jacobian, the eigenvalues of which can be determined explicitly, see Appendix A
in [24]. As shown, two of the eigenvalues are always negative and the remaining
two have negative real part if and only if

!SI > �.N � 2/ � �; (12.5)

which gives rise to a transcritical bifurcation where!SI D �.N�2/�� , see Fig. 12.3.
Thus the following Proposition holds.
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Proposition 1 The disease-free steady state is stable if and only if !SI > �.N �

2/ � � .
As mentioned above the endemic steady state is the solution of a quartic equation,

see [24] for its detailed derivation. The analysis of this equation leads to the
following proposition concerning the existence of the endemic steady state.

Proposition 2 If ŒS� D x 2 .0;N/ is a root of polynomial

x4 C A3x
3 C A2x

2 C A1x C A0 D 0; (12.6)

with

A3 D 4ab � 3 � 2b � c;

A2 D 2C 2b C c C b2 C bc � 6ab � 4ab2 � 2abc C 4a2b2 C Nb.1 � 4a/;

A1 D Nb.�1C 6a � b � c C 6ab C 2ac � 8a2b/;

A0 D 2N2ab2.1 � 2a/;

where a D !SI
˛SS

, b D �

�
and c D !SI

�
, then the system has an endemic steady state,

the coordinates of which can be given as

ŒS�ss D x; ŒI�ss D N � x; ŒSI�ss D
�

�
.N � x/;

ŒSS�ss D x.x � 1/ � 2
!SI�

˛SS�
.N � x/; ŒII�ss D

�.N � x/2

�x
C
.N � x/ŒSS�ss

ŒSS�ss C ŒSI�ss
:

Extensive numerical tests suggest that the quartic polynomial has a single root pro-
viding a biologically plausible steady state. This means that below the transcritical
bifurcation there is a unique endemic steady state. That is for a fixed value of � ,
there is a critical cutting rate !crit

SI such that the unique endemic steady state exists
if and only if !SI < !

crit
SI D �.N � 2/ � � .

Similarly, the stability of the endemic steady state can only be computed numer-
ically by evaluating the coefficients of the characteristic polynomial. However,
this does not prevent us from mapping out where the Hopf bifurcation arises (see
Appendix A in [24] for details). It has been shown that the Hopf bifurcation points
carve out an island from the parameter space, as shown in Fig. 12.3, within which
the prevalence exhibits stable oscillations. Hence, the region below the transcritical
bifurcation line and outside the Hopf island is where the endemic equilibrium is
stable. It is important to note that the system-level analysis can be complemented by
the observation that the expected average degree displays a behaviour similar to that
of the expected number of infected nodes, as illustrated by the top panel of Fig. 12.6
but produced using the compact pairwise model.



12 Mapping Out Emerging Network Structures in Dynamic Network Models. . . 275

0 1 2 3 4
0

200

400

600

800

Oscillation Endemic

Disease free

τ

ω
SI

0 0.1 0.2
0

20

40

Fig. 12.3 Bifurcation diagram for the pairwise ODE model for scenario B in the .�; !SI/ parameter
space for N D 200, � D 1 and ˛SS D 0:04. The transcritical bifurcation occurs along the dashed
line, and the Hopf bifurcation occurs along the perimeter of the island

12.4 Network Bifurcation

While some studies of adaptive or dynamic networks do consider and analyse
changes in network structure [7, 14, 25], there are many papers which only focus
on disease-related quantities such as the prevalence of infection with the aim to
characterise those via bifurcation analysis.

However, it has been observed that the networks themselves can also undergo
significant changes in time depending on parameters. For example, Gross et al. [7]
reported segregation of networks into different components, see Fig. 12.7 also. Such
analysis can reveal important network features which can invalidate the use of mean-
field or pairwise models and, more importantly, may reveal the true impact of the
interplay between dynamics on and of the network on changes in the underlying
networks and the range of emerging networks.

Emergence of network structure from such dynamic network models could also
be interpreted as a more natural or organic form of emergence of structure, compared
to that observed in artificial or synthetic network models. In what follows we aim to
couple the analysis of system- and network-level changes, in order to concurrently
reveal the spectrum of behaviours at all levels, i.e., both system and network.
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12.4.1 Mapping the Emerging Network Structure onto the
System-Level Bifurcation Picture for Scenario A

In the case of scenario A, that is, when ˛SI D ˛II D ˛SS WD ˛, and !II D !SS D

!SI WD ! a more complete characterisation of network bifurcations can be achieved.
As suggested by the pairwise model, two behaviours may occur according to the
long time prevalence level, namely disease-free or endemic steady state. As regards
the network structure we studied the connectivity (through determining the type and
number of connected components) of the network and its degree distribution. Our
goal here is to map out system and network behaviour over the .�; !/ parameter
space. We consider several stochastic simulations at each lattice point in the .�; !/
parameter plane. The average epidemic level and network connectivity are then
determined at the steady state (after a sufficiently long time). The different system
and network level outcomes yield four different behaviours shown in Fig 12.2. The
most interesting observation is that epidemics can be curtailed either because the
network gets disconnected or because the epidemic is sub-threshold even though
the network could theoretically support an epidemic.

The bifurcation curve separating the connected and disconnected regions can be
derived analytically as follows. We have noted that at the steady-state this network is
an Erdős–Rényi graph, with p D ˛

˛C!
, and we know that the threshold for an Erdős-

Rényi graph being disconnected is p D ln N
N [2, 4], where N denotes the number of

nodes. Taking into account these two formulas we get the following equation,

p D
˛

˛ C !
D

ln N

N
:

Thus the critical threshold for connectivity is,

!� D ˛

�

N

ln N
� 1

�

: (12.7)

The horizontal line in Fig. 12.2 is drawn at this value of !, see also [23]. There is
good agreement with the connectivity results obtained from simulation. Moreover,
as expected, the degree distribution of networks during and at the end of simulations
is well described by the binomial distribution and for fixed values of ˛, the number
of components increases sharply with larger values of !. This is natural since in
the high deletion and low activation regime the networks become sparse with higher
values of ! leading to networks with several disjointed components.

From system (12.1) and using scenario A it also follows that the number of
(doubly-counted) edges in the network, E.t/ D ŒSS�.t/C ŒII�.t/C 2ŒSI�.t/, satisfies

PE D ˛.N.N � 1/ � E/ � !E (12.8)
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with its steady state being given by

Eeq D
˛N.N � 1/

˛ C !
(12.9)

and with the average degree at equilibrium being keq D E
N D ˛.N�1/

˛C!
. This also

follows from the simple heuristic argument that at equilibrium the rate at which
edges are cut is equal to the rate at which edges are created, i.e., !Eeq D ˛.N.N �

1/ � Eeq/.

12.4.2 Mapping the Emerging Network Structure onto the
System-Level Bifurcation Picture for Scenario B

We now consider the more realistic case of a link status-dependent link addition
and deletion model. While the system-level characterisation (i.e. focusing on the
analysis of the pairwise model from the viewpoint of the outcome of the epidemic,
without explicitly considering the underlying dynamic network) is not trivial, one
can use classical bifurcation theory techniques even if some calculations can only
be performed numerically. In [24] it was shown that the agreement between the
pairwise model and simulation is mainly qualitative, insofar as the pairwise model
predicts the observed outcomes but the size and boundaries of the different regimes
in the parameter space differ between pairwise and simulation-based models. This
is the result of the sub-optimal performance of closures which fail to capture the
heterogeneity in degree distribution as well as, and perhaps more importantly,
the presence of correlations introduced by the link status-dependent creation and
deletion. These factors lead to the breakdown of closures. In addition, we shall show
that the underlying network can become disconnected which further degrades the
performance of the closures.

A detailed analysis of emerging network structures is made even more chal-
lenging by the need to rely on (i) different variants of pairwise models (tracking
versus not tracking the degree of nodes), and (ii) explicit stochastic network-
based simulation, sometimes on small networks to gain intuition. The former is
useful to provide a rough guide of the possible behaviours and to identify broad
parameter regions leading to networks of different type, such as connected versus
disconnected, degree distributions that change throughout the oscillation cycle.

12.4.2.1 Analysing Emerging Networks Using Mean-Field Models

Let us progressively move from the simplest towards the most complex mean-
field model and explore what information we can gain about the structure of the
emerging networks. Starting with the pairwise model (12.1) one can ascertain at
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Fig. 12.4 (Left-panel) Contour plot of the average degree (or mean average degree over one cycle
of oscillation when oscillations are stable) overlaid on the system-level bifurcation diagram. The
inset provides a zoomed-in version of the bottom-left corner of the main plot to reveal the fine
structure at low ! and � values. (Right-panel) The amplitude of the oscillations of the average
degree when travelling through the Hopf island along the isoline where the mean average degree
is hki D 50. Parameter values are N D 200, � D 1, ˛SS D 0:04

least the behaviour of the average degree over time. Thus, we can explore whether
the average degree will stabilise or oscillate, and determine how these two regimes
will partition the parameter space considered in the bifurcation diagram at system-
level shown in Fig. 12.3.

In Fig. 12.4 we show a contour plot of the average degree and we track the
amplitude of oscillations of the average degree along an isoline where the mean
average degree over an oscillatory cycle is constant. This figure reveals that the
resulting networks exhibit a wide range of average degree values. Two important
observations can be made. First, we note that for a fixed value of � and as the
cutting rate increases, the average degree at equilibrium (or its mean over one cycle)
tends to higher values. This is due to the cutting of S � I links which reduces the
impact of the epidemic and leads to fewer infected nodes. This in turn leads to more
susceptible nodes such that the addition of new S � S links is fast and increases
the average degree. Second, we note regions in which a form of bistability exists
(see inset in the left panel of Fig. 12.4). Namely, the same average degree can be
achieved for the same value of the transmission rate � but two distinct values of
!SI . This can be explained by considering the prevalence level (not shown) which,
as intuition suggests, will be lower for higher values of the cutting rate and much
higher for smaller values of !SI . Thus, networks with the same average degree and
transmission rate can sustain either higher prevalence with a lower cutting rate or
lower prevalence with a higher cutting rate.

The amplitude of the oscillations of the average degree in Fig. 12.4 confirms
our expectations by showing that the amplitude tends to zero at the boundaries
of the Hopf island and grows considerably when moving away from the boundary
separating the stable endemic equilibrium and the oscillatory regime.
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It is obvious that the previous model offers no information about how links
are distributed over nodes, and thus about the degree distribution. To improve on
this and get a basic description of the behaviour of the degree distribution one
can write down a more complete set of pairwise equations that track the degree
of nodes. Epidemics on networks with heterogeneous degrees can be described by
heterogeneous mean-field models [5]. However, the number of equations in such
models is of order O.N2/ since the degree in a dynamic network can, in principle,
vary between 0 and N � 1, where N is the number of nodes in the network. As a
trade-off between keeping degree heterogeneity and having a tractable system of
ODEs, so-called compact pairwise models have been introduced [9]. The variables
of this model are ŒSk� and ŒIk� representing the average number of susceptible and
infected nodes of degree k, respectively, and the average number of pairs ŒSI�, ŒSS�
and ŒII�. We make use of the approximation

ŒAkB� D ŒAB�
kŒAk�
P

jŒAj�
; (12.10)

where ŒAkB� D
P

jŒAkBj�. In fact, the pairs ŒAkBj� are not needed in the compact
pairwise model, and only pairs of the form ŒAkB� are used, significantly reducing
the number of equations. We extend this model with terms accounting for link
addition/creation and deletion as follows. The deletion of links connecting an
infected to a susceptible node with degree k at rate !SI contributes positively to
ŒSk�1� and negatively to ŒSk�. The creation of links connecting a susceptible to
another susceptible node with degree k contributes negatively to ŒSk� with rate
˛SS.ŒSk�.ŒS� � 1/ � ŒSkS�/ because the total number of such possible links is
ŒSk�.ŒS�� 1/ and the number of existing links is ŒSkS�. The same process contributes
positively to ŒSkC1�. Using similar arguments we arrive at the following system,

PŒSk� D ��ŒSkI�C �ŒIk�C !SI.ŒSkC1I� � ŒSkI�/ (12.11a)

C ˛SS
�

ŒSk�1�.ŒS� � 1/ � ŒSk�1S�
�

� ˛SS
�

ŒSk�.ŒS� � 1/ � ŒSkS�
�

;

PŒIk� D �ŒSkI� � �ŒIk�C !SI.ŒIkC1S� � ŒIkS�/; (12.11b)

PŒSI� D �.ŒII� � ŒSI�/C �.ŒSSI� � ŒISI� � ŒSI�/ � !SI ŒSI�; (12.11c)

PŒII� D �2�ŒII�C 2�.ŒISI�C ŒSI�/; (12.11d)

PŒSS� D 2�ŒSI� � 2�ŒSSI�C ˛SS
�

ŒS�.ŒS� � 1/ � ŒSS�
�

; (12.11e)

where ŒS� D
P

kŒSk�. The approximation in Eq. (12.10) is used to compute the pairs
ŒSkI� and ŒIkS� for k D 0; 1; : : : ;N �1, and according to [9], the triples are closed by

ŒASI� D
ŒAS�ŒSI�

.ŒSS�C ŒSI�/2
X

k

k.k � 1/ŒSk�:
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Fig. 12.5 Degree distributions (shown as a non-normalised degree histogram here and in all
subsequent figures) of the susceptible (�), infected (˘), and the whole network (ı) at the endemic
steady state using the compact pairwise model (12.11). The parameter values are N D 200, � D 1,
and ˛SS D 0:04 with (left-panel) � D 0:2 and !SI D 1:5, and (right-panel) � D 4 and !SI D 100

Preliminary numerical investigations reveal that this compact model produces better
qualitative agreement with results from simulation than the standard pairwise model.
And although this agreement is not optimal, the model offers further value through
providing qualitative insights into the behaviour of the degree distribution in time or
at equilibrium. A detailed study of the compact pairwise model is beyond the scope
of the present paper, but below we present some output from this model with special
focus on elucidating the types of networks that are likely to emerge.

We start by reporting on the behaviour of networks when the endemic steady
state is stable. In Fig. 12.5 the degree distributions (shown as a non-normalised
degree histogram here and in all subsequent figures) of the whole network and
those of susceptible and infected nodes separately are plotted. This reveals that the
emerging networks can vary both in their degree distribution and average degree.
The most striking difference is the propensity of the infected nodes to become
isolated compared to susceptible nodes. This effect is exacerbated in the left panel of
Fig. 12.5. On the one hand, the network dynamics removes S � I links thus reducing
the number of edges originating from infected nodes. On the other hand, the network
is replenished with S�S links and these nodes enjoy and share more links compared
to infected ones. In the true network-based stochastic simulation model this effect,
for the right parameter combinations, can lead to complete isolation of the infected
nodes through being cut off from the rest of the network, leading to the whole
process being eventually attracted to the absorbing state with no infected nodes and
all possible links present.

Let us now focus on the oscillatory regime within the Hopf island. In the top
panel of Fig. 12.6 we show a typical plot of the time evolution of both prevalence
and average degree. We note that these oscillations go hand in hand but are out
of phase. At high average degree the prevalence is typically small meaning that the
network has many susceptible nodes that become more and more densely connected.
However, as soon as infection manages to invade from the fringe of this tightly
connected cluster of susceptible nodes, the epidemic spreads and the prevalence
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Fig. 12.6 Illustration of the oscillatory behaviour in the expected prevalence and average degree
(the curve with the markers) based on the compact pairwise model (12.11) (top panel). Prevalence
and average degree are out of phase with the network being most densely connected when the
prevalence of infection is low and vice-versa. The degree distribution at the peak (ı) and trough
(˘) of the oscillatory cycle of the average degree (middle panel) shows that the network loses
links and more poorly connected nodes emerge with the entire degree distribution moving towards
lower degrees. The degree distribution of susceptible and infected nodes (bottom panel) reveal that
infected nodes are in general poorly connected due to the cutting of S � I links. Parameter values
are: N D 200, � D 0:4, � D 1, ˛SS D 0:04 and !SI D 25. We note that the oscillations eventually
stabilise with a well defined amplitude and cycle duration

grows. As the number of infected nodes increases so does that of the S� I links. The
link removal becomes significant and slows the epidemic due to fewer links being
available for transmission.

The middle panel of Fig. 12.6 shows the typical degree distribution at the peak
and trough of the degree oscillation. Again, as explained above, we notice that at
the trough, when the average degree attains its minimum, the number of nodes with
no or few connections increases significantly. As shown in the bottom two panels
of the same figure, it is mainly the infected nodes that suffer the consequences of
the link cutting process and these nodes lose many of their links leaving them with
no or very few connections. In contrast, the susceptible nodes are more resilient and
their degree distribution shows less dramatic change between peak and trough.

12.4.2.2 Analysing Emerging Networks Using Simulation

Finally, we present some results from rigorous network-based stochastic simulations
using a Gillespie algorithm. Before we turn to the analysis of the output we recall
some of the nuances of the comparison between mean-field and simulation models.
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First, it is well known that the worst performance of the mean-field models is usually
when the system operates close to threshold, i.e., at the point separating die-out
from an epidemic. Moreover, during oscillations that come close to extinction (i.e.,
a system with a small number of infected nodes), agreement with the mean-field
models is also expected to break down. Typically in such cases, the stochastic
process can be absorbed by the all-susceptible state, while the mean-field models
will indicate oscillations.

In what follows we focus on the oscillatory regime and map out how both
system and network behave during one cycle of oscillation. First, we note that
the de-phasing between prevalence and average degree is not as clear as for the
deterministic model, see Fig. 12.7. However, the trend is similar in that the average
degree peaks before the epidemic peaks. Our analysis here is based on peaks and
troughs in prevalence rather than average degree, as per the mean-field case. This
is purely because oscillations in prevalence had a bigger amplitude and thus were
easier to capture. However, we shall show this complements the results thus far.
We also note that the parameter values for the simulation were chosen based on
a simulation-based bifurcation diagram in [24]. This was necessary because the
agreement between bifurcation boundaries in the mean-field and simulation models
is qualitative rather than quantitative.

There is an interesting contrast between the four competing processes: (a) link
creation, (b) link deletion, (c) transmission, and (d) recovery. These processes
compete and balance out in order to give rise to oscillatory behaviour both in the
prevalence and degree. This is illustrated in Fig. 12.7 where we also show a few
explicit network snapshots during the main phases of a full cycle, including the
trough and peak of the oscillation in prevalence. The main phases of the oscillation
cycle are:

1. Phase A: ŒI� decreasing, hki decreasing with recovery and link cutting dominat-
ing transmission and link creation, respectively;

2. Phase B: ŒI� decreasing, hki increasing with recovery dominating transmission
but link creation dominating link cutting;

3. Phase C: ŒI� increasing, hki increasing with transmission and link creation
dominating recovery and link cutting, respectively;

4. Phase D: ŒI� increasing, hki decreasing with transmission dominating recovery
but link cutting dominating link creation.

Several important observations can be made. The simulation captures different
phases of the cycle. At peak prevalence the cutting of S � I links has the biggest
impact on the remaining few susceptible nodes. These become disconnected from
the cluster of tightly connected infected nodes. Here, the S nodes are poorly
connected while the I nodes share many links with other I nodes; see Fig. 12.7 and
the corresponding degree distributions in Fig. 12.8. However, when the prevalence is
low, the infected nodes become isolated and the network is dominated by the cluster
of susceptible nodes. Table 12.1 shows clearly that the average degree of infected
nodes is small when the prevalence is at its trough, while the average degree of
susceptible nodes attains its minimum when prevalence peaks.
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Fig. 12.8 Degree distributions of networks in Phase A (ı), B (˘), C (�) and D (�). In the top panel
the degree distribution of the entire network is plotted independently of the status of the nodes. The
bottom left and right panels focus on the degree distributions of susceptible and infected nodes,
respectively. Parameter values are: N D 200, � D 6, � D 1, ˛SS D 0:04 and !SI D 4

Focusing on the case when prevalence is small, it is evident from Fig. 12.7 that
the creation of S � S links floods the subset of S nodes, making this part of the
network well connected. At this point, the very few infected nodes that may still
share links with the susceptible cluster can trigger a sizeable increase in infection
prevalence. Of course, at this critical point, the epidemic may die out with some non-
negligible probability if enough I nodes are isolated from the susceptible cluster.

To complement the heuristic network plots, the degree distributions of networks
at Phases A, B, C and D are shown in Fig. 12.8. In contrast to the analysis based on
the compact pairwise models, the simulation shows that the role reversal between
the degree of S and I nodes, when going from peak to minimum prevalence, is more
balanced and the number of poorly connected S and I nodes is comparable between
Phases B and D. This of course may be parameter-specific and these regimes may
be present in both models.

Looking at Tables 12.1 and 12.2 we note that the network undergoes significant
changes and these are summarised below. The average degree achieves its highest
value when the prevalence is at its minimum. The networks are sparsest in Phase
A, when following a major increase in the prevalence level the network is thinned,
and both the cutting of links and recovery dominate. Overall the observed networks
remain fairly sparse and, as expected, the level of clustering is low. Table 12.2
shows the unique counts of a few chosen subgraphs for all six networks. Again,
as expected, subgraphs are more numerous at the time point when prevalence is at
its minimum.
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Table 12.1 Summary network characteristics for the 6 networks considered in Fig. 12.7. Given
the large number of components in the network, the table provides information both for the entire
network and the giant component. The global clustering coefficient denoted by C in the Table was
calculated using the formula proposed in [10]. The number of components (not shown) is fairly
constant across networks (average of 43, min = 37 at min prevalence, max = 47 in network A).
Network A has the largest number of nodes with degree 0 (37) and degree 1 (55). The network at
min prevalence has the smallest number of nodes with degree 0 (21) and degree 1 (43)

Entire network Giant component

[I] [S] n nI nS C [N] [I] [S] n nI nS C

A 132 68 1.74 1.67 1.88 0.02 134 84 50 2.28 2.15 2.50 0.02

B 83 117 3.59 1.12 5.34 0.08 128 18 110 5.11 1.72 5.66 0.08

Min 77 123 4.22 1.09 6.18 0.07 137 17 120 5.77 1.88 6.32 0.07

C 158 42 3.45 3.81 2.10 0.05 144 117 27 4.60 4.93 3.15 0.05

D 164 36 3.17 3.55 1.44 0.05 143 125 18 4.24 4.46 2.67 0.05

Max 166 34 3.13 3.51 1.26 0.05 142 127 15 4.20 4.40 2.47 0.05

Table 12.2 Number of
uniquely counted subgraphs
for each network as
calculated by the subgraph
counting algorithm described
in [18]. It should be noted
that the number of 4
corresponds to 4 not
involved in either � or �

� � � 4 � �
A 0 0 5 2 6 3

B 3 37 143 9 544 2056

Min 3 51 289 7 1143 4558

C 0 8 117 14 331 1156

D 0 7 101 11 256 803

Max 0 6 95 12 230 771

12.4.3 Towards a Bifurcation Theory of Dynamic Networks

In formulating this problem, we restrict ourselves to undirected, unweighted
networks with N nodes, where links are binary (i.e., either present or not). In this
case the state space of all such networks G has cardinality 2N.N�1/=2. The body of
work concerning the properties and the dynamics of and on such networks indicates
that certain sub-sets of the whole state space are more likely to arise in applications
and in theoretical work. Hence, considering subsets Gi 2 G , where Gi correspond to
classes of well-known networks (e.g., Erdős-Rényi random, lattice-type, clustered,
scale-free etc) is a widely used approach.

This setup is particularly useful when considering dynamical processes evolving
on a fixed network specified on the basis of empirical observations or a network
model. However, when considering adaptive or evolving networks, i.e., when the
dynamics on the network and that of the network are coupled, this approach needs to
be made more rigorous. Let us first assume that we have a dynamics on the network
where nodes can achieve a discrete number of possible states (i.e., a1; a2; : : : ; am)
with transition rules and rates stored in an operator D (dynamic on the network).
This operator is in fact of the form D D .Di;j/i;jD1;2;:::;m, where Dij D Dij.rij;G /
with rij describing the transition rate of a node in state aj to state ai, where this
transition may or may not involve knowledge about the network (i.e., G – the
network’s adjacency matrix).
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Another operator H specifies the dynamics of the network which may be vertex
type-dependent (e.g., link activation and cutting, nodes birth and death and instant
partner exchange). For link activation and deletion alone, this operator can be
written as

H D .Hi;j/iD1;2;:::M;jD1;2;

where M D m.m C 1/=2, Hi;1 D Hi;1.˛se.i/;G / and Hi;2 D Hi;2.!se.i/;G /, where
se.i/ is the ith element of the set describing all potential edge statuses

SE D fa1a1; a1a2; : : : a1am; a2a2; a2a3; : : : ; a2am; a3a3; : : : ; amamg:

If, for example, instant partner switching is to be implemented, H can be
augmented by L D .Lij/i;jD1;2;:::;m2 , where Lij is simply the rate at which edges of
type se.j/ switch to edges of type se.i/. Particular interest is paid to understanding
how the topology of the network changes under the action of different dynamics on
and of the network and how these are coupled. This naturally leads to the question
of how to translate the mathematical concepts and tools from the bifurcation theory
of dynamical systems to a bifurcation theory of dynamical networks.

For example, in the case of a simple epidemic model such as SIS (susceptible-
infected/infectious-susceptible, where � is the per-contact infection rate and � is the
recovery rate), coupled with the activation and deletion of links of different statuses
(i.e., SE D fSS; SI; IIg) and with partner switching or smart rewiring, where the S
node in an S � I rewires to a randomly chosen other susceptible, the entire dynamics
can be captured by the following operators,

D D

�

0 �

� D �G 0

�

; H D

0

@

˛SS !SS

˛SI !SI

˛II !II

1

A and L D

0

B

B

@

SS SI IS II

SS 0 ! 0 0

SI 0 0 0 0

IS 0 0 0 0

II 0 0 0 0

1

C

C

A

:

In this relatively well-studied case [7, 12, 24] and given the results in this chapter,
the following observations can be made:

1. if link activation and deletion are link status-independent (i.e., Scenario A and
! D 0 in L ), then at equilibrium the resulting network will be an Erdős-Rényi
random network;

2. if link activation and deletion are link status-independent (i.e., Scenario A and
! D 0 in L ) then at the critical cutting rate ˛�, see Eq. (12.7) and Fig. 12.2, the
network will transition from being connected to disconnected, or vice-versa;

3. in Scenario B (and ! D 0 in L ) and at the endemic equilibrium, depending on
the precise parameter values, the network at equilibrium may or may not have a
high density of poorly connected nodes, see Fig. 12.5;
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4. in [7], for smart rewiring, it was shown that when H D 0 then depending
on the rewiring or partner switching rate ! the network transitions from being
connected to disconnected, or vice-versa.

The interplay between D , H and L leads to a bifurcation in the network
topology, where under the action and interaction of dynamical processes, the
network can evolve towards different topologies/structures. This type of parameter-
dependent change or evolution in network structure is analogous to bifurcations in
dynamical systems, and we can interpret the change in network topology as certain
network steady states losing or gaining stability at the cost of other network steady
states gaining or losing stability.

As seen in the results section above, there is a subtlety as to what can be regarded
as a significant enough difference between two networks in order to be classified
as a different behaviour type. For example using the simple pairwise model we
have seen that the average degree can vary significantly, see Fig. 12.4, but this may
not be regarded as a sufficiently different outcome. In general, we believe that the
partitioning of the graph state space G in terms of known network types may not
be the ideal resolution. Nevertheless, we conjecture that it will be possible to give
results such as the one below.

Conjecture Given a spreading process defined by D , and a dynamic network given
by H and L , with the respective set of transition rates, T R 2 R

d (d – total
number of parameters), one can determine a mapping M W R

d ! [iGi which
identifies the bifurcation manifolds, whereby given a fixed set of parameters, the
asymptotic behaviour (e.g., steady-state, quasi steady state and limit cycle) of the
network structure can be specified.

12.5 Discussion

In this chapter we set out to redress the balance between analysis at system level and
analysis of the emerging network structures by focusing on the latter. Starting from
the simplest pairwise model and guided by its bifurcation analysis we showed that
when the epidemic is at the endemic equilibrium, the average degree of the network
attains a wide range of values and bistable-like behaviour is observed, where the
same average degree is achieved at the same value of the transmission rate, � , but
different cutting rates, !.

Recognising the importance of the degree distribution as defining a network, we
moved to the compact pairwise model which apart from the status of the nodes
also tracks their degree. This model allowed us to show that the emerging networks
can be significantly different at the peak and trough of the oscillations, and that
at equilibrium and depending on the parameter values, networks with significantly
different degree distributions emerge. The analysis of the stochastic model via
simulation revealed a range of networks during the oscillatory cycle and highlighted
a role reversal between susceptible and infected nodes when going from high to low
prevalence. We also speculated mathematically about the shape a bifurcation theory
for networks may take.
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Several important questions remain. First of all, the bifurcation analysis of
the compact pairwise model needs to be completed as this may reveal additional
features or richer model behaviour. This may be challenging as the system is high-
dimensional so the analysis may be restricted to numerical investigations alone. A
big open question remains about the validity of such mean-field models for systems
where dynamics on and of the network are coupled. As explained above, this may
lead to networks becoming disconnected as well as excessive correlations between
nodes of different status, all being factors that may invalidate mean-field models.
Nevertheless, there is some evidence that mean-field models still play an important
role in getting an initial insight into analysing such models.

The numerical investigation of the phases of the oscillatory cycle needs to be
extended to include many different parameter values and assess how the resulting
networks change. In addition, a similar type of numerical investigation or simulation
should be carried out when the epidemic stabilises to the endemic state. Perhaps
more importantly, different dynamics should be considered which may lead to even
richer network-level behaviour. Such dynamics may include voter model, complex
contagion, neuronal dynamics with homeostatic plasticity.

Mathematically, the problem of characterising the emerging network structure
in a bifurcation theory-like fashion may prove to be challenging, partly due to the
mean-field systems being high-dimensional. Overlooking the problem of whether
mean-field models agree well with the average behaviour of the exact stochastic
process, the analysis of such mean-field models may be best considered like a
discretisation of a partial differential equation, thus allowing us to derive a more
compact model which is amenable to analysis. Examples of this type can be found
in [21].

Finally, given that it is reasonable to expect that many real-world networks are
in fact time-frozen snapshots of an otherwise evolving system, we argue that such a
network-focused view is not only desirable but could stimulate the development or
design of more natural network-generating algorithms with stronger direct links to
realistic processes.
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Chapter 13
Disease Spreading in Time-Evolving Networked
Communities

Jorge M. Pacheco, Sven Van Segbroeck, and Francisco C. Santos

Abstract Human communities are organized in complex webs of contacts that may
be represented by a graph or network. In this graph, vertices identify individuals
and edges establish the existence of some type of relations between them. In
real communities, the possible edges may be active or not for variable periods
of time. These so-called temporal networks typically result from an endogenous
social dynamics, usually coupled to the process under study taking place in the
community. For instance, disease spreading may be affected by local information
that makes individuals aware of the health status of their social contacts, allowing
them to reconsider maintaining or not their social contacts. Here we investigate the
impact of such a dynamical network structure on disease dynamics, where infection
occurs along the edges of the network. To this end, we define an endogenous
network dynamics coupled with disease spreading. We show that the effective
infectiousness of a disease taking place along the edges of this temporal network
depends on the population size, the number of infected individuals in the population
and the capacity of healthy individuals to sever contacts with the infected, ultimately
dictated by availability of information regarding each individual’s health status.
Importantly, we also show how dynamical networks strongly decrease the average
time required to eradicate a disease.
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13.1 Introduction

Understanding disease spreading and evolution involves overcoming a multitude
of complex, multi-scale challenges of mathematical and biological nature [1, 2].
Traditionally, the contact process between an infected individual and the susceptible
ones was assumed to affect equally any susceptible in a population (mean-field
approximation, well-mixed population approximation) or, alternatively, all those
susceptible living in the physical neighborhood of the infected individual (spatial
transmission). During recent years, however, it has become clear that disease
spreading [2–5] transcends geography: the contact process is no longer restricted
to the immediate geographical neighbors, but exhibits the stereotypical small-world
phenomenon [6–9], as testified by recent global pandemics (together with the
impressive amount of research that has been carried out to investigate them) or,
equally revealing, the dynamics associated with the spreading of computer viruses
[5, 10–23]. Recent advances in the science of networks [3, 4, 19, 24, 25] also
provided compelling evidence of the role that the networks of contacts between
individuals or computers play in the dynamics of infectious diseases [4, 7]. In
the majority of cases in which complex networks of disease spreading have been
considered [9], they were taken to be a single, static entity. However, contact
networks are intrinsically temporal entities and, in general, one expects the contact
process to proceed along the lines of several networks simultaneously [11, 13–
16, 18, 23, 24, 26–36]. In fact, modern societies have developed rapid means
of information dissemination, both at local and at centralized levels, which one
naturally expects to alter individuals’ response to vaccination policies, their behavior
with respect to other individuals and their perception of likelihood and risk of
infection [37]. In some cases one may even witness the adoption of centralized
measures, such as travel restrictions [38, 39] or the imposition of quarantine
spanning parts of the population [40], which may induce abrupt dynamical features
onto the structure of the contact networks. In other cases, social media can play
a determinant role in defining the contact network, providing crucial information
on the dynamical patterns of disease spreading [41]. Furthermore, the knowledge
an individual has (based on local and/or social media information) about the
health status of acquaintances, partners, relatives, etc., combined with individual
preventive strategies [42–50] (such as condoms, vaccination, the use of face masks
or prophylactic drugs, avoidance of visiting specific web-pages, staying away from
public places, etc.), also leads to changes in the structure and shape of the contact
networks that naturally acquire a temporal dimension that one should not overlook.

Naturally, the temporal dimension and multitude of contact networks involved
in the process of disease spreading render this problem intractable from an analytic
standpoint. Recently, sophisticated computational platforms have been developed to
deal with disease prevention and forecast [5, 10, 11, 18, 27, 29–36, 51–55]. The
computational complexity of these models reflects the intrinsic complexity of the
problem at stake, and their success relies on careful calibration and validation proce-
dures requiring biological and socio-geographic knowledge of the process at stake.
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Our goal here, instead, will be to answer the following question: What is the
impact of a temporal contact network structure in the overall dynamics of disease
progression? Does one expect that it will lead to a rigid shift of the critical
parameters driving disease evolution, as one witnesses whenever one includes
spatial transmission patterns? Or even to an evanescence of their values whenever
one models the contact network as a (static and infinite) scale-free network, such that
the variance of the network degree distribution becomes arbitrarily large? Or will the
temporal nature of the contact network lead to new dynamical features? And, if so,
which features will emerge from the inclusion of this temporal dimension?

To answer this question computationally constitutes, in general, a formidable
challenge. We shall attempt to address the problem analytically, and to this end some
simplifications will be required. However, the simplifications we shall introduce
become plausible taking into consideration recent results (i) in the evolutionary
dynamics of social dilemmas of cooperation, (ii) in the dynamics of peer-influence,
and even (iii) in the investigation of how individual behavior determines and is
determined by the global, population wide behavior. All these recent studies point
out to the fact that the impact of temporal networks in the population dynamics
stems mostly from the temporal part itself, and not so much from the detailed shape
and structure of the network [56–63]. Indeed, we now know that (i) different models
of adaptive network dynamics lead to similar qualitative features regarding their
impact in what concerns the evolution of cooperation [56–63], (ii) the degree of
peer-influence is robust to the structural patterns associated with the underlying
social networks [62], and (iii) the impact of temporal networks in connecting
individual to collective behavior in the evolution of cooperation is very robust and
related to a problem of N-body coordination [61, 63]. Altogether, these features
justify that we model the temporal nature of the contact network in terms of a simple,
adaptive network, the dynamics of which can be approximately described in terms
a coupled system of ODEs. This “adaptive-linking” dynamics, as it was coined [28,
57–59], leads to network snapshot structures that do not replicate what one observes
in real-life, in the same sense that the small-world model of Watts and Strogatz does
not lead to the heterogeneous and diverse patterns observed in data snapshots of
social networks. Notwithstanding, the active-linking dynamics allows us to include,
analytically, the temporal dimension into the problem of disease dynamics. The
results [28], as we elaborate in Sects. 3 and 4, prove rewarding, showing that the
temporal dimension of a contact network leads to a shift of the critical parameters
(defined below) which is no longer rigid but, instead, becomes dependent on the
frequency of infected individuals in the population. This, we believe, constitutes a
very strong message with a profound impact whenever one tries to incorporate the
temporal dimension into computational models of disease forecast.

This chapter is organized as follows. In the following Sect. 2, we introduce the
standard disease models we shall employ, as well as the details of the temporal
contact network model. Section 3 is devoted to present and discuss the results, and
Sect. 4 contains a summary of the main conclusions of this work.
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13.2 Models and Methods

In this section, we introduce the disease models we shall employ which, although
well-known and widely studied already, are here introduced in the context of
stochastic dynamics in finite populations, a formulation that has received less
attention than the standard continuous model formulation in terms of coupled
Ordinary Differential Equations (ODEs). Furthermore, we introduce and discuss
in detail the temporal contact network model.

13.2.1 Disease Spreading Models in Finite Populations

Here we introduce three standard models of disease transmission that we shall
employ throughout the manuscript, using this section at profit to introduce also
the appropriate notation associated with stochastic dynamics of finite populations
and the Markov chain techniques that we shall also employ in the remainder of
this chapter. We shall start by discussing the models in the context of well-mixed
populations, which will serve as a reference scenario for the disease dynamics,
leaving for the next section the coupling of these disease models with the temporal
network model described below. We investigate the popular Susceptible-Infected-
Susceptible (SIS) model [2, 4], the Susceptible-Infected (SI) model [2] used to
study, e.g., AIDS [2, 64], and the Susceptible-Infected-Recovered (SIR) model
[2, 65], more appropriate to model, for instance, single season flu outbreaks [2]
or computer virus spreading [7]. It is also worth pointing out that variations of
these models have been used to successfully model virus dynamics and the interplay
between virus dynamics and the response of the immune system [66].

13.2.1.1 The SIS Model

In the SIS model individuals can be in one of two epidemiological states: Infected
(I) or Susceptible (S). Each disease is characterized by a recovery rate (•) and an
infection rate (œ). In an infinite, well-mixed population, the fraction of infected
individuals (x) changes in time according to the following differential equation

Px D � hki xy � ıx;

where y D 1 � x is the fraction of susceptible individuals and hki the average number
of contacts of each individual [4]. There are two possible equilibria (Px D 0): x D 0
and x D 1� R�1

0 , where R0 D�hki/ı denotes the basic reproductive ratio. The value
of R0 determines the stability of these two equilibria: x D 1 � R�1

0 is stable when
R0 > 1 and unstable when R0 < 1.
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Fig. 13.1 Schematic representation of the Markov Chain associated with the stochastic SIS
dynamics

Let us now move to finite populations, and consider the well-mixed case where
the population size is fixed and equal to N. We define a discrete stochastic Markov
process describing the disease dynamics associated with the SIS model. Each con-
figuration of the population, which is defined by the number of infected individuals i,
corresponds to one state of the Markov chain. Time evolves in discrete steps and two
types of events may occur which change the composition of the population: infection
events and recovery events. This means that, similar to computer simulations of the
SIS model on networked populations, at most one infection or recovery event will
take place in each (discrete) time step. Thus, the dynamics can be represented as a
Markov chain M with NC1 states [67, 68] — as many as the number of possible
configurations — illustrated in the following Fig. 13.1.

In a finite, well-mixed population, the number i of infected will decrease at a rate
given by

T� .i; r/ D
1

�0

i

N
ı; (13.1)

where �0 denotes the recovery time scale, i
N the probability that a randomly selected

individual is infected and ı the probability that this individual recovers. Adopting
�0 as a reference, we assume that the higher the average number of contacts hki, the
smaller the time scale � INF at which infection update events occur (� INF D �0/hki)
[4]. Consequently, the number of infected will also increase at a rate given by

TC .i; r/ D
hki

�0

N � i

N

i

N � 1
�: (13.2)

Equations (13.1) and (13.2) define the transitions between different states. This
way, we obtain the following transition matrix for M:

P D

2

6

6

6

6

6

4

1 0 0 : : : 0 0 0

T�
1 1 � TC

1 � T�
1 TC

1 : : : 0 0 0
:::

:::
:::
: : :

:::
:::

:::

0 0 0 : : : T�
N�1 1 � TC

N�1 � T�
N�1 TC

N�1

0 0 0 : : : 0 T�
N 1 � T�

N

3

7

7

7

7

7

5

; (13.3)
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where each element pkj of P represents the probability of moving from state k to
state j during one time step. The state without any infected individual (iD0) is an
absorbing state of M. In other words, the disease always dies out and will never
re-appear, once this happens.

Average Times to Absorption

At this level of approximation, it is possible to derive an analytical expression for the
average time ti it takes to reach the single absorbing state of the SIS Markov chain
(i.e., the average time to absorption) starting from a configuration in which there are
i infected individuals. Denoting by Pi(t) the probability that the disease disappears
at time t when starting with i infected individuals at time 0, we may write [69]

ti �

1
X

tD0

tPi.t/: (13.4)

Using the properties of Pi(t) we obtain the following recurrence relation for ti

ti D
�

1 � TC
i

�

ti C TC
i tiC1 C 1; (13.5)

whereas for tN we may write

tN D T�
N tN�1 C

�

1 � T�
N

�

tN C 1: (13.6)

Defining the auxiliary variables �i D
T�

i

TC

i

and qi D
i
Q

lD1
�l, a little algebra allows us

to write, for t1

t1 D
1

qN�1T�
N

C

N�1
X

kD1

1

TC
k qk

q; (13.7)

such that ti can be written as a function of t1 as follows

ti D

i
X

kD1

sk D t1

i�1
X

kD0

qk �

i�1
X

kD0

qk

i�1
X

kD0

1

TC
j qj

: (13.8)

The intrinsic stochasticity of the model, resulting from the finiteness of the
population, makes the disease disappear from the population after a certain amount
of time. As such, the population size plays an important role in the average time to
absorption associated with a certain disease, a feature we shall return to below.
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Quasi-Stationary Distributions in Finite Populations

Equations (13.1) and (13.2) define the Markov chain M just characterized. The
fraction of time the population spends in each state is given by the stationary
distribution of M, which is defined as the eigenvector associated with eigenvalue
1 of the transition matrix of M [67, 68]. The fact that in the SIS model the state
without infected (iD0) is an absorbing state of the Markov chain, implies that the
standard stationary distribution will be completely dominated by this absorbing
state, which precludes one to gather information on the relative importance of other
configurations. This makes the so-called quasi-stationary distribution of M [70]
the quantity of interest. This quantity allows us to estimate the relative prevalence
of the population in configurations other than the absorbing state, by computing
the stationary distribution of the Markov chain obtained from M by excluding
the absorbing state iD0 [70]. It provides information on the fraction of time the
population spends in each state, assuming the disease does not go extinct.

The Infinite, Well-Mixed Populations as a Limiting Case

The Markov process M defined before provides a finite population analogue of the
well-known mean-field equations written at the beginning of Sect. 2.1.1. Indeed, in
the limit of large populations, �0G.i/ D TC.i/ � T�.i/ provides the rate of change
of infected individuals. For large N, replacing i

N by x and N�i
N by y, the gradients of

infection which characterize the rate at which the number of infected are changing
in the population, are given by

�0G.i/ D hki
N � i

N

i

N � 1
� �

i

N
ı

N!1
����! hki�xy � ıx:

Again, we obtain two roots: �0G(i) D 0 for i D 0 and i�r0 D N � .N�1/ ı
hki�

. Moreover,
i�r0 becomes the finite population equivalent of an interior equilibrium for R0 �
�
ı

hki N
N�1

> 1 (note that, for large N we have that N
N�1

� 1). The disease will most
likely expand whenever i < i�r0 , the opposite happening otherwise.

13.2.1.2 The SI Model

The SI model is mathematically equivalent to the SIS model with ıD 0, and has
been employed to study for instance the dynamics of AIDS. The Markov Chain
representing the disease dynamics is therefore defined by transition matrix Eq.
(13.3), with T�

i D 0 for all i. The remaining transition probabilities TC
i (0 < i < N)

are exactly the same as for the SIS model. Since all T�
i equal zero, the Markov

Chain has two absorbing states: the canonical one without any infected (iD0) and
the one without any susceptible (iDN). The disease will expand monotonically as
soon as one individual in the population gets infected, ultimately leading to a fully
infected population. The average amount of time after which this happens, which
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we refer to as the average infection time, constitutes the main quantity of interest.
This quantity can be calculated analytically [28]: The average number of time steps
needed to reach 100% infection, starting from i infected individuals is given by

ti D

N�1
X

jDi

1

TC
j

: (13.9)

13.2.1.3 The SIR Model

With SIR one models diseases in which individuals acquire immunity after recov-
ering from infection. We distinguish three epidemiological states to model the
dynamics of such diseases: susceptible (S), infected (I) and recovered (R), indicating
those who have become immune to further infection.

The SIR model in infinite, well-mixed populations is defined by a recovery rate
ı and an infection rate �. The fraction of infected individuals x changes in time
according to the following differential equation

Px D hki�xy � ıx; (13.10)

where y denotes the fraction of susceptible individuals, which in turn changes
according to

Py D � hki�xy: (13.11)

Finally, the fraction of individuals z in the recovered class changes according to

Pz D ı x: (13.12)

To address the SIR model in finite, well-mixed populations, we proceed in a
way similar to what we have done so far with SIS and SI models. The Markov
Chain describing the disease dynamics becomes slightly more complicated and
has states (i, r), where i is the number of infected individuals in the population
and r the number of recovered (and immune) individuals (i C r � N). A schematic
representation of the Markov Chain is given in Fig. 13.2.

Note that the states (0, r), with 0 � r � N, are absorbing states. Each of these
states corresponds to the number of individuals that are (or have become) immune
at the time the disease goes extinct.

Consider a population of size N with average degree hki. The number of infected
will increase with a rate

TC .i; r/ D
hki

�0

N � i � r

N

i

N � 1
� (13.13)
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Fig. 13.2 Schematic representation of the Markov Chain associated with the stochastic SIR
dynamics

and decrease with a rate

T� .i; r/ D
1

�0

i

N
ı; (13.14)

where �0 denotes the recovery time scale. As before, the gradient of infection G(i),
such that �0G.i/ D TC.i/ � T�.i/, measures the likelihood for the disease to either
expand or shrink in a given state, and is given by

�0G .i; r/ D hki
N � i � r

N

i

N � 1
� �

i

N
ı

N!1
����! hki�xy � ıx: (13.15)

Note that we recover Eq. (13.10) in the limit N ! 1. For a fixed number of
recovered individuals r0, we have that �0G(i, r0) D 0 for i D 0 and for i�r0 D N �
.N�1/ı

hki�
� r0. For Rr0

0 D hki �
ı

N�r0
N�1

> 1, i�r0 becomes the finite population analogue
of an interior equilibrium. Furthermore, one can show that the partial derivative
@G.i;r/
@i has at most one single root in (0, 1), possibly located at ir0 D

i�r0
2

� i�r0 .

Hence, G(i, r0) reaches a local maximum at ir0(given that at that point @2G.i;r/
@i2

ˇ

ˇ

ˇ

ir0
D

� 2hki�
N.N�1/

< 0). The number of infected will therefore most likely increase for i < i�r0
(assuming r0 immune individuals), and most likely decrease otherwise.

The gradient of infection also determines the probability to end up in each
of the different absorbing states of the Markov chain. These probabilities can be
calculated analytically [28]. To this end, let us use ya

i;r to denote the probability that
the population ends up in the absorbing state with a recovered individuals, starting
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from a state with i infected and r recovered. We obtain the following recurrence
relationship for ya

i;r

ya
i;r D T� .i; r/ ya

i�1;rC1 C TC .i; r/ ya
iC1;r C

�

1 � T� .i; r/ � TC .i; r/
�

ya
i;r;

(13.16)

which reduces to

ya
i;r D

�

T� .i; r/C TC
�

i; r
�1 �

T� .i; r/ ya
i�1;rC1 C TC

�

i; r


ya
iC1;r



: (13.17)

The following boundary conditions

yr
0;r D 1;

ya
0;r D 0 if r ¤ a;

ya
i;r D 0 if r > a;

(13.18)

allow us to compute ya
i;r for every a, i and r.

13.2.2 Network Model

Our network model explicitly considers a finite and constant population of N
individuals. Its temporal contact structure allows, however, for a variable number
of overall links between individuals, which in turn will depend on the incidence of
disease in the population. This way, infection proceeds along the links of a contact
network whose structure may change based on each individual’s health status and
the availability of information regarding the health status of others. We shall assume
the existence of some form of local information about the health status of social
contacts. Information is local, in the sense that individual behavior will rely on the
nature of their links in the contact network. Moreover, this will influence the way
in which individuals may be more or less effective in avoiding contact with those
infected while remaining in touch with the healthy.

Suppose all individuals seek to establish links at the same rate c. For simplicity,
we assume that new links are established and removed randomly, a feature which
usually does not always apply in real cases, where the limited social horizon of
individuals or the nature of their social ties may constrain part of their neighborhood
structure (see below). Let us further assume that links may be broken off at different
rates, based on the nature of the links and the information available about the
individuals they connect: Let us denote these rates by bpq for links of type pq
(p , q 2 fS, I, Rg. We assume that links are bidirectional, which means that we have
links of pq types SI, SR, and IR. Let Lpq denote the number of links of type pq
and LM

pq the maximum possible number of links of that type, given the number of
individuals of type S, I and R in the population. This allows us to write down (at a
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mean-field level) a system of ODEs [57, 58] for the time evolution of the number of
links of pq-type (Lpq) [57, 58]

PLpq D c
�

LM
pq � Lpq

�

� bpqLpq

which depends on the number of individuals in states p and q (LM
pp D p .p � 1/ =2

and LM
pq D pq for p ¤ q) and thereby couples the network dynamics to the disease

dynamics. In the steady state of the linking dynamics ( PLpq D 0), the number of
links of each type is given by L�

pq D 'pqLM
pq, with 'pq D c/(c C bpq) the fractions

of active pq-links, compared to the maximum possible number of links LM
pq, for

a given number of S, I and R. In the absence of disease only SS links exist, and
hence �SS determines the average connectivity of the network under disease free
conditions, which one can use to characterize the type of the population under
study. In the presence of I individuals, to the extent that S individuals manage
to avoid contact with I, they succeed in escaping infection. Thus, to the extent
that individuals are capable of reshaping the contact network based on available
information of the health status of other individuals, disease progression will be
inhibited. In the extreme limit of perfect information and individual capacity to
immediately break up contacts with infected, we are isolating all infected, and as
such containing disease progression. Our goal here, however, is to understand how
and in which way local information, leading to a temporal reshaping of the network
structure, affects overall disease dynamics.

13.2.3 Computer Simulations

We investigate the validity of the approximations made to derive analytical results
as well as their robustness by means of computer simulations. All individual-based
simulations start from a complete network of size ND100. Disease spreading and
network evolution proceed together under asynchronous updating. Disease update
events take place with probability (1 C � )�1, where � D �NET /�DIS. We define �DIS

as the time-scale of disease progression, whereas �NET is the time scale of network
change. The parameter � D �NET /�DIS provides the relative time scale in terms of
which we may interpolate between the limits when network adaptation is much
slower than disease progression (� ! 0) and the opposite limit when network
adaptation is much faster than disease progression (� ! 1). Since � D �NET /�DISis
the only relevant parameter, we can make, without loss of generality, �DIS D 1.
For network update events, we randomly draw two nodes from the population. If
connected, then the link disappears with probability given by the respective bpq.
Otherwise, a new link appears with probability c. When a disease update event
occurs, a recovery event takes place with probability (1 C hki)�1, an infection event
otherwise. In both cases, an individual j is drawn randomly from the population. If j
is infected and a recovery event has been selected then j will become susceptible
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(or recovered, model dependent) with probability •. If j is susceptible and an
infection event occurs, then j will get infected with probability œ if a randomly
chosen neighbor of j is infected. The quasi-stationary distributions are computed (in
the case of the SIS model) as the fraction of time the population spends in each
configuration (i.e., number of infected individuals) during 109 disease event updates
(107 generations; under asynchronous updating, one generation corresponds to N
update events, where N is the population size; this means that in one generation,
every individual has one chance, on average, to update her epidemic state). The
average number of infected hIi and the mean average degree of the network hki�

observed during these 107 generations are kept for further plotting. We have checked
that the results reported are independent of the initial number of infected in the
network. Finally, for the SIR and SI models, the disease progression in time, shown
in the following sections, is calculated from 104 independent simulations, each
simulation starting with 1 infected individual. The reported results correspond to
the average amount of time at which i individuals become infected.

13.3 Results and Discussion

In this section we start by (i) showing that a quickly adapting community induces
profound changes in the dynamics of disease spreading, irrespective of the under-
lying epidemic model; then, (ii) we resort to computer simulations to study the
robustness of these results for intermediate time-scales of network adaptation;
finally, (iii) we profit from the framework introduced above to analyze the impact
of information on average time for absorption and disease progression in adaptive
networks.

13.3.1 Disease Spreading in a Quickly Adaptive Network
Structure

Empirically, it is well-known that often individuals prevent infection by avoiding
contact with infected once they know the state of their contacts or are aware of the
potential risks of such infection [31, 33, 42–50]: such is the case of many sexually
transmitted diseases [42, 71–73], for example, and, more recently, the voluntary use
of face masks and the associated campaigns adopted by local authorities in response
to the SARS outbreak [40, 43–45] or even the choice of contacting or not other
individuals based on information on their health status gathered from social media
[41, 74, 75]. In the present study, individual decision is based on available local
information about the health state of one’s contacts. Thus, we can study analytically
the limit in which the network dynamics — resulting from adaptation to the flow
of local information — is much faster than disease dynamics, as in this case, one
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may separate the time scales between network adaptation and contact (disease)
dynamics: The network has time to reach a steady state before the next contact takes
place. Consequently, the probability of having an infected neighbor is modified by
a neighborhood structure which will change in time depending on the impact of the
disease in the population and the overall rates of severing links with infected.

Let us start with the SIR model. The amount of information available translates
into differences mostly between the break-up rates of links that may involve a
potential risk for further infection (bSI , bIR, bII), and those that do not (bSS, bSR,
bRR). Therefore, we consider one particular rate bI for links involving infected
individuals (bI � bSI D bIR D bII), and another one, bH , for links connecting healthy
individuals (bH � bSS D bSR D bRR). In general, one expects bI to be maximal when
each individual has perfect information about the state of her neighbors and to
be (minimal and) equal to bH when no information is available, turning the ratio
between these two rates into a quantitative measure of the efficiency with which
links to infected are severed compared to other links. Note that we reduce the model
to two break-up rates in order to facilitate the discussion of the results. Numerical
simulations show that the general principles and conclusions remain valid when
all break-up rates are incorporated explicitly. It is worth noticing that three out of
these six rates are of particular importance for the overall disease dynamics: bSS,
bSR and bSI . These three rates, combined with the rate c of creating new links,
define the fraction of active SS, SR and SI links, and subsequent correlations between
individuals [76], and therefore determine the probability for a susceptible to become
infected (see Models and Methods). This probability will increase when considering
higher values of c (assuming bI > bH). In other words, when individuals create new
links more often, therefore increasing the likelihood of establishing connections to
infected individuals (when present), they need to be better informed about the health
state of their contacts in order to escape infection. In the fast linking limit, the other
three break-up rates (bII , bIR and bRR) will also influence disease progression since
they contribute to changing the average degree of the network.

When the time scale for network update (�NET ) is much smaller than the one for
disease spreading (�DIS), we can proceed analytically using at profit the separation of
times scales. In practice, this means that the network has time to reach a steady state
before the next disease event takes place. Consequently, the probability of having
an infected neighbor is modified by a neighborhood structure which will change
in time depending on the impact of the disease in the population and the overall
rates of severing links with infected individuals. For a given configuration (i,r) of
the population, the stationary state of the network is characterized by the parameters
'SS, 'SI and 'SR. Consequently, the number of infected increases at a rate [28]

TC .i; r/ D hki
N � i � r

N

�SI i

�SS .N � i � r � 1/C �SI i C �SRr
�; (13.19)

where we made �0 D 1. The effect of the network dynamics becomes apparent in
the third factor, which represents the probability that a randomly selected neighbor
of a susceptible is infected. In addition, Eq. (13.14) remains valid, as the linking
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dynamics does not affect the rate at which the number of infected decreases. It is
noteworthy that we can write Eq. (13.19) in the form

TC .i; r/ D hki
N � i � r

N

i

N � 1
�A; (13.20)

which is formally equivalent to Eq. (13.13) and shows that disease spreading in a
temporal adaptive network is equivalent to that in a well-mixed population with (i)
a frequency dependent average degree hki and (ii) a transmission probability that is
rescaled compared to the original � according to �A D ��1�, where

� D
�SS

�SI
C

�

1 �
�SS

�SI

�

i

N � 1
C

�

�SR � �SS

�SI

�

r

N � 1
: (13.21)

Note that this expression remains valid for both SIR, SIS (r D 0) and SI (ıD 0,
r D 0) models. Since the lifetime of a link depends on its type, the average degree
hki of the network depends on the number of infected in the population, and hence
becomes frequency (and time) dependent, as hki depends on the number of infected
(through LM

pq) and changes in time. Note that � scales linearly with the frequency of
infected in the population, decreasing as the number of infected increases (assuming
�SS

ı

�SI > 1); moreover, it depends implicitly (via the ratio �SS
ı

�SI) on the amount
of information available.

It is important to stress the distinction between the description of the disease
dynamics at the local level (in the vicinity of an infected individual) and that
at the population wide level. Strictly speaking, a dynamical network does not
change the disease dynamics at the local level, meaning that infected individuals
pass the disease to their neighbors with probability intrinsic to the disease itself.
At the population level, on the other hand, disease progression proceeds as if
the infectiousness of the disease effectively changes, as a result of the network
dynamics. Consequently, analyzing a temporal network scenario at a population
level can be achieved via a renormalization of the transmission probability, keeping
the (mathematically more attractive) well-mixed scenario. In this sense, from a
well-mixed perspective, dynamical networks contribute to changing the effective
infectiousness of the disease, which becomes frequency and information dependent.
Note further that this information dependence is a consequence of using a single
temporal network for spreading the disease and information. Interestingly, adaptive
networks have been shown to have a similar impact in social dilemmas [63]. From
a global, population-wide perspective, it is as if the social dilemma at stake differs
from the one every individual actually plays.

As in Sect. 2, one can define a gradient of infection G, which measures the
tendency of the disease to either expand or shrink in a population with given
configuration (defined by the number of individuals in each of the states S, I and
R). To do so, we study the partial derivative @G.i;r/

@i at i D 0
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Fig. 13.3 Disease spreading under fast linking dynamics in the SIS model. The left panel shows
the gradient of infection G as a function of the fraction of infected for different values of the
rate b1 at which links with infected disappear (bI � bSI D bII): bI D 0.8 (dotted line), bI D 0.4
(dashed line) and bI D 0.2 (solid line). The right panel shows the corresponding quasi-stationary
distributions, obtained analytically (lines) and via individual-based computer simulations (circles
for bI D 0.8, squares for bI D 0.4 and crosses for bI D 0.2). We use bH � bSS D 0.2, c D 0.25,
N D 100, N� =ı D 4 and � D 10�2

@G .i; r/

@i

ˇ

ˇ

ˇ

ˇ

iD0

D �
ı

N
C

N � r

N2
��SI

	

2 .N�r/C
r .r�1/ �RR� .N�r/ .N�r�1/ �SS

r�SRC .N�r�1/ �SS




:

(13.22)

This quantity exceeds zero whenever

�SI
�

ı

N � r

N

	

2 .N � r/C
r .r � 1/ �RR � .N � r/ .N � r � 1/ �SS

r�SR C .N � r � 1/ �SS




> 1:

(13.23)

Note that taking r D 0 yields the basic reproductive ratio RA
0 for both SIR and SIS:

RA
0 � N�SI

�
ı
> 1. On the other hand, whenever RA

0 < 1, eradication of the disease is
favored in the SIS model (G(i)<0), irrespective of the fraction of infected, indicating
how the presence of information (bH < bI) changes the basic reproductive ratio.

In Fig. 13.3 we illustrate the role of information in the SIS model by plotting G
for different values of bI (assuming bH < bI) and a fixed transmission probability �.
The corresponding quasi-stationary distributions are shown in the right panel and
clearly reflect the sign of G. Whenever G(i) is positive (negative), the dynamics
will act to increase (decrease), on average, the number of infected. Figure 13.3
indicates how the availability of local information hinders disease progression: For
bI D 0.75 the interior root of G(i) disappears, making disease expansion unlikely in
any configuration of the population.

The analysis of the gradient of infection of the SIS model has the advantage of
showing the effect of adaptive networks in a one-dimensional simplex (the fraction
of infected). Yet, an analogous result holds for the SIR model. The gradient of
infection now also depends on the number of recovered (r) individuals in the
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Fig. 13.4 Gradient of infection in the SIR model in a network with information (solid black line,
bI D 0.8, bH D 0.2), and without information (dashed white line, bI D bH D 0.2). Each point in the
triangle (the so-called simplex) satisfies that population size is conserved, i.e., iCrCsDN. Vertices
of the simplex represent populations with only one class of individuals present. Lines in the interior
of the simplex indicate configurations in which G(i, r) D 0. For each case, disease expansion is
more likely than disease contraction in configurations above the line, and less likely otherwise,
showing that availability of information greatly reduces the regions of state space in which disease
may progress We use the following parameter values: (c D 0:25;N D 100; N� =ı D 10)

population and, once again, allows us to identify when disease expansion will be
favored or not. Figure 13.4 gives a complete picture of the gradient of infection,
using the appropriate simplex structure in which all points satisfy the relation
iCrCsDN. The dashed line indicates the boundary G(i, r) D 0 in case individuals
do not have any information about the health status of their contacts, i.e., links
that involve infected individuals disappear at the same rate as those that do not
(bI D bH). Disease expansion is more likely than disease contraction (G(i, r) > 0)
when the population is in a configuration above the line, and less likely otherwise.
Similarly, the solid line indicates the boundary G(i, r) D 0 when individuals share
information about their health status, and use it to avoid contact with infected.
Once again, the availability of information modifies the disease dynamics, inhibiting
disease progression for a broad range of configurations.
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13.3.2 Analysis of Intermediate Time-Scales Through
Computer Simulations

Up to now we have assumed that the network dynamics proceeds much faster than
disease spreading (the limit � ! 0). This may not always be the case, and hence
it is important to assess the domain of validity of this limit. In the following,
we use computer simulations to verify to which extent these results, obtained
analytically via time scale separation, remain valid for intermediate values of the
relative timescale� for the linking dynamics. We start with a complete network
of size N, in which initially one individual is infected, the rest being susceptible.
As stated before, disease spreading and network evolution proceed simultaneously
under asynchronous updating. Network update events take place with probability
(1 C � )�1, whereas a disease model (SI, SIS or SIR) state update event occurs
otherwise. For each value of � , we run 104 simulations. For the SI model, the
quantity of interest to calculate is the average number of generations after which
the population becomes completely infected. These values are depicted in Fig. 13.5.

The lower dashed line indicates the analytical prediction of the infection time in
the limit � ! 1 (the limit when networks remain static), which we already recover
in the simulations for � > 102. When � is smaller than 102, the average infection
time significantly increases, and already reaches the analytical prediction for the
limit � ! 0 (indicated by the upper dashed line) when � < 1. Hence, the validity of
the time scale separation does again extend well beyond the limits one might expect.

For the SIR model, we let the simulations run until the disease goes extinct,
and computed the average final fraction of individuals that have been affected by

Fig. 13.5 Disease spreading in the SI model for variable time scales � of the linking dynamics.
Solid circles show the average number of generations to reach a fully infected population, starting
from one single infected individual, obtained in simulation. Dashed lines indicate the analytical
predictions for these values, either in the limit � ! 0 (upper dashed line), or in the limit � ! 1
(lower dashed line). We use the following parameter values: bI D 0.8, bH D 0.2, c D 0.25, N D 100
and �D 0.001
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Fig. 13.6 Disease spreading in the SIR model for variable time scales � of the linking dynamics.
Solid circles show the final fraction of recovered individuals as a function of � in populations with
initially one infected. The upper (lower) dashed line shows the corresponding analytical prediction
in the limit � ! 1 (� ! 0). We use the following parameter values: bI D 0.8, bH D 0.2, c D 0.25,
�D 0.01, ıD 0.15 and N D 100

the disease, which corresponds to the final fraction of individuals in the recovered
class. These results are depicted in Fig. 13.6.

The upper dashed line indicates the expected fraction of recovered individuals in

a static network (� ! 1). This value is obtained by calculating
N
P

iD0
iyi
1;0, where yi

1;0

is given by Eqs. (13.17) and (13.18). One observes that linking dynamics does not
affect disease dynamics for � > 10. Once � drops below ten, a significantly smaller
fraction of individuals is affected by the disease. This fraction reaches the analytical
prediction for � ! 0 as soon as � < 0.1. Hence, and again, results obtained via
separation of time scales remain valid for a wide range of intermediate time scales.

We finally investigate the role of intermediate time scales in the SIS model. We
performed computer simulations in the conditions discussed already, and computed
several quantities that we plot in Fig. 13.7.

Figure 13.7 shows the average hIi of the quasi-stationary distributions obtained
via computer simulations (circles) as a function of the relative time scale � of
network update. Whenever � ! 1, we can characterize the disease dynamics
analytically, assuming a well-mixed population (complete graph), whereas for
� ! 0 we recover the analytical results obtained in the fast linking limit. At
intermediate time scales, Fig. 13.7 shows that as long as � is smaller than ten,
network dynamics contributes to inhibit disease spreading by effectively increasing
the critical infection rate. Overall, the validity of the time scale separation extends
well beyond the limits one might anticipate based solely on the time separation
ansatz. As long as the time scale for network update is smaller than the one for
disease spreading (� < 1), the analytical prediction for the limit � ! 0, indicated
by the lower dashed line in Fig. 13.7, remains valid. The analytical result in the
extreme opposite limit (� ! 1), indicated by the upper dashed line in Fig. 13.7,
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Fig. 13.7 Disease spreading under linking dynamics in the SIS model. Circles show results of
individual-based simulations for the quasi-stationary average fraction of infected hIi as function
of � . The lower (upper) dashed line shows the analytical prediction of hIi for � ! 0 (� ! 1),
calculated as the average of the quasi-stationary distribution. The analytical prediction in the fast
linking limit (� ! 0) remains valid as long as � < 1, whereas the prediction in the limit of static
networks (� ! 1) remains valid as long as � > 105. The solid line depicts the analytical prediction
of hIi in static networks whose average degree equals the value obtained computationally for the
average connectivity of the network at each given� . Results show that for � > 102, the network
dynamics influences disease progression only by controlling hki� . We use bI D 0.8, bH D 0.2,
c D 0.25, N D 100 and N� =ı D 4

holds as long as � > 105. Moreover, it is noteworthy that the network dynamics
influences the disease dynamics both by reducing the frequency of interactions
between susceptible and infected, and by reducing the average degree of the
network. These complementary effects are disentangled in intermediate regimes,
in which the network dynamics is too slow to warrant sustained protection of
susceptible individuals from contacts with infected, despite managing to reduce
the average degree (not shown). In fact, for � > 10 the disease dynamics is mostly
controlled by the average degree, as shown by the solid lines in Fig. 13.7. Here,
the average stationary distribution was determined by replacing, in the analytic
expression for static networks, hki by the time-dependent average connectivity hki�

computed numerically. This, in turn, results from the frequency dependence of hki.
When bI > bH , the network will reshape into a configuration with smaller hki as
soon as the disease expansion occurs. For � < 1, hki� reflects the lifetime of SS
links, as there are hardly any infected in the population. For 100 < � < 103, the
network dynamics proceeds fast enough to reduce hki, but too slowly to reach its
full potential in hindering disease progression. Given the higher fraction of infected,
and the fact that SI and II links have a shorter lifetime than SS links, the average
degree drops when increasing � from 1 to 103. Any further increase in � leads to a
higher average degree, as the network approaches its static limit.
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Fig. 13.8 Impact of
information on times to
absorption. Average number
of generations required for
disease eradication in an
adaptive contact network for
different rates bI , using the
SIS model. The remaining
parameters are bH D 0.2,
c D 0.25 and N D 100. The
availability of information
drastically reduces the time
for disease eradication

13.3.3 Average Time to Absorption in Adaptive Networks

Contrary to the deterministic SIS model, the stochastic nature of disease spreading
in finite populations ensures that the disease disappears after some time. However,
this result is of little relevance given the times required to reach the absorbing state
(except, possibly, in very small communities). Indeed, the characteristic time scale
of the dynamics plays a determinant role in the overall epidemiological process and
constitutes a central issue in disease spreading.

Figure 13.8 shows the average time to absorption t1 in adaptive networks for
different levels of information, illustrating the spectacular effect brought about by
the network dynamics on t1. While on networks without information (bI D bH)
t1 rapidly increases with the rate of infection œ, adding information moves the
fraction of infected individuals rapidly to the absorbing state, and, therefore, to the
disappearance of the disease.

Moreover, the size of the population can have a profound effect on t1. With
increasing population size, the population spends most of the time in the vicinity
of the state associated with the interior root of G(i). For large populations, this acts
to reduce the intrinsic stochasticity of the dynamics, dictating a very slow extinction
of the disease, as shown in Fig. 13.9.

When recovery from the disease is impossible, a situation captured by the SI
model, the population will never become disease-free again once it acquires at least
one infected individual. The time to reach absorbing state in which all individuals
are infected, again depends on the presence of information. When information
prevails, susceptible individuals manage to resist infection for a long time, thereby
delaying the rapid progression of the disease, as shown in the inset of Fig. 13.10.
Naturally, the average number of generations needed to reach a fully infected
population increases with the availability of information, as illustrated in the main
panel of Fig. 13.10.
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Fig. 13.9 Impact of population size on the average times to absorption t1. (a) Average number of
generations required for disease eradication in the SIS model in static networks of different size N,
while keeping the average degree hki constant (hki D 49). (b) Quasi-stationary distribution of the
number of infected for the same values of N and hki. The disease parameters satisfy hki�/ıD 2

Fig. 13.10 Impact of information on infection times. The main plot shows the average number
of generations after which a disease infects the entire population in the SI model, using the same
parameters as in Fig. 13.8. The inset shows how, starting from one infected individual, the fraction
of infected changes in time for the same rates bI and �D 10�3. The results obtained via individual-
based computer simulations (circles, � D 10�1) fit perfectly with those calculated analytically
(lines)

13.4 Conclusions

Making use of three standard models of epidemics involving a finite population in
which infection takes place along the links of a temporal graph, the nodes of which
are occupied by individuals, we have shown analytically that the bias introduced
into the graph dynamics resulting from the availability of information about the
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health status of others in the population induces fundamental changes in the overall
dynamics of disease progression.

The network dynamics employed here differs from those used in most other
studies [29, 32–36, 51–55]. We argue, however, that the differences obtained stem
mostly from the temporal aspect of the network, and not so much from the detailed
dynamics that is implemented. Importantly, temporal network dynamics leads to
additional changes in R0 compared to those already obtained when moving from
the well-mixed assumption to static networks [77]. An important ingredient of our
model, however, is that the average degree of the network results from the self-
organization of the network structure, and co-evolves with the disease dynamics. A
population suffering from high disease prevalence where individuals avoid contact
in order to escape infection will therefore exhibit a lower average degree than
a population with hardly any infected individuals. Such a frequency-dependent
average degree further prevents that containment of infected individuals would
result in the formation of cliques of susceptible individuals, which are extremely
vulnerable to future infection, as reported before [36, 51, 54].

The description of disease spreading as a stochastic contact process embedded
in a Markov chain constitutes a second important ingredient of the present model.
This approach allows for a direct comparison between analytical predictions and
individual-based computer simulations, and for a detailed analysis of finite-size
effects and convergence times, whose exponential growth will signal possible
bistable disease scenarios. In such a framework, we were able to show that temporal
adaptive networks in which individuals may be informed about the health status
of others lead to a disease whose effective infectiousness depends on the overall
number of infected in the population. In other words, disease propagation on
temporal adaptive networks can be seen as mathematically equivalent to disease
spreading on a well-mixed population, but with a rescaled effective infectiousness.
In accord with the intuition advanced in the introduction, as long as individuals
react promptly and consistently to accurate available information on whether their
acquaintances are infected or not, network dynamics effectively weakens the disease
burden the population suffers. Last but not least, if recovery from the disease is
possible, the time for disease eradication drastically reduces whenever individuals
have access to accurate information about the health state of their acquaintances and
use it to avoid contact with those infected. If recovery or immunity is impossible,
the average time needed for a disease to spread increases significantly when such
information is being used. In both cases, our model clearly shows how availability of
information hinders disease progression (by means of quick action on infected, e.g.,
their containment via link removal), which constitutes a crucial factor to control the
development of global pandemics.

Finally, it is also worth mentioning that knowledge about the health state of
others may not always be accurate or available in time. This is for instance the
case for diseases where recently infected individuals remain asymptomatic for a
substantial period. The longer the incubation period associated with the disease,
the less successful individuals will be in escaping infection, which in our model
translates into a lower effective rate of breaking SI links, with the above mentioned
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consequences. Moreover, different (social) networks through which awareness of
the health status of others proceeds may lead to different rates of information
spread. One may take these features into account by modeling explicitly the
spread of information through a coupled dynamics between disease expansion and
individuals’ awareness of the disease [31, 33].

Creation and destruction of links may for instance not always occur randomly,
as we assumed here, but in a way that is biased by a variety of factors such as
social and genetic distance, geographical proximity, family ties, etc. The resulting
contact network may therefore become organized in a specific way, promoting the
formation of particular structures, such as networks characterized by long-tailed
degree distributions or with strong topological correlations among nodes [3, 78–
80] which, in turn, may influence the disease dynamics. The impact of combining
such effects, resulting from specific disease scenarios, with those reported here
will depend on the prevalence of such additional effects when compared to link-
rewiring dynamics. A small fraction of non-random links, or of ties which cannot
be broken, will likely induce small modifications on the average connectivity of
the contact network, which can be incorporated in our analytic expressions without
compromising their validity regarding population wide dynamics. On the other
hand, when the contact network is highly heterogeneous (e.g., exhibiting pervasive
long-tail degree distributions), non-random events may have very distinct effects,
from being almost irrelevant (and hence can be ignored) to inducing hierarchical
cascades of infection [81], in which case our results will not apply.
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Chapter 14
Toward a Realistic Modeling of Epidemic
Spreading with Activity Driven Networks

Alessandro Rizzo and Maurizio Porfiri

Abstract Models of epidemic spreading are widely used to predict the evolution
of an outbreak, test specific intervention scenarios, and steer interventions in the
field. Compartmental models are the most common class of models. They are
very effective for qualitative analysis, but they rely on simplifying assumptions,
such as homogeneous mixing and time scale separation. On the other end of the
spectrum, detailed agent-based models, based on realistic mobility pattern models,
provide extremely accurate predictions. However, these models require significant
computing power and are not suitable for analytical treatment. Our research aims
at bridging the gap between these two approaches, toward time-varying network
models that are sufficiently accurate to make predictions for real-world applications,
while being computationally affordable and amenable to analytical treatment. We
leverage the novel paradigm of activity driven networks (ADNs), a particular
type of time-varying network that accounts for inherent inhomogeinities within
a population. Starting from the basic incarnation of ADNs, we expand on the
framework to include behavioral factors triggered by health status and spreading
awareness. The enriched paradigm is then utilized to model the 2014–2015 Ebola
Virus Disease (EVD) spreading in Liberia, and perform a what-if analysis on
the timely application of sanitary interventions in the field. Finally, we propose
a new formulation, which is amenable to analytical treatment, beyond the mere
computation of the epidemic threshold.
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14.1 Introduction

Models for the spreading of infectious diseases have opened unprecedented
scenarios in management and containment of epidemics. The assessment of the
effect of vaccination campaigns, travel bans, and prophylaxis campaigns is now
possible, partly due to the availability of such models. Models are also effective in
providing valuable information to steer interventions in the field, when therapeutical
protocols might not be available [1].

The most common and valuable modeling tools are mean-field compartmen-
tal [2–4] and agent-based models [5]. Even though such models are widely used
and effective under several aspects, they suffer from a number of key limitations that
may hamper their effectiveness in forecasting epidemics dynamics and assessing the
effect of intervention policies.

Mean-field compartmental models are based on deterministic or stochastic differ-
ential equations, in which relevant variables, called compartments, evolve in time to
describe the fraction of the population in a given state of the epidemic model [2, 4].
These models are usually calibrated through least-squares optimization on available
epidemic data [6]. Then, several instances of the model are studied, varying one or
more parameters, to anticipate plausible scenarios for the evolution of the outbreak
in terms of the total number of infections and casualties. Mean-field approximations
are effective to enable a first, mathematically rigorous understanding of epidemic
spreading, but suffer from several limitations.

While these models are computationally simple and theoretically tractable, they
do not take into account the inherently time-varying nature of human behavior,
which is influenced by several factors, such as health status or risk perception [7–9].
In their basic incarnation, they rely on the assumption of homogeneous mixing,
whereby each individual contacts every other. This assumption typically yields
an overestimation of cases [10, 11], since social interactions in populations are
heterogeneous both in number and intensity [12–14]. Although heterogeneities
could be included by refining and increasing the spectrum of compartments [15, 16],
such an approach may challenge rigorous analytical treatment and parameter
identification.

In terms of complexity, agent-based models are located at the opposite side
of the spectrum from mean-field compartmental models. Stochastic simulation of
individuals’ motion and interaction is the basic component of such models. Several
spatial constraints and specific mobility patterns are contemplated to reproduce
realistic conditions in the model simulations [17]. The Global Epidemic and
Mobility Model (GLEAMviz) [5] is a comprehensive agent-based framework for
wordlwide simulation. Several infectious outbreaks have been simulated through
this model, assessing related risks in a systematic manner [18, 19]. Although very
refined, agent-based models require extensive simulation campaigns based on a
detailed knowledge of human behavior, and their structure and working principle
do not allow any analytical treatment to be carried out.
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The present lifestyle, with frequent and fast short- and long-haul travels, yields a
reconsideration of typical time scales of the progress of infectious diseases and the
dynamics of human contact patterns. Thus, the assumption of homogeneous mixing,
according to which every individual contacts everyone else in a population, should
be overcome toward approaches that explicitly account for the concurrent evolution
of the diseases dynamics and the time-varying formation of the network of contacts.

To enable the study of diffusion models on time-varying networks, it is very
often assumed that links between nodes have a much longer or much shorter life
span than the epidemic dynamics [20–24], resulting in the separation between the
time scales of the dynamics of the network and the process evolution. On the other
hand, activity driven networks (ADNs) describe contact processes that evolve over
time-varying networks [25], when timing and duration of connections happen over
short time scales [14, 26–29], comparable with the dynamics of the process running
on the network nodes.

Disease spreading in susceptible-infected-susceptible (SIS) and susceptible-
infected-removed (SIR) models has been recently studied through ADNs [30],
and spreading and immunization thresholds have been computed using a heteroge-
neous mean-field approach [25, 30]. The substantial difference in these thresholds
compared to those on static networks calls for further investigations on epidemic
spreading over time-varying networks. ADNs seem a viable tool, providing accurate
and mathematically tractable models of epidemic spreading, which overcome
key limitations of mean-field compartmental and agent-based models. Although
promising, research on ADNs is in its early stages, and several efforts are being
conducted to advance the state of knowledge [31–34].

In this chapter, we describe our research effort to improve the ADN paradigm
toward a more realistic modeling of epidemic spreading, with the objective to
achieve realistic models that remain computationally affordable and analytically
tractable. The chapter is organized as follows. In Sect. 14.2, we offer a review of
the working principles of the original ADN formulation. Toward a more realistic
treatment of behavioral factors, in Sect. 14.3 we study the effect of individual
behavior on the spreading of the epidemic in an SIS process, summarizing our
published work [35]. Our findings are then successfully applied in Sect. 14.4 to
model the 2014–2015 outbreak of Ebola Virus Disease (EVD) in Liberia. After
a calibration phase, the model is used to offer a one-year prediction of the case
count, which is confirmed by field data. A what-if analysis on the effect of timely
sanitary intervention is also presented, borrowing from our published work [36].
In Sect. 14.5, we examine a mathematical framework that we recently established
in [37] for the analytical treatment of ADNs, which enables the analysis of the
network dynamics beyond the computation of the epidemic threshold. Finally,
conclusions and potential lines of future work are presented in Sect. 14.6.
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14.2 Activity Driven Networks: The Original Formulation

ADNs have originally been introduced to model spreading phenomena where the
time scales of the epidemic dynamics and of connection formation are comparable,
and to simulate such phenomena without relying to the time scale separation
hypothesis [25, 30, 38].

The approach is based on an activity potential, which is the probability per
unit time that a node will establish contacts with other nodes in the network. We
consider a network with N nodes. Each individual is associated with a network
node i that is characterized by its activity potential xi, with i D 1; : : : ;N. In the
original formulation in [25], the xis do not change in time and are independent
and identically distributed realizations of a random variable x, with a probability
density function F.x/. The selection of F.x/ is a crucial point of the approach, since
it determines the interactions within the network. In [25], an analysis of three large,
time-resolved datasets of contacts in social networks suggests the use of heavy-tail
density functions of the form F.x/ / x�� , with 2 � � � 3.

In its original incarnation [25], an activity firing rate ai D �xi is assigned to
each individual, where � is a constant scaling factor that regulates the average
number of active nodes in the network in a unit time. Starting from a disconnected
network of N nodes, in a time increment 	t, the epidemic model evolves as follows
(see Fig. 14.1):
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Fig. 14.1 (From [36]) An SIS epidemic model evolving on an ADN with N D 5 nodes and m D 2

links per active node. Nodes’ health states are encircled, and active nodes are shaded. (a) At the last
phase of time t, the ADN is disconnected and nodes 2 and 3 are infected. Between t and t C	t: (b)
nodes 3 and 4 become active and contact nodes 4 and 1, and 5 and 1, respectively; (c) the epidemic
process evolves, so that node 3 infects node 1, nodes 2, 4, and 5 remain in the susceptible state,
and node 2 recovers; and (d) time 	t has elapsed and all the links are removed before a new time
increment is initiated
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1. Node i, with i D 1; : : : ;N becomes active with probability ai	t. If the node is
active, it contacts m other nodes drawn at random from a uniform distribution,
creating undirected links. If it is not active, no connections are created. At the
end of this step, an undirected graph is assembled;

2. The algorithmic rules of the epidemic model are run on the obtained graph. For
example, for an SIS model: (i) each infected node can infect its susceptible
neighbors with a per-contact transmission probability �, and (ii) each infected
node recovers to the susceptible state with probability per unit time �; and

3. At the next time step t C 	t, all the network links are removed and the process
resumes.

In [25, 30], SIS and SIR processes on ADNs are studied and the epidemic
threshold is computed through a heterogeneous mean-field approach [39, 40].
In particular, for the SIS model the epidemic threshold for �=� beyond which there
is an epidemic is

�0 �
1

m

1

hai C
p

ha2i
; (14.1)

where a D �x is the random variable whose realizations define the probabilities of
activation; h�i denotes statistical expectation; and the superscript “0” refers to this
baseline formulation. In addition, control strategies for selective immunization have
been implemented in [30] and assessed via a mean-field approach.

14.3 Behavioral Epidemic Models on Activity Driven
Networks

The role of individual behavior on the spreading of epidemic diseases is becoming
increasingly important due to increased travel activity, both on short (commuting)
and long (leisure or business trips) space and time scales [41–48]. Moreover, the
wide availability of data through mass media grants people access to information
that could influence their behavior in response to an epidemic outbreak. For exam-
ple, individuals may modify travel plans, opt for self-quarantine, decide to avoid
infected individuals, or get vaccinated. The search of disease-related information
on the Internet is so widespread that search engine query data have been utilized to
detect the spreading of influenza [49]. Finally, the behavior of individuals is very
often modified by their health status, which may reduce or even prevent their ability
to move and, consequently, contact and infect others.

Different approaches have been used to model behavioral changes in epidemic
models, namely: introducing changes in the contact rates as a function of health
status [50–53]; considering additional compartments or classes in compartmental
models [54–57]; and suitably coupling models of the disease and information
spreading [58]. Surprising, counter-intuitive phenomena may emerge when
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behavioral changes are considered. An important example is the increase in the
likely of a global spreading when introducing travel restrictions to locations with a
high prevalence of the infection [46].

Here, we focus on the effects of changes of individual behavior in an SIS
epidemic model [35]. We consider two salient instances of behavioral modification.
The former instance deals with the reduction of activity of infected individuals due
to the contraction of the infection. This behavior includes the cases of quarantine,
as well as the natural reduction in activity of infected individuals, caused by the
illness. This activity limitation is common in the cases of MERS-CoV [59] or
SARS [41, 60, 61].

The second instance deals with changes in the activity of susceptible individuals,
on the basis of their risk perception. Susceptible individuals tend to avoid contacts
with others when they perceive a risk of infection; yet upon contracting the infection,
they resume their usual behavior, contacting, and possibly infecting, susceptible
individuals. This “selfish” behavior is typical of infections that do not prevent daily
habits, such as syphilis, HIV, or gonorrhoea [62–67]. We assume that risk perception
is based on the knowledge of two different pieces of information, namely, the
prevalence of the epidemic and its rate of growth.

Using ADNs, our results confirm that individual behavior may drastically affect
the epidemic spreading both in terms of the epidemic threshold and of the steady
state fraction of infected individuals. Specifically, we find that a reduction in the
activity rate of either susceptible or infected individuals yields a higher epidemic
threshold and a lower steady state fraction of infected individuals. Nevertheless, the
reduction of activity of the infected individuals seems to be a more relevant factor,
confirming the effectiveness of quarantine-like policies.

In particular, in the case of a reduction of activity of the infected individuals, the
relative activity of infected individuals with respect to susceptible ones is a key
predictor of the epidemic spreading. We consistently observe that the epidemic
threshold benefits from differences in the activity of susceptible and infected
individuals. Finally, when the activity of the infected individuals is drastically
reduced, we find that the epidemic threshold depends only on the activity of the
susceptible individuals and on the network characteristics. On the other hand, in
the case of a reduction of activity of the susceptible individuals, the possibility
of susceptible individuals spontaneously reducing their activity yields an increase
in the epidemic threshold and a decrease in the steady state infected fraction.
Nevertheless, such a modulation is more effective when the risk perception is related
to the prevalence of the epidemic, rather than to its rate of growth.
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14.3.1 Behavioral Changes of Infected Individuals Due
to Their Health Status

To model behavioral changes in individuals due to their health status, we change
the activity potential xi of each individual through two different scaling constants,
according to their health status [35]. To this aim, the parameter � defined in
Sect. 14.2 is replaced with two different scaling factors: �S, for individuals in the
susceptible state; and �I , for those in the infected state. Thus, two different activity
firing rates are assigned to individuals: ai D �Sxi, if individual i is in the susceptible
state, and ai D �Ixi, if it is in the infected state. Apart from this operation, the ADN
works exactly as in its original incarnation described in Sect. 14.2. We consider
the case in which individuals reduce activity as they contract the infection, as a
consequence of a self-initiated behavior, or due to a health condition. Thus, we
assume that the activity rate parameters of susceptible and infected individuals
differ, and, specifically, that �I < �S.

The epidemic threshold can be computed analytically through a heterogeneous
mean-field approach inspired by [30] and detailed in [35]. The threshold is

�AR �
1

m

2

.�S C �I/hxi C
p

.�S � �I/2hxi2 C 4�S�Ihx2i
; (14.2)

where the superscript “AR” stands for activity reduction. From Eq. (14.2), we note
that the epidemic threshold depends on the interplay between the activity rates of
susceptible and infected individuals, and on the first and second statistical moments
of the activity potential distribution. Moreover, similar to [25, 30], the epidemic
threshold does not depend on any parameter that is representative of the time-
aggregated network of contacts.

Two limit cases are of particular interest. When the activity rates are homoge-
neous, that is, �S D �I D �, the threshold coincides with that found in [30] and
reported in Eq. (14.1). On the other hand, when �I � �S, the threshold is

�SAR �
1

m�Shxi
; (14.3)

where the superscript “SAR” stands for strong activity reduction of the infected
individuals. Thus, when the infection severely limits the individual activity, the
epidemic threshold depends only on the activity of the susceptible individuals and on
the first statistical moment of the activity potential distribution. In this case, activity
fluctuations have no effect on the threshold value, and the spreading is independent
of the activity of the infected individuals. The ratio �I=�S should be considered as a
valid indicator of the process heterogeneity. Figure 14.2 displays the threshold �AR

in Eq. (14.2) as a function of the ratio �I=�S, for �S D 15, � D 0:1, and a network
of N D 10;000 nodes with m D 5. A distribution F.x/ / x�� , with � D 2:1 is
selected for the activity potentials and a lower cutoff 
 D 10�3 on the x variable is
adopted to avoid the singularity of F.x/ for x close to zero. Such parameter values
are maintained along the rest of this section, unless otherwise specified.
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Fig. 14.2 (From [35])
Epidemic threshold �AR as a
function of the activity ratio
�I=�S from Eq. (14.2)
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Fig. 14.3 (From [35]) Steady state fraction I1=N of infected individuals (color-coded) as a
function of �=� and �I=�S. The white solid line defines the theoretical threshold computed
according to Eq. (14.2), and the white dashed line offers a conservative estimate of the epidemic
threshold computed on the steady state data, by setting the fraction of infected individuals to 0.001.
Results are averaged over 50 independent trials with an initial infected number of 0:01N random
individuals

The trend of the steady state fraction of infected individuals exhibits a pattern
that is consistent with that of the epidemic threshold. Figure 14.3 displays the steady
state fraction of infected individuals, I1=N, for the same network described above,
as a function of �=� and �I=�S. We find that the level curves show a trend that is
similar to that of the threshold, superimposed on the plot with a white solid line. We
comment that a higher value of �=� is required to obtain a given steady state ratio
I1=N, when the ratio �I=�S is small; conversely, a smaller value of �=� suffices for
a large value of �I=�S.
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14.3.2 Behavioral Changes of Susceptible Individuals Due
to Risk Perception

A further source of behavioral change may be offered by the risk perception about
the epidemic propagation. In this case, individuals may try to protect themselves
by reducing their activity, aiming at reducing the chances of contact with others,
irrespective of their health status.

We assume that individuals have access to global information about the disease
spreading [53] and, to this aim, we contemplate two modeling strategies for risk
perception: the former is informed by the epidemic prevalence, that is the number of
infected individuals in the population; and the latter is informed by the growth of the
epidemic. When no risk is perceived, all the susceptible individuals have the same
activity parameter N�S. When the epidemic starts to spread, the activity parameter of
susceptible individuals is modulated in time as a function of their perceived risk of
infection. We denote such a time-varying activity parameter with �t

S. To simplify the
analysis, we assume that individuals act egoistically, by not reducing their activity
when infected, only seeking to minimize their chance to contract the infection. As a
consequence, the activity parameter for infected individuals is held fixed at the same
value of the disease-free parameter of susceptible individuals, that is �I D N�S.

To model risk perception as a function of the prevalence of the epidemic, we
posit the following behavioral rule

�t
S D

(

N�S.1 � It=NI/; if It � NI

0; if It > NI
; (14.4)

where It is the number of infected individuals at time t. In Eq. (14.4), NI regulates the
intensity of the reduction in activity related to risk perception, so that �t

S D N�S when
It D 0, and �t

S D 0 when It D NI. In particular, the smaller NI is, the more intense the
activity reduction is (a few infected individuals are sufficient to drop the activity of
susceptible individuals to zero).

Figure 14.4 illustrates the steady state fraction I1=N of infected individuals in
the case of a risk perception behavior based on Eq. (14.4), as a function of 1=NI
and �=�. Importantly, the epidemic threshold is higher than in the case where
susceptible individuals do not change their behavior as in Eq. (14.1). Also, this
threshold tends to increase with 1=NI, even though for wide ranges of NI, the epidemic
threshold is largely independent of its value. The steady state value of the infected
fraction decreases as 1=NI increases, even though such a variation is quite secondary.

These findings suggest that the adoption of a self-protective behavior related to
risk perception is beneficial both to the individual and to the community. Indeed,
even in the examined case in which individuals resume their usual activity once
infected, this behavior still benefits the whole population, in terms both of increasing
the epidemic threshold and decreasing the steady state value of the infected fraction.
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Fig. 14.4 (From [35]) Steady state fraction I1=N of infected individuals (color-coded) with a
risk perception behavior as in Eq. (14.4), as a function of 1=NI and �=�, for N�S D �I D 15. The
white solid line defines the epidemic threshold for uniform and constant activity �S D �I D 15,
computed according to Eq. (14.1), and the white dashed line offers a conservative estimate of the
epidemic threshold with the inclusion of risk perception behavior, computed by setting the fraction
of infected individuals to 0.001. Results are averaged over 50 independent trials with an initial
infected number of 0:01N random individuals

The second behavioral strategy is based on the assumption that risk perception is
related to the rate of growth of the infection in time. We introduce	t

I D It � It�	t as
the time difference of the number of infected individuals between two consecutive
iterations and N	 as a select threshold for such a time difference. Our behavioral rule
for the parameter �t

S is as follows:

�t
S D

8

ˆ

ˆ

<

ˆ

ˆ

:

N�S; if 	t
I � 0

N�S.1 �	t
I=

N	/; if 0 < 	t
I <

N	

0; if 	t
I 	 N	

: (14.5)

Thus, N	 regulates the intensity of the behavioral change with respect to the risk
perception (the lower N	 is, the stronger the action in response to a growth in the
epidemic spreading is).

Figure 14.5 illustrates the steady state fraction I1=N of infected individuals as
a function of 1= N	 and �=�, with the same parameters used to assess the previous
behavioral strategy. As expected, a more severe activity reduction (lower N	) yields
a higher epidemic threshold together with a lower steady state fraction of infected
individuals. Comparing the two risk perception models, we note that variations of NI
have a more significant role on the first behavioral strategy than N	 has on the second
behavioral strategy.
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Fig. 14.5 (From [35]) Steady state fraction I1=N of infected individuals (color-coded) with a
risk perception behavior as in Eq. (14.5), as a function of 1= N	 and �=�, for N�S D �I D 15. The
white solid line defines the epidemic threshold for uniform and constant activity �S D �I D 15,
computed according to Eq. (14.1), and the white dashed line offers a conservative estimate of the
epidemic threshold with the inclusion of risk perception behavior, computed by setting the fraction
of infected individuals to 0.001. Network and simulation parameters are the same as in Fig. 14.4

14.4 Modeling the 2014–2015 Ebola Virus Disease (EVD)
Spreading in Liberia

The introduction of behavioral phenomena has been of fundamental importance
for the development of realistic epidemic models. In this section, we present a
model of the 2014–2015 spreading of EVD in Liberia [36]. Behavioral phenomena
are of fundamental importance to account for the reduced activity of infected and
hospitalized individuals, as well as the zero activity of dead yet extremely infectious
corpses that are not safely buried. We calibrate the model from field data of the
2014 April-to-December spreading in Liberia and use the model as a predictive
tool, to emulate the dynamics of EVD in Liberia and offer a one year projection,
until December 2015. Also, we perform a what-if analysis to assess the efficacy of
timely intervention policies. In particular, we show that an earlier application of the
same intervention policy would have greatly reduced the number of EVD cases, the
duration of the outbreak, and the infrastructures needed for the implementation of
the intervention.

The motivation for the selection of ADNs to model EVD is twofold. First, the
incubation time of EVD, with a minimum of 2 and a maximum of 21 days [68],
is compatible with the time scale of individual mobility patterns [69, 70]. This
implies that time scale separation assumptions may yield incorrect predictions on
the spread of the epidemic [11]. Second, ADNs can be adapted to account for
realistic phenomena that may be critical to the assessment of the severity and
duration of an EVD outbreak. The epidemic model used in this work is based on
the seminal Legrand’s model for EVD spreading [71], on which most of the recent
research body on EVD rests [10, 18, 19, 72–76].
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Fig. 14.6 (From [36]) State transitions in a seven-state EVD model. The states are: S, susceptible;
E, exposed (infected, non-symptomatic); I, infected (symptomatic); H, hospitalized; F, dead but
not buried; RR, recovered; and RD, dead and safely buried

Legrand’s model is a variant of the Susceptible-Exposed-Infected-Recovered
model, which accounts for additional states to describe the specific dynamics of
EVD. These additional states include hospitalized individuals and individuals who
are dead but unsafely buried. In line with previous works, model parameters have
been in part hypothesized from the existing literature [11, 18, 71, 74, 77–79], and in
part identified through a least square technique on the available dataset of the case
count provided by the World Health Organization (WHO) [79–81].

14.4.1 The ADN-Based EVD Model

Figure 14.6 illustrates the dynamics of the state transition of the proposed model.
According to [71], two states related to hospitalization (H) and death followed by
a traditional funeral, without immediate safe burial (F) are added. The removed
state (R) indicates individuals that cannot contribute any more to the dynamics of
the epidemic spreading. This state contains individuals who have recovered and are
immune, and those who have died and have been safely buried. In our EVD model,
we partition the removed state into two states: recovered (RR); and dead and safely
buried (RD). Similar to [35], we assume that people infected with EVD and not
hospitalized have a lower probability to come in contact with other individuals, as
they will move less due to their debilitated health. Yet, such probability is non-zero,
as they may infect those who take care of them, that is, friends, parents, and relatives.
Thus, we differentiate the activity of susceptible and exposed individuals from that
of infected ones, using two different activity rates, namely, �SE and �I .
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Table 14.1 (From [36]) Parameters of the activity driven EVD model

Parameter Meaning

�SE , �I Activity rate

�I , �H , �F Probability of infection

�EI , �IH , �IF , �IRR , �IRD , �HRR , �HRD , �FRD Transition rate

ıIH , ıIF , ıIRR , ıIRD , ıHRR , ıHRD Transition fraction

Model parameters belong to three categories: probabilities of infection, transition
rates, and transition fractions. Probabilities of infection are indicated with �	, where
the subscript identifies (I), (H), or (F) states. These parameters indicate the per-
contact probability of a susceptible individual to contract the epidemic by contacting
an infected (I), hospitalized (H), or a dead and not safely buried (F) individual.
Transition rates are indicated with �	�, where subscripts indicate any two different
states of the epidemic model. The inverse of a transition rate 1=�	� quantifies the
average time for an individual to transition from state  to state �. Similarly, a
transition fraction is denoted with ı	� and quantifies the fraction of individuals in
state  that transition to state �. Table 14.1 summarizes the parameters of the model.

The state transitions of our ADN-based model, describing the dynamics of EVD
spreading, are:

1. If a susceptible (S) individual is in contact with an infected (I), hospitalized (H),
or dead and not safely buried (F) individual, he/she will contract the infection
and transition to the exposed (E) state with per-contact transmission probability
�I , �H , and �F, respectively;

2. An exposed individual (E) transitions to the infected and symptomatic (I) state
with rate �I ;

3. An infected and symptomatic individual (I) transitions to one of the three states:
hospitalized (H), dead and not safely buried (F), recovered (RR), and dead and
safely buried (RD). A fraction ıIH of infected individuals is hospitalized with
rate �IH; a fraction ıIF remains in the community, eventually dies, and receives
traditional funeral rituals, without safe burial, with rate �IF; a fraction ıIRR

recovers with rate �IRR ; and a fraction ıIRD dies in the community and is safely
buried by a burial team with a rate�IRD . The constraint ıIH CıIF CıIRR CıIRD D 1

holds;
4. A hospitalized individual (H) transitions to the recovered (RR) or the dead and

safely buried (RD) state. A fraction ıHRR will recover with rate �HRR , whereas a
fraction ıHRD will die with rate �HRD and then is safely buried. The constraint
ıHRR C ıHRD D 1 holds; and

5. Dead people who have not been handled by a burial team will remain infectious
until burial. Individuals in the dead and not safely buried (F) state will be buried
with a rate �FRD and transition to the dead and buried (RD) state.
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Table 14.2 (From [36])
Time-invariant parameters of
the activity driven EVD
model.

Parameter Value

�I 0.16

�F 0.49

�EI 0.09 days�1

�IF 0.13 days�1

�IRR 0.13 days�1

�IRD 0.13 days�1

�HRR 0.22 days�1

�HRD 0.24 days�1

�FRD 0.5 days�1

ıIRR 0

ıHRR 0.46

ıHRD 0.54

Table 14.3 (From [36]) Time-varying parameters of the activity driven EVD model. Phase 1:
before mid-August 2014 (day 0 to 130); Phase 2: between mid-August and mid-October 2014
(day 131 to 180); and Phase3: after mid-October 2014 (from day 181 onward)

Parameter Phase 1 Phase 2 Phase 3

�H 0.33 0.02 0.02

�IH 0.1 days�1 0.2 days�1 0.43 days�1

ıIH 0.51 0.80 0.89

ıIF 0.1 0.05 0.01

ıIRD 0.39 0.15 0.10

14.4.2 Model Calibration

The WHO count of confirmed EVD cases in Liberia, from April 8, 2014 to
December 31, 2014, has been used to calibrate our model. The data utilized
cover a time span of 268 days [79–81]. Literature on the 2014–2015 EVD
outbreak and field reports are utilized to set epidemic-specific parameters, while
those related to the network activity are obtained through an identification strat-
egy. Three different approaches have been considered to calibrate the model
parameters.

Table 14.2 lists a set of parameters that are independent of the application of
intervention measurements and are, therefore, considered constant in time. Their
values are obtained from the literature on the EVD outbreak [11, 74, 79]. On the
other hand, parameters listed in Table 14.3 are regarded as time-varying, since they
depend on the level of intervention. The literature reports that such a level has
constantly increased from mid-August 2014 [11]. Interventions can be summarized
as: (i) an increase in the number of hospital beds for EVD patients; (ii) the
exclusive admission of patients in symptomatic states to Ebola treatment units, with
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a consequent reduction of the probability of infection; (iii) an increase in the number
of safe burial procedures; and (iv) improvements in the implementation of contact
tracing procedures [11].

In an effort to minimize the complexity of the model, time-varying parameters
are set to different constant values, changing in a step-like manner. The time instants
at which such changes occur are: before mid-August (day 0 to 120), between
mid-August and mid-October (day 121 to 180), and after mid-October (day 181
onward). The parameters for the first two phases are selected from the available
literature [11, 74, 79], while those in the third phase reflect the further increase
in the efficiency of the intervention level, which we know has occurred in many
districts of Liberia, especially in Montserrado (the Capital County), where a strong
improvement in hospitalization, laboratory testing and body collection in October
has been reported by the Centers for Disease Control and Prevention (CDC) [82].
Although the parameter set for the third phase has not been confirmed in the
literature, our selection reflects the application of an almost ideal intervention in
the field confirmed by relevant WHO statements [83].

The remaining ADN-related parameters, that is, the number of contacts per
unit time of active nodes, m, the scaling factor of the activity of susceptible and
exposed individuals, �SE, and that of infected and symptomatic individuals, �I ,
have been identified using a least square optimization technique on the epidemic
curve of cumulative WHO-confirmed EVD cases in Liberia [80] from April 8, 2014
to December 31, 2014 (268 days). The identified parameter values are m D 7,
�SE D 4:5, and �I D 3:2. These parameters have been then used to validate the
model on a further portion of the epidemic curve, related to confirmed cases from
January 1, 2015, to December 2, 2015. Additional simulations have been performed
to assess the role of the exponent of the activity distribution, � , on the evolution
of the epidemic. A good fit has been found by setting � D 2:1. This value is
consistent with other findings in the literature, which posit that social interactions
follow heavy-tailed or skewed statistical distributions [84–87].

14.4.3 Model Validation, Predictions, and What-If Analysis

A validation phase has been run on the model through Monte Carlo simulations over
50 randomized trials. While model parameters and the size of the initial seed of
infected individuals are held constant to the values determined by the identification
phase, the trials are randomized over the initial locations of the infectious seed
cases. The averaged epidemic curve is then compared with the WHO-confirmed
cumulative curve of EVD cases [80], and results are illustrated in Fig. 14.7. As
anticipated, the model replicates with good accuracy the epidemic curve during the
first 268 days used for calibration, while predicting a modest increase in the case
count for the remaining 337 days, until December 2, 2015.

The model can be effectively used to estimate the efficacy of timely intervention
policies. To this aim, we contemplate the possibility of shifting the time when we
have seen an increase in the level of field interventions (day 121 in Table 14.3) to an
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Fig. 14.7 (From [36]) Calibration of the model on real data and model predictions. In (a), the
comparison between model predictions and field data involved the entire duration of the spreading
from 4/8/2014 to 12/2/2015. The solid line shows model results in terms of the cumulative
number of cases, and the dashed line shows the cumulative case count reported by WHO and
CDC in Liberia [80]. The three regions in (a) identify the three phases of the intervention policy
hypothesized in Table 14.3. The step-like discontinuity in the case count around sample 200 is
likely due to data corruption. This observation is supported by the corresponding death count,
which decreases correspondingly (while it should always increase) [88]. In (b)–(d), the three
phases of the intervention policies are separately illustrated. Model predictions are illustrated
in (d), from day 268 onwards

earlier day. In other words, we run our EVD model by only changing the time when
the transition between Phase 1 and Phase 2 takes place. We consider the following
possible dates: early July (day 76), early June (day 46), and early May (day 16).
Figure 14.8a displays the forecasted cumulative case counts associated with the
selected times. As expected, anticipating the implementation of more effective
intervention policies drastically reduces the epidemic spreading. For example, the
outbreak would have ended with a 72% reduction of the total Ebola cases (i.e., 2,830
rather than 9,922) by anticipating the increase in the level of interventions to day 76.

The beneficial effect of an earlier implementation of superior intervention
policies is also noted in the timing of the epidemic peak. Figure 14.8b displays
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Fig. 14.8 (From [36]) Prediction of the (a) cumulative number of cases; (b) instantaneous number
of cases; and (c) instantaneous number of hospitalized patients in Liberia between 4/8/2014 and
8/20/2015, by varying the time of the transition between Phase 1 and Phase 2, defining when
the level of interventions is increased. The dates of such transitions are detailed in the legend.
Simulations are averaged over 50 independent trials
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the trend of the instantaneous number of infected individuals for the same instances
considered in Fig. 14.8a. We observe that the occurrence of the peak recedes when
these superior intervention policies are applied earlier. A timely implementation
would thus also be beneficial to a faster resolution of the outbreak.

The model can also be used to estimate the needed infrastructure to face the
outbreak, in the form of the number of beds available for EVD patients. Figure 14.8c
shows the number of hospitalized persons as a function of time for the same
instances considered in Figs. 14.8a,b. To implement a desired intervention policy
at a given time, the number of available hospital beds must be larger than or
equal to the number of persons that should be theoretically hospitalized. Therefore,
the peak value of the number of hospitalized persons predicted by the model
can be used to estimate the numbers of beds that should be made available in
the country. Figure 14.8c suggests that anticipating the implementation of more
effective intervention policies reduces the size of the infrastructure that should
be available. While the mid-August timing is estimated to require 331 beds,
anticipating it to early in July would have only required 91 beds.

14.5 Toward Analytical Treatment of ADNs: A
Continuous-Time, Discrete-Distribution Theory

Apart from the computation of the epidemic threshold [25, 30, 35, 38], previous
studies on ADNs largely carry out their analysis based on extensive Monte Carlo
simulations [25, 30, 31, 35, 36, 38, 89–94]. In this section, we establish an analytical
framework to study the entire dynamics of the epidemic spreading at the population
level (from the zero-infected condition to the endemic equilibrium) [37]. Differently
from the original ADN formulation, where a discrete-time epidemic model is
implemented with a continuous probability distribution for the nodes’ activities, we
formulate a continuous-time model with a discrete distribution.

The advantages of our approach are manifold. First, it does not rely on extensive
Monte Carlo simulations, but requires the integration of simple ordinary differential
equations (ODEs). Second, it is not necessary to select a time step, a required
procedure for discrete-time models that can lead to confounds in the correct
reproduction of the system dynamics [95]. Third, it is based on a reduced number of
parameters with respect to traditional instances of ADNs [25, 30, 31, 35, 36, 38, 89–
93].

In our new framework, we consider a (large) population of N individuals, each
associated with a node of a time-varying undirected graph G .t/ D .V ;E .t//, with
t 2 R

C. V D f1; : : : ;Ng is the node set and E .t/ is the time-varying link set. We
focus on an SIS process [4]. Each node v 2 V is assigned a time-invariant activity
rate av , which represents the expected number of contacts that node v generates in
a unit time interval. Starting from t D 0, node v becomes active after a time that is
sampled from an exponentially distributed random variable with parameter av [96].
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When a node activates, it contacts exactly one node uniformly at random in V ,
generating a single link. If this link connects an infected node with a susceptible one,
then the epidemic propagates with a fixed probability �, otherwise nothing happens.
We suppose that the duration of the contact is instantaneous, so that � is considered
a per-contact infection probability. The link is instantaneously removed, and the
node may activate again according to the same rule. Each infected node recovers
after a time that is drawn from an exponentially distributed random variable with
parameter �, becoming susceptible again. Thus, ��1 is the expected time needed
by a individual to recover.

The relationship with discrete-time ADN models is straightforward. In a time
step 	t, the continuous-time model establishes as many links as in a realization of
the discrete-time model. The activity rate of a node in continuous-time corresponds
to the product of its activity potential and the number of contacts it can establish
in the time step. The probability that an infected node recovers in a discrete-time
step is 1 � e��	t. The per-contact infection probability does not change between
continuous- and discrete-time.

The proposed discrete activity distribution follows a power-law with k equidistant
activation classes, each characterized by an activity rate ai (a1 < � � � < ak). For the
generic i-th class, we denote with ni its number of nodes and we let ni / a��

i . The
parameter � controls the heterogeneity among individuals, similar to the classical
ADN paradigm with a continuous distribution of activity potentials.

With reference to an SIS epidemic process, Yv.t/ 2 fS; Ig denotes the susceptible
(S) or infected (I) state of node v at time t. All the states are encapsulated in a
vector Y.t/ 2 fS; IgV . The analysis is executed by mapping Y.t/ to a k-dimensional
stochastic process Z.t/ WD ZŒY.t/�, comprising the fraction of infected nodes in each
activation class. Variable Zi.t/ indicates the fraction of infected nodes with activity
rate ai, at time t.

In the thermodynamic limit N ! 1, the fraction of nodes .n1=N; : : : ; nk=N/ in
each of the activation classes converges to .�1; : : : ; �k/, independent of N, due to the
central limit theorem. Then, Kurtz’ theorem [97] ensures that for every finite time
horizon, the stochastic process Z.t/ is close to a deterministic dynamical system
with vector variable �.t/, solution of the following set of ODEs:

P�i D ���i C �.1 � �i/.aix1 C x2/; (14.6)

with i D 1; : : : ; k and �i.0/ D Zi.0/. Here, the macroscopic variable x1 D
P

�h�h

represents the fraction of infected individuals across all classes, which is the main
observable in the study of epidemic spreading. The macroscopic variable x2 D
P

�hah�h takes into consideration the fraction of infected nodes weighted by their
individual activity rates. In general, we define xj D

P

�haj�1
h �h.

From Eq. (14.6), we appreciate that the drift in the fraction of infected nodes in
each class is determined by three effects: the recovery of infected nodes (���i); the
spreading associated with active nodes in the i-th class generating contacts toward
infected nodes (�.1 � �i/aix1); and the spreading related to active infected nodes
generating contacts with the nodes of the i-th class (�.1 � �i/x2).
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Fig. 14.9 (From [37]) Time evolution of the fraction of infected nodes for the flu (a) and Twitter
(b) case studies. Comparison between discrete-time continuous-distribution ADN process (blue,
dashed), our continuous-time discrete-distribution approach (green, dotted) model, and theoretical
predictions (red, solid) from Eq. (14.6)

Integrating Eq. (14.6) allows to closely simulate the epidemic spreading without
the need of Monte Carlo simulations. To verify this claim and demonstrate the
correspondence between continuous- and discrete-time epidemic models, we con-
sider two different dynamics on real-world phenomena, modeled through ADNs: flu
spreading in a university campus and trend diffusion on Twitter. System parameters
are obtained from case studies [25, 98–101], as detailed in [37]. We compare
the outcome of Monte Carlo simulations averaged over 200 trials for both the
continuous- and the discrete-time processes, along with the integration of the
deterministic ODE system (14.6). In both examples, the activity distribution is
discretized over k D 59 equidistant activation classes. Figure 14.9 demonstrates
the equivalence of our approach with respect to traditional ADNs in Monte Carlo
simulations, along with the validity of system (14.6) to exactly predict the epidemic
spreading.

The study of the k-dimensional system (14.6) is more amenable to analytical
treatment if it is rewritten in terms of the first k macroscopic variables, x1; : : : ; xk,
resulting in the following system of ODEs:

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

Px1 D .�˛1 � �/x1 C �x2 � 2�x1x2;
Px2 D �˛2x1 C .�˛1 � �/x2 � �x1x3 � �x22;
Px3 D �˛3x1 C �˛2x2 � �x3 � �x1x4 � �x2x3;
: : :

Pxk D �˛kx1 C �˛k�1x2 � �xk � �x1
P

�hak
h�h � �x2xk;

(14.7)

where ˛j D
P

�haj
h are the moments of the activity rates distribution. This system

is well-posed since the term
P

�hak
h�h in the k-th equation is a linear combination

of the linearly independent variables x1; : : : ; xk.
Studying system (14.7) leads to a significant characterization of the epidemic

spreading, beyond the computation of the epidemic threshold in Eq. (14.1) obtained
from linear stability analysis [37]. However, the selection of power-laws with
exponent between 2 and 3 in the activity distribution induces numerical instabilities,
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since statistical moments of the distribution blow up from the second onwards.
Moreover, the prescription of initial conditions for macroscopic variables of order
greater than 1 may result unfeasible in real-world applications.

A possible approach to address these issues is to project the k-dimensional
dynamics to a lower dimensional space consisting of only k� � k equations. We
approximate the term xk�C1 using two elementary bounds: a1xk� � xk�C1 � akxk�

and xk�C1 � ˛k� . Using these bounds, we can reduce the system of k ODEs (14.7)
to a system of k� ordinary differential inclusions (ODIs) [102], consisting of one
inclusion and k� � 1 equations.

If k� D 1, we bound a1x1 � x2 � minf˛1; akx1g, reducing system (14.7) to a
single ODI. This one-dimensional system should not be contemplated to accurately
predict the evolution of the process during the transient, between the zero-infected
condition and the endemic equilibrium, due to the conservativeness of the bounds
during such a transient phase. However, it can be effectively used to analytically
determine an interval I for the endemic equilibrium Nx1, which is

	

max

�

�˛1

�˛1 C �
;
�.ak C ˛1/ � �

2�ak

�

;
�.a1 C ˛1/ � �

2�a1




; (14.8a)

if �˛1 > �, and

	

�.a1 C ˛1/ � �

2�a1
;min

�

�˛1

�˛1 C �
;
�.ak C ˛1/ � �

2�a1

�


; (14.8b)

if �˛1 < �. Notice that, if �˛1 D �, we analytically compute Nx1 D 1=2.
We demonstrate the use of these two bounds through the two real-world case

studies on flu spreading and Twitter [37]. Figure 14.10 illustrates the prediction
of the endemic state using the bounds for k� D 1, for the two case studies.
Our simulations indicate that the accuracy of the bounds depends on the system
parameters. Specifically, our results suggest that the closer is the endemic state to
Nx1 D 1=2 (that is, ˛1� D �), the more precise the bounds are.

An improved prediction of the transient phase is obtained with k� D 2, which
leads to an ODI for the evolution of x2, coupled to the first ODE in system (14.7).
As detailed in [37], we establish the two following ancillary ODEs:

Px2 D �.˛2 � �";x2 .x1//x1 C .�˛1 � �/x2 � �x22; (14.9a)

Px2 D �.˛2 � �";x2 .1 � x1//x1 C .�˛1 � �/x2 � �x22; (14.9b)

where �";x2 .x1/, is a continuous function that, in the limit " ! 0, tends to the
Heaviside function

�";x2 .x1/ !

�

a1x2 if x1 < 1=2;
minfakx2; ˛2g if x1 > 1=2:

(14.10)
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Fig. 14.10 (From [37]) Averaged Monte Carlo simulations of a discrete-time continuous-
distribution ADN process (blue) and theoretical bounds on the endemic equilibrium state
(computed for k� D 1, in red), for flu (a) and Twitter (b) case studies. From data in [37], ˛1�=�
is equal to 0.988 in (a) and 1.785 in (b)
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Fig. 14.11 (From [37]) Averaged Monte Carlo simulations of a discrete-time continuous-
distribution ADN process (blue) and theoretical bounds on the dynamics of the epidemic spreading
(computed for k� D 2 with " D 10�3, in red), for flu (a) and Twitter (b) case studies

The upper- and lower-bounds for x1 are obtained by coupling the first ODE
in system (14.7) with Eqs. (14.9a) and (14.9b), and integrating in the limit as
" ! 0. Simulation results in Fig. 14.11 demonstrate the accuracy of the bounds
in capturing the transient response. Higher endemic equilibria seem manifest into
tighter prediction bounds during the transient, albeit the upper bound becomes
conservative as time progresses. In general, the predictions of the endemic state
from k� D 2 are less precise than the simpler closed-form results for k� D 1.
This is related to the solutions of the ancillary ODEs (14.9a) and (14.9b) leaving
the bounds for k� D 1. With this in mind, the overall prediction accuracy could be
improved by combining the bounds in Figs. 14.10 and 14.11.

Toward a further improvement in the prediction of the epidemic spreading, our
framework can be utilized to produce accurate finite-time-horizon predictions, based
on the availability of low-frequency epidemic data at the population level, such as
the cumulative count case or the epidemic incidence [37].
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14.6 Conclusions

Modeling of epidemic spreading has greatly advanced in the last decades, due to
the availability of powerful models and computing power. However, much effort
is needed to obtain models that are accurate and realistic, yet computationally
affordable. To this aim, ADNs are a valuable tool to encapsulate the inherent
heterogeneity in the characteristics of a population and to embrace the concurrent
evolution of epidemic dynamics and the formation of the network of contacts on
the present hyperconnected world. This chapter has presented our research effort,
which aims at including realistic factors in epidemic modeling, while keeping the
model computationally affordable and analytically tractable.

However, further work is needed toward steering the theoretical models presented
herein toward effective tools for predicting epidemic spreading prediction and
assisting interventions in the field. Future efforts will aim at tackling spatial and
temporal memory in the network formation, which will help in encapsulating spatial
locality and temporal recurrence in human contacts. Finally, effective techniques to
achieve an analytical solution of the framework presented in the last section should
be put forward.
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