
Chapter 2
Neighborhood-Based QoS Prediction

Abstract With the increasing popularity of cloud computing as a solution for build-
ing high-quality applications on distributed components, efficiently evaluating user-
side quality of cloud components becomes an urgent and crucial research problem.
However, invoking all the available cloud components from user-side for evaluation
purpose is expensive and impractical. To address this critical challenge, we propose a
neighborhood-based approach, called CloudPred, for collaborative and personalized
quality prediction of cloud components. CloudPred is enhanced by feature model-
ing on both users and components. Our approach CloudPred requires no additional
invocation of cloud components on behalf of the cloud application designers. The
extensive experimental results show that CloudPred achieves higher QoS prediction
accuracy than other competing methods. We also publicly release our large-scale
QoS dataset for future related research in cloud computing.

2.1 Overview

In the cloud environment, designers of cloud applications, denoted as component
users, can choose from a broad pool of cloud components when creating cloud appli-
cations. These cloud components are usually invoked remotely through communi-
cation links. Quality of the cloud applications is greatly influenced by the quality of
communication links and the distributed cloud components. To build a high-quality
cloud application, non-functional Quality-of-Service (QoS) performance of cloud
components becomes an important factor for application designers when making
component selection [2]. Moreover, for the existing cloud applications, by replacing
low-quality components with better ones, the overall quality of cloud applications
can be improved.

Different from traditional component-based systems, cloud applications invoke
components remotely by Internet connections. User-side QoS experiences of cloud
components is thus greatly influenced by the unpredictable communication links.
Personalized QoS evaluation is required for each user at the user-side. The most
straightforward approach is to evaluate all the candidate components at the user-
side. However, this approach is impractical in reality, since invocations of cloud
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components may be charged. Even if the invocations are free, executing a large
number of components invocations is time consuming and resource consuming.

Based on the above analysis, it is crucial for the cloud platform to deliver a per-
sonalized QoS information service to the application designers for cloud component
evaluation. In order to provide personalizedQoS values onm cloud components for n
users by evaluation, at least n × m invocations need to be executed, which is almost
impossible when n and m are very large. However, without sufficient and accu-
rate personalized QoS values of cloud components, it is difficult for the application
designers to select optimal cloud component for building high-quality cloud appli-
cations. It is an urgent task for the cloud platform providers to develop an efficient
and personalized prediction approach for delivering the QoS information service to
cloud application designers.

To address this critical challenge, we propose a neighborhood-based approach,
called CloudPred, for personalized QoS prediction of cloud components. CloudPred
is enhanced by feature modeling on both users and components. The idea of Cloud-
Pred is that users sharing similar characteristics (e.g., location, bandwidth) would
receive similar QoS usage experiences on the same component. The QoS value of
cloud component c observed by user u can be predicted by exploring the QoS experi-
ences fromsimilar users ofu.Auser is similar tou if they share similar characteristics.
The characteristics of different users can be extracted from their QoS experiences
on different components by performing nonnegative matrix factorization (NMF). By
sharing local QoS experience among users, our approach CloudPred can effectively
predict the QoS value of a cloud component c even if the current user u has never
invoked the component c before. The experimental results show that compared with
other well-known collaborative prediction approaches, CloudPred achieves higher
QoS prediction accuracy of cloud components. Since CloudPred can precisely char-
acterize users features (will be introduced in Sect. 2.3.2), even if some users have
few local QoS information, CloudPred can still achieve high prediction accuracy.

In summary, this chapter makes the following contributions:

1. We formally identify the research problem of QoS value prediction in cloud com-
puting and propose a novel neighborhood-based approach, named CloudPred, for
personalized QoS value prediction of cloud components. CloudPred learns the
characteristics of users by nonnegative matrix factorization (NMF) and explores
QoS experiences from similar users to achieve high QoS value prediction accu-
racy. We consider CloudPred as the first QoS value prediction approach in cloud
computing literature.

2. Weconduct large-scale experiments to study the prediction accuracy of ourCloud-
Pred compared with other approaches. The experimental results show the effec-
tiveness of our approach. Moreover, we also publicly release our large-scale QoS
dataset for future research.

The remainder of this chapter is organized as follows: Sect. 2.2 describes the
collaborative QoS framework in cloud environment. Section2.3 presents our Cloud-
Pred approach in detail. Section2.4 introduces the experimental results. Section2.5
concludes the chapter.
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2.2 Collaborative Framework in Cloud

Figure2.1 shows the system architecture in cloud computing. In a cloud environ-
ment, the cloud provider holds a large number of distributed cloud components (e.g.,
databases, servers, Web services), which can be provided to designers for develop-
ing various cloud applications. The cloud application designers, called component
users in this chapter, are located in different geographic and network environments.
Since users invoke cloud components via different communication links, their usage
experiences on cloud components are diverse in several QoS properties including
response-time, throughput, etc. In order to provide personalized quality information
of different components to application designers for optimal component selection,
personalized QoS value prediction is an essential service of a cloud provider.

Within the cloud platform provided by a cloud provider, there are several modules
implemented for managing the cloud components. Examples of management mod-
ules include Task Scheduler, which is responsible for task scheduling, SLAWrapper,
which is responsible for service-level negotiation between cloud provider and users,
etc. In this chapter, we focus on the design of QoS Monitor, which is responsible for
monitoring the QoS performance of cloud components from the users’ perspective.
The QoS Monitor consists of two subunits: Collector, which is used to collect QoS

Cloud

Fig. 2.1 System architecture. ©[2011] IEEE. Reprinted, with permission, from Ref. [8]
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usage information from various component users, and Predictor, which is supposed
to provide personalized QoS value prediction for different component users.

The idea of our approach is to share local cloud component usage experience
from different component users, to combine this local information to get a global
QoS information of all components, and to make personalized QoS value prediction
based on both global and local information. As shown in Fig. 2.1, each component
user keeps local records of QoS usage experiences on cloud components. Since cloud
applications are running on an identical cloud platform, QoS information can be col-
lected by an identical interface on the platform side. If a component user would like
to get personalized QoS information service from the cloud provider, authorization
should be given to Collector for accessing its local QoS records. Collector then
collects those local QoS records from different component users. Based on the col-
lected QoS information, Predictor can perform personalized QoS value prediction
and forward the prediction results to component users for optimizing the design of
cloud applications. The detailed collaborative prediction approach will be presented
in Sect. 2.3.

2.3 Collaborative QoS Prediction

We first formally describe the QoS value prediction problem on cloud components
in Sect. 2.3.1. Then, we learn the user-specific and component-specific features by
running latent features learning algorithm in Sect. 2.3.2. Based on the latent features,
similarities between users and components are calculated in Sect. 2.3.3. Finally, the
missing QoS values are predicted by applying the proposed algorithm CloudPred in
Sect. 2.3.4.

2.3.1 Problem Description

Let us first consider a typical toy example in Fig. 2.2a. In this bipartite graph G =
(U ∪ C, E), its vertices are divided into two disjoint sets U and C such that each
edge in E connects a vertex in U and one in C . Let U = {u1, u2, . . . , u4} be the set
of component users,C = {c1, c2, . . . , c6} denote the set of cloud components, and E
(solid lines) represent the set of invocations between U and C . This bipartite graph
G is modeled as a weighted directed graph. Given a pair (i, j), ui ∈ U , and c j ∈ C ,
edge ei j is included in E if user ui has invoked component c j before. The weight
wi j on edge ei j corresponds to the QoS value (e.g., response-time in this example)
of that invocation. Given the set E , our task is to effectively predict the weight of
potential invocations (the broken lines).

The process of cloud component QoS value prediction is illustrated by a user-
component matrix as shown in Fig. 2.2b, in which each entry denotes an observed
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Fig. 2.2 Toy example forQoSprediction. ©[2011] IEEE.Reprinted,with permission, fromRef. [8]

weight in Fig. 2.2a. The problemwe study in this chapter is then how to precisely pre-
dict the missing entries in the user-component matrix based on the existing entries.
Once the missing entries are accurately predicted, we can provide users with per-
sonalized QoS information, which is valuable for automatic component ranking,
component selection, task scheduling, etc.

We observe that although about half of the entries are already known in Fig. 2.2b,
every pair of users still have very few commonly invoked components (e.g., u1 and
u2 only invoke c1 in common, u3 and u4 have no commonly invoked components
even if together they invoke all the six components). Since the similarity between two
users are calculated by comparing their obtained QoS values on common compo-
nents, the problem of few common components observed above makes it extremely
difficult to precisely calculate similarity between users. Motivated by latent factor
model [6], we therefore first factorize the sparse user-component matrix and then
use V T H to approximate the original matrix, where the low-dimensional matrix V
denotes the user latent feature space, and the low-dimensional matrix H represents
the low-dimensional item latent feature space. The rows in V and H represent dif-
ferent features. Each column in V represents an user, and each column in H denotes
a component. The value of a entry in the matrices indicates how the associated fea-
ture applies to the corresponding user or component. In this example, we use four
dimensions to perform the matrix factorization and obtain:
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V =

⎡
⎢⎢⎣
0.32 0.15 0.31 0.33
0.23 0.15 0.26 0.28
0.30 0.20 0.24 0.34
0.47 0.23 0.59 0.21

⎤
⎥⎥⎦ ,

H =

⎡
⎢⎢⎣
0.73 0.35 0.31 0.26 0.32 0.42
0.60 0.31 0.27 0.22 0.28 0.36
0.69 0.37 0.32 0.27 0.33 0.45
0.95 0.46 0.42 0.35 0.41 0.54

⎤
⎥⎥⎦ ,

where columns in V and H denote the latent feature vectors of users and components,
respectively.

Note that V and H are densematriceswith all entries available. Then, we calculate
the similarity between users and components using four-dimensional matrices V and
H , respectively. Therefore, all the missing values can be predicted by employing
neighborhood-based collaborative method, as shown in Fig. 2.2c.

Now, we formally define the problem of cloud component QoS value prediction
as follows: Given a set of users and a set of components, predict the missing QoS
value of components when invoked by users based on existing QoS values. More
precisely:

Let U be the set of m users and C be the set of n components. A QoS element is a
triplet (i, j, qi j ) representing the observed quality of component c j by user ui , where
i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} and qi j ∈ R

k is a k-dimensional vector representing the QoS
values of kth criteria. Let Ω be the set of all pairs {i, j} and Λ be the set of all known pairs
(i, j) in Ω . Consider a matrixW ∈ R

m×n with each entry wi j representing the observed kth

criterion value of component c j by user ui . Then, the missing entries {wi j |(i, j) ∈ Ω − Λ}
should be predicted based on the existing entries {wi j |(i, j) ∈ Λ}.
Typically the QoS values can be integers from a given range (e.g., {0, 1, 2, 3})

or real numbers of a close interval (e.g., [−20, 20]). Without loss of generality,
we can map the QoS values to the interval [0, 1] using the function f (x) = (x −
wmin)/(wmax − wmin), where wmax and wmin are the maximum and minimum QoS
values, respectively.

2.3.2 Latent Features Learning

In order to learn the features of the users and components, we employ matrix fac-
torization to fit a factor model to the user-component matrix. This method focuses
on filtering the user-component QoS value matrix using low-rank approximation.
In other words, we factorize the QoS matrix into two low-rank matrices V and H .
The idea behind the factor model is to derive a high-quality low-dimensional fea-
ture representation of users and components based on analyzing the user-component
matrix. The premise behind a low-dimensional factor model is that there is only a
small number of factors influencing QoS usage experiences and that a user’s QoS
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usage experience vector is determined by how each factor applies to that user and
the items.

Consider the matrix W ∈ R
m×n consisting of m users and n components. Let

V ∈ R
l×m and H ∈ R

l×n be the latent user and component feature matrices. Each
column in V represents the l-dimensional user-specific latent feature vector of a
user, and each column in H represents the l-dimensional component-specific latent
feature vector of a component. We employ an approximating matrix W̃ = V T H to
fit the user-item matrix W :

wi j ≈ w̃i j =
l∑

k=1

vki hk j , (2.1)

The rank l of the factorization is generally chosen so that (m + n)l < mn, since V
and H are low-rank feature representations [3]. The product V T H can be regarded
as a compressed form of the data in W .

Note that the low-dimensional matrices V and H are unknown and need to be
learned from the obtained QoS values in user-component matrix W . In order to
optimize the matrix factorization, we first construct a cost function to evaluate the
quality of approximation. The distance between two nonnegative matrices is usually
employed to define the cost function. One useful measure of the matrices’ distance
is the Euclidean distance:

F(W, W̃ ) = ‖W − W̃‖2F =
∑
i j

(wi j − w̃i j )
2, (2.2)

where ‖ · ‖2F denotes the Frobenius norm.
In this chapter,we conductmatrix factorization as solving anoptimizationproblem

by employing the optimized objective function in [3]:

min
V,H

f (V, H) =
∑

(i, j)∈Λ

[w̃i j − wi j log w̃i j ],

s.t. w̃i, j =
l∑

k=1

vki hk j ,

V ≥ 0,

H ≥ 0. (2.3)

where V, H ≥ 0 is the nonnegativity constraints leading to allow only additive com-
bination of features.

In order to minimize the objective function in Eq. (2.3), we apply incremental
gradient descent method to find a local minimum of f (V, H), where one gradient
step intends to decrease the square of prediction error of only one rating, that is,
w̃i j − wi j log w̃i j . We update the V and H in the direction opposite of the gradient
in each iteration:
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vi j = vi j
∑
k

wik

w̃ik
h jk, (2.4)

hi j = hi j
∑
k

wik

w̃ik
v jk, (2.5)

vi j = vi j∑
k vk j

, (2.6)

hi j = hi j∑
k hk j

. (2.7)

Algorithm 1 shows the iterative process for latent feature learning. We first ini-
tialize matrices V and H with small random nonnegative values. Iteration of the
above update rules converges to a local minimum of the objective function given in
Eq. (2.3).

Algorithm 1: Latent Features Learning Algorithm
Input: W , l
Output: V , H
Initialize V ∈ R

l×m and H ∈ R
l×n with small random numbers;1

repeat2

for all (i, j) ∈ Λ do3

w̃i j = ∑
k vki hk j ;4

end5

for all (i, j) ∈ Λ do6

vi j ← vi j
∑

k
wik
w̃ik

h jk ;7

hi j ← hi j
∑

k
wik
w̃ik

v jk ;8

vi j = vi j∑
k vk j

;9

hi j = hi j∑
k hk j

;10

end11

for all (i, j) ∈ Λ do12

w̃i j = ∑
k vki hk j ;13

end14

until Converge;15

2.3.3 Similarity Computation

Given the latent user and component feature matrices V and H , we can calculate the
neighborhood similarities between different users and components by employing
Pearson correlation coefficient (PCC) [5]. PCC is widely used in memory-based
recommendation systems for similarity computation. Due to the high accuracy, we
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adopt PCC in this chapter for the neighborhood similarity computation on both sets
of users and components. The similarity between two users ui and u j is defined by
performing PCC computation on their l-dimensional latent feature vectors Vi and Vj

with the following equation:

S(ui , u j ) =
∑l

k=1(vik − vi )(v jk − v j )√∑l
k=1(vik − vi )2

√∑l
k=1(v jk − v j )2

, (2.8)

where vi = (vi1, vi2, . . . , vil) is the latent feature vector of user ui and vik is the
weight on the kth feature. vi is the average weight on l-dimensional latent features
for user ui . The similarity between two users S(i, j) falls into the interval [−1, 1],
where a larger value indicates higher similarity.

Similar to the user similarity computation, we also employ PCC to compute the
similarity between component ci and item c j as following:

S(ci , c j ) =
∑l

k=1(hik − hi )(h jk − h j )√∑l
k=1(hik − hi )2

√∑l
k=1(h jk − h j )2

, (2.9)

where hi = (hi1, hi2, . . . , hil) is the latent feature vector of component ci and hik
is the weights on the kth feature. hi is the average weight on l-dimensional latent
features for component ci .

2.3.4 Missing QoS Value Prediction

After computing the similarities between users, we can identify similar neighbors
to the current user by ordering similarity values. Note that PCC value falls into the
interval [−1, 1], where a positive value means similar and a negative value denotes
dissimilar. In practice, QoS usage experience of less similar or dissimilar users may
greatly decrease the prediction accuracy. In this chapter, we exclude those users with
negative PCC values from the similar neighbor set and only employ the QoS usage
experiences of users with Top-K largest PCC values for predicting QoS value of the
current user. We refer to the set of Top-K similar users for user ui as Ψi , which is
defined as:

Ψi = {uk |S(ui , uk) > 0, ranki (k) ≤ K , k 	= i}, (2.10)

where ranki (k) is the ranking position of user uk in the similarity list of user ui , and
K denotes the size of set Ψi .

Similarly, a set of Top-K similar components for component c j can be denote as
Φ j by:

Φ j = {ck |S(c j , ck) > 0, rankp(k) ≤ K , k 	= j}, (2.11)
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where rank j (k) is the ranking position of component ck in the similarity list of
component c j , and K denotes the size of set Φ j .

To predict the missing entry wi j in the user-component matrix, user-based
approaches employ the values of entries from Top-K similar users as follows:

wi j = wi +
∑
k∈Ψi

S(ui , uk)∑
a∈Ψi

S(ui , ua)
(wkj − wk), (2.12)

where wi and wk are the average observed QoS values of different components by
users ui and uk , respectively.

For component-based approaches, entry values of Top-K similar components are
employed for predicting the missing entry wi j in the similar way:

wi j = wj +
∑
k∈Φ j

S(i j , ik)∑
a∈Φ j

S(i j , ia)
(wik − wk), (2.13)

where wj and wk are the average available QoS values of component c j and ck by
different users, respectively.

In user-component-based approaches, the predicted values in Eqs. (2.12) and
(2.13) are both employed for more precise prediction in the following equation:

w∗
i j = λ × wu

i j + (1 − λ) × wc
i j , (2.14)

wherewu
i j denotes the predicted value byuser-based approach andw

c
i j denotes the pre-

dicted value by component-based approach. The parameter λ controls how much the
hybrid prediction results rely on user-based approach or component-based approach.
The proper value of λ can be trained on a small sample dataset extracted from the
original one. We summarize the proposed algorithm in Algorithm 2.

2.4 Experiments

In this section, in order to show the prediction quality improvements of our proposed
approach, we conduct several experiments to compare our approach with several
state-of-the-art collaborative filtering prediction methods.

In the following, Sect. 2.4.1 gives the description of our experimental dataset,
Sect. 2.4.2 defines the evaluation metrics, Sect. 2.4.3 compares the prediction quality
of our approach with some other methods, and Sects. 2.4.4, 2.4.5, and 2.4.6 study
the impact of training data density, Top-K, and dimensionality, respectively.
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Algorithm 2: CloudPred Prediction Algorithm
Input: W , l, λ
Output: W ∗
Learn V and H by applying Algorithm 1 on W ;1

for all (ui , u j ) ∈ U ×U do2

calculate the similarity S(ui , u j ) by Eq. (2.8);3

end4

for all (ci , c j ) ∈ C × C do5

calculate the similarity S(ci , c j ) by Eq. (2.9);6

end7

for all (i, j) ∈ Λ do8

construct similar user set Ψi by Eq. (2.10);9

construct similar component set Φ j by Eq. (2.11);10

end11

for all (i, j) ∈ Ω − Λ do12

calculate wu
i j by Eq. (2.12);13

calculate wi
i j by Eq. (2.13);14

w∗
i j = λ × wu

i j + (1 − λ) × wc
i j ;15

end16

2.4.1 Dataset Description

In real world, invoking thousands of commercial cloud components for large-scale
experiments is very expensive. In order to evaluate the prediction quality of our
proposed approach, we conduct experiments on our Web service QoS dataset [9].
Web service, a kind of cloud component, can be integrated into cloud applications
for accessing information or computing service from a remote system. The Web
service QoS dataset includes QoS performance of 5825 openly accessible real-world
Web services from 73 countries. The QoS values are observed by 339 distributed
computers located in 30 countries from PlanetLab, which is a distributed test bed
consisting of hundreds of computers all over the world. In our experiment, each of
the 339 computers keeps invocation records of all the 5825 Web services by sending
null operating requests to capture the characteristics of communication links. Totally
1,974,675 QoS performance results are collected. Each invocation record is a k-
dimensional vector representing the QoS values of k criteria. We then extract a set
of 339×5825 user-component matrices, each of which stands for a particular QoS
property, from theQoS invocation records. For simplicity,we use twomatrices,which
represent response-time and throughput QoS criteria, respectively, for experimental
evaluation in this chapter. Without loss of generality, our approach can be easily
extended to include more QoS criteria.

The statistics ofWeb service QoS dataset are summarized in Table2.1. Response-
time and throughput are within the range 0–20s and 0–1000kbps, respectively. The
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Table 2.1 Statistics of WS QoS dataset. ©[2011] IEEE. Reprinted, with permission, from Ref. [8]

Statistics Response-time Throughput

Scale 0–20s 0–1000kbps

Mean 0.910s 47.386kbps

Num. of users 339 339

Num. of web services 5828 5828

Num. of records 1,974,675 1,974,675
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Fig. 2.3 Value distributions. ©[2011] IEEE. Reprinted, with permission, from Ref. [8]

means of response-time and throughput are 0.910s and 47.386kbps, respectively.
Figure2.3 shows the distributions of response-time and throughput. Most of the
response-time values are between 0.1–0.8 s, and most of the throughput values are
between 5–40kbps.

2.4.2 Metrics

We assess the prediction quality of our proposed approach in comparison with other
methods by computing mean absolute error (MAE) and root-mean-squared error
(RMSE). The metric MAE is defined as:

MAE =
∑

i, j |wi j − w∗
i j |

N
, (2.15)

and RMSE is defined as:

RMSE =
√∑

i, j (wi j − w∗
i j )

2

N
, (2.16)
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where wi j is the QoS value of Web service c j observed by user ui , w∗
i j denotes the

QoS value ofWeb service c j would be observed by user ui as predicted by a method,
and N is the number of predicted QoS values.

2.4.3 Performance Comparison

In this section, we compare the prediction accuracy of our proposed approach Cloud-
Pred with some state-of-the-art approaches:

1. UPCC (User-based collaborative filtering method using Pearson correlation coef-
ficient): this method employs PCC to calculate similarities between users and
predicts QoS value based on similar users [1, 7].

2. IPCC (Item-based collaborative filtering method using Pearson correlation coef-
ficient): this method employs PCC to calculate similarities betweenWeb services
and predicts QoS value based on similar items (item refers to component in this
chapter) [5].

3. UIPCC (User-item-based collaborative filteringmethod using Pearson correlation
coefficient): this method is proposed by Ma et al. in [4]. It combines UPCC and
IPCC approaches and predicts QoS value based on both similar users and similar
Web services.

4. NMF (Nonnegative Matrix Factorization): This method is proposed by Lee and
Seung in [3]. It applies nonnegative matrix factorization on user-item matrix for
missing value prediction.

In this chapter, in order to evaluate the performance of different approaches in
reality, we randomly remove some entries from the matrices and compare the val-
ues predicted by a method with the original ones. The matrices with missing values
are in different sparsity. For example, 10% means that we randomly remove 90%
entries from the original matrix and use the remaining 10% entries to predict the
removed entries. The prediction accuracy is evaluated using Eqs. (2.15) and (2.16)
by comparing the original value and the predicted value of each removed entry.
Our proposed approach CloudPred performs matrix factorization in Sect. 2.3.2 and
employs both similar users and similar Web services for predicting the removed
entries. The parameter settings of our approach CloudPred are Top-K=10, dimen-
sionality=20, and λ = 0.5 in the experiments. Detailed impact of parameters will
be studied in Sects. 2.4.4, 2.4.5 and 2.4.6.

The experimental results are shown in Table2.2. For each row in the table, we
highlight the best performer among all methods. From Table2.2, we can observe that
our approachCloudPred obtains better prediction accuracy (smallerMAEandRMSE
values) than other methods for both response-time and throughput under different
matrix densities. The MAE and RMSE values of dense matrices (e.g., matrix density
is 80 or 90%) are smaller than those of sparse matrices (e.g., matrix density is 10 or
20%), since a denser matrix provides more information for predicting the missing
values. In general, the MAE and RMSE values of throughput are larger than those
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Table 2.2 Performance comparisons (A smallerMAEorRMSEvaluemeans a better performance).
©[2011] IEEE. Reprinted, with permission, from Ref. [8]

Matrix
density (%)

Metrics Response-time (seconds)

IPCC UPCC UIPCC NMF CloudPred

10 MAE 0.7596 0.5655 0.5654 0.6754 0.5306
RMSE 1.6133 1.3326 1.3309 1.5354 1.2904

20 MAE 0.7624 0.5516 0.5053 0.6771 0.4745
RMSE 1.6257 1.3114 1.2486 1.5241 1.1973

80 MAE 0.6703 0.4442 0.3873 0.3740 0.3704
RMSE 1.4102 1.1514 1.0785 1.1242 1.0597

90 MAE 0.6687 0.4331 0.3793 0.3649 0.3638
RMSE 1.4173 1.1264 1.0592 1.1121 1.0359

Matrix
density (%)

Metrics Throughput (kbps)

IPCC UPCC UIPCC NMF CloudPred

10 MAE 31.6722 26.2015 22.6567 19.7700 19.0009
RMSE 65.5220 61.9658 57.4653 57.3767 51.8236

20 MAE 35.1780 21.9313 18.1230 15.7794 15.4203
RMSE 66.6028 56.5441 50.0435 50.1402 44.8975

80 MAE 29.9146 14.5497 12.4880 12.5107 10.7881
RMSE 64.3079 44.3738 39.6017 39.2029 36.8506

90 MAE 29.9404 13.8761 12.0662 11.6960 10.4722
RMSE 63.7149 42.5534 38.0763 36.7555 35.9225

of response-time because the scale of throughput is 0–1000kbps, while the scale
of response-time is 0–20s. Compared with other methods, the improvements of our
approach CloudPred are significant, which demonstrates that the idea of combining
global and local information for QoS prediction is realistic and reasonable.

2.4.4 Impact of Matrix Density

In Fig. 2.4, we compare the prediction accuracy of all the methods under different
matrix densities. We change the matrix density from 10 to 90% with a step value of
10%. The parameter settings in this experiment are Top-K=10, dimensionality=20,
and λ = 0.5.

Figure2.4a, b shows the experimental results of response-time, while Fig. 2.4c,
d shows the experimental results of throughput. The experimental results show that
our approach CloudPred achieves higher prediction accuracy than other compet-
ing methods under different matrix density. In general, when the matrix density is
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Fig. 2.4 Impact of matrix density. ©[2011] IEEE. Reprinted, with permission, from Ref. [8]

increased from 10 to 30%, the prediction accuracy of our approach CloudPred is sig-
nificantly enhanced. When the matrix density is further increased from 30 to 90%,
the enhancement of prediction accuracy is quite limited. This observation indicates
that when the matrix is very sparse, collecting more QoS information will greatly
enhance the prediction accuracy, which further demonstrates that sharing local QoS
information among cloud component users could effectively provide personalized
QoS estimation.

In the experimental results, we observe that the performance of IPCC is much
worse than that of other methods. The reason is that in our Web service dataset, the
number of users, which is 339, is much smaller than the number of components,
which is 5258. When some entries are removed from the user-component matrices,
the number of common users between two components, on average, is very small,
which would greatly impact the accuracy of common user-based similarity computa-
tion between components. Therefore, the prediction accuracy of similar item-based
method IPCC is greatly decreased by the inaccuracy similarity computation between
components.
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2.4.5 Impact of Top-K

The parameter Top-K determines the size of similar user and similar component sets.
In Fig. 2.5, we study the impact of parameter Top-K by varying the values of Top-K
from10 to 50with a step value of 10.Other parameter settings are dimensionality=10
and λ = 0.5.

Figure2.5a, b shows the MAE and RMSE results of response-time, respectively,
while Fig. 2.5c, d shows the MAE and RMSE results of throughput, respectively.
The experimental results show that our approach CloudPred achieves best prediction
accuracy(smallest MAE and RMSE values) when Top-K is set around 10. Under
both sparse matrix, whose density is 10%, and dense matrix, whose density is 90%,
all the prediction accuracies decrease when we decrease the Top-K value from 10
to 2 or increase from 10 to 18. This is because too small Top-K value will exclude
useful information from some similar users and similar components, while too large
Top-K value will introduce noise from dissimilar users and dissimilar components,
which will impact the prediction accuracy.
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Fig. 2.5 Impact of Top-K. ©[2011] IEEE. Reprinted, with permission, from Ref. [8]
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2.4.6 Impact of Dimensionality

The parameter dimensionality determines the number of latent features used to char-
acterize user and cloud component. In Fig. 2.6, we study the impact of parameter
dimensionality by varying the values of dimensionality from 10 to 50 with a step
value of 10. Other parameter settings are Top-K=10 and λ = 0.5.

Figure2.6e, f shows theMAE andRMSEvalues of response-time, while Fig. 2.6g,
h shows the MAE and RMSE values of throughput. When the matrix density is 90%,
we observe that our approach CloudPred achieves the best performance when the
value of dimensionality is 30, while smaller values like 10 or larger values like 50
can potentially hurt the prediction accuracy. This observation indicates that when the
user-component matrices are dense, 10 latent factors is not enough to characterize the
features of user and componentwhich aremined from the richQoS information,while
50 latent factors is too many since it will cause overfitting problem. When the matrix
density is 10%, we observed that the prediction accuracy of our approach CloudPred
decreases (MAE and RMSE increase) when the value of dimensionality is increased
from 10 to 50. This observation indicates that when the user-component matrices
are sparse, 10 latent factors is already enough to characterize the features of user
and component which are mined from the limited user-component QoS information,
while other larger values of dimensionality will cause the overfitting problem.

2.4.7 Impact of λ

The parameter λ determines how much the final prediction results rely on user-
based approach or component-based approach. A larger value of λmeans user-based
approach contributes more to the hybrid prediction. A smaller value of λ means
component-based approach contributes more to the hybrid prediction. In Fig. 2.7, we
study the impact of parameter λ by varying the values of λ from 0 to 1 with a step
value of 0.1. Other parameter settings are dimensionality=10 and Top-K=10.

Figure2.7a, b shows the MAE and RMSE results of response-time, respectively.
The experimental results show that the value of λ impacts the recommendation
results significantly, which demonstrates that combining the user-based approach
and component-based approach improves the recommendation accuracy. The pre-
diction accuracies increase when we increase the value of λ at first. But when λ

surpasses a certain threshold, the prediction accuracy decreases with further increase
of the value of λ. This phenomenon coincides with the intuition that purely using
the user-based approach or purely using the component-based approach cannot gen-
erate better results than the hybrid approach. From Fig. 2.7, we observed that when
λ ∈ [0.4, 0.7], CloudPred achieves the best performance, while a smaller value or
a larger value can potentially degrade the prediction performance. Moreover, the
insensitivity of the optimal value of λ shows that the parameter of CloudPred is easy
to train.
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Fig. 2.6 Impact of dimensionality. ©[2011] IEEE. Reprinted, with permission, from Ref. [8]
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2.5 Summary

Based on the intuition that a user’s cloud component QoS usage experiences can be
predicted by exploring the past usage experience from both the user and its similar
users, we propose a novel neighborhood-based approach, which is enhanced by
feature modeling on both user and component, called CloudPred, for collaborative
and personalizedQoSvalue prediction on cloud components. Requiring no additional
invocation of cloud components, CloudPred makes the QoS value prediction by
taking advantage of both local usage information from similar users and similar
components and global invocation information shared by all the users. The extensive
experimental results show that our approach CloudPred achieves higher prediction
accuracy than other competing methods.

Since the Internet environment is highly dynamic, the QoS performances of a
cloud component may be variable against time (e.g., due to the network traffic,
server workload). In our current approach, the QoS values are observed over a long
period, which represent the average QoS performance of cloud components. Since
the average QoS performance of cloud components is relatively stable, the predicted
QoS values provide valuable information of unused cloud components for the users.
In our future work, we will explore an online prediction algorithm to handle the
dynamically changing QoS values by fusing with the time information.

Currently, we are collecting QoS information of Web service, which is a kind of
cloud component. In the future, we will conduct more experiments to evaluate our
approach in commercial clouds which contain multiple kinds of cloud components.
For future work, we will investigate more techniques for improving the similarity
computation (e.g., clustering models, latent factor models, data smoothing). We will
also conduct more investigations on the correlations and combinations of different
QoS properties.
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