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Preface

Cloud computing provides shared resources (e.g., infrastructure, platform, and
software) as services. Service-oriented architecture (SOA) is the technical foun-
dation of cloud computing, whereby services offered by different cloud providers
are discovered and integrated over the Internet. Quality-of-Service (QoS) is widely
employed to represent the non-functional performance of services and has been
considered as the key factor to differentiate the qualities of service candidates. It
becomes important to evaluate the QoS performance of services.

However, QoS evaluation is time- and resource-consuming. Conducting
real-world evaluation is difficult in practice. Moreover, in some scenarios, QoS
evaluation becomes impossible (e.g., the cloud provider may charge for service
invocations, too many services to be evaluated). Therefore, it is crucial to study
how to build effective and efficient approaches to predict the QoS performance of
services.

In this book, we propose QoS prediction, a novel principle for enabling the
QoS-aware approaches. We first formally identify the QoS prediction problem and
propose three QoS prediction methods, which utilize the users’ past usage expe-
riences. The first prediction method employs the information of neighborhoods for
making QoS value prediction and engages matrix factorization techniques to
enhance the prediction accuracy. The second method provides time-aware per-
sonalized QoS value prediction service. The third method employs time information
for efficient online performance prediction.

The predicted QoS values can be employed to a variety of applications in cloud
and service computing. We demonstrate the benefits in two QoS-aware applications
in this book. The first application employs QoS information to build a Web service
search engine, which helps users discover appropriate Web services to fulfill both
functional and non-functional requirements. The second application employs
dynamic QoS information to build robust Byzantine fault-tolerant cloud systems.

This book is intended for professionals involved in cloud computing and
graduate students working on the QoS-related problems. It is assumed that the
reader has a basic knowledge of mathematics, as well as a certain background in
cloud computing. The reader can get an overview of the QoS prediction research
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area. We hope this monograph will be a useful reference for students, researchers,
and professionals to understand three basic methodologies of QoS prediction. This
book can be used as a starting point for QoS-related research topics. The readers
can immediately conduct extensive researches and experiments on the real-world
QoS datasets released in this book.

Hong Kong Yilei Zhang
June 2017 Michael R. Lyu
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Chapter 1
Introduction

Abstract This chapter provides an overview of QoS prediction in cloud and service
computing, including backgrounds, related works, and organizations of this book.

1.1 Overview

Cloud computing [6, 22] is a new type of Internet-based computing, whereby shared
resources, software, and information are provided to computers and other devices
on demand [38]. With the exponential growth of cloud computing as a solution for
providing flexible computing resources, more and more cloud applications emerge
in recent years. The architecture of the Software-as-a-Service (SaaS) systems in
the delivering of cloud computing typically involves multiple cloud components
communicating with each other over application programming interfaces, usually
Web services. [92]. Cloud computing has become a scalable service consumption
and delivery platform.

Web services are software systems designed to support interoperable machine-to-
machine interaction over a network. The technical foundations of cloud computing
include service-oriented architecture (SOA), which is becoming a popular and major
framework for building Web applications in the era of Web 2.0 [63], whereby Web
services offered by different providers are discovered and integrated over the Internet.
Typically, a service-oriented system consists of multiple Web services interacting
with each other over the Internet in an arbitrary way. In this book, service refers
to Web service in service computing and cloud component which is delivered as a
service in cloud computing.

Figure1.1 shows the system architecture in cloud computing. In a cloud environ-
ment, the cloud provider holds a large number of distributed services (e.g., databases,
servers, Web services), which can be provided to designers for developing various
cloud applications. Designers of cloud applications can choose from a broad pool of
distributed services when composing cloud applications. These services are usually
invoked remotely through communication links and are dynamically integrated into
the applications. The cloud application designers are located in different geographic

© The Author(s) 2017
Y. Zhang and M.R. Lyu, QoS Prediction in Cloud and Service Computing,
SpringerBriefs in Computer Science, DOI 10.1007/978-981-10-5278-1_1
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2 1 Introduction

Cloud

Fig. 1.1 System architecture. ©[2011] IEEE. Reprinted, with permission, from Ref. [104]

and network environments. Since the users invoke services via different communi-
cation links, the quality of services they observed are diverse.

Quality-of-Service (QoS) is usually employed to describe the non-functional char-
acteristics of services. It becomes a major concern for application designers when
making service selection [37]. Moreover, for the existing cloud applications, by
replacing low-quality services with better ones, the overall quality of cloud applica-
tions can be improved.

In recent year, a number of research tasks have been focused on optimal service
selection [10, 97] and recommendation [108] in distributed systems or service com-
puting. Typically, evaluations on the service candidates are required to obtain their
QoS values. In cloud environment, due to their various locations and communication
links, different users will have different QoS experiences when invoking even the
same service. Personalized QoS evaluation is required for each user at the user-side.
However, a service user in general only invoked a limited number of services in
the past and only received QoS performance information of these invoked services.
In practice, therefore, conducting real-world evaluations on services to obtain their
QoS information from the users’ perspective is quite difficult, because (1) executing
invocations for evaluation purposes becomes too expensive, since cloud providers
who maintain and host services (e.g., Amazon EC2, Amazon S3) may charge for
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invocations; (2) with the growing number of available services over the Internet, it
is time-consuming and impractical to conduct QoS evaluations on all accessible ser-
vices; (3) component users need to focus on building cloud applications rather than
testing a large number of service candidates. Therefore, collecting historical usage
records and conducting QoS prediction, which requires no additional invocation,
is becoming an attractive approach. Based on the above analysis, in order to pro-
vide QoS information to application designers, we need to provide comprehensive
investigation on QoS prediction approaches.

Employing the predicted QoS values, a QoS-aware Web service search engine
can be enabled. Traditional Web service searching approaches only find the Web
services to fulfill users’ functionality requirements. However, Web services sharing
similar functionalities may possess very different non-functionalities (e.g., response
time, throughput, availability, usability, performance, integrity).Web services recom-
mended by the traditional searching approach may not fulfill users’ non-functional
requirements. In order to find appropriate Web services which can fulfill both func-
tional and non-functional requirements of users efficiently, QoS-aware searching
approaches are needed.

Given the predicted QoS information, robust systems can be built based on redun-
dant services by employing QoS-aware fault tolerance framework. Traditional fault
tolerance framework [58] usually requires developing several different version of
system services. However, due to the cost of development, the fault tolerance strate-
gies are usually employed only for critical systems. In cloud computing, however,
users can access multiple functional equivalent services via Internet at a very low
cost. These services are usually developed and provided by different organizations,
and can be dynamically composed to build a fault tolerance systems. Although some
fault tolerance frameworks [52, 56, 107] have been proposed for traditional software
systems, they cannot adopt to the highly dynamic cloud environment.

In order to provide accurate QoS prediction approaches, QoS-aware Web service
searching mechanisms, and QoS-aware fault-tolerant frameworks for cloud systems,
we proposed five approaches to attack these challenges in this book.

1.2 Backgrounds

1.2.1 QoS in Cloud and Service Computing

Cloud computing [6] has been in spotlight recently. Cloud computing has become
a scalable service consumption and delivery platform [100]. The technical foun-
dations of cloud computing include service-oriented architecture (SOA) [29]. SOA
is becoming a popular and major framework for building Web applications in the
era of Web 2.0 [63]. A number of investigations have been carried out focusing on
different kinds of research issues such as Web service selection [28, 94, 97, 99],
Web service composition [3, 4, 95], SOA failure prediction [9], SOA performance
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prediction [105, 106], fault tolerance [52, 103], resiliency quantification [31], ser-
vice searching [101], resource consistency [79], resource allocation [23], workload
balance [87], dynamically resource management [46].

Quality-of-Service (QoS) has been widely employed as a quality measure for
evaluating non-functional features of software systems and services [1, 97, 101]. A
lot of research works have utilized QoS to describe the characteristics of services
in cloud and service computing [42, 61, 64, 65, 72, 86]. Zeng et al. [98] use five
QoS properties to compose Web service dynamically. Ardagna et al. [5] employ five
QoS properties to conduct flexible service composition processes. Alrifai et al. [3]
consider generic and domain-specific QoS for efficient service composition.

QoS performance of services can be measured either from the provider’s perspec-
tive or from the user’s observation. QoS values measured at the service provider side
(e.g., price, availability) are usually identical for different users, such as QoS used
in the service-level agreement (SLA) [57] (e.g., IBM [48] and HP [73]). While QoS
values observed by different users may vary significantly due to the unpredictable
communication links and heterogeneous contexts. In this book, we mainly focus on
observing QoS data from users’ perspective and making use of the QoS data for
QoS prediction, service selection, service searching, and fault-tolerant framework
building.

Based on the QoS performance of services, several approaches have been pro-
posed for optimizing service selection [8, 10, 13, 27, 84, 97] in improving the whole
quality of Web application, Web service composition [3, 5, 13, 14, 98], Web service
recommendation [20, 86], reliability prediction [15, 21, 32, 35, 71], etc. Tradition-
ally, reliability of a software system [59] is analyzed without considering the system
performance, which is not accurate when applied to modern systems. Moreover,
several QoS-aware approaches [24, 60, 72, 93, 97, 98] are proposed in cloud and
service computing.

However, there is few real-world QoS data to verify these QoS-aware approaches.
To collect the QoS data from the user-side, Zheng et al. [109] proposed a distributed
evaluation framework and released the QoS datasets for further extensive research.
Different frompreviouswork [2, 89], they conduct large-scale real-world evaluations.

1.2.2 QoS Prediction in Cloud and Service Computing

The QoS-aware approaches usually assume that the QoS values are already known,
while in reality a user cannot exhaustively invoke all the services. Although there
existed some QoS evaluation approaches and publicly released QoS datasets, it is
impossible to conduct personalized evaluation on all accessible services for all users.
In this chapter, we focus on predicting missing QoS values by collaborative filtering
approach to enable the QoS-aware approaches.
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Collaborative filtering approaches are widely adopted in commercial recom-
mender systems [12]. Generally, traditional recommendation approaches can be cate-
gorized into two classes: memory-based and model-based. Memory-based
approaches, also known as neighborhood-based approaches, are one of themost pop-
ular prediction methods in collaborative filtering systems. Memory-based methods
employ similarity computation with past usage experiences to find similar users and
services for making the performance prediction. The typical example of memory-
based collaborative filtering includes user-based approaches [11, 19, 39, 45, 81],
item-based approaches [25, 43, 54, 78], and their fusion [34, 90]. Typically,memory-
based approaches employ the PCC algorithm [70] for similarity computation.

Model-based approaches employ machine learning techniques to fit a predefined
model based on the training datasets. Model-based approaches include several types:
the clustering models [96], the latent factor models [74], the aspect models [40, 41,
82, 83]. Lee et al. [50] presented an algorithm for nonnegative matrix factorization
that is able to learn the parts of facial images and semantic features of text. It is noted
that there is only a small number of factors influencing the service performance in the
user-service matrices, and that a user’s factor vector is determined by howmuch each
factor applies to that user. For a set of user-service matrices data, three-dimensional
tensor factorization techniques are employed for item recommendation [69].

The memory-based approaches employ the information from similar users and
services for predicting missing values. When the number of users or services is too
small, similarity computation for finding similar users or services is not accurate.
When the number of users or services is too large, calculating similarity values for
each pair of users or services is time-consuming. In contrast,model-based approaches
are very efficient for missing value prediction, since they assume that only a small
number of factors influence the service performance.

There is fewwork of collaborative filtering prediction for QoS values in cloud and
service computing, since there lack large-scale real-world QoS datasets for verifying
the prediction accuracy. Some approaches [47, 85] employing a movie rating dataset
(i.e., MovieLens [70]) for simulation. Shao et al. [80] only conduct a small-scale
experiments, which involve 20 Web services for evaluating prediction accuracy.

The existing methods in the literature only consider two dimensions (i.e., user
and Web service), while time factor is not included. The periodic features of service
QoS values are ignored, which may improve the prediction accuracy significantly.
Moreover, the high computational complexity makes it difficult to extend memory-
based approaches to handle large amounts of time-aware performance data for timely
prediction. There is a lack of fast algorithms to predict the QoS values at runtime to
adapt the highly dynamic system environment in cloud and service computing.

In this book, we propose three approaches to address the QoS prediction problems
in cloud and service computing, including memory-based prediction [104], time-
aware prediction [102], and online prediction [105, 106] approaches.Wealso conduct
large-scale real-world experiments to verify the prediction accuracy and release the
QoS datasets for further studies of other researchers.
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1.2.3 Web Service Searching

Web service discovery [68] is a fundamental research area in service computing.
Several papers in the literature conduct investigations on discovering Web ser-
vices through syntactic or semantic tag matching in a centralized UDDI repository
[66, 88]. However, since UDDI repository is no longer a popular style for publishing
Web services, these approaches are not practical now.

Text-based matching approaches have been proposed for querying Web ser-
vice [33, 91]. These works employ term frequency analysis to perform keywords
searching. However, most text descriptions are highly compact, and contain a lot
of unrelated information to the Web service functionality. The performances of this
approaches are not fine in practice. Plebani et al. [67] extract the information from
WSDL files for Web service matching. By comparing with other works [26, 36, 44],
it shows better performance in both recall and precision. However, it also does not
consider non-functional qualities of Web services. Our searching approach, on the
other hand, takes both functional and non-functional features into consideration.

Alrifai et al. [3], Liu et al. [55], and Tao et al. [97] focus on efficiently QoS-
driven Web service selection. Their works are all based on the assumption: the Web
service candidates are functional identical. Under this assumption, these approaches
cannot be directly applied intoWeb service search engine. In this book, we proposed
WSExpress [101], a QoS-aware searching approach which employs both QoS and
functionality information, to search appropriate Web services for users.

1.2.4 Fault-Tolerant Cloud Applications

Software fault tolerance techniques (e.g., N-Version Programing [7], distributed
recovery block [49]) are widely employed for building reliable systems [58]. Zhang
et al. [101] propose a Web service search engine for recommending reliable Web
service replicas. Salas et al. [75] propose an active strategy to tolerate faults in Web
services. There are many fault tolerance strategies that have been proposed for Web
services [17, 18, 30, 76]. Typically, the fault tolerance strategies can be divided into
two major types: passive strategies and active strategies. Passive strategies include
FT-CORBA [53], FT-SOAP [52]. Active strategies include WS-Replication [75],
SWS [51], FTWeb [77].

However, these techniques cannot tolerate Byzantine faults like malicious behav-
iors. There are some works that focus on Byzantine fault tolerance for Web services
as well as distributed systems. BFT-WS [107] is a Byzantine fault tolerance frame-
work for Web services. Based on Castro and Liskov’s practical BFT algorithm [16],
BFT-WS considers client–server application model running in an asynchronous dis-
tributed environment with Byzantine faults. 3 f + 1 replications are employed in the
server side to tolerate f Byzantine faults. Thema [62] is a Byzantine fault-tolerant
(BFT) middleware forWeb services. Thema supports three-tiered application model,
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where the 3 f + 1 Web service replicas need to invoke an external Web service for
accomplishing their executions. SWS [51] is a survivable Web service framework
that supports continuous operation in the presence of general failures and security
attacks. SWSapplies replication schemes andN-Modular Redundancy concept. Each
Web service is replicated into a service group to mask faults.

Different from above approaches, BFTCloud [103] proposed in this book aims to
provide Byzantine fault tolerance for voluntary-resource cloud, in which Byzantine
faults are very common. BFTCloud selects voluntary nodes based on both their
reliability and performance characteristics to adapt to the highly dynamic voluntary-
resource cloud environment.

1.3 Book Organization

As shown in Fig. 1.2, the rest of this book is organized as follows:

• Chapter1
This chapter briefly reviews some background knowledge and work related to the
main methodology that will be explored in this book.

• Chapter2
In this chapter, we propose a novel neighborhood-based approach (CloudPred),
which is enhanced by character modeling, for providing collaborative and person-
alized QoS prediction of cloud components. We first present the QoS prediction
scenario by a toy example. Then, the QoS prediction problem in cloud comput-
ing is formally defined. After that, we present a latent feature learning algorithm
to learn the user-specific and service-specific latent features. Based on the latent
features, user and service similarity computation approaches are introduced. By
identifying similar users and similar services to the active user-service pair, we for-
mulate the CloudPred prediction Algorithm.We conduct extensive experiments to
study the prediction accuracy of CloudPred and the impact of various parameters.
The experimental results show that CloudPred achieves higher prediction accuracy
than other competing methods.

Fig. 1.2 Book structure

Part 1: QoS Prediction

Part 2: QoS-Aware 
Searching

Part 3: QoS-Aware 
Fault Tolerance

Chapter 6Chapter 5

Chapter 4Chapter 3Chapter 2

http://dx.doi.org/10.1007/978-981-10-5278-1_2
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• Chapter3
In this chapter, we present a model-based time-aware collaborative filtering
approach for personalized QoS prediction of Web services. First, we endow a new
understanding of user-perspective QoS experiences, which is based on the fol-
lowing observations: (1) during different time intervals, a user has different QoS
experiences on the same Web service; (2) in general, the differences are limited
within a range. Based on these observations, we formulate the time-aware person-
alized QoS prediction problem as the tensor factorization problem, and propose
an optimization formulation with average QoS constraint. Second, we propose
to predict the missing QoS values by evaluating how the user, service, and time
latent features are applied to each other. Furthermore, we provide a comprehensive
complexity analysis of our approach, which indicates that our approach is efficient
and can be applied to large-scale systems. Extensive experiments are conducted to
evaluate the prediction accuracy and parameter impacts. The experimental results
show the effectiveness and efficiency of our time-aware QoS prediction approach.

• Chapter4
In this chapter, we present an online Web service QoS prediction approach by per-
forming time series analysis on user-specific and service-specific latent features.
Our online prediction approach includes four phases. In Phase 1, service users
monitor the performance of Web service and keep the QoS records in local site. In
Phase 2, distributed service users submit local QoS records to the performance cen-
ter in order to obtain a better QoS prediction service from the performance center.
The performance center collects QoS records from different users and generates
a set of global QoS matrices. In Phase 3, a set of time-stamped user latent feature
matrices and service latent feature matrices are learned from the global QoSmatri-
ces. After that, time series analysis are conducted on the latent matrices to build
a QoS model in the performance center. By evaluating how each factor applies to
the active user and the corresponding service in the QoS model, personalized QoS
prediction results can be returned to users on demand. In Phase 4, the system-level
QoS performance of service-oriented architecture is predicted by analyzing the
service compositional structure and utilizing the service QoS prediction results.
The complexity analysis indicates that our approach is efficient and can be applied
to large-scale online service-oriented systems. Finally, we conduct a number of
experiments to study the performance of our approach and the impacts of algo-
rithm parameters. We also study the effects of integrating service QoS information
into the dynamic composition mechanism by a real-world service-oriented system
case.

• Chapter5
In this chapter,wepropose aQoS-awareWeb service searching approach to explore
the appropriateWeb services to fulfill users’ functional and non-functional require-
ments.Wefirst describe theWeb service searching scenarios andpresent the system
architecture. Then, we present the QoSmodel to evaluate the non-functional utility
ofWeb services. After that, functional similarity is introduced to evaluate the func-
tional utility of Web services. Two QoS-aware Web service searching approaches
are proposed: the score-based combination and the ranking-based combination.We

http://dx.doi.org/10.1007/978-981-10-5278-1_3
http://dx.doi.org/10.1007/978-981-10-5278-1_4
http://dx.doi.org/10.1007/978-981-10-5278-1_5
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further extend the ranking-based approach to online searching scenario.Moreover,
three common application scenarios are introduced. Finally, a number of exper-
iments are conducted to study the functional and non-functional performance of
our approach. The comprehensive results of experiments show that our approach
provides better Web service searching results.

• Chapter6
This chapter presents a fault tolerance framework for building robust cloud appli-
cations at runtime. Our approach adopts dynamic QoS information to enable auto-
matic system reconfiguration.We first introduce the architecture of our framework
in voluntary-resource cloud. Then,we present thework procedures of our approach
in detail, including 5 phases: primary selection, replicas selection, request execu-
tion, primary updating, and replica updating. After that, we conduct real-world
experiments by deploying the prototype of our approach as a middleware in a
voluntary-resource cloud environment, which consists of 257 distributed com-
puters located in 26 countries. The experimental results show that our approach
guarantees high reliability which enables good performance of cloud systems.

• Chapter7
The last chapter summarizes this book and provides some future directions that
can be explored.

In order to make each of these chapters self-contained, some critical contents,
e.g., model definitions or motivations having appeared in previous chapters, may be
briefly reiterated in some chapters.
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Chapter 2
Neighborhood-Based QoS Prediction

Abstract With the increasing popularity of cloud computing as a solution for build-
ing high-quality applications on distributed components, efficiently evaluating user-
side quality of cloud components becomes an urgent and crucial research problem.
However, invoking all the available cloud components from user-side for evaluation
purpose is expensive and impractical. To address this critical challenge, we propose a
neighborhood-based approach, called CloudPred, for collaborative and personalized
quality prediction of cloud components. CloudPred is enhanced by feature model-
ing on both users and components. Our approach CloudPred requires no additional
invocation of cloud components on behalf of the cloud application designers. The
extensive experimental results show that CloudPred achieves higher QoS prediction
accuracy than other competing methods. We also publicly release our large-scale
QoS dataset for future related research in cloud computing.

2.1 Overview

In the cloud environment, designers of cloud applications, denoted as component
users, can choose from a broad pool of cloud components when creating cloud appli-
cations. These cloud components are usually invoked remotely through communi-
cation links. Quality of the cloud applications is greatly influenced by the quality of
communication links and the distributed cloud components. To build a high-quality
cloud application, non-functional Quality-of-Service (QoS) performance of cloud
components becomes an important factor for application designers when making
component selection [2]. Moreover, for the existing cloud applications, by replacing
low-quality components with better ones, the overall quality of cloud applications
can be improved.

Different from traditional component-based systems, cloud applications invoke
components remotely by Internet connections. User-side QoS experiences of cloud
components is thus greatly influenced by the unpredictable communication links.
Personalized QoS evaluation is required for each user at the user-side. The most
straightforward approach is to evaluate all the candidate components at the user-
side. However, this approach is impractical in reality, since invocations of cloud

© The Author(s) 2017
Y. Zhang and M.R. Lyu, QoS Prediction in Cloud and Service Computing,
SpringerBriefs in Computer Science, DOI 10.1007/978-981-10-5278-1_2
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components may be charged. Even if the invocations are free, executing a large
number of components invocations is time consuming and resource consuming.

Based on the above analysis, it is crucial for the cloud platform to deliver a per-
sonalized QoS information service to the application designers for cloud component
evaluation. In order to provide personalizedQoS values onm cloud components for n
users by evaluation, at least n × m invocations need to be executed, which is almost
impossible when n and m are very large. However, without sufficient and accu-
rate personalized QoS values of cloud components, it is difficult for the application
designers to select optimal cloud component for building high-quality cloud appli-
cations. It is an urgent task for the cloud platform providers to develop an efficient
and personalized prediction approach for delivering the QoS information service to
cloud application designers.

To address this critical challenge, we propose a neighborhood-based approach,
called CloudPred, for personalized QoS prediction of cloud components. CloudPred
is enhanced by feature modeling on both users and components. The idea of Cloud-
Pred is that users sharing similar characteristics (e.g., location, bandwidth) would
receive similar QoS usage experiences on the same component. The QoS value of
cloud component c observed by user u can be predicted by exploring the QoS experi-
ences fromsimilar users ofu.Auser is similar tou if they share similar characteristics.
The characteristics of different users can be extracted from their QoS experiences
on different components by performing nonnegative matrix factorization (NMF). By
sharing local QoS experience among users, our approach CloudPred can effectively
predict the QoS value of a cloud component c even if the current user u has never
invoked the component c before. The experimental results show that compared with
other well-known collaborative prediction approaches, CloudPred achieves higher
QoS prediction accuracy of cloud components. Since CloudPred can precisely char-
acterize users features (will be introduced in Sect. 2.3.2), even if some users have
few local QoS information, CloudPred can still achieve high prediction accuracy.

In summary, this chapter makes the following contributions:

1. We formally identify the research problem of QoS value prediction in cloud com-
puting and propose a novel neighborhood-based approach, named CloudPred, for
personalized QoS value prediction of cloud components. CloudPred learns the
characteristics of users by nonnegative matrix factorization (NMF) and explores
QoS experiences from similar users to achieve high QoS value prediction accu-
racy. We consider CloudPred as the first QoS value prediction approach in cloud
computing literature.

2. Weconduct large-scale experiments to study the prediction accuracy of ourCloud-
Pred compared with other approaches. The experimental results show the effec-
tiveness of our approach. Moreover, we also publicly release our large-scale QoS
dataset for future research.

The remainder of this chapter is organized as follows: Sect. 2.2 describes the
collaborative QoS framework in cloud environment. Section2.3 presents our Cloud-
Pred approach in detail. Section2.4 introduces the experimental results. Section2.5
concludes the chapter.
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2.2 Collaborative Framework in Cloud

Figure2.1 shows the system architecture in cloud computing. In a cloud environ-
ment, the cloud provider holds a large number of distributed cloud components (e.g.,
databases, servers, Web services), which can be provided to designers for develop-
ing various cloud applications. The cloud application designers, called component
users in this chapter, are located in different geographic and network environments.
Since users invoke cloud components via different communication links, their usage
experiences on cloud components are diverse in several QoS properties including
response-time, throughput, etc. In order to provide personalized quality information
of different components to application designers for optimal component selection,
personalized QoS value prediction is an essential service of a cloud provider.

Within the cloud platform provided by a cloud provider, there are several modules
implemented for managing the cloud components. Examples of management mod-
ules include Task Scheduler, which is responsible for task scheduling, SLAWrapper,
which is responsible for service-level negotiation between cloud provider and users,
etc. In this chapter, we focus on the design of QoS Monitor, which is responsible for
monitoring the QoS performance of cloud components from the users’ perspective.
The QoS Monitor consists of two subunits: Collector, which is used to collect QoS

Cloud

Fig. 2.1 System architecture. ©[2011] IEEE. Reprinted, with permission, from Ref. [8]
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usage information from various component users, and Predictor, which is supposed
to provide personalized QoS value prediction for different component users.

The idea of our approach is to share local cloud component usage experience
from different component users, to combine this local information to get a global
QoS information of all components, and to make personalized QoS value prediction
based on both global and local information. As shown in Fig. 2.1, each component
user keeps local records of QoS usage experiences on cloud components. Since cloud
applications are running on an identical cloud platform, QoS information can be col-
lected by an identical interface on the platform side. If a component user would like
to get personalized QoS information service from the cloud provider, authorization
should be given to Collector for accessing its local QoS records. Collector then
collects those local QoS records from different component users. Based on the col-
lected QoS information, Predictor can perform personalized QoS value prediction
and forward the prediction results to component users for optimizing the design of
cloud applications. The detailed collaborative prediction approach will be presented
in Sect. 2.3.

2.3 Collaborative QoS Prediction

We first formally describe the QoS value prediction problem on cloud components
in Sect. 2.3.1. Then, we learn the user-specific and component-specific features by
running latent features learning algorithm in Sect. 2.3.2. Based on the latent features,
similarities between users and components are calculated in Sect. 2.3.3. Finally, the
missing QoS values are predicted by applying the proposed algorithm CloudPred in
Sect. 2.3.4.

2.3.1 Problem Description

Let us first consider a typical toy example in Fig. 2.2a. In this bipartite graph G =
(U ∪ C, E), its vertices are divided into two disjoint sets U and C such that each
edge in E connects a vertex in U and one in C . Let U = {u1, u2, . . . , u4} be the set
of component users,C = {c1, c2, . . . , c6} denote the set of cloud components, and E
(solid lines) represent the set of invocations between U and C . This bipartite graph
G is modeled as a weighted directed graph. Given a pair (i, j), ui ∈ U , and c j ∈ C ,
edge ei j is included in E if user ui has invoked component c j before. The weight
wi j on edge ei j corresponds to the QoS value (e.g., response-time in this example)
of that invocation. Given the set E , our task is to effectively predict the weight of
potential invocations (the broken lines).

The process of cloud component QoS value prediction is illustrated by a user-
component matrix as shown in Fig. 2.2b, in which each entry denotes an observed
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Fig. 2.2 Toy example forQoSprediction. ©[2011] IEEE.Reprinted,with permission, fromRef. [8]

weight in Fig. 2.2a. The problemwe study in this chapter is then how to precisely pre-
dict the missing entries in the user-component matrix based on the existing entries.
Once the missing entries are accurately predicted, we can provide users with per-
sonalized QoS information, which is valuable for automatic component ranking,
component selection, task scheduling, etc.

We observe that although about half of the entries are already known in Fig. 2.2b,
every pair of users still have very few commonly invoked components (e.g., u1 and
u2 only invoke c1 in common, u3 and u4 have no commonly invoked components
even if together they invoke all the six components). Since the similarity between two
users are calculated by comparing their obtained QoS values on common compo-
nents, the problem of few common components observed above makes it extremely
difficult to precisely calculate similarity between users. Motivated by latent factor
model [6], we therefore first factorize the sparse user-component matrix and then
use V T H to approximate the original matrix, where the low-dimensional matrix V
denotes the user latent feature space, and the low-dimensional matrix H represents
the low-dimensional item latent feature space. The rows in V and H represent dif-
ferent features. Each column in V represents an user, and each column in H denotes
a component. The value of a entry in the matrices indicates how the associated fea-
ture applies to the corresponding user or component. In this example, we use four
dimensions to perform the matrix factorization and obtain:
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V =

⎡
⎢⎢⎣
0.32 0.15 0.31 0.33
0.23 0.15 0.26 0.28
0.30 0.20 0.24 0.34
0.47 0.23 0.59 0.21

⎤
⎥⎥⎦ ,

H =

⎡
⎢⎢⎣
0.73 0.35 0.31 0.26 0.32 0.42
0.60 0.31 0.27 0.22 0.28 0.36
0.69 0.37 0.32 0.27 0.33 0.45
0.95 0.46 0.42 0.35 0.41 0.54

⎤
⎥⎥⎦ ,

where columns in V and H denote the latent feature vectors of users and components,
respectively.

Note that V and H are densematriceswith all entries available. Then, we calculate
the similarity between users and components using four-dimensional matrices V and
H , respectively. Therefore, all the missing values can be predicted by employing
neighborhood-based collaborative method, as shown in Fig. 2.2c.

Now, we formally define the problem of cloud component QoS value prediction
as follows: Given a set of users and a set of components, predict the missing QoS
value of components when invoked by users based on existing QoS values. More
precisely:

Let U be the set of m users and C be the set of n components. A QoS element is a
triplet (i, j, qi j ) representing the observed quality of component c j by user ui , where
i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} and qi j ∈ R

k is a k-dimensional vector representing the QoS
values of kth criteria. Let Ω be the set of all pairs {i, j} and Λ be the set of all known pairs
(i, j) in Ω . Consider a matrixW ∈ R

m×n with each entry wi j representing the observed kth

criterion value of component c j by user ui . Then, the missing entries {wi j |(i, j) ∈ Ω − Λ}
should be predicted based on the existing entries {wi j |(i, j) ∈ Λ}.
Typically the QoS values can be integers from a given range (e.g., {0, 1, 2, 3})

or real numbers of a close interval (e.g., [−20, 20]). Without loss of generality,
we can map the QoS values to the interval [0, 1] using the function f (x) = (x −
wmin)/(wmax − wmin), where wmax and wmin are the maximum and minimum QoS
values, respectively.

2.3.2 Latent Features Learning

In order to learn the features of the users and components, we employ matrix fac-
torization to fit a factor model to the user-component matrix. This method focuses
on filtering the user-component QoS value matrix using low-rank approximation.
In other words, we factorize the QoS matrix into two low-rank matrices V and H .
The idea behind the factor model is to derive a high-quality low-dimensional fea-
ture representation of users and components based on analyzing the user-component
matrix. The premise behind a low-dimensional factor model is that there is only a
small number of factors influencing QoS usage experiences and that a user’s QoS
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usage experience vector is determined by how each factor applies to that user and
the items.

Consider the matrix W ∈ R
m×n consisting of m users and n components. Let

V ∈ R
l×m and H ∈ R

l×n be the latent user and component feature matrices. Each
column in V represents the l-dimensional user-specific latent feature vector of a
user, and each column in H represents the l-dimensional component-specific latent
feature vector of a component. We employ an approximating matrix W̃ = V T H to
fit the user-item matrix W :

wi j ≈ w̃i j =
l∑

k=1

vki hk j , (2.1)

The rank l of the factorization is generally chosen so that (m + n)l < mn, since V
and H are low-rank feature representations [3]. The product V T H can be regarded
as a compressed form of the data in W .

Note that the low-dimensional matrices V and H are unknown and need to be
learned from the obtained QoS values in user-component matrix W . In order to
optimize the matrix factorization, we first construct a cost function to evaluate the
quality of approximation. The distance between two nonnegative matrices is usually
employed to define the cost function. One useful measure of the matrices’ distance
is the Euclidean distance:

F(W, W̃ ) = ‖W − W̃‖2F =
∑
i j

(wi j − w̃i j )
2, (2.2)

where ‖ · ‖2F denotes the Frobenius norm.
In this chapter,we conductmatrix factorization as solving anoptimizationproblem

by employing the optimized objective function in [3]:

min
V,H

f (V, H) =
∑

(i, j)∈Λ

[w̃i j − wi j log w̃i j ],

s.t. w̃i, j =
l∑

k=1

vki hk j ,

V ≥ 0,

H ≥ 0. (2.3)

where V, H ≥ 0 is the nonnegativity constraints leading to allow only additive com-
bination of features.

In order to minimize the objective function in Eq. (2.3), we apply incremental
gradient descent method to find a local minimum of f (V, H), where one gradient
step intends to decrease the square of prediction error of only one rating, that is,
w̃i j − wi j log w̃i j . We update the V and H in the direction opposite of the gradient
in each iteration:
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vi j = vi j
∑
k

wik

w̃ik
h jk, (2.4)

hi j = hi j
∑
k

wik

w̃ik
v jk, (2.5)

vi j = vi j∑
k vk j

, (2.6)

hi j = hi j∑
k hk j

. (2.7)

Algorithm 1 shows the iterative process for latent feature learning. We first ini-
tialize matrices V and H with small random nonnegative values. Iteration of the
above update rules converges to a local minimum of the objective function given in
Eq. (2.3).

Algorithm 1: Latent Features Learning Algorithm
Input: W , l
Output: V , H
Initialize V ∈ R

l×m and H ∈ R
l×n with small random numbers;1

repeat2

for all (i, j) ∈ Λ do3

w̃i j = ∑
k vki hk j ;4

end5

for all (i, j) ∈ Λ do6

vi j ← vi j
∑

k
wik
w̃ik

h jk ;7

hi j ← hi j
∑

k
wik
w̃ik

v jk ;8

vi j = vi j∑
k vk j

;9

hi j = hi j∑
k hk j

;10

end11

for all (i, j) ∈ Λ do12

w̃i j = ∑
k vki hk j ;13

end14

until Converge;15

2.3.3 Similarity Computation

Given the latent user and component feature matrices V and H , we can calculate the
neighborhood similarities between different users and components by employing
Pearson correlation coefficient (PCC) [5]. PCC is widely used in memory-based
recommendation systems for similarity computation. Due to the high accuracy, we
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adopt PCC in this chapter for the neighborhood similarity computation on both sets
of users and components. The similarity between two users ui and u j is defined by
performing PCC computation on their l-dimensional latent feature vectors Vi and Vj

with the following equation:

S(ui , u j ) =
∑l

k=1(vik − vi )(v jk − v j )√∑l
k=1(vik − vi )2

√∑l
k=1(v jk − v j )2

, (2.8)

where vi = (vi1, vi2, . . . , vil) is the latent feature vector of user ui and vik is the
weight on the kth feature. vi is the average weight on l-dimensional latent features
for user ui . The similarity between two users S(i, j) falls into the interval [−1, 1],
where a larger value indicates higher similarity.

Similar to the user similarity computation, we also employ PCC to compute the
similarity between component ci and item c j as following:

S(ci , c j ) =
∑l

k=1(hik − hi )(h jk − h j )√∑l
k=1(hik − hi )2

√∑l
k=1(h jk − h j )2

, (2.9)

where hi = (hi1, hi2, . . . , hil) is the latent feature vector of component ci and hik
is the weights on the kth feature. hi is the average weight on l-dimensional latent
features for component ci .

2.3.4 Missing QoS Value Prediction

After computing the similarities between users, we can identify similar neighbors
to the current user by ordering similarity values. Note that PCC value falls into the
interval [−1, 1], where a positive value means similar and a negative value denotes
dissimilar. In practice, QoS usage experience of less similar or dissimilar users may
greatly decrease the prediction accuracy. In this chapter, we exclude those users with
negative PCC values from the similar neighbor set and only employ the QoS usage
experiences of users with Top-K largest PCC values for predicting QoS value of the
current user. We refer to the set of Top-K similar users for user ui as Ψi , which is
defined as:

Ψi = {uk |S(ui , uk) > 0, ranki (k) ≤ K , k 	= i}, (2.10)

where ranki (k) is the ranking position of user uk in the similarity list of user ui , and
K denotes the size of set Ψi .

Similarly, a set of Top-K similar components for component c j can be denote as
Φ j by:

Φ j = {ck |S(c j , ck) > 0, rankp(k) ≤ K , k 	= j}, (2.11)
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where rank j (k) is the ranking position of component ck in the similarity list of
component c j , and K denotes the size of set Φ j .

To predict the missing entry wi j in the user-component matrix, user-based
approaches employ the values of entries from Top-K similar users as follows:

wi j = wi +
∑
k∈Ψi

S(ui , uk)∑
a∈Ψi

S(ui , ua)
(wkj − wk), (2.12)

where wi and wk are the average observed QoS values of different components by
users ui and uk , respectively.

For component-based approaches, entry values of Top-K similar components are
employed for predicting the missing entry wi j in the similar way:

wi j = wj +
∑
k∈Φ j

S(i j , ik)∑
a∈Φ j

S(i j , ia)
(wik − wk), (2.13)

where wj and wk are the average available QoS values of component c j and ck by
different users, respectively.

In user-component-based approaches, the predicted values in Eqs. (2.12) and
(2.13) are both employed for more precise prediction in the following equation:

w∗
i j = λ × wu

i j + (1 − λ) × wc
i j , (2.14)

wherewu
i j denotes the predicted value byuser-based approach andw

c
i j denotes the pre-

dicted value by component-based approach. The parameter λ controls how much the
hybrid prediction results rely on user-based approach or component-based approach.
The proper value of λ can be trained on a small sample dataset extracted from the
original one. We summarize the proposed algorithm in Algorithm 2.

2.4 Experiments

In this section, in order to show the prediction quality improvements of our proposed
approach, we conduct several experiments to compare our approach with several
state-of-the-art collaborative filtering prediction methods.

In the following, Sect. 2.4.1 gives the description of our experimental dataset,
Sect. 2.4.2 defines the evaluation metrics, Sect. 2.4.3 compares the prediction quality
of our approach with some other methods, and Sects. 2.4.4, 2.4.5, and 2.4.6 study
the impact of training data density, Top-K, and dimensionality, respectively.
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Algorithm 2: CloudPred Prediction Algorithm
Input: W , l, λ
Output: W ∗
Learn V and H by applying Algorithm 1 on W ;1

for all (ui , u j ) ∈ U ×U do2

calculate the similarity S(ui , u j ) by Eq. (2.8);3

end4

for all (ci , c j ) ∈ C × C do5

calculate the similarity S(ci , c j ) by Eq. (2.9);6

end7

for all (i, j) ∈ Λ do8

construct similar user set Ψi by Eq. (2.10);9

construct similar component set Φ j by Eq. (2.11);10

end11

for all (i, j) ∈ Ω − Λ do12

calculate wu
i j by Eq. (2.12);13

calculate wi
i j by Eq. (2.13);14

w∗
i j = λ × wu

i j + (1 − λ) × wc
i j ;15

end16

2.4.1 Dataset Description

In real world, invoking thousands of commercial cloud components for large-scale
experiments is very expensive. In order to evaluate the prediction quality of our
proposed approach, we conduct experiments on our Web service QoS dataset [9].
Web service, a kind of cloud component, can be integrated into cloud applications
for accessing information or computing service from a remote system. The Web
service QoS dataset includes QoS performance of 5825 openly accessible real-world
Web services from 73 countries. The QoS values are observed by 339 distributed
computers located in 30 countries from PlanetLab, which is a distributed test bed
consisting of hundreds of computers all over the world. In our experiment, each of
the 339 computers keeps invocation records of all the 5825 Web services by sending
null operating requests to capture the characteristics of communication links. Totally
1,974,675 QoS performance results are collected. Each invocation record is a k-
dimensional vector representing the QoS values of k criteria. We then extract a set
of 339×5825 user-component matrices, each of which stands for a particular QoS
property, from theQoS invocation records. For simplicity,we use twomatrices,which
represent response-time and throughput QoS criteria, respectively, for experimental
evaluation in this chapter. Without loss of generality, our approach can be easily
extended to include more QoS criteria.

The statistics ofWeb service QoS dataset are summarized in Table2.1. Response-
time and throughput are within the range 0–20s and 0–1000kbps, respectively. The
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Table 2.1 Statistics of WS QoS dataset. ©[2011] IEEE. Reprinted, with permission, from Ref. [8]

Statistics Response-time Throughput

Scale 0–20s 0–1000kbps

Mean 0.910s 47.386kbps

Num. of users 339 339

Num. of web services 5828 5828

Num. of records 1,974,675 1,974,675
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Fig. 2.3 Value distributions. ©[2011] IEEE. Reprinted, with permission, from Ref. [8]

means of response-time and throughput are 0.910s and 47.386kbps, respectively.
Figure2.3 shows the distributions of response-time and throughput. Most of the
response-time values are between 0.1–0.8 s, and most of the throughput values are
between 5–40kbps.

2.4.2 Metrics

We assess the prediction quality of our proposed approach in comparison with other
methods by computing mean absolute error (MAE) and root-mean-squared error
(RMSE). The metric MAE is defined as:

MAE =
∑

i, j |wi j − w∗
i j |

N
, (2.15)

and RMSE is defined as:

RMSE =
√∑

i, j (wi j − w∗
i j )

2

N
, (2.16)
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where wi j is the QoS value of Web service c j observed by user ui , w∗
i j denotes the

QoS value ofWeb service c j would be observed by user ui as predicted by a method,
and N is the number of predicted QoS values.

2.4.3 Performance Comparison

In this section, we compare the prediction accuracy of our proposed approach Cloud-
Pred with some state-of-the-art approaches:

1. UPCC (User-based collaborative filtering method using Pearson correlation coef-
ficient): this method employs PCC to calculate similarities between users and
predicts QoS value based on similar users [1, 7].

2. IPCC (Item-based collaborative filtering method using Pearson correlation coef-
ficient): this method employs PCC to calculate similarities betweenWeb services
and predicts QoS value based on similar items (item refers to component in this
chapter) [5].

3. UIPCC (User-item-based collaborative filteringmethod using Pearson correlation
coefficient): this method is proposed by Ma et al. in [4]. It combines UPCC and
IPCC approaches and predicts QoS value based on both similar users and similar
Web services.

4. NMF (Nonnegative Matrix Factorization): This method is proposed by Lee and
Seung in [3]. It applies nonnegative matrix factorization on user-item matrix for
missing value prediction.

In this chapter, in order to evaluate the performance of different approaches in
reality, we randomly remove some entries from the matrices and compare the val-
ues predicted by a method with the original ones. The matrices with missing values
are in different sparsity. For example, 10% means that we randomly remove 90%
entries from the original matrix and use the remaining 10% entries to predict the
removed entries. The prediction accuracy is evaluated using Eqs. (2.15) and (2.16)
by comparing the original value and the predicted value of each removed entry.
Our proposed approach CloudPred performs matrix factorization in Sect. 2.3.2 and
employs both similar users and similar Web services for predicting the removed
entries. The parameter settings of our approach CloudPred are Top-K=10, dimen-
sionality=20, and λ = 0.5 in the experiments. Detailed impact of parameters will
be studied in Sects. 2.4.4, 2.4.5 and 2.4.6.

The experimental results are shown in Table2.2. For each row in the table, we
highlight the best performer among all methods. From Table2.2, we can observe that
our approachCloudPred obtains better prediction accuracy (smallerMAEandRMSE
values) than other methods for both response-time and throughput under different
matrix densities. The MAE and RMSE values of dense matrices (e.g., matrix density
is 80 or 90%) are smaller than those of sparse matrices (e.g., matrix density is 10 or
20%), since a denser matrix provides more information for predicting the missing
values. In general, the MAE and RMSE values of throughput are larger than those
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Table 2.2 Performance comparisons (A smallerMAEorRMSEvaluemeans a better performance).
©[2011] IEEE. Reprinted, with permission, from Ref. [8]

Matrix
density (%)

Metrics Response-time (seconds)

IPCC UPCC UIPCC NMF CloudPred

10 MAE 0.7596 0.5655 0.5654 0.6754 0.5306
RMSE 1.6133 1.3326 1.3309 1.5354 1.2904

20 MAE 0.7624 0.5516 0.5053 0.6771 0.4745
RMSE 1.6257 1.3114 1.2486 1.5241 1.1973

80 MAE 0.6703 0.4442 0.3873 0.3740 0.3704
RMSE 1.4102 1.1514 1.0785 1.1242 1.0597

90 MAE 0.6687 0.4331 0.3793 0.3649 0.3638
RMSE 1.4173 1.1264 1.0592 1.1121 1.0359

Matrix
density (%)

Metrics Throughput (kbps)

IPCC UPCC UIPCC NMF CloudPred

10 MAE 31.6722 26.2015 22.6567 19.7700 19.0009
RMSE 65.5220 61.9658 57.4653 57.3767 51.8236

20 MAE 35.1780 21.9313 18.1230 15.7794 15.4203
RMSE 66.6028 56.5441 50.0435 50.1402 44.8975

80 MAE 29.9146 14.5497 12.4880 12.5107 10.7881
RMSE 64.3079 44.3738 39.6017 39.2029 36.8506

90 MAE 29.9404 13.8761 12.0662 11.6960 10.4722
RMSE 63.7149 42.5534 38.0763 36.7555 35.9225

of response-time because the scale of throughput is 0–1000kbps, while the scale
of response-time is 0–20s. Compared with other methods, the improvements of our
approach CloudPred are significant, which demonstrates that the idea of combining
global and local information for QoS prediction is realistic and reasonable.

2.4.4 Impact of Matrix Density

In Fig. 2.4, we compare the prediction accuracy of all the methods under different
matrix densities. We change the matrix density from 10 to 90% with a step value of
10%. The parameter settings in this experiment are Top-K=10, dimensionality=20,
and λ = 0.5.

Figure2.4a, b shows the experimental results of response-time, while Fig. 2.4c,
d shows the experimental results of throughput. The experimental results show that
our approach CloudPred achieves higher prediction accuracy than other compet-
ing methods under different matrix density. In general, when the matrix density is
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Fig. 2.4 Impact of matrix density. ©[2011] IEEE. Reprinted, with permission, from Ref. [8]

increased from 10 to 30%, the prediction accuracy of our approach CloudPred is sig-
nificantly enhanced. When the matrix density is further increased from 30 to 90%,
the enhancement of prediction accuracy is quite limited. This observation indicates
that when the matrix is very sparse, collecting more QoS information will greatly
enhance the prediction accuracy, which further demonstrates that sharing local QoS
information among cloud component users could effectively provide personalized
QoS estimation.

In the experimental results, we observe that the performance of IPCC is much
worse than that of other methods. The reason is that in our Web service dataset, the
number of users, which is 339, is much smaller than the number of components,
which is 5258. When some entries are removed from the user-component matrices,
the number of common users between two components, on average, is very small,
which would greatly impact the accuracy of common user-based similarity computa-
tion between components. Therefore, the prediction accuracy of similar item-based
method IPCC is greatly decreased by the inaccuracy similarity computation between
components.
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2.4.5 Impact of Top-K

The parameter Top-K determines the size of similar user and similar component sets.
In Fig. 2.5, we study the impact of parameter Top-K by varying the values of Top-K
from10 to 50with a step value of 10.Other parameter settings are dimensionality=10
and λ = 0.5.

Figure2.5a, b shows the MAE and RMSE results of response-time, respectively,
while Fig. 2.5c, d shows the MAE and RMSE results of throughput, respectively.
The experimental results show that our approach CloudPred achieves best prediction
accuracy(smallest MAE and RMSE values) when Top-K is set around 10. Under
both sparse matrix, whose density is 10%, and dense matrix, whose density is 90%,
all the prediction accuracies decrease when we decrease the Top-K value from 10
to 2 or increase from 10 to 18. This is because too small Top-K value will exclude
useful information from some similar users and similar components, while too large
Top-K value will introduce noise from dissimilar users and dissimilar components,
which will impact the prediction accuracy.
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Fig. 2.5 Impact of Top-K. ©[2011] IEEE. Reprinted, with permission, from Ref. [8]
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2.4.6 Impact of Dimensionality

The parameter dimensionality determines the number of latent features used to char-
acterize user and cloud component. In Fig. 2.6, we study the impact of parameter
dimensionality by varying the values of dimensionality from 10 to 50 with a step
value of 10. Other parameter settings are Top-K=10 and λ = 0.5.

Figure2.6e, f shows theMAE andRMSEvalues of response-time, while Fig. 2.6g,
h shows the MAE and RMSE values of throughput. When the matrix density is 90%,
we observe that our approach CloudPred achieves the best performance when the
value of dimensionality is 30, while smaller values like 10 or larger values like 50
can potentially hurt the prediction accuracy. This observation indicates that when the
user-component matrices are dense, 10 latent factors is not enough to characterize the
features of user and componentwhich aremined from the richQoS information,while
50 latent factors is too many since it will cause overfitting problem. When the matrix
density is 10%, we observed that the prediction accuracy of our approach CloudPred
decreases (MAE and RMSE increase) when the value of dimensionality is increased
from 10 to 50. This observation indicates that when the user-component matrices
are sparse, 10 latent factors is already enough to characterize the features of user
and component which are mined from the limited user-component QoS information,
while other larger values of dimensionality will cause the overfitting problem.

2.4.7 Impact of λ

The parameter λ determines how much the final prediction results rely on user-
based approach or component-based approach. A larger value of λmeans user-based
approach contributes more to the hybrid prediction. A smaller value of λ means
component-based approach contributes more to the hybrid prediction. In Fig. 2.7, we
study the impact of parameter λ by varying the values of λ from 0 to 1 with a step
value of 0.1. Other parameter settings are dimensionality=10 and Top-K=10.

Figure2.7a, b shows the MAE and RMSE results of response-time, respectively.
The experimental results show that the value of λ impacts the recommendation
results significantly, which demonstrates that combining the user-based approach
and component-based approach improves the recommendation accuracy. The pre-
diction accuracies increase when we increase the value of λ at first. But when λ

surpasses a certain threshold, the prediction accuracy decreases with further increase
of the value of λ. This phenomenon coincides with the intuition that purely using
the user-based approach or purely using the component-based approach cannot gen-
erate better results than the hybrid approach. From Fig. 2.7, we observed that when
λ ∈ [0.4, 0.7], CloudPred achieves the best performance, while a smaller value or
a larger value can potentially degrade the prediction performance. Moreover, the
insensitivity of the optimal value of λ shows that the parameter of CloudPred is easy
to train.
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Fig. 2.6 Impact of dimensionality. ©[2011] IEEE. Reprinted, with permission, from Ref. [8]
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2.5 Summary

Based on the intuition that a user’s cloud component QoS usage experiences can be
predicted by exploring the past usage experience from both the user and its similar
users, we propose a novel neighborhood-based approach, which is enhanced by
feature modeling on both user and component, called CloudPred, for collaborative
and personalizedQoSvalue prediction on cloud components. Requiring no additional
invocation of cloud components, CloudPred makes the QoS value prediction by
taking advantage of both local usage information from similar users and similar
components and global invocation information shared by all the users. The extensive
experimental results show that our approach CloudPred achieves higher prediction
accuracy than other competing methods.

Since the Internet environment is highly dynamic, the QoS performances of a
cloud component may be variable against time (e.g., due to the network traffic,
server workload). In our current approach, the QoS values are observed over a long
period, which represent the average QoS performance of cloud components. Since
the average QoS performance of cloud components is relatively stable, the predicted
QoS values provide valuable information of unused cloud components for the users.
In our future work, we will explore an online prediction algorithm to handle the
dynamically changing QoS values by fusing with the time information.

Currently, we are collecting QoS information of Web service, which is a kind of
cloud component. In the future, we will conduct more experiments to evaluate our
approach in commercial clouds which contain multiple kinds of cloud components.
For future work, we will investigate more techniques for improving the similarity
computation (e.g., clustering models, latent factor models, data smoothing). We will
also conduct more investigations on the correlations and combinations of different
QoS properties.
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Chapter 3
Time-Aware Model-Based QoS Prediction

Abstract The exponential growth of Web service makes building high-quality
service-oriented applications an urgent and crucial research problem. User-side QoS
evaluations of Web services are critical for selecting the optimal Web service from
a set of functionally equivalent service candidates. Since QoS performance of Web
services is highly related to the service status and network environments which are
variable against time, service invocations are required at different instances during a
long time interval for making accurateWeb service QoS evaluation. However, invok-
ing a huge number of Web services from user-side for quality evaluation purpose
is time-consuming, resource-consuming, and sometimes even impractical (e.g., ser-
vice invocations are charged by service providers). To address this critical challenge,
this chapter proposes a Web service QoS prediction framework, called WSPred, to
provide time-aware personalized QoS value prediction service for different service
users. WSPred requires no additional invocation of Web services. Based on the past
Web service usage experience from different service users, WSPred builds feature
models and employs these models to make personalized QoS prediction for different
users. The extensive experimental results show the effectiveness and efficiency of
WSPred. Moreover, we publicly release our real-world time-awareWeb service QoS
dataset for future research, whichmakes our experiments verifiable and reproducible.

3.1 Overview

With the growing number of Web services over the Internet, designers of service-
oriented applications can choose from a broad pool of functionally identical or sim-
ilar Web services when creating applications. Web services are usually deployed
in remote servers and accessed by users through Internet connections. The quality
of a service-oriented application, therefore, is greatly influenced by the quality of
the invoked Web services. To build high-quality service-oriented applications, non-
functional Quality-of-Service (QoS) performance of Web services becomes a major
concern for application designers when making service selections [4]. However, the
QoS performance of Web services observed from the users’ perspective is usually

© The Author(s) 2017
Y. Zhang and M.R. Lyu, QoS Prediction in Cloud and Service Computing,
SpringerBriefs in Computer Science, DOI 10.1007/978-981-10-5278-1_3
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quite different from that declared by the service providers in service-level agreement
(SLA), due to:

• QoS performance of Web services is highly related to invocation time, since the
service status (e.g., workload, number of clients) and the network environment
(e.g., congestion) change over time.

• Service users are typically distributed in different geographic locations. The user-
observed QoS performance of Web services is greatly influenced by the Internet
connections between users and Web services. Different users may observe quite
different QoS performance when invoking the same Web service.

Based on the above analysis, providing time-aware personalized QoS information
of Web services is becoming more and more essential for service-oriented appli-
cation designers to make service selection [4, 7], service composition [1, 2], and
automatically late-binding at runtime [3].

In reality, a service user usually only invokes a limited number of Web services in
the past and thus only observes QoS values of these invoked Web services. Without
sufficient time-aware personalized QoS information, it is difficult for application
designers to select optimal Web services at design time and replace low-quality
Web services with better ones at runtime. In practice, invoking Web services from
users’ perspectives for evaluation purpose is quite difficult and includes the following
critical drawbacks:

• Executing service invocations to obtain QoS information is too expensive for
service users, since service providers may charge for invocations. At the same
time, invocations for evaluation purpose consume resources of service users and
service providers.

• With the growing number of Web services over the Internet, it is time-consuming
to evaluate all the Web services. Moreover, some potentially appropriate Web
services may not be discovered by the current user.

• Tomonitor the QoS performance ofWeb services continuously, service users need
to conduct service invocations periodically, whichwill introduce a heavyworkload
to service users.

• Since service users are not experts in service evaluation, it will take a solid effort
from service users to evaluate the Web services in-depth. The time-to-market
constraints will also limit the amount of resources for service evaluation.

It becomes an urgent task to explore a time-aware personalized prediction
approach for efficiently estimating missing QoS information of Web services for
different service users. To address this critical challenge, we propose a model-based
approach, called WSPred, for time-aware and personalized QoS prediction of Web
services. WSPred collects time-aware QoS information from geographically distrib-
uted service users and combines the local information to get a global user-service-
time tensor. By performing tensor factorization, user-specific, service-specific, and
time-specific latent features are extracted from the past QoS experiences of different
service users. The unknown QoS values are therefore estimated by analyzing how
the user features are applied to the corresponding service features and time features.
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We collect a large-scale real-world Web service QoS dataset and conduct extensive
experiments to compare the QoS prediction accuracy with several other state-of-the-
art approaches. The experimental results show the effectiveness and efficiency of our
proposed approach WSPred.

In summary, this chapter makes the following contributions:

• We formally identify the critical problem of time-aware Web service QoS pre-
diction and propose a novel collaborative framework to achieve QoS information
sharing among service users. A user-side lightweight middleware is designed for
automatically recording and sharing QoS experiences.

• We propose a novel time-aware personalized QoS prediction approach WSPred,
which analyzes latent features of user, service, and time by performing tensor
factorization. We consider WSPred as the first QoS prediction approach which
addresses the difference over time in service computing literature.

• We conduct large-scale real-world experiments to study the prediction accuracy
and efficiency of our WSPred compared with other state-of-the-art approaches.
Moreover, we publicly release our large-scale Web service QoS dataset for future
research. To the best of our knowledge, it is the first multi-user QoS dataset with
time series information in the Web service literature.

The remainder of this chapter is organized as follows: Sect. 3.2 describes the col-
laborative framework for sharingQoS information between service users. Section3.3
presents our WSPred approach in detail. Section3.4 introduces the experimental
results. Section3.5 concludes the chapter.

3.2 Collaborative Framework for Web Services

In this section, we present the collaborative framework for QoS prediction of Web
services. Figure3.1 shows the system architecture. Within a service-oriented Web
application, severalWeb services are employed to implement complicated functions.

Fig. 3.1 System architecture. ©[2011] IEEE. Reprinted, with permission, from Ref. [8]
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Fig. 3.2 A toy example.
©[2011] IEEE. Reprinted,
with permission, from
Ref. [8]
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These Web services are connected with each other in multiple tiers. For each tier, an
optimal Web service will be selected from a set of functional equivalent service can-
didates. Typically theWeb service candidates are provided by different organizations
and are distributed in different geographic locations and time zones. When invoked
through communication links, the user-side usage experiences are influenced by the
network environments and the server-side status at invocation time.

The mechanism proposed in this chapter is to (1) share local Web service usage
experiences from different service users, (2) combine these pieces of local informa-
tion together to get global QoS information for all service candidates, (3) extract
time-specific user features and service features, and (4) make personalized time-
aware QoS value prediction based on these features. As shown in Fig. 3.2, each
service user keeps local records of QoS usage experience on Web services and is
encouraged to contribute its local records to obtain records from other users. By
contributing more individually observed Web service QoS information, a service
user can obtain more global QoS information from other users, thus obtaining more
accurate Web service QoS prediction values. Given accurate QoS prediction results,
service users could select the potentially optimal services for composing service-
oriented Web applications. The detailed collaborative prediction approach will be
presented in Sect. 3.3.

Since most of the service users are not experts in service testing, to reduce the
efforts of service users spent on testing the service QoS performance, we design a
user-side lightweight middleware for service users to automatically record QoS val-
ues of invocations and to contribute the local records to the server for obtaining more
invocation results from other service users. Within the middleware, there are three
management components:Monitor,Collector, and Predictor.Monitor is responsible
for monitoring the QoS performance of Web services when users send invocations.
Collector is responsible for contributing local QoS information to other users and
for collecting shared QoS information from other users. Predictor is responsible for
providing time-aware personalized QoS value prediction based on local and other
users’ QoS information collected by Collector.
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3.3 Time-Aware QoS Prediction

PreviousWeb service-related techniques such as selection, composition, and orches-
tration only employ average QoS performance of service candidates at design time.
In recentWeb service literatures, most of the state-of-the-art techniques can automat-
ically update correspondingWeb services with better ones at runtime, which requires
time-specific QoS performance of Web services.

In this section, we first formally describe the QoS value prediction problem on
Web services in Sect. 3.3.1. Then we propose a latent feature learning algorithm to
learn the user-specific, service-specific, and time-specific features in Sect. 3.3.2. The
missing QoS values are predicted by applying the proposed algorithm WSPred in
Sect. 3.3.3. Finally, the complexity analysis is conducted in Sect. 3.3.4.

3.3.1 Problem Description

Figure3.2 illustrates a toy example of the QoS prediction problem we study in this
chapter. In this figure, user u1 has used threeWeb services s1, s2, and s4 in the past. u1
recorded the observed QoS performance of Web services s1, s2, and s4 with specific
invocation time in local site. By integrating all the QoS information from other users,
we form a three-dimensional user-service-time tensor as shown in Fig. 3.3. In this
example, totally there are 5 users (from u1 to u5), 5 services (from s1 to s5), and
5 time intervals (from t1 to t5). The tensor is split into several slices with each one
representing a time interval. Within a slice, each entry denotes an observed QoS
value of a Web service from a user during the specific time interval. The problem we
study in this chapter is how to efficiently and precisely predict the missing entries in
the user-service-time tensor based on the existing entries.

Now we formally define the problem of QoS prediction for Web services as
follows: Given a set of users and a set of Web services, based on the existing QoS
values from different users, predict the missing QoS values of Web services when
invoked by users at different time intervals. More precisely:

Fig. 3.3 User-service-time
tensor. ©[2011] IEEE.
Reprinted, with permission,
from Ref. [8]
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LetU be the set ofm users, S be the set of nWeb services, and T be the set of c time intervals.
A QoS element is a quartet (i, j, k, qi jk) representing the observed quality of Web service
s j by user ui at time interval tk , where i ∈ {1, · · · ,m}, j ∈ {1, · · · , n}, k ∈ {1, · · · , c}, and
qi jk ∈ R

p is a p-dimensional vector representing the QoS values of p criteria. Let Ω be the
set of all triads {i, j, k} and Λ be the set of all known triads (i, j, k) in Ω . Consider a tensor
Y ∈ R

m×n×c with each entry Yi jk representing the observed pth criterion value of service
s j by user ui at time interval tk . Then the missing entries {Yi jk |(i, j, k) ∈ Ω − Λ} should
be predicted based on the existing entries {Yi jk |(i, j, k) ∈ Λ}.

Typically, the QoS values can be integers from a given range (e.g., {0, 1, 2, 3}) or
real numbers. Without loss of generality, we can map the QoS values to the interval
[0, 1] using the following function:

f (x) =
⎧
⎨

⎩

0, if x < Ymin

1, if x > Ymax
x−Ymin

Ymax−Ymin
, otherwise

where Ymax and Ymin are the specified upper bound and lower bound of QoS values,
respectively.

3.3.2 Latent Features Learning

In order to learn the latent features of users, services, and time, we employ tensor
factorization technique to fit a factor model to the user-service-time tensor. The
factorized user-specific, service-specific, and time-specific matrices are utilized to
make further missing entries prediction. The idea behind the factor model is to derive
a high-quality low-dimensional feature representation of users, services, and time
by analyzing the user-service-time tensor. The premise behind a low-dimensional
factor model is that there is only a small number of factors influencing QoS usage
experiences and that a user’s QoS usage experience vector is determined by how
each factor applies to that user, the corresponding service and the specific time
interval. Examples of physical feature are network distance between the user and the
server, the workload of the server, etc. Latent features are orthogonal representing
the decomposed results of physical factors.

In the chapter, we consider an m × n × c QoS tensor consisting of m users, n
services, and c time intervals. A low-rank tensor factorization approach seeks to
approximate the QoS tensor Y by a multiplication of l-rank factors [6],

Y ≈ C ×u U ×s S ×t T, (3.1)

where C ∈ R
l×l×l , U ∈ R

m×l , S ∈ R
n×l , and T ∈ R

c×l are latent feature matrices.
l is the number of latent features. Each column in U , S, and T representing a user,
a Web service, and a time interval, respectively. ×u , ×s , and ×t are tensor-matrix
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multiplication operators with the subscript showing in which direction on the tensor
to multiply the matrix (i.e.,C ×u U = ∑l

i=1 Ci jkUi j ).C is set to the diagonal tensor:

C =
{
1, if i = j = k
0, otherwise

Typically, l � mnc since in the real world, each user has invoked only a small portion
of Web services, and the tensor Y is usually very sparse. From the above definition,
we can see that the low-dimensional matrices U , S, and T are unknown and need to
be estimated.

To estimate the quality of tensor approximation, we need to construct a loss
function for evaluating the error between the estimated tensor and the original tensor.
The distance between two tensors is usually employed to define the loss function:

1

2
||Y − Ŷ ||2F , (3.2)

where || · ||2F denotes the Frobenius norm. However, due to the reason that there are
a large number of missing values, we only factorize the observed entries in tensor Y .
Hence, we employ the following loss function instead:

1

2

m∑

i=1

n∑

j=1

c∑

k=1

Ii jk(Yi jk − Ŷi jk)
2, (3.3)

where Ii jk is the indicator function that is equal to 1 if user ui invoked service s j
during the time interval tk and equal to 0 otherwise. To avoid the overfitting problem,
we add three regularization terms to Eq. (3.3) to constrain the norms of U , S, and
T . Hence we conduct the tensor factorization as to solve the following optimization
problem:

min
U,S,T

L (Y,U, S, T ) = 1

2

m∑

i=1

n∑

j=1

c∑

k=1

Ii jk(Yi jk − Ŷi jk)
2

+ λ1

2
||U ||2F + λ2

2
||S||2F + λ3

2
||T ||2F ,

(3.4)

where λ1, λ2, λ3 > 0. λ1, λ2, and λ3 define the importance of regularization terms. In
other words, the optimal solution is highly rely on the error we evaluated in the first
term. λ1, λ2, and λ3 define the degree of accuracy in the first term to avoid overfitting
problem.The optimization problem inEq. (3.4)minimizes the sum-of-squared-errors
objective function with quadratic regularization terms.

Figure3.4 gives a comprehensive illustration of the Web service response-time
observed by different service users. We randomly select two service users (User 1
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Fig. 3.4 Response-time of
two pairs of user-service.
©[2011] IEEE. Reprinted,
with permission, from
Ref. [8]
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and User 2) and two real-world Web services (Web Service A and Web Service B)
from the experiment described in Sect. 3.4. As shown in Fig. 3.4, during different
time intervals, a user has different QoS experiences on the same Web service. In
general, the differences are limited within a range (e.g., most of the response-time
values of (User 1, Web Service A) are within the range of 0.2–0.6 s and most of the
response-time values of (User 2, Web Service B) are within the range of 0.7–0.9 s).
This observation indicates that although the QoS values of a particular user-service
are different during different time intervals, they fluctuate around the average QoS
value of the user-service pair during all time intervals. Based on this observation,
we further add a regularization term to Eq. (3.4) to prevent the predicted QoS values
from varying a lot against the average QoS value. We define the prediction with
average QoS value constraint as the following optimization problem:

min
U,S,T

LA (Y,U, S, T ) = 1

2

m∑

i=1

n∑

j=1

c∑

k=1

Ii jk(Yi jk − Ŷi jk)
2

+ λ1

2
||U ||2F + λ2

2
||S||2F + λ3

2
||T ||2F

+ η

2

m∑

i=1

n∑

j=1

c∑

k=1

Ii jk(Ŷi jk − Ȳi j )
2,

(3.5)

where η > 0, and Ȳi j denotes the average QoS value of Web service s j observed
by user ui during all the time intervals. η controls how much the prediction method
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should engage the information of average QoS performance. In the extreme case,
if we use a very small value of η, we only perform tensor factorization without
considering the global QoS information. On the other side, if we use a very large
value of η, the average QoS performance will dominate the learning processes.

A local minimum of the objective function given by Eq. (3.5) can be found by
performing incremental gradient descent in feature vectors Ui , Sj , and Tk :

∂LA

∂Ui f
=

n∑

j=1

c∑

k=1

Ii jk(Ŷi jk − Yi jk)S
T
j Tk + λ1Ui f

+ η

n∑

j=1

c∑

k=1

Ii jk(Ŷi jk − Ȳi j )S
T
j Tk,

∂LA

∂Sj f
=

m∑

i=1

c∑

k=1

Ii jk(Ŷi jk − Yi jk)U
T
i Tk + λ2Sj f

+ η

m∑

i=1

c∑

k=1

Ii jk(Ŷi jk − Ȳi j )U
T
i Tk,

∂LA

∂Tk f
=

m∑

i=1

n∑

j=1

Ii jk(Ŷi jk − Yi jk)U
T
i S j + λ3Tk f

+ η

m∑

i=1

n∑

j=1

Ii jk(Ŷi jk − Ȳi j )U
T
i S j . (3.6)

Algorithm 3 shows the iterative process for latent feature learning. We first ini-
tialize matrices U , S, and T with small random nonnegative values. Iteration of the
update rules derived from Eq. (3.6) converges to a local minimum of the objective
function given in Eq. (3.5).

3.3.3 Missing Value Prediction

After the user-specific, service-specific, and time-specific latent feature spacesU , S,
and T are learned, we can predict the QoS performance of a given service observed
by a user during the specific time interval. For the missing entry Yi jk in the QoS
tensor, the value predicted by our method is defined as

Ŷi jk = Ii jk

l∑

f =1

Ui f S j f Tk f . (3.7)
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Algorithm 3: Latent Features Learning Algorithm
Input: Y , l, λ, η
Output: U , S, T
Initialize U ∈ R

l×m , S ∈ R
l×n , and T ∈ R

l×c with small random numbers;1

repeat2

for all (i, j, k) ∈ Λ do3

Ŷi jk = ∑l
f =1Ui f S j f Tk f ;4

end5

for all (i, j) do6

Ȳi j =
∑c

k=1 Ii jkYi jk∑c
k=1 Ii jk

;7

end8

for all (i, j, k) ∈ Λ do9

for ( f = 1; f ≤ l; f + +) do10

Ui f ← Ui f − [(Ŷi jk − Yi jk)STj Tk + λUi f + η(Ŷi jk − Ȳi j )STj Tk];11

Sj f ← Sj f − [(Ŷi jk − Yi jk)UT
i Tk + λSj f + η(Ŷi jk − Ȳi j )UT

i Tk];12

Tk f ← Tk f − [(Ŷi jk − Yi jk)UT
i S j + λTk f + η(Ŷi jk − Ȳi j )UT

i S j ];13

end14

end15

until Converge;16

3.3.4 Complexity Analysis

The main computation of gradient methods is evaluating the objective functionLA

and their gradients against variables. The computational complexity of evaluating the
objective functionLA is O(ρY l + ρY c), where ρY is the number of nonzero entries
in the tensor Y , l is the dimensions of the latent features, and c is the number of time
intervals. The computational complexities for the gradients ∂LA

∂U , ∂LA

∂S , and ∂LA

∂T in
Eq. (3.6) are O(ρY l + ρY c). Therefore, the total computational complexity in one
iteration is O(ρY l + ρY c), which indicates that theoretically, the computational time
of ourmethod is linear with respect to the number of observedQoS values in the user-
service-time tensor Y . Note that because of the sparsity of Y , ρY << mnc, which
indicates that the computation time grows slowly with respect to the size of Tensor
Y . This complexity analysis shows that our proposed approach is very efficient and
can be applied to large-scale systems.

3.4 Experiments

In this section, we conduct several experiments to compare our approach with
several state-of-the-art collaborative filtering prediction methods. In the following,
Sect. 3.4.1 introduces the experimental setup and gives the description of our exper-
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imental dataset, Sect. 3.4.2 defines the evaluation metrics, Sect. 3.4.3 compares the
prediction quality of our approach with other competing methods, and Sects. 3.4.4
and 3.4.5 study the impact of tensor density and dimensionality, respectively.

3.4.1 Experimental Setup and Dataset Collection

To evaluate our proposed QoS prediction approach in the real world, we implement
a tool WSMonitor for monitoring the QoS performance of Web service and collect
a large-scale Web service QoS dataset for conducting various experiments.

WSMonitor is implemented and deployed with JDK 6.0, Eclipse 3.3, Axis 2, and
Apache 2.2.17. WSMonitor first crawls a set of WSDL files from the Internet and
generates a list of openly accessible Web services. For each Web service in the list,
WSMonitor automatically generates a java class for service invocation by employing
the WSDL2Java tool from the Axis package. Totally, 5871 classes are generated for
5871 Web services. By calling the functions within a class, null operation requests
are sent to the corresponding Web service for capturing the QoS performance.

We deploy the WSMonitor on 142 distributed computers located in 22 countries
from PlanetLab, which is a distributed test bed consisting of hundreds of computers
all over the world. Totally, 4532 publicly available real-world Web services from 57
countries aremonitoredby each computer continuously.A total of 1339of the initially
selected Web services are excluded in this experiment due to: (1) authentication
required and (2) permanent invocation failure (e.g., the Web service is shutdown).
In our experiment, each of the 142 computers sends null operation requests to all the
4532 Web services during every time interval. The experiment lasts for 16h with a
time interval lasting for 15min.

By collecting invocation records from all the computers, finally we include
30,287,611 QoS performance results into theWeb service QoS dataset. Each invoca-
tion record is a k dimension vector representing the QoS values of k criteria. We then
extract a set of 142 × 4532 × 64 user-service-time tensors, each ofwhich stands for a
particular QoS property, from the QoS invocation records. For simplicity, we employ
two tensors, which represent response-time and throughput QoS criteria respectively,
for experimental evaluation in this chapter. Without loss of generality, our approach
can be easily extended to include more QoS criteria.

The statistics ofWeb service QoS dataset are summarized in Table3.1. Response-
time and throughput are within the range of 0–20s and 0–1000kbps, respectively.
The means of response-time and throughput are 3.165s and 9.609kbps, respectively.
The distributions of the response-time and throughput values of the user-service-time
tensors are shown in Fig. 3.5a, b respectively. Most of the response-time values are
between 0.1 and 0.8 seconds, and most of the throughput values are between 0.8 and
3.2kbps.
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Table 3.1 Statistics of WS QoS dataset. ©[2011] IEEE. Reprinted, with permission, from Ref. [8]

Statistics Response-time Throughput

Scale 0–20s 0–1000kbps

Mean 3.165s 9.609kbps

Num. of users 142 142

Num. of web services 4532 4532

Num. of time intervals 64 64

Num. of records 30,287,611 30,287,611
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Fig. 3.5 QoS value distributions. ©[2011] IEEE. Reprinted, with permission, from Ref. [8]

3.4.2 Metrics

We assess the prediction quality of our proposed approach in comparison with other
methods by computing mean absolute error (MAE) and root-mean-squared error
(RMSE). The metric MAE is defined as:

MAE =
∑

i jk |Ŷi jk − Yi jk |
N

, (3.8)

and RMSE is defined as:

RMSE =
√

∑
i jk(Ŷi jk − Yi jk)2

N
, (3.9)

where Yi jk is the QoS value of Web service s j observed by user ui at time interval t ,
Ŷi jk denotes the QoS value of Web service s j would be observed by user ui at time
interval tk as predicted by a method, and N is the number of predicted QoS values.
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3.4.3 Performance Comparisons

In this section, in order to show the effectiveness of our proposed Web service QoS
prediction approach, we compare the prediction accuracy of the following methods:

1. MF1—Thismethod considers the user-service-time tensor as a set of user-service
matrix slices in terms of time. For each slice, the prediction method proposed by
Lee and Seuing in [5] is employed. It applies nonnegative matrix factorization on
user-item matrix for missing value prediction.

2. MF2—This method first compresses the user-service-time tensor into a user-
service matrix. For each entry in the matrix, the value is the average of the spe-
cific user-service pair during all the time intervals. After obtaining the compressed
user-service matrix, it applies the nonnegative matrix factorization technique pro-
posed by Lee and Seuing [5] on user-item matrix for missing value prediction.

3. TF—This is a tensor factorization-based prediction method. It applies tensor
factorization on user-service-time tensor to extract user-specific, service-specific,
and time-specific characteristics. The missing value is then predicted based on
how these characteristics apply to each other.

4. WSPred—This method is proposed in this chapter. It is a tensor factorization-
based recommendation with average QoS value constraints.

Since memory-based approaches require much more computation time than
model-based approaches, we only compare the above four model-based approaches.
Since the matrix factorization technique cannot be directly applied to time-aware
prediction problem, we extend the prediction approach [5] in two different ways,
which derive method MF1 and MF2, respectively.

In order to evaluate the performance of different approaches in reality, we ran-
domly remove some entries from the tensors and compare the values predicted by a
method with the original ones. The tensors with missing values are in different densi-
ties. For example, 10%means thatwe randomly remove 90%entries from the original
tensor and use the remaining 10% entries to predict the removed entries. The predic-
tion accuracy is evaluated using Eqs. (3.8) and (3.9) by comparing the original value
and the predicted value of each removed entry. The values of λ and η are tuned by
performing cross-validation on the observed QoS data.Without lost of generality, the
parameter settings of all the approaches are l = 20 and λ1 = λ2 = λ3 = η = 0.001
in the experiments conducted in this chapter. Detailed impact of tensor density and
dimensionality is studied in Sects. 3.4.4 and 3.4.5.

The QoS value prediction accuracies evaluated by MAE and RMSE are shown in
Table3.2. For each row in the table, we highlight the best performer among all meth-
ods. From Table3.2, we can observe that the tensor factorization-based prediction
methods (i.e., TF andWSPred) outperform the matrix factorization-based prediction
methods (i.e., MF1 and MF2), since the tensor factorization-based methods use the
time-specific features as additional information. We also observe that our approach
WSPred constantly performs better (smaller MAE and RMSE values) than the other
approaches, including TF, for both response-time and throughput under both dense
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Table 3.2 Performance comparisons (A smallerMAEorRMSEvaluemeans a better performance).
©[2011] IEEE. Reprinted, with permission, from Ref. [8]

Tensor density
(%)

Metrics Response-time (seconds)

MF1 MF2 TF WSPred

5 MAE 3.4137 2.9187 2.9184 2.5580
RMSE 5.3423 5.1024 4.7508 4.3626

10 MAE 2.8518 2.8421 2.7888 2.4990
RMSE 5.0667 4.5563 4.5696 4.2892

45 MAE 2.4241 2.2679 2.2511 2.1462
RMSE 4.3240 4.2541 4.2071 3.9200

50 MAE 2.3959 2.2596 2.2127 2.1266
RMSE 4.2996 4.1490 4.0169 3.8943

Tensor density
(%)

Metrics Throughput (kbps)

MF1 MF2 TF WSPred

5 MAE 10.5460 8.8317 8.7997 8.2761
RMSE 46.6735 43.4769 39.5133 39.0962

10 MAE 9.9839 8.7522 8.5080 8.0131
RMSE 46.6656 39.7740 39.2792 38.6251

45 MAE 8.6773 7.9590 7.9471 6.9398
RMSE 45.0077 39.9388 38.6964 36.5724

50 MAE 8.6224 7.8306 7.8045 6.8558
RMSE 44.9407 38.9388 38.6964 36.5724

tensors and sparse tensors. This demonstrates the advantage of time-aware prediction
algorithm with the constraints of average QoS performance. In Table3.2, the MAE
and RMSE values of dense tensors (e.g., tensor density is 45 or 50%) are smaller
than those of sparse tensors (e.g., tensor density is 5 or 10%), since a denser tensor
provides more information for predicting the missing values. In general, the MAE
and RMSE values of throughput are larger than those of response-time because the
scale of throughput is 0–1000kbps, while the scale of response-time is 0–20s. Com-
paredwith othermethods, the improvements of our approachWSPred are significant,
which demonstrates that the idea of considering time information for QoS prediction
is realistic and reasonable.

3.4.4 Impact of Tensor Density

In Fig. 3.6, we compare the prediction accuracy of all the methods under different
tensor densities. We change the tensor density from 5 to 50% with a step value of
5%. The parameter settings in this experiment are l = 20 and λ1 = λ2 = λ3 = η =
0.001.
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Fig. 3.6 Impact of tensor density. ©[2011] IEEE. Reprinted, with permission, from Ref. [8]

Figure3.6a, b show the experimental results of response-time, while Fig. 3.6c,
d show the experimental results of throughput. The experimental results show that
our approach WSPred achieves higher prediction accuracy (lower MAE and RMSE
values) than other competingmethods under different tensor density. In general,when
the tensor density is increased from 5 to 20%, the prediction accuracy of our approach
WSPred is significantly enhanced. When the tensor density is further increased from
20 to 50%, the enhancement of prediction accuracy is quite limited. This observation
indicates that when the tensor is very sparse, collecting more QoS information will
greatly enhance the prediction accuracy, which further demonstrates that considering
both the difference between time intervals and the average QoS performance could
effectively provide personalized QoS estimation.

In the experimental results, we observe that the performance of MF1 is worse
than that of other methods. The reason is that MF1 only extracts the user-specific and
service-specific features without considering the relationship between QoS perfor-
mance in time intervals. In general, MF2 performs better thanMF1, since MF2 com-
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putes the averageQoSperformance before performingmatrix factorization.Applying
the features extracted from the original tensor, MF2 predicts the average QoS perfor-
mance for a particular user-service pair. This observation further demonstrates that
the average QoS performance of a particular user-service pair can provide valuable
information when predicting the missing QoS value of the user-service pair in a
particular time interval.

3.4.5 Impact of Dimensionality

The parameter dimensionality l determines the number of latent features applied
to characterize user, service, and time. In Figs. 3.7 and 3.8, we study the impact of
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Fig. 3.7 Impact of dimensionality in response-time dataset. ©[2011] IEEE. Reprinted, with per-
mission, from Ref. [8]
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Fig. 3.8 Impact of dimensionality in throughput dataset. ©[2011] IEEE. Reprinted, with permis-
sion, from Ref. [8]

parameter dimensionality by varying the values of l from 5 to 50 with a step value
of 5. Other parameter settings are λ1 = λ2 = λ3 = η = 0.001.

Figures3.7 and 3.8 show the MAE and RMSE values of response-time and
throughput, respectively. We observe that in both figures, as l increases, the MAE
and RMSE decrease (prediction accuracy increases), but when l surpasses a certain
threshold like 20, theMAE and RMSE increase (prediction accuracy decreases) with
further increase of the value of l. This observation indicates that too few latent factors
are not enough to characterize the features of user, service, and time, while too many
latent factors will cause an overfitting problem. There exists an optimal value of l for
characterizing the latent features. In both Figs. 3.7 and 3.8, when the tensor density
is 50%, we observe that our approach WSPred achieves the best performance when
the value of dimensionality is 25, while smaller values like 5 or larger values like
50 can potentially reduce the prediction accuracy. When the tensor density is 5%,
we observe that the prediction accuracy of our approach WSPred achieves the best
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performance when the value of dimensionality is 20, while smaller values like 5 or
larger values like 50 can potentially reduce the prediction accuracy. This observation
indicates that when the user-service-time tensor is sparse, 20 latent factors are already
enough to characterize the features of user, service, and time which are mined from
the limited user-service-time QoS information. On the other hand, when the tensor
is dense, more latent factors, like 25, are needed to characterize the latent features
since more QoS information can be obtained from the original tensor.

3.5 Summary

Based on the intuition that a user’s Web service QoS usage experience can be pre-
dicted by using the past usage experience from different users, we propose a novel
model-based approach, called WSPred, for time-aware personalized QoS value pre-
diction for Web services. By employing a collaborative framework, WSPred per-
forms feature modeling on user, Web service, and time based on the QoS usage
experience collected from both local and global users. Requiring no additional invo-
cation of Web services, WSPred makes the QoS prediction by evaluating how the
user-specific, service-specific, and time-specific latent features apply to each other.
The extensive experimental results show that our proposed WSPred outperforms the
state-of-the-art QoS prediction approaches for Web services.

For future work, we will investigate more techniques for improving the prediction
accuracy (e.g., data smoothing, utilizing content information). Currently, we predict
the values of different QoS properties independently. In the future, we will also con-
duct more investigations on the correlations and combinations on the different QoS
properties. WSPred predicts missing QoS values based on the past QoS experience
and the available QoS information in the current time interval. If no QoS information
is available in the current time interval, WSPred purely depends on the past experi-
ence. In the future, we will explore an online prediction algorithm to perform time
series analysis for prediction and extendWSPred to handle updated QoS information
at runtime.
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Chapter 4
Online QoS Prediction

Abstract The exponential growth of Web service makes building high-quality
service-oriented systems an urgent and crucial research problem. Performance of the
service-oriented systems highly depends on the remote Web services as well as the
unpredictability of the Internet. Performance prediction of service-oriented systems
is critical for automatically selecting the optimal Web service composition. Since
the performance of Web services is highly related to the service status and network
environments which are variable over time, it is an important task to predict the per-
formance of service-oriented systems at runtime. To address this critical challenge,
this chapter proposes an online performance prediction framework, called OPred,
to provide personalized service-oriented system performance prediction efficiently.
Based on the past usage experience from different users, OPred builds featuremodels
and employs time series analysis techniques on feature trends to make performance
prediction. The results of large-scale real-world experiments show the effectiveness
and efficiency of OPred.

4.1 Overview

Low response time is one of the most important requirements of the service-oriented
systems, which are widely employed in e-business and e-government. Typically, the
response time performance of service-oriented systems involves two parts: local exe-
cution time at the system side and the response time of invoking remoteWeb services.
While the local execution time is relatively short, the response time of invoking Web
services is usually much longer, which greatly influences the system performance.
The reason is that Web services are usually deployed in different geographical loca-
tions and invoked via Internet connections. Moreover, the remote Web services may
be running on cheap and poor performing servers, leading to a decrease of service
performance. In order to build service-oriented systems with good performance, it is
important to identify Web services with low response time for composition. More-
over, by identifying the Web services with long response time at runtime, system
designers can replace them with better ones to enhance the overall system perfor-
mance.

© The Author(s) 2017
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Typically, Web services are considered as black boxes to service users. The user-
side observed performance is employed to evaluate the qualities of Web services.
Since the service status (e.g., workload, CPU allocations) and the network environ-
ment (e.g., congestions, bandwidth) may change over time, response time of Web
services varies a lot during different time intervals. In order to identify low response
time Web services timely, real-time performance of Web services needs to be con-
tinuously monitored.

Based on the above analysis, providing real-time performance information ofWeb
services is becoming more and more essential for service-oriented system designers
to build high-quality systems and to maintain the performance of the systems at run-
time. However, evaluating the performance of service-orientated systems at runtime
is not an easy task, due to the following reasons:

• Since users (SOA systems) and services are typically distributed in different geo-
graphical locations, the user-observed performance of Web services is greatly
influenced by the Internet connections between users and Web services. Differ-
ent users may observe quite different performance when invoking the same Web
service.

• Real-time performance evaluation may introduce extra transaction workload,
which may impact the user experience of using the systems.

• The purpose of performance evaluation is to monitor the current system perfor-
mance status and allow designers to make adjustments in order to guarantee the
performance in the future. This requires frequent performance evaluation, since
infrequent evaluation cannot provide useful information to designers for choosing
appropriate services in the following time.

It becomes an urgent task to explore an online personalized prediction approach
for efficiently estimating the performance ofWeb services for different service users.
Based on the performance information of Web services, the overall performance of a
service-oriented system can be estimated by aggregating the performance of services
invoked by the system. In this chapter, we propose a service performance estimation
framework for providing personalized performance information to the users. The
performance of services is predicted by collaborative work of users. We collect time-
aware performance information from geographically distributed service users. Due
to the fact that a service user usually only invokes a small number of Web services
in the past and thus only observes performance of these invoked Web services, the
collected performance information is usually sparse. In order to precisely predict
the performance of Web service when invoked by users, we employ a set of latent
features to characterize the status of Web services and users. Examples of physical
feature are network distance between the user and the service server, the workload of
the server. Latent features are orthogonal representation of the decomposed results of
physical factors. We extract the latent features of users and services in the past time
slice from the collected service performance information. By analyzing the trend
of the feature changes, we estimate the features of users and services in the current
time. Then, the personalized performance of Web service is predicted by evaluating
how the features of users apply to features of services.
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In summary, this chapter makes the following contributions:

• We propose an online performance prediction framework for estimating the user-
observed performance of service-oriented systems. Our approach employs the
past usage experiences of different users to efficiently predict the performance of
service-oriented systems online.

• We collect a large-scale real-world Web service performance dataset and conduct
extensive experiments for evaluating the performance of our proposed approach
OPred. Totally, 4532 Web services are monitored by 142 service users and
30,287,611 invocation results are collected. Moreover, we publicly release our
large-scale real-world Web service performance dataset for future research.

The rest of this chapter is organized as follows: Sect. 4.2 describes the service-
oriented system architecture and introduces the online performance prediction pro-
cedures. Sections4.3 and 4.4 present our online service performance prediction
approach OPred in detail. Section4.5 presents the experimental results. Section4.6
concludes the chapter.

4.2 Preliminaries

Figure4.1 shows the architecture of a typical service-oriented system. Within a
service-oriented system, several abstract tasks are combined to implement compli-
cated functions. For each abstract task, an optimal Web service is selected from a set
of functionally equivalent service candidates. By composing the selected services, a
service-oriented system instance is implemented for task execution. The problem of
finding functionally equivalentWeb service candidates has been discussed by a lot of

Fig. 4.1 Service-oriented system architecture. ©[2014] IEEE. Reprinted, with permission, from
Ref. [18]
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Fig. 4.2 Online performance prediction procedures. ©[2014] IEEE. Reprinted, with permission,
from Ref. [18]

previous work [10, 15], which is outside the scope of this work. Typically, the Web
service candidates are provided by different organizations and distributed in different
geographical locations and time zones.When invoked through communication links,
the user-side usage experiences are influenced by the network environments and the
server-side status at invocation time. Since service-oriented systems are increasingly
running on large numbers of dynamic services, users often encounter highly dynamic
and uncertain performance of service-oriented systems.

As shown in Fig. 4.2, the online performance prediction mechanism proposed in
this chapter contains four phases. In phase 1, each service user keeps local perfor-
mance records of the Web services. In phase 2, local Web service usage experiences
are uploaded to the performance center. Each user is encouraged to contribute its local
records to obtain performance prediction service from the performance center. By
contributing more individually observedWeb service performance records, a service
user can obtain more accurate performance prediction results from the performance
center. By combining performance records of several users, the performance center
can obtain global performance information for all services. In phase 3, by performing
time series analysis on the extracted time-specific user features and service features,
a performance model is built in the performance center for personalized service per-
formance prediction. The premise behind the performance model is that there is a
small number of latent factors influencing the user-observed service performance,
and that a user’s observed service performance is determined by how each factor
applies to that user and the corresponding service at the current time slice. In phase
4, given the service-level performance information, the overall performance of a
service-oriented system is predicted based on the analysis of service compositional
structures. When the most recent service performance information is available, an
online prediction algorithm is applied for quickly updating the performance model,
which requires no effort of recalculation for catching the performance trend. The
detailed online service performance prediction approach is presented in Sect. 4.3.

In Fig. 4.1, we can observe that the overall execution time of a service-oriented
system mainly contains two parts: local computation time at the system side and
response time of invoking remote services. The highly dynamic performance of
service-oriented systems is mainly due to the highly dynamic response time of the
composed services, while the local execution time is relatively stable. To improve the
performance of systems at runtime, optimal Web service of each abstract task should
be identified timely to replace the bad ones for composition. The overall performance
of systems with different compositional options can be compared by estimating the



4.2 Preliminaries 59

total response time required for invoking all the composed services. The detailed
system-level performance prediction approach will be presented in Sect. 4.4.

Since most of the service users are not experts in service testing, to reduce the
efforts of service users spent on testing the service performance, we design a light-
weight middleware for service users to automatically record invocation results, con-
tribute the local records to the performance center, and receive performance predic-
tion results from the performance center.Within themiddleware, there are threeman-
agement components:WSMonitor,Collector, andPredictor.WSMonitor is deployed
on the user-side. Collector and Predictor are deployed on the performance center.
WSMonitor is responsible for monitoring the performance ofWeb services and send-
ing local records to the performance center. Collector is responsible for collecting
shared performance records from users. Predictor is responsible for providing time-
aware personalized performance prediction based on users’ performance information
collected by Collector.

4.3 Online Service-Level Performance Prediction

In this section, we propose a collaborative method to predict the performance of
services. Previous Web service related techniques such as selection [4, 12, 14,
16], composition [1, 2, 13], and orchestration [5] typically only employ average
performance of service candidates at design time. In the recentWeb service literature,
most of the state-of-the-art techniques can automatically update corresponding Web
services with better ones at runtime. Therefore, making personalized time-specific
performance prediction of Web services for different users becomes a critical task.

In this section, we first formally describe the online performance prediction prob-
lem of Web services in Sect. 4.3.1. Then, we propose a latent feature learning algo-
rithm to learn the time-aware user-specific and service-specific features in Sect. 4.3.2.
The performance of services is predicted by applying the proposed online algorithm
in Sect. 4.3.3. Finally, the complexity analysis is conducted in Sect. 4.3.4.

4.3.1 Problem Description

Figure4.3a illustrates a toy example of the performance prediction problemwe study
in this chapter. In this figure, service user u1 has used three Web services s1, s2, and
s4 in the past. u1 recorded the observed performance of Web services s1, s2, and
s4 with time stamp in the local site. By integrating all the performance information
from different users, we can form a set of matrices as shown in Fig. 4.3b with each
matrix representing a time slice. In this example, there are totally 5 users (from u1 to
u5) and 5 services (from s1 to s5). Within a matrix, each entry denotes the observed
performance (e.g., response time) of a Web service by a user during a specific time
slice. A missing entry denotes that the corresponding user did not invoke the service
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Fig. 4.3 Toy example of
performance prediction.
©[2014] IEEE. Reprinted,
with permission, from
Ref. [18]
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in the time slice. The problem we study in this chapter is how to efficiently and
precisely predict performance of services observed by a user in the next time slice
based on the previously collected performance information.

Let U be the set of m users and S be the set of n Web services. In each time slice
t , the observed response time from all users is represented as a matrix R(t) ∈ R

m×n

with each existing entry rui (t) representing the response time of service i observed
by user u in time slice t . Given the set of matrices � = {R(k)|k < tc}, matrix R(tc)
should be predicted representing the expected response time of services in time slice
tc.

Without loss of generality, we can map the response time values to the interval
[0, 1] using the following function:

f (x) =
⎧
⎨

⎩

0, ifx < rmin

1, ifx > rmax
x−rmin

rmax−rmin
, otherwise

where rmax and rmin are the upper bound and lower bound of the response time values,
respectively, which can be defined by users.
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4.3.2 Time-Aware Latent Feature Model

In order to learn the latent features of users and services, we employ a matrix fac-
torization technique to fit a feature model to user-service matrix in each time slice.
The factorized user-specific and service-specific features are utilized to make fur-
ther performance prediction. The idea behind the feature model is to derive a high-
quality low-dimensional feature representation of users and services by analyzing
the user-service matrices. It is noted that there is only a small number of features
influencing performance experiences, and that a user’s performance experience vec-
tor is determined by how each feature is applied to that user and the corresponding
service. Examples of physical features are network distance between the user and
the server, the workload of the server. Latent features are orthogonal representation
of the decomposed results of physical features. Consider the matrix R(t) ∈ R

m×n

consisting of m users and n services. Let p(t) ∈ R
l×m and q(t) ∈ R

l×n be the latent
user and service feature matrices in time slice t . Each column in p(t) represents the
l-dimensional user-specific latent feature vector of a user, and each column in q(t)
represents the l-dimensional service-specific latent feature vector of a service. We
employ an approximating matrix to fit the user-service matrix R(t), in which each
entry is approximated as:

r̂ui (t) = pTu (t)qi (t) (4.1)

where l is the rank of the factorization which is generally chosen so that (m + n)l <

mn, since p(t) and q(t) are low-rank feature representations [7]. This matrx factor-
ization procedure (i.e., decompose the user-service matrix R(t) into two matrices
p(t) and q(t)) has clear physical meanings: Each column of q(t) is a factor vector
including the values of the l factors for a Web service, while each column of p(t)
is the user-specific coefficients for a user. In Eq. (4.1), the user-observed perfor-
mance on service i at time t (i.e., r̂ui (t)) corresponds to the linear combination of
the user-specific coefficients and the service factor vector.

In order to optimize the matrix factorization in each time slice, we first construct
a cost function to evaluate the quality of approximation. The distance between two
nonnegative matrices is usually employed to define the cost function. In this chapter,
due to the reason that there are a large number of missing values in practice, we
only factorize the observed entries in matrix R(t). Hence, we conduct the matrix
factorization as to solve the following optimization problem:

minL (pu(t), qi (t))

= 1

2

m∑

u=1

n∑

i=1

Iui (rui (t) − g(r̂ui (t)))
2

+ λ1

2
||p(t)||2 + λ2

2
||q(t)||2, (4.2)

where λ1, λ2 > 0, Iui is the indicator function that is equal to 1 if user u invoked
service i during the time slice t and equal to 0 otherwise. (rui (t)−g(r̂ui (t)))2 evaluates
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the prediction error. To avoid the overfitting problem, we add two regularization
terms to Eq. (4.2) to constrain the norms of p(t) and q(t) where || · ||2 denotes the
Frobenius norm. λ1 and λ2 defines the importance of regularization terms. In other
words, the optimal solution is highly relying on the error we evaluated in the first
term. λ1 and λ2 defines the degree of accuracy in the first term to avoid overfitting
problem.The optimization problem inEq. (4.2)minimizes the sum-of-squared-errors
objective function with quadratic regularization terms. g(x) is the logistic function
g(x) = 1/(1 + exp(−x)), which maps r̂ui (t) to the interval [0, 1]. By solving the
optimization problem, we can find the most appropriate latent feature matrices p(t)
and q(t) to characterize the users and services, respectively.

A local minimum of the objective function given by Eq. (4.2) can be found by
performing incremental gradient descent in feature vectors p(t) and q(t):

∂L

pu(t)
= Iui (g(r̂ui (t)) − rui (t))g

′(r̂ui (t))qi (t)

+λ1 pu(t), (4.3)
∂L

qi (t)
= Iui (g(r̂ui (t)) − rui (t))g

′(r̂ui (t))pu(t)

+λ2qi (t). (4.4)

Algorithm 4 shows the iterative process for time-aware latent feature learning.We
first initialize matrices p(t) and q(t) with small random nonnegative values. Update
iterations derived from Eqs. (4.3) and (4.4) allow the objective function given in
Eq. (4.2) converge to a local minimum.

Algorithm 4: Time-Aware Latent Features Learning.
Input: R(t), l, λ1, λ2

Output: p(t), q(t)
Initialize p(t) ∈ R

l×m and q(t) ∈ R
l×n with small random numbers;1

Load the performance records from matrix R(t);2

Calculate the objective function value L (pu(t), qi (t)) by Eq. (4.1) and3

Eq. (4.2);
repeat4

Calculate the gradient of feature vectors ∂L
pu(t)

and ∂L
qi (t)

according Eq. (4.3)5

and Eq. (4.4), respectively;
Update the latent user and service feature matrices p(t) and q(t);6

pu(t) ← pu(t) − ∂L
pu(t)

;7

qi (t) ← qi (t) − ∂L
qi (t)

;8

Update the objective function value L (pu(t), pi (t)) by Eq. (4.1) and9

Eq. (4.2);
until Converge;10
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4.3.3 Service Performance Prediction

After the user-specific and service-specific latent feature spaces p(t) and q(t) are
learned in each time slice t , we can predict the performance of a given service
observed by a user during the next time slice. The service performance prediction
is conducted in two phases: offline phase and online phase. In the offline phase, the
performance information collected from all the service users is used for statically
modeling the trends of user features and service features. By employing a time
series analysis, the features of users and services in the next time slice are calculated
based on the evolutionary algorithm. The predicted features are further applied for
calculating the predicted performance of services in the next time slice. In the online
phase, the newly observed service performance information by users at runtime
is integrated into the feature model built in the offline phase. By employing the
incremental calculation algorithm, the feature model is updated efficiently to catch
the latest trend for ensuring the prediction accuracy.

4.3.3.1 Phase 1: Offline Evolutionary Algorithm

Given the latent feature vectors of users and services in time slices before tc, the latent
feature vectors in time slice tc can be predicted by precisely modeling the trends of
features. Intuitively, older features are less correlated with a service’s current status
or a user’s current characteristics. To characterize the latent features at time slice
tc, the prediction calculation should rely more on the information collected in the
latest time slices than that collected in older time slices. In order to integrate the
information from different time slices, we therefore employ the following temporal
relevance function [8]:

f (k) = e−αk, (4.5)

where k is the amount of time that has passed since the corresponding information
was collected. f (k)measures the relevance of information collect from different time
slices formakingprediction on latent features at time tc. Note that f (k)decreaseswith
k. By employing the temporal relevance function f (k), we can assign a weight for
each latent feature vector depending on the collecting time when making prediction.
In the temporal relevance function, α controls the decaying rate. By setting α to 0,
the evolutionary nature of the information is ignored. A constant temporal relevance
value of 1 is assigned to latent feature vectors in all the time slices, which means
latent feature vectors in time slice tc are predicted simply by averaging the vectors
before time slice tc. Since e−α is a constant value, the value of temporal relevance
function can be recursively computed: f (k + 1) = e−α f (k), in which e−α denotes
the constant decay rate.

By analyzing the collected performance data, we obtain two important observa-
tions: (1)Within a relatively longtime period such as one day or oneweek, the service



64 4 Online QoS Prediction

performance observed by a usermay vary significantly due to the highly dynamic ser-
vice side status (e.g., workloads of weather forecasting service may increase sharply
whenweekends are coming.) and user-side environment (e.g., network latencywould
increase during the office hours). (2)Within a relatively short-time period such as one
minute or one hour, a service performance observed by a user is relatively stable.
The above two observations indicate that the feature information of latent feature
vectors in time slice tc can be predicted by utilizing the feature information collected
before tc. Moreover, the performance curve in terms of time should be smooth, which
means more recent information is placed with more emphasis for predicting the per-
formance in time slice tc. Therefore, we estimate the feature vectors in time slice tc
by computing the weighted average of feature vectors in the past time slice:

p̂u(tc) =
∑w

k=1 pu(tc−k) f (k)
∑w

k=1 f (k)
, (4.6)

q̂i (tc) =
∑w

k=1 qi (tc−k) f (k)
∑w

k=1 f (k)
, (4.7)

where p̂u(tc) and q̂i (tc) are the predicted user feature vector and service feature
vector in time slice tc, respectively. w controls the information of how many past
time slices are used for making prediction. In Eqs. (4.6) and (4.7), large weight
values are assigned to the feature vectors in recent slices, while small weight values
are assigned to the feature vectors in old slices.

Given the predicted latent feature vectors p̂u(tc) and q̂i (tc), we can predict the
service performance value observed by a user in time slice tc. For the user u and the
service i , the predicted performance value r̂ui (tc) is defined as

r̂ui (tc) = p̂Tu (tc)q̂i (tc) (4.8)

4.3.3.2 Phase 2: Online Incremental Algorithm

In this phase,we propose an incremental algorithm for efficiently updating the feature
model built in phase 1 at runtime as new performance data are collected in each time
slice. In time slice tc−1, p̂u(tc−1) and q̂i (tc−1) are predicted based on the data collected
during the time slice tc−2−w and tc−2. During the time slice tc−1, there would be
some services invoked by several different users. Therefore, newly observed service
performance values are available and collected fromusers. The newperformance data
are stored in a user-servicematrix R(tc−1) representing information in time slice tc−1.
By performing matrix factorization on R(tc−1), latent feature vectors pu(tc−1) and
qi (tc−1) in time slice tc−1 are learned from the real performance data. According to
Eqs. (4.6) and (4.7), the feature vector prediction needs to be recomputed repeatedly
at each time slice using all the vectors in previous w time slices, which is highly
computationally expensive. In order to predict the feature vectors in time slice tc
more efficiently, we rewrite the Eqs. (4.6) and (4.7) as follows:



4.3 Online Service-Level Performance Prediction 65

p̂u(tc) =e−α(
pu(tc−1)

∑w
k=1 f (k)

+ p̂u(tc−1)

− pu(tc−1−w) f (w)
∑w

k=1 f (k)
), (4.9)

q̂i (tc) =e−α(
qi (tc−1)

∑w
k=1 f (k)

+ q̂i (tc−1)

− qi (tc−1−w) f (w)
∑w

k=1 f (k)
), (4.10)

where e−α , f (w) and
∑w

k=1 f (k) are constant values. pu(tc−1−w) and qi (tc−1−w) are
feature vectors calculated in time slice tc−1−w and can be stored with only constant
memory space. pu(tc−1) and qi (tc−1) can be quickly calculated in time slice tc−1,
since the computation complexity of matrix factorization is very low. Note that in
Eqs. (4.9) and (4.10), we obtain a recursive relation between [pu(tc−1), qi (tc−1)] and
[pu(tc), qi (tc)], which means the feature model in time slice tc−1 can be efficiently
updated for predicting the feature vectors in new time slice tc.

In the online phase, it could be possible that a new user or service is found.
Since there is no prior information about the user or the service in the previous time
slices, it is difficult to precisely predict the corresponding features by employing the
online incremental algorithm. To address the cold start problem, we employ average
performance for prediction. More precisely, the prediction for a new user or a new
service is set as follows:

r̂ui (t) =
⎧
⎨

⎩

r̄i (t), if new user and old service
r̄u(t), if old user and new service
r̄(t), if new user and new service

where r̄i (t) is the average-predicted performance of service i observed by all users
in time slice t , r̄u(t) is the average-predicted performance of all services observed by
user u in time slice t , and r̄(t) is the average-predicted performance of all user-service
pairs in time slice t .

4.3.4 Computation Complexity Analysis

The offline phase includes learning latent features in w time slices and running an
evolutionary algorithm. The main computation is evaluating the objective function
L and its gradients against the variables. Since the matrix R(t) is typically sparse,
the computational complexity for evaluating the objective function L in each time
slice is O(ρr l), where ρr is the number of nonzero entries in the matrix R(t) and l is
the dimension of the latent features. The computational complexities for the gradients
∂L

∂pu(t)
and ∂L

∂qi (t)
in Eqs. (4.3) and (4.4) are O(ρr l). Therefore, the total computational

complexity in one iteration is O(ρr lw), where w is the number of time slices. In
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(a) Sequence (b) Branch

(c) Loop (d) Parallel

Fig. 4.4 Basic compositional structures. ©[2014] IEEE. Reprinted, with permission, fromRef.[18]

the online phase, the main computation is factorizing the new performance matrix
in time slice t . The computational complexity of online incremental algorithm is
O(ρr l).

The analysis indicates that theoretically, the computational time of offline algo-
rithm is linear with respect to the number of observed performance entries in one
time slice and the total number of time slices whose information is used for predic-
tion. Note that because of the sparsity of R(t), ρr << mn, which indicates that the
computation time grows slowly with respect to the size of matrix R(t). The com-
putational time of the online algorithm is linear with the amount of newly observed
performance information, which indicates that our proposed approach can efficiently
integrate the performance model with new information and make online prediction
timely. This complexity analysis shows that our proposed approach is very efficient
and can be applied to large-scale systems.

4.4 System-Level Performance Prediction

In this section, we first present the aggregated response time calculation methods for
basic compositional structures. Then, by analyzing the service flow, the system-level
response time can be predicted in a hierarchical way. The overall performance of a
system consists of service response time and local execution time. Local execution
time refers to the computation time between service invocations in local system.
Since the variance of system performance at runtime is mainly due to the highly
varying service response time, local execution time, which is relatively constant at
runtime, is not included in the defined system-level performance.
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Table 4.1 Calculation of aggregated response time. ©[2014] IEEE. Reprinted, with permission,
from Ref. [18]

Structure Calculation method Meaning of notation

Sequence r =
n∑

i=1

ri n: number of
sequential subtasks

ri : response time of
the i th subtask

Branch r =
n∑

i=1

piri n: number of
branches

ri : response time of
the i th branch

pi : probability of the
i th branch to be
executed

Loop r =
n∑

i=1

piri i n: maximum looping
times

ri : response time of
the i th subtask

pi : probability of
executing the
subtask for i times

Parallel r = n
max
i=1

ri n: number of
branches

ri : response time of
the i th branch

Typically, as shown in Fig. 4.4, there are four types of basic compositional struc-
tures, i.e., sequence, branch, loop, and parallel. The response time of each struc-
ture can be calculated by aggregating the response time of its subtasks as shown in
Table4.1.

For predicting the overall execution time of a service flow, we first decompose
the system structure to a set of basic compositional structures in a hierarchical way.
Then, the end-to-end system execution time is calculated in a bottom-up way. Taking
Fig. 4.5 as an example, first the execution time of basic compositional structures T1
and T2 is calculated by employing the aggregation methods of sequence and loop,
respectively. Then, the execution time of T3 is calculated by employing aggregation
method for branch compositional structure. Finally, the overall system execution
time is calculated by employing aggregation method for sequence on t1, t2, T3, and
t6.

With the aggregation approach, designers of service-oriented systems can estimate
the performance of systems at design time. At runtime, the user-observed system-
level performance can be efficiently predicted automatically. Once the system perfor-
mance is decreased at runtime, by analyzing the system structure in a top-down way,
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Fig. 4.5 Performance composition example. ©[2014] IEEE. Reprinted, with permission, from
Ref. [18]

bad performance services can be quickly identified. With the predicted service per-
formance information, dynamical service composition techniques can be employed
to improve the system performance by replacing the long response time services with
better ones.

4.5 Experiments

In this section, we conduct two experiments to evaluate our online performance
prediction approach. In the first experiment, by comparing with several state-of-
the-art service performance prediction methods, we present the effectiveness and
efficiency of our approach. In the second experiment, we study the service flow of a
real-world service-oriented system. We also study the performance improvement by
integrating the predicted performance information of our approach into the dynamic
composition mechanism.

In the following, Sect. 4.5.1 introduces the experimental setup and gives the
description of the experimental dataset. Section4.5.2 defines the evaluation metrics.
Section4.5.3 compares the prediction quality of our approach with other compet-
ing approaches. Sections4.5.4, 4.5.5, and 4.5.6 study the impact of data density,
dimensionality, and parameter α and w, respectively. Section4.5.7 compares the
computational time of different approaches. Section4.5.8 studies the system-level
performance prediction.

4.5.1 Experimental Setup and Dataset Collection

Toevaluate the service-level performancepredictionquality of our proposed approach
in the real world, we implement a tool WSMonitor for collecting the performance



4.5 Experiments 69

information of Web services. WSMonitor is deployed as a middleware on the user-
side, which can continuously monitor the user-experienced performance of invoked
services. By sharing the user-side observed performance to performance center, it
can obtain performance prediction service from performance center at runtime.

WSMonitor is implemented and deployed with JDK 6.0, Eclipse 3.3, Axis 2,
and Apache 2.2.17. Within WSMonitor, there are several modules including WSDL
Crawler, Code Generator, and Performance Monitor. WSDL Crawler first crawls a
set of WSDL files from the Internet and generates a list of openly accessible Web
services. For each Web service in the list, Code Generator automatically generates
a java class for service invocation by employing the WSDL2Java tool from the
Axis package. Totally, 5871 classes are generated for 5871 Web services. By calling
the functions generated by Code Generator, Performance Monitor is able to send
operation requests to Web services and record the corresponding response time with
time stamps.

We deploy the WSMonitor on 142 distributed computers located in 22 countries
from PlanetLab, which is a distributed test bed consisting of hundreds of comput-
ers all over the world. Each computer acts as a service user by invoking the listed
Web services from time to time. Totally, 4532 publicly available real-worldWeb ser-
vices from 57 countries are monitored by each computer continuously. About 1339
of the initially selected Web services are excluded in this experiment due to: (1)
authentication required and (2) permanent invocation failure (e.g., the Web service
is shutdown). In our experiment, each of the 142 computers sends operation requests
to all the 4532 Web services in every time slice. The experiment lasts for 16 hours
with one time slice lasting for 15min.

By collecting performance records from all the computers, finally 30,287,611
performance results are included into the Web service response time dataset. The
response time of all the 4532 Web services observed by all the 142 service users
during 64 time slices can be presented as a set of 142 × 4532 user-service matrices,
each of which stands for a particular time slice.

The statistics of Web service response time dataset are summarized in Table4.2.
Response-time is within the range of 0–20s, whose mean is 3.165s. The distribution
of the response-time values of all the matrices is shown in Fig. 4.6a. From Fig. 4.6a,
we can observe that most of the response-time values are between 0.1 and 0.8 s.

Table 4.2 Statistics of Web
service response time dataset.
©[2014] IEEE. Reprinted,
with permission, from Ref.
[18]

Statistics Response time

Scale 0–20s

Mean 3.165s

Num. of users 142

Num. of Web services 4532

Num. of time slices 64

Num. of records 30,287,611
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Fig. 4.6 Response time
value distribution. ©[2014]
IEEE. Reprinted, with
permission, from Ref. [18]
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4.5.2 Metrics

We assess the prediction quality of our proposed approach in comparison with other
methods by computing mean absolute error (MAE) and root-mean-squared error
(RMSE). The metric MAE is defined as:

MAE =
∑

uit |r̂ui (t) − rui (t)|
N

, (4.11)

and RMSE is defined as:

RMSE =
√∑

uit (r̂ui (t) − rui (t))2

N
, (4.12)

where rui (t) is the response time value of Web service i observed by user u in time
slice t , r̂ui (t) denotes the predicted response time value ofWeb service i whichwould
be observed by user u in time slice t , and N is the number of predicted response time
values in the experiments.

4.5.3 Comparison

In this section, in order to show the effectiveness and efficiency of our proposed
online Web service performance prediction approach, we compare the service-level
prediction accuracy of the following methods:
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• UPCC—This is a neighborhood-basedmethodwhich employsPearson correlation
coefficient to calculate similarities between users. It predicts response time of ser-
vices based on the observed performance from similar users [3, 11]. Since UPCC
cannot perform online prediction for the next time slice, we extend the traditional
UPCC by using the average performance from similar users for prediction.

• IPCC—This is a neighborhood-based method which employs Pearson correlation
coefficient to calculate similarities between services. It predicts response time of
services based on the performance of similar services [9]. Similar to UPCC, we
make an extension to IPCC in order to compare the online prediction quality with
other methods.

• MF—Thismethod first compresses the set of user-servicematrices into an average
user-service matrix. For each entry in the matrix, the value is the average of the
specific user-service pair during all the time slices. After obtaining the compressed
user-service matrix, it applies the nonnegative matrix factorization technique pro-
posed by Lee and Seuing [7] on user-service matrix for missing value prediction.
The predicted values are used as the response time of the corresponding user-
service pair in the next time slice.

• TF—This is a tensor factorization-based prediction method. It combines the set
of user-service matrices as a tensor with a third dimension representing the time.
Then, it applies tensor factorization on the user-service-time tensor to extract user-
specific, service-specific, and time-specific characteristics. The missing value is
then predicted based on how these characteristics apply to each other.

• WSPred—This is a tensor factorization-based prediction method [17]. Different
from method TF, it adds average performance value constraints when extracting
the latent characteristics.

• OPred—This method is proposed in this chapter. Firstly, the user features and
service features are extracted in each time slice by employing matrix factorization.
Then, the user features and service features in the new time slice are predicted by
performing time analysis on the feature trends. Finally, the response time of user-
service pairs is predicted by evaluating how the predicted features of users and
services are applied to each other.

In order to evaluate the performance of different approaches in reality, we ran-
domly remove some entries from the performance matrices to obtain observation
matrices and compare the values predicted by a method with the original ones. The
observationmatriceswithmissing values are in different densities. For example, 10%
means that we randomly remove 90% entries from the original matrices and use the
remaining 10% entries for prediction. Note that under a certain density, we employ
different approaches to predict the values by using the same observation matrix.
The prediction accuracy is evaluated using Eqs. (4.11) and (4.12) by comparing the
original values and the predicted values in the corresponding matrices. The values
of λ1, and λ2 are tuned by performing cross-validation on the observed performance
data. Without lost of generality, the parameter settings of all the approaches are
l = 20, w = 8, α = 0.2 and λ1 = λ2 = 0.001 in the experiments conducted in this
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chapter. Detailed impacts of parameters are studied in Sects. 4.5.4, 4.5.5, and 4.5.6,
respectively.

The service performance prediction accuracies evaluated byMAE and RMSE are
shown in Table4.3. A smaller MAE or RMSE value means a better performance.
From Table4.3, we can observe that the time-aware prediction methods (i.e., TF and
OPred) outperform the non-time-aware prediction methods (i.e., UPCC, IPCC, and
MF), since the time-aware methods employ the time-specific features as additional
information for performance prediction. We also observe that our approach OPred
constantly performs better than TF under both dense data and sparse data. This is
because OPred assigns different weights on the performance information collected
in different time slices. The prediction results rely more on recent user and ser-
vice features than older ones. By setting f (x) in Eq. (4.5) to a constant value (e.g.,
f (x) = 1), OPred is reduced to TF. WSPred further improves TF by employing
a regularization term to prevent the predicted values from varying a lot against the
average performance value. WSPred catches the periodic features of service perfor-
mance. OPred proposed in this chapter captures not only the periodic features but also
the non-periodic features of service performance. Therefore, OPred can predict the
performance trend more precisely than WSPred. Moreover, WSPred is not an online
approach and requires more computational time than OPred. The computational time

Table 4.3 Performance comparisons (A smallerMAEorRMSEvaluemeans a better performance).
©[2014] IEEE. Reprinted, with permission, from ref. [18]

Data density (%) RMSE Response time (seconds)

UPCC IPCC MF TF WSPred OPred

5 Mean 5.312 5.289 5.329 4.751 4.362 4.330
Best 5.263 5.276 5.321 4.747 4.358 4.327

10 Mean 5.043 4.972 5.079 4.567 4.287 4.151
Best 4.962 4.946 5.063 4.563 4.283 4.148

45 Mean 4.425 4.371 4.337 4.208 3.923 3.855
Best 4.388 4.342 4.318 4.202 3.918 3.851

50 Mean 4.352 4.354 4.298 4.016 3.899 3.809
Best 4.331 4.336 4.274 4.012 3.894 3.808

Data density (%) MAE Response time (seconds)

UPCC IPCC MF TF WSPred OPred

5 Mean 3.720 3.213 3.387 2.915 2.559 2.417
Best 3.687 3.207 3.381 2.911 2.555 2.413

10 Mean 3.264 2.841 2.873 2.786 2.495 2.376
Best 3.243 2.812 2.851 2.782 2.488 2.374

45 Mean 2.627 2.455 2.436 2.253 2.141 2.029
Best 2.613 2.431 2.423 2.247 2.137 2.026

50 Mean 2.619 2.417 2.391 2.211 2.130 2.011
Best 2.609 2.404 2.384 2.207 2.125 2.008
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Table 4.4 Performance
improvement of OPred.
©[2014] IEEE. Reprinted,
with permission, from Ref.
[18]

Competing approach Performance improvement of
OPred (%)

UPCC 22–36

IPCC 16–25

MF 15–28

TF 9–17

WSPred 1–6

is compared in Sect. 4.5.7. In Table4.3, the MAE and RMSE values of dense data
(e.g., data density is 45 or 50%) are smaller than those of sparse data (e.g., data
density is 5 or 10%), since denser data provide more information for prediction. Per-
formance improvement of OPred is shown in Table4.4. Our online approach OPred
improves the prediction accuracy by 22–36%, 16–25%, 15–28%, 9–17%, and 1–6%
relative to UPCC, IPCC, MF, TF, and WSPred, respectively. The improvements are
significant, which indicate the prediction effectiveness of OPred.

4.5.4 Impact of Data Density

In Fig. 4.7, we compare the prediction accuracy of all the methods under different
data densities. We change the data density from 5 to 50% with a step value of
5%. The parameter settings in this experiment are l = 20, w = 8, α = 0.2, and
λ1 = λ2 = 0.001.

In Fig. 4.7a, b, the experimental results show that our approach OPred achieves
higher prediction accuracy (smaller MAE and RMSE values) than other competing
methods under different data density. In general, when the data density is increased
from 5 to 20%, the prediction accuracy of our approach OPred is significantly
enhanced. When the data density is further increased from 20 to 50%, the enhance-
ment of prediction accuracy will decrease. This observation indicates that when the
data are very sparse, collecting more performance information will greatly enhance
the prediction accuracy.

4.5.5 Impact of Dimensionality

The parameter dimensionality l determines the number of latent features applied
to characterize users and services. In Fig. 4.8, we study the impact of parameter
dimensionality by varying the values of l from 5 to 50 with a step value of 5. Other
parameter settings are w = 8, α = 0.2, and λ1 = λ2 = 0.001.
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Fig. 4.7 Impact of data density. ©[2014] IEEE. Reprinted, with permission, from Ref. [18]

In Fig. 4.8, we observe that as l increases, the MAE and RMSE decrease (pre-
diction accuracy increases), but when l surpasses a certain threshold like 20, the
MAE and RMSE increase (prediction accuracy decreases) with further increase of
the value of l. This observation indicates that too few latent factors are not enough
to characterize the features of user and service, while too many latent factors will
cause an overfitting problem. There exists an optimal value of l for characterizing
the latent features. When the data density is 50%, we observe that our approach
OPred achieves the best performance when the value of dimensionality is 25, while
smaller values like 5 or larger values like 50 can potentially reduce the prediction
accuracy. When the data density is 5%, we observe that the prediction accuracy of
our approach OPred achieves the best performance when the value of dimensionality
is 20, while smaller values like 5 or larger values like 50 can potentially reduce the
prediction accuracy. This observation indicates that when the service performance
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Fig. 4.8 Impact of dimensionality. ©[2014] IEEE. Reprinted, with permission, from Ref. [18]
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data are sparse, 20 latent factors are already good enough to characterize the features
of user and service, which are mined from the limited performance information. On
the other hand, when the data are dense, more latent factors, like 25, are needed to
characterize the latent features since more performance data are available.

4.5.6 Impact of α and w

The parameter α controls the decaying rates of weights assigned to different time
slices. A larger value of α gives more weights to the recent time slices.w controls the
information of howmany past time slices are used for making prediction. In Fig. 4.9,
we vary the values of w from 1 to 20 with a step value of 1. Other parameter settings
are λ1 = λ2 = 0.001.

Figure4.9 shows the impacts of α and w on MAE and RMSE. We observe that as
w increases, the values of MAE and RMSE decrease (prediction accuracy increases)
at first, but whenw pass a certain threshold, theMAE and RMSE converge. This phe-
nomenon coincides with the intuition that employing past performance information
from more time slices can increase prediction accuracy. When w surpasses a certain
threshold, the MAE and RMSE decrease little with further increase of the value of
w. The reason is that when w is large enough, small weight values are assigned to
the information of older time slices, which contribute little to the prediction accu-
racy. This observation indicates that too large w is unnecessary. The thresholds are
different under different values of α. Since a larger value of α gives more weights
to the recent time slices, the threshold is smaller than those under smaller values of
α. In Fig. 4.9, OPred achieves the best performance when α = 0.2. The observation
confirms with the intuition that with a large value of α useful information from older
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Fig. 4.9 Impact of α and w. ©[2014] IEEE. Reprinted, with permission, from Ref. [18]
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time slice will be lost, and with a small value of α noisy data will cause the decrease
of prediction accuracy.

4.5.7 Computational Time Comparisons

In Sect. 4.3.4,we theoretically analyze the computation time ofOPred. In this section,
we compare the computation efficiencies of different approaches. In our experiments,
one time slice lasts for 15min. We compare the average computational time of a
prediction approach with the length of a time slice. The data used for performance
prediction are the same for all approaches. From Table4.5, we observe that the
computational time of OPred takes less than 2% of a time slice. This observation
is consistent with the time complexity analysis in Sect. 4.3.4 and shows that our
proposed approach OPred is efficient and can be applied to large-scale systems in
real world. TF andWSPred use more than 10% of a slice time to conduct prediction,
since they are not online approaches and need to rebuild themodelwhenever newdata
are available. TF performs better than WSPred because WSPred contains an extra
term in the objective function representing the average performance constraints. MF
performs better than TF and WSPred because time factor is not considered when
predicting the performance values. UPCC and IPCC perform worst since they are
neighborhood-based approaches and take a lot of time to find the relationship between
users and services.

4.5.8 System-Level Performance Case Study

In this section, we evaluate our approach OPred by using a sample service-oriented
system. Figure4.10 shows a typical online shopping system. It allows customers to
browse and order products from the shopping Web site. In this shopping system,
the designer integrates three Web services for providing users access to various

Table 4.5 Average computational time comparisons. ©[2014] IEEE. Reprinted, with permission,
from Ref. [18]

Approach Computational time (m) Percentage of a time slice (%)

UPCC 10.095 67.3

IPCC 9.735 64.9

MF 1.575 10.5

TF 1.860 12.4

WSPred 2.055 13.7

OPred 0.240 1.6
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Fig. 4.10 Online shopping system. ©[2014] IEEE. Reprinted, with permission, from Ref. [18]

product suppliers, banks, and shippers. This example is taken from the online services
provided by a gift Web site [6].

The service flow is illustrated in Fig. 4.10. By sending product queries to sup-
pliers, the shopping system can obtain plenty of product information, which allows
customers to browse various products on the Web site. Once a customer decides
to buy a product, the shopping system sends an order request with product infor-
mation to the corresponding supplier. The supplier then reserves a product for the
customer and replies the shopping systemwith an order confirmation request. At this
point, the shopping system needs to send an order confirmation to the supplier and
an order request to a shipper service. Once the shopping system receives payment
requests from both the product supplier and a shipper service, it proceeds to launch
a payment transaction via a credit card payment service (e.g., PayPal). In the task
of paying bills, customer’s credit card information is transferred to the bank, and an
invoice is sent back by the bank. Finally, the product supplier is notified of a bank
invoice to complete the purchase. At the same time, a request is sent to the shipper to
arrange the shipment of the product. Once the product is aboard, the shipper notifies
the shopping system with estimated arrival date of the shipment.

After, we find a set of functional identical Web services from the performance
dataset for each abstract task in the shopping system. The predicted service per-
formance results are used to predicting the end-to-end performance of shopping
system by employing the compositional methods in Sect. 4.4. As discussed before,
by calculating system performance, poor services can be identified in a hierarchical
way. Then, the identified services can be replaced with better ones to maintain the
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Fig. 4.11 System
performance improvement of
dynamically service
composition. ©[2014]
IEEE. Reprinted, with
permission, from Ref. [18]
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overall system performance at runtime. In Fig. 4.11, we compare the system perfor-
mance of static composition and dynamical composition. In static composition, for
each abstract task we randomly choose a service from the set of functional identi-
cal candidates. The set of selected services is fixed in all time slices. In dynamical
composition, the predicted service performance of OPred is employed to select the
optimal services for task executions in each time slice. In this book, we focus on
dynamic selecting atomic services. The comparison begins from time slice 11 since
the performance information of the first 10 time slices is used as training data for
OPred. The system performance of static composition method in time slice 11 is
chosen as baseline. Other performance is compared with baseline in percentage (a
smaller number means better performance). From Fig. 4.11, we can observe that the
system performance of static composition is unstable at runtime. This is because the
performance of some selected services is unstable, which impacts the system overall
performance. For dynamic composition, since OPred can precisely predict service
performance, the service-oriented system can be updated by integrating potentially
optimal services at runtime. The system performance of dynamical composition
maintains stable in a good level, which indicates the effectiveness of OPred.

4.6 Summary

Based on the intuition that a user’s current Web service performance usage experi-
ence can be predicted by using the past usage experience from different users, we
propose a novel online service performance prediction approach, called OPred, for
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personalized performance prediction at runtime. Using the past Web service usage
experience fromdifferent users, OPred builds featuremodels and employs time series
analysis techniques on feature trends to make personalized performance prediction
for different service users. The predicted service performance is critical for identi-
fying poor services and maintaining the system performance timely. The extensive
experimental results show that our proposed OPred outperforms the state-of-the-art
performance prediction approaches in terms of prediction accuracy. The case study
on a typical shopping system shows the effectiveness of OPred.

For future work, we will investigate more techniques for improving the predic-
tion accuracy (e.g., data smoothing, utilizing content-aware information). We will
conduct experiments on more real-world service-oriented systems to evaluate the
effectiveness and efficiency of OPred when applied to different domains.
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Chapter 5
QoS-Aware Web Service Searching

Abstract Web services are becoming prevalent nowadays. Finding desired Web
services is becoming an emergent and challenging research problem. In this chapter,
we present WSExpress (Web Service Express), a novel Web service search engine
to expressively find expected Web services. WSExpress ranks the publicly available
Web services not only by functional similarities to user queries, but also by non-
functional QoS characteristics ofWeb services.WSExpress provides three searching
styles, which can adapt to the scenario of finding an appropriate Web service and
the scenario of automatically replacing a failed Web service with a suitable one.
WSExpress is implemented by Java language, and large-scale experiments employ-
ing real-worldWeb services are conducted. Totally, 3738Web services (15,811 oper-
ations) from 69 countries are involved in our experiments. The experimental results
show that our search engine can find Web services with the desired functional and
non-functional requirements. Extensive experimental studies are also conducted on
a well-known benchmark dataset consisting of 1000Web service operations to show
the recall and precision performance of our search engine.

5.1 Overview

As shown in Fig. 5.1, with a set of standard protocols, i.e., SOAP (Simple Object
Access Protocol), WSDL (Web Services Description Language), and UDDI (Uni-
versal Description, Discovery and integration), Web services provided by different
organizations can be discovered and integrated to develop service-oriented applica-
tions [3]. With the growing number of Web services in the Internet, many alternative
Web services can provide similar functionalities to fulfill users’ requests. Syntactic
or semantic matching approaches based on services’ tags in UDDI repository are
usually employed to discover suitable Web services [9]. However, discovering Web
services fromUDDI repositories suffers several limitations. First, since UDDI repos-
itory is no longer a popular style for publishing Web services, most of the UDDI
repositories are seldom updated. This means that a significant part of information in
these repositories is out of date. Second, arbitrary tagging methods used in different
UDDI repositories add to the complexity of searching Web services of interest.

© The Author(s) 2017
Y. Zhang and M.R. Lyu, QoS Prediction in Cloud and Service Computing,
SpringerBriefs in Computer Science, DOI 10.1007/978-981-10-5278-1_5
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Fig. 5.1 Service-oriented
system architecture.
©[2010] IEEE. Reprinted,
with permission, from
Ref. [11]

To address these problems, an automated mechanism is required to explore exist-
ingWeb services. Considering that WSDL files are used for describingWeb services
and can be obtained in several ways other than UDDI repositories, several WSDL-
based Web service searching approaches are proposed such as Binding Point, Grand
Central, Salcentral, andWebService List. However, these engines only simply exploit
keyword-based search techniques which are obviously insufficient for catching the
Web services’ functionalities. First, keywords cannot representWeb services’ under-
lying semantics. Second, since a Web service is supposed to be used as part of the
user’s application, keywords cannot precisely specify the information user needs and
the interface acceptable to the user. In this chapter, we employ not only keywords but
also operation parameters to comprehensively capture Web service’s functionality.

In addition, Web services sharing similar functionalities may possess very differ-
ent non-functionalities (e.g., response time, throughput, availability, usability, perfor-
mance, integrity). In order to effectively provide personalized Web service ranking,
it is requisite to consider both functional and non-functional characteristics of Web
services. Unfortunately, the Web service search engines mentioned above cannot
distinguish the non-functional differences between Web services.

QoS-driven Web service selection is a popular research problem [1, 6, 10]. A
basic assumption in the field of selection is that all the Web services in the can-
didate set share identical functionality. Under this assumption, most of the selec-
tion approaches can only differentiate among Web services’ non-functional QoS
characteristics, regardless of their functionalities. While these QoS-driven selection
approaches are directly employed to Web service search engines, several problems
will arise. One is that Web services whose functionalities are not exactly equivalent
to the user searching query are completely excluded from the result list. Another
problem is that Web services in the result list are ordered only according to their QoS
metrics, while combining both functional and non-functional attributes is a more
reasonable method.
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To address the above issues, we propose a newWeb service discovering approach
by paying respect to functional attributes as well as non-functional features of Web
services. A search engine prototype,WSExpress, is built as an implementation of our
approach. Experimental results show that our search engine can successfully discover
user-interestedWeb services within top results. In particular, the contributions of this
chapter are threefold:

• Different from all previous work, we propose a brand new Web service searching
approach considering both functional and non-functional qualities of the service
candidates.

• We conduct a large-scale distributed experimental evaluation on real-world Web
services. 3738 Web services (15,811 operations) located in 69 countries are eval-
uated both on their functional and non-functional aspects. The evaluation results
show that we can recommend high-quality Web services to the user. The precision
and recall performance of our functional search is substantially better than the
approach in previous work [7].

• We publicly release our large-scale real-world Web service WSDL files and asso-
ciated QoS datasets for future research. To the best of our knowledge, our dataset
is the first publicly available real-world dataset for functional and non-functional
Web service searching research.

The rest of this chapter is organized as follows: Sect. 5.2 introduces Web ser-
vice searching backgrounds. Section5.3 presents the system architecture. Section5.4
presents our QoS-aware searching approach. Section5.5 describes our experimental
results. Section5.6 concludes the chapter.

5.2 Motivation

Figure5.2 shows a common Web service query scenario. A user wants to find an
appropriate Web service which contains operations that can be integrated as part
of the user’s application. The user needs to specify the functionality of a suitable
operation by filling the fields of keywords, input and output. Also the user may have
some special requirements on service quality, such as the maximum price. These
personal requirements can be represented by setting the QoS constraint field. The
criticality of different quality criteria for a user can be defined by setting the QoS
weight field.

A lot of Web services can be accessed over the Internet. Each service candidate
provides one or more operations. Generally, these operations can be described in the
structure shown in Fig. 5.2. Each operation includes a name, the parameters of input
and output elements, and the descriptions about the functionality of this operation as
well as theWeb services it belongs to in its associatedWSDL document. The service
quality associated with this operation is represented by several criteria values, e.g.,
Q1, Q2 in Fig. 5.2.
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Fig. 5.2 Web service query scenario. ©[2010] IEEE. Reprinted, with permission, from Ref. [11]

Table 5.1 User query examples. ©[2010] IEEE. Reprinted, with permission, from Ref. [11]

User query Functionality QoS

Keywords Input Output Constraint
(C1, C2, C3)

Weight (W1,
W2, W3)

Query 1 Car Name, type Price (0.5, 0.5, 0.2) (0.4, 0.4, 0.2)

Query 2 Weather City, country Weather (0.6, 0.3, 0.3) (0.3, 0.4, 0.3)

Table5.1 shows Web service query examples. In query 1, a user wants to find a
Web service that can provide appropriate operations for displaying prices of different
types and brands of cars. The input information provided by the user for that particular
operation is the types and names of cars. This query is structured into three parts:
keywords, input, and output. The keywords part defines in which domain is the query
about. In this example, the user concerns about the domain “car.” The input part
contains “name” and “type” since they can be provided by the user. The output
part is set as “price” to specify the information the user wants to obtain from an
appropriate operation.

In Table5.2, we enumerate three possible results for the user’s search query. Web
service 1 provides one operationCarPrice and this operation’s functionality is almost
the same as what the user specifies in the query. In addition, the service quality meets
the user’s requirements. Web service 2 provides operation AutomobileInformation.
Operation AutomobileInformation can provide many information details including
the price of the automobiles after invoked with “name” and “model” as input. How-
ever, some service quality criteria, such as the service price (Q1) and the response
time (Q2), are beyond the user’s tolerance. Operation VehicleRecommend provided
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Table 5.2 Web service examples. ©[2010] IEEE. Reprinted, with permission, from Ref. [11]

Service ID Operation name Input Output QoS (Q1, Q2,
Q3)

WS 1 CarPrice Name, type Price (0.8, 0.6, 0.6)

WS 2 AutomobileInformation Name, model Price, color,
company

(0.2, 0.4, 0.6)

WS 3 VehicleRecommend Name, model,
usage

Rent, prime
cost, provider

(0.6, 0.8, 0.5)

by Web service 3 recommends suitable vehicles for the user to rent. Although its
target is to suggest the most suitable vehicle and vehicle rental companies to the
user, it can also be invoked for obtaining the prices of cars due to the prime cost
information provided. Besides, operation VehicleRecommend’s service quality fits
the user’s constraints and preferences quite well. Among these three Web services,
the most suitable one is Web service 1, and another acceptable one is Web service
3, but Web service 2 is not highly suggested due to its service quality. Thus, a rea-
sonable order of the recommendation list for the user’s query is Web service 1, Web
service 3, and Web service 2.

5.3 System Architecture

Now, we describe the system architecture of our QoS-aware Web service search
engine. As shown in Fig. 5.3, after accepting a user’s query specification, our search
engine should be able to provide a practical Web service recommendation list. The
search engine consists of three components: non-functional evaluation, ki functional
evaluation, and QoS-aware Web service ranking.

WSExpress

Fig. 5.3 System architecture. ©[2010] IEEE. Reprinted, with permission, from Ref. [11]
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There are two phases in the non-functional evaluation component. In phase 1, the
search engine obtains QoS criteria values of all the available Web services. In phase
2, the search engine computes the QoS utilities of different Web services according
to the constraints and preferences specified in the QoS part of the user’s query.

The functional evaluation component contains two phases. In phase 1, the search
engine carries out a preprocessing work on the WSDL files associated with the Web
services. This work aims at removing noise and improving accuracy of functional
evaluation. In phase 2, the search engine evaluates theWeb service candidates’ func-
tional features. These features are described by similarities between the functionality
specified in the query and the functionality of operations provided by those Web ser-
vices.

Finally, the search engine combines both functional and non-functional features
of Web services in the QoS-aware Web service ranking component. A practical and
reasonable Web service recommendation list is then provided as a result to the user’s
search query.

5.4 QoS-Aware Web Service Searching

5.4.1 QoS Model

In our QoS model, we describe the quantitative non-functional properties of Web
services as quality criteria. These criteria include generic criteria and business spe-
cific criteria. Generic criteria are applicable to all Web services like response time,
throughput, availability, and price, while business criteria such as penalty rate are
specified to certain kinds of Web services.

By assuming m criteria are employed for representing a Web service quality, we
can describe the service quality using a QoS vector (qi,1, qi,2, . . . , qi,m), where qi,j
represents the jth criterion value of Web service i.

Some QoS criteria values of Web services, such as penalty rate and price, can be
obtained from the service providers directly. However, other QoS attributes’ values
like response time, availability, and reliability need to be generated from all the
users’ invocation records due to the differences between network environments. In
this chapter, we use the approach proposed in [12] to collect QoS performance on
real-world Web services.

We put all theWeb services’ QoS vectors together and form a QoSmatrixQ. Each
row in Q represents a Web service, while each column represents a QoS criterion
value.

Q =

⎛
⎜⎜⎜⎝

q1,1 q1,2 . . . q1,t
q2,1 q2,2 . . . q2,t
...

...
...

...

qs,1 qs,2 . . . qs,t .

⎞
⎟⎟⎟⎠ (5.1)
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A utility function is used to evaluate the multi-dimensional quality of a Web ser-
vice. The utility function maps a QoS vector into a real value for evaluating the
Web service candidates. To represent user priorities and preferences, Two steps are
involved into the utility computation: (1) The QoS criteria values are normalized to
enable a uniform measurement of the multi-dimensional Quality-of-Service inde-
pendent of their units and ranges. (2) The weighted evaluation on criteria is carried
out for representing user’s constraints, preference, and special requirements.

5.4.1.1 Normalization

In this step, each criterion value is transformed to a real value between 0 and 1 by
comparing it with the maximum and minimum values of that particular criterion.
For some criterion, the possible absolute value could be very large or infinite. A pair
of maximum and minimum values are specified for every criterion, respectively. Let
qi,u be the upper bound value and qi,l be the lower bound value for the ith criterion,
respectively. Every QoS value is transformed according to the following equations:

f (x) =
⎧⎨
⎩

rmin, ifx < rmin
rmax, ifx > rmax

x, otherwise.

The normalized value of qi,j can be represented by q′
i,j as follows:

q′
i,j = qi,j − qi,0

qi,n − qi,0
. (5.2)

Thus, the QoS matrix Q is transformed into a normalized matrix Q′ as follows:

Q′ =

⎛
⎜⎜⎜⎝

q′
1,1 q

′
1,2 . . . q′

1,t
q′
2,1 q

′
2,2 . . . q′

2,t
...

...
...

...

q′
s,1 q′

s,2 . . . q′
s,t .

⎞
⎟⎟⎟⎠ (5.3)

5.4.1.2 Utility Computation

SomeWeb services need to be excluded from the candidate set due to their inconsis-
tency with the user’s QoS constraints. The QoS constraints set the worst quality user
can accept. These constraints are usually set according to the application developers’
experience or computed by some QoS-driven composition algorithm. Web service
with any QoS criterion grade unsatisfying user constraint may cause problem while
integrated into user’s application. For example, if a service fails to return the result
within a givenperiod of time, another servicemay exitwith a error code timeoutwhile
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waiting for the result. Assume a user’s constraint vector is C = (c1, c2, . . . , cm), in
which ci sets the minimum normalized ith criterion grade. We will only consider
those Web services whose criteria grades are all larger than the constraints. In other
words, we delete the rows which fail to satisfy the constraints from Q′ and produce
a new matrix Q∗:

Q∗ =

⎛
⎜⎜⎜⎝

q∗
1,1 q

∗
1,2 . . . q∗

1,t
q∗
2,1 q

∗
2,2 . . . q∗

2,t
...

...
...

...

q∗
s,1 q∗

s,2 . . . q∗
s,t .

⎞
⎟⎟⎟⎠ (5.4)

For the sake of simplicity, we only consider positive criteria whose values need to
be maximized (negative criteria can be easily transformed into positive attributes by
multiplying −1 to their values).

Finally, a weight vector W = (w1,w2, . . . ,wm) is used to represent user’s priori-
ties on preferences given to different criteria with wk ∈ R

+
0 and

∑m
k=1 wk = 1. The

final QoS utilities vector U = (u1, u2, . . .) of Web service candidates are therefore
can be computed as follows:

U = Q∗ ∗ WT (5.5)

in which ui is the ith Web service QoS utility value within the range [0, 1].

5.4.2 Similarity Computation

Web services provide reusable functionalities. The functionalities are described by
the input and output parameters defined in WSDL file.

Now, we describe a similarity model for computing similarities between a
user query and Web service operations. In this model, a vector (Keywords, Input,
Output) is used to represent the functionality part of a user query as well as the
functionality part of Web service operations. Particularly, the keywords of a Web
service operation are abstracted from the descriptions in its associated WSDL file.
Three phases are involved in the similarity search: WSDL preprocessing, clustering
parameters, and similarity computation.

5.4.2.1 WSDL Preprocessing

In order to improve the accuracy of similarity computation for operations and user
query in our approach, we first need to preprocess the WSDL files. There are two
steps as follows:

1. Identify useful terms inWSDL files. Since the descriptions, operation names, and
input/output parameters’ names are made manually by the service provider, there
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are a lot of misspelled and abbreviated words in real-worldWSDL files. This step
replaces such kind of words with normalized forms.

2. Perform word stemming and remove stop words. A stem is the basic part of the
word that never changes even when morphologically infected. This process can
eliminate the difference between inflectional morphemes. Stop words are those
with little substantive meaning.

5.4.2.2 Similarity Computation

Now, we describe how to measure the similarities of Web service operations to a
user’s query. The functionality part of a user’s query Rf consists of three elements
Rf = (rk, rin, rout). The keywords element is a vector rk = (rk1, r

k
2, . . . , r

k
l ), where

rki is the ith keyword. Moreover, the input element rin = (rin1 , rin2 , . . . , rinm ) and the
output element rout = (rout1 , rout2 , . . . , routn ), where rini and routi are the ith terms of
input element and output element, respectively. AWeb service operation also consists
of three elements OPf = (K, In,Out). The keywords element of operation i is a
vector of words Ki = (ki1, k

i
2, . . . , k

i
l′). The input and the output elements are vectors

Ini = (ini1, in
i
2, . . . , in

i
m′) andOuti = (outi1, out

i
2, . . . , out

i
n′), respectively. Thus, user

queries and Web service operations are described as sets of terms. By applying the
TF/IDF (Term Frequency/Inverse Document Frequency) measure [8] into these sets,
we can measure the cosine similarity si betweenWeb service operation i and a user’s
query.

Vector similarity (VS) measures the cosine of the angle between two correspond-
ing vectors and sets it as the similarity of the two vectors. In similarity search for
Web service, the two vectors measured are Web service operation and user query:

si =
∑t

i=1 ri · ti√∑t
i=1 r

2
i ·

√∑t
i=1 t

2
i

. (5.6)

Pearson correlation coefficient (PCC), another popular similarity measurement
approach, was introduced in a number of recommender systems for similarity com-
putation, since it can be easily implemented and can achieve high accuracy. The
similarity between an operation and a user’s query can be calculated by employing
PCC as follows:

si =
∑t

i=1(ri − r̄) · (ti − t̄)√∑t
i=1(ri − r̄)2 ·

√∑t
i=1(ti − t̄)2

(5.7)

where r̄ is average TF/IDF value of all terms in a operation vector and t̄ is average
TF/IDF value of all terms in a user’s query vector. The PCC similarity value si is in
the interval of −1 and 1, and a larger value means indicate a higher similarity.
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5.4.3 QoS-Aware Web Service Searching

With an increasing number ofWeb services beingmade available in the Internet, users
are able to choose functionally appropriate Web services with high non-functional
qualities in a much larger set of candidates than ever before. It is highly necessary
to recommend to the user a list of service candidates which fulfill both the user’s
functional and non-functional requirements.

5.4.3.1 Utility Computation

A final rating score ri is defined to evaluate the conformity of each Web service i to
achieve the search goal.

ri = λ · 1

log(psi + 1)
+ (1 − λ) · 1

log(pui + 1)
, (5.8)

where psi is the functional rank position and pui is the non-functional rank posi-
tion of Web service i among all the service candidates. Since the absolute values of
similarity and service quality indicate different features of Web service and include
different units and range, rank positions rather than absolute values is a better choice
to indicate the appropriateness of all candidates. 1

log(p+1) calculates the appropriate-
ness value of a candidate in position p for a query. λ ∈ [0, 1] defines how much the
functionality factor is more important than the non-functionality factor in the final
recommendation.

λ can be a constant to allocate a fixed percentage of the two parts’ contributions
to the final rating score ri. However, it is more realistic if λ is expressed as a function
of psi :

λ = f (psi) (5.9)

λ is smaller if the position in similarity rank is lower. This means a Web service is
inappropriate if it cannot provide the required functionality to the users no matter
how well it serves. The relationship between searching accuracy and the formula of
λ will be identified to extend the search engine prototype in our future work.

5.4.3.2 Rank Aggregation

After receiving the users’ query, the functional component of WSExpress computes
the similarity si in Sect. 5.4.2 between search query Rf and operations ofWeb service
i, while the non-functional component of WSExpress employs Rq to compute the
QoS utility ui in Sect. 5.4.1 of each Web service i.

Now our goal is to consider user’s preferences on both functional and non-
functional features and provide a rank list by combing evaluation results of the two
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aspects of service candidates. Given the user’s preference on functional and non-
functional aspect, we can provide a personalized rank list by assigning each service
candidate a certain score based on its positions in similarity ranking and QoS utility
ranking. In other words, we aggregate the rankings of similarity and QoS utility
according user defined preference.

We formally describe the optimal rank aggregation problem in the follow-
ing. Given a set S = {s1, s2, . . .} of service candidates, an ranking list l =<

l(1), l(2), . . . > is an permutation of all service candidates, where l(i) denotes the
service at position i of l. Given two ranking lists lp, lq of similarity and QoS utility,
respectively, the optimal rank list lo, which is an aggregation of lp and lq, should be
recommended to users.

Given the similarity values or QoS utility scores of candidates, we assume that
there is an uncertainty of ranking list lp or lq. In other words, any service sj ∈ S
is assumed to be possible for ranked in the top position of l. But different services
may have different likelihood values. Under this assumption, we define the top one
probability of Web service sj as follows:

P(sj) = f (rj)∑m
k=1 f (rk)

, (5.10)

where f (x) can be any monotonically increasing and strictly positive function,
P(sj) > 0 and

∑
P(sj) = 1. For simplicity, we take the exponential function for

f (x) [2]. Note that the top one probabilities P(sj) form a probability distribution over
the set of services S. The top one probability indicates the probability of a service
being ranked in the top position of a user’s ranking list. By Eq. (5.10), a Web service
with high similarity value or QoS utility value is assigned to a high probability value.

In order to estimate the quality of recommended Web service list, we need to
define the distance between two ranking lists []. Ranking list distance evaluates the
similarity of two lists. A distance value is smaller if more items are ordered in the
similar positions. Given two ranking lists l1 and l2 over the Web service set S, the
distance between l1 and l2 is defined by

d(l1, l2) = −
m∑
j=1

P(s1j)P(s2j), (5.11)

where s1j is the service in the jth position of l1 and s2j is the service in the jth position
of l2.

We therefore define the Web service recommendation as the following optimiza-
tion problem:

min
lo

L(lp, lq) = λd(lo, lp) + (1 − λ)d(lo, lq), (5.12)

where d(lo, lp) is the distance between the optimal ranking list and the functionality
ranking list, d(lo, lq) is the distance between the optimal ranking list and the non-
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functionality ranking list, and λ controls the trade-off between functionality and
non-functionality.

Intuitively, Web services recommended by the final ranking list are functional
comply with the users’ requirements and with high QoS level. Our goal is to find a
rank of all candidate in U that minimize the objective value function Eq.5.12. One
possible approach to solve the problem is check all the possible ranking lists in the
solution space and select the optimal ranking which minimize the objective value
function Eq.5.12. The size of solution space is O(n!) for n candidates. In fact, this is
a NP-complete problem, which can be proved by transforming into a NP-complete
problem of finding minimum cost perfect matching in the bipartite graph. Therefore,
we propose a greedy algorithm to find a suboptimal solution as follows:

Algorithm 5: Greedy Rank Aggregation
Input: a candidate set S, two ranking lists lp and lq
Output: a optimal rank aggregation l∗o
for each service sj in S do1

P1(sj) = f (uj)∑m
k=1 f (uk)

;2

P2(sj) = f (simj)∑m
k=1 f (simk)

;3

AP(sj) = λP1sj + (1 − λ)P2(sj);4

end5

Generate a ranking list l∗o of all the service candidates according to their AP6

values;
dl∗o ,lp = −∑m

j=1 P(spj)P(soj);7

dl∗o ,lq = −∑m
j=1 P(sqj)P(soj);8

L∗(lp, lq) = λd(l∗o, lp) + (1 − λ)d(l∗o, lq);9

for each candidate s in S do10

change the position of s higher or lower;11

dlo,lp = −∑m
j=1 P(spj)P(soj);12

dlo,lq = −∑m
j=1 P(sqj)P(soj);13

L(lp, lq) = λd(lo, lp) + (1 − λ)d(lo, lq);14

if L∗(lp, lq) < L(lp, lq) then15

l∗o = lo;16

end17

end18

return l∗o ;19
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5.4.4 Online Ranking

In this section, we propose an online service recommendation algorithm. Since the
QoSperformance ofWeb services is dynamic at runtime, the ranking list should adopt
the updated QoS information. Therefore, the Optimal Rank Algorithm is extended to
integrate QoS information dynamically. In our ranking aggregation approach, a nice
property is that before aggregation the functional utility and non-functional utility are
calculated independently. For functional similarity search, the ranking list remains
the same in different time intervals. The QoS ranking list is changing from time
to time. Therefore, the optimal recommendation list should be adopted to the new
QoS value accordingly. The online service recommendation algorithm is described
as follows:

Algorithm 6: Online Service Recommendation
Input: a candidate set S, an optimal ranking list lo, functional ranking lists lp, a

new QoS matrix Q
Output: a new optimal rank aggregation l∗o
Conduct normalization on the new QoS matrix Q according to 5.2;1

Compute the QoS utility vector U according to 5.5;2

for each service sj in S do3

P2(sj) = f (simj)∑m
k=1 f (simk)

;4

end5

l∗o = lo;6

for each candidate s in S do7

change the position of s higher or lower;8

dlo,lp = −∑m
j=1 P(spj)P(soj);9

dlo,lq = −∑m
j=1 P(sqj)P(soj);10

L(lp, lq) = λd(lo, lp) + (1 − λ)d(lo, lq);11

if L∗(lp, lq) < L(lp, lq) then12

l∗o = lo;13

end14

end15

return l∗o ;16

5.4.5 Application Scenarios

5.4.5.1 Searching Styles

To attack the above problem, we propose a novel search engine which can provide
the user with brand new searching styles. We define a user search query in the form
of a vector R = (Rf ,Rq), which contains functionality part Rf and non-functionality
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part Rq for representing the user’s ideal Web service candidate. Rq = (C,W ) defines
the user’s non-functional requirements, whereC andW set the user’s constraints and
preferences onQoS criteria separately asmentioned in Sect. 5.4.1. Our new searching
procedure consists of three styles in the following discussion.

Keywords Specified In this searching style, the user only needs to simply enter
the keywords vector rk and QoS requirements Rq. The keywords should capture the
main functionality the user requires in the search goal. In Table5.1 as an example,
since the user needs price information of cars, it is reasonable to specify “car” or
“car, price” as the keywords vector.

Interface Specified In order to improve the searching efficiency, we design the
“interface specified” searching style. In this style, the user specifies the expected
functionality by setting the input vector rin and/or output vector rout as well as QoS
requirements Rq. The input vector rin represents the largest amount of information
the user can provide to the expected Web service operation, while the output vector
represents the least amount of information that should be returned after invoking the
Web service operation.

Similar Operations For a more accurate and advanced Web service searching,
we design the “similar operation” searching style by combining above two styles.
This style is especially suitable in the following two situations. In the first situation,
the user has already received a Web service recommendation list by performing one
of the above searching styles. The user decides the Web service to explore in detail,
checks the inputs and outputs of its operations, and even tries some of the operations.
After carefully inspecting a Web service the user may find that this Web service is
not suitable for the applications. However, the user does not want to repeat the time-
consuming inspecting process for other service candidates. This style enables the user
to find similar Web service operations by only modifying a small part of the previous
query to exclude these inappropriate features. In the second situation, the user already
integrates a Web service into the application for a particular functionality. However,
due to some reason this Web service becomes unaccessible. Without requesting an
extra query process, the search engine can automatically find other substitutions.

Now, we discuss in detail how the functional evaluation component operates in
different scenarios.

• If only the keywords vector in the functionality part of the user query is defined,
the similarity is computed in Sect. 5.4.2 using the keywords vector rk of the query
and the keywords vector K extracted from the descriptions, operation names, and
parameter names.

• If the input and output vectors in the functionality part of the user query are
defined, the input similarity and output similarity are computed in Sect. 5.4.2 using
the input/output vector rin/rout of the query and the input/output vector In/Out
of an operation. The functional similarity is a combination of input and output
similarities.

• If the whole functionality part of a query is available. The functional similarity
of an operation is a combination of the above two kinds of similarities, which is
computed using Rf and OPf .
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5.5 Experiments

The aim of the experiments is to study the performance of our approach compared
with other approaches (e.g., the one proposed by [7]). We conduct two experiments
in Sects. 5.5.1 and 5.5.2, respectively. Firstly, we show that the Top-k Web services
returned by our approach havemuchmoreQoS gain than other approaches. Secondly,
we demonstrate that our approach can achieve highly relevant results as good as other
similarity-based service searching approaches even there is no available QoS values.

5.5.1 QoS Recommendation Evaluation

In this section, we conduct a large-scale real-world experiment to study the QoS
performance of the Top-k Web services returned by our searching approach.

To obtain real-world WSDL files, we developed a Web crawling engine to crawl
WSDL files from different Web resources (e.g., UDDI, Web service portal, and Web
service search engine).We obtain totally 3738WSDLfiles from69 countries. Totally,
15,811 operations are contained in theseWeb services. Tomeasure the non-functional
performance of these Web services, 339 distributed computers in 30 countries from
PlanetLab are employed to monitor these Web services. The detailed non-functional
performance of Web service invocations is recorded by these service users (distrib-
uted computer nodes). Totally, 1,267,182 QoS performance results are collected.
Each invocation record is a k-dimensional vector representing the QoS values of
k criteria. For simplicity, we use two matrices, which represent response-time and
throughput QoS criteria, respectively, for experimental evaluation in this chapter.
Without loss of generality, our approach can be easily extended to include more QoS
criteria.

The statistics ofWeb service QoS dataset are summarized in Table5.3. Response-
time and throughput are within the range 0–20s and 0–1000 kbps, respectively. The
means of response-time and throughput are 0.910s and 47.386 kbps, respectively.
Figure5.4 shows the distributions of response-time and throughput. Most of the
response-time values are between 0.1 and 0.8 s, and most of the throughput values
are between 5 and 40 kbps.

Table 5.3 Statistics ofWSQoS dataset, ©[2010] IEEE. Reprinted, with permission, fromRef. [11]

Statistics Response-time Throughput

Scale 0–20s 0–1000kbps

Mean 0.910s 47.386kbps

Num. of users 339 339

Num. of Web services 3738 3738

Num. of records 1,267,182 1,267,182
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Fig. 5.4 Value distributions. ©[2010] IEEE. Reprinted, with permission, from Ref. [11]

In most of the searching scenarios, users tend to look at only the top items of
the returned result list. The items in the higher position, especially the first position,
is more important than the items in lower positions in the returned result list. To
evaluate the qualities of Top-k returned results in a ranked list, we employ the Nor-
malized Discounted Cumulative Gain (NDCG), a standard IR measure [4] approach
as performance evaluation metric. Let s1, s2, . . . , sp be a ranked list of Web services
produced by a searching approach. Let ui be the associated QoS utility value of Web
service si, which ranked in position pi. Discounted Cumulative Gain (DCG) and
NDCG of at rank k are defined, respectively, as

DCGk = ui +
k∑

i=2

ui
log2 pi

, (5.13)

NDCGk = DCGk

IDCGk
(5.14)

where IDCG is the maximum possible gain value that is obtained with the optimal
reorder of kWeb services in the list s1, s2, . . . , sp. For example, consider the following
QoS utility values which are ordered according to the position of associated Web
services in a ranked Web service list:

u = [0.3, 0.2, 0.3, 0, 0, 0.1, 0.2, 0.2, 0.3, 0]
The perfect ranking would have QoS utility values of each rank of

u = [0.3, 0.3, 0.3, 0.2, 0.2, 0.2, 0.1, 0, 0, 0]
which would give ideal DCG utility values.

To study the performance of our approach, we compared ourWSExpressWeb ser-
vice searching enginewith theURBE [7], a keywordsmatching approach, employing
our real-world dataset described above. Totally, 5 query domains are studied in this
experiment. Each domain contains 4 user queries. Figure5.5 shows theNDCGvalues
of Top-k recommended Web services. The Top-k NDCG values of our WSExpress



5.5 Experiments 97

Fig. 5.5 NDCG of Top-K
Web services, ©[2010]
IEEE. Reprinted, with
permission, from Ref. [11]
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engine are considerably higher than URBE (i.e., 0.767 ofWSExpress compared with
0.200 of URBE for Top5 and 0.697 of WSExpress compared with 0.303 of URBE
for Top10). This means that, given a query, our search engine can recommend high-
quality Web services in the first positions.

Table5.4 shows theNDCGvalues of Top-k recommendedWeb services in the five
domains. In most of the queries, NDCG values of WSExpress are much higher than
URBE. In some search scenarios such as query 2, the NDCG values of WSExpress
and URBE for Top5 are identical, since in this particular case the most functional
appropriate Web services have the most appropriate non-functional properties. In
otherwords, theseTop5Web services have highestQoSutilities and similarity values.
However, while more top Web services are considered, such as Top10, the NDCG
values of WSExpress are becoming much higher than URBE.

5.5.2 Functional Matching Evaluation

In this experiment, we study the relevance of the recommended Web services to the
user’s query without considering non-functional performance of the Web services.
By comparing our approach with URBE, we observe that the Top-k Web services
in our recommendation list are highly relevant to the user’s query even without any
available QoS values.

The benchmark adopted for evaluating the performance of our approach is the
OWLS service retrieval test collection OWLS-TC v2 [5]. This collection consists of
more than 570Web services and 1000 operations covering seven application domains
(i.e., education,medical care, food, travel, communication, economy, andweaponry).
The benchmark includes WSDL files of the Web services, 32 test queries, and a set
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Fig. 5.6 Recall and precision performance. ©[2010] IEEE. Reprinted, with permission, from
Ref. [11]

of relevant Web services associated with each of the queries. Since the QoS feature
is not considered in this experiment, we set the QoS utility value of eachWeb service
as 1.

Top-k recall (Recallk) and Top-k precision (Precisionk) are adopted as metrics to
evaluate the performance of differentWeb search approaches.Recallk andPrecisionk
can be calculated by

Recallk = |Rel ∩ Retk|
|Rel| , (5.15)

Precisionk = |Rel ∩ Retk|
|Retk| , (5.16)

where Rel is the relevant set of Web services for a query and Retk is a set of Top-k
Web services search results.

Since user tends to check only top few Web services in common search scenario,
an approach with high Top-k precision values is very practical in reality. Figure5.6
shows the experimental results of ourWSExpress approach and the URBE approach.
In Fig. 5.6a, theTop-k recall values ofWSExpress are higher thanURBE. In Fig. 5.6b,
the Top-k precision values of WSExpress are considerably higher than URBE, indi-
cating that more relevant Web services are recommended in high positions by our
approach.

5.5.3 Online Recommendation

In this chapter, we propose an online Web service recommendation approach. Dif-
ferent from the previous ranking approach, it adopts the real time QoS information
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Table 5.5 Statistics of online QoS dataset. ©[2010] IEEE. Reprinted, with permission, from
Ref. [11]

Statistics Response-time Throughput

Scale 0–20s 0–1000kbps

Mean 3.165s 9.609kbps

Num. of users 142 142

Num. of Web services 4532 4532

Num. of time intervals 64 64

Num. of records 30,287,611 30,287,611

to recommend Web services. In this section, we evaluate the performance of online
recommendation approaches.

In this experiment, we deploy 142 distributed computers located in 22 countries
from PlanetLab. Totally, 4532 publicly available real-world Web services from 57
countries are monitored by each computer continuously. In our experiment, each
of the 142 computers sends null operation requests to all the 4532 Web services
during every time interval. The experiment lasts for 16 hours with a time interval
lasting for 15min. By collecting invocation records from all the computers, finally
we include 30,287,611 QoS performance results into the Web service QoS dataset.
Each invocation record is a k dimension vector representing the QoS values of k
criteria. We then extract a set of 142 × 4532 × 64 user-service-time tensors, each
of which stands for a particular QoS property, from the QoS invocation records. For
simplicity, we employ two tensors, which represent response-time and throughput
QoS criteria, respectively, for experimental evaluation in this chapter. Without loss
of generality, our approach can be easily extended to include more QoS criteria.

The statistics ofWeb service QoS dataset are summarized in Table5.5. Response-
time and throughput are within the range of 0–20s and 0–1000 kbps, respectively.
The means of response-time and throughput are 3.165s and 9.609 kbps, respectively.
The distributions of the response-time and throughput values of the user-service-time
tensors are shown in Fig. 5.7a, b respectively. Most of the response-time values are
between 0.1 and 0.8 s and most of the throughput values are between 0.8 and 3.2
kbps.

The experimental results are shown in Fig. 5.8. Each time interval lasts for 15
minutes. The parameter setting is Top-K=5. From Fig. 5.8, we observe that in each
time interval, online recommendation approach has a higher NDCG value than
URBE, which means Web services with better QoS performance are recommended
compared with URBE. Since URBE cannot adopt the dynamic QoS information
for recommendation in time, the NDCG values of approach URBE decrease signif-
icantly as the time passed. After about 30 time intervals, the NDCG value is below
0.3 which means QoS performance of the recommended Web services has a high
probability that cannot fulfill the users’ non-functional requirements. In our online
rank aggregation approach, we employ the latest QoS information of Web services
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Fig. 5.7 QoS value distributions of online dataset. ©[2010] IEEE. Reprinted, with permission,
from Ref. [11]

Fig. 5.8 NDCG of online
recommendation. ©[2010]
IEEE. Reprinted, with
permission, from Ref. [11]
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for recommendation. Therefore, the NDCG values are maintained in a high level,
which indicates that we can always recommend appropriate Web services with high
QoS performance to the users.

5.5.4 Impact of λ

In our method, the parameter λ controls the user’s preference on functionality and
non-functionality. A larger value of λ means functionality is preferred. In Fig. 5.9,
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Fig. 5.9 Impact of λ. ©[2010] IEEE. Reprinted, with permission, from Ref. [11]

we study the impact of λ by varying the values of lambda from 0 to 1 with a step
value of 0.1. Other parameter setting is Top-K=10.

Figure5.9a shows the NDCG values and Fig. 5.9b shows the Precision values.
From Fig. 5.9a, we observe that λ impacts the NDCG performance significantly,
which demonstrates that incorporating the QoS information greatly improves the
non-functional quality of recommended Web services. In general, when the value of
λ is increased from 0 to 1, the NDCG value is decreased. This observation indicates
that if functionality is preferred, the QoS performance of recommended Web ser-
vices is decreased. If λ = 0, we only employ the QoS information for Web service
recommendation; therefore, the NDCG value is 1. If λ = 1, we only employ the
functional similarity information for Web service recommendation; therefore, the
NDCG value is very small. From Fig. 5.9b, we observe that λ also impacts the pre-
cision significantly, which demonstrates that incorporating the functional similarity
information greatly improves the recommendation accuracy. In general, when the
value of λ is increased from 0 to 1, the precision value is increased. This observation
indicates that if functionality is preferred, the functional requirements can be fulfilled
well. If λ = 0, we only employ the QoS information for Web service recommen-
dation; therefore, the precision value is vary small. If λ = 1, we only employ the
functional similarity information for Web service recommendation; therefore, the
precision value is 1. In other cases, we fuse the information of QoS and functionality
for Web service recommendation.

A proper value of λ is highly related to the preference of the user. The user defines
the importance of functionality and non-functionality. A proper value of λ can be
defined by analyzing the impact of λ on a small sample dataset.
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5.6 Summary

In this chapter, we present a novel Web service search engine WSExpress to find
the desired Web service. Both functional and non-functional characteristics of Web
services are captured in our approach. We provide user three searching styles in the
WSExpress to adapt different searching scenarios. A large-scale real-world exper-
iment in distributed environment and an experiment on benchmark OWLS-TC v2
are conducted to study the performance of our search engine prototype. The results
show that our approach outperforms related works.

In the future work, wewill conduct datamining in our dataset to identify for which
formulas of λ our search approach can achieve optimized performance. Clustering
algorithms for similarity computation will be designed for improving functional
accuracy of searching result. Finally, the non-functional evaluation component will
be extended to dynamically collect quality information of Web services.
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Chapter 6
QoS-Aware Byzantine Fault Tolerance

Abstract Cloud computing is becoming a popular and important solution for build-
ing highly reliable applications on distributed resources. However, it is a critical
challenge to guarantee the system reliability of applications especially in voluntary-
resource cloud due to the highly dynamic environment. In this chapter, we present
Byzantine fault-tolerant cloud (BFTCloud ), a Byzantine fault tolerance framework
for building robust systems in voluntary-resource cloud environments. BFTCloud
guarantees robustness of systems when up to f of totally 3 f + 1 resource providers
are faulty, including crash faults and arbitrary behaviors faults. BFTCloud is evalu-
ated in a large-scale real-world experiment which consists of 257 voluntary-resource
providers located in 26 countries. The experimental results show that BFTCloud
guarantees high reliability of systems built on the top of voluntary-resource cloud
infrastructure and ensure good performance of these systems.

6.1 Overview

Currently, most of the clouds are deployed on two kinds of infrastructures. One
is well-provisioned and well-managed infrastructure [8] managed by a large cloud
provider (e.g., Amazon, Google, Microsoft, and IBM). The other one is voluntary-
resource infrastructure which consists of numerous user-contributed computing
resources [2]. With the exponential growth of cloud computing [1, 3] as a solu-
tion for providing flexible computing resource on demand [4], more and more cloud
applications emerge in recent years. How to build high-reliable cloud applications,
which are usually large-scale and very complex, becomes an urgent and crucial
research problem.

Typically, cloud applications consist of a number of cloud modules. The reliabil-
ity of cloud applications is greatly influenced by the reliability of cloud modules.
Therefore, building high-reliable cloud modules becomes the premise of developing
high-reliable cloud applications. Traditionally, testing schemes [7] are conducted on
the software systems of cloud modules to make sure that the reliability threshold has
been achieved before releasing the software. However, reliability of a cloud mod-
ule not only relies on the system itself, but also heavily depends on the node it has

© The Author(s) 2017
Y. Zhang and M.R. Lyu, QoS Prediction in Cloud and Service Computing,
SpringerBriefs in Computer Science, DOI 10.1007/978-981-10-5278-1_6
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deployed and the unpredictable Internet. Traditional testing has limited improvement
on the reliability of a cloud module under voluntary-resource cloud infrastructure
due to:

• Computing resources, denoted as nodes in the cloud, are frangible. Different
from the powerful and performance-guaranteed nodes managed by large cloud
providers, user-contributed nodes are usually highly dynamic, much cheaper, less
powerful, and less reliable. The reliability of a cloud module deployed on these
nodes is mainly determined by the robustness of nodes rather than the software
implementation.

• Communication links between modules are not reliable. Unlike nodes in well-
provisioned cloud infrastructure, which are connected by high-speed cables, nodes
in voluntary-resource cloud infrastructure are usually connected by unpredictable
communication links. Communication faults, such as time out, will greatly influ-
ence the reliability of cloud applications.

Based on the above analysis, in order to build reliable cloud applications on
the voluntary-resource cloud infrastructure, it is extremely urgent to design a fault
tolerance mechanism for handling different faults. Typically, the reliability of cloud
applications is effected by several types of faults, including node faults like crashing,
network faults like disconnection, and Byzantine faults [6] like malicious behaviors
(i.e., sending inconsistent response to a request [9]). The user-contributed nodes,
which are usually cheap and small, make malicious behaviors increasingly com-
mon in voluntary-resource cloud infrastructure. However, traditional fault tolerance
strategies cannot tolerate malicious behaviors of nodes.

To address this critical challenge, we propose a novel approach, called Byzan-
tine fault-tolerant cloud (BFTCloud), for tolerating different types of failures in
voluntary-resource clouds. BFTCloud uses replication techniques for overcoming
failures since a broad pool of nodes are available in the cloud. Moreover, due to
the different geographical locations, operating systems, network environments, and
software implementation among nodes, most of the failures happened in voluntary-
resource cloud are independent of each other, which is the premise of Byzantine
fault tolerance mechanism. BFTCloud can tolerate different types of failures includ-
ing the malicious behaviors of nodes. By making up a BFT group of one primary
and 3 f replicas, BFTCloud can guarantee the robustness of systems when up to f
nodes are faulty at runtime. The experimental results show that compared with other
fault tolerance approaches, BFTCloud guarantees high reliability of systems built on
the top of voluntary-resource cloud infrastructure and ensures good performance of
these systems.

In summary, this chapter makes the following contributions:

1. We identify the Byzantine fault tolerance problem in voluntary-resource cloud
and propose a Byzantine fault tolerance framework, named BFTCloud, for guar-
anteeing the robustness of cloud application. BFTCloud uses dynamical repli-
cation techniques to tolerate various types of faults including Byzantine faults.
We consider BFTCloud as the first Byzantine fault-tolerant framework in cloud
computing literature.
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2. We have implemented the BFTCloud system and test it on a voluntary-resource
cloud, Planet-lab, which consists of 257 user-contributed computing resources
distributed in 26 countries. The prototype implementation indicates that BFT-
Cloud can be easily integrated into cloud nodes as a middleware.

3. We conduct large-scale real-world experiments to study the performance of BFT-
Cloud on reliability improvement compared with other approaches. The experi-
mental results show the effectiveness of BFTCloud on tolerating various types of
faults in cloud.

The rest of this chapter is organized as follows: Sect. 6.2 describes the system
architecture of BFTCloud. Section6.3 presents our BFTCloud fault tolerate mecha-
nism in detail. Section6.4 introduces the experimental results. Section6.5 concludes
the chapter.

6.2 System Architecture

Webegin by using amotivating example to show the research problem in this chapter.
As shown in Fig. 6.1, cloud applications usually consist of a number of modules.
These modules are deployed on distributed cloud nodes and connected with each
other through communication links. Each module is supposed to finish a certain
task (e.g., product selection, bill payment, and shipping addresses confirming) for a
cloud application (e.g., shopping agency). A cloud module will form a sequence of
requests (e.g., browsing products and choosing products) for the task (e.g., product
selection) and send the requests to a group of nodes in the voluntary-resource cloud
for execution.

Figure6.2 shows the system architecture of BFTCloud in voluntary-resource
cloud environment. Under the voluntary-resource cloud infrastructure, end-users
contribute a larger number of computing resources which can be provided to cloud

Fig. 6.1 Architecture of cloud applications. ©[2011] IEEE. Reprinted, with permission, from
Ref. [10]
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Fig. 6.2 Architecture of BFTCloud in voluntary-resource cloud. ©[2011] IEEE. Reprinted, with
permission, from Ref. [10]

modules for request execution. Typically, computing resources in the voluntary-
resource cloud are heterogeneous and less reliable, and malicious behaviors of
resource providers cannot be prevented. Byzantine faults could be very common
in a user-contributed cloud environment. In order to guarantee the robustness of the
module, the replication technique is employed for request execution upon the user-
contributed nodes. After a cloud module generated a sequence of requests, it first
needs to choose a BFT group from the pool of cloud nodes for request execution.
Since cloud nodes are located in different geographic locations with heterogeneous
network environments, and the failure probabilities of nodes are diverse, a monitor
is implemented on the cloud module side as a middleware for monitoring the QoS
performance and failure probability of nodes. By considering the QoS performance
and failure probability, the cloud module first chooses a node as primary and sends
the current request to the primary. After that, a set of replicas are selected according
to their failure probability and QoS performance to both the cloud module and the
primary. The primary and replicas form a BFT group for executing requests from
the cloud module. After the BFT group returns responses to the current request, the
cloud module will judge whether the responses can be committed. Then, the cloud
module will send the next request or resend the current request to the BFT group. If
some nodes of the BFT group are identified as faulty, the cloud module will update
the BFT group to guarantee the system reliability. The detailed approach will be
presented in Sect. 6.3.
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6.3 System Design

In this section, we present BFTCloud, a practical framework for building robust
systemswithByzantine fault toleranceunder voluntary-resource cloud infrastructure.
We first give an overview on the work procedures of BFTCloud in Sect. 6.3.1. Then,
we describe the five phases of BFTCloud in Sect. 6.3.2 to Sect. 6.3.6, respectively.

6.3.1 System Overview

Figure6.3 shows the work procedures of BFTCloud. The input of BFTCloud is a
sequence of requests with specified QoS requirements (e.g., preferences on price,
capability, bandwidth, workload, response latency, and failure probability) sent by
the cloud module. The output of BFTCloud is a sequence of committed responses
corresponding to the requests. BFTCloud consists of five phases described as follows:

1. Primary Selection: After accepting a request from the cloud module, a node is
selected from the cloud as the primary. The primary is selected by applying the
primary selection algorithm with respect to the QoS requirements of the request.

2. Replica Selection: In this phase, a set of nodes are selected as replicas by applying
a replica selection algorithm with respect to the QoS requirements of the request.
The primary then forwards the request to all replicas for execution. The selected
replicas together with the primary make up a BFT group.

3. Request Execution: In this phase, all members in the BFT group execute the
request locally and send back their responses to the cloud module. After col-
lecting responses from the BFT group within a certain period of time, the cloud
module will judge the consistency of responses. If the BFT group respond con-
sistently, the current request will be committed and the cloud module will send
the next request. If the BFT group responds inconsistently, the cloud module will
trigger a fault tolerance procedure to tolerate up to f faulty nodes and trigger
the primary updating procedure and/or replica updating procedure to update the

Fig. 6.3 Work procedures of BFTCloud. ©[2011] IEEE. Reprinted, with permission, from Ref.
[10]
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group members. If more than f nodes are identified as faulty, the cloud mod-
ule will resend the request to the refresh BFT group and enter into the request
execution phase again.

4. Primary Updating: In this phase, faulty primary in the BFT group will be iden-
tified and replaced by a newly selected primary.

5. Replica Updating: In this phase, faulty replicas in the BFT group will be identi-
fied and updated according to the information obtained from the request execution
phase. The replica updating algorithmwill be applied to replace the faulty replicas
with other suitable nodes in the cloud.

6.3.2 Primary Selection

Under the voluntary-resource cloud infrastructure, a cloud module will send the
request directly to a node which it believes to be the primary. Therefore, the primary
plays an important role in a BFT group. The responsibilities of primary include
accepting requests from the cloud module, selecting appropriate replicas to form a
BFT group, forwarding the request to all replicas, and replacing faulty replicas with
newly selected nodes. Since failures happened on primary will greatly decrease the
overall performance of a BFT group, the requirements on primary attributes (e.g.,
capability, bandwidth, and workload) are more strict than those on replicas. In order
to select an optimal primary, we propose a primary selection algorithm.

We model the primary selection problem under voluntary-resource cloud
infrastructure as follows:

Let N be the set of nodes available in the cloud and Q be the set ofm dimension vectors. For
each node ni in N , there is a qi = (qi1, qi2, · · · , qim) in Q representing the QoS values ofm
criteria. Given a priority vector W = (w1,w2, · · · ,wm) on the m QoS criteria, the optimal
primary should be selected from the set N .

Note thatwk ∈ R
+ and

∑m
k=1 wk = 1. Typically, the QoS values of can be integers

from a given range (e.g., 0, 1, 2, 3 or real numbers of a close interval (e.g., [−20, 20]).
Without loss of generality, we can map a QoS value to the interval [0, 1] using the
function f (x) = (x − qmin)/(qmax − qmin), where qmax and qmin are the maximum
and minimum QoS values of the corresponding criterion, respectively.

The proposed primary selection algorithm is shown in Algorithm 7. After accept-
ing the priority vector from the cloud module, a rating value ri is computed for each
node ni ∈ N as follows:

ri =
m∑

k=1

qik × wk, (6.1)
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Algorithm 7: Primary Selection Algorithm
Input: N , Q, W
Output: n∗
n∗ = null;1

rmax = 0;2

for all ni ∈ N do3

ri = ∑m
k=1 qik × wk ;4

if ri > rmax then5

n∗ = ni ;6

rmax = ri ;7

end8

end9

return n∗;10

where ri fall into the interval [0, 1]. The cloudmodule will choose the node n∗, which
has the highest rating value, as the primary:

n∗ = argmax
ni∈N

ri . (6.2)

6.3.3 Replica Selection

After the primary is selected in Sect. 6.3.2, a set of replicas should be chosen to form
a BFT group. Since replicas in a BFT group need to communicate with both the
primary and the cloud module, the QoS performance of a node should be considered
from both the cloud module perspective and the primary perspective. Let qi be the
QoS vector of node ni observed by the cloud module and q ′

i be the QoS vector of
node ni observed by the primary. Then, the combined QoS vector q ′′

i is calculated
by a set of transformation rules as follows:

• minimum: q ′′
ik = min(qik, q ′

ik), for QoS criterion like bandwidth.
• average: q ′′

ik = avg(qik, q ′
ik), for QoS criterion like response time.

• equality: q ′′
ik = qik = q ′

ik , for QoS criterion like price.

Without loss of generality, the rule set can be easily extended to include more rules
for calculating complex QoS criterion values.

Given the combined QoS vector q ′′
i , we can evaluate how appropriate the node

ni is as a replica of the BFT group. A score si is assigned to each node ni ∈ N as
follows:

si =
m∑

k=1

q ′′
ik × wk, (6.3)
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where si falls into the interval [0, 1]. After ordering the scores, we can select the
nodes ranked in high positions as replicas of the BFT group.

In order to decide the replication degree, we first consider the failure probability of
a BFT group in its entirety. Since the BFTCloud guarantees the execution correctness
when up to f nodes are faulty, a BFT group is faulty if and only if more than f nodes
are faulty. We define the failure probability of a BFT group σ as follows:

Pσ = P(|F | > f ), (6.4)

where F is the set of failure nodes in σ .
In order to reduce the cost of request execution, the replication degree f should

be as small as possible, and the failure probability of a BFT group σ should be
guaranteed under a certain threshold at the same time. Let P0 be the threshold of
Pσ defined by the cloud module. The replication degree decision problem can be
formulated as an optimization problem:

min
f

f = |σ | − 1

3
,

Pσ =
∑

F∈�

∏

ni∈F
Pi

∏

n j∈σ\F
(1 − Pj ),

Pσ < P0,

� = {F | f < |F |}. (6.5)

where Pi is the failure probability of node ni , and � is the set of events that more
than f nodes of the BFT group σ are fault. Note that a solution to this problem
decides the replication degree and the replicas of BFT group σ at the same time. We
summarize the replica selection algorithm in Algorithm 8.

6.3.4 Request Execution

After the BFT group members are determined, requests can be sent to the BFT
group for execution. The cloud module first forms a request sequence and sends the
sequence of requests to the primary. The primary will order the requests and forward
the ordered requests to all the BFT group members. Each member of the BFT group
will execute the sequence of requests and send the corresponding responses back to
the cloudmodule. The cloudmodule collects all the received responses from the BFT
group members and makes a judgement on the consistence of responses. A action
strategy will be chose according to the consistence of responses as follows:

• Case 1: The cloud module receives 3 f + 1 consistent responses from the BFT
group. In this case, the cloud module will commit the current request since there
is no fault happens in the current BFT group.
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Algorithm 8: Replica Selection Algorithm

Input: N , Q, Q′, W , P0
Output: σ
σ = null;1

f = 0;2

Pσ = P∗;3

for all ni ∈ N do4

q ′′
i ← (qi , q ′

i ) by applying the set of transformation rules;5

si = ∑m
k=1 q

′′
ik × wk ;6

end7

Generate a permutation < n′
1, n

′
2, · · · > of the set N such that s ′

1 ≥ s ′
2 ≥ · · · ;8

while Pσ > P0 do9

f = f + 1;10

σ = {n′
1, n

′
2, · · · , n′

3 f };11

Pσ = 0;12

for all F ∈ � do13

Pσ = Pσ + ∏
ni∈F Pi

∏
n j∈σ\F (1 − Pj );14

end15

end16

return σ ;17

• Case 2: The cloud module receives between 2 f + 1 to 3 f consist responses.
In this case, the cloud module can still commit the current request since there
are less than f + 1 faults happened. To commit the current request and identify
the faulty nodes, the cloud module assembles a commit certificate and sends the
commit certificate to all the BFT group members. Each member will acknowl-
edge the cloud module with a local-commit message once it receives the commit
certificate from the cloud module. If more than 2 f + 1 local-commit messages
are received, the cloud module will commit the current request and invoke a
replica updating procedure to replace all the faulty BFT group members with
new members. If less than 2 f + 1 local-commit messages are received, the
cloud module will resend the commit certificate until it receives local-commit
messages from more than 2 f + 1 members.

• Case 3: The cloud module receives less than 2 f + 1 response messages. In this
case, either the primary is faulty or more than f + 1 replicas are faulty. The
cloud module will then resend the current request again but to all members this
time. Each replica forwards the request to the node it believes to be the primary.
If the replica receives a request from the primary within a given time and the
proposed sequence number is consistency with that sent by the cloud module,
the replica will execute the request and send response to the cloud module. If
the replica does not receive an ordered request from the primary within a given
time, or the request sequence number is not consistent with the request sent by
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the cloud module, the primary must be faulty. The replica will send a primary
election proposal to all replicas to trigger a primary updating procedure.

• Case 4: The cloud module receives more than 2 f + 1 responses, but fewer than
f +1 responses are consistency. This indicates inconsistent ordering of requests
by the primary. The cloud module will send a proof of misbehavior of primary
to all the replicas and trigger a primary updating procedure.

6.3.5 Primary Updating

When the primary is faulty, primary updating procedures will be triggered in the
request execution phase. The procedures of primary updating phase are as follows:

1. A replica which suspects the primary to be faulty sends an primary election
proposal to all the other replicas. However, it still participates in the current BFT
group as it may be only a network problem between the replica and the primary.
Other replicas, once receiving a primary election proposal, just store it since the
primary election proposal could arrive from a faulty replica as well.

2. If a replica receives f +1 primary election proposals, it indicates that the primary
is really faulty. It will send a primary selection request to the cloud module. The
cloud module then will start the primary selection phase and return a new primary
which is one of the current replicas. The replica then sends a primary updating
message to all the other replicas, which includes the new primary name and f +1
primary election proposals. Other replicas which receive such primary updating
message again confirm that at least f +1 replicas sent a primary election proposal,
and then resend the primary updating message together with the proof to the new
primary.

3. If the newly selected primary receives 2 f +1 primary updatingmessages, it sends
a new BFT group setup message to all the replicas, which again includes all the
primary updating messages as proof.

4. A replica which received and confirmed the new BFT group setup message will
send out a BFT group confirm message to all replicas.

5. If a replica receives 2 f + 1 BFT group confirm messages, it starts performing as
a member in the new BFT group.

6.3.6 Replica Updating

In the voluntary-resource cloud environment, nodes are highly dynamic and fragile.
Different types of faults (e.g., response time out, unavailable, and arbitrary behavior)
may happen to the nodes after a period of time. Under voluntary-resource cloud
infrastructure, the failure probability of a BFT group increases sharply as the fraction
of faulty nodes increases. The failure probability of a BFT group under the condition



6.3 System Design 115

that a set of replicas are already faulty is:

Pσ = P(|F | > f |F∗)
= P(|F \ F∗| > f − f ∗), (6.6)

where F∗ is the set of replicas which are faulty already.
To ensure the failure probability of a BFT group below a certain threshold, we

need to replace the members once they are identified to be faulty. Moreover, due to
the highly dynamic voluntary-resource cloud environment, the QoS performance of
nodes are changed rapidly. Updating replicas timely could keep the performance of
a BFT group stable.

Let T be the set of new nodes which will be added to the current BFT group. F∗
is the set of nodes which will be removed from the current BFT group. Let σ ′ be the
new BFT group with updated replicas. We have σ ′ = σ \ F∗ ∪ T , where T consists
of nodes which are in the top |T | positions ordered by score in Eq. (6.3).

The new BFT group σ ′, which can tolerate up to f ′ nodes failure, should satisfy
Pσ ′ > P0. Therefore, the replica updating problem is reduced to a replication degree
decision problem, which can be further formalized as an optimization problem as
follows:

min
f ′ f ′ = |σ ′| − 1

3
,

Pσ ′ =
∑

F ′∈�

∏

ni∈F ′
Pi

∏

n j∈σ ′\F ′
(1 − Pj ),

Pσ ′ < P0,

� = {F ′| f < |F ′|}. (6.7)

where � is the set of events that more than f ′ nodes of the BFT group σ ′ are fault.
We summarize the replica updating algorithm in Algorithm 9.

6.4 Experiments

In this section, in order to study the performance improvements of our proposed
approach, we conduct several experiments to compare our BFTCloud with several
other fault tolerance approaches.

In the following, Sect. 6.4.1 describes the system implementation of BFTCloud
and the experimental settings, and Sect. 6.4.2 compares the performances of BFT-
Cloud with some other fault tolerance methods.



116 6 QoS-Aware Byzantine Fault Tolerance

6.4.1 Experimental Setup

We have implemented our BFTCloud approach by Java language and deployed it as
a middleware in a voluntary-resource cloud environment. The cloud infrastructure
is constructed by 257 distributed computers located in 26 countries from Planet-lab,
which is a distributed test bed consisting of hundreds of computers all over the world.
Each computer, named as node in the cloud infrastructure, can participate several
BFT groups as a primary or replica simultaneously.

Algorithm 9: Replica Updating Algorithm

Input: N , Q, Q′, W , P0, σ , F∗
Output: σ ′
σ ′ = σ \ F∗;1

T = null;2

f ′ = � 3 f −|F∗|
3 	;3

P ′
σ = P∗;4

for all ni ∈ N \ σ do5

q ′′
i ← (qi , q ′

i ) by applying the set of transformation rules;6

si = ∑m
k=1 q

′′
ik × wk ;7

end8

Generate a permutation < n′
1, n

′
2, · · · > of the set N \ σ such that9

s ′
1 ≥ s ′

2 ≥ · · · ;
T = {n′

1, n
′
2, · · · , n′

3 f ′−|σ ′|};10

σ ′ = σ ′ ∪ T ;11

while P ′
σ > P0 do12

f ′ = f ′ + 1;13

T = {n′
1, n

′
2, · · · , n′

3 f ′−|σ ′|};14

σ ′ = σ ′ ∪ T ;15

P ′
σ = 0;16

for all F ∈ � do17

P ′
σ = P ′

σ + ∏
ni∈F ′ Pi

∏
n j∈σ ′\F ′(1 − Pj );18

end19

end20

return σ ′;21

Based on the voluntary-resource cloud infrastructure, we conduct large-scale
experiments to study the performance improvements of BFTCloud compared with
other approaches. In our experiments, each node in the cloud is configured with
a random malicious failure probability, which denotes the probability of arbitrary
behavior happens in the node. Note that the failure probability of a node observed
by other nodes is not necessarily equal to the malicious failure probability since
other types of faults (e.g., node crashing and disconnection) may also occur. Each
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Table 6.1 Average sending times per request. ©[2011] IEEE. Reprinted, with permission, from
Ref. [10]

Benchmark (KB) BFTCloud BFTRandom Zyzzyva NoFT

0/0 1.3428 1.7096 2.9167 1.0725

4/0 1.3035 1.7248 3.1002 1.1042

0/4 1.3820 1.7340 3.2058 1.3055

node keeps the QoS information of all the other nodes and updates the information
periodically. For simplicity, we use response time for QoS evaluation in this chapter.
Without loss of generality, our approach can be easily extended to include more
QoS criteria. We also employed 100 computers from Planet-lab to perform as cloud
modules.

6.4.2 Performance Comparison

In this section, we compare the performance of our approach BFTCloud with other
fault tolerance approaches in the voluntary-resource cloud environment. We have
implemented four approaches:

• NoFT:No fault tolerance strategy is employed for task execution in the voluntary-
resource cloud.

• Zyzzyva: A state-of-the-art Byzantine fault tolerance approach proposed in [5].
The cloud module sends requests to a fixed primary and a group of replicas.
There is no mechanism designed for adopting the dynamic voluntary-resource
cloud environment.

• BFTCloud: The Byzantine fault tolerance framework proposed in this chapter.
The cloud module employs Algorithm 1–3 to mask faults and adopt the highly
dynamic voluntary-resource environment.

• BFTRandom: The framework is the same with BFTCloud. However, this
approach just randomly selects nodes in primary selection, replica selection,
primary updating, and replica updating phases.

In Fig. 6.4, we compare the throughput of all approaches in terms of different
number of cloud modules by executing null operations. We change the number of
cloud module from 0 to 100 with a step value of 10. The requests are sent by a
variable number of cloud modules in each experiment (0–100). We conducts exper-
iments on three benchmarks [5] with different request and response size. The sizes
of request/response messages are 0/0, 4/0, and 0/4KB in Fig. 6.4a, b, and c, respec-
tively. Theparameter settings in this experiment are P0 = 0.5 and t imeout = 500ms,
where t imeout defines the maximum waiting time for a message. From Fig. 6.4, we
can observe that our approach BFTCloud can commit more requests per minute than
Zyzzyva and BFTRandom under different sizes of request/response messages. The
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(a) Request/Response Size: 0/0 KB
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(b) Request/Response Size: 4/0 KB
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(c) Request/Response Size: 0/4 KB

Fig. 6.4 Throughput comparison for 0/0, 4/0, and 0/4 benchmarks as the number of cloud modules
varies. ©[2011] IEEE. Reprinted, with permission, from Ref. [10]

reason is that BFTCloud always chooses nodes with low failure probabilities as BFT
group members. Therefore, the high reliability of BFT group guarantees that in most
cases, a request can be committed without being resent. Note that NoFT achieves
the highest throughput among all approaches since NoFT employs no fault toler-
ance mechanism. Every request will be committed once the cloud module received
a reply. However, NoFT cannot guarantee the correctness of committed requests,
which will be discussed in Table6.2. Table6.1 shows the average sending times of a
request by the cloud module before it is committed. A request can be committed with
much fewer sending times in BFTCloud than request in Zyzzyva, since BFT group
members in BFTCloud are carefully selected and the probability of successfully exe-
cuting a request is higher than that in Zyzzyva. Moreover, BFTCloud always chooses
nodes with good QoS performance as BFT group members which makes requests
and responses are transmitted more quickly than other approaches. In general, BFT-
Cloud achieves high throughput of committed requests which demonstrates that the
idea of considering failure probability and QoS performance when selecting nodes
is realistic and reasonable.
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Table 6.2 Correct rate of committed requests. ©[2011] IEEE. Reprinted, with permission, from
Ref. [10]

size (KB) BFTCloud BFTRandom Zyzzyva NoFT

0/0 0.9855 0.9468 0.8726 0.2589

4/0 0.9840 0.9259 0.8925 0.2107

0/4 0.9794 0.9278 0.8621 0.2216

In Table6.2, we evaluate the correctness of committed requests of different
approaches. The experimental result shows that among all the committed requests,
the percentage of correctly committed requests is highest in BFTCloud. This is
because BFTCloud can guarantee a low probability P0 that more than f BFT group
members are faulty. While Zyzzyva cannot guarantee the failure probability of BFT
group since the primary and replicas in Zyzzyva are fixed. Most of the requests are
not correctly committed in NoFT despite high throughput of NoFT, since no fault
tolerance mechanism is employed.

6.5 Summary

In this chapter, we propose BFTCloud, a Byzantine fault tolerance framework for
building reliable systems in voluntary-resource cloud infrastructure. In BFTCloud,
replication techniques are employed for improving the system reliability of cloud
applications. To adapt to the highly dynamic voluntary-resource cloud environment,
BFTCloud select voluntary nodes based on their QoS characteristics and reliabil-
ity performance. Faulty voluntary resources will be replaced with other suitable
resources once they are identified. The extensive experimental results show the effec-
tiveness of our approach BFTCloud on guaranteeing the system reliability in cloud
environment.

In the future, we will conduct more experimental analysis on open-source cloud
applications and conductmore investigations ondifferentQoSproperties of voluntary
resources. We will conduct more experiments to study the impact of parameters and
investigate the optimal values of parameters in different experimental settings.
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Chapter 7
Conclusion and Discussion

Abstract This chapter concludes this book and discusses the future work.

7.1 Conclusion

This book is aiming at advancing quality engineering in cloud and service computing.
This book consists of three parts: The first part deals with service QoS prediction,
the second part focuses on QoS-aware Web service searching, and the third part
concentrates on QoS-aware fault-tolerant systems in cloud computing.

In the first part, we present three QoS prediction approaches for services. We
first propose a neighborhood-based collaborative QoS prediction approach, which
is enhanced by character modeling, for services. The second method is a model-
based time-aware collaborative filtering approach, which utilizes time information
to capture the periodicity features of service QoS values. Finally, we propose an
online QoS prediction approach, which employs time series analysis to adapt to
the highly dynamic service computing environment. The online prediction approach
consists of an offline evolutionary algorithm and an online incremental algorithm
for precisely predicting the QoS values of services at runtime. The experimental
results and the system-level case study show the efficiency and effectiveness of our
approach.

In the second part, we propose a QoS-aware Web service search engine. In order
to provide better searching results to users for fulfilling their Web service require-
ments, we systematically fuse the functional approach and non-functional approach
to achieve better performance. Moreover, we conduct experiments on the real-world
Web services. The collected WSDL files and QoS datasets are released for the Web
service research community.

In the third part, we conduct a fault tolerance study on cloud applications. By
taking the advantage of multiple functional equivalent services over the Internet, we
design a Byzantine fault tolerance framework to build robust systems in voluntary-
resource cloud environments. Our fault tolerance framework employs dynamic QoS
information of services to select the most suitable services for system integration.
The experimental results show the effectiveness of this framework.
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In general, the goal of our work is to predict and utilize the QoS information in
cloud and service computing as accurate and effective as possible. Our released QoS
datasets enable the extensive research of other researchers.

7.2 Discussion

There are several research directions that can be conducted in the future.
For the service QoS prediction, we plan to conduct more research on the cor-

relation of multiple QoS characteristics since the different QoS characteristics are
considered independently in current stage. The relationship between different QoS
properties may provide some useful information for improving the prediction accu-
racy. Another direction worthy of investigation is how to explore the relationship
between user information and service information to enhance the prediction accu-
racy.

For the QoS-aware Web service searching, we plan to design a clustering algo-
rithm, which improves the accuracy of functional similarity computation. Cur-
rently, we only use the average QoS performance of Web services. However, due
to the dynamic network environment and service status, we plan to extend the non-
functional evaluation module to adopt dynamic QoS information of Web services.

For the QoS-aware fault tolerance framework in cloud computing, we can conduct
more studies on the correlation of different types of failure, since failures may not
be independent of each other. Moreover, failures of different services in the cloud
application may have correlation with each other.
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