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Abstract
Trace metal (TM) pollution of soil is a worldwide problem threatening the quality 
of human life and a proper environment. We investigated fungal and bacterial 
diversity of trace metal-polluted site contaminated with paper mill effluent in 
India. Twelve fungal dominant isolates, viz. Aspergillus, Penicillium, Fusarium, 
Cunninghamella, Simplicillium, Trichoderma, Rhizomucor, Cladosporium and 
Hypocrea, were identified. Subsequent screening approach to assess their TM 
tolerance was performed in vitro cultures which revealed that the majority of the 
isolates were tolerant to Ni-, Cu-, Zn- and Cd-amended medium. The minimum 
inhibitory concentration (MIC) for Ni, Cu, Zn and Cd was also determined in 
isolated strains of Aspergillus, Penicillium, Rhizomucor, Trichoderma and 
Fusarium to study the concentration of growth against various trace metals. 
A total of 22 bacterial isolates was also isolated using 16S rRNA, and the domi-
nant genera such as Bacillus, Rhizobium, Microbacterium, Arthrobacter, Kribbella 
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and Chitinophaga were identified. The relative growth and LD−50 were also 
estimated against the different trace metals from concentration 0.1 to 4 mM. Thus, 
these fungal and bacterial isolates showed a high TM tolerance and would be a 
great interest for their use in bioremediation to clean up TM-polluted soil.
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8.1	 �Introduction

8.1.1	 �Microbial Diversity in Extreme Habitats

Soil harbours a variety of fungi, bacteria and other soil microorganisms. Soil microor-
ganisms are the living component of soil organic matter and are responsible for min-
eralization of nutrients, decomposition and degradation or transformation of toxic 
compounds. Metals and metal compounds are natural constituents of all ecosystems, 
moving between atmosphere, hydrosphere, lithosphere and biosphere (Bargagli 2000; 
Wuana and Okieimen 2011). One of the challenges facing the mankind in recent times 
is the degradation and pollution of soil. Since soil is a vital natural resource, its degra-
dation threatens the basic life support system. The industrial influent’s sludge and 
solid waste are the sources of potentially harmful inorganic as well as organic con-
taminants. Microorganisms growing in such habitats evolved under conditions that 
permitted their survival and growth (Thakre and Shanware 2015). They multiplied in 
accordance with natural selection. For such adapted microorganisms, the conditions 
of these habitats are not ‘extreme’ but rather the normal physiological conditions for 
their growth in their natural habitats (Ali et  al.2013; Akponah 2013; Kumar et  al. 
2014; Smith et  al. 2015). In metal-contaminated soils, the siderophores and plant 
growth hormones are produced by plant-associated microbes (Pattus and Abdallah 
2000; Wu et al. 2006; Schalk et al. 2011; Ullah et al. 2015). The secretion of sidero-
phores by fungi and bacteria is dependent on several factors like soil pH, nutrient 
availability in soils and type and concentration of trace metals (Rajkumar et al. 2010; 
Sessitsch et al. 2013; Yu et al. 2014).

8.1.2	 �Heavy Metal Resistance in Fungi

Trace metals like Cu, Ni, Zn, Cd and Mn present in paper mill effluent can be 
removed by indigenous fungi isolated from effluent itself (Khan 2000, Karn and 
Reddy 2012). Biosorption of metal is carried out by (1) extracellular accumulation/
precipitation, (2) cell surface sorption/precipitation and (3) intracellular accumula-
tion through the cell wall of microorganisms (Volesky and Holan 1995; Valix et al. 
2001; Madhaiyan et al. 2007; Ma et al. 2016). Penicillium, Aspergillus, Trichoderma, 
Cladosporium, etc., are found to be very useful for the removal of trace metals 
(Dursun 2008; Ezzourhi et al. 2009; de Lima et al. 2011). El-Morsy (2004) reported 
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that Cunninghamella echinulata biomass could be employed as a biosorbent of 
metal ions in waste water. De Lima et al. (2013) and Bello and Abdullahi (2016) 
also studied the cadmium tolerance by Cunninghamella elegans by the polyphos-
phate metabolism. Trichoderma sp. produces organic acids like fumaric acid, citric 
acid and glycolic acid which can decrease the pH in alkaline soil and thus increase 
the solubility of macro- and micronutrients necessary for plant growth and metabo-
lism (Malgorzata et al. 2014; Song et al. 2015).

8.1.3	 �Heavy Metal Resistance of Bacteria

Heavy metals can decrease carbon mineralization, nitrogen transformation and soil 
enzyme activities, microbial numbers (CFU), biomass (Borjesson et al. 2012) and 
frequency of trace metal-resistant bacteria (Wang et al. 2007, Kanmami et al. 2012). 
The molecular fingerprinting techniques are also useful to study the changes in the 
microbial community in trace metal stress conditions (Anyanwu et al. 2011; Andrew 
et al. 2013). Bacterial populations negatively affected by trace metals. Bacteria are 
found to develop five important mechanisms to detoxify the trace metals available 
in contaminated soils: (1) extracellular detoxification, (2) extracellular sequestra-
tion, (3) reduced permeability, (4) intracellular sequestration and (5) export. These 
resistant mechanisms are encoded in bacterial plasmids and transposons due to 
spontaneous mutation and gene transfer (Osborn et al. 1997; Karelová et al. 2011; 
Cetin et al. 2012; Zhou et al. 2013). Pal et al. (2004) reported Ni-resistant genes in 
Gram-positive and Gram-negative bacterial isolates from Ni-rich serpentine soil. 
In Gram-negative bacteria, the czc-genes encode for a cation-proton antiporter 
(CzcABC) which is responsible for the resistance against Cd, Zn and Co metals 
(Nies 1995; Harriso et al. 2007; Abdelatey et al. 2011; Mindlin et al. 2016).

The trace metal tolerance by a particular group of bacteria or isolate in artificial 
medium supplemented with trace metal showed high tolerance level as reported by 
Ahmed et al. (2001), Hayat et al. (2002) and Rajbanshi (2008). Olukoya et al. (1997) 
isolated 228 trace metal-resistant bacteria belonging to 9 genera, and the most com-
mon genera were Staphylococcus, Streptococcus and Bacillus found to be resistant 
to cobalt, zinc, copper, nickel and mercury. Temperature is also a determined factor 
that affects the growth of bacteria and bioaccumulation of trace metals (Lee et al. 
2011a, b). The gene expression study revealed that mercuric ion (merA) and chro-
mate (chrB) genes were downregulated in all the strains of bacteria, i.e. S. aureus, 
Bacillus subtilis, B. cereus, Pseudomonas sp. and Bordetella sp., when treated with 
Co and Cd. The expression level of genes merA, chrB, czc D and ncc A in these 
bacterial strains was measured by real-time PCR method (Abou-Shanab et al. 2007). 
Nies (1999) and Hirak and Das (2014) compared the metal resistance physiology in 
63 species of bacteria and examined the protein-level similarities and suggested that 
these metal-resistant bacteria can be developed into metal pollution biosensors. 
Long et al. (2012) described the importance efflux transporters as a metal tolerance 
lactic by bacteria. Braud et al. (2010) reported a low level of toxicity of trace metals 
like Ni, Cu, Zn, Cd and Pb in Pseudomonas aeruginosa. Chitinophaga eiseniae was 
also reported as a trace metal tolerant by Yasir et al. (2011) and Gao et al. (2012); 
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Stan et  al. (2011) studied the significant increase of growth, abundance, genetic 
diversity, nodulation ability and efficacy in the diversity of Rhizobium sp. in the soil 
polluted with copper, zinc and lead. Hemida et al. (2012) and Hao et al. (2014) also 
discussed the potential role of legume-rhizobia symbiosis in aiding phytoremedia-
tion. Hijri et al. (2014) also studied the linkage between fungal and bacterial com-
munities in rhizosphere in hydrocarbon-contaminated soil and their significant 
effect for plant productivity.

The present study was carried out to understand and evaluate the status of heavy 
metal-resistant fungi, bacteria and actinomycetes in the Hindustan Paper Corporation 
(HPC), Assam. Geographically the site is situated at longitude of 24°41′29.9˝N and 
latitude at 92°45′25.9˝E.

8.1.4	 �Characterization of Fungal and Metal-Resistant Bacteria 
Isolates

The fungal isolates were isolated and were identified to species level using colony diam-
eter and spore measurement following references and monographs adopted by Gilman 
(1957) and Raper and Fennell (1965). The fungal DNA was isolated with help of nucleic 
acid and protein purification kit (Macherey-Nagel, USA). The fungal strains have been 
characterized by PCR with (forward) ITS1 5′-TCCGTAGGTGAACCTGCGG-3′ and 
(reverse) ITS43′TCCTCCGCTTATTGATATGC-5′ (White et al. 1990).

The isolation and purification of chromosomal DNA as well as the amplification 
and sequencing of partial 16S rRNA gene of potential metal-resistant bacteria iso-
late was carried out. Bacterial 16S rDNA sequences were amplified using the 27F 
Lane (1991) and 1492R Turner et al. (1999) primer sets.

The selected bacterial isolate was tested for their resistance to different trace 
metals by their growth in nutrient broth tubes containing various concentrations of 
trace metals (0.1, 0.5, 2.0, 4.0 mM). The metals selected for the present investiga-
tion included Ni, Cu, Zn and Cd. The bacterial growth was determined by measur-
ing the optical density using spectrophotometer at 540 nm. Relative growth of the 
isolate was expressed as the percentage of those obtained in untreated control. 
Lethal dose (LD-50) was estimated for all the tested bacterial isolates (Essam et al. 
2013; Anderson and Hughes 2014). DNA sequencing was performed on an Applied 
Biosystems 3730xl DNA Analyzer (Applied Biosystems, Carlsbad, CA). The 
nucleotide sequence of bacterial isolate is thus obtained by the use of database using 
the ‘NCBI BLAST’ (Altschul et al. 1990).

8.1.5	 �Metal-Resistant Fungal Isolates

Twelve fungal strains were isolated from polluted soil contaminated with trace 
metals in paper mill effluents and tested with different trace metals in different 
concentrations. The 12 genera like Aspergillus, Penicillium, Cladosporium, 
Cunninghamella, Trichoderma, Fusarium and Hypocrea showed significant toler-
ance against various trace metals (Table 8.1). Minimum inhibitory concentration 
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(MIC) of the isolated fungal strains against the different concentration of trace 
metals was estimated and found that, at higher metal ion concentrations, most of 
the tested fungal strains were found tolerant and showed strong growth (Table 8.2).

In the presence of various concentrations of nickel, the fungal strains which were 
able to grow in 15–20 mM were Trichoderma sp., Penicillium sp., Rhizomucor sp., 
Cladosporium sp. and Hypocrea sp. The other tested strains like Penicillium, 
Aspergillus and Cunninghamella were also to grow in MIC of 10–15 mM (Plates 
8.1 and 8.2).

In the presence of various concentrations of copper, most of the tested strains 
showed a very low MIC except Cunninghamella and Cladosporium where MIC 
range was 5–10 mM. Their mycelia became diffused compared with the control. All 
strains studied could not grow in higher concentrations except Rhizomucor sp. 
(KC602345) which showed the highest MIC of 15–25 mM. The white colour of the 

Table 8.1  Genetic characteristics of isolated fungal strains

Sl no: Isolated fungal strains
Accession 
number Hit in NCBI database

Max indent 
(%)

1. Penicillium sp. KC602310 Penicillium aculeatum 99
2. Trichoderma sp. KC602314 Trichoderma koningiopsis 94
3. Cunninghamella sp. KC602315 Cunninghamella sp. 90
4. Trichoderma sp. KC602331 Trichoderma harzianum 97
5. Penicillium sp. KC602344 Penicillium simplicissimum 98
6. Rhizomucor sp. KC602345 Rhizomucor variabilis 99
7. Fusarium sp. KC602349 Fusarium proliferatum 99
8. Aspergillus sp. KC602350 Aspergillus tamarii 98
9. Penicillium sp. KC602359 Penicillium janthinellum 99
10. Aspergillus sp. KC602371 Aspergillus niger 99
11. Hypocrea sp. KC602373 Hypocrea lixii 95
12. Cladosporium sp. KC602374 Cladosporium tenuissimum 100

Table 8.2  Minimum inhibitory concentration (MIC) for tested fungal strains

Fungal isolates accession numbers
MIC (Mm)
Ni Cu Zn Cd

Penicillium sp. KC602310 10<mic>15 1<MIC>2.5 10<mic>15 2.5<MIC>5
Trichoderma sp. KC602314 10<mic>15 1 < MIC>2.5 20<mic>25 15<mic>20
Cunninghamella 
sp.

KC602315 10<mic>15 5<MIC>10 15<mic>20 5<MIC>2.5

Trichoderma sp. KC602331 15<mic>20 1<MIC>2.5 20<mic>25 Cont<MIC>1
Penicillium sp. KC602344 15<mic>20 1<MIC>2.5 20<mic>25 15<mic>20
Rhizomucor sp. KC602345 15<mic>20 15<mic>25 15<mic>25 15<mic>20
Fusarium sp. KC602349 5<MIC>10 1<MIC>2.5 15<mic>25 Cont<MIC>1
Aspergillus sp. KC602350 5<MIC>10 1<MIC>2.5 15<mic>25 5<MIC>10
Penicillium sp. KC602359 15<mic>20 2.5<MIC>5 20<mic>25 1<MIC>2.5
Aspergillus sp. KC602371 10<mic>15 1<MIC>2.5 20<mic>25 15<mic>20
Hypocrea sp. KC602373 15<mic>20 2.5<MIC>5 15<mic>20 1<MIC>2.5
Cladosporium sp. KC602374 15<mic>20 5<MIC>10 15<mic>20 2.5<MIC>5
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mycelium became blue green due to accumulation of Cu ions inside the cell wall of 
the tested fungi (Plate 8.3). The growth rate of fungi tested was reduced, and their 
conidiogenesis was also slowed down. Addition of copper sulphate to the PDA 
resulted in the growth of the isolated fungal strains and changed the colour and 
morphology of the mycelium. The mycelium of Cladosporium sp. (KC602374) 
secreted a deep brown substance (Plate 8.4), and the Fusarium isolate (KC602349) 
(Plate 8.5) secreted violet pigment due to the response to the metal stress.

Plate 8.1  The growth of Penicillium sp. (KC602310) in nickel

Plate 8.2  The growth of Aspergillus sp. (KC602345) in nickel
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Plate 8.3  The growth of Rhizomucor sp. (KC602345) (a and b) in copper

Plate 8.4  The growth of Cladosporium sp. (KC602374) in copper

Plate 8.5  The growth of Fusarium sp. (KC602349) in copper
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The toletance Index of all the tested fungal isolates in 5 different concentrations of
Nickel (Ni)
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Fig. 8.1  The tolerance index of fungal strains in nickel (Ni)

In the presence of various concentrations of cadmium, the isolates Trichoderma, 
Aspergillus sp. and Penicillium sp. showed a high MIC with 15–20 mM. When the 
concentration of cadmium increased in the media, the absorbance of the fungal 
culture was found to be decreased. The most tolerant fungi which were found to 
grow in high concentration of the trace metals were Penicillium sp. (KC602310), 
Trichoderma sp. (KC602314), Aspergillus sp. (KC602350), Fusarium sp. 
(KC602349), Hypocrea sp. (KC602373), Penicillium janthinellum (KC602344) and 
Cladosporium (KC602374). The value of tolerance index of Penicillium sp. 
(KC602310 and KC602359), Aspergillus sp. (KC602350 and KC602371), 
Rhizomucor sp. (KC602345), Fusarium sp. (KC602349) and Trichoderma sp. 
(KC602314 and KC602331) showed a maximum value of 0.9 tested against all the 
metals, i.e. Ni, Cu, Zn and Cd (Figs. 8.1, 8.2, 8.3 and 8.4).

8.1.6	 �Identification and Characterization of Metal-Resistant 
Bacteria Isolates

Twenty-two bacterial isolates showed resistance to different trace metals, and the 
molecular characterization for these isolates was carried out (Table 8.3). The trace 
metals like Ni, Cu, Zn and Cd were selected in a concentration ranged from 0.1 to 
4.0  mM for identification. Among the various genera, Bacillus, Agromyces, 
Microbacterium, Arthrobacter, Chitinophaga, Rhizobium and Kribbella were show-
ing a range of 30–40% relative growth at the higher concentrations of all heavy 
metals tested. These bacterial isolates are capable to grow at higher concentrations 
of trace metals, and thus they were resistant to Ni, Cu, Zn and Cd. The species of 
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Agromyces, Bacillus, Chittinophaga and Kribbella (isolates 1, 3, 4, 6, 10) showed 
significant relative growth values ranging from 40 to 70% at 2 mM and 4 mM con-
centrations of zinc. The species of Rhizobium, Bacillus and Arthrobacter showed a 
range of 20–60% of relative growth at 2 mM and 4 mM concentrations of nickel, 
copper and cadmium. The species of Bacillus and Microbacterium (isolates 18 and 
19) showed a range of 20–30% of relative growth at 2 mM and 4 mM concentrations 
of cadmium.

The toletance Index of all the tested fungal isolates in 5 different concentrations of
Copper (Cu)
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Fig. 8.2  The tolerance index of fungal strains in copper (Cu)
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Fig. 8.3  The tolerance index of fungal strains in zinc (Zn)

8  Tolerance of Microorganisms in Soil Contaminated with Trace Metals: An Overview



174

The toletance Index of all the tested fungal isolates in 5 different concentrations of
Cadmium (Cd)
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Fig. 8.4  The tolerance index of fungal strains in cadmium (Cd)

Table 8.3  List of bacterial strain tested for trace metal resistance and their accession numbers 
(NCBI)

Isolate no:
Name of the bacterial genus of max 
indent of 99% Accession number

1. Agromyces sp. KC602240
2. Arthrobacter sp. KC602245
3. Bacillus cereus KC602258
4. Bacillus sp. KC602265
5. Chitinophaga sp. KC602266
6. Chitinophaga sp. KC602269
7. Rhizobium sp. KC602276
8. Microbacterium sp. KC602277
9. Bacillus sp. KC602282
10. Kribbella sp. KC602294
11. Arthrobacter sp. KC602298
12. Bacillus sp. KC602301
13. Arthrobacter oryzae KC602305
14. Arthrobacter nicotinovorans KC602306
15. Arthrobacter globiformis KC602307
16. Arthrobacter humicola KC602308
17. Arthrobacter sp. KC602309
18. Bacillus aryabhattai KC602264
19. Microbacterium sp. KC602239
20. Agromyces sp. KC602270
21. Bacillus drentensis KC602283
22. Bacillus sp. KC602286
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The isolated trace metal-resistant bacterial strains that were identified with their 
accession numbers are Bacillus cereus (KC602258), Bacillus sp. (KC602265), 
Chitinophaga sp. (KC602266), Chitinophaga bacter (KC602269), Rhizobium sp. 
(KC602276), Microbacterium sp. (KC602277), Bacillus sp. (KC602282), Kribbella 
sp. (KC602294), Arthrobacter sp. (KC602298), Arthrobacter oryzae (KC602305) and 
Arthrobacter nicotinovorans (KC602306) and were found to show positive test as 
tested against the 15 sugars, i.e. glucose, sucrose, xylose, maltose, rhamnose, rafffi-
nose, cellobiose, dextrose, galactose, arabinose, lactose, sorbitol, melibiose, saccharose 
and trehalose. All the bacterial strains were tested for antibiotic sensitivity (Bauer 
1996). Most of the isolates of Bacillus, Agromyces, Microbacterium, Arthrobacter, 
Chitinophaga, Rhizobium, Brachybacterium and Kribbella appeared to be inhibited by 
eight antibiotics and resistant to ampicillin, while Chitinophaga sp. (KC602269) was 
resistant to chloramphenicol (Adesoji et al. 2015). Among all the strains tested, the 
isolates (KC602240, KC602277, KC602301, KC602283 and KC602286) showed 
resistance to ampicillin, whereas the rest showed no inhibition. The antibiotics like 
streptomycin, polymyxin B, vancomycin, tetracycline, gentamicin, amikacin, cipro-
floxacin and levofloxacin were found to be susceptible to all the 22 tested strains.

Lethal dose (LD-50) was estimated for all the tested bacterial isolates. The species 
of Arthrobacter, Chitinophaga, Kribbella, Microbacterium, Bacillus, Agromyces 
and Rhizobium showed a significant range of LD-50 values (0.2–1.8) tested against 
zinc, (0.3–1.6) for copper, (0.6–1.5) for nickel and (0.1–0.8) for cadmium. The high-
est LD-50 value of 1.8 was showed by the Chitinophaga sp. (KC602266), while the 
highest LD-50 value of 1.6 was showed by Chitinophaga bacter sp. (KC602269) and 
Microbacterium sp. (KC602277) against Ni. The highest LD-50 value of 0.8 was 
showed by the Chitinophaga sp. (KC602266), Arthrobacter (KC602303) and 
Agromyces (KC602270) against the metal Cd (Fig. 8.5).

The fungal and bacterial sequences were analysed by the Basic Local Alignment 
Tool (BLAST) for finding the closest homologous sequences. These sequences 
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Fig. 8.5  Lethal dose (LD−50) of bacteria isolates (1–22)
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were saved in a fasta format (*.fasta or *.txt) and aligned with CLUSTAL X2. The 
output of CLUSTAL (i.e. *.aln file) was saved for the output of MEGA version 5. 
Phylogenetic and molecular evolutionary analysis was carried out by MEGA ver-
sion 5 (Tamura et  al. 2011). A distance matrix was made based on nucleotide 
sequence homology, and neighbour joining (NJ) consensus trees were obtained 
using Kimura-2 parameter substitution model (MEGA 5) (Saitou and Nie, 1987). 
The bootstrap values above 50% and the genetic distance scale are shown for the 
relationship of the isolated fungal (Figs. 8.6, 8.7, 8.8, 8.9 and 8.10) and bacterial 
strains (Figs. 8.11, 8.12, 8.13, 8.14, 8.15, 8.16 and 8.17) with their closely related 
neighbouring species.

The present experimental findings revealed the effects of trace metals on micro-
bial diversity, i.e. fungi, bacteria and actinomycetes, in the polluted site of Hindustan 
Paper Corporation (HPC) paper mill. The diversity and abundance of soil microor-
ganisms were found to be affected by naturally occurring environmental variables, 
including soil types, soil pH, moisture content and natural availability. Carson et al. 
(2010) and Stefanowicz et al. (2010) also reported that the soil microorganisms are 
affected positively by environmental factors. All the isolated strains of fungi, 
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bacteria and actinomycetes were found to be resistant to various trace metals at 
higher concentrations. Similar observations were observed by Freitas et al. (2009) 
and Appenroth (2010). Soil microbial populations were found to multiply even 
under metal-contaminated soil which in turn maintains the diversity of fungi and 
bacteria (Chen et al. 2014). The resistance of the selected strains to Cr6+, Pb2+, Zn2+ 
and Cu2+ was determined by the dilution method to calculate the tolerance index for 
all the tested fungi. Penicillium sp. (KC602310), Trichoderma sp. (KC602314), 
Aspergillus sp. (KC602350), Fusarium sp. (KC602349), Hypocrea sp. (KC602373), 
Penicillium janthinellum (KC602344) and Cladosporium (KC602374) were 
reported for their great importance in removal of trace metals from contaminated 
site. Some deuteromycetes have been reported by Ghorbani et al. (2007) and Zafar 
et al. (2007). Metals such as copper and zinc are essential to bioactivities; however, 
they tend to show toxicity after a certain level.

The fungal strains which were able to grow in 15–20 mM were Trichoderma sp., 
Penicillium sp., Rhizomucor sp., Cladosporium sp. and Hypocrea sp. The other tested 
strains like Penicillium, Aspergillus and Cunninghamella were also to grow in MIC of 
10–15 mM (Table 8.2). Rao et al. (2005) and Sun and Shah (2007) also observed that 
with the increasing metal concentration of trace metals, the fungi Aspergillus niger 
and Cunninghamella echinulata can increase the rate of metal removal by saturation 
adsorbent concentrations by increasing mobilization of metal ions (Burford et  al. 
2003, Thippeswamy et al. 2012, 2014). Penicillium and Aspergillus showed a higher 
metal tolerance against nickel. Similar effects were also observed by Shivkumar et al. 
(2011) who discussed the high tolerance and bioaccumulation ability in Penicillium 
sp. and Rhizopus sp. against the various trace metal like Cu2+, Zn2+, Cd2+, Ni2+ and 
Pb2+. The growth of all fungi tested was decreased after addition of copper in high 
concentration in comparison with zinc, nickel and cadmium. All strains studied could 
not grow in higher concentrations except Rhizomucor sp. (KC602345) which showed 
the highest MIC of 15–25 mM. Van and Christov (2002) and Tripathi et al. (2007) 
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also observed that Rhizomucor pusillus adsorption capacity was isolated from effluent 
plant. Rouhollahi et al. (2014) studied the nickel biosorption capacity of Rhizomucor 
pusillus by enzymatic and alkali treatments. The white colour of the mycelium became 
blue green due to accumulation of Cu ions inside the cell wall of the tested fungi. 
Copper tolerance in fungi ascribed to diverse mechanisms also described by Cervantes 
and Gutierrez (1994). The most of the tested strains showed a very low MIC except 
Cunninghamella and Cladosporium where MIC range was 5–10 mM. The morphol-
ogy of strains was highly affected by the presence of Cu. Their mycelia became 
diffused compared with the control. The growth rate of fungi tested was reduced, and 
their conidiogenesis was also slowed down. In Cladosporium sp. (KC602374), the 
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mycelia changed into deep brown colour in the high concentration of Cu. The 
tolerance of the tested fungi to high copper concentrations could be related to 
metallothioneins and other thiol compounds which may be promising detoxifying 
agents for copper as reported by Malik (2004) and Dusrun (2008). Similar bio-
sorption mechanisms were also reported by Juliana et al. (2013) who discussed 
the biomass of Cladosporium as an efficient biosorbent of copper.

The fungal colour and morphology were both affected by high Zn concentrations 
in Fusarium sp. as the mycelium changed to violet pigment which is probably due 
to the stress imposed by the Zn. The zinc MIC was in the range 20–25  mM, 
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15–20 mM, 10–15 mM and 5–10 mM for the Fusarium sp. Biosorption of various 
trace metals by Fusarium sp. was also reported earlier by Sen (2011), Zhang et al. 
(2012) and Verma et al. (2016).

The isolates Trichoderma, Aspergillus niger, Cunninghamella sp. and Penicillium 
sp. showed a high MIC with 15–20 mM in Cd-amended media. DeLima et al. (2011, 
2013) also reported a higher potential of cadmium tolerance in the fungi Trichoderma 
harzianum and Cunninghamella elegans. The dominant genus of fungi identified 
and characterized were Aspergillus, Penicillium, Fusarium, Cunninghamella, 
Trichoderma, Rhizomucor, Cladosporium and Hypocrea by PCR with (forward) 
ITS1 and (reverse) ITS4 from the polluted soil. This may be due to the processes of 
valence transformation, active uptake, complexation, crystallization and biosorp-
tion of trace metals to the fungal cell walls (Jaeckel et al. 2005; Willie et al. 2007; 
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Palanivel et al. 2010; Anahid et al. 2011; Iram et al. 2012; Do Carmo et al. 2013; 
Rhodes 2013; Akhtar et al. 2013). Yazdani et al. (2009) and Malgorzata et al. (2014) 
found the application of Trichoderma sp. on various plant and found that this fungus 
has positive effects on increasing the biomass, soil parameters (C, N and P) and 
solubility of trace metals in soil, thereby enhancing phytoextraction in the plants. 
Copper tolerance of various Trichoderma sp. is also studied by Petrovic et al. (2014). 
Teng et al. (2015) also studied the phytoremediation in Cd-contaminated soil by 
Trichoderma reesei FS10-C strain.
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A total of 22 bacterial isolates exhibited resistance to different trace metals. 
These bacterial isolates were capable to grow at higher concentrations of trace met-
als and showing different degree of resistance to Ni, Cu, Zn and Cd. The major 
bacterial genera were identified as Arthrobacter, Brachybacterium, Chitinophaga, 
Kribbella, Microbacterium, Bacillus, Agromyces and Rhizobium. The resistance of 
these bacterial strains towards trace metal could be a result of the interaction 
between the metals and amphoteric groups such as the carboxyl and phosphoryl 
groups. In the present study, Gram-positive bacteria showed a major group for 
absorption capacity than the Gram-negative isolates as tested against different trace 
metals as Gram-positive bacteria have high chemisorption sites (Tunali et al. 2006, 
Long et al. 2012). The glycoproteins present on the outer site of Gram-positive bac-
terial cells have more potential binding sites than the Gram-negative bacteria having 
an outer layer of lipopolysaccharide (LPS), phospholipids and proteins (Gupta et al. 
2012, 2016; Issazadeh et al. 2013).

The isolates of Bacillus, Agromyces, Microbacterium, Arthrobacter, 
Chitinophaga, Rhizobium, Actinobacterium and Kribbella showed positive activity 
towards urease, nitrate, H2S production, citrate utilization, methyl red, malonate 
utilization, oxidase production, starch amylase and catalase activity. The Gram-
positive isolates found to be positive against catalase and negative against oxidase 
activity were identified as Brachybacterium, Agromyces, Arthrobacter, Kribbella 
and Microbacterium. Similar observations were reported by different workers for 
these Gram-positive strains of same bacterial strain: Agromyces sp. (Chen et  al. 
2011; Thawai et al. 2011), Arthrobacter sp. (Elanvogvan et al. 2010; Rosales et al. 
2012; Santa et al. 2013; Sahoo et al. 2014; Swer et al. 2016), Chitinophaga sp. (Gao 
et al., 2015), Kribbella sp. (Clara et al. 2008) and Microbacterium sp. (Mondani 
et al. 2012; Brown et al. 2012; Tappe et al.2013).

The strains of Microbacterium sp. showed a positive catalase activity and nega-
tive oxidase and H2S production. Piccirillo et  al. (2013) also observed similar 
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biochemical activities in Microbacterium oxydans to be tolerant against Zn (II) and 
Cd (II). The isolated strains of Brachybacterium sp. were observed negative for 
catalase and oxidase activities and positive against starch hydrolysis and found to 
have relative growth range of 40–80% on higher concentrations of Zn, Cu, Ni and 
Cd at 2 mM and 4 mM (Wang et al. 2009; Park et al. 2011). Various strains of 
Arthrobacter sp. were isolated and found to be resistant against different trace met-
als (Paris and Blondeau 1999; Bafana et al. 2010; Inga 2013). The genus Kribbella 
sp. was isolated and showed 40–90% of relative growth on different concentrations 
of trace metals. Biochemical tests showed positive against catalase activity, nitrate 
reduction and H2S production and negative against oxidase production. Similar 
chemotaxonomic characteristics were reported earlier by Carlsohn et  al. (2007) 
who also reported the greater accumulation capacity of Kribbella aluminosa 
against the metal Pb, Fe, Zn and Cu when grown in medium with 200 ppm of Pb, 
Fe and Zn and 100 ppm of Cu.

Bacillus sp. was found to be resistant with a relative growth of 30–40% on higher 
concentrations of all the trace metals. The isolates were found to be positive against 
nitrate reduction, citrate utilization, oxidase production, starch amylase, methyl red 
test and catalase activity. Similar biochemical activities and multi-tolerance and 
bioremediation of trace metals in Bacillus strains were observed earlier by various 
workers (Rathnayake et al. 2009; Elsilk et al. 2014). Chitinophaga sp. was negative 
against oxidase, catalase and starch amylase tests. The similar biochemical charac-
teristics were observed in Chitinophaga sp. by Lee et al. (2009) and Wang et al. 
(2014). Rhizobium sp. is a Gram-negative, aerobic, non-endospore-forming rods, 
showed positive results against nitrate and catalase test and negative against 
oxidase, indole, VP test and urease test (Kuykendall et al. 2005; Grison et al. 2015). 
Rhizobium sp. was found to grow with 20–40 % of relative growth of copper and 
nickel at higher concentrations. The resistance of Rhizobium towards trace metals 
can produce huge amount of extracellular polysaccharide (EPS) and lipopolysac-
charide (LPS), which can attach most of the metals extracellularly, acting a first-
defence barrier against trace metal stress (Mohamed et  al. 2012; Mandal and 
Bhattacharyya 2012). Our results were supported by Reeve et al. (2002), Hemida 
et al. (2012) and Hao et al. (2014) who also observed that Rhizobium played a very 
important role of legume-rhizobia symbiosis in aiding phytoremediation of polluted 
site contaminated with trace metals (Mergeay et al. 2003; Piotrowska-Seget et al. 
2005; Zhang et al. 2011; Aafi et al. 2012; Rajkumar et al. 2012; Yang et al. 2012; 
Adel et al. 2014).

8.2	 �Conclusion

The present study focused on the effect of trace metal on the diversity of microor-
ganisms (fungi, bacteria, actinomycetes) in the Hindustan Paper Corporation (HPC), 
Cachar. The most tolerant fungi grown in high concentration of the trace metals 
were identified as Penicillium sp. (KC602310), Trichoderma sp. (KC602314), 
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Aspergillus sp. (KC602350), Fusarium sp. (KC602349), Hypocrea sp. (KC602373), 
Penicillium janthinellum (KC602344) and Cladosporium sp. (KC602374).

The most tolerant bacteria grown in high concentration of the trace metals were 
identified as Bacillus cereus (KC602258), Bacillus sp. (KC602265), Chitinophaga 
sp. (KC602266), Chitinophaga bacter (KC602269), Rhizobium sp. (KC602276), 
Microbacterium sp. (KC602277), Bacillus sp. (KC602282), Kribbella sp. 
(KC602294), Arthrobacter sp. (KC602298), Arthrobacter oryzae (KC602305) and 
Arthrobacter nicotinovorans (KC602306).

From the results of the present investigation, it can be concluded that biotic and 
abiotic stress in trace metal-polluted soil of the paper mill greatly influenced the 
enzyme activity, composition and function of the indigenous microorganisms 
(fungi, bacteria, actinomycetes). The current study clearly showed that the native 
dominant resistant indigenous fungal, bacterial isolates can be used as a biosensor 
to assess the trace metal toxicity in the polluted environment. Thus, future research 
may be proposed for further advances in microbial genetics by studying the mecha-
nism of metal-microbe-plant interactions and their potential use as metal-resistant 
microbial inoculants in microbial-assisted phytoremediation.

8.2.1	 �Future Prospective

With the increased demand of paper, the treatment of effluents emerges as most 
pressing problem in environmental protection. The current study clearly showed 
that the native dominant resistant indigenous fungal, bacterial isolates can be used 
as a biosensor to assess the heavy metal toxicity in the polluted environment con-
taminated with paper mill effluents. A further understanding of metal-microbe-plant 
interactions will increase our knowledge to design microbial-assisted phytoreme-
diation in the trace metal-contaminated sites.
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