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Abstract The power amplifier (PA) is naturally nonlinear in its operation. To get
good energy efficiency, the PA is needed to function at its saturation level and
results in the generation of the nonlinear outputs. To counter the nonlinearization in
PA, a pre-distorter is appropriately designed and introduced in front of the PA. In
this paper, an innovative pre-distorter is introduced by employing adaptive genetic
algorithm (AGA) and their results are compared with that of genetic algorithm
(GA) and particle swarm optimization (PSO) algorithm. The Wiener model is
considered to model the PA, and the pre-distorter is built up by means of
Hammerstein model. The new approach simulated using MATLAB and the outputs
achieved are analyzed. The pre-distortion using AGA has produced better results in
terms of MSE compared to that produced using PSO and GA optimization
algorithms.
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1 Introduction

Power amplifiers (PAs) are the important subunits in almost all the wireless com-
munication systems. PAs are designed to boost the power level of the signal before
transmitting it through the antenna. They also show the memory effects [1], which
is not desirable. Further, they tend to be invariably nonlinear. The amplifiers which
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are incredibly linear with good efficiency have become a rare specimen. The
pre-distorter recompenses for the nonlinear distortion envisaged by the PA by
working on the input signal. The theory of the digital pre-distorter (DPD) is easy to
comprehend. Here, a nonlinear distortion function is generated within the digital
horizon which represents the inverse of the amplifier function [2]. The DPD will be
connected in front of the PA. In fact, it is very easy to devise an incredibly linear
and inferior distortion system in principle, by connecting the two nonlinear systems
(DPD and PA) in series.

The process followed in this paper offers the pre-distortion before the power
amplifier with the help of the optimization method to achieve linearity in the
combined system. The PA is modeled using Wiener model, and the pre-distorter is
designed using Hammerstein model. At the output of Wiener HPA model, the
authentic constraint vector is achieved and it is optimized by means of optimization
approaches [3] such as particle swarm optimization (PSO) [4], genetic algorithm
(GA) and adaptive genetic algorithms (AGA). In Sect. 2, a brief account of the
Wiener HPA model and basics of PSO, GA, and AGA are given which is used for
the optimization of Wiener HPA results to devise a pre-distorter. Test outcomes and
consequential appraisal are presented in Sect. 3. Finally, the conclusions are
effectively exhibited in Sect. 4.

2 Methodology

2.1 Power Amplifier Modeling

The PA model used here is the Wiener model which incorporates a memoryless
nonlinearity preceded by a linear filter [2]. The inverse of Wiener model can be
easily obtained by using Hammerstein model (a linear filter preceded by a mem-
oryless nonlinearity).

The linear filter coefficient vector for the liner filter with order Kl can be denoted
by

h ¼ h0h1. . .hKl½ �T ð1Þ

The PA provides amplitude and phase distortion to the input signal applied to it
[5], and this can be considered as the traveling wave tube (TWT) nonlinearity. Let

t ¼ aabaa£b£
� �T

gives the parameter vector for TWT nonlinearity [6] where
aa;baa£b£ are different parameters of the TWT nonlinearity.
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2.2 Wiener Model Identification

For the Wiener parameter identification purpose, a normalized 64-QAM signal was
generated and is then applied to Wiener model to construct training data set {x(k),y
(k)}, where x(k) is the input QAM and y(k) is the output from the model, and the
diagram is shown in Fig. 1. The true parameter of memory high-power amplifier is
estimated using the training data. The true parameter vector is defined as

b ¼ b1b2. . .bNb

h iT
ð2Þ

where Nb represents the total number of parameter to be estimated, that is, the sum
of number of linear filter coefficients and number of nonlinearity coefficients. The
training data input x(k) is given to the model and it produces an output y(k). The
output from the estimated Wiener model is indicated as ŷ(k). The error results
between the desired output y(k) and the model output ŷ(k) is e(k) = y(k) − ŷ(k);
thus, mean-square error cost function can be given by

J ~b
� �

¼ 1
K

XK
k¼1

e kð Þj j2 ð3Þ

The true parameter vector b is estimated by obtaining the solution to the fol-
lowing optimization problem

b̂ ¼ arg minb̂2£J ~b
� �

ð4Þ

Fig. 1 Wiener model identification
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where £ the search space is given as

£,
YNb

i¼1

bi;minbi;max

� � ð5Þ

The true parameter b is an element of the search space. The cost function (3) is a
nonlinear function and has local minima. The above challenging identification
problem is solved here using PSO algorithm, GA, and AGA.

2.3 Genetic Algorithm (GA)

The genetic algorithm [7] represents an adaptive global search technique in
accordance with the evolutionary data of genetics. For the purpose of solving the
optimization challenges, the genetic algorithm is effectively utilized as an arbitrary
search technique. In the GA, the iterations are represented as the generation of
modernized solutions and the population is characterized as the chromosomes.

2.4 Adaptive Genetic Algorithm (AGA)

The authentic constraint is achieved after the Wiener HPA model is adapted. The
original population is allotted by the authentic constraint output. The traditional
genetic algorithm is optimized by means of the mutation operator. The mutation
function carried out in the innovative technique is the Cauchy mutation. The
adaptive genetic algorithm is carried out by means of the steps detailed below:

1. Initialization:

• Arbitrarily produce an initial population of individuals by employing a
symbolic illustration technique.

2. Generate Fitness Function:

• Estimate the fitness of the individuals by calculating the bond energy of the
candidate solutions characterized by them.

• Choose a pair of individuals from the present population by employing a
conventional roulette wheel selection operator (step A).

3. Crossover Operation:

• The chosen individuals are reassembled to create a pair of offspring by
employing the partially matched crossover in accordance with the crossover
rates.
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• Appraise the fitness of the two offspring by evaluating the bond energy of the
candidate solutions characterized by them.

• Place on record the percentage of perfection, or the percentage of depriva-
tion, on their fitness values on account of the crossover function.

4. Mutation Operation:

• Carry out the process of the conventional symbolic mutation of the two
offspring and appraise their fitness by evaluating the bond energy of the
candidate solutions characterized by them.

• Place on record the percentage of perfection, or the percentage of depriva-
tion, of their fitness values as a consequence of the mutation function.

Subsequent to the crossover function, the procedure of mutation is performed
where the new chromosomes with the finest fitness values are mutated. In the novel
technique, the Cauchy mutation is effectively employed for mutating the genes in
the parent chromosomes.

In the Cauchy mutation, the optimal solution is achieved by moving each gene
left in the parent chromosome and is replaced with the newer located genes. Now,
the gene of the parent chromosome is moved one step left and the optimized new
solution is achieved when the mutation procedure is concluded.

5. Updating Population:

• Allot the consequential individuals into a fresh population pool. If the
population size is not achieved, go back to step A.

• Adapt the crossover and mutation rates according to the specified rules.

6. Termination:

• Verify the stopping criterion.
• End the genetic investigation procedure and select the best candidate solu-

tion over time as the ultimate solution if the stopping criterion is fulfilled.
• Or else, move forward to the succeeding generation with the old population

to be substituted by the new population, and go back to step A.

The AGA-optimized Wiener HPA pattern is effectively employed to devise a
pre-distorter model which is exploited to scale down the nonlinear attributes.

2.5 Pre-distorter Design

The pre-distorter is implemented using Hammerstein model as it represents the
inverse form of the Wiener model. The linear filter of Hammerstein model [8] is
made to be inverse of linear filter of identified Wiener power amplifier model, and
inverse nonlinearity [9] of estimated Wiener is used to implement the Hammerstein
nonlinearity.
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Consider the transfer function of the Hammerstein Pre-distorter’s linear filter.

Q zð Þ ¼ z�s
XNh

i¼0

qiz
�i ð6Þ

where qi represents the linear filter coefficient and s is the delay. If H(z) is the
transfer function of linear filter of Wiener model and is a minimum phase filter, then
s = 0. The filter coefficient of pre-distorter can be obtained by solving the linear
equations derived from

Q zð Þ:H zð Þ ¼ z�s ð7Þ

3 Results and Discussions

Figure 2 exhibits the output signal y(k) of the memory power amplifier when
normalized 64-QAM signal, x(k), is given to its input for input back-off value of
5 dB. It is evident from the figure that output signal is spread around the input
signal as a result of memory effect and nonlinearity of power amplifier. It will lead
to larger bit-error rate and adjacent channel interference during transmission.

In this paper, identification process is done using both PSO algorithm and GA
and AGA algorithms. The training data set taken contains 500 samples of nor-
malized 64 QAM data. The noise with standard deviation 0.0 and 0.01 was added as
input, and identification was done for different IBO values such as 5, 10, 15 dB.
The results obtained were averaged over 100 runs.

The parameter vector for the estimated Wiener power amplifier model obtained
for each case is given by

Fig. 2 Output without
pre-distorter
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hT = [0.777822614 0.155516821 0.076451606]
tT = [ 2.137008627 1.137645489 3.935456068 1.996214262] for PSO
hT = [0.765382127 0.153215367 0.077231119]
tT = [2.176933106 1.205994222 4.010059489 2.058612345] for GA and
hT = [0.76918 0.15386 0.07672]
tT = [2.15839 1.15415 3.99853 2.09696] for AGA.

The linear filter of memory length of eight has selected for compensating
memory effect of power amplifier model. Then, solving expression (7) with the help
of estimated Wiener model’s linear filter coefficient, the resulting linear filter
coefficients for each case are given as

hT = [ 1.285640173 −0.257049189 −0.074970543 0.040254684 −0.000679669
−0.003820711 0.000830712 0.000209443] for PSO
hT = [ 1.306536911 −0.261544561 −0.079480117 0.042301686 −0.000448051
−0.004178773 0.000881724 0.000245156] for GA
and
hT = [1.300248917 −0.259939966 −0.078005391 0.041577799 −0.000514716
−0.004053171 0.000861742 0.000232875] for AGA.

The constellation diagrams of output signal from the combined pre-distorter
using PSO, GA, and AGA algorithms combined with Wiener power amplifier
model are shown in Figs. 3, 4, and 5 for IBO = 5 dB (‘x’ represents the output y
(k) and ‘o’ represents the input 64-QAM signal x(k)).

From Figs. 3, 4, and 5, it can be seen that designed pre-distorters almost com-
pletely cancel out the nonlinear distortions and memory effects caused by the
Wiener memory high-power amplifier model. Compared to PSO and GA, the
pre-distorter designed using AGA has produced better results.

Fig. 3 Output with
pre-distorter using GA
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The performance of the designed pre-distorters was evaluated using the fol-
lowing mean-square error metric given in Eq. (8),

MSE ¼ 10 log10
1

K total

XKtotal

k¼1

x kð Þ � y kð Þj j2
 !

ð8Þ

where Ktotal represents the total number of the test data, x(k) was the input signal,
and y(k) was the output from the combined pre-distorter and memory high-power
amplifier system. For calculating the effectiveness of pre-distorter, Ktotal = 20,000

Fig. 4 Output with
pre-distorter using PSO

Fig. 5 Output with
pre-distorter using AGA
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samples of normalized 64 QAM data were allowed to pass through the combination
of pre-distorter and Wiener power amplifier.

The mean-square error metric (MSE) was computed for each pre-distorters by
noting input and output data. The obtained MSE for the pre-distorters is shown in
Table 1 as a function of IBO.

Figure 6 depicts the MSE versus IBO plot for pre-distorters designed using
corresponding estimated parameter vectors, where Wiener power amplifier is
implemented using hT = [0.7692 0.1538 0.0769] and tT = [2.1587 1.15 4.0 2.1].

Table 1 MSC values for
different IBO values

IBO Without PD PSO GA AGA

1 −0.88 −18.6229 −18.24353093 −19.1624

2 −2.20 −23.7221 −23.47215939 −25.1326

3 −3.577 −29.2669 −30.40934644 −34.0816

4 −4.993 −33.0066 −39.62186106 −51.1595

5 −6.427 −35.4421 −44.51344478 −54.6613

6 −7.85 −37.9127 −46.86382147 −57.8648

7 −9.23 −40.3647 −48.1744839 −60.9684

8 −10.54 −42.7472 −49.2292658 −64.0139

9 −11.77 −45.0111 −50.25339467 −67.0112

10 −12.91 −47.1135 −51.28417344 −69.9547

11 −13.98 −49.0264 −52.31811731 −72.8268

12 −14.98 −50.7429 −53.34854158 −75.5979

13 −15.95 −52.2771 −54.37218999 −78.2279

14 −16.91 −53.6579 −55.38871141 −80.6707

15 −17.85 −54.9196 −56.39920396 −82.8851

16 −18.78 −56.0944 −57.40518485 −84.8483

Fig. 6 MSE versus IBO plot
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From Fig. 6 and Table 1, it is clear that pre-distorters designed with AGA-based
identification method have greater reduction in MSE value than pre-distorter
designed using PSO algorithm at lower IBO values. Hence, pre-distorter designed
using AGA can be considered as the best one that provides good linearization.

4 Conclusion

The power amplifiers have steadily surfaced as inevitable modules in the com-
munication systems. In this regard, the HPAs have brilliantly played their role and
are offered a red carpet welcome in the burgeoning gamut of applications, espe-
cially in the fascinating world of the wireless communications. However, the HPAs
are habitually deformed and exhibit a tendency to generate the nonlinear outputs,
thereby miserably failing to attain the saturation level. In the innovative technique,
the Wiener HPA technique is employed to devise the high-power amplifier and the
authentic constraint vector has to be adapted here. The optimization process is
carried out by means of the adaptive genetic algorithm (AGA). Thereafter, the
optimized Wiener HPA is employed to devise the pre-distorter. The innovative
technique is performed in the working platform of the MATLAB and the efficiency
in execution is assessed and contrasted with that of the GA and PSO to illustrate the
incredible efficiency of the epoch-making technique.
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