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Abstract Attribute reduction plays a crucial role in reducing the computational
complexity and therefore the resource consumptions in the area of artificial intel-
ligence, machine learning and computing applications. Rough sets are a very
promising technique in attribute reduction or feature selection. Fuzzy and rough set
hybrids have been proven to be more effective in selecting important features from
the available data, particularly in the case of real-time data. There is a need for
global searching strategies to find the best possible, minimal combination of fea-
tures, and at the same time to maintain the originality of information. This paper
proposes a hybrid computational intelligent attribute reduction system based on
fuzzy entropy, fuzzy rough sets, and ant colony optimization, which do not depend
on fuzzy dependency degree. Experimentation conducted on several UCI universal
benchmark data sets proves this method to be feasible in obtaining minimal feature
set with undisturbed or improved classification accuracy when compared to fuzzy
entropy and dependency degree-based fuzzy rough quick reduct.
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1 Introduction

Computational intelligent systems often require a preprocessing stage called feature
selection or attribute reduction. Feature reduction will help to optimize the com-
putational complexity of the knowledge processing task; sometimes it also comes
with additional benefit of improved accuracy, and also the volume of data features
to be collected reduces. There is a continuous research in the area of feature
selection [1] or attribute reduction; the main goal of which is to optimize the
features at the same time retain the quality and originality of data objects. Rough
sets [2, 3] are introduced by Pawlak and became very popular as a tool which
mathematically deals with vagueness, lack of preciseness, and uncertainness in the
knowledge extraction, and analysis of data. The advantage of rough sets is that it
does not depend on any external inputs and also do not transform the existing data.
It is best suitable for dimensionality reduction. Other applications of rough sets
include rule generation and prediction [4]. Traditional rough sets [5] can be applied
directly for discrete data, where there is a need for additional step of discretization
for real-valued data. To deal with real-time data a combination of fuzzy systems and
rough sets were utilized in several works [6–9] for the purpose of attribute
reduction. While performing rough set reduction for real-time data, the process of
discretization may incur loss of information for some applications [10]. To avoid
such a loss, fuzzy–rough approach can be employed. The fuzzy–rough technique
mandates fuzzification of data, which does not require any further information
except the number of membership functions to be used for each attribute.

Fuzzy approximation is the basis of most of the literature in fuzzy–rough
reduction [11]. Dependence degree-based reduct algorithm was employed in [6]
applied to Web categorization. Fuzzy entropy was used in the fuzzy–rough
reduction process in [10, 12] using a greedy approach. The work of Eric et al. [8]
has used discernibility matrix-based approach for fuzzy–rough reduction. Jensen
and Shen proposed fuzzy similarity-based approaches, which use fuzzy boundary
region, fuzzy lower approximation, and fuzzy discernibility matrix-based approa-
ches [7]. In [13], the authors have utilized principal component analysis as an
algorithm for attribute reduction. Fuzzy–rough reduction aims at finding optimal set
of attributes from the available list; however, finding the best combination is always
a NP-hard problem. There is a need for some metaheuristic search techniques in
order to find the best possible combination among the given attribute list [14]. Few
examples of metaheuristic searching techniques are genetic algorithms [15], sim-
ulated annealing [16], cuckoo search [17], tabu search [18], etc. Ant colony opti-
mization (ACO), bee colony optimization [19], particle swarm optimization [20],
social cognitive optimization [21] fall under the category of swarm intelligence-
based techniques [22]. ACO is a metaheuristic global search algorithm acquainted
by Dorigo [23]. Jensen and Shen [24] have proposed ACO search for attribute
reduction using fuzzy dependency degree, which in turn was derived from
fuzzy-positive region, fuzzy lower approximation. Liangjun et al. [25] proposed
ACOAR which is a rough set-based ACO and makes use of rough set dependency
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degree in the algorithm; however, it is mostly suitable for discrete data sets. In [14],
Ravi Kiran Varma et al. proposed mutual information-based attribute reduction
using ACO. ACO was proven to be fruitful in attribute reduction in these papers
[26–28]. Hulian and Zong have done a similar work of attribute reduction using
rough sets with swarm optimization [29]. Ant colony optimization was also used in
the area of vehicular traffic control systems [30].

This paper aims at demonstrating the ability of fuzzy entropy-based fuzzy rough
attribute selection using ant colony optimization as the global minima search
technique, and the results were compared with similar works in this area [7, 10, 12].
A quick reduct algorithm was developed using fuzzy entropy without the need for
fuzzy dependency degree, and also to avoid the disadvantage of local search, ACO
was further employed to obtain a best reduct. A similar work is proposed by Varma
et al. [31] where the authors applied fuzzy rough sets and ACO for eliminating
unimportant features of real-time intrusion detection system (IDS) data set.

2 Back Ground

2.1 Fuzzy Rough Sets and Attribute Selection

In rough sets [2, 12], the approximations done to the original object set is crisp. In
the case of fuzzy rough sets, the lower and upper approximations are fuzzy. For
real-time data, discretization has to be performed on the original data before
applying rough set reduction, and in this process, there may be loss of information
in some cases. In fuzzy rough sets, the attributes are converted to fuzzy data where
each attribute is divided into membership groups, thereby avoiding the information
loss for real-time data [32]. Rough sets can be treated as a special case of fuzzy
rough sets where the elements of the set generated by lower approximation have a
membership of 1. However, in fuzzy rough sets, the elements of lower approxi-
mation contain a membership of [0, 1] and therefore can handle uncertainty in a
flexible way than the crisp counterpart [10].

An information system Z can be represented as a set of finite objects O and a set
of finite attributes T, Z ¼ O; Tð Þ. The actual attributes T of the table consist of
conditional as well as decision attributes, T ¼ TC [ TDf g [33]. Like the crisp
equivalence class for rough set, fuzzy equivalence class is the important thing in the
fuzzy rough set. In fuzzy rough set, the conditional and the decision features are
fuzzy in nature. The definitions of fuzzy equivalence and fuzzy similarity relation,
fuzzy lower and upper approximations can be found in [10].

Typically in fuzzy rough attribute selection procedures, the lower approximation
or the positive region is widely used; the upper approximation is not employed. For
any attribute , the fuzzy equivalence is denoted by . Say, an attribute has
two fuzzy sets based on two membership functions, then the partition

In calculating the dependency degree for fuzzy rough reduction,
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O=IND Wð Þ or in short form O=W has to be obtained. O=W in the case of rough
set is nothing but the set which contains objects that are indiscernible between the
attribute t1; t2 given W ¼ t1; t2f g. In the case of fuzzy rough reduction, the set
O=W is based on the Cartesian product as shown below:

ð1Þ

If ¼ l;mf g and O=IND lð Þ ¼ l1; l2f g andO=IND mð Þ ¼ m1;m2f g then

O=W ¼ l1 \m1; l1 \m2; l2 \m1; l2 \m2f g ð2Þ

lE1
\ lE2

\ � � � \ lEn
oð Þ ¼ min lE1

; lE2
; . . .; lEn

� �
: ð3Þ

3 Fuzzy Entropy-Based Quick Reduct

The information entropy, for an event E which consists of n outcomes, was pro-
posed by Shannon [34] and is given as:

H Eð Þ ¼ �
Xn

j¼0

pjlog2pj: ð4Þ

Information system Z can be represented as a set of finite objects O and a set of
finite attributes T, Z ¼ O;Tð Þ. The actual attributes T of the table consist of
conditional as well as decision attributes, T ¼ TC [ TDf g. Let F1;F2; . . .;Fn be the
fuzzy membership subsets of an attribute, then the fuzzy entropy of a given
membership function Fj is given by:

H Fj
� � ¼ �

Xn

Q2O=TD

pðQjFjÞlog2pðQjFjÞ; ð5Þ

where the decision relative probability is given by

pðQjFjÞ ¼
Q\Fj

�� ��

Fj

�� �� ð6Þ

The fuzzy entropy given an attribute subset W is given by Parthalain et al. [12]:

n Wð Þ ¼
X

Fj2O=W

Fj

�� ��
P

Xj2O=W Xj

�� ��H Fj
� �

: ð7Þ
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This fuzzy entropy can be used to bubble out the best contributing attributes,
similar to the fuzzy dependency degree. But, in the case of fuzzy entropy, the
smaller the better, whereas in the case of fuzzy dependency degree, the larger the
better. The earlier fuzzy entropy-based algorithms [10] used both dependency
degree as well as fuzzy entropy; however, we propose a fuzzy entropy-based quick
attribute reduction which does not need to calculate the fuzzy dependency degree
and hence takes shorter time to compute the reduct and also with comparable or
improved classification accuracy. The hill climbing approach-based fuzzy entropy
quick reduction algorithm is as shown in Fig. 1.

3.1 Fuzzy Entropy-Based Quick Reduct Algorithm (FEQR)

See Fig. 1.

4 Attribute Reduction Using Fuzzy Entropy and Ant
Colony Optimization

To overcome the disadvantage of hill climbing-based attribute reduction where
there is no guarantee of global best solution, we propose a hybrid intelligent
attribute reduction system which makes use of ACO to search the global best
attribute reduction set. ACO is an evolutionary swarm-based computational intel-
ligent algorithm proposed by Dorigo et al. [35, 36]. Here a colony of ants work
together for a common goal of searching the global best solution. ‘n’ no of ants will
be released for ‘m’ no of iterations, and for each iteration one ants solution will be
marked as best solution and the path searched by the iteration best ant will be

Fig. 1 Fuzzy entropy-based quick reduct algorithm
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updated with pheromone trail similar to the biological ants. There is another
parameter called the heuristic information, which will guide the ants to take a
decision of selecting next node from the current node in the path toward a solution
construction, with a probability calculation [37]. Therefore, there are two important
values that are considered in the ACO solution construction, the pheromone and the
heuristic information. In this work, we propose a relative fuzzy entropy-based
heuristic information, in ant colony optimization in search of global best attribute
set. Relative fuzzy entropy is used as heuristic information. An ant has to select next
attribute y from present attribute x using the formula:

g x; yð Þ ¼ n S�að Þ � n S�a [ yð Þ ð8Þ

p�ax;y ITRnð Þ is the probability of selecting the next attribute y by the ant ā from
current attribute position x, at nth iteration. sx;y is the pheromone concentration and
gx;y is the heuristic information at the branch x, y. a and b are the tuning factors for
pheromone and heuristic information, respectively.

p�ax;y ITRnð Þ ¼ sax;yg
b
x;y ITRnð Þ

P
z2 TC�S�að Þ sax;zg

b
x;z ITRnð Þ

; y 2 TC � S�að Þ ð9Þ

The proposed algorithm of ant colony optimization of fuzzy entropy-based fuzzy
rough feature reduction is shown in Fig. 2.

Fig. 2 Ant colony optimization of fuzzy entropy-based fuzzy rough reduction algorithm
(ACOFEFR)
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4.1 Ant Colony Optimization of Fuzzy Entropy-Based Fuzzy
Rough Reduction Algorithm (ACOFEFR)

In this algorithm, a group of ants are released whose duty is to traverse the nodes
(attributes) in search of best possible attribute set based on the pheromone and
heuristic values. The same process is repeated for few iterations, which can be
decided on trial and error basis. In each iteration, all the ants will find a solution, but
the global best solution will be considered. In the algorithm, it can be observed that
an ant will start with a node randomly in the first iteration, and select the next
attribute by calculating the selection probability which in turn depends on heuristic
and pheromone values, but there is no randomness from the second iteration
onwards, instead they depend on selection probability function even for the first
node. It was also observed from trial and error basis that the updating of pheromone
for every ants solution produced better result than updating of pheromone per
iteration. The evaporation of pheromone, however, is done only per iteration.
Relative fuzzy entropy is used as heuristic information in this algorithm, which was
shown in Eq. (8). The probability selection formula is shown in Eq. (9). The fuzzy
entropy value plays a crucial role in the convergence of the solution by the ants.

5 Result Analysis and Discussion

Several experiments were conducted to provide support for the proposed algorithm,
the UCI machine learning data sets are used as the standard benchmark data. All the
experiments were conducted over a Windows 7-based i3 machine with 4 GB RAM,
and Java program environment. C4.5 decision tree classifier [38] is used for
evaluating the performance of proposed algorithms. The parameters used for the
ACO algorithm are as shown in Table 1. Triangular membership functions were
used here in fuzzification process. The solution provided by the algorithm depends
on number of ants released and number of iterations the process of releasing ants
will be carried. Initially the program was started with 10 ants and 10 iterations, later
on trial and error basis, it was observed that optimal consistent solution was attained
for three ants and five iterations for all the above data sets. The advantage of fuzzy
entropy-based reduction is with real-valued data sets, and hence, the experiments
were conducted on real valued or combination of real and discrete valued data sets
are taken. Table 2 presents the experimentation results over 15 UCI data sets [39],
column 2, is the name of the data set, the third column is the number of attributes of
that data set, the fourth column contains the number of samples of that data set, the
fifth column is the reduced attribute set obtained by the greedy hill climbing-based
fuzzy entropy quick reduct (FEQR) algorithm, the sixth column gives the size of
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reduced attributes obtained by the proposed ACOFEFR algorithm, the seventh and
eighth columns are the list of attributes obtained by the FEQR and ACOFEFR
algorithms, respectively, the ninth column is the classification accuracy obtained by
J48 decision tree algorithm for the full attribute data sets, the tenth and eleventh
columns are the classification accuracies obtained with the reduced attribute sets of
the FEQR and ACOFEFR algorithms, respectively. It was very clear from the table
that the ACO-based global searching strategy has a great deal of advantage over the
greedy hill climbing fuzzy entropy-based quick reduct method (FEQR), which can
be seen from the reduct sizes found by both the algorithms. Except for the case of
Iris, Wine, yeast, and diabetes, the ACOFEFR has produced reduced attribute set
compared to FEQR. The ACOFEFR for the case of Olitos data set has produced
five attributes, whereas the FEQR has produced 15 attributes out of the total 25
attributes, at the same time keeping the classification accuracy unchanged. It can be
observed that for most of the datasets, the classification accuracies with the reduced
attribute sets generated by ACOFEFR are very close or even better when compared
to the full attribute accuracies. The process of solution construction by one ant is
shown in Fig. 3 as a sample, for the data set diabetes. The ant has started with
attribute number three and is selecting the next attribute based on the selection
probability, which indirectly depends on fuzzy entropy, and it can be seen that the
ant has constructed a solution 3, 2, 6, which is nothing but the reduced attribute set.

Table 3 shows a comparison with similar works in this area, which have used
fuzzy entropy-based algorithms for reduction. The proposed approach has produced
better results in the case of Cleveland, Iris, Olitos, and Wine data sets with shorter
attribute size and near classification accuracies. The ‘—’ in the table 3 for Iris data
set indicates that the result is not available. In the case of Iris data set our algorithm
selected the best two attributes and yet maintaining the accuracy mark. In the case
of wine data also, our approach has outperformed by selecting only four attributes
out of 13. In the case of Olitos data, comparable accuracy was retained and also the
attributes are reduced to five which is the best among others. For Cleveland data
also the best attribute set was attained.

Table 1 ACO parameters Parameter Value

a (heuristic tuning parameter) 1

b (pheromone tuning parameter) 0.01

q (evaporation constant) 0.9

q (updating constant) 0.1

x (heuristic limiting constant) 0.001

Initial pheromone 0.5
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6 Conclusion

This paper proposed an ant colony optimization-based fuzzy entropy attribute
reduction algorithm, which produces global best solution when compared to greedy
hill climbing-based approaches. The proposed algorithm was proven to be feasible
and attaining comparable and sometimes better results for real-valued data sets in
terms of both, number of attributes reduced and classification accuracies. This
approach is suitable for real-valued data sets, since the fuzzification process pre-
serves the originality of data in a much better way compared to discretization.
Another feature of our algorithm is that it does not need to calculate fuzzy
dependency degree. However, fuzzy-based attribute reduction suffers from high
computational complexity when compared to non-fuzzy techniques like rough set
reduction using discretized data.
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