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Abstract Genetic algorithms (GA) initially were not developed to handle the
integer restriction or discrete values to the design variables. In the recent years,
researchers has focused their work on developing/modifying GAs for handling
integer/discrete variables. We have modified the BEX-PM algorithm developed by
Thakur et al. [1] to solve the nonlinear constrained mixed-integer optimization
problems. Twenty test problems have been used to conduct a comparative study to
test the effectiveness of proposed algorithm (MI-BEXPM) with other similar
algorithms (viz. MILXPM, RST2ANU, and AXNUM) in this class available in the
literature. The efficacy of the results acquired through MI-BEXPM is compared
with other algorithms on two well-known criteria. The performance of MI-BEXPM
is also analysed and compared for solving real-life mixed-integer optimization
problems with other methods available in the literature. It is found that MI-BEXPM
is significantly superior to the algorithms considered in this work.

Keywords Real-coded genetic algorithms � Bounded exponential crossover
Power mutation � Mixed-integer optimization � Constraint optimization

1 Introduction

Mixed-integer nonlinear programming problem (MINLP) is the important class of
nonlinear optimization problems. A MINLP is an optimization problem where the
objective functions and constraints are nonlinear functions of the decision variables
with some of the decision variables having integer restriction. If objective functions
as well as constraints are linear function, then the corresponding problem is called a
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mixed-integer linear programming problem (MILP). A MINLP having the all the
variable as integer is called integer nonlinear programming problem (INLP).

In last few decades, several population-based heuristic algorithms have been
designed. These algorithms try to search the global optimal solution of general
nonconvex optimization problems. Several variants of these algorithms have been
suggested to handle constraints and for solving mixed-integer optimization prob-
lems. Two of the major classes of algorithms where the research had been focused
are evolutionary algorithms and swarm-based algorithms. Evolutionary algorithms
try to mimic the process of natural evolution. Some of the algorithms which belong
to the class of evolutionary algorithms are genetic algorithms, genetic program-
ming, evolutionary strategies, evolutionary programming.

Swarm intelligence is based on group behaviour of simple individuals (swarms)
in which individuals independently may not show intelligence but as group they
show intelligent behaviour. Swarm intelligence is intelligent behaviour shown by a
system which emerges due to cooperative interaction of components of the system
to achieve a goal which may not be achievable by individual efforts. Ant colony
optimization, particle swarm optimization, and artificial bee colony algorithm are
among some of the most popular swarm intelligence-based techniques used to solve
optimization problems.

Evolutionary algorithms and swarm intelligence have been quite successful in
solving many engineering applications having highly nonlinear, nonconvex, non-
differentiable, and multimodal models, and a variety of modifications have been
proposed to tackle MINLPs. Many algorithms based on EAs have been effectively
used to find the solution of MINLP problem [2, 3].

Lin [4] designed a mimetic algorithm combined with an evolutionary Lagrange
method for solving MINLPs. Lin et al. [5] proposed a hybrid differential evolution
method to solve MINLPs. The method works with two phases called accelerated
phase and migrating phase used to maintain exploration and exploitation. Later a
modified coevolutionary hybrid differential evolution for MINLPs was suggested
by Lin et al. [6]. Yan et al. [7] introduce a memory-based lineup competition
algorithm having cooperation and bi-level competition mechanism for exploration
and exploitation. Xiong et al. [8] introduced a hybrid genetic algorithm for finding a
globally compromise solution of a mixed-discrete fuzzy nonlinear programming.
Cheung et al. [9] developed a hybrid algorithm which combines genetic algorithm
and grid search to solve MINLP.

Cardoso et al. [10] presented a modified simulated annealing (M-SIMPSA). This
method uses combination of simulate annealing and Nelder and Mead simplex
method in the inner loop and Metropolis algorithm ([11–13]) in the outer
loop. Some of the other population-based algorithms used to solve MINLP are
simulated annealing technique [10, 14], tabu search method [15], multistart scatter
search [16], and particle swarm optimization [17].

Among the above-discussed methods, genetic algorithms (GAs) [3, 9, 18, 19] are
the most successful. GA is an iterative process that works with a set of the solutions
(population) which are modified by genetic operators to guide the solution towards
the optimum solution in the search space. Crossover and mutation are one of the
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essential operators of GA. Crossover helps in exploring the promising zones of the
search space, using the information from chromosomes (solutions), and mutation
assists in avoiding premature convergence by preserving sufficient disparity within
the population. This work extends the recently developed RCGA, BEXPM by
Thakur et al. [1], named as “MI-BEXPM”. The performance of MI-BEXPM is
analysed and compared with other algorithms on the basis of twenty test problems
as well as real-life problems.

The rest of paper is organized as the following: Sect. 2 proposed the algorithm to
find the solution of the mixed-integer optimization problem. The experimental setup
used in current study is detailed in Sect. 3. Analysis of the results for twenty test
problems and discussion is given in Sect. 4. The efficiency of MI-BEXPM for
solving real-life mixed-integer optimization problems is analysed and compared
with other algorithms in Sect. 5. Finally, conclusions from the comparative study
are drawn in Sect. 6.

2 Proposed GA

GA belongs to a class of population-based iterative algorithms, which tries to find
the near global optimal solution of an optimization problem. The search in GA is
governed by three main genetic operators, viz. selection, crossover, and mutation.
These operators are applied iteratively to direct the search during the evolution of
the population during the search process. We will discuss about the operators used
in this study in the following subsections.

2.1 Selection

Selection operator works on the principle of the survival of fittest. It is used to
discard the inferior individuals from the population and filter relatively better fit
individuals to participate in the biological evolution process. After applying
selection operator, an intermediate pool of the population (mating pool) is con-
structed. Lot of selection techniques have been proposed in the literature. Some of
the popular selection operators are ranking [20], roulette wheel [21], stochastic
uniform sampling (SUS) [22], and tournament [20] which are widely used selection
operators. We have employed tournament selection operator in this work.
Tournament selection selects a subset of the population randomly and conducts a
fitness-based competition among the chosen solutions. The cardinality of this subset
is called tournament size. The winner of the tournament becomes a part of mating
pool. The process is repeated until the cardinality of this mating pool becomes equal
to the population size.
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2.2 Crossover

Crossover operator in GA mimics the process of chromosomal crossover in biology
to produce the recombinant chromosomes. Individuals from mating pool are ran-
domly chosen to participate in the crossover process with certain probability called
crossover probability (pc). Here, we used BEX crossover [1] to produce a pair of
offspring solutions within the variable bounds from a pair of parent solutions lying
within the variable bounds. BEX crossover is a parent-centric operator and has one
scale parameter k. For small (large) values of k, offspring produced are spread near
(away) from the parents. Also for a fixed value of k, the spread of child chromo-
some is proportional to the that of the parent solutions. Steps to generate child
chromosomes C1 and C2 using parent chromosomes P1 and P2 via BEX crossover
operator are as follows:

1. Randomly choose two parent chromosomes P1 and P2 from the mating pool
(population after employing GA operator).

2. Randomly generate a uniform number rc 2 0; 1ð Þ. If rc is less than prescribed
crossover rate pc, then crossover is applied to P1 and P2, otherwise it will pass as
such for mutation.

3. If rc\pc, then C1 and C2 is produced using Eqs. (1) and (2)

C1 ¼ P1 þ c1 P2 � P1j j ð1Þ

C2 ¼ P2 þ c2 P2 � P1j j ð2Þ

where

cj ¼
k ln exp Bl�Pj

k P2�P1j j
� �

þ u 1� exp Bl�Pj

k P2�P1j j
� �� �n o

if p � 0:5

�k ln 1� u 1� exp Bu�Pj

k P2�P1j j
� �� �n o

if p [ 0:5

8<
:

for j2 1; 2f g, u; p 2 0; 1ð Þ are random numbers following uniform distribution,
k[ 0 is a scaling parameter, Bl ¼ fB1

l ;B
2
l ; . . .;B

n
l g and Bu ¼ fB1

u;B
2
u; . . .;B

n
ug are

lower and upper bound of the decision variable.

2.3 Mutation

It is inspired from the biological mutation in which changes in a DNA sequence
occurs by altering one or more gene values of the chromosome. Mutation operator
in GA is applied for minimizing the possibility to stick into the local or suboptimal
solution. It gives a small random perturbation to explore the neighbourhood of the
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current solution. Not all the individuals go through the mutation phase. It is applied
with a relatively small probability (pm) called probability of mutation and tries to
give a random drift to solution to be in a promising zones of the search space. Here,
power mutation [23] is being used for this purpose. The search power of mutation is
controlled by index parameter (p). Larger (smaller) the value of p has higher
(smaller) possibility to introduce perturbation in the muted solution. The probability
of generating mutated solution on either side is proportional to its relative position
from the variable bounds of the decision variable. The muted solution ðxkþ 1

i Þ from
the current solution ðxki Þ is produced as follows:

xkþ 1
j ¼

xkj � tj xkj � Lj
� �

if
xkj � Lj
Uj � Li

� s

xkj þ tj Uj � xkj
� �

Otherwise

8<
:

Here, k refers to the current generation, s 2 0; 1ð Þ, tj (j2 1; 2; . . .; nvf g; nv ¼ #
of decision variables) are random numbers which follow uniform distribution and
power distribution, respectively.

2.4 Truncation Technique

In this work, truncation technique based on floor and ceiling function is applied to
each xi 2 I (here, I refer to the set of variables having integer restrictions). It helps
in maintaining the randomness within the newly generated population and reduces
the chance of producing similar integer value for same real values that lies within
two similar successive integer values [18, 24].

xkþ 1
i ¼ xki

� �
if p � 0:5

xki
� �

Otherwise

�

where p 2 ð0; 1Þ is a uniform random number.

2.5 Constraint Handling Technique

Due to non-requirement of penalty parameter unlike other penalty constraint han-
dling techniques, parameter-free penalty (PFP) method suggested by Deb [25] is
applied to handling constraints. This approach can be easily embedded and exe-
cuted while evaluating the fitness function during the search process. The fitness
function using PFP is evaluated as follows
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H zð Þ ¼
G zð Þ; if z is feasible

Gmax zð Þþ Pr1
k¼1

CkðzÞð Þþ Pr2
k¼1

jfjj; otherwise

8<
:

where GmaxðzÞ, Ck , r1, fj, and r2 are the worst feasible value, inequality constraint,
# of inequality constraints, equality constraint, and # of equality constraints,
respectively.

3 Experimental Setup

The test bed selected for the comparative study consists of a number of real and/or
integer decision variables having linear and/or nonlinear inequality constraints. The
best/optimum solutions reported in the literature are summarized in Table 1.

Table 1 Problems considered for study

Problem Variables Objective
function

Inequality
constant

Global
optimum value

References

1 2(1+1+0) Linear 2(1+1) 2 [3, 10, 18, 26]

2 2(1+1+0) Nonlinear 1(0+1) 2.124 [3, 10, 18]

3 3(2+1+0) Quadratic 3(2+1) 1.07654 [3, 10, 18, 26]

4 2(2+0+0) Cubic 2(0+2) −6961.81 [18]

5 3(0+3+0) Quadratic 2(1+1) −68 [18]

6 4(0+4+0) Quadratic 1(1+0) −6 [10, 18]

7 3(2+1+0) Nonlinear 4(2+2) 99.24521 [3, 10, 18]

8 7(3+4+0) Nonlinear 9(5+4) 3.557463 [3, 10, 18, 26]

9 5(3+2+0) Quadratic 3(0+3) 32217.4 [3, 10, 18]

10 8(0+8+0) Nonlinear 3(3+0) 0.94347 [10, 18]

11 5(0+5+0) Quadratic 6(6+0) 8 [18]

12 7(0+7+0) Nonlinear 6(3+3) 14 [18]

13 2(0+2+0) Nonlinear 2(2+0) −42.632 [18]

14 3(1+2+0) Nonlinear 0(0+0) 0 [18, 24]

15 5(0+5+0) Quadratic 8(8+0) 807 [18, 24]

16 40(0+40+0) Linear 3(3+0) 1030361 [18, 24]

17 40(20+20+0) Linear 3(3+0) 1030361 [18, 24]

18 100(0+100+0) Nonlinear 2(2+0) 3.03E+08 [18, 24]

19 100(50+50+0) Nonlinear 2(2+0) 3.03E+08 [18, 24]

20 8(4+4+0) Nonlinear 3(0+3) 0.999955 [18]

Gear train 4(0+4+0) Nonlinear 0 – [27]

Reinforced
concrete beam

3(1+1+1) Nonlinear 0 – [28]

Speed reducer 7(6+1) Nonlinear 0 – [29]

Welded beam (A) 4(3+0+1) Nonlinear 0 – [30]

Welded beam (B) 6(1+1+4) Nonlinear 0 – [31]
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As discussed in [18], each problem is run 100 times with distinct initial popu-
lation. Here, successful run is that run whose objective function value lies within
1% range of the reported best/optimal solution. For each problem percentage of
successful runs (ps), average function evaluations of successful runs (avg) are
measured.

ps ¼ Ts � 100
Tr

ð3Þ

avg ¼ Tf
Ts

ð4Þ

Here, Ts ¼ total # of successful runs, Tr ¼ total runs, and Tf ¼ sum of function
evaluations of successful runs.

The parameter settings of MI-BEXPM algorithm used to conduct this experi-
ment are shown in Table 2. Population size = 10 times the total number of decision
variable for each considered problem except 16, 17, and 18 problems (chosen to be
three times).

4 Results and Discussions

Results observed using MI-BEXPM are compared with MILXPM, RST2ANU, and
AXNUM on the basis of ps and avg for twenty problems. Table 3 demonstrates
successful runs for each problem corresponding to each algorithm for twenty test
problems. MI-BEXPM shows 100% success rate in twelve problems, whereas
MILXPM, RST2ANU, and AXNUM show 100% success rate only in ten, eleven,
and eight problems, respectively. Moreover, the minimum success rate of
MI-BEXPM to solve problem is greater than 50% for each problem, while
MILXPM, RST2ANU (unsuccessful to obtain optimal solution within 100 runs for
4th problem), and AXNUM have two, seven, and six problems, respectively, which
have less than 50% success rate.

Table 2 Parameter settings
of MI-BEXPM

Parameter Values

Crossover rate 0.9

Mutation rate 0.009

Crossover index for real variables 0.35

Mutation index for real variables 10.0

Crossover index for integer variables 0.65

Mutation index for integer variables 4.0

Elitism size 1

Tournament size 2
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MI-BEXPM, MILXPM, and AXNUM show equivalent success rate for Problem
1, but MI-BEXPM has lesser average number of function execution (shown in
Table 3), while in problem-4 and problem-7 MILXPM outperforms better in terms
of success rate but MI-BEXPM performs better in average number of function
evaluation than other algorithms. And for problem-11, MILXPM performs better
than other algorithms in terms of both ps and avg.

For overall performance comparison of MI-BEXPM for the chosen test suite,
performance index (PI) is applied, suggested by Bharti [32] and used by several to
compare the performance of the algorithm [18, 23, 24, 33]. It is based on successful
run, average number of function evaluations, and average time of execution of
successful runs. In the current study, all the algorithms considered to be compared
are not run on same machine so it is absurd to consider time. Consequently

PI ¼ 1
Pn

XPn

i¼1

ðk1si1 þ k2s
i
2Þ ð5Þ

where si1 and si2 is the ratio of Ts to Tr and minimum of average function evaluation
among algorithm to the average function evaluation of each algorithm, respectively,
for the ith problem. kj is the weight correspond to each sj; j ¼ f1; 2g such thatP2

j¼1 kj ¼ 1. Assume fk1 ¼ kg, then k2 ¼ f1� kg. From Fig. 1, it can be observed
that MI-BEXPM is superior than MILXPM, RST2ANU, and AXNUM in terms of
PI.

Fig. 1 Performance index
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5 Application of MI-BEXPM

In previous section, we have demonstrated the effectiveness of MI-BEXPM for
solving benchmark test problems. In this section, we further analyse the perfor-
mance of MI-BEXPM on a set of mixed-integer real-life problems. The problems
considered for this purpose are some of the popular problems available in the
literature (stated in Table 1). The parameter setting of MI-BEXPM while solving
these problems is kept same as discussed in Sect. 3.

The best results obtained by MI-BEXPM and those reported in the literature are
shown in Table 4. From these results, it is observed that result obtained by
MI-BEXPM is better than that reported in [27, 34, 35]. Cases where the results are
similar to [31, 36–39], it is uses lesser function calls.

Table 5 refers to the results obtained by MI-BEXPM and reported in the liter-
ature. From these results, it can be easily observed that solution obtained by
MI-BEXPM and reported by Gandomi et al. [30] are superior to rest of the algo-
rithms considered. It is to be noted that the best solution obtained by MI-BEXPM
and stated in Gandomi et al. [30] are same, but MI-BEXPM is able to solve this
problem with lesser number of function evaluation than Gandomi et al. [30].

Table 4 Results of designing of gear train

Author(s) b1 b2 b3 b4 Gear Minimum Function
evaluation

Sandgren [27] 18 22 45 60 0.146667 5.70E−06 –

Kannan and Kramer [34] 13 15 33 41 0.144124 2.20E−08 –

Zhang and Wang [35] 30 15 52 60 0.14423 2.40E−09 –

Deb and Goyal [31] 19 16 49 43 0.144281 2.70E−12 –

Gandomi et al. [36] 19 16 43 49 0.144281 2.70E−12 5,000

Parsopoulos and Vrahatis [37] 19 16 43 49 0.144281 2.70E−12 100,000

Gandomi et al. [38] 16 19 49 43 0.144281 2.70E−12 2,000

Ali et al. [39] 16 19 43 49 0.144281 2.70E−12 1,500

MI-BEXPM 16 19 43 49 0.144281 2.70E-12 1,273

Table 5 Results of designing of reinforced concrete beam

Attributes Amir
[28]

Yun (GA) [40] Yun (GA-FL)
[40]

Montes and
Ocaña [41]

Gandomi
et al. [30]

MI-BEXPM

Best 374.200 366.146 364.854 376.298 359.208 359.208

Aðb1Þ 7.800 7.200 6.160 – 6.320 6.320

b2 31 32 35 – 34 34

a1 7.790 8.045 8.750 – 8.500 8.500

C1 −4.201 −2.878 −3.617 – −0.224 −0.224

C2 −0.021 −0.022 0 – 0 0

Function
evaluation

396 100,000 100,000 30,000 25,000 9,457
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Tables 6, 7 and 8 demonstrates the best results obtained by MI-BEXPM and
available in the literature. The solution obtained by MI-BEXPM for these problems
is better among the feasible solutions considered in this study.

Table 6 Results of designing of speed reducer

Attributes Ray and
Saini [42]

Kuang
et al. [29]

Mollinetti
et al. [43]

MI-BEXPM Gandomi
et al. [36]

Akhtar
et al.
[44]

Montes
et al.
[45]

Best 2732.901† 2876.118† 2894.901† 2996.36 3000.981 3008.08 3025.005

b 17 17 17 17 17 17 17

a1 3.514185 3.6 3.5 3.50001 3.5015 3.506122 3.506163

a2 0.700005 0.7 0.7 0.7 0.7 0.700006 0.700831

a3 7.497343 7.3 7.3 7.30006 7.605 7.549126 7.460181

a4 7.8346 7.8 7.8 7.8 7.8181 7.85933 7.962143

a5 2.9018 3.4 2.9 3.35024 3.352 3.365576 3.3629

a6 5.0022 5 5.286683 5.28669 5.2875 5.289773 5.309

C1 −0.0777 −0.0996 −0.07392 −0.07392 −0.0743 −0.0755 −0.0777

C2 −0.2012 −0.2203 −0.198 −0.198 −0.1983 −0.1994 −0.2013

C3 −0.036 −0.5279 −0.10795 −0.49918 −0.4349 −0.4562 −0.4741

C4 −0.8754 −0.8769 −0.90147 −0.90147 −0.9008 −0.8994 −0.8971

C5 0.5395 −0.0433 0.541785 −2.26E−05 −0.0011 −0.0132 −0.011

C6 0.1805 0.1821 1.30E−07 −3.84E−06 −0.0004 −0.0017 −0.0125

C7 −0.7025 −0.7025 −0.7025 −0.7025 −0.7025 −0.7025 −0.7022

C8 −0.004 −0.0278 0 −2.86E−06 −0.0004 −0.0017 −0.0006

C9 −0.5816 −0.5714 −0.79583 −0.79583 −0.5832 −0.5826 −0.5831

C10 −0.166 −0.0411 −0.14384 −0.05133 −0.089 −0.0796 −0.0691

C11 −0.0552 −0.0513 −0.198 −0.01085 −0.013 −0.0179 −0.0279

Mean 2758.888 – 2894.901 2996.38 3007.2 3012.12 3088.778

Worst 2780.307 – – 2996.43 3009.0 3028.28 3078.592

SD – – 0.00E+00 0.01586 4.9634 – –
†Values refer to the infeasible constraints

Table 7 Results of designing of welded beam (A)

Method a1 a2 a3 a4 C1 C1 C3 C4 C5 Best

MI-BEXPM 0.240 6.356 8.294 0.2443 0.2070 16.351 0.0038 0.0312 0.2342 2.390

Gandomi et al.
[30]

0.201 3.562 9.041 0.2057 9800 −27.368 −0.0042 2210 −0.2355 1.73†

†Values refer to the infeasible constraints
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6 Conclusions

In the present study, BEX-PM GA developed for continuous variable constrained
optimization problems is modified to solve mixed-integer variables constraint
optimization problems. The new variant of BEX-PM GA is named as MI-BEXPM.
The results obtained are compared on a set of twenty mixed-integer constrained
optimization benchmark problems mentioned in the literature. It is observed that
MI-BEXPM outperforms other algorithms MILXPM, RST2ANU, and AXNUM
individually in several problems. The overall performance is found to be better than
these algorithms on the basis of performance index used extensively in the literature
for such type of comparative studies.

Moreover, the performance of MI-BEXPM has been analysed for solving
real-life mixed-integer optimization problems in comparison with other existed
methods from the literature. Analysing the obtained results, MI-BEXPM not only
performs well for test benchmark problems, also performs well for real-life
problems.

From the above study, it can be concluded that MI-BEXPM is a promising
algorithm among the class of algorithms considered in this study for solving test
problems as well as real-life problems.
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