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Abstract The advancements in technology have made global positioning system
(GPS) part and parcel of human daily life. Apart from its domestic applications,
GPS is used as a position determination system in the field of defence for guiding
missiles, navigation of ships, landing aircrafts, etc. These systems require precise
position estimate and is only possible with the reduced measurement uncertainty
and efficient navigation solution. Due to its robustness to noisy measurements and
exceptional performance in wide range of real-time applications, Kalman filter
(KF) is used often in defence applications. In order to meet the increase in demands
of defence systems for high precise estimates, the KF needs upgradation, and this
paper proposes a new covariance update method for conventional Kalman filter that
improves its performance accuracy. To evaluate the performance of this developed
algorithm called modified variance Kalman filter (MVKF), real-time data collected
from GPS receiver located at Andhra University College of Engineering (AUCE),
Visakhapatnam (Lat/Lon: 17.72°N/83.32°E) is used. GPS statistical accuracy
measures (SAM) such as distance root mean square (DRMS), circular error prob-
ability (CEP), and spherical error probability (SEP) are used for performance
evaluation.
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1 Introduction

Most of today’s defence operations such as rescue in dense forest, landing of
aircrafts on ships, tracking of unidentified radio source depend on three main
functions, navigation, tracking and Guiding, and it is unimaginable to find a system
that does not have any relation with these functions. These systems require to
determine the two- or three-dimensional position information of an object of
interest, and they use GPS receivers for this purpose. GPS is the constellation of
space bodies called satellites which revolve round the earth and provide position
information based on range measurements. With a sufficient number of range
measurements, GPS can provide position estimates to high degree accuracy [1]. The
accuracy in turn is the function of type of equipment, geographic area, uncertainty
in measurements, navigation algorithm, etc. In practice, the measurement uncer-
tainty can never reach zero even though the system noise parameters and biases are
modelled effectively and hence need a high accuracy navigation algorithm that
makes out an optimal estimate from these uncertain measurements.

The various algorithms used for GPS receiver position estimate include least
squares (LS), weighted least squares (WLS), evolutionary optimizers, Kalman filter
(KF). The task of tracking and guiding involves estimation of objects’ future
course, and this could be only possible when the system dynamics are modelled
into the estimator. Out of the available navigation algorithms, the only filter that
makes use of the dynamics in estimation is Kalman filter [2]. In addition, KF also
provides the uncertainty in its estimation whose performance varies with parameters
such as process noise matrix, measurement noise matrix, geometry matrix. So this
paper concentrates in improving KFE accuracy with a new geometry matrix that
replaces the conventional matrix in Kalman filter’s covariance update equation. The
modelling of KF as GPS receiver position estimator and the details about new
designed geometry matrix lead to the development of MVKF are discussed in
subsequent sections.

2 Modified Variance Kalman Filter for GPS Applications

As depicted in Fig. 1, GPS uses time of arrival (TOA) measurements observed
between satellite, Sat;, and GPS receiver, Ry, to compute the receiver position. GPS
TOAGa,, g, measurement is the travel time of a radio signal between the receiver, Ry,
and ith satellite, Sat;, and with known signal velocity, it provides the range infor-
mation. The range equation formulated in Eq. 1 is nonlinear [3] and requires
minimum four such equations to be solved to get precise GPS position.

Hence, extended Kalman filter estimator (EKFE) or Kalman filter estimator
(KFE) with linearized measurement equations is used to estimate the unknown
receiver position. The first-order approximated linear form Taylor’s series [4] of
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Fig. 1 Positioning with SAT,
GPS TOA measurements \'\
\

Stationary GPS Rx
on the roof of a building

Eq. 1, computed at Ry, is given in Eq. 2 which is used in framing the geometry
matrix, ¥ in KFE.

TOAsu r, = f(Sat;, Ry) = \/ (xXsa, = XR,)" + (Vsa, — Yr,)” + (25w, — 2r,)°

i=1,2...,no0.of. satellites

(1)

f(Sat,R,) = f(Sat,R,) +f'(Sat,R,) (R, — R,) (2)
Here, TOAgy, r, is the time of arrival between ith satellite, Sat; and GPS
receiver, R,, Sat = (xsa,, Ysa, Zsar;) 1S the three-dimensional position coordinates of

ith satellite, Ry = (xr,, &, 28, ), R« = (3., Vr,, Zr, ) 18 the three-dimensional posi-
tion coordinates of receiver, and its estimate, respectively, and f represents the
first-order derivative of nonlinear function, f{Sat, R,) w.r.t, IAQX.

The other form Eq. 2 can be represented is

A ) R Of (Sat, R,
F(Sat,R,) — f(Sat, Ry) = f'(Sat, R) (Ry — R,)=0TOAgu £, = %5&
= 0TOAg,, R, = y(Sat, R,)0R,
where
of(Sat,R,)  (Xg. — Xsat) r. — You) <o Zr — Zsat) .~
f( 3;, ) _ ( R Sal) 5XR,( + (yR/\ S t)é R, ( R, Sat) 5ZRY (3)
aRx TOASat,I?X ' TOASatﬁX TOASal,RX )

Here, 6TOAg, R, is the error or change in range measurements, JR, is the error
or change in receiver position and the term Jf (Sat7 f?x) / OR, represents geometry
matrix, Y or Jacobian matrix, J, given in Eq. 3.
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As mentioned previously in order to provide the position estimates and the
uncertainty in estimation, KFE uses the geometry matrix, i in two stages [5], time
updation and measurement updation which are formulated as below.

Time Updation:

th/r—l = ¢th—l/r—l +PR.\' (4)
Cjo1 = PRy, D" +¢ ()
. T T -1
Gk = Ct/tfllpt/t—l wt/tflcf/tfllpz/z—l + B (6)
Measurement Updation:
er/z = th/r—l + GK(TOA[ - lpl‘/tflRsz/rfl) (7)
Cye = (1= Gyt ) Gy (®)
where R, , is the receiver position estimate at time (7) prior collection of mea-

surements, Ry, is the estimate of receiver position at time () on post reception of
measurements; TOA at time (7), C,,.; represents the uncertainty in the estimated
receiver position at time (¢) prior measurements, C,,.; represents the uncertainty in
estimated receiver position at time () post the measurements, Gk is the Kalman
Gain, @ represents receiver position state transition matrix, { is geometry matrix,
1 is the identity matrix, f§ the measurement error covariance matrix, Pg, and ¢ are
the process noise and its uncertainty, respectively.

It is observed from Eq. 3 that the geometry matrix, ¥ is the resultant of
first-order approximation from Taylor’s series and as defined in [6] a nonlinear
function like f{Sat, R,) is modifiable if there exist a linear structure which is the
function of the predicted state, f?x and the actual measurement, TOAg, r,, i.€. if f
(Sat, R,) is modifiable than Eq. 3 can be rewritten as Eq. 9.

STOAsur, = I'(TOAsu g, Ry) X R, 9)

In practice, the range measurements, TOA, are noisy, and hence, TOA;M is
used in Eq. 9 instead of TOAg,, r,. The developed MVKF makes use of the new
observation matrix, I" instead of y in Eq. 8, while retaining the other KFE equa-
tions as same [7]. Kalman gain, Gk in Eq. 6, is the function of , C;;, — | and f3,
which decides the amount of weight to be imposed on current measurements while
updating the receiver position and hence making this equation the function of
current measurements, TOAg, p results in poor performance [6]. This is the reason
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the new observation matrix I' is used in Eq. 8, and the resultant new updated
covariance matrix for MVKE is given in Eq. 10

Ct/t—l = (1 - GKFt/tfl)Ct/tfl (10)

3 Results and Discussion

The GPS receiver located at AUCE, Visakhapatnam, is used for the collection of
real-time data, which is used in the performance evaluation of KFE and the
developed MVKF estimator. The three-dimensional position of the receiver is
estimated over a period of 23 h 56 min (2872 epochs) with a randomly chosen
initial position estimate of X: 785 m, ¥: 746 m and Z: 3459 m. The data is collected
at a sampling interval of 30 s, and the position error of epochs the estimator took to
reach convergence (i.e. position error in three dimensions <100 m) is plotted in
Figs. 2 and 3. The details pertaining to the convergence epochs are also given in
Table 1. It is observed from the figures and Table 1 that the developed algorithm,
MVKEF, converges at faster rate compared to conventional KFE.

Also the GPS statistical accuracy measures (SAM) for both the algorithms are
calculated for the entire range of data and tabulated in Table 2. Various SAM [8]
such as 1(g) sigma error, circular error probability (CEP), spherical error probability
(SEP), spherical accuracy standard (SAS), mean radial spherical error (MRSE),
distance root mean square (DRMS) are used in the evaluation of the algorithms
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Fig. 2 Position error versus epochs. a Position error in X-coordinate with KFE and MVKF for
AUCE, Visakhapatnam GPS receiver. b Position error in Y-coordinate with KFE and MVKF for
AUCE, Visakhapatnam GPS receiver
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Fig. 3 Position error in Z-
Coordinate with KFE and

MVKEF for AUCE,

Visakhapatnam GPS receiver

Z Coordinate Error (meter)
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Table 1 Estimator convergence performance
GPS receiver KFE MVKF
AUCE, Visakhapatnam 92 52

Table 2 SAM of KFE and the developed MVKF for AUCE, Visakhapatnam GPS receiver

AUCE, GPS receiver

Statistical accuracy measures

Kalman filter
estimator (m)

Modified Kalman filter
estimator (m)

Mean X-Coordinate 46.99 46.53
Y-Coordinate 83.73 82.68
Z-Coordinate 28.20 27.47
Deviation X-Coordinate 6.7 5.68
Y-Coordinate 21.78 19.10
Z-Coordinate 24.94 7.20
(1D) 1(o) sigma X-Coordinate 46.99 + 6.7 46.53 £+ 5.68
(68%) Y-Coordinate | 83.73 + 21.78 82.68 + 19.10
Z-Coordinate 28.20 4+ 24.94 27.47 £ 7.20
(2D) Horizontal DRMS (65%) |22.81 19.92
CEP (50%) 17.30 15.02
2DRMS (95%) |45.63 39.85
(3D) Horizontal and | SEP (50%) 27.29 16.31
vertical MRSE (61%) | 33.80 21.19
SAS (99%) 44.57 26.64
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accuracy performance. Table 2 depicts the SAM of both the algorithms on AUCE
and Visakhapatnam GPS receiver and is given below.

It is obvious from the accuracy measures that for AUCE, Visakhapatnam
receiver the position estimated by the MVKF will be within 26.64 m from its true
position with a probability of 0.99, where KFE estimates the position within
44.57 m. This shows the efficiency of developed algorithm over conventional KFE.

4 Conclusion

A new algorithm for the GPS receiver position estimation was developed based on
predict and update concept of KFE. The geometry matrix designed out of first-order
Taylor’s approximation of nonlinear measurement function is modified. The
designed new geometry matrix is then used for modification of covariance update
equation in KFE. The developed algorithm, MVKF performance, is evaluated with
the collected real-time GPS data over a period of 23 h 56 min. The GPS receiver
position located at AUCE, Visakhapatnam, is estimated with the collected data, and
the algorithms’ performance is evaluated with various SAM. Results demonstrated
that MVKF converges in less time (with an epoch difference of 40 for AUCE,
Visakhapatnam) and has an accuracy difference of 2 m CEP when compared to
conventional KFE. This also showed that the MVKF has faster convergence rate
with high accuracy and is suitable for real-time defence applications such as nav-
igation of ships, landing of CAT I and II aircrafts.
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