
Chapter 8
Deep Learning in Sentiment Analysis

Duyu Tang and Meishan Zhang

Abstract Sentiment analysis (also known as opinion mining) is an active research
area in natural language processing. The task aims at identifying, extracting, and
organizing sentiments from user-generated texts in social networks, blogs, or product
reviews. Over the past two decades, many studies in the literature exploit machine
learning approaches to solve sentiment analysis tasks from different perspectives.
Since the performance of a machine learner heavily depends on the choices of
data representation, many studies devote to building powerful feature extractor
with domain expertise and careful engineering. Recently, deep learning approaches
emerge as powerful computational models that discover intricate semantic rep-
resentations of texts automatically from data without feature engineering. These
approaches have improved the state of the art in many sentiment analysis tasks,
including sentiment classification, opinion extraction, fine-grained sentiment analy-
sis, etc. In this paper, we give an overview of the successful deep learning approaches
sentiment analysis tasks at different levels.

8.1 Introduction

Sentiment analysis (also known as opinion mining) is a field that automatically ana-
lyzes people’s opinions, sentiments, emotions from user-generated texts (Pang et al.
2008; Liu 2012). Sentiment analysis is a very active research area in natural language
processing (Manning et al. 1999; Jurafsky 2000), and is also widely studied in data
mining, web mining,and social media analytics as sentiments are key influencers of
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Table 8.1 An example that illustrates the definition of sentiment

Target Sentiment Holder Time

iPhone Positive Alice June 4, 2015

Touch screen Positive Alice June 4, 2015

Price Negative Alice June 4, 2015

human behaviors.With the rapid growth of social media such as Twitter,1 Facebook2,
and review sites such as IMDB,3 Amazon,4 Yelp,5 sentiment analysis draws growing
attention from both the research and industry communities (Table8.1).

According to the definition from (Liu 2012), sentiment (or an opinion) is repre-
sented as a quintuple e, a, s, h, t , where e is the name of an entity, a is the aspect
of e, s is the sentiment on aspect a of entity e, h is the opinion holder, and t is
the time when the opinion is expressed by h. In this definition, a sentiment s can
be a positive, negative, or neutral sentiment, or a numeric rating score expressing
the strength/intensity of the sentiment (e.g., 1–5 stars) in review sites like Yelp and
Amazon. The entity can be a product, service, topic organization, or event (Hu and
Liu 2004; Deng and Wiebe 2015).

Let us use an example to explain the definition of “sentiment”. Supposing a
user named Alice posted a review “I bought an iPhone a few days ago. It is such a
nice phone. The touch screen is really cool. However, the price is a little high.” at
June 4, 2015. Three sentiment quintuples are involved in this example, as shown in
Table 8.1.

Based on the definition of “sentiment”, sentiment analysis aims at discovering all
the sentiment quintuples in a document. Sentiment analysis tasks are derived from
the five components of the sentiment quintuple. For example, document/sentence-
level sentiment classification (Pang et al. 2002; Turney 2002) targets at the third
component (sentiment such as positive, negative, and neutral) while ignoring the
other aspects. Fine-grained opinion extraction focuses on the first four components
of the quintuple. Target-dependent sentiment classification focuses on the second
and the third aspects.

Over the past twodecades,machine learning-drivenmethods havedominatedmost
sentiment analysis tasks. Since feature representation greatly affects the performance
of a machine learner (LeCun et al. 2015; Goodfellow et al. 2016), a lot of studies in
the literature focus on effective features in hand with domain expertise and careful
engineering. But this can be avoided by representation learning algorithms, which
automatically discover discriminative and explanatory text representations fromdata.
Deep learning is a kind of representation learning approach, which learns multiple
levels of representation with nonlinear neural networks, each of which transforms

1https://twitter.com/.
2https://www.facebook.com.
3http://www.imdb.com/.
4https://www.amazon.com/.
5https://www.yelp.com/.
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the representation at one level into a representation at a higher and more abstract
level. The learned representations can be naturally used as features and applied
to detection or classification tasks. In this chapter, we introduce successful deep
learning algorithms for sentiment analysis. The notation of “deep learning” in this
chapter stands for the use of neural network approaches to learning continuous and
real-valued text representation/feature automatically from data.

We organize this chapter as follows. Since word is the basic computational unit
of natural language, we first describe the methods to learn continuous word rep-
resentation, also called word embedding. These word embeddings can be used as
inputs to subsequent sentiment analysis tasks. We describe semantic compositional
methods that compute representations of longer expressions (e.g., sentence or docu-
ment) for sentence/document-level sentiment classification task (Socher et al. 2013;
Li et al. 2015; Kalchbrenner et al. 2014), followed by neural sequential models for
fine-grained opinion extraction. We finally conclude this paper and provide some
future directions.

8.2 Sentiment-Specific Word Embedding

Word representation aims at representing aspects of word meaning. For example, the
representation of “cellphone” may capture the facts that cellphones are electronic
products, that they include battery and screen, that they can be used to chat with
others, and so on. A straightforward way is to encode a word as a one-hot vector.
It has the same length as the size of the vocabulary, and only one dimension is 1,
with all others being 0. However, the one-hot word representation only encodes the
indices of words in a vocabulary, while failing to capture rich relational structure of
the lexicon.

One common approach to discover the similarities between words is to learn word
clusters (Brown et al. 1992;Baker andMcCallum1998). Eachword is associatedwith
a discrete class, and words in the same class are similar in some respect. This leads to
a one-hot representation over a smaller vocabulary size. Instead of characterizing the
similarity with a discrete variable based on clustering results which correspond to a
soft or hard partition of the set of words, many researchers target at learning a contin-
uous and real-valued vector for each word, also known as word embedding. Existing
embedding learning algorithms are typically based on the distributional hypothesis
(Harris 1954), which states that words in similar contexts have similar meanings.
Towards this goal, many matrix factorization methods can be viewed as modeling
word representations. For example, Latent Semantic Indexing (LSI) (Deerwester
et al. 1990) can be regarded as learning a linear embedding with a reconstruction
objective, which uses a matrix of “term–document” co-occurrence statistics, e.g.,
each row stands for a word or term and each column corresponds to an individual
document in the corpus.HyperspaceAnalogue toLanguage (Lund andBurgess 1996)
utilizes a matrix of term–term co-occurrence statistics, where both rows and columns
correspond towords and the entries stand for the number of times a givenword occurs
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in the context of another word. Hellinger PCA (Lebret et al. 2013) is also investigated
to learn word embeddings over “term–term” co-occurrence statistics. Since standard
matrix factorization methods do not incorporate task-specific information, it is not
clear whether they are useful enough for a target goal. Supervised Semantic Indexing
(Bai et al. 2010) tackles this problem and takes the supervised information of a spe-
cific task (e.g. information retrieval) into consideration. They learn the embedding
model from click-through data with amargin ranking loss. DSSM (Huang et al. 2013;
Shen et al. 2014) also could be considered as learning task-specific text embeddings
with weak supervision in information retrieval.

A pioneering work that explores neural network approaches is given by (Ben-
gio et al. 2003), which introduces a neural probabilistic language model that learns
simultaneously a continuous representation for words and a probability function for
word sequences based on these word representations. Given a word and its preced-
ing context words, the algorithm first maps all these words to continuous vectors
with a shared lookup table. Afterward, word vectors are fed to a feed-forward neu-
ral network with softmax as output layer to predict the conditional probability of
next word. The parameters of neural network and lookup table are jointly estimated
with backpropagation. Following Bengio et al. (2003)’s work, several approaches are
proposed to speed-up training processing or capturing richer semantic information.
Bengio et al. (2003) introduce a neural architecture by concatenating the vectors of
context words and current word, and use importance sampling to effectively opti-
mize the model with observed “positive sample” and sampled “negative samples”.
Morin and Bengio (2005) develop hierarchical softmax to decompose the conditional
probability with a hierarchical binary tree. Mnih and Hinton (2007) introduce a log-
bilinear language model. Collobert and Weston (2008) train word embeddings with
a ranking-type hinge loss function by replacing the middle word within a window
with a randomly selected one. Mikolov et al. (2013a, b) introduce continuous bag-
of-words (CBOW) and continuous skip-gram, and release the popular word2vec6

toolkit. The CBOW model predicts the current word based on the embeddings of
its context words, and the skip-gram model predicts surrounding words given the
embedding of current word. Mnih and Kavukcuoglu (2013) accelerate the word
embedding learning procedure with Noise Contrastive Estimation (Gutmann and
Hyvärinen 2012). There are also many algorithms developed for capturing richer
semantic information, including global document information (Huang et al. 2012),
word morphemes (Qiu et al. 2014), dependency-based contexts (Levy and Goldberg
2014), word–word co-occurrence (Levy and Goldberg 2014), sense of ambiguous
words (Li and Jurafsky 2015), semantic lexical information in WordNet (Faruqui
et al. 2014), hierarchical relations between words (Yogatama et al. 2015).

The aforementioned neural network algorithms typically only use the contexts of
words to learn word embeddings. As a result, the words with similar contexts but
opposite sentiment polarity like “good” and “bad” are mapped into close vectors in
the embedding space. This is meaningful for some tasks such as POS tagging as
the two words have similar usages and grammatical roles, but this is problematic

6https://code.google.com/p/word2vec/.

https://code.google.com/p/word2vec/
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for sentiment analysis as “good” and “bad” have the opposite sentiment polarity. In
order to learn word embeddings tailored for sentiment analysis tasks, some studies
encode sentiment of texts in continuous word representation. Maas et al. (2011)
introduce a probabilistic topic model by inferring the polarity of a sentence based
on the embedding of each word it contains. Labutov and Lipson (2013) re-embed an
existingword embeddingwith logistic regression by regarding sentiment supervision
of sentences as a regularization item. Tang et al. (2014) extend the C&Wmodel and
develop three neural networks to learn sentiment-specific word embedding from
tweets. Tang et al. (2014) use the tweets that contain positive and negative emoticons
as training data. The positive and negative emoticon signals are regarded as weak
sentiment supervision.

We describe two sentiment-specific approaches that incorporate sentiment of sen-
tences to learn word embeddings. The model of Tang et al. (2016c) extends the
context-based model of Collobert and Weston (2008), and the model of Tang et al.
(2016a) extends the context based model of Mikolov et al. (2013b). We describe the
relationships between these models.

The basic idea of the context-basedmodel (Collobert andWeston 2008) is to assign
a real word-context pair (wi , hi ) a higher score than an artificial noise (wn, hi ) by a
margin. The model is learned to minimize the following hinge loss function, where
T is the training corpora:

loss =
∑

(wi ,hi )∈T
max(0, 1 − fθ (wi , hi ) + fθ (w

n, hi )). (8.1)

The scoring function fθ (w, h) is achieved with a feed forward neural network. Its
input is the concatenation of the current wordwi and context words hi , and the output
is a linear layer with only one node which stands for the compatibility betweenw and
h. During training, an artificial noise wn is randomly selected from the vocabulary.

The basic idea of sentiment-specific approach of Tang et al. (2014) is that if the
gold sentiment polarity of a word sequence is positive, the predicted positive score
should be higher than the negative score. Similarly, if the gold sentiment polarity of
a word sequence is negative, its positive score should be smaller than the negative
score. For example, if a word sequence is associated with two scores [ f rankpos , f rankneg ],
then the values of [0.7, 0.1] can be interpreted as a positive case because the positive
score 0.7 is greater than the negative score 0.1. By that analogy, the result with [−0.2,
0.6] indicates a negative polarity. The neural network-based ranking model is given
in Fig. 8.1b, which shares some similarities with (Collobert and Weston 2008). As
is shown, the ranking model is a feed-forward neural network consisting of four
layers (lookup → linear → hTanh → linear ). Let us denote the output vector of
ranking model as f rank , where C = 2 for binary positive and negative classification.
The margin ranking loss function for model training is described as below.

loss =
T∑

t

max(0, 1 − δs(t) f
rank
0 (t) + δs(t) f

rank
1 (t)) (8.2)
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Fig. 8.1 An extension on ranking-based model for learning sentiment-specific word embeddings
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Fig. 8.2 An extension on skip-gram for learning sentiment-specific word embeddings

where T is the training corpus, f rank0 is the predicted positive score, f rank1 is the pre-
dicted negative score, δs(t) is an indicator function which reflects the gold sentiment
polarity (positive or negative) of a sentence.

δs(t) =
{
1 if f g(t) = [1, 0]
−1 if f g(t) = [0, 1] (8.3)

Holding a similar idea, an extension of skip-gram (Mikolov et al. 2013b) is devel-
oped to learn sentiment-specificword embeddings. Given awordwi , skip-grammaps
it into its continuous representation ei , and utilizes ei to predict the context words of
wi , namely wi−2, wi−1, wi+1, wi+2, et al. The objective of skip-gram is to maximize
the average log probability:

fSG = 1

T

T∑

i=1

∑

−c≤ j≤c, j �=0

log p(wi+ j |ei ), (8.4)

where T is the occurrence of each phrase in the corpus, c is the window size, ei is the
embedding of the current phrase wi , wi+ j is the context words of wi , p(wi+ j |ei )
is calculated with hierarchical softmax. The basic softmax unit is calculated as
softmaxi = exp(zi )/

∑
k exp(zk).
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Fig. 8.3 Different ways to learn sentiment-specific word embeddings (a), and to incorporate topic
information of texts (b)

The sentiment-specific model is given in Fig. 8.2b. Given a triple 〈wi , sj, polj〉 as
input, wherewi is a phrase contained in the sentence sj whose gold sentiment polarity
is polj, the training objective is to not only utilize the embedding of wi to predict
its context words, but also to use the sentence representation sej to predict the gold
sentiment polarity of sj, namely polj. The sentence vector is calculated by averaging
the embeddings of words contained in a sentence. The objective is to maximize the
weighted average loss function as given below.

f = α · 1

T

T∑

i=1

∑

−c≤ j≤c, j �=0

log p(wi+ j |ei ) + (1 − α) · 1
S

S∑

j=1

log p(pol j |sej),
(8.5)

where S is the occurrence of each sentence in the corpus, α weights the context, and
the sentiment parts,

∑
k pol jk = 1. For binary classification between positive and

negative, the distribution of [0, 1] is for positive and [0, 1] is for negative.
There are different ways to guide the embedding learning process with sentiment

information of texts. For example, themodel of Tang et al. (2014) extends the ranking
model of Collobert and Weston (2008) and use the hidden vector of text span to
predict the sentiment label. Ren et al. (2016b) extend SSWE and further predicts the
topic distribution of text based on input n-grams. These two approaches are given in
Fig. 8.3.

8.3 Sentence-Level Sentiment Classification

Sentence-level sentiment analysis focuses on classifying the sentiment polarities of
a given sentence. Typically, for one sentence w1w2 . . . wn , we divide its polarities
into two (±) or three (±/0) categories, where + denotes positive, - denotes negative,
and 0 denotes neutral. The task is a representative sentence classification problem.

Under the neural network setting, sentence-level sentiment analysis can be mod-
eled as a two-phase framework, one being a sentence representation module by using
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Fig. 8.4 Framework of
sentiment classification

sophisticated neural structures, and the other being a simple classification module
which can be resolved by a softmax operation. Figure8.4 shows the overall frame-
work.

Basically, with word embeddings for each sentential word, one can use pooling
strategies to obtain a simple representation for a sentence, A pooling operation is able
to summary salient features from a sequential input with variable length. Formally,
we can use the equation h = ∑n

i=1 aixi to define popular pooling functions. For
example, the widely adopted average (avg), max, and min pooling operations can be
formalized as follows:

aavg
i = 1

n
, amin

i j =

⎧
⎪⎨

⎪⎩

1, if i = argminkxk j

0, otherwise,

, amax
i j =

⎧
⎪⎨

⎪⎩

1, if i = argmaxkxk j

0, otherwise.
(8.6)

Tang et al. (2014) exploit the three pooling methods to verify their proposed
sentiment-encoded word embeddings, The method is just one simple example to
represent sentences. In fact, recent advances on sentence representation for sentence
classification are far beyond it. A number of sophisticated neural network structures
have been proposed in the literature. As a whole, we summarize the related work
by four categories: (1) convolutional neural networks, (2) recurrent neural networks,
(3) recursive neural networks, (4) enhanced sentence representation by auxiliary
resources. We introduce these works in the following subsections, respectively.

8.3.1 Convolutional Neural Networks

In the pooling neural network, we are only able to use word-level features. When
the order of words changes in a sentence, the sentence representation result remains
unchanged. In traditional statistical models, n-gram word features are adopted in
order to alleviate the issue, showing improved performances. For neural network
models, a convolution layer can be exploited to achieve a similar effect.
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Formally, a convolution layer performs nonlinear transformations by traversing
a sequential input with a fixed-size local filter. Give an input sequence x1x2 . . . xn ,
assuming that the size of local filter is K , then we can obtain a sequential output of
h1h2 . . . hn−K+1:

hi = f

(
K∑

k=1

Wkxi+K−k

)
,

where f is an activation function such as tanh(·) and sigmoid(·). When K = 3
and xi is the input word embedding, the resulting hi is a nonlinear combination of
xi , xi+1, and xi+2, similar to the mixed unigram, bigram, and trigram features, which
concatenate the surface forms of the corresponding words in a hard way.

Typically, convolutional neural network (CNN) is a certain network that integrates
a convolution layer and a pooling layer together, as shown in Fig. 8.5, which has
been widely studied for sentence-level sentiment classification. An initial attempt by
directly applying of a standard CNN is introduced by Collobert et al. (2011). The
study obtains the final sentence representation by using a convolutional layer over
a sequence of input word embeddings, and using a further max pooling over the
resulting hidden vectors.

Kalchbrenner et al. (2014) extend the basic CNNmodel for better sentence repre-
sentation by two aspects. On the one hand, they use dynamic k-max pooling, where
top-k values are reserved during pooling instead of only one value for each dimen-
sion in the simple max pooling. The value k is defined according to sentence length
dynamically. On the other hand, they enlarge the layer number of CNN, using mul-
tilayer CNN structures, motivated by the intuition that deeper neural networks can
encode more sophisticated features. Figure8.6 shows the framework of multilayer
CNNs.

Several CNN variations have been studied to better represent sentences. Onemost
representative work is the nonlinear, nonconsecutive convolution operator proposed
by Lei et al. (2015), as shown in Fig. 8.7. The operator aims to extract all n-word
combinations through tensor algebra, no matter whether the words are consecutive.
The process is conducted recursively, first one word, then two-word and further

Fig. 8.5 Framework of
CNN
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Fig. 8.6 Multilayer CNNs

Fig. 8.7 Nonlinear,
nonconsecutive convolution

three-word combinations, respectively. They extract all unigram, bigram, and trigram
features by the following formulas:

f1i = Pxi

f2i = s1i−1 � Qxi where s1i = λs1i−1 + f1i
f3i = s2i−1 � Rxi where s2i = λs2i−1 + f2i ,

where P, Q, and R are model parameters, λ is a hyper-parameter, and � denote
element-wise product. Finally, theymake compositions of the three kinds of features,
forming the representation of a sentence.

A number of studies have focused their attention on the exploration of hetero-
geneous input word embeddings. For example, Kim (2014) studies three different
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Fig. 8.8 Multichannel
CNNs

Fig. 8.9 Enhanced word
representations with
character features

methods of using word embedding. The author concerns two different embeddings, a
randomly initialized embedding and a pretrained embedding, considering the effect
of dynamic fine-tuning over these embeddings. Finally, it combines the two kinds
of embeddings and proposes the multichannel CNNs based on heterogeneous word
embeddings, as shown in Fig. 8.8. The work is extended by Yin and Schütze (2015),
who use several different word embeddings by multichannel multilayer CNNs. And,
in addition, they exploit extensive pretraining techniques for the model weight ini-
tialization. However, a simpler version of it is presented by Zhang et al. (2016d),
which meanwhile shows better performances.

Another extension of word embeddings is to enhance word representation by
character-level features. The neural network to build word representations based
on input character sequences is in spirit similar to that of sentence representations
from input word sequences. Thus, we can also apply a standard CNN structure over
the character embedding sequences to derive word representations. dos Santos and
Gatti (2014) study the effect of such an extension. The resulting character-level
word representations are concatenated with the original word embeddings, shown in
Fig. 8.9, thus can enhance the final word representations for sentence encoding.

8.3.2 Recurrent Neural Networks

TheCNN structure uses a fixed-size of wordwindow to capture the local composition
features around a given position, achieving promising results. However, it ignores the
long-distance dependency features that reflect syntactic and semantic information,
which are particularly important in understanding natural language sentences. These
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Fig. 8.10 Sentence representation by using RNN

dependency-based features are addressed by recurrent neural network (RNN) under
the neural setting, achieving great success. Formally, a standard RNN computes the
output hidden vectors sequentially by hi = f (Wxi +Uhi−1 + b), where xi denotes
the input vector. According to the equation, we can see that the current output hi
relies not only on the current input xi , but also on the previous hidden output hi−1.
In this manner, the current hidden output can have connections with previous input
and output vectors without bound.

Wanget al. (2015) propose thefirstworkof using long short-termmemory (LSTM)
neural networks for tweet sentiment analysis. Figure8.10 shows the sentence repre-
sentation method by using RNN, as well as the internal structures of standard and
LSTM-RNN. First they apply a standard RNN over an input embedding sequence
x1x2 . . . xn , and exploit the last hidden output hn as the final representation of one
sentence. Then the authors suggest a substitution by using LSTM-RNN structure,
since standardRNNsmay suffer the gradient explosion and diminish problems, while
LSTM is much better by using three gates and a memory cell to connect input and
output vectors. Formally, LSTM can be computed by

ii = σ(W1xi +U1hi−1 + b1)

f i = σ(W2xi +U2hi−1 + b2)

c̃i = tanh(W3xi +U3hi−1 + b3)

ci = f i � ci−1 + ii � c̃i
oi = σ(W4xi +U4hi−1 + b4)

hi = oi � tanh(ci ),

where W,U,b are model parameters and σ denotes the sigmoid function.
Further, Teng et al. (2016) extend theirwork by two points. Figure8.11 shows their

framework. First, they exploit bidirectional LSTM instead, rather than a single left-
to-right LSTM. The bidirectional can represent a sentence more comprehensively,
where the hidden output of each point can have connections with both previous
and future words. Second, they model sentence-level sentiment classification as a
structural learning problem, predicting polarities for all sentimentwords in a sentence
and accumulating together as the evidence to determine the sentential polarity. By
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Fig. 8.11 The framework of
Teng et al. (2016)

Fig. 8.12 A combination of
RNN and CNN

the second extension, their model can effectively integrate the sentiment lexicons,
which has been widely used in traditional statistical models.

CNN and RNN model natural language sentences in totally different ways. For
example, CNN can better capture local window-based compositions, while RNN
is efficient in learning implicit long-distance dependencies. Thus, one natural idea
is to combine them together, taking advantages of both neural structures. Zhang
et al. (2016c) propose a dependency-sensitive CNNmodel, which combines a LSTM
and a CNN, making a CNN network structure being able to capture long- distance
word dependencies as well. Concretely, first they construct a left-to-right LSTM on
the input word embeddings, and then a CNN is built on the hidden outputs of the
LSTM. Thus the final model can make full use of both local window-based features
and global dependency-sensitive features. Figure8.12 shows the framework of their
combination model.

8.3.3 Recursive Neural Networks

Recursive neural network is recently proposed to model tree structural inputs,
which are produced by explicit syntactic parsers. Socher et al. (2012) present a
recursive matrix-vector neural network to compose two leaf nodes, resulting in
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Fig. 8.13 Recursive neural network

the representation of the parent node. By this way, the sentence representation is con-
structed recursively from bottom to up. They first preprocess the input constituent
trees, converting them into a binarized tree, where each parent node has two leaf
nodes. Then they apply a recursive neural network over the binary tree by using
matrix-vector operations. Formally, they represent each node by a hidden vector h
and a matrix A. As shown in Fig. 8.13a, given the representations of the two child
nodes, (hl , Al) and (hr , Ar ), respectively, the representation of the parent node is
computed as follows: (1) hp = f (Arhl , Alhr ) and (2) Ap = g(Al, Ar ), where f (·)
and g(·) are transformation functions with model parameters.

Further, Socher et al. (2013) adopt low-rank tensor operations to substitute the
matrix-vector recursion, by using hp = f (hl Thr ) to compute the representation of
parent nodes, as shown in Fig. 8.13b, where T denotes a tensor. The model achieves
better performances due to the tensor composition, which is intuitively simple than
matrix-vector operation and has much less number of model parameters. In addition,
they define the sentiment polarities over the non-root nodes of syntactic trees, thus
can better capture the transition of sentiments from phrases to sentences.

The line of work is extended with three different directions. First, several work
tries to find stronger composition operations for tree composition. For example, a
number of works simply use hp = f (W1hl ,W2hr ) to compose the leaf nodes, as
shown in Fig. 8.13c. The method is much simpler, but suffers from the problem of
gradient explosion or diminish, making the parameter learning extremely difficult.
Motivated by the work of LSTM-RNN, several studies propose the LSTM adaption
for recursive neural network. The representative work includes (Tai et al. 2015) and
(Zhu et al. 2015), both of which show the effectiveness of LSTM over tree structures.

Second, sentence representation-based recursive neural network can be strength-
ened by usingmultichannel compositions. Dong et al. (2014b) study the effectiveness
of such an enhancement. They apply C homogeneous compositions, arriving at C
output hidden vectors, which are further used to represent the parent node by using
an attention integration. Figure8.14 shows the framework of their neural network.
They apply the method on simple recursive neural networks, achieving consistent
better performances on several benchmark datasets.

The third direction is to investigate recursive neural network by using deeper
neural network structures, similar to the work of multilayer CNN. Briefly speaking,
as the first layer, recursive neural network is applied over the input word embeddings.
When all output hidden vectors are ready, the same recursive neural network can be



8 Deep Learning in Sentiment Analysis 233

Fig. 8.14 Recursive neural
network with
multi-compositions

v1 v2 v3 v4

hl hr

hp

Fig. 8.15 Multilayer
recursive neural network

applied byonce again. Themethod is empirically studied by Irsoy andCardie (2014a).
Figure8.15 shows their framework by using a three-layer recursive neural network.
The experimental results demonstrate that deeper recursive neural network can bring
better performances than a single-layer recursive neural network.

The above studies all construct recursive neural network over well-formed binary
syntactic trees, which is seldom satisfied. Thus, they require certain preprocessing to
convert original syntactic structures into binarized ones, which may be problematic
without expert supervision. Recently, several studies propose to model trees with
unbounded leaf nodes directly. For example, Mou et al. (2015) and Ma et al. (2015)
both present a pooling operation based on the child nodes to compose variable length
of inputs. Teng and Zhang (2016) perform the pooling process considering the left
and right children. In addition, they suggest bidirectional LSTM recursive neural
network, considering the top-to-down recursive operation, which is similar with the
bidirectional LSTM-RNN.

It is worth to notice that, several works consider sentence representation by
using recursive neural network without syntactic tree structures. These work sug-
gest pseudo tree structures based on raw sentence inputs. For example, Zhao et al.
(2015) construct a pseudo- directed acyclic graph in order to apply recursive neural
network, as shown in Fig. 8.16. In addition, Chen et al. (2015) use a simpler method
as shown in Fig. 8.17 to build a tree structure for a sentence automatically. Both the
works achieve competitive performances for sentence-level sentiment analysis.
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Fig. 8.16 Pseudo-directed
acyclic graph of Zhao et al.
(2015)

Fig. 8.17 Pseudo binary tree
structure of Chen et al.
(2015)

8.3.4 Integration of External Resources

The above subsections concern various neural structures for sentence representation,
with the information from the source input sentences only, including words, parsing
trees. Recently, another line of important work is to enhance sentence representation
by integration with external resources. The major resources can be divided into
three categories, including the large-scale raw corpus to pretrain supervised model
parameters, external human-annotated or automatically extracted sentiment lexicons,
and the backgroundknowledge under a certain setting, for example, Twitter sentiment
classification.

The exploration of large-scale corpus to enhance sentence representation has been
investigated by a number of studies. Among these studies, the sequence autoencoder
model proposed by Hill et al. (2016) are most representative. Figure8.18 shows an
example for themodel, which first represents sentences by LSTM-RNN encoder, and
then tries to generate the original sentential word step by step, thus model parameters
are learned by this supervision, which are further used as external information for
sentence representation. In particular, Gan et al. (2016) suggest a CNN encoder
instead, aiming to solve the low-efficiency problem in LSTM-RNN.

External sentiment lexicons have been largely investigated in the statistical mod-
els, while there remains relatively little work under the neural setting, although there
has been much work on automatically constructing sentiment lexicons. There are
two exceptions. Teng et al. (2016) incorporate context-sensitive lexicon features in a
LSTM-RNN neural network, treating sentence-level sentiment scores as a weighted
sum of prior sentiment scores of negation words and sentiment words. Qian et al.
(2017) go further, investigating the sentiment shifting effect of sentiment, negation,
and intensity word, proposing a linguistically regularized LSTMmodel for sentence-
level sentiment analysis.

There are several studies to investigate other information for sentence-level sen-
timent analysis under certain settings. In the Twitter sentiment classification, we
can use several contextual information, including the tweet author’s history tweets,
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Fig. 8.18 Autoencoder by LSTM-RNN

Fig. 8.19 Sentiment classification with contextual features

the conversational tweets surrounding the tweet, and the topic-related tweets. These
information can be all severed as background information,which is intuitively helpful
to decide the sentiment of a tweet. Ren et al. (2016a) exploit these related information
in a neural network model by an additional contextual part, as shown in Fig. 8.19,
to enhance sentiment analysis in Twitter. For the source input sentences, they apply
a CNN to represent it, while for the contextual part, they apply a simple pooling
neural network over a set of salient contextual words. Recently, Mishra et al. (2017)
suggest an integration of cognitive features from gaze data to enhance sentence-level
sentiment analysis, which is achieved by using an additional CNN structure to model
the gaze features.

8.4 Document-Level Sentiment Classification

Document-level sentiment classification aims at identifying the sentiment label of a
document (Pang et al. 2002; Turney 2002). The sentiment labels could be two cate-
gories such as thumbs up and thumbs down (Pang et al. 2002) or multiple categories
such as the 1–5 stars on review sites (Pang and Lee 2005).7

In the literature, existing sentiment classification approaches could be grouped
into two directions: lexicon- based approach and corpus-based approach. Lexicon-
based approaches (Turney 2002; Taboada et al. 2011) mostly use a dictionary of

7In practice, it is time consuming to obtain the document- level sentiment labels via human anno-
tation. Researchers typically leverage the review documents from IMDB, Amazon, and Yelp, and
regard the associated rating stars as the sentiment labels.
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sentiment words with their associated sentiment polarity, and incorporate negation
and intensification to compute the sentiment polarity for each document. A repre-
sentative lexicon-based method is given by (Turney 2002), which consists of three
steps. Phrases are first extracted, if their POS tags conform to the predefined pat-
terns. Afterward, the sentiment polarity of each extracted phrase is estimated through
pointwise mutual information (PMI), whichmeasures the degree of statistical depen-
dence between two terms. In Turney’s work, the PMI score is calculated by feeding
queries to a search engine and collecting the number of hits. Finally, he averages
the polarity of all phrases in a review as its sentiment polarity. Ding et al. (2008)
apply negation words like “not”, “never”, “cannot”, and contrary words like “but” to
enhance the performance of lexicon-based method. Taboada et al. (2011) integrate
intensifications and negation words with the sentiment lexicons annotated with their
polarities and sentiment strengths.

Corpus-based methods treat sentiment classification as a special case of text cat-
egorization problem (Pang et al. 2002). They mostly build a sentiment classifier
from documents with annotated sentiment polarity. The sentiment supervision can
be manually annotated, or automatically collected by sentiment signals like emoti-
cons in tweets or human ratings in reviews. Pang et al. (2002) pioneer to treat the
sentiment classification of reviews as a special case of text categorization problem
and first investigate machine learning methods. They employ Naive Bayes, Maxi-
mum Entropy, and Support Vector Machines (SVM) with a diverse set of features.
In their experiments, the best performance is achieved by SVM with bag-of-words
features. Following Pang et al.’s work, many studies focus on designing or learning
effective features to obtain a better classification performance. Onmovie and product
reviews,Wang andManning (2012) present NBSVM,which trade-off betweenNaive
Bayes and NB-feature enhanced SVM. Paltoglou and Thelwall (2010) learn feature
weights by investigating variants weighting functions from Information Retrieval,
such as tf.idf and its BM25 variants. Nakagawa et al. (2010) utilize dependency
trees, polarity-shifting rules and conditional random fields with hidden variables to
compute the document feature.

The intuition of developing neural network approach is that feature engineering
is typically labor intensive. Neural network approaches instead have the ability to
discover explanatory factors from the data and make the learning algorithms less
dependent on extensive feature engineering. Bespalov et al. (2011) represent each
word as a vector (embedding), and then get the vectors for phrases with temporal con-
volutional network. The document embedding is calculated by averaging the phrase
vectors. Le and Mikolov (2014) extend the standard skip-gram and CBOW models
Mikolov et al. (2013b) to learn the embeddings for sentences and documents. They
represent each document by a dense vector which is trained to predict words in the
document. Specifically, the PV-DM model extends the skip-gram model by averag-
ing/concatenating the document vector with context vectors to predict the middle
word. The models of Denil et al. (2014); Tang et al. (2015a); Bhatia et al. (2015);
Yang et al. (2016); Zhang et al. (2016c) have the same intuition. They model the
embedding of sentences from the words, and then use sentence vectors to compose
the document vector. Specifically, Denil et al. (2014) use the same convolutional
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Fig. 8.20 A neural network architecture for document-level sentiment classification (Tang et al.
2015a).

neural network as the sentence modeling component and the document modeling
component. Tang et al. (2015a) use convolutional neural network to calculate the
sentence vector, and then use bidirectional gated recurrent neural network to calcu-
late the document embedding. The model is given in Fig. 8.20. Bhatia et al. (2015)
calculate document vector based on the structure obtained from theRSTparse. Zhang
et al. (2016c) calculate sentence vector with recurrent neural network, and then use
convolutional network to calculate the document vector. Yang et al. (2016) use two
attention layers to get the sentence vectors, and the document vector, respectively. In
order to calculate the weights of different words from a sentence and the weights of
different sentences of a document, they use two “context” vectors, which are jointly
learned in the training process. Joulin et al. (2016) introduces a simple and efficient
approach, which averages the word representations into a text representation, and
then feeds the results to a linear classifier. Johnson and Zhang (2014, 2015, 2016)
develop convolutional neural networks that take one-hot word vector as input and
represent a document with the meanings of different regions. The aforementioned
studies regard word as the basic computational unit, and compose the document vec-
tor based on word representation. Zhang et al. (2015b) and Conneau et al. (2016)
use characters as the basic computational units, and explore convolutional architec-
tures to calculate the document vector. The vocabulary for characters is dramatically
smaller than the standard vocabulary of words. In Zhang et al. (2015b), the alphabet
consists of 70 characters, including 26 English letters, 10 digits, 33 other characters,
and the new line character. The model of Zhang et al. (2015b) has 6 convolution
layers, and the model of Conneau et al. (2016) consists of 29 layers.

There also exist studies that explore side information such as individual prefer-
ences of users or overall qualities of products to improve document-level sentiment
classification. For example, Tang et al. (2015b) incorporate user-sentiment consis-
tency and user-text consistency to an existing convolutional neural network. In the
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Fig. 8.21 The neural network approach that incorporates user and product information for
document- level sentiment classification (Tang et al. 2015b).

user-text consistency, each user is represented as a matrix to modify the meaning of
a word. In the user-sentiment consistency, each user is encoded as a vector, which is
directly concatenated with the document vector and regarded as a part of the features
for sentiment classification. The model is given in Fig. 8.21. Chen et al. (2016) make
an extension and develop attention models to take into account the importance of
words.

8.5 Fine-Grained Sentiment Analysis

In this section, we introduce the recent advances in fine-grained sentiment analysis
using deep learning. Different from sentence/document-level sentiment classifica-
tion, fine-grained sentiment analysis involves a number of tasks, most of which have
their own characteristics. Thus, these tasks are modeled differently, carefully con-
sidering their special application settings. Here, we introduce five different topics of
fine-grained sentiment analysis, including opinion mining, targeted sentiment anal-
ysis, aspect-level sentiment analysis, stance detection, and sarcasm detection.

8.5.1 Opinion Mining

Opinion mining has been a hot topic in the NLP community, which aims to extract
structured opinions from user- generated reviews. Figure8.22 shows several exam-
ples of opinionmining.Typically, the task involves two subtasks. First opinion entities
such as holders, targets, and expressions are identified, and second we build relations
over these entities, for example, the IS-ABOUT relation which specifies the target
of a certain opinion expression, and the IS-FROM relation which links an opinion
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(a)

(b)

Fig. 8.22 Examples of opinion mining

Fig. 8.23 A three-layer Bi-LSTM model for opinion entity detection

expression with its holder. In addition, the classification of sentiment polarities is an
important task as well.

Opinion mining is a typical structural learning problem, which has been stud-
ied extensively by using traditional statistical models with human-designed discrete
features. While recently, motivated by the great success of deep learning models
on other NLP tasks, especially on sentiment analysis, neural network-based models
have received grown attentions on the task as well. In the below, we describe several
representative studies of this task by using neural networks.

The early work of neural network models focuses on the detection of opinion
entities, treating the task as a sequence labeling problem to recognize boundaries of
opinion entities. Irsoy and Cardie (2014b) investigate the RNN structure for the task.
They apply the Elman-type RNNs, studying the effectiveness bidirectional RNN, and
observing the influence of the RNN depth, as shown in Fig. 8.23. Their results show
that bidirectionalRNNcanobtain better performances, and a three-layer bidirectional
RNN can achieve the best performance.
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A similar work is proposed by Liu et al. (2015). They make a comprehensive
investigation of RNN variations, including Elman-type RNN, Jordan-type RNN,
and LSTM. They study the bidirectionality as well. In addition, they compare three
kinds of input word embeddings. They compare these neural network models with
discrete models, and make a combination of the two different types of features. Their
experiments show that the LSTM neural network combining with discrete features
can achieve the best performance.

The above two studies do not involve the identification of the relation between
opinion entities. Most recently, Katiyar and Cardie (2016) propose the first neu-
ral network that exploits LSTM to jointly perform entity recognition and opinion
relation classification. They treat the two subtasks by a multitask learning paradigm,
introducing sentence-level training considering both entity boundaries and their rela-
tions, based on a sharedmultilayer bidirectional LSTM. In particular, they define two
sequences to denote the distance to their left and right entities of certain relations,
respectively. Experimental results on benchmark MPQA datasets show that their
neural model achieve the top-performing results.

8.5.2 Targeted Sentiment Analysis

Targeted sentiment analysis studies the sentiment polarity toward a certain entity
in one sentence. Figure8.24 shows several examples for the task, where {+, −, 0}
denote the positive, negative, and neutral sentiment, respectively.

The first neural network model for targeted-dependent sentiment analysis is pro-
posed byDong et al. (2014a). Themodel is adapted from their previouswork of Dong
et al. (2014b), which we have introduced in the sentence-level sentiment analysis.
Similarly, they build recursive neural networks from a binarized dependency tree
structure, by using multi- compositions from the child nodes. However, this work
is different in that they convert the dependency tree according to the input target,
making the headword of the target as the root in the resulting tree, not the original
head word of the input sentence. Figure8.25 shows the composition methods and the
resulting dependency tree structure, where “phone” is the target.

The above work highly relies on the input dependency parsing trees, which are
produced by automatic syntactic parsers. The trees can have errors, thus suffering
from the error propagation problem. To avoid the problem, recent studies suggest

Fig. 8.24 Targeted sentiment analysis
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Fig. 8.25 The framework of
Dong et al. (2014a)

Fig. 8.26 The framework of
Vo and Zhang (2015)

conducting targeted sentiment analysis with only raw sentence inputs. Vo and Zhang
(2015) exploit various pooling strategies to extract a number of neural features for
the task. They first divide the input sentence into three segments by a given target,
and then apply different pooling functions over the three segments together with the
whole sentence, as shown in Fig. 8.26. The resulting neural features are concatenated
for further sentiment polarity prediction.

Recently, several works investigate the effectiveness of RNN for the task, which
has brought promising performances in other sentiment analysis tasks. Zhang et al.
(2016b) propose to use gated RNN to enhance the representation of sentential words.
By using RNN, the resulting representations can capture context-sensitive informa-
tion, as shown in Fig. 8.27. Further, Tang et al. (2016a) exploit LSTM-RNN as one
basic neural layer to encode the input sequential words. Figure8.28 shows the frame-
work of their work. Both the works have achieved state-of-the-art performances in
targeted sentiment analysis.
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Fig. 8.27 The framework of Zhang et al. (2016b)

Fig. 8.28 The framework of Tang et al. (2016a)
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Fig. 8.29 Open domain-targeted sentiment analysis

Besides the use of RNN, Zhang et al. (2016b) present a gated neural network to
compose the features of the left, right contexts by target supervision, as shown in
Fig. 8.27. The main motivation behind is that the context-neural features should not
be equally treated by simply pooling. The task should carefully consider the target as
well in order to choose effective features. Liu and Zhang (2017) improve the gated
mechanism further, by applying an attention strategy. With the attention, their model
achieves the top performances on two benchmark datasets.

Previouswork demonstrated that boundaries of the input target is important for the
inferring of its sentiment polarities. They assume that well-posed targets are already
given, which is not always a real scenario. For example, if we want to determine the
sentiment polarities of open targets, it is required to recognize the these targets in
advance. Zhang et al. (2015a) study the open domain-targeted sentiment analysis by
using neural networks. They investigate the problemunder various settings, including
pipeline, joint, and collapsed frameworks. Figure8.29 shows the three frameworks.
In addition, they combine the neural and traditional discrete features in a single
model, finding that better performances can be obtained consistently under the three
settings.

8.5.3 Aspect-Level Sentiment Analysis

Aspect-level sentiment analysis aims to classify the sentiment polarities in a sentence
for an aspect. An aspect is one attribute of a target, over which human can express
their opinions. Figure8.30 shows several examples of the task. Usually, the task is
aimed to analyze user comments for a certain product, e.g., a hotel, an electronics,
or a movie. Products may have a number of aspects. For example, the aspects of
a hotel include environment, price, and service, and users usually post a review
to express their opinions over certain aspects. Different from targeted sentiment
analysis, aspects can be enumerated when the product is given, and the aspect may
not be expressed regularly in one review in some cases.

Initially, the task is modeled as a sentence classification problem, thus we can
exploit the same method as the sentence-level sentiment classification, expect that
the categories are different. Typically, assuming that a product has N aspects which
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Fig. 8.30 Aspect-level sentiment analysis

are predefined by expert, the aspect-level sentiment classification is actually a 3N -
classification problem, since each aspect can have three sentiment polarities: positive,
negative, and neutral. Lakkaraju et al. (2014) propose a recursive neural network
model-based matrix-vector composition for the task, which is similar to Socher et al.
(2012) that performs sentence-level sentiment classification.

In later work, the task has been simplified by assuming that aspect has been given
in an input sentence, thus it is equivalent to the aforementioned targeted sentiment
analysis. Nguyen and Shirai (2015) propose a phrase-based recursive neural network
model to the aspect-level sentiment analysis, where the input phrase structure trees
are converted from dependency structures along with the input aspects. Tang et al.
(2016b) apply a deep memory neural network under the same setting, without using
syntactic trees. Their model achieves state-of-the-art performances, and meanwhile
is highly efficient in speed in comparison with the neural models that exploit LSTM
structures. Figure8.31 shows their three-layer deep memory neural network. The
final features for classification are extracted by attentions with aspect supervision.

In real scenarios, one aspect of a certain product can have several different expres-
sions. Taking the laptop as an example, we can express the aspect screen by display,
resolution, and look, which are closely related to screen. If we can group similar
aspect phrases into one aspect, the results of aspect-level sentiment analysis are
more helpful for further application. Xiong et al. (2016) propose the first neural net-
work model for aspect phrase grouping. They learn representations of aspect phrase
by simple multilayer feed-forward neural networks, extracting neural features with
attention composition. The model parameters are trained by distant supervision with
automatic training examples. Figure8.32 shown their framework. He et al. (2017)
exploit an unsupervised auto-encoder framework for aspect extraction, which can
learn the scale of aspect words automatically by attention mechanism.

8.5.4 Stance Detection

The goal of stance detection is to recognize the attitude of one sentence toward
a certain topic. Generally, the topic is specified for the task as one input, and the
other input is the sentence that needs to be classified. Input sentences may not have
explicit relations with the given topic. which makes the task rather different with
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Fig. 8.31 The framework of Tang et al. (2016a)

Fig. 8.32 The framework of Xiong et al. (2016)
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target/aspect-level sentiment analysis, Thus stance detection is extremely difficult.
Figure8.33 shows several examples of the task.

Early work trains independent classifiers for each topic. Thus, the task is treated
as a simple 3-way classification problem. For example, Vijayaraghavan et al. (2016)
exploit a multilayer CNNmodel for the task. They integrate both word and character
embeddings as inputs in order to solve the unknown words. In the SemEval 2016
task 6 of stance detection, the model of Zarrella and Marsh (2016) achieved the top
performance, which builds a neural network based on LSTM-RNN, who has strong
capabilities of learning syntactic and semantic features. In addition, motivated by the
spirit of transfer learning, they learn the model parameters by the priori knowledge
from hashtags in the Twitter, because the raw input sentences of the SemEval task
are crawled from Twitter.

The above work models stance classification of different topics independently,
which has two main drawbacks. On the one hand, it is not as practical to annotate
training examples for each topic, in order to classify the attitudes of a sentence for
future topics. On the other hand, several topics may have close relations, for example,
“Hillary Clinton” and “Donald Trump” while training the classifiers independently
is unable of using this information. Augenstein et al. (2016) propose the first model
to train a single model no matter the input topics as a whole, using LSTM neural
networks. They model the input sentence and topic jointly, by using the resulting
representation of the topics as the input for LSTM over the sentences. Figure8.34
shows the framework of their method. Their model achieves significantly better
performances than the individual classifiers of previous work.

Fig. 8.33 Examples of stance detection

Fig. 8.34 Conditional
LSTM for stance detection
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8.5.5 Sarcasm Recognition

In this section, we discuss a special language phenomenon that has close connections
with sentiment analysis, namely sarcasm or irony. This phenomenon usually makes
change of a sentence’s literal meaning, and greatly influence the sentiment expressed
by the sentence. Figure8.35 shows several examples.

Typically, sarcasm detection is modeled as a binary classification problem, which
is similar with sentence-level sentiment analysis is essential. The major difference
between the two tasks lies in their goals. Ghosh andVeale (2016) study various neural
network models for the task in detail, including CNN, LSTM, and deep feed-forward
neural networks. They present several different neural models, and investigate their
effectiveness empirically. The experimental results show that a combination of these
neural networks can bring the best performances. The final model is composed by a
two-layer CNN, a two-layer LSTM and another one feed-forward layer, as shown in
Fig. 8.36.

For sarcasm detection in social media such as Twitter, author-based information
is one kind of useful features. Zhang et al. (2016a) propose a contextualized neu-
ral model for Twitter sarcasm recognition. Concretely, they extract a set of salient
words from the tweet authors’ historical posts, using these words to represent the
tweet author. Their proposed neural network model consists two parts, as shown in
Fig. 8.37, one being a gated RNN to represent sentences, and the other being a simple
pooling neural network to represent tweet author.

Fig. 8.35 Sarcasm examples

Fig. 8.36 The framework of Ghosh and Veale (2016)
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Fig. 8.37 The framework of Zhang et al. (2016a).

8.6 Summary

In this chapter, we give an overview on the recent success of neural network
approaches in sentiment analysis. We first describe how to integrate sentiment infor-
mation of texts to learn sentiment-specific word embeddings. Then, we describe
sentiment classification of sentences and documents, both of which require semantic
composition of texts. We then present how to develop neural network models to deal
with fine-grained tasks.

Despite deep learning approaches have achieved promising performances on sen-
timent analysis tasks in recent years, there are some potential directions to further
improvethisarea.Thefirstdirectionisexplainablesentimentanalysis.Thecurrentdeep
learningmodelsareaccurateyetunexplainable.Leveragingknowledgefromcognitive
science, common sense knowledge, or extracted knowledge from text corpusmight be
a potential direction to improve this area. The second direction is learning a robust
model for a new domain. The performance of a deep learning model depends on the
amount and the quality of the training data. Therefore, how to learn a robust sentiment
analyzer for adomainwith little/no annotated corpus is very challengingyet important
for real application. The third direction is how to understand the emotion. Majority
of existing studies focus on opinion expressions, targets, and holders. Recently, new
attributeshavebeensuggested tobetterunderstand theemotion, suchasopinioncauses
andstances.Pushingforwardthisarearequirespowerfulmodelsandlargecorpora.The
fourth direction is fine-grained sentiment analysis,which receives increasing interests
recently. Improving this area requires larger training corpus.
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