Chapter 4 ®
Deep Learning in Lexical Analysis i
and Parsing

Wanxiang Che and Yue Zhang

Abstract Lexical analysis and parsing tasks model the deeper properties of the
words and their relationships to each other. The commonly used techniques involve
word segmentation, part-of-speech tagging and parsing. A typical characteristic of
such tasks is that the outputs are structured. Two types of methods are usually
used to solve these structured prediction tasks: graph-based methods and transition-
based methods. Graph-based methods differentiate output structures based on their
characteristics directly, while transition-based methods transform output construc-
tion processes into state transition processes, differentiating sequences of transition
actions. Neural network models have been successfully used for both graph-based and
transition-based structured prediction. In this chapter, we give a review of applying
deep learning in lexical analysis and parsing, and compare with traditional statistical
methods.

4.1 Background

The properties of a word include its syntactic word categories (also known as part
of speech, POS), morphologies, and so on (Manning and Schiitze 1999). Obtaining
these information is also known as lexical analysis. For languages like Chinese,
Japanese, and Korean that do not separate words with whitespace, lexical analysis
also includes the task of word segmentation, i.e., splitting a sequence of characters
into words. Even in English, although whitespace is a strong clue for word bound-
aries, it is neither necessary nor sufficient. For example, in some situations, we might
wish to treat New York as a single word. This is regarded as a named entity recog-
nition (NER) problem (Shaalan 2014). On the other hand, punctuation marks are
always adjacent to words. We also need to judge whether to segment them or not.

W. Che (X))
Harbin Institute of Technology, Harbin, Heilongjiang, China
e-mail: wxche@ir.hit.edu.cn

Y. Zhang
Singapore University of Technology and Design, Singapore, Singapore
e-mail: yue_zhang @sutd.edu.sg

© Springer Nature Singapore Pte Ltd. 2018 79
L. Deng and Y. Liu (eds.), Deep Learning in Natural
Language Processing, https://doi.org/10.1007/978-981-10-5209-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-5209-5_4&domain=pdf

80 W. Che and Y. Zhang

For languages like English, this is often called tokenization which is more a matter
of convention than a serious research problem.

Once we know some properties of words, we may be interested in the relationships
between them. The parsing task is to find and label words (or sequences of words) that
are related to each other compositionally or recursively (Jurafsky and Martin 2009).
There are two commonly used parses: phrase-structure (or constituency) parsing
and dependency parsing.

All of these tasks can be regarded as structured prediction problems which is a
term for supervised machine learning, i.e., the outputs are structured and influenced
each other. Traditionally, huge amounts of human-designed handcrafted features are
fed into a linear classifier to predict a score for each decision unit and then combine
all of these scores together with satisfying some structured constraints. With the
help of deep learning, we can employ an end-to-end learning paradigm which does
not need costly feature engineering. The technology can even find more implicit
features which are difficult to be designed by humans. Nowadays, deep learning has
dominated these natural language processing tasks.

However, because of the pervasive problem of ambiguity, none of these tasks is
trivial to predict. Some ambiguities may not even be noticed by humans.

This chapter is organized as follows. We will first select some typical tasks
as examples to see where these ambiguities come from (Sect.4.2). Then, we will
review two typical structured prediction methods (Sect.4.3): graph-based method
(Sect.4.3.1) and transition-based method (Sect.4.3.2). Sections4.4 and 4.5 are
devoted to neural networks for graph-based and transition-based methods respec-
tively. The chapter closes with a conclusion (Sect. 4.6).

4.2 Typical Lexical Analysis and Parsing Tasks

A natural language processing (lexical analysis and parsing here) pipeline usually
includes three stages: word segmentation, POS tagging, and syntactic parsing.

4.2.1 Word Segmentation

As mentioned above, some languages, such as Chinese, are written in contiguous
characters (Wong et al. 2009). Even though there are dictionaries to list all words,
we cannot simply match words in a sequence of characters because ambiguity exists.
For example, a Chinese sentence

e yanshouyibashoujiguanle (Shouyi Yan turned off the mobile phone)
can match words
e yanshouyi (Shouyi Yan)/ba (NA)/shouji (mobile phone)/guan (turn off)/le (NA)

which is a correct word segmentation result. However,

4 Deep Learning in Lexical Analysis and Parsing 81

e yanshou (strictly)/yibashou (leader)/jiguan (office)/le (NA)
e yanshou (strictly)/yiba (handful)/shouji (mobile phone)/guan (turn off)/le (NA)
e yanshouyi (Shouyi Yan)/bashou (handle)/jiguan (office)/le (NA)

are also valid matching results but the sentence becomes meaningless with the seg-
mentations. Obviously, the word matching method cannot distinguish which seg-
mentation result is better than others. We need some kinds of scoring functions to
assess the results.

4.2.2 POS Tagging

POS tagging is one of the most basic tasks in NLP, and it is useful in many natural
language applications.' For example, the word loves can be a noun (plural of love) or
a verb (third person present form of love). We can determine that loves is a verb but
not noun in the following sentence.

e The boy loves a girl

The determent can be made independently without knowing the tags assigned to other
words. Better POS taggers, however, take the word tags into consideration, because
the tags of nearby a word can help to disambiguate its POS tag. In the example above,
the following determiner a can help to indicate that loves is a verb.

Therefore, the complete POS tagging output of above sentence is a tag sequence,
for example.

e DNVDN

(here we use D for a determiner, N for noun, and V for verb). The tag sequence has
the same length as the input sentence, and therefore specifies a single tag for each
word in the sentence (in this example D for the, N for boy, V for loves, and so on).
Usually, the output of POS tagging can be written into a tagged sentence, where each
word in the sentence is annotated with its corresponding POS tag, i.e., The/D boy/N
loves/V a/D girl/N.

Like word segmentation, some sentences may have different meanings, if they
are assigned with different POS tag sequences. For instance, two interpretations
are possible for the sentence “Teacher strikes idle kids”, depending on the POS
assignments of the words in the sentence,

4.2.3 Syntactic Parsing

Phrase structures are very often constrained to correspond to the derivations of
context-free grammars (CFGs) (Carnie 2012). In such a derivation, each phrase that

Thttps://en.wikipedia.org/wiki/Part-of-speech_tagging.

https://en.wikipedia.org/wiki/Part-of-speech_tagging

82 W. Che and Y. Zhang

S
- T
NP VP PU
/\ /\
JJ NN VBD NP
/\
NP PP
VANEZN
JJ NN IN NP
N
J‘J Nl‘\IS

Economic news had little effect on financial markets
ROOT

P

obj pc
nmod sbj nmod nmod (ﬁl 1
N { [o

Economic news had little effect on financial —markets

Fig. 4.1 Constituent tree (above) versus dependency tree (below)

is longer than one word is made of a sequence of non-overlapping “child” phrases
or words, such that the children “cover” the yield of the parent phrase.

Another syntactic structure widely used in NLP is dependency parse tree (Kbler
et al. 2009). A dependency parse is a directed tree where the words are vertices.
Edges (also know as arcs) correspond to syntactic relations between two words and
may be labeled with relation types. One extra pseudo word is the root of the tree, and
each other word has a single in-bound edge from its syntactic head. For example,
Fig.4.1 shows constituent and dependency trees for the sentence, Economic news
had little effect on financial markets.”

Dependency parsing can be classified into two categories: projective parsing (if
there are no crossing arcs in the trees) and non-projective parsing (if there are cross-
ing arcs in the trees). English and Chinese structures are predominantly projective.

A primary reason for using dependency structures instead of more informative
constituent structures is that they are usually easier to be understood. For example, in
Fig.4.1, it is hard to point out that the news is the subject of had from the constituent
structure, while the dependency structure can clearly indicate this relation between
the two words. In addition, dependency structures are more amenable to annotators
who have good knowledge of the target domain but lack deep linguistic knowledge.

2From Joakim Nivre’s tutorial at COLING-ACL, Sydney 2006.

4 Deep Learning in Lexical Analysis and Parsing 83

ﬁmf%\m

Root & ®

r v u r q n d a wp

Root & % pr] XE R FcH o

Fig. 4.2 The processing results of LTP

Syntactic parsing can provide useful structural information for applications. For
example, the following two Chinese sentences “nin zhuan zhe pian wen zhang hen
wu zhi” (You are ignorant to retweet the article) and “nin zhuan de zhe pian wen
zhang hen wu zhi” (The article you retweeted is ignorant) have completely different
meanings, although the second one only has an additional word “de”, which is a
possessive particle in Chinese. The main difference between the two sentences is
that they have different subjects.

Dependency parsing can tell us this syntactic information directly. One example is
LTP (Language Technology Platform)* developed by HIT (Harbin Institute of Tech-
nology), which provides a Chinese NLP preprocessing pipeline that includes Chinese
word segmentation, POS tagging, dependency parsing, and so on. The LTP’s pro-
cessing results of the above two sentences are shown in Fig.4.2. From these results,
we can easily know that subjects of the two sentences are wenzhang (article) and
zhuan (retweet) respectively. Many applications, such as sentiment analysis, can
take advantage of these syntactic information. Although the sentiment of the two
sentences can be easily determined by the polarity word wuzhi (ignorant), it is diffi-
cult to identify its targets or aspects if we do not know their syntactic structures.

3http://www.ltp.ai.

http://www.ltp.ai

84 W. Che and Y. Zhang

4.2.4 Structured Predication

These different natural language processing tasks can fall into three types of struc-
tured prediction problems (Smith 2011):

e Sequence segmentation
e Sequence labeling
e Parsing.

4.2.4.1 Sequence Segmentation

Sequence segmentation is the problem of breaking a sequence into contiguous

parts called segments. More formally, if the input is x = xi, ..., x,, then a seg-
mentation can be written as (xq, ..., Xy,), (Xy, 415 -+ Xy,), -+ o5 Xy, 415 -+, Xp), and
the output is y =y, ..., ¥, which corresponds to the segmental points, where

Vie{l,....m},1 <y, <n.

Besides word segmentation, there exist other sequence segmentation problems
such as sentence segmentation (breaking a piece of string into sentences which
is an important postprocessing stage for speech transcription) and chunking (also
known as shallow parsing to find important phrases from sentences, such as noun
phrases).

4.24.2 Sequence Labeling

Sequence labeling (also named as tagging) is the problem of assigning a corre-
sponding label or tag for each item of an input sequence. More formally, if the input
sequence is X = xp, ..., X, then the output tag sequence is y = yi, ..., y,, where
each input x; has a single output tag y;.

POS tagging is perhaps the most classical, and most famous, example of this type
of problem, where x; is a word in a sentence, and y; is its corresponding POS tag.

Besides POS tagging, many NLP tasks can be mapped to sequence labeling prob-
lems such as named entity recognition (locating and classifying named entities in
text into predefined categories such as the names of persons, locations, and organi-
zations). For this problem, the input is again a sentence. The output is the sentence
with entity boundaries tags. We assume there are three possible entity types: PER,
LOC, and ORG. Then for input sentence

e Rachel Holt, Uber’s regional general manager for U.S. and Canada, said in a
statement provided to CNNTech.*

the output of named entity recognition can be

“http://money.cnn.com/2017/04/14/technology/uber-financials/.

http://money.cnn.com/2017/04/14/technology/uber-financials/

4 Deep Learning in Lexical Analysis and Parsing 85

e Rachel/B-PER Holt/I-PER,/O Uber/B-ORG’s/O regional/O general/O manager/O
for/O U.S./B-LOC and/O Canada/B-LOC , /O said/O in/O a/O statement/O pro-
vided/O to/O CNNTech/B-ORG. /O

where each word in the sentence is either tagged as being the beginning of a particular
entity type, B-XXX (e.g., the tag B-PER corresponds to words that are the first word
in a person), as being the inside of a particular entity type, [-XXX (e.g., the tag [-PER
corresponds to words that are part of a person name, but are not the first word), or
otherwise (the tag O, i.e., not an entity).

Once this mapping has been performed on training examples, we can train a
tagging model on these training examples. Given a new test sentence we can then
predict a sequence of tags by the model, and then it is straightforward to identify the
entities from the tagged sequence.

The above sequence segmentation problems can even be transformed into sequence
tagging problems by designing proper tag sets. For Chinese word segmentation as an
example, each character in a sentence can be annotated with either tag B (beginning
of a word) or I (inside a word) (Xue 2003).

The purpose of transforming a sequence segmentation problem into a sequence
labeling problem is that the latter is much easier to be modeled and decoded. For
example, we will introduce a traditional popular sequence labeling model, conditional
random field (CRF), in Sect.4.3.1.1.

4.2.4.3 Parsing Algorithms

In general, we use parsing to denote all kinds of algorithms converting sentences
to syntactic structures. As mentioned in Sect.4.2.3, there are two popular syntac-
tic paring representations, phrase-structure (or named as constituency) parsing and
dependency parsing.

For constituent parsing, in general, a grammar is used to derive syntactic struc-
tures. In brief, a grammar consists of a set of rules, each corresponding to a deriva-
tion step that is possible to take under particular conditions. Context-free gram-
mars (CFGs) are most frequently used in constituency parsing (Booth 1969). The
parsing is viewed as choosing the maximum-scoring derivation from a grammar.

Graph-based and transition-based methods are currently two dominant depen-
dency parsing algorithms (Kbler et al. 2009). Graph-based dependency parsing can be
formalized as finding the maximum spanning tree (MST) from a directed graph with
vertices (words) and edges (dependency arcs between two words). A transition-based
dependency parsing algorithm can be formalized as a transition system consisting of
a set of states and a set of transition actions. The transition system begins in start state
and transitions are iteratively followed until a terminal state is reached. The common
critical problem for graph-based and transition-based dependency parsing is how to
calculate the score of a dependency arc or a transition action. We will introduce the
two methods in detail at Sects.4.3.1.2 and 4.3.2.1 respectively.

86 W. Che and Y. Zhang

4.3 Structured Prediction Methods

In this section, we will introduce two types of state-of-the-art structured predic-
tion methods: graph-based and transition-based respectively. Most deep learning
algorithms for structured prediction problems are also derived from these methods.

4.3.1 Graph-Based Methods

The graph-based structured prediction methods differentiate output structures based
on their characteristics directly. The conditional random fields (CRFs) are typical
graph-based methods, which aim to maximize the probability of the correct output
structure. The graph-based methods can also be applied to dependency parsing, where
the aim changes to maximize the score of the correct output structure. Next, we will
introduce these two methods in detail.

4.3.1.1 Conditional Random Fields

Conditional random fields, strictly speaking, are a variant of undirected graphical
models (also called Markov random fields or Markov networks) in which some
random variables are observed and others are modeled probabilistically. CRFs were
introduced by Lafferty et al. (2001) for sequence labeling. They are also known as
linear-chain CRFs. It has been the de facto method for sequence labeling problems
before deep learning.

The CRFs define the distribution over label sequences y = yy, ..., y,, given an
observed sequence X = x1, . .., X,, by a special case of log-linear models:

exp Yoy W £(X, yie1, yi,)
Y €Y (x) exp er‘l:l w- f(X, yz/‘—l7 y;v l) '

p(ylx) = 5 (4.1)

where % (x) is a set of all possible label sequences; f(x, y;_1, y;, i) is the feature
function that extracts a feature vector from position i of sequence x, which can
include the labels at the current position y; and at the previous position y;_;.

The attraction of the CRFs is that it permits the inclusion of any (local) features.
For example, in POS tagging, the features can be word-tag pairs, pairs of adjacent
tags, spelling features, such as whether the word starts with a capital letter or contains
a digit, and prefix or suffix features. These features may be dependent, but the CRFs
permit over-lapping features and learn to balance their effect on prediction against
the other features. The reason why we name these features as local features is that
we assume the label y; only depends on y;_;, but longer history. This is also named
as (first order) Markov assumption.

4 Deep Learning in Lexical Analysis and Parsing 87

The general Viterbi algorithm, a kind of dynamic programming algorithm, can
be applied for decoding with CRFs. Then the first-order gradient-based (such as
gradient descent) or second-order (such as L-BFGS) optimization methods can be
used to learn proper parameters to maximize conditional probability in Eq. (4.1).

Besides sequence labeling problems, CRFs have been generalized in many ways
for other structured prediction problems. For example, Sarawagi and Cohen (2004)
proposed the semi-CRF model for sequence segmentation problems. In semi-CRF,
the conditional probability of a semi-Markov chain on the input sequence is explicitly
modeled, whose each state corresponds to a subsequence of input units. However,
to achieve good segmentation performance, conventional semi-CRF models require
carefully handcrafted features to represent the segment. Generally, these feature
functions fall into two types: (1) the CRF style features which represent input unit-
level information such as the specific words at a particular position; (2) the semi-CRF
style features which represent segment-level information such as the length of the
segment.

Hall et al. (2014) proposed a CRF-based constituency parsing model, where the
features factor over anchored rules of a small backbone grammar, such as basic span
features (first word, last word, and length of the span), span context features (the
words immediately preceding or following the span), split point features (words at
the split point inside the span), and span shape features (for each word in the span,
indicating whether that word begins with a capital letter, lowercase letter, digit, or
punctuation mark). The CKY algorithm® can be used to find the tree with maximum
probabilities given learned parameters.

4.3.1.2 Graph-Based Dependency Parsing

Consider a directed graph with vertices V and edges E. Let s(u, v) denote the score
of an edge from vertex u to vertex v. A directed spanning tree is a subset of edges
E’ C E such that all vertices have exactly one incoming arc in E, except the root
vertex (which has none), and such that E’ contains no cycles. Let 7 (E) denote the
set of all possible directed spanning trees for E. The total score of a spanning tree
E’ is the sum of the scores of edges in E’. The maximum spanning tree (MST) is
defined by

E/rgn;)((E) Z s(u, v). “4.2)
s(u,v) £’

Then the (unlabeled) dependency parsing decoding problem can be reduced to
the maximum spanning tree problem if we view words in a sentence as vertices and
edges as dependency arcs, where u is often named as a head (or parent) and v as a
modifier (or child).

It is straightforward to extend this approach to labeled dependency parsing, if we
have multiple edges from u to v, one associated with each label. The same algorithm

Shttps://en.wikipedia.org/wiki/CYK_algorithm.

https://en.wikipedia.org/wiki/CYK_algorithm

88 W. Che and Y. Zhang

applies. The most widely used decoding algorithm for the MST problem is the Eisner
algorithm (Eisner 1996) for projective parsing and Chu-Liu-Edmonds algorithm (Chu
and Liu 1965; Edmonds 1967) for non-projective parsing.

Here, we introduce the basic graph-based method, which is called the first-order
model. The first-order graph-based model makes a strong independence assumption:
the arcs in a tree are independent from each other. In other words, the score of an
arc is not affected by other arcs. This method is also called the arc-factorization
method.

So, the critical problem is, given an input sentence, how to determine the score
s(u, v) of each candidate arc. Traditionally, discriminative models were used which
represent an arc with a feature vector extracted with feature function f(u, v). Then,
the score of the arc is the dot product of a feature weight vector w and f, i.e.,
s(u,v) =w-f(u,v).

Then how to define f(u, v) and how to learn optimizing parameters w?

Feature Definition

The choice of features is central to the performance of a dependency parsing
model. For each possible arc, the following features are readily considered:

e for each word involved, the surface form, its lemma, its POS, and any shape,
spelling, or morphological features;

e words involved include the head, the modifier, context words on either side of the
head and modifier, words in between the head and modifier;

e thelength of the arc (number of words between the head and modifier), its direction,
and (if the parse is to be labeled) the syntactic relation type.

Besides these atomic features, all kinds of combination features and back-off
features can also be extracted.

Parameter Learning

Online structured learning algorithms such as the averaged perceptron (AP)
(Freund and Schapire 1999; Collins 2002), online passive-aggressive algorithms
(PA) (Crammer et al. 2006), or margin infused relaxed algorithm (MIRA) (Crammer
and Singer 2003; McDonald 2006) are commonly used for learning parameters w in
graph-based dependency parsing.

4.3.2 Transition-Based Methods

Different from graph-based methods, which differentiate structural outputs directly,
a transition-based method can be formalized as a transition system consisting of a
set of states S (possibly infinite), including a start state so € S and a set of terminal
states S, € S, and a set of transition actions 7 (Nivre 2008). The transition system
begins in sy and transitions are iteratively followed until a terminal state is reached.
Figure 4.3 shows a simple finite state transducer, where the start state is sg, and the
terminal states include s¢, s7, 3, S14, 15, S16, S17 and s1g. The goal of a transition-
based structured prediction model is to differentiate sequences of transition actions

4 Deep Learning in Lexical Analysis and Parsing 89

Fig. 4.3 Transition-based
method for structured
prediction

that lead to the terminal states, so that those that correspond to the correct output
state are scored higher.

4.3.2.1 Transition-Based Dependency Parsing

The arc-standard transition system (Nivre 2008) is widely used for projective depen-
dency parsing. In this system, each state corresponds to a stack o containing partially
built subtrees, a buffer 8 of as-yet-unprocessed words, and a set of dependency arcs A.
The transition actions are shown as deductive rules in Fig.4.4. A transition sequence
for the sentence

e Economicy newsy hads littles effects one financial, marketsg.o

in Fig.4.1 generated by the arc-standard algorithm is presented in Table4.1.

In a greedy parser, the decision about what to do in state s € S is made by a
classifier. Training the classifier is accomplished by considering gold-standard trees
in the training section of a treebank, from which we can derive canonical gold-
standard sequences (oracle sequences) of transition state and action pairs.

Information that can be obtained from a state s = (o, 8, A) includes:

90

Fig. 4.4 Transition actions
in the deduction system

(Nivre 2008)

W. Che and Y. Zhang

Start state

([o| s1,50],B,A)

(ROOT], [0...,1],0)

LEFTARC; (LA))

([o] so).B.AU{s1 - 50})

([o] s1:50],8,4)

RIGHTARC; (RA))

(o] s1.B,AU{s1 5 50})

(0,[b]B].A)
SHIFT (SH) Bl
([o| b].B.A)
Terminal state ([ROOT],[],A)
Table 4.1 Transitions by the arc-standard algorithm
State Action o B A
0 Initialization [0] [1,...,9] [}
1 SH [0, 1] [2,....9]
2 SH [0, 1,2] [3,....9]
3 LAmod [0,2] [3,...,9] AU {12 g
4 SH [0,2, 3] [4,....9]
5 LA, [0, 3] [4,....9] Aupda
6 SH [0, 3, 4] [5,....9]
7 SH [0,3,4,5] 6,9]
8 LAumod 0,3, 5] 6.....9] AU (42 5
9 SH [0,3,5, 6] [7,....9]
10 SH [0,3,5,6,7] (8, 9]
11 SH [0,3,5,6,7,8] |[9]
12 LAumod [0.3,5.6,8] 9] AU 72
13 RApc [0,3,5, 6] (9] AU (625 8)
14 RAmod 0.3, 5] 9] AU (527 6
15 RA [0, 3] [9] AupZs)
16 SH [0, 3,9] []
17 RA, [0, 3] [] AUBL 9
18 RA 01 [0] [AU {025 3y

e all the words and their corresponding POS tags;

o the head of a word and its label from partial parsed dependency arcs A;
o the position of a word on the stack o and buffer 8.

For example, Zhang and Nivre (2011) proposed 72 feature templates which include
26 baseline and 46 new feature templates. The baseline features mainly describe
the words and POS tags at top of stack and buffer and their combination. The new
features are: direction and distance between a pair of head and modifier; the number
of modifiers to a given head; higher order partial parsed dependency arcs; the set of

4 Deep Learning in Lexical Analysis and Parsing 91

unique dependency labels from the modifiers of the top word in the stack and buffer.
Finally, these new features boost about 1.5% UAS (unlabeled attachment score).

We usually use the term “feature engineering” to describe the need of the amount
of linguistic expertise that has gone into designing features for various linguistic
structured prediction tasks.

NLP researchers tend to adopt the strategy of incorporating as many features as
they can think of into learning and allowing the parameter estimation method to
determine which features are helpful and which should be ignored. Perhaps because
of the heavy-tailed nature of linguistic phenomena and the continued growth in
computational power available to researchers, the current consensus seems to be that
more features are always welcome in an NLP model, especially in frameworks like
log-linear models that can incorporate them.

To reduce error propagation in greedy transition-based algorithms, beam search
decoding with global normalization is usually applied and large margin training with
early update (Collins and Roark 2004) is used for learning from inexact search.

4.3.2.2 Transition-Based Sequence Labeling and Segmentation

Besides dependency parsing, the transition-based framework can be applied to most
structured prediction tasks in NLP, to which a mapping can be found between struc-
tured outputs and state transition sequences. Take sequence labeling for example.
The output can be constructed by incrementally assigning labels to each input from
left to right. In this setting, the state is a pair (o,), where o represents a partially
labeled sequence and S represents a queue of unlabeled words. With the start state
being ([], input) and the terminal states being (output, []), each action advances a
state by assigning a particular label on the front of 8.

Sequence segmentation, such as word segmentation is a second example, for
which a transition system can process input characters incrementally from left to
right. A state takes the form (o,), where o is a partially segmented word sequence
and B is a queue of next incoming characters. In the start state, o is empty and S
consists of the full input sentence. In any terminal state, o contains a full segmented
sequence and B is empty. Each transition action advances the current state by pro-
cessing the next incoming character, either separating (SEP) it at the beginning of a
new word or appending (APP) it to the end of the last word in the partially segmented
sequence. A gold-standard state transition sequence for the sentence “wo xi huan du
shu (I like reading)” is shown in Table 4.2.

4.3.2.3 Advantages of Transition-Based Methods

Transition-based methods do not reduce structural ambiguity—the search space does
not shrink in size for a given structured prediction task when the solution changes
from a graph-based model to a transition-based model. The only difference is that
structural ambiguities are transformed into ambiguities between different transition

92 W. Che and Y. Zhang

Table 4.2 Gold state transition sequence for word segmentation

State o B Next action
0 1 [wo, xi, huan, du, shu] | SEP
1 [wo (D] [xi, huan, du, shu] SEP
2 [wo (1), xi] [huan, du, shu] APP
3 [wo (I), xihuan (like)] | [du, shu] SEP
4 [wo (I), xihuan (like), |[] APP
dushu (reading)]

actions at each state. A question that naturally arises is why transition-based methods
have attracted significant research attention.

The main answer lies in the features that can be utilized by transition-based mod-
els, or the information that is made available for ambiguity resolution. Traditional
graph-based methods are typically constrained by efficiency of exactinference, which
limits the range of features to use. For example, to train CRF models (Lafferty
et al. 2001), it is necessary to efficiently estimate the marginal probabilities of small
cliques, the sizes of which are decided by feature ranges. To allow efficient train-
ing, CRF models assume low-order Markov properties of their features. As a second
example, CKY parsing (Collins 1997) requires that the features are constrained to
local grammar rules, so that a tolerable polynomial dynamic program can be used to
find the highest scored parse tree among an exponential of search candidates.

In contrast, early work on transition-based methods employ greedy local models
(Yamada and Matsumoto 2003; Sagae and Lavie 2005; Nivre 2003), and are typically
regarded as a very fast alternative to graph-based systems, running in linear time with
regard to the input size. Thanks to the use of arbitrary nonlocal features, their accu-
racies are not far behind the state-of-the-art models. Since global training has been
utilized for training sequences of actions (Zhang and Clark 2011b), fast and accurate
transition-based models were made, which gives the state-of-the-art accuracies for
tasks such as CCG parsing (Zhang and Clark 201 1a; Xu et al. 2014), natural language
synthesis (Liu et al. 2015; Liu and Zhang 2015; Puduppully et al. 2016), dependency
parsing (Zhang and Clark 2008b; Zhang and Nivre 2011; Choi and Palmer 2011)
and constituent parsing (Zhang and Clark 2009; Zhu et al. 2013). Take constituent
parsing for example, ZPar (Zhu et al. 2013) gives competitive accuracies to Berkeley
parser (Petrov et al. 2006), yet runs 15 times faster.

The efficiency advantage of transition-based systems further allows joint struc-
tured problems with highly complex search spaces to be exploited. Examples include
joint word segmentation and POS tagging (Zhang and Clark 2010), joint segmen-
tation, POS tagging and chunking (Lyu et al. 2016), joint POS tagging and pars-
ing (Bohnet and Nivre 2012; Wang and Xue 2014), joint word segmentation, POS
tagging and parsing (Hatori et al. 2012; Zhang et al. 2013, 2014), joint segmentation
and normalization for microblog (Qian et al. 2015), joint morphological generation
and text linearization (Song et al. 2014), and joint entity and relation extraction (Li
and Ji 2014; Li et al. 2016).

4 Deep Learning in Lexical Analysis and Parsing 93

4.4 Neural Graph-Based Methods

4.4.1 Neural Conditional Random Fields

Collobert and Weston (2008) was the first work to utilize deep learning for sequence
labeling problems. This was almost the earliest work successfully using deep learn-
ing for addressing natural language processing tasks. They not only embedded words
into a d-dimensional vector, but also embedded some additional features. Then words
and corresponding features in a window were fed into an MLP (multiple layer per-
ceptron) to predict a tag. Word-level log-likelihood, each word in a sentence being
considered independently, was used as the training criterion. As mentioned above,
there is often a correlation between the tag of a word in a sentence and its neighboring
tags. Therefore, in their updated work (Collobert et al. 2011), tag transition scores
were added in their sentence-level log-likelihood model. In fact, the model is the
same with the CRF models except that the conventional CRF models use a linear
model instead of a nonlinear neural network.

While, limited by Markov assumption, the CRF models can only make use of local
features. It leads to the long-term dependency between tags cannot be modeled, which
sometimes is important in many natural language processing tasks. Theoretically,
recurrent neural networks (RNNs) can model arbitrarily sized sequence into fixed-
size vectors without resorting to the Markov assumption. Then the output vector is
used for further prediction. For example, it can be used to predict the conditional
probability of a POS tag given an entire previous word sequence.

In more detail, RNNs are defined recursively, by means of a function taking as
input a previous state vector and an input vector and returning a new state vector. So,
intuitively, RNNs can be thought of as very deep feedforward networks, with shared
parameters across different layers. The gradients then include repeated multiplication
of the weight matrix, making it very likely for the values to vanish or explode.
The gradient exploding problem has a simple but very effective solution: clipping
the gradients if their norm exceeds a given threshold. While the gradient vanishing
problem is much more complicated. The gating mechanism, such as the long short-
term memory (LSTM) (Hochreiter and Schmidhuber 1997) and the gated recurrent
unit (GRU) (Cho et al. 2014), can solve it more or less.

A natural extension of RNN is a bidirectional RNN (Graves 2008) (BiRNN, such
as BiLSTM and BiGRU). In sequence labeling problems, predicting a tag not only
depends on the previous words, but also depends on the successive words, which
cannot be seen in a standard RNN. Therefore, BIRNN use two RNNs (forward and
backward RNN) to represent the word sequences before and behind the current word.
Then, the forward and backward states of the current word are concatenated together
as input to predict the probability of a tag.

In addition, RNNs can be stacked in layers, where the inputs of an RNN are the
outputs of the RNN below it. Such layered architectures are often called deep RNNs.
Deep RNNs have shown power in many problems, such as semantic role labeling

94 W. Che and Y. Zhang

(SRL) with sequence labeling method (Zhou and Xu 2015, https://www.aclweb.org/
anthology/P/P17/P17-1044.bib).

Although RNNs have been successfully applied in many sequence labeling prob-
lems, they do not explicitly model the dependency between output tags like CRFs.
Therefore, the transition score matrix between any tags can also be added to form a
sentence-level log-likelihood model usually named as RNN-CRF model where RNN
can also be LSTM, BiLSTM, GRU, BiGRU, and so on.

Like conventional CRFs, the neural CRFs can also be extend to handle the
sequence segmentation problems. For example, Liu et al. (2016) proposed a neural
semi-CRF, which used a segmental recurrent neural network (SRNN) to represent
a segment by composing input units with an RNN. At the same time, additional
segment-level representation using segment embedding is also regarded as inputs
which encodes the entire segment explicitly. Finally, they achieve the state-of-the-art
Chinese word segmentation performance.

Durrett and Klein (2015) extended their CRF phrase-structure parsing (Hall et al.
2014) to neural one. In their neural CRF parsing, instead of linear potential functions
based on sparse features, they use nonlinear potentials computed via a feedforward
neural network. The other components, such as decoding, are unchanged from the
conventional CRF parsing. Finally, they achieve the state-of-the-art phrase-structure
parsing performance.

4.4.2 Neural Graph-Based Dependency Parsing

Conventional graph-based models rely heavily on an enormous number of hand-
crafted features, which brings about serious problems. First, a mass of features could
put the models in the risk of overfitting, especially in the combinational features
capturing interactions between head and modifier could easily explode the feature
space. In addition, feature design requires domain expertise, which means useful
features are likely to be neglected due to a lack of domain knowledge.

To ease the problem of feature engineering, some recent works propose some
general and effective neural network models for graph-based dependency parsing.

4.4.2.1 Multiple Layer Perceptron

Pei et al. (2015) used an MLP (multiple layer perceptron) model to score an edge.
Instead of using millions of features as in conventional models, they only use atomic
features such as word unigrams and POS tag unigrams, which are less likely to
be sparse. Then these atomic features are transformed into their corresponding dis-
tributed representations (feature embeddings or feature vector) and push into MLP.
Feature combinations are automatically learned with novel ranh—cub activation func-
tion at the hidden layer, thus alleviating the heavy burden of feature engineering in
conventional graph-based models.

https://www.aclweb.org/anthology/P/P17/P17-1044.bib
https://www.aclweb.org/anthology/P/P17/P17-1044.bib

4 Deep Learning in Lexical Analysis and Parsing 95

The distributed representation can discover useful new features that have
never been used in conventional parsers. For instance, context information of the
dependency edge (h, m), such as words between & and m, has been widely believed
to be useful in graph-based models. However, in conventional methods, the complete
context cannot be used as features directly because of the data sparseness problem.
Therefore, they are usually backed off to low-order representation such as bigrams
and trigrams.

Pei et al. (2015) proposed to use distributed representation of the context. They
simply average all word embeddings in a context to represent it. The method can
not only effectively use every word in the context, but also can capture semantic
information behind context, because similar words have similar embeddings.

At last, max-margin criterion is used to train the model. The training object is that
the highest scoring tree is the correct one and its score will be larger up to a margin to
other possible tree. The structured margin loss is defined as the number of word with
an incorrect head and edge label in the predicted tree.

4.4.2.2 Convolutional Neural Networks

Pei et al. (2015) simply average embeddings in context to represent them, which
ignore the word position information and cannot assign different weights for dif-
ferent words or phrases. Zhang et al. (2016b) introduce convolutional neural net-
works (CNN) to compute the representation of a sentence. Then use the represen-
tation to help scoring an edge. While the pooling regimes make CNN invariant to
shifting, that is CNN ignore the position of words which is very important for depen-
dency parsing. In order to overcome the problem, Zhang et al. (2016b) input the
relative positions between a word and a head or modifier to CNN. Another differ-
ence from Pei et al. (2015) is that they utilize the probabilistic treatment for training:
calculating the gradients according to probabilistic criteria. The probabilistic criteria
can be viewed as a soft version of the max-margin criteria, and all the possible fac-
tors are considered when calculating gradients for the probabilistic way, while only
wrongly predicted factors have nonzero subgradients for max-margin training.

4.4.2.3 Recurrent Neural Networks

Theoretically, recurrent neural networks (RNN) can model sequences with arbitrary
length which is sensitive to the relative positions of words in the sequence. As an
improvement of conventional RNN, LSTM can better represent a sequence. The BiL-
STM (bidirectional LSTM) particularly excels at representing words in the sequence
together with their contexts, capturing the word and an “infinite” window around it.
Therefore, Kiperwasser and Goldberg (2016) represent each word by its BILSTM
hidden layer output, and use the concatenation of the head and modifier words’ repre-
sentation as the features, which is then passed to a nonlinear scoring function (MLP).
To speed up parsing, Kiperwasser and Goldberg (2016) proposed a two-stage strategy.

96 W. Che and Y. Zhang

First, they predict the unlabeled structure using the method given above, and then
predict the label of each resulting edge. The labeling of an edge is performed using
the same feature representation as above fed into a different MLP predictor. Finally,
the max-margin criterion is used to train the model, i.e., let the correct tree is scored
above incorrect ones with a margin.

Wang and Chang (2016) also use BiLSTM to represent the head and modifier
words. Moreover, they introduce some additional features, such as distance between
the two words and context like Pei et al. (2015). Different from Pei et al. (2015), they
utilize LSTM-Minus to represent a context, in which distributed representation of a
context is learned by using subtraction between LSTM hidden vectors. The similar
idea was also been used by Cross and Huang (2016) for transition-based constituent
parsing.

All above work contact the distributed representation of head and modifier words
outputted by LSTM as input to MLP to calculate the score of a potential dependency
edge. Borrowing the idea from Luong et al. (2015), Dozat and Manning (2016) used
a bilinear transformation between representation of the head and modifier words to
calculate the score. While, they also notice that there are two disadvantages of using
the representation directly. The first is that they contain much more information than
is necessary for calculating the score, because they are recurrent, they also contain
information needed for calculating scores elsewhere in the sequence. Training on the
entire vector then means training on superfluous information, which is likely to lead
to overfitting. The second disadvantage is that the representation r; consists of the
concatenation of the left recurrent state ¥; and the right recurrent state 7; , meaning
using by itself in the bilinear transformation keeps the features learned by the two
LSTMs distinct; ideally we would like the model to learn features composed from
both. Dozat and Manning (2016) address both of these issues simultaneously by first
applying (distinct) MLP functions with a smaller hidden size to the two recurrent
states r; and r; before the bilinear operation. This allows the model to combine the
two recurrent states together while also reducing the dimensionality. Another change
to the bilinear scoring mechanism is to add a linear transformation of the head word
representation to scoring function, which captures the prior probability of a word
taking any dependent. They name the new method as biaffine transformation. Their
model is a two-stage one with additional dependency relation classification stage.
The biaffine transformation scoring function again is used to predict a label for each
dependency edge. Finally, they achieve the state-of-the-art performance on English
Penn Treebank test set.

4 Deep Learning in Lexical Analysis and Parsing 97

4.5 Neural Transition-Based Methods

4.5.1 Greedy Shift-Reduce Dependency Parsing

The outputs of dependency parsing are syntactic trees, which is a typical structure
as sequences are. Graph-based dependency parsers score elements in dependency
graphs, such as labels and sibling labels. In contrast, transition-based dependency
parsers utilize shift-reduce actions to construct outputs incrementally. Seminal work
use statistical models such as SVM to make greedy local decisions on the actions
to take, as exemplified by MaltParser (Nivre 2003). Such greedy parsing processes
can be illustrated in Table4.1. At each step, the context, or parser configuration, I
can be abstracted in Fig.4.5, where the stack o contains partially processed words
50, §1, from the top, and the buffer g contains the incoming words gy, q;, from the
sentence. The task of a greedy local parser is to find the next parsing action given
the current configuration, where an example set of actions is shown in Sect.4.3.2.

MaltParser works by extracting features from the top nodes of o and the front
words of . For example, the form and POS of s, 51, go and g, are all used as
binary discrete features. In addition, the forms, POS, and dependency arc labels of
dependents of s¢, s; and other nodes on o can be used as additional features. Here,
the dependency arc label of a word refers to the label of the arc between the word
and the word it modifies. Given a parser configuration, all such features are extracted
and fed to an SVM classifier, the output of which is a shift-reduce actions over a set
of valid actions.

Chen and Manning (2014) built a neural network alternative of MaltParser, the
structure of which is shown in Fig. 4.6a. Similar to MaltParser, features are extracted
from the top of o and the front of 8 given a parser configuration, and then used
for predicting the next shift-reduce action to take. Chen and Manning (2014) fol-
low Zhang and Nivre (2011) in defining the range of word, POS and label features.
On the other hand, different from using discrete indicator features, embeddings are
used to represent words, POS and arc labels. As shown in Fig.4.6a, a neural net-
work consisting of three layers is used to predict the next action given the input
features. In the input layer, word, POS, and arc label embeddings from the context
are concatenated. The hidden layer takes the resulting input vector, and apply a linear
transformation before a cube activation function:

h= (Wx+b)*.
Fig. 4.5 Context of Stack Buffer
shift-reduce dependency
parsing

98 W. Che and Y. Zhang

Output
Layer
Hidden
Layer
[0 [0 00
Embedding
Layer Words POS Labels
(a) Chen and Manning (2014)
Output
Layer
Haden
Layer
N
Embedding
Layer o Sk

a ([]]
(b) Dyer et al. (2015)

Fig. 4.6 Two greedy parsers

The motivation behind using a cube function as the nonlinear activation function
instead of the standard sigmoid and tanh functions is that it can achieve arbitrary
combination of three elements in the input layer, which has been traditionally defined
manually in statistical parsing models. This method empirically worked better than
alternative activation functions. Finally, the hidden layer is passed as input to a
standard softmax layer to choose the action.

The parser of Chen and Manning (2014) outperformed MaltParser significantly on
several benchmarks. The main reasons are twofold. First, the use of word embeddings
allows syntactic and semantic information of words to be learned from large raw data
via unsupervised pretaining, which increases the robustness of the model. Second,
the hidden layer achieves the effect of complex feature combinations, which is done
manually in statistical models. For example, a combined feature can be sowgop,
which captures the form of sy and the POS of g, simultaneously. This can be a strong
indicator of certain actions to take. However, such combinations can be exponentially
many, which requires significant manual efforts in feature engineering. In addition,
they can be highly sparse if more than two features are combined into one feature.
Such sparsity can cause issues in both accuracies and speeds, since they can result
in a statistical model with tens of millions of binary indicator features. In contrast,

4 Deep Learning in Lexical Analysis and Parsing 99

the neural model of Chen and Manning (2014) is compact and less sparse, making
it strong in rendering contexts while less subject to overfitting.

The dense input feature representations of Chen and Manning (2014) are highly
different from the manual feature templates of traditional statistical parsers, the for-
mer being real-valued and low-dimensional, while the latter being binary 0/1 valued
and high-dimensional. Intuitively, they should capture different aspects of the same
input sentences. Inspired by this observation, Zhang and Zhang (2015) built an exten-
sion of Chen and Manning (2014)’s parser, integrating traditional indicator features
by concatenating a large sparse feature vector to the hidden vector of Chen and Man-
ning (2014), before feeding it to the softmax classification layer. This combination
can be regarded as an integration of decades of human labor in feature engineering,
and the strong but relatively less interpretable power of automatic feature combi-
nation using neural network models. The results are much higher compared to the
baseline Chen and Manning (2014) parser, showing that indicator features and neural
features are indeed complimentary in this case.

Similar to the observation of Xu et al. (2015) over the super tagger of Lewis and
Steedman (2014), Kiperwasser and Goldberg (2016) found the use of local context
of Chen and Manning (2014) a potential limitation of their model. To address this
issue, they extracted nonlocal features by using LSTMs over the input word and
POS features of each word, resulting in a sequence of hidden vector representations
for input words. Compared with the feature vectors of Chen and Manning (2014),
these hidden feature vectors contain nonlocal sentential information. Kiperwasser
and Goldberg (2016) utilized bidirectional LSTMs over the input word sequence,
and stacked two LSTM layers to derive hidden vectors. Stack and buffer features are
extracted from the corresponding hidden layer vectors, before being used for action
classification. This method showed large accuracy improvements over Chen and
Manning (2014), demonstrating the power of LSTM in collecting global information.

As shown in Fig.4.6b, Dyer et al. (2015) took a different method to address the
lack of nonlocal features in Chen and Manning (2014)’s model, using LSTMs to
represent the stack o, the buffer 8 and the sequence of actions that have already
been take. In particular, words on the stack are modeled left to right, recurrently,
while words on the buffer are modeled right-to-left. The action history is modeled
recurrently in temporal order. Since the stack is dynamic, it is possible for words
to be popped off the top of it. In this case, Dyer et al. (2015) use a “stack LSTM”
structure to model the dynamics, recording the current top of stack with a pointer.
When a word is pushed on top of sy, the word and the hidden state of the stack LSTM
for sy are used to advance the recurrent state, resulting in a new hidden vector for
the new word, which becomes sy, and sy becomes s; after the pushing step. In the
reverse direction, if sy is popped off the stack, the top pointer is updated, moving
from the hidden state of s to that of s; of the stack LSTM, with s; becoming s, after
the action. By using the hidden states of the top of ¢, the front of 8 and the last action
to represent the parser configuration, Dyer et al. (2015) obtained large improvements
over the model of Chen and Manning (2014).

Dyer et al. (2015) represented input words with a retrained embedding, a ran-
domly initialized but fine-tuned embedding and the embedding of their POS.

100 W. Che and Y. Zhang

Ballesteros et al. (2015) extended the model of Dyer et al. (2015), by further using an
LSTM to model the character sequence in each word. They experimented with mul-
tilingual data and observed consistently strong results. Further along this direction,
Ballesteros et al. (2016) address the issue of inconsistence between action histories
during training and during testing, by simulating testing scenarios during training,
where the history of actions is predicted by the model rather than gold-standard
action sequences, when a specific action is predicted. This idea is similar to the idea
of scheduled sampling by Bengio et al. (2015).

4.5.2 Greedy Sequence Labeling

Given an input sentence, a greedy local sequence labeler works incrementally, assign-
ing a label to each input word by making a local decision, and treating the assignment
of labels as classification tasks. Strictly speaking, this form of sequence labeler can
be regarded as either graph-based or transition-based, since each label assignment
can be regarded as either disambiguating the graph structure ambiguities or transition
action ambiguities. Here, we classify greedy local sequence labeling as transition-
based due to the following reason. Graph-based sequence labeling models typically
disambiguate whole sequences of labels as a single graph by making Markov assump-
tions on output labels, so that exact inference is feasible using the Viterbi algorithm.
Such constraints imply that features can only be extracted over local label sequences,
such as second-order and third-order transmission features. In contrast, transition-
based sequence labeling models do not impose Markov properties on the outputs, and
therefore typically extract highly nonlocal features. In consequence, they typically
use greedy search or beam search algorithms for inference. All the examples below
are greedy algorithms, and some use highly nonlocal features.

A strand of work has been done using neural models for CCG super tagging, which
is a more challenging tasks compared to POS tagging. CCG is a lightly lexicalized
grammar, where much syntactic information is conveyed in lexical categories, namely
supertags in CCG parsing. Compared with shallow syntactic labels such as POS,
super tags contain rich syntactic information, and also denote predicate-argument
structures. There are over 1000 super tags that frequently occur in treebanks, which
makes super tagging a challenging task.

Traditional statistical models for CCG super tagging employ CRF (Clark and
Curran 2007) where features for each label are extracted over a word window context,
and POS information is used as crucial features. This makes POS tagging a necessary
preprocessing step before super tagging, thus making it possible for POS tagging
errors to negatively affect super tagging quality.

Lewis and Steedman (2014) investigated a simple neural model for CCG super
tagging, the structure of which is shown in Fig.4.7a. In particular, given an input
sentence, a three-layer neural network is used to assign super tags to each word. The
first (bottom) layer is an embedding layer, which maps each word into its embed-
ding form. In addition, a few binary-valued discrete features are concatenated to the

4 Deep Learning in Lexical Analysis and Parsing 101

S S,

Output
Layer

Hidden
Layer

Embedding
Layer

Recurent []| - [T - [JiEe >]

-0 00 - Ty .- T

Embedding

o W, W, W e W,
(b) Recurrent network with independent labels
S S e S Ss
wor [T T T -]
4 4 A A
—_ — —HF — — W — — — — — — b — — — — — - Ho P -

el) N e | PN e PN 1 e |
A A J A

Embedding [N 1 DD] """ m__—D

Layer W, W,

(c) Recurrent network with chained labels

Fig. 4.7 Neural models for CCG supertagging

embedding vector, which include the two-letter suffix of the word, and a binary indi-
cator whether the word is capitalized. The second layer is a hidden layer for feature
integration. For a given word w;, a context window of word w;_x, w;, w;yx is used
for feature extraction. Augmented input embeddings from each word in the context
window are concatenated, and fed to the hidden layer, which uses a fanh activation
function to achieve nonlinear feature combination. The final (top) layer is a softmax
classification function, which assigns probabilities to all possible output labels.

102 W. Che and Y. Zhang

This simple model worked surprisingly well, leading to better parsing accuracies
for both in-domain data and cross-domain data compared to the CRF baseline tagger.
Being a greedy model, it also runs significantly faster compared to a neural CRF
alternative, while giving comparable accuracies. The success can be attributed to the
power of neural network models in automatically deriving features, which makes
POS tagging unnecessary. In addition, word embeddings can be retrained over large
raw data, thereby alleviating the issue of feature sparsity in baseline discrete models,
allowing better cross-domain tagging.

The context window of Lewis and Steedman (2014) follows the work of
Collobert and Weston (2008), which is local and comparable to the context win-
dow of CRF (Clark and Curran 2007). On the other hand, recurrent neural networks
have been used to extract nonlocal features from the whole sequence, achieving better
accuracies for a range of NLP tasks. Motivated by this observation, Xu et al. (2015)
extended the method of Lewis and Steedman (2014), by replacing the window-based
hidden layer with a recurrent neural network layer (Elman 1990). The structure of
this model is shown in Fig.4.7b.

In particular, the input layer of Xu et al. (2015) is identical to the input layer of
Lewis and Steedman (2014), where a word embedding is concatenated with two-
character suffix and capitalization features. The hidden layers are defined by an
Elman recurrent neural network, which recurrently computes the hidden state for
w; using the previous hidden state s;_; and the current embedding layer of w;. A
sigmoid activation function is used to achieve nonlinearity. Finally, the same form
of output layers is used to label each word locally.

Compared with the method of Lewis and Steedman (2014), the RNN method
gives improved accuracies for both super tagging and subsequent CCG parsing using
a standard parser model. In addition, the RNN super tagging also gives better 1-best
super tagging accuracy compared to the CRF method of Clark and Curran (2007),
while the NN method of Lewis and Steedman did not achieve. The main reason is the
use of recurrent neural network structure, which models unbounded history context
for the labeling of a word.

Lewis and Steedman (2014) made further improvements to the model of Xu et al.
(2015) by using LSTMs to replace the Elman RNN structure in the hidden layer. In
particular, a bidirectional LSTM is used to derive the hidden features h;, h;, h, given
the embedding layer. The input representations are also adjusted slightly, where the
discrete components are discarded, and the 1- to 4-letter prefixes and suffixes of each
word are represented with embedding vectors, and concatenated to the embeddings
of words as input features. Thanks to these changes, the final model gives much
improved accuracies for both super tagging and subsequent CCG parsing. In addition,
by using tri-training techniques, the results are further raised, reaching 94.7% F1 on
1-best tagging.

The models of Xu et al. (2015) and Lewis and Steedman (2014) consider nonlocal
dependencies between words in the input, yet does not capture nonlocal dependencies
between output labels. In this respect, they are less expressive compared with the
CRF model of Clark and Curran (2007), which considers the dependencies between
three consecutive labels. To address this issue, Vaswani et al. (2016) leverage LSTM

4 Deep Learning in Lexical Analysis and Parsing 103

on the output label sequence also, by considering the label history s, s,, s;—; when
the word w; is labeled. The model structure is shown in Fig.4.7c.

The input layer of this model uses the same representations as Lewis and Steedman
(2014), and the hidden layer is similar to that of Lewis and Steedman (2014). In the
output layer, the classification of each label s; is based on both the corresponding
hidden layer vector k; and the previous label sequence, represented by the hidden
states i, of alabel LSTM. The label LSTM is unidirectional, where each state / is
derived from its previous state #;_, and the previous label s;. To further improve the
accuracies, scheduled sampling (Bengio et al. 2015) is used to find training data that
are more similar to test cases. During training, the history label sequence sy, 57, s;—]
for labeling s; is sampled by choosing the predicted supertag at each position with a
sampling probability p. This way, the model can learn better how to assign a correct
label even if errors are made in the history during test time.

Vaswani et al. (2016) showed that by adding the output label LSTM, the accuracies
can be slightly improved if scheduled sampling is applied, but decreases compared
with the greedy local output model of Lewis and Steedman (2014) without scheduled
sampling. This shows the usefulness of scheduled sampling, which avoids overfitting
to gold label sequences and consequent tossing of test data robustness.

4.5.3 Globally Optimized Models

Greedy local neural models have demonstrated their advantage over their statistical
counterparts by leveraging word embeddings to alleviate sparseness, and using deep
neural networks to learn nonlocal features. Syntactic and semantic information over
the whole sentence has been utilized for structured prediction, and nonlocal depen-
dencies over labels are also modeled. On the other hand, the training of such models
is local, and hence can potentially lead to label bias, since the optimal sequence of
actions does not always contain locally topical actions. Globally optimized models,
which have been the dominant approach for statistical NLP, have been applied to
neural models also.

Such models typically apply beam search (in Algorithm 1), where an agenda is
used to keep the B highest scored sequences of actions at each step. The beam search
process for arc-eager dependency parsing is shown in Fig.4.8. Here the blue circle
illustrates the gold-standard sequence of actions. As shown in Fig. 4.8, at some steps,
the gold-standard state may not be the highest scored in the agenda. In case of local
search, such situation leads to search errors. For beam search, however, it is possible
for the decoder to recover the gold-standard state in subsequent stages as the highest
scored item in the agenda.

The beam search algorithm for transition-based structured prediction is formally
shown in Algorithm 1. Initially, the agenda contains only the start state in the state
transition system. At each step, all items in the agenda are expanded by applying
all possible transition actions, leading to a set of new states. From these states, the
highest scored B are selected, and used as agenda items for the next step. Such process

104 W. Che and Y. Zhang

Algorithm 1 The generic beam search algorithm

1: function BEAM- SEARCH(problem, agenda, candidates, B)
2: candidates < {StartItem(problem)}

3 agenda < Clear(agenda)

4 loop

5: for each candidate € candidates do
6: agenda < Insert(Expand(candidate, problem), agenda)
7 end for

8: best < Top(agena)

9: if GoalTest(problem, best) then
10: return best

11: end if

12: candiates <— Top — B(agenda, B)
13: agenda < Clear(agenda)

14: end loop

15: end function

repeats until terminal states have been reached, and the highest scored state in the
agenda is taken as the output. Similar to greedy search, the beam search algorithm
has a linear time complexity with respect to the action sequence length.

The items in the agenda are ranked using their global scores, which are the total
scores of all transition actions in the sequence. Different from greedy local models,
the training objective of globally optimized models is to different full sequences
of actions based on their global scores. There are two general training approaches,
with one being to maximize the likelihood of gold-standard sequences of actions,
other being to maximize the score margin between the gold-standard sequence of

He does it here |—: He does it here —AL- joes it here does it here

‘7'9 He He

K He does it here % He does it here
He does it here @t here

\S\
%,
%
N

/ \ / N\ ' doesit here ‘,"
(—
He it here He it —— [3 He,
%o&esﬁ 4 - 4 He does it here
does it He
He i
dpes it here He does here
He here dogs it here
H

Fig. 4.8 Parsing process given state transition system with beam search

14
He

4 Deep Learning in Lexical Analysis and Parsing 105

action and non-gold-standard sequences of actions. Other training objectives are
occasionally used, as will be shown later.

Following Zhang and Clark (201 1b), most globally optimized models regard train-
ing as beam search optimization, where negative training examples are sampled by
the beam search process itself, and used together with the gold-standard positive
example to update the model. Here we use Zhang and Clark (201 1b) as one example
to illustrate the training method. Online learning is used, where an initial model is
applied to decode the training examples. During the decoding of each sample, the
gold-standard sequence of actions is available. The same beam search algorithm
above is used, as in test cases. At any step, if the gold-standard sequence of actions
falls out of the agenda, a search error is unavoidable. At this situation, search is
stopped, and the model is updated by using the gold-standard sequence of actions
till this step as the positive example, and the current highest scored sequence of
actions in the beam as a negative example. Zhang and Clark (2011b) used a statis-
tical model, where model parameters are updated using the perceptron algorithm of
Collins (2002). The early stopping of beam search is known as early update (Collins
and Roark 2004). In the case where the gold-standard sequence of action remains in
the agenda until decoding finishes, the training algorithm checks if it is the highest
scoring in the last step. If so, the current training sample is finished without parameter
update; otherwise the current highest scored sequence of actions in the beam is taken
as a negative example to update parameters. The same process can repeat over the
training examples for multiple iterations, and the final model is used for testing.

We discuss a strand of work using global training for neural transition-based
structured prediction below, categorized by their training objectives.

4.5.3.1 Large Margin Methods

The large margin objective maximizes the score difference between gold-standard
output structures and incorrect output structures; it has been used by discrete
structured prediction methods such as the structured perceptron (Collins 2002) and
MIRA (Crammer and Singer 2003). The ideal large margin training objective should
ensure that the gold-standard structure is scored higher than all incorrect structures
by a certain margin. However, for structured prediction tasks, the number of incorrect
structures can be exponentially many, hence making the exact objective intractable
in most cases. The perceptron approximates this objective by making model adjust-
ments for the most violated margin, and has theoretical guarantee of convergence
in training. In particular, given the gold-standard structure as a positive example,
and the max-violation incorrect structure as a negative example, the perceptron algo-
rithm adjusts model parameters by adding the feature vector of the positive example
to the model, and subtracting the feature vector of the negative example from the
model parameter vector. By repeating this procedure for all training examples, the
model converges to scoring gold-standard structures higher than incorrect structures.
The perceptron algorithm finds a negative example for each gold-standard training
example, such that the violation of the ideal score margin is the largest. This typi-

106 W. Che and Y. Zhang

cally implies the searching for a highest scored incorrect output, or one that ranks
the highest by considering both its current model score and it deviation from the
gold-standard. In the latter case, the structured dilation is the cost of the incorrect
output, where outputs with similar structures to the gold-standard have less cost. By
considering not only the model score but also the cost, this training objective allows
model scores to differentiate not only gold-standard and incorrect structures, but also
between different incorrect structures by their similarity to the correct structure.

With neural networks, the training objective translates to maximizing the score
difference between a given positive example and a corresponding negative example.
This objective is typically achieved by taking the derivative of the score difference
with respect to all model parameters, updating model parameters using gradient-
based methods such as AdaGrad (Duchi et al. 2011).

Zhang et al. (2016a) used such a large margin objective for transition-based word
segmentation. As shown in Sect. 1.1, a state for this task can be encoded in a a pair
s = (o0, B), where o contains a list of recognized words, and 8 contains the list of
next incoming characters. Zhang et al. (2016a) use a word LSTM to represent o,
and a bidirectional character LSTM to represent . In addition, following Dyer et al.
(2015), they also use an LSTM to represent the sequence of actions that have been
taken. Given a state s, the three LSTM context representations are integrated and
used to score SEP and APP actions. Formally, given a state s, the score of action a
can be denoted as f (s, a), where f is the network model. As a global model, Zhang
et al. (2016a) calculate the score of a sequence of actions for ranking the state they
lead to, where

k
score(sy) = Zf(si—l,ai)~

i=1

Following Zhang and Clark (2011b), online learning with early update is used.
Each training example is decoded using beam search, until the gold-standard
sequence of transition actions fall out of beam, or does not rank highest by a score
margin after decoding finishes. Here the margin between the gold-standard structure
and an incorrect structure is defined by the number of incorrect actions A, weighted
by a factor n. Therefore, given a state after k actions, the corresponding loss function
for training the network is defined as follows:

L(s;) = max (score(sk) — score(s,f) + nA(sk, sf), 0),

where sf is the corresponding gold-standard structure after k transitions.

During training, Zhang et al. (2016a) use the current model score score(sy) plus
A(sk, sf) to rank states in the agenda, so that structural differences are considered for
finding the maximum violation. Given this ranking, a negative example can be chosen
in the early update and final update cases. Model parameters are updated according
to the less function between s;, and s,f above. Since score(sy) is the sum of all action
scores, the loss is evenly distributed to each action. In practice, back-propagation is
used to train the network, where the derivative of the lost function is taken with respect

http://dx.doi.org/10.1007/978-981-10-5209-5_1

4 Deep Learning in Lexical Analysis and Parsing 107

to model parameters via the network f(s;_, a;) for i € [1..k]. Since each action g;
shares the same representation layers as described earlier, their losses accumulate
for model parameter updates. AdaGrad is used to change the model.

Cai and Zhao (2016) adopted a very similar neural model for word segmentation.
Both the models of Zhang et al. (2016a) and Cai and Zhao (2016) can be regarded
as extensions of the method of Zhang and Clark (2007) using neural network. On
the other hand, the scoring function of Cai and Zhao (2016) is different from that
of Zhang et al. (2016a), Cai and Zhao (2016) also uses beam search, segmenting a
sentence incrementally. But their incremental steps are based on words, rather than
characters. They used multiple beams to store partial segmentation outputs containing
the same numbers of characters, which is similar to Zhang and Clark (2008a). As a
result, constraints to the word size must be used to ensure linear time complexity.
For training, exactly the same large margin objective is taken.

A slightly different large margin objective is used by Watanabe and Sumita (2015)
for constituent parsing. They adopt the transition system of Sagae et al. (2005)
and Zhang and Clark (2009), where a state can be defined as a pair (o,), similar
to the dependency parsing case in Sect. 1.1. Here o contains partially constructed
constituent trees, and B8 contains next incoming words. A set of transition actions
including SHIFT, REDUCE and UNARY are used to consume input words and construct
output structures. Interested readers can refer to (Sagae and Lavie 2005) and (Zhang
and Clark 2009) for more details on the state transition system.

Watanabe and Sumita (2015) represent o using a stack LSTM structure, which
dynamically change, and is similar to that of Dyer et al. (2015). 8 is represented
using a standard LSTM. Given this context representation, the score of a next action
a can be denoted as f (s, a), where s represents the current state and f is the network
structure. Similar to the case of Zhang et al. (2016a), the score of a state s; is the
sum of all actions that lead to the state, as shown in Fig.4.9:

k
score(sy) = Zf(si—lv a;)

i=1

Similar to Zhang et al. (2016a), beam search is used to find the highest scored
state over all structures. For training, however, max-violation update is used instead of
early update (Huang et al. 2012), where the negative example is chosen by running
beam search until the terminal state is reached, and then finding the intermediate
state that gives the largest violation of the score margin between gold-standard and
incorrect structures. Update is executed at the max-violation step. In addition, rather
than using the maximum violation state as the negative example, all incorrect states in
the beam are used as negative examples to enlarge the sample space, and the training
objective is defined to minimize the loss:

L = max (E.Yk cascore(sy) — score(sf + 1)).

http://dx.doi.org/10.1007/978-981-10-5209-5_1

108 W. Che and Y. Zhang

Here A represents the agenda, and the expectation Eg, cascore(sy) is calculated
based on probabilities of each s; in the agenda using model scores:

exp(score(si))
> s ea EXp(score(sy))”

psy) =

4.5.3.2 Maximum Likelihood Methods

Maximum likelihood objectives for neural structured prediction are inspired by log-
linear models. In particular, given the score of an output y score(y), a log-linear
model calculates its probability as

exp(score(y))
Zye)’ exp(score(y)) ’

pQy) =

where Y represents the set of all outputs. When y is a structure, this log-linear model
becomes CRF under certain constraints.

A line of work investigate a similar objective by assuming the structured score
calculation in Fig.4.9 for transition-based models, where the score for a state sy is
calculated as

k
score(sy) = Zf(sifl’ a;).

i=1

The definition of f and a are the same as in the previous section. Given this score
calculation, the probability of the state sy is

exp(score(si))

55 EXp(score(sy))’

plse) = 5

f(sg.a)+ f(s,a,)+--+ f(5,,.,a,) = score(s,)

S(s§al)+ f(s8,a8)+-+ [(s§,.af)=score(s§)

Fig. 4.9 Structured score calculation

4 Deep Learning in Lexical Analysis and Parsing 109

where S denotes all possible states after k transition actions. Apparently, the number
of states in § grows exponentially with &, as the number of structures they contain. As
a result, it is difficult to estimate the denominator for maximum likelihood training,
as in the case of CRF. For CRF, the issue is solved by imposing constraints on feature
locality, so that marginal probabilities of features can be used to estimate the partition
function. For transition-based models, however, such feature locality is nonexistent.

Zhou et al. (2015) first addressed this issue by using all states in the agenda to
approximate S during beam search. They perform beam search and online learning,
using early update in the same way as Zhang et al. (2016a). On the other hand,
during each update, rather than calculating a score margin between positive and
negative examples, Zhou et al. (2015) maximize the approximated likelihood of the
gold-standard stage s,, where

exp(score(sg))

> g e €Xp(score(sy))’

plsg) =

where A represents the agenda, as in the last section.

This method uses the probability mass of states in the agenda to approximate the
partition function, and hence is referred to as beam contrastive learning by Zhou et al.
(2015). Zhou et al. (2015) applied the training objective to the task of transition-based
dependency parsing, achieving better results compared to Zhang and Nivre (2011).

Andoretal. (2016) applied this method to more structured prediction tasks, includ-
ing part-speech-tagging. They also obtained significantly better results than Zhou
et al. (2015) by using a better baseline method and doing more thorough hyper-
parameter search. In addition, Andor et al. (2016) gave a theoretical justification that
the globally normalized model outperforms locally trained baselines.

4.5.3.3 Maximum Expected F1

Another training objective that has been tried is maximum F1, which Xu et al. (2016)
used for transition-based CCG parsing (Zhang and Clark 2011a). In particular, Xu
et al. (2016) use beam search to find the highest scored state, where the score of
each state is given by the calculation method of Fig.4.9. Given state s, the score is
calculated as

k
score(sy) = Z g(si—1, a;).

i=1

Here the function g represents a network model, and a represents a transition
action. The difference between the network function g of Xu et al. (2016) and the
network function of all aforementioned methods is that g uses a soffmax layer to
normalize the output actions, while f does not use nonlinear activation functions
over scores of different actions given a state.

The training objective of Xu et al. (2016) is

110 W. Che and Y. Zhang

EyeaF1(se) = Y p(se)F1(si),

Sk EA

where A denotes the beam after parsing finishes, and F'1(s) denotes the F1 score of
s as evaluated by standard metrics against the gold-standard structure.
Xu et al. (2016) calculates p(si) using

exp(score(si))

seeA exp(score(si))

p(si) = 5

which is consistent to all aforementioned methods.

4.6 Summary

In this chapter, we provided an overview on the application of deep learning to lexical
analysis and parsing, two standard tasks in NLP, and compare the deep learning
approach with traditional statistical methods.

First, we introduced the definitions of lexical analysis and parsing. They model
structured properties of words and their relationships to each other. The commonly
used techniques in these tasks include word segmentation, part-of-speech tagging,
and parsing. The most important characteristic of lexical analysis and parsing is that
the outputs are structured.

Then, we introduced two types of traditional methods usually used to solve
these structured prediction tasks: graph-based methods and transition-based methods.
Graph-based methods exploit output structures based on their characteristics directly,
while transition-based methods transform the output construction processes into state
transition processes, and subsequently process sequences of transition actions.

Finally, we in this chapter introduced methods using neural network and deep
learning models in both graph-based and transition-based structured prediction.

While recent advances have shown that neural network models can be used effec-
tively to augment or replace statistical models in the traditional graph-based and
transition-based frameworks for lexical analysis and parsing, they have begun to
illustrate the strong representation power of neural networks which can go beyond
the function of mere modeling. For example, in the traditional statistical modeling
approach, it has been commonly understood that local training leads to weaknesses
such as label bias (Lafferty et al. 2001). However, the model and method described
in (Dozat and Manning 2016) achieve state-of-the-art accuracy results using a neural
model that factors out single dependency arcs as training objectives, without globally
training the probabilities of a dependency tree. This suggests that structural corre-
lations between output labels can be obtained by the strong representation of word
sequences using LSTMs. The future direction for lexical analysis and parsing in NLP
will likely be a unification between well-established research on structured learning
and the emerging power of deep learning.

4 Deep Learning in Lexical Analysis and Parsing 111
References

Andor, D., Alberti, C., Weiss, D., Severyn, A., Presta, A., Ganchev, K., et al. (2016). Globally
normalized transition-based neural networks. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol. 1: Long Papers, pp. 2442-2452). Berlin,
Germany: Association for Computational Linguistics.

Ballesteros, M., Dyer, C., & Smith, N. A. (2015). Improved transition-based parsing by modeling
characters instead of words with LSTMs. In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing (pp. 349-359). Lisbon, Portugal: Association for
Computational Linguistics.

Ballesteros, M., Goldberg, Y., Dyer, C., & Smith, N. A. (2016). Training with exploration improves
a greedy stack LSTM parser. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing (pp. 2005-2010). Austin, Texas: Association for Computational
Linguistics.

Bengio, S., Vinyals, O., Jaitly, N., & Shazeer, N. (2015). Scheduled sampling for sequence prediction
with recurrent neural networks. In Proceedings of the 28th International Conference on Neural
Information Processing Systems, NIPS’15 (pp. 1171-1179). Cambridge, MA, USA: MIT Press.

Bohnet, B. & Nivre, J. (2012). A transition-based system for joint part-of-speech tagging and labeled
non-projective dependency parsing. In Proceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language Learning (pp.
1455-1465). Jeju Island, Korea: Association for Computational Linguistics.

Booth, T. L. (1969). Probabilistic representation of formal languages. 2013 IEEE 54th Annual
Symposium on Foundations of Computer Science, 00, 74-81.

Cai, D., & Zhao, H. (2016). Neural word segmentation learning for Chinese. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Vol. 1: Long Papers, pp.
409-420). Berlin, Germany: Association for Computational Linguistics.

Carnie, A. (2012). Syntax: A Generative Introduction (3rd ed.). New York: Wiley-Blackwell.

Chen, D., & Manning, C. (2014). A fast and accurate dependency parser using neural networks. In
Proceedings of EMNLP-2014.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., &
Bengio, Y. (2014). Learning phrase representations using RNN encoder—decoder for statisti-
cal machine translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP) (pp. 1724-1734). Doha, Qatar: Association for Computational
Linguistics.

Choi, J. D., & Palmer, M. (2011). Getting the most out of transition-based dependency parsing. In
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies (pp. 687-692). Portland, Oregon, USA: Association for Computational
Linguistics.

Chu, Y., & Liu, T. (1965). On the shortest arborescence of a directed graph. Scientia Sinica, 14,
1396-1400.

Clark, S., & Curran, J. R. (2007). Wide-coverage efficient statistical parsing with ccg and log-linear
models. Computational Linguistics, 33(4), 493-552.

Collins, M. (1997). Three generative, lexicalised models for statistical parsing. In Proceedings of
the 35th Annual Meeting of the Association for Computational Linguistics (pp. 16-23). Madrid,
Spain: Association for Computational Linguistics.

Collins, M. (2002). Discriminative training methods for hidden Markov models: Theory and experi-
ments with perceptron algorithms. In Proceedings of the 2002 Conference on Empirical Methods
in Natural Language Processing (pp. 1-8). Association for Computational Linguistics.

Collins, M., & Roark, B. (2004). Incremental parsing with the perceptron algorithm. In Proceedings
of the 42nd Meeting of the Association for Computational Linguistics (ACL’04), Main Volume
(pp- 111-118). Barcelona, Spain.

112 W. Che and Y. Zhang

Collobert, R., & Weston, J. (2008). A unified architecture for natural language processing: Deep
neural networks with multitask learning. In Proceedings of the 25th International Conference on
Machine Learning, ICML "08 (pp. 160-167). New York, NY, USA: ACM.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural
language processing (almost) from scratch. Journal of Machine Learning Research, 12, 2493—
2537.

Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., & Singer, Y. (2006). Online passive-
aggressive algorithms. Journal of Machine Learning Research, 7, 551-585.

Crammer, K., & Singer, Y. (2003). Ultraconservative online algorithms for multiclass problems.
Journal of Machine Learning Research, 3, 951-991.

Cross, J., & Huang, L. (2016). Span-based constituency parsing with a structure-label system and
provably optimal dynamic oracles. In Proceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing (pp. 1-11). Austin, Texas: Association for Computational
Linguistics.

Dozat, T., & Manning, C. D. (2016). Deep biaffine attention for neural dependency parsing. CoRR,
abs/1611.01734.

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12,2121-2159.

Durrett, G., & Klein, D. (2015). Neural CRF parsing. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Vol. 1: Long Papers, pp. 302-312). Beijing, China: Association
for Computational Linguistics.

Dyer, C., Ballesteros, M., Ling, W., Matthews, A., & Smith, N. A. (2015). Transition-based depen-
dency parsing with stack long short-term memory. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Vol. 1: Long Papers, pp. 334-343). Beijing, China: Association
for Computational Linguistics.

Edmonds, J. (1967). Optimum branchings. Journal of Research of the National Bureau of Standards,
71B, 233-240.

Eisner, J. (1996). Efficient normal-form parsing for combinatory categorial grammar. In Proceedings
of the 34th Annual Meeting of the Association for Computational Linguistics (pp. 79-86). Santa
Cruz, California, USA: Association for Computational Linguistics.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179-211.

Freund, Y., & Schapire, R. E. (1999). Large margin classification using the perceptron algorithm.
Machine Learning, 37(3), 277-296.

Graves, A. (2008). Supervised sequence labelling with recurrent neural networks. Ph.D. thesis,
Technical University Munich.

Hall, D., Durrett, G., & Klein, D. (2014). Less grammar, more features. In Proceedings of the
52nd Annual Meeting of the Association for Computational Linguistics (Vol. 1: Long Papers, pp.
228-237). Baltimore, MD: Association for Computational Linguistics.

Hatori, J., Matsuzaki, T., Miyao, Y., & Tsujii, J. (2012). Incremental joint approach to word seg-
mentation, pos tagging, and dependency parsing in Chinese. In Proceedings of the 50th Annual
Meeting of the Association for Computational Linguistics (Vol. 1: Long Papers, pp. 1045-1053),
Jeju Island, Korea: Association for Computational Linguistics.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8),
1735-1780.

Huang, L., Fayong, S., & Guo, Y. (2012). Structured perceptron with inexact search. In Proceedings
of the 2012 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (pp. 142—-151). Montréal, Canada: Association for
Computational Linguistics.

Jurafsky, D., & Martin, J. H. (2009). Speech and language processing (2nd ed.). Upper Saddle
River, NJ, USA: Prentice-Hall Inc.

4 Deep Learning in Lexical Analysis and Parsing 113

Kbler, S., McDonald, R., & Nivre, J. (2009). Dependency parsing. Synthesis Lectures on Human
Language Technologies, 2(1), 1-127.

Kiperwasser, E., & Goldberg, Y. (2016). Simple and accurate dependency parsing using bidirectional
Istm feature representations. Transactions of the Association for Computational Linguistics, 4,
313-327.

Lafferty, J. D., McCallum, A., & Pereira, F. C. N. (2001). Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proceedings of the Eighteenth International
Conference on Machine Learning, ICML "01 (pp. 282-289), San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.

Lewis, M., & Steedman, M. (2014). A* CCG parsing with a supertag-factored model. In Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp.
990-1000). Doha, Qatar: Association for Computational Linguistics.

Li, F., Zhang, Y., Zhang, M., & Ji, D. (2016). Joint models for extracting adverse drug events from
biomedical text. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial
Intelligence, IJCAI 2016 (pp. 2838-2844). New York, NY, USA, 9-15 July 2016.

Li, Q., & Ji, H. (2014). Incremental joint extraction of entity mentions and relations. In Proceedings
of the 52nd Annual Meeting of the Association for Computational Linguistics (Vol. 1: Long
Papers, pp. 402-412). Baltimore, MD: Association for Computational Linguistics.

Liu, J., & Zhang, Y. (2015). An empirical comparison between n-gram and syntactic language
models for word ordering. In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing (pp. 369-378). Lisbon, Portugal: Association for Computational
Linguistics.

Liu, Y., Che, W., Guo, J., Qin, B., & Liu, T. (2016). Exploring segment representations for neu-
ral segmentation models. In Proceedings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence, IJCAI 2016 (pp. 2880-2886). New York, NY, USA, 9-15 July 2016.

Liu, Y., Zhang, Y., Che, W., & Qin, B. (2015). Transition-based syntactic linearization. In Proceed-
ings of the 2015 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (pp. 113—122). Denver, Colorado: Association for
Computational Linguistics.

Luong, T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural
machine translation. In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing (pp. 1412—1421). Lisbon, Portugal: Association for Computational Lin-
guistics.

Lyu, C., Zhang, Y., & Ji, D. (2016). Joint word segmentation, pos-tagging and syntactic chunking.
In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16 (pp. 3007—
3014). AAAI Press.

Manning, C. D., & Schiitze, H. (1999). Foundations of Statistical Natural Language Processing.
Cambridge, MA, USA: MIT Press.

McDonald, R. (2006). Discriminative learning spanning tree algorithm for dependency parsing.
PhD thesis, University of Pennsylvania.

Nivre, J. (2003). An efficient algorithm for projective dependency parsing. In Proceedings of the
8th International Workshop on Parsing Technologies (IWPT) (pp. 149-160).

Nivre, J. (2008). Algorithms for deterministic incremental dependency parsing. Computational
Linguistics, 34(4), 513-554.

Pei, W., Ge, T., & Chang, B. (2015). An effective neural network model for graph-based depen-
dency parsing. In Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Processing (Vol. 1:
Long Papers, pp. 313-322), Beijing, China: Association for Computational Linguistics.

Petrov, S., Barrett, L., Thibaux, R., & Klein, D. (2006). Learning accurate, compact, and interpretable
tree annotation. In Proceedings of the 21 st International Conference on Computational Linguistics
and 44th Annual Meeting of the Association for Computational Linguistics (pp. 433-440), Sydney,
Australia: Association for Computational Linguistics.

114 W. Che and Y. Zhang

Puduppully, R., Zhang, Y., & Shrivastava, M. (2016). Transition-based syntactic linearization with
lookahead features. In Proceedings of the 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (pp. 488—493). San
Diego, CA: Association for Computational Linguistics.

Qian, T., Zhang, Y., Zhang, M., Ren, Y., & Ji, D. (2015). A transition-based model for joint seg-
mentation, pos-tagging and normalization. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (pp. 1837-1846), Lisbon, Portugal: Association for
Computational Linguistics.

Sagae, K., & Lavie, A. (2005). A classifier-based parser with linear run-time complexity. In Pro-
ceedings of the Ninth International Workshop on Parsing Technology, Parsing 05 (pp. 125-132).
Stroudsburg, PA, USA: Association for Computational Linguistics.

Sagae, K., Lavie, A., & MacWhinney, B. (2005). Automatic measurement of syntactic development
in child language. In Proceedings of the 43rd Annual Meeting of the Association for Computational
Linguistics (ACL’05) (pp. 197-204). Ann Arbor, MI: Association for Computational Linguistics.

Sarawagi, S., & Cohen, W. W. (2004). Semi-Markov conditional random fields for information
extraction. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information processing
systems 17 (pp. 1185-1192). Cambridge: MIT Press.

Shaalan, K. (2014). A survey of arabic named entity recognition and classification. Computational
Linguistics, 40(2), 469-510.

Smith, N. A. (2011). Linguistic structure prediction. Morgan and Claypool: Synthesis Lectures on
Human Language Technologies.

Song, L., Zhang, Y., Song, K., & Liu, Q. (2014). Joint morphological generation and syntactic
linearization. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence,
AAAI’14 (pp. 1522-1528). AAAI Press.

Vaswani, A., Bisk, Y., Sagae, K., & Musa, R. (2016). Supertagging with LSTMs. In Proceedings
of the 2016 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (pp. 232-237). San Diego, CA: Association for
Computational Linguistics.

Wang, W., & Chang, B. (2016). Graph-based dependency parsing with bidirectional LSTM. In
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Vol.
1: Long Papers, pp. 2306-2315). Berlin, Germany: Association for Computational Linguistics.

Wang, Z., & Xue, N. (2014). Joint pos tagging and transition-based constituent parsing in Chi-
nese with non-local features. In Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Vol. 1: Long Papers, pp. 733—742). Baltimore, MD: Association for
Computational Linguistics.

Watanabe, T., & Sumita, E. (2015). Transition-based neural constituent parsing. In Proceedings of
the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Processing (Vol. 1: Long Papers, pp. 1169-1179).
Beijing, China: Association for Computational Linguistics.

Wong, K.-F,, Li, W, Xu, R., & Zhang, Z.-s., (2009). Introduction to Chinese natural language
processing. Synthesis Lectures on Human Language Technologies, 2(1), 1-148.

Xu, W, Auli, M., & Clark, S. (2015). CCG supertagging with a recurrent neural network. In
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing (Vol. 2: Short Papers,
pp- 250-255). Beijing, China: Association for Computational Linguistics.

Xu, W, Auli, M., & Clark, S. (2016). Expected f-measure training for shift-reduce parsing with
recurrent neural networks. In Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies (pp. 210-220).
San Diego, CA: Association for Computational Linguistics.

Xu, W., Clark, S., & Zhang, Y. (2014). Shift-reduce CCG parsing with a dependency model. In
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Vol.
1: Long Papers).

4 Deep Learning in Lexical Analysis and Parsing 115

Xue, N. (2003). Chinese word segmentation as character tagging. International Journal of Compu-
tational Linguistics and Chinese Language Processing, 8, 29-48.

Yamada, H., & Matsumoto, Y. (2003). Statistical dependency analysis with support vector machines.
In In Proceedings of IWPT (pp. 195-206).

Zhang, M., & Zhang, Y. (2015). Combining discrete and continuous features for deterministic
transition-based dependency parsing. In Proceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing (pp. 1316—1321). Lisbon, Portugal: Association for Com-
putational Linguistics.

Zhang, M., Zhang, Y., Che, W., & Liu, T. (2013). Chinese parsing exploiting characters. In Pro-
ceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Vol. 1:
Long Papers, pp. 125-134). Sofia, Bulgaria: Association for Computational Linguistics.

Zhang, M., Zhang, Y., Che, W., & Liu, T. (2014). Character-level Chinese dependency parsing. In
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Vol.
1: Long Papers, pp. 1326-1336). Baltimore, MD: Association for Computational Linguistics.

Zhang, M., Zhang, Y., & Fu, G. (2016a). Transition-based neural word segmentation. In Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics (Vol. 1: Long Papers,
pp. 421-431), Berlin, Germany: Association for Computational Linguistics.

Zhang, Y., & Clark, S. (2007). Chinese segmentation with a word-based perceptron algorithm. In
Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics (pp.
840-847), Prague, Czech Republic: Association for Computational Linguistics.

Zhang, Y., & Clark, S. (2008a). Joint word segmentation and POS tagging using a single perceptron.
In Proceedings of ACL-08: HLT (pp. 888-896). Columbus, OH: Association for Computational
Linguistics.

Zhang, Y., & Clark, S. (2008b). A tale of two parsers: Investigating and combining graph-based and
transition-based dependency parsing. In Proceedings of the 2008 Conference on Empirical Meth-
ods in Natural Language Processing (pp. 562-571), Honolulu, HI: Association for Computational
Linguistics.

Zhang, Y., & Clark, S. (2009). Transition-based parsing of the Chinese Treebank using a global dis-
criminative model. In Proceedings of the 11th International Conference on Parsing Technologies,
IWPT 09 (pp. 162—-171). Stroudsburg, PA, USA: Association for Computational Linguistics.

Zhang, Y., & Clark, S. (2010). A fast decoder for joint word segmentation and POS-tagging using
a single discriminative model. In Proceedings of the 2010 Conference on Empirical Methods in
Natural Language Processing (pp. 843-852). Cambridge, MA: Association for Computational
Linguistics.

Zhang, Y., & Clark, S. (2011a). Shift-reduce CCG parsing. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language Technologies (pp.
683-692). Portland, OR, USA: Association for Computational Linguistics.

Zhang, Y., & Clark, S. (2011b). Syntactic processing using the generalized perceptron and beam
search. Computational Linguistics, 37(1).

Zhang, Y., & Nivre, J. (2011). Transition-based dependency parsing with rich non-local features.
In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies (pp. 188—193). Portland, OR, USA: Association for Computa-
tional Linguistics.

Zhang, Z., Zhao, H., & Qin, L. (2016b). Probabilistic graph-based dependency parsing with con-
volutional neural network. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Vol. 1: Long Papers, pp. 1382-1392), Berlin, Germany: Association
for Computational Linguistics.

Zhou, H., Zhang, Y., Huang, S., & Chen, J. (2015). A neural probabilistic structured-prediction
model for transition-based dependency parsing. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Vol. 1: Long Papers, pp. 1213-1222), Beijing, China: Association
for Computational Linguistics.

116 W. Che and Y. Zhang

Zhou, J., & Xu, W. (2015). End-to-end learning of semantic role labeling using recurrent neural
networks. In Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Processing (Vol. 1:
Long Papers, pp. 1127-1137), Beijing, China: Association for Computational Linguistics.

Zhu, M., Zhang, Y., Chen, W., Zhang, M., & Zhu, J. (2013). Fast and accurate shift-reduce con-
stituent parsing. In Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics (Vol. 1: Long Papers, pp. 434—443), Sofia, Bulgaria: Association for Computational
Linguistics.

	4 Deep Learning in Lexical Analysis and Parsing
	4.1 Background
	4.2 Typical Lexical Analysis and Parsing Tasks
	4.2.1 Word Segmentation
	4.2.2 POS Tagging
	4.2.3 Syntactic Parsing
	4.2.4 Structured Predication

	4.3 Structured Prediction Methods
	4.3.1 Graph-Based Methods
	4.3.2 Transition-Based Methods

	4.4 Neural Graph-Based Methods
	4.4.1 Neural Conditional Random Fields
	4.4.2 Neural Graph-Based Dependency Parsing

	4.5 Neural Transition-Based Methods
	4.5.1 Greedy Shift-Reduce Dependency Parsing
	4.5.2 Greedy Sequence Labeling
	4.5.3 Globally Optimized Models

	4.6 Summary
	References

