
Chapter 10
Deep Learning in Natural Language
Generation from Images

Xiaodong He and Li Deng

Abstract Natural language generation from images, referred to as image or visual
captioning also, is an emerging deep learning application that is in the intersection
between computer vision and natural language processing. Image captioning also
forms the technical foundation for many practical applications. The advances in
deep learning technologies have created significant progress in this area in recent
years. In this chapter, we review the key developments in image captioning and their
impact in both research and industry deployment. Two major schemes developed for
image captioning, both based on deep learning, are presented in detail. A number
of examples of natural language descriptions of images produced by two state-of-
the-art captioning systems are provided to illustrate the high quality of the systems’
outputs. Finally, recent research on generating stylistic natural language from images
is reviewed.

10.1 Introduction

In this final technical chapter of the book, we will discuss a very important but
often lightly treated topic in natural language processing (NLP)—natural language
generation (NLG), which had been progressing quite slowly until the recent rise of
deep learning. As briefly discussed in Chap.3 in the context of dialog systems, NLG
is the process of generating text from a meaning representation and can be regarded
as the reverse of natural language understanding.

In addition to serving as an integral component of dialog systems, NLG also plays
a key role in text summarization, machine translation, image and video captioning,
and other NLP applications. Both the earlier general-purpose rule-based andmachine
learning-basedNLG systemswere reviewed in Chap.3, mainly for the specific dialog
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system application. In a few earlier chapters, more recent developments of deep
learning-based methods for NLG, including mainly those based on recurrent neural
nets and on the encoder–decoder deep neural architecture, were also briefly surveyed.
These deep learning models can be trained from unaligned natural language data and
can produce longer, more fluent utterances than previous methods.

In this chapter, rather than providing a comprehensive review of general NLG
technology, we limit our scope to NLG in a special application—generating natural
language sentences from images, or image captioning. This very difficult task had not
been possible until deep learning methods for encoding images and for subsequent
generation of natural language became matured within only past 2 years or so. The
success of deep learning in image captioning presents another powerful evidence for
the impact of deep learning in NLP in addition to several other NLP applications
described in detail in the preceding chapters.

Generating a natural language description from an image or image captioning
is an emerging interdisciplinary problem at the intersection of computer vision and
NLP, and it forms the technical foundation of many important applications, such as
semantic visual search, visual intelligence in chatting robots, photo and video sharing
in social media, and aid for visually impaired people to perceive surrounding visual
content. Thanks to the recent advances in deep learning, tremendous progress of this
specialized NLG task has been achieved in recent years. In the remainder of this
chapter, we will first summarize this exciting emerging NLG area, and then analyze
the key development and the major progress. We will also discuss the impact of this
progress both on research and on industry deployment, as well as potential future
breakthroughs.

10.2 Background

It has been long envisioned that machines one day can understand the visual world at
a human level of intelligence. Thanks to the progress in deep learning (Hinton et al.
2012; Dahl et al. 2011; Deng and Yu 2014), now researchers can build very deep
convolutional neural networks (CNN), and achieve an impressively low error rate for
tasks like large-scale image classification (Krizhevsky et al. 2012; He et al. 2015).
In these tasks, to train a model for predicting the category of a given image, one can
first annotate each image in a training set with a category label from a predefined
set of categories. Through such fully supervised training, the computer learns how
to classify an image.

However, in tasks like image classification, the content of an image is usually
simple, containing a predominate object to be classified. The situation could bemuch
more challenging when we want computers to understand complex scenes. Image
captioning is one of such tasks. The challenges come from two perspectives. First,
to generate a semantically meaningful and syntactically fluent caption, the system
needs to detect salient semantic concepts in the image, understand relationships
among them, and compose a coherent description about the overall content of the
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image, which involves language and commonsense knowledge modeling beyond
object recognition. In addition, due to the complexity of scenes in the image, it is
difficult to represent all fine-grained, subtle differences among them with the simple
attribute of category. The supervision for training image captioning models is a full
description of the content of the image in natural language, which is sometimes
ambiguous with a lack of fine-grained alignments between the subregions in the
image and the words in the description.

Further, unlike image classification tasks, where one can easily tell if the classi-
fication output is correct or wrong after comparing it to the ground truth, there are
multiple valid ways to describe the content of an image. It is not easy to tell if the
generated caption is correct or not and to what degree. In practice, human studies
are often employed to judge the quality of the caption given an image. However,
since human evaluation is costly and time-consuming, many automatic metrics are
proposed, which could serve as proxies mainly for speeding up the development
cycle of the system.

Early approaches to image captioning can be divided approximately into two
families. The first one is based on template matching (Farhadi et al. 2010; Kulkarni
et al. 2015). These approaches start from detecting objects, actions, scenes, and
attributes in images, and then fill them into a hand-designed and rigid sentence
template. The captions generated by these approaches are not always fluent and
expressive. The second family is grounded on retrieval-based approaches, which first
select a set of the visually similar images from a large database, and then transfer
the captions of retrieved images to fit the query image (Hodosh et al. 2013; Ordonez
et al. 2011). There is little flexibility to modify words based on the content of the
query image, since they directly rely on captions of training images and could not
generate new captions.

Deep neural networks can potentially address both of these issues by generating
fluent and expressive captions, which can also generalize beyond those in the train
set. In particular, recent successes of using neural networks in image classification
(Krizhevsky et al. 2012; He et al. 2015) and object detection (Girshick 2015) have
motivated strong interest in using neural networks for visual captioning.

10.3 Deep Learning Frameworks to Generate Natural
Language from an Image

10.3.1 The End-to-End Framework

Motivated by recent success of sequence-to-sequence learning inmachine translation
(Sutskever et al. 2014; Bahdanau et al. 2015), researchers studied an end-to-end
encoder–decoder framework for image captioning (Vinyals et al. 2015; Karpathy
and Fei-Fei 2015; Fang et al. 2015; Devlin et al. 2015; Chen and Zitnick 2015).
Figure10.1 illustrates a typical encoder–decoder-based captioning system (Vinyals
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Fig. 10.1 NLG from an image using a CNN and RNN trained together in an end-to-end manner
(figure from He and Deng 2017)

et al. 2015). In this framework, first the raw image is encoded by a global visual
feature vector which represents the overall semantic information of the image, via
deep CNN. As illustrated in Fig. 10.2, a CNN consists of several convolutional,
max-pooling, response-normalization, and fully connected layers. Here, the CNN
is trained for a 1000-class image classification task on the large-scale ImageNet
dataset (Deng et al. 2009). The last layer of this AlexNet contains 1000 nodes, each
corresponding to a category. Meanwhile, the second last fully connected dense layer
is extracted as the global visual feature vector, representing the semantic content of
the overall images. Given a raw image, the activation values at the second to the last
fully connected layer are usually extracted as the global visual feature vector. This
architecture has been very successful for large-scale image classification, and the
learned features have shown to transfer to a broad variety of vision tasks.

Once the global visual vector is extracted, it is then fed into another recurrent neu-
ral network (RNN)-based decoder for caption generation, as illustrated in Fig. 10.3.
At the initial step, the global visual vector, which represents the overall semantic
meaning of the image, is fed into the RNN to compute the hidden layer at the first
step. At the same time, the sentence-start symbol <s> is used as the input to the
hidden layer at the first step. Then, the first word is generated from the hidden layer.
Continuing this process, the word generated in the previous step becomes the input to
the hidden layer at the next step to generate the next word. This generation process
keeps going until the sentence-end symbol is generated. In practice, a long-short
memory network (LSTM) (Hochreiter and Schmidhuber 1997) or gated recurrent
unit (GRU) (Chung et al. 2015) variation of the RNN is often used, both of which
have been shown to be more efficient and effective in training and capturing long-
span language dependency (Bahdanau et al. 2015; Chung et al. 2015), and have found
successful applications in action recognition tasks (Varior et al. 2016).

The representative set of studies using the above end-to-end framework include
(Chen and Zitnick 2015; Devlin et al. 2015; Donahue et al. 2015; Gan et al. 2017a, b;
Karpathy and Fei-Fei 2015;Mao et al. 2015;Vinyals et al. 2015) for image captioning
and (Venugopalan et al. 2015a, b; Ballas et al. 2016; Pan et al. 2016; Yu et al. 2016)
for video captioning. The differences of the various methods mainly lie in the types
of CNN architectures and the RNN-based language models. For example, the vanilla
RNN was used in Karpathy and Fei-Fei (2015), Mao et al. (2015), while the LSTM
was used in (Vinyals et al. 2015). The visual feature vector was only fed into the
RNN once at the first time step in Vinyals et al. (2015), while it was used at each
time step of the RNN in Karpathy and Fei-Fei (2015). It is useful to point out that the



10 Deep Learning in Natural Language Generation from Images 293

Fig. 10.2 A deep CNN (e.g., AlexNet) used as a front-end encoder of the image captioning system
(figure from He and Deng 2017)

Fig. 10.3 An RNN used as a back-end decoder of the image captioning system (figure from He
and Deng 2017)

Fig. 10.4 The attentionmechanism in the image captioning system’s NLG process (figure fromHe
and Deng 2017)

deep CNN, which is essential for the success of image-to-text applications described
here, takes into account special translation-invariant properties of the image inputs.

Most recently, Xu et al. (2015) utilized an attention-based mechanism to learn
where to focus in the image during caption generation. The attention architecture
is illustrated in Fig. 10.4. Different from the simple encoder–decoder approach, the
attention-based approach first uses the CNN to not only generate a global visual
vector but also generate a set of visual vectors for subregions in the image. These
subregion vectors can be extracted from lower convolutional layer in the CNN. Then
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in language generation, at each step of generating a new word, the RNN will refer to
these subregion vectors, and determine the likelihood that each of the subregions is
relevant to the current state to generate theword. Eventually, the attentionmechanism
will form a contextual vector, which is a sum of subregional visual vectors weighted
by the likelihood of relevance, for the RNN to decode the next new word.

This work was followed by Yang et al. (2016), which introduced a review module
to improve the attentionmechanism and further byLiu et al. (2016), which proposed a
method to improve the correctness of visual attention. More recently, based on object
detection, a bottom-up attention model is proposed by Anderson et al. (2017), which
demonstrates state-of-the-art performance on image captioning. In this framework,
all the parameters, including the CNN, the RNN, and the attention model, can be
trained jointly from the start to the end parts of the overall model; hence the name
“end-to-end”.

10.3.2 The compositional framework

Different from the end-to-end encoder–decoder framework just described, a separate
class of image-to-text approaches uses an explicit semantic-concept-detection pro-
cess for caption generation. The detection model and other modules are often trained
separately. Figure10.5 illustrates a semantic-concept-detection-based compositional
approachproposedbyFang et al. (2015). This approach is akin to andmotivatedby the
long-standing architecture in speech recognition, consisting of multiple composed
modules of the acoustic model, the pronunciation model, and the language model
(Baker et al. 2009; Hinton et al. 2012; Deng et al. 2013; Deng and O’Shaughnessy
2003).

In this framework, the first step in the caption generation pipeline detects a set
of semantic concepts, as known as tags or attributes, that are likely to be part of the
images’ description. These tags may belong to any part of speech, including nouns,
verbs, and adjectives. Unlike image classification, standard supervised learning tech-
niques are not directly applicable for learning detectors since the supervision only
contains the whole image and the human-annotated whole sentence of caption, while

Fig. 10.5 A compositional approach based on semantic-concept-detection in image captioning
(figure from He and Deng 2017)
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the image bounding boxes corresponding to the words are unknown. To address this
issue, Fang et al. (2015) proposed learning the detectors using the weakly supervised
approach of multiple instance learning (MIL) (Zhang et al. 2005). While in Tran
et al. (2016), this problem is treated as a multi-label classification task.

In Fang et al. (2015), the detected tags are then fed into an n-gram-based Max-
Entropy language model to generate a list of caption hypotheses. Each hypothesis is
a full sentence that covers certain tags and is regularized by the syntax modeled by
the language model that defines the probability distribution over word sequences.

All these hypotheses were then re-ranked by a linear combination of features
computed over an entire sentence and the whole image, including sentence length,
language model scores, and semantic similarity between the overall image and an
entire caption hypothesis. Among them, the image-caption semantic similarity is
computed by a deepmultimodal similaritymodel, amultimodal extension of the deep
structured semantic model developed earlier for information retrieval (Huang et al.
2013). This “semantic” model consists of a pair of neural networks, one for mapping
each input modality, image, and language, to be vectors in a common semantic space.
Image-caption semantic similarity is then defined as the cosine similarity between
their vectors.

Compared to the end-to-end framework, the compositional approach provides
better flexibility in system development and deployment, and facilitates exploiting
various data sources to optimizing the performance of different modules more effec-
tively, rather than learn all the models on limited image-caption paired data. On the
other hand, end-to-end model usually has a simpler architecture and can optimize
different components of the overall system jointly for a better performance.

More recently, a class ofmodels have been proposed to integrate explicit semantic-
concept-detection in an encoder–decoder framework. For example, Ballas et al.
(2016) applied retrieved sentences as additional semantic information to guide the
LSTM when generating captions, while Fang et al. (2015), You et al. (2016), Tran
et al. (2016) applied a semantic-concept-detection process before generating sen-
tences. In Gan et al. (2017b), a semantic compositional network is constructed based
on the probability of detected semantic concepts for composing captions. This line
of methods also represents the current state-of-the-art in image captioning.

From the architectural and task-definition points of view, this type of composi-
tional framework for image captioning and for speech recognition shares a number
of common themes. Both of the tasks have the output of natural language sentences,
with different inputs of image pixels in the former and of speech waves in the latter.
The attribute detectionmodule in image captioning plays a similar role to the phonetic
recognition module in speech recognition (Deng and Yu 2007). The use of language
model to transform the detected attributes in the image to a list of caption hypotheses
in image captioning has the correspondence in the later stages of speech recogni-
tion that turn the acoustic features and phonetic units into a collection of lexically
correct word hypotheses (via a pronunciation model) and then into a linguistically
plausible word sequence (via a language model) (Bridle et al. 1998; Deng 1998). The
final, re-ranking module in image captioning is unique in that the earlier module of
attribute detection does not possess the global information of the full image, while to
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generate a meaningful natural sentence for the full image requires such information.
In contrast, this requirement for matching global properties of input and output is
not needed in speech recognition,

10.3.3 Other Frameworks

In addition to the two main frameworks for image captioning, other related frame-
works also learn a joint embedding of visual features and associated captions, For
example, Wei et al. (2015) have investigated to generate dense image captions for
individual regions in images, and a variational autoencoder was developed in Pu et al.
(2016) for image captioning. Further, motivated by the recent successes of reinforce-
ment learning, image captioning researchers also proposed a set of reinforcement
learning-based algorithms to directly optimize the captioning models for specific
rewards. For example, Rennie et al. (2017) proposed a self-critical sequence training
algorithm. It uses the REINFORCE algorithm to optimize an evaluation metric like
CIDEr, which is usually not differentiable and therefore not easy to optimize by
conventional gradient-based methods. In Ren et al. (2017), within the actor–critic
framework, a policy network and a value network are learned to generate the caption
by optimizing a visual semantic reward, which measures the similarity between the
image and generated caption. Relevant to image caption generation, models based on
the generative adversarial network (GAN) are proposed recently for text generation.
Among them, SeqGAN (Yu et al. 2017) models the generator as a stochastic policy in
reinforcement learning for discrete outputs like texts, and RankGAN (Lin et al. 2017)
proposes a ranking-based loss for the discriminator, which gives better assessment
of the quality of the generated text, and therefore leads to a better generator.

10.4 Evaluation Metrics and Benchmarks

The quality of the automatically generated captions is evaluated and reported in
the literature in both automatic metrics and human studies. Commonly used auto-
matic metrics include bilingual evaluation understudy BLEU (Papineni et al. 2002),
METEOR (Denkowski and Lavie 2014), CIDEr (Vedantam et al. 2015), and SPICE
(Anderson et al. 2016). BLEU (Papineni et al. 2002) is widely used in machine
translation and measures the fraction of N-grams (up to 4-gram) that are in common
between a hypothesis and a reference or set of references. METEOR (Denkowski
and Lavie 2014) instead measures unigram precision and recall, but extends exact
word matches to include similar words based on WordNet synonyms and stemmed
tokens. CIDEr (Vedantam et al. 2015) also measures the n-gram match between the
caption hypothesis and the references, while the n-grams are weighted by TF-IDF.
SPICE (Anderson et al. 2016), instead, measures the F1 score of semantic proposi-
tional content contained in image captions given the references, and therefore, it gives
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the best correlation to human judgment. These automatic metrics can be computed
efficiently, and therefore greatly speed up the development of image captioning algo-
rithms. However, all of these automatic metrics are known to only roughly correlate
with human judgment (Elliott and Keller 2014).

Researchers have created many datasets to facilitate the research of image cap-
tioning. The Flickr dataset (Young et al. 2014) and the PASCAL sentence dataset
(Rashtchian et al. 2010) were created for facilitating the research of image cap-
tioning. More recently, Microsoft sponsored the creation of the COCO (Common
Objects in Context) dataset (Lin et al. 2015), the largest image captioning dataset
available to the public today. The availability of the large-scale datasets significantly
prompted research in image captioning in the last several years. In 2015, about 15
groups participated in the COCOCaptioning Challenge (Cui et al. 2015). The entries
in the challenge are evaluated by human judgment. In the competition, all entries are
assessed based on the results ofM1—percentage of captions that are evaluated as bet-
ter or equal to human caption, and M2—the percentage of captions that pass Turing
test. Additional three metrics have been used as diagnostic and interpretation of the
results: M3—Average correctness of the captions on a scale 1–5 (incorrect–correct),
M4—average amount of detail of the captions on a scale 1–5 (lack of details—very
detailed), and M5—percentage of captions that are similar to human description.
More specifically, in evaluation, each task presents a human judge with an image
and two captions: one is automatically generated, and the other is a human caption.
For M1, the judge is asked to select which caption better describes the image, or to
choose the same option when they are of equal quality. For M2, the judge is asked
to tell which of the two captions are generated by human. If the judge chooses the
automatically generated caption, or choose “cannot tell” option, it is considered to
have passed Turing test.

The results, quantified byM1 toM5metrics above, obtained from the top 15 image
captioning systems in the 2015 COCO Captioning Challenge plus other recent top
entries measured by automatic metrics have been summarized and analyzed in (He
and Deng 2017). The success of these systems reflects the huge progress in this
challenging task from perception to cognition achieved by deep learning methods.

10.5 Industrial Deployment of Image Captioning

Propelled by the fast progress in the research community, the industry started deploy-
ing image captioning services. InMarch 2016,Microsoft released the image caption-
ing service as a cloud API to the public. To showcase the usage of the functionality,
it also deployed a web application called CaptionBot (http://CaptionBot.ai), which
captions arbitrary pictures users uploaded. More recently, Microsoft also deployed
the caption service in the widely used product Office, specifically, Word and Power-
Point, for automatically generating alter-text for accessibility. Facebook also released
an automatic image captioning tool that provides a list of objects and scenes iden-
tified in a photo. Meanwhile, Google open sourced their image captioning system

http://CaptionBot.ai
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for the community (https://github.com/tensorflow/models/tree/master/im2txt), as a
step toward public deployment of the captioning service.

With all these industrial-scale deployment and open-source projects, a massive
number of images and user feedbacks in real-world scenarios are being collected that
serve as the ever-increasing training data to steadfastly improve the performance of
the systems. This will in turn stimulate new research in deep learning methods for
visual understanding and natural language generation.

10.6 Examples: Natural Language Descriptions of Images

In this section, we provide typical examples of generating natural language captions
that describe the contents of digital images, using thevarious deep learning techniques
described in the preceding sections.

Given a digital image, such as a photo shown in the upper part of Fig. 10.6, the
machine-generated textual description of the contents of the image—“a woman in a
kitchen preparing food”—together with the human-annotated description—“woman
working on counter near kitchen sink preparing a meal”—are shown in the lower
part of the figure. In this case, an independent human (a mechanical Turker) slightly
prefers the machine-generated text. Among the many images fromMicrosoft COCO
database, about 30% of images are of this type, i.e., whose captions by the system
are preferred, or are viewed equally good as human-generated captions.

From Figs. 10.7, 10.8, 10.9 and 10.10, we provide several other examples where
mechanical Turkers prefer machine-generated textual descriptions of images to
human-annotated ones, or view them as equally good.

The image captioning system that provides the above examples has been imple-
mented in CaptionBot via callingMicrosoft Cognitive Services, which allowsmobile
phone users to upload any photo from the phone to obtain its corresponding natural
language caption. Several examples are provided from Figs. 10.11, 10.12 and 10.13.
In the last example, we include the result when the celebrity detection component is
added to the captioning system.

10.7 Recent Research on Generating Stylistic Natural
Language from Images

The natural language captions generated by deep learning systems from images, with
numerous techniques and examples provided in the preceding sections, usually gave
only a factual description of the image content (Vinyals et al. 2015; Mao et al. 2015;
Karpathy and Fei-Fei 2015; Chen and Lawrence Zitnick 2015; Fang et al. 2015;
Donahue et al. 2015; Xu et al. 2015; Yang et al. 2016; You et al. 2016; Bengio et al.
2015; Tran et al. 2016). The natural language style has often been overlooked in the

https://github.com/tensorflow/models/tree/master/im2txt
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Fig. 10.6 An example of
image captioning in contrast
with human annotation

Fig. 10.7 Another example
of image captioning in
contrast with human
annotation
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Fig. 10.8 Another example
of image captioning in
contrast with human
annotation

caption generation process. Specifically, the existing image captioning systems have
been using a language generation model that mixes the style with other linguistic
patterns of language generation, thereby lacking a mechanism to control the style
explicitly. The recent research aims to overcome this deficiency (Gan et al. 2017a)
and is reviewed here.

A romantic or humorous natural language description of an image can greatly
enrich the expressibility of the caption and make it more attractive. An attractive
image caption will add more visual interest to images and can even become a distin-
guishing trademark of the captioning system. This is particularly valuable for certain
applications; e.g., increasing user engagement in chatting bots or enlightening users
in photo captioning for social media.

Gan et al. (2017a) proposed the StyleNet, which is able to produce attractive visual
captions with styles only using monolingual stylized language corpus (i.e., without
paired images) and standard factual image/video–caption pairs. StyleNet is built
upon the recently developed methods that combine convolutional neural networks
(CNNs) with recurrent neural networks (RNNs) for image captioning. The work is
also motivated by the spirit of multitask sequence-to-sequence training Luong et al.
(2015). Particularly, it introduces a novel factored LSTM model that can be used
to disentangle the factual and style factors from the sentences through multitask
training. Then at running time, the style factors can be explicitly incorporated to
generate different stylized captions for an image.

The StyleNet has been evaluated on a newly collected Flickr stylized image cap-
tion dataset, with the results demonstrating that the proposed StyleNet significantly
outperforms previous state-of-the-art image captioning approaches, measured by a
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Fig. 10.9 Another example
of image captioning in
contrast with human
annotation

Fig. 10.10 A final example
of image captioning in
contrast with human
annotation
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Fig. 10.11 The image which
automatically generates
natural sentence of “I think
it’s a group of people
standing in front of a
mountain.” using Microsoft
Cognition Services

Fig. 10.12 The image which
automatically generates
natural sentence of “I think
it’s a view of a plane flying
over a snow covered
mountain.” using Microsoft
Cognition Services
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Fig. 10.13 The image which automatically generates a natural sentence usingMicrosoft Cognition
Services with an added celebrity detection component

F: A brown dog and a black dog play in the snow.

R: Two dogs in love are playing together in the snow.

H: A brown dog and a black dog are fighting for a bone.

F: A black dog stand in the water.

R: A  dog takes a shower in the water before dating.

H: A black dog Is running into the water to catch fish.

F: A man is riding a bike on a dirt road.

R: A bike rider races along a road, speed to finish the line.

H: A man rides the bike fast to avoid being late for a class.

F: Two men are sitting on a bench under a tree .

R: Two men are waiting for their true love.

H: Two men sit In the city park to catch pokemon go.

F: A boy sits on the swing.

R: A boy  swings to experience the highs and lows in his life.

H: A boy is sitting on a swing ready to fly.

F: A football player in a red uniform is running with football.

R: A football player in red is running to win the game.

H: A football player in red is challenging the player in a game.

Fig. 10.14 Six examples of natural language captions generated by the StyleNet from images each
with three different styles

set of automatic metrics and human evaluation. Some typical examples of stylistic
caption generation are shown in Fig. 10.14, where it is observed that the caption with
the standard factual style only describes the facts in the image in a dull language,
while both the romantic and humorous style captions not only describe the content
of the image but also express the content in a romantic or humorous way through
generating phrases that bear a romantic (e.g., in love, true love, enjoying, dating, win
the game, etc.) or humorous (e.g., find gold, ready to fly, catch Pokemon Go, bone,
etc.) sense. Further, it has been found that the phrases that the StyleNet generates fit
the visual content of the image coherently, making the caption visually relevant and
attractive.
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10.8 Summary

Natural language generation from images, or image captioning, is an emerging deep
learning application that intersects computer vision and natural language processing.
It also forms the technical foundation formany practical applications. Thanks to deep
learning technologies, we have seen significant progress in this area in recent years.
In this chapter, we have reviewed the key developments in image captioning that the
community has made and their impact on both research and industry deployment.
Twomajor frameworks developed for image captioning, both based on deep learning,
are reviewed in detail. A number of examples of natural language descriptions of
images produced by two state-of-the-art captioning systems are provided to illustrate
the high quality of the systems’ outputs.

Looking forward, while image captioning is a particular application of NLG in
NLP, it is also a subarea in the image-natural language multimodal intelligence field.
A number of new problems in this field have been proposed lately, including visual
question answering (Fei-Fei and Perona 2016; Young et al. 2014; Agrawal et al.
2015), visual storytelling (Huang et al. 2016), visually grounded dialog (Das et al.
2017), and image synthesis from text description (Zhang et al. 2017). The progress
in multimodal intelligence involving natural language is critical for building general
artificial intelligence abilities in the future. The review provided in this chapter can
hopefully encourage new students and researchers alike to contribute to this exciting
area.
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