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Chapter 5
Long Noncoding RNAs in Plants

Hsiao-Lin V. Wang and Julia A. Chekanova

Abstract The eukaryotic genomes are pervasively transcribed. In addition to 
protein- coding RNAs, thousands of long noncoding RNAs (lncRNAs) modulate 
key molecular and biological processes. Most lncRNAs are found in the nucleus and 
associate with chromatin, but lncRNAs can function in both nuclear and cytoplas-
mic compartments. Emerging work has found that many lncRNAs regulate gene 
expression and can affect genome stability and nuclear domain organization both in 
plant and in the animal kingdom. Here, we describe the major plant lncRNAs and 
how they act, with a focus on research in Arabidopsis thaliana and our emerging 
understanding of lncRNA functions in serving as molecular sponges and decoys, 
functioning in regulation of transcription and silencing, particularly in RNA- 
directed DNA methylation, and in epigenetic regulation of flowering time.

Keywords Plant lncRNAs • Noncoding RNAs • Epigenetics • Exosome • FLC  
• Transcriptional regulation

5.1  Introduction

In eukaryotes, transcriptome studies showed that >90% of the genome is transcribed 
and a myriad of transcripts corresponds to noncoding RNAs (ncRNAs) [1, 2], 
including long ncRNAs (lncRNAs), which are classically >200 nt long and have no 
discernable coding potential [3–5]. Plant genomes produce tens of thousands of 
lncRNAs from intergenic, intronic, or coding regions. RNA Pol II transcribes most 
lncRNAs (from the sense or antisense strands); plants also have Pol IV and Pol V, 
the two plant-specific RNA polymerases that can produce lncRNAs [6, 7]. Majority 
of described up-to-date plant lncRNAs are polyadenylated, while in yeast and mam-
mals, there are many non-polyadenylated lncRNAs as well [8]. However, there are 
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several well-studied important functional non-polyadenylated lncRNAs [9–11]; and 
the recent work in Arabidopsis found that abiotic stress induced the production of 
hundreds of non-polyadenylated lncRNAs [12–14].

Most lncRNAs can be broadly classified based on their relationships to protein- 
coding genes: (1) long intergenic ncRNAs (lincRNAs) (Fig. 5.1A); (2) lncRNAs 
produced from introns (incRNAs), which can be transcribed in any orientation rela-
tive to coding genes (Fig. 5.1B); and (3) antisense RNAs and natural antisense tran-
scripts (NATs), which are transcribed from the antisense strand of genes (Fig. 5.1C 
and D) [15]. Various types of lncRNAs are also transcribed near transcription start 
sites (TSSs) and transcription termination sites (TTSs) or from enhancer regions 
(eRNAs) (Fig. 5.1G) and splice sites. For example, yeast produces cryptic unstable 
transcripts (CUTs) and stable unannotated transcripts (SUTs) from around TSSs 
[16], Xrn1-sensitive XUTs [17], and Nrd1-dependent NUTs [18, 19], and mamma-
lian cells produce PROMPTs and upstream antisense RNAs (uaRNAs) [20] and 
others (Fig. 5.1E and F).

Information about TSS-proximal lncRNAs in plants remains scant. However, 
recent analyses of nascent RNA from Arabidopsis seedlings obtained using a 
combination of global nuclear run-on sequencing (GRO-seq), 5′ GRO-seq, and 
RNA- seq did not detect upstream antisense TSS-proximal ncRNAs [21]. These 
data suggest a possibility that divergent transcription is lacking in Arabidopsis 
(and likely maize), in contrast to the situation in many other eukaryotes, indicat-
ing that eukaryotic promoters might be not inherently bidirectional. In Arabidopsis 
TSS- proximal lncRNAs that were observed in the RNA exosome-deficient lines 
include the upstream noncoding transcripts (UNTs), which are transcribed as 
sense RNAs and are colinear with the 5′ ends of the associated protein-coding 
gene, extending into the first intron. The UNTs resemble yeast CUTs and mam-
malian PROMPTs [1].
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Fig. 5.1 Classification of lncRNAs based on their relationship to protein-coding genes. Orange 
boxes correspond to the protein-coding genes and pink lines correspond to lncRNAs. Arrows indi-
cate the direction of transcription. Each panel depicts a subtype of lncRNAs: intergenic or long 
intergenic noncoding RNAs (lincRNAs) (A), intronic RNAs (B), antisense RNAs (C), natural anti-
sense transcripts (NATs) (D), promoter-proximal sense (E) and upstream antisense RNAs (F), 
eRNAs (G)
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The exosome-sensitive enhancer RNAs (eRNAs) produced from enhancer regions 
make up a large proportion of non-polyadenylated lncRNAs in mammalian cells 
(Fig. 5.1G) [8]. However, information about plant enhancers has only recently started 
to emerge. An analysis of chromatin signatures predicted over 10,000 plant intergenic 
enhancers [22]. However, their potential roles as transcriptional enhancers in vivo 
will require follow-up experiments, and eRNAs have not yet been reported in plants.

5.2  Recent Advances in Studying Plant lncRNAs

Mammalian lncRNAs are by far the best-studied. However, in recent years, identi-
fication of plant lncRNAs has largely caught up with mammalian field. The plant 
databases where the information on lncRNAs can be found are summarized in 
Table 5.1.

Table 5.1 List of plant lncRNA databases

Database Descriptions/features Website Ref

The Arabidopsis 
Information 
Resource (TAIR)

Comprehensive database of Arabidopsis 
thaliana genome, including annotated 
genome sequences (TAIR10), gene 
structures, and transcriptome data for 
coding and nonprotein-coding loci. TAIR 
has multiple analytical tools: interactive 
genome browser, BLAST, motif analysis, 
bulk data retrieval, and a chromosome map 
tool

https://www.
arabidopsis.org/

[23]

Araport11 A comprehensive database based on 
Arabidopsis Col-0 version 11 (Araport11) 
includes additional coding and noncoding 
annotations compared to TAIR10, such as 
lincRNAs, NATs, and other ncRNAs

https://www.
araport.org/

[24]

Plant long 
noncoding RNA 
database 
(PLncDB)

This database includes a curated list of 
>13,000 lincRNAs identified using 
RNA-seq and tiling array and their 
organ-specific expression and the 
differential expression in RdDM mutants. 
PLncDB has a genome browser for 
viewing the association of various 
epigenetic markers

http://chualab.
rockefeller.edu/
gbrowse2/
homepage.html

[3]

Green Non-coding 
Database 
(GREENC)

GREENC has >120,000 annotated 
lncRNAs from 37 plant species and algae. 
The user can access the coding potential 
and folding energy for each lncRNA

http://greenc.
sciencedesigners.
com/
wiki/Main_Page

[25]

NONCODE v4.0 NONCODE includes >500,000 lncRNAs 
from 16 species. Arabidopsis is the only 
plant species, as NONCODE focuses on 
non-plant species, including human and 
mouse

http://www.
noncode.org/
index.php

[26]

(continued)
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An examination of >200 transcriptome data sets in Arabidopsis identified 
~40,000 candidate lncRNAs; these included NATs (>30,000) and lincRNAs (>6000) 
[3, 4, 30]. Most of the lincRNAs did not produce smRNAs, and, like mammalian 
lncRNAs, the lincRNA transcript levels were 30–60-fold lower than that of tran-
script levels of the associated mRNA. Work in Arabidopsis found that NAT pairs, 
lncRNAs transcribed from opposite strands, occur widely: ~70% of protein-coding 
loci in Arabidopsis produce candidate NAT pairs 200–12,370 nt long (average 
length of 731 nt) [4]. Some NAT pairs show complete overlap (~60%), but others 
have complementary segments at their 5′ or the 3′ ends.

The expression levels of many lincRNAs differ significantly depending on the 
tissue and also change during stress; this indicates that lncRNAs undergo dynamic 
regulation and act in regulation of development and stress responses [30]. The 
expression levels of many NATs also are tissue-specific and change in response to 
biotic or abiotic stresses. For example, a recent study identified ~1400 NATs that 
respond to light; of the NAT pairs, about half respond in the same direction, and half 
respond in opposite directions. For the light-responsive NATs, the associated genes 
also showed peaks of histone acetylation; the acetylation levels changed with the 
changes in NAT expression in response to light [4].

Among the lncRNAs, Arabidopsis and rice have intermediate-sized ncRNAs 
(im-ncRNAs), which are 50–300 nt long [31, 32] and originate from 5′ UTRs, cod-
ing regions, and introns. The genes associated with 5′ UTR im-ncRNAs tended to 
have higher expression and H3K4me3 and H3K9ac histone marks, which are asso-
ciated with transcriptional activation. Plants that have reduced levels of some im- 
ncRNAs showed developmental phenotypes or detectable molecular changes [31].

While we continue to gain better understandings of the mechanisms of lncRNA 
action, the mechanisms that regulate lncRNAs in plants remain limited. Like all 

Table 5.1 (continued)

Database Descriptions/features Website Ref

CANTATAdb CANTATAdb contains >45,000 plant 
lncRNAs from ten model plant species. In 
addition to tissue-specific expressions and 
coding potential, each lncRNA is also 
evaluated based on potential roles in 
splicing regulation and miRNA 
modulations

http://cantata.amu.
edu.pl/

[27]

Plant ncRNA 
database (PNRD)

PNRD has >25,000 ncRNAs of 11 
different types and from 150 plant species. 
It also includes analytical tools, such as an 
miRNA predictor, coding potential 
calculator, and customized genome 
browser

http://
structuralbiology.
cau.edu.cn/
PNRD/

[28]

Plant Natural 
Antisense 
Transcripts 
DataBase 
(PlantNATsDB)

A database for natural antisense transcripts 
(NATs) from 70 plant species, associated 
gene information, small RNA expression, 
and GO annotation

http://bis.zju.edu.
cn/pnatdb/

[29]
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transcripts, lncRNAs undergo transcriptional level regulation and regulation that 
affects lncRNA biogenesis, processing, and turnover. One of the players in this 
regulation is the exosome complex, which plays a major role in regulating the 
 quantity, quality, and processing of various transcripts, including lncRNAs. The 
exosome complex is a conserved machinery with 3′–5′ exoribonuclease activity that 
consists of nine-subunit core associated with its enzymatic subunits, Rrp44 and 
Rrp6. The depletion of the Arabidopsis exosome allowed identification of a number 
of Arabidopsis ncRNAs as well as the genomic regions where the exosome is 
involved in their metabolism [1].

5.3  Molecular Functions of Plant lncRNAs

lncRNAs are present at low levels and show little sequence conservation compared 
with mRNAs; therefore, early studies questioned their importance and necessity and 
also suggested that lncRNAs might result from transcriptional noise. Indeed, con-
siderable debate remains about the functionality of lncRNAs. However, evidence 
has emerged in recent years to indicate that many lncRNAs function in a large num-
ber of diverse molecular processes in eukaryotic cells; these include the regulation 
of yeast mating type [33, 34] and modulation of embryonic stem cell pluripotency 
and various diseases [35]. In plants, lncRNAs function in gene silencing, flowering 
time control, organogenesis in roots, photomorphogenesis in seedlings, abiotic 
stress responses, and reproduction [5, 11–14, 36–40].

For their effects on gene regulation, lncRNAs act at multiple levels and with 
simple or complex mechanisms. lncRNAs can act in cis or trans, function by 
sequence complementarity to RNA or DNA, and be recognized via specific sequence 
motifs or secondary/tertiary structures (Fig. 5.2a). At the most simple level, lncRNAs 
can serve as precursors to smRNAs (Fig. 5.2b), as in the case of RNA Pol IV tran-
scripts [6, 42–46]. Some lncRNAs keep regulatory proteins or microRNAs from 
interacting with their DNA or RNA targets by acting as decoys that mimic the tar-
gets (Fig. 5.2c). Some of the plant examples include the Arabidopsis microRNA 
target mimics IPS1 lncRNA and the decoy ASCO-lncRNA [38, 47].

In animal systems, some lncRNAs directly affect Pol II and its associated tran-
scriptional machinery by promoting phosphorylation of transcription factors (TFs) 
regulating their DNA-binding activity [48]. Many lncRNAs affect different  processes 
related to transcription, including the initiation and elongation of transcripts, by 
affecting the pausing of RNA Pol II.  Other lncRNAs act as scaffolds to recruit 
enzymes that remodel chromatin and thus alter chromatin structure and nuclear 
organization (Fig. 5.2d) (reviewed in [49]). Examples of plant lncRNAs that regu-
late transcription have started to emerge; for example, HID1 binds to the promoter 
of PIF3 gene to downregulate its expression [39]. However, no plant lncRNAs have 
yet been implicated in regulation of transcription elongation or Pol II pausing.

Different types of lncRNAs associate with chromatin and act as scaffolds that 
allow the assembly of complexes of chromatin-modifying enzymes. Recruitment of 
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these proteins can require small RNAs or not. For example, the siRNA-directed 
DNA methylation (RdDM) pathway, which occurs specifically in plants, requires 
small RNAs [37]. Other lncRNAs can recruit complexes of enzymes that remodel 
chromatin but do not require smRNAs. The mechanism that provides targeting 
specificity for these lncRNAs remains to be discovered. Work in mammalian sys-
tems showed that lncRNAs can interact with proteins of the Trithorax group and 
activate transcription via trimethylation of histone H3K4 [50]. Other lncRNAs 
interact with proteins that modify histones with repressive marks, such as Polycomb 
Repressive Complex 2 (PRC2), to repress transcription via methylation of histone 
H3K27 [51]. The best-studied RNAi-independent pathway that relies on lncRNAs 
interacting with Polycomb is epigenetic regulation via histone modifications and 
expression of Arabidopsis FLOWERING LOCUS C (FLC).

Additional examples include enhancer RNAs (eRNAs), shown to be involved in 
regulation of transcription initiation. Enhancers are regulatory genomic regions that 
are shown to be involved in transcriptional regulation through targeting promoters 
of protein-coding genes in a tissue-specific and developmental manner as well as 
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Fig. 5.2 Example lncRNAs and the mechanisms of their action. (a) Specific sequence motifs or 
secondary structures could be required for lncRNA function. (b) lncRNAs, specifically, the double- 
stranded transcripts, can serve as precursors to smRNAs in the RNA interference (RNAi) pathway. 
(c) lncRNAs can function as scaffolds for the recruitment of chromatin-modifying factors or as a 
platform for assembly of protein complexes. (d) lncRNAs can function as molecular sponges or 
decoys for smRNAs and also act as decoys to titrate away RNA-binding proteins. (e) The eRNAs, 
which are expressed from enhancers, are regulated by the exosome and can interact with other 
regions of DNA, such as enhancers or promoters, affecting the topology of the local DNA and thus 
altering gene expression. Adapted from [41]. (f) lncRNAs that interact with several chromatin- 
remodeling proteins and chromatin regions could affect higher-order nuclear structure
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modulating spatial organization of the genome [52]. Work in mammalian systems 
has shown that exosome-sensitive eRNAs function in activation of transcription, 
consistent with the enhancer function. Some eRNAs act in cis to recruit complexes 
of coactivator proteins that form chromosome loops that connect the enhancer with 
its promoter, thus activating gene expression (Fig.  5.2e) [41, 53]. However, no 
eRNAs have not been identified in plants yet. The exosome function of resolving 
R-loops, which are RNA-DNA triplexes, might also reduce genomic instability in 
the regions expressing eRNAs [41]. R-loops form during transcription and can per-
sist in regions that are divergently transcribed [54]. These results suggest that the 
exosome modulates the interactions among the key elements that regulate gene 
expression and the organization of the nucleus.

The examples of the well-studied plant lncRNAs with established functions and 
mechanisms of action are listed in Table 5.2.

Table 5.2 List of plant lncRNAs

lncRNAs Description and function References

ASCO-lncRNA Functions in lateral root development in Arabidopsis. 
Regulator of alternative splicing. Works as a decoy lncRNA

[38]

IPS1 Functions in regulating phosphate balance and phosphate 
starvation response in Arabidopsis. Competes with PHO2 
mRNA for interaction with miR399 and acts as non- 
cleavable miRNA target

[47]

HID1 Functions in regulation of photomorphogenesis in 
Arabidopsis seedlings. Trans-acting lncRNA (236 nt) acts 
by associating with the PIF3 promoter and represses its 
transcription. Evolutionary conserved in land plants

[39]

COOLAIR Functions in regulation of flowering in Arabidopsis in both 
vernalization and autonomous pathways. Modulates FLC 
expression by multiple mechanisms

[55]

COLDAIR Functions in regulation of flowering in Arabidopsis in the 
vernalization pathway. Associates with Polycomb to mediate 
silencing of FLC and affects chromatin looping at FLC in 
response to vernalization

[9]

COLDWRAP Functions in regulation of flowering in Arabidopsis in the 
vernalization pathway. Participates in and coordinates 
vernalization-mediated Polycomb silencing of the FLC. Also 
affects formation of an intragenic chromatin loop that 
represses FLC

[11]

ASL Functions in regulation of flowering in the autonomous 
pathway in Arabidopsis. AtRRP6L regulates ASL to 
modulate H3K27me3 levels.

[10]

APOLO Functions in regulation of auxin signaling outputs in 
Arabidopsis. Participates in chromatin loop dynamics. 
Affects formation of a chromatin loop in the PID promoter 
region

[56]

(continued)
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5.4  Plant lncRNAs Functioning as Molecular Sponges 
and Decoys

Work in Arabidopsis identified lncRNAs that compete with microRNAs (miRNAs) 
or mimic the targets of miRNAs; similar function was also identified in animal sys-
tems. For example, the IPS1 lncRNA plays a role in regulating phosphate balance 
and uptake by competing for binding the PHO2 mRNA. PHO2 negatively regulates 
phosphate transporters and is itself downregulated by miR399 cleavage of its 
mRNA; IPS1 serves as mimic that cannot be cleaved by miR399 due to the mis-
match but can titrate off miR399 [47]. Bioinformatics approaches also have pre-
dicted many additional miRNA target mimics in Arabidopsis, but the functions of 
many of these remain to be deciphered [63].

The Arabidopsis ASCO-lncRNA functions as decoy and regulates plant root 
development. ASCO-RNA competes with the binding of nuclear speckle RNA- 
binding proteins (NSRs), regulators of alternative splicing, to their targets; hijack-
ing the NSRs changes the splicing patterns of NSR-regulated mRNA targets 
resulting in the production of alternative splice isoforms and leading to switch of 
developmental fates in plant roots (Fig. 5.3) [38].

5.5  Plant lncRNAs Functioning in Regulation 
of Transcription and Silencing

5.5.1  Regulation of PIF3 Transcription by HID1 im-ncRNA

One of the interesting Arabidopsis lncRNAs, HIDDEN TREASURE 1 (HID1), also 
classified in original study as im-ncRNA with a length of 236 nt, is involved in the 
regulation of transcription of the transcription factor PIF3, a member of 

lncRNAs Description and function References

Pol IV transcripts Technically shorter in length than the standard lncRNAs. 
Function in silencing of transposons (TEs) and repeats in 
RdDM pathway. Serve as precursors for siRNAs in RdDM 
pathway

[57–59]

Pol V transcripts Function in silencing TEs and repeats in RdDM pathway. 
Serve as a scaffold lncRNAs for assembly of siRNAs and 
proteins in RdDM pathway

[60]

ENOD40 Functions in regulation of symbiotic interactions between 
leguminous plants and soil bacteria in Medicago truncatula. 
Suggested to function in re-localization of proteins in plants

[38, 61]

LDMAR Regulates photoperiod-sensitive male sterility in rice by 
affecting DNA methylation in the LDMAR promoter region. 
The precise mechanism of LDMAR function and the 
interaction between LDMAR and siRNAs remain to be 
clarified

[62]

Table 5.2 (continued)
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“phytochrome- interacting factors” (PIFs), a family of basic helix-loop-helix 
(bHLH) transcription factors [39]. HID1 is evolutionarily conserved in land plants 
and functions in trans as a component of an RNA-protein complex. It interacts with 
the promoter region of PIF3 and suppresses PIF3 transcription. The HID1 im- 
ncRNA is among rare examples of lncRNAs for which it was shown that its function 
requires its secondary structure. The secondary structure of HID1 in Arabidopsis 
and rice shows substantial conservation and expression of OsHID1 could comple-
ment the Arabidopsis hid1 mutant phenotype, indicating its importance in regula-
tion of photomorphogenesis in seedlings.

5.5.2  Role of lncRNAs in RdDM

In plants, lncRNAs also function in epigenetic silencing, acting via siRNA- 
dependent DNA methylation (RdDM) (Fig. 5.4). RdDM in plants has similar mech-
anisms to gene silencing mediated by siRNAs in S. pombe [64–67]. RdDM primarily 
functions to repress transcription of transposons and repetitive sequences and 
requires RNA Pol IV and Pol V, two plant-specific RNA polymerases [6], and per-
haps some involvement of RNA Pol II [68]. RNA Pol IV produces ncRNAs that 
serve as templates for 24 nt siRNAs, and RNA Pol V transcribes lncRNAs, which 
act as scaffolds that the AGO-siRNA complex recognizes through sequence com-
plementarity (reviewed in [37]). In Arabidopsis, most siRNAs are generated by Pol 
IV; however, Pol V and Pol II can also make siRNA templates, suggesting addi-
tional complexity involved in siRNA biogenesis [69–72].

Identification of the Pol IV- and particularly Pol V-produced lncRNAs has remained 
challenging until recently [57–60]. One of the recent genome-wide studies identified 
Pol IV/RDR2-dependent transcripts (P4RNAs) from thousands of Arabidopsis loci. 
Interestingly, these P4RNAs are transcribed mainly from  intergenic regions; 65% of 
the P4RNAs overlapped with transposable elements or repeats, and 9% of the RNAs 
overlapped with genes [57]. The Pol IV/RDR2- dependent transcripts are non-polyad-
enylated and produced from the sense and antisense DNA strands. Surprisingly, 
instead of a 5′ triphosphate, the P4RNAs have a monophosphate [57].

Until very recently Pol V transcripts eluded detection on the genome-wide scale 
due to the very low levels of their accumulation, which made them difficult to detect 
using RNA-seq. Based on the analysis of the individual transcripts, Pol V lncRNAs are 
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non-polyadenylated and either tri-phosphorylated or capped at the 5′ ends [6]. Recent 
genome-wide study using RIP-seq identified 4502 individual Pol V-associated tran-
scripts [60]. It was previously annotated that the Pol V-transcribed regions have an 
average length of 689 nt. Surprisingly, it was found that experimentally identified Pol 
V lncRNAs are shorter than previously annotated, with their median size ranging from 
196 to 205 nt yet spanning the entire region. This data suggested that Pol V might not 
transcribe the entire regions continuously but is possibly controlled by internal pro-
moters situated within the annotated regions that lead to active Pol V transcription.

Unlike RNA polymerases I, II, and III, which use specific sequence elements that 
identify their promoters, no specific DNA sequence elements were found in Pol 
V-transcribed regions. Instead internal repressive chromatin modifications appeared 
to control Pol V transcription and contribute to initiation by internal promoters. 
Interestingly, Pol V produces lncRNAs bidirectionally on annotated Pol V tran-
scripts with no correlations in strand preference. However, despite Pol V that tran-
scribes both strands of DNA, a subset of Pol V transcripts on transposons was found 
to be enriched on one strand in a way that indicated that limited strand preference of 

Fig. 5.4 LncRNAs participating in the RdDM pathway. Transcripts produced by Pol IV are pre-
cursors for 24 nt siRNA; transcripts produced by Pol V are scaffolds and siRNA targets. SHH1 
reads the H3K9me status of chromatin and recruits Pol IV; then the chromatin-remodeling protein 
CLSY1 assists in the passage of Pol IV [73]. Pol IV transcripts are transcribed by RDR2 into 
double-stranded RNAs (dsRNAs) before they are processed by DCL3 into 24 nt siRNAs and sta-
bilized by methylation at the 3′ end by HEN1. These siRNAs associate with AGO and return to the 
nucleus as a part of the AGO-siRNA complex, which targets nascent Pol V scaffold transcripts. 
Pol V is recruited by SUVH2 or SUVH9 to its target genomic loci marked by DNA methylation 
[74], and Pol V transcription is facilitated by the DDR complex [75].The IDN2-IDP complex binds 
to Pol V scaffold RNAs and interacts with the SWI/SNF complex, which adjusts the position of 
nucleosomes [76]. The AGO4-siRNA complex interacts with Pol V; in this interaction, the siRNA 
in the complex base pairs with the transcript produced by Pol V to target a chromatin-modifying 
complex that catalyzes de novo methylation at the genomic loci. Then, the silencing mediated by 
DNA methylation is further amplified by methylation of histone H3K9 by KYP, SUVH5, and 
SUVH6 (reviewed in [37]). The silencing of solo LTRs requires the exosome, which does not act 
via siRNAs and DNA methylation. Rather, the exosome interacts with transcripts from a nearby 
scaffold-producing region and acts in silencing the solo LTR by altering chromatin structure via 
H3K9 histone methylation, suggesting this may function in parallel with RdDM
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Pol V in these loci may be involved in determining boundaries of heterochromatin 
on transposons.

Previous genome-wide studies using ChIP-seq identified Pol V-associated 
genomic regions and found Pol V may also function in pathways other than the 
RdDM pathway [6, 75–80]. About 75% of Pol V-occupied genomic sites are trans-
posons and repetitive sequences that also have 24 nt siRNAs and high levels of 
DNA methylation, indicating that Pol V induces RdDM at these sites. The other 
25% of Pol V-associated sites include many protein-coding genes that have lower 
methylation levels and do not associate with siRNAs. This indicates that Pol V may 
also function in other silencing pathways [77]. Pol II also can produce scaffold 
transcripts that recruit siRNAs bound by AGO [68]. However, it remains unclear 
how Pol II targets specific intergenic loci and how Pol II interacts with Pol IV and 
Pol V.

Interestingly, the exosome also appears to play some role in silencing of these 
regions. A genome-wide study that identified exosome targets found many polyad-
enylated substrates of the exosome complex that corresponded to ncRNAs from 
centromeric regions, repetitive sequences, and other siRNA-producing loci and 
undergo RdDM-mediated silencing [1]. However, when we explored the connection 
between the two silencing pathways, RdDM and the exosome in Arabidopsis, we 
found that mutants of the core exosome subunits only produce a small effect on 
smRNAs [81]. This differs from results found in studies of the exosome in fission 
yeast, as in this system, the exosome prevents RNAs from spuriously entering into 
smRNA pathways [65]. Instead, less H3K9me2 was observed at several loci con-
trolled by RdDM in exosome-deficient lines. The exosome interacts genetically 
with RNA Pol V and physically associates with polyadenylated Pol II transcripts 
from the regions generating Pol V scaffold RNAs [81]. These observations indicate 
that the exosome functions in lncRNA metabolism or processing in scaffold- 
generating regions. The exosome may also mediate the interactions among Pol II, 
Pol V, and Pol IV, modulating transcriptional repression. One outstanding question 
is whether and how the exosome (possibly acting through lncRNAs) contributes to 
silencing of loci via fine-tuning histone modifications and if the same mechanism of 
action can be observed genome wide.

However, Arabidopsis exosome subunits have diverse functions [1]. The addi-
tional enzymatic subunit, AtRRP6L1, is independent of the exosome core functions 
[10]. Mutations in AtRRP6L1 effect siRNA metabolism and DNA methylation [82]. 
Therefore, the exosome and the additional enzymatic subunits played an important 
role in regulation of ncRNAs, including siRNAs, in the RdDM pathway.

5.6  lncRNAs in the Regulation of Flowering

Because of the importance of flowering time regulation for plant adaptation to dif-
ferent latitudes, the lncRNAs that regulate flowering are among the best-studied 
functional plant lncRNAs. Work in Arabidopsis has shown that these lncRNAs 
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regulate the initiation of flowering by modulating the expression of FLOWERING 
LOCUS C (FLC), which encodes a MADS-box transcription factor. FLC represses 
downstream genes required for flowering and thus negatively regulates flowering, 
acting in a dose-dependent manner. FLC functions in the vernalization pathway, 
which modulates flowering time in response to prolonged low temperature, and in 
the autonomous pathway, which modulates flowering time independently of envi-
ronmental factors [83].

The regulation of flowering time involves epigenetic silencing of FLC, mainly 
via modification of histones. Repression of FLC requires PRC2, which is recruited 
to FLC and methylates histone H3K27. Alteration of chromatin, particularly 
changes in histone modifications that remove H3K4me3, H3K36me3, and H2Bub1 
and replace those modifications with H3K27me3, epigenetically represses FLC 
expression (reviewed in [36]).

The lncRNAs COLDAIR, COLDWRAP, and COOLAIR are transcribed from 
FLC and function in FLC epigenetic silencing (Fig. 5.5) [9, 11, 84]. Vernalization 
induces transient transcription of COLDAIR, a 5′ capped, non-polyadenylated 
lncRNA, transcribed from FLC intron 1, in the same direction as FLC (Fig. 5.5). 
CURLY LEAF (CLF), a homolog of mammalian EZH2 (an enzymatic component 
of PRC2), binds to COLDAIR, and knockdown of COLDAIR decreases CLF and 
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Fig. 5.5 Regulatory lncRNAs produced from the FLC locus. Diagram of the FLC locus [84]. The 
FLC transcriptional start site is indicated by black arrow, and the vertical bars indicate exons in 
the FLC sense transcript. During vernalization, the COLDAIR lncRNA (pink) is transcribed in the 
sense direction, starting in the first intron of FLC. Another sense lncRNA, COLDWARP, is tran-
scribed from the repressed promoter of FLC (green). The COOLAIR (blue) and ASL (red) lncRNA 
transcripts are transcribed from the indicated start sites (purple arrow) in the antisense direction; 
both result from alternative polyadenylation at poly(A) site either in the sense promoter region or 
intron 6. The ASL lncRNA also undergoes alternative splicing. Blue boxes indicate the exon of 
COOLAIR; red boxes indicate the exons of AS I and II; dotted lines indicate the spliced regions. 
ASL covers FLC intron I. Yellow dotted lines indicate the R-loops, in the COOLAIR promoter 
region, and repress COOLAIR transcription
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H3K27me3 enrichment at FLC in response to cold. This thus hampers the repres-
sion of FLC during vernalization and indicates that COLDAIR’s repression of FLC 
is essential for the vernalization response [9]. Previous work suggested that PRC2 
recruitment to FLC requires COLDAIR for the initiation of epigenetic silencing, 
analogous to the functions of the mammalian lncRNAs HOTAIR and Xist [51]. 
However, mammalian PRC2 shows high-affinity binding to unrelated RNAs; there-
fore, other factors, in addition to lncRNAs, may provide the specificity that targets 
PRC2 to FLC [85].

An additional Polycomb-interacting lncRNA, cold of winter-induced noncoding 
RNA from the promoter (COLDWRAP), was identified to be expressed from the 
upstream promoter region of FLC locus and shown to function in repression of FLC 
(Fig. 5.5) [11]. COLDWRAP is a 316 nt lncRNA that is transcribed in the sense 
direction with its transcription start located 225  nt upstream from the FLC 
mRNA. COLDAIR and COLDWRAP both have 5′ caps, but most transcripts of 
COLDWRAP appear to be non-polyadenylated. Interestingly, association of the 
Polycomb complex with COLDWRAP appears to be specific, as native CLF binds 
significantly to the sense strand of COLDWRAP but only weakly to the antisense 
strand. In addition, the 5′ half of COLDWRAP and several stable secondary struc-
tures identified in this region are needed for RNA-protein interactions. Importantly, 
COLDWRAP working in a cooperative manner with COLDAIR is necessary for 
vernalization-mediated FLC silencing. COLDWRAP functions to retain Polycomb 
at the FLC promoter through the formation of a repressive intragenic chromatin 
loop forming a stable repressive chromatin structure.

The COOLAIR is a set of lncRNAs transcribed from the 3′ end of FLC in the 
antisense direction, which are alternatively spliced and polyadenylated, proximal AS 
I and distal AS II [55]. In response to cold, the locus first produces COOLAIR, then 
COLDAIR, before H3K27me3 accumulates; therefore, initial studies indicated that 
COOLAIR may act early in vernalization [55]. However, knockdown of COOLAIR 
did not affect the vernalization response [86]. Rather, COOLAIR increases the rate 
of FLC transcriptional repression during vernalization, and its function does not 
require PRC2 or H3K27me3 [36, 87]. The COOLAIR knockdown desynchronized 
the change from H3K36me to H3K27me3 in FLC; therefore, this switch at FLC may 
require COOLAIR or transcription in the antisense direction [87].

COOLAIR represses FLC in the vernalization and autonomous pathways. In the 
autonomous pathway, COOLAIR 3′ end processing affects the FLC chromatin [84]. 
The autonomous pathway factors FCA, FY, and FPA, along with the polyadenyl-
ation cleavage factors CstF64 and CstF77, and the spliceosome component PRP8, 
favor the production of AS I by increasing usage of the proximal COOLAIR polyad-
enylation site [84, 88, 89]. This increases levels of the FLOWERING LOCUS D 
(FLD) histone demethylase at FLC leading to H3K4me2 demethylation of FLC [90].

Unraveling the functional importance of transcription of COOLAIR and the 
functions of COOLAIR transcripts remains challenging. Since it is difficult to 
determine whether it is the COOLAIR transcription, COOLAIR transcripts, or both 
that are functionally important, the secondary RNA structure of COOLAIR was 
recently determined experimentally [91]. It was found that even despite the rela-
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tively low sequence identity between Arabidopsis and evolutionarily divergent 
Brassicaceae species, the structures showed remarkable evolutionary conservation. 
This conservation applied to multi-helix junctions and through covariation of a non- 
contiguous DNA sequence. The observed conservation of COOLAIR lncRNA 
structure in the Brassicaceae indicates that the COOLAIR lncRNA itself is very 
likely to function in regulation of FLC, although the process of antisense transcrip-
tion from FLC may also affect FLC regulation.

Recent work also discovered the Antisense Long (ASL) transcript in early- 
flowering Arabidopsis ecotypes that do not require vernalization for flowering [10]. 
In contrast to the other lncRNAs transcribed from FLC, ASL does not get polyade-
nylated, although it is alternatively spliced. The ASL transcript is >2000 nucleotides 
long and is transcribed from the antisense strand, starting at the same promoter as 
COOLAIR. The 5′ regions of COOLAIR and ASL overlap, but ASL spans intron 1 
(important for maintenance of FLC silencing) and includes the COLDAIR region, 
which is transcribed in the sense direction. The ASL transcript physically associates 
with the FLC locus and H3K27me3 [10], suggesting that ASL and COOLAIR play 
different roles in FLC silencing and perhaps in the maintenance of H3K27me3.

It is interesting that the exosome again is involved in the regulation of the anti-
sense transcript and does so in a surprising way. Two of the exosome components, 
RRP6-Like (RRP6L) proteins, are involved in lncRNA-mediated regulation of flow-
ering. RRP6, one of the catalytic subunits, has both core-complex-dependent and 
core-complex-independent functions [92, 93]. In Arabidopsis, RRP6L1 and RRP6L2 
regulate COOLAIR and ASL expression or processing in the exosome core-complex-
independent way [10]. Mutations of RRP6L also derepress FLC; this delays flower-
ing. The AS I and II downregulation observed in RRP6Ls multiple mutants resembled 
the patterns that occur in CstF64 and CstF77 mutants, which are 3′ end processing 
factors [10, 84], indicating that COOLAIR 3′ end processing may require RRP6Ls.

Very surprisingly, emerging work indicates that RRP6Ls have a major role in 
regulation of the synthesis or biogenesis of ASL, as RRP6Ls mutants lack (or have 
minuscule amounts of) ASL transcript. This result finding is unexpected because 
RRP6 functions as a 3′–5′ exoribonuclease and RRP6 mutants generally fail to 
degrade or process certain RNAs; thus, these mutants usually overaccumulate cer-
tain RNAs. However, recent work found that the abundance of many yeast mRNAs 
also decreased in the rrp6Δ mutants [19]. Similarly, in humans, inactivation of the 
RRP6 homolog also causes a dramatic decrease in Xist levels [94].

Another function of RRP6Ls involves affecting the epigenetic marks at FLC; 
mutants of RRP6L have decreased H3K27me3 levels and decreased density of 
nucleosomes at FLC. These mutants therefore show increased expression of FLC 
and delayed flowering. RRP6L1 physically interacts with the ASL RNA and with 
chromatin at FLC; this indicates that RRP6Ls may regulate ASL to maintain 
H3K27me3 levels at FLC. Therefore, RRP6Ls regulate FLC lncRNAs, and their 
regulation of various antisense RNAs may affect FLC silencing [10].

R-loops that form over the COOLAIR promoter region affect COOLAIR tran-
scription, although effects of R-loop formation on FLC expression are not fully 
unclear [95]. Failure of the termination of transcription can often produce R-loops 
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[96], which can recruit the exosome co-transcriptionally through the noncanonical 
pathway for 3′ end processing [19]. Work in mammals showed that RRP6 can 
resolve deleterious R-loops [41]; thus, plant RRP6Ls may affect both the processing 
and expression of antisense transcripts from FLC in a similar manner.

In mammalian systems, lncRNAs have key roles in molding the three- dimensional 
organization of the nucleus (Fig.  5.2f) [97–99]. In plants, emerging research is 
beginning to reveal the role of lncRNAs in architecture of the nucleus, and some 
RNA studies also indicate that lncRNAs may have similar roles in 3-D nuclear 
architecture in plants and animals. Several studies have also addressed genome 
organization using Hi-C approach in Arabidopsis [100–104]. The RdDM pathway 
likely also affects the higher-order structure of chromatin by acting with MORC 
proteins. In Arabidopsis, MORC6 may have ATPase activity and interact with the 
DDR complex component DMS3; the action of this complex may be analogous to 
that of mammalian cohesin-like proteins that function in inactivation of the 
X-chromosome in mice. Consistent with this, MORC1 and MORC6 mutant plants 
have de-condensed pericentromeric heterochromatin [105]. The promoter and 3′ 
terminator of FLC form gene loops [106, 107], and COLDAIR and COLDWRAP 
lncRNAs participate in this process [11]. FLC alleles also undergo long-distance 
interactions, clustering during vernalization-mediated epigenetic silencing. This 
interaction requires VRN5 and VERNALIZATION 2, two PRC2 trans-acting fac-
tors [108]. However, we lack information on how lncRNAs function in long- distance 
interactions of the chromatin at FLC. As illustrated by FLC, plant lncRNAs carry 
out diverse, varied, and important functions. Our understanding of lncRNA func-
tions continues to emerge as new studies uncover the mechanisms controlling 
lncRNA transcription and processing.

5.7  Concluding Remarks

The recent discovery that genomes undergo pervasive transcription opened many 
questions on the functions of these RNAs. Since then, studies in the various king-
doms of eukaryotes have broadened our understanding of the biogenesis and func-
tions of various lncRNAs. However, although various studies have identified and 
classified many categories of lncRNAs, the functions of lncRNAs, and how they 
carry out these functions, remain to be discovered. Work in plants identifying 
lncRNAs systematically has caught up with work in other systems. Plant studies 
have also discovered lncRNA functions in controlling flowering time and RdDM- 
mediated silencing of genes. However, many other lncRNAs remain to be exam-
ined. The regulation of plant lncRNA synthesis and biogenesis also will require 
further work to elucidate. Understanding the mechanisms that control plant lncRNA 
expression and biogenesis will require integration of bioinformatics, genetic, and 
biochemical data to provide a complete understanding of lncRNA function and biol-
ogy. A complete understanding of the various facets of plant lncRNAs will recipro-
cally advance our understanding of lncRNAs in other species.
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