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Abstract Benefiting from the intimate link and the sufficient information conveyed
by the degradation-threshold failure mechanism, degradation analysis has gradually
become a hot topic in reliability engineering, which has been investigated exten-
sively in the recent two decades. Various degradation models have been introduced
to facilitate the reliability modeling and assessment of modern products, especially
for highly reliable products. As the continual evolving of these models, there is
a growing trend of investigation of reliability modeling and assessment based on
degradation analysis. However, modern complex systems are characterized as multi-
functional and subject to dynamic environments. Two aspects are indispensable
for the investigation of degradation based reliability modeling and assessment of
modern complex systems: (1) how to deal with complex systems with more than
one degradation indicators, and (2) how to incorporate the effects of dynamic
environments. To advance the research on degradation modeling and analysis of
complex systems, this paper presents a summary of the state of the arts on the
research of reliability modeling of complex systems by taking account of these
two aspects. In this paper, the review is delivered in two progressive stages:
multiple degradation processes under static environments, and multiple degradation
processes under dynamic environments. Some discussion on further research topics
from both theoretical and practical perspectives are presented to conclude the paper.
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5.1 Introduction

Continually evolving paces of technology advances and ever-increasing
requirements of system performance have made modern systems become more and
more complex. Reliability engineers are encountered with paradoxical situations
of reliability modelling of complex systems, for which the situation introduced
by limited failure time data is an inevitable challenge [1], however this situation
is contradicted by the growing reality that reliability data are stepping into big
data situation [2], which is enhanced by the gradual availability of the system
performance data, system operating profile, and working environment information.
To facilitate the reliability analysis of complex system with limited failures under
big data situation, degradation based reliability modeling and assessment has
gradually become a hot topic, benefiting from the intimate link and the sufficient
information conveyed by the degradation-threshold failure mechanism [3]. For the
degradation based reliability analysis, the failure process of a complex system
is reflected by degradation processes of some performance indicators, where
the system fails when these degradation processes reach predefined thresholds.
Accordingly, the failure time distribution can be determined through the degradation
analysis of system performance data together with the system operating profile and
working environment information, which provides a promising solution to the
difficulty introduced by limited failure time data.

In recent two decades, degradation based reliability modelling has been investi-
gated extensively. Classical examples include, but not limited to the works presented
recently by Pan and Balakrishnan [4], Wang and Pham [5], Kharoufeh et al. [6],
Liao and Tian [7], Wang et al. [8], Bian and Gebraeel [9], Si et al. [10], Ye and
Xie [11], Hong et al. [12], Peng et al. [13], and Xu et al. [14]. Generally, two
critical assumptions are used in the degradation based reliability analysis, which
include the assumptions of (1) single degradation indicator, and (2) constant external
factors. For complex systems under dynamic environments, these two assumptions
are challenged greatly. These challenges are raised from the growing awareness that
complex systems are composed of multiple components with multiple functional-
ities, and these systems are subject to various operating profiles under dynamic
working conditions. The failure process of a complex system generally relates to
degradation processes of multiple performance indicators, which are often presented
with various characteristics. Moreover, the degradation processes are affected by
the operating profiles and working conditions, which lead to the indicator-to-
indicator dependency within the multiple degradation processes, and the unit-to-unit
variability among the system population group. A classic example is the multivariate
dependent degradation analysis of one type of heavy duty lathes presented in Peng
et al. [15]. Within this study, the heavy duty lathes are founded subject to two types
of gradually-evolving failures: losing of machining accuracy, and accumulation of
lubrication debris, which are critical to the reliability of these lathes. In addition, by
summarizing operating and maintenance records, these types of failures are found to
vary from factories to factories, which is caused by differences of loading profiles
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and environmental conditions experienced by the heavy duty lathes. Accordingly,
two critical aspects arise for the degradation based reliability modelling of complex
systems under dynamic environments: (1) how to deal with complex systems with
more than one degradation indicators, and (2) how to incorporate the effects of
dynamic operating profile and time-varying working environments.

To facilitate the research on degradation based reliability analysis, this paper
devotes to the review of degradation based reliability modelling of complex systems
under dynamic environments. There are excellent review papers on degradation
based reliability modelling over the past few decades, such as the reviews by
Singpurwalla [16], Lee and Whitmore [17], Bae et al. [18], Si et al. [19], and Ye and
Xie [11]. These review papers have covered various aspects of degradation based
reliability modelling. However, the challenges introduced by multiple degradation
processes and dynamic environments are still underdeveloped. Therefore, this paper
is to highlight the state of arts on multiple degradation analysis under dynamic
environments through two progressive categories: multiple degradation processes
under static environments, and multiple degradation processes under dynamic
environments.

The remainder of this paper is organized as follows. Section 5.2 describes the
characteristics and modelling of dynamic environments encountered by complex
systems. Section 5.3 reviews the degradation based reliability modelling of complex
systems with multiple degradation process models under static environments.
Section 5.4 reviews the degradation based reliability modelling through multiple
degradation processes under dynamic environments. A short discussion on further
research topics is presented in Sect. 5.5 to conclude the paper.

5.2 Dynamic Environments

Degradation processes of a complex system are closely related to the system’s
operation profile and working environments. This is because failure processes of
a complex system are often driven or affected by the factors and stresses originated
from the dynamic environments experienced by the system. The rates and the modes
by which the system degrades are closely related to what type of missions the system
is fulfilling, and which kind of environments is experienced. Take a manufacturing
system as an example, the system can fulfill the missions of turning, drilling, and
milling with different working speeds and depths on various types of materials.
These parameters consist of the basic operational profile of the manufacturing
system, for which a specific mission with particular working loads on one specific
working piece determine the basic degradation rate and mode of the manufacturing
systems. In addition, the temperature, humidity, and vibration condition experienced
by the manufacturing system consist of the basic working environments, which
further modify or change the degradation rate or even degradation mode of the
system.
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The dynamic environments experienced by a system is generally composed by
its operational profile and working environment. The operating profile is composed
of the variables that can be modified or determined by the operators or users to
fulfill different missions. The working environment mainly refers to the factors
that can hardly be controlled and are mainly determined by natural forces. The
differentiation of these two groups is aimed to highlight the effect introduced by
different types factors, and to deliver the notion that some variables can be well
modeled and incorporated into the degradation modelling yet some factors can
hardly be well characterized or integrated. As a result, two aspects are critical for the
handling of dynamic environments within the degradation based reliability analysis:
(1) how to characterize the dynamic environments, and (2) how to incorporate them
in degradation modelling.

5.2.1 Characterization of Dynamic Environments

The characterization of dynamic environments is implemented based on the avail-
ability of environmental information and the capability of mathematical models
[16, 20]. General methods for the characterization of dynamic environments include
the time-varying deterministic function [22], probability distribution model [23],
stochastic processes model [24, 29], time series models [2, 12], and so on.

Time-varying deterministic function is generally used for the situation where
environmental variables are well controlled and their dynamic behavior follows
specific patterns, such as accelerated degradation tests [25, 26]. The probability
distribution model is used to model the environmental variables which are presented
as shocks with random strengths, such as vibration shocks for mechanical systems
[27, 28]. The stochastic processes model is often adopted for the situation where
the environmental variables are evolved stochastically with temporal variability and
epistemic uncertainty, such as different operating speeds for a rotational machine
[24, 29]. The time series model is used for the situation where the environmental
variables have highly variable behaviors with periodicity and autocorrelations, such
as the solar radiation and temperature for organic coatings [12, 30].

These methods for the characterization of dynamic environments are mainly used
for the environmental variables that can be well identified and collected, where
system operating/environmental data highlighted by Meeker and Hong [2] can be
obtained for the corresponding model derivation and parameter estimation. There
are situations that environmental variables cannot be identified or collected, such as
the micro-shock for a micro-electromechanical system. This kind of environmental
variables and their effect are lumped together and incorporated into the degradation
modelling through a random effect or frailty term [31–34].
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5.2.2 Incorporation of Dynamic Environments

The incorporation of dynamic environments into degradation modelling is carried
out based on the availability of influence mechanism and the flexibility of mathe-
matical models. General methods for the incorporation of dynamic environments
include the covariate method [20–23] and cumulative damage method [6, 24, 35].

The covariate method has been used extensively to incorporate the effect of
environmental factors into degradation modelling. The environmental factors are
represented as explanatory variables, and their effects are modelled through a
covariate-effect function. The covariate-effect function is further used to modify
the model parameters, which are related to the degradation rate, shape, mode
or diffusion of a degradation process model. The covariate-effect function is
generally determined based on the physical, chemical, and engineering knowledge,
such as Arrhenius relationship, Eyring relationship, power low relationship, linear
relationship, inverse-logit relationship and exponential relationship [3]. Classical
examples of covariate method for incorporation of dynamic environments are the
works presented by Ye et al. [11] and Lawless and Crowder [23] separately for
Wiener process and gamma process models.

The cumulative damage method is introduced for the situation that the degra-
dation rate of the degradation process is dominated by random environmental
factors. The environmental factors are characterized as stochastic processes, such
as the Wiener process [16], continuous-time Markov chain process [6], and Semi-
Markov process [24]. The degradation rate of the degradation process is modelled
through a functional relationship of the environmental factors. The degradation at a
specific point is the accumulation result of the degradation increments throughout
the time interval from the beginning to this specific point, where the degradation
increments within an infinitesimal time interval is dominated by the specific
environmental factors within that interval. This method is generally used for the
situation that the degradation process of a system cannot be directly observed,
however the environmental factors that dominate the degradation process can be
observed and their relationship is well understood. Classical example of cumulative
damage method for incorporation of dynamic environments can refer to the method
introduced by Bian et al. [29] and Flory et al. [36].

5.3 Multiple Degradation Processes Under Static
Environments

The premise of degradation based reliability assessment of complex system is to
choose a proper model to characterize the degradation process of the complex
system, based on the its performance indicators and dynamic environments. Various
types of multiple degradation processes models have been introduced in the recent
decade, which can be categorized into two types, that is, the models for multiple
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degradation process models under static environments and the models for multiple
degradation process models under dynamic environments. This section devotes to
the first type under static environments, including the multivariate Gaussian distri-
bution based model, the bivariate Birnbaum-Saunders distribution based model, the
degradation rate interaction model, and the copula based multivariate degradation
process model.

5.3.1 Multivariate Gaussian Distribution Based Model

The multivariate Gaussian distribution based model is introduced out of the
consideration that a system may have multiple degradation paths and the distribution
of the degradation observations of these paths at a specific time point can be
described by a joint multivariate Gaussian distribution [37]. Within this model,
each degradation path is described by a marginal Gaussian distribution from the
joint multivariate Gaussian distribution. The dependency among the degradation
paths is characterized by the variance-covariance of the joint multivariate Gaussian
distribution.

Suppose a product has L performance indicators. Let Yl(t) with l D 1 , : : : , L
denote the degradation process of the lth performance indicator. The joint distribu-
tion of the L performance indicators, Y(t) D (Y1(t), : : : , YL(t))T, at a specific time
point t is given as follow.

f .y1.t/; : : : ; yL.t// D 1q
.2�/L j†j

exp

�
�1

2
.y.t/ � �.t//T†�1 .y.t/ � �.t//

�

(5.1)

where y(t) D (y1(t), : : : , yL(t))T, �(t) D (�1(t), : : : , �L(t))T with �l(t) denoting
degradation mean function of the lth performance indicator, and † is the covariance
matrix and j†j is the determinant of †.

The degradation mean function is a description of the average degradation obser-
vation of the performance indicator, such as �l(t) D at indicating linear degradation
path of the lth performance indicator. The covariance matrix is a description of the
variance and correlation among the degradation processes. Let Var(Yl(t)) denote the
variance of Yl(t), and Cov(Yl � 1(t), Yl(t)) denote the covariance of Yl � 1(t) and Yl(t).
The general form of the covariance matrix † is given as

† D

2
6664

Var .Y1.t// Cov .Y1.t/; Y2.t// � � � Cov .Y1.t/; YL.t//
Cov .Y2.t/; Y1.t// Var .Y2.t// � � � Cov .Y2.t/; YL.t//

:::
:::

: : :
:::

Cov .YL.t/; Y1.t// Cov .YL.t/; Y2.t// � � � Var .Yn.t//

3
7775 (5.2)
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Generally, it’s difficult to specify the functional forms of Var(Yl(t)) and
Cov(Yl � 1(t), Yl(t)). The assumption of time-invariant variance and covariance is
adopted for the application of this model [37]. Under the time-invariant assumption,
the covariance matrix † is constant over time, where the variance and covariance
are given as Var .Yl.t// D �2

l and Cov(Yl � 1(t), Yl(t)) D �l � 1 , l� l � 1� l with �l � 1 , l

indicating the relevance between Yl � 1(t) and Yl(t). The parameters within the
covariance matrix † are greatly reduced under the time-invariant assumption. In
addition, the marginal distribution of the degradation path for the lth performance
indicator is given as Yl.t/ � N

�
�l.t/; �2

l

�
, and its degradation increments is

�Yl.t/ � N
�
��l.t/; �2

l

�
. The model is simplified to a great extent. The temporal

variability within the degradation process is missing under the time-invariant
assumption due to the time invariant variance Var .�Yl.t// D �2

l .
The failure time T of the product is defined as the first time point that any of the L

degradation processes reaches its degradation threshold Dl with l D 1 , : : : , L. The
reliability function of the product is then given as

R.t/ D Pr .Y1.t/ � D1; : : : ; YL.t/ � DL/

D
Z D1

0

� � �
Z DL

0

f .y1.t/; : : : ; yL.t// dy1.t/ � � � dyL.t/

D ˆL .D1; : : : ; DLI �.t/; †/

(5.3)

where ˆL(•; �(t), †) is the cumulative distribution function (CDF) of L dimension
multivariate Gaussian distribution with mean �(t) and covariance matrix †.

The multivariate Gaussian distribution based model does not receive wide appli-
cation in degradation data analysis. However, this idea has roused the investigation
on degradation analysis with multiple performance indicators, such as the works
presented by Pan and Balakrishnan [4], Bian and Gebraeel [9], Sari et al. [38] and
Peng et al. [15], which are serving as key stones for the following developed multiple
degradation process models.

5.3.2 Multivariate Birnbaum-Saunders Distribution Based
Model

The multivariate Birnbaum-Saunders distribution based model is introduced by
taking the idea that the failure time distribution derived for the one-dimensional
degradation can be approximated closely by Birnbaum-Saunders distribution [39].
The multivariate Birnbaum-Saunders distribution and its marginal distributions are
then adopted to construct a multivariate degradation process model by Pan and
Balakrishnan [4] and Pan et al. [40]. Within this model, the marginal degradation
processes are modelled by gamma processes. The dependency between these degra-
dation processes is constructed by assuming that the degradation increments of the
multivariate degradation process within the same time interval are dependent, where
a time-invariant correlation coefficient is used to characterize this dependency.
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For a product with L performance indicators, the degradation process of the
lth performance indicator is modelled as a gamma process, Yl(t) � Ga(�lt, � l)
with l D 1 , : : : , L. The degradation process Yl(t) has independent and gamma-
distributed increments as �Yl(t) � Ga(�l�t, � l), where �Yl(t) D Yl(t C �t) � Yl(t).
The probability density function (PDF) of the degradation increment �Yl(t) is
given as

f .�yl.t/j�l�t; �l/ D 1

	 .�l�t/ �
�l�t
l

.�yl.t//
�l�t�1 exp

�
��yl.t/

�l

�
(5.4)

The degradation increments of different performance indicators at the same time
interval are dependent, which is further described by time-invariant correlation
coefficient as Corr(Yl � 1(t), Yl(t)) D �l � 1 , l. However, the degradation increments at
different time intervals are assumed independent. To further describe the depen-
dence among the performance indicators, a random variable is introduced by
normalizing the degradation increments as Xl.t/ D .�Yl.t/ � �l�t�l/ =

�p
�l�t�l

�
,

and all the observation intervals are assumed having the same length . In addi-
tion, the dependency among the performance indicator is further described as
Corr(Xl � 1(t), Xl(t)) D �l � 1 , l. Given the degradation threshold of all the perfor-
mance indicators as Dl with l D 1 , : : : , L, the reliability function of the product
is given as follows by utilizing the central limit theorem [40].

R.t/ D Pr .Y1.t/ � D1; : : : ; YL.t/ � DL/
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; : : : ;
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�Lt�L

1
A

D Pr

0
@
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tj
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; : : : ;
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XLj
�
tj
� � DL � �Lt�Lp

�Lt�L

1
A

� ˆL

�
D1 � �1t�1p

�1t�1

; : : : ;
DL � �Lt�Lp

�Lt�L
I 0; †

�
(5.5)

where † the covariance matrix with the correlation coefficient between different
performance indicators includes, which is given as
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† D

2
6664

1 �12 � � � �1L

�21 1 � � � �2L
:::

:::
: : :

:::

�L1 �L2 � � � 1

3
7775 (5.6)

By extending the bivariate Birnbaum-Saunders distribution introduced by Kundu
et al. [41], Pan et al. [40] further derived that the lifetime time distribution of the
product, F(t) D 1 � R(t) can be expressed by the multivariate Birnbaum-Saunders
distribution of a L-dimensional vector and all its marginal distributions.

Compared with the multivariate Gaussian distribution based model, the multi-
variate Birnbaum-Saunders distribution based model is derived from the perspective
of degradation increments of performance indicators, where the distribution and
dependence of degradation increments are highlighted, and the degradation process
of performance indicators are monotonic. The temporal variability within each
performance indicator is also characterized by the gamma process. However, due
to the assumptions made in the derivation, the multivariate Birnbaum-Saunders
distribution model is limited to the situation that the shape function of the gamma
process should be linear as �(t) D �lt. Parameter estimation method for this model
is investigated by Pan et al. [40]. The application of this model for bivariate
degradation analysis has also been presented by Pan and Balakrishnan [4] and Pan
et al. [42].

5.3.3 Degradation Rate Interaction Model

The degradation rate interaction model is introduced from the perspective of a
multi-component product by leveraging the idea of degradation rate modelling
[9]. The product is composed of multiple components, and these components
are associated with multiple dependent performance indicators. The dependence
is represented through the consideration that the degradation process of one
component can be affected by the deterioration of other components. This effect
is characterized through the modelling of the degradation rate function, which
consists of two separated parts of the inherent degradation rate of the component
and the inductive degradation rate by contributing components. A multivariate
degradation process model is constructed by separately integrating the degrada-
tion rate function and associating a stationary Brownian motion noise for each
component.

Suppose a product is composed of L components, and each component has a per-
formance indicator described by the degradation process Yl(t) with l D 1 , : : : , L.
Let rl(t) denote the degradation rate associated with the degradation process Yl(t).
To incorporate the dependence among the degradation processes, a general form of
degradation rate rl(t) is given as rl(t) D rl(t; 
(t), h(Y(t))) [9]. The degradation rate
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is defined on t and further determined by the functional relationship of 
(t) and
h(Y(t)), for which 
(t) is the inherent degradation rate of the component without
the interaction of other components, and h(Y(t)) is the inductive degradation rate
by taking account of the effect from other components. A simplified form of the
degradation rate is given as follows [43].

rl.t/ D 
l C
X
l¤k

ılkyk.t/ (5.7)

where a time invariant inherent degradation rate 
 l, and a linear combination of
inductive degradation rates ılkyk(t) with constant coefficient ılk is used.

Based on the degradation rate function, the degradation process Yl(t) can be given
as follows.

Yl.t/ D
tZ

0

rl .uI 
.u/; h .Y.u/// du C "l.t/ (5.8)

where "l(t) is an error item for capturing the measurement noise and unidentified
uncertainty, which is generally given as a white noise process or a stationary
Brownian motion process.

It is difficult to derive the failure time distribution of the product under the
degradation process model given in Eq. 5.8. By assuming a simplified form of
the degradation rate as given in Eq. 5.7 and a stationary Brownian error item, a
approximated failure time distribution is obtained by Bian & Gebraeel [43], where
the degradation processes of the product are reconstructed as

dY.t/ D .› C • � Y.t// dt C d© (5.9)

where › D (
1, : : : , 
L), © D ("1, : : : , "L) which follows a multivariate normal
distribution MVN(0, ¢2t) with ¢2 D diag

�
�2

1 ; : : : ; �2
L

�
, and • 2R

L � L with non-
diagonal entries ılk and diagonal entries ıll D 0.

The stochastic differential equations given in Eq. 5.9 with initial condition
Y(0) D Y0 has been demonstrated to have a closed-form as Y(t)�(›, ¢2), which
follows a multivariate normal distribution with mean vector �0(t)�(›, ¢2) and
covariance matrix †0(t)�(›, ¢2) as follow [43]

�0.t/ j �›; ¢2
� D exp .t•/ � Y0 C

tZ

0

exp ..t � u/ •/ � ›du (5.10)

†0.t/ j �›; ¢2
� D

tZ

0

exp ..t � u/ •/ � ¢2 � exp ..t � u/ •/Tdu (5.11)
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Given the degradation thresholds of the L performance indicators, the reliability
function of the product can be approximated as follows.

R.t/ D Pr .Y1.t/ � D1; : : : ; YL.t/ � DL/

� ˆL
�
D1; : : : ; DLI �0.t/j �›; ¢2

�
; †0.t/j �›; ¢2

��
(5.12)

The calculation of the reliability function depends on the solution of the
multidimensional integrals given in Eqs. 5.10 and 5.11, which can be obtained using
mathematical software. Analytical solutions of Eq. 5.12 have been obtained by Bian
and Gebraeel [43] for two special cases, that are the case with • being a diagonal
matrix, and the case with • being a diagonalizable matrix.

Compared with the models introduced above, the degradation interaction model
is introduced from the perspective of a multi-component system, where the depen-
dence is originated from the mutual influences of components’ deteriorations.
A degradation interaction function and a linear system of stochastic differential
equations are used to construct the multivariate degradation process model. If the
characteristics of the systems, such as the structure, functionality, operating condi-
tions, failure mechanism, and interaction patterns of components are well studied,
the degradation rate interaction model is more suitable for degradation modelling
and reliability analysis than the models presented above. However, limited by the
availability of the product characteristic for determining the degradation interaction
parameter •, the degradation rate interaction has not received wide application in
degradation based reliability modelling of the modern system.

5.3.4 Copula Based Multivariate Degradation Process Model

The copula based multivariate degradation process model is introduced by taking
the copula based multivariate degradation process model is introduced by taking
the advantage of the copula theory [44] for constructing multivariate probability
distributions. By adopting a copula function, the dependence structure of random
variables can be characterized separately from their marginal distribution functions.
Within the copula based multivariate degradation process model, the degradation
processes of performance indicators are separately modelled by marginal degrada-
tion processes with independent degradation increments, such as Wiener process,
gamma process, and inverse Gaussian process. Their dependency is characterized
by a copula function by assuming that their degradation increments of the multiple
performance indicators at the same time interval are dependent. As a result,
the characteristics of each performance indicator are described by its marginal
degradation process. And their dependency is modelled by a copula function.
This kind of multivariate degradation process model can facilitate the degradation
modelling, parameter estimation, and reliability assessment, which has been widely
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investigated, such as the works presented by Sari et al. [38], Pan et al. [45], Wang
and Pham [5], Wang et al. [46], and Peng et al. [13].

For a product with L performance indicators, let Yl(t) denote the degradation
process of the lth performance indicator, which is modelled by a stochastic
process. Let �Yl(tj) D Yl(tj) � Yl(tj � 1) denote the degradation increment within
the time interval [tj � 1, tj], which follows a probability distribution with CDF
Fl(�yl(tj)) under the specific stochastic process chosen for the marginal degrada-
tion process. The dependence among the degradation processes is characterized
through their degradation increments. It is assumed that the degradation increments
�Yl(tj) D (�Y1(tj), : : : , �YL(tj)) for the L performance indicators within the same
time interval [tj � 1, tj] are dependent. The degradation increments in disjoint time
intervals are independent, e.g., Yl(tj) � Yl(tj � 1) and Yl(tj � 1) � Yl(tj � 2) separately
in [tj � 1, tj] and [tj � 2, tj � 1] are s-independent. The joint probability distribution of
�Yl(tj) within the same time interval is characterized by leveraging a multivariate
copula function as follow.

F
�
�y

�
tj
�� D C

�
F1

�
�y1

�
tj
��

; : : : ; FL
�
�yL

�
tj
�� I ™Cop� (5.13)

where �y(tj) D (�y1(tj), : : : , �yL(tj)) and C(u1, : : : , uL; ™Cop) is a L-dimensional
multivariate copula function with parameters ™Cop and ul � Uniform(0, 1).

Under the dependency structure given in Eq. 5.13, the CDF of each degradation
increment Fl(�yl(tj)) is the marginal distribution of the joint CDF F(�y(tj)). This
characteristic makes the modeling of dependence among performance indicators
separated from the modeling of marginal degradation process of each performance
indicator. Such separation makes the construction of multivariate degradation model
with different marginal degradation models feasible. In general, under the multiple
degradation processes model presented in Sects. 5.3.1, 5.3.2, and 5.3.3, the marginal
degradation models for the performance indicators are from the same stochastic
model family, such as the normal distribution, Wiener process and gamma process.
However, the performance indicators of a product may have different deterioration
characteristics, which need different types of stochastic model families [15]. This
practical requirement can be fulfilled through the copula based multivariate degra-
dation process model. For instance, the performance indicators can be separately
modelled by Wiener processes, gamma processes, inverse Gaussian process and so
on, and their dependence under different stochastic processes can be constructed
through Eq. 5.13.

Since the performance indicator is assumed following a stochastic process with
independent degradation increments, the multivariate degradation process model
based on copula function is constructed as follows.

Yl
�
tj
� D Pj

kD2�Yl .tk/ ; l D 1; : : : ; L; j D 2; : : : ; C1;
8<
:

�Yl .tk/ � PRO
�
�yl .tk/ I ™Mar

l

�

F
�
�y

�
tj
�� D C

�
F1

�
�y1

�
tj
��

; : : : ; FL
�
�yL

�
tj
�� I ™Cop�

(5.14)
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where PRO
�
�y1 .tk/ I ™Mar

l

�
is the distribution of degradation increment of the

lth performance indicator, which is determined based on the stochastic process
chosen for the modelling of this performance indicator. The stochastic processes
generally used for degradation modelling include the Wiener process, gamma
process and inverse Gaussian process [3], which separately giving rise to the
PRO

�
�y1 .tk/ I ™Mar

l

�
presenting as the normal distribution, gamma distribution, and

inverse Gaussian distribution.
The multivariate copula function in Eq. 5.14 is a multivariate distribution

with uniformly distributed marginal distributions on [0, 1]. A group of CDFs of
degradation increments (F1(�y1(tj)), : : : , FL(�yL(tj))) is a sample from the mul-
tivariate copula function. Accordingly, when the CDFs of degradation increments
are available, the choice of copula function to model their dependency can be
implemented through the methods for multivariate probability distribution selection.
Qualitative method such as the scatter plots presented in Wu [47], and quantitative
method such as Bayesian model selection introduced by Huard and Evin [48], both
can be adopted to choose the right copula function for multivariate degradation
modelling. In bivariate degradation processes, there are various types of copula
functions can be used for degradation modelling, which are listed as follows.

1. Gaussian copula

C .u1; u2/

D
Z ˆ�1.u1/

�1

Z ˆ�1.u2/

�1
1

2�
p

1�˛2
exp

�
�u2

1�2u1u2Cu2
2

2 .1�˛2/

�
du1du2; ˛ 2 Œ�1; 1�

(5.15)

2. Frank copula

C .u1; u2/ D � 1

˛
ln

�
1 C .e�˛u1 � 1/ .e�˛u2 � 1/

e�˛ � 1

�
; ˛ ¤ 0 (5.16)

3. Gumbel copula

C .u1; u2/ D exp
�
�..� ln u1/˛ C .� ln u2/˛/

1=˛
�

; ˛ 2 Œ1; 1/ (5.17)

4. Clayton copula

C .u1; u2/ D max
��

u�˛
1 C u�˛

2 � 1
��1=˛

; 0
�

; ˛ 2 Œ�1; 1/ n0 (5.18)
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In the multivariate degradation process, the multivariate Gaussian copula [49],
the multivariate t-copula [50], and the vine copula [51] are commonly used in
various literature.

Given the degradation thresholds of the L performance indicators, the reliability
function of the product is given as follows.

R.t/ D Pr

�
sup
s�t

Y1.s/ < D1; : : : ; sup
s�t

Yl.s/ < Dl; : : : ; sup
s�t

YL.s/ < DL

	
(5.19)

It’s often difficult to calculate the reliability function due to the unavailability of
the analytical solution. Simulation method is generally used to obtain the reliability
of the product based on the model in Eq. 5.14 [13]. When all the parameters for
the copula function and the marginal degradation processes are available, a group
of random samples, ŒQu1; : : : ; QuL�, are firstly generated from the copula function,
C(u1, : : : , uL; ™Cop). By calculating the inverse CDF of degradation increments
based on the generated samples, the degradation increments for marginal degrada-
tion processes at a specific time interval are obtained as �Qyl .tk/ D F�1

l

�QulI ™Mar
l

�
.

The marginal degradation process at a specific time point is obtained based the
degradation increments of the passed time intervals as Qyl

�
tj
� D Pj

kD2�Qyl .tk/. The
failure time point of the product can then be obtained by comparing the simulated
observations of the marginal degradation processes with their respective degradation
thresholds. By repeating the simulation process above, a group of samples of failure
time points is obtained, and the reliability function can be statistically summarized
from these generated failure time samples.

The copula based model has been investigated extensively for bivariate degrada-
tion processes modeling, which can be summarized in the following three groups
according to the stochastic processes incorporated, i.e., bivariate Wiener process
model, bivariate gamma process model, and bivariate inverse Gaussian process
model. Bivariate degradation processes model based on Wiener process and copula
function has been studied by Pan et al. [45], Wang et al. [52], and Jin and
Matthews [53]. In detail, Pan et al. [45] presented a Bayesian method based on
Markov chain Monte Carlo method to facilitate parameter estimation and reliability
assessment. Wang et al. [52] further introduced a Bayesian method for residual
life estimation under this kind of bivariate degradation process model. Jin and
Mathews [53] introduced a method for degradation test planning and measurement
plan optimization for products modelled by the bivariate Wiener process and copula
function.

Bivariate degradation process model based on gamma process and copula
function has been investigated by Pan and Sun [54], Hong et al. [55], and Wang
et al. [46]. Wang et al. [46] introduced a two-stage method to estimate the parameter
of a bivariate non-stationary gamma degradation process, for which the residual
life estimation can be implemented in an adaptive manner. Pan and Sun [54]
presented a method for step-stress accelerated degradation test planning under the
bivariate degradation model based on gamma process and copula function. Hong
et al. [55] investigated the condition-based maintenance optimization for products
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with dependent components deteriorations, where the dependent deteriorations were
characterized by gamma process and copula function.

Bivariate degradation process models based on inverse Gaussian process and
copula function have been studied by Liu et al. [56] and Peng et al. [13]. Within
these studies, Liu et al. [56] incorporated time scale transformation and random drift
into the bivariate inverse Gaussian process model to account for the nonlinear of
degradation process and heterogeneity within a product population. Peng et al. [13]
introduced a two-stage Bayesian parameter estimation and reliability assessment
method to deal with the incomplete degradation observations for products modelled
by the bivariate inverse Gaussian process and copula function.

According to the literature review presented above, it can be found that most of
the models are introduced for bivariate degradation processes. Limited exceptions
are the works presented by Peng et al. [15], Pan and Sun [54] and Wang et al.
[57]. Although the copula based model given in Eq. 5.14 is flexible for constructing
multivariate degradation process models, the study on copula based multivariate
degradation process model is still limited and deserves more investigation on both
the utilization of multivariate copula function and the applications. There is also a
strong imperative to advance investigation on residual life assessment, degradation
test planning, optimal maintenance decision based on the copula based multivariate
degradation process models.

5.4 Multiple Degradation Processes Under Dynamic
Environments

The model for the degradation process under dynamic environments is aimed to
deal with the two critical aspects highlighted above for degradation modelling
of complex systems under dynamic environments. Various methods and models
have been summarized above to deal with the two critical aspects, which include
the modelling of multiple degradation process and the incorporation of dynamic
environmental effect. However, the research on multiple degradation modelling for
complex system under dynamic environments has not been well studied. There
are generally two types of models having been introduced, which are the multiple
degradation process and random shock models [5, 58, 59], and the multiple
degradation process and dynamic covariate model [15].

5.4.1 Multiple Degradation Process and Random Shock
Models

The multiple degradation process and random shock models have been introduced
for the situation where a system is subject to degradation processes and random
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shocks [5]. The degradation processes are associated with the inherent failure
mechanism of the system, and the random shocks are related to the exterior
environmental effects. The dependence among degradation processes can be either
from the inherent dependent failure mechanism of the system, or from the exterior
effect of the random shocks, or both. The inherent dependent failure mechanism
of the system is characterized through the copula function [5], which is similar to
the copula based multivariate degradation process model. The random shocks intro-
duced dependence is characterized through instantaneous degradation increments
[58, 59] or degradation rate acceleration or both [5], where the effect of random
shocks is incorporated.

Suppose a product has L degradation processes Yl(t) with l D 1 , : : : , L, and
the arrival of random shocks experienced by the product follows a Poisson process
N(t). To facilitate the derivation, a simple model for the degradation process Yl(t) is
often used, such as a multiplicative path function as Yl(t) D Xl�l(t) with Xl being a
random variable [5]. The effect of the random shocks on the degradation processes
is characterized into two types, i.e., (1) the cumulative degradation increments
as Sl.t/ D PN.t/

kD1!lk with ! lk denoting the instantaneous degradation increment
introduced by the kth random shock, and (2) the degradation rate acceleration, which
is incorporated into Yl(t) through the idea of accelerated degradation modelling,
such as the scaling of t into teGl.t/ with Gl.t/ D 1N.t/ C 2

PN.t/
kD1!k [5]. By

considering both effects of the random shocks, the degradation process model of
the lth degradation process is presented as

Ml.t/ D Yl .tI Gl.t// C Sl.t/ (5.20)

The marginal distribution of the degradation process Ml(t) can be derived based
on the model for the degradation process Yl(t), the model for random shocks N(t),
and the model for the instantaneous degradation increment ! lk. For instance, assume
Yl(t) D Xl�l(t) with FXl .xl/ being the distribution of random parameter Xl, N(t)
follows a homogeneous Poisson process with occurring rate , and !lk follows an
exponential distribution with mean �l, the distribution of Ml(t) can be derived as

Fl .ml.t// D Pr .Ml.t/ < ml.t// D Pr .N.t/ D 0/ Pr .Yl.t/ < ml.t//

C
C1X
nD1

Pr .N.t/ D n/ Pr .Yl .tI Gl.t// C Sl.t/ < ml.t/jN.t/ D n/

D e�tFXl

�
ml.t/

�l.t/

�
C

C1X
nD1

e�t.�t/n

nŠ

ml.t/Z

uD0

FXi

 
ml.t/ � u

�l
�
teGl.t/

�
!

un�1e� u
�l

	.n/�n
l

du

(5.21)

The dependency among M(t) D (M1(t), : : : , ML(t)) mainly originates from two
parts, which are the dependency introduced by the dependence of the inherent
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degradation processes Y(t) D (Y1(t), : : : , YL(t)), and the dependency originated
from the series of random shocks. Assume the instantaneous degradation increments
! lk with l D 1 , : : : , L and k D 1 , : : : , N(t) are independent, the dependence
among M(t) can be characterized through the joint distribution of M(t) as

F .m1.t/; : : : ; mL.t// D Pr .M1.t/ < m1.t/; : : : ; ML.t/ < mL.t//
D PC1

nD0 C .F1 .m1.t/jN.t/ D n/ ; : : : ; FL .mL.t/jN.t/ D n// Pr .N.t/ D n/

(5.22)

where C(F(m1(t)j N(t) D n), : : : , F(mL(t)j N(t) D n)) is a copula function used to
model the dependence originated from the inherent dependence of degradation
processes Y(t), and Fl(ml(t)j N(t) D n) is the marginal distribution of degradation
process Ml(t) condition on N(t) D n, which can be derived similarly to Eq. 5.22.

Given the degradation thresholds of the degradation processes, the reliability of
the product is given as

R.t/ D Pr fM1.t/ < D1; : : : ; ML.t/ < DLg D F .D1.t/; : : : ; DL.t// (5.23)

By substituting the degradation thresholds into Eq. 5.22, the reliability function
of the product can be obtained. However, it is often difficult to obtain an analytical
solution for the reliability function. Wang and Pham [5] derive the reliability bounds
for the reliability of product with bivariate degradation processes and random
shocks. A two-stage parameter inference method and a comparison of the reliability
under the model introduced above with constant copulas and time-varying copulas
have also been studied by Wang and Pham [5]. Song et al. [58] investigated the
reliability of multi-component systems with multiple degradation processes and
random shocks, where the model presented above is simplified without considering
the effect of degradation rate acceleration by the random shocks. The maintenance
modeling and optimization under the multiple degradation process and random
shock model has been studied by Song et al. [58]. Song et al. [59] further extended
the model introduced above into a more advanced model, where the dependency
of transmitted shock sizes to hard failure process, and shock damages to specific
degradation processes (soft failure processes) for all components have been studied.

Compared with the degradation process model under static environments, the
multiple degradation process and random shock model introduced in this section
successfully incorporates the effect of dynamic environments through the modeling
of the random shocks and the dependency caused by the effect of random shocks.
However, more assumptions need to be assumed to derive the model, which requires
a deep understanding of the failure mechanism of the degradation processes, the
arrival of random shocks, and their influences on the degradation processes as well.
A limit on the models used for the marginal degradation processes is necessary to
facilitate the calculation of the reliability as given in Eq. 5.23, where a multiplicative
path function or a degradation path model is generally applicable. In addition,
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methods for parameter estimation, degradation analysis and residual life prediction
with this kind of multiple degradation process and random shock model has not
been sufficiently studied.

5.4.2 Multiple Degradation Process and Dynamic Covariate
Models

The multiple degradation process with dynamic covariate model is introduced by
utilizing the idea of dynamic covariate and copula function. The dynamic covariate
is used to incorporate the dynamic environments into degradation process models.
The copula function is used to model the dependency among the degradation
processes. This kind model is similar to the copula based multivariate degradation
process models introduced in Sect. 5.3.4. Major difference is that the marginal
degradation processes used in Sect. 5.3.4 are substituted with marginal degradation
processes with dynamic covariates.

Suppose a product has L degradation processes Yl(t) with l D 1 , : : : , L, and
the dynamic environments experienced by the product are summarized into the
external factors XE. Under the effect of the external factors, the marginal degra-
dation processes Yl(t) are modelled using stochastic process models with dynamic
covariates. Following the methods and models summarized in Sect. 5.2, the baseline
stochastic process models Yl(t) are modified into Yl(t; XE), such as the Wiener
process model Yl(t) D �l(t) C � lB(t) with B(t) being a standard Brownian motion
and the inverse Gaussian process model Yl.t/ � IG

�
ƒl.t/; lƒ

2
l .t/

�
with ƒl(t) being

a nonnegative and monotonically increasing function are separately modified into
Yl(t; XE) D �l(t; XE) C � lB(t) and Yl

�
tI XE

� � IG
�
ƒl
�
tI XE

�
; lƒ

2
l

�
tI XE

��
.

Let �Yl(tj; XE) D Yl(tj; XE) � Yl(tj � 1; XE) denote the degradation increment
within the time interval [tj � 1, tj], which follows a probability distribution
with CDF Fl(�yl(tj); XE) under the specific stochastic process chosen for the
marginal degradation process. The dependence among the degradation processes
is characterized through their degradation increments. It is assumed that the
degradation increments �Yl(tj) D (�Y1(tj), : : : , �YL(tj)) for the L performance
indicators within the same time interval [tj � 1, tj] are dependent. Similar to
the copula based multivariate process model presented in Sect. 5.3.4, the joint
probability distribution of �Yl(tj; XE) within the same time interval is characterized
by leveraging a multivariate copula function as

F
�
�y

�
tj
� I XE

� D C
�
F1

�
�y1

�
tj
� I XE

�
; : : : ; FL

�
�yL

�
tj
� I XE

� I ™Cop� (5.24)

where �y(tj) D (�y1(tj), : : : , �yL(tj)) and C(u1, : : : , uL; ™Cop) is a L-dimensional
multivariate copula function with parameters ™Cop and ul � Uniform(0, 1).

The multiple degradation process and dynamic covariate model, which is based
on the modified marginal degradation process and copula function is constructed as
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Yl
�
tjI XE

� D Pj
kD2�Yl

�
tkI XE

�
; l D 1; : : : ; L; j D 2; : : : ; C1;

8<
:

�Yl
�
tkI XE

� � PRO
�
�yl .tk/ I XE; ™Mar

l

�

F
�
�y

�
tj
� I XE

� D C
�
F1

�
�y1

�
tj
� I XE

�
; : : : ; FL

�
�yL

�
tj
� I XE

� I ™Cop�
(5.25)

where PRO
�
�y1 .tk/ I XE; ™Mar

l

�
is the distribution of degradation increment of the

lth performance indicator with the external factors incorporated.
Given the degradation thresholds of the L performance indicators, the reliability

function of the product is given as

R.t/ D Pr

�
sup
s�t

Y1

�
sI XE

�
< D1; : : : ; sup

s�t
Yl
�
sI XE

�
< Dl; : : : ; sup

s�t
YL
�
sI XE

�
< DL

	

(5.26)

It is generally to obtain the analytical solution to the reliability function,
simulation based method is needed to implement the calculation. To facilitate the
degradation analysis of complex systems under a dynamic environment with the
multiple degradation process and dynamic covariate model, Peng et al. [15] intro-
duced a Bayesian parameter estimation method and a simulation based degradation
inference, reliability assessment and residual life prediction method. However, their
method is limited to the situation that the external factors XE are assumed available
during the degradation analysis, where no probabilistic model is constructed for
these external factors. A more general model with external factors modelled as
random variables or stochastic processes deserves further investigation.

Compared with the multiple degradation process and random shocks model,
the model based on dynamic covariates and copula function is more flexible
for incorporating external factors and characterizing degradation processes. There
are various types of stochastic models, covariate models and copula functions
available for constructing the multivariate degradation process model as given in
Eq. 5.25. The Bayesian parameter estimation method and degradation analysis
method presented by Peng et al. [15] can also be extended to the model with
more general assumptions. More advanced methods for parameter estimation and
residual life predication still deserve further investigation. In addition, the study on
maintenance modeling and optimization and system health management under this
kind of multivariate degradation process model has not been presented yet.

5.5 Conclusions

In this paper, a summary of the state of arts on the researches of reliability modelling
of complex system under dynamic environments is presented by highlighting
two critical aspects, i.e., (1) modelling multiple degradation processes, and (2)
characterizing dynamic environments effects. We mainly focused on the various
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types of multivariate degradation process models because these models are critical
for reliability modelling of modern complex system with multiple performance
indicators or composed by multiple components. In addition, the characterization
of dynamic environments and the methods for incorporating dynamic environments
into reliability models has been discussed due to the consideration that the effects
of environments are often simplified or omitted in general degradation modelling.
Through these two aspects, the paper is organized into two progressive sessions, i.e.,
multiple degradation processes under static dynamic environments, and multiple
degradation processes under dynamic environments.

For the multiple degradation processes under static environments, the multi-
variate degradation process models based on multivariate Gaussian distribution
and multivariate Birnbaum-Saunders distribution, the degradation rate interaction
model, and the models based on copula function and stochastic processes are
reviewed. Among these models, the copula based multivariate degradation process
model has the capability of modelling various types of degradation processes while
keeping the model simple enough for model construction and parameter estimation.
However, limited by the utilization of multivariate copula function in reliability
engineering, most of the models are bivariate degradation process model. More
research is needed to extend the research on multiple degradation processes under
dynamic environments.

For the multiple degradation processes under dynamic environments, the mul-
tiple degradation process and random shocks models and the multiple degradation
processes and dynamic covariates models are summarized. There is not too much
research published on this topic, partially due to the limitation of real case
examples, the unavailability of physical mechanism, and unjustifiability of complex
models. Within the proposed model, the multiple degradation process with random
shocks model is basically an extension of the degradation-threshold-shock model,
which has been studied for one-dimensional degradation process. The multiple
degradation process with dynamic covariate model is a combination of the copula
based multivariate degradation model and dynamic covariate models, which has
been investigated extensively for one-dimensional degradation process and failure
time models. There is a strong imperative for more investigation on multivariate
degradation modelling with dynamic environments incorporated. In addition, meth-
ods for parameter estimation, residual life predication, degradation test planning,
maintenance strategy optimization, and model comparison and selection, are major
open area deserving extensive investigations under the multivariate degradation
modelling with dynamic environments highlighted.
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