
Chapter 4
Particle Sedimentation Behaviors
in a Density Gradient

Abstract Density gradient centrifugation, as an efficient separation method, is
widely used in the purification of nanomaterials including zero, one-, and
two-dimensional nanomaterials, such as FeCo@C nanoparticles, gold nanoparticles,
gold nanobar, graphene, carbon nanotubes, hydrotalcite, zeolite nanometer sheet (the
examples can be found in Chap. 5). Each system needs separation parameter opti-
mization, which comes from tremendous research experiments. When particles are
put on the top of density gradient medium, they will have a definite settling rate under
centrifugal force (Fc) [1], which is influenced by their net density, size, and shape. In a
sufficiently intense centrifugal field, the particle motion held quietly free from gravity
and vibration [2]. This is the principle of the density gradient ultracentrifuge. Based
on the above principle, we discussed the particle sedimentation behaviors and built
the kinetic equation in a density gradient media. The kinetic equation could apply to
zero, one-, and two-dimensional nanomaterials, within its variation form accordingly.
We found that the separation parameters could be optimized based on the kinetic
equation. A MATLAB program was further developed to simulate and optimize the
separation parameters. The calculated best parameters could be deployed in practice
to separate given nanoparticles successfully.

Keywords Density gradient centrifugation � Sedimentation mechanism
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4.1 Sedimentation Mechanism of a Nanoparticle
in a Centrifugal Field

In the centrifugal system, the driving force of the particle movement is the cen-
trifugal force (Fc).

Fc ¼ mG ð4:1Þ

where m is the mass of the particle (the unit is g). G is the centrifugal acceleration.
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G ¼ x2x ð4:2Þ

where x is the angular velocity of the rotor, the unit is rad/s, x is the distance from
the nanoparticle to the rotation center, and the unit is cm.

So

Fc ¼ mx2x ð4:3Þ

The strength of the centrifugal force field can be described with the relative
centrifugal field (RCF), namely the times of the gravitational acceleration (g).

RCF ¼ G
g
¼ x2x

g
ð4:4Þ

where the centrifugal angle is x, and the distance from the particle to the rotation
center is x. RCF can show the strength of the centrifugal force. For example, the
rotor (P80AT) of Hitachi ultracentrifuge (CP80MX) can provide maximum RCF
615000 g with 80000 r/min.

One circle of the rotor is 2p radian. So, the rotational speed (n) of rotor can be
described as follows:

n ¼ x=2p ð4:5Þ

Rotational speed is an important factor of separation, providing a specific cen-
trifugal field in a given centrifuge [3]. Hence, appropriate centrifuge should be
chosen to separate nanomaterials according to the centrifugal rotational speed.

The characteristic of particle movement in liquid medium not only depends on
the centrifugal force but also rely on density, size, and shape of the particle and the
density and viscosity (reverse viscous resistance (Reverse Friction)) of the liquid
medium. The gravity and intermolecular force can be usually ignored because the
centrifugal field is two orders of magnitude higher than the acceleration of gravity
in general. Force analysis of the particle in the separation process is shown in the
following figure (Fig. 4.1).

So, the dynamics equation of the particle in the centrifugal process can be
described by the following differential equation:

m
d2x
dt2

¼ Fc � Fb � Ff ð4:6Þ

where t is the centrifugal time in units of s. Fb is the buoyancy, while Ff is the
viscous resistance.

In different separation systems, the particle movement can be divided into three
stages: The first one is an accelerative process with alterable positive acceleration;
the second one is uniform motion without acceleration; and the last one is a
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decelerated stage with an alterable negative acceleration. When the particle
achieves uniform motion [4], the force equilibrates (d2x/dt2 = 0) [1].

Fc ¼ Fb þFf ð4:7Þ

When the distance from the particle to the rotation center is x, and the mass of
the particle is m, the centrifugal force can be calculated by Eq. (4.3).

According to Archimedes’ principle, the buoyancy of the particle in the liquid
medium is the weight of the displaced liquid.

Fb ¼ Vpqmg ð4:8Þ

where Vp is the volume of the particle, qm is the density of the displaced liquid.
The buoyancy is proportional to particle volume but independent of particle

shape. The volume of a particle is equal to the mass dividing a given density. So,
Eq. (4.8) can be rewritten as:

Fb ¼ m
qp

qmg ð4:9Þ

This equation is set up in the gravitational field. While if a particle in the
centrifugal field, the buoyancy can be considered as RCF times.

Fb ¼ m
qp

qmx
2x ð4:10Þ

According to Stokes’ Law, for a spherical rigid particle with a radius (r) which
do not dissolve in the liquid medium, when the particle has a speed (dx/dt) under
the centrifugal force field, it will be affected by the reverse viscous resistance (Ff).

Fig. 4.1 Force analysis of the particle in a centrifugal field. Reprinted with permission from ref.
[9]. Copyright 2016, American Chemical Society
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Ff ¼ 6pgr � dx
dt

ð4:11Þ

where η is the viscous coefficient of the liquid medium, r is the radius of the
particle.

For non-spherical particles, they have much larger viscous resistance, and the
frictional coefficient f is different from spherical particles f0 (expression of 6pηr).
The relationship between f and f0 can be described as f = h f0, where the h is the
frictional ratio, and the h value of other figurate nanostructures is usually in the
range from 1 to 2.3, as shown in Fig. 4.2.

To accommodate particles of other shapes, one may apply the frictional ratio h to
Eq. (4.11),

Ff ¼ 6pgr� � dx
dt

� h ð4:12Þ

where r* is the radius of a sphere whose volume (V*) is equal to that of the
nanoparticles.

r� ¼
ffiffiffiffiffiffiffiffi
3V�

4p
3

r
ð4:13Þ

Fig. 4.2 Frictional coefficients for figurate non-spherical nanostructures [5]
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For example, for specific rod-shaped CdS nanoparticles, the h can be expressed
as follows [1]:

h ¼ 0:05213 L=Dð Þþ 0:954

where L is the length of the nanorod, D is the diameter of the nanorod.
Taking Fc, Fb, and Ff into Eq. (4.7), and using the product of volume and density

to replace the mass, the sedimentation rate can describe as Eq. (4.14)

dx
dt

¼ 2r�2ðqp � qmÞ
9gh

x2x ð4:14Þ

From the sedimentation rate formula, we should note:

1. r* is the radius of a sphere whose volume (V*) is equal to that of the
nanoparticles (Eq. 4.14).

2. qp is the net density of the particle, and qp is the density of gradient media.
3. Theta (h) is the frictional ratio.
4. For spherical particles: h = 1, r* = r, r is the particle radius.

Some deductions can be drawn from above sedimentation rate formula:

1. The sedimentation rate of a particle is proportional to the square of the external
particle diameter.

2. The sedimentation rate of a particle is proportional to the difference between
particle density and medium density. When the difference is zero, the particle
sedimentation will stop.

3. When the liquid medium viscosity increases, the particle sedimentation rate
declines in proportion.

4. When the centrifugal field increases, the particle sedimentation rate increases in
proportion to the centrifugal field.

In a given centrifuge system, the density and viscosity of the liquid medium are
known quantities. For a certain particle, the r*, qp, η, and h are also known quantity.
So 2r*2(qp –qm)/9ηh can be defined as sedimentation coefficient.

That is

s ¼ 2r�2ðqp � qmÞ
9gh

ð4:15Þ

and

dx
dt

¼ sx2x ð4:16Þ
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For convenience, we mark the sedimentation coefficient as follows.

s ¼ dx=dt
x2x

ð4:17Þ

On the other hand, from Eq. (4.18),

Fc ¼ Fb þFf ð4:18Þ

where Fc = mx2x, Fb = mdissx
2x, Ff = fv and mdiss = m qmedia/qparticle, v is the

speed of particle, f is the fractional coefficient of particle.
Sedimentation coefficient [69] (s) can also be defined as Eq. (4.19)

s ¼ dx=dt=x2x ¼ m½1� ðqmedia=qparticleÞ�=f ð4:19Þ

Thus, there are mainly three factors can affect the sedimentation coefficient (s);
(1) Effect of mass (m); greater the mass of particle, greater the sedimentation coef-
ficient (s), the particle with higher mass travels down the centrifuge tube rapidly.
(2) Effect of shape of particle (f = fractional coefficient of particle); more spherical
particle moves with high sedimentation speed because more spherical particle has
lower fractional coefficient value. (3) Effect of (qmedia/qparticle) value; generally,
(qmedia/qparticle) value decides the sign of sedimentation coefficient (s) and particles
settling orientations during the centrifugation; (a) when (qmedia/qparticle) = 1, the
value of sedimentation coefficient (s) is equal to zero, particles locate in the certain
position that mean qmedia = qparticle, (b) when (qmedia/qparticle) < 1, the value of
sedimentation coefficient (s) is greater than zero, particles settle along the direction of
centrifugal force that mean qmedia < qparticle, and (c) when (qmedia/qparticle) > 1, the
value of sedimentation coefficient (s) is less than zero, the particles float against the
direction of centrifugal force that mean qmedia > qparticle.

In physics, sedimentation means the sedimentation velocity under unit cen-
trifugal force. If we take the experimental value into Eq. (4.17), the sedimentation
coefficient (s) can be calculated. When the time is t1, the position of the particle is
x1, and when the time is t2, the position of the particle is x2. The equation can be
rewritten as shown as follows.

sdt ¼ 1
x2 �

dx
x

Integral in the above range:

s
Z t2

t1

dt ¼ 1
x2

Z x2

x1

dx
x
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Namely,

s ¼ lnðx2=x1Þ
x2ðt2 � t1Þ ¼ 2:303

lgðx2=x1Þ
x2ðt2 � t1Þ ð4:20Þ

Because of

x ¼ 2pn
60

¼ 0:105n

We can get the relation between the sedimentation coefficient and the rotational
speed (n):

s ¼ 2:1� 102 lgðx2=x1Þ
n2ðt2 � t1Þ ð4:21Þ

where the unit of t1 and t2 is s, the unit of n is r/min.
We can choose centrifuges with different rotating speed according to the dif-

ferent sedimentation coefficients. In a certain separation system, we can estimate the
time of centrifugal separation by Eq. (4.21).

4.2 Mathematical Description of Particle Sedimentation
Kinetics

In the whole process of density gradient centrifugation, we can use Eq. 4.6 to
describe the particle movement. In the liquid density gradient medium, the particle
will have a solvation layer on the surface [6]. For ideal spherical particles with core
density (qc), radius (r), and solvation shell thickness (h) and the solvation shell
density (qh) (Fig. 4.3), the net density (qp) can be estimated according to the
following Equation,

qp ¼ qh þ qc � qhð Þr3= rþ hð Þ3 ð4:22Þ

It can be deduced from the above formula that the net density of a colloidal
system would increase as the core size increases with respect to the hydration shell
thickness, and the particle density will be close to the core material density when
the nanoparticle is large enough (i.e., r � h).

Similarly, for the cylindrical particles with core density (qc), radius (r), length
(L), and hydrated shell thickness (h) in Fig. 4.4, the net density (qp) can be esti-
mated as:

qp ¼ qh þ
qc � qhð Þr2L

ðrþ hÞ2ðLþ 2hÞ ð4:23Þ
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Fig. 4.3 Model of a
hydrodynamic colloidal
spherical nanoparticle.
Reprinted with permission
from ref. [9]. Copyright 2016,
American Chemical Society

Fig. 4.4 Model of a
hydrodynamic colloidal
cylindrical nanoparticle
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Similarly, for the two dimension nanosheet with core density (qc), radius (r),
thickness (h), and hydrated shell thickness (t) in Fig. 4.5, the net density (qp) can be
estimated as:

qp ¼ 1þðqc � 1Þ=½ð1þ t=rÞ2ð1þ 2t=hÞ� ð4:24Þ

The particles with different morphologies have different net densities accord-
ingly, and all have a sedimentation tendency as layered on top of the linear density
gradient, driven by centripetal force. The movement behavior is determined by the
particle size, net density, centrifugal force, buoyancy, and viscous resistance.

Hence, for spherical particles, we can describe their movement during the
centrifugal process using the following equation,

m d2x
dt2 ¼ Fc � Fb � Ff

Fc ¼ mx2x
Fb ¼ m

qp
qmx

2x

Ff ¼ 6pgr � dx
dt h

8>>><
>>>:

) m
d2x
dt2

¼ mx2x� m
qp

qmx
2x� 6pgr � dx

dt
h

Fig. 4.5 A hydrodynamic colloidal nanosheets model
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The nanoparticle mass can be represented by apparent density, the above
equation can be rearranged to get the universal kinetic equation:

d2x
dt2

þ 9gh
2qpr�2

dx
dt

þ qm � qp
qp

x2x ¼ 0 ð4:25Þ

All particle motion in the density gradient media during the centrifugal process
can be described using Eq. 4.25. Let’s discuss the formula in three different situ-
ations: applying to zero-, one-, and two-dimensional nanostructures.

Firstly, for zero-dimensional nanostructures: h = 1, r* = r + h, r is the particle
radius, h is the hydrated shell thickness, the kinetic equation can be simplified as:

d2x
dt2

þ 9g

2qpðrþ hÞ2
dx
dt

þ qm � qp
qp

x2x ¼ 0 ð4:26Þ

Secondly, for one-dimensional nanostructures: r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=4ðrþ hÞ2ðlþ 2hÞ3

q
, r is

the radius of cylindrical nanostructure, l is the cylindrical nanostructure length, and
h is the hydrated shell thickness. The kinetic equation can be simplified as:

d2x
dt2

þ ½3
4
ðrþ hÞ2ðlþ 2hÞ��2

3
9gh
2qp

dx
dt

þ qm � qp
qp

x2x ¼ 0 ð4:27Þ

Lastly, for two-dimensional nanostructures: r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=4ðrþ tÞ2ðhþ 2tÞ3

q
, r is the

nanosheets radius, h is the nanosheets thickness, t is the hydrated shell thickness,
then the kinetic equation can be simplified as:

d2x
dt2

þ ½3
4
ðrþ tÞ2ðhþ 2tÞ��2

3
9gh
2qp

dx
dt

þ qm � qp
qp

x2x ¼ 0 ð4:28Þ

The multifunctional, universal kinetic equation can be used in not only rate zonal
separation but also isopycnic separation.

For rate zonal separation, which mainly uses the different settling rate to sort the
nanoparticles, the max density of density gradient media is smaller than that of
nanostructures (qm < qp) in general, and Eq. 4.25 can record the whole motion of
nanoparticles.

For isopycnic separation, which mainly uses tiny differences of net density to sort
the nanoparticles, the density of nanoparticles should locate in the range of the density
of gradient media. When the nanoparticles reach the isopycnic state (qp = qm), the
settling rate will become zero, and the nanoparticles will stay at that position even
prolonging the time. The centrifugal time can also be calculated through Eq. 4.25, as
well as the sedimentation coefficient (Eq. 4.20).
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It can be deduced from the above formula (Eq. 4.25 for all nanostructures;
Eq. 4.26 for zero-dimensional nanostructures; Eq. 4.27 for one-dimensional
nanostructures; Eq. 4.28 for two-dimensional nanostructures) that the positions of
the particles in the centrifugal tube after separation are determined by centrifugal
time, centrifugal rotational speed, density gradient range, and medium viscosity,
etc. Therefore, there will be a lot of factors affecting the separation effect.

4.3 The Influence of Separation Parameters

For optimized separation, various parameters should be considered: centrifugal
rotational speed, centrifugal time, density gradient range, and medium viscosity and
so on. An ideal separation should be described as: 1. The spatial distribution should
be the longest, with the smallest and biggest NPs located at the top and bottom of
the centrifugal tube. 2. The size distribution of the as separated particles along the
centrifugal tube is linear. We will analyze the above factors in detail.

4.3.1 Influence of the Centrifugal Rotational Speed (x)

At insufficient centrifugal rotational speed, the separated nanoparticles mainly
distributed in the top half of the centrifuge tube, while excessive centrifugal rota-
tional speed made the fractions concentrated in the bottom of the centrifuge tube.
The two cases could not make the particles dispersed in the whole centrifugal tube.
An appropriate centrifugal speed could fractionate particles very well, indicating
better separation efficiency (Fig. 4.6).

Fig. 4.6 Influence of centrifugal rotational speed at rate zonal separation
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4.3.2 Influence of the Centrifugal Time (T)

The centrifugal time is another important factor in density gradient separation. For
low-density materials, such as carbon nanotubes and graphene nanosheets with
surfactant wrapping, their net densities are *1.1 g/cm3, and the gradient density
should be tailored to cover particle net densities. Under centrifugal force, the
low-density particles would move to and stay at the layers where the medium
density equal to their net densities (isopycnic separation). No matter how long the
centrifuge time is, the particles will not sediment down (Fig. 4.7a). While if the net
densities of particles are higher than the highest density that the gradient media can
reach (rate zonal separation), the particles will sediment through the gradient unless
the external centrifugal force is removed [7]. Therefore, the particles with different
sizes and net densities have different sedimentation velocities (Eq. 4.14), and they
will stop at different locations after a given centrifugal time. When time is long

Fig. 4.7 Schematic illustration of typical isopycnic separation a and rate zonal separation b. The
optimized separation states as shown in red boxes. Reprinted with permission from ref. [7].
Copyright 2014, Elsevier Inc. All rights reserved
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enough, all the particles will sink to the bottom of the centrifuge tube (Fig. 4.7b).
At a given centrifugal system, we should choose an appropriate centrifugal time for
rate zonal separation.

4.3.3 Influence of the Density Gradient Range (qm)

The choice of gradient media will also affect the separation efficiency. For a given
nanoparticle, its net density is a constant. If the net density is relatively small, the
isopycnic separation can be selected to sort the nanoparticles. It is worth noting that
the range of the gradient media should cover the net density of nanoparticles. If the
distribution of net densities is very narrow, a more precise density gradient should
be chosen. For example, when the distribution of net densities is from 0.85 to
0.90 g/cm3, we can use the density gradient with 0.84–0.91 g/cm3, which can make
the fractions fully distributed along the centrifugal tube; while the larger range
(such as 0.7−1.0 g/cm3) would not get such separation effect.

For high-densitymaterials, such asmetal, metallic oxide, andmetallic selenide, the
rate zonal separation is a better choice, and the density gradient should be also chosen
accordingly. For instance, the net density of cadmium selenide quantum dots with the
size range from 3 to 7 nm synthesized in 1-octadecene can be calculated by Eq. 4.22,
which is ranged from 0.82 to 1.26 g/cm3. For the separation of those CdSe quantum
dots, cyclohexane/carbon tetrachloride density gradient can be chosen. Here, the
density of cyclohexane is 0.78 g/cm3 and carbon tetrachloride is 1.59 g/cm3, so
cyclohexane/carbon tetrachloride system can provide the density gradient range from
0.78 to 1.59 g/cm3, which can be tuned to match the net density range of CdSe
quantum dots. Moreover, if the density gradient range (e.g., 0.8–1.0 g/cm3) leads the
fractions enriching in bottom layers or the density gradient (e.g. 1.3–1.5 g/cm3) leads
the fractions accumulating in the upper layers of the centrifuge tube, the density
gradient range can be further tuned to make the fractions fully distributed. Thus,
whatever it is isopycnic separation or rate zonal separation, a suitable choice of
density gradient range depends on the net density of nanoparticles.

To separate the particles synthesized in water should choose an aqueous gradient
medium, such as cesium chloride aqueous solution, sodium chloride aqueous
solution, and sucrose solution. While to separate the particles synthesized in oil
should choose an organic gradient medium, such as cyclohexane/carbon tetra-
chloride, ethanol/ethylene glycol, and acetone/chloroform.

4.3.4 Influence of the Medium Viscosity (η)

Viscosity can affect the viscous resistance and also affect the stability of the density
gradient. For the separation of particles with small net density, high viscosity liquid
medium (e.g., ethylene glycol), will cost long time to get a good separation effect.
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In high viscosity density gradient medium system, larger centrifugal force is needed
to make the particles move.

While in some conditions, the viscosity can be modified by introducing polymer
without influencing density. When Bai et al. [8] used the cyclohexane/carbon
tetrachloride density gradient to separate the cadmium selenide nanoparticles, and
they studied the influence of viscosity on the separation effect by adding the
polystyrene (PS) in the density gradient medium. As the introduction of PS into the
organic gradient layers, it can significantly increase their viscosity; it should slow
down the sedimentation of nanoparticles. As expected, PS-containing gradient
(vessel II) showed a limited separation compared to PS-free gradient (vessel I), and
only by applying longer centrifugation time, the separation can be completed
(vessel III), and thus a finer separation can be achieved (Fig. 4.8). This work
demonstrated the possibility to separate by tailoring media viscosity.

When using two or three kinds of liquid medium or a substance solution to
prepare the density gradient, the viscosity of gradient mainly depends on the
density. So we can build a relation between the viscosity and the density as follows:

g ¼ gðqmÞ ð4:29Þ

For sucrose as an example, we can find the following data in the Chemical
Property Manual: Organic Volume (Table 4.1).

Fig. 4.8 Images of ultracentrifuge vessels containing cadmium selenide nanoparticles under UV
irradiation at 365 nm: (Vessel I) polystyrene-free gradient, 60 min centrifugation at 50000 rpm,
(Vessel II) polystyrene-containing gradient, 60 min centrifugation at 50000 rpm, and (Vessel III)
polystyrene-containing gradient, 110 min centrifugation at 50000 rpm. Reprinted with permission
from ref. [8]. Copyright 2010, American Chemical Society
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We analyze the experimental data of sucrose solution on density and viscosity
coefficient and find the relationship between viscosity coefficient and density is
similar to the quadratic polynomial relation. Therefore, we can assume that

g ¼ aq2m þ bqm þ d ð4:30Þ

Using the least square method to fit, we can obtain:

a ¼ 129:41; b ¼ �314:45; d ¼ 193:11

Experimental data fitting method can provide the relationships between the
viscosity coefficient and the gradient medium in other separation systems.

Above analysis indicates that centrifugal parameters including centrifugal forces,
centrifugation time, density range, and medium viscosity would influence the final
efficiency of density gradient separation. Thus, in the succeeding section, we will
discuss the mathematical optimization of density gradient separation.

4.4 Optimization Model for Best Separation Parameters

Based on above discussion, many factors (centrifugal rotational speed, centrifugal
time medium viscosity, density gradient range, and hydrated shell thickness) would
influence the final density gradient separation effect. Moreover, the factors are
highly connected. For example, higher rotational speed needs shorter time, or lower
rotational speed takes longer time. Therefore, a large number of control experiments
are needed to explore the best separation parameters for a perfect separation result,
while it will be time consuming and inefficiency.

To address this problem, we develop a mathematical optimization method to
study the kinetic equation in the centrifugal process [9]. Although there are a lot of
variables of the kinetic equation, and it is a nonlinear differential equation without
exact solution, we can briefly consider the equation as the relation expression
between nanoparticle size (r) and its position (x). After the simulation of these
variables, we can get a good linear distribution between r and x, and find the
optimized separation parameters.

Table 4.1 Density and
viscosity coefficient of
different concentration
sucrose solutions at 20 °C

Density of sucrose solution
(g/cm3)

Viscosity coefficient (mPa.s)

1.2 1.957

1.25 2.463

1.3 3.208

1.35 4.352

1.4 6.21

1.45 9.449
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In detail, we consider the centrifugal accelerating and de-accelerating process,
and the following functions are used to describe angular speed.

xðtÞ ¼
xt
T0

0\t� T0ð Þ
x T0\t� T0 þ T1ð Þ
x T0 þT1 þ T2�t

T2

� �
T0 þ T1\t� T0 þ T1 þ T2ð Þ

8><
>: ð4:31Þ

where x is the stable angular speed of the centrifuge after accelerating process, T0,
T1, and T2 are the durations of accelerating, separating, and moderating processes.

In order to further simplify the optimization model, we assume that the ideal
distribution of the fractions after density gradient separation is linear:

XðrÞ ¼ arþ b ð4:32Þ

where X is the position of the particle with diameter of r, a and b are linear
constants.

As illustrated above, the gradient interfaces would influence the sedimentation
resistance a little, thus in order to get better separation and simplify the calculation,
we assume that the ideal density gradient is linear:

qmðxÞ ¼ dxþ c ð4:33Þ

where x is the distance between rotation center and the gradient with a density of
qm, c, and d are linear constants.

Therefore, based on above modeling, the location of a nanoparticle with a
diameter of r is the function of separation time T0, T1, T2, angular speed x (i.e.,
centrifugal force), gradient qm, and media viscosity η. The location of a particle with
a diameter of r could be described as X (T0, T1, T2, x, d, c, a, b, η). The position
X of a particle at the moment t can be calculated by the following differential
equation as the initial states are given. There are two initial conditions when the
separation starts: the particle’s initial position is x0 and initial velocity is 0. So we
can get the following conditional equation:

d2x
dt2 þ 9g qm xð Þð Þ

2qpðrþ hÞ2
dx
dt þ

qm xð Þ�qp rð Þ
qp rð Þ xðtÞ2x ¼ 0

x 0ð Þ ¼ x0; x0 0ð Þ ¼ 0

(
ð4:34Þ

Because the viscosity of the density gradient is related to the density of the
gradient medium, the influence of the viscosity can be attributed to the density of
the gradient. Then, the optimization could be carried out by using above X value.
The objective function of the least square optimization model is then set up as:
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G T0; T1; T2;w; d; c; a; bð Þ ¼ c21 x0 � ðar0 þ bÞ½ �2 þ c22 xm � ðarm þ bÞ½ �2

þ
Xm�1

i¼1

XðT0; T1; T2;w; d; c; a; bÞ � ðari þ bÞ½ �2

ð4:35Þ

where c1 and c2 are the weighting factors, which contributing to the size distribution
of the fractions. xo and xm are the upper and lower positions of the tube. For a
setting parameter a, b, d, c1, c2, and c, when objective function G reach the minimal
value, the gradient function qm(x) will give the ideal gradient.

A set of estimated separation parameters are given as initial values, by using the
nonlinear least square method mentioned above, we could get the minimum value
of the objective function G using a MATLAB program. After calculation, the
MATLAB program output the optimized size distribution, which almost coincides
with the ideal size distribution, as shown in the comparison chart in Fig. 4.9. It
should be noted that the optimized distribution is just a calculated distribution other
than the real distribution of particles. Nevertheless, the computer program will
output the best separation parameters after calculation, and then we can use those
separation parameters to separate our nanoparticles.

Fig. 4.9 Ideal size distribution and optimized size distribution calculated by MATLAB program
using optimization model. Reprinted with permission from ref. [9]. Copyright 2016, American
Chemical Society
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For example, in the separation system of cadmium selenide nanoparticles using the
cyclohexane and carbon tetrachloride density gradient, we can optimize the model to
get the best separation parameters. According to the cadmium selenide nanoparticles
with the size of 3–7 nm, the calculated separation conditions are 51012 rpm of
centrifugal rotational speed, 1.65 h of centrifugal time within a 5–60% (cyclohexane/
carbon tetrachloride) density range. Using those separation parameters, we can get
ideal separation effect.

In addition, for the separation of other morphological nanostructures, a physical
quantity of the shape factor can be introduced to correct the effect of morphology on
the dynamics equation. As a result, the same optimization simulation method can
output a series of suitable centrifugal parameters.

Appendix: MATLAB Program for the Computational
Mathematical Optimization of Spherical Nanoparticles

% model assumptions:
%1. All the nanoparticles are sphere; if not, use morphology factor f to modify
the model;
%2. The nanoparticles have a solvation layer;
%3. Using linear density gradient; if not, modify the gradient function;
%4. The ideal diameter distribution of nanoparticles is linear distribution; the
objective function is G;
%5. Nanoparticles do not react with the medium;
%6. Optimization variables: linear acceleration time (T0), the time of constant

speed (T1), linear deceleration time T2, (the total time is T = T0 + T1 + T2), the
angular velocity in constant speed (omega), c and d are the coefficient of linear
density gradient; a and b are the coefficient of the ideal linear distribution; the
objective function is G(T0, T1, T2, omega, c, d, a, b) = c1 ^ 2 * (x0−(a * r0 + b)) ^
2 + sum((x(rj,T)−(a * rj + b)) ^ 2)(j = 0:m) + c2 ^ 2*(xm−(a * rm + b)) ^ 2, (c1 and
c2 are appropriate constant); among them, rj = r0 + j*(rm–r0)/m, r0, rm are the
minimum and the maximum radius of particles, respectively; x0 is the distance
between the top of the centrifuge tube and the center of rotation, xm is the distance
between the bottom of the centrifuge tube and the center of rotation.

%7. The movement of NPs (X(t)) follows the following equation: x” + 9 * ita
(pm(x))/(2 *pp(r) * r ^ 2) * x’ + (pm(x) − pp(r))*omega(t)/pp(r) * x = 0; ita is the
viscosity of the medium solution, the ideal density gradient: pm(x) = c + d * x, the
density of nanoparticle: pp(r); the angular velocity: omega(t) = omega * t/T0
(0 < t<T0); omega (T0 < t<T0 + T1); omega*(T0 + T1 + T2−t)/T2 (T0 + T1 < t<
T0 + T1 + T2);

% Using the Lsqnonlin in MATLAB to solve the optimization problem
global r x0 xm
m = 10; % the number of output dots

76 4 Particle Sedimentation Behaviors in a Density Gradient



x0 = 6.5; xm = 11.8; r0 = 1.3e-7; rm = 3.6e-7; % the unit is centimeter, might be
different for different rotors; x0 and xm is the distances between center of rotation
and the top and bottom of the centrifuge tube, respectively; r0 and rm is the size of
particles.

h = (rm–r0) / m; r = r0:h:rm;
y0 = [60,3600,60,4000,0.6,0.5,2e7,4]; % the initial value of the optimization

calculation
lb = [30,1200,30,1000,0,0,0,−1e8]; % the minimum bounds of optimization

variables
ub = [1000,100000,1000,10000,5,5,1e10,1e10]; % the maximum bounds of

optimization variables
options = optimset(‘LargeScale’,’on’,’Display’,’iter’,’TolX’,1e-30, ‘MaxIter’,

200, ‘MaxFunEvals’, 5000, ‘TolFun’, 1e-10);
[y, resnorm] = lsqnonlin(@objfun, y0, lb, ub,options) % optimization calculation
a = y(7); b = y(8);
arb = a * r + b; % the ideal linear distribution
Fm = objfun(y); xt = Fm(2:end-1)’ + arb;
plot(xt, 2 * r,’o’, arb, 2 * r) % output comparison chart
title(‘Optimized distribution and the ideal distribution comparison chart’)
xlabel(‘The distance from the NPs to the top of the centrifuge tube(cm)’)
ylabel(‘Particle diameter(cm)’)
legend(‘Optimized distribution’,’the ideal distribution’)
function F = objfun(y) % the objective function
global r x0 xm
T0 = y(1); T1 = y(2); T2 = y(3); omega = y(4); c = y(5); d = y(6); a = y(7);

b = y(8);
T = T0 + T1 + T2;
tspan = [0,T];
xt = [];
m = length(r);
for i = 1:m
ri = r(i); [t,x] = ode15s(@odefun,tspan,[x0,0],[],y,ri);
xti = x(end,1);
xt = [xt,xti];
end
arb = a * r + b;
c1 = 10000; c2 = 10000;
F = [c1 * (x0-arb(1)), xt−arb, c2 * (xm−arb(end))];
F = F’;
function xp = odefun(t,x,y,ri)
pc = 6; h = 2e-7; pm = 0.9; % pc is the density of core, pm is the density of shell,

the unit is g/cm3; h is the thickness of the shell, the unit is centimeter.
pp = pm + (pc−pm) * (1−h/ri) ^ 3;
T0 = y(1); T1 = y(2); T2 = y(3);
c = y(5); d = y(6); omega = y(4);
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if t >= 0 & t < T0
omegat = omega * t / T0;
elseif t >= T0 & t <= T0 + T1
omegat = omega;
elseif t > T0 + T1 & t <= T0 + T1 + T2
omegat = omega * (T0 + T1 + T2−t)/T2;
else
omegat = 0;
end
(c + d * x(1)) > 0.5 & (c + d * x(1)) < 2; % the minimum and maximum

bounds of the density gradient
ita = ita(pm); % viscosity is relate with the density of liquid medium, the unit of

viscosity is mPa.s
xp = [x(2);-9 * ita * x(2) / (2 * ri * ri * pp) + (pp−(c + d * x(1))) * omega *

omega * x(1) / pp]; % the kinetic equation of spherical nanoparticles
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