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Abstract Even though face recognition in frontal view and normal lighting con-
ditions works very well, the performance drops sharply in extreme conditions.
Recently there is plenty of work dealing with pose and illumination problems,
respectively. However both the lighting and pose variations always happen simul-
taneously in general conditions, and consequently we propose an end-to-end face
recognition algorithm to deal with two variations at the same time based on
convolutional neural networks. In order to achieve better performance, we extract
discriminative nonlinear features that are invariant to pose and illumination. We
propose to use the 1 × 1 convolutional kernels to extract the local features.
Furthermore a parallel multi-stream convolutional neural network is developed to
extract multi-hierarchy features which are more efficient than single-scale features.
In the experiments we obtain the average face recognition rate of 96.9% on MultiPIE
dataset. Even for profile position, the average recognition rate is also around 98.5%
in different lighting conditions, which improves the state-of-the-art face recognition
across poses and illumination by 7.5%.

1 Introduction

Face recognition has been one of the most active research topics in computer vision
for more than three decades. With years of efforts, promising results have been
achieved for automatic face recognition in both controlled [60] and uncontrolled
environments [11, 17]. A number of algorithms have been developed for face
recognition with wide variations in view and illumination, respectively. Yet few
attempts have been made to tackle face recognition problems with the variations
of pose and illumination [71]. In fact, face recognition is significantly affected
by both pose and illumination which are often encountered in real-world images.
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Recognizing faces reliably across pose and illumination has been proved to be a
much more difficult problem.

Pose can induce dramatic variations in face images. Essentially, this is caused by
the complex 3D geometrical structure of the human head. The rigid rotation of head
results in self-occlusion which means that some facial appearance will be invisible.
At the same time, the shape and position of the visible part of facial images also
vary nonlinearly from pose to pose. Consequently, the appearance diversity caused
by pose is usually greater than that caused by identity. Thus general face recognition
algorithms always fail when dealing with the images of different poses.

Illumination also can cause dramatic variations for face images. Assuming
Lambertian reflectance, the intensity value I (x, y) of every pixel in an image is
the product of the incident lighting L(x, y) and the reflectance R(x, y) at that point
as I (x, y) = R(x, y) × L(x, y). Thus, the captured images vary with the incident
lighting. In order to achieve face recognition across illumination, there are two kinds
of strategies. One is to extract illumination-invariant features from images, such as
LBP [1] and HOG [65] et al.; the other is to model the distribution of illumination
[24, 30].

In applications, both the pose and illumination variations exist. Thus a robust
face recognition system should be able to deal with the two variations at the same
time. Recently, the deep learning methods [27, 74] showed its great ability to
model nonlinear distributions of data. It achieved the state-of-the-art performance
in many fields of pattern recognition, such as object classification [58] and object
detection [46]. Its great capacity is mainly due to the learning procedure which can
find the hierarchical features from dataset. These features from each layer of the
networks contain different levels of structure from a local gradient to its global
shape. As a result, these learned features are more informative than traditional
human-engineered features.

Even though different poses can induce the different appearances of the face,
there exist some correlations between images of the same identity in different poses.
Similarly, images of the same identity in different illuminations also correlate to
each. Thus, through a proper learning method, the pose and illumination-invariant
features can be obtained. Inspired by the excellent feature learning ability of
deep convolutional neural networks, it is employed to develop an end-to-end face
recognition method across pose and illumination in this work.

The remainder of this chapter is organized as follows: Sect. 2 briefly reviews
the recent algorithms that deal with the pose problem. Section 3 introduces the
algorithms that deal with the illumination variations. The proposed deep learning
algorithm that can verify faces under pose and illumination variation is described in
Sect. 4. The experimental results of the proposed algorithm are presented in Sect. 5.
Finally, Sect. 6 concludes the chapter.
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2 Pose-Invariant Face Recognition

Pose always causes substantial variations in the appearance of images due to the
reason that images are the projection of 3D objects to 2D planar. Therefore when
the pose of an object changes slightly, the appearance of the image will change
dramatically. Consequently pose always brings difficulties for face recognition
systems where the pose variation is unavoidable in uncontrolled environment. As a
result, pose becomes one of the essential challenges for face recognition. Nowadays,
researches also pay notable attention to deal with the pose variation problems. We
can classify all the algorithms about pose variation into two categories: invariant
representation-based algorithms and the model-based algorithms. For first category,
invariant features or subspaces are constructed where the pose variation is removed,
while the second type of algorithms tries to build up a generative model to predict
the appearance of the object in different views.

2.1 Invariant Representation

In the classical frontal face recognition algorithms, face is always considered as
a whole component. Therefore a lot of holistic approaches achieved quite good
results. Principal component analysis (PCA) [62] is applied to find the eigenspace
of face images; therefore face images can be represented by the projection values
on those eigenvectors. Through the analysis, the dimension of face images has
been reduced significantly, and the recognition is performed due to the distance
in eigenspace. In fact, the assumption for these holistic approaches is that face
position is fixed. Therefore, these algorithms try to find the relationship between
corresponding pixel pairs among images. For the same person, corresponding pixels
should have similar features, and the overall distance between images of the same
subject is relatively smaller than that of different subjects. However, when the pose
of the subject changes, the position of face components varies as well; consequently
the correlation between corresponding pixel pairs is broken. Thus the holistic
approach is no longer suitable for pose problem, but local components or features
show their effectiveness in handling with the pose problem.

2.1.1 Engineering Designed Features

Landmarks (such as eyes, nose, and mouth) are the key points on face, which
represent the key components in a face, as shown in Fig. 1. If the transform between
the corresponding landmark points can be defined, then the same transform formula
can be applied to convert two images. In order to find the same landmarks in images
of different views, some robust feature extractors are used to describe the landmark
points on faces.
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Fig. 1 The landmarks on facial images. Five landmarks are labeled in each image. The transform
formula can be calculated from the relationship between the corresponding landmarks

Scale-invariant feature transform (SIFT) feature [37] is widely used in computer
vision tasks for the extraction of robust features. It has also been used for face
recognition. In order to find the connections of images for different poses, Biswas
et al. [8] extracted SIFT features for landmark points, which can provide rotation
and scale invariant features. Then tensor analysis was applied to learn the transform
matrix between the landmarks of different poses. With this transformation, images
taken in different views can be converted to the frontal view to compare with
the frontal probing images for verification. Also, local binary pattern (LBP) is a
descriptor that finds great success in texture analysis. It computes the distribution of
local region variance and encodes the distribution into numbers, which are very
efficient for further pattern analysis. LBP is also applied to extracted features
for local regions around landmark points. Then all the local region features are
connected into a new feature, which becomes pose-invariant [10].

In fact, accurate landmark detection itself is also a challenging problem. Besides
extracting robust features around landmark points, researchers also tried to define
some key points to find correspondence between images of different views. Dreuw
et al. [6] propose to use speeded-up robust feature (SURF) to extract features in
dense grid, and then RANSAC method is used to find the matching points between
images of varied view for face recognition. Liao et al. [36] propose a partial face
recognition method without alignment. First, they apply SIFT-like descriptors
to extract key points from facial images. And then for those key points, sparse
representation method is used to build up a complicated dictionary for all the
possible local facial regions around key points based on training images. The key
idea behind this method is also to extract robust features for key facial components
but omit their locations.

Region-based pose-invariant feature extraction methods are also explored
recently. Without the locations of key points, local regions are considered as the
basic unit to contain key facial components. Ahonen et al. [2] propose to divide
images into subregions, as shown in Fig. 2. Then they extract LBP features for each
subregion of a face. Within a subregion, the location information is omitted; only
the texture feature is extracted by the LBP descriptor. Thus the extracted feature is
robust to pose variations as long as the key components are still located in the same
subregion. It is reported that the proposed face recognition algorithm can keep good
performance when the rotation angle is within 15◦. For large pose variations, the
content of each subregion changes greatly; consequently the correlation between
subregions is broken.



Deep Learning in Face Recognition Across Variations in Pose and Illumination 63

Fig. 2 Facial images are divided into local regions. Features are extracted based on each patch,
thus the patch-based feature is invariant to pose

Feature extrac�on 
for landmarks

Fig. 3 Elastic graph for face recognition. The nodes of the graph are features extracted from local
landmarks, and the edges of the graph represent the distance between neighboring nodes

Li et al. [33] propose a local region-based elastic matching method for face
recognition across poses. Local descriptors, such as LBP or SIFT, are used to extract
features for densely sampled subregions of images. The Gaussian mixture model is
trained to extract the spatial-appearance distributions from the position of each local
patch and its local feature. Each Gaussian model describes the relationship between
corresponding patches of matched images. Then the verification is performed by a
trained SVM that can discriminate the difference of Gaussian model between the
matched and non-matched face images. In fact, the idea of elastic matching for face
recognition of different poses is proposed by Wiskott et al. [67]. For each landmark
of faces, a set of Gabor filters are applied to extract features, and then a graph with
N nodes and E edges is constructed, where the nodes represent landmarks, and the
edges are the feature distance between neighbored nodes, as shown in Fig. 3. Then
the recognition is performed by comparing the graph of a probing face images to all
the graphs of gallery images. The elastic bunch graph matching method can handle
the rotation within 20◦. For the elastic matching-based methods, a graph connects
local components where the position of each component is also described by the
graph. Thus the face can still be verified even though some local components are
occluded.

Based on the cost of pixel-wised stereo matching, Castillo et al. [9] propose to
do face recognition across poses. First they find three to four landmarks from face
images to calculate the epipolar geometry parameters for gallery images. Then a
stereo matching method is applied to find corresponding pixels between images.
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Finally the cost of matching is used to identify the face images. Actually, there is an
assumption that the corresponding pixels or components exist in two images. Thus
when the pose changes greatly, the number of corresponding pixels between images
decreases. Consequently, the performance of the algorithm drops significantly.

For the methods based on engineering-designed features, they try to find the
corresponding local components between images. However, when poses change
greatly, these manually designed features will always fail. The appearance of local
components always varies greatly due to occlusion or out-of-plane rotation. Then
the nonlinear correspondence should be found to describe the relationships.

2.1.2 Learning-Based Features

In order to find the nonlinear correspondence between images of different poses,
some machine learning-based methods have been applied widely. Subspace learning
methods are introduced to learn a new subspace that is invariant to pose variations.
Metric learning methods are proposed to construct new distance measure methods,
which are independent to the pose changes. Most recently, the deep neural network
is also introduced to learn high-order nonlinear descriptors for images from different
poses.

Linear Subspace Learning

In early years, principal component analysis (PCA) provides an important tool
for extracting common features from dataset. The eigenvector that has the largest
eigenvalue represents the direction of the biggest variance of the data, while
the eigenvectors can be seen as the features shared among dataset. PCA-based
methods achieve good performance in face recognition but are very sensitive to
the misalignment of images. When face images are taken from different views,
PCA encodes both identity and viewing conditions, which makes the performance
of recognition degraded. Pentland et al. [42] propose to setup eigenspace for each
component of the face, which only encodes the identity information, and the pose
variance is alleviated by the selection of face components from images. When
doing recognition, the reconstruction coefficients from each modular eigenspace are
connected as a whole feature of the face.

Prince et al. [44] propose a statistical method to describe the distribution of
face images regardless of pose. In the observed space, images from different views
are located in different positions, where the difference caused by posture is much
bigger than that caused by different identities. Thus it brings great difficulties for
recognition. However, with the assumption that all faces of a single person in
different poses can be described by a vector in the identity space, a linear transform
mapping from the observation space to the identity space is proposed. Figure 4
shows the relationship between the two spaces. In the identity space, the pose
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Iden�ty SpaceObserva�on Space

Fig. 4 Identity space only keeps the variance between different subjects but minimize the pose
variance for a same subject

variance is diminished. Images from any pose can be represented as the linear
combination of vectors in identity space hi , and Gaussian noises εij as follows:

Xij = Wjhi + μi + εij (1)

where Wj are the projection from identity space to the observation space and μi is
the offset.

Therefore some generative models are introduced; the discriminative models are
also used for dealing the pose problem actually. For discriminative models, they try
to distinguish the difference between subjects regardless of pose variations. That
is to maximize the margin between subjects or to find an optimal superplane to
separate subjects.

Li et al. [31] propose to use canonical correlation analysis (CCA) to find a
common space for images from different view, where the correlation between the
same subjects is maximized, but not the traditional Euclidean distance. Correlation
measures the difference of data tendency but not absolute distance. Thus it can allow
some variance for data and becomes more robust to slight changes. The transform
can be written as

arg max
ω1,ω2

corr[ωT
1 X1, ωT

2 X1] (2)

where ‖ω1‖ = 1, ‖ω2‖ = 1. Xi are images from different view and ωi is the optimal
transformation that can be solved by Lagrange multiplier method. In order to project
images from all different poses to the same subspace but not only two views as CCA
methods, Rupnik et al. [47] propose Multiview CCA(MCCA), as

arg max
ωi, ..., ωk

∑

i �=j

corr[ωT
i Xi, ωT

j Xj ] (3)

where ‖ωi‖ = 1, i = 1, . . . , k. The set of transform ωi can transform images from
different views to the same subspace and meanwhile keep the maximal correlation
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for the images of the same person. Based on MCCA, Sharma et al. [53] improve the
algorithm further. They first find the optimal mapping functions for images from
different views with the MCCA method, and then linear discriminative analysis
(LDA) is applied to classify each subject in the new subspace.

Sharma et al. [52] propose a unified framework for multiview analysis called
generalized multiview LDA (GMLDA), in addition. Within this framework, the
discriminative analysis for each subject and the self-correlation of the images from
the same subject are combined as

arg max
ωi

∑

i

μiω
T
i Sbiωi+

∑

i �=j

λijω
T
i ZiZjωi (4)

where
∑
i

γiω
T
i Swiωi = 1, μi , λij and γi are parameters for linear combination.

Sbi and Swi are the between-class and within-class scatter matrix for the ith pose.
The first term performs the LDA analysis for different poses, which enhances the
distinguishability. On the other hand, the second term focuses on the correlation for
all the images from the same subject. That is, the projection from different poses
should be close to each other in the latent space. Zi are the matrices whose column
contains images of the same subject.

For CCA methods, it requires each subject to have exactly the same training data
for each poses, while GMLDA only requires pairwise training data from different
poses. In order to alleviate the requirement for training data, Kan et al. [28] proposed
multiview discriminant analysis (MvDA). They apply the idea of LDA to analyze
pose problem, where the intrapose scatter is minimized and interpose scatter is
maximized. Then all the images from the same pose will be cluttered together in
the new subspace.

Nonlinear Subspace Learning

The pose variations for images are due to the projection of 3D structure of the
object to the 2D planar. As a result, poses actually bring nonlinear transform for the
appearance of images. Consequently the nonlinear models should be more suitable
than linear models for the description of pose variations. Kernel-based methods
are the direct extension of linear methods, where the kernel can transform a linear
subspace to a nonlinear subspace. In a nonlinear subspace, the nonlinear distributed
data can be separated by a linear surface. Consequently, the classification can be
achieved by linear methods in a higher-dimensional subspace.

There are quite a few adaptations to the linear methods, such as the kernel-
PCA [49] is the extension of PCA by kernel method. Yang et al. [69] proposed
a kernel Fisher discriminant framework by full usage of the KPCA and LDA.
Experiments show the improvement in face recognition tasks. Recently, Sharma
et al. [55] proposed a generalized multiview analysis (GMA) method which projects
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a pair of images from different views into a common space by using the kernel tricks.
The proposed method shows its effectiveness in pose-invariant face recognition.

Metric Learning

Besides using a suitable subspace to represent all the images from different poses,
the distance metric also can be adapted to deal with pose variations. Schroff et al.
[51] propose to compare the similarity of probe images with a big set of gallery
images, and the similarity list is used as a feature to determine the identify of probe
images. It is based on the assumption that images from the same person should
have more common look-alike samples than that from different people, even if the
images are taken in different conditions. Liao et al. [35] propose to compare the
low-frequency information of the probe image with all the gallery images, and then
a pooling method is applied to make it pose-invariant. Furthermore, Kafai et al.
[25] construct reference face graph (RFG) to represent the relationship between
different subjects, where each node in the graph contains all the images taken in
different conditions of that subject, as shown in Fig. 5. The importance of each node
is readjusted by its node centrality including degree, betweenness, and closeness
for weighted graphs. Finally, the probe image is represented by the vectors that are
composed of the similarity measure to each node in the graph where the hashing
code is calculated for each oversampled region of images.

Ref Subject1

Ref Subject2

Ref SubjectN

Reference Face 
Descriptor

Reference Face 
Descriptor

Reference Face

Descrip
tor

Fig. 5 In the reference face graph, each node is composed of faces from different views. Then all
the faces are used as the basis to represent the probe face where the reference face descriptors are
calculated
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Deep Learning

Recently, deep learning-based methods show great success in the field of signal
processing. It achieves the state-of-the-art performance in many applications such
as face recognition, object classification, and so on. The great ability behind the
neural networks is the nonlinear modeling capability actually. The nonlinearity is
due to the nonlinear activation neurons in the networks. In addition, the multiple
layers of the neural network make the order of the nonlinear model much higher
than traditional models, which can represent the data more accurately.

Andrew et al. [3] proposed to use two parallel neural networks for the feature
extraction of images from different poses, and then the output items from the
networks are maximally correlated, where the correlation value is used to optimize
the parameters of the neural networks. In fact, deep networks are performed as
nonlinear mapping functions for input images. As a result, the deep canonical
correlation analysis (DCCA) method shows better performance than Kernel CCA
and CCA in the experiments, which is due to the robust features extracted by neural
networks. The structure of the DCCA is shown in Fig. 6, where a three-layer fully
connected neural network is applied. With the improvement of the neural network,
more sophisticated features can be extracted.

Zhu et al. [73] propose a deep network to find the identity preserving features
from images in different views, as shown in Fig. 7. There are three convolutional
layers in the deep network. The input of the network can be images from any

Fig. 6 Deep canonical
correlation analysis for
images from different poses.
Two parallel neural networks
are used to extract features
for images from different
poses; the output features are
constrained to be maximally
correlated to each other

Canonical Correla�on

 Analysis

Layer 1

Layer 2

Layer 3

Output 1

Layer 1

Layer 2

Layer 3

Output 2

Conv1/
Pooling

Conv2/
Pooling

Conv3/
Pooling

Fully Connected
Layer

Fig. 7 Identity preserve network. The neural network is applied to reconstruct the frontal view of
input images from different poses
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poses, while the output of the network is the reconstruction of the frontal view
for the input subject. The network is composed of two basic units, which are the
feature extractor and the reconstructor for the frontal view. In training, the difference
between the reconstructed images and the ground truth is calculated for back
propagation. Through the supervised learning procedure, the network can recover
any input image to its corresponding frontal view. The extracted features also
show great capability for identity discrimination. The face recognition is performed
by comparing the recovered frontal face with the gallery frontal images. For this
network, the last reconstruction layer is achieved by fully connection layer, which
has millions of parameters needed to be trained. Consequently, it requires a huge
number of images for training.

Based on the encoder framework, Zhang et al. [70] propose an encoder network
for images of different poses. There is only one hidden layer for this network. The
input of this network is images from different poses, and the output is the frontal
image of the same subject. The encoder tries to find common features for images
from different views. Furthermore, they propose to use random images to represent
identity of each subject and train the encoder to find discriminative features for
each subject. In order to keep the convergence of training, the sparse constraint of
parameters is added to the loss function. Figure 8 shows the structure of the network.
Compared with Zhu’s work [73], it only has one hidden layer, which reduces the
number of parameter but also reduces the capability of model. It also proves that
increasing the layers of neural network can enhance the order of nonlinearity of the
model, which can increase the discriminability of the model. Kan et al. [26] also
noticed that only one hidden layer is not enough to model the nonlinear transform
from any pose to frontal view. Thus they propose to use a cascade of autoencoders
to transform the pose gradually from non-frontal view to frontal view, as shown

Encoder1 Encoder2 EncoderD

Random Noise 1 Random Noise 2 Random Noise D

Feature for 
recogni�on

Fig. 8 Random face learning network. The random images are used as the output of one-layer
encoder to learn the features for images from different views. Then the learned features are used
for recognition
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Input Encoder 1 Encoder 2 Encoder 3

Decoder 1 Decoder 2

Decoder 3 Output 

0 0[ 30 ,30 ]

0 0[ 45 ,45 ] 0 0[ 30 ,30 ] 0 0[ 15 ,15 ]

0 0[ 15 ,15 ]

[0 ]o

Fig. 9 Stacked progressive autoencoder network. The pose of the faces is adjusted step by step,
and then all the trained encoders are stacked to compose a network to recover profile images to
frontal ones

in Fig. 9. Altogether, three encoders are stacked together, which can reduce the
probability of being trapped into local minimal during training.

For all these autoencoder-based methods, the key idea is to reconstruct the
frontal face from non-frontal input. Then the recognition is performed based on
the reconstructed images. Always, these methods separate the recognition tasks into
two independent steps, which is not an end-to-end procedure.

Kan et al. [27] propose a two-stage network for face recognition across poses,
as shown in Fig. 10. For the first stage, images from different views are input
into different sub-networks for the extraction of view-specific features, and then
all the features are fed into a common sub-network for the extraction of common
features across poses. In addition, the network is trained based on the Fisher
principle, where the intra-view distance is minimized and the inter-view discrepancy
is maximized. With the trained network, the features from topmost layers are used
for classification. For MvDN, it first requires the input images to be classified into
groups due to poses, and then images can be fed into the proper network. In addition,
it is not an end-to-end framework for the task of recognition.

Majumdar et al. [38] propose to use autoencoder for the extraction of image
features. In order to make the feature more robust to pose, a whole face image is
decomposed into several local patches that contain the main components. Also,
the sparsity constraint is applied to the autoencoder. For classification tasks, the
input images are fed to the autoencoder for feature extraction, and then a classifier
is applied for verification. Even though the patch-based method can improve the
robustness for pose, it requires accurate segmentation results from the preprocessing
methods.
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NweiV2weiV1weiV

Frontal view

Fig. 10 Multiview deep network. The network first extracts features for different views separately,
and then the features are integrated in the following network. In training the Fisher distance
between the frontal view and different views is used as the error to optimize the parameters

Recently, Peng et al. [41] propose a deep network to extract pose-invariant
features. First they use synthesis methods to enrich the training samples, and
then identity and non-identity features are extracted through a multitask learning
procedure. Finally, the pose-invariant features are purified through the constraint
of reconstruction errors from different poses. The proposed method requires the
synthesis of non-frontal faces for training. Also, it requires the pose and landmark
labels for each training image, which is not easy to get in the applications.

Masi et al. [39] realized that the frontalization of non-frontal faces is actually
very challenging and becomes harder with the increasing of rotation angle. Actually,
it is a highly nonlinear transform, and many corresponding information between
frontal and profile faces is lost. Thus they propose to develop separated network
for different poses, called pose-aware CNN models (PAM). That is, for different
poses, e.g., frontal, half-profile, and profile images, different CNNs are trained.
Then averaging the scores from all different PAMs gives the recognition results.
For this method, it requires the input images to be rendered into different poses, and
then they can be fed into corresponding PAMs for recognition. Even though they
constrain the range of rendered image, it is still a challenge to produce images of
different views.

Tran et al. [61] introduce generative adversarial network (GAN) for the task
of pose-invariant face recognition. The GAN network is constructed based on the
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Fig. 11 Generative adversarial network (GAN)-based pose-invariant face recognition. In the gen-
erative network, the encoder-decoder structure is used. Also, some side information is introduced
for the extraction of robust features in the network

framework of encoder and decoder. Through the generative network, face images
from any poses are converted to frontal ones. The discriminative network is used for
the judgment of the new created images. In order to enhance the extraction of pose-
invariant feature in the generative network, pose label and noises are used as side
information. The structure of the proposed network is shown in Fig. 11. Even though
GAN network is more powerful than traditional neural network, the convergence of
the network is still a great limitation for its application.

Neural network provides a powerful tool to extract features from training images,
which has been applied to solve the pose problem. However, how to design a suitable
network structure for this specific problem is still an open problem for researchers.

2.2 Synthesis-Based Methods

Pose variations introduce nonlinear transform for images of the same subject.
Besides pose-invariant features that can be used as a low-dimensional representation
for the image, researchers also tried to synthesis the frontal face images directly
from images of arbitrary poses. The synthesis-based methods can be further
classified into the 2D-based and 3D-based methods, depending on if the 3D model
of face is applied or not.

2.2.1 2D-Based Synthesis Methods

2D-based synthesis methods try to convert images of varied poses directly to the
frontal faces. Based on the different units to process, all the 2D synthesis methods
can be classified into three categories: triangle mesh wrapping, patch wrapping, and
pixel wrapping.
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3D shape based 
face rec�fica�on Conv1 Conv2 Conv3 FC1 FC1 Face

 Label

Face rec�fica�on Face recogni�on

Fig. 12 Profile faces are first rectified to frontal face based on triangular mesh, and then deep
network is applied to recognize faces in the frontal view

In the early days, a 3D model of a subject is usually presented by a triangle
mesh. Consequently, the triangle mesh can also be casted on 2D images, and each
triangle is used as a unit to calculate the transform between two different poses.
Taigman et al. [59] apply triangle mesh for alignment of the input images. After all
the input images are converted to frontal face, a deep network is applied for feature
extraction and recognition of the face image, as shown in Fig. 12. For the alignment,
key landmarks are detected and then triangular mesh is cast to the 2D image, where
the 3D shape of the face is correlated with the triangular mesh. Finally the frontal
facial image can be estimated due to the affine wrapping of triangular mesh. With
accurate adaption of input images to frontal view, the following neural network can
perform face recognition under varied poses. For mesh-based wrapping, it mainly
depends on how well the triangle mesh can be cast to the 2D face image.

In order to avoid the detection of landmarks on face, Ashraf et al. [4] propose to
decompose images into small patches, and for each patch, a learned transform can
be applied to convert the non-frontal patch to be frontal ones. They treat each patch
as independent unit for the whole procedure; however, there are close connections
between neighboring patches. Thus those patches are highly correlated to each
other where the relationship can be applied in solving the pose problem. Recently,
Ho et al. [19] consider this relationship. The searching for optimal transform for
each patches are converted into an optimization problem, where the reconstruction
error of each patches should be small; meanwhile the transform for neighboring
patches should be similar. The additional items constrain the smoothness of the
global transforms.

For patch-based synthesis methods, they treat a local patch as a unit to calculate
the transform. However, the nonlinear transform between poses is different from
pixel to pixel. Thus Li et al. [34] propose a pixel-based transform. They learn a set
of template displacement model from 3D dataset first. Then for each input image,
the template displacement model is applied to transfer the images of arbitrary poses
into frontal face pixel-wisely. For the occluded part of the face, the information is
compensated from frontal face. Even though the proposed method can reconstruct
the frontal face, only the non-occluded region will be used for verification.
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2.2.2 3D-Based Synthesis Methods

For 2D-based wrapping methods, they directly find the transform between different
poses. When the pose changes significantly, the mapping between different poses
becomes highly nonlinear. As a result, the 2D wrapping results will become worse.
In fact, pose problem is caused by the projection of 3D subject model to 2D
imaginary surface. That is, the intrinsic 3D model controls the appearance of
the images. Thus researches also try to use 3D model for solving pose-invariant
recognition problem.

Ding et al. [12] introduce a 3D model-based dense-mapping method for the
recovery of frontal face. First, the key landmarks are detected from the 2D images
of arbitrary pose, and then they are matched to the corresponding landmarks in
a standard 3D face model. As a result, the pose transform can be estimated for
the input 2D image. In order to recover the texture, a dense mapping is used with
the estimated pose transformation matrix. Furthermore, homography-based patch
correction method is proposed to enhance the realisticity of the recovered texture.
If there is occlusion in the original 2D facial images, then the recognition is only
based on recovered un-occluded part.

Further, Ding et al. [13] transform the profiled face image recognition problem to
the partial face recognition problem. Based on the key point mapping between 2D
images and 3D face model, the profiled images are transformed to images of frontal
view. Then sparse coding-based feature is extracted on the reliable regions of the
recovered frontal view.

3 Illumination-Invariant Face Recognition

Illumination is another big challenge for face recognition. The intensity value of
each pixel Ixy in an image is determined by the strength of the incident light,
Lxy , and the angle of the incident light θxy and the reflectance rate of the surface
Rxy , as Ixy = ∮

LxyRxy cos θxydΩ . Thus, when the incident light changes, the
appearance of the same object will vary as well. Always, the variation that is caused
by illumination is more significant than that of subject. Consequently, lighting
always causes the degradation of face recognition methods. Algorithms that try to
remove or alleviate the lighting variations can be classified into three categories as
image processing-based methods, invariant feature-based methods, and illumination
model-based methods.

3.1 Image Processing-Based Methods

Lighting is one of the factors that control the appearance of images. The average
intensity value of images that are taken in brighter situation is bigger than that
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in dark situation. Thus researches proposed to use image-processing methods to
enhance the intensity value of images, such as histogram equalization (HE) and
gamma correction.

Histogram equalization [43] tries to adjust the histogram of input images. That
is to adjust the intensity distributions of images. In fact, the pixel intensity value of
an image that is taken in brighter situations is bigger than that of a darker image.
Thus the intensity distribution of brighter images will have peaks in bigger value
region, while that of darker images will have peaks in smaller value region. Using
histogram equalization will make the distribution of intensity value evenly. That
is, the brighter images will become dimmer, and darker ones will become brighter.
Histogram equalization only considers the intensity value of each pixel but not the
sematic meaning. Therefore it will always introduce some abrupt noises in images
due to the assignment of new intensity value to all the pixels of the same intensity
value, as shown in Fig. 13b.

Gamma correction is the more dedicated adjustment for the intensity distribution,
while histogram equalization turns the original distributions into uniform distribu-
tion. Gamma correction function is defined as

T (I) = Imax

(
I

Imax

)γ

(5)

where I is the intensity value of current pixel. Imax is the maximum intensity value
in the image, and γ determines the curve for adaption, which is the key parameter.
According to different gamma curves, the original intensity values can be modified
to any desired distributions. Normally the darker pixels are tuned to be brighter,
while the bright pixels are kept, as shown in Fig. 13c.

Huang et al. [21] proposed an adaptive gamma correction method, where γ is
determined by the cumulative distribution of intensity, cdf (I), as

T (I) = Imax

(
I

Imax

)1−cdf (I)

(6)

cdf (I) =
Imax∑

I=0

pdf (I)∑
pdf

(7)

where pdf (I) is the probability density function of intensity. The proposed method
combines gamma correction and histogram modification method. Similar to the
histogram equalization, gamma correction is also a holistic modification method,
which does not consider the local information in the image. Jiang et al. [23]
proposed to combine the local and global information for the lighting augment. The
local factor I local

a provides the local variance, while the global factor I
global
a provides

the overall intensity of the image. These two kinds of information are combined by a
bilinear method, and then a perception-based method is used to adjust the brightness
of the images, as
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Fig. 13 Comparison of two basic illumination adjustment methods. (a) The original image and its
histogram. There are two peaks in the histogram due to the side light. (b) Histogram equalization
result. The histogram is adjusted to be equally distributed but leaves many noises in the image.
(c) Gamma correction result. Compared with histogram equalization result, there is few noise
introduced into the result image

Y (α,m, f ; I ) = I

I + (f Ia)
m Imax (8)

Ia = αI local
a + (1 − α)I

global
a (9)

where α, m, and f are parameters determine the detail, contrast, and brightness
of the image. The model is derived from human vision perception system. Image
processing-based illumination adjustment methods mainly focus on the modifica-
tion of the intensity distribution and aim to brighten dimmed images. This kind of
method only considers the appearance of current images, but not the factors that
cause the current appearance. Thus these methods always cannot solve the lighting
problems thoroughly.

3.2 Invariant Feature-Based Methods

Images are the cooperative results of illumination and objects. Even though the
illumination can vary due to different situations, objects themselves do not change.
Therefore researchers try to find illumination-invariant representations from images
to describe the intrinsic features of objects. Edges describe the shape or contour



Deep Learning in Face Recognition Across Variations in Pose and Illumination 77

Fig. 14 Edges are used as features for face recognition. (a) and (c) are the original images, (b)
and (d) are the edges for (a) and (c), respectively. Compared to (b) and (d), the edges are different
for the same person under different lighting conditions. Thus the edge features are not absolutely
invariant to illumination

of objects, which are considered as one of the illumination-invariant features. On
the contrary, color of the object will vary according to its situation. Gao et al.
[15] propose to use edges on the face image to perform face recognition. All the
face components, such as eyes, nose, mouse, and eyebrows, are represented by
line contours, as shown in Fig. 14. Then the distance between lines is calculated
for verification. Zhou et al. [72] apply multi-scale Gabor filters to extract features
from face images, where the multi-scale edge features are extracted. Some other
popular feature descriptors such as local binary pattern (LBP) and scale-invariant
feature transform (SIFT), which extract edge-based features for local regions, are
also considered to be robust to illumination. However, shadow will also produce
edges, even obvious edges in images, which are quite difficult to be distinguished
from edges of the object. Consequently, these edge-based features can only work
well with slight lighting variations.

With the simplified illumination model I = L × R, Shashua et al. [56] propose
the concept of quotient images, which is the ratio between a testing image Iy and a
linear combination of three images Ij with weight xj , as

Qy = Iy∑
xj Ij

(10)

where the combined lighting condition of Ij is similar to the lighting condition of
Iy . Thus the quotient image only relates to the reflectance of the object and is free
from the lighting variations. With quotient image Qy , images under new lighting
condition can be rendered and furthermore can be used for the face recognition in
different lighting conditions. However, quotient image is based on the assumption
that the same class of object all has the same shape. It is a very rough assumption.
In fact, every face is different. Wang et al. [64] extend the concept of quotient
images. They propose to estimate the lighting map from images directly. According
to the Retinex theory [60], most lighting information can be considered as the low-
frequency signal, and most reflectance information is high frequency. Thus lighting
information can be estimated from the low-frequency part of the original images.
The proposed self-quotient image is defined as
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Qsy = Iy

F ∗ Iy

(11)

where F is a smoothing kernel.
Also based on the theory of Retinex, Xie et al. [68] propose a two-step strategy

for the normalization of lighting conditions. First, they decompose the input
images into the low-frequency and high-frequency parts using the total variation
model. Then the two decomposed components are normalized, respectively. The
normalization of the low-frequency part will enhance the uniformity of lighting con-
ditions. Then the normalized high-frequency and low-frequency parts are multiplied
together to get the normalized images. In the second step, kernel eigenspace is used
to correct the visual flaws of the normalized face images. Even though KPCA can
be used to improve the appearance of the image, it requires a lot of training images
of each subject for the construction of kernel subspace.

He et al. [18] realize that the distribution of face subspace is a nonlinear manifold;
thus, the nonlinear method should be more suitable for the problem. They propose
to find the face manifold based on the locality preserving projection, which is called
as the Laplacian face representation. This subspace can keep the identity difference
but minimize the other variance within a same subject.

Compressive sensing theory provides a dramatically new method to represent
signals. Based on the theory, continuous signals can be sampled randomly which
breaks through the constraint of Shannon theorem. From the training dataset, a
sparse representation of the subject can be learned with the sparse constraint.
Wagner et al. [63] construct a sparse coding dictionary from a set of images taken
in different lighting conditions and different poses. Images in various conditions are
recovered to classical frontal images of the same subject with the sparsity constraint.
Then the learned sparse representation is invariant to illumination. However, the
sparse dictionary learning requires images from all different conditions to keep the
performance of the proposed algorithm.

Recently, deep learning-based methods are also applied to extract illumination-
invariant features for images under different lighting conditions. The classical
deep learning methods, such as AlexNet [29] and VGG-Face network [40], extract
features from the convolutional layers, and then discriminative features are classified
by the fully connected layers. Besides the classical neural network structures,
researchers also adapt loss functions to improve the extracted features [20, 66].
These methods do not focus on the lighting problems but try to extract robust
features for general face recognition problem. Therefore the structure of the network
is not specifically designed for lighting problem.

3.3 Illumination Model-Based Method

Illumination is an essential factor for imaging. Therefore, researchers also try to
analyze the distributions of images that are taken in different lighting conditions.
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With the illumination model, images under different lighting conditions can be
reconstructed. Also, the illumination can be changed or removed from the images.
Belhumeur and Kriegman [7] introduce the theory of illumination cone, which is the
basic theory for the lighting space of an object. If an object has convex shape and
Lambertian surface, then all the images about this object can form a polyhedral cone.
The dimension of this cone is determined by the number of distinct surface normal
vectors of the subject. In practice, the illumination cone theory can be relaxed
to objects of any shape and with a general reflectance surface. The authors also
point out that the illumination cone of an object could be approximated by a low-
dimensional subspace. The illumination cone theory only illustrates the structure of
lighting space for an object in a certain pose. The relationship between illumination
cones for different poses is still unclear.

In fact, a completed high-dimensional illumination cone is always difficult to
build in practice. Thus, researchers try to find the low-dimensional approximation
for an illumination cone. The illumination effect for an object can be considered as
the convolution of incident illumination with the reflectance function of the object.
Given the 3D model of an object, the lighting subspace can be constructed by
spherical harmonic basis [5, 45]. All the bases are given with implicit equations,
which are functions about illumination and object surface normal vectors. Given the
3D shape of the object, lighting position, and intensity, it is very easy to obtain the
basis for the lighting subspace directly. With the first three orders of the harmonic
basis, 90% of the illumination effect can be estimated, as shown in Fig. 15. However,
the requirement of deep information for the object also limits the application of the
method.

Fig. 15 Lighting map estimation based on spherical harmonics basis. (a) the first three orders of
the spherical harmonic basis of a face. Each row is the basis of the same order. From top to bottom,
they are the basis of order 0 to order 2, respectively. (b) From left to right, they are the original
face image, lighting map reconstructed by the basis of order 0 to 2, respectively. (Reprinted from
Ref. [22], with permission from Elsevier)
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Fig. 16 Images taken in nine
specific lighting conditions
can be used as the basis to
construct the lighting
subspace of the object.
(Reprinted from Ref. [24],
with permission of Springer)

In order to avoid the requirement of 3D model of subject or the learning
procedure to find lighting subspace, Lee et al. [30] propose to construct the low-
dimensional approximation directly from real images. Those real images are found
through minimizing the distance between two subspaces, where one is the spherical
harmonic subspace H and the other is the selected real image subspace, C. Then the
real lighting configuration of those selected images can be used for any subject to
construct the low-dimensional lighting subspace, C. That is, the real images taken
under those lighting configuration can be used as the basis images for its lighting
subspace. This paper proves that the lighting subspace constructed from real images
is a very good approximation of spherical harmonic subspace. In application, only
nine lighting positions are required to build up the lighting subspace, as shown in
Fig. 16. Also, it does not require the depth information as the traditional spherical
harmonic subspace. However, the specific lighting configuration sometimes cannot
be accessible. In real application, there are always a few sample images or even one
image of each subject.

Considering the practical application of lighting subspace estimation, Jiang et al.
[24] propose to create the basis images from any sample images of an object. That is,
given one image that can be taken in arbitrary condition, the nine basis images can
be reconstructed, and consequently the lighting subspace can be set up, as shown
in Fig. 17. In this paper, the estimation of basis images is based on the maximum
a posterior estimation. The basis images are composed of the common components
and personal components, where the common component is the mean value from the
training images and the personal components describe the specific characteristics of
each subject. Thus the estimated basis images can recover both the shared and the
individual features for each subject. This method breaks the requirement of nine real
images that are taken in specific lighting condition.
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Fig. 17 The basis images of lighting subspace can be estimated from images under arbitrary
lighting conditions

4 Multi-stream Convolutional Neural Networks

In general conditions, the illumination of the environment and the pose of the
object are always uncontrolled. Therefore the robust face recognition system should
be able to process the pose and lighting problems at the same time. The current
algorithms that are dealt with pose and lighting problems are introduced in Sects. 2
and 3, respectively. Besides these specific designed algorithms, there are also
some methods doing face recognition in general conditions. Especially with the
development of deep learning methods, some deep neural networks are designed
for the face recognition problems. Schroff et al. [50] propose to enhance the
discrimination of the deep features according to the standard that the distance
within a class is minimized and the distance between classes are maximized. Sun
et al. [57] increase the dimension of the hidden layers and add constraint for early
convolutional layer to increase the discriminative power of the neural network. The
proposed network is called as DeepID2+, which improve the performance for the
face recognition in natural conditions.

For face recognition across pose and illumination, the global structure of
images is destructed by views; meanwhile, lighting brings wide variations for the
appearance of images. Thus the pose- and illumination-invariant features should
be local but not global. Furthermore the multiple hierarchical features are always
much more informative than features in a single scale. Consequently, we propose an
end-to-end convolutional network which can extract multi-hierarchy local features
for the task of face recognition. The overall architecture is shown in Fig. 18. In
our proposed networks, the input is a facial image under an arbitrary pose and
illumination. The output is the identity label for the face image.

4.1 Root Convolutional Layer

Recently convolutional neural networks (CNN) show great performance in different
fields of computer vision, such as object detection [46] and object classification
or recognition [58]. The superb capability of CNN is mainly due to its high-order
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Fig. 18 Architecture of the
proposed deep network.
Conv1 has the kernel size of
11 × 11 and the dimension of
96. Conv2, Conv3, Conv4,
and Conv5 all have the kernel
size of 1 × 1 and the
dimensions of 200, 400, 300,
and 500, respectively

nonlinear representation for data. In practice, CNN extracts features from input
images layer by layer through convolution kernels. For the proposed networks, the
input images, xl−1

i , are cropped and mirrored to the size of w×h×c = 227×227×3.
Then they are fed into a convolutional layer (Conv1) kl

ij with 96 filters of size

11 × 11 × 3. The output, xl
j , of this convolutional layer is written as

xl
j =

∑

i∈Mj

xl−1
i ∗ kl

ij + bl
j (12)

where l is the layer index, bl
j is the additive bias term, and ∗ represents convolution

in a local region Mj of input signals. In this convolutional layer, 96 filters are applied
locally to the whole images resulting in a feature map of size 55 × 55 × 96. Then
rectified linear unit (ReLU) is applied to the extracted feature map. ReLU serves
as an activation unit in the network which brings the nonlinearity to the feature.
Here we use a ramp function f (x) = max(0, x) to rectify the feature map. This
activation function is considered to be more biologically plausible than the widely
used logistic sigmoid or hyperbolic tangent function.

Consequently, the rectified feature maps will be given to a max-pooling layer
(Pool) which takes the max over 3×3 spatial neighborhoods with a stride of two for
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each channel, respectively. Through max-pooling operation, features will become
insensitive to local shift, i.e., invariant to location. Afterward, those features will go
through the local response normalization layer (Norm), which performs the lateral
inhibition by normalizing over local input regions. In our model, the local regions
extend across nearby channels but have no spatial extent. For normalization, each
input value is divided by the sum of local region as shown in Eq. 13:

s(xi) = (k + (α/n)
∑

i

x2
i )β (13)

where n is the size of each local region and the sum is taken over the region
centered at that value xi (zero padding is added where necessary). From the root
layer, we can obtain the local feature set which mainly contains all kinds of edges
in different orientations. Generally edges are considered as illumination-invariant
features. Since local structures are more important in our case, we will continue
to seek for local features instead of global features which are normally obtained in
further layers of traditional CNN.

4.2 Multi-hierarchical Local Feature

In fact, the window size of the convolution kernel is considered as the receptive field
for feature extraction. That is, bigger windows can include information in wider
range for processing. For the face images from different views, the global structures
of images change diversely. However, there is a tight correlation among local regions
of images taken in different views. Therefore the pose-invariant features should
be local features, and in addition the spatial information should be kept for each
local feature. Accordingly, smaller windows should be applied to extract features.
Here we propose to use the kernel of size 1 × 1 × c. With the kernel of 1 × 1,
no spatial patterns across multiple pixels are extract, but the patterns between c

channels are learned without losing the location information for each pattern. Thus
the feature can keep the correlation among different views. Meanwhile, the number
of parameters will also be reduced for the 1 × 1 kernel size compared with that
of bigger kernel size, which can make the training procedure more easily to be
convergent.

Neural networks actually perform nonlinear operation for data. With multiple
layers of processing, the neural networks can build a high-order nonlinear model
for real images, which is a much more suitable representation for the data than
the traditional man-crafted features. As a result, different numbers of layers also
influence the property of features. In the classical ConvNet, there is only one path
for the signal to go, and the classification only performs on the features extracted by
the last layer of the network. In fact, features from different levels of the networks
all contain useful information. Thus we propose to build a multi-stream local feature
hierarchy network (LFHN). Within each stream, features of different orders are
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extracted by using different numbers of convolutional layers. Then features from
different streams are contact to compose a multi-hierarchy feature with the size of
h×w × (c1 + c2 +· · ·+ cn), where h×w × ci is the size of the feature from stream
i and ci is the depth dimension.

In order to keep the spatial information for the local features, the convolutional
kernel of 1×1 is applied. As shown in Fig. 18, there are two steams for the proposed
network. One stream contains two convolutional layers where the kernel size of
Conv2 and Conv3 is 1 × 1 × 200 and 1 × 1 × 400, respectively. In another stream,
there is only one convolutional layer Conv4 with the kernel of 1×1×300. Through
these two streams, we can get local features from different levels of hierarchy. In
order to achieve the final recognition task, one more convolution layer, Conv5 with
kernel size 1 × 1 × 500, and two fully connected layer are employed for the further
feature abstraction.

4.3 Training

Since the root layers of convolutional networks always contain more generic
features such as edges or color blob, which is useful for many tasks including face
recognition, in training, we keep the pretrained results of AlexNet as the weight for
the convolutional layer, Conv1. Then for the other layers, they are trained according
to the Softmax loss function based on the identity labels for images in MultiPIE
dataset [16].

5 Experiments

5.1 Dataset

To evaluate the effectiveness of the proposed local feature hierarchy networks
(LFHN) under different poses and illumination, the MultiPIE face database [16] is
employed. The MultiPIE face database contains 754,204 images of 337 identities.
Each identity has images captured under 15 different poses and 20 different lighting
conditions. For the original images in MultiPIE, we have aligned all the images
according to the position of eyes and crop them to the size of 256 × 256. For
each subject, we only select the images with neural expression but in all poses and
lighting conditions; thus for each person, there are 300 images. Altogether, for all
the individuals in the dataset, we put 300 × 337 = 101,100 images into the data pool
for training and testing. In MultiPIE, there are four sessions to take photos for each
subject, but not everyone comes in each session. Therefore we take all the images
of 250 individuals in session 1 and the images of the other 87 persons in session 2.
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5.2 Recognition Across Poses and Illumination

In order to evaluate the performance of the proposed local hierarchy networks,
MultiPIE is used to train and test the networks. For the proposed networks, there is
only one input instead of multiple images from different reviews. Therefore training
images are randomly selected from images of natural expression but in 15 different
poses and 20 different lighting conditions. For all the 337 individuals, 90,000 images
are randomly taken from 101,100 images for training, and the leftover images are
used as testing images. The proposed network can learn local nonlinear features
which can represent the correlations between images in different poses and lighting
conditions. The rank-1 recognition rates for images with pose and illumination
variations are shown in Table 1. The recognition results for each view are the average
results for all the images under 20 different lighting conditions.

From the results, we can see that the proposed LFHN network achieved relatively
stable performance for different poses. Especially for profile-wised images, where
the yaw angle is in the range of [−90◦,−60◦] and [60◦, 90◦], the average recog-
nition rate is 97.78%, while for the traditional methods, the performance declined
significantly for images with greater pose variations. For the patch-based partial
recognition (PBPR) [14], the average recognition rate for front-wised images is
98.96% where the yaw angle is within 45◦. But for the profile-wised images, the
recognition rate is 78.76%. That indicates the projection recovery method used
in PBPR does not find the accurate locations for profile-wised images. Compared
with current state-of-the-art methods, the proposed LFHN network improves the
recognition rate by 7.55% for images under arbitrary poses and illumination. In
the proposed networks, we consider images from different views and illumination

Table 1 Rank-1 identification rates on combined variations of pose and illumination on MultiPIE

PoseID Yaw Pitch RR [32] FIP [73] PBPR [14] LFHN (Ours)

081 −45◦ 25◦ 24 – 88 94.51
110 −90◦ 0◦ 20.5 – 51 97.52
120 −75◦ 0◦ 26.5 – 79 98.15
090 −60◦ 0◦ 50.64 – 90.86 98.51
080 −45◦ 0◦ 65.30 67.10 97.91 97.75

130 −30◦ 0◦ 70.97 74.60 99.41 98.08

140 −15◦ 0◦ 81.07 86.10 99.05 97.12

050 15◦ 0◦ 77.21 83.30 99.94 93.74

041 30◦ 0◦ 73.69 75.30 99.23 97.91

190 45◦ 0◦ 58.12 61.80 98.21 96.53

200 60◦ 0◦ 45.97 – 87.75 97.65
010 75◦ 0◦ 31 – 89 97.57
240 90◦ 0◦ 18 – 75 97.3
191 45◦ 25◦ 40 – 96 93.73

Mean 48.78 – 89.31 96.86
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Table 2 Rank-1 identification rates for pose variation on MultiPIE

PoseID Pose
PLS
[54]

MCCA
[48]

PLS +
LDA [27]

MCCA +
LDA [27]

MvDA
[28]

GMA
[52]

MvDN
[27]

LFHN
(ours)

110 −90◦ 0.319 0.409 0.38 0.488 0.568 0.526 0.704 1
120 −75◦ 0.775 0.742 0.798 0.662 0.723 0.723 0.822 0.9767
090 −60◦ 0.892 0.822 0.869 0.817 0.845 0.845 0.883 1
080 −45◦ 0.934 0.723 0.944 0.887 0.92 0.901 0.911 1
130 −30◦ 0.883 0.685 0.92 1 0.967 1 0.991 0.893

140 −15◦ 0.981 0.92 0.995 1 1 1 1 1

050 15◦ 0.981 0.906 0.986 1 1 1 1 0.938

041 30◦ 0.934 0.798 0.967 0.995 0.991 1 0.991 0.971

190 45◦ 0.906 0.747 0.883 0.831 0.897 0.906 0.93 0.958
200 60◦ 0.873 0.779 0.85 0.803 0.864 0.859 0.911 0.935
010 75◦ 0.723 0.714 0.709 0.676 0.714 0.718 0.798 1
240 90◦ 0.268 0.376 0.319 0.568 0.559 0.573 0.709 1

Mean 0.789 0.718 0.802 0.811 0.837 0.838 0.887 0.973

equally. Thus pose-invariant and illumination-invariant nonlinear local features can
be sought by the proposed network LFHN.

Besides the face recognition with the combined variations of pose and illumina-
tion, we also test the performance of the proposed network LFHN on pose only. For
this task, the probe dataset includes images of all subjects from four sessions where
images are taken in ambient lighting and 13 different poses. The comparison results
with other methods are shown in Table 2.

From the results we can see even though different methods try to tackle
the pose problem, the face recognition rate decreases along with the amount of
pose variation. The more the view diverges from the frontal face, the lower the
recognition rate is. That is because pose changes the appearance and structure of the
image. MvDN [27] and MvDA [28] tried to find the correlation between different
poses and achieved relatively good performance. For the proposed network LFHN,
we also focus on the extraction of local features among different poses which can
describe the correlation of different poses and also discriminate different identity.
Thus we achieve better results compared with other methods. Especially for larger
pose diversity, the performance of the proposed network is not degenerated but very
stable instead. The average recognition rate is 97.3% which improves the state-of-
the-art method by 8.6%.

6 Conclusion

Pose and illumination will always bring great variance for the appearance of face
images, which makes face recognition across pose and illumination challenged.
However, it is quite normal to encounter the pose and illumination changes in
uncontrolled environment. Therefore a robust face recognition system has to deal
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with illumination and pose variations effectively. In fact, there are tight correlations
for images from different postures. Images of different views are the projection
of the same object to different positions. Then local features are more useful for
recognition under different views than the global features, where the global structure
is actually destructed by the projection in different views. Thus we propose a neural
network which extracts local features by 1 × 1 convolutional kernels; in addition
multi-hierarchical features are combined for the task of recognition. Experiments on
MultiPIE dataset show very good and stable performance for the proposed networks
in a wide range of pose and illumination.
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