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Preface

Object detection and recognition are key components for most computer vision
systems and determine the performance of the many applications, such as tracking,
retrieval, video surveillance, and image captioning. The performance of object
detection and recognition heavily depends on the quality of the extracted features
and robustness of classifiers, since the appearance of images may be influenced by
many factors like lighting conditions, the pose, the reflectance of objects, and the
intrinsic characteristics of cameras. To achieve robust detection and recognition,
the extracted features that are used for verification must be invariant to light-
ing, pose, and other transformations. In classical applications, the gradient-based
features, such as edges, local binary patterns (LBP), and scale-invariant feature
transform (SIFT), have shown their robustness to the variations of lighting and
pose. Besides robust features, the classifiers also need to be discriminative enough
for those intertwined features. For traditional detection and recognition systems,
the feature extraction and classification steps must work together to achieve good
performance.

In recent years, deep neural networks have attracted more and more attentions
and have been applied successfully in many field of image processing and computer
vision. First, neural networks can learn to extract features from training dataset.
Thus, we do not need to design features as the classical procedure, which is always
very costive. Second, neural networks can extract a series of high-order nonlinear
features from data during the training procedure. These nonlinear features are
constructed through convolutional layers, which are also adaptive to the training
data. Thus, it can represent the distribution of data more accurately than the
traditional features. Third, deep neural networks are end-to-end systems. The input
can be the original image and the output can be the desired results when the
neural networks combine two basic procedures of detection or recognition into
one framework. Due to the great capacity of deep neural networks, they have
achieved great success in many computer vision tasks, including object detection
and recognition.

v



vi Preface

In this book, we aim to provide a comprehensive overview for the current devel-
opment of deep learning in object detection and recognition. With the introduction
of deep neural networks from different aspects, the structure, characteristics, and
performance of the deep neural networks can be understood more thoroughly. With
the inspiration from different fields, we hope our readers can get some inspirations
to design suitable deep neural networks for their own tasks.

In Chap. 1, the history of deep neural network is briefly reviewed. Then, the most
used networks, namely, stacked autoencoders, deep belief networks, convolutional
neural networks, recurrent neural networks, and generative adversarial networks are
discussed, respectively. Through the introduction of basic concepts and theories
of neural network, the readers can get the background knowledge for deep neural
networks.

The application of deep neural networks in object detection is discussed in
Chap. 2. There are two main approaches for using neural networks for object
detection, namely, two-stage methods and one-stage methods. For the two-stage
methods, proposals of possible objects are extracted first and then classified for
detection. The two-stage methods, such as R-CNN, Fast RCNN, and Faster RCNN,
have achieved the state of the art for the detection tasks, but the speed of these
methods is relatively slow. For one-stage methods, such as OverFeat, YOLO, SSD,
and RetinaNet, they predict the position and category of object simultaneously.
Thus, the speed is much faster than that of the two-stage methods, but the accuracy
is degraded. Finally, the pedestrian detection is used as an example to illustrate the
advantage of some latest neural network structures for detection.

Besides detection, recognition is another essential task for image processing
systems. In Chap. 3, the application of deep neural networks in face recognition
is introduced. Even though face recognition has already been utilized in many com-
mercial systems, the performance of current system tends to degrade significantly in
extreme conditions, such as variant lighting and pose conditions. The algorithms that
deal with the lighting and pose challenges are thoroughly reviewed in this chapter.
Through the comparison with the traditional features, the deep neural networks
showed advantages in recognition tasks. However, the networks used for recognition
across lighting and pose should focus on the correlations between different local
regions. Finally, a new neural network extracting local features is introduced in this
chapter.

In Chap. 4, the application of deep neural networks in face anti-spoofing task
is presented. In fact, with more and more applications of face recognition in
commercial verification systems, the anti-spoofing technique becomes more and
more important. The images that are used to fool verification systems are always
recaptured from the original image. Thus, the anti-spoofing systems should be
able to discriminate the difference between the original and recaptured images.
In this chapter, a convolutional neural network is combined with the traditional
feature to create a more robust feature for anti-spoofing tasks. Generally, the deep
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features are more discriminative than the traditional ones. However, for some
specific applications, the deep features can perform better with the enhancement
from traditional features. It brings the thoughts that the deep features and traditional
features are not mutually exclusive but can improve each other.

For facial image analysis, kinship verification is a very useful application. In
Chap. 5, the kinship recognition based on deep neural networks is discussed. In
fact, people from the same family always share some facial attributes, which can be
utilized to verify the family relationship. Deep learning methods are also introduced
in this specific field to extract subtle features between family members. Compared
with the traditional features, the deep features are more discriminative. Also, the
deep neural networks provide a complete framework to solve this verification
challenge.

In Chap. 6, the deep neural networks are applied to face recognition of video
surveillance. For video surveillance, the challenges are mainly due to the significant
difference between the reference images and the images captured in surveillance
camera, where the illumination, pose, scale, occlusion, and intrinsic camera features
are all different. Thus, more robust invariant features are required for video
surveillance problems. Consequently, deep neural networks are widely applied to
extract these desired invariant features for video surveillance scenarios. Besides the
structure of convolutional layers, the loss function also determined the features that
can extract in deep neural networks. In this chapter, a triplet loss function scheme is
introduced to ensure that the extracted features can discriminate the positive samples
from the negative ones.

Besides 2D object recognition, 3D object recognition is also required in real
applications. In Chap. 7, deep learning-based 3D object recognition is introduced.
For 3D object recognition, local features determine the performance of the system.
In this chapter, the restricted Boltzmann machine is applied for the analysis of 3D
data. Besides the convolutional neural networks, the restricted Boltzmann machine
is another type of neural network structure that is used widely. In order to get more
accurate local features for 3D data, a new circle convolution kernel is introduced
for the feature extraction of 3D data in this chapter. With the sophisticated designed
kernel, the neural network can extract more robust features from data.

In Chap. 8, the deep learning-based image retrieval problems are discussed. For
image retrieval, it always requires efficient descriptions for the characteristics of
the whole images, but not only focuses on some specific targets. Then in this
application, the task is to construct compact features for the whole image from deep
neural networks. Also, the scale and rotation invariant characteristics are required
for the extracted deep features. A new regularization method and a pooling method
are introduced in this chapter to achieve those two characteristics for deep features.

From all these eight chapters, deep learning-based methods showed great
breakthroughs in the application of object detection and recognition. Researchers
do adaptations of deep networks in different aspects to make them fit the specific
requirement of data analysis, which include convolutional kernels, loss functions,
pool scheme, regularization scheme, and the structure of the networks. We hope our
readers can get some thoughts about how to apply deep neural networks in their
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applications and also get a taste of how to improve the deep neural networks to be
more powerful for their own tasks.

Last but not least, we would like to thank the publisher for providing us with
the opportunity to write this book. Also, we would like to thank all the authors and
reviewers who contribute their precious thoughts for this book.

Xi’an China Xiaoyue Jiang
Oulu, Finland Abdenour Hadid
Montreal, Canada Eric Granger
Tianjin, China Yanwei Pang
Xi’an, China Xiaoyi Feng
March 2018
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An Overview of Deep Learning

Zhaoqiang Xia

Abstract In the last decade, deep learning has attracted much attention and
becomes a dominant technology in artificial intelligence community. This chapter
reviews the concepts, methods, and latest applications of deep learning. Firstly, the
basic concepts and developing history of deep learning are revisited briefly. Then,
five basic types of deep learning methods, i.e., stacked autoencoders, deep belief
networks, convolutional neural networks, recurrent neural networks, and generative
adversarial networks, are introduced according to applications of deep learning in
other domains that are briefly illustrated based on the types of data, such as acoustic
data, image data, and textual data. Finally, several issues facing by deep learning are
discussed to conclude the trends.

1 Brief Introduction

Deep learning approaches are a class of machine learning algorithms that use
many layers of nonlinear processing units for representations and transformations.
Each layer uses the output from the previous layer as input and the hierarchical
representations can be obtained by different levels of abstraction. These algorithms
may be trained in a supervised or an unsupervised way, and their applications
include pattern analysis (unsupervised) and classification (supervised). Currently,
the rapid development of deep learning has been accelerated by three key reasons,
i.e., massive data, powerful computation ability, and novel algorithms. In the future,
more and more domains will be facilitated by deep learning and reversely make
contributions back to deep learning technologies. The years ahead are full of
challenges and opportunities to improve deep learning technologies and bring it
to new frontiers.
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2 Z. Xia

Although the deep learning is a new technology emerging in recent years, it
has a long and rich history in the last 50 years. Deep learning dates back to the
1940s and rises from the artificial neural networks (ANNs) in the fields of artificial
intelligence and machine learning. Most architectures of deep learning are based on
neural networks, which are inspired by neuroscientific research. The earliest models
of ANNs are simple linear models and associated the output value y with the input x.
In other words, these models want to learn a function given a training set of samples,
in which each sample is a pair of an input value and output value. For instance,
the perceptron, proposed in 1957 [45], learns a linear model in a supervised way,
which can be represented as f (x,w) = wx + b. This mathematical model mimics
the operation of neurons in humans’ brain. Therefore, deep learning consisting of
many perceptrons can also be considered as a generalization of a linear or logistic
regression and imitate the functions of brains.

From the 1980s, two technology waves for ANNs, i.e., shallow learning and deep
learning, have been witnessed with the development of learning approaches. At this
time, each input of models should be represented by many features, and each feature
will activate a separate neuron or hidden unit. At the mid of the 1980s, the back
propagation (BP) algorithm [46] was proposed to learn the parameters of artificial
networks and then bring a new upsurge of statistical model-based machine learning.
The artificial networks can learn statistical rules from large amounts of samples with
the BP algorithm and make predictions for new instances. So the neural networks
could be trained to tackle complex learning problems, e.g., handwritten zip code
recognition [37]. Compared to the rule-based systems, learning-based systems, e.g.,
neural networks, are proved to be more competitive in real-world applications. The
neural networks are also called multilayer perceptrons (MLPs); however, MLPs
usually have limited hidden layers due to the difficulty of training networks even
if they have large datasets.

In the early 1990s, researchers made few important advances in modeling
sequences with neural networks. The main focus of neural nets was devoted to the
unsupervised learning. The models of neural nets were trained to produce a low-
dimensional representation of unlabeled data. Besides, the neural networks with
many layers, such as 20 or more, cannot work very well in practice and suffered from
the vanishing gradient problem. Consequently, a variety of shallow model-based
learning approaches were proposed and popularized since 1995, such as supporting
vector machine (SVM), logistic regression (LR), and random forests (RF). These
shallow models can be regarded as the models with no or only one hidden layer.
These approaches make a great success theoretically and practically, while neural
networks keep a long silence from the mid-1990s. The shallow models are easy to
train and can be used to solve the small-sized sample problem. In contrast, neural
networks need tricky skills to train and cannot be analyzed theoretically. Sometimes,
the neural networks are utilized as black boxes in real-world applications. Although
neural networks continued to obtain good performance on some tasks, such as
document recognition [38], the neural networks are too computationally costly and
limited in most real-world applications.
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Since 2000, as the Internet techniques were developing, those shallow models
become dominated in real-world applications, such as advertisement recommenda-
tion, information searching, and spam filtering system. With the ascent of support
vector machines and the failure of backpropagation, the shallow models dominate
the applications in the early 2000s. Nevertheless, the term “deep learning” was
firstly introduced by Aizenberg et al. in 2000 [1]. In 2006, deep learning begins to
attract attentions after Hinton et al. published an article in Science [27] supported by
the Canadian Institute for Advanced Research (CIFAR). In [27], the neural networks
were used to learn representations from data and can be easily trained through
layer-wise pre-training, which can be performed with unsupervised learning. The
other CIFAR-affiliated research groups quickly showed that the same strategy could
be used to train many other kinds of deep networks [6, 49]. At this time, deep
network methods outperformed competing other machine learning technologies
(especially shallow models) as well as hand-designed functionality, and ultimately
this popularized the use of the term “deep learning.”

After the breakthrough of 2006, deep learning continues to heat up in the
academic community, and several universities, e.g., Stanford University, New York
University, and University of Montreal, become the centers of deep learning. In
2010, the program for deep learning was firstly supported by the Defense Advanced
Research Projects Agency (DARPA) of the US government. Then, the Microsoft
and Google utilized the deep learning technologies to greatly reduce the errors
of speech recognition and obtained biggest breakthrough in the field of speech
recognition over past 10 years [25]. In 2012, the deep learning technology was used
to classify images in ImageNet challenge for the first time and dramatically improve
the performance by 20%, leading to the deep learning revolution and applications in
numerous domains. In other contests, e.g., robust reading challenge in International
Conference on Document Analysis and Recognition (ICDAR); Microsoft image
recognition, segmentation, and captioning challenge (COCO); and Face Detection
Data Set and Benchmark (FDDB), the deep learning technologies have become the
mainstream approaches from recent 2 years, outperforming the shallow methods
based on handcrafted features. After the successful application, the focus of deep
learning is on new unsupervised learning techniques at the beginning and now
changed to the supervised learning algorithms for leveraging large-scale datasets.

2 Basic Types

The deep learning methods based on neural networks are consisted of multiple
layers and each layer contains several units. The activation y of each unit represents
a linear combination of input vector x and learnable parameters w as well as basis
b, followed by an element-wise nonlinearity function f (·):

y = f (wx + b) (1)
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where the function f (·) can be a sigmoid function or restricted linear unit. The deep
networks stack multiple layers with different connection structures, which are called
as the architectures.

Various deep learning architectures, such as stacked autoencoders (SAEs), deep
belief networks (DBNs), convolutional neural networks (CNNs), recurrent neural
networks (RNNs), and generative adversarial networks (GANs), have been proposed
and successfully used in many fields. They have been shown to achieve state-of-the-
art results on many tasks [13, 36]. These architectures are fundamental ones and
can be extended or combined to generate new frameworks for specific tasks. In
subsequent sections, these five architectures will be introduced briefly to illustrate
their differences.

2.1 Stacked Autoencoders (SAEs)

Autoencoders (AEs) are simple networks directly cascading many layers [5], which
have a similar forward structure with multiple-layer perceptron (MLPs). However,
the AEs learn the parameters by reconstructing the input signals precisely, while
MLPs use supervised information to train models. For the sake of analysis, AEs,
reconstructing the input x of size n on the output x̃ with only one hidden layer h of
size k, are shown in Fig. 1. The reconstruction is computed as follows:

h = f (Wx + b)

x̃ = f̃ (W̃h + b̃)
(2)

where W and W̃ are weight matrices. b and b̃ are biases. If the hidden layer h has
the same size as the input vector and use a linear function, the model will simply
learn the identity function. If the dimensionality k of h is smaller than n of x, the
latent representations can be learned according to the equation.

Using AEs, the original data can be projected into a lower-dimensional subspace,
representing latent structures in the input. So AEs are usually used for unsupervised
learning of efficient coding. Moreover, various techniques have been adopted to
prevent AEs from learning the identity function and obtain many variants. For
instance, the regularization or sparsity constraints can further be employed to

Fig. 1 The basic architecture
of an AE. (©[2016] IEEE.
Reprinted, with permission,
from Ref. [60])



An Overview of Deep Learning 5

discover relevant structure more precisely and improve their ability to capture
important information. In order to prevent the model from learning a trivial solution,
the denoising AEs were proposed by Vincent et al. [58]. In the denoising method, the
model is trained to reconstruct the input from a noise-corrupted version (typically
salt-and-pepper noise).

Additionally, the SAEs are formed by stacking multiple denoising AEs layer by
layer. The SAEs can be trained using gradient descent methods; however, there are
fundamental problems to train deep models with many hidden layers. Once errors
are backpropagated to the first few layers, they become minuscule and insignificant.
Consequently, each AE is trained individually (famous as layer-wise training), and
then the entire SAE network is fine-tuned using supervised learning technique by
predicting labels given an input.

2.2 Deep Belief Networks (DBNs)

DBNs consist of many restricted Boltzmann machines (RBMs) [26], which are
similar with the structure of SAEs. As shown in Fig. 2, RBMs have a similar
connection way with AEs, while they utilize different optimization methods to learn
parameters. Different from AEs, RBMs use bidirectional connections other than
forward connections. RBMs also constitute an input layer x (also known as visible
layer) and a hidden layer h. So, essentially, RBMs are a type of Markov random field
(MRF) [18]. As RBMs have bidirectional connections, they are generative models
and can generate new data by the hidden layer.

Inspired by physical systems, RBMs employ an energy function as the objective
function for optimization. For a state (x,h), the energy function is defined as follows:

E(x, h) = hT Wx − aT x − bT h (3)

where a and b are bias terms and W is the weight matrix. Then, the probability
distribution of the system over hidden and input vectors is defined by tossing the
energy into an exponential function and normalizing with a partition function Z:

P(x, h) = 1

Z
e−E(x,h) (4)

Fig. 2 The basic architecture
of an RBM. (©[2016] IEEE.
Reprinted, with permission,
from Ref. [60])
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where Z is defined as the sum of e−E(x,h) and usually difficult to compute.
Since the RBM model has bidirectional connections, the activations of hidden

units are mutually independent given the activations of input units, and, conversely,
the activations of input units are mutually independent given the activations of
hidden units. The conditional probability of input units x with size of n, given the
hidden units h with size of k, is calculated by

P(x|h) =
n∏

i=1

P(xi |h) (5)

Similarly, the conditional probability of hidden units h is computed by

P(h|x) =
k∏

i=1

P(hi |x) (6)

According to the conditional probability, the individual activation probabilities are
given by

P(hj = 1|x) = σ

(
bj +

n∑

i=1

wi,j xi

)

P(xi = 1|h) = σ

⎛

⎝ai +
k∑

j=1

wi,jhj

⎞

⎠
(7)

where σ denotes the logistic sigmoid function.
Since DBNs stack RBMs layer by layer and have a similar structure with

SAEs, the training of DBNs is performed by learning each RBM individually in
an unsupervised manner and then fine-tuning on entire DBN network by adding
classifiers or regressions to the last layer in a supervised manner [26]. In particular,
the gradient-based contrastive divergence (CD) algorithm [7] was proposed to train
deep models for DBNs, in which Gibbs sampling is used inside a gradient descent
procedure to update weights.

2.3 Convolutional Neural Networks (CNNs)

SAEs and DBNs are fully connected networks as all units are connected to each
other between adjacent layers. For several types of data, e.g., images, there are a
large amount of parameters to learn for these fully connected networks. To avoid
this problem, inspired by organization of the animal visual cortex, the convolutional
neural networks (CNNs) [38] were proposed to use the weight sharing strategy for
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exploiting similar structures occurred in different locations in an image. Through
sharing the convolutional weights locally for an entire image, this drastically reduces
the amount of parameters that need to be learned and render the network equivalent
with respect to translations of the input (i.e., the number of weights no longer
depends on the size of input image). The basic architecture of CNNs shown in Fig. 3
contains several different layers with various functions.

The convolutional layers are the core building blocks of a CNN. At each
convolutional layer, the input data is convolved with a set of K learnable kernels
W = {W1,W2, . . . , WK } adding by biases b = {b1, b2, . . . , bK }. These kernels
are also known as the receptive fields. Then a new feature map Xk is generated
by inputting the convolution results into an element-wise nonlinear function σ(·).
Given the output vector of lth layer, the kth feature map is calculated by

Xl+1
k = σ(Wl

k ∗ Xl + bl
k) (8)

The function σ(·) is also known as activation function and can be many functions,
such as the sigmoid function σ(x) = (1 + e−x)−1, hyperbolic tangent σ(x) =
tanh(x), or rectified linear units σ(x) = max(0, x). Although these kernels in each
convolutional layer have small receptive fields, they can be extended through the
full depth of the input volume. Stacking the feature maps for all filters along the
depth dimension forms the full output volume of the convolutional layer.

Usually, the pooling layer follows the convolutional layer and performs the
nonlinear down-sampling. There are several nonlinear functions to implement
down-sampling operations for pooling layers, among which max pooling is the
most common operation. It partitions the feature map into a set of nonoverlapping
rectangles and, for each such subregion, outputs the maximum values. In addition to
max pooling, the pooling layer can also perform other nonlinear operations, such as
average pooling or L2-norm pooling [48]. The pooling layer serves to progressively
reduce the spatial size of intermediate representations, the number of parameters,
and amount of computation in CNN architecture and hence to control overfitting.
Besides, the pooling operation can provide a form of translation invariance.

Fig. 3 The basic architecture of a CNN
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Eventually, the high-level reasoning in CNNs is implemented with fully con-
nected (FC) layers after several convolutional and pooling layers. The units in the FC
layer have full connections to all activations in the previous layer, similar to SAEs
and DBNs. Their activations can hence be computed with a matrix multiplication
followed by a bias offset and output the classes or the probabilities. Through
calculating the loss between the predicted and true data, the CNN can be trained
by an end-to-end method as the number of weights is reduced by convolutional
layers and pooling layers. Usually, various loss functions are adopted for different
tasks, such as Softmax loss, sigmoid cross-entropy loss, and Euclidean loss.

In the early years, the first proposed architecture of CNNs was the LeNet [38],
which established the foundation for subsequent architectures. In 2012, AlexNet
[34] was proposed to extend LeNet with wider and more convolutional layers
based on powerful GPUs. This architecture won the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) and outperformed handcrafted feature-based
methods. Then, the famous VGG architectures [8] were proposed to use smaller-
sized filters and deeper frameworks, which can be applied to various tasks, such as
image classification and face recognition. After that, the network-in-network [39]
was presented to provide the great and simple insight of using 1 × 1 convolution
to provide more combinational power to the features of convolutional layers. To go
deeper layers, the GoogleNet with 22 layers [56] was proposed and made use of so-
called inception blocks (Inception V2 [30], Inception V3 [56], Inception V4 [55]).
Inception blocks can be regarded as a type of network-in-network and also utilize
1 × 1 convolution to reduce the dimensionality of the feature maps. Especially,
the ResNet [23] was proposed to feed the output of two successive convolutional
layers and also bypass the input to the next layers. With the shortcut connections,
the architecture can use more than 1000 layers and act in parallel to serially flow
the entire network [24]. In the future, much wider and deeper architectures will be
proposed to achieve better performance with the developing of computation ability.

2.4 Recurrent Neural Networks (RNNs)

The aforementioned deep learning architectures, such as SAEs and CNNs, are a type
of feed-forward networks, in which activations are fed forward from input to output
through hidden layers. Different from them, the recurrent neural network (RNN)
is a type of networks where connections between units form a directed cycle. The
most basic architecture is shown in Fig. 4. Actually, more complicated connections
can exist between hidden units, which are beyond the scope of this chapter. With the
recurrent connections, RNNs can process sequential data, e.g., videos and speech
sentences, by exhibiting dynamic temporal behaviors.

Rather than learning the posterior over y given single input vector x, RNNs
learn the posterior given a sequence x1, x2, . . . , xT and are more informative for
sequences. The basic architecture of RNNs [16] contains the hidden layer ht at time
t that has the feed-forward input xt and recurrent input ht−1:



An Overview of Deep Learning 9

Fig. 4 The basic architecture
of an RNN

ht = f (Wf xt + Wrht−1 + b) (9)

where Wf is the weight matrix for feed-forward input and Wr for recurrent input.
b is the basis vector and ht is the output of hidden units.

In the last decade, several methods for supervised training of RNNs have
been presented, such as backpropagation through time (BPTT), real-time recurrent
learning (RTRL), and extended Kalman filtering-based techniques (EKF). Since
the gradient needs to be backpropagated from the output through time, RNNs are
inherently deep in time and consequently suffer from the problems of fading or
exploding gradients during learning. To solve the vanishing gradient problem, the
memory units can be added into the traditional RNNs. The most common one is
the long short-term memory (LSTM) [28]. The LSTM is normally augmented by
recurrent gates called forget gates and can prevent back-propagated errors from
vanishing or exploding. Each gate is governed by a weight matrix from the input
and a weight matrix from the previous hidden layer. At the heart of the unit lies a
memory cell that combines the activation of the other gates and relays it to the output
of the unit and the next state of its memory. Instead errors can flow back-forward
through unlimited numbers of virtual layers in LSTM RNNs unfolded in space.

Aforementioned recurrent networks have a causal structure that the output
depends on the past and present input. However, in many applications, e.g., speech
recognition, the output may depend on the whole input sequence. To solve this
problem, the bidirectional RNNs [50] integrated two RNNs in one network: an
RNN that moves forward through time beginning from the start of a sequence and
the other RNN that moves backward through time beginning from the end of the
sequence.

2.5 Generative Adversarial Nets (GANs)

The basic idea of generative adversarial networks (GANs) [20] is that it contains two
sub-models: a generative model and a discriminative model. The basic architecture
is shown in Fig. 5. The discriminative model in terms of discriminator has a task
of determining whether a given sample looks natural (a sample from the dataset)
or looks that it has been artificially created. The task of generative model having
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Fig. 5 The basic architecture of a GAN

a name of generator is to create natural-looking samples which are similar to the
original data distribution. This can be thought of as a zero-sum or minimax two-
player game.

The generator’s distribution pg over data x needs to be learned given a prior
pz(z) on noise variables z, which are mapped to data space as G(z; θg). The
generator G is a differentiable function represented by a deep model, such as a
multilayer perceptron or convolutional network. The discriminator D outputs the
probability that x comes from the original data rather than pg . The discriminator D

can also be represented as a differentiable function that has similar deep structure
with the generator. It can be trained by maximizing the probability of assigning the
correct labels to both training examples and generated samples. Simultaneously, the
generator is trained by minimizing the objective function log(1 − D(G(z))). The
optimal function for generator and discriminator can be defined as follows:

min
G

max
D

Ex∼px [log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))] (10)

The theoretical analysis of GANs demonstrates that the training criterion allows
one to recover the data generating distribution [20]. In practice, the optimization is
implemented with an iterative, numerical approach. According to Eq. 10, optimizing
D in the inner loop of training is computationally prohibitive and would induce
the problem of overfitting on finite training samples. Instead, it is alternative to
change between k steps of optimizing D and one step of optimizing G. However,
the training method faces several challenges, such as non-convergence and collapse
problem.

To solve the problem of training instability, the Wasserstein GANs [22] were
recently proposed toward stable training of GANs. This model presented several
ingenious skills to improve the training of GANs. The use of weight clipping was
changed in Wasserstein GANs to enforce the Lipschitz constraint, and instead the
norm of the gradient was penalized. This method converges faster and generates
higher-quality samples than original GAN with weight clipping.
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3 Practical Applications

Deep learning techniques have been widely applied in many areas, e.g., computer
vision and natural language processing, and are becoming the state-of-the-art
methods in these domains. According to the types of data, the application domains
of deep learning will be categorized by audio data, image data, and text data. Toward
the specific tasks, various deep learning approaches have been presented to greatly
expand the basic types of deep learning. More specifically, these applications of
deep learning refer to many hot topics, such as speech recognition, face recognition,
object detection, scene classification, and machine translation.

3.1 Audio Data

Audio data comes in a variety of forms, in which the speech is the most common
one. In the past decades, the speech recognition system mostly adopts the Gaussian
mixture model (GMM) to describe the statistical probability models of each
modeling unit. This model has long been occupied monopoly position in speech
recognition applications due to its simple estimation for mass data as well as the
matured techniques of discrimination training. However, the GMM is essentially a
shallow network and cannot fully describe the characteristics of the distribution of
state space. In addition, the feature dimensionality of GMM modeling is generally
dozens and makes it difficult to describe the correlation between features. Eventu-
ally, the GMM modeling is essentially a likelihood probability model. Although the
partition training can mimic the distinction between some classes, the ability is still
limited [25].

In 2011, Microsoft first presented a speech recognition system integrating DBNs
method and completely changed the original framework of speech recognition
technology [11]. After that, other corporations, such as Google, IBM, Baidu, and
iFlytek, began to use the deep learning technologies to model the speech [25, 31].
With the use of deep neural networks, the correlation between features of speech
can be fully described, and continuous multi-frame speech features can be combined
to constitute a high-dimensional feature. The final neural networks can be trained
by this high-dimensional feature. Since the multilayer neural networks are used
to simulate the human brain, the feature extraction can be performed layer by
layer, and ultimately the formation of ideal features can be obtained for speech
classification. The multilayer structure is similar to the processing of human for
speech recognition. Recently, the LSTM-based RNNs [21] have been employed to
avoid the vanishing gradient problem and can learn very deep architectures specially
for speech, which is now available through Google Voice to all mobile phone users.

On the other side, the deep learning technologies can seamlessly be integrated
into the traditional speech recognition systems without causing any additional
cost in case of greatly increased recognition rate. The integration method can be
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implemented by replacing the likelihood of hidden Markov models (HMM) with
the output likelihood of deep learning, while the traditional speech model, statistical
language model, and dynamic decoder are still used in the process of decoding. In
practice, compared to speech recognition system using traditional HMM models,
deep learning-based speech recognition system improved the recognition rate by at
least 30% [11]. Consequently, deep learning makes the speech recognition system
widely applicable and fully effects the system in the future [12].

Besides, Zen et al. [61] presented a speech synthesis model based on multilayer
perceptron. In this model, the first input voice is changed into an input feature
sequence, and then each frame of input sequences is mapped to the output
feature, respectively, through multilayer perceptron generating speech parameters.
Moreover, the deep learning was applied to music retrieval, and the 1-D CNNs were
presented to implement the end-to-end learning for music audios [14]. Similar to
music retrieval, CNNs were also applied to recommend music based on deep content
[43], in which a dense neural net layer is trained to predict the latent factors.

3.2 Image Data

In 2012, the CNNs were firstly used to ImageNet challenge for image classification
and obtained best performance by Krizhevsky et al. [34]. In subsequent years,
many CNN-based deep methods have been presented in the challenge and achieved
state-of-the-art results. Moreover, the strategy of multiple sliding windows [51] is
combined with CNNs to localize objects in the challenge, and deeper architectures
with more traditional strategies have been applied to this task [44]. From 2014, all
teams in the challenge have adopted deep learning methods to compete with each
other [47]. Compared with the traditional approaches, the deep learning techniques
occupy a great advantage in the tasks of image classification and object detection.

Another successful application for image data is the task of face verification. In
2014, the DeepID project [54] from the Chinese University of Hong Kong (CUHK)
and DeepFace project [57] from Facebook employed CNNs to recognize faces in
the wild, respectively. They have achieved recognition precisions by 97.45% and
97.35% on the labeled faces in the wild (LFW) database. Then, the DeepID2 [53]
(updated version of DeepID) from CUHK achieved 99.15% recognition precision,
better than the humans’ performance, and outperformed all existing approaches.
Recently, several startups have reported better performances with ResNet-based
deep modes, such Face++ and AuthenMetric [35]. These deep models employ
similar convolutional layers and fully connected layers, while they have different
depths and widths.

For large-scale video classification, the CNNs have been used by Karpathy et
al. to classify 1 million YouTube videos [33]. In this deep model, the temporal
information has been leveraged to construct multiple networks with fusing single
frames and multiple frames. The classification accuracy has been promoted by
at least 8%. Then, the RNNs with LSTM cells [42] were employed to model
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videos as an ordered sequence, in which the performance was improved about
10%. Currently, the deep learning becomes the mainstream methods for classifying
YouTube-8M dataset on Kaggle challenge and continues to be promoted for real-
world applications.

The CNN architecture and its variants are also applied to the field of human
action recognition. A deep learning method [2] that is sequential was presented to
classify human behaviors without any prior knowledge. The first step is to extend the
traditional convolutional networks to three-dimensionality and then automatically
learn the spatial and temporal characteristics of action videos. Then it used the
RNN method to train the classification of each sequence. The results of deep model
on KTH dataset are better than other known deep models and obtain the accuracy
94.39% and 92.17% on KTH1 and KTH2, respectively. Another 3D convolutional
network [32] was proposed to extract spatial and temporal features for representing
motion information of multiple frames. This approach generated multiple feature
channels and fused them for final representations. The performance of 3D model
outperformed other traditional methods on TRECVID dataset.

In recent two years, the deep learning techniques have been applied to almost all
kinds of image data, such as medical images [40], remote sensing images [62], and
natural images. Other applications for image data refer to image super-resolution
reconstruction [15], image fusion [41], image hashing [60], scene parsing [17],
texture recognition[3], and doorplate number recognition [19]. In the future, more
and more topics concerned with image data will be affected by deep learning and
outperform the humans’ performance.

3.3 Text Data

In the fields of natural language processing (NLP), text mining, and information
retrieval (IR), their subtasks are concerned with the text data, which are usually
discrete and sequential. Therefore, 1D convolutional and recurrent structures are
more adaptive to text data, which are different from audio and image data. The
deep learning techniques can be used to derive high-quality information and obtain
appreciated representations and leverage the structures of text data.

The first deep learning framework was applied to classical NLP problems by
Collobert et al. in 2008 [10]. This framework used 1D convolutional networks
for all subtasks and achieved state-of-the-art performances. Then, Cho et al. [9]
presented an RNN-based framework with fixed-size vector representations for
machine translation. In this deep model, two RNNs are included: one RNN is used
to encode a set of source language symbol sequences into a set of fixed-size vectors,
and the other RNN decodes the vector into a set of symbolic sequences of the
target language. To overcome the disadvantages of fixed-size vector representations,
Bahdanau et al. [4] proposed a deep model based on bidirectional RNNs. In the
translation of each word, this model predicts target words according to the most
relevant information of words in the source text and the location of other translated
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words. Besides, this model contains a bidirectional RNN as an encoder and a
decoder for word translation. In the prediction of target word position, a multilayer
perceptron model is used for position alignment.

For the task of information retrieval, the deep learning can be used to represent
query texts and documents. Furthermore, the matching and ranking procedure can
employ deep learning methods to calculate the complicated similarities between
question and fact in knowledge base. Huang et al. [29] applied the deep structure
learning method to enhance the relevance for matching, while CNNs were used to
learn to rank by Severyn et al. [52]. In real-world applications, the deep learning
techniques have been successfully used in commercial search engines, e.g., Google
and Baidu, for promoting the search performance. Moreover, using retrieval-based
deep learning techniques, the application of question answering has been promoted
to return answers from a large repository of question answer pairs [59]. In the future,
deep learning will be particularly effective for more IR problems.

4 Existing Challenges

4.1 Theory Challenges

Compared to other learning methods, such as SVM, the deep learning techniques
are difficult to interpret theoretically. As the deep models are usually consisted
of several layers and amounts of units, it is impossible to interpret local structure
individually. Sometimes, the deep learning methods are regarded as black boxes.
Since the deep models have thousands of parameters, the convergence of training
strategies cannot be analyzed easily. Especially, an important deficiency is that the
parameter initialization of deep learning needs more precise guidance in theory.

Compared to the shallow models, the deep models have more powerful ability
of representations with the nonlinear function. Usually, for an arbitrary nonlinear
function, both shallow networks and deep networks can be found for good rep-
resentations according to the universal approximation theory of neural networks.
However, for several functions, the deep networks only require far fewer parameters.
So, we need to understand the sample complexity that is how many samples we need
to learn a good deep model. It is very difficult to study this theoretically because of
the non-convex function.

On the other side, it is still difficult to design a deep model for specific tasks. It
seems to be that the common processing unit, like the convolution, exits in deep
models for audio, image, and text data. It is interesting that whether there can
establish a unified framework for any kind of data. Besides, in specific tasks, it
is still a challenge to incorporate domain expertise in these deep models.

In addition, it is still a problem that uses the deep model to represent the
structured semantic information. From an evolutionary point of view, language
ability is far behind the visual and auditory development. So from this perspective,
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it is difficult to process abstract problems of language, and successfully solving this
problem can make the realization of artificial general intelligence.

4.2 Engineering Challenges

In the real-world applications, large-scale parallel computing platform becomes
the first engineering problem to perform massive data training for deep learning
technology. The traditional big data processing platforms, such as Hadoop and
Spark, are not suitable for deep learning as they have high latency. The existing deep
learning technologies usually use the stochastic gradient method (SGD) method to
train. This method itself cannot be parallel between multiple computers. Even using
GPUs, the training time of traditional deep models is still very long. The traditional
CNN model still needs hundreds of hours. With the Internet service development,
the training data is more and more important, and the slow training speed cannot
meet the needs of Internet service application. Parallel computing platforms will
overcome the technical problems of traditional SGD method. With the development
of hardware and platforms, it can be expected in the future that massive training data
will continue to improve the ability of deep learning.

For various tasks, it is challenging to train deep models for high-performance
requirement. The difficulties usually emerge in two aspects. Firstly, the deep
architectures have hundreds of thousands of parameters to train. To obtain these
optimal values, several special skills for training deep models need to be found,
while there do not exist universal training skills for all tasks. For every individual
task, the processing of data and parameters are unique and different from others.
Secondly, the deep models need large-scale samples to learn, while many tasks
cannot provide enough samples. Especially, it is costly for some applications, e.g.,
medical image analysis, to obtain high-quality supervision information. So the
insufficient samples with high-quality supervisions limit the practical application
of deep learning.

5 Conclusions

Deep learning has brought a new wave of machine learning and artificial intelligence
and attracted wide attention from academia to industry. This has also led to the
era of big data with deep learning. In theories, various methods for deep learning
have been proposed for different tasks. In applications, intelligent recognition and
understanding of speech, image, and text have made amazing progresses to promote
artificial intelligence and human-computer interaction. At the same time, complex
systems with the task of learning have also been significantly improved. In a word,
it is the era of deep learning.
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Deep Learning in Object Detection

Yanwei Pang and Jiale Cao

Abstract Object detection is an important research area in image processing and
computer vision. The performance of object detection has significantly improved
through applying deep learning technology. Among these methods, convolutional
neural network (CNN)-based methods are most frequently used. CNN methods
mainly include two classes: two-stage methods and one-stage methods. This chapter
firstly introduces some typical CNN-based architectures in details. After that,
pedestrian detection, as a classical subset of object detection, is further introduced.
According to whether CNN is used or not, pedestrian detection can be divided into
two types: handcrafted feature-based methods and CNN-based methods. Among
these methods, NNNF (non-neighboring and neighboring features) inspired by
pedestrian attributes (i.e., appearance constancy and shape symmetry) and MCF
based on handcrafted channels and each layer of CNN are specifically illustrated.
Finally, some challenges of object detection (i.e., scale variation, occlusion, and
deformation) will be discussed.

1 Introduction

Object detection can be applied into many computer vision areas, such as video
surveillance, robotics, and human interaction. However, due to the factors of
complex background, illumination variation, scale variation, occlusion, and object
deformation, object detection is very challenging and difficult. In the past few
decades, researchers have done a lot of work to push the progress of object detection.
Figure 1 shows mean average precisions (mAP) on PASCAL VOC2007 of some
methods (i.e., [18, 23–25, 51, 52, 63]).

Depending on whether deep learning is used or not, object detection methods
can be divided into two main classes: the handcrafted feature-based methods
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Fig. 1 The progress of object detection on PASCAL VOC2007

[6, 14, 63, 73] and the deep learning-based methods [23, 25, 36, 38, 52]. In the first
decade of twenty-first century, the traditional handcrafted feature-based methods
are main stream. During this period, many famous and successful image feature
descriptors (e.g., SIFT [39], HOG [10], Haar [61], LBP [44], and DPM [19]) are
proposed. Based on these feature descriptors and the classical classifiers (e.g., SVM
and AdaBoost), these methods achieve great success at that time.

However, when it comes to 2010, the performance of objection detection tends to
be stable. Though many methods are still proposed, the performance improvement
is relatively limited. Meanwhile, deep learning begins to show superior performance
on some computer vision areas (e.g., image classification [26, 33, 56, 57]). In 2012,
with the big image data (i.e., ImageNet [13]), deep CNN network (called AlexNet
[33]) achieves the best detection performance on ImageNet ILSVRC2012, which
outperforms the second best method by 10.9% on ILSVRC-2012 competition.

With the great success of deep learning on image classification [13, 26, 56, 57],
researchers start to explore how to improve object detection performance with deep
learning. In the recent few years, object detection based on deep learning has also
achieved a great progress [23, 25, 52]. The mAP of object detection on PASCAL
VOC2007 [17] dramatically increases from 58% (based on RCNN with AlexNet
[23]) to 86% (based on Faster RCNN with ResNet [26]). Currently, the state-of-
the-art methods for deep object detection are based on deep convolutional neural
networks (CNN) [23, 27, 36, 52].

In Sect. 2, some typical CNN architectures of object detection will be introduced.
Pedestrian detection, as a special case of object detection, will be specifically
discussed in Sect. 3. Finally, some representative challenges (i.e., occlusion, scale
variation, and deformation) of object detection will be illustrated in Sect. 4.
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2 The CNN Architectures of Object Detection

According to the pipeline of deep object detection, the methods can be divided
into two main classes in Fig. 2: two-stage methods [11, 23–25, 52] and one-stage
methods [36, 38, 49, 54]. Two-stage methods firstly generate some candidate object
proposals and then classify these proposals into the specific categories. One-stage
methods simultaneously extract and classify all the object proposals. Generally
speaking, two-stage methods have a relatively slower detection speed and higher
detection accuracy, while one-stage methods have a much faster detection speed
and comparable detection accuracy. In the following part of this section, two-stage
methods and one-stage methods are introduced, respectively.

2.1 Two-Stage Methods for Deep Object Detection

Two-stage methods treat object detection as a multistage process. Given an input
image, some proposals of possible objects are firstly extracted. After that, these
proposals are further classified into the specific object categories by the trained
classifier. The benefits of these methods can be summarized as follows: (1) It
reduces a large number of proposals which are put into the following classifier. Thus,
it can accelerate detection speed. (2) The step of proposal generation can be seen
as a bootstrap technique. Based on the proposals of possible objects, the classifier
can focus on the classification task with little influence of background (or easy
negatives) in the training stage. Thus, it can improve detection accuracy. Among
these two-stage methods, the series of RCNN, including RCNN [23], SPPnet [25],
Fast RCNN [24], and Faster RCNN [52], are very representative.

With the great success of deep convolutional neural networks (CNN) on image
classification [33, 56], Girshick et al. [23] initially attempted to apply deep CNN
to object detection and proposed RCNN. Compared to the traditional highly tuned

Fig. 2 Object detection in deep learning can be mainly divided into two different classes: two-
stage methods and one-stage methods
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Fig. 3 The architecture of RCNN. It consists of three steps: proposal generation, CNN feature
computation, and proposal classification. (©[2014] IEEE. Reprinted, with permission, from Ref.
[23])

DPM [19], RCNN improves mean average precision (mAP) by 21% on PASCAL
VOC2010. Figure 3 shows the architecture of RCNN. It can be mainly divided
into three steps: (1) It firstly extracts the candidate object proposals, where the
object proposals are category-independent. They can be extracted by the objectness
methods, such as selective search [60], EdgeBox [75], and BING [9]. (2) For each
object proposal of arbitrary scale, the image data is then warped into a fixed size
(e.g., 227×227) and put into the deep CNN network (e.g., AlexNet [33]) to compute
a 4096-d feature vector. (3) Finally, based on the feature vector extracted by CNN
network, the SVM classifiers predict the specific category of each proposal.

In the training stage, the object proposals should be firstly generated by selective
search for training CNN network and SVM classifiers. The CNN network (e.g.,
AlexNet [33]) is firstly pre-trained on ImageNet [13] and then fine-tuned on specific
object detection dataset (e.g., PASCAL VOC [17]). Because the number of object
category on ImageNet [13] and PASCAL VOC [17] is different, the outputs of
final fully connected layer in CNN network should be changed from 1000 to 21
when fine-tuning on PASCAL VOC. The number of 21 represents 20 object classes
of PASCAL VOC and the background. When fine-tuning the CNN network, the
proposal is labelled as the positive for the matched class if it has the maximum
IoU overlap with a ground-truth bounding box and the overlap is at least 0.5.
Otherwise, the proposal is labelled as the background class. Based on the CNN
features extracted from the trained CNN network, the linear SVM classifiers for
different classes are further trained, respectively. When training the SVM classifier
per class, only the ground-truth bounding box is labelled as the positive. Otherwise,
the proposal is labelled as the negative if it has the IoU overlap below 0.3 with all
the ground-truth bounding boxes. Because the extracted CNN features are too large
to load in memory, the bootstrap technique is used to mine the hard negatives in
training SVM classifiers.

To improve location accuracy of the proposal, the linear regression model is
further trained to predict a more accurate bounding box based on the pool5 features
of trained CNN network (i.e., AlexNet [33]). Assuming that the original bounding
box of the proposal (i.e., P ) is represented by (Px, Py, Pw, Ph), where Px and Py

are the coordinates of the center of the proposal P , Pw and Ph are the width and the



Deep Learning in Object Detection 23

height of the proposal P . The bounding box of corresponding ground-truth (i.e., G)
is represented by (Gx,Gy,Gw,Gh). Then, the regression target for a given (P,G)

can be written as:

tx = (Gx − Px)/Pw, (1)

ty = (Gy − Py)/Ph, (2)

tw = log(Gw/Pw), (3)

th = log(Gh/Ph). (4)

To predict the regression target (i.e., (t̂x, t̂y , t̂w, t̂h)) for a new proposal (i.e., P ),
the pool5 features of proposal represented as φ5(P ) are used. Thus, t̂∗(P ) =
w∗T φ5(P ), where w∗ is a learnable parameter and ∗ means one of x, y,w, h. Given
the training sample pairs {(Pi,Gi)}, where i = 1, 2, . . . , N . w∗ can be optimized
by the regularized least squares objective as follows:

w∗ = arg min
ŵ∗

N∑

i

(t̂∗ − ŵT∗ φ5(P ))2 + λ||ŵ∗||2, (5)

where λ is a regularization factor, which is usually set as 1000. When training the
regression model per class, the proposal that has an IoU overlap over 0.6 with a
ground-truth bounding box is used. Otherwise, the proposal is ignored.

Based on the learned w∗ (i.e., wx ,wy ,ww,wh), the predicted bounding box of
proposal (P ) can be calculated as follows:

P̂x = Pwwx
T φ5(P ) + Px, (6)

P̂y = Phwy
T φ5(P ) + Py, (7)

P̂w = Pw exp(ww
T φ5(P )), (8)

P̂h = Ph exp(wh
T φ5(P )). (9)

The new predicted proposals have more accurate location accuracy.
Though RCNN dramatically improves the object detection performance, the

object proposals should be warped into a fixed size and then put into the CNN
network, respectively. Because the computation of CNN features of different
proposals are not shared, RCNN is very time-consuming. To remove the fixed-size
constraint and accelerate detection speed, He et al. [25] proposed SPPnet. Figure 4
compares RCNN and SPPnet. Instead of cropping or warping the image data of all
the proposals before computing the CNN features, SPPnet firstly computes all the
convolutional features of the whole image and then uses spatial pyramid pooling
to extract the fixed-size features of each proposal. Figure 5 gives the illustrationof
spatial pyramid pooling layer (SPP). Based on the feature maps of last convolutional
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Fig. 4 Comparison of RCNN and SPPnet

Fig. 5 Spatial pyramid pooling layer. The feature maps of a given proposal are pooled into 3 × 3
spatial bins, 2×2 spatial bins, and 1×1 spatial bins, respectively. After that, they are concatenated
into a fixed-size feature vector and fed into two fully connected layers

layer, SPP splits the feature maps of the proposal into 3 × 3 spatial bins, 2 × 2
spatial bins, and 1 × 1 spatial bins, respectively. In each spatial bin, the feature
response value is calculated as the maximum of all the features which belong to the
same spatial bin (i.e., max-pooling). After that, the outputs of 3 × 3 spatial bins,
2 × 2 spatial bins, and 1 × 1 spatial bins are concatenated as a 21c-d feature vector,
where c = 256 is the number of feature maps of the last convolutional layer. After
concatenation, two fully connected layers are connected to this 21c-d feature vector.
For training the CNN network of SPPnet, two different strategies can be adopted:
single-scale training and multi-scale training. Single-scale training uses a fixed-size
input (i.e., 224 × 224) wrapped from the input images. Multi-scale training uses the
images of multiple different sizes, where in each iteration, only the images of one
scale are used for training the CNN network. The size of input image is represented
by s × s, where s is uniformly sampled from 180 to 224. Because the multi-scale
training can simulate the varying sizes of images, it can improve detection accuracy.
For training SVM classifiers, the specific steps are the same as that of RCNN. In
the test stage, the image of arbitrary scale can be put into SPPnet. Compared to
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RCNN, SPPnet has the following advantages: (1) All the candidate proposals share
all the convolutional layers before the fully connected layers. Thus, it has faster
detection speed than RCNN. (2) SPPnet makes use of multilevel spatial information
of objects, which is more robust to object deformations. Meanwhile, multi-scale
training can enlarge the training data. Thus, it has the higher detection accuracy
than RCNN.

Though SPPnet accelerates detection speed by sharing computation of all the
convolutional layers, the training of SPPnet is still a multistage process similar
to RCNN. Namely, they need to, respectively, fine-tune the CNN network on
object detection dataset, train multiple SVM classifiers, and learn the bounding
box regressors. To fix the disadvantages of RCNN and SPPnet, Girshick [24]
further proposed Fast RCNN, which integrates the training of CNN networks, object
classification, and bounding regression into a unified framework. Figure 6 shows
the architecture of Fast RCNN. Generally, Fast RCNN firstly calculates all the
convolutional layers of the whole image. For each proposal, Fast RCNN uses a
ROI pooling layer to extract the fixed-size feature maps from the feature maps of
last convolutional layer, then feds the fixed-size feature maps to two fully connected
layers, and finally generates two sibling branches with fully connected operation for
object classification and box regression. For object classification, it has c+1 outputs
by softmax, where c means the number of object classes. For box regression, it has
4c outputs, where each four outputs correspond to the box offset per class. The ROI
pooling layer warps the feature maps of object proposals into the fixed-size spatial
bins (e.g., 7 × 7) and uses max-pooling operation to calculate the feature responses
in each bin. Because Fast RCNN has two sibling outputs for object classification
and box regression, the multitask training loss (i.e., L) is the joint of classification
loss (i.e., Lcls) and regression loss (i.e., Lloc) for each ROI as follows:

L(p, t) = Lcls(p, c) + λ[c ≥ 1]Lreg(t, v), (10)

where λ balances classification loss and regression loss and [c ≥ 1] is equal to 1 if
the c ≥ 1 and 0 otherwise. Namely, the ROI belonging to background class does

Fig. 6 The architecture of Fast RCNN. Compared to RCNN and SPPnet, it joins the classification
and regression into a unified framework. (©[2015] IEEE. Reprinted, with permission, from Ref.
[24])
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not contribute to the regression loss. The classification loss Lcls(p, c) = − log pc is
the log loss for true class c. The regression loss Lreg is defined by the ground-truth
regress target (i.e., (vx, vy, vw, vh)) and a predicted target (i.e., (ux, uy, uw, uh)) as
follows:

Lloc(t, v) =
∑

i∈x,y,w,h

smoothL1(ti , vi), (11)

where

smoothL1(x) =
{

0.5x2, if |x| < 1,

|x| − 0.5, otherwise.
(12)

Compared to L2 loss used in RCNN and SPPnet, the L1 loss is more robust to
outliers.

In the training stage, the CNN network is firstly initialized from the pre-trained
ImageNet network and then trained with back-propagation in the end-to-end way.
The mini-batches (i.e., R) are sampled from N images, where each image provides
the R/N proposals. The proposals from the same image share all the convolutional
computation. Generally, N is set as 2 and R is set as 128. To achieve scale
invariance, two different strategies are used: brute-force approach and multi-scale
approach. In brute-force approach, the images are resized to a fixed size in the
training and test stages. In the multi-scale approach, the images are randomly
rescaled to a pyramid scale in each iteration of training stage. In the test stage, the
multi-scale images are put into the trained network, respectively, and the detection
results are combined together by NMS.

For proposal generation, RCNN [23], SPPnet [25], and Fast RCNN [24] are all
based on selective search. Selective search [60] uses the handcrafted features and
adopts the hierarchical grouping strategies to capture all possible object proposals.
Generally, it runs at 2 s per image on the common CPU. The detection network
of Fast RCNN can run at about 100 ms per image on the GPU. Thus, proposal
generation of Fast RCNN is more time-consuming compared to the detection
network of Fast RCNN. Though selective search can be also re-implemented on
the GPU, proposal extraction is still isolated from detection network of Fast RCNN.
Thus, region proposal extraction becomes the bottleneck of Fast RCNN on object
detection. To solve this problem, Ren et al. [52] proposed Faster RCNN. It integrates
proposal generation, proposal classification, and proposal regression into a unified
network. Figure 7 shows the network architecture of Faster RCNN. It consists of two
modules. One module is called region proposal network (i.e., RPN), which is used
to extract candidate object proposals. Another module is Fast RCNN, which is used
to classify these proposals into the specific categories and predict more accurate
proposal locations. The two modules share the same base sub-network. On the
one hand, RPN can generate the candidate object proposals by deep convolutional
features; it can improve proposal location quality. On the other hand, Faster RCNN
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Fig. 7 The architecture of
Faster RCNN. Proposal
generation (RPN) and
proposal classification (Fast
RCNN) are integrated into a
unified framework

is an end-to-end framework with the multitask loss. Compared to Fast RCNN, Faster
RCNN can achieve better detection performance with much fewer proposals.

RPN slides a small network over the output layer of base network. The small
network consists of one 3×3 convolutional layer and two sibling 1×1 convolutional
layers for box regression and box classification. Box classification is class-agnostic.
For each sliding window location, RPN predicts multiple proposals based on the
anchors of different aspect ratios and scales. Assuming that the number of anchors
is k, the box regression layer has 4k outputs for each sliding window, and the box
classification layer has 2k outputs for each sliding window. Generally speaking,
three different aspect ratios of {1 : 2, 1 : 1, 2 : 1} and three different scales of
{0.5, 1, 2} are used. Thus, there are nine (i.e., 3 × 3) anchors (i.e., k = 9) at each
sliding window. The multitask loss of RPN consists of two parts: classification loss
Lcls and regression loss Lreg , which can be written as follows:

L(p, v) = 1

Ncls

∑

i

Lcls(pi, ci) + λ
1

Nreg

∑

i

[ci ≥ 1]Lreg(ti , vi) (13)

where Ncls (256) and Nreg (about 2400) are the terms to, respectively, normalize
classification loss and location loss, λ balances classification loss and regression
loss, and [ci ≥ 1] is 1 if ci ≥ 1 or 0 otherwise. The classification loss and regression
loss are the same as that of Fast RCNN. Two following kinds of anchors are labelled
as the positives: (1) the anchor with the highest IoU overlap with a ground-truth
bounding box and (2) the anchor that has an IoU overlap over 0.7 with any ground-
truth bounding boxes. The anchors are labelled as the negatives if the anchors are
not labelled as the positives and they have the IoU overlap under 0.3 with all ground-
truth bounding boxes.
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Because RPN and Fast RCNN share the same base network, thus they cannot
train independently. Faster RCNN provides three different ways to train RPN and
Fast RCNN in the unified network: (1) Alternating training. RPN is firstly trained.
Based on the proposals generated by RPN and the filter weights of RPN, Fast
RCNN is then trained. Two above steps are iterated for two times. (2) Approximate
joint training. RPN and Fast RCNN networks are seen as a unified network. The
loss of the unified network is the joint of RPN loss and Fast RCNN loss. In each
iteration of training stage, the proposals generated by RPN are treated as the fixed
proposals when training Fast RCNN detector. Namely, the derivative of proposals
coordinates are ignored. (3) Non-approximate joint training. The difference between
approximate joint training and non-approximate joint training is that the derivative
of proposal coordinates should be considered. Because the standard ROI pooling
layers are not differentiable for proposal coordinate, the first two ways are usually
used.

Generally, the above state-of-the-art object detection methods (i.e., RCNN [23],
SPPnet [25], Fast RCNN [24], and Faster RCNN [52]) use the pre-trained CNN
network on image classification dataset (i.e., ImageNet [13]). Dai et al. [11] argued
that this design has the dilemma in some degree. Generally, deep CNN network for
image classification usually favors translation invariance, while deep CNN network
for object detection needs to be translation variance. To address the above dilemma
between image classification and object detection, Dai et al. [11] proposed R-FCN.
It encodes the object position information by the position-sensitive ROI pooling
layer (PSROI) for the following Fast RCNN subnet. Figure 8 shows the architecture
of R-FCN. Region proposal generation is the same as Faster RCNN. Based on the
output layer of original base network, R-FCN generates the new k ∗ k position-
sensitive convolutional banks. The convolutional banks correspond to the k × k

spatial grids, respectively. In each convolutional bank, there are c + 1 convolutional
layers (c means the number of object categories, and +1 means the background
category). Namely, k ∗ k ∗ (c + 1) convolutional feature maps are generated. For

Fig. 8 The architecture of R-FCN. Position information is encoded into the network by position-
sensitive ROI pooling (PSROI)
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a given proposal, position-sensitive ROI pooling layer generates the k × k score
maps from position-sensitive feature maps, where the response of (i, j)-th bin (i.e.,
r(i, j)) pools over (i, j)-th positive-sensitive score maps as follows:

rr∗(i, j) =
∑

(x,y)∈bin(i,j)

zi,j,c∗(x + x0, y + y0)/n, (14)

where zi,j,c∗ is one of k ∗ k ∗ (c + 1) feature maps, (x0, y0) denotes top-left corner
of a ROI proposal, n is the number of pixels in the bin(i, j), rc∗(i, j) is the pooled
response of bin(i, j) for c∗-th category. After that, average pooling or max-pooling
is conducted to output the scores for object classification. For box regression, sibling
4 ∗ k ∗ k convolutional feature maps are also generated, and then position-sensitive
ROI pooling operation is conducted to construct four feature maps with the size of
k × k. Finally, 4-d vector of the box parameter is calculated by the average voting.
For example, if k is set as 3, it means that the position information is encoded as
{top − lef t, top − center, . . . , bottom − right}.

The loss of R-FCN is similar to that of Faster RCNN. Please note that the
proposal location predications per category in Faster RCNN are based on different
outputs of box regression layer, while all the proposal location predications in R-
FCN share the same output of box regression layer. R-FCN is fully connected
networks, which almost shares all the CNN computation of the whole image.
Thus, it can achieve the competitive detection accuracy and faster detection speed
compared to Faster RCNN.

Most methods of object detection only predict object locations by bounding
box and do not provide the more accurate segmentation information. In recent few
years, some researchers proposed instance segmentation, which usually contains
object detection and segmentation. Mask RCNN is a famous method for instance
segmentation and object detection. Figure 9 shows the architecture of Mask RCNN.
Mask RCNN incorporates instance segmentation and object detection into a unified
framework based on Faster RCNN architecture. Specifically, it adds an extra mask

RoIAlignRoIAlign

class
box

convconv convconv

Fig. 9 The architecture of Mask RCNN. Apart from detection branch of Faster RCNN, the extra
branch of mask segmentation is added. (©[2017] IEEE. Reprinted, with permission, from Ref.
[27])
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branch to predict the mask of object aside from the branch for object classification
and box regression. The mask branch has c binary masks with the size of m × m.
c means the number of object categories. The multitask loss of Mask RCNN on
each sampled ROI is the joint of classification loss, regression loss, and mask loss.
It can represented as L = Lcls + Lreg + Lmask . The losses of Lcls and Lreg are the
same as that of Faster RCNN. For an RoI proposal associated with the ground-truth
class c∗, Lmask is only defined on the c∗-th mask, and other mask outputs do not
contribute to the loss. Based on this design, it allows the network to generate masks
for every class without competition among classes. In test stage, the output mask of
object is determined by the predicted category of classification branch. To extract
a small feature map for each ROI, ROI pooling quantizes the floating number of
ROI proposal location into the discrete values. The quantization of ROI pool causes
the misalignment between the input and the output, which has a negative effect on
instance segmentation. To solve this problem, ROIAlign is proposed. It uses bilinear
interpolation to compute the feature values of four corner locations in each spatial
bin and then aggregates the feature response of each bin by max-pooling. Based on
multitask learning, Mask RCNN can achieve state-of-the-art performance on object
detection and instance segmentation. It means that joining the instance segmentation
task with object detection task can also help improve detection performance.

Some other improvements of two-stage methods are also proposed. Yang et al.
[67] proposed a “divide and conquer” solution-based Fast RCNN, which firstly
rejects the background from the candidate proposals and then uses the c trained
category-specific network to judge the proposal category. Based on the classification
loss of proposals, Shrivastava et al. [55] proposed online hard example mining to
select the hard samples. Gidaris et al. [22] proposed LocNet to improve location
accuracy, which localizes the bounding box by the probabilities on each row and
column of a given region. Bell et al. [1] proposed to use the contextual information
and skip-layer pooling to improve detection performance. Kong et al. [31] proposed
to use skip-layer connection for object detection. Zagoruyko et al. [70] proposed to
use multiple branches to extract object context of multiple resolutions. Yu et al. [69]
proposed dilated residual networks to enlarge the resolution of output layer without
reducing the respective field.

2.2 One-Stage Methods for Deep Object Detection

Different from the multistage process of two-stage methods, one-stage methods aim
to simultaneously predict object category and object location. Compared to two-
stage methods, one-stage methods have much faster detection speed and comparable
detection accuracy. Among the one-stage methods, OverFeat [54], YOLO [49], SSD
[38], and RetinaNet [36] are the representative methods.

YOLO [49] divides the input image into the k × k grids. Each grid cell predicts
B bounding boxes with objectness scores and c conditional class probabilities. The
predictions of each bounding box are (x, y,w, h, s), where (x, y,w, h) gives the
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location of bounding box and s is the confidence objectness score of bounding box.
Thus, the output layer has the size of n × n × (5B + c). Based on bounding box
prediction and corresponding class prediction, YOLO can simultaneously give the
object probability and the category probability of each cell. Figure 10 shows the
architecture of YOLO. It consists of 24 convolutional layers and 2 fully connected
layers. To accelerate detection speed, the alternating 1 × 1 convolutional layers are
used in some middle layers. The input image size of YOLO is fixed (i.e., 448×448).
On PASCAL VOC, B is set to 2, and c is 20. Thus, the output layer for PASCAL
VOC has the size of 7 × 7 × 30. The loss of YOLO is the joint of classification loss,
location loss, and detection loss.

In the training stage, the first 20 convolutional layers of YOLO are firstly pre-
trained, and the whole network of YOLO is then fine-tuned on the dataset of object
detection. YOLO uses sum-squared error for optimization. Because there are many
grid cells that do not contain objects, it will affect the gradient from the cells that
contain objects. Thus, the weight of box location predication loss is increased, while
the weight of box predication loss is decreased. For each bounding box, it is assigned
to the ground-truth with which it has the highest IoU overlap.

SSD [38] is a single-shot detector for generic object detection. The base network
is based on VGG16 [56]. Following the base network, several convolutional
layers are added to generate more convolutional layers (i.e., C6-C11) of different
resolution. After that, it uses multiple convolutional layers of different resolution
to predict objects of different scales. Specifically, for the output convolutional layer
of a given resolution, it firstly uses a 3 × 3 convolutional filter to generate the new
feature maps and then predicts object category scores and object locations on the
new feature maps. Figure 11 shows the architecture of SSD. Assuming that the
number of object classes is c and each feature map predicts k objects, it will result

Fig. 10 The architecture of YOLO. (©[2016] IEEE. Reprinted, with permission, from Ref. [49])
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Fig. 11 The architecture of SSD. The base network is VGG16. (Reprinted from Ref. [38], with
permission of Springer)

(c + 4) ∗ k ∗ m ∗ n output vector for the given m × n feature maps. The objective
loss of SSD is a weighted sum of location loss and confidence loss similar to that of
Fast RCNN.

For multi-scale object detection based on different convolutional layers, the
anchor scale for each convolutional layer is computed as:

sk = smin + smax − smin

K − 1
(k − 1), k ∈ [1,K], (15)

where smin and smax are 0.2 and 0.9 and K means the number of different
convolutional layers used for prediction. Aspect ratios of anchors are set as
{1, 2, 3, 1/2, 1/3}. For the aspect ratio of 1, the anchor with extra scale of√

sk ∗ sk+1 is also added. Thus, there are six default boxes per feature map location.
The default anchor is labelled as the positive for the matched class if it has the
highest Jaccard overlap with a ground-truth or it has the Jaccard overlap over 0.5
with the ground-truth. Namely, SSD can predict high scores for multiple overlapping
anchors. Generally, the negative and positive training samples have a significant
imbalance. The bootstrap technique is used. According to the highest confidence
loss, the anchors of negatives are sorted. Then, some top negatives are used so that
the ratio of positives and negatives is about 1:3. Compared to YOLO, SSD makes
full use of multi-scale information. Thus, it has a faster detection speed and higher
detection accuracy.

Though one-stage methods (e.g., YOLO and SSD) have the faster detection
speed than two-stage methods, most state-of-the-art methods for object detection
are still two-stage. Lin et al. [36] investigated why one-stage methods have the
inferior detection performance compared to the two-stage methods. It was found
that the extreme positive and negative imbalance is the main reason that causes
the inferior performance of one-stage methods. To solve the imbalance of positives
and negatives, bootstrap technique is usually used to choose some hard negatives.
However, it will ignore the information of easy negative. If all the negatives are
used, the weights of easy negatives will be large which causes the worse detection
performance. To solve this problem, RetinaNet is proposed. RetinaNet adopts the
focal loss for object detection based on FPN architecture. Focal loss can be also
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seen as a bootstrap technique. In the training stage, it (i.e., FL(pt )) adds a factor to
the cross entropy loss as follows:

FL(pt ) = −(1 − pt )
γ log(pt ) (16)

where

pt =
{

p, if c = 1,

1 − p, otherwise,
(17)

where p is the probability of the anchor which belongs to class c = 1 and γ > 0.
Based on this operation, it can enlarge the weights of hard negative samples and
reduce the weights of easy samples. Namely, it can pay more attention on the hard
negatives and reduce the influence of easy negatives. Moreover, α-balanced variant
of focal loss is further proposed as follows:

FL(pt ) = −α(1 − pt )
γ log(pt ), (18)

where α belongs to [0,1]. With the α-balanced variant of focal loss, it can further
improve detection accuracy.

Figure 12 shows the architecture of RetinaNet. The base network is FPN, which
constructs multiple feature maps. For box classification and box regression, four
3×3 convolutional layers are attached to the output layer of FPN, respectively. After
that, 3×3 convolutional layers with K ∗C filters are used for box classification, and
3 × 3 convolutional layers with 4 ∗ K filters are used for box regression. Namely,
one position of each layer has K anchors, and there are C classes. The anchors are
assigned to the matched class if it has the highest IoU overlap with a ground-truth,
and the IoU overlap is over 0.5. The anchor is assigned to background if it has the
highest IoU overlap below 0.4 with a ground-truth. The other anchors are ignored in
the training stage. The anchors have areas of 32×32 to 512×512 on pyramid levels
P3 to P7. The aspect ratios for each feature map are set as {1/2, 1, 2}, respectively.
Focal loss can make full use of all the information of negatives in the training stage,
while the easy negatives have the relatively small influence. Compared to SSD, FPN
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Fig. 12 The architecture of RetinaNet. The base network is FPN with ResNet. (©[2017] IEEE.
Reprinted, with permission, from Ref. [36])
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uses the top-down structure to enhance the semantic levels of high-resolution and
low-level semantic convolutional layers.

Some other one-stage methods are also proposed. Najibi et al. [42] proposed
to initially divide the input image into the multi-scale regular grids and iteratively
update the location of these grids to be toward the objects. Based on SSD, Ren
et al. [50] further proposed to use the recurrent rolling convolution to add deep
context information. Fu et al. [20] proposed to use deconvolutional layer after SSD
to incorporate the object context.

3 Pedestrian Detection

As the canonical and important case of object detection, pedestrian detection can be
applied into many areas (autonomous driving, human-computer interaction, video
surveillance, and robotics). In the past 10 years, pedestrian detection has also
achieved great success [3]. Figure 13 shows the progress of pedestrian detection
Caltech pedestrian dataset. According to whether using CNN, pedestrian detection
can be mainly classified into two classes: handcrafted feature-based methods and
CNN-based methods.

3.1 Handcrafted Feature-Based Methods for Pedestrian
Detection

In 2004, Viola and Jones [61] proposed robust real-time face detection, which
uses cascaded AdaBoost to learn strong classifier from the candidate Haar feature
pool. In 2005, Dalal and Triggs [10] proposed histograms of gradient (HOG) for

Fig. 13 The progress of pedestrian detection on Caltech pedestrian dataset
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pedestrian detection, which dramatically improves the performance of pedestrian
detection. Inspired by the above two ideas, Dollár et al. [14] integrated them into
pedestrian detection, which is called integral channel features (i.e., ICF). The top
row of Fig. 14 shows the architecture of ICF. It firstly converts the original input
image into ten feature channels (i.e., HOG+LUV), then extracts the features of local
pixel sum in each channel, and finally learns the strong classifier from the candidate
feature pools by cascaded AdaBoost. HOG+LUV consists of six histograms of
gradient, one gradient magnitude, and the LUV color channels. The features of
local pixel sum are efficiently calculated by using integral images. To accelerate
detection speed, Dollár et al. [16] further proposed aggregated channel features (i.e.,
ACF). It downsamples the original feature channels (i.e., HOG+LUV) four times
and uses every single pixel value in each channel as the candidate feature. After
that, some variants of ICF are also proposed. To avoid the randomness of candidate
features in ICF, SquaresChnFtrs [2] deterministically generates candidate features
by calculating the pixel sum features of all the squares inside each channel. To
reduce the local correlation in each feature channel, LDCF [43] convolves the filters
learned by PCA technique with feature channels (i.e., HOG+LUV) to generate new
feature maps.

By observing and summarizing ICF and the variants of ICF, Zhang et al. [73]
generalized these methods into a unified framework. It is called filtered channel
features (FCF). The bottom row of Fig. 14 shows the pipeline of filtered channel
features (FCF). It firstly converts the input image to the HOG+LUV channels, then
convolves the filter bank with HOG+LUV to generate the new feature channels

Fig. 14 Integral channel features (ICF) and filtered channel features (FCF). (©[2015] IEEE.
Reprinted, with permission, from Ref. [73])
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where each pixel value in each channel is set as candidate feature, and finally learns
the strong classifier by decision forest from the candidate feature pool. The filter
bank can be different types, including SquaresChntrs filters, Checkerboards filters,
Random filters, Informed filters, and so on. Thus, ICF [14], ACF [16], SquaresChn-
trs [2], and LDCF [43] can be seen as the special cases of FCF. It is found that based
on Checkerboards filters, FCF can outperform ICF, ACF, SquaresChntrs, and LDCF
on Caltech pedestrian dataset [15] and KITTI benchmark [21].

These above methods make great success on pedestrian detection. However,
the design of handcrafted features does not consider pedestrian inherent attributes.
Zhang et al. [72] treated the pedestrians as three parts (i.e., head, upper body,
and legs) and designed the Haar-like features (i.e., InformedHaar) for pedestrian
detection. However, it still does not make full use of pedestrian attributes. To make
better use of pedestrian attributes for pedestrian detection, Cao et al. [6, 7] further
proposed two non-neighborhood features inspired by appearance constancy and
shape symmetry of pedestrians.

Generally, pedestrian can be seen as three parts: head, upper body, and legs.
Usually, the appearance of these parts is constancy and contrast to the surrounding
background. Based on appearance constancy, side-inner difference features (SIDF)
are proposed. Figure 15 gives the illustration of side-inner difference features
(SIDF). Patch B is randomly sampled between patch A and the symmetrical patch
A′. The height of patch B is the same as that of patch A, while the width of patch B

can be different from patch B. The direction of patch A can be horizontal or vertical,
while the sizes of patch A can be arbitrarily various in the maximum square of 8×8
cells, where each cell is 2 × 2 pixels. SIDF (i.e., f (A,B)) calculates the difference
between the local patch (i.e., patch A) in background and the local patch (i.e., patch
B) in pedestrians as:

f (A,B) = SA

NA

− SB

NB

, (19)

Fig. 15 Illustration of side-inner difference features (SIDF). SIDF calculates the difference of
patch A and patch B, where patch B is randomly sampled between patch A and the symmetrical
patch A′
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where SA and SB are, respectively, the pixel sums in patch A and patch B and NA

and NB means, respectively, the pixel number in patch A and patch B.
Meanwhile, pedestrians usually appear stand-up. Thus, the shape of pedestrian

is loosely symmetrical in the horizontal direction. Based on shape symmetry,
symmetrical similarity features (SSF) are proposed. Figure 16 shows symmetrical
similarity features (SSF). Patch A and Patch A′ are two symmetrical patches on
pedestrians. The direction of patch A can be horizontal or vertical, and the size
of patch A can be changed from 6 × 6 cells to 12 × 12 cells, where each cell is
2 × 2 pixels. SSF (i.e., f (A,A′)) calculates the similarity between two symmetrical
patches (i.e., patch A and patch A′) of pedestrians as follows:

f (A,A′) = |fA − fA′ | = | SA

NA

− SA′

NA′
|, (20)

where fA and fA′ represent the features of patches A and A′. Because the
shape symmetry of pedestrians is not very strict, max-pooling technique is further
incorporated to improve the robustness of the features. Specifically, the feature value
(i.e., fM(A)) of patch A is represented by the maximum feature of three sub-patches
in patch A (i.e., patch A1, patch A2, and patch A3) as follows:

fM(A) = max
i=1,2,3

Si

Ni

. (21)

The three sub-patches are randomly sampled in patch A or patch B. Thus, they can
have different aspect ratios, positions, and sizes. Based on it, SSF (i.e., f (A,A′))
can be rewritten by:

f (A,A′) = |fM(A) − fM(A′)|. (22)

Fig. 16 Illustration of symmetrical similarity features (SSF). SSF abstracts the similarity between
patch A and the symmetrical patch A′. Each patch is represented by three random sub-patches
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Because SIDF and SSF are calculated by non-neighboring patches, they are
called non-neighboring features (NNF). To achieve state-of-the-art detection per-
formance, neighboring features (NF) are also designed for pedestrian detection.
Figure 17 shows the neighboring features, which contain local mean features and
neighboring difference features. In Fig. 17a, the sizes and aspect ratios of local mean
features can be changed. In Fig. 17b, partition line is where two neighboring patches
intersect. The direction of partition line can be horizontal or vertical. The location
of partition line can be also various.

Based on Caltech2x training set, the detectors which select features from NF,
NF+SIDF, NF+SSF, or NNNF are trained. Level-2 2048 decision forests are used.
Table 1 compares NF, NF+SIDF, NF+SSF, and NNNF. It can be seen with non-
neighboring features (SIDF or SSF); NF+SIDF or NF+SSF can outperform NF
by 1.83% or 2.30%. When SIDF and SSF are both combined with NF, NNNF
outperforms NF by 4.44%. Figure 18 shows the ratios of NF, SSF, and SIDF
in NNNF. It can be seen that 69.97% features are NF, 11.34% features are
SSF, and 18.69% features are SIDF. Namely, about 70% features are neighboring
features, and about 30% features are non-neighboring features. It demonstrates the

Fig. 17 Illustration of neighboring features. (a) is the local mean feature, and (b) is the
neighboring feature

Table 1 Comparison of
log-average miss rates on
Caltech test set

Method MR Δ MR

NF 27.50% N/A

NF+SIDF 25.67% +1.83%

NF+SSF 25.20% +2.30%

NNNF 23.06% +4.44%
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Fig. 18 Among all the selected features in NNNF, about 30% are non-neighboring features, and
70% are neighboring features. Several representative non-neighboring features and neighboring
features are also shown

Table 2 Average precision
(AP) of some methods
without using CNN on KITTI
test set

Method Easy Moderate Hard

ACF [16] 44.49% 39.81% 37.21%

SquaresChnFtrs [2] 57.33% 44.42% 40.08%

SpatialPooling+ [46] 65.26% 54.49% 48.60%

Checkerboards [73] 67.75% 56.75% 51.12%

NNNF-L4 69.16% 58.01% 52.77%

effectiveness of proposed non-neighboring features. Some representative features
are also shown in Fig. 18.

To compare with the state-of-the-art methods, NNNF with 4096 level-4 decision
forests are trained on Caltech10x training set. It is called NNNF-L4. Figure 19
shows ROC on Caltech test set. It can be seen that NNNF outperforms Checker-
boards [73] by 2.27%. Table 2 shows the average precision (AP) on KITTI test set.
It can be seen that NNNF outperforms Checkerboards by 1.36% on moderate test
set. Namely, among the methods without using CNNN, NNNF achieves the state-of-
the-art performance by combining NNF with neighboring features (NF) on Caltech
pedestrian dataset and KITTI benchmark.
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Fig. 19 ROC on Caltech test set (reasonable) of some methods without using CNN

3.2 CNN-Based Methods for Pedestrian Detection

With the success of convolutional neural networks on many fields of computer
vision, researchers also explored how to apply CNN on pedestrian detection for
improving detection performance. As an initial attempt, Hosang et al. [28] studied
the effectiveness of CNN for pedestrian detection. In [28], it firstly extracts the
candidate pedestrian proposals by using the handcrafted feature-based method (i.e.,
SquaresChnFtrs [2]) and then uses a small network (i.e., CifarNet) or a large network
(i.e., AlexNet [33]) to classify these proposals. The traditional pedestrian detection
usually uses a fixed-size detection window (i.e., 128 × 64). Following it, the input
size of CNN network (i.e., CifarNet and AlexNet) is changed to be 128 × 64, and
the outputs of CNN network are changed to be 2 (i.e., pedestrian or non-pedestrian).
In the training stages, the proposal with an IoU overlap over 0.5 with a ground-
truth bounding box is labelled as the positive, and the proposal with the IoU below
0.3 with all the ground-truth bounding boxes is labelled as the negative. The ratio
of positives and negatives in the mini-batch is set as 1:5. Experimental results on
Caltech pedestrian dataset demonstrate that the ConvNets can achieve the state-of-
the-art performance, which is useful for helping pedestrian detection.

After that, pedestrian detection based on CNN achieves great success. Sermanet
et al. [53] proposed to merge the down-sampled 1-st convolutional layer with
2-st convolutional layer to add the global information for pedestrian detection.
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Instead of using handcrafted feature channel (HOG+LUV), Yang et al. [66]
proposed convolutional channel features (CCF). CCF treats the feature maps of
last convolutional layer as the feature channels and uses decision forests to learn
the strong classifier. Because of the richer representation ability of CNN features,
CCF achieves state-of-the-art performance on pedestrians detection. Zhang et al.
[71] proposed to use RPN to extract candidate features and use decision forest to
classify these proposals. Zhang et al. [74] proposed to improve the performance
of Faster RCNN on pedestrian detection by some specific tricks (e.g., quantized
RPN scales and the upsampled input image). To reduce the computation complexity,
Cai et al. [4] proposed the complexity-aware cascaded detector (i.e., CompACT),
which integrates the features of different complexities together. Complexity-aware
cascaded detector aims to achieve a best trade-off between classification accuracy
and computation complexity. In the training stage, the loss of CompACT is the joint
of classification loss and computation complexity loss. Based on CompACT, the
first few stages of strong classifier learn the more features of lower computation
complexity, and the last few stages of strong classifier learn the more features
of higher computation complexity. To further improve detection performance, the
CNN features of very highest complexity are embedded into the last stage of
CompACT, which is called CompACT-Deep. Because most detection proposals are
rejected by the first few stages, only the CNN features of very few proposals need to
be calculated. Thus, CompACT-Deep can improve detection performance without
increasing much computation cost.

Some methods exploit to use the extra feature information to help pedestrian
detection. Tian et al. [59] proposed to join pedestrian detection with semantic tasks,
including scene attributes and pedestrian attributes, into the TA-CNN. The attributes
are transferred from existing scene datasets. TA-CNN is learned by iterating
two tasks, respectively. Mao et al. [41] proposed to apply some extra features
to deep pedestrian detection. Some extra feature channels are used as the extra
input channels for CNN detectors. The extra feature channels contain some low-
level semantic feature channels (e.g., gradient and edge), some high-level sematic
feature channels (e.g., segmentation and heatmap), depth channels, and temporal
channels. It is found that segmentation and edge used as the extra input channels
can significantly help improve pedestrian detection. Based on this observation, Mao
et al. [41] further proposed HyperLearner. It consists of four different modules: base
network, channel feature network (CFN), region proposal network, and Fast RCNN.
Base network and feature, region proposal network, and Fast RCNN are the same
as original Faster RCNN. Multiple convolutional layers of base network firstly go
through two 3 × 3 convolutional layers and then upsample the same size of conv1.
After that, the output layers are appended together to generate the aggregated feature
maps. The aggregated feature maps are fed into CFN for channel feature prediction
and concatenated with the output layer of base network. In the training stage, feature
channel generation network is supervised by the semantic segmentation ground-
truth. The loss of HyperLearner is the joint of Faster RCNN loss and segmentation
loss. In the test stage, feature channel generation network outputs the predicted
feature channel map (e.g., semantic segmentation map). Before Fast RCNN subnet,
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ROI pooling layer pools over the concatenation of output layer of base network
and aggregated features maps of CFN. With the help of extra feature information,
HyperLearner improves detection performance.

Generally, CNN-based methods for pedestrian detection have the superior
detection performance. However, the computation complexity of these methods
is very high. Thus, these methods will be very slow when they run on the
common CPU. Meanwhile, in many situations the computing device only has
the CPU. Thus, speeding up CNN-based methods on CPU is very important and
necessary. Compared to CNN-based methods, the traditional handcrafted feature-
based methods are relatively simple and have the faster detection speed on the
CPU. To accelerate detection speed on the common CPU, Cao et al. [8] proposed
to integrate the traditional channel features and each layer of CNN into a multiple
feature channels. Figure 20 shows the architecture of MCF. Firstly, multiple feature
channels are constructed by HOG+LUV and each channel of CNN (e.g., AlexNet
[33] and VGG16 [56]). Based on the multiple feature channels, the candidate
features are further extracted. Finally, multistage cascade AdaBoost is learned
from candidate features of corresponding layers. On the one hand, based on the
handcrafted feature channels and each layer of CNN, MCF can learn more abundant
features to improve detection performance. On the other hand, MCF can quickly
reject many negative detection windows and thus reduce the computation of the
remaining CNN layers. As a result, it can accelerate detection speed.

Table 3 shows the specific parameters of multilayer feature channels based on
HOG+LUV and VGG16. It consists of six layers (i.e., L1, L2, . . ., L6). L1 is the
handcrafted feature channels (i.e., HOG+LUV). The size of HOG+LUV is 128×64.
L2–L6 correspond to multiple convolutional layers of VGG16 (i.e., C1–C5). The
sizes of L2–L6 are 64×32, 32×16, 16×8, 8×4, and 4×2, respectively. The numbers
of channels in L1–L6 are 10, 64, 128, 256, 512, and 512, respectively. In fact, only
part convolutional layers can be used to construct multilayer feature channels. For

Fig. 20 The architecture of MCF. It consists of three parts: multiple feature channels, feature
extraction, and multistage cascade AdaBoost
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Table 3 Multilayer image channels. The first layer is HOG+LUV, and the remaining layers are
the convolutional layers (i.e., C1 to C5) in VGG16

Layer L1 L2 L3 L4 L5 L6

Name HOG VGG16

LUV C1 C2 C3 C4 C5

Size 128 × 64 64 × 32 32 × 16 16 × 8 8 × 4 4 × 2

Num 10 64 128 256 512 512

Fig. 21 Feature extraction in L1 and L2–L6. (a) is NNNF for L1, (b) is the single pixel for L2–L6

example, a five-layer feature channels can be generated by HOG+LUV and C2–C5
of VGG16. C1 of VGG16 is not used.

Feature extraction methods used in multilayer feature channels are different.
For L1 (i.e., HOG+LUV), many successful methods can been proposed (e.g., ACF
[6, 16, 43, 72, 73]). ACF [16] and NNNF [6] are selected for feature extraction in
L1. ACF [16] has a very fast detection speed, while NNNF [6, 7] has a very good
detection speed performance and relatively fast detection speed. For L2–L6 (CNN
channels), the number of channels is relatively large. If the relative complexity
features are used, the computation cost will be large. Thus, only the single pixel
value is used as the candidate feature in L2–L6 for the computation efficiency.
Figure 21 shows the feature extraction in L1 and L2–L6.

Based on multilayer image channels and candidate features extracted in each
layer, multistage cascade AdaBoost is used to learn the strong classifier. Rows 2–
4 in Fig. 15 shows the explanations of multistage cascade AdaBoost. The weak
classifiers in each stage are learned from the candidate features extracted from
corresponding feature channels. The strong classifier (i.e., H(x)) of multistage
cascade AdaBoost can be written as follows:

H(x) =
k1∑

j=1

α
j

1h
j

1(x)+ . . .+
ki∑

j=1

α
j
i h

j
i (x)+ . . .+
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j
i (x),

(23)
where x means the detection windows, h

j
i (x) is the j -th weak classifier in stage i,

α
j
i is th weight of h

j
i (x), and k1, k2, . . . , kN are the number of weak classifiers in

each stage. How to set k1, k2, . . . , kN is an opening problem. Generally speaking,
one empirical settings are used as follows:
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k1 = NAll/2,

k2 = k3 = . . . = kN = NAll/(2 × (N − 1)),
(24)

where NAll is the total number of weak classifiers in the strong classifier, which is
usually set as 2048 or 4096.

Figure 22 shows the test process of MCF. In the test stage, the channels of
HOG+LUV are firstly computed. Detection widows are generated by scanning the
whole input image. These detection windows are firstly classified by the classifier of
S1. For detection windows accepted by S1, the channels of L2 are then computed,
and these windows are classified by S2. The above process is repeated from L1 to
LN. Finally, the detection windows accepted by all the stages of strong classifier
(i.e., H(x)) are merged by NMS as the final pedestrian detection result. Generally,
detection windows around pedestrians highly overlap; they need much computation
cost. Thus, the highly overlap detection windows after the first stage are eliminated
by NMS with the threshold 0.8. It can further accelerate detection speed with little
performance loss.

Table 4 shows miss rates (MR) of MCF-based HOG+LUV and different layers
in VGG16 on Caltech test set. They are trained on Caltech10x training set with
4096 level-2 decision forests.

√
means that the corresponding layer is used. For

example, MCF-2 is constructed by HOG+LUV and C5 of VGG16. It can be

Fig. 22 The test process of MCF

Table 4 Miss rates (MR) of MCF based on HOG+LUV and the different layers in CNN on Caltech
test set.

√
means that the corresponding layer is used. HOG+LUV is always used for the first layer.

The layers in VGG16 are used for the remaining layers

HOG VGG16

Name LUV C1 C2 C3 C4 C5 MR (%) Δ MR (%)

MCF-2
√ √

18.52 N/A

MCF-3
√ √ √

17.14 1.38

MCF-4
√ √ √ √

15.40 3.12

MCF-5
√ √ √ √ √

14.78 3.74

MCF-6
√ √ √ √ √ √

14.31 4.21
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seen that with more convolutional layers, MCF has the lower miss rate. MCF-
6 has the best detection performance, which outperforms MCF-2 and MCF-5 by
4.21% and 1.47%, respectively. It demonstrates that the middle layers in CNN can
enrich the feature abstraction. Based on each layer in CNN, MCF can extract more
discriminative features, which can be used for pedestrian detection.

Table 5 compares miss rates and detection times of MCF-2, MCF-6, and MCF-
6-f. MCF-6-f eliminates the highly overlapped detection windows by NMS with
the threshold of 0.8. The miss rate of MCF-6-f is 4.21% lower than that of MCF-
2, while the detection speed of MCF-6 is 1.43 times faster than that of MCF-2.
By eliminating the highly overlapped detection windows after stage 1, MCF-6-f
can further accelerate detection speed with little detection performance loss (i.e.,
4.21%). The miss rate of MCF-6-f is 3.63% low; the detection speed of MCF-6-f
is 4.07 times faster than that of MCF-2. Because MCF can reject many detection
windows by first few stages, it can accelerate detection speed.

To compare with state-of-the-art performance, MCF is trained on Caltech10x
training set by 4096 level-4 decision forests. Figure 23 compares MCF with some
state-of-the-art methods (i.e., LatSvm [19], ACF [16], LDCF [43], Checkerboards
[73], CCF+CF [66], DeepParts [58], and CompACT-Deep [4]) on Caltech test set.
It can be seen that MCF achieves state-of-the-art performance, which outperforms
DeepParts and CompACT-Deep by 1.49% and 1.35%, respectively.

Moreover, MCF is further trained on KITTI training set by 4096 level-4 decision
forests. Table 6 compares MCF with some state-of-the-art methods (i.e., ACF [16],
SpatialPooling+ [46], Checkerboards [73], DeepParts [58], and CompACT-Deep
[4]) on KITTI test set. MCF also outperforms DeepParts and CompACT-Deep. On
the moderate test, MCF outperforms CompACT-Deep by 0.71%. On the hard test
set, MCF outperforms CompACT-Deep by 1.57%.

Table 5 Miss rate (MR) and detection time of MCF-2, MCF-6, and MCF-6-f. MCF-2 is based on
HOG+LUV and C5 in CNN. MCF-6 is based on HOG+LUV and C1–C5 in CNN. MCF-6-f is the
fast version of MCF-6 by eliminating overlapped detection windows

HOG+LUV and VGG16

MCF-2 MCF-6 MCF-6-f

MR (%) 18.52 14.31 14.89

Time (s) 7.69 5.37 1.89

Table 6 Average precision (AP) of some methods on KITTI

Method Easy Moderate Hard

ACF [16] 44.49% 39.81% 37.21%

SpatialPooling+ [46] 65.26% 54.49% 48.60%

Checkerboards [73] 67.75% 56.75% 51.12%

DeepParts [58] 70.49% 58.67% 52.78%

CompACT-Deep [4] 70.69% 58.74% 52.71%

MCF 70.87% 59.45% 54.28%
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Fig. 23 ROC on Caltech test set (reasonable). MCF is compared with some state-of-the-art
methods

4 Challenges of Object Detection

Though object detection has achieved great progress in the past decades, it still has
many challenges when pushing the progress of object detection. In the following
part, three common and typical challenges of object detection will be discussed,
and some solutions are also introduced.

4.1 Scale Variation Problem

As the distance from objects to camera can be various, objects of various scales
usually appear on the image. Thus, scale variation is an inevitable problem for
object detection. The solutions to scale variation can be divided into two main
classes: (1) image pyramid-based methods and (2) feature pyramid-based methods.
Generally, image pyramid-based methods firstly resize the original image into
multiple different scales and then use the same detector to detect the rescaled
images, respectively. Feature pyramid-based methods firstly generate multiple
feature maps of different resolution based on the input image and then use different
feature maps to detect objects of different scales.
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At first, deep object detection adopts image pyramid to detect objects of various
scales. RCNN [23], SPPnet [25], Fast RCNN [24], and Faster RCNN [52] all adopt
image pyramid for object detection. In the training stage, the CNN detector is trained
based on the images of a given scale. In the test stage, image pyramids are used for
multi-scale object detection. On the one hand, it usually causes the inconsistency
between the training and test inference. On the other hand, each image of image
pyramids is put into the CNN network, respectively. Thus, it is also very time-
consuming.

In fact, the feature maps of different resolutions in CNN can be seen as the feature
pyramid. If the feature maps of different resolutions are used to detect objects of
different scales, it can avoid resizing the input image and accelerating detection
speed. Thus, feature pyramid-based methods become popular. Researchers have
done many attempts on feature pyramid-based methods.

Li et al. [34] proposed scale-aware Fast RCNN (SAF RCNN) for pedestrian
detection. The base network is split into two sub-networks for large-scale pedestrian
detection and small-scale pedestrian detection, respectively. Given a detection
window, the final detection score is the weight sum of two sub-networks. If the
detection window is relatively large, the large-scale network has the relatively large
weight. If the detection window is relatively small, the small-scale network has the
relatively large weight.

Yang et al. [68] proposed scale-dependent pooling (SDP) for multi-scale object
detection to handle the scale variation problem. It is based on Fast RCNN archi-
tecture. The proposals are extracted by selective search method [60]. According
to the heights of proposals, SDP pools the features of proposals from different
convolutional layers according to the height of proposals. If the height of object
proposal belongs to [0, 64], SDP pools the feature maps from the third convolutional
blocks. If the height of object proposal belongs to [64, 128], SDP pools the feature
maps from the fourth convolutional blocks. If the height of object proposal belongs
to [128,+inf ], SDP pools the feature maps from the fifth convolutional blocks. Due
to the feature maps of ROI pooling layer are pooled from different convolutional
layers, three different subnets for classifying and locating proposals are trained,
respectively.

Generally, Faster RCNN needs to extract proposals by sliding RPN on a fixed
convolutional layer (e.g., conv5_3 of VGG16). Because the respective field of a
convolutional layer is relatively fixed, it cannot match the sizes of all objects very
well. The respective field of former convolutional layer is relatively small, which
matches the small-scale objects better, while the respective field of latter convolu-
tional layer is relatively large, which matches the large-scale objects better. To solve
this problem, Cai et al. [5] proposed multi-scale deep convolutional neural network
(MS-CNN) to generate object proposals of different scales. Figure 24 shows the
architecture of MS-CNN. It outputs proposals from multiple convolutional layers
of different resolution. The anchor in each convolutional layer is labelled as the
positive if it has an IoU overlap over 0.5 with a ground-truth bounding box. The
anchor in each convolutional layer is labelled as the negative if it has the IoU overlap
below 0.2 with all the ground-truth bounding boxes. Because of the imbalance
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Fig. 24 The architecture of MS-CNN. (Reprinted from Ref. [5], with permission of Springer)

Fig. 25 The architecture of
FPN. (©[2017] IEEE.
Reprinted, with permission,
from Ref. [37])

predict

predict

predict

between the negatives and positives, three different sampling strategies are explored:
random, bootstrapping, and mixture. Random sampling strategy randomly selects
some negatives from all the negatives. Bootstrapping sampling strategy selects some
hardest negatives according to their objectness scores. Mixture sampling strategy
selects the half negatives by random sampling strategy and the half negatives by
bootstrapping strategy. It is found that the bootstrapping sampling strategy and
mixture sampling strategy have similar detection performance, which outperforms
random sampling strategy. The ratio of positives and negatives is 1:R.

Though the success of MS-CNN, the output layers of MS-CNN have different
semantic levels. To solve the semantic inconstancy of different convolutional layers,
Lin et al. [37] proposed feature pyramid network (FPN) for object detection.
FPN incorporates top-down structure to improve the semantic levels of first few
convolutional layers. Figure 25 shows the architecture of FPN. Specifically, top-
down structure combines the low-level semantic convolutional layer with the
upsampled high-level semantic convolutional layer by the element-wise addition.
Based on FPN, the semantics of output layers for proposal generation are high-
level and consistent. This final feature maps used for predicting proposals are called
{P 2, P 3, P 4, P 5}, corresponding to the convolutional layers of {C2, C3, C4, C5}.
The anchors have areas of {32 × 32, 64 × 64, 128 × 128, 256 × 256, 512 × 512}
pixels on {P 2, P 3, P 4, P 5}, respectively. The aspect ratios of anchors are {1 : 2, 1 :
1, 2 : 1}. Thus, there are 15 anchors over the pyramid. The anchor is labelled as the
positive if it has the highest IoU overlap with a ground-truth box or if it has the IoU
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overlap over 0.7 with any ground-truth boxes. The anchor is labelled as the negative
if it has the IoU overlap below 0.3 for all the ground-truth boxes. With consistency
feature maps for object detection, it can improve detection performance, especially
the detection performance of small-scale object detection. The similar idea is also
adopted by [32].

Because small-scale objects are usually low-resolution and noisy, small-scale
object detection is more challenging compared to large-scale object detection.
Though multi-scale methods treat objects of different scales as different classes,
the improvement is relatively limited. Thus, improving small-scale object detection
is a key for multi-scale object detection. To solve this problem, Li et al. [35]
proposed the perceptual generative adversarial network (Perceptual GAN). Based
on the difference between feature representations of small-scale objects and feature
representations of large-scale objects, perceptual GAN aims to compensate feature
representations of small-scale objects.

Generally, large-scale objects have more abundant information compared to
small-scale object. To improve small-scale pedestrian detection, Pang et al. [47]
proposed JCS-Net. The main idea of JCS-Net is to use large-scale pedestrian to
help small-scale pedestrian detection. Figure 26 shows the pipeline of JCS-Net.
The training process of JCS-Net for small-scale pedestrian can be summarized as
follows: (1) It firstly fine-tunes the network for large-scale pedestrian detection
based on large-scale pedestrians (i.e., the top row of Fig. 26). (2) The super-
resolution sub-network for small-scale pedestrian detection (i.e., the left of bottom
row of Fig. 26) is pre-trained by the large-scale pedestrians and corresponding small-
scale pedestrians. (3) The classification sub-network for small-scale pedestrian
detection (i.e., the right of bottom row of Fig. 26) is initialized by the large-scale
network. (4) The super-resolution sub-network and classification sub-network for
small-scale pedestrian detection are jointly trained based on small-scale pedestrians
and corresponding negatives.

The loss of JCS-Net is the joint of two sub-networks. The loss of super-resolution
sub-network can be calculated by mean squared error as:

Lsimilarity = 1

n

n∑

i=1

||yi − F(xi )||2, (25)

Fig. 26 The architecture of JCS-Net
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where yi is large-scale pedestrian, xi is small-scale pedestrian, F(xi ) is the
reconstructed pedestrian by super-resolution sub-network, and n is the number of
training samples. The loss of classification can be written as:

Lcls = 1

n

n∑

i=1

− log pc(xi ), (26)

where c is the ground-truth label of xi and pc(xi ) is the probability that xi belongs
to class c. Based on Lsimilarity and Lcls , the joint loss of JCS-Net (i.e., LJCS) can
be expressed as:

LJCS = Lcls + λLsimilarity, (27)

where λ is used to balance two terms (i.e., Lcls and Lsimilarity) which is set to be
0.1 by cross-validation.

To detect multi-scale pedestrians, multi-scale MCF can be trained based on
JCS-Net or original HOG+LUV and VGG16. Generally, MCF-V is trained based
on original HOG+LUV and VGG16, which is used for large-scale pedestrian
detection. MCF-J is trained based on JCS-Net, which is used for small-scale
pedestrian detection. Figure 27 gives an illustration of multi-scale MCF. Pedestrians
of different scales are divided into several different subsets (i.e., subset 1, subset
2, . . ., subset N) according to the height of pedestrians. The different subsets can
contain some overlapped images. In Fig. 27, two detectors on subset 1 and subset 2
are trained based on MCF-J. The other detectors are trained based on MCF-V. In the
test stage, the detection results of each detector are added together before NMS.

The original pedestrians on Caltech training set are split into three different
subsets, which are called “train-all,” “train-small,” and “train-large,” respectively.

Small-scale Large-scale

subset1 subset2 subsetN

MCF-J MCF-J MCF-V

D1 D2 DN

Pedestrians

Subset

MCF

Detector

Fig. 27 The illustration of multi-scale MCF
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“Train-all” subset contains all the pedestrians, “train-small” subset contains the
pedestrians under 100 pixels tall and the interpolated pedestrians over 100 pixels
tall, and “train-large” subset contains the pedestrians over 80 pixels tall. The two
subsets of Caltech test set (i.e., reasonable and small) are used for evaluation. The
reasonable test set means that pedestrians are over 50 pixels tall under no or partial
occlusion, and the small test set means that pedestrians are under 100 pixels tall and
over 50 pixels tall. Namely, the small test set belongs to the reasonable test set.

Table 7 shows the miss rates of MCF-V and MCF-J trained on “train-small”
training set. MCF-J outperforms MCF-V on the reasonable test set and the small test
set, especially on the small test set. Two ablation experiments are also conducted: (1)
The first one is that setting λ of (27) is 0, which aims to show the influence of depth
of JCS-Net. It is called MCF-C. (2) The second one is that the super-resolution sub-
network and classification sub-network are not jointly trained, which aims to show
the importance of the joint multitask training. It is called MCF-S. Both MCF-C and
MCF-S are superior to MCF-V and inferior to MCF-J. It means that though deeper
depth and simple super-resolution can improve detection performance, the joint
multitask training of JCS-Net is important, which can further improve detection
performance.

Based on three training sets (i.e., “train-all,” “train-small,” and “train-large”),
MS-V and MS-J are trained. They both contain three different detectors. The
difference is that on “train-small” training set, MS-V uses MCF-V, and MS-J uses
MCF-J. Table 8 shows the miss rates of MS-V and MS-J on Caltech test set. The
miss rates of MS-J have 0.86% and 0.91% lower than that of MS-V on reasonable
test set and small test set. It demonstrates the effectiveness of MS-J.

Finally, MS-J is compared to some state-of-the-art methods (i.e., Roerei [2], ACF
[16], LDCF [43], TA-CNN [59], Checkerboards [73], DeepParts [58], CompACT-

Table 7 Miss rates (MR) of
MCF-V and MCF-J are
shown on Caltech test set.
MCF-V is learned based on
HOG+LUV and the
fine-tuned VGG16. MCF-J is
learned based on HOG+LUV
and the proposed JCS-Net

Method Training set Reasonable Small

MCF-V “train-small” 13.20% 14.28%

MCF-J “train-small” 11.07% 11.72%

ΔMR – 2.13% 2.56%

Ablation experiments

MCF-C “train-small” 12.23% 13.02%

MCF-S “train-small” 12.65% 13.50%

Table 8 Miss rates (MR) of
MS-V and MS-J are shown
on Caltech test set. MS-V
means multi-scale MCF
based on fine-tuned VGG16.
MS-J means multi-scale MCF
based on JCS-Net

Method Detectors Training set Reasonable Small

MCF-V “train-small”

MS-V MCF-V “train-large” 9.67% 10.48%

MCF-V “train-all”

MCF-J “train-small”

MS-J MCF-V “train-large” 8.81% 9.57%

MCF-V “train-all”

ΔMR – – 0.86% 0.91%
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8.81% (18.84%) MS−J

Fig. 28 ROC on Caltech test set. MS-J is compared to some state-of-the-art methods

Deep [4], and MS-CNN [5]) on Caltech test set. Figure 28 shows the ROC. MS-J
achieves state-of-the-art performance, which outperforms MS-CNN by 1.14%.

4.2 Occlusion Problem

Object occlusion is very common. For example, in [15], Dollar et al. found that
most pedestrians (about 70%) in street scenes are occluded in at least one frame.
Thus, detecting occluded object is very necessary and important for computer vision
application. In the past decade years, researchers have done many attempts to solve
occlusion problem.

Wang et al. [62] found that if some parts of pedestrian are occluded, the block
features of corresponding region uniformly respond to the block scores of linear
classifier. Based on this phenomenon, they proposed to use the score of each block
to judge whether the corresponding region is occluded or not. Based on the scores
of each block, the occlusion likelihood images are segmented by the mean shift
approach. If occlusion occurs, the part detector is applied on the unoccluded regions
to output the final detection result.

To maximize detection performance on the occluded pedestrians, Mathias et
al. [40] proposed to learn a set of occlusion-specific pedestrian detectors. Each
pedestrian detector serves for the occlusion of certain type. In [40], occlusion can
be divided into three different types: occlusions from bottom, occlusions from right,
and occlusions from left. For each type, the degree of occlusion ranges from 0%
to 50%. Eight left/right occlusion detectors and 16 bottom-up occlusion detectors
are trained, respectively. One nave method to obtain these classifiers is to train
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the classifiers of all the occlusion levels, respectively. However, it is very time-
consuming. To reduce the training time, Franken-classifiers are proposed. It starts
to train the full-body biased classifier and remove weak classifiers to generate the
first occlusion classifier. The additional weak classifiers of first occlusion classifier
are further learned without bias. Similar to the first occlusion classifier, the second
occlusion classifier are learned based on the first occlusion classifier. Based on
Franken-classifiers, it only needs one tenth computation cost for training the set
of occlusion-specific pedestrian detectors.

Inspired by the set of occlusion-specific pedestrian detectors, Tian et al. [58]
extended it by constructing an extensive deep part pool and automatically choose
important parts for occlusion handling by linear SVM. The extensive part pool
contains various body parts. Pedestrians can be seen as a rigid object, which are
divided into the 2m × m spatial grids. The part pools consist of all the rectangles
inside the spatial grids, where the height and width of the rectangle are at least 2. If
m = 3, the part pool has 45 part models. To alleviate the test computation cost of 45
part models, 6 part models with highest SVM scores are selected, which also yield
approximate performance with faster detection speed.

Wang et al. [64] thought that data-driven strategy is very important for solving
occlusion problem. If the training data has enough image data of all different
occlusion situations, the training detector can have a better detection performance
for occluded objects. However, the dataset cannot cover all the cases of occlusions
generally, and the occlusions are relatively rare. Because the occlusions in the
dataset follow a long-tail distribution, it is impossible to collect the dataset to
cover all the occlusions. To solve this problem, Wang et al. proposed A-Fast-
RCNN, which uses adversary network to generate hard examples by blocking some
feature maps spatially. After ROI pooling layer, it adds an extra branch to generate
the occlusion mask. The branch consists of two fully connected layers and mask
prediction layer. The feature maps for the final classification and regression are
the combination of mask and the feature map of ROI pooling layer. If the cell of
mask is equal to 1, the corresponding responses of feature maps are set as 0 (i.e.,
dropout). In the training stage, it adopts the stage-wise steps: (1) The occlusion
mask is fixed; Fast RCNN network is firstly trained. (2) Based on Fast RCNN,
the adversary network generates the occlusion mask which makes the loss of Fast
RCNN the largest. Through the two-stage training, the final Fast RCNN network
can be robust to the occlusion. In the test stage, the mask branch is removed, and
the rest process is the same as the original Fast RCNN.

4.3 Deformation Problem

Object deformation can be caused by non-grid deformation, intra-class shape
variability, and so on. For example, people can jump or squat. Thus, a good
object detection method should be robust to the deformation of object. Before
CNN, researchers have done many attempts to handle deformation. For example,
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DPM [19] uses the mixtures of multi-scale deformable part models (i.e., one low-
resolution root model and six high-resolution part models) to handle deformation.
HSC [51] further incorporates histograms of sparse codes into deformable part
model. To accelerate detection speed of DPM, CDPM [18] and FDPM [65] are
further proposed. Park et al. [48] proposed to detect large-scale pedestrians by
deformable part model and detect small-scale pedestrians by the rigid template.
Regionlets [63] presents the region by a set of small sub-regions with different sizes
and aspect ratios.

Though CNN-based methods are robust to object deformation in some degree,
it is still not good enough. To further improve the robustness to object detection,
researchers also incorporate some specific design into the CNN-based methods.
Ouyang et al. [45] proposed the deformation constrained pooling layer (def-pooling)
to model the deformation of object parts. Traditional pooling (e.g., max-pooling
and average pooling) can be replaced by def-pooling to better represent the
deformation properties of objects. Recently, Dai et al. [12] proposed two deformable
modules (i.e., deformable convolution and deformable ROI pooling) to enhance
the representation ability of geometric transformation. They add 2D offset to
the regular grid sampling locations in the standard convolution. The offsets are
learned in the training stage. Jeon and Kim [30] also proposed active convolution,
where the shape of convolution is learned in the training stage. To improve
invariance to large deformation and transformation, Jaderberg et al. [29] proposed
the spatial transformer network. The transformation of scaling, rotation, and non-
rigid deformations is performed on the feature map.
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Deep Learning in Face Recognition
Across Variations in Pose and
Illumination

Xiaoyue Jiang, Yaping Hou, Dong Zhang, and Xiaoyi Feng

Abstract Even though face recognition in frontal view and normal lighting con-
ditions works very well, the performance drops sharply in extreme conditions.
Recently there is plenty of work dealing with pose and illumination problems,
respectively. However both the lighting and pose variations always happen simul-
taneously in general conditions, and consequently we propose an end-to-end face
recognition algorithm to deal with two variations at the same time based on
convolutional neural networks. In order to achieve better performance, we extract
discriminative nonlinear features that are invariant to pose and illumination. We
propose to use the 1 × 1 convolutional kernels to extract the local features.
Furthermore a parallel multi-stream convolutional neural network is developed to
extract multi-hierarchy features which are more efficient than single-scale features.
In the experiments we obtain the average face recognition rate of 96.9% on MultiPIE
dataset. Even for profile position, the average recognition rate is also around 98.5%
in different lighting conditions, which improves the state-of-the-art face recognition
across poses and illumination by 7.5%.

1 Introduction

Face recognition has been one of the most active research topics in computer vision
for more than three decades. With years of efforts, promising results have been
achieved for automatic face recognition in both controlled [60] and uncontrolled
environments [11, 17]. A number of algorithms have been developed for face
recognition with wide variations in view and illumination, respectively. Yet few
attempts have been made to tackle face recognition problems with the variations
of pose and illumination [71]. In fact, face recognition is significantly affected
by both pose and illumination which are often encountered in real-world images.
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Recognizing faces reliably across pose and illumination has been proved to be a
much more difficult problem.

Pose can induce dramatic variations in face images. Essentially, this is caused by
the complex 3D geometrical structure of the human head. The rigid rotation of head
results in self-occlusion which means that some facial appearance will be invisible.
At the same time, the shape and position of the visible part of facial images also
vary nonlinearly from pose to pose. Consequently, the appearance diversity caused
by pose is usually greater than that caused by identity. Thus general face recognition
algorithms always fail when dealing with the images of different poses.

Illumination also can cause dramatic variations for face images. Assuming
Lambertian reflectance, the intensity value I (x, y) of every pixel in an image is
the product of the incident lighting L(x, y) and the reflectance R(x, y) at that point
as I (x, y) = R(x, y) × L(x, y). Thus, the captured images vary with the incident
lighting. In order to achieve face recognition across illumination, there are two kinds
of strategies. One is to extract illumination-invariant features from images, such as
LBP [1] and HOG [65] et al.; the other is to model the distribution of illumination
[24, 30].

In applications, both the pose and illumination variations exist. Thus a robust
face recognition system should be able to deal with the two variations at the same
time. Recently, the deep learning methods [27, 74] showed its great ability to
model nonlinear distributions of data. It achieved the state-of-the-art performance
in many fields of pattern recognition, such as object classification [58] and object
detection [46]. Its great capacity is mainly due to the learning procedure which can
find the hierarchical features from dataset. These features from each layer of the
networks contain different levels of structure from a local gradient to its global
shape. As a result, these learned features are more informative than traditional
human-engineered features.

Even though different poses can induce the different appearances of the face,
there exist some correlations between images of the same identity in different poses.
Similarly, images of the same identity in different illuminations also correlate to
each. Thus, through a proper learning method, the pose and illumination-invariant
features can be obtained. Inspired by the excellent feature learning ability of
deep convolutional neural networks, it is employed to develop an end-to-end face
recognition method across pose and illumination in this work.

The remainder of this chapter is organized as follows: Sect. 2 briefly reviews
the recent algorithms that deal with the pose problem. Section 3 introduces the
algorithms that deal with the illumination variations. The proposed deep learning
algorithm that can verify faces under pose and illumination variation is described in
Sect. 4. The experimental results of the proposed algorithm are presented in Sect. 5.
Finally, Sect. 6 concludes the chapter.
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2 Pose-Invariant Face Recognition

Pose always causes substantial variations in the appearance of images due to the
reason that images are the projection of 3D objects to 2D planar. Therefore when
the pose of an object changes slightly, the appearance of the image will change
dramatically. Consequently pose always brings difficulties for face recognition
systems where the pose variation is unavoidable in uncontrolled environment. As a
result, pose becomes one of the essential challenges for face recognition. Nowadays,
researches also pay notable attention to deal with the pose variation problems. We
can classify all the algorithms about pose variation into two categories: invariant
representation-based algorithms and the model-based algorithms. For first category,
invariant features or subspaces are constructed where the pose variation is removed,
while the second type of algorithms tries to build up a generative model to predict
the appearance of the object in different views.

2.1 Invariant Representation

In the classical frontal face recognition algorithms, face is always considered as
a whole component. Therefore a lot of holistic approaches achieved quite good
results. Principal component analysis (PCA) [62] is applied to find the eigenspace
of face images; therefore face images can be represented by the projection values
on those eigenvectors. Through the analysis, the dimension of face images has
been reduced significantly, and the recognition is performed due to the distance
in eigenspace. In fact, the assumption for these holistic approaches is that face
position is fixed. Therefore, these algorithms try to find the relationship between
corresponding pixel pairs among images. For the same person, corresponding pixels
should have similar features, and the overall distance between images of the same
subject is relatively smaller than that of different subjects. However, when the pose
of the subject changes, the position of face components varies as well; consequently
the correlation between corresponding pixel pairs is broken. Thus the holistic
approach is no longer suitable for pose problem, but local components or features
show their effectiveness in handling with the pose problem.

2.1.1 Engineering Designed Features

Landmarks (such as eyes, nose, and mouth) are the key points on face, which
represent the key components in a face, as shown in Fig. 1. If the transform between
the corresponding landmark points can be defined, then the same transform formula
can be applied to convert two images. In order to find the same landmarks in images
of different views, some robust feature extractors are used to describe the landmark
points on faces.
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Fig. 1 The landmarks on facial images. Five landmarks are labeled in each image. The transform
formula can be calculated from the relationship between the corresponding landmarks

Scale-invariant feature transform (SIFT) feature [37] is widely used in computer
vision tasks for the extraction of robust features. It has also been used for face
recognition. In order to find the connections of images for different poses, Biswas
et al. [8] extracted SIFT features for landmark points, which can provide rotation
and scale invariant features. Then tensor analysis was applied to learn the transform
matrix between the landmarks of different poses. With this transformation, images
taken in different views can be converted to the frontal view to compare with
the frontal probing images for verification. Also, local binary pattern (LBP) is a
descriptor that finds great success in texture analysis. It computes the distribution of
local region variance and encodes the distribution into numbers, which are very
efficient for further pattern analysis. LBP is also applied to extracted features
for local regions around landmark points. Then all the local region features are
connected into a new feature, which becomes pose-invariant [10].

In fact, accurate landmark detection itself is also a challenging problem. Besides
extracting robust features around landmark points, researchers also tried to define
some key points to find correspondence between images of different views. Dreuw
et al. [6] propose to use speeded-up robust feature (SURF) to extract features in
dense grid, and then RANSAC method is used to find the matching points between
images of varied view for face recognition. Liao et al. [36] propose a partial face
recognition method without alignment. First, they apply SIFT-like descriptors
to extract key points from facial images. And then for those key points, sparse
representation method is used to build up a complicated dictionary for all the
possible local facial regions around key points based on training images. The key
idea behind this method is also to extract robust features for key facial components
but omit their locations.

Region-based pose-invariant feature extraction methods are also explored
recently. Without the locations of key points, local regions are considered as the
basic unit to contain key facial components. Ahonen et al. [2] propose to divide
images into subregions, as shown in Fig. 2. Then they extract LBP features for each
subregion of a face. Within a subregion, the location information is omitted; only
the texture feature is extracted by the LBP descriptor. Thus the extracted feature is
robust to pose variations as long as the key components are still located in the same
subregion. It is reported that the proposed face recognition algorithm can keep good
performance when the rotation angle is within 15◦. For large pose variations, the
content of each subregion changes greatly; consequently the correlation between
subregions is broken.
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Fig. 2 Facial images are divided into local regions. Features are extracted based on each patch,
thus the patch-based feature is invariant to pose

Feature extrac�on 
for landmarks

Fig. 3 Elastic graph for face recognition. The nodes of the graph are features extracted from local
landmarks, and the edges of the graph represent the distance between neighboring nodes

Li et al. [33] propose a local region-based elastic matching method for face
recognition across poses. Local descriptors, such as LBP or SIFT, are used to extract
features for densely sampled subregions of images. The Gaussian mixture model is
trained to extract the spatial-appearance distributions from the position of each local
patch and its local feature. Each Gaussian model describes the relationship between
corresponding patches of matched images. Then the verification is performed by a
trained SVM that can discriminate the difference of Gaussian model between the
matched and non-matched face images. In fact, the idea of elastic matching for face
recognition of different poses is proposed by Wiskott et al. [67]. For each landmark
of faces, a set of Gabor filters are applied to extract features, and then a graph with
N nodes and E edges is constructed, where the nodes represent landmarks, and the
edges are the feature distance between neighbored nodes, as shown in Fig. 3. Then
the recognition is performed by comparing the graph of a probing face images to all
the graphs of gallery images. The elastic bunch graph matching method can handle
the rotation within 20◦. For the elastic matching-based methods, a graph connects
local components where the position of each component is also described by the
graph. Thus the face can still be verified even though some local components are
occluded.

Based on the cost of pixel-wised stereo matching, Castillo et al. [9] propose to
do face recognition across poses. First they find three to four landmarks from face
images to calculate the epipolar geometry parameters for gallery images. Then a
stereo matching method is applied to find corresponding pixels between images.
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Finally the cost of matching is used to identify the face images. Actually, there is an
assumption that the corresponding pixels or components exist in two images. Thus
when the pose changes greatly, the number of corresponding pixels between images
decreases. Consequently, the performance of the algorithm drops significantly.

For the methods based on engineering-designed features, they try to find the
corresponding local components between images. However, when poses change
greatly, these manually designed features will always fail. The appearance of local
components always varies greatly due to occlusion or out-of-plane rotation. Then
the nonlinear correspondence should be found to describe the relationships.

2.1.2 Learning-Based Features

In order to find the nonlinear correspondence between images of different poses,
some machine learning-based methods have been applied widely. Subspace learning
methods are introduced to learn a new subspace that is invariant to pose variations.
Metric learning methods are proposed to construct new distance measure methods,
which are independent to the pose changes. Most recently, the deep neural network
is also introduced to learn high-order nonlinear descriptors for images from different
poses.

Linear Subspace Learning

In early years, principal component analysis (PCA) provides an important tool
for extracting common features from dataset. The eigenvector that has the largest
eigenvalue represents the direction of the biggest variance of the data, while
the eigenvectors can be seen as the features shared among dataset. PCA-based
methods achieve good performance in face recognition but are very sensitive to
the misalignment of images. When face images are taken from different views,
PCA encodes both identity and viewing conditions, which makes the performance
of recognition degraded. Pentland et al. [42] propose to setup eigenspace for each
component of the face, which only encodes the identity information, and the pose
variance is alleviated by the selection of face components from images. When
doing recognition, the reconstruction coefficients from each modular eigenspace are
connected as a whole feature of the face.

Prince et al. [44] propose a statistical method to describe the distribution of
face images regardless of pose. In the observed space, images from different views
are located in different positions, where the difference caused by posture is much
bigger than that caused by different identities. Thus it brings great difficulties for
recognition. However, with the assumption that all faces of a single person in
different poses can be described by a vector in the identity space, a linear transform
mapping from the observation space to the identity space is proposed. Figure 4
shows the relationship between the two spaces. In the identity space, the pose
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Iden�ty SpaceObserva�on Space

Fig. 4 Identity space only keeps the variance between different subjects but minimize the pose
variance for a same subject

variance is diminished. Images from any pose can be represented as the linear
combination of vectors in identity space hi , and Gaussian noises εij as follows:

Xij = Wjhi + μi + εij (1)

where Wj are the projection from identity space to the observation space and μi is
the offset.

Therefore some generative models are introduced; the discriminative models are
also used for dealing the pose problem actually. For discriminative models, they try
to distinguish the difference between subjects regardless of pose variations. That
is to maximize the margin between subjects or to find an optimal superplane to
separate subjects.

Li et al. [31] propose to use canonical correlation analysis (CCA) to find a
common space for images from different view, where the correlation between the
same subjects is maximized, but not the traditional Euclidean distance. Correlation
measures the difference of data tendency but not absolute distance. Thus it can allow
some variance for data and becomes more robust to slight changes. The transform
can be written as

arg max
ω1,ω2

corr[ωT
1 X1, ωT

2 X1] (2)

where ‖ω1‖ = 1, ‖ω2‖ = 1. Xi are images from different view and ωi is the optimal
transformation that can be solved by Lagrange multiplier method. In order to project
images from all different poses to the same subspace but not only two views as CCA
methods, Rupnik et al. [47] propose Multiview CCA(MCCA), as

arg max
ωi, ..., ωk

∑

i 
=j

corr[ωT
i Xi, ωT

j Xj ] (3)

where ‖ωi‖ = 1, i = 1, . . . , k. The set of transform ωi can transform images from
different views to the same subspace and meanwhile keep the maximal correlation
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for the images of the same person. Based on MCCA, Sharma et al. [53] improve the
algorithm further. They first find the optimal mapping functions for images from
different views with the MCCA method, and then linear discriminative analysis
(LDA) is applied to classify each subject in the new subspace.

Sharma et al. [52] propose a unified framework for multiview analysis called
generalized multiview LDA (GMLDA), in addition. Within this framework, the
discriminative analysis for each subject and the self-correlation of the images from
the same subject are combined as

arg max
ωi

∑

i

μiω
T
i Sbiωi+

∑

i 
=j

λijω
T
i ZiZjωi (4)

where
∑
i

γiω
T
i Swiωi = 1, μi , λij and γi are parameters for linear combination.

Sbi and Swi are the between-class and within-class scatter matrix for the ith pose.
The first term performs the LDA analysis for different poses, which enhances the
distinguishability. On the other hand, the second term focuses on the correlation for
all the images from the same subject. That is, the projection from different poses
should be close to each other in the latent space. Zi are the matrices whose column
contains images of the same subject.

For CCA methods, it requires each subject to have exactly the same training data
for each poses, while GMLDA only requires pairwise training data from different
poses. In order to alleviate the requirement for training data, Kan et al. [28] proposed
multiview discriminant analysis (MvDA). They apply the idea of LDA to analyze
pose problem, where the intrapose scatter is minimized and interpose scatter is
maximized. Then all the images from the same pose will be cluttered together in
the new subspace.

Nonlinear Subspace Learning

The pose variations for images are due to the projection of 3D structure of the
object to the 2D planar. As a result, poses actually bring nonlinear transform for the
appearance of images. Consequently the nonlinear models should be more suitable
than linear models for the description of pose variations. Kernel-based methods
are the direct extension of linear methods, where the kernel can transform a linear
subspace to a nonlinear subspace. In a nonlinear subspace, the nonlinear distributed
data can be separated by a linear surface. Consequently, the classification can be
achieved by linear methods in a higher-dimensional subspace.

There are quite a few adaptations to the linear methods, such as the kernel-
PCA [49] is the extension of PCA by kernel method. Yang et al. [69] proposed
a kernel Fisher discriminant framework by full usage of the KPCA and LDA.
Experiments show the improvement in face recognition tasks. Recently, Sharma
et al. [55] proposed a generalized multiview analysis (GMA) method which projects
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a pair of images from different views into a common space by using the kernel tricks.
The proposed method shows its effectiveness in pose-invariant face recognition.

Metric Learning

Besides using a suitable subspace to represent all the images from different poses,
the distance metric also can be adapted to deal with pose variations. Schroff et al.
[51] propose to compare the similarity of probe images with a big set of gallery
images, and the similarity list is used as a feature to determine the identify of probe
images. It is based on the assumption that images from the same person should
have more common look-alike samples than that from different people, even if the
images are taken in different conditions. Liao et al. [35] propose to compare the
low-frequency information of the probe image with all the gallery images, and then
a pooling method is applied to make it pose-invariant. Furthermore, Kafai et al.
[25] construct reference face graph (RFG) to represent the relationship between
different subjects, where each node in the graph contains all the images taken in
different conditions of that subject, as shown in Fig. 5. The importance of each node
is readjusted by its node centrality including degree, betweenness, and closeness
for weighted graphs. Finally, the probe image is represented by the vectors that are
composed of the similarity measure to each node in the graph where the hashing
code is calculated for each oversampled region of images.

Ref Subject1

Ref Subject2

Ref SubjectN

Reference Face 
Descriptor

Reference Face 
Descriptor

Reference Face

Descrip
tor

Fig. 5 In the reference face graph, each node is composed of faces from different views. Then all
the faces are used as the basis to represent the probe face where the reference face descriptors are
calculated
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Deep Learning

Recently, deep learning-based methods show great success in the field of signal
processing. It achieves the state-of-the-art performance in many applications such
as face recognition, object classification, and so on. The great ability behind the
neural networks is the nonlinear modeling capability actually. The nonlinearity is
due to the nonlinear activation neurons in the networks. In addition, the multiple
layers of the neural network make the order of the nonlinear model much higher
than traditional models, which can represent the data more accurately.

Andrew et al. [3] proposed to use two parallel neural networks for the feature
extraction of images from different poses, and then the output items from the
networks are maximally correlated, where the correlation value is used to optimize
the parameters of the neural networks. In fact, deep networks are performed as
nonlinear mapping functions for input images. As a result, the deep canonical
correlation analysis (DCCA) method shows better performance than Kernel CCA
and CCA in the experiments, which is due to the robust features extracted by neural
networks. The structure of the DCCA is shown in Fig. 6, where a three-layer fully
connected neural network is applied. With the improvement of the neural network,
more sophisticated features can be extracted.

Zhu et al. [73] propose a deep network to find the identity preserving features
from images in different views, as shown in Fig. 7. There are three convolutional
layers in the deep network. The input of the network can be images from any

Fig. 6 Deep canonical
correlation analysis for
images from different poses.
Two parallel neural networks
are used to extract features
for images from different
poses; the output features are
constrained to be maximally
correlated to each other

Canonical Correla�on

 Analysis

Layer 1

Layer 2

Layer 3

Output 1

Layer 1

Layer 2

Layer 3

Output 2

Conv1/
Pooling

Conv2/
Pooling

Conv3/
Pooling

Fully Connected
Layer

Fig. 7 Identity preserve network. The neural network is applied to reconstruct the frontal view of
input images from different poses
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poses, while the output of the network is the reconstruction of the frontal view
for the input subject. The network is composed of two basic units, which are the
feature extractor and the reconstructor for the frontal view. In training, the difference
between the reconstructed images and the ground truth is calculated for back
propagation. Through the supervised learning procedure, the network can recover
any input image to its corresponding frontal view. The extracted features also
show great capability for identity discrimination. The face recognition is performed
by comparing the recovered frontal face with the gallery frontal images. For this
network, the last reconstruction layer is achieved by fully connection layer, which
has millions of parameters needed to be trained. Consequently, it requires a huge
number of images for training.

Based on the encoder framework, Zhang et al. [70] propose an encoder network
for images of different poses. There is only one hidden layer for this network. The
input of this network is images from different poses, and the output is the frontal
image of the same subject. The encoder tries to find common features for images
from different views. Furthermore, they propose to use random images to represent
identity of each subject and train the encoder to find discriminative features for
each subject. In order to keep the convergence of training, the sparse constraint of
parameters is added to the loss function. Figure 8 shows the structure of the network.
Compared with Zhu’s work [73], it only has one hidden layer, which reduces the
number of parameter but also reduces the capability of model. It also proves that
increasing the layers of neural network can enhance the order of nonlinearity of the
model, which can increase the discriminability of the model. Kan et al. [26] also
noticed that only one hidden layer is not enough to model the nonlinear transform
from any pose to frontal view. Thus they propose to use a cascade of autoencoders
to transform the pose gradually from non-frontal view to frontal view, as shown

Encoder1 Encoder2 EncoderD

Random Noise 1 Random Noise 2 Random Noise D

Feature for 
recogni�on

Fig. 8 Random face learning network. The random images are used as the output of one-layer
encoder to learn the features for images from different views. Then the learned features are used
for recognition
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Decoder 1 Decoder 2

Decoder 3 Output 
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Fig. 9 Stacked progressive autoencoder network. The pose of the faces is adjusted step by step,
and then all the trained encoders are stacked to compose a network to recover profile images to
frontal ones

in Fig. 9. Altogether, three encoders are stacked together, which can reduce the
probability of being trapped into local minimal during training.

For all these autoencoder-based methods, the key idea is to reconstruct the
frontal face from non-frontal input. Then the recognition is performed based on
the reconstructed images. Always, these methods separate the recognition tasks into
two independent steps, which is not an end-to-end procedure.

Kan et al. [27] propose a two-stage network for face recognition across poses,
as shown in Fig. 10. For the first stage, images from different views are input
into different sub-networks for the extraction of view-specific features, and then
all the features are fed into a common sub-network for the extraction of common
features across poses. In addition, the network is trained based on the Fisher
principle, where the intra-view distance is minimized and the inter-view discrepancy
is maximized. With the trained network, the features from topmost layers are used
for classification. For MvDN, it first requires the input images to be classified into
groups due to poses, and then images can be fed into the proper network. In addition,
it is not an end-to-end framework for the task of recognition.

Majumdar et al. [38] propose to use autoencoder for the extraction of image
features. In order to make the feature more robust to pose, a whole face image is
decomposed into several local patches that contain the main components. Also,
the sparsity constraint is applied to the autoencoder. For classification tasks, the
input images are fed to the autoencoder for feature extraction, and then a classifier
is applied for verification. Even though the patch-based method can improve the
robustness for pose, it requires accurate segmentation results from the preprocessing
methods.
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Fig. 10 Multiview deep network. The network first extracts features for different views separately,
and then the features are integrated in the following network. In training the Fisher distance
between the frontal view and different views is used as the error to optimize the parameters

Recently, Peng et al. [41] propose a deep network to extract pose-invariant
features. First they use synthesis methods to enrich the training samples, and
then identity and non-identity features are extracted through a multitask learning
procedure. Finally, the pose-invariant features are purified through the constraint
of reconstruction errors from different poses. The proposed method requires the
synthesis of non-frontal faces for training. Also, it requires the pose and landmark
labels for each training image, which is not easy to get in the applications.

Masi et al. [39] realized that the frontalization of non-frontal faces is actually
very challenging and becomes harder with the increasing of rotation angle. Actually,
it is a highly nonlinear transform, and many corresponding information between
frontal and profile faces is lost. Thus they propose to develop separated network
for different poses, called pose-aware CNN models (PAM). That is, for different
poses, e.g., frontal, half-profile, and profile images, different CNNs are trained.
Then averaging the scores from all different PAMs gives the recognition results.
For this method, it requires the input images to be rendered into different poses, and
then they can be fed into corresponding PAMs for recognition. Even though they
constrain the range of rendered image, it is still a challenge to produce images of
different views.

Tran et al. [61] introduce generative adversarial network (GAN) for the task
of pose-invariant face recognition. The GAN network is constructed based on the
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Fig. 11 Generative adversarial network (GAN)-based pose-invariant face recognition. In the gen-
erative network, the encoder-decoder structure is used. Also, some side information is introduced
for the extraction of robust features in the network

framework of encoder and decoder. Through the generative network, face images
from any poses are converted to frontal ones. The discriminative network is used for
the judgment of the new created images. In order to enhance the extraction of pose-
invariant feature in the generative network, pose label and noises are used as side
information. The structure of the proposed network is shown in Fig. 11. Even though
GAN network is more powerful than traditional neural network, the convergence of
the network is still a great limitation for its application.

Neural network provides a powerful tool to extract features from training images,
which has been applied to solve the pose problem. However, how to design a suitable
network structure for this specific problem is still an open problem for researchers.

2.2 Synthesis-Based Methods

Pose variations introduce nonlinear transform for images of the same subject.
Besides pose-invariant features that can be used as a low-dimensional representation
for the image, researchers also tried to synthesis the frontal face images directly
from images of arbitrary poses. The synthesis-based methods can be further
classified into the 2D-based and 3D-based methods, depending on if the 3D model
of face is applied or not.

2.2.1 2D-Based Synthesis Methods

2D-based synthesis methods try to convert images of varied poses directly to the
frontal faces. Based on the different units to process, all the 2D synthesis methods
can be classified into three categories: triangle mesh wrapping, patch wrapping, and
pixel wrapping.
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Fig. 12 Profile faces are first rectified to frontal face based on triangular mesh, and then deep
network is applied to recognize faces in the frontal view

In the early days, a 3D model of a subject is usually presented by a triangle
mesh. Consequently, the triangle mesh can also be casted on 2D images, and each
triangle is used as a unit to calculate the transform between two different poses.
Taigman et al. [59] apply triangle mesh for alignment of the input images. After all
the input images are converted to frontal face, a deep network is applied for feature
extraction and recognition of the face image, as shown in Fig. 12. For the alignment,
key landmarks are detected and then triangular mesh is cast to the 2D image, where
the 3D shape of the face is correlated with the triangular mesh. Finally the frontal
facial image can be estimated due to the affine wrapping of triangular mesh. With
accurate adaption of input images to frontal view, the following neural network can
perform face recognition under varied poses. For mesh-based wrapping, it mainly
depends on how well the triangle mesh can be cast to the 2D face image.

In order to avoid the detection of landmarks on face, Ashraf et al. [4] propose to
decompose images into small patches, and for each patch, a learned transform can
be applied to convert the non-frontal patch to be frontal ones. They treat each patch
as independent unit for the whole procedure; however, there are close connections
between neighboring patches. Thus those patches are highly correlated to each
other where the relationship can be applied in solving the pose problem. Recently,
Ho et al. [19] consider this relationship. The searching for optimal transform for
each patches are converted into an optimization problem, where the reconstruction
error of each patches should be small; meanwhile the transform for neighboring
patches should be similar. The additional items constrain the smoothness of the
global transforms.

For patch-based synthesis methods, they treat a local patch as a unit to calculate
the transform. However, the nonlinear transform between poses is different from
pixel to pixel. Thus Li et al. [34] propose a pixel-based transform. They learn a set
of template displacement model from 3D dataset first. Then for each input image,
the template displacement model is applied to transfer the images of arbitrary poses
into frontal face pixel-wisely. For the occluded part of the face, the information is
compensated from frontal face. Even though the proposed method can reconstruct
the frontal face, only the non-occluded region will be used for verification.
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2.2.2 3D-Based Synthesis Methods

For 2D-based wrapping methods, they directly find the transform between different
poses. When the pose changes significantly, the mapping between different poses
becomes highly nonlinear. As a result, the 2D wrapping results will become worse.
In fact, pose problem is caused by the projection of 3D subject model to 2D
imaginary surface. That is, the intrinsic 3D model controls the appearance of
the images. Thus researches also try to use 3D model for solving pose-invariant
recognition problem.

Ding et al. [12] introduce a 3D model-based dense-mapping method for the
recovery of frontal face. First, the key landmarks are detected from the 2D images
of arbitrary pose, and then they are matched to the corresponding landmarks in
a standard 3D face model. As a result, the pose transform can be estimated for
the input 2D image. In order to recover the texture, a dense mapping is used with
the estimated pose transformation matrix. Furthermore, homography-based patch
correction method is proposed to enhance the realisticity of the recovered texture.
If there is occlusion in the original 2D facial images, then the recognition is only
based on recovered un-occluded part.

Further, Ding et al. [13] transform the profiled face image recognition problem to
the partial face recognition problem. Based on the key point mapping between 2D
images and 3D face model, the profiled images are transformed to images of frontal
view. Then sparse coding-based feature is extracted on the reliable regions of the
recovered frontal view.

3 Illumination-Invariant Face Recognition

Illumination is another big challenge for face recognition. The intensity value of
each pixel Ixy in an image is determined by the strength of the incident light,
Lxy , and the angle of the incident light θxy and the reflectance rate of the surface
Rxy , as Ixy = ∮

LxyRxy cos θxydΩ . Thus, when the incident light changes, the
appearance of the same object will vary as well. Always, the variation that is caused
by illumination is more significant than that of subject. Consequently, lighting
always causes the degradation of face recognition methods. Algorithms that try to
remove or alleviate the lighting variations can be classified into three categories as
image processing-based methods, invariant feature-based methods, and illumination
model-based methods.

3.1 Image Processing-Based Methods

Lighting is one of the factors that control the appearance of images. The average
intensity value of images that are taken in brighter situation is bigger than that
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in dark situation. Thus researches proposed to use image-processing methods to
enhance the intensity value of images, such as histogram equalization (HE) and
gamma correction.

Histogram equalization [43] tries to adjust the histogram of input images. That
is to adjust the intensity distributions of images. In fact, the pixel intensity value of
an image that is taken in brighter situations is bigger than that of a darker image.
Thus the intensity distribution of brighter images will have peaks in bigger value
region, while that of darker images will have peaks in smaller value region. Using
histogram equalization will make the distribution of intensity value evenly. That
is, the brighter images will become dimmer, and darker ones will become brighter.
Histogram equalization only considers the intensity value of each pixel but not the
sematic meaning. Therefore it will always introduce some abrupt noises in images
due to the assignment of new intensity value to all the pixels of the same intensity
value, as shown in Fig. 13b.

Gamma correction is the more dedicated adjustment for the intensity distribution,
while histogram equalization turns the original distributions into uniform distribu-
tion. Gamma correction function is defined as

T (I) = Imax

(
I

Imax

)γ

(5)

where I is the intensity value of current pixel. Imax is the maximum intensity value
in the image, and γ determines the curve for adaption, which is the key parameter.
According to different gamma curves, the original intensity values can be modified
to any desired distributions. Normally the darker pixels are tuned to be brighter,
while the bright pixels are kept, as shown in Fig. 13c.

Huang et al. [21] proposed an adaptive gamma correction method, where γ is
determined by the cumulative distribution of intensity, cdf (I), as

T (I) = Imax

(
I

Imax

)1−cdf (I)

(6)

cdf (I) =
Imax∑

I=0

pdf (I)∑
pdf

(7)

where pdf (I) is the probability density function of intensity. The proposed method
combines gamma correction and histogram modification method. Similar to the
histogram equalization, gamma correction is also a holistic modification method,
which does not consider the local information in the image. Jiang et al. [23]
proposed to combine the local and global information for the lighting augment. The
local factor I local

a provides the local variance, while the global factor I
global
a provides

the overall intensity of the image. These two kinds of information are combined by a
bilinear method, and then a perception-based method is used to adjust the brightness
of the images, as
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Fig. 13 Comparison of two basic illumination adjustment methods. (a) The original image and its
histogram. There are two peaks in the histogram due to the side light. (b) Histogram equalization
result. The histogram is adjusted to be equally distributed but leaves many noises in the image.
(c) Gamma correction result. Compared with histogram equalization result, there is few noise
introduced into the result image

Y (α,m, f ; I ) = I

I + (f Ia)
m Imax (8)

Ia = αI local
a + (1 − α)I

global
a (9)

where α, m, and f are parameters determine the detail, contrast, and brightness
of the image. The model is derived from human vision perception system. Image
processing-based illumination adjustment methods mainly focus on the modifica-
tion of the intensity distribution and aim to brighten dimmed images. This kind of
method only considers the appearance of current images, but not the factors that
cause the current appearance. Thus these methods always cannot solve the lighting
problems thoroughly.

3.2 Invariant Feature-Based Methods

Images are the cooperative results of illumination and objects. Even though the
illumination can vary due to different situations, objects themselves do not change.
Therefore researchers try to find illumination-invariant representations from images
to describe the intrinsic features of objects. Edges describe the shape or contour
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Fig. 14 Edges are used as features for face recognition. (a) and (c) are the original images, (b)
and (d) are the edges for (a) and (c), respectively. Compared to (b) and (d), the edges are different
for the same person under different lighting conditions. Thus the edge features are not absolutely
invariant to illumination

of objects, which are considered as one of the illumination-invariant features. On
the contrary, color of the object will vary according to its situation. Gao et al.
[15] propose to use edges on the face image to perform face recognition. All the
face components, such as eyes, nose, mouse, and eyebrows, are represented by
line contours, as shown in Fig. 14. Then the distance between lines is calculated
for verification. Zhou et al. [72] apply multi-scale Gabor filters to extract features
from face images, where the multi-scale edge features are extracted. Some other
popular feature descriptors such as local binary pattern (LBP) and scale-invariant
feature transform (SIFT), which extract edge-based features for local regions, are
also considered to be robust to illumination. However, shadow will also produce
edges, even obvious edges in images, which are quite difficult to be distinguished
from edges of the object. Consequently, these edge-based features can only work
well with slight lighting variations.

With the simplified illumination model I = L × R, Shashua et al. [56] propose
the concept of quotient images, which is the ratio between a testing image Iy and a
linear combination of three images Ij with weight xj , as

Qy = Iy∑
xj Ij

(10)

where the combined lighting condition of Ij is similar to the lighting condition of
Iy . Thus the quotient image only relates to the reflectance of the object and is free
from the lighting variations. With quotient image Qy , images under new lighting
condition can be rendered and furthermore can be used for the face recognition in
different lighting conditions. However, quotient image is based on the assumption
that the same class of object all has the same shape. It is a very rough assumption.
In fact, every face is different. Wang et al. [64] extend the concept of quotient
images. They propose to estimate the lighting map from images directly. According
to the Retinex theory [60], most lighting information can be considered as the low-
frequency signal, and most reflectance information is high frequency. Thus lighting
information can be estimated from the low-frequency part of the original images.
The proposed self-quotient image is defined as
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Qsy = Iy

F ∗ Iy

(11)

where F is a smoothing kernel.
Also based on the theory of Retinex, Xie et al. [68] propose a two-step strategy

for the normalization of lighting conditions. First, they decompose the input
images into the low-frequency and high-frequency parts using the total variation
model. Then the two decomposed components are normalized, respectively. The
normalization of the low-frequency part will enhance the uniformity of lighting con-
ditions. Then the normalized high-frequency and low-frequency parts are multiplied
together to get the normalized images. In the second step, kernel eigenspace is used
to correct the visual flaws of the normalized face images. Even though KPCA can
be used to improve the appearance of the image, it requires a lot of training images
of each subject for the construction of kernel subspace.

He et al. [18] realize that the distribution of face subspace is a nonlinear manifold;
thus, the nonlinear method should be more suitable for the problem. They propose
to find the face manifold based on the locality preserving projection, which is called
as the Laplacian face representation. This subspace can keep the identity difference
but minimize the other variance within a same subject.

Compressive sensing theory provides a dramatically new method to represent
signals. Based on the theory, continuous signals can be sampled randomly which
breaks through the constraint of Shannon theorem. From the training dataset, a
sparse representation of the subject can be learned with the sparse constraint.
Wagner et al. [63] construct a sparse coding dictionary from a set of images taken
in different lighting conditions and different poses. Images in various conditions are
recovered to classical frontal images of the same subject with the sparsity constraint.
Then the learned sparse representation is invariant to illumination. However, the
sparse dictionary learning requires images from all different conditions to keep the
performance of the proposed algorithm.

Recently, deep learning-based methods are also applied to extract illumination-
invariant features for images under different lighting conditions. The classical
deep learning methods, such as AlexNet [29] and VGG-Face network [40], extract
features from the convolutional layers, and then discriminative features are classified
by the fully connected layers. Besides the classical neural network structures,
researchers also adapt loss functions to improve the extracted features [20, 66].
These methods do not focus on the lighting problems but try to extract robust
features for general face recognition problem. Therefore the structure of the network
is not specifically designed for lighting problem.

3.3 Illumination Model-Based Method

Illumination is an essential factor for imaging. Therefore, researchers also try to
analyze the distributions of images that are taken in different lighting conditions.
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With the illumination model, images under different lighting conditions can be
reconstructed. Also, the illumination can be changed or removed from the images.
Belhumeur and Kriegman [7] introduce the theory of illumination cone, which is the
basic theory for the lighting space of an object. If an object has convex shape and
Lambertian surface, then all the images about this object can form a polyhedral cone.
The dimension of this cone is determined by the number of distinct surface normal
vectors of the subject. In practice, the illumination cone theory can be relaxed
to objects of any shape and with a general reflectance surface. The authors also
point out that the illumination cone of an object could be approximated by a low-
dimensional subspace. The illumination cone theory only illustrates the structure of
lighting space for an object in a certain pose. The relationship between illumination
cones for different poses is still unclear.

In fact, a completed high-dimensional illumination cone is always difficult to
build in practice. Thus, researchers try to find the low-dimensional approximation
for an illumination cone. The illumination effect for an object can be considered as
the convolution of incident illumination with the reflectance function of the object.
Given the 3D model of an object, the lighting subspace can be constructed by
spherical harmonic basis [5, 45]. All the bases are given with implicit equations,
which are functions about illumination and object surface normal vectors. Given the
3D shape of the object, lighting position, and intensity, it is very easy to obtain the
basis for the lighting subspace directly. With the first three orders of the harmonic
basis, 90% of the illumination effect can be estimated, as shown in Fig. 15. However,
the requirement of deep information for the object also limits the application of the
method.

Fig. 15 Lighting map estimation based on spherical harmonics basis. (a) the first three orders of
the spherical harmonic basis of a face. Each row is the basis of the same order. From top to bottom,
they are the basis of order 0 to order 2, respectively. (b) From left to right, they are the original
face image, lighting map reconstructed by the basis of order 0 to 2, respectively. (Reprinted from
Ref. [22], with permission from Elsevier)
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Fig. 16 Images taken in nine
specific lighting conditions
can be used as the basis to
construct the lighting
subspace of the object.
(Reprinted from Ref. [24],
with permission of Springer)

In order to avoid the requirement of 3D model of subject or the learning
procedure to find lighting subspace, Lee et al. [30] propose to construct the low-
dimensional approximation directly from real images. Those real images are found
through minimizing the distance between two subspaces, where one is the spherical
harmonic subspace H and the other is the selected real image subspace, C. Then the
real lighting configuration of those selected images can be used for any subject to
construct the low-dimensional lighting subspace, C. That is, the real images taken
under those lighting configuration can be used as the basis images for its lighting
subspace. This paper proves that the lighting subspace constructed from real images
is a very good approximation of spherical harmonic subspace. In application, only
nine lighting positions are required to build up the lighting subspace, as shown in
Fig. 16. Also, it does not require the depth information as the traditional spherical
harmonic subspace. However, the specific lighting configuration sometimes cannot
be accessible. In real application, there are always a few sample images or even one
image of each subject.

Considering the practical application of lighting subspace estimation, Jiang et al.
[24] propose to create the basis images from any sample images of an object. That is,
given one image that can be taken in arbitrary condition, the nine basis images can
be reconstructed, and consequently the lighting subspace can be set up, as shown
in Fig. 17. In this paper, the estimation of basis images is based on the maximum
a posterior estimation. The basis images are composed of the common components
and personal components, where the common component is the mean value from the
training images and the personal components describe the specific characteristics of
each subject. Thus the estimated basis images can recover both the shared and the
individual features for each subject. This method breaks the requirement of nine real
images that are taken in specific lighting condition.



Deep Learning in Face Recognition Across Variations in Pose and Illumination 81

Fig. 17 The basis images of lighting subspace can be estimated from images under arbitrary
lighting conditions

4 Multi-stream Convolutional Neural Networks

In general conditions, the illumination of the environment and the pose of the
object are always uncontrolled. Therefore the robust face recognition system should
be able to process the pose and lighting problems at the same time. The current
algorithms that are dealt with pose and lighting problems are introduced in Sects. 2
and 3, respectively. Besides these specific designed algorithms, there are also
some methods doing face recognition in general conditions. Especially with the
development of deep learning methods, some deep neural networks are designed
for the face recognition problems. Schroff et al. [50] propose to enhance the
discrimination of the deep features according to the standard that the distance
within a class is minimized and the distance between classes are maximized. Sun
et al. [57] increase the dimension of the hidden layers and add constraint for early
convolutional layer to increase the discriminative power of the neural network. The
proposed network is called as DeepID2+, which improve the performance for the
face recognition in natural conditions.

For face recognition across pose and illumination, the global structure of
images is destructed by views; meanwhile, lighting brings wide variations for the
appearance of images. Thus the pose- and illumination-invariant features should
be local but not global. Furthermore the multiple hierarchical features are always
much more informative than features in a single scale. Consequently, we propose an
end-to-end convolutional network which can extract multi-hierarchy local features
for the task of face recognition. The overall architecture is shown in Fig. 18. In
our proposed networks, the input is a facial image under an arbitrary pose and
illumination. The output is the identity label for the face image.

4.1 Root Convolutional Layer

Recently convolutional neural networks (CNN) show great performance in different
fields of computer vision, such as object detection [46] and object classification
or recognition [58]. The superb capability of CNN is mainly due to its high-order
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Fig. 18 Architecture of the
proposed deep network.
Conv1 has the kernel size of
11 × 11 and the dimension of
96. Conv2, Conv3, Conv4,
and Conv5 all have the kernel
size of 1 × 1 and the
dimensions of 200, 400, 300,
and 500, respectively

nonlinear representation for data. In practice, CNN extracts features from input
images layer by layer through convolution kernels. For the proposed networks, the
input images, xl−1

i , are cropped and mirrored to the size of w×h×c = 227×227×3.
Then they are fed into a convolutional layer (Conv1) kl

ij with 96 filters of size

11 × 11 × 3. The output, xl
j , of this convolutional layer is written as

xl
j =

∑

i∈Mj

xl−1
i ∗ kl

ij + bl
j (12)

where l is the layer index, bl
j is the additive bias term, and ∗ represents convolution

in a local region Mj of input signals. In this convolutional layer, 96 filters are applied
locally to the whole images resulting in a feature map of size 55 × 55 × 96. Then
rectified linear unit (ReLU) is applied to the extracted feature map. ReLU serves
as an activation unit in the network which brings the nonlinearity to the feature.
Here we use a ramp function f (x) = max(0, x) to rectify the feature map. This
activation function is considered to be more biologically plausible than the widely
used logistic sigmoid or hyperbolic tangent function.

Consequently, the rectified feature maps will be given to a max-pooling layer
(Pool) which takes the max over 3×3 spatial neighborhoods with a stride of two for
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each channel, respectively. Through max-pooling operation, features will become
insensitive to local shift, i.e., invariant to location. Afterward, those features will go
through the local response normalization layer (Norm), which performs the lateral
inhibition by normalizing over local input regions. In our model, the local regions
extend across nearby channels but have no spatial extent. For normalization, each
input value is divided by the sum of local region as shown in Eq. 13:

s(xi) = (k + (α/n)
∑

i

x2
i )β (13)

where n is the size of each local region and the sum is taken over the region
centered at that value xi (zero padding is added where necessary). From the root
layer, we can obtain the local feature set which mainly contains all kinds of edges
in different orientations. Generally edges are considered as illumination-invariant
features. Since local structures are more important in our case, we will continue
to seek for local features instead of global features which are normally obtained in
further layers of traditional CNN.

4.2 Multi-hierarchical Local Feature

In fact, the window size of the convolution kernel is considered as the receptive field
for feature extraction. That is, bigger windows can include information in wider
range for processing. For the face images from different views, the global structures
of images change diversely. However, there is a tight correlation among local regions
of images taken in different views. Therefore the pose-invariant features should
be local features, and in addition the spatial information should be kept for each
local feature. Accordingly, smaller windows should be applied to extract features.
Here we propose to use the kernel of size 1 × 1 × c. With the kernel of 1 × 1,
no spatial patterns across multiple pixels are extract, but the patterns between c

channels are learned without losing the location information for each pattern. Thus
the feature can keep the correlation among different views. Meanwhile, the number
of parameters will also be reduced for the 1 × 1 kernel size compared with that
of bigger kernel size, which can make the training procedure more easily to be
convergent.

Neural networks actually perform nonlinear operation for data. With multiple
layers of processing, the neural networks can build a high-order nonlinear model
for real images, which is a much more suitable representation for the data than
the traditional man-crafted features. As a result, different numbers of layers also
influence the property of features. In the classical ConvNet, there is only one path
for the signal to go, and the classification only performs on the features extracted by
the last layer of the network. In fact, features from different levels of the networks
all contain useful information. Thus we propose to build a multi-stream local feature
hierarchy network (LFHN). Within each stream, features of different orders are
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extracted by using different numbers of convolutional layers. Then features from
different streams are contact to compose a multi-hierarchy feature with the size of
h×w × (c1 + c2 +· · ·+ cn), where h×w × ci is the size of the feature from stream
i and ci is the depth dimension.

In order to keep the spatial information for the local features, the convolutional
kernel of 1×1 is applied. As shown in Fig. 18, there are two steams for the proposed
network. One stream contains two convolutional layers where the kernel size of
Conv2 and Conv3 is 1 × 1 × 200 and 1 × 1 × 400, respectively. In another stream,
there is only one convolutional layer Conv4 with the kernel of 1×1×300. Through
these two streams, we can get local features from different levels of hierarchy. In
order to achieve the final recognition task, one more convolution layer, Conv5 with
kernel size 1 × 1 × 500, and two fully connected layer are employed for the further
feature abstraction.

4.3 Training

Since the root layers of convolutional networks always contain more generic
features such as edges or color blob, which is useful for many tasks including face
recognition, in training, we keep the pretrained results of AlexNet as the weight for
the convolutional layer, Conv1. Then for the other layers, they are trained according
to the Softmax loss function based on the identity labels for images in MultiPIE
dataset [16].

5 Experiments

5.1 Dataset

To evaluate the effectiveness of the proposed local feature hierarchy networks
(LFHN) under different poses and illumination, the MultiPIE face database [16] is
employed. The MultiPIE face database contains 754,204 images of 337 identities.
Each identity has images captured under 15 different poses and 20 different lighting
conditions. For the original images in MultiPIE, we have aligned all the images
according to the position of eyes and crop them to the size of 256 × 256. For
each subject, we only select the images with neural expression but in all poses and
lighting conditions; thus for each person, there are 300 images. Altogether, for all
the individuals in the dataset, we put 300 × 337 = 101,100 images into the data pool
for training and testing. In MultiPIE, there are four sessions to take photos for each
subject, but not everyone comes in each session. Therefore we take all the images
of 250 individuals in session 1 and the images of the other 87 persons in session 2.
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5.2 Recognition Across Poses and Illumination

In order to evaluate the performance of the proposed local hierarchy networks,
MultiPIE is used to train and test the networks. For the proposed networks, there is
only one input instead of multiple images from different reviews. Therefore training
images are randomly selected from images of natural expression but in 15 different
poses and 20 different lighting conditions. For all the 337 individuals, 90,000 images
are randomly taken from 101,100 images for training, and the leftover images are
used as testing images. The proposed network can learn local nonlinear features
which can represent the correlations between images in different poses and lighting
conditions. The rank-1 recognition rates for images with pose and illumination
variations are shown in Table 1. The recognition results for each view are the average
results for all the images under 20 different lighting conditions.

From the results, we can see that the proposed LFHN network achieved relatively
stable performance for different poses. Especially for profile-wised images, where
the yaw angle is in the range of [−90◦,−60◦] and [60◦, 90◦], the average recog-
nition rate is 97.78%, while for the traditional methods, the performance declined
significantly for images with greater pose variations. For the patch-based partial
recognition (PBPR) [14], the average recognition rate for front-wised images is
98.96% where the yaw angle is within 45◦. But for the profile-wised images, the
recognition rate is 78.76%. That indicates the projection recovery method used
in PBPR does not find the accurate locations for profile-wised images. Compared
with current state-of-the-art methods, the proposed LFHN network improves the
recognition rate by 7.55% for images under arbitrary poses and illumination. In
the proposed networks, we consider images from different views and illumination

Table 1 Rank-1 identification rates on combined variations of pose and illumination on MultiPIE

PoseID Yaw Pitch RR [32] FIP [73] PBPR [14] LFHN (Ours)

081 −45◦ 25◦ 24 – 88 94.51
110 −90◦ 0◦ 20.5 – 51 97.52
120 −75◦ 0◦ 26.5 – 79 98.15
090 −60◦ 0◦ 50.64 – 90.86 98.51
080 −45◦ 0◦ 65.30 67.10 97.91 97.75

130 −30◦ 0◦ 70.97 74.60 99.41 98.08

140 −15◦ 0◦ 81.07 86.10 99.05 97.12

050 15◦ 0◦ 77.21 83.30 99.94 93.74

041 30◦ 0◦ 73.69 75.30 99.23 97.91

190 45◦ 0◦ 58.12 61.80 98.21 96.53

200 60◦ 0◦ 45.97 – 87.75 97.65
010 75◦ 0◦ 31 – 89 97.57
240 90◦ 0◦ 18 – 75 97.3
191 45◦ 25◦ 40 – 96 93.73

Mean 48.78 – 89.31 96.86
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Table 2 Rank-1 identification rates for pose variation on MultiPIE

PoseID Pose
PLS
[54]

MCCA
[48]

PLS +
LDA [27]

MCCA +
LDA [27]

MvDA
[28]

GMA
[52]

MvDN
[27]

LFHN
(ours)

110 −90◦ 0.319 0.409 0.38 0.488 0.568 0.526 0.704 1
120 −75◦ 0.775 0.742 0.798 0.662 0.723 0.723 0.822 0.9767
090 −60◦ 0.892 0.822 0.869 0.817 0.845 0.845 0.883 1
080 −45◦ 0.934 0.723 0.944 0.887 0.92 0.901 0.911 1
130 −30◦ 0.883 0.685 0.92 1 0.967 1 0.991 0.893

140 −15◦ 0.981 0.92 0.995 1 1 1 1 1

050 15◦ 0.981 0.906 0.986 1 1 1 1 0.938

041 30◦ 0.934 0.798 0.967 0.995 0.991 1 0.991 0.971

190 45◦ 0.906 0.747 0.883 0.831 0.897 0.906 0.93 0.958
200 60◦ 0.873 0.779 0.85 0.803 0.864 0.859 0.911 0.935
010 75◦ 0.723 0.714 0.709 0.676 0.714 0.718 0.798 1
240 90◦ 0.268 0.376 0.319 0.568 0.559 0.573 0.709 1

Mean 0.789 0.718 0.802 0.811 0.837 0.838 0.887 0.973

equally. Thus pose-invariant and illumination-invariant nonlinear local features can
be sought by the proposed network LFHN.

Besides the face recognition with the combined variations of pose and illumina-
tion, we also test the performance of the proposed network LFHN on pose only. For
this task, the probe dataset includes images of all subjects from four sessions where
images are taken in ambient lighting and 13 different poses. The comparison results
with other methods are shown in Table 2.

From the results we can see even though different methods try to tackle
the pose problem, the face recognition rate decreases along with the amount of
pose variation. The more the view diverges from the frontal face, the lower the
recognition rate is. That is because pose changes the appearance and structure of the
image. MvDN [27] and MvDA [28] tried to find the correlation between different
poses and achieved relatively good performance. For the proposed network LFHN,
we also focus on the extraction of local features among different poses which can
describe the correlation of different poses and also discriminate different identity.
Thus we achieve better results compared with other methods. Especially for larger
pose diversity, the performance of the proposed network is not degenerated but very
stable instead. The average recognition rate is 97.3% which improves the state-of-
the-art method by 8.6%.

6 Conclusion

Pose and illumination will always bring great variance for the appearance of face
images, which makes face recognition across pose and illumination challenged.
However, it is quite normal to encounter the pose and illumination changes in
uncontrolled environment. Therefore a robust face recognition system has to deal



Deep Learning in Face Recognition Across Variations in Pose and Illumination 87

with illumination and pose variations effectively. In fact, there are tight correlations
for images from different postures. Images of different views are the projection
of the same object to different positions. Then local features are more useful for
recognition under different views than the global features, where the global structure
is actually destructed by the projection in different views. Thus we propose a neural
network which extracts local features by 1 × 1 convolutional kernels; in addition
multi-hierarchical features are combined for the task of recognition. Experiments on
MultiPIE dataset show very good and stable performance for the proposed networks
in a wide range of pose and illumination.
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Face Anti-spoofing via Deep Local Binary
Pattern

Lei Li and Xiaoyi Feng

Abstract In recent years, convolutional neural network (CNN) has achieved satis-
factory performance in computer vision and pattern recognition. When we visualize
the convolutional responses, we can conclude that the convolutional responses
include some diacritically structural information. But for the high dimensionality of
them, it is not feasible to directly use the responses to detect fake faces. Moreover,
the small size of existing face anti-spoofing databases leads to the difficulty
of training a new CNN model. Compared with deep learning, the traditional
handcrafted features, such as local binary pattern (LBP), have been successfully
used in face anti-spoofing and achieved good detection results. So in our work, we
extracted the handcrafted features from the convolutional responses of the fine-tuned
CNN model. More specifically, the CNN is first fine-tuned based on a pre-trained
VGG-face model. Then, the LBP features are calculated from the convolutional
responses and concatenated into one feature vector. After that, the final vectors
are fed into a support vector machine (SVM) classifier to detect the fake faces.
Validated on two public available databases, Replay-Attack and CASIA-FA, our
proposed detection method can obtain promising results compared to the state-of-
the-art methods.

1 Introduction

At present, a variety of face spoofing attacks have become a major security threat
to most face recognition systems. To make matters worse, with the development of
the Internet and social media, criminals can easily learn how to invade a biometric
system. For instance, a fingerprint hack in YouTube performed how to unlock the
iPhone5S Touch ID preconization system. A face spoofing attack occurs when
someone tries to bypass a face biometric system by presenting a fake face in front
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of the camera. For instance, researchers inspected the threat of the online social
networks based on facial disclosure against the latest version of six commercial
face authentication systems (Face Unlock, Facelock Pro, Visidon, VeriFace, Luxand
Blink, and FastAccess). While on average only 39% of the images published on
social networks can be successfully used for spoofing, the relatively small number
of usable images was enough to fool face authentication software of 77% of the
74 users [1]. Also, in a live demonstration during the International Conference
on Biometric (ICB 2013), a female intruder with a specific makeup succeeded in
fooling a face recognition system. These examples among many others highlight
the vulnerability of face recognition systems to spoofing attacks. Based on different
materials of fake faces, three kinds of face spoofing attacks can be considered: (i)
print attacks, (ii) replay attacks, and (iii) 3D mask attacks. Print attacks use still
photos or images of legitimate users to spoof face biometric systems. Replay attacks
utilize face videos to intrude the systems. These two kinds of attacks belong to 2D
face attacks. However, 3D mask attacks are often launched by a 3D face mask,
which needs complicated production process and high costs. In these attacks, the
2D attacks are the most common and simplest face spoofing attacks. According
to the frequency of attacks and the situation of practical application statistics, in
this chapter, we focus on print attacks and replay attacks by the extended detection
method [2].

To detect face spoofing attacks, many methods have been proposed in the recent
decade. Based on different learning algorithms, they can be classified into machine
learning-based methods and deep learning-based methods. For the former, they
mainly extract the handcrafted features from face images and train a classifier to
distinguish the real and fake faces. Although they can get satisfactory performance
in some specific cases, they need the researchers to design the features with prior
knowledge. Moreover, the handcrafted features cannot promise us the methods
can also get good performance in unknown environment. Compared with machine
learning-based methods, deep learning-based methods focus on designing the
structure of the model and are more robust [3] with its various frequency responses.
Generally speaking, a more deep model can get better performances than the shallow
one. But it requires many training samples to optimize the parameters, which is
unpractical for the existing face anti-spoofing databases.

As aforementioned, the features extracted by deep learning are robust mainly
caused by the various frequency responses, and the handcrafted features have more
powerful ability of characterizing the image. When we extract the handcrafted
features from the various frequency responses of convolutional layers, the obtained
features are more robust. Therefore, we combine machine learning and deep
learning together in our proposed method. Moreover, the real and fake faces are very
distinctive in chrominance channels [4]. So, we also exploit the color information to
detect face spoofing. More specifically, we first fine-tune a pre-trained deep learning
model with the existing face anti-spoofing databases and then extract the color LBP
features from the convolutional responses. At the end, we concatenate the LBP
features into a feature vector and train an SVM classifier to detect the fake faces.
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We validated our work on Replay-Attack and CASIA-FA databases by intra test
and cross test. Experiments show that the performance of our method is comparable
to the state-of-the-art methods.

2 Related Work

In this section, we review typical nonintrusive software-based countermeasure for
face anti-spoofing. Based on different cues, prior detection approaches can be
classified into (1) texture analysis based, (2) motion analysis based, (3) image
quality analysis based, and (4) multi-cues fused based.

Texture Analysis-Based Methods Usually, the fake face is invoked to printed
photos, mobile phones, and other electronic equipments. However, there is a
significant difference between these mediums and the real faces. For example,
these mediums are 2D planes, while the real faces are 3D planes, which will lead
to the discrepancy of light’s diffuse reflection. So, in [5], the specular reflection
features were extracted to distinguish the 2D spoofing attacks and the real faces.
Moreover, for the 2D attacks, the fake faces are printed by the printers or showed
by the LCD screens. But these devices are still imperfect in color gamut compared
with real world, which will lead to the subtle differences in texture. So, Maatta
et al. [6] concatenated various LBP features to detect the fake faces. Unlike [6],
Chingovska et al. [7] extracted the LBP features from different blocks of a gray-
scaled image. First, they divided the face image into several blocks and extracted
the LBP features from each block. To capture the structural information, those
LBP features were concatenated into one feature histogram, which will be fed into
a classifier to distinguish the real and fake faces. In another work [4], the LBP
features were extracted from different color spaces (RGB, HSV, and YCbCr) and
were fed into an SVM classifier to detect the spoofing attacks. After that, they [8]
extended the texture features from LBP to other descriptors, such as co-occurrence
of adjacent local binary patterns (CoALBP), local phase quantization (LPQ), and
binarized statistical image features (BSIF). Deep learning is a hot topic for its
superior performance than the traditional machine learning. Under this trend, Yang
et al. in [9], and Menotti et al. in [10], explored the effectiveness of deep learning on
face anti-spoofing. The former designed a CNN model based on an existing network
structure [11], while the latter designed the network structure by themselves. In
these works, they train their CNN models using the existing face anti-spoofing
databases. However, the scale of these anti-spoofing databases is quite small, and
they are collected in controlled environments. Thus, it is quite hard to train a deep
model. Although the texture analysis based methods are able to get satisfactory
performance, there are still some limitations. For example, the input face images are
required to have high resolution, which means the acquisition systems must have
good quality.
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Motion Analysis-Based Methods Based on the fact that print photo or image
attacks have no living information (such as blinking), some researchers use different
methods to capture the motion information. For instance, Anjos et al. [12] analyzed
the relative movement between the face region and the background to distinguish
the real and fake faces. Because the real face regions always have some motion
compared with the background, the fake face regions are relative still. In another,
Pereira et al. [13] calculated the local binary patterns from three orthogonal planes
(LBP-TOP) to represent dynamic textures. Different from traditional LBP, the LBP-
TOP features combine texture information and motion information. It is noted that
there is no operator of face alignment, which means the motion information not only
includes the facial key point motion but also the head motion. At the end, the LBP-
TOP features are fed into a classifier to detect face spoofing. In addition, Kollreider
et al. [14] presented a new method based on simplified optical flow analysis. They
selected some key facial parts (e.g., eyes/nose, left and right ear) and computed
the changes of their optical flow. Then, a binary detector was used to evaluate the
trajectories of selected parts. Also, Chakka et al. [15] used the optical flow algorithm
to detect these mediums (such as paper or screen). The main problems of motion-
based methods are that the verification process takes some time and the real client
needs to be very cooperative in practice. Even though motion is an important visual
cue, the lack of motion may lead to a high number of authentication failures if user
cooperation is not requested.

Image Quality Analysis-Based Methods When launching a face attack, the fake
face is prepared by passing through two different camera systems and a printing
system or display device. Thus, the fake face actually can be regarded as a
recaptured image. However, due to the imperfection of these devices, the recaptured
images always present low image quality compared with the real face image.
Therefore, Zhang et al. [16] considered the high-frequency information was the
response of image quality. So they extracted the image quality features to detect the
fake faces by multiple different Gaussian filters. In another work, Peng et al. [17]
also detected fake face by extracting the high-frequency information. But different
with [16], they added a flash in front of the camera. By calculating the changes of
high-frequency information with and without the flash, it can tackle the problem
of face anti-spoofing. If the changes are greater than a pre-set threshold, the face
image will be regarded as a fake face. In another work, Wen et al. [5] extracted four
kinds of features (such as specular reflection features, blurriness features, chromatic
moment features, and color diversity features) to describe the image quality. Then
these features were concatenated into a feature vector and fed into an SVM classifier
to detect face spoofing attacks. Also, Galbally et al. [18] measured the image quality
by 25 kinds of assessment criteria, including 21 full-reference measures and 4
non-reference measures, to detect the fake faces. The image quality analysis-based
methods can work well if the fake faces have lower image quality. But with the
improvement of the printing equipments and display devices, the image quality of
fake faces usually has subtle differences compared with real faces.



Face Anti-spoofing via Deep Local Binary Pattern 95

Multi-cues Fuse-Based Methods Compared to face texture or motion, some other
biological information (such as skin, voice, fingerprint, and iris) can also be applied
to distinguish the real and fake clients. In [19], Zhang et al. proposed to analyze
the reflectance property by Lambertian reflectance model. Girija [20] fused the face
and voice features to check liveness. Wang et al. [21] proposed a new face anti-
spoofing method by recovering sparse 3D facial structure. Recently, Akhtar et al.
[22] concatenated face, iris, and fingerprint features to detect spoofing attacks. In
another work [23], they implemented a mobile biometric liveness detection system.
Base on the different level of security, the system can select disparate anti-methods
to meet the demand. However, these methods need extra requirements on the user
or the biometric system. As a consequence, the application range is very narrow.

3 Proposed Method

In our work, we propose to extract the color LBP descriptors from the convolutional
feature maps. The main architecture of the proposed method is illustrated in Fig. 1.

Fig. 1 Architecture of face anti-spoofing based on deep local binary pattern. Part I is the main
structure of the fine-tuned CNN model. Part II is the main idea of extracting the LBP features from
the convolutional feature maps and concatenating them into one feature vector. In Part I, Conv
Layer is convolutional layer, Relu Layer is rectified linear units layer, M-pool is pooling layer with
max value operation, and FC Layer is the fully connected layer
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3.1 CNN Training

Unlike other deep learning works [9, 24], the existing pre-trained deep learning
model called VGG-face is fine-tuned to reduce the influence of over-fitting. It is
noted that the VGG-face model is designed for face recognition [25], and its network
parameters are given in Table 1. For VGG-face model, it is trained with a large
set of face images (2.6M images) and tested on two challenging face recognition
databases: Labeled Face in the World and Youtube face achieving state-of-the-art
results. Considering VGG-face is used to recognize 2622 subjects, we should change
the output of the last fully connected layer from 2622 to 2. Here 2 is the classes of
face: real and fake. The softmaxloss function illustrated in Eq. 1 is used as the cost
function when fine-tuning the parameters of VGG-face model.

F (Y ) =
n∑

i=1

{log(eyi1 + eyi2 + . . . + eyiv ) + yir } (1)

where i is the index of training samples and n is the number of training samples.
Y = [Y1, Y2, . . . , Yi, . . . , Yn] is the set of labels, Yi = [yi1, yi2, . . . , yir , . . . , yik] is
the predict vector of the ith sample, and v is the number of classes. It is noted that
the yir is the predict value of the ith sample.

3.2 Color Spaces

RGB is the most used color space for sensing, representation, and displaying
of color images. Even though it includes three color channels (red, green, and
blue), RGB does not consider the information of luminance and chrominance.
Therefore, we feed the VGG-face model with the face images in two other color
spaces: the HSV and the YCbCr. Different from RGB color space, the HSV
and YCbCr color spaces are based on the separation of the luminance and the
chrominance information. More specifically, in the HSV color space, the hue and
the saturation dimensions define the chrominance of the image, while the value
dimension corresponds to the luminance. The YCbCr space separates the RGB
components into luminance (Y), chrominance blue (Cb), and chrominance red (Cr).
More details about these color spaces have been illustrated in [26].

3.3 Local Binary Pattern (LBP)

For face analysis, LBP [27] is a very effective texture descriptor. For each pixel
in an image, a binary code is computed by thresholding a circularly symmetric
neighborhood with the value of the central pixel. As aforementioned, the convo-
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lutional feature maps can be regarded as the gray-scaled images. For the sake of
simplicity, we use Xi to denote the index of training samples, and XRGB

i , XHSV
i

and XYCbCr
i denote the RGB, HSV, and YCbCr color images of Xi , respectively.

For face image Xi , the j th convolutional layer’s feature maps can been illustrated
as C

j
Xi

= [Cj1
Xi

, C
j2
Xi

, . . . , C
jd
Xi

, . . . , C
jD
Xi

], where D is the number of the filters in
the j th convolutional layer of VGG-face model.

For each pixel (x, y) in C
jd
Xi

, the LBP code is computed as shown in Eq. 2.

LBPP,R(x, y) = ∑P
υ=1 δ(rυ − rc) × 2n−1 (2)

where δ(x) = 1 if x ≥ 0; otherwise δ(x) = 0. rc and rυ(υ = 1, . . . , P ) denote the
intensity values of the central pixel (x, y) and its P neighbourhood pixels located at
the circle of radius R(R > 0), respectively. The occurrences of the different binary
patterns are collected into histogram to represent the image texture information.
LBP pattern is defined as uniform if its binary code contains at most two transitions
from 0 to 1 or from 1 to 0. For example, 01110000 (2 transitions) and 00000000 (0
transitions) are uniform patterns.

To summarize, let H
C

jd
Xi

be the texture histogram extracted from C
jd
Xi

. For the

image Xi , all texture histograms are shown in Eq. 3.

H(Xi) = {HC1
Xi

, HC2
Xi

, . . . , H
C

j
Xi

, . . . , HCJ
Xi

} (3)

J is the number of convolutional layers in the fine-tuned VGG-face model. So
H(XRGB

i ), H(XHSV
i ), and H(XYCbCr

i ) are the color texture histograms from
XRGB

i , XHSV
i , and XYCbCr

i , respectively.

3.4 Concatenating the LBP

Let X = [X1, X2, . . . , Xi, . . . , Xn] denotes the training samples. Each convolu-
tional feature map will get one texture histogram. In our work, we concatenate
the texture histograms that belong to the same convolutional layer. So for each
convolutional layer, we will obtain the concatenated LBP descriptions shown in
Eq. 4.
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F
j =

[
F

j
X1

. . . F
j
Xi

. . . F
j
Xn

]

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H
C

j1
X1

. . . H
C

jd
X1

. . . H
C

jD
X1

H
C

j1
X2

. . . H
C

jd
X2

. . . H
C

jD
X2

. . . . . . . . . . . . . . .

H
C

j1
Xi

. . . H
C

jd
Xi

. . . H
C

jD
Xi

. . . . . . . . . . . . . . .

H
C

j1
Xn

. . . H
C

jd
Xn

. . . H
C

jD
Xn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

3.5 Classification

After extracting the LBP descriptions from the convolutional feature maps, the
support vector machine (SVM) is trained and invoked for face anti-spoofing. In this
chapter, the LIBLINEAR toolkit [28] is used.

4 Experimental Data and Setup

4.1 Experimental Data

In this chapter, we validate our proposed method with extensive experiments on
two public face anti-spoofing databases: Replay-Attack database [29] and CASIA
Face Anti-spoofing database [30]. A description of these two databases is given as
follows:

4.1.1 Replay-Attack

The IDIAP Replay-Attack database1 [29] consists of 1300 video clips of real and
attack and its attempts to 50 clients (Fig. 2 shows some example of real and fake
faces). In the database, the clients are divided into three subject-disjoint subsets for
training, development, and testing (15, 15, and 20, respectively). The genuine videos
are recorded under two different lighting conditions: controlled and adverse. Two
types of attacks are created: replay attacks and print attacks. In the replay attacks,
the iPhone 3GS and iPad display devices are used to replay high-quality video and
images of the real client. For the print attacks, the high-quality images were printed
on A4 papers and presented in front of the camera.

1https://www.idiap.ch/dataset/replayattack/download-proc

https://www.idiap.ch/dataset/replayattack/download-proc
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Fig. 2 Samples from the Replay-Attack database. The first row presents images taken from the
controlled scenario, while the second row corresponds to the images from the adverse scenario.
From left to right: real faces and the corresponding high definition, mobile, and print attacks

Fig. 3 Samples from the CASIA-FA. From top to bottom: low-, normal-, and high-quality images.
From left to right: real faces and the corresponding warped photo, cut photo, and video replay
attacks

4.1.2 CASIA-FA

The CASIA Face Anti-spoofing (CASIA-FA) database2 [30] consists of 600 video
recordings of real and attack attempts to 50 clients (Fig. 3 shows some example of

2http://www.cbsr.ia.ac.cn/english/FaceAntiSpoofDatabases.asp

http://www.cbsr.ia.ac.cn/english/FaceAntiSpoofDatabases.asp
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real and fake faces), which are divided into two subject-disjoint subsets for training
and testing (20 and 30, respectively). Three types of attacks are created: video
replay attacks, warped attacks, and cut attacks. The real and the attack attempts
were recorded using three camera devices: low, normal, and high resolution.

4.2 Experimental Setups

4.2.1 Evaluation Protocol

For the performance evaluation, we followed the overall protocol associated with
the two databases. For each database, we used the training set to fine-tune the VGG-
face model and the testing set to evaluate the performance. On CASIA-FA database,
the results are evaluated in terms of equal error rate. The Replay-Attack database
provides also a development set to tune the model parameters. Thus, the results are
reported in terms of equal error rate (EER) on the development set and half total
error rate (HTER) on the test set, illustrated in Eq. 5. In our experiments, we have
reported two different kinds of performances: (i) the impact of different face regions
for anti-spoofing and (ii) the results of cascading deep features.

HT ER = FRR(κ,D) + FAR(κ,D)

2
(5)

where D denotes the used database and the value of κ is estimated on the EER.
FRR(κ,D) means the false rejection rate of real faces, and FAR(κ,D) means the
false acceptance rate of fake faces.

4.2.2 Data Processing

In our proposed method, the dimension of the texture histogram is 59. For a
convolutional layer, the dimension of the concatenated LBP descriptions is 59 × D,
where D is the number of convolutional feature maps in the corresponding layer.
For example, there are 64 feature maps in the first convolutional layer. So the
dimension is 59 × 64 = 3776. It is noted that the scale of the feature maps
becomes more and more small with the increase of the convolutional layer’s depth.
Moreover, we used the LBP8,1 operator (i.e., P = 8 and R = 1) to extract
the textural features from the convolutional feature maps. Hence, we select j =
{1, 3, 6, 8, 11, 13, 15, 18, 20, 22}.

Compared to the dimensionality with the quantity of the training set, it is easy
to over-fit the SVM classifier. So we use principal component analysis (PCA)
algorithm to reduce the feature dimensionality. Furthermore, in order to capture both
of the texture and the motion variations of the face images, the extracted features of
a certain time window (two seconds) are averaged as the final feature description.
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4.2.3 Intra Test and Cross Test

To evaluate the effectiveness and generalization capabilities, in our work, we carry
out two kinds of test: intra test and cross test. For the former, the CNN model and the
SVM classifier are trained and tested on the same database. For the latter, the CNN
model and the SVM classifier are trained on one database and tested on another
database, like performed in [31]. For example, we will train the CNN and the SVM
on Replay-Attack database and test them on the CASIA database and vice versa.

5 Results and Discussion

In this section, we present and discuss the results obtained by our proposed method.
Firstly, we feed the VGG-face model with the face images in different color spaces
and extract LBP features from different convolutional layers. Apart from intra test,
we also perform cross test to evaluate the generalization capability. Secondly, we
concatenate the LBP of different color spaces and analysis the influence of different
concatenation mechanisms. Finally, we compare the performance of proposed
detection method with the state-of-the-art methods.

5.1 Impact of Different Color Spaces

5.1.1 Intra Test

In this part, we present the performance of the LBP extracted from different
convolutional layers. Table 2 presents the results of the LBP descriptor applied
on the different convolutional feature maps and different color spaces. For Replay-
Attack database, the best of EER and HTER obtained by the RGB LBP are 0.3%

Table 2 The intra test results from different convolutional feature maps

Database
1 3 6 8 11 13 15 18 20 22
conv conv conv conv conv conv conv conv conv conv

Replay-Attack RGB EER 17.8 5.2 7.9 7.2 2.8 1.5 0.3 2.7 2.8 4.7

HTER 17.9 8.8 7.9 7.8 2.6 1.2 0.9 3.4 3.7 5.7

HSV EER 4.0 4.7 6.7 5.4 3.3 2.9 2.2 6.0 7.1 6.1

HTER 3.1 5.2 8.1 5.3 2.7 3.5 3.4 7.2 7.4 8.6

YCbCr EER 20.5 24.9 6.7 10.9 5.4 4.2 1.6 4.6 5.4 4.8

HTER 10.0 13.0 12.2 9.2 5.4 5.4 7.2 6.6 7.2 9.1

CASIA-FA RGB EER 12.1 19.9 6.4 13.9 4.3 4.3 5.1 3.4 4.0 5.3

HSV EER 10.0 13.0 12.2 9.2 5.4 5.4 7.2 6.6 7.2 9.1

YCbCr EER 10.2 18.0 11.1 13.0 7.2 6.1 6.4 7.3 9.0 10.0
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and 0.9%, respectively, which is better than the HSV and YCbCr color spaces.
Compared with the Replay-Attack database, the best of EER of CASIA-FA is 3.4%,
which is also obtained in RGB color space. It can be clearly seen that the LBP
extracted from the RGB color space can get the best performance compared with the
HSV and YCbCr color spaces. Furthermore, we can find that the best convolutional
layers which get the best EER and HTER are the 15th and 18th, rather than the
deepest layer 22th. This indicates the deeper layer may not be the best layer when it
extracts the handcrafted features from the convolutional feature maps.

Apart from Table 2, we plot the ROC curves of different color spaces as shown
in Figs. 4 and 5. From the Fig. 4, we can find the line that possesses the shortest

Fig. 4 ROC curves of obtained by the proposed CNN&LBP tested on Replay-Attack database. (a)
ROC curves in RGB color space. (b) ROC curves in HSV color space. (c) ROC curves in YCbCr
color space
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Fig. 5 ROC curves of obtained by the proposed CNN&LBP tested on CASIA-FA database. (a)
ROC curves in RGB color space. (b) ROC curves in HSV color space. (c) ROC curves in HSV
color space

distance to the original point is the blue dotted line. This means that for the Replay-
Attack database, the 15th convolutional layer is the best layer to get the lowest EER
and HTER. From both figures, we can conclude that the LBP descriptors extracted
from the HSV color space have the strongest robustness in terms of all convolutional
layers.
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Table 3 The cross test results from different convolutional feature maps

1 3 6 8 11 13 15 18 20 22
Trained Tested Space conv conv conv conv conv conv conv conv conv conv

Replay-
Attack

CASIA-FA RGB 39.4 42.6 48.6 49.1 41.1 45.2 41.7 51.4 49.1 46.7

HSV 35.4 46.2 48.5 37.3 43.9 40.3 42.9 47.4 39.3 40.8

YCbCr 54.7 46.6 66.3 53.2 52.7 53.5 52.0 56.2 48.5 51.4

CASIA-FA Replay-
Attack

RGB 50.0 47.2 50.0 50.0 41.4 44.4 44.9 46.4 48.0 46.5

HSV 38.6 42.7 40.1 36.4 38.1 36.7 40.1 42.5 40.0 38.9

YCbCr 59.9 63.3 57.8 50.0 50.2 49.0 50.0 51.2 54.6 54.7

5.1.2 Cross Test

To evaluate the generalization capabilities of our proposed method, we first fine-tune
the VGG-face model and train the SVM classifier on the Replay-Attack (or CASIA-
FA) database and then test them on the CASIA-FA (or Replay-Attack) database. The
results are shown in Table 3. It can be clearly seen that the LBP descriptors extracted
from the HSV space have the strongest generalization capability. The lowest of
HTERs for Replay-Attack and CASIA-FA are 35.4% and 36.4%, respectively.
Comparing Table 2 with Table 3, the best convolutional layers for intra test are the
15th and the 18th, which are different with the 1st and the 8th of the cross test. This
suggests that the best LBP descriptors of one database maybe not suit for another
database.

5.2 Concatenating Different Color Spaces

5.2.1 Intra Test

In order to take advantages of different color spaces, we concatenate the LBP
features into one feature vector. More specifically, in our work, we explore to
concatenate different color spaces with four mechanisms: RGB-HSV, RGB-YCbCr,
HSV-YCbCr, and RGB-YCbCr-HSV. The detection results of intra test are shown
in Table 4, and the ROC curves are illustrated in Figs. 6 and 7. Comparing
Table 4 with Table 2, the overall performance has been significantly improved when
concatenating the RGB and HSV color spaces. Especially the best EER of intra
test has been reduced by more than 34%, even though the HTER of Replay-Attack
database has been subtlely increased to 1.3%.

Figures 6 and 7 depict the robustness of the concatenated LBP descriptors. From
the former, we can clearly see that all lines locate in the middle of the axis which
means the concatenated LBP descriptors have weak robustness for Replay-Attack
database. But for the CASIA database, the concatenated LBP descriptors have
strong robustness illustrated in Fig. 7.
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Table 4 The intra test results from different convolutional feature maps

1 3 6 8 11 13 15 18 20 22
Database conv conv conv conv conv conv conv conv conv conv

Replay- RGB-HSV EER 4.0 4.0 5.2 6.6 2.6 1.5 0.1 2.8 2.8 2.8
Attack

HTER 4.4 5.4 4.9 4.9 2.6 1.6 1.3 3.5 4.4 4.3

RGB-YCbCr EER 13.7 6.1 7.5 6.6 1.5 2.6 0.3 2.8 3.1 3.1

HTER 14.0 8.1 7.3 6.2 1.8 2.5 1.5 3.9 3.8 3.7

HSV-YCbCr EER 5.9 6.6 5.0 5.3 1.2 2.6 0.5 3.5 3.3 4.0

HTER 5.8 7.9 4.0 6.4 1.1 2.9 2.9 3.3 3.6 4.9

RGB-HSV-YCbCr EER 5.3 4.6 4.0 6.4 1.5 1.5 0.1 2.8 2.8 2.8

HTER 6.1 6.2 4.8 6.8 1.4 2.0 1.5 2.9 2.9 4.0

CASIA- RGB-HSV EER 6.4 16.0 7.0 8.2 2.5 2.5 2.6 3.5 2.6 4.1
FA

RGB-YCbCr EER 9.0 10.0 3.3 7.2 5.1 4.2 4.4 5.4 6.0 5.4

HSV-YCbCr EER 5.4 7.9 6.3 5.3 2.6 3.1 2.6 4.4 5.1 4.2

RGB-HSV-YCbCr EER 6.1 11.0 3.3 3.6 2.3 2.5 2.6 4.4 4.2 5.0

5.2.2 Cross Test

The generalization capabilities of the concatenated LBP descriptors are shown in
Table 5. When our proposed method is trained on Replay-Attack and tested on
CASIA-FA, the best HTER is 31.2%. Compared with Table 3, the performance of
generalization has been improved by about 12%. Furthermore, when our proposed
method is trained on CASIA-FA and tested on Replay-Attack, the generalization
capabilities will be significantly improved. Especially for the concatenated RGB-
HSV color spaces, the best HTER can be decreased from 36.4% to 20.7%.
Tables 3 and 5 show the concatenated color spaces can improve the generalization
capabilities for face anti-spoofing.

5.3 Comparison Against State-of-the-Art Methods

Tables 6 and 7 provide a comparison with the state-of-the-art methods. It can be
seen from the two tables that our proposed method outperforms the state-of-the-
art algorithms on Replay-Attack and CASIA-FA. More specially, Table 6 compares
the intra test performance with other methods. Considering Replay-Attack database,
we find that the EER obtained by the proposed method is 0.1%, which is very close
to the best EER reported in [8]. For the indicator of HTER, our performance is
better nearly four times than [8]. Especially for CASIA-FA, the maximum of EER is
32.4%, which is more than 14 times than ours. Table 7 compares the generalization
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Fig. 6 ROC curves of Replay-Attack database obtained by the concatenated color spaces. (a) The
RGB-HSV space. (b) The RGB-YCbCr space. (c) The HSV-YCbCr space. (d) The RGB-YCbCr-
HSV space

capabilities with the state-of-the-art methods. When the our proposed method is
trained on the CASIA-FA, we notice that the HTER value is 20.7%. When the model
is trained on Replay-Attack, the HTER on CASIA-FA is 31.2%. So overall, our
proposed approach gives the competitive performance on the challenging Replay-
Attack and CASIA-FA.
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Fig. 7 ROC curves of CASIA-FA database obtained by the concatenated color spaces. (a) The
RGB-HSV space. (b) The RGB-YCbCr space. (c) The HSV-YCbCr space. (d) The RGB-YCbCr-
HSV space

6 Conclusion

In this chapter, we propose to detect face spoofing attacks based on deep color
texture analysis. We extract color texture features from convolutional feature maps
and investigate how well different color image representations (RGB, HSV, and
YCbCr) can be used for describing the intrinsic disparities in the color textures
between genuine faces and fake ones and if they can provide complementary
representations. The effectiveness of different deep color texture representations
is also studied by concatenating different color spaces. Extensive experiments on
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Table 5 The cross test results from different convolutional feature maps

1 3 6 8 11 13 15 18 20 22
Trained Tested Space conv conv conv conv conv conv conv conv conv conv

Replay- CASIA- RGB-HSV 33.5 47.3 40.8 44.3 40.3 37.3 42.1 42.2 41.1 41.2
Attack FA

RGB-YCbCr 46.9 45.7 54.4 48.5 47.4 46.6 47.8 52.8 45.3 44.6

HSV-YCbCr 31.2 44.9 51.2 39.1 45.4 44.2 37.9 45.6 39.5 37.2

RGB-HSV-YCbCr 32.4 47.7 46.5 41.4 41.5 39.1 43.1 40.6 42.6 35.8

CASIA- Replay- RGB-HSV 47.5 41.2 44.5 43.0 28.9 23.2 27.9 27.2 21.9 20.7
FA Attack

RGB-YCbCr 50.9 57.0 49.8 50.0 47.5 46.7 48.9 47.7 50.8 49.4

HSV-YCbCr 52.1 37.9 47.8 42.8 45.1 45.6 42.8 38.5 39.2 40.2

RGB-HSV-YCbCr 49.9 40.1 49.9 45.9 38.8 41.4 41.3 35.9 37.8 38.1

Table 6 Compare the
performance with the
state-of-the-art methods

Replay-Attack CASIA-FA

Method EER(%) HTER(%) EER(%)

IQA based [18] – – 32.4

CDD [32] – – 11.8

DOG(baseline) [30] – – 17.0

Motion+LBP [33] 4.5 5.1 –

Motion [31] 11.6 11.7 26.6

LBP [29] 13.9 13.8 18.2

LBP-TOP [13] 7.8 7.6 10.6

Spectral cubes [34] – 2.8 14.0

DMD [35] 5.3 3.8 21.8

Deep Learning [9] 6.1 2.1 7.3

LBP [36] 0.4 2.9 6.2

Color LBP [8] 0.0 3.5 3.2

Proposed method 0.1 0.9 2.3

the two latest and challenging face spoofing databases (Replay-Attack database
and CASIA-FA database) show excellent results. More importantly, our proposed
method is able to achieve stable performance across the two databases unlike
most of the methods proposed in the literature. Furthermore, in our cross test,
the deep color texture representation showed promising generalization capabilities,
thus suggesting that our method seems to be more stable in unknown conditions
compared to the state-of-the-art methods.

As a future work, we plan to evaluate our methodology on other kinds of anti-
spoofing tasks such as fingerprint and Iris. It is finally worth noting that one can
expect much better results with the availability of training images. So, we will set
up a more large-scale database for face anti-spoofing.
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Table 7 Compare the cross test results with the state-of-arts

Method Trained Tested HTER

Motion [31] CASIA-FA Replay-Attack 50.2

Replat-Attack CASIA 47.9

LBP [31] CASIA-FA Replay-Attack 45.9

Replay-Attack CASIA-FA 57.6

LBP-TOP [31] CASIA-FA Replay-Attack 47.9

Replay-Attack CASIA-FA 60.6

Spectral cubes [34] CASIA-FA Replay-Attack 34.4

Replay-Attack CASIA-FA 50.0

Deep Learning [9] CASIA-FA Replay-Attack 48.5

Replay-Attack CASIA-FA 45.5

LBP [36] CASIA-FA Replay-Attack 47.0

Replay-Attack CASIA-FA 39.6

Color LBP [8] CASIA-FA Replay-Attack 30.3

Replay-Attack CASIA-FA 37.7

Proposed method CASIA-FA Replay-Attack 20.7
Replay-Attack CASIA-FA 31.2
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Kinship Verification Based on Deep
Learning

Xiaoting Wu, Xiaoyi Feng, Lei Li, Elhocine Boutellaa, and Abdenour Hadid

Abstract Automatic kinship verification using facial images is a relatively new
and challenging research problem in computer vision. It consists in automatically
predicting whether two persons have a biological kin relation by examining their
facial attributes. While most of the existing works extract shallow handcrafted
features from still face images, in this chapter, we approach this problem from
deep learning point of view. Promising results, especially those of deep features,
are obtained on the benchmark UvA-NEMO Smile database and KinFaceW-I and
KinFaceW-II kinship face databases.

1 Introduction

It is a common and an easy practice for us, humans, to identify our relatives
from faces. Relatives usually wonder which facial attributes does a new born baby
inherit from which family member. The human ability of kinship recognition has
been the object of many psychological studies [8, 9]. Inspired by these studies,
automatic kinship (or family) verification [12, 37] has been recently considered as
an interesting and open research problem in computer vision which is receiving an
increasing attention from the research community.

Automatic kinship verification from faces aims at determining whether two
persons have a biological kin relation or not by comparing their facial attributes.
Kinship verification is important for automatically analyzing the huge amount of
photos daily shared on social media. It helps understanding the family relationships
in these photos. Kinship verification is also useful in case of missing children
or elderly people with Alzheimer or possible kidnapping cases. For instance, a
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suspicious behavior between two persons (e.g., an adult and a child) captured by
a surveillance camera can be subjected to further analysis to determine whether
they are from the same family or not to prevent crimes and kidnapping. Kinship
verification can also be used for automatically organizing family albums and
generating family trees.

Kinship verification using facial images/videos is a very challenging task. It
inherits the research problems of face verification from images captured in the wild
under adverse pose, expression, illumination, and occlusion conditions. In addition,
kinship verification should deal with wider intra-class and inter-class variations, as
persons from the same family may look very different while faces of persons with no
kin relation may look similar. Moreover, automatic kinship verification poses new
challenges, since a pair of input images may be from persons of different sexes (e.g.,
brother-sister kin) and/or with a large age difference (e.g., father-daughter kin).

The published papers and organized competitions (e.g., [21, 24]) dealing with
automatic kinship verification over the past few years have shown some promising
results. Typical current best-performing methods combine several face descriptors,
apply metric learning approaches, and compute Euclidean distances between pairs
of features for kinship verification. It appears that most of these works are mainly
based on shallow handcrafted features. Hence, they are not associated with the
recent significant progress in machine learning, which suggests the use of deep
features. In this present work, we introduce novel approaches to kinship verification
from facial images using deep learning from both static and dynamic points of view
and to exploit the recent progress in deep learning for facial analysis.

The rest of the chapter is organized as follows. Section 2 discusses the related
work. Image-based kinship verification and video-based kinship verification are
described in Sects. 3 and 4, respectively. Section 5 draws conclusions and points
out future research directions.

2 Related Work

Quite many research papers dealing with kinship verification from face have
already been published. Moreover, two kinship verification competitions have been
held in the past years. The first competition was held in 2014 in conjunction
with the International Joint Conference on Biometrics (IJCB’2014), Clearwater,
Florida, USA [22]. Four participants took part in this first competition. The second
competition was held in conjunction with the 2015 International Conference on
Automatic Face and Gesture Recognition (FG 2015), Ljubljana, Slovenia [23].
There were five teams participating to this last competition. In both competitions,
the KinFaceW (I and II) database and protocols are used to evaluate the competing
algorithms. A remarkable improvement of verification performances is noticed in
the latter competition compared to the former. However, in the second competition,
the test set was available to the participants, while it was not the case for the first
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competition. In the following, we present a summary of the literature of kinship
verification from face images. According to the main contribution, we group the
proposed approaches into three different categories:

2.1 Methods Based on Features

Face description is a key step in any face analysis system. Indeed, if the extracted
face features are enough discriminative, the classification can be simply performed
with a linear classifier such as nearest neighbor. For kinship problem, different
feature extraction methods [22, 23, 30, 32, 38] and strategies, including selection
[13], learning [34], and fusion [4], have been investigated. The first kinship works
focused on selecting useful features. For instance, the authors of [13] selected
approximately 22 kinds of facial features. Through the experiments, they rank the
features according to their individual performances and choose top 14 features,
which achieved an accuracy rate of more than 50%. The selected features can be
divided into two types: skin color features and distances between different face
parts. Both appearance and geometry feature have been used by Wang et al. [30]. As
appearance features, pyramid images are built for each face by considering different
sizes, and then LBP features were extracted from overlapping patches. A Gaussian
mixture model is applied to find the corresponding similar patch pairs between
two face images. The appeared feature is taken as the absolute difference between
two GMM patch vectors. As for geometric features, facial landmarks are first
detected and then projected to the Grassmann manifold, and the geodesic distance
is used to measure the difference of two face shapes. Yan et al. [34] learned mid-
level features correspond to decision values from support vector machine (SVM)
hyperplanes. An objective function is formulated on the learned features so that
face samples with a kin relation are expected to have similar decision values
from the hyperplanes. For training, a large unlabeled face dataset and a small
dataset of face pairs labeled with kinship relations are used. The authors further
introduced a multi-view method to learn a common mid-level feature representation
from multiple low-level descriptors. The used low-level features are LBP, spatial
pyramid learning (SPLE), and SIFT. Feature fusion has been the aim of [4], where
four different textural features are extracted: LPQ, WLD, TPLBP, and FPLBP. For
each feature, the difference between vectors of a pair images is computed and
normalized, and the four features are concatenated forming the pair descriptor.
The minimum redundancy maximum relevance algorithm is applied to perform
feature selection, and SVM was utilized for classification. This approach obtained
the best performance on the restrict image configuration in the second kinship
competition [23].
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2.2 Methods Using Metric Learning

Since facial appearance similarity between parents and children is grater that it is
between unrelated persons, a particular interest has been attributed to the use of
different metric learning approaches for solving the kinship verification problem.
Metric learning aims at automatically learning a similarity measure from data rather
than using handcrafted distances. In the kinship verification problem, the aim is to
learn a metric where the distance between a face feature pair with a kin relation
is smaller than it is between pairs with no relation. Among the first approaches
to tackle kinship verification, Somanath and Kambhamettu [29] applied ensemble
metric learning. The training data is initially clustered into using different similarity
kernels. Then a final kernel is learned based on the initial clustering. For each kin
relation, the learned kernel ensures that related pairs have a greater similarity than
unrelated pairs. Similar to the previous work, recently Zhou et al. [40] applied
ensemble similarity learning for solving the kinship verification problem. They
learned an ensemble of sparse bilinear similarity bases from kinship data by
minimizing the violation of the kinship constraints between pairs of images and
maximizing the diversity of the similarity bases. Lu et al. [20] learned a distance
metric where the face pairs with a kin relation are pulled close to each other and
those without a kin relation are pushed away. Yan et al. [33] and Hu et al. [15]
learned multiple distance metrics based on various features, by simultaneously
maximizing the kinship constraint (pairs with a kinship relation must have a smaller
distance than pairs without a kinship relation) and the correlation of different
features.

2.3 Other Methods

Among the other approaches for kinship verification, Xia et al. [31] applied
subspace transfer learning on UB KinFace database to mitigate the huge divergence
between children and old parents. To this end, young parents are considered as
an intermediate domain between children and old parents. Transfer learning was
achieved by seeking a subspace projection where the intermediate domain (young
parents) and the source (children) and target (old parents) domains share the same
distribution.

Recently, Chen et al. [6] approached the kinship verification problem from
a multi-linear coherent spaces perspective where parent and child images are
considered as two different views data. Then, local image patches at different scales
are independently projected into coherent spaces via canonical correlation analysis
such that patch pairs with kinship relations are more correlated. Further, only useful
face patches for kinship verification were selected.

Instead of verifying kinship from pairs of face images, Qin et al. [28] investigated
tri-subject kinship verification. Two types of relations are considered: father-mother-
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daughter and father-mother-son. The authors introduced a relative symmetric
bilinear approach to model the similarity between the child and the parents (one-
versus-two matching).

Kou et al. [18] proposed an online sparse similarity learning approach for kinship
verification. The authors formulated two kinship triplet constraints for a quadruple
input, involving a positive pair and a negative pair, so that similarity of pairs with a
kin relation is higher than that of pairs from different families.

3 Image-Based Kinship Verification

In this work, we propose a novel approach to kinship verification from facial
images using similarity metric-based convolutional neural networks (SMCNN).
This approach is partially inspired by the work of Yan et al. [33] which proposed
a metric learning method based on deep neural networks for the task of face
verification. However, different from the work of Yan et al. which considered
handcrafted features as inputs to the deep neural network, our approach explores
automatically learned features for kinship verification.

3.1 Methodology

As can be seen from Fig. 1, the SMCNN architecture consists of two identical
convolutional neural networks. Each of them contains eight layers (see Fig. 2):

Fig. 1 The framework of our
proposed approach using
similarity metric-based
convolutional neural
networks (SMCNN) for
kinship verification. An
image pair is first fed into two
identical convolutional neural
networks. The L1 norm
between their outputs is then
computed. Finally, a decision
is made based on a learned
threshold
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Fig. 2 The architecture of the convolutional neural network in SMCNN. The dark green represents
the convolutional layers, shallow green represents the subsampling layers, and lastly blue layer is
the full connection layer

Table 1 Parameters of the convolutional neural network

Layers C1 P2 C3 P4 C5 P6 C7 F8

Input-num 1 6 6 16 16 30 30 60

Out-num 6 6 16 16 30 30 60 80

Filter-size 5 × 5 2 × 2 5 × 5 2 × 2 4 × 4 2 × 2 4 × 4 2 × 2

f our convolutional layers, three pooling layers, and a full connection layer. The
connection orders of these layers are as follows: C1 − P2 − C3 − P4 − C5 − P6 −
C7 − F8, where Ct is the convolutional layer, Pt denotes a pooling (subsampling)
layer, and Ft represents a full connection layer. t is the layer index. In our proposed
approach, the pooling layer is carrying the subsampling operation. The detailed
parameters of each layer are given in Table 1.

Let xi and xj denote the grayscale input images (i.e., corresponding to the
grayscale images of Img1 and Img2 in Fig. 1) and y the label of the image pair (xi ,
xj ). y = 1 if the image pair has a kinship relationship (referred to as positive pair)
and y = −1 otherwise (referred to as negative pair). W represents the weights of
the convolutional neural network. GW(xi) and GW(xj ) represent the features given
by the convolutional neural network. The distance between GW(xi) and GW(xj ) is
measured by L1 norm, which is defined as:

DG(xi, xj ) = ‖GW(xi) − GW(xj )‖1 (1)

The distance DG(xi, xj ) should be smaller for positive image pairs and larger for
negative image pairs. In [16], two thresholds have been used for classification. If
DG(xi, xj ) is smaller than a predefined threshold τ1, then DG(xi, xj ) belongs to a
positive pair. Otherwise, if DG(xi, xj ) is larger than a threshold τ2(τ1 < τ2), then
DG(xi, xj ) belongs to a negative pair.

For simplicity of the classification scheme using the two convolutional neural
networks, the thresholds τ1 and τ2 can be combined into one threshold τ so that τ is
larger than 1 and:

y(τ − DG(xi, xj )) > 1 (2)
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where τ1 = τ − 1 and τ2 = τ + 1. The cost function of SMCNN can be formulated
as follows:

argmin
G

J = J1 + J2

=
∑

i,j

f (1 − y(τ − DG(xi, xj )))

+ λ

2
(‖W‖2

F
+ ‖b‖2

F
)

(3)

where f (t) = 1
β
log(1 + exp(βt)) is the generalized logistic loss [25], β is a

sharpness parameter, operation ‖M‖F denotes the Frobenius norm of the matrix
M , and λ is a regularization parameter.

To minimize the cost function in Eq. 3, sub-gradient descent algorithm is adopted
in the convolutional neural network. Wt denotes the weighting parameters in t layer,
and bt represents the bias term. Based on the principle of backpropagation, the key
idea is to calculate the error term δF in the full connection layer. So, the error term
of SMCNN is:

δ = y · f ′(u) · sign(c) (4)

where y is the label of the image pair (y = 1 or y = −1), u = 1 −
y(−DG(xi, xj )), c = abs(GW(xi)−GW(xj )), and sign is the sign function which
is an approximation of the partial derivative c in abs function, as illustrated in Eq. 5:

sign(c) =
⎧
⎨

⎩

−1, c < 0
0, c = 0

+1, c > 0
(5)

The error term of the full connection layer in the convolutional neural network can
be calculated as follows:

δFi
= δ � s′(F8(xi))

δFj
= −δ � s′(F8(xj ))

(6)

where F8(xi) is the output of the full connection layer and the symbol s is the
activation function of the full connection layer. After computing the error term δF

of the full connection layer, the partial derivative of Wt and bt can be computed by
backpropagation [7]. Then, gradient descent algorithm can be used to update the
corresponding parameters as follows:
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Wt = Wt − ρ · ∂J

∂W

bt = bt − ρ · ∂J

∂b

(7)

where ρ is a learning rate which is set in our experiments to ρ = 0.001.

Used Toolbox We used the deep learning toolbox called “DeepLearnToolbox”
[26]. DeepLearnToolbox does not contain a ready framework for SMCNN. So,
we made changes to build the SMCNN. The changes are mainly related to two
aspects. First, we changed the connection between the first convolutional layer and
the second convolutional layer. Second, we changed the activation function from
sigmoid to tanh.

Partial Connection To extract different (hopefully complementary) features and
keep the number of connections within reasonable bounds, the partial connection
scheme is adopted between the first convolutional layer and the third convolutional
layer, as illustrated in Table 2.

Activation Function We use the tanh function as the activation function in
SMCNN. The tanh function and its derivative are computed as follows:

s(z) = tanh(z) = exp(z) − exp(−z)

exp(z) + exp(−z)

s′(z) = tanh′(z) = 1 − tanh2(z)

(8)

Parameter Initialization We randomly initialized the weights Wt and the bias
term bt based on Gaussian distribution, with mean value of 0 and standard
deviation of 0.05.

Table 2 Connection scheme between layers C1 and C3

C3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C1 1
√ √ √ √ √ √ √ √ √ √

2
√ √ √ √ √ √ √ √ √ √

3
√ √ √ √ √ √ √ √ √ √

4
√ √ √ √ √ √ √ √ √ √

5
√ √ √ √ √ √ √ √ √ √

6
√ √ √ √ √ √ √ √ √ √
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3.2 Experimental Analysis

To evaluate the performance of our proposed approach SMCNN, we experimented
with the publicly available benchmark datasets KinFaceW [19] which can be seen in
Fig. 3. KinFaceW datasets contain KinFaceW-I as well as KinFaceW-II and include
four kinship relationships: father-son (FS), father-daughter(FD), mother-son (MS),
and mother-daughter (MD). The number of kinship pair relations in KinFaceW-I
is 156, 134, 116, and 127 for FS, FD, MS, and MD, respectively. In KinFaceW-II,
there are in total 250 kinship pair relations. Based on the webpage of KinFaceW,
we use the pre-specified training/testing split, which was generated randomly and
independently for five folds. Four folds are used for training, while the remaining
fold is used for testing.

Fig. 3 KinFaceW database:
from top to bottom, there are
father-son, father-daughter,
mother-son, and
mother-daughter (a)
KinFaceW-I. (b)
KinFaceW-II
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Table 3 Compare the fine-tuning results with the others (accuracy: %)

KinFaceW-I KinFaceW-II

Method FD FS MD MS FD FS MD MS

DMML2014 [33] 74.5 69.5 69.5 75.5 78.5 76.5 78.5 79.5
MNRML2014 [20] 72.5 66.5 66.2 72.0 76.9 74.3 77.4 77.6

SM 2015 [18] 66.1 62.2 64.3 70.0 74.9 71.0 76.9 76.4

Proposed SMCNN 75.0 75.0 72.2 68.7 79.0 75.0 85.0 78.0

As can be seen from Table 3, our proposed approach compares favorably against
the related methods in the state of the art. On KinFaceW-I, our approach yields in
the best performance for all kinship relationships except for MS relationship for
which the best results are obtained with DMML 2014 [33]. On KinFaceW-II, our
proposed approach gives the best results in two cases (FD and MD), while DMML
2014 [33] yields in slightly better results in two other cases (FS and MS). Note that
our approach outperforms MNRML 2014 [20] and SM 2015 [18] methods in all
cases and for both KinFaceW-I and KinFaceW-II.

We can notice from Table 3 that the results on KinFaceW-II are better than those
on KinFaceW-I. The reason is that the images in KinFaceW-II are cropped from the
same pictures and hence sharing similar environment, such as illuminate intensity
and chrominance. However, KinFaceW-I is collected from different pictures in
uncontrolled environments.

4 Video-Based Kinship Verification

The published papers and organized competitions (e.g., [21, 24]) dealing with
automatic kinship verification over the past few years have shown some promising
results. Typical current best-performing methods combine several face descriptors,
apply metric learning approaches, and compute Euclidean distances between pairs
of features for kinship verification. It appears that most of these works are mainly
based on shallow handcrafted features. Hence, they are not associated with the
recent significant progress in machine learning, which suggests the use of deep
features. Moreover, the role of facial dynamics in kinship verification is mostly
unexplored as almost all the existing works focus on analyzing still facial images
instead of video sequences. Based on these observations, we propose to approach the
problem of kinship verification from a spatiotemporal point of view and to exploit
the recent progress in deep learning for facial analysis.

Given two face video sequences, to verify their kin relationship, our proposed
approach starts with detecting, segmenting, and aligning the face images based
on eye coordinates. Then, two types of descriptors are extracted: shallow spa-
tiotemporal texture features and deep features. As spatiotemporal features, we
extract local binary patterns (LBP) [1], local phase quantization (LPQ) [2], and
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binarized statistical image features (BSIF) [17]. These features are all extracted
from three orthogonal planes (TOP) of the videos. Deep features are extracted
by convolutional neural networks (CNNs) [27]. The feature vectors of face pairs
to compare are then combined to be used as inputs to support vector machines
(SVM) for classification. We conduct extensive experiments on the benchmark
UvA-NEMO Smile database [10] obtaining very promising results, especially with
the deep features. The results also clearly demonstrate the superiority of using
videos over still images, hence pointing out the important role of facial dynamics
in kinship verification. Furthermore, the fusion of the two types of features (i.e.,
shallow spatiotemporal texture features and deep features) results in significant
performance improvements compared to state-of-the-art methods.

4.1 Methodology

In our approach, the first step consists in segmenting the face region from each video
sequence. For that purpose, we have employed an active shape model (ASM)-based
approach that detects 68 facial landmarks. The regions containing faces are then
cropped from every frame in the video using the detected landmarks. Finally, the
face regions are aligned using key landmark points and registered to a predefined
template.

For describing faces from videos, we use two types of features: texture spa-
tiotemporal features and deep learning features. These features are introduced in
this subsection. Spatiotemporal features Spatiotemporal texture features have been
shown to be efficient for describing faces in various face analysis tasks, such as face
recognition and facial expression classification. In this work, we extract three local
texture descriptors: LBP [1], LPQ [2], and BSIF [17]. These three features are able
to describe an image using a histogram of decimal values. The code corresponding
to each pixel in the image is computed from a series of binary responses of the
pixel neighborhood to a filter bank. In LBP and LPQ, the filters are handcrafted,
while the filters of BSIF are learned from natural images. Specifically, the binary
code of a pixel in LBP is computed by thresholding its value with the circularly
symmetric P neighboring pixels (on a circle of radius R). LPQ encodes the local
phase information of four frequencies of the short-term Fourier transform (STFT)
over a local window of size W × W surrounding the pixel. BSIF binarizes the
responses of f independent filters of size W × W learnt by independent component
analysis (ICA).

The spatiotemporal textural dynamics of the face in a video are extracted from
three orthogonal planes XY, XT, and YT [36], separately. X and Y are the horizontal
and vertical spatial axes of the video, and T refers to the time. The texture features
of each plane are aggregated into a separate histogram. Then the three histograms
are concatenated into a single feature vector. To take benefit of the multi-resolution
representation [5], the three features are extracted at multiple scales, varying their
parameters. For the LBP descriptor, the selected parameters are P = {8, 16, 24} and
R = {1, 2, 3}. For LPQ and BSIF descriptors, the filter sizes were selected as W =
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{3, 5, 7, 9, 11, 13, 15, 17}. Deep learning features Deep neural networks have been
recently outperforming the state of the art in various classification tasks. Particularly,
convolutional neural networks (CNNs) demonstrated impressive performance in
object classification in general and face recognition in particular. However, deep
neural networks require a huge amount of training data to learn efficient features.
Unfortunately, this is not the case for the currently available kinship databases. We
conducted preliminary experiments using a Siamese CNN architecture as well as a
deep architecture proposed by a previous work [35]. As expected both approaches
resulted in lower performance than using shallow features, due to the lack of enough
training data.

An alternative for extracting deep face features is to use a pre-trained network.
A number of very deep pre-trained architectures has already been made available to
the research community. Motivated by the similarities between face recognition and
kinship verification problems, where the goal is to compute the common features
in two facial representations, we decided to use the VGG-face [27] network. VGG-
face has been initially trained for face recognition on a reasonably large dataset of
2.6 million images of over 2622 people. This network has been evaluated for face
verification from both pairs of images and videos showing interesting performance
compared against state of the art.

The detailed parameters of the VGG-face CNN are provided by Table 4. The
input of the network is an RGB face image of size 224 × 224 pixels. The network
is composed of 13 linear convolution layers (conv), each followed by a nonlinear
rectification layer (relu). Some of these rectification layers are followed by a
nonlinear max pooling layer (mpool). Following are two fully connected layers (fc)
both outputting a vector of size 4096. At the top of the initial network are a fully
connected layer with the size of classes to predict (2622) and a softmax layer for
computing the class posterior probabilities.

In this context, to extract deep face features for kinship verification, we input the
video frames one by one to the CNN and collect the feature vector issued by the
fully connected layer fc7 (all the layers of the CNN except the class predictor fc8
layer and the softmax layer are used). Finally, all the frames’ features of a given face
video are averaged, resulting in a video descriptor that can be used for classification.

To classify a pair of face features as positive (the two persons have a kinship
relation) or negative (no kinship relation between the two persons), we use a bi-
class linear support vector machine classifier (SVM). Before feeding the features to
the SVM, each pair of features has to be transformed into a single feature vector as
imposed by the classifier. We have examined various ways for combining a pair of
features, such as concatenation and vector distances. We have empirically found that
utilizing the normalized absolute difference shows the best performance. Therefore,
in our experiments, a pair of feature vectors X = {x1, . . . , xd} and Y = {y1, . . . , yd}
is represented by the vector F = {f1, . . . , fd} where:

fi =
∑

j

∣∣xj − yj

∣∣
∑

j (xj + yj )
(9)
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4.2 Experimental Analysis

To evaluate the proposed approach, we use UvA-NEMO Smile database [10], which
is currently the only available video kinship database. The database was initially
collected for analyzing posed versus spontaneous smiles of subjects. Videos are
recorded with a resolution of 1920 × 1080 pixels at a rate of 50 frames per second
under controlled illumination conditions. A color chart is placed on the background
of the videos to allow further illumination and color normalization. The videos are
collected in controlled conditions and do not show any kind of bias [3]. The ages of
the subjects in the database vary from 8 to 76 years. Many families participated in
the database collection, allowing its use for evaluation of automatic kinship from
videos. A total of 95 kin relations were identified between 152 subjects in the
database. There are seven different kin relations between pairs of videos: sister-
sister (S-S), brother-brother (B-B), sister-brother (S-B), mother-daughter (M-D),
mother-son (M-S), father-daughter (F-D), and father-son (F-S). The association of
the videos of persons having kinship relations gives 228 pairs of spontaneous and
287 pairs of posed smile videos. The statistics of the database are summarized in
Table 5.

Following [11], we randomly generate negative kinship pairs corresponding to
each positive pair. Therefore, for each positive pair, we associate the first video with
a video of another person within the same kin subset while ensuring there is no
relation between the two subjects. Examples of the positive pairs and the generated
negative pairs are illustrated by Fig. 4. For all the experiments, we perform a per-
relationship evaluation and report the average of spontaneous and posed videos. The
accuracy for the whole database, by pooling all the relations, is also provided. Since
the number of pairs of each relation is small, we apply a leave-one-out evaluation
scheme.

We have performed various experiments to assess the performance of the
proposed approach. In the following, we present and analyze the reported results.

Deep features against shallow features: First we compare the performance of
deep features against the spatiotemporal features. The results for different features
are reported in Table 6. The ROC curves for separate relations as well as for the

Table 5 Kinship statistics of
UvA-NEMO Smile database

Spontaneous Posed

Relation Subj. # Vid. # Sub. # Vid. #

S-S 7 22 9 32

B-B 7 15 6 13

S-B 12 32 10 34

M-D 16 57 20 76

M-S 12 36 14 46

F-D 9 28 9 30

F-S 12 38 19 56

All 75 228 87 287
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Fig. 4 Samples of images form UvA-NEMO Smile database

Table 6 Accuracy (in %) of kinship verification using spatiotemporal and deep features on UvA-
NEMO Smile database

Method S-S B-B S-B M-D M-S F-D F-S Mean Whole set

BSIFTOP 75.07 83.46 71.23 82.46 72.37 81.67 79.84 78.01 75.83

LPQTOP 69.67 78.21 82.54 71.71 83.30 78.57 83.91 78.27 76.02

LBPTOP 80.47 77.31 70.50 78.29 72.37 84.40 71.50 76.41 72.82

DeepFeat 88.92 92.82 88.47 90.24 85.69 89.70 92.69 89.79 88.16

whole database are depicted in Fig. 5. The performances of the three spatiotemporal
features (LBPTOP, LPQTOP, and BSIFTOP) show competitive results on different
kinship relations. Considering the average accuracy and the accuracy of the whole
set, LPQTOP is the best-performing method, closely followed by the BSIFTOP,
while LBPTOP shows the worst performance.

On the other hand, deep features report the best performance on all kinship
relations significantly improving the verification accuracy. The gain in verification
performance of the deep features varies between 2% and 9%, for different relations,
when compared to the best spatiotemporal accuracy. These results highlight the abil-
ity of CNNs in learning face descriptors. Even though the network has been trained
for face recognition, the extracted face deep features are highly discriminative when
used in the kinship verification task.

Comparing relations: The best verification accuracy is obtained for B-B and F-S,
while the lowest are S-B and M-S. These results are maybe due to the different sexes
of the pairs. One can conclude that checking the kinship relation is easier between
persons of the same gender. However, a further analysis of this point is needed as
the accuracy of S-S is average in our case. It is also remarkable that the performance
of kinship between males (B-B and F-S) is better than between females (M-D and
S-S). Moreover, large age differences between the persons composing a pair have
an effect on the kinship verification accuracy. For instance, the age difference of
brothers (best performance) is lower than it is for M-S (lowest performance).

Videos vs. images We have carried out an experiment to check if verifying kinship
relations from videos instead of images is worthy. Therefore, we employ the first
frame from each video of the database. For this experiment, spatial variants of
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 5 Comparing deep vs. shallow features on UvA-NEMO Smile database. (a) Sister-Sister.
(b) Brother-Brother. (c) Sister-Brother. (d) Mother-Daughter. (e) Mother-Son. (f) Father-Daughter.
(g) Father-Son. (h) All

texture features (LBP, LPQ, and BSIF) and deep features are extracted from the face
images. Figure 6 shows the ROC curve comparing the performance of videos against
still images for the pool of all relationships. The superiority of the performance of
videos compared with still images is obvious for each feature, demonstrating the
importance of face dynamics in verifying kinship between persons. Again, deep
features extracted from still face images demonstrate high discriminative ability,
outperforming both the spatial texture features extracted from images and the
spatiotemporal features extracted from videos. We note that, in still images (see
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Fig. 6 Comparing videos vs.
still images for kinship
verification on UvA-NEMO
Smile database

Table 7 Comparison of our approach for kinship verification against state of the art on UvA-
NEMO Smile database

Method S-S B-B S-B M-D M-S F-D F-S Mean Whole set

Fang et al. [12] 61.36 56.67 56.25 56.14 55.56 57.14 55.26 56.91 53.51

Guo and Wang [14] 65.91 56.67 60.94 58.77 62.50 67.86 55.26 61.13 56.14

Zhou et al. [39] 63.64 70.00 60.94 57.02 56.94 66.07 60.53 62.16 58.55

Dibeklioglu et al. [11] 75.00 70.00 68.75 67.54 75.00 75.00 78.95 72.89 67.11

Our DeepFeat 88.92 92.82 88.47 90.24 85.69 89.70 92.69 89.79 88.16

Our Deep + Shallow 88.93 94.74 90.07 91.23 90.49 93.10 88.30 90.98 88.93

Fig. 6), LPQ features outperform both LBP and BSIF, achieving analogous results
to the ones computed using video data.

Feature fusion and comparison against state of the art: In order to check their
complementarity, we have fused spatiotemporal features and deep features. We
performed preliminary experiments and empirically found that score-level fusion
performs better than feature fusion. In this context, and for simplicity, we have
opted for a simple sum at the score level to perform the fusion. Table 7 shows a
comparison of the fusion results with the previous works. Overall, the proposed
fusion scheme improved further the verification accuracy by a significant margin.
This effect is more evident in the relationships depicted by different sex and higher
age variations, such as M-S (improved by 4.8%) and F-D (improved by 3.4%).

Comparing our results against the previously reported state of the art demon-
strates considerable improvements in all the kinship subsets, as shown in Table 7.
Depending on the relation type, the improvement in verification accuracy of
our approach compared with the best-performing method presented by Dibekli-
oglu et al. [11] ranges from 9% to 23%. The average accuracy of all the kin relations
has been improved by over 18%.
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5 Conclusion

In this chapter, we have investigated the kinship verification problem from deep
learning in both static and dynamic points of view, which demonstrates the high
efficiency of deep features in describing faces for inferring kinship relations.
A comparison of proposed approaches against the previous state-of-the-art work
indicates significant improvements in verification accuracy.

It is worth noting that one can expect much better results with deep learning when
a large number of training images are available for training. So, it is of great interest
to re-evaluate the performance of our method when retraining our models on larger
databases. Future work includes the collection of a large kinship database including
real-world challenges to enable learning deep features.

References

1. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: Application
to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006)

2. Ahonen, T., Rahtu, E., Ojansivu, V., Heikkila, J.: Recognition of blurred faces using local phase
quantization. In: Int. Conf. on Pattern Recognition, pp. 1–4 (2008)

3. Bordallo Lopez, M., Boutellaa, E., Hadid, A.: Comments on the “kinship face in the wild” data
sets. IEEE Trans. Pattern Anal. Mach. Intell. (2016). https://doi.org/10.1109/TPAMI.2016.
2522416

4. Bottino, A.G., Ul Islam, I., Vieira, T.: A multi-perspective holistic approach to kinship
verification in the wild (2015)

5. Chan, C.H., Tahir, M., Kittler, J., Pietikainen, M.: Multiscale local phase quantization for robust
component-based face recognition using kernel fusion of multiple descriptors. IEEE Trans.
Pattern Anal. Mach. Intell. 35(5), 1164–1177 (2013)

6. Chen, X., An, L., Yang, S., Wu, W.: Kinship verification in multi-linear coherent spaces.
Multimedia Tools and Applications pp. 1–18 (2015)

7. Chopra, S., Hadsell, R., Lecun, Y.: Learning a similarity metric discriminatively, with
application to face verification. In: Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, pp. 539–546 vol. 1 (2005)

8. DalMartello, M.F., Maloney, L.T.: Where are kin recognition signals in the human face?
Journal of Vision 6(12), 2 (2006)

9. DeBruine, L.M., Smith, F.G., Jones, B.C., Roberts, S.C., Petrie, M., Spector, T.D.: Kin
recognition signals in adult faces. Vision Research 49(1), 38–43 (2009)
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Deep Learning Architectures for Face
Recognition in Video Surveillance

Saman Bashbaghi, Eric Granger, Robert Sabourin, and Mostafa Parchami

Abstract Face recognition (FR) systems for video surveillance (VS) applications
attempt to accurately detect the presence of target individuals over a distributed
network of cameras. In video-based FR systems, facial models of target individuals
are designed a priori during enrollment using a limited number of reference still
images or video data. These facial models are not typically representative of
faces being observed during operations due to large variations in illumination,
pose, scale, occlusion, blur, and camera interoperability. Specifically, in still-to-
video FR application, a single high-quality reference still image captured with
still camera under controlled conditions is employed to generate a facial model to
be matched later against lower-quality faces captured with video cameras under
uncontrolled conditions. Current video-based FR systems can perform well on
controlled scenarios, while their performance is not satisfactory in uncontrolled
scenarios mainly because of the differences between the source (enrollment)
and the target (operational) domains. Most of the efforts in this area have been
toward the design of robust video-based FR systems in unconstrained surveillance
environments. This chapter presents an overview of recent advances in still-to-video
FR scenario through deep convolutional neural networks (CNNs). In particular, deep
learning architectures proposed in the literature based on triplet-loss function (e.g.,
cross-correlation matching CNN, trunk-branch ensemble CNN and HaarNet) and
supervised autoencoders (e.g., canonical face representation CNN) are reviewed and
compared in terms of accuracy and computational complexity.
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1 Introduction

Face recognition (FR) systems in video surveillance (VS) have received a significant
attention during the past few years. Due to the fact that the number of surveillance
cameras installed in public places is increasing, it is important to build robust
video-based FR systems [38]. In VS, capture conditions typically range from semi-
controlled with one person in the scene (e.g., passport inspection lanes and portals
at airports) to uncontrolled free-flow in cluttered scenes (e.g., airport baggage claim
areas, and subway stations). Two common types of applications in VS are (1)
still-to-video FR (e.g., watch-list screening) and (2) video-to-video FR (e.g., face re-
identification or search and retrieval) [4, 11, 23]. In the former application, reference
face images or stills of target individuals of interest are used to design facial models,
while in the latter, facial models are designed using faces captured in reference
videos. This chapter is mainly focused on still-to-video FR with a single sample per
person (SSPP) under semi- and unconstrained VS environments.

The number of target references is one or very few in still-to-video FR appli-
cations, and the characteristics of the still camera(s) used for design significantly
differ from the video cameras used during operations [3]. Thus, there are significant
differences between the appearances of still ROI(s) and ROIs captured with
surveillance cameras, according to various changes in ambient lighting, pose, blur,
and occlusion [1, 21]. During enrollment of target individuals, facial regions of
interests (ROIs) isolated in reference still images are used to design facial models,
while during operations, the ROIs of faces captured in videos are matched against
these facial models. In VS, a person in a scene may be tracked along several
frames, and matching scores may be accumulated over a facial trajectory (a group
of ROIs that correspond to the same high-quality track of an individual) for robust
spatiotemporal FR [7].

In general, methods proposed in the literature for still-to-video FR can be broadly
categorized into two main streams: (1) conventional and (2) deep learning methods.
The conventional methods rely on hand-crafted feature extraction techniques and a
pre-trained classifier along with fusion, while deep learning methods automatically
learn features and classifiers cojointly using massive amounts of data. In spite of
improvements achieved using the conventional methods, yet they are less robust
to real-world still-to-video FR scenario. On the other hand, there exists no feature
extraction technique that can overcome all the challenges encountered in VS
individually [4, 15, 34].

Conventional methods proposed for still-to-video FR are typically modeled
as individual-specific face detectors using one- or two-class classifiers in order
to enable the system to add or remove other individuals and easily adapt over
time [2, 23]. Modular systems designed using individual-specific ensembles have
been successfully applied in VS [11, 23]. Thus, ensemble-based methods have
been shown as a reliable solution to deal with imbalanced data, where multiple
face representations can be encoded into ensembles of classifiers to improve the
robustness of still-to-video FR [4]. Although it is challenging to design robust
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facial models using a single training sample, several approaches have addressed this
problem, such as multiple face representations, synthetic generation of virtual faces,
and using auxiliary data from other people to enlarge the training set [2, 16, 17, 36].
These techniques seek to enhance the robustness of face models to intra-class
variations. In multiple representations, different patches and face descriptors are
employed [2, 4], while 2D morphing or 3D reconstructions are used to synthesize
artificial face images [16, 22]. A generic auxiliary dataset containing faces of
other persons can be exploited to perform domain adaptation [20] and sparse
representation classification through dictionary learning [36]. However, techniques
based on synthetic face generation and auxiliary data are more complex and
computationally costly for real-time applications, because of the prior knowledge
required to locate the facial components reliably, and the large differences between
the quality of still and video ROIs, respectively.

Recently, several deep learning-based solutions have been proposed to learn
effective face representations directly from training data through convolutional
neural networks (CNNs) and nonlinear feature mappings [6, 14, 28, 29, 31]. In
such methods, different loss functions can be considered in the training process
to enhance the interpersonal variations and simultaneously reduce the intrapersonal
variations. They can learn nonlinear and discriminative feature representations to
cover the existing gaps compared to the human visual system [34], while they
are computationally costly and typically require a large number of labeled data
to train. To address the SSPP problem in FR, a triplet-based loss function has
been introduced in [8, 24, 25, 27, 28] to discriminate between a pair of matching
ROIs and a pair of nonmatching ROIs. Ensemble of CNNs, such as trunk-branch
ensemble CNN (TBE-CNN) [8] and HaarNet [25], has been shown to extract
features from the global appearance of faces (holistic representation), as well as to
embed asymmetrical features (local facial feature-based representations) to handle
partial occlusion. Moreover, supervised autoencoders have been proposed to enforce
faces with variations to be mapped to the canonical face (a well-illuminated frontal
face with neutral expression) of the person in the SSPP scenario to generate robust
feature representations [9, 26].

2 Background of Video-Based FR Through Deep Learning

Deep CNNs have recently demonstrated a great achievement in many computer
vision tasks, such as object detection, object recognition, etc. Such deep CNN
models have shown to appropriately characterize different variations within a large
amount of data and to learn a discriminative nonlinear feature representation.
Furthermore, they can be easily generalized to other vision tasks by adopting and
fine-tuning pre-trained models through transfer learning [6, 28]. Thus, they provide
a successful tool for different applications of FR by learning effective feature
representations directly from the face images [6, 14, 28]. For example, DeepID,
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DeepID2, and DeepID2+ have been proposed in [30–32], respectively, to learn a set
of discriminative high-level feature representations.

For instance, an ensemble of CNN models was trained in [31] using the holistic
face image along with several overlapping/nonoverlapping face patches to handle
the pose and partial occlusion variations. Fusion of these models is typically carried
out by feature concatenation to construct over-complete and compact representa-
tions. Followed by [31], feature dimension of the last hidden layer was increased
in [30, 32], as well as exploiting supervision to the convolutional layers in order to
learn hierarchical and nonlinear feature representations. These representations aim
to enhance the interpersonal variations due to extraction of features from different
identities separately and simultaneously reduce the intrapersonal variations. In
contrast to DeepID series, an accurate face alignment was incorporated in Microsoft
DeepFace [34] to derive a robust face representation through a nine-layer deep CNN.
In [29], the high-level face similarity features were extracted jointly from a pair
of faces instead of a single face through multiple deep CNNs for face verification
applications. Since these approaches are not considered variations like blurriness
and scale changes (distance of the person from surveillance cameras), they are not
fully adapted for video-based FR applications.

Similarly, for the SSPP problems, a triplet-based loss function has been lately
exploited in [8, 24, 25, 27, 28] to learn robust face embeddings, where this type
of loss seeks to discriminate between the positive pair of matching facial ROIs
and the negative nonmatching facial ROI. A robust facial representation learned
through triplet-loss optimization has been proposed in [24] using a compact and
fast cross-correlation matching CNN (CCM-CNN). However, CNN models like
the trunk-branch ensemble CNN (TBE-CNN) [8] and HaarNet [25] can further
improve robustness to variations in facial appearance by the cost of increasing
computational complexity. In such models, the trunk network extracts features from
the global appearance of faces (holistic representation), while the branch networks
embed asymmetrical and complex facial traits. For instance, HaarNet employs three
branch networks based on Haar-like features, while facial landmarks are considered
in TBE-CNN. However, these specialized CNNs represent complex solutions that
are not perfectly suitable for real-time FR applications [5].

Moreover, autoencoder neural networks can be typically employed to extract
deterministic nonlinear feature mappings robust to face images contaminated by
different noises, such as illumination, expression, and poses [9, 26]. An autoencoder
network contains encoder and decoder modules, where the former module embeds
the input data to the hidden nodes, while the latter returns the hidden nodes
to the original input data space with minimizing the reconstruction error(s) [9].
Several autoencoder networks inspired from [35] have been proposed to remove
the aforementioned variances in face images [9, 18, 19]. These networks deal with
faces containing different types of variations (e.g., illumination, pose, etc.) as noisy
images. For instance, a facial component-based CNN has been learned in [40] to
transform faces with changes in pose and illumination to frontal view faces, where
pose-invariant features of the last hidden layer are employed as face representations.
Similarly, several deep architectures have been proposed using multitask learning
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in order to rotate faces with arbitrary poses and illuminations to target-pose faces
[37, 39]. In addition, a general deep architecture was introduced in [10] to encode
a desired attribute and combine it with the input image to generate target images
as similar as the input image with a visual attribute (a different illumination, facial
appearance, or new pose) without changing other aspects of a face.

3 Deep Learning Architectures for FR in VS

In this section, the most recent deep learning architectures proposed for video-
based FR considering the SSPP problem are addressed. These architectures can
be categorized into two groups: (1) deep CNN models trained using triplet-loss
function and (2) deep autoencoders.

3.1 Deep CNNs Using Triplet-Loss

Recently, deep learning algorithms specialized for FR mostly utilize triplet-loss
in order to train the deep architecture and thereby learn a discriminant face
representation [8, 28]. However, careful triplet sampling is a crucial step to achieve a
faster convergence [28]. In addition, employing triplet-loss is challenging since the
global distributions of the training samples are neglected in optimization process.

Triplet-loss approach was first proposed in [28] to train CNNs for robust face
verification. To that end, the representation of triplets (three faces containing an
anchor and a positive image of the same subject and a negative image of other
subjects) is L2 normalized as the input of triplet-loss function. It therefore ensures
that the input representations of face images lie on a unit hypersphere prior to
apply triplet-loss function [8]. Deep CNN models proposed for video-based FR that
employed triplet-loss for training are reviewed in the following subsections.

3.1.1 Cross-Correlation Matching CNN

An efficient deep CNN architecture has been proposed in [24] for still-to-video
FR from a single reference facial ROI per target individual. Based on a pair-
wise cross-correlation matching (CCM) along with a robust facial representation
learned through triplet-loss optimization, CCM-CNN is a fast and compact network
(requires few branches, layers, and parameters). It exploits a matrix Hadamard
product followed by a fully connected layer that simulates the adaptive weighted
cross-correlation [12]. A triplet-based optimization approach has been employed
to learn discriminant representations based on triplets containing the positive and
negative video ROIs and the corresponding still ROI. In particular, the similarity
between the representations of positive video ROIs and the reference still ROI is
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Fig. 1 Training pipeline of
the CCM-CNN. (©[2017]
IEEE. Reprinted, with
permission, from Ref. [24])
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enhanced, while the similarity between negative video ROIs and the both reference
still and positive video ROIs is increased. To further improve robustness of facial
models, the CCM-CNN fine-tuning process incorporates a diverse knowledge by
generating synthetic faces based on still and video ROIs of nontarget individuals.

As shown in Fig. 1, the CCM-CNN learns a robust facial representa-
tion by iterating over a batch of training triplets B = {R1, . . . , RL} =
{(T1, P1, N1) , . . . , (TL, PL,NL)}, where L is the batch size, and each triplet
Ri contains a still ROI Ti along with a corresponding positive ROI Pi and
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a negative ROI Ni from operational videos. This architecture was inspired by
Siamese networks containing identical subnetworks with the same configurations,
parameters, and weights. Therefore, fewer parameters are required for training
that can avoid overfitting. The CCM-CNN consists of three main components –
feature extraction, cross-correlation matching, and triplet-loss optimization. The
feature extraction pipeline extracts discriminative feature maps from ROIs that are
similar for two images of the same person under different capture conditions (e.g.,
illumination and pose). The cross-correlation matching component inputs feature
maps extracted from the ROIs and calculates the likelihood of the faces belonging
to the same person. Finally, triplet-loss optimization computes a loss function to
maximize similarity of the still ROIs and their respective positive samples in the
batch while minimizing similarity between still ROIs and their negative ROIs and
positive and negative ROIs.

Despite differences in the domains between reference target still ROIs and
target/nontarget video ROIs, the CCM-CNN can effectively extract discriminant
features. As shown in Fig. 1, feature extraction is carried out by three identical
subnetworks for still, positive, and negative faces. These subnetworks process three
input faces, and the weights are shared across them. Each subnetwork consists of
nine convolutional layers each followed by a spatial batch normalization, dropout,
and RELU layers. Contrary to former convolutional layers, the last convolutional
layer is not followed by a RELU in order to maintain the representativeness of
the final feature map and to avoid losing informative data for the matching stage.
Moreover, a single max-pooling layer is added after the first convolution layer to
increase the robustness to small translation of faces in the ROI.

In the CCM-CNN, all three feature extraction pipelines share the same set of
parameters. This ensures that the features extracted from target still (ti), positive
(pi), and negative (ni) are consistent and comparable. Each convolutional layer has
64 filters of size 5 × 5 without padding. Thus, given the input size of 120 × 96, the
output of each branch is of size Nf = 24 × 12 × 64 features.

After extracting features from the still and video ROIs, a pixel-based matching
method is employed to effectively compare these feature maps and measure the
matching similarity. The process of comparison in the CCM-CNN has three stages:
matrix Hadamard product, fully connected neural network, and finally a softmax.
Instead of concatenating feature vectors of different branches as input to the fully
connected layer, the feature maps representing the ROIs are multiplied with each
other to encode pixel-wise correlation between each pair of ROI in the triplet. This
approach eliminates the complexity of matching by replacing the concatenation
with a simple element-wise matrix multiplication and directly encodes similarity as
opposed to let the network learn how to match input concatenated feature vectors.

The matrix Hadamard product is exploited to simulate cross-correlation, where
Hadamard product of the two matrices provides a single feature map that represents
the similarity of the two ROIs. For example, the similarity Sim(ti , pi ) and cross-
correlation wSim(ti , pi) of still ti and positive pi feature maps is computed as
follows, respectively, using matrix Hadamard product:
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Sim(ti , pi ) = (ti � pj ) (1)

wSim(ti , pi ) = ωm · RELU(ωn · Sim(ti , pi ) + bn) + bm (2)

where ωm, ωn, bm, and bn are the weights and biases of the two fully connected
layers applied to the vectorized output of the matrix multiplication. Furthermore, a
softmax layer is applied to obtain a probability-like similarity score for each of the
two classes (match and nonmatch).

A multistage approach is considered to efficiently train the CCM-CNN based on
reference still ROI and operational videos. To that end, pre-training is performed
using a large generic FR dataset, and a domain-specific dataset for still-to-video FR
is used for fine-tuning. To that end, a set of matching and nonmatching images is
selected from the Labeled Faces in the Wild (LFW) [13]. Images from this set are
augmented to roughly 1.3M training triplets. In order to consistently update the set
of training triplets, the online triplet sampling method [28] is used for 50 epochs.

In contrast with FaceNet [28], a pairwise triplet-loss optimization function
was proposed to effectively train the network. In order to adapt the network
for pairwise triplet-based optimization, it is modified by incorporating additional
feature extraction branches. Each batch contains several triplets, and for each triplet,
the network seeks to learn the correct classification. During the training, each branch
of the feature extraction pipeline is assigned to a component of the triplet – the
main branch is responsible for processing the reference still ROI, while the positive
(negative) branch extracts features from the positive (negative) video ROI of the
triplet. Moreover, the cross-correlation matching pipeline is modified to benefit
from the triplets by introducing an Euclidean loss layer followed by softmax which
computes the similarity for each pair of ROIs in the triplet. The loss layer is
exploited to compute the overall loss of the network as follows:

Triplet Loss = 1

L

∑

Ri∈B

√(
1 − Stipi

)2 + S2
tini

+ S2
nipi

(3)

where Stp, Stn, and Snp are the similarity scores from cross-correlation matching
between (1) the reference (positive) still ROI and positive video ROI, (2) still ROI
and negative video ROI, and (3) negative and positive video ROIs of the triplet,
respectively, computed using the aforementioned approach. During operations (see
Fig. 2) the additional feature extraction branch (negative branch, N) is removed from
the network, and only the still and the positive branches (P) are taken into account.
Thus, the main branch (T) extracts features from reference still ROIs, while the
positive branch extracts features from the probe video ROI to determine whether
they belong to the same person.

During fine-tuning, CCM-CNN acquires knowledge on the similarities and
dissimilarities between the target individuals of interest enrolled to the system. In
order to improve the robustness of facial models intra-class variation, the network is
fine-tuned with synthetic facial ROIs generated from the high-quality still ROIs that
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Fig. 2 The operational phase of the CCM-CNN

account for the operation domain. For each still image, a set of augmented images
are generated using different transformations, such as shearing, mirroring, rotating,
and translating the original still image. In contrast with the pre-training, the focus
of the fine-tuning stage is to learn dissimilarities between the subjects of interest.

3.1.2 Trunk-Branch Ensemble CNN

An improved triplet-loss function has been introduced in [8] to promote the
robustness of face representations. To that end, a trunk-branch ensemble CNN
(TBE-CNN) model has been proposed to extract complementary features from
holistic face images as well as face patches around facial landmarks through trunk
and branch networks, respectively. To emulate real-world video data, artificially blur
training data are synthesized from still images by applying artificial out-of-focus
and motion blur to learn blur-insensitive face representations. The architecture of
TBE-CNN is shown in Fig. 3.

As shown in Fig. 3, TBE-CNN contains one trunk network along with several
branch networks, where the trunk and branch networks share some layers in order
to embed global and local information. This sharing strategy may lead to reduce the
computational cost and also efficient convergence. The output feature maps of these
networks are concatenated to feed into the fully connected layer to generate final
face representations.

During training as illustrated in Fig. 4, TBE-CNN is given still images and
simulated video frames, where the network aims to classify each still image and
its corresponding artificially blurred face image correctly into the same class. The
training process is performed using a stage-wise strategy, where the trunk network
and each of the branch networks are trained separately with fixed parameters.

To improve the discriminative power of face representations, mean distance
regularized triplet-loss (MDR-TL) function is considered to fine-tune the entire
network. Compared to the original triplet-loss function proposed in [28], MDR-
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TL regularizes the triplet-loss to provide uniform distributions for both inter- and
intra-class distances. Figure 5 represents the principle of MDR-TL.

As demonstrated in Fig. 5a, it is difficult to appropriately discriminate between
matching and nonmatching pairs of face images because the training samples have
nonuniform inter- and intra-class distance distributions. To tackle this problem, the
triplet-loss is regularized using MDR-TL loss function by constraining the distances
between mean representations of different subjects (Fig. 5b).

3.1.3 HaarNet

An ensemble of deep CNNs called HaarNet has been proposed in [25] to efficiently
learn robust and discriminative face representations for video-based FR applica-
tions. Similar to TBE-CNN [8], HaarNet consists of a trunk network with three
diverging branch networks that are specifically designed to embed facial features,
pose, and other distinctive features. The trunk network effectively learns a holistic
representation of the face, whereas the branches learn more local and asymmetrical
features related to pose or special facial features by means of Haar-like features.
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Fig. 5 The mean distance regularized triplet-loss. (a) Training triplet with nonuniform inter-
and intra-class distance distributions and (b) triplets with uniform inter- and intra-class distance
distributions using MDR-TL regularization

Fig. 6 HaarNet architecture for the trunk and three branches. (Max pooling layers after each
inception and convolution layer are not shown for clarity). (©[2017] IEEE. Reprinted,with
permission, from Ref.[25])

Furthermore, to increase the discriminative capabilities of the HaarNet, a second-
order statistic regularized triplet-loss function has been introduced to take advantage
of the inter-class and intra-class variations existing in training data to learn more
distinctive representations for subjects with similar faces. Finally, a fine-tuning stage
has been performed to embed the correlation of facial ROIs stored during enrollment
and improve recognition accuracy.

The overall architecture of the HaarNet is presented in Fig. 6. It is composed of
a global trunk network along with three branch networks that can effectively learn a
representation that is robust to changing capture conditions.

As shown in Fig. 6, the trunk is employed to learn the global appearance face
representation, whereas three branches diverged from the trunk are designed to learn
asymmetrical and more locally distinctive representations. For the trunk network,
the configuration of GoogLeNet [33] is employed with 18 layers.
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In contrast with [8], instead of training each branch on different face landmarks,
Haarnet utilizes three branch networks in order to compute one of the Haar-like
features, respectively, as illustrated in Fig. 7. Haar features have been exploited to
extract distinctive features from faces based on the symmetrical nature of facial
components and on contrast of intensity between adjacent components. In general,
these features are calculated by subtracting sum of all pixels in the black areas from
the sum of all pixels in the white areas. To avoid information loss, the Haar-like
features are calculated by matrix summation, where black matrices are negated.
Thus, instead of generating only one value, each Haar-like feature returns a matrix.

In the Haarnet architecture (see Fig. 6), the trunk network and its three branches
share the first two convolutional layers. Then, the first and second branches split the
output of Conv2 into two sub-branches and also apply two inception layers to each
sub-branch. Subsequently, the two sub-branches are merged by a subtraction layer
to obtain a Haar-like representation for each corresponding branch. Meanwhile, the
third branch divides the output of Conv2 into four sub-branches, and one inception
layer is applied to each of the sub-branches. Eventually, a subtraction layer is
exploited to combine those for sub-branches and feed to the fully connected layer.
The final representation of the face is obtained by concatenating the output of the
trunk and all three Haar-like features.

Figure 8 illustrates the training process of the HaarNet using a triplet-loss
concept, where a batch of triplets composed of <anchor, positive, negative> is input
to the architecture translated to a face representation.

As shown in Fig. 8, output of the HaarNet is then L2 normalized prior to feed
into the triplet-loss function in order to represent faces on a unit hypersphere. Let’s

Fig. 7 Haar-like features used in branch networks. (©[2017] IEEE. Reprinted, with permission,
from Ref. [25])

Fig. 8 Processing of triplets to compute the loss function. The network inputs a batch of triplets
to the HaarNet architecture followed by an L2 Normalization. (©[2017] IEEE. Reprinted, with
permission, from Ref. [25])
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denote the L2 normalized representation of a facial ROI x as f (x) ∈ Rd where d

is the dimension of the face representation.
A multistage training approach is hereby considered to effectively optimize the

parameters of the HaarNet. The first three stages are designed for initializing the
parameters with a promising approximation prior to employ the triplet-loss function.
Moreover, these three stages are beneficial to detect a set of hard triplets from the
dataset in order to initiate the triplet-loss training. In the first stage, the trunk network
is trained using a softmax loss, because the softmax function converges much faster
than triplet-loss function. During the second stage, each branch is trained separately
by fixing the shared parameters and by only optimizing the rest of the parameters.
Similar to the first stage, a softmax loss function is used to train each of the branches.
Then, the complete network is constructed by assembling the trunk and the three
branch networks. The third stage of the training is indeed a fine-tuning stage for
the complete network in order to optimize these four components simultaneously.
In order to consider the inter- and intra-class variations, the network is trained for
several epochs using the hard triplets detected during the previous stages.

As suggested in [8], adding mean distance regularization term to the triplet-loss
function can promote distinctiveness of the face representations. Inspired from [8],
the main idea of the second-order statistics regularization term is illustrated in Fig. 9
illustrates.

In Fig. 9a, triplet-loss function may suffer from nonuniform inter-class distances
that leads to failure of using simple distance measures, such as Euclidean and
cosine distances. In this regard (see Fig. 9b), a mean distance regularization term
can be added to increase the separation of class representations. On the other hand,
representations of some facial ROIs may be confused with representation of the
adjacent facial ROIs in the feature space due to high intra-class variations. Figure 9c
shows such a configuration, where the mean representation of the classes are distant
from each other but the standard deviations of classes are very high, leading to
overlap among class representations. To address this issue, a new term in the loss
function is introduced to examine the intra-class distribution of the training samples.

The triplet constraint can be expressed as a function of the representation of
anchor, positive and negative samples as follows [28]:
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positive, and negative, respectively. All the triplets sampled from the training set
should satisfy the constraint. Thus, during training, HaarNet minimizes of the loss
function:

LHaarNet = δ1Ltriplet + δ2Lmean + δ3Lstd (5)
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Fig. 9 Illustration of the regularized triple loss principles based on the mean and standard
deviation of three classes, assuming 2D representations of the ROIs. (©[2017] IEEE. Reprinted,
with permission, from Ref. [25])

where δi denotes the weight for each term in the loss function. Furthermore, Ltriplet
can be defined based on (4) as follows:
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Similar to [8], assuming that the mean distance constraint is β <
∥∥μ̂c − μ̂n
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In addition, the standard deviation constraint is defined to be σc > γ , where σc

is the standard deviation of the class c. Therefore, Lstd can be computed as follows:

Lstd = 1

M

C∑

c=1

max (0, γ − σc) (8)

where N , P , and M are the number of samples that violate the triplet, mean
distance, and standard deviation constraints, respectively. Likewise, C is the number
of subjects in the current batch, and α, β,and γ are margins for triplet, mean
distance, and standard deviation constraints, respectively. The loss function (5) can
be optimized using the regular stochastic gradient descent with momentum similar
to [8]. The gradient of loss with respect to the facial ROI representation of ith image
for subject c (denoted as f (xci)) is derived as follows:

∂Lstd

∂f (xci)
= − 1

M

C∑

c=1

ωc

∂σc

∂f (xci)
(9)

where ωc equals to 1 if the standard deviation constraint is violated and equals to 0
otherwise. Moreover, the derivative of Lstd can be computed by applying the chain
rule as follows:
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As shown in Fig. 9d, the discriminating power of the face representations can be
improved by setting margins such that γ < β. This ensures a high inter-class and a
low intra-class variations to increase the overall classification accuracy.

3.2 Deep CNNs Using Autoencoder

An efficient canonical face representation CNN (CFR-CNN) has been proposed
in [26] for accurate still-to-video FR from a SSPP, where still and video ROIs
are captured under various conditions. The CFR-CNN is based on a supervised
autoencoder that can represent the divergence between the source (still ROI)
and target (video ROI) domains encountered in still-to-video FR scenario. The
autoencoder network is trained using a weighted pixel-wise loss function that is
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specialized for SSPP problems and allows to reconstruct canonical ROIs (frontal
and less blurred faces) for matching that correspond to the conditions of reference
still ROIs. In addition, it can generate discriminative face embeddings that are
similar for the same individuals and robust to variations typically observed in
unconstrained real-world video scenes. A fully connected classification network is
also trained to perform face matching using the face embeddings extracted from the
deep autoencoder and accurately determine whether the pairs of still and video ROIs
correspond to the same individual.

Autoencoder CNNs are typically utilized to normalize variations in face capture
conditions from probe video ROIs to those in still reference ROIs. The architecture
of the autoencoder is shown in Fig. 10, where the input image is a probe video ROI
captured using a surveillance camera, while the output is a reconstructed image. This
network consists of (1) three convolutional layers each followed by a max-pooling
layer to extract robust convolutional maps and then (2) a two-layer fully connected
network that generates a 256-dimensional face embedding. The decoder reverses
these operations by applying a fully connected layer to generate the original vector
and three deconvolutional layers, each one followed by un-pooling layers designed
for generating the final reconstruction of the face.

A development set (assumed to be collected from unknown individuals captured
from the operational domain) is employed for training of the deep autoencoder
network. A batch of video ROIs are fed into the network, where still ROIs of the
corresponding persons are used for facial reconstructions. Using higher-quality still
images that are captured during enrollment under controlled conditions as target
faces, the autoencoder network simultaneously learns invariant face embeddings to
normalize the input video ROIs. The parameters of this autoencoder network are
optimized by employing a weighted mean squared error (MSE) criterion, where a T-
shaped region (illustrated in Fig. 11) is considered to assign a higher significance to
discriminative facial components like the eyes, nose, and mouth. This loss function
of is formulated as:

Conv1 
30x24x64

Conv2
15x12x32

Conv3 
8x6x16 1x

76
8

1x
51

2
1x

25
6 1x

51
2 1x

76
8 Deconv3 

30x24x64
Deconv2 
15x12x32

Deconv1 
8x6x16

Encoder

Input image
(60x48)

Reconstructed
image (60x48)

Decoder

Fig. 10 Block diagram of the autoencoder network in the CFR-CNN. (©[2017] IEEE. Reprinted,
with permission, from Ref. [26])
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Fig. 11 T-shaped weight
mask used for the loss
function of CFR-CNN.
(©[2017] IEEE. Reprinted,
with permission, from Ref.
[26])
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Fig. 12 Block diagram of the classification network in the CFR-CNN. (©[2017] IEEE. Reprinted,
with permission, from Ref. [26])

LCFR−CNN =
∑

i∈rows

∑

j∈cols

τi,j

∥∥∥X2 − X̂2
∥∥∥

τi,j =
{
α if (i,j) belongs to T
β if (i,j) otherwise

(11)

where rows × cols is the size of ROIs, X is the target still ROI, and X̂ is the
reconstructed ROI. The weight α is considered for the T region, while the weight β

is considered for pixels outside the T region.
A fully connected network is then integrated with the deep convolutional

autoencoder, and the output of the intermediate layer is then considered as a
face representation that is invariant to the different nuisance factors commonly
encountered in unconstrained surveillance environments. Finally, face matching is
performed using a fully connected classification network as shown in Fig. 12. This
network is implemented to match the face representations of still and video ROIs.

The fully connected classification network is trained using a regular pairwise
matching scheme, where the face embeddings of the reference still and probe video
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ROIs are fed into the classification network. The network can thereby learn to
classify each pair of still and video ROIs as either matching or nonmatching.

4 Performance Evaluation

The performance of the aforementioned video-based FR systems is evaluated using
Cox Face DB [15]. This dataset was specifically collected for video surveillance
applications, where it is composed of high-quality still faces captured with still cam-
eras under controlled conditions and low-quality video faces captured with different
off-the-shelf camcorders under uncontrolled conditions. Videos are recorded per
subject when they are walking through a designed-S curve containing changes in
pose, illumination, scale, and blur. An example of still and videos of one subject is
shown in Fig. 13.

Examples of video images

Reference still image

Fig. 13 An example of high-quality reference still image and random low-quality video images of
the corresponding individual captured by the still camera and three camcorders in the COX Face
DB
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Table 1 Rank-1 recognition and computational complexity of video-based FR systems over
videos of Cox Face DB

Rank-1 Computational complexity

FR system recognition # operations # parameters # layers

CCM-CNN [24] 89.53 ± 0.9 33.3M 2.4M 30

TBE-CNN [8] 90.61 ± 0.6 12.8B 46.4M 144

HaarNet [25] 91.40 ± 1.0 3.5B 13.1M 56

CFR-CNN [26] 87.29 ± 0.9 3.75M 1.2M 7

The systems are evaluated according to experimental protocol suggested in
[15], where each probe video ROI is compared against the reference still ROIs
and rank-1 recognition is reported as the FR accuracy. Meanwhile, since video-
based FR systems are often required to perform real-time processing in surveillance
applications, the computational complexity of such systems should be also taken
into consideration. In this regard, the complexity can be determined in terms of the
number of operations (to match a video probe ROI to a reference still ROI) and the
number of network parameters and layers [5].

In order to confirm the viability of the CNN-based video FR systems for real-
time surveillance applications, Table 1 presents the accuracy and compares their
computational complexity.

It can be seen in Table 1 that the TBE-CNN and HaarNet provide the highest
level of accuracy, while they are very complex. Although the CCM-CNN and CFR-
CNN cannot outperform these deep architectures, they can achieve satisfactory
results with significantly lower computational complexity. Moreover, the number of
network parameters and layers is key factors in designing deep CNN that can greatly
affect the convergence and training time. Considering these criteria, the proposed
CCM-CNN and CFR-CNN have the lowest design complexity and subsequently the
shortest convergence time.

5 Conclusion and Future Directions

In this chapter, the most recent deep learning architectures proposed for robust
face recognition in video surveillance were thoroughly investigated. To overcome
the existing challenges in real-world surveillance unconstrained environments,
the single training reference sample and domain adaptation problems have been
taken into account during the system design. On the other hands, computational
complexity is also a key issue to provide an efficient solution for real-time video-
based FR systems. In particular, this chapter reviewed deep learning architectures
proposed based on triplet-loss function and autoencoder CNNs.

Triplet-based loss optimization method allows to learn complex and nonlinear
facial representations that provide robustness across inter- and intra-class variations.
CCM-CNN proposes a cost-effective solution that is specialized for still-to-video
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FR from a single reference still by simulating weighted CCM. TBE-CNN and
HaarNet can extract robust representations of the holistic face image and facial
components through an ensemble of CNNs containing one trunk and several branch
networks. In addition, to compensate the limited robustness of facial model in the
case of single reference still, they were fine-tuned using synthetically generated
faces from still ROIs of nontarget individuals. In contrast, CFR-CNN employed a
supervised autoencoder CNN to generate canonical face representations from low-
quality video ROIs. It can therefore reconstruct frontal faces that correspond to
capture conditions of reference still ROIs and generate discriminant face represen-
tations. Experimental results obtained with the COX Face DB indicated that TBE-
CNN and HaarNet can achieve higher level of accuracy with heavy computational
complexity, while CCM-CNN and CFR-CNN can provide convincing performance
with significantly lower computational costs.

Since the use of deep learning is increasingly growing, one of the future
directions is to integrate conventional methods with deep learning methods in order
to incorporate statistical and geometrical properties of faces into the deep features.
In addition, future research can focus on utilizing temporal information, where facial
ROIs can be tracked over frames to accumulate the predictions over time. Thus,
the combination of face detection, tracking, and classification in a unified deep
learning-based network will lead to a robust spatiotemporal recognition suitable
for real-world video surveillance applications. Thus, 3D CNNs and recurrent neural
networks such as long short-term memory can be exploited to consider convolutions
through the time, due to capturing temporal information among successive video
frames.
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Deep Learning for 3D Data Processing

Zhenbao Liu, Zhizhong Han, and Shuhui Bu

Abstract Extracting local features from raw 3D data is a nontrivial and challenging
task that requires carefully designed 3D shape descriptors. In conventional meth-
ods, these descriptors are handcrafted and require intensive human intervention
and prior knowledge. To tackle this issue, we propose a novel deep learning
model, namely, Circle Convolutional Restricted Boltzmann Machine (CCRBM),
for unsupervised 3D local feature learning. CCRBM is specially designed for 3D
shapes which effectively resolves the obstacles in the hierarchical learning process
that existing deep learning models cannot resolve, such as irregular topology of
vertices, orientation ambiguity on the 3D surface, and rigid or slightly nonrigid
transformation invariance. Specially, by introducing the novel circle convolution,
CCRBM holds a novel ring-like multilayer structure to learn 3D local features
in a manner of structure preservation. Circle convolution convolves across 3D
local regions with a novel circular sector convolution window by rotating itself
along a xed circle direction. In the process of circle convolution, extra points are
sampled on each 3D local region and projected onto the tangent plane of the center
of the region. By this way, the projection distances in each sector window are
employed to constitute the raw 3D feature called projection distance distribution
(PDD). In addition, to eliminate the ambiguity of the initial location of a sector
window, Fourier Transform Modulus (FTM) is used to transform the PDD into
Fourier domain which is then conveyed to CCRBM. Experiments using the learned
local features are conducted on three aspects: global shape retrieval, partial shape
retrieval, and shape correspondence. The experimental results show that the learned
local features outperform other state-of-the-art 3D shape descriptors.
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1 Introduction

Many tasks in 3D shape analysis require the extraction of 3D shape features such
as shape retrieval [1], matching [2], segmentation [3], human pose estimation [4],
tracking [5], and scene understanding [6]. 3D features can be extracted through
global or local shape descriptors. Global shape descriptors are a common approach
for shape classification or retrieval that can be considered as a mapping from the
space of 3D objects to the vector space with finite dimensional. Comparatively,
local shape descriptors are more widely used since they can not only provide local
features for point-based shape matching or shape segmentation but also construct
global features with the additional global shape description by paradigms such
as Bag-of-Words [7], spatial-sensitive Bag-of-Features [8]. However, almost all
proposed shape descriptors are handcrafted [9–11] that involves labor-intensive
design, human ingenuity, and prior knowledge.

Although local shape descriptors can effectively capture the discriminative local
or even global geometric characteristics, their manual tune-up procedure is time-
consuming and normally does not generalize well, which burdens the extraction and
organization of the discriminative information from 3D shapes when constructing
classifiers or other predictors [12]. In addition, existing local descriptors are only
based on a single local region, such that the learned features are highly sensitive
on local changes and hence an invariant pattern of features cannot be easily and
stably obtained. From these viewpoints, it is significant and promising to explore
unsupervised feature learning methods to learn a common and invariant pattern of
3D local features, especially when more and more 3D objects are publicly available.

Feature learning has been attracting more and more research interests [12], which
includes two main categories: supervised feature learning [13] and unsupervised
feature learning [14]. Since unsupervised feature learning does not require training
labels, it is more advantageous over supervised feature learning. Among the various
recent unsupervised feature learning methods, deep learning model is the most
popular for its attractive characteristics:

1. High-level and hierarchical representations can be learned via multiple nonlinear
transformations of the data.

2. Feature learning process can be performed in unsupervised way.

Many practical applications including computer vision and natural language
processing [15–17] benefit from deep learning models. However, the existing deep
learning models cannot help 3D shape analysis to enhance performance since they
are impossible to directly learn high-level features for 3D shapes. Several obstacles
are listed as follows:

1. The topology of a 3D mesh is irregular. Since a mesh is not a regular lattice as a
2D image, it is impossible to feed the whole or part of mesh into deep learning
models which contain only regular structure.
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2. The orientation is ambiguous on the surface of 3D shapes. Some convolution-
based deep learning methods cannot convolve across the 3D shape surface as the
same way of a 2D image.

3. A 3D shape can always be transformed rigidly and nonrigidly through various
transformations such as translation, rotation, and bending. Therefore, a learning
model is required to work invariantly on these rigid and slightly nonrigid
transformations.

An intuitive way of overcoming these obstacles is to project 3D shapes into a
2D intermediate representation space by handcrafted feature descriptors [18, 19] or
view-based methodology [20]. In the representation space, deep learning models
can be easily applied. However, the transformation of 2D representation for 3D
shapes definitely incurs a significant amount of information loss. For example, the
structural information of a 3D surface, which is exactly the learning target by deep
learning models, shall be lost in the 2D representation space. In addition, the view-
based methodology can only learn global features but cannot learn local features,
and methods based on the handcrafted features cannot get rid of the parameter Ąne-
turning procedure before learning by deep learning models.

To alleviate these problems, we propose a novel deep learning model for unsuper-
vised learning of high-level discriminative local features from raw representation of
3D shapes, namely, Circle convolutional restricted Boltzmann machines (CCRBM).
Based on the learning framework of convolutional restricted Boltzmann machines
(CRBM) [15], CCRBM holds a novel ring-like multilayer model structure to learn
the geometric and structural information of 3D local regions by a number of
convolution filters via a new convolution manner called circle convolution. The
circle convolution moves a novel type of convolution window along a fixed circle
direction on a surface, which not only overcomes the orientation ambiguity on a 3D
surface but also sequentially captures the geometric and structural variations of the
surface. Specifically, the sampled points from a given local region are projected onto
the tangent plane of the center of the region. By this way, the projection distances in
each sector window are employed to constitute the raw 3D feature called projection
distance distribution (PDD) which is only determined by the coordinates of the
sampled vertices. Another issue is the initial but usually ambiguous location of the
convolution window on the 3D surface. This issue can be eliminated by introducing
Fourier Transform Modulus (FTM) which transforms the PDD into an invariant
representation of the initial location for CCRBM. Moreover, circle convolution can
work directly on a 3D local surface, which resolves the issues of feature invariance
for rigid and slightly nonrigid transformation.

The paper is organized as follows: Sect. 2 presents the related works of hand-
crafted 3D local features and preliminaries about deep learning models for feature
learning. The designs of circle convolution, PDD, and CCRBM are detailed in
Sect. 3. Experimental setup and results with analysis are shown in Sects. 4 and 5,
respectively. Finally a conclusion with our contributions is drawn in Sect. 6.
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2 Related Works

Existing 3D local features are mainly extracted by knowledge-based descriptors.
Recently, neural network-based methods are involved in learning global features.
These methods are briefly reviewed in the following subsections.

2.1 Knowledge-Based 3D Local Features

Many knowledge-based local descriptors have been proposed for 3D shapes [21].
Some local descriptors extract the property of a local region via a scalar such as
curvature [22] and volume [9]. Another kind of local descriptors captures the relative
spatial information such as spin image [10] and shape contexts [11]. In nonrigid
shape analysis, some intrinsic local descriptors are proposed based on diffusion
geometry method such as heat kernel signature (HKS) [23], scale-invariant heat
kernel signature (SIHKS) [24], and Wave Kernel Signature (WKS) [25].

Although effective, these knowledge-based local descriptors are all handcrafted,
and heavy human intervention with specific knowledge is required to tune the
descriptor parameters for satisfactory results. Moreover, these descriptors can
merely extract features from a single region but not a common pattern of features
from a set of similar regions, leading to oversensitivity of small changes and
degeneration of discriminability. In this paper, the proposed CCRBM aims to
alleviate all of these issues.

2.2 Deep Learning for 3D Shapes With Raw Features

Deep learning model is a kind of neural network for unsupervised feature learning.
There have been some works on learning features from raw features for 3D shapes
using deep learning methods. In the literature [26], a model based on a combination
of convolution and recursive neural networks (CNN and RNN) was introduced for
learning features of RGB-D images and classifying the corresponding 3D objects.
However, their model is different from ours in the way that global features are
constructed by merging the information learned separately from 2D RGB images
and depth images. In this way, their model cannot learn the local features of a real 3D
object. Moreover, the structural information of the 3D object is lost when learning
3D features using single view of 2D images only. In CCRBM, local features on
3D surfaces are directly learned in a structure preserving manner, which tries to
preserve as much information as possible when mapping 3D local regions to the
feature space.

3D ShapeNets [27] is a specially designed deep learning model for learning
global 3D shape features. In 3D ShapeNets, the representations of a geometric 3D
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shape are regarded as a probability distribution of binary variables on a 3D voxel
grid. In addition, each 3D mesh is treated as a 48 * 48 * 48 binary tensor: 1s indicate
the voxels on or inside the mesh surface, and 0 s indicate the voxels outside the mesh.
The difference between our work and 3D ShapeNets is threefold.

1. The representation of training shapes is different. For an input 3D object
represented as mesh, 3D ShapeNets has to voxelize the object beforehand, while
CCRBM does not require any data preprocessing and can directly learn features
from local regions.

2. CCRBM learns features directly on the surface of 3D shapes. Through this way,
the effect of the rigid transformation (e.g., translation and rotation) and slightly
nonrigid transformation (e.g., bending) can be minimized. However, considering
the essence of voxelization, the input objects of 3D ShapeNets must be rigid
shapes (e.g., table and chair) rather than nonrigid ones (e.g., human and animal);
moreover, the shapes have to be aligned in the same direction before voxelization,
which is however a very difficult task for current alignment methods. Thus, it is
hard for 3D ShapeNets to withstand the effect of the rotation and the nonrigid
transformations of input shapes.

3. CCRBM learns 3D local features, which can be used to construct global features
via Bag-of-Words framework as well, while 3D ShapeNets learns only 3D global
features.

2.3 Restricted Boltzmann Machines (RBM) and Deep Belief
Network (DBN)

In the literature, RBM and DBN were proposed to ease the optimization difficulty
associated with deep learning models by the idea of greedy unsupervised pre-
training of each stacked layer [28, 29]. An RBM is a generative stochastic neural
network that can learn a probability distribution over its set of inputs. As the name
implies, an RBM is a variant of Boltzmann machines [30], with the restriction that
each connection in an RBM must connect a visible node to a detection node and
there is no connection between nodes in the same layer as shown in Fig. 1a. This
restriction leads to efficient training algorithms, in particular the gradient-based
contrastive divergence algorithm [28, 31]. A DBN is constructed by stacking several
RBMs layer-by-layer, the lower layer detects simple features, and then it is conveyed
into higher layers, which in turn detects more complex features.
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Fig. 1 (a) The model of RBM. (b) The model of CRBM with max-pooling

2.4 Convolutional RBM (CRBM) and Convolutional DBN
(CDBN)

To make RBM scaled gracefully for high-dimensional images and obtain local
translation-invariant representation, Lee et al. [15] proposed Convolutional RBM
(CRBM) and Convolutional DBN (CDBN). A CRBM is an extension of the
traditional RBM to a convolutional setting that aims to learn statistical relationship
between a visible layer V and a detection layer H which contains K “groups” of
units as shown in Fig. 1b. A max-pooling layer P combined with CRBM shrinks the
detection layer using a pooling window Bα of C pixel width. The learned feature
detectors Wk (k ∈ [1,K]) are shared among all locations in an image, since features
capturing useful information in one region can pick up the same information in
the other regions. Similar to DBN, a CDBN can also be constructed by stacking
several CRBMs together. To make our paper self-contained, the details of CRBM
and CDBN are briefly reviewed. Experienced readers can also jump to Sect. 3 for
the proposed CCRBM. CRBM is in fact a building element of CDBN. A CRBM
consists of two layers: a visible layer V and a detection layer H as shown in Fig. 1b.
The detection nodes are binary-valued, and the visible nodes are binary-valued or
real-valued.

2.5 Details of CRBM and CDBN

To make our paper self-contained, the details of CRBM and CDBN are briefly
reviewed. Experienced Readers can also jump to Sect. 3 for the proposed CCRBM.
CRBM is in fact a building element of CDBN. A CRBM consists of two layers: a
visible layer V and a detection layer H as shown in Fig. 1b. The detection nodes are
binary-valued, and the visible nodes are binary-valued or real-valued.

Consider the visible layer V consisting of an Nv dimensional array of binary
nodes as shown in Fig. 1b. K filter weights are set, and each filter is a Nw

dimensional array. For k-th filter Wk , it convolves across an image to obtain the
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k-th group Hk of the detection layer. The Hk is an Nh dimensional array with nodes
hk

ij sharing the same weights Wk and a same bias bk , where i, j denotes the vertical
and horizontal index of the array. All the nodes vij in the visible layer share the
same bias c.

The probabilistic semantics P(v, h) over visible nodes v and detection nodes h
is defined in (1), where Z = ∑

v
∑

h exp(−E(v, h)) is a normalization factor or
partition function.

P(v, h) = 1

Z
exp(−E(v, h)) (1)

The energy function of CRBM can then be defined in (2).

E(v, h) = −
K∑

k=1

hk • (W̃ k ∗ v) −
K∑

k=1

bk
∑

ij

hk
ij − c

∑

ij

vij (2)

∗ and • are used to denote 2D convolution and the element-wise product
followed by summation, respectively. The tilde above Wk is used to denote flipping
Wk horizontally and vertically. Since all nodes in each layer are conditionally
independent given the other layer, block Gibbs sampling [32] can be used to perform
inference in the network efficiently.

The conditional probability distributions used by Gibbs sampling can be defined
as (3) and (4), where the sigmoid function is defined as sigmoid(x) = 1

(1+exp(−x))
.

P(hk
ij = 1|v) = sigmoid((W̃ k ∗ v)ij + bk) (3)

P(vij = 1|h) = sigmoid(
∑

K

(Wk ∗ hk)ij + c) (4)

In order to learn high-level representations, we can stack CRBMs into a multi-
layer architecture analogous to DBNs, and this architecture is based on probabilistic
max-pooling. Lee et al. [15] further combined CRBM with probabilistic max-
pooling where the maximum over small neighborhoods of detection nodes hk

ij are
computed probabilistically. Then, the energy function of the probabilistic max-
pooling CRBM can be defined in (5).

E(v, h) = −
∑

K

∑

ij

(hk
ij (W̃

k ∗ v)ij + bkh
k
ij ) − c

∑

ij

vij

s.t.
∑

(ij)∈Bα

hk
ij ≤ 1,∀k, α

(5)

where the Bα defines a small region α on the detection layer as a pooling window
(C-pixel width).
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In principle, the CRBM parameters can be optimized by performing stochastic
gradient ascent on the log-likelihood of training data. However, computing the
exact gradient of the log-likelihood is intractable. Thus, contrastive divergence
approximation [31] is always used in practice.

Specifically, given the visible layer V, the detection layer Hk and the pooling
layer Pk can be sampled. With the k-th filter, the corresponding map receives the
following bottom-up signal from layer V as (6).

I (hk
ij )

Δ= (W̃ k ∗ v)ij + bk (6)

Suppose (i, j) ∈ Bα , the energy increased by tuning on hk
ij is −I (hk

ij ), and the
conditional probability is defined as the following.

P(hk
ij = 1|v) = exp(I (hk

ij ))

1 + ∑
(i′j ′)∈Bα

exp(I (hk
i′j ′))

(7)

P(pk
α = 0|v) = 1

1 + ∑
(i′j ′)∈Bα

exp(I (hk
i′j ′))

(8)

As we can see, (7) and (8) used by Gibbs sampling form the basis of CRBM
inference and learning algorithms.

CDBN is constructed by stacking several max-pooling CRBMs. Training CDBN
is achieved in a greedy and layer-wised manner: once a given layer is trained,
its weights are fixed, and its activations are used as input to the next layer. Our
CCRBM is a variation of CRBM. Consequently, a CCDBN can be constructed in
the same way of constructing a CDBN by stacking several probabilistic max-pooling
CCRBMs.

3 Circle Convolutional RBM (CCRBM)

Before introducing the structure of CCRBM, we first explain the circle convolution
and the raw 3D feature called PDD. The resolution of ambiguity of initial location
of a sector window used by circle convolution is also discussed.

3.1 Circle Convolution

Introduction Circle convolution is specially designed for performing convolution
on a 3D surface which defines both a novel type of convolution window and a
novel window moving manner. By performing circle convolution, the structure of
a local region can be captured by scanning the local region window-by-window
sequentially.



Deep Learning for 3D Data Processing 163

Square
window

2D convolution

Stride

Direction of window movement
D

ire
ct

io
n 

of
 w

in
do

w
 m

ov
em

en
t

   Central
  angle 

 Stride
angle 

Circle convolution

Circle direction of window movement

(a) 2D convolution

(b) Circle convolution

St
rid

e

egamitcartsbAegamilanigirO

The tangent plane of a local 3D region Abstract ring Y

θc

θs
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Due to the regular lattice as 2D images, the 2D convolution convolves across
an image by moving a rectangle or a square convolution window step-by-step, as
shown in Fig. 2a. In this example, the size of a convolution window in the original
image is 2 × 2 pixel. The moving stride along the horizontal and vertical direction is
both one pixel. The initial location of the convolution window is marked as the red
square. After a filter convolves with the color in that window, the obtained value
is conveyed to the corresponding red node in an abstract image on the right as
the red arrow shows. Then, the convolution window moves along the horizontal
direction by one stride (one pixel in this example) to the location marked as the blue
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Fig. 3 An illustration of circle convolution on a 3D local region

square. Accordingly, the convolution result is stored in the blue node in the abstract
image. The same process can be repeated by moving the convolution window
along the vertical direction, just shown as the green square and the corresponding
green node in the abstract image. To alleviate the difficulty brought by irregular
connection between points and orientation ambiguity on the surface, we propose
circle convolution to convolve across a 3D local surface.

Circle convolution adopts a circular sector window to convolve across a local
region by rotating the window about the normal of the center point on the local
region. As shown in Fig. 3, a red sector window rotates about the normal of the
center point A to the position marked in blue on the 3D local region. Note that
there could be some overlapping area covered by the two successive sector window
locations. The rationale to design the circle convolution is based on the modeling of
a 3D local region, which can be modeled as an approximate circular patch centered
at a point A with a given radius R. Then, a circular sector window can cover a part
of the patch. When rotating about the normal of the center point A sequentially, the
sector window can scan the whole surface of the 3D local region.

Circle convolution window approximation However, it is nontrivial to directly
and accurately draw a circular sector window on a 3D local region, since the surface
is not necessarily a plane and the connection topology or spatial relations between
vertices is irregular. Thus, we resort to the tangent plane of the center point of the
local region to approximate a 3D circular sector window. In Fig. 3, the sampled
points from the 3D local region are firstly projected onto the tangent plane. Then,
a 2D circular sector window can be easily established on the tangent plane, such as
the one enclosed by two radii and an arc in red in Fig. 3. The sampled points whose
projections are covered by the red 2D sector window correspond to a region on
the 3D surface. This region can be regarded as the one covered by an approximate
3D sector window, also shown in red and with red boundary on the surface in
Fig. 3. When the red 2D sector window rotates to the blue sector window about
the normal on the tangent plane, the corresponding red 3D sector window moves
to the location marked in blue via rotating about the same axis and along the same
direction accordingly.
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The movement direction of a circle convolution window The circle direction of
a sector movement is defined under the famous right-hand corkscrew-rule. Simply
speaking, a 2D sector window is moving about a directed axis along the direction
of wrapping one’s right hand when the thumb is in the same direction of the axis.
In Fig. 3, the red circular sector window rotates anticlockwise when the view is in
the negative direction of the normal. Therefore, circle convolution defines a fixed
moving direction of the sector window which overcomes the issue of the orientation
ambiguity on the surface.

The parameters of circle convolution There are two parameters of circle con-
volution that specify the size of a sector window and the stride of the rotation,
respectively. Similarly, it is hard to parameterize a 3D sector window and its
movement on a 3D local region exactly. Alternatively, the 2D sector window
projected on the tangent plane is used to parameterize the corresponding 3D sector
window, since the size and the movement of the 2D sector window are synchronized
with the 3D sector window. These parameters for a 2D sector window involved in
circle convolution are illustrated in Fig. 2b. One parameter is the central angle of a
2D circular sector window θc, which controls the coverage of the 2D sector window
and its corresponding 3D sector window. Another parameter is the stride angle θs ,
which represents the rotation angle of the 2D sector and its corresponding 3D sector
window along the circle direction.

Circle convolution After defining the 3D sector window and its movement, we
formulate the circle convolution as (9).

Y (θs) =
∫ 2π

θ=0
h(θs − θ)X(θ)dθ (9)

where X denotes raw features on the 3D patch and h is a filter to convolve across
the 3D patch. By circle convolution, an abstract ring Y composed of nodes whose
locations are determined by θs is obtained as shown in the right of Fig. 2b.

When h convolves with X extracted from a specified 3D sector window (e.g.,
the one corresponding to the red 2D sector window in Fig. 3), Y will be stored
in the red node (the red arrow demonstrates this process). Then, h moves to the
location marked in blue. The aforementioned process is repeated again. Each node
in Y corresponds to a location of the rotating 2D sector window. By this way, Y

encodes the geometric information of the 3D patch in a structure preserving manner.
Theoretically, the essence of circle convolution lies in abstracting information

from raw features by convolution as (9). Through the convolution process, the
learned filters h will highlight different particular feature patterns at explicit
locations determined by θs . In addition, it contains novel convolution window,
movement of the window, and parameterization which can work with the irregular
vertex topology and ambiguous orientation on the 3D surface.
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Fig. 4 The projection distance distribution (PDD) of a region centered at (a) a point on the human
head, (b) a point on the human leg

3.2 Projection Distance Distribution (PDD)

The geometric information of a 3D region covered by a sector convolution window
can be captured as a PDD via projecting all points in the window to the tangent plane
of the region’s center. A PDD is a 1D histogram that counts the number of points
in each projection distance bin, which can encode different geometric properties of
different regions. As shown in Fig. 4, the sampled points in the red region centered
at the green point on the human head produce a PDD, which is completely different
from the PDD of the region centered at the blue points on the leg. However, the
number of projection distance bins affects the discriminability of PDD. Too many
bins would present too much details of the distribution which hides the underlying
distribution trend. On the contrary, if there were not enough bins, the PDD would be
too coarse to capture discriminative information. Through experiments, a number of
25 bins are found suitable to construct a PDD vector in each sector window.

PDD is the raw 3D feature which does not require any handcrafted features but
just the coordinates of points on the local region. CCRBM learns features from PDD
by circle convolution, which accords with the essence and intention of unsupervised
feature learning by deep learning method. In current experiments, as a trade-off
between discriminability and computational cost of PDD, we randomly sample 50
points on each triangle face by following the method [33].

3.3 Example of Circle Convolution and PDD Computation

An example of circle convolution and PDD computation is shown in Fig. 5. In order
to alleviate the computation burden, CCRBM learns some of local regions centered
at sampled points on each shape. For the ant model shown in Fig. 5a, 500 points (in
blue) are sampled using farthest geodesic sampling (FGS) method [34]. FGS first
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Fig. 5 An example of circle convolution and PDD computations. (a) Sampled vertices to learn.
(b) A local region centered at a sampled vertex. (c) More sampled points on triangle faces. (d)
Sector window 1 and its PDD. (e) Sector window 2 and its PDD. (f) Sector window 20 and its
PDD. (g) Sector window 35 and its PDD. (h) Sector window 36 and its

samples an arbitrary vertex. The second vertex to be sampled is the one with the
farthest geodesic distance to the first sampled one. Note that geodesic distance is the
distance of the shortest path connecting two vertices on the surface. Subsequently,
the third sampled vertex is the farthest vertex to the first two sampled vertices. The
sampling process is repeated until the number of sampled vertices reaches 500.

For every blue local region centered at the sampled points (e.g., the yellow point
in Fig. 5b), a more discriminative PDD is computed, as described in Sect. 3.2. In
Fig. 5c and its magnified views, additional 50 more points are sampled on each
triangle face covered by the blue local region, which are marked as yellow points.
Then, a 3D sector window is determined as described in Sect. 3.1. The first sector
window with θc = 60◦ (in BLACK) and the corresponding PDD are shown in
Fig. 5d. According to the right-hand corkscrew-rule, the sector window rotates about
the normal at the center along the anticlockwise direction (view in the negative
direction of the normal at the center) to the next location as shown in Fig. 5e.
The procedure repeats and Fig. 5f–h shows the other subsequent steps of the sector
window and their corresponding PDDs.

3.4 Elimination of the Initial Location Ambiguity

The ambiguity of the initial location of a sector window is another significant issue.
Specifically, for a given 3D local region, the computed PDDs of all sector windows
can be seen as a function of the initial location θ , the sector index jf and the
stride step θs , denoted as fPDD(θ + jf × θs), where jf ∈ {0, 1, . . . , 360◦/θs − 1}.
Remark: actually, in this polar coordinate alike frame, the scalar variable θ cannot
parameterize the initial location of a sector window since there is no polar axis
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which is in a fixed direction. However, θ could help to represent the relationship
between two initial locations. Obviously, different initial location θ over the same
3D local region produces a different fPDD . Since there is no consistent local
coordinate system on a surface, it is impossible to obtain an identical fPDD on a
3D local region via determining an invariant initial location of a sector window.
On the other hand, for two similar local regions, the different initial location-
dependent PDDs of each local region will also make CCRBM impossible to extract
similar information. In this study, Fourier Transform Modulus (FTM) is proposed
to eliminate this ambiguity of the initial location.

FTM has been widely used in image registration [35] and was introduced for the
construction of scale- and rotation-invariant descriptors in [36]. It is also used for
constructing scale-invariant heat kernel signatures (SIHKS) [24] and intrinsic shape
context [37] for 3D shapes. In our work, fPDD is transformed into spectral domain
with respect to the angular location θ+jf ×θs by FTM. The representation of fPDD

in spectral domain is denoted as Fjf
{fPDD(θ + jf × θs)}(ω), where ω represents

the frequency. The elimination of initial location ambiguity is explained as follows.
Setting θ = β, the representation of fPDD in spectral domain is obtained by FTM
as shown in (10).

Fjf
{fPDD(β + jf × θs)}(ω) =

∑

jf

fPDD(β + jf × θs)exp(−iω(β + jf × θs))
(10)

If the PDD is obtained from another initial location which is represented by
adding an offset δ to β, such that θ = β + δ, the transformation of FTM is shown
in (11).

Fjf
{fPDD(β + δ + jf × θs)}(ω) =

Fjf
{fPDD(β + jf × θs)}(ω)exp(−iδω)

(11)

Taking the modulus, we have (12). Thus, the FTM of PDD, |Fjf
{fPDD(θ +jf ×

θs)}(ω)|, is an invariant representation of the initial location for a 3D local region
which will be conveyed into the virtual layer as the input of CCRBM, as discussed
in Sect. 3.5.

|Fjf
{fPDD(β + jf × θs)}(ω)| =

|Fjf
{fPDD(β + δ + jf × θs)}(ω)|

(12)

Figure 6 shows the elimination of the ambiguity of the initial location. In Fig. 6a,
b, a black sector window with different initial locations convolves across a same
local region covered by sampled yellow points, respectively. fPDD and fPDD1
obtained with two different initial locations are different, as shown in Fig. 6c,
d. After performing FTM with respect to the location angle, |Fjf

{fPDD}| and
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Fig. 6 The elimination of the initial location of the sector window by FTM. (a) One initial location
of a sector window. (b) Another initial location of a sector window. (c) fPDD (d) fPDD1 (e)
|Fjf

{fPDD}(ω)| (f) |Fjf
{fPDD1}(ω)|

|Fjf
{fPDD1}| are obtained, and they are the same as shown in Fig. 6e, f. From

Fig. 6, we can see the ambiguity of the initial location of the sector window makes
the fPDD uncertain; however, |Fjf

{fPDD}| eliminates the ambiguity and presents
an initial location-invariant representation to the CCRBM.

3.5 The Structure of CCRBM

In Fig. 7, CCRBM with max-pooling consists of three layers, namely, virtual layer
V, detection layer H, and pooling layer P. The significant difference between
CCRBM and CRBM is the topology of nodes in each layer, where the nodes in
CCRBM layers are lined up in a ring rather than 2D lattice as CRBM. In the
visible layer V1, the fPDD of a local region with N stride steps are computed,
where N = 360◦/θs . Note that the PDD extracted from each sector window is a
m-dimensional vector, where m = 25 (i.e., number of bins) in all our experiments.
Then, the initial location-invariant representations of fPDD obtained by FTM are
conveyed into the N × m nodes in virtual layer V, where V acts as the input of
CCRBM.

The detection and pooling layers both have K groups of nodes. For each k ∈
[1,K], the responses of a ring detection layer Hk with N nodes are generated by
circle convolution via convolving with a 1×m filter Wk across the virtual layer. The
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N/P nodes
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Wk

P nodes
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hk 
 i

Fig. 7 The structure of max-pooling CCRBM including visible layer V1, virtual layer V, detection
layer H, pooling layer P and output layer F

filter convolves with each FTM of PDD in the virtual layer sequentially. This process
is shown briefly in the virtual layer in Fig. 7, in which a filter firstly convolves
with nodes in the red window. The convolution result is conveyed to a node in the
detection layer which is also marked in red. Secondly, the red window rotates with
striding m nodes to the location marked in blue. The filter will convolve with nodes
in the blue window as well, and the convolution result is conveyed to the blue node
in the detection layer accordingly.

The pooling layer Pk shrinks the representation of the detection layer Hk by
selecting the maximum activations among P adjacent nodes (P -node pooling
window) covered by a pooling window Bp, and each pooling layer Pk has N/P

nodes. The shrinking of the representation with max-pooling provides two benefits.
Firstly, the representations in higher layer become invariant subject to small
fluctuation of the response in the lower layer. Secondly, computational complexity
is also reduced in the subsequent procedure.

The output layer is obtained by transforming the pooling layer via FTM. When
the nodes in a ring in the pooling layer are stretched to be a N/P -dimensional vector
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of feature Fk , Fk is inevitable to depend on the cutting location. FTM is applied
again in order to obtain a feature of invariant cutting location. With FTM, the effect
caused by the cutting location where the ring is cut can be eliminated. The learned
local feature is constructed by concatenating all the Fk into a K×N/P -dimensional
vector.

According to the structure of CCRBM, the energy function of CCRBM and the
joint probability distribution over the virtual layer V and the detection layer H can
be defined as (13) and (14), respectively. The response of i-th node in virtual layer V
is denoted as vi , and the response of the j -th node in detection layer Hk is denoted
as hk

j . All nodes vi in V have the same bias c, and also, all nodes hk
i share a same

bias bk .

E(v, h) =

−
K∑

k=1

N∑

j=1

m∑

r=1

hk
jW

k
r v(j−1)m+r −

K∑

k=1

bk

N∑

j=1

hk
j − c

N×m∑

i=1

vi

(13)

P(v, h) = 1

Z
exp(−E(v, h)) (14)

where Z is also defined as
∑

v
∑

h exp(−E(v, h)) which is similar to (1).
From (13), the nodes in the detection layer are conditionally independent of one

another given the virtual layer V and vice versa. The virtual layer of CCRBM is
real-valued; the virtual nodes conditioned on the detection layer are Gaussian with
diagonal covariance. Thus, block Gibbs sampling can be efficiently performed by
alternatively sampling each node in virtual layer V given the detection layer H in
parallel and vice versa.

Similar to RBM, the following conditional distributions (15) and (16) are
employed to perform block Gibbs sampling. Given the virtual layer V, the detection
layer Hk is sampled with the probability defined in (15). Analogously, given the
detection layer Hk (k ∈ [1,K]), the virtual layer V is sampled using the probability
defined in (16).

P(hk
j = 1|v) = sigmoid((Wk ∗ v)j + bk) (15)

P(vi = 1|h) = sigmoid(
∑

k

(Wk ∗ hk)i + c) (16)

In principle, the parameters of CCRBM can be optimized by performing stochas-
tic gradient ascent on the log-likelihood of training data. However, computing the
exact gradient of the log-likelihood is intractable. Thus, contrastive divergence [31]
is also employed to approximate the gradient of the log-likelihood.

With the probabilistic max-pooling layer, CCRBM is able to shrink the detection
layer into high-level representation. Accordingly, the energy function of prob-
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abilistic max-pooling CCRBM can be defined in (17) by adding a constraint
to (13), where the constraint summarizes the max-pooling process. Specifically, the
detection nodes in the pooling window Bp are connected with the corresponding
pooling node in a single potential way. In other words, at most one of the detection
nodes in the pooling window is on, and the corresponding pooling node is on if and
only if a detection node is on.

E(v, h) =

−
K∑

k=1

(

N∑

j=1

m∑

r=1

hk
jW

k
r v(j−1)m+r + bk

N∑

j=1

hk
j ) − c

N×m∑

i=1

vi

s.t.
∑

j∈Bp

hk
j ≤ 1,∀k, p

(17)

Given the virtual layer V, we can sample the detection layer Hk and the pooling
layer Pk as follows. For the k-th filter, the feature extracted from V can be defined
in (18).

I (hk
j )

Δ= (Wk ∗ v)j + bk (18)

Considering a node hk
j in the pooling window Bp, the energy change of E(v, h)

caused by turning it on is −I (hk
j ) according to (18) and (13). The conditional

probability used by Gibbs sampling is defined in (19) and (20).

P(hk
j = 1|v) = exp(I (hk

j ))

1 + ∑
j ′∈Bp

exp(I (hk
j ′))

(19)

P(pk
p = 0|v) = 1

1 + ∑
j ′∈Bp

exp(I (hk
j ′))

(20)

Thus far, the procedure of sampling detection layer Hk conditioned on the virtual
layer V is explained. The reverse procedure, sampling the virtual layer V given
the detection layer H, can be performed by Gibbs sampling using the conditional
probability defined in (16).

3.6 Circle Convolutional DBN (CCDBN)

CCDBN is a hierarchical generative model for 3D local regions. Similar to CDBN,
CCDBN consists of several max-pooling CCRBMs which are stacked layer-by-
layer. The network of CCDBN represents an energy function by accumulating the
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energy functions for all stacked CCRBMs. The training of CCDBN also follows
the greedy and layer-wise way. In short, once a lower level of CCRBM is trained,
its weights are fixed, and its activations are used as the input to the next level of
CCRBM.

Although the max-pooling CCRBM can be stacked into a CCDBN, we only test
the max-pooling CCRBM in all experiments with the following reasons. Since PDD
is a distribution, noise can be introduced into the PDD if the resolution of PDD is too
fine (i.e., high number of bins), leading to degeneration of discriminability. Thus,
the PDD with coarse resolution (i.e., small number of bins) is usually preferred.
However, if the PDD resolution is coarse, then the PDD would become insensitive
to small geometric changes. More specifically, the geometric changes captured by
PDD are caused by the rotation of the sector window. If a sector window rotates
with a small stride angle and the number of bins in PDD is small, the changes may
become insignificant and even ignored. To alleviate this issue, the sector window is
usually specified with a sufficiently large stride angle so that the geometric changes
can be highlighted even the PDD resolution is coarse.

Nevertheless, it must be noted that a sufficiently large stride angle will sample
fewer nodes from the pooling layer to the next level of CCRBM, leading to reduced
amount of information. As a trade-off, a stride angle of 10◦ is employed in the
experiments to capture structural changes between two adjacent sector windows.

4 Experimental Setup

In this section, different shape benchmark and performance measures for 3D
local feature learning are, respectively, described for the following common areas
of 3D shape analysis: global shape retrieval, partial shape retrieval, and shape
correspondence. In addition, the setup of parameters for CCRBM is discussed.

4.1 Global Shape Retrieval

The objective of global shape retrieval is to search its globally similar shapes in a
large dataset given a query shape. For the global shape retrieval experiment, the
parameters of a CCRBM are firstly investigated using McGill 3D shape bench-
mark [38]. Then, the local features learned by CCRBM are compared with the ones
obtained by other state-of-the-art feature descriptors under the articulated subset of
McGill 3D shape benchmark, the whole set of McGill 3D shape benchmark, and
SHREC 2007 dataset [39], respectively.

The McGill 3D shape benchmark contains 19 classes of shapes with totally 457
objects, which consists of an articulated subset and a non-articulated subset. The
articulated subset contains 255 objects of 10 shape classes. SHREC 2007 dataset
contains 400 shapes evenly distributed into 20 shape classes.
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The statistical analysis of learned local features is performed to characterize a
whole 3D shape using the Bag-of-Words (BoW) framework. The similarity measure
S(Mi,Mj ) between two arbitrary shapes Mi and Mj is defined as the Chi-squared
distance between their BoW feature vectors BoWi and BoWj as shown in (21).

S(Mi,Mj ) = 1

2

∑

q

(BoWi(q) − BoWj(q))2

(BoWi(q) + BoWj(q))
(21)

For all experiments, the traditional precision and recall (PR) curve is employed
as the performance measure of the learned local features. Precision is the ratio of
retrieved objects that are relevant to all retrieved objects in the ranked list. Recall is
the ratio of relevant objects retrieved in the ranked list to all relevant objects in the
dataset.

4.2 Partial Shape Retrieval

Partial shape retrieval is to efficiently search partially similar shapes with a query
in a database. SHREC07 partial retrieval dataset is employed to evaluate the
current experiment. Given the database of 400 watertight models and a set of 30
hybrid query models, each query is associated with a set of highly and marginally
relevant items. In other words, these two sets of items represent, respectively, the
classes which share a similar subpart with the query and those ones which are
reasonably similar to the query. The quantitative evaluation is computed using
the normalized discounted cumulated gain vector (NDCG) [40] via normalizing
discounted cumulated gain vector (DCG) by the ideal cumulated gain vector
calculated from the ground truth. DCG is defined in (22).

DCG[i] =
{

G[i] if i = 1;
DCG[i − 1] + G[i]/ log2 i otherwise

(22)

where G[i] is a gain value representing the relevance of the i-th retrieved model (2
for highly relevant, 1 for marginally relevant, and 0 otherwise). For a given query,
DCG[i] is first computed, and then, NDCG[i] is obtained by dividing the DCG[i]
by the ideal cumulated gain vector calculated from the ground truth.

4.3 Shape Correspondence

Shape correspondence aims to establish a meaningful relation between two sets of
points on two given shapes. The features learned by CCRBM are also evaluated on
shape correspondence over two datasets with well-defined ground truth. One dataset
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is SCAPE [41] which contains 71 mesh models representing a human body in
different poses. Another dataset, Watertight dataset [42], contains 400 mesh models
which are evenly classified into 20 object categories including humans, octopus,
four-legged animals, ants, etc.

Given two shapes M1 and M2, the error measure proposed in the literature [42]
is adopted to evaluate the accuracy of a predicted shape correspondence f : M1 →
M2 with respect to the ground truth map ftrue. For every point b on shape M1,
the error between the predicted corresponding point f (b) (on M2) and the ground
truth corresponding point ftrue(b) (on M2) is measured by the distance of the
shortest path connecting f (b) to ftrue(b) on the M2 surface (geodesic distance
between f (b) and ftrue(b) on M2), which is denoted as dM2(f (b), ftrue(b)). The
smaller dM2(f (b), ftrue(b)) is, the closer the estimated corresponding point to the
ground truth. To eliminate the effect of scale of shapes, the dM2(f (b), ftrue(b))

is normalized by the longest geodesic distance between any two points on the
surface of M2. Then, the accuracy between f and ftrue is depicted by the probability
distribution function of dM2(f (b), ftrue(b)) of all points b on M1.

4.4 The Setup of Parameters for CCRBM

Since global features can be constructed with the learned local features using
the simple Bag-of-Words (BoW) framework, the evaluation of the BoW global
feature can reflect the discriminability of the learned local features. Therefore, the
parameters governing the learned local features of CCRBM are investigated over
global shape retrieval task only.

CCRBM takes a set of five parameters including the central angle θc and the
stride angle θs (which specify a sector window), the radius of the local region R, the
number of filters K , and the number of training samples T . As discussed in the last
paragraph in Sect. 3.6, the stride angle θs is carefully adjusted through experiments
(in our case, θs = 10◦) in order to preserve the geometric and structural changes
between two adjacent steps of a sector window as much as possible. Accordingly,
the number of nodes N in the detection layer Hk is 36 (360◦/10◦). Moreover, the
length of the pooling window P is set to 4, since a big width of the pooling window
will shrink too much information from the detection layer Hk , while a small width
of the pooling window will make no sense about learning geometric and structural
information from progressively larger input regions. In current experiments, P = 4
works very well. Note that θs and P are kept fixed in all experiments.

Since BoW framework is employed to combine the learned features as the global
shape feature of an object, the number of virtual words Kw is another parameter
to be determined. The framework and its component used in the experiments are
introduced as follows:

The BoW framework The key idea of BoW is to represent a set of features as a
sparse vector of occurrence counts of virtual words which come from a constructed
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vocabulary (so-called codebook). Each feature in a set is assigned to the closest
virtual word according to the similarity between the feature and the virtual word,
which provides an occurrence count to the closest virtual word when constructing a
BoW vector.

Codebook construction To construct a codebook, a set of features are clustered
into Kw clusters. Each of the cluster centroids serves as a virtual word in a
codebook. Note that all features are learned by CCRBM from local regions centered
at sampled vertices on each shape in the dataset. In our experiments, we sample 500
vertices on each 3D shape using farthest geodesic sampling method [34] as shown
in Fig. 5a.

Specifically, the learned feature of each sampled vertex i from the j -th shape
Mj is denoted as Mi

j , and then, k-means is used to cluster all features Mi
j into

Kw clusters. The Kw centroids are regarded as the virtual words in a codebook
D = {D̄1, D̄2, . . . , D̄Kw }. Then, every vertex sampled on a shape Mj is associated
with the closest visual word in D so that the shape Mj can be represented by a sparse
vector BoWj of occurrence counts of the visual words over all sampled vertices on
it.

The number of virtual words Kw Two experiments were carried out to explore
how the number of virtual words Kw affects performance on shape retrieval.

In both experiments, CCRBM was provided with a training set composed of 10%
(T = 10%) randomly selected sampled vertices from each shape. The CCRBM used
K = 300 filters to detect each local region, each of which was centered at a selected
vertex with a radius R = 0.07 LGD (the longest geodesic distance of that shape).
The difference between the two experiments lies in the center angle θc of the sector
window, which is set to 30◦ and 100◦, respectively, for the two experiments.

By varying Kw, the performance of shape retrieval was evaluated through
precision and recall (PR) curves. In the first experiment (θc = 30◦), PR curves
were compared under Kw = 10, 20, 30, 40, 50, 100, and 200 visual words as shown
in Fig. 8a. In the second experiment (θc = 100◦), PR curves were obtained under
Kw = 30, 40, 50, 60, 70, 80, 90, 100, and 150 visual words as shown in Fig. 8b.

From Fig. 8, it is obvious that the retrieval performance obtained with 30, 40,
and 50 visual words is fairly very well in both experiments. Thus, as a trade-off
between the discriminative ability of BoW and computation efficiency, 40 visual
words are employed to construct the global shape feature BoWj in the following
shape retrieval experiment.

The numbers of training samples T and filters K Two experiments were
conducted to investigate the number of training samples T and the number of filters
K of CCRBM.

Firstly, the CCRBM used K = 300 filters to learn each local region with a radius
of R = 0.07 LGD, and θc = 30◦. PR curves are obtained by CCRBM trained
with T = 6%, 10%, 20%, and 30% of all sampled vertices, respectively, as shown
in Fig. 9a. It can be found that better retrieval performance can be obtained with
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Fig. 8 The PR curves obtained under different numbers of virtual words (a) with θc = 30◦. (b)
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Fig. 9 The PR curves obtained with (a) different numbers of training samples T and (b) different
numbers filters K

more training samples due to the acquisition of richer geometric and structural
information of the local region, which abstracts high-level features.

Secondly, T = 30% sampled vertices were tried to train CCRBM with varying
number of filters, while other parameters are the same as the previous experiments.
The PR curves are illustrated in Fig. 9b, and the highest performance can be obtained
with K = 300 filters. In the subsequent experiments, K = 300 filters are fixed to
learn each local region.

The central angle θc and the radius of the local region R To determine θc, a
CCRBM with K = 300 filters using T = 10% sampled vertices was tested, where
each sampled vertex contains a neighbor of R = 0.11 LGD. PR curves with θc =
30◦, 50◦, 100◦, and 150◦ are obtained and shown in Fig. 10a. From the PR curves,
the retrieval performance of CCRBM is affected little by θc. The reason is that most
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of the local regions can be modeled by symmetrical primitives, such as plane, cone,
hemisphere, etc. Hence, the PDDs captured in sector windows with different central
angles are nearly identical.

For setup of R, CCRBMs with a fixed sector window of θc = 50◦ were
constructed with varying R, while the other parameters were the same as previous
experiments. R took the values of 0.07, 0.09, 0.11, and 0.13 times LGD, respec-
tively. Figure 10b shows that the PR curve with R = 0.11 LGD is the best because
small local regions (R = 0.07, 0.08 LGD) look similar with each other which
provide little amount of information for PDD to distinguish themselves into some
basic primitive shapes. On the contrary, a large local region (R = 0.13 LGD) may
contain highly irregular and overcomplex structure to capture distinguishable PDD
information. As a result, the local regions with R = 0.11 LGD are selected for the
training of CCRBM.

CCRBM parameters In summary, a CCRBM trained from McGill dataset using
the following parameters as listed in Table 1 is involved in the experiments below.
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Fig. 10 The PR curves obtained with (a) different central angle of the sector window θc and (b)
with different radius of local region R = a ratio times the longest geodesic distance (LGD)

Table 1 The parameters used in the following experiments

Virtual
words Kw

Region
size R

Filter
number K

Training sample
numbers T

Central
angle θc

Stride
angle θs

Pooling window
size P

40 0.11 LGD 300 30% 50◦ 10◦ 4 nodes
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5 Results and Analysis

5.1 Global Shape Retrieval

The retrieval performance was evaluated on the BoW global features which were
constructed with local features learned by CCRBM. The virtual vocabulary was
constructed using reduced features of 700 dimensions acquired from the originally
learned local features of 2700 dimensions (K × N/P ) by principal component
analysis (PCA). Through this reduction, a better retrieval performance can be
obtained since the BoW global features cannot be constructed very well using high-
dimensional features. The retrieval performance of CCRBM against other feature
descriptors was evaluated over three datasets: (i) articulated subset of McGill 3D
shape benchmark, (ii) whole McGill 3D shape benchmark, and (iii) SHREC2007
shape dataset.

Over the articulated subset of McGill 3D shape benchmark, the BoW global
feature generated from CCRBM was compared to the moment descriptor
(Moment) [43], shapeDNA [44], heat kernel signature (HKS) [23], spin image
(SI) [10], and intrinsic spin image (ISI) [45]. The PR curves obtained by these
methods are shown in Fig. 11a, in which the proposed CCRBM obtains the best
result among all methods.

CCRBM was further compared with light field descriptor (LFD) [46], spherical
harmonic descriptor (SHD) [47], and 3D ShapeNet on the whole McGill 3D shape
benchmark. The PR curves obtained by these methods are portrayed in Fig. 11b.
Once again, the results show that the features learned using CCRBM achieve the
best retrieval result over other three state-of-the-art features. To obtain the results of
3D ShapeNet, we use the same parameters and code provided from the author [27].
As analyzed before, 3D ShapeNet cannot resist the rigid and nonrigid transformation
of 3D shapes, and thus, the obtained result is not satisfactory.
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Fig. 11 PR curves on (a) the articulated subset of McGill shape benchmark; (b) the whole Mcgill
shape benchmark
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Fig. 12 The learned filters are shown briefly. Each 25-dimensional filter is shown as a 5 × 5 image

Lastly, the SHREC 2007 dataset was employed to evaluate CCRBM in global
shape retrieval task. The comparison was against four state-of-the-art shape descrip-
tors including the Hybrid BoW of Lavoue [48], the curve-based method of
Tabia [49], the BoW method of Toldo et al. [50], covariance descriptors of
Tabia [51], and 3D ShapeNet. The results are shown in Fig. 13a. CCRBM obtains
better results than those by Tabia [51], Toldo [50], Lavoue [48], and 3D ShapeNet.
Moreover, the result of CCRBM is comparable to that of Tabia [51]. Note that
the CCRBM in this experiment was trained using the McGill shape benchmark,
in which the training shapes were completely irrelevant to the test shapes in the
SHREC 2007 dataset. Hence, the excellent performance of CCRBM implies that
CCRBM is able to learn a highly general representation of 3D local region.

In addition, to highlight the strength of the ring-like structure and circle convo-
lution of CCRBM, we compare results of CRBM and CCRBM under the McGill
dataset in Fig. 11b and SHREC 2007 dataset in Fig. 13a, respectively. The result
obtained by CRBM is using the same parameters of CCRBM but regarding the PDD
of each local region as an image. The comparison implies that the structure of local
regions preserved by the ring-like structure and circle convolution is important to
the discriminative ability of the learned features. The learned filters of CCRBM are
shown in Fig. 12. For better visualization, each 25-dimensional filter is transformed
into a 5 × 5 image.

5.2 Partial Shape Retrieval

CCRBM was tested on partial shape retrieval using the SHREC07 partial retrieval
dataset. The similarity between two shapes is also defined in (21). Figure 13b
shows the NDCG curves of CCRBM and other state-of-the-art methods, which
include not only the four methods that we have introduced in the Fig. 13a but
also the extended Reeb graphs (ERG) [52], the curve skeleton-based many-to-many
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Fig. 13 PR curves of CCRBM compared to recent state-of-the-art descriptors under (a) the
SHREC 2007 global shape retrieval dataset and (b) SHREC 2007 partial retrieval dataset

matching (CORNEA) [53], and the graph-based technique of Tierny et al [54]. It
can be clearly seen that CCRBM outperforms all other methods in the experiment.
The discriminability of the local features learned by CCRBM is benefited from both
the use of PDD and the structure preserving learning diagram which captures more
geometric and structural information.

5.3 Shape Correspondence

Different from global and partial shape retrieval focusing on statistical feature,
we further investigate the effect of pairwise correspondence between two sample
points from two different shapes. In this experiment, the sampled points from
shape M1 are matched to the sampled points from shape M2. For all shapes in
the dataset, two shapes are selected as a matching pair when these two shapes are
assigned with the subsequent index. For example, shape 1 and shape 2 form the
first matching pair and shape 2 and shape 3 form the second matching pair and
so on. In this experiment, no complicated matching algorithm was employed but
the simple Hungarian algorithm [55] to match sampled points in the feature space,
which aimed to explore the raw discriminative power of the learned features. Here,
the Hungarian algorithm was used as a combinatorial optimization algorithm that
establishes the correspondence between two sets of sampled points via minimizing
the overall correspondence cost. The correspondence cost of each pair of points is
the L2 norm of difference between their learned local features.

CCRBM was compared with the heat kernel signature (HKS) [23] on Watertight
dataset and SCAPE dataset, respectively. Figure 14 depicts the curves that portray
the probability distribution function of the errors, which is the ratio of correct
matches vs ratio of geodesic error curves. The x-axis of the curve represents
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Fig. 14 Ratio of correct matches vs ratio of geodesic error curves obtained by HKS and the
features learned by CCRBM under (a) Watertight dataset and (b) SCAPE dataset

a varying geodesic distance threshold, DC , and the y-axis shows the average
percentage of points for which dM2(f (p), ftrue(p)) < DC . The desired percentage
of correct matches should be large when the error is fixed. It is clearly seen
in Fig. 14a that CCRBM always lies above HKS on Watertight dataset. This
phenomenon is consistently observed in Fig. 14b, which shows dramatically better
performance when comparing our learned local features to the handcrafted HKS.

5.4 Significance and Analysis

CCRBM is significant in learning geometry and structure information from huge
amount of 3D patches with resolving three challenging issues, the irregular vertex
topology, orientation ambiguity on the surface, and the effect of rigid transfor-
mation. In fact, different training patches may be produced under different rigid
transformations over finite patch patterns, such as plane, arc surface, cone surface,
etc. By tackling these three issues, redundant information in training samples caused
by different rigid transformations can be dramatically reduced so that CCRBM
can effectively learn common feature patterns from the training samples. Simply
speaking, in CCRBM, no matter how vertices are connected with each other to
form a patch, no matter how a patch is translated or rotated, and where the starting
location of the filters is, the learned geometry and structure information becomes
invariant. This kind of learning manner is a promising characteristic for 3D surface
that is missed in the existing deep learning models. That explains why CCRBM
works better than other existing methods.

From the experiment results, it can be observed that the high performance of
CCRBM stems from the innovative idea of circular convolution, PDD, FTM, and the
ring-like model structure. These enable CCRBM to learn general and discriminative
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feature patterns. With the novel ring-like structure of CCRBM and the circle
convolution, the geometry information of the local region is captured along with
fully preserving the spatial structure. Capturing and encoding the geometry and
structure information together help increase the power of discriminating different
local regions. Furthermore, the novel PDD and FTM are the elements to guarantee
the ability of learning general feature patterns. These two elements provide the
invariant raw feature for CCRBM with eliminating the ambiguous initial location
of the circular convolution window and resisting the scale, the rigid transformation,
and the nonrigid transformation of 3D shapes.

5.5 Limitation and Future Work

Although the proposed CCRBM achieves a high performance on retrieval and
correspondence, there are still two limitations. One is that CCRBM cannot work
on a highly noisy or non-manifold surface due to the learning of raw 3D feature
based on PDD. The noise on the surface may significantly corrupt the true geometry
and structure of local regions; in addition, the consistent size of local region cannot
be precisely determined on the non-manifold surface. Another limitation is that a
sufficiently large stride angle is necessary to capture the geometric and structural
changes between adjacent sector windows, which may however sample insufficient
number of nodes in the pooling layer to be conveyed to next level of CCRBM.

In the future, the generality of CCRBM can be further explored and analyzed.
An interesting idea comes up that various basic primitive shapes with clean surface,
such as square, cylinder, sphere, cone, etc., can be employed to train a CCRBM, and
the trained CCRBM can try to extract more discriminative features from arbitrary
3D shapes for different tasks in 3D shape analysis. In addition, we will try to employ
the depth images to help CCRBM learn real isolated 3D shapes. Although single
view depth images are always incomplete because of the field of view and occlusion,
which makes it hard to determine continuous and consistent size of local regions and
calculate reliable PDD over local regions, we plan to use CCRBM to learn real 3D
shapes reconstructed from multi-view depth images.

6 Conclusion

CCRBM for unsupervised 3D local feature learning is proposed, which aims
to overcome the disadvantages of handcrafted descriptors and the difficulties of
learning 3D data directly via deep learning models. CCRBM significantly resolves
three challenging issues, namely, the irregular vertex topology, the effect of rigid
transformations, and the orientation ambiguity on the surface that the existing deep
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learning models cannot resolve. These significant merits come from the combination
of the novel elements of CCRBM, including PDD, circle convolution, FTM, and the
ring-like model structure.

Comparison of CCRBM with other state-of-the-art feature descriptors including
light field descriptor (LFD), spherical harmonic descriptor (SHD), the moment
descriptor (Moment), shapeDNA, heat kernel signature (HKS), spin image, intrinsic
spin image, covariance descriptors, etc. has been conducted on various experiments
evaluated on three common works of shape analysis: global shape retrieval, partial
shape retrieval, and shape correspondence. Experimental results show that the
CCRBM learns more discriminative features and achieves higher retrieval and
correspondence accuracy than other feature descriptors. Finally, the significant
contributions of our work are summarized as follows:

1. A novel deep learning model called CCRBM for unsupervised 3D local feature
learning is proposed.

2. A novel convolution manner, circle convolution, is proposed to perform the
convolution operation on 3D shape surfaces directly along a fixed orientation.
In addition, FTM is introduced to eliminate the ambiguous starting location of
the convolution.

3. The novel ring-like multilayer structure of CCRBM is specifically designed to
capture the geometric and structural variations of 3D local regions along a circle
direction sequentially. The novel model structure of CCRBM is highly suitable
for 3D data and much different from the ones of existing deep learning models.

4. PDD is innovatively proposed as a raw 3D representation which is only deter-
mined by coordinates of vertices in a 3D local region.

5. A deep architecture CCDBN is proposed as a stacked multilayer CCRBMs.
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Deep Learning-Based Descriptors for
Object Instance Search

Jie Lin, Olivier Morère, Antoine Veillard, and Vijay Chandrasekhar

Abstract In the past 5 years, deep learning has achieved remarkable breakthroughs,
mainly attributed to the success of convolutional neural networks (CNN) on vision
applications like ImageNet classification. In this chapter, we are interested in deep
learning-based descriptors for object instance search in images. Specifically, we
propose to tackle some practical issues of existing CNN models, with a focus on
resource-efficient yet effective deep descriptors extracted from CNN. (1) How to
achieve compact image representations (e.g., hundreds of bits) from deep neural
networks in an end-to-end manner? (2) How to encode scale/rotation invariances
into deep CNN architecture? To address the issues, our approach has two novel
contributions. First, we propose Restricted Boltzmann Machine with a novel batch-
level regularization scheme specifically designed for the purpose of descriptor
hashing (RBMH), which is able to match the performance of the uncompressed
descriptor with tiny 32–256 bit hashes. Second, inspired from invariance theory, we
propose Nested Invariance Pooling (NIP), a method for computing group-invariant
transformations with feed-forward neural networks. We specifically incorporate
scale, translation, and rotation invariances, but the scheme can be extended to
any arbitrary sets of transformations. A thorough empirical evaluation with state
of the art shows that the results obtained both with the NIP descriptors and the
NIP+RBMH hashes are consistently outstanding across a wide range of datasets.
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1 Introduction

Object instance search (Fig. 1) is the problem of finding an object instance present
in a query image from a database of images (aka particular object retrieval).
State-of-the-art object instance search pipelines consist of two major steps: first,
a subset of images similar to the query are retrieved from the database, and second,
Geometric consistency checks (GCC) are applied to select the relevant images from
the subset with high precision. The first step is based on comparison of global image
descriptors: high-dimensional vectors with up to tens of thousands of dimensions
representing the image data. The second step is computationally highly complex
and can only be applied to hundreds or thousands of images in practical applications.
More discriminative global descriptors result in relevant images being more highly
ranked, resulting in fewer images that need to be compared pairwise with GCC.

As a result, better global descriptors are key to improving search performance
and have been the object of much recent interest. Scale, rotation, and orientation
changes between query and database objects and background clutter pose significant
challenges for this problem. Furthermore, fast searches in large databases of millions
or even billions of images require the global descriptors to be compressed into
compact representations. This chapter will focus on how to achieve extremely
compact global descriptor representations for large-scale object instance search.

Recent works [11] show that image descriptors extracted from CNN intermediate
layers (e.g., convolutional layer) offer better search performance than traditional
handcrafted features (e.g., SIFT [52] and Fisher vector [58]) on average, but

Fig. 1 In the object instance search problem, the task is to select database images depicting the
same object instance as the one depicted in the query image. No external information is used
(categories, labels. . . )
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two issues related to CNN descriptors need to be addressed: first, the lack of
transformation (specifically, scale and rotation) invariance of the CNN descriptors,
and second, the high dimensionality and scalar nature of the descriptors making
descriptor matching inefficient.

We tackle the first problem by hashing the descriptors to small binary codes
for efficient matching with Hamming distances while retaining the good search
performance of the uncompressed descriptors [12, 46–48]. The very low bitrate
range of 32–1024 bits is specifically targeted. The proposed hashing pipeline first
showed how high-dimensional descriptors can be compressed to very compact
binary representations. Key to achieving excellent performance at low rates is the
regularization of stacked Restricted Boltzmann Machines (RBM). Next is shown
how Siamese fine-tuning can be used to improve performance. This technique is
applicable where labeled external data of matching instance pairs is available.

To address the second problem, we propose Nested Invariance Pooling (NIP) [45,
50, 53, 54], a method to produce compact global image descriptors from visual
representations extracted from CNN, which are robust to multiple types of image
transformations like translations, rotations, and scale changes. NIP is inspired
from invariance theory (i-theory) [3–5], a recently proposed mathematical theory
for computing group-invariant transformations with feed-forward neural networks.
We show that NIP produces compact (but non-binary) global image descriptors
which outperform other schemes at equivalent descriptor dimensionality on most
evaluation datasets. Finally, combined NIP and hashing pipeline produces some of
the best performing hashes available in the literature, especially at very low bitrates
(256 bits and lower).

2 Related Work

Handcrafted Global Descriptors State-of-the-art handcrafted global descriptors
for object search are Fisher vector (FV) [58] and vector of locally aggregated
descriptors (VLAD) [38], which are often aggregated from local descriptors such as
SIFT [52] (Fig. 2). FV is obtained by quantizing the set of local feature descriptors
with a small codebook of 64–512 centroids and aggregating first- and second-order
residual statistics for features quantized to each centroid. The residual statistics
from each centroid are concatenated together to obtain the high-dimensional global
descriptor representation, typically 8192 to 65,536 dimensions. The performance
increases as the dimensionality of the global descriptor increases, as shown in [58].
VLAD descriptor can be considered a special case of the FV, with hard quantization
of feature descriptors, with concatenation of only first-order residual statistics in the
final descriptor representation.

Several improvements have been proposed over the baseline VLAD and FV
approaches. In [15], another normalization scheme is proposed for the residuals,
where the per cluster mean of residuals is computed instead of the sum, enhancing
the discriminativeness of the VLAD descriptor. In [38], a similar signed square
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Fig. 2 Fisher vector (FV) and convolutional neural network (CNN)-based pipelines for the
extraction of global descriptors from images. (Reprinted from Ref. [11], with permission from
Elsevier)

rooting (SSR) normalization scheme is proposed for VLAD. In [36], VLAD is
extended by using PCA whitening and multiple clusterings for quantization. Intra-
normalization scheme is proposed in [6] to alleviate the adverse effect of bursty
visual features [37], where the sum of residuals is L2 normalized within each VLAD
block. FV is improved over the baseline approach of [58] by using nonlinear additive
kernel and normalization. Other improvements to the baseline FV [58] include the
residual enhanced visual vector [16], the scalable compressed Fisher vector [44],
better matching kernels [65], and better aggregation schemes [39]. Some of the best
reported instance search results are still based on handcrafted FV [65]. Next, the
matter of how CNN have been applied for the object instance search problem is
discussed.

Deep CNN Descriptors As opposed to the carefully handcrafted descriptors, there
has been a fair bit of work on CNN descriptors for object instance search in
recent literature [8, 9, 26, 60, 62, 66]. Razavian et al. [60] evaluate representations
extracted from CNN fully connected layer on a wide range of tasks, including as
a global descriptor for instance search, and show promising initial results. Then,
Babenko et al. [9] show that a pre-trained CNN can be fine-tuned with domain-
specific data (objects, scenes, etc.) to improve instance search performance on
relevant datasets. In [8], Babenko et al. show how pooled intermediate layers
of a CNN can be used as a starting representation for instance search. They
show that sum-pooling of intermediate feature maps performs better than max-
pooling, when the image representation is whitened. Note that the approach in [8]
provides limited invariance to translation, but not to scale or rotation. In MOP-
CNN [26], the authors propose extracting CNN activations using a sliding window
approach at different scales in the image, followed by computing a high-dimensional
VLAD representation on the local CNN descriptors. While this results in highly
performant descriptors, the starting representations are often orders of magnitude
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larger than original descriptors. References [7, 62] show that spatial max-pooling
of intermediate maps is an effective representation, and higher performance can
be achieved compared to using the fully connected layers. Another very recent
work [66] proposes pooling across regional bounding boxes in the image, similar
to the popular R-CNN approach [21] used for object detection.

While deep learning has unquestionably become the dominant approach for
many visual tasks, raw image descriptors from CNN do not systematically have
the upper hand over FV in object instance search. The two types of descriptors
being radically different in nature, one can expect them to behave very differently
based on specific aspects of the problem. Unlike interest points which provide scale
and rotation invariance to the FV pipeline, CNN representations used in image
classification are obtained by densely sampling a resized canonical image. CNN
do not have a built-in mechanism to ensure resilience to geometric transformations
like scale and rotation and, therefore, do not provide explicit rotation and scale
invariance, which are often key to instance search tasks. Moderate levels of scale
and rotation invariance for CNN features are nevertheless indirectly achieved from
the max-pooling operations in the pipeline, the diversity of the training data which
typically contains objects at varying scales and orientations, and data augmentation
during the training phase where data can be preprocessed and input to the CNN at
different scales and orientations.

Hashing The dimensionality of such global descriptors is typically very high:
8192 to 65,536 floating point numbers for FV[58] and 4096 for CNN [41], while
extremely compact image representations such as 64-bit hashes are a definite must
for fast image instance search because (1) 64 bits provide more than enough
capacity for any practical purposes, including Internet-scale problems and (2) a 64-
bit hash is directly addressable in RAM and enables fast matching using Hamming
distances. Bringing such high-dimensional representations down to a 64-bit hash is
a considerable challenge.

While there is plenty of work on learning binary codes [29] for compressing
small descriptors like SIFT, there is relatively little work on compression of high-
dimensional global descriptors. Proposed methods for compression of descriptors
like SIFT or GIST include [13, 14, 24, 29, 31, 42, 49, 56, 67, 69, 70]. The global
descriptor data in consideration in this work are two orders of magnitude higher in
dimensionality, making the problem significantly more challenging.

The most important hashing techniques applied to the global descriptor compres-
sion problem are reviewed here. Perronnin et al. [58] propose ternary quantization
of FV, quantizing each dimension to +1, −1, or 0. The authors show that this
representation results in little loss in performance. However, this results in descriptor
size of thousands of bits. Perronnin et al. also explore locality-sensitive hashing [18]
and spectral hashing [70]. Spectral hashing performs poorly at high rates, while LSH
and simple ternary quantization need thousands of bits to achieve good performance.
Gong et al. propose the popular iterative quantization (ITQ) scheme and apply it
to the GIST descriptor in [24]. ITQ first performs principal component analysis
(PCA) to reduce dimensionality and subsequently learns a rotation to minimize
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the quantization error of mapping the transformed data to the vertices of a zero-
centered binary hypercube. One drawback of this scheme is that the PCA matrix
might require several GBs of memory for high- dimensional global descriptors. In
subsequent work, Gong et al. in [23] show how bilinear projections can be used
to create binary hashes of VLAD [24]. Gong et al. [23] focus on generating very
long codes for global descriptors, and the bilinear projection-based binary codes
(BPBC) scheme requires tens of thousands of bits to match the performance of the
uncompressed global descriptor.

The MPEG-CDVS standard adopted the scalable compressed Fisher vector [44],
which was based on binarization of high-dimensional Fisher vector. The size of
the compressed descriptor in the MPEG-CDVS standard ranges from 256 bytes to
several thousand bytes per image, based on the operating point. Bit selection is
performed greedily to maximize pairwise receiver operating characteristic (ROC)
matching performance. Stacked Restricted Boltzmann Machines (RBM), primarily
known as powerful dimensionality reduction techniques [61], can also be used for
hashing.

3 Compact Invariant Deep Descriptors

In this section, we show overview of the proposed framework toward compact
invariant deep representations for object instance search (in Fig. 3). With the
output extracted from CNN, our method is composed of two key components:
multigroup nested invariant pooling is proposed to derive translation, rotation, and
scale-invariant representations (Sect. 3.3), followed by descriptor hashing scheme
presented in Sects. 3.1 and 3.2, with the aim to achieve the best performing tiny
32–256 bits hashes.

Fig. 3 Nested Invariance Pooling (NIP) to produce robust descriptors from CNNs can be followed
by RBMH for compact and invariant hashes. (Communications of the ACM, ©2017 ACM, Inc.
http://doi.acm.org/10.1145/3078971.3078987)

http://doi.acm.org/10.1145/3078971.3078987
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First, we present the proposed hashing pipeline which mainly consists of two
parts: (a) an unsupervised dimensionality reduction approach using Restricted
Boltzmann Machines (RBM) to produce binary hashes at the target bitrate (Sect. 3.1)
and (b) a fine-tuning step to improve the binary embedding functions generated
by stacked RBMs (Sect. 3.2). Specifically, the first dimensionality reduction step
applies a regularization to RBM specifically designed to optimize the distribution of
generated binary hash codes. The proposed approach is a batch-level regularization
scheme aiming to improve very low bitrate hashes by encouraging efficient use of
the latent subspace both within and across the hashes. The second fine-tuning step
is based on metric refinement with Siamese networks, an idea originally proposed
by Bromley et al. in [10]. The method is based on the use of a labeled training set of
matching and nonmatching pairs of instances. Contrary to the pairwise contrastive
loss function usually used at lower dimensionality such as in [17, 30], we show
that critical improvements in the loss function of the Siamese network lead to
improvements in search results.

In Sect. 3.3, we proposed Nested Invariance Pooling (NIP), a novel method based
on i-theory for creating robust and compact global image descriptors from CNN
for object instance search. The method provides a practical and mathematically
proven way for computing invariant object representations with feed-forward neural
networks. Through a thorough empirical study, we show that the incorporation of
every new group invariance property following the method leads to consistent and
significant improvements in search results. NIP has a few parameters (sequencing of
transformations and choice of statistical moments are important), but experiments
show that many default and reasonable settings produce results which can generalize
well across all data sets, meaning that the risk of overfitting is low. This study
also confirms the high potential of the feature pyramid (pool5) as a starting
representation for high-performance compact hashes instead of the more commonly
used first fully connected layer (f c6).

Finally, in Sect. 3.4, NIP is shown to be able to effectively combine with the RBM
hashing scheme, leading to hashes that are both compact and robust to multiple
types of image transformations. Thorough empirical evaluation with small- and
large-scale datasets shows that the proposed scheme is able to produce extremely
compact hashes that are able to outperform other schemes, especially at very low
bitrates (32–256 bits).

3.1 Restricted Boltzmann Machine for Hashing

3.1.1 Method

Restricted Boltzmann Machine The Restricted Boltzmann Machine (RBM) [64]
is a variant of the Boltzmann machine [34]. An RBM is an undirected bipartite
graphical model consisting of a layer of visible units x and a layer of hidden or
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hidden units z. A set of symmetric weights W connects x and z. For an RBM with
binary visible and hidden units, the joint set of visible and hidden units has an energy
function given by:

E(x, z) = −
∑

i

cixi −
∑

j

bj zj −
∑

i,j

xizjwij (1)

where xi and zj are the binary states of visible and hidden units i and j , respectively,
wij are the weights connecting the units, and ci and bj are their respective bias
terms. Using the energy function in Eq. (1), a probability can be assigned to x as
follows:

P(x) =
∑

z

exp(−E(x, z))

Z

where Z is a “partition” term, given by summing over all possible join sets of visible
and hidden units:

Z =
∑

x,z

exp(−E(x, z))

The activation probabilities of units in one layer can be sampled by fixing the states
of the other layer as follows:

P(zj = 1|x) = f

(
bj +

∑

i

wij xi

)
(2)

Similarly, with symmetric weights:

P(xi = 1|z) = f

⎛

⎝ci +
∑

j

wij zj

⎞

⎠ (3)

where f (·) is the standard logistic function. RBMs can be trained by minimizing the
contrastive divergence objective [32], which approximates the maximum likelihood
of the input distribution. Alternating Gibbs sampling based on Eqs. (2) and (3)
is used to obtain the network states to update the parameters wij , bi, bj through
gradient descent.

Batch-Level Regularization Proper regularization is key during the training of
RBM. For classification, discriminative performance is improved by constraining
binary latent units to be rarely activated or sparse [55]. This is desirable for
classification tasks as it improves separability of the data, but this is not necessarily
ideal for hashing where efficient use of the limited latent subspace is key. The
proposed RBMH method is a batch-level regularization scheme (unlike sparsity
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schemes which are usually instance level). It achieves efficient space use by
controlling sparsity in a way to maximize the entropy not only within every hash
but also between the same bit of different hashes. This effectively encourages:

1. Half the hash bits to be active for a given image
2. Each hash bit to be equiprobable across images

Correspondingly, we propose a batch-level regularization scheme, specifically
designed for hashing, referred as RBMH. We first discuss how high batch-level
entropy is encouraged in the RBMH framework. Next, we present how deep RBMH
are constructed by stacking multiple RBMH. An overview diagram of the method
is available in Fig. 4.

For two successive layers l − 1 and l, and a batch B of input instances zl−1
α with

corresponding latent representations zl
α , we define the regularization term adapted

from the fine-grained regularization proposed in [22]:

Fig. 4 In the RBM for hashing framework, stacked RBM are trained to hash global descriptors.
The latent representations are regularized for the bits activation probability P to be equal to 0.5
both across bits of individual hashes and across images for the same latent unit. (©[2016] IEEE.
Reprinted, with permission, from Ref.[46])
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(a) (b)

Fig. 5 Activation probabilities of hash bits with RBMH and the RBM proposed by Nair and
Hinton [55]. Statistics of 32 bit binary hashes are computed on Holidays data set. The mean values
of both activation histograms are close to 0.5, while the RBMH histogram is distributed more
evenly across units compared to the standard RBM one (i.e., standard deviation is smaller). (a)
Hinton RBM. (b) RBMH. (Communications of the ACM, ©2017 ACM, Inc. http://doi.acm.org/
10.1145/3078971.3078987).

h(B)=−
∑

zl
α∈B

∑

j

t ljα log zl
jα+ (1 − t ljα) log(1 − zl

jα). (4)

where t ljα are the target activations zl
jα for each sample zl−1

jα . Unlike in [22],

we choose the t ljα such that each {t ljα}j for fixed α, and each {t ljα}α for fixed j

is distributed according to U(0, 1) effectively maximizing entropy. The uniform
distribution is suitable for hashing high-dimensional vectors because the regularizer
encourages each latent unit to be active with a mean of 0.5 while avoiding activation
saturation.

The overall objective function for the RBMH becomes:

arg min
{Wl,bl ,cl−1}

−
∑

α

log

( ∑

zl
α∈Eα

P (zl−1
α , zl

α) + λh(B)

)
, (5)

where λ is a regularization constant. It is optimized through batch gradient descent
using the contrastive divergence algorithm.

Figure 5 shows the activation probabilities for 32-bit hashes provided by RBMH
and the RBM proposed in [55]. The mean probability of activation is nearly 0.5 in
both cases but much more evenly distributed across bits with RBMH.

Stacked RBMH The set of raw image representations lie in a complex manifold
in a very high-dimensional feature space. Deeper networks have the potential to
discover more complex nonlinear hash functions and improve object instance search
performance. Following [33], we stack multiple RBMH, greedily training one layer
at a time to create a deep network with several layers.

Each layer models the activation distribution of the previous layer and captures
higher-order correlations between those units. For the hashing problem, we are
interested in low-rate points of 64, 256, and 1024 bits. We progressively decrease
the dimensionality of latent layers by a factor of 2n per layer, where n is a tunable
parameter. For our final models, n is empirically selected for each layer resulting in
variable network depth.

http://doi.acm.org/10.1145/3078971.3078987
http://doi.acm.org/10.1145/3078971.3078987
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Output Binarization Binary hashes are desirable for fast matching with Ham-
ming distances. Therefore, sigmoid activation functions are used for the RBMH. In
addition, the output of the topmost RBMH (layer L) is binarized around 0.5:

zL
j =

⎧
⎨

⎩
1, if 1

1+exp(−wL
j zl−1−bj )

> 0.5

0, otherwise.
(6)

In the next section, we evaluate the performance of the proposed SRBMH scheme.

3.1.2 Evaluation Framework

Global Descriptors SIFT [51] features obtained from Difference-of-Gaussian
(DoG) interest points are used for FV. PCA is used to reduce dimensionality of
the SIFT descriptor from 128 to 64 dimensions, which has shown to improve
performance [38]. We use a Gaussian mixture model (GMM) with 128 centroids,
resulting in 8192 dimensions each for first- and second-order statistics. Only the
first-order statistics are retained in the global descriptor representation, as second-
order statistics only results in a small improvement in performance [44]. The FV
is L2-normalized to unit-norm, after signed power normalization (referred to as
FV from here on). DCNN features are extracted using the open-source software
Caffe [40] with AlexNet reference model proposed for 2012 ImageNet classification
task [41]. DCNN descriptors are extracted from the first fully connected layer f c6
which has been shown to yield performant descriptors for instance search. We refer
to this 4096-dimensional descriptor as the CNN descriptor from here on.

SRBMH Training For the hashing problem, we are interested in low-rate points
of 64, 256, and 1024 bits. SRBMH are trained greedily in a layer-by-layer fashion,
i.e., each new RBMH is trained on the top of the previous one without modifying
parameters of previous RBMH. A 150,000 images random subset of ImageNet is
used as training data. The set is chosen for its variety and genericness and because it
has no intersection with images used in the search experiments. The batch size is 100
for all experiments. Learning rate is set to 0.001 for the weight and bias parameters,
momentum to 0.9. Training is run for a maximum of 30 epochs. For each rate point,
different models are considered. For our final models, n is empirically selected for
each layer resulting in variable network depth. Each target setting requires several
hours to train.

Baselines Four state-of-the-art hashing schemes are considered as baselines:
locality-sensitive hashing (LSH), iterative quantization (ITQ), bilinear projection
binary codes (BPBC), and product quantization (PQ). LSH is based on random unit-
norm projections of the raw descriptors, followed by signed binarization [73]. ITQ
applies signed binarization after two transforms of raw descriptors: first the PCA,
followed by a rotation [25]. Unlike ITQ, BPBC applies bilinear random projections,
which require far less memory to transform the data [23].
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For FV, we consider blocks of dimensions D = 64, 256 and 1024 and train
K = 256 centroids for each block, resulting in b = 128, 256 and 64 bit descriptors,
respectively. For CNN, we consider blocks of dimensions D = 32, 128 and 512,
with K = 256 centroids, resulting in the same bitrates. L2 norm is used for PQ and
uncompressed descriptors, while Hamming distances are used for all binary hashing
schemes.

Data Sets The Holidays and UKBench data sets are used for small-scale object
instance search experiments. For large-scale experiments, the two data sets are
combined with the one million MIR FLICKR distractor images.

Evaluation Metrics In most image search use cases, it is important for the relevant
image to be present in the first step of the pipeline, matching global descriptors,
so that a geometric consistency check (GCC) [19] step can subsequently find it.
However, the GCC step is computationally complex and can only be performed
on a small number of images. As a result, it is important for the relevant image
to be present in a short list, so that the GCC step can find it. Hence, recall is
presented at typical operating points of R = {10,100} and R = 1000 for small and
large experiments, respectively. For UKBench small-scale experiments, 4 × Recall
@ R = 4 is provided, to be consistent with the literature.

3.1.3 Experimental Results

Impact of Batch-Level Entropy Objective In Fig. 6a, we show the effect of
applying the proposed regularization on a single-layer RBM 8192-b, for b =
64, 256, 1024. Hashing regularization significantly improves performance, ∼10%
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Fig. 6 Hashing Holidays FV. (a) RBMH regularization significantly improves performance for
single-layer models 8192-b as b is decreased. (b) Recall improves as depth is increased for lower
rate points b = 64 and b = 256. With RBMH regularization, same or better recall can be achieved
at lower depth. (©[2016] IEEE. Reprinted, with permission, from Ref. [46])
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absolute recall @ R = 10 at low-rate point b = 64. The performance gap increases
as rate decreases. This is intuitive as the regularization encourages a more efficient
use of the latent space.

Impact of Depth In Fig. 6b, we plot recall @ R = 10 on Holidays as depth is
increased for a given rate point b. For b = 1024, we consider architectures 8192 −
1024, 8192−4096−1024, and 8192−4096−2048−1024 corresponding to depth
1, 2, and 3, respectively. For rate points b = 64 and 256, similar configurations of
varying depth are chosen. We observe that with no regularization, recall improves
as depth is increased for b = 256 and b = 64, with optimal depth of three and four,
respectively, beyond which performance drops. At higher rates of b = 1024 and
beyond, increasing depth does not improve performance. For hashing, a sweet spot
in performance for the depth parameter is observed for each rate point, as deeper
networks can cause performance to drop due to loss of information over the layers.
Similar trends are obtained for recall @ R = 100. Importantly, we observe that
with the proposed regularization, we can achieve the same performance with lower
depth at each rate point. This is critical, as the lower the depth, the faster the hash
generation, and the lower the memory requirements.

Comparison with FV-RBMH and CNN-RBMH At a given rate point, CNN-
RBMH outperforms FV-RBMH for all data sets, as shown in Fig. 7. At low rates,
CNN-RBMH improves performance by more than 10% on the small data sets,
possibly because CNN features are able to capture more complex low-level features
and are a lower starting dimensionality compared to FV.

Comparison with Uncompressed Descriptors The performance of RBMH is
compared to the uncompressed descriptor in Fig. 7. At 256 bits for CNN hashes,
we only observe a marginal drop (a few percent) compared to the uncompressed
descriptor for retrieval on all data sets. For FV, uncompressed descriptor perfor-
mance is matched at 1024 bits. The instance search hashing problem becomes
increasingly difficult as we move toward a 64-bit hash, with performance dropping
steeply.

Comparison with State of the Art Small-scale search results are shown in Fig. 7.
One can see that the proposed RBMH outperforms state of the art at most rates on
all data sets, for both CNN and FV features. There is 2.4% improvement in absolute
Recall @ R = 100 at b = 64 bits compared to the second performing scheme ITQ
on Holidays for FV.

The performance ordering of other schemes depends on the bitrate and type of
feature, while RBMH is consistent across data sets. Compared to ITQ scheme which
applies a single PCA transform, each output bit for RBMH is generated by a series
of projections. The PQ scheme performs poorly at the low rates in consideration, as
large blocks of the global descriptor are quantized with a small number of centroids,
as previously observed in [23]. LSH performs poorly at low rates but catches up
given enough bits. Consistent trends are observed for the large-scale search in Fig. 8.
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Fig. 7 Small-scale search results for different compression schemes. Proposed RBMH outper-
forms other schemes by a significant margin. (a) FV, Holidays. (b) CNN, Holidays. (c) FV,
UKBench. (d) CNN, UKBench. (©[2016] IEEE. Reprinted, with permission, from Ref. [46])

3.2 Dual-Margin Siamese Fine-Tuning

In the previous section, we showed that global descriptors can be hashed into
small binary descriptors using RBMH while retaining good properties for search.
However, RBMH is specifically optimized for compression, and there is no built-in
mechanism to ensure that the good metric properties of the original descriptors are
preserved. In this section, we propose a weakly supervised method for improving
the local structure of binary embedding functions using weight-sharing networks
and an additional labeled data set of matching and nonmatching pairs (Fig. 9).
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Fig. 8 Large-scale search results (with 1M distractor images, at Recall@R = 1000) for different
compression schemes. RBMH outperforms other schemes at most rate points and data sets. (a)
CNN, Holidays + 1M. (b) CNN, UKBench + 1M. (©[2016] IEEE. Reprinted, with permission, from
Ref. [46])

Fig. 9 The proposed method for learning binary embedding functions involves an unsupervised
pre-training stage followed by a weakly supervised fine-tuning stage. In the first stage, RBM are
trained in a layer-wise manner and stacked into a deep network (Sect. 3.1). In the second stage, first-
stage parameters are loaded into a Siamese network and subsequently fine-tuned using matching
and nonmatching pairs data. (Communications of the ACM, ©2017 ACM, Inc. http://doi.acm.org/
10.1145/3078971.3078983)

http://doi.acm.org/10.1145/3078971.3078983
http://doi.acm.org/10.1145/3078971.3078983
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3.2.1 Method

The fine-tuning is performed with a learning architecture known as Siamese
networks first introduced in [30]. The principle was later successfully applied to
deep architectures for face identification [17] and shown to produce representations
robust to various transformations in the input space [30]. The use of Siamese
architectures in the context of image search from CNN features was recently
suggested as a possible improvement over the state of the art [9].

A Siamese network is a weakly supervised scheme for learning a similarity
measure from pairs of data instances labeled as matching or nonmatching. In our
adaptation of the concept, the weights of the trained RBM network are fine-tuned
by learning a similarity measure at every intermediate layer in addition to the target
space. Given a pair of data (z0

α, z0
β), a contrastive loss Dl is defined for every layer l,

and the error is back propagated though gradient descent. Backpropagation for the
losses of individual layers (l = 1 . . . L) is performed at the same time. Applying the
loss function proposed by Handsell et al. in [30] yields:

Dl (z0
α, z0

β) = y‖zl
α − zl

β‖2
2 + (1 − y) max(m − ‖zl

α − zl
β‖2

2, 0) (7)

where y = 1 if (z0
α, z0

β) is a matching pair or y = 0 otherwise, and m > 0 is a margin
parameter affecting nonmatching pairs. As shown in Fig. 10a, the effect is to apply
a contractive force between elements of any matching pairs and a repulsive force
between elements of nonmatching pairs which element-wise distance is shorter than√

m.

Fig. 10 A sample point (black dot) with corresponding matching (red dots) and nonmatching
(blue dots) samples. The contrastive divergence loss used for fine-tuning can be interpreted as
applying attractive forces between matching elements (red arrows) and repulsive forces between
nonmatching elements (blue arrows). (a) The loss function (Eq. 7) proposed in [30] with a single
margin parameter for nonmatching pairs (blue circle). Matching elements are subject to attractive
forces regardless of whether they are already close enough from each other which adversely affects
fine-tuning. (b) The proposed loss function (Eq. 8) with an additional margin parameter affecting
matching pairs reciprocally (red circle). (Communications of the ACM, ©2017 ACM, Inc. http://
doi.acm.org/10.1145/3078971.3078983)

http://doi.acm.org/10.1145/3078971.3078983
http://doi.acm.org/10.1145/3078971.3078983
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Fig. 11 Histograms of squared Euclidean distances for 20,000 matching pairs and corresponding
40,000 nonmatching pairs for an 8192 − 4096(top)−2048(middle)−64(bottom) stacked RBM
network. Image pairs are sampled from Yandex data set. The red and blue vertical lines indicate the
median values for the matching and nonmatching pairs, respectively. The Siamese loss shared
margin value m is systematically set to be the mean of the two values (black vertical lines).
(Communications of the ACM, ©2017 ACM, Inc. http://doi.acm.org/10.1145/3078971.3078983)

However, experiment results in Fig. 12 show that the loss function (7) causes a
quick drop in search results. Results with nonmatching pairs alone suggest that the
handling of matching pairs is responsible for the drop. The indefinite contraction of
matching pairs well beyond what is necessary to distinguish them from nonmatching
elements is a damaging behavior, especially in a fine-tuning context since the
network is first globally optimized with a different objective. Figure 11 shows that
any two elements, even matching, are always far apart in high dimension. Note that
this phenomenon which occurs at the target bitrate of the hashes (e.g., 64 bits and
higher) was not originally an issue at the much lower-dimensionality latent spaces
considered in [30]

As a solution, we propose a double-margin loss with an additional parameter
affecting matching pairs:

Dl (z0
α, z0

β) =y max(‖zl
α − zl

β‖2
2 − m1, 0)

+ (1 − y) max(m2 − ‖zl
α − zl

β‖2
2, 0)

(8)

As shown in Fig. 10b, the new loss can thus be interpreted as learning “local large-
margin classifiers” (if m1 ≤ m2) to distinguish between matching and nonmatching
elements. In practice, we found that the two margin parameters can be set equal
(m1 = m2 = m) and tuned automatically from the statistical distribution of the
sampled matching and nonmatching pairs (Figs. 11 and 12).

http://doi.acm.org/10.1145/3078971.3078983


206 J. Lin et al.

0 4K 8K 12K 16K 20K 24K
0.2

0.3

0.4

0.5

Iterations

R
ec

al
l @

 R
=1

0

Single Margin
Non−matching Only
Double Margin

Fig. 12 Recall @ R = 10 on the Holidays data set. Over several iterations of Siamese fine-tuning.
The recall rate quickly collapses when using the single margin loss function suggested in [30],
while performance is better retained when only nonmatching pairs are passed. The double-margin
loss solves the problem. The network is a stacked RBM (8192−4096−2048−64) trained with FV
descriptors computed from a 150K random subset of ImageNet data set. Image pairs are sampled
from the Yandex data set. For every matching pair, a random nonmatching element is chosen from
the data set to form two nonmatching pairs. There are 33 matching pairs and 66 corresponding
nonmatching pairs with every iteration. (Communications of the ACM, ©2017 ACM, Inc. http://
doi.acm.org/10.1145/3078971.3078983)

3.2.2 Evaluation Framework

First, SRBM are trained as in Sect. 3.1, using the same FV descriptors extraction
strategy. Then, a data set of matching and nonmatching image pairs is used for
fine-tuning. The 200 K matching pair data set is provided by Yandex in their recent
work [9]. It consists images of famous landmarks collected by querying the names
of the most viewed Wikipedia landmark pages in Yandex search engine. Data set
visualization reveals that most images depict buildings. For each matching pair, a
random image is picked to generate two nonmatching pairs.

Holidays, UKBench, and Oxbuild data sets are used for small-scale search
experiments. For large-scale experiments, Holidays and UKBench databases are
combined with the one million MIR FLICKR distractor images. Note the Yandex-
based training set is independent from the data used for evaluation as the authors
removed Oxford-related queries and Holidays near-duplicate images.

3.2.3 Experimental Results

Detailed search results of a three-layer model before and after Siamese fine-tuning
are provided in Table 1. The results show consistent improvements on all data sets
and bitrates, with an average improvement of 2.78% (up to 6.24%). The difference
is more significant at higher recall rates with an average of 2.43% @ R = 10
compared to 3.13% @ R = 100. They are however quite comparable when relative
improvement rate is considered: 7.46% @ R = 10 and 7.24% @ R = 100 relatively.

http://doi.acm.org/10.1145/3078971.3078983
http://doi.acm.org/10.1145/3078971.3078983
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Table 1 Small-scale search results before and after Siamese fine-tuning, with corresponding
improvement. A SRBM model (8192 − 4096 − 2048 − 64) is trained on ImageNet FV descriptors
and then fine-tuned on Yandex. For each model, the three layers search performance is evaluated
on Holidays, UKBench, and Oxbuild data sets, before and after fine-tuning. Siamese fine-tuning
consistently improves search performance at all three layers

Recall @ R = 10 Recall @ R = 100

Data set Layer bef. aft. diff. bef. aft. diff.

Holidays 4096 70.83 73.67 2.84 89.92 91.40 1.48
2048 67.74 71.12 3.38 88.77 92.04 3.27

64 52.06 53.04 0.98 80.38 83.91 3.53
UKBench 4096 79.22 82.22 3.00 92.04 93.73 1.69

2048 75.62 79.37 3.75 90.79 92.82 2.03
64 47.94 49.25 1.31 73.02 73.94 0.92

Oxbuild 4096 19.38 21.73 2.35 41.09 45.19 4.10
2048 14.32 17.23 2.91 36.03 41.03 5.00

64 10.69 12.01 1.32 23.75 29.99 6.24

Table 2 Large-scale search results before and after Siamese fine-tuning, with corresponding
differences. First, three SRBM are trained to, respectively, hash high-dimensional FV descriptors
to bitrates b = 1024, 256, and 64. They are then fine-tuned with Siamese networks. Fine-tuning
improves search performance at all bitrates on both data sets

Recall @ R = 1000

Data set Bitrate bef. aft. diff.

1024 52.49 56.48 3.99
256 46.07 49.60 3.53

Holidays + 1M 64 30.63 31.87 1.24
1024 85.66 86.41 0.75
256 78.70 80.74 2.04

UKBench + 1M 64 61.13 62.74 1.61

We notice differences across test sets with improvements on the Oxford set
being more pronounced. The fine-tuning data set Yandex, like search data set
Oxbuild, mostly depicts landmark structures. The proximity between the two data
sets may explain the higher performance improvement on Oxbuild. The systematic
improvements on all data sets are nevertheless evidence of the high transferability
of both unsupervised training and semi-supervised fine-tuning.

Similar trends are observed with large-scale search experiments in Table 2, where
Siamese fine-tuning improves performance at all bitrates and on all data sets.
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3.3 Nested Invariance Pooling

In this section, we propose Nested Invariance Pooling (NIP), a method to produce
compact global image descriptors from visual representations extracted from CNNs.
The proposed method draws its inspiration from the i-theory [3–5], a mathematical
theory for computing group-invariant transformations with feed-forward neural
networks. The theory is an information processing model explaining how feed-
forward information processing can be made robust to various types of signal
distortions.

After showing that CNNs are compatible with the i-theory, we propose a simple
and practical way to apply the theory to the construction of global image descriptors
which are robust to various types of transformations of the input image at the same
time. Through a thorough empirical evaluation based on multiple publicly available
data sets, we show that proposed method is able to significantly consistently improve
search results while keeping dimensionality low. Rotations, translations, and scale
changes are studied in the scope of this section, but the proposed approach is
extensible to other types of transformations. We show that using moments of
increasing order for incorporating invariance to multiple transformation groups
throughout nesting is important. Resulting NIP descriptors are invariant to various
types of image transformations, and we show that the process significantly improves
search results while keeping dimensionality low (512 dimensions).

3.3.1 I-Theory in a Nutshell

Many common classes of image transformations such as rotations, translations, and
scale changes can be modeled by the action of a transformation group. Let an image
x ∈ E and a group G of transformations acting over E with group action G ×
E → E denoted with a dot (.). The orbit of x by G is the subset of E defined as
Ox = {g.x ∈ E|g ∈ G}. The orbit corresponds to the set of transformations of
x under groups such as rotations, translations, and scale changes. It can be easily
shown that Ox is globally invariant to the action of any element of G, and thus, any
descriptor computed directly from Ox would be globally invariant to G.

The i-theory builds invariant representations for a given object x ∈ E in relation
with a predefined template t ∈ E from the distribution of the dot products Dx,t =
{< g.x, t >∈ R|g ∈ G} = {< x, g.t >∈ R|g ∈ G} over the orbit. The following
representation (for any n ∈ N

∗) is proven to have proper invariance and selectivity
properties provided that the group is compact or locally compact:

μG,t,n(x) = 1∫
G

dg

(∫

G

| < g.x, t > |ndg

) 1
n

(9)

One may note that the transformation can be applied either on the image or the
template indifferently. Note that the sequence (μG,t,n(x))n∈N∗ is analogous to a
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histogram. Such a representation is mathematically proven to have proper invariance
and selectivity properties provided that the group is compact or at least locally
compact [4].

In practice, while a compact group (e.g., rotations) or locally compact group (e.g.,
translations, scale changes) is required for the theory to be mathematically provable,
the authors of [4] suggest that the theory extends well (with approximate invariance)
to nonlocally compact groups and even to continuous non-group transformations
(e.g., out-of-plane rotations, elastic deformations) provided that proper class-
specific templates can be provided. Recent work on face verification [43] and music
classification [74] apply the theory to non-compact groups with good results.

3.3.2 CNNs Are I-Theory Compliant Networks

Popular CNN architectures designed for image classification such as AlexNet [41]
and OxfordNet [63] share a common building block: a succession of convolution-
pooling operations designed to model increasingly high-level visual representations
of the data. The highest-level visual features may then be fed into fully connected
layers acting as classifiers.

As shown in detail on Fig. 13a, the succession of convolution and pooling
operations in a typical CNN is in fact a way to incorporate local translation
invariance strictly compliant with the framework proposed by the i-theory. The
network architecture provides the robustness such as predicted by the invariance
theory, while training via backpropagation ensures a proper choice of templates.
Multiple convolution-pooling steps are applied (five times in both AlexNet and
OxfordNet) resulting in increased robustness and higher-level templates. Note that
the iterative composition of local translation invariance approximately translates
into robustness to local elastic distortions for the features at the pool5 layer.

In this study, instead of the popular first fully connected layer (fc6) which is on
average the best single CNN layer to use as a global out-of-the-box descriptor for
image search, we decided to use the locally invariant pool5 as a starting represen-
tation for the proposed global descriptors and further enhance their robustness to
selected transformation groups in a way inspired from i-theory.

3.3.3 Multigroup-Invariant CNN Descriptors

We build the NIP descriptors starting from the already locally robust pool5
feature maps of OxfordNet. Global invariance to several transformation groups
is then sequentially incorporated following the i-theory framework. The specific
transformation groups considered in this study are translations GT , rotations GR ,
and scale changes GS . For every feature map i of the pool5 layer (0 ≤ i < 512), we
denote fi(x) the corresponding unit’s output. As shown on Fig. 13b, transformations
g are applied on the input image x varying the output of the pool5 feature fi(g.x).
Note that the transformation fi is nonlinear due to multiple convolution-pooling



210 J. Lin et al.

Fig. 13 (a) A single convolution-pooling operation from a CNN schematized for a single input
layer and single output unit. The parallel with i-theory shows that the universal building block
of CNN is compatible with the incorporation of invariance to local translations of the input
according to the theory. The network architecture is responsible for the invariance properties,
while backpropagation provides a practical way to learn the templates from the data. (b) A specific
succession of convolution and pooling operations learnt by the CNN (depicted in red) computes the
pool5 feature fi for each feature map i from the RGB image data. A number of transformations
g can be applied to the input x in order to vary the response fi(g.x). (c) The proposed method
takes inspiration from the i-theory to create compact and robust global image descriptors from
CNN. Starting with raw pool5 descriptors, it can be used to stack up an arbitrary number of
transformation group invariances while keeping the dimensionality under control. The particular
sequence of transformation groups and statistical moments represented on the diagram was shown
to produce the best performing hashes on average, but other arbitrary combinations are also able
to improve search results

operations; thus, it is not strictly a mathematical dot product but can still be
viewed as an inner product. Accordingly, the pooling scheme used by NIP with
G ∈ {GT ,GR,GS} is:

XG,i,n(x) = 1∫
G

dg

(∫

G

fi(g.x)ndg

) 1
n

(10)
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= 1

m

⎛

⎝
m−1∑

j=0

fi(gj .x)n

⎞

⎠

1
n

(11)

when Ox is discretized into m samples. The corresponding global image descriptors
are obtained after each pooling step by concatenating the moments for the individual
features:

XG,n(x) = (XG,i,n(x))0≤i<512 (12)

As shown in Eq. 11, the pooling operation has an order parameter n defining the
“hardness” of the pooling. n = 1 is average pooling, while n → +∞ on the other
extreme is max-pooling. n = 2 is analogous to standard deviation. Subsequently,
we refer to the moments for n = 1, 2,+∞ as AG, SG, and MG.

Work on i-theory [74] has shown that it is possible to chain multiple types
of group invariances one after the other [74]. We apply this principle on NIP
descriptors by making them invariant to several transformations. For instance,
following scale invariance with average (n = 1) by translation invariance with hard
max-pooling (n → +∞) is done by:

max
gt∈GT

(
1∫

gs∈GS
dgs

∫

gs∈GS

fi(gtgs .x)dgs

)
(13)

= max
j∈[0,mt−1]

(
1

ms

ms−1∑

i=0

fi(gt,j gs,i t.x)

)
(14)

Operations are sometimes commutable (e.g., AG and AG′ ) and sometimes not (e.g.,
AG and MG′ ) depending on the specific combination of moments so the sequence of
transformations does matter for NIP. The hardness parameter n must also be chosen
carefully. Empirically, we found pooling progressively with increasing moments
(e.g., AG, then SG, then MG) to work well, as presented in the experiments section.

Pairwise Matching Distance Object instance search starts with the construction of
a list of database images ordered according to their pairwise matching distance with
the query image. With CNN descriptors, the matching distance is strongly affected
by commonly encountered image transformations. We observe that a rotation of the
query image by more than 10 degrees causes a sharp drop in results. This particular
issue is much less pronounced with the popular Fisher vectors, largely due to the
use of interest point detectors.

Figure 14 provides an insight on how adding different types of invariance with
the proposed method will affect the matching distance on different image pairs of
matching objects. With the incorporation of each new transformation group, we
notice that the relative reduction in matching distance is the most significant with
the image pair, which is the most affected by the transformation group.
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Fig. 14 Distances for three matching pairs from UKBench. For each pair, four pairwise distances
(L2-normalized) are computed corresponding to the following descriptors: pool5, AGS

, AGS
-

AGT
, and AGS

-AGT
-AGR

. Adding scale invariance makes the most difference on (b), translation
invariance on (c), and rotation on (a) which is consistent with the scenarios suggested by
respective images pairs. (Communications of the ACM, ©2017 ACM, Inc. http://doi.acm.org/10.
1145/3078971.3078987)

3.3.4 Evaluation Framework

The pool5 layer from the 16 layers OxfordNet [63] is chosen as starting represen-
tation, with a total dimensionality of 25,088 organized in 512 feature maps of size
7 × 7. For rotation invariance, rotated input images are padded with the mean pixel
value computed from the ImageNet data set. The step size for rotations is 10 degrees
yielding 36 rotated images per orbit. For scale changes, ten different center crops
geometrically spanning from 100% to 50% of the total image have been taken. For
translations, the entire feature map is used for every feature, resulting in an orbit
size of 7 × 7 = 49.

We evaluate the instance search performance of the descriptors against four
popular data sets: Holidays, UKBench, Oxbuild, and Graphics. The four data sets
are chosen for the diversity of data they provide: UKBench and Graphics are object

http://doi.acm.org/10.1145/3078971.3078987
http://doi.acm.org/10.1145/3078971.3078987
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centric featuring close-up shots of objects in indoor environments. Holidays and
Oxbuild are scene-centric data sets consisting primarily of outdoor buildings and
scenes. Results are evaluated using mean average precision (mAP) and 4× Recall
@ R = 4 for UKB, to be consistent with the literature.

3.3.5 Experimental Results

Transformations, Order, and Moments As shown in Table 3, we first study the
effects of incorporating various transformation groups and using different moments
on descriptors. Pool5 which is the starting point of NIP descriptors, and f c6 which
is considered the best off-the-shelf descriptor [60] are provided as baselines. We
present results for all possible combinations of transformation groups for average
pooling (order does not matter as averages commute) and for the single best
performer which is AGS

-SGT
-MGR

(order matters).
First, we can immediately point out the high potential of pool5. Although it

performs notably worse than f c6 as-is, a simple average pooling over the space
of translations AGT

makes it both better and eight times more compact than f c6.
Similar observations have also been reported by [7, 8].

Second, as shown in Fig. 15, accuracy increases with the number of transfor-
mation groups involved. On average, single transformation schemes perform 21%
better compared to pool5, 2-transformation schemes perform 34% better, and the
3-transformation scheme performs 41% better.

Table 3 Search results (mAP) for different sequences of transformation groups and moments.
Results are computed with the mean average precision (mAP) metric. For reference, 4 × Recall@4
results are also provided for UKBench (between parentheses). GT , GR , and GS denote the groups
of translations, rotations, and scale changes, respectively. Note that averages commute with other
averages so the sequence order of the composition does not matter when only averages are
involved. Best results are achieved by choosing specific moments. A , S , and M denote the
moments average, standard deviation, and maximum, respectively. AGS

-SGT
-MGR

corresponds
to the best average performer. fc6 and pool5 are provided as a baseline

Data set
Sequence Dims Oxbuild Holidays UKB Graphics

pool5 25,088 0.427 0.707 0.823(3.11) 0.315

fc6 4096 0.461 0.782 0.910(3.50) 0.312

AGT
512 0.477 0.800 0.924(3.56) 0.322

AGR
25,088 0.462 0.779 0.954(3.72) 0.500

AGS
25,088 0.430 0.716 0.828(3.12) 0.394

AGT
-AGR

512 0.418 0.796 0.955(3.73) 0.417

AGT
-AGS

512 0.537 0.811 0.931(3.61) 0.430

AGR
-AGS

25,088 0.494 0.815 0.959(3.75) 0.552

AGT
-AGR

-AGS
512 0.484 0.833 0.971(3.82) 0.509

AGS
-SGT

-MGR
512 0.592 0.838 0.975(3.84) 0.589
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Fig. 15 Results from Table 3
for the seven strategies using
averages only (rows three to
nine) expressed in terms of
improvement in mAP over
pool5 and aggregated by
number of invariance groups.
Improvements range from
+5% on Oxbuild using one
transformation to +83.5% on
UKBench using three
transformations. On all four
data sets, results clearly
improve with the amount of
groups considered 1 2 3 4 5
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Fig. 16 Results from Table 3 expressed in terms of improvement in mAP over pool5. Most
strategies yield significant improvements over pool5 on most data sets. The average improvement
is 68% for the best strategy

Third, choosing statistical moments different than averages further improves the
search results. In Fig. 16, we observe that AGS

-SGT
-MGR

performs roughly 17%
better (average results over all data sets) than AGS

-AGT
-AGR

. Notably, the best
combination corresponds to an increase in the orders of the moments: A being
a first-order moment, S second-order, and M of infinite order. A different way
of stating this fact is that a more invariant representation requires a higher order
of pooling. Overall, AGS

-SGT
-MGR

improves results over starting representation
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pool5 by 39% (Oxbuild) to 87% (Graphics) depending on the data set. Better
improvements with Graphics can be explained with the presence of many rotations
in the data set (smaller objects taken under different angles), while Oxbuild
consisting mainly of upright buildings is less significantly helped by incorporating
rotation invariance.

Comparison with State of the Art State-of-the-art descriptors include variants
of VLAD/FV [28, 39], deep descriptors [8, 9, 62, 66], and descriptors combining
deep CNN and VLAD/FV [26, 57]. As shown in Table 4, we observe that 512-
D NIP descriptors largely outperform most state-of-the-art methods with 512 or
higher dimensions, on all data sets. Following [8, 62, 66], we also perform PCA
whitening to reduce the dimensionality of NIP to 256. One can see that the 256-D
NIP descriptors yield superior performance to [8, 62, 66] on all data sets.

First, we compare NIP to the most related papers [8, 62, 66] which propose
256-D deep descriptors by aggregating convolutional features with various pooling
operations. With only one layer of pooling, [7, 8, 62] can be considered a special
case of NIP, providing only limited levels of translation invariance. The recently
proposed regional maximum activation of convolutions (R-MAC) [66] reports
outstanding results on building data set Oxbuild with very small dimensionality
(e.g., 0.668 mAP for 512-D R-MAC and 0.561 mAP for 256-D R-MAC). The
authors propose a fast R-CNN-type pooling [20], which is effective when the
object of interest is in a small portion of the image. Such an approach will be
less effective when the object of interest is affected by groups of distortions like
rotation and perspective and located at the center of the image. Here, we observe
that nested pooling over many types of distortions with progressively increasing

Table 4 Search performance comparing NIP to other state-of-the-art methods. We include results
in recent papers with comparable dimensionality of descriptors reported in those papers. L2
distance is used for all methods

Data set
Method Dims Oxbuild Holidays UKB

T-embedding [39] 1024 0.560 0.720 3.51

T-embedding [39] 512 0.528 0.700 3.49

FV + Proj [28] 512 – 0.789 3.36

FC + PCAWhitening [60] 500 0.322 0.642 –

FC + VLAD + PCA [26] 512 – 0.784 –

FC + Finetune + PCAWhitening [9] 512 0.557 0.789 3.30

Conv + MaxPooling [62] 256 0.533 0.716 –

FV + FC + PCAWhitening [57] 512 – 0.827 3.37

Conv + SPoC + PCAWhitening [8] 256 0.589 0.802 3.65

R-MAC + PCAWhitening [66] 512 0.668 – –

R-MAC + PCAWhitening [66] 256 0.561 – –

NIP 512 0.592 0.838 3.84
NIP + PCAWhitening 256 0.609 0.836 3.83
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moments is essential to achieving geometric invariance and high search performance
with low-dimensional descriptors. Besides, the technique proposed in [66] can be
incorporated with NIP to further improve performance.

Next, we note that [62] reports better results on Holidays (0.881 mAP) and
Oxbuild (0.844 mAP), with very high-dimensional descriptors (from 10K to
100K). These very high-dimensional descriptors are obtained by combining CNN
descriptors with spatial max-pooling [7]. In contrast, NIP results are generated using
only 256 to 512 dimensional descriptors.

3.4 Hashing with Invariant Descriptors

In this section, we combine NIP with RBMH (Fig. 3), the descriptor hashing scheme
presented in the previous sections, with the aim to achieve the best performing
tiny 32–256 bits hashes. Multigroup-invariant NIP representations, shown to be
outstanding in previous section, are used as starting representations for hashing.
RBMH are used then to produce compact binary hashes from the AGS

-SGT
-MGR

512-D floating point values descriptors.
Resulting hashes are compared to hashes obtained, using the same starting repre-

sentation, with popular unsupervised hashing methods including ITQ [24], bilinear
projection binary codes (BPBC) [23], PCAHash [24], LSH [18], SKLSH [59],
SH [70], and RBM. Evaluated bitrates range from 32 to 256 bits. Original AGS

-
SGT

-MGR
512-D floating point descriptors are also introduced as the baseline

uncompressed scheme.
Experiments are conducted both with small-scale (Sect. 3.4) and large-scale

(Sect. 3.4) search data sets. For small-scale object instance search experiments, four
popular data sets are used: Holidays, UKBench, Oxbuild, and Graphics. For large-
scale experiments, results are presented using the four data sets combined with the
one million MIR FLICKR distractor images [35].

Finally, results of NIP + RBMH are also compared with other state-of-the-art
methods in Sect. 3.4. NIP + RBMH are showed to be among the most compact and
efficient binary codes for object instance search reported in the literature.

Small-Scale Experiments Small-scale search results of multigroup-invariant
hashes are shown in Fig. 17, compared to other popular unsupervised hashing
methods. RBMH codes outperform other methods at most code sizes on all data
sets. First, there is a significant improvement at smaller code sizes like 32 bits,
due to the proposed batch-level regularization: 0.457 vs. 0.369 in terms of mAP,
compared to the second performing method RBM on Holidays at 32 bits. Second,
the improvements of NIP + RBMH over other methods become smaller as code size
increases (except SKLSH). For code size larger than 256 bits, the performances
of all methods approach the upper bound, i.e., uncompressed descriptors. Finally,
compared to uncompressed descriptors, there is a marginal drop for all methods on
UKBench at 256 bits, while performance gap is larger for other data sets.
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Fig. 17 Comparison of RBMH with other hashing methods on four benchmark data sets. All
methods are built upon the best NIP descriptors. To examine the effect of compression, search
results using uncompressed NIP descriptors are also presented. (a) Holidays. (b) UKB. (c)
Oxbuild. (d) Graphics. (Communications of the ACM, ©2017 ACM, Inc. http://doi.acm.org/10.
1145/3078971.3078987)

Large-Scale Experiments In Fig. 18, large-scale search results are presented,
combining the one million MIR FLICKR distractor images with each data set,
respectively. Trends consistent with small-scale search results in Fig. 17 are
observed.

Comparison with State of the Art Invariant binary hashes are compared against
different state-of-the-art pipelines, including methods compressing VLAD/FV with
direct binarization [58], hashing [27], PQ [38, 76], and methods based on compact
deep descriptors [9, 62].

As shown in Table 5, first, a simple binarization strategy (thresholding at data
set mean) applied to AGS

-SGT
-MGR

descriptor degrades search performance only
very marginally and is sufficient to obtain significantly better accuracy than [9, 58]

http://doi.acm.org/10.1145/3078971.3078987
http://doi.acm.org/10.1145/3078971.3078987
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Fig. 18 Comparison of RBMH with other hashing methods on large-scale search experiments
(with one million MIR FLICKR distractor images). All methods are based on the best NIP descrip-
tors. (a) Holidays + 1M. (b) UKB + 1M. (c) Oxbuild + 1M. (d) Graphics + 1M. (Communications
of the ACM, ©2017 ACM, Inc. http://doi.acm.org/10.1145/3078971.3078987)

at comparable code size (512 bits), e.g., 3.7 vs. 2.79 in [58] for 4× Recall @ R = 4
on UKBench.

Second, NIP + RBMH outperforms state of the art by a significant margin
at comparable code sizes (from 32 to 256 bits). NIP+RBMH achieves the best
performance on Holidays at small code size (128 bits), 0.705 vs. 0.644 mAP
reported in the state of the art [75].

Note that Hamming distance is used for the multigroup-invariant binary descrip-
tors, while other methods like PQ variants employ Euclidean distances (L2 or ADC),
which typically result in higher accuracy than Hamming distance, at the expense of
higher computational cost.

http://doi.acm.org/10.1145/3078971.3078987
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Table 5 Search performance comparing NIP+RBMH to other state-of-the-art methods at small
code sizes (from 32 to 512 bits). ADC denotes asymmetric distance computation [27, 38]

Data set
Method DIMS (size in bits) Dist. Oxbuild Holidays UKB

Binarized FV [58] 520(520) Cosine – 0.460 2.79

FV + SSH [27] 256(256) ADC – 0.544 3.08

FV + SSH [27] 128(128) ADC – 0.499 2.91

FV + SSH [27] 32(32) ADC – 0.334 2.18

FV + PQ [38] 128(128) ADC – 0.506 3.10

VLAD + PQ [75] 128(128) L2 – 0.586 2.88

VLAD + CQ [75] 128(128) L2 – 0.644 3.19

VLAD + SQ [76] 128(128) L2 – 0.639 3.06

FC + Finetune + PCAWhitening [9] 16(512) L2 0.418 0.609 2.41

Conv + MaxPooling [62] 256(256) Cosine 0.436 0.578 –

Binarized NIP 512(512) Hamming 0.477 0.781 3.70
NIP + RBMH 256(256) Hamming 0.445 0.739 3.59
NIP + RBMH 128(128) Hamming 0.359 0.705 3.38
NIP + RBMH 32(32) Hamming 0.274 0.458 2.26

4 Conclusions and Future Works

In this chapter, we addressed the problem of CNN descriptors’ limited robustness to
geometric transformations, followed by dimensionality reduction and binarization
of CNN descriptors. We first show how high-dimensional descriptors can be
compressed to very compact binary representations in an unsupervised fashion using
RBM and proposed a novel RBM regularization scheme for hashing (RBMH), key
to achieving excellent performance at low rates. Next, we show how Siamese fine-
tuning can be used to further improve hashes’ performance and proposed a novel
objective function suited for training Siamese networks in high-dimensional latent
spaces settings. Subsequently, we proposed Nested Invariance Pooling (NIP), a
novel method to produce global image descriptors from CNN. Finally, we show that
NIP is compatible with the RBMH hashing scheme; combining the NIP+RBMH
pipeline produces some of the best performing hashes available in the literature,
especially at very low bitrates (256 bits and lower).

This thesis opens up several interesting avenues for future work.

• Pre-trained CNN models trained for large-scale image classification tasks, with
larger amounts of data, have the potential of improving performance further
for object instance search. For instance, CNN models trained on the full
ImageNet data set with 14 million images, and 10,000 classes could lead to more
discriminative features for the instance search task.

• While supervised CNN models have far outperformed their unsupervised CNN
counterparts for large-scale image classification, the latter approach deserves
careful attention in the context of instance search. For the instance search task, we
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desire rich representations of low-level image information, which can be learnt
directly from the large amounts of unlabeled image data available on the Internet.
As image classification is not the end goal, unsupervised CNN models trained
with large amounts of data might achieve comparable or better performance for
instance search tasks. Availability of large amounts of training data (e.g., the
Yahoo 100 million image data set [72]) and recent advances in open-source
software for large-scale distributed deep learning (e.g., TensorFlow [2]) will
enable training of large-scale unsupervised CNN models. If unsupervised CNN
models work well for instance search, they will enable easier training and
adaptation to different types of image databases.

• Rotation and scale invariance are key to instance search tasks. While the
pooling schemes proposed in this work are highly effective, they are more of
an afterthought to solving the invariance problem in the CNN context. Learning
CNN representations which are inherently scale and rotation invariant is an
exciting direction to pursue.

• Interest point detectors provide an efficient and effective way of achieving
desired levels of invariance (ranging from scale and rotation invariance to affine
invariance). The carefully handcrafted SIFT descriptor has been remarkably
effective for the instance search task; however, patch-level descriptors can now
be learnt with large amounts of data, using data sets like the Winder and
Brown patch data sets [71] and the Stanford Mobile Visual Search patch data
set [1]. A hybrid approach of interest point detectors with learnt CNN descriptor
representations could lead to a significant improvement in search performance.

• Hybrid interest point detection schemes like the dense interest point detector
proposed originally in [68] need to be revisited, in light of the effectiveness of
CNN features which are extracted by dense sampling in the image. A recent
survey of dense interest point detectors [68] is a good starting point.
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