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Abstract— In electroencephalography (EEG) source imaging,

the inverse source estimates are depth biased in such a way that

their maxima are often close to the sensors. This depth bias can

be quantified by inspecting the statistics (mean and covariance)

of these estimates. In this paper, we find weighting factors within

a Bayesian framework for the used ℓ1/ℓ2 sparsity prior that the

resulting maximum a posterior (MAP) estimates do not favour

any particular source location. Due to the lack of an analyti-

cal expression for the MAP estimate when this sparsity prior

is used, we solve the weights indirectly. First, we calculate the

Gaussian prior variances that lead to depth un-biased maximum

a posterior (MAP) estimates. Subsequently, we approximate the

corresponding weight factors in the sparsity prior based on the

solved Gaussian prior variances. Finally, we reconstruct focal

source configurations using the sparsity prior with the proposed

weights and two other commonly used choices of weights that

can be found in literature.

Keywords— Electroencephalography, sparsity prior, Gaus-

sian prior, Bayesian inverse problems, depth bias

I. INTRODUCTION

In EEG focal source imaging, the goal is to estimate the fo-

cal neural activity that arises, for example, during an epileptic

seizure using scalp potentials. Based on the distributed source

modelling [1], the mapping that connects the dipole moments

of n potential source locations to m scalp-potential measure-

ments can be written as

v = Kd +ξ , (1)

where v ∈ R
m, K ∈ R

m×kn (m ≪ kn) is the lead field matrix,

k is the dimension of the problem (2D or 3D), d ∈ R
kn is the

distributed dipole source configuration and ξ ∼ N (0,Γξ ) is

the measurement noise.

The ill-posedness of the associated inverse problem re-

quires the use of prior information to obtain stable estimates.

One way to solve the problem is to find the estimate of the

under-determined linear system that has the minimum norm

[2]. However, the minimum norm estimate (MNE) has the

property that its maxima can lie only close to the sensors, be-

cause the measured scalp potentials can be generated from

superficial source configurations with less power than from

deep source configurations [3]. Similar source reconstruc-

tions can also be obtained with ℓ2-norm priors. Even if ℓ1-

norm priors are employed, the solution consists of several

scattered superficial sources [4].

To reduce the depth bias several (often heuristic) ap-

proaches have been suggested [5, 6, 3, 7, 8]. The most com-

mon approaches are to weight all the sources in the penalty

term with the norm of the corresponding column of the lead

field matrix [5, 9] or the diagonal elements of the model

resolution matrix [10, 11]. Another approach is to use the

Bayesian hierarchical modelling [12].

In this paper, our aim is to find, within a Bayesian frame-

work, weights for our sparsity prior such that the resulting

posterior estimates do not favor any particular source loca-

tion or component. Because there is no analytical expression

for the MAP estimate when sparsity priors are employed,

we propose to solve the weights indirectly. We first quan-

tify the depth bias of the maximum a posterior (MAP) es-

timates when an i.i.d. Gaussian prior is employed by inspect-

ing the statistics of the MAP estimates. Next, we calculate

the Gaussian prior variances that ensure depth un-biased so-

lutions by equalizing the variances in the covariance matrix of

the MAP estimates. Finally, we approximate the correspond-

ing weighting factors in the sparsity prior using the solved

Gaussian prior variances. We demonstrate the feasibility of

our approach by simulating focal brain activity with finite el-

ement (FE) simulations. In the reconstructions, we employ

the weighted ℓ1/ℓ2 sparsity prior and we compare the results

obtained using our proposed weights with the reconstructions

based on two other commonly used choices of depth weights.

II. THEORY

A. Bayesian Inversion

In the Bayesian framework, the inverse solution is the pos-

terior density of the Bayes formula

π(d|v) ∝ π(v|d)π(d), (2)

 
© Springer N   ature Singapore Pte L  td. 2018 

H. Eskola et al. (eds.), EMBEC & NBC 2017,



34 A. Koulouri et al. 

 

 

IFMBE Proceedings Vol. 65 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

where π(v|d) is the likelihood and π(d) the prior. From Equa-

tion (1), the likelihood is

π(v|d) ∝ exp
(

−
1

2
(v−Kd)TΓ−1

ξ
(v−Kd)

)

. (3)

The MAP estimate of the reconstructions is [13],

d̂ := min
d ∈ Rkn

‖Lξ (Kd − v)‖2
2 −2lnπ(d), (4)

where Lξ comes from the Cholesky factorization of Γξ .

B. Gaussian prior

Let us consider a Gaussian prior

π(d) ∝ exp

(

−
1

2
dTΓ−1

d d

)

(5)

that does not have depth weights i.e. the covariance matrix

is Γd = α−2I where I is the identity matrix and α2 a scaling

parameter. In this case, the MAP estimate is [2]

d̂ = KT(KKT +α2Γξ )
−1v. (6)

From variational point of view, this MAP estimate coincides

with Tikhonov regularization and thus yields to a solution that

attains its maximum close to the boundary [4, 14]. This can

also be explained statistically by analyzing the expectation

value and covariance of the MAP estimates. Theses values

can be estimated by sampling or by using the analytical ex-

pressions

E[d̂] = 0 and Γd̂ = E[d̂d̂T] = KT(KKT +α2Γξ )
−1K. (7)

Figure 1-A shows how the values of the diagonal elements

(variances) of Γd̂ decrease almost quadratically with respect

to depth. The zero expectation values and the very low vari-

ances associated with the deep locations imply that the deep

sources are very unlikely to be reconstructed. Thus, this MAP

estimator is biased with respect to depth and favors sources

close to the sensors.

In this paper, our aim is to determine such prior variances

that the resulting MAP estimates do not favor any particular

source location or component over other i.e. the variances of

the MAP estimates are equal.

We start by postulating that this prior covariance matrix

is diagonal Γd = α−2diag(γ
(i)
d ) for i = 1, . . . ,kn. The MAP

estimate corresponding to this prior is

d̂ = ΓdKT(KΓdKT +α2Γξ )
−1v, (8)

and the covariance of the MAP estimates becomes

Γd̂ = E[d̂d̂T] = ΓdKT(KΓdKT +Γξ )
−1KΓd . (9)

A B

C D

=1

Fig. 1: A and B: The diagonal elements of Γ
d̂

with respect to depth when
the i.i.d. and depth compensated Gaussian prior are used, respectively. C:
The posterior variances w. r. t. depth when the depth compensated prior is
used. D: Two marginal distributions of the posterior. Here, matrix K was

estimated using linear basis functions in a 5 compartment, 2D head model.

In a similar way as in [15], we estimate the prior variances by

minimizing

γd := min
γd

‖diag(α−2I −Γd̂)‖
2
2. (10)

This results in solving a set of non-linear equations

α2 = γ
2(i)
d K(:,i)TMK(:,i) for i = 1, . . . ,kn, (11)

where M = (Γξ +KΓdKT)−1 and K(:,i) is the ith column.

Figure 1-B shows that with these prior variances the diago-

nal elements of Γd̂ will be equal, or in other words, the corre-

sponding MAP estimator is depth unbiased. Moreover, Figure

1-C depicts the diagonal elements of the posterior covariance

Γd|v = (KTΓ−1
ξ

K +Γ−1
d )−1 obtained based on the estimated

prior and Figure 1-D shows two corresponding marginal pos-

terior densities of two different locations. We can observe that

the posterior dipole variances increase with respect to depth.

Qualitatively, this means that in the estimated source configu-

rations the deep sources are allowed to have higher strengths

than the superficial sources, and therefore, the solutions can

attain their maximum also deeper in the brain (and not only

close to the sensors).



Prior Variances and Depth Un-Biased Estimators in EEG Focal Source Imaging 35 

 

 

IFMBE Proceedings Vol. 65 
 

  

 

  C. ℓ1/ℓ2- norm sparsity prior

In this paper, we consider sparse focal source reconstruc-

tions and therefore, we employ the ℓ1/ℓ2-norm prior

π(d) ∝ exp

(

−
α

2

n

∑
i=1

wr
i‖di‖2

)

(12)

where di = (dix,diy,diz), ‖di‖2 =
√

d2
ix +d2

iy +d2
iz is the

strength of the source at location i and wr
i are the weights. For

short, we denote the dipole strength at location i as ri = ‖di‖2

and

π(ri) ∝ exp
(

−
α

2
wr

i ri

)

. (13)

The variance of π(ri) is

γ
(i)
r = c

∫ ∞

0
(ri − r∗i)

2 exp
(

−
α

2
wr

i ri

)

dri =
4

α2(wr
i )

2
(14)

where r∗i = c
∫ ∞

0 ri exp(−0.5αwr
i ri) dri =

4c

α2(wr
i )

2 and c =

0.5αwr
i because

∫ ∞
0 cexp(−0.5αwr

i ri) dri = 1.

We calculate γ
(i)
r at location i with the help of the corre-

sponding Gaussian variances γ
(i+( j−1)n)
d as

γ
(i)
r = kα−2k+2

(

k

∏
j=1

γ
(i+( j−1)n)
d

)(

k

∑
j=1

γ
(i+( j−1)n)
d

)

−1

,

(15)

where j = 1, . . . ,k and k is the dimension of the problem. This

choice ensures that γ
(i)
r is roughly the average of the dipole

component variances when the variances of the components

are similar and that γ
(i)
r is close to the lowest dipole compo-

nent variance when the variances have large differences. Fi-

nally, from Equation (14) and (15) we calculate the weights

wr
i = 2

√

√

√

√

√

√

√

√

α2k−4

k

k

∑
j=1

γ
(i+( j−1)n)
d

2
k

∏
j=1

γ
(i+( j−1)n)
d

(16)

The estimated Gaussian variances and the corresponding

weights of the ℓ1/ℓ2-norm prior are shown in Figure 2.

III. MATERIALS AND METHODS

We study the proposed weights by simulating focal deep

sources in the gray matter of a 2D FE head model. The

head model consisted of five compartments with conductivi-

ties (in S/m) equal to 0.33 for the scalp, 0.015 for the skull,

Fig. 2: The estimated Gaussian prior variances γ
(i)
d and the corresponding

weights for the ℓ1/ℓ2 norm prior with respect to depth .

1.76/0.016/0.33 for the cerebral spinal fluid, gray matter and

white matter [16], respectively. The potential measurements

v were obtained from 32 point sensors equally spaced around

the boundary. For the forward and the inverse computations,

we use two meshes with 2342 and 1236 nodes, respectively.

The MAP estimate of the dipole configuration with spar-

sity constraint is

d̂MAP := min
d

‖v−Kd‖2
2 +

n

∑
i=1

λwi‖di‖2w (17)

where λ is a tuning parameter. The minimization is per-

formed by using the interior point method [17] with Breg-

man iterations [18]. The performance of the proposed

weights, wr
i , from Equation (16), was compared with two

other commonly used weights: first, the MNE resolution

weights given by wMNE
i =

√

1/k ∑
k
j=1 R(i,i+( j−1)n), where

R(i,i) = diag(KT(KKT +Γξ )
−1K) [11] and second, the nor-

malized maximum sensor responses wMSR
i = gi/max(gi),

where gi = maxl=1:m

(

‖1/k ∑
k
j=1 K(l,i+( j−1)n)

‖2

)

[19]. To ac-

cess the ground truth, we consider measurements with high

signal to noise ratio, SNR = 60dB. For the quantitative com-

parison of the results we employ the earth mover’s distance

(EMD) [20].

IV. RESULTS AND DISCUSSION

We demonstrate the performance of the different weights

using three test cases with one and two dipole sources. In

Figure 3, the small images on the left hand side show the true

dipoles, the location is marked with blue circles and the orien-

tations with small blue lines. The remaining images, starting

from left, show the reconstruction when wMNE
i , wMSR

i and wr
i

are used as weights, respectively. The blue marker x shows

the locations of true sources. The MAP estimates were com-

puted by solving Equation (17).
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All the tested weights give feasible reconstructions. How-

ever, we note that the proposed weights wr
i give the least

scattered results and work the best in the single focal source

cases. For the two source case, all the weights give roughly

similar reconstructions and EMD values.

ww
MNE

w
r

Fig. 3: Reconstructed source distributions using different weights in the
ℓ1/ℓ2 prior model. The images show first the test cases and then the

reconstructions with the different weights wMNE
i , wMSR

i and wr
i , respectively.

V. CONCLUSION AND FUTURE WORK

We have demonstrated that the proposed depth weights

with the ℓ1/ℓ2 sparsity prior give better reconstruction com-

pared to two commonly used weights when single deep

sources are studied. Our proposed approach has the benefit

that it does not require using hyper-parameter models that

would involve extensive sampling due to the lack of an ana-

lytical expression for the MAP estimate when the ℓ1/ℓ2 prior

is used. In the future, Monte Carlo simulations will be carried

out in a 3D head model to analyze the distribution of the MAP

estimates reconstructed by using the ℓ1/ℓ2 sparsity prior with

the proposed weights.
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