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Preface

Model theory is a branch of mathematical logic that studies mathematical structures
through sentences of a suitable formal language concerning the elements of
structures. Since mathematicians rarely exploit the precise syntactical structure of
sentences, model theory gives new techniques to mathematics. These have been
used very successfully to settle some outstanding conjectures in hardcore
mathematics.

Therefore, model theory is a subject in its own right. It has its own deep concepts
and is rich in techniques. Currently, it is a very active and challenging area of
research. The main purpose of this book is to usher young researchers into this
beautiful, challenging and useful subject.

About the Book

This book is an exposition of the most basic ideas of model theory. It is primarily
aimed at lower undergraduate students who would like to work in model theory.
Knowledge of logic will be helpful, though not essential, for this book. This book is
a book on model theory and not mathematical logic. So, we completely avoid
proof theoretic approach. Throughout the book, the style is semantic except for
introducing languages and interpretations (i.e. structures) formally. This enables us
to get into the subject rather quickly.

Chapters 1–6 constitute the core of model theory which all researchers should
start with. In Chap. 7, we have presented model theory of valued fields. It also
contains the full proof of Ax-Kochen theorem on Artin’s conjecture on the field of
p-adic reals.

Because we have put equal stress on applications, a good background in algebra
is required. In Appendices A–C, we give necessary background material from set
theory and algebra that is required for this book. Some background material on
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algebra has also been presented in the main text as we go along. It is hoped that this
will make the book self-contained.

Ideally, the book should be covered in two semesters. The first two chapters
contain most of the basic concepts and basic results to get started. These two
chapters contain standard materials that are traditionally covered in the first intro-
duction to the subject. It can also be taught to senior undergraduate students.

Chapter 1 mainly concentrates on basic concepts. It includes first-order lan-
guage, its terms and formulas and its structures, homomorphisms, embeddings and
elementary embeddings, Skolemization of a theory, definability, etc. In order to
handle definable equivalence classes, a brief introduction of many-sorted logics,
imaginary elements and elimination of imaginaries is presented. In the first reading,
if time does not permit, sections on many-sorted logics and elimination of imagi-
naries can be skipped.

Chapter 2 contains most of the introductory techniques and results. Ultraproduct
of structures and Łoś fundamental lemma, compactness theorem and its conse-
quences, upward Löwenheim Skolem theorem, quantifier elimination and model
completeness are some of the most basic results presented in the chapter. These are
used to present the model theory of dense, linearly ordered sets without end points,
torsion-free divisible abelian groups and ordered divisible abelian groups, alge-
braically closed fields and real closed fields. The chapter concludes with some
applications in algebra and geometry such as Hilbert Nullstellensatz, Ax’s theorem
on polynomials, Chevalley’s projection lemma on algebraically closed fields and its
real counterpart Artin–Seidenberg theorems on real closed fields, solution of
Hilbert's seventeenth problem, etc.

Both Chaps. 1 and 2 end up with a large number of exercises. They are an
integral part of the subject. Several concepts are introduced in the exercises.
Readers should work out all the exercises. Much of the material presented in the
exercises are used later.

Chapters 3–6 can be termed as the beginning of modern model theory and
require a bit of sophistication. In Chap. 3, we make a systematic study of types.
Types are used to define most of the modern concepts and are essential for the
development of modern model theory. Chapters 4 and 5 form the bedrock of
modern model theory. In Chap. 4, we introduce important subclasses of structures
and theories. Of particular interest are topics on saturated structures and stable
theory. We introduce Morley rank and Morley degree as well as forking inde-
pendence in Chap. 4. In Chap. 5, we introduce indiscernibles and prove Morley
categoricity theorem. In Chap. 6, we initiate the study of strong types. Strong types
are equivalence classes of the so-called bounded, invariant, equivalence relations.
We introduce mainly Lascar strong types and Kim–Pillay strong types. Strong types
are important for stable theories, simple theories, independence, etc. These are also
interesting mathematical objects. To illustrate this, we show their connection with
descriptive set theory.

There are many important topics such as stability theory, simple theory and
independence, NIP theories, etc. that are not covered in this book. This is primarily
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because we want this to remain an introductory graduate level text book to get
started in model theory.
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Chapter 1
Introductory Concepts

Abstract In this chapter, we present most of the introductory concepts. Numerous
examples and exercises are given as we go along. In a sense, it sets up our vocabulary.
Readers new to logic should read this chapter carefully andwork out all the exercises.

1.1 Languages, Terms and Formulas

In this section, we present the syntax of first-order logic.
The signature S of a first-order language L consists of

(i) a set of constant symbols {ci : i ∈ I },
(ii) for each positive integer n, a set of n-ary function symbols { f j : j ∈ Jn}, and
(iii) for each n ≥ 1, a set of n-ary relation symbols {pk : k ∈ Kn}.

Above sets may not necessarily be non-empty. Besides these symbols, to make a
first-order statement, each language L also has

(iv) a sequence of variables x0, x1, x2, . . .,
(v) connectives ¬ (negation) and ∨ (disjunction),
(vi) ∃ (existential quantifier) and
(vii) the equality symbol =, a binary relation symbol.

All these constitute a first-order language. We shall be a bit informal and also use
letters x, y, z, u, v, w with or without suffixes for variables. The ordering x0, x1, . . .
of variables will be called the alphabetical order of the variables. A finite sequence of
elements in L will be called an expression in L . For an expression s, |s|will denote the
length of s. Sometimes we shall write |y| = n to indicate that y = (y0, . . . , yn−1) is
a n-tuple of variables. If S and S ′ are signatures of L and L ′ respectively and S ⊂ S ′,
i.e. each constant symbol in S is a constant symbol in S ′, each n-ary function symbol
in S is a n-ary function symbol in S ′ and each n-ary relation symbol in S is a n-ary
relation symbol in S ′, we call L ′ an extension of L or L a restriction of L ′.

Let L be a first-order language with signature S. We set

|L| = max{|S|,ℵ0}.

© Springer Nature Singapore Pte Ltd. 2017
H. Sarbadhikari and S.M. Srivastava, A Course on Basic Model Theory,
DOI 10.1007/978-981-10-5098-5_1
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2 1 Introductory Concepts

If κ is an infinite cardinal and |L| ≤ κ, we call L a κ-language. ℵ0-languages will
simply be called countable languages.

Let L be a first-order language. The set of all terms of L (also called L-terms) is
the smallest set T of expressions in L that contains all variables and constant symbols
and is closed under the following operation: whenever t1, . . . , tn ∈ T , f t1 . . . tn ∈ T ,
where f is any n-ary function symbol of L . We shall write t[x0, . . . , xn−1] to indicate
that t is a term in which no variable other than x0, . . . , xn−1 occurs.

Exercise 1.1.1 Let L be a first-order language.

1. If L is countable, show that the set of all L-terms is of cardinality ℵ0.
2. If κ is an infinite cardinal and L a κ-language, show that the set of all L-terms

is of cardinality ≤ κ.

To avoid confusion,we shall followusualmathematical convention of using paren-
theses, commas, etc., to express a term. For instance, if f and g are binary function
symbols, instead of writing g f xyz, we shall write g( f (x, y), z). On the other hand,
we shall also drop parentheses when there is no possibility of confusion. Further, we
shall adopt the convention of association to the right for omitting parentheses. For
instance, instead of writing t1 + (t2 + (t3 + t4)), we shall write t1 + t2 + t3 + t4.

If t[x0, . . . , xn−1], t0, . . . , tn−1 are terms, then t[t0, . . . , tn−1] will denote the term
obtained from t by simultaneously replacing each occurrence of xi in t by ti , i < n.

Exercise 1.1.2 Show that if t[x0, . . . , xn−1], t0, . . . , tn−1 are terms, then
t[t0, . . . , tn−1] is a term.

(Hint: Use induction on the length of t .)
We define the set of all subterms of a term t by induction on the length of t as

follows: t is a subterm of t . If f t1 . . . tn is a subterm of t , so is each ti , 1 ≤ i ≤ n. An
expression is a subterm of t if and only if it is obtained as above.

Expressions of the form pt1 . . . tn , where p is an n-ary relation symbol (including
the equality symbol =) and t1, . . . , tn are terms, are called atomic formulas. In this
case p is the equality symbol, we write t1 = t2 instead of = t1t2.

A formula of L , also called an L-formula, is inductively defined as follows: every
atomic formula is a formula—these are all the formulas of rank 0; if ϕ and ψ are
formulas of rank ≤ k and v is a variable, then ¬ϕ (the negation of ϕ); ∃vϕ (an
instantiation of ϕ) and ϕ ∨ ψ (the disjunction of ϕ and ψ) are formulas of rank
≤ k + 1. The set of expressions so obtained are all the formulas of L . The rank
of a formula ϕ is the least k such that ϕ is of rank ≤ k. We shall follow standard
convention and use parentheses to avoid ambiguities.

Exercise 1.1.3 Let L be a first-order language.

1. If L is countable, show that the set of all L-formulas is of cardinality ℵ0.
2. If κ is an infinite cardinal and L a κ-language, show that the set of all L-formulas

is of cardinality ≤ κ.



1.1 Languages, Terms and Formulas 3

There are more logical connectives and quantifiers that are commonly used. But
they are all defined in terms of ¬, ∨ and ∃ as follows:

∀vϕ is an abbreviation of ¬∃v¬ϕ, ϕ ∧ ψ abbreviates ¬(¬ϕ ∨ ¬ψ), ϕ → ψ is
an abbreviation of (¬ϕ) ∨ ψ and ϕ ↔ ψ abbreviates (ϕ → ψ) ∧ (ψ → ϕ). The
connective ∧ is called conjunction and the quantifier ∀ the universal quantifier.

As in the case of terms, we adopt the convention of association to the right for
omitting parentheses. This means that ϕ ∨ ψ ∨ ξ is to be read as ϕ ∨ (ψ ∨ ξ); ϕ ∨
ψ ∨ ξ ∨ η is to be read as ϕ ∨ (ψ ∨ (ξ ∨ η)) and so on. Further, ϕ → ψ → ξ is to
be read as ϕ → (ψ → ξ); ϕ → ψ → ξ → η is to be read as ϕ → (ψ → (ξ → η))

and so on.
If ϕ1, . . . ,ϕn are formulas, we shall often write ∨n

i=1ϕi for ϕ1 ∨ · · · ∨ ϕn and
∧n
i=1ϕi for ϕ1 ∧ · · · ∧ ϕn . Also, we shall often write t �= s instead of ¬(t = s),

where t and s are terms. Further, we shall often write ∃vϕ instead of ∃v0 . . . ∃vn−1ϕ
and ∀vϕ instead of ∀v0 . . . ∀vn−1ϕ.

The set of all subformulas of a formula ϕ is the smallest set S(ϕ) of formulas of
L that contains ϕ and satisfies the following conditions: whenever ¬ψ or ∃vψ is in
S(ϕ), so is ψ, and whenever ψ ∨ ξ is in S(ϕ), so are ψ and ξ.

An occurrence of a variable v in a formula ϕ is bound if it occurs in a subformula
of the form ∃vψ; otherwise, the occurrence is called free. A variable is said to be free
in ϕ if it has a free occurrence in ϕ. We shall write ϕ[v0, . . . , vn] if ϕ is a formula all
of whose free variables belong to the set {v0, . . . , vn}. Note that this does not mean
that each of v0, . . . , vn has a free occurrence inϕ. Letϕ[x0, . . . , xn] be an L-formula
in which xn has a free occurrence. Then the formula ∀x0 . . . ∀xnϕ is called the closure
of ϕ.

A formula with no free variable is called a closed formula or a sentence. A formula
that contains no quantifiers is called an open formula or quantifier free. A formula
of the form ∃vϕ, ϕ open, will be called an existential formula or a ∃-formula and
those of the form ∀vϕ, ϕ open, universal formulas or ∀-formulas. Likewise formulas
of the form ∀x∃yϕ (∃x∀yϕ), ϕ open, will be called ∀∃-formulas (respectively ∃∀
formulas).

Let t be a term, v a variable and ϕ a formula of a language L . We say that the
term t is substitutable for v in ϕ if for each variable w occurring in t , no subfor-
mula of ϕ of the form ∃wψ contains an occurrence of v that is free in ϕ. If terms
t1, . . . , tn are substitutable for v1, . . . , vn respectively in ϕ, then ϕv1,...,vn [t1, . . . , tn],
orϕ[t1, . . . , tn]when there is no possibility of confusion, called an instance ofϕ, will
denote the expression obtained from ϕ by simultaneously replacing all free occur-
rences of v1, . . . , vn in ϕ by t1, . . . , tn respectively. Note that whenever we shall talk
of ϕv1,...,vn [t1, . . . , tn], it will be assumed that t1, . . . , tn are substitutable in ϕ for
v1, . . . , vn , respectively.

Exercise 1.1.4 Assume that terms t1, . . . , tn are substitutable for v1, . . . , vn respec-
tively in a formula ϕ. Show that ϕ[t1, . . . , tn] is a formula.

If ϕ[x] is a formula, the sentence

∃x0 . . . ∃xn−1(∀x(ϕ[x] → ∨n−1
i=0 (x = xi )))
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will be abbreviated by
∃≤nxϕ or by ∃<n+1xϕ.

Also,
∃xϕ ∧ ¬∃≤nxϕ

will be abbreviated by
∃>nxϕ or by ∃≥n+1xϕ.

Finally, the formula
∃=nxϕ

will stand for
∃≤nxϕ ∧ ∃≥nxϕ.

1.2 Structures and Truth in a Structure

Let L be a first-order language. A structure for L or an L-structure consists of

∗ a non-empty set M ,
∗ for each constant symbol c, an element cM of M ,
∗ for each n-ary function symbol f , a n-ary map f M : Mn → M and
∗ for each n-ary relation symbol p, a n-ary relation pM ⊂ Mn on M .

It is customary to denote a structure like this as M and call M the universe
of M. However, we shall call M itself the structure. cM , f M and pM are called
interpretationsof c, f and p respectively inM . Further,when the underlying structure
is understood, we shall often use the same symbol for constant, function and relation
symbols and their respective interpretations in M . Thus, often we shall write c, f , p
for cM , f M and pM , respectively.

Let L ′ be an extension of L and M ′ be an L ′-structure. By ignoring the interpre-
tations of symbols in L ′ which are not symbols in L , we get an L-structure, say M .
In this case, we call M a reduct of M ′ to L or M ′ an expansion of M to L ′.

Let M be an L-structure and N ⊂ M . Suppose for every constant symbol c,
cM ∈ N and N is closed under each f M , f a function symbol. Then N can be
canonically made into an L-structure by defining cN = cM , c a constant symbol, and
f N and pN to be the restrictions of f M and pM to N , where f and p are function
and relation symbols, respectively. Such an N ⊂ M is called a substructure of M .
In this case, we also call M an extension of N . We shall write N � M or M � N
if N is a substructure of M . It is emphasised that we have reserved the notation ⊂
for the set theoretic subset relation and are using � for substructure relation among
structures of a language.

If M is an L-structure and A ⊂ M , L A will denote the extension of L obtained by
adding each a ∈ A as a new constant symbol. Thus, elements of A have dual role—
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as elements of A as well as constant symbols of LA. This will cause no confusion
because from the context the role of a ∈ A will be clear. LM -formulas will be called
formulas with parameters and LA-formulas formulas with parameters in A. Every
formula with parameters will be thought of in the form ϕ[x, a] where ϕ[x, y] is an
L-formula and a ∈ M . Oftenwe shall suppress parameters a and simply say thatϕ[x]
is a formula with parameters. We shall regard M as an LM -structure by interpreting
each constant symbol a ∈ M by a itself.

For a variable free LM -term t , we define the value of t in M , denoted by t M , by
induction on the length of t as follows.

1. t M = cM , if t = c, c a constant symbol.
2. t M = f M(t M1 , . . . , t Mn ), where f is a n-ary function symbol, t1, . . . , tn variable

free terms and t = f (t1, . . . , tn).

Let M be an L-structure. By induction on the rank of LM -sentences ϕ, we now
define when is ϕ true in M , written M |= ϕ. We shall write M �|= ϕ if ϕ is not true
in M . In this case, we also say that ϕ is false in M .

1. If t and s are variable free LM -terms,

M |= t = s ⇔ t M = sM .

2. If pt1 . . . tn is a variable free atomic formula, then

M |= pt1 . . . tn ⇔ pM(t M1 , . . . , t Mn ).

3. For LM -sentences ϕ and ψ,

M |= ¬ϕ ⇔ M �|= ϕ & M |= ϕ ∨ ψ ⇔ M |= ϕ or M |= ψ.

4. M |= ∃xϕ ⇔ M |= ϕx [a] for some a ∈ M.

A formula with free variables is said to be true in M if its closure is true in M .

Exercise 1.2.1 Let ϕ and ψ be closed formulas. Show the following.

1. M |= ϕ ∧ ψ if and only if M |= ϕ and M |= ψ.
2. M |= ϕ → ψ if and only if either M �|= ϕ or M |= ψ.
3. M |= ϕ ↔ ψ if and only if either both ϕ and ψ are true in M or both are false in

M .
4. M |= ∀vϕ if and only if M |= ϕ[a] for all a ∈ M .

If M is an L-structure, Th(M) denotes the set of all L-sentences true in M and is
called the theory of M . More generally, ifM is a class of L-structures, then Th(M)

will denote the set of all L-sentences true in all M ∈ M.
If the signature of L is finite, we call M decidable if there is an algorithm which

decides whether a closed L-formula ϕ is true in M or not, i.e. whether ϕ ∈ Th(M)

or not. See [59, Chap.6] for details.
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If an L-formula ϕ is true in all L-structures, we call it a tautology. We shall write
|= ϕ if ϕ is a tautology. We call ϕ and ψ tautologically equivalent if ϕ ↔ ψ is a
tautology.

Exercise 1.2.2 Show the following.

1. ¬¬ϕ and ϕ are tautologically equivalent.
2. ¬(ϕ ∨ ψ) and ¬ϕ ∧ ¬ψ are tautologically equivalent.
3. ¬(ϕ ∧ ψ) and ¬ϕ ∨ ¬ψ are tautologically equivalent.
4. ϕ ∧ (ψ ∨ ξ) and (ϕ ∧ ψ) ∨ (ϕ ∧ ξ) are tautologically equivalent.
5. ϕ ∨ (ψ ∧ ξ) and (ϕ ∨ ψ) ∧ (ϕ ∨ ξ) are tautologically equivalent.
6. ϕ → ψ → ξ and ψ → ϕ → ξ are tautologically equivalent.
7. ¬∃vϕ and ∀v¬ϕ are tautologically equivalent.
8. ¬∀vϕ and ∃v¬ϕ are tautologically equivalent.
9. ϕ ∨ ∃vψ and ∃v(ϕ ∨ ψ) are tautologically equivalent if v is not free in ϕ.
10. ϕ ∨ ∀vψ and ∀v(ϕ ∨ ψ) are tautologically equivalent if v is not free in ϕ.
11. If w does not occur in ϕ, then ∀vϕ and ∀wϕv[w] are equivalent.
Exercise 1.2.3 Let ϕ, ψ and ξ be closed formulas. Show that ϕ → ψ → ξ and
(ϕ → ψ) → ξ are not tautologically equivalent.

Exercise 1.2.4 A formula is called a literal if it is either atomic or the negation of
an atomic formula. A formula ϕ is said to be in disjunctive normal form (DNF in
short) if it is in the form ∨k

i=1 ∧ni
j=1 ϕi j with each ϕi j a literal. A formula ϕ is said to

be in conjunctive normal form (CNF in short) if it is in the form ∧k
i=1 ∨ni

j=1 ϕi j with
each ϕi j a literal. A formula ϕ is said to be in prenex normal form if it is in the form
Q0v0 . . . Qn−1vn−1ψ, where each Qi is either an existential quantifier or a universal
quantifier and ψ is open. Show the following.

1. Every open formula ϕ is tautologically equivalent to a formula ψ in DNF as well
as to a formula ξ in CNF .

2. Every formula ϕ is tautologically equivalent to a formula ψ in prenex normal
form.

A first-order theory or simply a theory T consists of a first-order language L(T )

or simply L and a set of L-formulas, called the axioms of T . For a cardinal κ ≥ ℵ0, T
is called a κ-theory if |L(T )| ≤ κ. ℵ0-theories are simply called countable theories.
A model of T is an L-structure M in which each axiom of T is true. If M is a model
of T , we shall write M |= T . A formula ϕ is called a theorem of T , written T |= ϕ,
if it is true in all models of T .

A set of L-sentences T ′ is said to axiomatise T if every formula in T is a theorem
of T ′ and also every ϕ ∈ T ′ is a theorem of T .

Exercise 1.2.5 Show that T ′ axiomatises T if and only if T and T ′ have the same
class of models.
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A theory T is called finitely axiomatisable if there is a finite set of sentences that
axiomatises T . Theories T and T ′ in the same language will be considered to be the
same if each axiomatises the other one.

Exercise 1.2.6 Show that T is finitely axiomatisable if and only if there is an L(T )-
sentence ϕ such that for every structure M of L(T ), M |= ϕ ⇔ M |= T .

For a theory T , T∀ (T∃, T∀∃, T∃∀) will denote the set of all universal (respectively
existential, ∀∃, ∃∀) sentences which are theorems of T . A theory T is called universal
(existential, ∀∃, ∃∀) if T∀ (respectively T∃, T∀∃, T∃∀) axiomatises T .

Assume that the signature of L is finite. An L-theory T is called decidable if there
is an algorithm to decide whether an L-sentence ϕ is a theorem of T or not. If T is
not decidable, it is called undecidable. An L-structure M is called decidable if there
is an algorithm to decide if an L-sentence is true in M or not. See [59, Chap.6] for
relevant definitions.

A theory T ′ is called an extension of T if L(T ′) is an extension of L(T ) and every
axiom of T is a theorem of T ′. If T ′ is an extension of T with L(T ′) = L(T ), then
we call T ′ a simple extension of T . If T is a theory and � a set of L(T )-formulas,
then T [�] will denote the simple extension of T obtained by adding � to the set of
axioms. If T ′ is an extension of T such that every L(T )-formula that is a theorem of
T ′ is also a theorem of T , then we call T ′ a conservative extension of T .

If T ′ is an extension of T and M |= T ′, we can regard M as a model of T by
ignoring the interpretations of symbols in L(T ′) that are not in L(T ). This model of
T is called the restriction of M to T .

Exercise 1.2.7 If T ′ is an extension of T , show that every theorem of T is a theorem
of T ′.

Exercise 1.2.8 Let T ′ be an extension of an L-theory T obtained by adding new
constant symbols c0, . . . , cn−1 and no newaxiom. For any L-formulaϕ[v0, . . . , vn−1]
show that

T |= ∀vϕ[v] ⇔ T ′ |= ϕ[c0, . . . , cn−1].

Conclude that T ′ is a conservative extension of T .

Exercise 1.2.9 For closed L(T ) formulas ϕ1, . . . ,ϕn show that

T [ϕ1, . . . ,ϕn] |= ϕ ⇔ T |= ϕ1 → . . . ϕn → ϕ,

where ϕ is any L(T )-formula.

A closed formula ϕ is said to be decidable in T if either ϕ or ¬ϕ is a theorem of
T . If ϕ is not decidable in T , we say that ϕ is undecidable in T or ϕ is independent
of the axioms of T .

A theory T is called consistent if it has a model. The theory T is called complete
if it is consistent and if every closed formula is decidable in T . Otherwise, T is called
incomplete.
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A class E of L-structures is called elementary if there is an L-theory T such that
M ∈ E if and only ifM |= T .Moreover, if T is finite, we call E finitely axiomatisable.

Formulas ϕ[x] and ψ[x] are called equivalent in T , written ϕ ≡T ψ or simply
ϕ ≡ ψ, if

T |= ∀x(ϕ ↔ ψ).

Exercise 1.2.10 Show that for any theory T , ≡T is an equivalence relation on the
set of all formulas of T .

Exercise 1.2.11 Let T be a first-order L-theory. Show that the following statements
are equivalent.

1. Every existential L-formula is equivalent in T to a universal L-formula.
2. Every universal L-formula is equivalent in T to an existential L-formula.
3. Every L-formula is equivalent in T to a universal L-formula.
4. Every L-formula is equivalent in T to an existential L-formula.

Exercise 1.2.12 If T ′ is a conservative extension of T and T is consistent, show that
T ′ is consistent.

Exercise 1.2.13 Show that a class M of L-structures is elementary if and only if
M = {M : M |= Th(M)}.
Remark 1.2.14 So farwehave followed the tradition in presenting syntax and seman-
tics of first-order logic where there are only ℵ0-many variables. This is sufficient
because terms, formulas, proofs, etc., are of finite length. But for model theory, it is
at times convenient to have uncountably many variables, say {xi : i ∈ I } where I is
uncountable and xi s distinct. Most of the definitions clearly make sense even when
the number of variables is uncountable.

Exercise 1.2.15 Let L be a first-order language with ℵ0-many variables and L ′ be
obtained from L by adding uncountablymany variables. Show that every L ′-sentence
is tautologically equivalent to an L-sentence.

1.3 Examples of Theories

Example 1.3.1 The language for the theory of linearly ordered sets LO has one
binary relation symbol <. The axioms of LO are the following:

(1.1) ∀x¬(x < x).
(1.2) ∀x∀y∀z((x < y ∧ y < z) → x < z).
(1.3) ∀x∀y(x < y ∨ x = y ∨ y < x).

Sometimes we shall write x > y in place of y < x ; x ≤ y as well as y ≥ x will
abbreviate the formula x < y ∨ x = y.
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The theory of dense linearly ordered sets without end points, denoted by DLO ,
has the same language as that of LO . In addition to the axioms of LO it has following
axioms

(1.4) ∀x∀y((x < y) → ∃z(x < z ∧ z < y)).
(1.5) ∀x∃y(y < x).
(1.6) ∀x∃y(x < y).

A linearly ordered set D is called discrete if every element of D which is not the
first element has an immediate predecessor and every element which is not the last
element has an immediate successor.

Exercise 1.3.2 Show that the class of all discrete linearly ordered sets with no end
points is elementary.

Example 1.3.3 The set of all rational numbers Q with usual order is a model of
DLO and the set Z of all integers with usual order is model of the theory of discrete
linearly ordered sets with no end points.

Example 1.3.4 The language for the theory of groups has a constant symbol e, two
binary function symbols + and − and the following axioms:

(2.1) ∀x∀y∀z(x + (y + z) = (x + y) + z).
(2.2) ∀x(x + e = x ∧ e + x = x).
(2.3) ∀x∃y(x + y = e ∧ y + x = e).
(2.4) ∀x∀y∀z(x − y = z ↔ x = z + y).

The theory of abelian groups has in addition the following axiom:

(2.5) ∀x∀y(x + y = y + x).

In case of abelian groups, the identity symbol is taken to be 0 instead of e. In this
language, for any n ≥ 1 and any variable x , nx will stand for the term

x + · · · + x
︸ ︷︷ ︸

n times

.

The theory of torsion-free abelian groups has, besides (2.1)–(2.5), for each n ≥ 1,
the following axiom:

(2.6) ∀x(x �= 0 → nx �= 0).

The theory of torsion-free divisible abelian groups, denoted by DAG, has, besides
(2.1)–(2.6), for each n ≥ 1, the following axiom:

(2.7) ∀x∃y(ny = x).

The language for the theory of ordered abelian groups is an extension of the
language of groups by a binary relation symbol <. Its axioms are axioms of LO
(1.1)–(1.3), axioms of abelian groups (2.1)–(2.5) and the following axiom:
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(2.8) ∀x∀y∀z(x < y → x + z < y + z).

The language for the theory of divisible ordered abelian groups, denoted by
ODAG, is the same as that of ordered abelian groups. Its axioms are axioms of
ordered abelian groups and (2.7).

Example 1.3.5 The group of integers Z is a model of the theory of ordered abelian
groups and Q and R are models of ODAG. The group Z/nZ of integers modulo
n is an abelian group which is not torsion free. The group Sn of permutations of
n-elements, n ≥ 3, is a group which is not abelian.

Exercise 1.3.6 Show that a substructure of a group is a group.

Exercise 1.3.7 Show that every nonzero ordered abelian group is infinite.

Exercise 1.3.8 Show that every ordered abelian group is torsion free.

Exercise 1.3.9 Show that every ordered divisible abelian group is a dense linearly
ordered set without end points.

Example 1.3.10 The language for the theory of commutative rings with identity is an
extension of the language of groups by having one more constant symbol 1, and one
more binary function symbol ·. The axioms of this theory are the axioms (2.1)–(2.5)
of abelian groups together with the following axioms:

(3.1) ∀x∀y∀z(x · (y · z) = (x · y) · z).
(3.2) ∀x(x · 1 = x ∧ 1 · x = x).
(3.3) ∀x∀y∀z(x · (y + z) = x · y + x · z).
(3.4) ∀x∀y(x · y = y · x).

For any variable x and n > 1, xn will stand for the term

x · · · · · x
︸ ︷︷ ︸

n times

.

Note that a substructure of a commutative ring R with identity is a subring of R.
The theory of integral domains has one more axiom:

(3.5) ∀x∀y(x · y = 0 → (x = 0 ∨ y = 0))

A ring R is called ordered if it is equipped with a linear order < on R such that
for every x, y, z ∈ R the following conditions are satisfied.

(3.6) 0 < x and 0 < y imply 0 < x · y.
(3.7) x < y implies x + z < y + z.

The theory of fields has the same language as that of the theory of commutative
rings with identity. Its axioms are the axioms (2.1)–(2.5) of abelian groups, axioms
(3.1)–(3.4) of the theory of commutative rings with identity and
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(3.8) 0 �= 1.
(3.9) ∀x(x �= 0 → ∃y(x · y = 1)).

The theory of algebraically closed fields, denoted by ACF , has in addition to the
axioms of fields, for each n ≥ 1 the following axiom:

(3.10) ∀x0 . . . ∀xn(xn �= 0 → ∃xn+1(x0 + x1 · xn+1 + · · · + xn · xnn+1 = 0).

The theory of fields of characteristic p, p a prime, in addition to field axioms, has
the following axiom:

(3.11) p = 0,

where n denotes the term
1 + · · · + 1
︸ ︷︷ ︸

n times

,

n > 1.
The theory of fields of characteristic 0 in addition to the field axioms has the

axiom:

(3.12) n �= 0,

for each n > 1. The theory of algebraically closed fields of characteristic p, p a
prime, will be denoted by ACF(p) and that of characteristic 0 by ACF(0).

A field F of characteristic 0 is called a differential field if there is a unary function
δ satisfying the following axioms:

(3.13) δ(x + y) = δ(x) + δ(y).
(3.14) δ(x · y) = δ(x) · y + x · δ(y).

The function δ is called a derivation. Since this theory has no relation symbol
(except, of course, equality), its atomic formulas are polynomial expressions in pow-
ers of δ. We call a differential field F differentially closed if whenever a conjunction
of finitely many literals with parameters in F has a solution in an extension of F, it
has a solution in F. We shall not prove here that the class of all differentially closed
fields is elementary.

A fieldF is called ordered if in addition it is equippedwith a linear order<making
it into an ordered ring.

The theory of ordered fields is denoted by OF . A field F is called orderable if
there is a linear order < on F making it into an ordered field.

The theory of real closed fields has two equivalent definitions.
(i) It is a field satisfying the following additional axioms:

(3.15) ∀x∃y(x = y2 ∨ x + y2 = 0).
(3.16) For every n ≥ 1,

∀x1 . . . ∀xn(1 + x21 + · · · + x2n �= 0).
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(3.17) For every odd n ≥ 1,

∀x0 . . . ∀xn(xn �= 0 → ∃xn+1(x0 + x1 · xn+1 + · · · + xn · xnn+1 = 0).

(ii) Equivalently, a real closed field is an ordered field that satisfies axioms (3.15)
and (3.17).

The theory without order relation and having (3.15)–(3.17) as additional axioms
will be denoted by RCF and that with order relation will be denoted by RCOF .
The field of real numbers and that of real algebraic numbers are models of RCF and
of RCOF .

Exercise 1.3.11 Show that every algebraically closed field is infinite.

Exercise 1.3.12 Let F be an orderable field. Show the following.

1. There does not exist x1, . . . , xn such that −1 = x21 + · · · + x2n .
2.

∑n
i=1 x

2
i = 0 → ∧n

i=1(xi = 0).

Exercise 1.3.13 Show that an algebraically closed field is not orderable. Also show
that no finite field is orderable

Example 1.3.14 Let (F, 0, 1,+′, ·) be a field. The theory of vector spaces over F
is an extension of the theory of abelian groups with an additional unary function
symbol r · for each r ∈ F, and the following additional axioms:

(4.1) ∀x(1 · x = x),
(4.2) ∀x∀y(r · (x + y) = r · x + r · y),
(4.3) ∀x((r +′ s) · x = r · x + s · x),
(4.4) ∀x(r · (s · x) = (r · s) · x),

where r, s ∈ F.
It is easily seen that the class of left R-modules, R a commutative ring with

identity, is elementary.

Exercise 1.3.15 Show that the class of torsion-free divisible abelian groups is pre-
cisely the class of all vector spaces over the field of rational numbers Q.

Example 1.3.16 Let G be a group. A G-space is a set X with a map · : G × X → X
(we shall write g · x for ·(g, x)) satisfying the following axioms:

(5.1) ∀x(e · x = x), where e ∈ G is the identity element of G.
(5.2) For every g, h ∈ G, g · (h · x) = (gh) · x .

In this case, we say that G acts on X and the map · : G × X → X the action of
G on X . Clearly, the class of all G-spaces is elementary. The action is called free if
for all g �= e, g · x �= x for all x . For each x ∈ X , {g · x : g ∈ G} is called the orbit
of x . Note that orbits partition X . We denote the space of all orbits by X/G.
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Example 1.3.17 The signature for Peano Arithmetic P A contains a constant symbol
0, a unary function symbol S (which designates the successor function), two binary
function symbols + and ·, and a binary relation symbol <. Its axioms are:

(6.1) ∀x(¬(Sx = 0)).
(6.2) ∀x∀y(Sx = Sy → x = y).
(6.3) ∀x(x + 0 = x).
(6.4) ∀x∀y(x + Sy = S(x + y)).
(6.5) ∀x(x · 0 = 0).
(6.6) ∀x∀y(x · Sy = (x · y) + x).
(6.7) ∀x(¬(x < 0)).
(6.8) ∀x∀y(x < Sy ↔ (x < y ∨ x = y).
(6.9) For every formula ϕ[x], the formula

ϕ[0] → ∀x(ϕ → ϕ[Sx]) → ∀xϕ.

Example 1.3.18 The language for the theory of (undirected) graphs has a binary
relation symbol E and following axioms:

(7.1) ∀x¬E(x, x).
(7.2) ∀x∀y(E(x, y) → E(y, x)).

A random graph is a graph with following axioms:

(7.3) ∃x∃y(x �= y)
(7.4) For every n ≥ 1,

∀x∀y(∧i<n ∧ j<n (xi �= y j ) → ∃z(∧i<n E(xi , z) ∧ j<n ¬(E(y j , z) ∧ z �= y j )).

Note that random graphs are all infinite.
An L-structure where L has only a binary relation symbol E is called a directed

graph. A directed graph with no loop and no cycle is called a tree. So its axioms are

(7.5) ∀x¬E(x, x).
(7.6) For every n > 1,

¬∃x(x0 = xn−1 ∧ ∧i<n−1E(xi , xi+1)).

Exercise 1.3.19 Show that the class of all bipartite graphs is elementary.

Exercise 1.3.20 Show that the class of all infinite sets is elementary.

1.4 Homomorphism

Let M and N be L-structures. A homomorphism from M to N is a map h : M → N
satisfying the following conditions:
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1. For every constant c, h(cM) = cN .
2. For every n-ary function symbol f and every a ∈ Mn , h( f M(a)) = f N (h(a)).
3. For every n-ary relation symbol p and every a ∈ Mn ,

M |= p[a] ⇒ N |= p[h(a)],

i.e.
pM(a) ⇒ pN (h(a)).

For any M , idM will denote the identity morphism on M . If M1, M2 and M3

are L-structures and h1 : M1 → M2 and h2 : M2 → M3 are homomorphisms, then
their composition h2 ◦ h1 : M1 → M3 is a homomorphism. Thus, it is easy to see
that the class of all L-structures and homomorphisms form a category under the
composition. If a homomorphism is one-to-one, it is called a monomorphism and it
is called an epimorphism if it is surjective. A homomorphism f : M → M is called
an endomorphism of M . End(M) will denote the set of all endomorphisms of M .

Proposition 1.4.1 Let M and N be L-structures and h : M → N a homomor-
phism. Suppose f and p are k-ary function and relation symbols respectively and
t[x0, . . . , xn−1], t0[x0, . . . , xn−1], . . . , tk−1[x0, . . . , xn−1]are L-terms. Then for every
a ∈ Mn,

(a) h(t M [a]) = t N [h(a)].
(b) M |= p[t M0 [a], . . . , t Mk−1[a]] ⇒ N |= p[t N0 [h(a)], . . . , t Nk−1[h(a)]].
Proof (a) is proved by induction on the length |t | of t . (b) is straightforward from
(a). �

Exercise 1.4.2 1. Let M, N be L-structures and f, g : M → N homomorphisms.
Show that {a ∈ M : f (a) = g(a)} is a substructure of M .

2. Let M be an L-structure and X ⊂ M .

(a) Show that there is a smallest substructure of M containing X .
(b) We say that X is a generator ofM ifM is the only substructure ofM contain-

ing X . Let N be another L-structure and f, g : M → N homomorphisms
such that f |X = g|X . Show that f = g.

1.5 Embedding

A homomorphism h : M → N is called an embedding if instead of condition (3) of
the definition of homomorphism in Sect. 1.4, the following condition is satisfied:

(4) For every n-ary relation symbol p and every a ∈ Mn ,

M |= p[a] ⇔ N |= p[h(a)].
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Since = is a relation symbol, an embedding is one-to-one. However, a one-to-one
homomorphism need not be an embedding.

Example 1.5.1 Let the signature of L have only a binary relation symbol ≤. Take
M = N = {0, 1}. Define

x ≤M y ⇔ x = y

and
x ≤N y ⇔ (x = y) ∨ (x = 0 ∧ y = 1).

Then the identity map from M to N is a bijective homomorphism but not an embed-
ding.

Example 1.5.2 If M is a substructure of N , then the inclusion map i : M ↪→ N is
an embedding.

Example 1.5.3 Fromstandard algebra argument,weknow that substructures of fields
are precisely integral domains. Indeed, every integral domain D is embedded into
its quotient field Q(D).

Example 1.5.4 Every countable linearly ordered set (M,<) is embeddable in the
set of all rational numbers Q with usual order. Enumerate M = {a0, a1, a2, . . .}.
Set h(a0) = 0. Suppose for n ≥ 1, we have defined an order-preserving map h :
{a0, . . . , an−1} → Q. If an < ai for all i < n, define h(an) to be any rational number
less than every h(a0), . . . , h(an−1). On the other hand, if an > ai for all i < n, define
h(an) to be any rational number greater than every h(a0), . . . , h(an−1). Otherwise,
there exist ai < a j , i, j < n, such that ai < an < a j and for no k < n, ai < ak < a j .
Then we define h(an) to be any rational number r such that h(ai ) < r < h(a j ).
Inductively, we have thus defined an embedding h : M → Q.

Example 1.5.5 Let H be a torsion-free abelian group. Then there is a torsion-free,
divisible abelian group G and an embedding α : H → G such that for every torsion-
free, divisible abelian group G ′ and every embedding β : H → G ′, there is a unique
embedding γ : G → G ′ such that β = γ ◦ α.

To see this, set
E = {(h, n) : h ∈ H, n > 0}.

Define an equivalence relation ∼ on E by

(h, n) ∼ (h′, n′) ⇔ n′h = nh′.

Let h
n denote the equivalence class containing (h, n) ∈ E and set

G = E/ ∼ = {h
n

: (h, n) ∈ E},
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the quotient space,

0 = 0

1
,

h

n
+ h′

n′ = n′h + nh′

nn′ ,

h

n
− h′

n′ = n′h − nh′

nn′

and

α(h) = h

1
, h ∈ H.

These are well defined. Note that m x
mn = x

n . It is fairly easy to see that these make
G into a torsion-free divisible abelian group with α : H → G an embedding.

Now given a torsion-free, divisible abelian group G ′ and an embedding β :
H → G ′, define γ : G → G ′ by

γ(
h

n
) = β(h)

n
,

h

n
∈ G,

where β(h)

n is the unique element g of G ′ such that ng′ = β(h).
The groupG obtained above is unique upto isomorphism and is called the divisible

hull of H .

Example 1.5.6 Let H be an ordered abelian group. Then there is a divisible, ordered,
abelian groupG and an embeddingα : H → G such that for every divisible, ordered,
abelian group G ′ and every embedding β : H → G ′, there is a unique embedding
γ : G → G ′ such that β = γ ◦ α.

Let < denote the ordering on H . Every ordered abelian group is torsion-free. We
proceed as in the last example, and define

h

n
<

h′

n′ ⇔ n′h < nh′.

The ordered abelian group G thus defined is unique upto isomorphism and is called
the ordered divisible hull of H .

Example 1.5.7 Let D be an ordered integral domain and K its quotient field. Every
element of K can be expressed in the form c

d ∈ K with d > 0 For a
b ,

c
d ∈ K with

b, d > 0, define
a

b
<

c

d
⇔ a · d < b · c,

and
α(a) = a

1
, a ∈ D.
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This makes the quotient field K into an ordered field with α : D → K an (order-
preserving) embedding. Further, for every ordered field F and every order-preserving
embedding β : D → F, there is a unique order-preserving embedding γ : K → F

such that γ ◦ α = β.

Proposition 1.5.8 Let M, N be L-structures. Then a map h : M → N is an embed-
ding if and only if for every open formula ϕ[x0, . . . , xn−1] and every a ∈ M,

M |= ϕ[a] ⇔ N |= ϕ[h(a)]. (∗)

Proof We first prove the if part. For any constant symbol c, M |= cM = c. Hence,
by (∗), N |= h(cM) = c, i.e. h(cM) = cN .

Now let f be an n-ary function symbol, a ∈ M and b = f M(a). Since y =
f x0 . . . xn−1 is an open formula and M |= b = f (a), by (∗), N |= h(b) = f (h(a)),
i.e. h(b) = f N (h(a)).

For a n-ary relation symbol p, p[x0 . . . xn−1] is an open formula. Clearly for every
a ∈ M ,

M |= p[a] ⇔ N |= p[h(a)]

is a special case of (∗). Thus, if part is proved.
Only if part follows because

{ϕ[x0, . . . , xn−1] : ∀a ∈ M(M |= ϕ[a] ⇔ N |= ϕ[h(a)])}

contains all atomic formulas and is closed under ¬ and ∨. �

Exercise 1.5.9 Let M , N be L-structures and f : M → N an embedding. Show the
following:

1. For every existential formula ϕ[x] and every a ∈ M ,

M |= ϕ[a] ⇒ N |= ϕ[ f (a)].

2. For every universal formula ϕ[x] and every a ∈ M ,

N |= ϕ[ f (a)] ⇒ M |= ϕ[a].

Exercise 1.5.10 Let T be a theory and ϕ[x] a formula. Assume that there is a
universal formula ψ[x] such that ϕ ≡T ψ. Show that whenever M, N |= T , N � M
and a ∈ N , M |= ϕ[a] ⇒ N |= ϕ[a].
Exercise 1.5.11 A substructure N of an L-structure M is called existentially closed
in M if whenever an existential LN -sentence ∃xϕ[x] is true in M , it is true in N . Let
M |= T . Show the following:
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1. Every substructure of M is a model of T∀.
2. Every extension of M is a model of T∃.
3. Every existentially closed substructure of a model of T is a model of T∀∃.

Let (I,≤) be a linearly ordered set and {Mi : i ∈ I } a family of L-structures such
that i < j ⇒ Mi � Mj . Such a family {Mi : i ∈ I } is called a chain of L-structures.
Set M = ∪i∈I Mi .

* We put cM = cMi for some i ∈ I where c is a constant symbol.
* If a ∈ Mn , then a ∈ Mn

i for some i ∈ I . Let f be a n-ary function symbol and
p a n-ary relation symbol. We define

f M(a) = f Mi (a) & pM(a) ⇔ pMi (a).

These are well defined and make M into an L-structure such that Mi � M for
each i ∈ I . The structure M so defined is called the union of {Mi : i ∈ I }.
Proposition 1.5.12 Let T be a ∀∃ theory. Then the union of a chain of models of T
is a model of T .

Proof Let {Mi : i ∈ I } be a chain of models of T and M = ∪i Mi . Take an axiom
∀x∃yϕ[x, y], ϕ open, of T and a ∈ M . Then a ∈ Mi for some i ∈ I . Since Mi |= T ,
Mi |= ϕ[a, b] for some b ∈ Mi ⊂ M . Since Mi � M , M |= ϕ[a, b]. �

The converse of this result is true and will be proved in Corollary 2.4.6.
A theory T is called inductive if the union of a chain of models of T is a model

of T .
If M is an L-structure, then the atomic diagram of M , denoted by Diag(M), is

{p[a] : M |= p[a], p a relation symbol

∪{¬p[a] : M �|= p[a], p a relation symbol}.

Theorem 1.5.13 (Atomic Diagram Theorem.) Let M be an L-structure. Then N |=
Diag(M) if and only if there is an embedding h : M → N.

Proof Let N |= Diag(M). Define h : M → N by

h(a) = aN , a ∈ M.

Then for every atomic formula p[x0 . . . xn−1] and every a ∈ M ,

M |= p[a] ⇔ N |= p[h(a)].

By the arguments contained in the proof of Proposition 1.5.8, this implies that h is
an embedding.

http://dx.doi.org/10.1007/978-981-10-5098-5_2
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Conversely, let h : M → N be an embedding. To avoid ambiguity, let ia stand
for the constant symbol a in LM , a ∈ M . Set ϕ[x] to be the atomic formula ia = x .
Then M |= ϕ[a]. Since h is an embedding, N |= ϕ[h(a)]. Hence, aN = h(a). Using
once again the fact that h is an embedding, we have N |= Diag(M). �

1.6 Isomorphism and Categoricity of Theories

Let M, N be L-structures. An isomorphism h : M → N is an embedding which
is also a bijection. Two L-structures M and N are called isomorphic if there is
an isomorphism h : M → N . It is easily seen that the inverse of an isomorphism
and the composition of two isomorphisms are isomorphisms. If h : M → N is an
embedding, then h(M) is a substructure of N isomorphic to M .

We write M ≡ N if there is an isomorphism from M to N . It is easily seen that ≡
is an equivalence relation on the class of all L-structures. Sometimes we shall write
h : M ≡ N to say that h is an isomorphism from M onto N .

An isomorphism h : M → M is called an automorphism of M . The set of all
automorphisms of M is denoted by Aut (M). It forms a group under composition.
The group Aut (M) acts on M canonically by

σ · x = σ(x), x ∈ M,σ ∈ Aut (M).

Also, note that for each n ≥ 1, Aut (M) acts on Mn by

g · a = g(a), g ∈ Aut (M), a ∈ Mn.

For A ⊂ M , we define

AutA(M) = {σ ∈ Aut (M) : ∀x ∈ A(σ(x) = x)}.

So, AutA(M) is the subgroup of pointwise stabilisers of A. Elements of AutA(M)

are called automorphisms of M over A. Further, we define

Aut(A)(M) = {σ ∈ Aut (M) : σ(A) = A},

the subgroup of setwise stabilisers or simply stabilisers of A.
If K is a field and L a subfield, then Aut (K)L is generally denoted by G(K,L).

It is called the Galois group of K over L.

Proposition 1.6.1 Let M, N be L-structures and h : M → N an isomorphism. Then
for every formula ϕ[x0, . . . , xn−1] and every a ∈ M,

M |= ϕ[a] ⇔ N |= ϕ[h(a)]. (∗)
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Proof Set

� = {ϕ[x0, . . . , xn−1] : ∀a ∈ M(M |= ϕ[a] ⇔ N |= ϕ[h(a)])}.

Clearly � contains all atomic formula ϕ[x] and is closed under negation and dis-
junction. Therefore, it is sufficient to show that whenever ϕ[x, x0, . . . , xn−1] ∈ �,
so is ∃xϕ. Take any a ∈ Mn . Then

M |= ∃xϕ[x, a] ⇔ M |= ϕ[a, a] for some a ∈ M
⇔ N |= ϕ[h(a), h(a)]
⇔ N |= ϕ[b, h(a)] for some b ∈ N
⇔ N |= ∃xϕ[x, h(a)]

Second equivalence holds by our assumption and third equivalence holds because h
is a surjection. The proof is complete now. �

Let κ ≥ ℵ0 be a cardinal number. A theory T is called κ-categorical if any two
models of T of cardinality κ are isomorphic.

Example 1.6.2 The theory of infinite sets is κ-categorical for every infinite cardinal
κ.

Example 1.6.3 For every κ > ℵ0, DAG is κ-categorical.

Proof Let G1,G2 |= DAG, |G1| = |G2| > ℵ0. Then G1, G2 are vector spaces over
Q of the same dimension. Hence, they are isomorphic as vector spaces. In particular,
they are isomorphic as models of DAG.

Exercise 1.6.4 Let G be a group of cardinality ≤ κ. Show that the theory of free
G-spaces is λ-categorical for all λ > max{ℵ0,κ}.
Exercise 1.6.5 Show that DAG has exactly ℵ0-many pairwise non-isomorphic
countable models such that any other countable model of DAG is isomorphic to
one of them.

Example 1.6.6 For every κ > ℵ0, ACF(p), p = 0 or prime, is κ-categorical.

Proof Note that if F is an algebraically closed field and |F| = κ > ℵ0, then F is of
transcendence degree κ. Our claim follows from the fact that any two algebraically
closed fields of the same characteristic and same transcendence degree are isomor-
phic. See [31, Chap. VIII, Sect. 1] for relevant definitions and result. �

Example 1.6.7 DLO is ℵ0-categorical.

Proof LetQ1,Q2 |= DLO be countable. EnumerateQ1 = {rn} andQ2 = {sm}. Set
n0 = 0 and m0 = 0. Suppose for some i , n0, . . . , n2i and m0, . . . ,m2i have been
defined so that the map f defined by
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f (rn j ) = sm j , 0 ≤ j ≤ 2i,

is injective and order-preserving.
Now let m2i+1 be the first natural number k such that sk is different from each of

sm j , j ≤ 2i . Since Q1 |= DLO , there is a natural number l such that rl is different
fromeach of rn j , j ≤ 2i and the extension of f sending rl to sm2i+1 is order-preserving.
Set n2i+1 to be the first such l. Then the map f (rn j ) = sm j , j ≤ 2i + 1, is injective
and order-preserving.

Now define n2i+2 to be the first natural number l such that rl is different from
each of rn j , j ≤ 2i + 1. Again observe that there is a natural number k such that
sk is different from each of sm j , j ≤ 2i + 1, and the extension of the above map by
defining f (rn2i+2) = sk is order-preserving. Set s2i+2 to be the least such k. It is easily
checked that f : Q1 → Q2 thus defined is an isomorphism �

Exercise 1.6.8 Show that DLO is not κ-categorical for any κ > ℵ0.

Remark 1.6.9 Using compactness theorem (whichwill be proved in thenext section),
it will be easy to show that for every infinite cardinal κ, there is an abelian group
G1 and a non-abelian group G2 such that |G1| = |G2| = κ. It follows that the theory
of groups is not κ-categorical for any infinite cardinal κ. Thus, so far we have seen
examples of the following possibilities for a theory T :

1. T is κ-categorical for all κ ≥ ℵ0.
2. T is κ-categorical for no κ ≥ ℵ0.
3. T is ℵ0-categorical but not κ-categorical for any κ > ℵ0.
4. T is not ℵ0-categorical but is κ-categorical for all κ > ℵ0.

Łos conjectured that these are all the possibilities, i.e. if T is κ-categorical for
someκ > ℵ0, it isλ-categorical for allλ > ℵ0. In a remarkable contribution tomodel
theory,Morley [43] proved the conjecture of Łos. This paper ofMorley contains some
of themost significant concepts ofmodel theory and heralded a new era in the subject.
We shall prove Morley’s theorem later in the book.

Remark 1.6.10 The argument contained in the last proof, known as back and forth
argument, is very useful in model theory. We shall prove many results using this
technique.

Exercise 1.6.11 Let M, N |= DLO , |M | = |N | = ℵ0, A ⊂ M finite and f :
A → N an order-preserving injection. Then there is an isomorphism g : M → N
extending f .

Exercise 1.6.12 Consider the ordered space Q of rational numbers. Show that for
each n ≥ 1, the number of orbits in Qn under the action of Aut (Q) is finite.

Example 1.6.13 The theory of random graphs is ℵ0-categorical.
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Proof The proof uses the back and forth argument as in the case of the last Exam-
ple 1.6.7. Let G1 = (V1, E1) and G2 = (V2, E2) be two countable random graphs.
Enumerate V1 = {ai : i ∈ ω} and V2 = {bi : i ∈ ω}. We define a sequence of partial,
one-to-one finite functions { fn : n ∈ ω} from V1 into V2 satisfying the following
conditions:

1. f0(a0) = b0.
2. ai ∈ domain( f2i ), i ∈ ω.
3. bi ∈ range( f2i+1), i ∈ ω.
4. n < m ⇒ fn ⊂ fm .
5. For every n ∈ ω and every a, a′ ∈ domain( fn), (a, a′) ∈ E1 ⇔ ( fn(a), fn(a′))

∈ E2.

This will complete the proof because then ∪n fn : V1 → V2 will be an isomorphism.
Suppose i ∈ ω and f2i have been defined. If bi ∈ range( f2i ), take f2i+1 = f2i .

Otherwise, set g = f −1
2i ,

X = {g(b j ) : b j ∈ domain(g) ∧ (bi , b j ) ∈ E2}

and
Y = {g(b j ) : b j ∈ domain(g) ∧ (bi , b j ) /∈ E2}.

Since V1 is a random graph, there is a ak ∈ V1 \ (X ∪ Y ) such that (a j , ak) ∈ E1

whenever a j ∈ X and (a j , ak) /∈ E1 for all a j ∈ Y . Set h = g ∪ {(bi , ak)} and take
f2i+1 = h−1.
Suppose i ∈ ω and f2i+1 has been defined. If ai+1 ∈ domain( f2i+1), take f2i+2 =

f2i+1. Otherwise, set

X = { f2i+1(a j ) : a j ∈ domain( f2i+1) ∧ (ai+1, a j ) ∈ E1}

and
Y = { f2i+1(a j ) : a j ∈ domain( f2i+1) ∧ (ai , a j ) /∈ E1}.

Clearly, X and Y are finite disjoint subsets of V2. Since V2 is a random graph, there
is a bk ∈ V2 \ (X ∪ Y ) such that (b j , bk) ∈ E2 whenever b j ∈ X and (b j , bk) /∈ E2

for all b j ∈ Y . Take f2i+2 = f2i+1 ∪ {(ai+1, bk)}. �
For the following exercise, see [58] for relevant definitions and results.

Exercise 1.6.14 Let M be an L-structure. Equip MM with the product of discrete
topologies on M and Aut (M) ⊂ MM with the subspace topology. So, basic open
sets of Aut (M) are of the form

�(a, b) = { f ∈ Aut (M) : f (a) = b},

where a, b ∈ Mn , n ≥ 1. Note that for any a ∈ M , Auta(M) = �(a, a). Show the
following:
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1. Show that H ⊂ Aut (M) is closed if and only if every g ∈ Aut (M) such that for
every finite tuple a in M there is a h ∈ H with h(a) = g(a) belongs to H .

2. For A ⊂ M , AutA(M) is a closed set in Aut (M). In particular, Galois groups of
a field K over its subfields are closed in Aut (K).

3. Aut (M) is a topological group.
4. A subgroup G of Aut (M) is open if and only if it contains Auta(M) for some

finite tuple a ∈ M . (Hint: Note that �(a, b) ⊂ G ⇒ �(b, a) ⊂ G.)
5. A subgroup G of Aut (M) is open if and only if it is a union of sets of the form

Auta(M), a a finite tuple of elements in M of fixed length.
6. A subgroup G is dense if and only if for each n ≥ 1 and each a ∈ Mn , the orbits

{g · a : g ∈ G} = {g · a : g ∈ Aut (M)}.

7. IfM and the signature of L are countable, then Aut (M) is aGδ set, i.e. a countable
intersection of open sets, in MM . Conclude that in this case Aut (M) is a Polish
space, i.e. a completely metrisable, second countable space.

1.7 Elementary Embedding

So far nothing significantly different from usual approach to mathematics has been
done. We have formally presented the syntax and semantics of first-order logic fol-
lowed by mathematicians. Notions of homomorphisms, embeddings, isomorphisms
are quite standard. Because logic deals with formulas, we get new and very useful
notion of embedding and equivalence of models which we are going to introduce
now. This can be viewed as the first gift of logic to mathematics. Most of the concepts
introduced in this section are due to Tarski and Vaught [63].

The converse of Proposition 1.6.1 is not true in general. More specifically, let
M, N be L-structures and h : M → N be such that for every L-formula ϕ[x] and
every a ∈ M ,

M |= ϕ[a] ⇔ N |= ϕ[h(a)]. (∗)

Then h is an embedding but may not be surjective. (See Example 1.7.8.)
A map h : M → N satisfying condition (∗) of Proposition 1.6.1 is called an

elementary embedding. A substructure M of N is called an elementary substructure
of N if the inclusion map i : M ↪→ N is elementary. In this case, we also call N
an elementary extension of M and write M � N or N � M . We shall also write
h : M � N if h : M → N is elementary.

Two L-structures M and N are called elementarily equivalent, written M � N ,
if they satisfy the same closed L-formulas. Clearly � is an equivalence relation on
the class of all L-structures. With these definitions we have the following result.

Theorem 1.7.1 A theory T is complete if and only if it is consistent and models of
T are pairwise elementarily equivalent.
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Let M , N be L-structures and there be an elementary embedding from M to
N . Then M � N . Further, M � N implies that for every L-theory T , M |= T ⇔
N |= T .

Proposition 1.7.2 Let T be a complete theory. If T has an infinite model, all its
models are infinite. In fact, if there is a finite model M of T , then for all N |= T ,
|N | = |M |.
Proof Let M |= T and |M | = n. Then M |= ∃=nx(x = x). Since N � M , N |=
∃=nx(x = x), i.e. |N | = n. �

If M is an L-structure, we define the elementary diagram of M by

Diagel(M) = {ϕ : ϕ an LM sentence & M |= ϕ}.

By slightly modifying the proof of atomic diagram theorem 1.5.13, we get

Proposition 1.7.3 N |= Diagel(M) if and only if there is an elementary embedding
h : M → N.

The proof is left to the reader as a simple exercise.

Proposition 1.7.4 (Tarski–Vaught Test) Let M be an L-structure and N a subset
of M. Then N is the universe of an elementary substructure of M if and only if for
every L-formula ϕ[x, x], |x | = 1, and every a ∈ N

M |= ∃xϕ[x, a] ⇒ ∃b ∈ N (M |= ϕ[b, a]) (∗)

Proof If part: We first show that if N satisfies (∗), N is a substructure of M .
Let c be a constant symbol. Then M |= ∃x(x = c). Hence, M |= b = c for some

b ∈ N . So, cM = b ∈ N .
Next let f be a n-ary function symbol and a1, . . . , an ∈ N . Since M |= ∃x(x =

f (a1, . . . , an)), M |= b = f (a1, . . . , an) for some b ∈ N . This implies that
f M(a1, . . . , an) ∈ N . Thus, we can regard N as a substructure of M by taking
pN = pM |N , where p is a relation symbol.

By the given condition,

� = {ϕ[x] : ∀a ∈ N (M |= ϕ[a] ⇔ N |= ϕ[a])}

contains all atomic formula and is closed under¬,∨ and ∃. Hence, N is an elementary
substructure of M .

Only if part: Since N � M ,M |= ∃xϕ[x, a] implies N |= ∃xϕ[x, a].Hence N |=
ϕ[b, a] for some b ∈ N . As N � M , M |= ϕ[b, a]. �

Let (I,≤) be a linearly ordered set and {Mi : i ∈ I } a family of L-structures such
that i < j ⇒ Mi � Mj . Such a family {Mi : i ∈ I } is called an elementary chain of
L-structures.
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Proposition 1.7.5 If {Mi : i ∈ I } is an elementary chain of L-structures, then M =
∪i∈I Mi is an elementary extension of each of Mi .

Proof Let � be

{ϕ[x] : ϕ is an L − formula ∀i ∈ I∀a ∈ Mi (Mi |= ϕ[a] ⇔ M |= ϕ[a])}.

Clearly, � contains all atomic formulas and whenever ϕ,ψ ∈ �, ¬ϕ,ϕ ∨ ψ ∈ �.
Now let ϕ[x, x] ∈ � and a ∈ Mi . Suppose Mi |= ∃xϕ[x, a]. Get a ∈ Mi such

that Mi |= ϕ[a, a]. Then, by induction hypothesis, M |= ϕ[a, a]. Hence, M |=
∃xϕ[x, a].

Next suppose M |= ∃xϕ[x, a]. Then there is a j > i and a ∈ Mj such that M |=
ϕ[a, a]. Hence, by induction hypothesis, Mj |= ϕ[a, a]. Since Mj |= ∃xϕ[x, a] and
Mi � Mj , Mi |= ∃xϕ[x, a]. �

A weaker form of the following result was proved by Löwenheim in [38] and for
countable L and countable X it was Skolem in [56]. In the most general form as
stated below it was proved by Tarski and Vaught in [63].

Theorem 1.7.6 (Downward Löwenheim–Skolem Theorem.) Let M be an
L-structure and X ⊂ M. Then there is an elementary substructure N of M con-
taining X such that |N | ≤ max{|L|, |X |}.
Proof Inductively we define a sequence of {Nk} of subsets of M as follows: N0 = X .
Suppose Nk has beendefined and |Nk | ≤ max{|L|, |X |}. Then the set of LNk -formulas
ϕ[x] is of cardinality ≤ max{|L|, |X |}. Whenever ϕ[x], |x | = 1, is an LNk -formula
and M |= ∃xϕ[x], we choose a bϕ ∈ M such that M |= ϕ[bϕ]. Let Nk+1 consist of
elements of Nk and all these bϕ. Then |Nk+1| ≤ max{|L|, |X |}.

Now take N = ∪k Nk . Then |N | ≤ max{|L|, |X |}. It is routine to check that N is
an elementary substructure of M . �

Corollary 1.7.7 (Skolem)Every countable, consistent theoryhasa countablemodel.

Example 1.7.8 Let T be a countable theory with an uncountable model, say M . For
instance, wemay takeR |= DLO ,R |= ODAG orC |= ACF(0). Since T is count-
able, M has a countable, elementary substructure, say N . Thus, we get an elementary
embedding, namely the inclusion map i : N ↪→ M which is not surjective.

We see that downward Löwenheim–Skolem theorem is a technique to build small
models. In the next chapter, we shall prove so-called upward Löwenheim–Skolem
theorem which will give us a technique to build large models.

A linearly ordered set (A,<) is called complete if every set B ⊂ A which is
bounded above has a least upper bound.

Proposition 1.7.9 (Cantor)Every complete, order dense, linearly ordered set (A,<)

with more than one point is uncountable.
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Proof If possible, suppose A is countable. Since |A| > 1, |A| = ℵ0. Enumerate A =
{an} with a0 < a1. Set x0 = a0 and y0 = a1. Note that x0 < y0. Let x0 < · · · < xn <

yn < · · · < y0 have been defined. Let ln be the first integer such that xn < aln < yn .
Set xn+1 = aln . Now let rn be the first integer such that xn+1 < arn < yn . Set yn+1 =
arn .

Thus, we have defined x0 < x1 < x2 < · · · < y2 < y1 < y0. Since A is complete,
sup{xn} exists in A. But by our construction for no p, xn < ap < yn for all n. This
contradiction completes the proof. �

Corollary 1.7.10 The class of all complete, order dense, linearly ordered sets is not
elementary.

This shows a limitation of expressibility power of first-order languages—“that a
linearly ordered set is complete” is not expressed by any set of first-order sentences
of a first-order language whose signature is countable.

Exercise 1.7.11 Show that the class of all complete ordered fields is not elementary.

Exercise 1.7.12 Let N be an elementary substructure of an L-structure M . Show
that for every g ∈ Aut (M), g(N ) is an elementary substructure of M .

Exercise 1.7.13 Show that if there is an extension M ′ of M in which N is elemen-
tarily embedded, then N is existentially closed in M .

Exercise 1.7.14 Let T be a first-order theory such that every formula is equivalent
in T to an existential formula. Show that every submodel N of a model M of T is
an elementary submodel of M .

Exercise 1.7.15 Let M , N be L-structures and |N | < ℵ0. Show that every elemen-
tary embedding h : N → M is an isomorphism.

Exercise 1.7.16 Let (I,≤) be a directed set. Suppose {Mi : i ∈ I } is a family of L-
structures and whenever i ≤ j , there is a homomorphism f ji : Mi → Mj satisfying
the following properties:

(a) fii is the identity morphism on Mi for each i ∈ I , and
(b) i ≤ j ≤ k ⇒ fk j ◦ f ji = fki .

We call ({Mi : i ∈ I }, { f ji : i ≤ j}) a direct system of L-structures. The direct
limit of this system consists of an L-structureM and for each i ∈ I , a homomorphism
fi : Mi → M satisfying the following conditions:

(c) i ≤ j ⇒ f j ◦ f ji = fi , and
(d) Whenever N is an L-structure and gi : Mi → N , i ∈ I , a homomorphism such

that i ≤ j ⇒ g j ◦ f ji = gi , there is a unique homomorphism g : M → N with
g ◦ fi = gi for all i ∈ I .
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(i) Show that if (M, { fi : Mi → M}) and (N , {gi : Mi → N }) are direct limits of
({Mi : i ∈ I }, { f ji : i ≤ j}), then there is a unique isomorphism h : M → N
such that gi = h ◦ fi for each i ∈ I .
To show the existence of the direct limit of ({Mi : i ∈ I }, { f ji : i < j}), set M ′
to be the disjoint sum of {Mi : i ∈ I }. (Note that, without any loss of generality,
we can assume thatMi ’s are pairwise disjoint.) Forai ∈ Mi anda j ∈ Mj , define

ai ∼ a j ⇔ ∃k ≥ i, j ( fki (ai ) = fk j (a j )).

(ii) Show that ∼ is an equivalence relation on M ′.
Let M = M ′/ ∼ denote the set of all ∼-equivalence classes, q : M ′ → M the
quotient map and fi = q|Mi , i ∈ I .

(iii) If c is a constant symbol, show that cMi ∼ cMj for all i, j ∈ I .
(iv) For any constant symbol c, define cM = q(cMi ) for any i ∈ I .
(v) Given (a1, . . . , an) ∈ M ′, show that there is an i ∈ I and (b1, . . . , bn) ∈ Mi

such that al ∼ bl for all 1 ≤ l ≤ n.
If f is a n-ary function symbol and p a n-ary relation symbol, define

f M(q(a1), . . . , q(an)) = q( f Mi (b1, . . . , bn))

and
pM(q(a1), . . . , q(an)) ⇔ pMi (b1, . . . , bn),

where (b1, . . . , bn) are as in (v).
(vi) Show that these are well defined and makes M into an L-structure so that

(M, { fi : Mi → M}) is the direct limit of ({Mi : i ∈ I }, { f ji : i ≤ j}).
(vii) Show that if each f ji is an embedding, so is each fi , and if each f ji is an

epimorphism, so is each fi .
(ix) If each f ji is elementary, each fi is elementary. Further, in (d) above if each

gi is elementary, the unique g : M → N satisfying g ◦ fi = gi for all i ∈ I is
elementary.

(x) Assume that T is a ∀∃ theory, each Mi |= T and each fi j is an embedding.
Show that M |= T .

1.8 Skolemization of a Theory

The main idea contained in this section was initiated by Skolem in [55].
A theory T is called a Skolem theory or that it has built in Skolem functions if for

every formula ϕ[x, y1, . . . , yn], T has a n-ary function symbol f such that

T |= ∀y(∃xϕ[x, y] → ϕ[ f (y), y]).
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Theorem 1.8.1 Every theory T can be extended to a theory T+ such that

1. T+ has built in Skolem functions.
2. |L(T+)| = |L(T )|.
3. Any model M of T can be expanded to be a model of T+.

Proof Set T0 = T and M0 = M . Having defined Ti and Mi , let Ti+1 be the extension
of Ti obtained as follows: For each formula ϕ[x, y1, . . . , yn] of Ti , introduce a new
n-ary function symbol fϕ and an axiom

∀y(∃xϕ[x, y] → ϕ[ fϕ(y), y]).

We call functions fϕ Skolem functions.
For any formulaϕ[x, y] and any a ∈ Mi , ifMi |= ∃xϕ[x, a], define f Mi+1

ϕ (a) = b
such that Mi |= ϕ[b, a]. Otherwise, define f Mi+1

ϕ (a) ∈ Mi arbitrarily. Note that the
universe of Mi+1 remains M0 = M . We have expanded Mi to a model Mi+1 of Ti+1

by giving interpretations of new function symbols.
Now set T+ = ∪i Ti andM+ = ∪i Mi . It is easily checked that (1)–(3) are satisfied.

�
We say that T has definable Skolem functions if for every formula ϕ[x, y] there is a
formula ψ[x, y] such that

T |= ∀y(∃=1xψ[x, y] ∧ (∃xϕ[x, y] → ∀x(ψ[x, y] → ϕ[x, y]))).

In this case, we can introduce a new function symbol fϕ that picks up a x such that
ψ[x, y], i.e. we introduce an axiom

x = fϕ[y] ↔ ψ[x, y].

Take an L-theory T with built in Skolem functions. Let M |= T and X ⊂ M . We
define

H(X) = {t M [a] : a ∈ X, t[v] an L-term}.

We call H(X) the Skolem hull of X . We now get a differently worded proof of
downward Löwenheim–Skolem Theorem.

Theorem 1.8.2 H(X) is an elementary substructure of M containing X and
|H(X)| ≤ max{|X |, |L|}.
Proof Take an L-formula ϕ[x, y]. Since T has built in Skolem functions, there is a
n-ary function symbol f such that

T |= ∀y(∃xϕ[x, y] → ϕ[ f (y), y]).
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Let b ∈ H(X). Then a = f M(b) ∈ H(X). Further,

M |= ∃xϕ[x, b] ⇒ M |= ϕ[a, b].

The result now follows from Proposition 1.7.4. �

An L-structure A is said to have definable Skolem functions if Th(A) has definable
Skolem functions. This is the same as saying that for every L-formula ϕ[x, y] there
is an L-formula ψ[x, y] such that

A |= ∀y(∃=1xψ[x, y] ∧ (∃xϕ[x, y] → ∀x(ψ[x, y] → ϕ[x, y]))).

Example 1.8.3 Let T be the Peano Arithmetic PA. Given any formula ϕ[x, y], let
ψ[x, y] be the formula

(∀z¬ϕ[z, y] ∧ x = 0) ∨ (ϕ[x, y] ∧ ∀z(z < x → ¬ϕ[z, y])).

Then

PA |= ∀y(∃=1xψ[x, y] ∧ (∃xϕ[x, y] → ∀x(ψ[x, y] → ϕ[x, y]))).

Thus, PA has definable Skolem functions.

Exercise 1.8.4 If T is a Skolem theory, show that for every formula ϕ[x] there is
an open formula ψ[x] such that

T |= ∀x(ϕ[x] ↔ ψ[x]).

Exercise 1.8.5 Let T be a Skolem theory and M, N |= T . Show that M � N ⇒
M � N .

Exercise 1.8.6 Show that the ring of integers Z has definable Skolem functions.
(Hint Use Lagrange’s theorem: Every nonnegative integer is a sum of squares of four
integers.)

1.9 Definability

Let M be an L-structure. A subset X ⊂ Mn is called definable if there is an LM -
formula ϕ[x] such that

X = {a ∈ M : M |= ϕ[a]}.

The set X defined byϕ[x]will be denoted byϕ(M).Moreover, ifϕ is an LA-formula,
A ⊂ M , we call X A-definable. Note that if X is A-definable, there is a finite B ⊂ A
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such that X is B-definable. We call f : Mn → Mm A-definable, A ⊂ M , if its graph
is A-definable.

Example 1.9.1 The set of all nonnegative real numbers is an ∅-definable subset of
the field R. It is defined by the formula ∃y(x = y2).

Example 1.9.2 For every a ∈ Mn , the singleton {a} is definable. It is defined by the
LM -formula ∧i<n(xi = ai ).

Remark 1.9.3 It is important to note that the notion of definability is very much
dependent on the language. For instance, there are at most continuummany definable
subsets of the fieldR. Let X ⊂ R be not definable in the language of rings. Introduce
a new unary relation symbol p to the language of rings and interpret pR = X . Then
X is defined by the formula p[x] in the new language.

A family C of subsets of Mn , n ≥ 1, is called a pointclass. Using the fact that the
set of all L-formulas is the smallest set of expressions containing all atomic formulas
and closed under ¬, ∨ and ∃, the reader can easily prove the following result.

Theorem 1.9.4 Let M be an L-structure. The pointclass of all definable sets in M
is the smallest pointclass D satisfying the following conditions:

1. If ϕ[x] is an atomic formula, then the set

{a ∈ M : M |= ϕ[a]} ∈ D.

2. If A, B ⊂ Mn are in D, so are A ∪ B and Mn \ A.
3. If A ⊂ Mn+1 is in D, so is its projection

π(A) = {a ∈ Mn : ∃a ∈ M((a, a) ∈ A)}.

4. If A ⊂ Mn+m is in D and b ∈ Mm, the section

Ab = {a ∈ Mn : (a, b) ∈ A} ∈ D.

Exercise 1.9.5 Show that the pointclass D of definable sets in M is closed under
finite unions, finite intersections and under substitutions by definable functions, i.e.
if A ⊂ Mn is in D and f1, . . . , fn : Mm → M are definable, so is the set B ⊂ Mm

defined by
a ∈ B ⇔ ( f1(a), . . . , fn(a)) ∈ A.

In particular, if A is definable, so is M × A.

Exercise 1.9.6 Show that if A ⊂ Mn+1 is definable, so is its co-projection B ⊂ Mn

defined by
a ∈ B ⇔ ∀a ∈ M((a, a) ∈ A).
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Exercise 1.9.7 Show that f = ( f1, . . . , fl) : Mk → Ml is definable if and only if
each of f1, . . . , fl is definable.

Exercise 1.9.8 Show that if f : Mk → Ml and g : Ml → Mm are definable, so is
their composition g ◦ f : Mk → Mm .

Exercise 1.9.9 Let D ⊂ Rn be definable. Show that its closure D with respect to
the usual topology is definable in the language of ordered fields.

Exercise 1.9.10 LetK be a field and Mm×n(K) denote the set of all m × n matrices
over K. We identify Mm×n(K) with Kmn in a canonical way. We shall follow usual
convention and write Mn(K) in place of Mn×n(K). Show the following:

1. The determinant function A → |A|, A ∈ Mn(K) is ∅-definable.
2. The set of all n × n non-singular matrices GLn(K) is ∅-definable.
3. The matrix multiplication Mm×n(K) × Mn×k(K) → Mm×k(K) is ∅-definable.
Exercise 1.9.11 If D is the pointclass of all definable sets in M , then show that
|D| ≤ max{|L|, |M |}.
Example 1.9.12 Let F be a field and R = F[X1, . . . , Xn] the ring of polynomials
overF. We regardF as the set of all polynomials of degree 0. ThenF is an ∅-definable
subset of the ring R. It is defined by

x ∈ F ⇔ x = 0 ∨ ∃y(x · y = 1).

Example 1.9.13 If F is a real closed field, then < on F is definable in the language
of rings. It is defined by

x < y ⇔ ∃z(z �= 0 ∧ y = x + z · z).

Example 1.9.14 It was proved by Lagrange that every positive integer is a sum of
squares of four integers. (See [21, Chap.17, Sect. 7]). From this it follows that N is
an ∅-definable subset of the ring Z:

x ∈ N ⇔ ∃z1∃z2∃z3∃z4(x = z21 + · · · + z24).

Example 1.9.15 LetK be a field. A subset X ofKn is defined by an atomic formula
if and only if it is the set of all zeros of a polynomial f ∈ K[X1, . . . , Xn].
Example 1.9.16 It is known that ifK is an algebraically closed field of characteristic
0, the ring R = K[X1, . . . , Xn]of polynomials overK satisfies Fermat’s last theorem,
i.e. for every k > 2 whenever f, g, h ∈ K[X1, . . . , Xn], f, g, h all nonzero, f k +
gk = hk implies that f, g, h ∈ K [31, Chap. IV, Sect. 7].

IfK is an algebraically closed field of characteristic zero,K is a ∅-definable subset
of the field of rational functions K(X1, . . . , Xn). For instance, it is defined by the
formula

∃y(x3 = 1 + y3).
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Proposition 1.9.17 Let M be an L-structure, A ⊂ M and D ⊂ Mn A-definable.
Then f (D) = D for every f ∈ AutA(M).

Proof Let ϕ[x, a], a ∈ A, define D. For every b ∈ M , we have

b ∈ D ⇔ M |= ϕ[b, a]
⇔ M |= ϕ[ f (b), f (a)]
⇔ M |= ϕ[ f (b), a]
⇔ f (b) ∈ D

The second equivalence holds because f is an automorphism of M . The first and
the last equivalence holds because ϕ[x, a] defines D whereas the third equivalence
holds because f ∈ AutA(M). Our proof is complete. �

For every finite sequence a of complex numbers, there is a real number r and a
complex number s not inR such that there is a field isomorphism f : C → C fixing a
pointwise andmapping r to s: To see this consider the field extensionF = Q(a). Note
thatF is countable. Take a real r transcendental overF and a complex number s which
is not real and transcendental over F. Then there is an isomorphism f : F(r) → F(s)
which fixes F pointwise and for which f (r) = s. Again note that F(r) and F(s) are
countable. Now take transcendence bases {bα : α < c} and {cα : α < c} of C over
F(r) and F(s) respectively. Using standard arguments we can show that there is an
automorphism g of C such that g|F(r) = f and g(bα) = cα for all α < c. This g has
the desired properties.

This observation and Proposition 1.9.17 imply the following:

Example 1.9.18 The set of all real numbers R is not a definable subset of the field
of complex numbers C.

Let M be an L-structure, N � M definable, defined by an LM -formula, say ϕ[x].
For LN -formulas ψ we define its relativisation to N , denoted ψN , by induction on
|ψ| as follows: if ψ is atomic, ψN is ψ,

(¬ψ)N = ¬ψN , (ψ ∨ η)N = ψN ∨ ηN

and
(∃yψ)N = ∃y(ϕ[y] ∧ ψN ).

Proposition 1.9.19 For every LN -formula ψ[x] and every b ∈ N,

N |= ψ[b] ⇔ M |= ψN [b].

Proof We prove the result by induction on the rank of ψ. The result is clearly true
for atomic ψ and it is true for ¬ψ (ψ ∨ η) if it is true for ψ (respectively for ψ and
η).

Now suppose the result is true for ψ[x, x]. Set η[x] = ∃xψ. Take any b ∈ N .
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Suppose M |= ηN [b]. Then there is a b ∈ M such that M |= ϕ[b] as well as
M |= ψN [b, b]. Since ϕ defines N , b ∈ N . By induction hypothesis, N |= ψ[b, b].
Thus, N |= η[b].

Now assume that b ∈ N and N |= η[b]. So, there is a b ∈ N such that N |=
ψ[b, b]. By induction hypothesis, M |= ψN [b, b]. Since ϕ defines N , M |= ϕ[b].
This proves that M |= ηN [b]. �

Remark 1.9.20 In a remarkable result Julia Robinson proved thatN is a ∅-definable
subset of the ordered field Q. This very interesting result is remarkable for many
reasons. First Julia Robinson had to prove a deep result in diophantine number
theory to produce a formula ξ[x] in the language of rings with identity such that
for a rational number q , Q |= ξ[q] if and only if q is a natural number. This result
also implies that the field Q is undecidable [13, 52]. Note that if the signature of
L is finite and N � M definable, then there is an algorithm to compute the function
ψ → ψN defined above. This implies that if M is decidable, then N is decidable.
Equivalently, if N is undecidable, then so is M . The famous first incompleteness
theorem of Gödel states that N is undecidable [59, Theorem 7.2.1]. Undecidability
ofQ follows now. We remark that Tarski showed that R as an ordered field and C as
a field are decidable [62].

1.10 Definable and Algebraic Closures

LetM be an L-structure and A ⊂ M . Elements of the orbit of b ∈ M under the action
of AutA(M), the pointwise stabiliser of A, are called conjugates of b over A.

An element a ∈ M is algebraically definable over A if its orbit under the action of
AutA(M) is a singleton, namely {a}. This is the same as saying that any automorphism
of M that fixes A pointwise, fixes a. We set

DCL(A) = {a ∈ M : a algebraically definable over A}

and call it the definable closure of A in algebraic sense. A set A ⊂ M is called
definably closed in algebraic sense if DCL(A) = A. Elements of DCL(∅) will be
called definable elements of M in algebraic sense.

The following statements are easy to prove.

1. A ⊂ DCL(A).
2. A ⊂ B ⇒ DCL(A) ⊂ DCL(B).
3. DCL(DCL(A)) = DCL(A)

4. B ⊂ DCL(A) ⇒ DCL(B) ⊂ DCL(A).
5. DCL(A) is a substructure of M containing A.

(3) follows from the fact that AutA(M) ⊂ AutB(M), where B = DCL(A).
For every constant symbol c, cM ∈ DCL(∅)(⊂ DCL(A)) because σ(cM) = cM

for every endomorphism σ of M . Let f be an n-ary function symbol and a ∈
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DCL(A). Then for every σ ∈ AutA(M),

σ( f M(a)) = f M(σ(a)) = f M(a).

Hence, DCL(A) is closed under f M for every function symbol f . These observations
imply that DCL(A) is canonically a substructure of M containing A.)

An element a ∈ M is algebraic over A in algebraic sense if it has only finitely
many conjugates over A, i.e. the orbit of a under the action of AutA(M) is finite. We
set

ACL(A) = {a ∈ M : a algebraic in algebraic sense over A}

and call it the algebraic closure of A in algebraic sense. A set A ⊂ M is called
algebraically closed in algebraic sense if ACL(A) = A. Also elements in ACL(∅)

are called algebraic elements of M in algebraic sense. We have

1. A ⊂ DCL(A) ⊂ ACL(A).
2. A ⊂ B ⇒ ACL(A) ⊂ ACL(B).

An LA-formula ϕ[x] will be called a definitional formula if M |= ∃=1xϕ[x]. An
element a ∈ M is definable over A if {a} is A-definable, i.e. there is a definitional
LA-formula ϕ[x] such that M |= ϕ[a]. We set

dcl(A) = {a ∈ M : a definable over A}

and call it the definitional closure of A. A set A ⊂ M is called definably closed if
dcl(A) = A. Elements of dcl(∅) are called definable elements of M .

Proposition 1.10.1 For every A, B ⊂ M,

(i) A ⊂ B ⇒ dcl(A) ⊂ dcl(B).
(ii) A ⊂ dcl(A) ⊂ DCL(A)

(iii) dcl(dcl(A)) = dcl(A).
(iv) dcl(A) is a substructure of M containing A.

Proof (i) is entirely trivial.
For any a ∈ A, the L A-formula x = a witnesses that a ∈ dcl(A). Take any a ∈

dcl(A). So, there exists a definitional LA-formula ϕ[x] such that M |= ϕ[a]. Now
take any σ ∈ AutA(M). Then M |= ϕ[σ(a)]. These two facts imply that σ(a) = a.
Thus, (ii) is proved.

Since A ⊂ dcl(A), dcl(A) ⊂ dcl(dcl(A)). Now take any a ∈ dcl(dcl(A)). Then
there exists an L-formula ϕ[x, y] and a b ∈ dcl(A) such that

M |= ϕ[a, b] ∧ ∃=1xϕ[x, b].

There exists an a ∈ A and for each i , an L-formula ϕi [yi , z] such that

M |= ϕi [bi , a] ∧ ∃=1yiϕi [yi , a].
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Take
ψ[x, z] = ∃y(ϕ[x, y] ∧ ∧iϕi [yi , z]).

Then
M |= ψ[a, a] ∧ ∃=1xψ[x, a].

This shows that dcl(dcl(A)) ⊂ dcl(A).
The formula x = c witnesses that cM ∈ dcl(A), c a constant symbol. Now let

a1, . . . , an ∈ dcl(A) and f a n-ary function symbol. Suppose ϕ1[y1], . . . ,ϕn[yn]
are L A-formulas witnessing a1, . . . , an ∈ dcl(A), respectively. Then the formula

∃y(∧iϕi [yi ] ∧ x = f y1 . . . yn)

witnesses that f M(a1, . . . , an) ∈ dcl(A). Now it is easy to see dcl(A) is a substruc-
ture of M containing A. �

An L A-formula ϕ[x] is called algebraic if there exists a positive integer n such that

M |= ∃=nxϕ[x].

The integer n is called the degree ofϕ and is denoted by deg(ϕ). If no such n exist, ϕ
is called non-algebraic. An element a ∈ M is algebraic over A if there is an algebraic
LA-formula ϕ[x] such that M |= ϕ[a].

We set
acl(A) = {a ∈ M : a algebraic over A}

and call it the algebraic closure of A. Note that

|acl(A)| ≤ max{|L|, |A|}.

A set A ⊂ M is called algebraically closed if acl(A) = A. Elements of acl(∅) are
called algebraic elements of M .

The following result is easily seen.

Proposition 1.10.2 For A, B ⊂ M,

(i) A ⊂ B ⇒ acl(A) ⊂ acl(B).
(ii) If a ∈ acl(A), there is a finite A0 ⊂ A such that a ∈ acl(A0).
(iii) A ⊂ dcl(A) ⊂ acl(A) ⊂ ACL(A). In particular, every b ∈ acl(A) has only

finitely many conjugates over A.
(iv) acl(acl(A)) = acl(A).
(v) B ⊂ acl(A) ⇒ acl(B) ⊂ acl(A).
(vi) acl(A) is a substructure of M.
(vii) Let A ⊂ M and N an elementary extension of M. Then the algebraic closure of

A in N equals the algebraic closure of A in M. In particular, M is algebraically
closed in N.
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Proof (i) and (ii) are entirely trivial.
Let a ∈ acl(A). Get an L-formula ϕ[x, y], an n ≥ 1 and b ∈ A such that

M |= ϕ[a, b] ∧ ∃=nxϕ[x, b].

Let a1, . . . , an be all the elements a′ ∈ M such that M |= ϕ[a′, b]. For every σ ∈
AutA(M),

M |= ϕ[σ(a),σ(b)],

i.e.
M |= ϕ[σ(a), b].

But then σ(a) = ai for some 1 ≤ i ≤ n. Thus, a ∈ ACL(A). (iii) is easily seen now.
Next let a ∈ acl(acl(A)). Get an L-formula ϕ[x, y] and a ∈ acl(A) such that for

some positive integer k,

M |= ϕ[a, a] ∧ ∃=k xϕ[x, a].

Let b ∈ A be such that for each ai ∈ a, there is an L-formula ϕi [yi , z] and a positive
integer ki such that

M |= ϕi [ai , b] ∧ ∃=ki yiϕi [yi , b].

Then the L A-formula

ψ[x, b] = ∃y(ϕ[x, y] ∧ ∃=k xϕ[x, y] ∧ ∧iϕi [yi , b] ∧ ∧i∃=ki yiϕi [yi , b])

witnesses that a ∈ acl(A). (iv) follows. (v) is easily seen.
If f is an n-ary function symbol and a1, . . . , an ∈ acl(A), then the formula x =

f (a1, . . . , an) witnesses that

f M(a1, . . . , an) ∈ dcl(a1, . . . , an) ⊂ acl(acl(A)) = acl(A).

(vi) is easily seen now.
(vii) Let ϕ[x] be an LA-formula. Then for every n ≥ 1,

M |= ∃=nxϕ[x] ⇔ N |= ∃=nxϕ[x].

Hence, any a ∈ N such that N |= ϕ[a] must belong to M . �

Exercise 1.10.3 Let L and L ′ be first-order languages, M an L-structure and N an
L ′-structure. We say that N is interpretable in M if there is an L ′-structure N ′ ⊂ Mk

for some k ≥ 1 such that

(i) N ′ is definable,
(ii) N ′ is isomorphic to N and



1.10 Definable and Algebraic Closures 37

(iii) the interpretations of L ′-symbols in N ′ are definable in M .

1. Show the group GLn(K) of non-singular n × n matrices over K is interpretable
in the field K.

2. Show that the groups O(n) and SO(n) are interpretable in the field R of real
numbers.

3. Show that the groupsU (n) and SU (n) are interpretable in the fieldC of complex
numbers.

1.11 Many-Sorted Logic and Imaginary Elements

In mathematics, one builds various structures from a given structure or one simul-
taneously considers several structures. For instance, one simultaneously considers
the quotients of a structure, orbit spaces of group actions or varieties over a field,
etc. Thus, one has structures of many sorts and functions and relations on their prod-
ucts. Traditional model theory that we have described so far is a special case of
many-sorted model theory having only one sort.

We now briefly describe the formal system of many-sorted logic. Many of the
argument of one-sorted logic can easily be seen to hold in the many-sorted case also.

A many-sorted language consists of

(∗) a non-empty set S of sorts,
(∗) for each sort s, a set of constant symbols, generically denoted by cs , of sort s,
(∗) for each finite sequence s = (s1, . . . , sn) of sorts, a set Rs of relation symbols

of sort s, and
(∗) for each finite sequence s = (s1, . . . , sn) of sorts and a sort s, a setFss of function

symbols of sort ss.

Besides these, the language also has

(∗) for each sort s, a sequence of variables x0s , x
1
s , . . .,

(∗) for each sort s, a binary equality symbol =s , and
(∗) ¬, ∨, ∃s , s ∈ S.

We shall often drop sort suffixes on variables, quantifiers and equality symbols.
This will cause no confusion.

The set of terms of sort s, s ∈ S, is the smallest collection of expressions that
contains each variable and each constant symbol of sort s and expressions of the
form f (t0, . . . , tn−1), where f is a function symbol of sort (s0, . . . , sn−1, s) and
t0, . . . , tn−1 are terms of sorts s0, . . . , sn−1 respectively.

Atomic formulas are expressions t1 =s t2, where t1, t2 are terms of sort s and
R(t1, . . . , tn), where R is a relation symbol of sort (s1, . . . , sn) and t1, . . . , tn terms
of sorts s1, . . . , sn , respectively. We build up L-formulas ϕ[x0, . . . , xn−1] with vari-
ables x0, . . . , xn−1 of sorts s0, . . . , sn−1 respectively from atomic formulas using
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connectives and quantifiers in the usual way. In particular, if ϕ[x0, . . . , xn−1] is a
formula and xi is a variable of sort si , then ∃si xiϕ[x0, . . . , xn−1] is a formula.

If L is a many-sorted language, an L-structureM consists of

(∗) for each sort s, a non-empty set s(M),
(∗) for each constant symbol cs of sort s, an element cMs ∈ s(M),
(∗) for each relation symbol R of sort (s1, . . . , sn), a set RM ⊂ s1(M) × · · · ×

sn(M), and
(∗) for each function symbol f of sort (s1, . . . , sn, s), a function f M : s1(M) ×

· · · × sn(M) → s(M).

If x is a variable of sort s, sometimes one writes Mx for s(M) and calls it the
universe of sort x or simply the universe of x . We define the truth of a formula inM
in the usual way.

LetM andN be L-structures. A homomorphism h : M → N consists of maps
s(h) : s(M) → s(N ), s ∈ S, satisfying

(∗) for each constant c of sort s, h(cM) = cN ,
(∗) for each relation symbol R of sort (s1, . . . , sn) and (a1, . . . , an) ∈ s1(M) × · · · ×

sn(M),
M |= RM(a1, . . . , an) ⇒ N |= RM(h(a1), . . . , h(an)),

and
(∗) for each function symbol f of sort (s1, . . . , sn, s) and (a1, . . . , an) ∈ s1(M) ×

· · · × sn(M),

h( f M(a1, . . . , an)) = f N (h(a1), . . . , h(an)).

Definitions of embedding, elementary embedding, isomorphism, substructure,
elementary substructure, etc., should be clear to the reader now. Most of the results
proved so far (and many to be proved later) for one-sorted logic will easily generalise
to many-sorted cases.

Many-sorted language is a useful device to treat equivalence classes as elements
of a structure of a many-sorted language. It is also used to code definable sets by an
element of a multisorted structure.

To demonstrate these, let us fix an L-theory T . Let ϕ[x, y] be an L-formula,
|x | = |y| = n, such that

T |= “ϕ[x, y] is an equivalence relation.”

Such a ϕ will be called an equivalence formula in T . For each equivalence formula
ϕ in T , we introduce a sort Sϕ. These sorts include a sort S= corresponding to the
formula x = y, x , y of length 1.
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The many-sorted language Leq (which depends on T also) has Sϕ, ϕ an equiva-
lence formula in T , as sorts. For each equivalence formula ϕ in T as above, Leq has
a function symbol fϕ of sort (S=, . . . , S=

︸ ︷︷ ︸

n times

, Sϕ).

The theory T eq has language Leq and following axioms:.

(∗) T .
(∗) For each equivalence formula ϕ in T ,

ϕ[x1, · · · , xn, y1, . . . , yn] ⇔ fϕ(x1, . . . , xn) = fϕ(y1, . . . , yn).

(∗) For each equivalence formula ϕ in T ,

∀y of sort Sϕ∃x1, . . . , xn of sort S=(y =Sϕ
fϕ(x1, . . . , xn)).

Let M |= T . Then we get a model Meq of T eq canonically:

(∗) S=(Meq) = M .
(∗) For each equivalence formula ϕ[x, y] in T with |x | = |y| = n, SMeq

ϕ = Mn/Eϕ,
where Eϕ is the equivalence relation onMn defined byϕ. In this casewe interpret
fϕ by the quotient map f M

eq

ϕ : Mn → Mn/Eϕ.

Thus, an equivalence class of a ∅-definable equivalence relation on Mn now has
become an element ofMeq . For this reason elements ofMeq are called imaginary ele-
ments.The concept of imaginary elements was introduced by Shelah in [54, Sect. 3.6]
as a means to consider imaginary elements such as equivalence classes as genuine
elements.

Each definable set in Mk has a natural code in Meq : Let ϕ[x, y] be an L-formula,
a ∈ M , |x | = k and |a| = n and X = ϕ[M, a] ⊂ Mk . Now consider the formula

θ[y1, y2] = ∀x(ϕ[x, y1] ↔ ϕ[x, y2]).

Clearly θ is an equivalence formula in T . Let a/Eθ ∈ Sθ(Meq) be the equivalence
class containing a. Then a/Eθ is the unique point such that X = ϕ′[Meq , a/Eθ],
where

ϕ′[x, y] = ∃y( fθ(y) = y ∧ ϕ[x, y]).

Here variables in x and y are of sort S= and variable y is of sort Sθ.
This code is clearly not unique because it depends on the formula that defines X .

But each code is definable in terms of any other code: Let ψ[x, b] be another formula
defining X ,

θ′[z1, z2] = ∀x(ψ[x, z1] ↔ ψ[x, z2]),

and
ψ′[x, z] = ∃z( fθ′(z) = z ∧ ψ[x, z]).
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Then the formula

ξ[z, a/Eθ] = ∀x(ϕ′[x, a/Eθ] ↔ ψ′[x, z])

defines b/Eθ′ .

1.12 Elimination of Imaginaries

Let M be an L-structure and ϕ[x, y] an L-formula. If

{(a, b) ∈ Mn × Mn : M |= ϕ[a, b]}

is an equivalence relation on Mn , we say that “ϕ[x, y] is an equivalence formula on
M .” Further, each equivalence class a/Eϕ, a ∈ Mn , is called an imaginary element
of M .

We say that M has elimination of imaginaries if for every equivalence formula
ϕ[x, y] on M and each a ∈ Mn , there is an L-formula ψ[x, z] and a unique b ∈ M
such that a/Eϕ = ψ[M, b]. The notion of elimination of imaginaries was introduced
by Poizat in [50].

In terms of Meq , this is equivalently defined as follows.

Proposition 1.12.1 An L-structure M has elimination of imaginaries if and only if
for every equivalence formula θ[x, y] on M and every a ∈ M, there is a b ∈ M such
that a/Eθ ∈ dcl(b) and b ∈ dcl(a/Eθ).

Proof Suppose M has elimination of imaginaries, θ[x, y] an equivalence formula on
M and a ∈ M . Since M has elimination of imaginaries, there is an L-formulaϕ[x, z]
and a unique b ∈ M such that a/Eθ = ϕ[M, b]. Now consider the Leq -formula

ψ[z, z] = ∀x( fθ(x) = z ↔ ϕ[x, z]),

where variable z is of sort Sθ. Then a/Eθ is the unique imaginary c such that Meq |=
ψ[c, b]. This implies that a/Eθ ∈ dcl(b). Also, b is the unique d ∈ M such that
Meq |= ψ[a/Eθ, d]. So, b ∈ dcl(a/Eθ).

We now prove if part of the result. Let a, b ∈ M , θ[x, y] an equivalence formula
on M and ψ[z, z] and ψ′[z, z] be Leq -formulas with z of sort Sθ such that a/Eθ

is the unique imaginary c satisfying Meq |= ψ[c, b] and b the unique d ∈ M with
Meq |= ψ′[a/Eθ, d]. Set

ϕ[x, z] = ψ[ fθ(x), z] ∧ ψ′[ fθ(x), z].

Then b is the unique d such that a/Eθ = ϕ[M, d]. �
Some authors define elimination of imaginaries in term of Meq . However, we

shall not take this approach.



1.12 Elimination of Imaginaries 41

If we can choose ψ independent of a also, then we say that M admits uniform
elimination of imaginaries. Thus, we say that M admits uniform elimination of imag-
inaries if for every equivalence formula ϕ[x, y] on M , there is an L-formula ψ[x, z],
|x | = n and |z| = m, such that

M |= ∀y∃=1z∀x(ϕ[x, y] ↔ ψ[x, z]).

In this case, there is a ∅-definable function F : Mn → Mm such that a, b ∈ Mn are
equivalent if and only if F(a) = F(b). We can take F to be defined by the formula

θ[y, z] = ∀x(ϕ[x, y] ↔ ψ[x, z]).

Also, note that the converse is true, i.e. if for every equivalence formula ϕ[x, y] on
M , there is a ∅-definable function F : Mn → Mm such that a, b ∈ Mn are equivalent
if and only if F(a) = F(b), then M admits uniform elimination of imaginaries. For
L-formula χ[x, z] defined by

z = F(x),

we have
M |= ∀y∃=1z∀x(ϕ[x, y] ↔ χ[x, z]).

A theory T has elimination of imaginaries if each of its models has elimination
of imaginaries.

Proposition 1.12.2 Let T be an L-theory. The following statements are equivalent.

1. T has elimination of imaginaries.
2. For every M |= T and for every definable X ⊂ Mn, there is an L-formulaψ[x, z]

and a unique a ∈ M such that X = ψ[M, a].
Proof Clearly (2) implies (1). Assuming (1) we prove (2). Let M |= T , ϕ[x, y] be
an L-formula with |y| = m, a ∈ Mm and X = ϕ[M, a]. Consider

θ[y1, y2] = ∀x(ϕ[x, y1] ↔ ϕ[x, y2]).

Then θ is an equivalence formula on M . By (1) there is an L-formula ψ′[y1, z] and
a unique b ∈ M such that a/θ = ψ′[M, b].

Now consider the L-formula

ψ[x, z] = ∀y1(ψ′[y1, z] ↔ ϕ[x, y1]).

Then b ∈ M is the unique tuple such that X = ψ[M, b]. �
An L-structure M is called uniformly 1-eliminable if for every L-formula ϕ[x, y]
there is an L-formula ψ[x, z] such that

M |= ∀y∃=1z∀x(ϕ[x, y] ↔ ψ[x, z]).
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Theorem 1.12.3 If an L-structure M has definable Skolem functions and is uni-
formly 1-eliminable, then M has uniform elimination of imaginaries.

Proof Take an equivalence L-formula ϕ[x, y] on M . We shall show that there is a
∅-definable function F = (F1, . . . , Fn) : Mn → Mn such that

1. ∀a ∈ MnM |= ϕ[F(a), a], and
2. ∀a, a′ ∈ Mn(M |= ϕ[a, a′] ⇒ F(a) = F(a′)).

We shall define F1, . . . , Fn inductively. To define F1, consider

ϕ1[x1, y] = ∃x2 . . . ∃xnϕ[x, y].

By uniform 1-elimination, there exists an L-formula ψ1[x1, z] such that

M |= ∀y∃=1z∀x1(ϕ1[x1, y] ↔ ψ1[x1, z]).

Since M has definable Skolem functions, corresponding to ψ1, there is a formula
ξ1[x1, z] such that

M |= ∀z(∃=1x1ξ1[x1, z] ∧ (∃x1ψ1[x1, z] → ∀x1(ξ1[x1, z] → ψ1[x1, z]))).

Thus, we have a function F1(y) defined by

x1 = F1(y) ↔ ∃z(∀x(ϕ1[x, y] ↔ ψ1[x, z]) ∧ ξ1[x1, z]).

Note that
M |= ϕ[y, y′] → F1(y) = F1(y

′).

Assume F1, . . . , Fi−1 have been defined. Consider the formula

ϕi [xi , y] = ∃xi+1, . . . ∃xnϕ[F1(y), . . . , Fi−1(y), xi , xi+1, . . . , xn, y].

Now by uniform 1-elimination, get ψi [xi , z] corresponding to ϕi and then, using
definable Skolem functions on ψi get ξi [xi , z] as above. This gives us an ∅-definable
function Fi (y) as above. �

Now let T be an L-theory. An L-formula ϕ[x, y] is called an equivalence formula
(in T ) if

T |= “ϕ is an equivalence relation′′,

i.e. it is an equivalence formula on each model M of T . The theory T is said to admit
elimination of imaginaries if for every equivalence formula ϕ[x, y], there exists a
formula ψ[x, z] such that

T |= ∀y∃=1z∀x(ϕ[x, y] ↔ ψ[x, z]).
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In this case, every model of T has uniform elimination of imaginaries.

Example 1.12.4 Peano arithmetic (PA) has uniform elimination of imaginaries.

More examples will be given later.
An L-structure M is said to have semi-uniform elimination of imaginaries if

for every equivalence formula ϕ[x, y] in M , there is a finite sequence of formulas
{ϕi [x, z] : i < m} such that

M |= ∀y∃=1i < m∃=1z∀x(ϕ[x, y] ↔ ϕi [x, z]).

Proposition 1.12.5 Let M be an L-structure and there exist variable free terms t, s
such that M |= t �= s. Then if M has semi-uniform elimination of imaginaries, it has
uniform elimination of imaginaries.

Proof Let ϕ[x, y] and {ϕi [x, z] : i < m} be as in the definition above. Define

ψ[x, z, w0, . . . , wm−1] = ∨i<m(ϕi [x, z] ∧ (wi = s) ∧ ∧ j �=i (w j = t)).

Then

M |= ∀y∃=1z, w0, . . . , wm−1∀x(ϕ[x, y] ↔ ψ[x, z, w0, . . . , wm−1]).

�

A theory T has semi-uniform elimination of imaginaries if for every equivalence
formula ϕ[x, y], there is a finite sequence of formulas {ϕi [x, z] : i < m} such that

T |= ∀y∃=1i < m∃=1z∀x(ϕ[x, y] ↔ ϕi [x, z]).

Remark 1.12.6 If there exist two variable free terms t, s such that T |= t �= s and T
has semi-uniform elimination of imaginaries, then T has elimination of imaginaries.

Exercise 1.12.7 Let M, N |= T be isomorphic. Show that Meq and Neq are isomor-
phic models of T eq .

Exercise 1.12.8 Let T be a first-order theory and M |= T eq . Show that there is a
model M of T such that M = Meq .



Chapter 2
Basic Introductory Results

Abstract The goal of this chapter is to present basic introductory techniques of
model theory. The main results presented are Łoś fundamental lemma on ultra-
product of structures, compactness theorem and quantifier elimination. These are
cornerstones of model theory. A large number of applications given in this chapter
bear testimony to the importance of these results. We also introduce the notion of
independence and dimension in minimal sets. Finally we give several applications
of the results proved in this section in algebra and geometry. A large number of
examples and exercises are given as we go along.

2.1 Ultraproduct of Structures

In this section, we introduce ultraproduct of models. It is a notion of the product of
structures and a basic technique of constructing new models from old ones. It made
its first appearance in Skolem [57]. The fundamental lemma was proved by Łoś in
[36]. Since then ultraproduct has become a basic tool in model theory.

Let L be a first-order language and F a filter on a non-empty set I . Suppose for
each i ∈ I we are given an L-structure Mi of L . Set

M = ×i∈I Mi .

For α, β ∈ M , define

α ∼ β ⇔ {i ∈ I : α(i) = β(i)} ∈ F .

Since I ∈ F , ∼ is reflexive. Clearly, it is symmetric. Since F is closed under finite
intersections and supersets, ∼ is transitive. Thus, ∼ is an equivalence relation on
×i Mi . For α ∈ M , [α] will denote the ∼-equivalence class containing α. We set

M(F) = M/ ∼ = {[α] : α ∈ M}.
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We interpret the nonlogical symbols of L as follows:

1. If c is a constant symbol, cM(F) = [α], where α(i) = cMi , i ∈ I .
2. If p is an n-ary relation symbol,

pM(F)([α1], . . . , [αn]) ⇔ {i ∈ I : pMi (α1(i), . . . , αn(i))} ∈ F .

3. If f is an n-ary function symbol, we define

[β] = f M(F)([α1], . . . , [αn]),

where
β(i) = f Mi (α1(i), . . . , αn(i)), i ∈ I.

We need to show that pM(F) and f M(F) are well defined. Suppose α j ∼ β j ,
1 ≤ j ≤ n. Since F is closed under finite intersections, there is an X ∈ F such that
α j (i) = β j (i) for all 1 ≤ j ≤ n and all i ∈ X . This implies the well-definedness of
pM(F) and f M(F).

Proposition 2.1.1 For every term t[x] and every α0, . . . , αn−1, β ∈ M,

tM(F)[[α0], . . . , [αn−1]] = [β] ⇔ {i ∈ I : t Mi [α0(i), . . . , αn−1(i)] = β(i)} ∈ F .

Proof The result is proved easily by induction on the length of t . The details are left
for the reader as an easy exercise. �

Proposition 2.1.2 For every atomic formula ϕ[x] and every α ∈ M,

M(F) |= ϕ[[α0], . . . , [αn−1]] ⇔ {i ∈ I : Mi |= ϕ[α0(i), . . . , αn−1(i)]} ∈ F . (∗)

Proof Let t[x], s[x] be terms and α0, . . . , αn−1 ∈ M . Define

β(i) = t Mi [α0(i), . . . , αn−1(i)], i ∈ I

and
γ (i) = sMi [α0(i), . . . , αn−1(i)], i ∈ I.

By the last Proposition 2.1.1,

t M(F)[[α0], . . . , [αn−1]] = [β]

and
sM(F)[[α0], . . . , [αn−1]] = [γ ].

Thus, (∗) holds for t[x] = s[x] and α0, . . . , αn−1.
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Let ϕ[x] be an atomic formula p[t1[x], . . . , tm[x]] and every α0, . . . , αn−1 ∈ M .
Set

β j (i) = t Mi
j [α0(i), . . . , αn−1(i)], i ∈ I, 1 ≤ j ≤ m.

Then

M(F) |= p[t M(F)
1 ([α0], . . . , [αn−1]), . . . , t M(F)

m ([α0], · · · , [αn−1])]
⇔ M(F) |= p[[β1], . . . , [βm]]]
⇔ {i ∈ I : Mi |= p[t Mi

1 [α0(i), . . . , αn−1(i)], . . . , t Mi
m [α0(i), . . . , αn−1(i)]]} ∈ F

The first equivalence holds by the last Proposition 2.1.1 and the last equivalence
holds by definition. �

In a fundamental contribution to model theory Łoś showed that (∗) holds for every
formula if F is an ultrafilter on I .

Theorem 2.1.3 (Łoś Fundamental Lemma) Let U be an ultrafilter on I , ϕ[x] an
L-formula and [α0], . . . , [αn−1] ∈ M(U). Then

M(U) |= ϕ[[α0], . . . , [αn−1]] ⇔ {i ∈ I : Mi |= ϕ[α0(i), . . . , αn−1(i)]} ∈ U .

(∗∗)

Proof For atomic ϕ, (∗∗) follows from the last Proposition 2.1.2. Suppose ϕ satisfies
(∗∗) and ψ is the formula ¬ϕ. Take [α0], . . . , [αn−1] ∈ M(U). Then

M(U) |= ψ[[α0], . . . , [αn−1]] ⇔ M(U) �|= ϕ[[α0], . . . , [αn−1]]
⇔ {i ∈ I : Mi |= ϕ[α(i)]} /∈ U
⇔ {i ∈ I : Mi |= ψ[α(i)]} ∈ U ,

whereα(i) = (α0(i), . . . , αn−1(i)). The second equivalence holds becauseϕ satisfies
(∗∗)whereas the third equivalence holds becauseU is an ultrafilter. Similarlywe show
that if ϕ and ψ satisfy (∗∗), so does ϕ ∨ ψ .

Now assume that (∗∗) holds for ψ[x0, x1, . . . , xn], n ≥ 0 and all (α0, . . . , αn) ∈
Mn+1. Consider ϕ = ∃x0ψ . Take any α1, . . . , αn ∈ M such that

M(U) |= ϕ[[α1], . . . , [αn]].

Then there exists [α0] ∈ M(U) such that

M(U) |= ψ[[α0], . . . , [αn]].

By our hypothesis,

{i ∈ I : Mi |= ψ[α0(i), . . . , αn(i)]} ∈ U .

This clearly implies that
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{i ∈ I : Mi |= ϕ[α1(i), . . . , αn(i)]} ∈ U .

To prove the converse, assume that the set

U = {i ∈ I : Mi |= ϕ[α1(i), . . . , αn(i)]} ∈ U .

So, for each i ∈ U there exists an α0(i) ∈ Mi such that

Mi |= ψ[α0(i), . . . , αn(i)].

Take any extension α0 of i → α0(i), i ∈ U , to I . Then by our assumption

M(U) |= ψ[[α0], . . . , [αn]].

Thus,
M(U) |= ϕ[[α1], . . . , [αn]].

The result is thus seen by induction on the rank of ϕ. �
If U is an ultrafilter on I , the structure M(U) is called the ultraproduct of Mi ’s.

If each Mi = M , it is denoted by MU and is called an ultrapower of M .
Let {Mi : i ∈ I } and {Ni : i ∈ I } be families of sets and U an ultrafilter on I . Let

gi , hi : Mi → Ni , i ∈ I , be arbitrary maps. Define

{gi : i ∈ I } ∼U {hi : i ∈ I } ⇔ {i ∈ I : gi = hi } ∈ U .

It is easy to see that ∼U is an equivalence relation.
Fix {gi : i ∈ I } ∼U {hi : i ∈ I } and a = (ai ) ∼ (a′

i ) = a′. Then (gi (ai )) ∼
(hi (a′

i )). Hence, we have a well-defined map

(�igi )
U ([(ai )]) = [(gi (ai ))].

We make a series of simple observations whose proofs are left to the reader as a
simple exercise.

1. If {i ∈ I : gi is onto} ∈ U , then (�igi )
U is onto.

2. If {i ∈ I : gi is one-to-one} ∈ U , then (�igi )
U is one-to-one.

Next assume that each Mi and each Ni , i ∈ I , are L-structures.

3. If {i ∈ I : gi is a homomorphism} ∈ U , then (�igi )
U is a homomorphism. It

follows that if {i ∈ I : gi is an embedding (isomorphism)} ∈ U , then (�igi )
U is

an embedding (isomorphism).
4. Using Łoś theorem (Theorem 2.1.3), it is easy to see that if {i ∈ I : gi is

elementary} ∈ U , then (�igi )
U is elementary.

Corollary 2.1.4 Let T be an L-theory and {Mi : i ∈ I } a family of models of T .
Then for every ultrafilter U on I , the ultraproduct M(U) is a model of T .
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Remark 2.1.5 Ultraproduct gives a new notion of product in the category of models
of T ; in particular, in any category of algebraic structures such as groups, rings,
fields, etc. Further, by choosing the ultrafilter U suitably, one gets a model M(U)

with some desired properties.

SinceM(U) is in a sense a limit of {Mi : i ∈ I }, in general, no reasonable converse
of the corollary exists. However, if T has only finitely many axioms, a converse of
the corollary is true.

Proposition 2.1.6 Let {Mi : i ∈ I } be a family of L-structures and U an ultrafilter
on I . Suppose an L-theory T has finitely many axioms only and M(U) |= T . Then
{i ∈ I : Mi |= T } ∈ U .

Proof Let ϕ1, . . . , ϕn be all the axioms of T . Since M(U) |= T , for each 1 ≤ k ≤ n,
the set Ak = {i ∈ I : Mi |= ϕk} ∈ U . Then A = ∩1≤k≤n Ak ∈ U and for every i ∈ A,
Mi |= T . �

Corollary 2.1.7 Let {Ki : i ∈ I } be a family of rings, U an ultrafilter on I and
p > 0 a prime. Then the ultraproduct K(U) is a field of characteristic p if and only
if {i ∈ I : Ki is a field of characteristic p} is in U .
Example 2.1.8 For each prime p > 0, let Kp be a field of characteristic p and U
a free ultrafilter on the set of all primes. Then the ultraproduct K(U) is a field of
characteristic 0. To see this, let P denote the set of all primes. Fix a prime p. Since U
is free, {q ∈ P : q > p} ∈ U . SinceKq |= p �= 0 for every q > p, char(K(U)) �= p
by Łoś Theorem 2.1.3. Our claim follows.

Proposition 2.1.9 A class C of L-structures is elementary if and only if C is closed
under elementary equivalences and ultraproducts.

Proof The only if part is clear from Łoś theorem (Theorem 2.1.3). So, assume that C
is closed under elementary equivalences and ultraproducts and T = Th(C). We now
show that C is precisely the class of all models of T . Clearly, if M ∈ C, M |= T .

Now assume that M |= T . Let I denote the set of all non-empty finite subsets of
Th(M). Note that for each i ∈ I there is a Mi ∈ C such that Mi |= ∧i . If not, then
¬(∧i) ∈ T . But then both ∧i and ¬(∧i) are true in M which is a contradiction. For
each sentence ϕ ∈ Th(M), set

Aϕ = {i ∈ I : ϕ ∈ i}.

Given ϕ1, . . . , ϕk ,
{ϕ1, . . . , ϕk} ∈ ∧k

j=1Aϕ j .

This implies that there is an ultrafilter U containing each Aϕ , ϕ ∈ Th(M). Set

N = ×i∈I Mi/U .
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By our hypothesis N ∈ C. Our proof will be complete if we show that M is elemen-
tarily equivalent to N . But for any ϕ ∈ Th(M),

Aϕ ⊂ {i ∈ I : Mi |= ϕ}.

Thus, Th(M) ⊂ Th(N ). This implies that these two sets are equal, i.e. M and N are
elementarily equivalent. �

This result can be easily used to show that various classes of structures are
not elementary. To illustrate this let L have no nonlogical symbol. So any
non-empty set is an L-structure. Let C be the class of all finite sets. For k > 0,
let Xk = {0, . . . , k − 1}. Take any free ultrafilter U on the set of all positive inte-
gers. Now consider X = ×k Xk/U . For any positive integer m, let αm ∈ ×k Xk be a
sequence which is eventually m. Then for m �= n, [αm] �= [αn]. Thus, X is infinite.
Hence, C is not closed under ultraproducts. So, C is not elementary.

We saw earlier that the class of all fields of positive characteristic is not closed
under ultraproducts. Hence, the class of all fields of positive characteristic is not
elementary.

Exercise 2.1.10 Let U be an ultrafilter on I with ∩U = { j}. Suppose {Mi : i ∈ I }
is a family of L-structures. Show that M(U) is isomorphic to Mj .

Exercise 2.1.11 Let M be an L-structure and U an ultrafilter on I . Define the inclu-
sion map j : M → MU by

j (x) = [cx ], x ∈ M,

where cx : I → M is the constantmap cx (i) = x , i ∈ I . Show that j is an elementary
embedding.

2.2 Compactness Theorem

In this section, we prove the compactness theorem for first-order theories. Because
of its great importance, we also give several variants of this theorem. This was
first proved for countable theories by Gödel in [15]. For general theories, it was
independently proved by Mal’tsev in [39, 40] and by Henkin in [18].

Theorem 2.2.1 (Compactness theorem) An L-theory T has a model if and only if
each finite T ′ ⊂ T has a model.

Proof If part: For each finite i ⊂ T , letMi be amodel of i . Set I = {i : i ⊂ T finite}.
For each sentence ϕ, set

Bϕ = {i ∈ I : ϕ ∈ i}.

Let ϕ1, . . . , ϕn ∈ T . {ϕ1, . . . , ϕn} ∈ ∩n
i=1Bϕi . Thus, the family {Bϕ : ϕ ∈ T } has

finite intersection property. Hence, it is contained in an ultrafilter U .
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We claim that M(U) |= T . Let ϕ ∈ T . Then for every i ∈ Bϕ , Mi |= ϕ. Hence,
by Łoś theorem, M(U) |= ϕ.

The only if part is entirely trivial. This completes the proof of the compactness
theorem. �

We give an alternative proof of compactness theorem. This is essentially the
semantic version of the syntactical proof given originally. This proof gives yet another
technique of building models which will be used later also.

Let T be a finitely satisfiable set of L-sentences. The following observation is
trivially seen.

Fact. For any L-sentence ϕ, at least one of T ∪ {ϕ} and T ∪ {¬ϕ} is finitely
satisfiable.

A finitely satisfiable set T of L-sentences will be called complete if for every
sentence ϕ, ϕ or ¬ϕ is in T . Using Zorn’s lemma, it is immediately seen that.

Theorem 2.2.2 (LindenbaumTheorem) Every finitely satisfiable set of L-sentences
is contained in a complete set of finitely satisfiable L-sentences.

We leave the detail for the reader as a simple exercise.
A set of finitely satisfiable L-sentences T will be called Henkin if whenever a

closed sentence of the form ∃xϕ ∈ T , there is a constant symbol c such that ϕx [c] ∈
T . Note that if T is complete and finitely satisfiable, then the sentence ∃x(x = x) ∈
T . Otherwise, ¬∃x(x = x) ∈ T , contradicting that T is finitely satisfiable. This, in
particular, implies that L has constant symbols.

The main idea of the proof is the following.

Theorem 2.2.3 Every complete, Henkin set of finitely satisfiable L-sentences T has
a model.

Proof Let M ′ denote the set of all variable-free L-terms. By the above remark,
M ′ �= ∅. If t and s are variable-free terms, define

t ∼ s if t = s ∈ T .

Using finite satisfiability and completeness of T , it can be easily proved that ∼ is an
equivalence relation on M ′. For instance, if t1, t2, t3 are variable-free L-terms and
t1 ∼ t2 and t2 ∼ t3 hold, then t1 ∼ t3 must hold. For otherwise, by completeness of
T , t1 = t2, t2 = t3, t1 �= t3 ∈ T . This contradicts the finite satisfiability of T .

LetM = M ′/ ∼, the set of all∼-equivalence classes. For any variable-free term t ,
let [t] denote the equivalence class containing t . For any constant symbol c, take cM =
[c]. Let f be a n-ary function symbol, R a n-ary relation symbol and [t1], . . . , [tn] ∈
M . Define

f M([t1], . . . , [tn]) = [ f (t1, . . . , tn)]
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and
RM([t1], . . . , [tn]) ⇔ R[t1, . . . , tn] ∈ T .

Using completeness and finite satisfiability of T it is easy to see that these are well
defined. Thus, we have defined an L-structure M .

By induction on the rank of ϕ, we now show that for every LM -sentence ϕ,

M |= ϕ ⇔ ϕ ∈ T . (∗)

(∗) is true for all atomic ϕ by the definition of M . Suppose (∗) holds for ϕ and
ψ = ¬ϕ. Then

M |= ψ ⇔ M �|= ϕ ⇔ ϕ /∈ T ⇔ ψ ∈ T .

The second equivalence holds by the induction hypothesis and the third equivalence
holds because T is complete.

Next,we assume that (∗) holds forϕ andψ and ξ = ϕ ∨ ψ . SupposeM |= ξ . Then
M |= ϕ or M |= ψ . Without any loss of generality, assume that M |= ϕ. Then by
induction hypothesis, ϕ ∈ T . Hence, by the completeness of T , ξ ∈ T . Conversely,
let ξ ∈ T . Then by the completeness of T , ϕ ∈ T or ψ ∈ T . Hence, by induction
hypothesis, M |= ϕ or M |= ψ . In either case, M |= ξ .

Finally, let (∗) holds for all LM -sentences of length less than the length of ∃xϕ[x]
which is assumed to be closed. Suppose M |= ∃xϕ. Then there exists [t] ∈ M such
thatM |= ϕ[[t]]. So, by induction hypothesis, ϕ[[t]] ∈ T . Hence, by completeness of
T , ∃xϕ[x] ∈ T . Now assume that ∃xϕ[x] ∈ T . Since T is Henkin, there is a constant
c such that ϕx [c] ∈ T . So, by induction hypothesis, M |= ϕx [c]. Thus, M |= ∃xϕ[x].

�

The model of T obtained in the last proposition is called the canonical model of
T . To complete the proof of compactness theorem, we need one more result.

Proposition 2.2.4 Let T be a finitely satisfiable set of L-sentences. Then there is
an extension L∞ of L obtained by adding new constant symbols only and a finitely
satisfiable, Henkin set of L∞-sentences T∞ that contains T .

Proof Set L0 = L and T0 = T . Suppose Ln and a finitely satisfiable set of Ln-
sentences Tn have been defined. For each Ln-sentence of the form ∃xϕ[x] which is
not an Lm-sentence for anym < n, we add a new constant symbol c∃xϕ to Ln and the
sentence ∃xϕ[x] → ϕx [c∃xϕ] to Tn . Call the resulting language Ln+1 and resulting set
of Ln+1-sentences Tn+1. It is straightforward to check that Tn+1 is finitely satisfiable.

We put L∞ = ∪n Ln and T∞ = ∪nTn . These satisfy the conclusions of the propo-
sition. �

Proof of the compactness theorem. Let T be a finitely satisfiable set of L-
sentences. Then we obtain L∞ and T∞ as in the last proposition. By Lindenbaum
Theorem 2.2.2, there is a complete finitely satisfiable set of L∞-sentences T ′ con-
taining T∞. Then T ′ is Henkin. The canonical model of T ′ is a model of T . �
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Exercise 2.2.5 Let L be a first-order language and T the set of all complete L-
theories. This set of exercises defines a topology on T making it into a compact,
Hausdorff, zero-dimensional space. For each L-sentence ϕ, set

Bϕ = {T ∈ T : ϕ ∈ T }

and B = {Bϕ : ϕ an L − sentence}. Show the following.

1. B is closed under finite intersection and complementation. Thus, it is a base of a
zero-dimensional, topology τ on T .

2. Show that (T , τ ) is a compact, Hausdorff topological space.
3. Show that (T , τ ) is metrizable if the language L is countable.

There are some variants of compactness theorem which are quite useful.

Theorem 2.2.6 For any sentence ϕ, T |= ϕ if and only if T ′ |= ϕ for some finite
T ′ ⊂ T .

Proof The if part is clear. For only if part, suppose for no finite T ′, T ′ |= ϕ. This
implies that every finite part of T ′′ = T ∪ {¬ϕ} has a model. Hence, by compactness
theorem, T ′′ has a model, say M . But then M |= T and M �|= ϕ. So, T �|= ϕ. �

Let L be a first-order language and 
 a set of formulas of L . Let v0, v1, . . . be all
the variables (finitely or countably many), vi ’s distinct, that has a free occurrence in a
ϕ ∈ 
. We say that
 is satisfiable if there is a structure M for L and a0, a1, . . . ∈ M
such that for all ϕ[v0, . . . , vn−1] ∈ 
, M |= ϕ[a]. We say that
 is finitely satisfiable
if every finite 
′ ⊂ 
 is satisfiable.

Proposition 2.2.7 Every finitely satisfiable 
 is satisfiable.

Proof Introduce in L a new constant ci corresponding to each vi that has a free
occurrence in 
 and call the resulting language L ′. Now consider


′ = {ϕ[c] : ϕ[v] ∈ 
}.

Note that
 is satisfiable if and only if
′ has a model. By the compactness Theorem
2.2.1, it is sufficient to prove that each finite part of 
′ has a model. This follows
because 
 is finitely satisfiable. �
Proposition 2.2.8 Let M be an L-structure and 
 a set of L-formulas such that
every finite 
′ ⊂ 
 is satisfiable in an elementary extension of M. Then there is an
elementary extension N of M in which 
 is satisfiable.

Proof Consider � = 
 ∪ Diagel(M). By our hypothesis, � is finitely satisfiable.
Hence, there is an L-structure N in which � is satisfiable. Since N |= Diagel(M),
N is an elementary extension of M . The proof is complete. �
Remark 2.2.9 Let L be a first-order language with uncountably many variables and

 a set of L-formulas. In this case also the notion of finite satisfiability and satisfia-
bility for 
 makes sense. Further, the last two propositions are seen to be true.
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2.3 Some Consequences of Compactness Theorem

Proposition 2.3.1 Let L be the languagewith constants0,1, binary function symbols
+ and · and a binary relation symbol <. Let N denote the standard model of natural
numbers. There is a structure M for L elementarily equivalent to the standard model
N and having an element b such that for every natural number n, n < b.

Proof Introduce a new constant symbol c to LN. For each natural number m, let Am

be the formula m < c. Now consider the theory

N ′ = Diagel(N) ∪ {Am : m ∈ N}.

Since every finite set of natural numbers has an upper bound in N, N is a model of
each finite part of N ′. Hence, by the compactness theorem, N ′ has a model M . This
model has the required properties with b = cM . �

Proposition 2.3.2 There is a non-Archimedean ordered field ∗
R elementarily equiv-

alent to the ordered field R.

Proof Let L denote the language of the theory of ordered fields. Add a new constant
symbol c to LR. For natural numbers n, let An be the formula n < c and consider

T = Diagel(R) ∪ {An : n ∈ N}.

Since the real line R is a model of each finite T ′ ⊂ T , by the compactness theorem,
T has a model. Any model ∗

R of T does the job. �

Proposition 2.3.3 The class of all well-ordered sets is not elementary.

Proof If possible, suppose there is a first-order theory T whose models are precisely
well-ordered sets. Add to T a sequence {cn} of distinct and new constants and set
T ′ = T ∪ {cn+1 < cn : n ∈ ω}. Then, T ′ is finitely satisfiable. Hence, by compact-
ness theorem, T ′ has a model, say M . But then {cMn } is a non-empty subset of M
with no least element. This is a contradiction. �

Proposition 2.3.4 The class of all fields of characteristic 0 is not finitely axiomati-
zable.

Proof Let T be the theory of fields and ϕn denote the sentence n �= 0, n > 1. If
possible, suppose ψ is a sentence in the language of rings such that M |= ψ if and
only if M is a field of characteristic 0. So, T [{ϕn : n > 1}] |= ψ . By compactness
theorem, there is a positive integer N such that

T [∧N
i=2ϕi ] |= ψ.

Let p > N be prime. It follows that Fp |= ψ , a contradiction. �
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Exercise 2.3.5 Show that the class of all algebraically closed fields is not finitely
axiomatizable.

(Hint: Use Proposition B.1.4)

Exercise 2.3.6 Show that the class of all archimedean ordered fields is not elemen-
tary.

Exercise 2.3.7 A graph (V, E) is called connected if for every x �= y ∈ V , there
exist x0, . . . , xn ∈ V such that x0 = x , xn = y and for all i < n, E[xi , xi+1]. Show
that the class of all connected graphs is not elementary.

Exercise 2.3.8 Show that the class of all torsion-free groups is not finitely axioma-
tizable.

Exercise 2.3.9 Show that a class C of L-structures is finitely axiomatizable if and
only if both C and its complement are elementary.

Exercise 2.3.10 LetF denote the class of all finite fields. Call a field F pseudofinite
if it is infinite and a model of Th(F). Show that the class of all pseudofinite fields is
elementary and non-empty.

Using compactness theorem we now show that every field is a subfield of an
algebraically closed field. By easy algebra arguments, this will imply the existence
of the algebraic closure of each field.

We shall use a standard fact from algebra. Let F be a field and f (X) ∈ F[X ]
an irreducible polynomial. Let ( f ) denote the ideal in F[X ] generated by f . Then
F[X ]/( f ) is a field extension of F in which f has a root. It then follows that given
finitely many polynomials f1, . . . , fn ∈ F[X ] there is a field extension K of F in
which each of f1, . . . , fn has a root.

Proposition 2.3.11 Let F be a field. Then there is a field extension K of F such that
every polynomial f (X) ∈ F[X ] has a root in K.

Proof Let T denote the theory of fields in the language L of rings with identity. For
each polynomial f (X) ∈ F[X ] introduce a new constant symbol c f to LF. Let ϕ f

be the sentence f (c f ) = 0 of LF ∪ {c f : f ∈ F[X ]}. By the above observation, each
finite subset of the theory

T ′ = T ∪ Diag(F) ∪ {ϕ f : f ∈ F[X ]}

has a model. Hence, by compactness theorem, T ′ has a model, sayK. Such aK does
our job. �

Proposition 2.3.12 Every field is a subfield of an algebraically closed field.

Proof Let F0 be a field. By repeatedly applying the last Proposition 2.3.11, we
get a chain of fields F0 � F1 � F2 � . . . such that for each n, every polynomial
f (X) ∈ Fn[X ] has a root in Fn+1. Now take K = ∪nFn . �
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2.4 Preservation Results

In this section, we use compactness theorem and prove several so-called preservation
results.

Proposition 2.4.1 Let N be a substructure of an L-structure M. Then N is exis-
tentially closed in M if and only if there is an extension M ′ of M in which N is
elementarily embedded.

Proof ‘If part’ is easy and was left as an exercise in Chap.1. Assume then N is
existentially closed in M . Take T = Diagel(N ) ∪ Diag(M). Sufficient to prove that
T has a model. If not, then by the compactness theorem, there is an open L-formula
ϕ[x] and a ∈ M such that M |= ϕ[a] and Diagel(N ) �|= ϕ[a]. Hence, there exists an
elementary extension N ′ of N such that ϕ[a] is not satisfiable in N ′. This implies that
N ′ �|= ∃xϕ[x]. Hence, N �|= ∃xϕ[x]. This contradicts that N is existentially closed
in M . �

Proposition 2.4.2 1. Let T be a first-order theory. Then M |= T∀ if and only if it
is a substructure of a model N of T .

2. A theory T is universal if and only if every substructure of a model of T is a
model of T .

Proof (1): ‘If part’ was given as an exercise in Chap.1. Conversely, let M |= T∀.
Set T ′ = T ∪ Diag(M). It is sufficient to show that T ′ is consistent. If not, then by
compactness theorem, there is afinite set
 ⊂ Diag(M) such thatT [
]has nomodel.
Let ϕ1[x], . . . , ϕn[x] be open formulas and c ∈ M such that 
 = {ϕ1[c], . . . , ϕn[c]}.
It now follows that T [∃x ∧n

i=1 ϕi [x]] has no model. So, T |= ∀x¬ ∧n
i=1 ϕi [x]. In

other words, ∀x¬ ∧n
i=1 ϕi [x] ∈ T∀. So, M |= ∀x¬ ∧n

i=1 ϕi [x]. This contradicts that
∧n
i=1ϕi [c] ∈ Diag(M).
(2) follows from (1) because T is universal if and only if T and T∀ have the same

class of models. �

Proposition 2.4.3 Let T be a theory and ϕ[x] a formula. The following are equiv-
alent:

1. There is a universal formula ψ[x] such that T |= ∀x(ϕ[x] ↔ ψ[x]).
2. Whenever M, N |= T , N � M and a ∈ N, M |= ϕ[a] ⇒ N |= ϕ[a].
Proof (1) implies (2) is easy and was given as an exercise in Chap. 1. So, assume (2).
Add new constants c to the language of T and consider the theories, T1 = T [ϕ[c]]
and T2 = T [¬ϕ[c]]. Then (2) says that no substructure of a model of T1 can be a
model of T2. But substructures of models of T1 are precisely models of (T1)∀. Thus,
by (2), (T1)∀ ∪ T2 is inconsistent. Since a finite conjunction of universal sentences is
tautologically equivalent to a universal sentence, by compactness theorem, we get a
ψ[c] ∈ (T1)∀ such that T2[ψ[c]] has no model. It follows that

T [ϕ[c]] |= ψ[c] & T [¬ϕ[c]] |= ¬ψ[c].

http://dx.doi.org/10.1007/978-981-10-5098-5_1
http://dx.doi.org/10.1007/978-981-10-5098-5_1
http://dx.doi.org/10.1007/978-981-10-5098-5_1
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Hence,
T |= ∀x(ϕ[x] ↔ ψ[x]).

�

Proposition 2.4.4 M |= T∀∃ if and only if there is a N |= T such that M is an
existentially closed substructure of N .

Proof ‘If part’ is easy and was given as an exercise in Chap.1. For the converse, let
M |= T∀∃ and T ′ be the set of all universal LM -sentences true in M .

Sufficient to show that T ∪ T ′ has amodel, say N : Then N |= T . Since T ′ contains
the atomic diagram of M , M has an embedding in N . Let ϕ be an existential LM -
sentence true in N . If possible suppose ϕ is not true in M . Then ¬ϕ, a universal
LM -sentence, is true in M . But then N |= ¬ϕ which is a contradiction.

If possible, suppose T ∪ T ′ is inconsistent. By compactness theorem, there exist
universal LM -sentences ϕ1, . . . , ϕk true inM such that T |= ¬ ∧k

i=1 ϕi . Since¬ ∧k
i=1

ϕi is equivalent to a closed existential formula, it belongs to T∀∃. So,M |= ¬ ∧k
i=1 ϕi .

Hence, M |= ¬ϕi for some 1 ≤ i ≤ k. This contradicts that M |= ϕi . �

A model M of a theory T is called an existentially closed model of T if M is
existentially closed in every extension N � M which is a model of T .

Corollary 2.4.5 Let T be a ∀∃ theory and T ′ = T∀. Then every existentially closed
model of T ′ is a model of T .

Proof LetM be an existentially closedmodel of T ′ = T∀. By Proposition 2.4.2, there
is an extension N of M that models T . Let ∀x∃yϕ[y, x], ϕ open, be in T∀∃. Take
any a ∈ M . Then N |= ∃yϕ[y, a]. Note that M, N |= T ′. Since M is an existentially
closed model of T ′, M |= ∃yϕ[y, a]. �

Corollary 2.4.6 A theory T is ∀∃ if and only if T is inductive.

Proof ‘Only if’ part is easy and was proved in Proposition 1.5.12. So, assume that
the class of models of T is closed under unions of chains. Let M0 |= T∀∃. We shall
find an elementary extension M∞ of M0 which is a model of T . This will prove that
M0 |= T and the proof will be complete.

Applying Propositions 2.4.4 and 2.4.1 alternatively, we have

M0 � N0 � M1 � N1 � M2 � · · ·

such that for each k, Mk is existentially closed in Nk , Nk |= T and Mk+1 is an
elementary extension of Mk . Set N∞ = ∪k Nk and M∞ = ∪kMk . By our hypothesis,
N∞ |= T . But M∞ = N∞. So, M∞ |= T . Further, M0 � M∞. �

http://dx.doi.org/10.1007/978-981-10-5098-5_1
http://dx.doi.org/10.1007/978-981-10-5098-5_1
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2.5 Extensions of Partial Elementary Maps

In this section using compactness theorem, we prove results on the extensions of
partial elementary maps.

Proposition 2.5.1 Let M, N be L-structures, A ⊂ M, f : A → N a partial ele-
mentary map and a ∈ M. Then there is an elementary extension N ′ of N and a
partial elementary map g : A ∪ {a} → N ′ that extends f . Moreover, if L, A and N
are countable, we can choose N ′ to be countable.

Proof Suppose a ∈ A and ϕ[x, x], an L-formula, is such that M |= ϕ[a, a]. Then
M |= ∃xϕ[x, a]. Since f is partial elementary, N |= ∃xϕ[x, f (a)]. From this it is
entirely routine to see that every finite subset of

T = Diagel(N ) ∪ {ϕ[x, f (a)] : a ∈ A ∧ M |= ϕ[a, a]}

is finitely satisfiable in N . Hence, by compactness theorem, it is satisfiable. Therefore,
there is an elementary extension N ′ of N and a b ∈ N ′ such that N ′ |= ϕ[b, f (a)]
whenever M |= ϕ[a, a]. Now take g = f ∪ {(a, b)}.

In case L , A and N are countable, T is countable. Therefore, a countable model
N ′ of T exists. �

Applying this result repeatedly, by transfinite induction,we alsohave the following
result.

Proposition 2.5.2 Let M, N0 be L-structures, A ⊂ M and f0 : A → N0 partial
elementary. Then there exists an elementary extension N∞ of N0 such that f0 can be
extended to an elementary embedding f∞ : M → N∞. Moreover, if L, M and N0

are countable, we can choose N∞ to be countable.

Proof Fix an enumeration {aα : α < |M |} of M . By transfinite induction, for each
α < |M |, we shall get an L-structure Nα and a partial elementary map fα : A ∪ {aβ :
β < α} → Nα satisfying the following conditions:

1. Nα+1 is an elementary extension of Nα , Nα = ∪β<αNβ if α is a limit ordinal.
2. fα+1 extends fα and fα = ∪β<α fβ if α limit.

Suppose fα , Nα satisfying the desired properties have been defined. If aα ∈
domain( fα), we set Nα+1 = Nα and fα+1 = fα . Otherwise, by the last Proposi-
tion 2.5.1, there is an elementary extension Nα+1 of Nα and a partial elementary
map

fα+1 : A ∪ {aβ : β ≤ α} → Nα+1

extending fα . Finally take N∞ = ∪α<|M |Nα and f∞ = ∪α fα .
In case L , M and N0 are countable, enumerate M = {an} and proceed as above

but choose at each stage Nn countable. �
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Proposition 2.5.3 Let M, N be L-structures and A ⊂ M, B ⊂ N. Suppose f :
A → B is a partial elementary map. Then f has a partial elementary extension
f ′ : acl(A) → acl(B). Moreover, if f is surjective, we can choose f ′ to be surjective
also.

Proof By Zorn’s lemma, there is a maximal elementary extension f ′ : A′ → B ′
of f with A′ ⊂ acl(A) and B ′ ⊂ acl(B). Note that acl(A′) = acl(A). If possible,
suppose there exists a ∈ acl(A′)\A′. Get an L-formula ϕ[x, y], a ∈ A′ and n ≥ 1
such that

M |= ϕ[a, a] ∧ ∃=nxϕ[x, a].

Choose ϕ and a such that n is minimal possible. Since f ′ : A′ → B ′ is partial ele-
mentary,

N |= ∃=nxϕ[x, f ′(a)].

Clearly, there exists b ∈ acl(B) such that N |= ϕ[b, f ′(a)].
We claim that f ′ ∪ {(a, b)} is partial elementary. (This will complete the proof

of the first part of the result.) Let ψ[x, y] be an L-formula, b ∈ A′ such that M |=
ψ[a, b]. By the minimality of n,

M |= ∀x(ϕ[x, a] → ψ[x, b]).

Hence,
N |= ∀x(ϕ[x, f ′(a)] → ψ[x, f ′(b)]).

Thus, N |= ψ[b, f ′(b)].
Now assume that f is surjective. Then acl(B) = acl(B ′). Let b ∈ acl(B). Since

f is surjective, there exist an L-formula ϕ[x, y], an a ∈ A and a n ≥ 1 such that

N |= ϕ[b, f (a)] ∧ ∃=nxϕ[x, f (a)].

Then M |= ∃=nxϕ[x, a]. Let a1, . . . , an be all a ∈ acl(A) such that M |= ϕ[a, a].
Since f ′ is defined on acl(A), b = f ′(ai ) for some i . �

2.6 Upward Löwenheim–Skolem Theorem

In Theorem 1.7.6 we proved Downward Löwenheim–Skolem Theorem which can
be viewed as a method for building models of smaller cardinalities. In this section,
we present a technique for building large models. First such result was proved by
Tarski in 1928 who showed that every first-order theory with an infinite model has an
uncountable model. The so-called Upward Löwenheim–Skolem theorem (Theorem
2.6.3) appeared in a paper by Tarski and Vaught in [63].

http://dx.doi.org/10.1007/978-981-10-5098-5_1
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Proposition 2.6.1 If a theory T has arbitrarily large finite models, it has an infinite
model.

Proof Let {cn : n ∈ N} be a sequence of distinct symbols not appearing in L . Let T ′
be the extension of T obtained by adding each cn as a new constant symbol and for
each m < n, let the formula cn �= cm be an axiom.

Since T has arbitrarily large finitemodels, eachfinite T ′′ ⊂ T ′ has amodel.Hence,
by the compactness theorem, T ′ has a model. Clearly, any model of T ′ is infinite and
a model of T . �

Theorem 2.6.2 Let κ be an infinite cardinal and T a consistent κ-theory. Assume
that T has an infinite model M. Then T has a model of cardinality κ .

Proof Fix a set {cα : α < κ} of cardinality κ of distinct symbols not appearing in L .
Let L ′ be the extension of L obtained by adding each cα as a constant symbol. Set

 = {cα �= cβ : α < β < κ} and consider the theory T ′ = T [
] with language L ′.

We claim that T ′ is finitely satisfiable. To see this, fix a finite subset 
′ of 
.
Let cα1 , . . . , cαk be all the new constants that appear in a formula in 
′. Since M is
infinite, there exist distinct elements b1, . . . , bk of M . Interpret cαi by bi , 1 ≤ i ≤ k.
Thus we get a model of T [
′]. Hence, by the compactness theorem, T ′ has a model.
Now note that any model of T ′ is of cardinality at least κ and a model of T .

Fix a model M of T ′. By downward Löwenheim–Skolem Theorem 1.7.6, M has
an elementary substructure N of cardinality at most κ . Evidently |M | = κ. �

Theorem 2.6.3 (Upward Löwenheim–Skolem theorem) Let κ be an infinite cardi-
nal and L a κ-language. Then every infinite structure N of L of cardinality at most
κ has an elementary extension M of cardinality κ .

Proof Note that elementary diagram Diagel(N ) of N is a consistent κ-theory. Fur-
ther, N is an infinite model of Diagel(N ). Hence, Diagel(N ) has a model M of
cardinality κ by the last theorem. Since M |= Diagel(N ), M is an elementary exten-
sion of N . �

Exercise 2.6.4 Show that there are structures of arbitrarily large infinite cardinality
elementarily equivalent to N |= PA.

2.7 Some Complete Theories

The following theorem was independently proved by Łoś in [37] and Vaught in [65].

Theorem 2.7.1 (Vaught’s Categoricity Theorem) Let κ be an infinite cardinal and
T a consistent κ-theory all of whose models are infinite. If T is κ-categorical, T is
complete.

http://dx.doi.org/10.1007/978-981-10-5098-5_1
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Proof Suppose a sentence ϕ is not decidable in T . The theories T1 = T [ϕ] and
T2 = T [¬ϕ] are consistent. Since T has no finite models, both T1 and T2 have infinite
models. So, T1 and T2 have models M1 and M2 respectively of cardinality κ by
Theorem 2.6.2. Hence, by the hypothesis of the theorem, they are isomorphic. But
ϕ is true in M1 and false in M2 contradicting that T is κ-categorical. Hence, T is
complete. �

Example 2.7.2 The theory T of infinite sets isκ-categorical for every infinite cardinal
κ , Hence, it is complete.

We saw in Chap.1 that DLO is ℵ0-categorical and DAG and ACF(p), p = 0
or prime, are κ-categorical for all uncountable κ . Further, these three are countable
theories with all models infinite. Hence,

Example 2.7.3 DLO , DAG and ACF(p), p = 0 or prime, are complete theories.
In particular, any two models of these theories are elementarily equivalent.

Exercise 2.7.4 Let G be an infinite group and T the theory of free G-spaces. Show
that T is complete.

Exercise 2.7.5 Show that the theory of random graphs is complete.

2.8 Amalgamation

We continue with applications of compactness theorem and give quite handy condi-
tions under which two structures have a common elementary extension.

Proposition 2.8.1 Let A and B be elementarily equivalent L-structures. Then there
is an elementary extension C of A such that there is an elementary embedding
g : B → C.

Proof Let B ′ be an L-structure, f : B → B ′ an isomorphism and A ∩ B ′ = ∅. Take

T = Diagel(A) ∪ Diagel(B
′).

Let ψ1[b], . . . , ψn[b] ∈ Diagel(B ′). Then B ′ |= ∃y ∧n
j=1 ψ j [y]. Since A and B ′ are

elementarily equivalent, A |= ∃y ∧n
j=1 ψ j [y]. Thus, A is a model of each finite part

of T . Hence, by compactness theorem, T has a model, say C . Take g = i ◦ f . Then
g : B → C is elementary and C an elementary extension of A. �

The following theorem is due to Abraham Robinson ([51], Theorem 4.2.2).

Theorem 2.8.2 (ElementaryAmalgamation Theorem) Let A and B be L-structures
and a ∈ A, b ∈ B be such that (A, a) is elementarily equivalent to (B, b). Let 〈a〉A
be the substructure of A generated by a and f : 〈a〉A → B the embedding such
that f (a) = b. Then there is an elementary extension C of A and an elementary
embedding g : B → C such that g( f (a)) = g(b) = a.

http://dx.doi.org/10.1007/978-981-10-5098-5_1
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Proof Replacing B by an isomorphic copy if necessary, without loss of generality,
we assume that A ∩ B = ∅. Set

T = Diagel(A) ∪ {ϕ[a, c] : ϕ[b, c] ∈ Diagel(B) ∧ b ∩ c = ∅}.

Note that since (A, a) and (B, b) are elementarily equivalent, A |= ∃yϕ[a, y],
whenever ϕ[b, c] ∈ Diagel(B) and b ∩ c = ∅. Now, it is fairly routine to see that A
models every finite part of T . Hence, by compactness theorem, T has a model.

LetC |= T . ThenC is an elementary extension of A. Define g : B → C be g(b) =
a and g(b) = bC , if c /∈ b. Then g is an elementary embedding of B into C . �

Let A, B, C and D be L-structures such that A is a common elementary sub-
structure of B and C and B and C are elementary substructures of D. We call D a
heir-coheir amalgamation of B and C over A or a coheir-heir amalgamation of C
and B over A if for all L-formulas ϕ[x, y], whenever b ∈ B, c ∈ C and D |= ϕ[c, b],
there is an a ∈ A such that B |= ϕ[a, b].

The following theorem is due to Lascar and Poizat [35].

Theorem 2.8.3 Let A, B, C be L-structures with A a common elementary substruc-
ture of B and C. Then, there is a common elementary extension D of B and C which
is a heir-coheir amalgamation of B and C over A.

Proof Replacing B by an isomorphic copy if necessary, without loss of generality,
we assume that B ∩ C = A. Let T ′ be the theory

{¬ϕ[c, b] : b ∈ B ∧ c ∈ C ∧ ∀a ∈ A(B |= ¬ϕ[a, b])},

and
T = Diagel(B) ∪ Diagel(C) ∪ T ′.

Clearly, it is sufficient to show that T has a model. This will follow if we show
that B models every finite part of Diagel(C) ∪ T ′.

Let a ∈ A, b ∈ B, c ∈ C\A, ¬ϕ1[a, c, b], . . . ,¬ϕk[a, c, b] ∈ T ′ and ψ[a, c] ∈
Diagel(C). So, for all a′, a′′ ∈ A, B |= ¬ϕi [a′, a′′, b], 1 ≤ i ≤ k.

Now, C |= ψ[a, c] implies that C |= ∃yψ[a, y]. Hence, A |= ∃yψ[a, y]. So,
there exists a′′ ∈ A such that A |= ψ[a, a′′]. Thus, B |= ψ[a, a′′]. Clearly, B |=
¬ϕi [a, a′′, b], 1 ≤ i ≤ k. �

Remark 2.8.4 By interchanging the role of B and C in the above proof, we get a
coheir-heir amalgamation of B and C over A. We shall see later that in a stable
theory, every heir-coheir amalgam is a coheir-heir amalgam.

Remark 2.8.5 Let D be a heir-coheir amalgamation of B and C over A. Suppose
b ∈ B, c ∈ C and D |= b = c. Then there exists a ∈ A such that B |= b = a. So, the
overlap of B and C in D remains A. Such amalgamations are called strong.
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2.9 Quantifier Elimination

In this section, we introduce yet another important technique inmodel theory, namely
quantifier elimination. Thiswas introduced and systematically studied byTarski [62].
Results and examples that follow are due to him.

Let T be an L-theory. We say that T has quantifier elimination if for every L-
formula ϕ[x] there is an open L-formula ψ[x] such that

T |= ∀x(ϕ[x] ↔ ψ[x]).

Example 2.9.1 Let ϕ be a sentence decidable in T and the language of T have a
constant symbol, say c. Then T |= ϕ ↔ c = c if T |= ϕ, else T |= ϕ ↔ c �= c.

In the rest of this section, we present some necessary and sufficient conditions
for T to have quantifier elimination. Some examples of theories having quantifier
elimination are given in the next section.

Proposition 2.9.2 A theory T has quantifier elimination if and only if for every open
formula ϕ[x, y], there is an open formula ψ[y] such that

T |= ∀y((∃xϕ[x, y]) ↔ ψ[y]).

Proof Since only if part of the result is clear, we need to prove if part only. By
induction on the rank of formulas, we prove that for every formula ϕ[x] of L there
is an open formula ψ[x] such that

T |= ∀x(ϕ[x] ↔ ψ[x]). (∗)

(∗) is clearly true for open ϕ. It is easy to prove that if (∗) is true for ϕ, it is true for
¬ϕ. If (∗) holds for ϕ = ϕ1 and ϕ = ϕ2, it holds for ϕ1 ∨ ϕ2.

To complete the proof, assume that (∗) holds for ϕ[x, y]. Get an open formula
η[x, y] such that

T |= ∀x∀y(ϕ[x, y] ↔ η[x, y]).

This implies that
T |= ∀y((∃xϕ[x, y]) ↔ ∃xη[x, y]).

By our hypothesis, there is an open formula ψ[y] such that

T |= ∀y((∃xη[x, y]) ↔ ψ[y]).

Now it is clear that
T |= ∀y((∃xϕ[x, y]) ↔ ψ[y]).

Our proof is complete. �
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Theorem 2.9.3 Let T be a theory with a constant symbol c and ϕ[x] a formula of
T . The following are equivalent:

(1) There is an open formula ψ[x] such that

T |= ∀x(ϕ[x] ↔ ψ[x]). (∗)

(2) For any two models M, N |= T , for any common substructure A of M, N and
for any a ∈ A,

M |= ϕ[a] ⇔ N |= ϕ[a].

(3) For any twomodels M, N |= T , for any common finitely generated substructure
A of M, N and for any a ∈ A,

M |= ϕ[a] ⇔ N |= ϕ[a].

Proof (1) implies (2): Take M , N , A and a as in (2). By (1), there is an open formula
ψ[x] such that T |= ∀x(ϕ(x) ↔ ψ(x)). So,

M |= ϕ(a) ⇔ M |= ψ[a]

and
N |= ϕ(a) ⇔ N |= ψ[a].

But A being a common substructure of M and N , since a ∈ A and ψ is open,

M |= ψ(a) ⇔ A |= ψ(a) ⇔ N |= ψ(a).

Hence,
M |= ϕ(a) ⇔ N |= ϕ(a).

(3) is a special case of (2).
(3) implies (1): Assume that ϕ[x] satisfies (3). When a closed formula ϕ satisfies

(3), ϕ is either true in all models or in none. Now note that T |= ϕ ↔ c = c if T |= ϕ.
Otherwise T |= ¬ϕ when T |= ϕ ↔ c �= c. The same argument works when ϕ[x]
is not closed but decidable in T , i.e. ∀xϕ[x] is decidable in T .

It remains to prove the result in case both T [ϕ[x]] and T [¬ϕ[x]] are satisfiable.
Introduce new constants c to the language to get a new language, say L ′. Let T ′ be
the new theory whose language is L ′ but no new nonlogical axiom. Consider


 = {ψ[c] : T ′ |= ϕ[x] → ψ[x], ψ open}.

We first see that it is sufficient to prove that

T ′[
] |= ϕ[c]. (∗)
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Then by compactness theorem, there exist ψ0[c], . . . , ψn−1[c] ∈ 
 such that

T ′ |= ∧i<nψi [c] → ϕ[c].

Since c are new constants, it follows that

T |= ∀x(ϕ[x] ↔ ∧i<nψi [x])

and ∧i<nψi [x] is open.
We prove (∗) by contradiction. So, assume that

T ′[
] �|= ϕ[c].

Let
M |= T ′[
] ∪ {¬ϕ[c]}.

Let A be the substructure of M generated by cM . So A is finitely generated. Now
consider

� = T ∪ Diag(A) ∪ {ϕ[c]}.

We claim that � has a model. If not, then by compactness theorem, there exist
ψ1[c], . . . , ψn[c] ∈ Diag(A) such that

T ′ |= ∧n
i=1ψi [c] → ¬ϕ[c].

Since c are new constants,

T |= ∧n
i=1ψi [x] → ¬ϕ[x].

Set ψ[x] = ¬ ∧n
i=1 ψi [x]. Note that ψ is open. We have,

T |= ϕ[x] → ψ[x].

Thus, ψ[c] ∈ 
. Hence, M |= ψ[c]. Since ψ is open and cM ∈ A, A |= ψ[c], con-
tradicting that ψ1[c], . . . , ψn[c] ∈ Diag(A).

Now take a model N |= �. By the Atomic diagram Theorem 1.5.13, A is a sub-
structure of N . But M |= ¬ϕ[c] and N |= ϕ[c]. This contradicts (3) and proves (∗).

�

Since every open formula is equivalent to an open formula in disjunctive normal
form (DNF), we now easily see that

Proposition 2.9.4 Let T be a theory with a constant. The following are equivalent:

(1) T has quantifier elimination.

http://dx.doi.org/10.1007/978-981-10-5098-5_1
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(2) For every conjunction of literals ϕ[x, y], for any two models M, N |= T , for
every common substructure A of M, N and for every a ∈ A, if there is a b ∈ M
such that M |= ϕ[b, a], there is a c ∈ N such that N |= ϕ[c, a].

The simple proof of this result is left to the reader as a simple exercise.
Let T be an L theory, M, N |= T , A ⊂ M and B ⊂ N . A map f : A → B is

called a partial isomorphism if f is onto and for every atomic L-formula ϕ[x] and
every a ∈ A,

M |= ϕ[a] ⇔ N |= ϕ[ f (a)]. (∗)

It is easy to see that every partial isomorphism f : A → B is a bijection and for
every open L-formula ϕ[x] and every a ∈ A,

M |= ϕ[a] ⇔ N |= ϕ[ f (a)].

If, moreover, (∗) is satisfied for every formula ϕ[x] and every a ∈ A, we call f a
partial elementary. In the next chapter, we shall study partial elementary maps in
detail.

Theorem 2.9.5 A theory T has quantifier elimination if and only if for every pair
of models M, N of T every finite partial isomorphism M � a → b ∈ N is partial
elementary.

Proof The only if part of the result being clear, we prove the if part only. Take an
L-formula ϕ[x], x = (x0, . . . , xn−1).


[x] = {ψ[x] : ψ[x] an open L − formula & T |= ∀x(ϕ[x] → ψ[x])}.

Add new constants c0, . . . , cn−1 and consider


[c] = {ψ[c] : ψ[x] ∈ 
[x]}.

Claim. T [
[c]] |= ϕ[c].
Assuming the claim, we complete the proof first. Since 
[c] is closed under

conjunctions, by compactness theorem, there is a ψ[c] ∈ 
[c] such that T [ψ[c]] |=
ϕ[c]. It follows that

T |= ∀x(ψ[x] → ϕ[x]).

But we already have
T |= ∀x(ϕ[x] → ψ[x]).

Hence,
T |= ∀x(ϕ[x] ↔ ψ[x]).
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Proof of the claim. Suppose the claim does not hold. Then there exists a M |=
T [
[c]] ∪ {¬ϕ[c]}. Let ai = cMi , i < n. Set

p[x] = {ξ [x] : ξ [x] an open L − formula & M |= ξ [a]}.

Then T ∪ p[x] ∪ {ϕ[x]} is satisfiable: If not, then it is not finitely satisfiable. Hence,
there is a formula ξ [x] ∈ p[x] such that

T |= ∀x(ϕ[x] → ¬ξ [x]).

This forces ¬ξ [x] ∈ 
[x] which is a contradiction.
Thus, there exist N |= T and b ∈ N such that N |= ϕ[b] and for every open

formula ξ [x],
M |= ξ [a] ⇔ N |= ξ [b].

Since M |= ¬ϕ[a], we have arrived at a contradiction. �

We close this section by giving an application of partial elementary maps to
quantifier elimination. Let M be a model of a theory T and A � M . We say that M
is prime over A or that M is a prime model extension of A if for every model N of
T and every partial elementary map h : A → N , there is an elementary embedding
g : M → N such that h = g|A. We say that T has algebraically prime models if
every model A of T∀ has an extension M |= T such that M is prime over A. Recall
that A |= T∀ if and only if it has an extension to a model of T (Proposition 2.4.2).

Example 2.9.6 Consider the theory ACF of algebraically closed fields. Let D be
an integral domain and F the algebraic closure of the fraction field of D. We know
that given anyK |= ACF and a partial elementary map h : D → K (an embedding,
in particular), there is an embedding g : F → K such that h = g|D. Since ACF has
quantifier elimination, g is elementary.

Example 2.9.7 Consider the theory RCOF of real closed fields. Let D be an ordered
integral domain andF the real closure of the ordered fraction field of D.We know that
given anyK |= RCF and an elementary map h : D → K, there is an embedding g :
F → K such that h = g|D. Since RCOF has quantifier elimination, g is elementary.

Example 2.9.8 Consider the theory DLO of dense linearly ordered sets with no end
points. Let (A,<) be a linearly ordered sets. We define a dense linearly ordered set
A∗ as follows: If A has a least element, say x , add a copy ofQwith the usual order to
the left of x , if A has a greatest element, say y, add a copy ofQ with the usual order
to the right of y and if x < y are two elements of A with no element in between, add
a copy ofQwith the usual order between x and y. There is a canonical inclusion map
f : A ↪→ A∗. Now given any B |= DLO and a partial elementary map h : A → B,
it is easy to define an embedding g : A∗ → B such that h = g ◦ f . Since DLO has
quantifier elimination, g is elementary.

We leave the proof of following theorem for readers as an exercise:
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Theorem 2.9.9 Let T be a theory such that

1. T has algebraically prime models, and
2. for any two M, N |= T with M � N, for any conjunction of literals ϕ[x, y] and

for every a ∈ M,
N |= ∃xϕ[x, a] ⇒ M |= ∃xϕ[x, a].

Then T has quantifier elimination.

Exercise 2.9.10 Show that the theory T of vector spaces over a fixed field has
quantifier elimination.

2.10 Examples of Quantifier Elimination

In the following examples, we use Proposition 2.9.4 without mentioning it.

Example 2.10.1 The theory DLO of dense linear orders without end points has
quantifier elimination.

Proof Let ϕ[x, y] be a conjunction of literals. For instance, suppose

ϕ[x, y] = y1 < · · · < yi−1 < x < yi < · · · < yn .

Suppose M, N |= DLO , A is a common substructure of M, N , a ∈ A and there is
a b ∈ M satisfying

a1 < · · · < ai−1 < b < ai < · · · < an .

This, in particular, implies that

a1 < · · · < ai−1 < ai < · · · < an .

Since N |= DLO , there is a c ∈ N such that

a1 < · · · < ai−1 < c < ai < · · · < an .

Cases when ϕ[x, y] is “x < y1 < · · · < yn” or “y1 < · · · < yn < x” are dealt with
similarly because N has no end points. �

Example 2.10.2 The theory DAG of torsion-free divisible abelian groups has quan-
tifier elimination.

Proof We takeG1,G2 |= DAG, a common subgroup H ⊂ G1,G2. Let ϕ[x, y] be a
conjunction of literals. Suppose a ∈ H . Replacing H by its divisible hull considered
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as a common subgroup of both G1 and G2, we further assume that H too is divisible.
Now ϕ[x, y], being a conjunction of literals, it can be assumed to be of the form

∧k−1
i=0

mi∑

j=1

(ni j y j + ni x = 0) ∧ ∧l−1
p=0

rp∑

j=1

(n′
pj y j + n′

px �= 0)). (∗)

Assume that there is a b ∈ G1 such that

G1 |= ϕ[b, a].

We need to show that there is a c ∈ G2 such that

G2 |= ϕ[c, a].

Since H is a substructure of G2, it is sufficient to show that there is such a c in H .
If any ni �= 0, as H is divisible,

b = −
∑mi

j=1 ni j a j

ni
∈ H

and we are done. So, assume that all ni = 0. Then b disappears from the equalities
appearing in (∗). Since H is infinite, we can certainly find a c ∈ H satisfying all
inequalities in (∗). �

Example 2.10.3 The theory ODAG of ordered divisible abelian groups has quanti-
fier elimination.

Proof As in the above case, we take ordered divisible abelian groups G1 and G2,
a common subgroup H , a conjunction of literals ϕ[x, y] and an a ∈ H . Assume
that there is a b ∈ G1, such that G1 |= ϕ[b, a]. Again, as in the last example, it is
sufficient to show that if H ′ is the ordered divisible hull of H , there is a c ∈ H ′ such
that H ′ |= ϕ[c, a]. Towards showing this, note that we can assume that ϕ[x, y] is of
the form

∧k−1
i=0

mi∑

j=1

(ni j y j + ni x = 0) ∧ ∧l−1
p=0(

rp∑

j=1

n′
pj y j < n′

px).

Since H ′ is order-dense, arguing as in the last example, we get a required c ∈ H ′. �

Example 2.10.4 LetK be a field. Then the theory T of infinite vector spaces overK
has quantifier elimination.

Proof Let V1, V2 |= T and V be a common subspace of V1 and V2. Let ϕ[x] be an
open LV -formula and there exists an a ∈ V1 such that V1 |= ϕ[a]. We need to show
that V2 |= ∃xϕ[x].
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If a ∈ V , since V is a substructure of V1 and V2 and ϕ open, V2 |= ϕ[a].
Next assume that a /∈ V . If V = V2, since V2 is infinite, it has a proper elemen-
tary extension, say V ′

2. If V
′
2 |= ∃xϕ[x], V2 |= ∃xϕ[x]. Hence, without any loss of

generality, we assume that V �= V2. Let b ∈ V2\V . Set L1 = span(V ∪ {a}) and
L2 = span(V ∪ {b}). There is a linear isomorphism f : L1 → L2 fixing V point-
wise and f (a) = b. This implies that L2 |= ϕ[b]. Since ϕ is open, V2 |= ϕ[b]. �

Example 2.10.5 The theory ACF of algebraically closed fields has quantifier elim-
ination.

Proof Note that a substructure of a field is an integral domain. Also, recall that if
D is an integral domain, its quotient field embeds into every field in which D is
embedded. Therefore, as in the last two cases, we only need to show that whenever
F ⊂ K are algebraically closed fields, ϕ[x, y] a conjunction of literals and a ∈ F, if
there is a b ∈ K such that K |= ϕ[b, a], there is a c ∈ F such that F |= ϕ[c, a]. Now
note that we can take ϕ[x, a] in the form

∧k−1
i=0 (Pi (x) = 0) ∧ ∧l−1

j=0(Q j (x) �= 0),

Pi [X ]’s and Q j [X ]’s are polynomials over the smallest subfield of F generated by
a. If k ≥ 1, b ∈ F because it is algebraically closed. Otherwise, since F is infinite, it
certainly has a c which is not a root of any Q j [X ] which works for us. �

It is interesting to ask if the converse of Proposition 1.9.17 is true? We shall come
back to this question later.

Corollary 2.10.6 Let K be an algebraically closed field and A ⊂ K. Then a ∈
acl(A) if and only if a is algebraic in usual algebra sense over the subfield k gener-
ated by A.

Proof Let a ∈ acl(A). By quantifier elimination and the fact that every open formula
is equivalent to a formula in disjunctive normal form, there exist polynomial terms
pi (x, y), i < n, q j (x, y), j < m, and a ∈ A such that

∧i pi (a, a) = 0 ∧ ∧ j q j (a, a) �= 0,

and that this equation has only finitely many solutions. But then n > 0. Hence a is
algebraic over k. If part is straight forward. �

Exercise 2.10.7 Let G |= DAG and A ⊂ G. Show that acl(A) = dcl(A) and it
equals the smallest divisible subgroup of G generated by A.

Exercise 2.10.8 Let V be an infinite vector space over a field K and A ⊂ V . Show
that acl(A) = dcl(A) and it equals the vector subspace of V generated by A.

Example 2.10.9 The theory RCOF of real closed fields has quantifier elimination.

http://dx.doi.org/10.1007/978-981-10-5098-5_1
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Proof As in the cases of say ODAG and ACF etc. we only need to show that if
ϕ[x, y] is a conjunction of literals, F ⊂ K |= RCOF and a ∈ F, then

K |= ∃xϕ[x, a] ⇒ F |= ∃xϕ[x, a].

We can assume that ϕ[x, y] is of the form

∧n
i=1(pi (x, y) = 0) ∧ ∧m

j=1(q j (x, y) > 0),

with pi , q j being terms.
Choose a b ∈ K such that

K |= ϕ[b, a].

If any of the equality term is present, since F has no proper real algebraic extension
(Theorem B.3.10), b ∈ F.

So, assume no pi is present. Since F has no proper real algebraic extension, roots
of q j ’s, if any, belong to F. If a q j has no root in the field and since q j (b, a) >

0, by Weierstrass Nullstellensatz (Theorem B.3.9), q j (c, a) > 0 for all c ∈ F. By
considering finitely many roots of all q j ’s (all of which belong to F), we find a
non-empty open interval I inKwith end points inF such that b ∈ I and q j (x, a) > 0
for all x ∈ I and for all 1 ≤ j ≤ m. Using the order-denseness of F, we have a b ∈ F

that lies in I . This b witnesses F |= ϕ[b, a]. �
Exercise 2.10.10 Show that the theory of random graphs has quantifier elimination
and it is complete.

Exercise 2.10.11 Let K be a field. Show that the theory of infinite vector spaces
over K is complete.

2.11 Strongly Minimal and O-Minimal Theories

As a consequence of the fact that ACF has quantifier elimination, we get

Proposition 2.11.1 Let F be an algebraically closed field. Then F is infinite and
D ⊂ F is definable if and only if D is either finite or cofinite in F.

Proof Note that a subset D of F is defined by an atomic formula if and only if it is
the set of all roots of a polynomial in F. Hence, such a set D ⊂ F is finite. Boolean
algebra of subsets of F generated by all finite sets consists of all finite and cofinite
sets. These are precisely sets defined by open formulas. Our claim is followed by
Example 2.10.5. �

The same argument shows the following.

Proposition 2.11.2 LetG bea torsion-free divisible abeliangroup. ThenG is infinite
and D ⊂ G is definable if and only if D is either finite or cofinite in G.
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Corollary 2.11.3 R is not a definable subset of the field C of complex numbers.

Corollary 2.11.4 Z and N are not definable subsets of the group Q of rational
numbers.

Remark 2.11.5 In a remarkable discovery, J. Robinson produced a formula ϕ[x] in
the language of rings such that for a rational number r ,

Q |= ϕ[r ] ⇔ r ∈ N.

(See [13, 52]).

Let M be an L-structure and A ⊂ Mn . We call A minimal if A is infinite and if for
every LM -formula ϕ[x] either A ∩ ϕ(M) or A\ϕ(M) = A ∩ ¬ϕ(M) is finite. Thus,
M is a minimal structure if and only if M is infinite and every definable subset of M
is either finite or cofinite in M .

An LM -formula ϕ[x] is called minimal in M if ϕ(M) is minimal; it is called
strongly minimal in M if ϕ is minimal in every elementary extension of M .

A theory T is called strongly minimal if every M |= T is minimal. It follows that
if T is strongly minimal, every model of T is strongly minimal. Whatever may be
the language L , clearly all finite subsets and their complements in an L-structure
M is definable. Thus definable subsets of models of a strongly minimal theory have
simplest possible structure. This notionwas introduced byMarsh [42]. Its importance
was shown by Baldwin and Lachlan to give a simpler proof of Morley categoricity
theorem [5].

Example 2.11.6 ACF and DAG are strongly minimal.

Remark 2.11.7 Consider the theory RCF of real closed fields (without order rela-
tion). The field of real numbers R is a model of it. We also have

x ≥ 0 ⇔ ∃y(x = y · y).

This shows that the real closed field R is not minimal. Hence, RCF does not admit
quantifier elimination.

Exercise 2.11.8 Show that the theory T of vector spaces over a fixed field is strongly
minimal.

Proposition 2.11.9 Let M be an L-structure and ϕ[x] an L-formula. The following
conditions are equivalent:

1. ϕ is strongly minimal in M.
2. ϕ is minimal in every structure N which is elementarily equivalent to M.

Proof Since every elementary extensionofM is elementarily equivalent toM , clearly
(2) implies (1).
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Now assume (1) and let N be elementarily equivalent to M . By Proposition
2.8.1, there exists an elementary extension A of M and an elementary embedding g :
N → A. Let ψ[x, y] be an L-formula and a ∈ N . By (a), either ϕ(A) ∩ ψ(A, g(a))

or ϕ(A) ∩ ¬ψ(A, g(a)) is finite. Since g is elementary, either ϕ(N ) ∩ ψ(N , a) or
ϕ(N ) ∩ ¬ψ(N , a) is finite. Thus, (1) implies (2). �

Let (X,<) be a linearly ordered set. An interval in X is a subset I of X such that
whenever x ≤ y are in I and x ≤ z ≤ y, z ∈ I .

Here is a very important class of theories. Let T be a theory whose language has
a binary relation symbol < such that for every M |= T , <M is a linear order on M .
We call T O-minimal if for every M |= T , D ⊂ M is definable if and only if D is
a finite union of intervals. Here ‘O’ stands for order. This concept was defined by
Pillay and Steinhorn in [48, 49]. Today O-minimality is a major tool in geometry.

Since the theories DLO , ODAG and RCOF have quantifier elimination, we
have the following example.

Example 2.11.10 Theories DLO , ODAG and RCOF are O-minimal.

Example 2.11.11 The theory ODAG of ordered abelian groups has definable
Skolem functions. To see this, let ϕ[x, y] be a formula. By quantifier elimination,
we know that “{y : ϕ[x, y]} is a finite union of intervals and singletons.” We define
ψ[x, y] as the disjunction of following formulas:

(∀z¬ϕ[x, z] ∨ ∀zϕ[x, z]) ∧ y = 0,

∃z(∀u < zϕ[x, u] ∧ ∀w > z∃v < w¬ϕ[x, v] ∧ y = z − 1),

∃z(∀u > zϕ[x, u] ∧ ∀w < z∃v > w¬ϕ[x, v] ∧ y = z + 1),

∃z1, z2(∀u < z1¬ϕ[x, u] ∧ ((∀z1 < u < z2ϕ[x, u]) ∨ (z1 = z2 ∧ ϕ[x, z1]))

∧∀v > z2∃z2 ≤ u < v¬ϕ[x, u] ∧ y = z1 + z2
2

).

Then

ODAG |= ∀x(∃=1yψ[x, y] ∧ (∃yϕ[x, y] → ∀y(ψ[x, y] → ϕ[x, y]))).

Further, ψ[x, y] defines a function F whose graph is the set defined by ψ[x, y]. We
also have

ODAG |= ∀x∀x ′(∀y(ϕ[x, y] ↔ ϕ[x ′, y]) → F(x) = F(x ′)).

In this sense, we call F invariant.
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Example 2.11.12 We extend the idea contained in the last Example further. Let
ϕ[x, y] be a formula of ODAG. By induction on the arity n of y, we show that there
exists an invariant definable function y = F(x) such that

ODAG |= ∀x(∃yϕ[x, y] → ϕ[x, F(x)]).

For n = 1, this is done above.
For inductive step, take a formula ϕ[x, y1, . . . , yn+1]. By induction hypothesis,

there exists an invariant, definable Skolem function f (x, y1) such that

ODAG |= ∀y1∀x(∃y2 . . . ∃yn+1ϕ[x, y] → ϕ[x, y1, f (x, y1)]).

By case n = 1, there exists an invariant definable Skolem function g(x) such that

ODAG |= ∀x(∃y1ϕ[x, y1, f (x, y1)] → ϕ[x, g(x), f (x, g(x))]).

Now take
F(x) = (g(x), f (x, g(x))).

Then F(x) is an invariant function such that

ODAG |= ∀x(∃yϕ[x, y] → ϕ[x, F(x)]).

Further note that if ϕ[x, y] is an equivalence formula, then F(x) is a definable section
of ϕ.

Example 2.11.13 Exactly the same arguments as in the last two examples show
that RCOF has definable Skolem functions. Further, since we can introduce < in
an extension by definition of RCF , we see that RCF too has definable Skolem
functions.

Example 2.11.14 By Theorem 1.12.3 it follows that ODAG, RCOF and RCF
admit uniform elimination of imaginaries.

The theory of algebraically closed fields ACF also admits uniform elimination of
imaginaries. However, it requires considerable work. This will be proved in Sect. 4.3.

2.12 Independence and Dimension in Minimal Sets

In this section, we generalise the notions of independence and basis to models of
strongly minimal theories.

Theorem 2.12.1 (Exchange Lemma) Let M be an L-structure, A ⊂ M and X an
L A-definableminimal set. Let a, b ∈ X be such that b ∈ acl(A ∪ {a}) \ acl(A). Then
a ∈ acl(A ∪ {b}).

http://dx.doi.org/10.1007/978-981-10-5098-5_1
http://dx.doi.org/10.1007/978-981-10-5098-5_4
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Proof If possible, suppose there exists b ∈ acl(A ∪ {a}) \ acl(A) such that a /∈
acl(A ∪ {b}). We shall arrive at a contradiction.

Since b ∈ acl(A ∪ {a}), there exists an L A-formula ϕ[x, y] and n ≥ 1 such that

M |= ϕ[b, a] ∧ ∃=nxϕ[x, a].

Since X is minimal A-definable and a ∈ X\acl(A ∪ {b}), there exists a finite set
Y ⊂ M such that for all c ∈ X\Y ,

M |= ϕ[b, c] ∧ ∃=nxϕ[x, c].

Let ψ[y] be an LA-formula that defines X and |Y | = m. We have

M |= ∃y1 . . . ∃ym(∀y((∧i (y �= yi ) ∧ ψ[y]) → (ϕ[b, y] ∧ ∃=nxϕ[x, y])).

Since b /∈ acl(A), there exists an infinite set Z ⊂ M such that for all b′ ∈ Z ,

M |= ∃y1 . . . ∃ym(∀y((∧i (y �= yi ) ∧ ψ[y]) → (ϕ[b′, y] ∧ ∃=nxϕ[x, y])).

Take distinct elements b0, . . . , bn ∈ Z . Then there exists a c ∈ X such that

M |= ∧n
i=0ϕ[bi , c] ∧ ∃=nxϕ[x, c].

This is a contradiction. �

We say that A ⊂ M is independent if for every a ∈ A, a /∈ acl(A\{a}). IfC ⊂ M ,
we say that A is independent over C if for every a ∈ A, a /∈ acl(C ∪ (A\{a})). This,
in particular, implies that A ∩ C = ∅. A subset B of A is called a basis of A if B is
independent and acl(B) = acl(A). Equivalently, B is a maximal independent subset
of A.

Proposition 2.12.2 Let X be an ∅-definable minimal subset of an L-structure M
and A, B independent subsets of X with A ⊂ acl(B). Then

1. Let A0 ⊂ A, B0 ⊂ B and A0 ∪ B0 a basis for acl(B). Then for every a ∈ A\A0,
there is a b ∈ B0 such that A0 ∪ {a} ∪ (B0\{b}) is a basis of acl(B).

2. |A| ≤ |B|.
3. For every Y ⊂ X, any two bases of Y have the same cardinality.

Proof LetC ⊂ B0 be a set of minimum cardinality such that a ∈ acl(A0 ∪ C). Since
A is independent, C �= ∅. Take a b ∈ C . Because C is of minimum possible cardi-
nality,

a ∈ acl(A0 ∪ C) \ acl((A0 ∪ C) \ {b}).
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Therefore, by exchange lemma (Theorem 2.12.1),

b ∈ acl((A0 ∪ {a}) ∪ (C\{b})).

Hence,
acl(B) = acl((A0 ∪ {a}) ∪ (B0\{b})).

Weclaim thata /∈ acl(A0 ∪ (B0\{b})). For otherwise,b ∈ acl(A0 ∪ (B0\{b}))which
contradicts that A0 ∪ B0 is a basis of acl(B). Using exchange lemma (Theo-
rem 2.12.1) it is easy to see that (A0 ∪ {a}) ∪ (B0\{b}) is independent. Thus,
(A0 ∪ {a}) ∪ (B0\{b}) is a basis of acl(B). This proves (1).

First we prove (2) when B is finite. Let |B| = n. Set A0 = ∅. Take any a1 ∈ A.
Get b1 ∈ B such that {a1} ∪ (B\{b1}) is a basis of acl(B). Such an a1 exists
by (1). Suppose 1 ≤ i < n and a1, . . . , ai ∈ A and b1, . . . , bi ∈ B be such that
{a1, . . . , ai } ∪ (B\{b1, . . . , bi }) is a basis of acl(B). If A �= {a1, . . . , ai }, take any
ai+1 ∈ A\{a1, · · · , ai }. Get bi+1 ∈ B\{b1, . . . , bi } such that {a1, . . . , ai+1} ∪
(B\{b1, . . . , bi+1} is a basis of acl(B). Such an ai+1 exists by (1). This process
must stop in a maximum of n steps. Thus, |A| ≤ n. If B is infinite

A = ∪{A ∩ acl(B0) : B0 ⊂ B finite}.

Hence, |A| ≤ |B|. Thus, (2) is proved.
(3) is a direct corollary of (2). �

Let M be an L-structure, X a ∅-definable minimal set in M and A ⊂ X . Then any
two bases of A have the same cardinality which we call the dimension of A, denoted
by dim(A).

Proposition 2.12.3 Let M and N be L-structures, X ⊂ M, Y ⊂ N and g : X →
Y partial elementary. Suppose ψ[x] is an L-formula minimal in both M and N,
{aα : α < κ} a sequence in ψ(M) independent over X and {bα : α < κ} a sequence
in ψ(N ) independent over Y . Then the extension g : X ∪ {aα : α < κ} → Y ∪ {bα :
α < κ} of g (which we denote by g itself) defined by g(aα) = bα , α < κ , is partial
elementary.

Proof Set gβ = g|(X ∪ {aα : α < β}), β < κ . Suffices to show that each gβ is partial
elementary. This will follow if we show that whenever gβ is partial elementary, so is
gβ+1.

Assume that β < κ and gβ is partial elementary. Take an L-formula ϕ[x, y, z],
a ∈ {aα : α < β} and b ∈ X . Suppose

M |= ϕ[a, b, aβ ].

Sinceψ(M) is minimal and aβ /∈ acl(X ∪ {aα : α < β}), there exists a natural num-
ber m such that

M |= ∃=mz(ψ[z] ∧ ¬ϕ[a, b, z]).
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Since gβ is partial elementary, we have

N |= ∃=mz(ψ[z] ∧ ¬ϕ[gβ(a), gβ(b), z].

As ψ(N ) is minimal and bβ /∈ acl(Y ∪ {bα : α < β}), we must have

N |= ϕ[gβ(a), gβ(b), bβ ].

If M �|= ϕ[a, b, aβ ], we repeat the above argument with ¬ϕ to see that N �|=
ϕ[gβ(a), gβ(b), bβ]. Our proof is complete now. �

Ournext fewexercises show that these notionof independence andbasis generalise
corresponding notions in vector spaces and fields.

Exercise 2.12.4 Let K be a field, V an infinite vector space over K and A ⊂ V .
Show the following:

1. A is an independent set if and only if A is linearly independent.
2. A is a basis of V if and only if A is a basis of V in linear algebra sense.
3. dim(V ) equals the vector space dimension of V .

Exercise 2.12.5 Let F be an algebraically closed field and A ⊂ F. Show the follow-
ing:

1. A is an independent set if and only if A is algebraically independent.
2. A is a basis of F if and only if A is a transcendence basis of F.
3. dim(F) equals the transcendence degree of F over the prime field.

2.13 More Complete Theories

Quantifier elimination can be used to prove completeness of theories.

Proposition 2.13.1 Let T have quantifier elimination and M an L-structure such
that T ∪ Diag(M) is consistent. Then T ∪ Diag(M) is complete.

Proof Let M1, M2 |= T ∪ Diag(M). Then M � M1, M2 and M1, M2 |= T . Take a
sentence ϕ. By quantifier elimination of T , there is an open sentence ψ such that
T |= ϕ ↔ ψ . Now

M1 |= ϕ ⇔ M1 |= ψ ⇔ M |= ψ ⇔ M2 |= ψ ⇔ M2 |= ϕ.

This completes the proof. �

An L-structureM is called a prime structure of an L-theory T if M is embeddable
in every model of T .
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Corollary 2.13.2 If T has quantifier elimination and a prime structure M, then T
is complete.

Proof This follows from the fact that if N |= T , then N |= T ∪ Diag(M). �

Now note the following:

1. Q |= DLO and it embeds into all models of DLO .
2. Q |= DAG and it embeds into all models of DAG.
3. Q |= ODAG and it embeds into all models of ODAG.
4. The field of all algebraic numbers is a model of ACF(0) that embeds into all

models of ACF(0).
5. Let p be a prime and Fp the algebraic closure of the field Fp. Then Fp is a model

of ACF(p) that embeds into all models of ACF(p).
6. The field Ralg is a real closed field that embeds into all models of RCF .

Thus,

Theorem 2.13.3 The theories DLO, DAG, ODAG, ACF(p), p = 0 or prime,
and RCF are all complete. Hence, models of these theories are elementarily equiv-
alent.

A model M of a theory T is called a prime model of T if it is elementarily
embeddable into every N |= T . If T has quantifier elimination, then every model of
T which is a prime structure of T is a prime model of T . So, DLO , DAG, ODAG,
ACF(p), p = 0 or prime, and RCF have prime models.

Remark 2.13.4 Aword on decidability of theories and decidable structures: Suppose
T is a theory with finitely many nonlogical symbols. Then Gödel coded each formula
of T , a finite sequence of logical and nonlogical symbols, by a natural number. The
theory T is called axiomatised if the set of codes of its axioms is computable. In a
landmark result, Gödel showed that a complete, axiomatised theory is decidable. It
follows that every model of such a T is decidable. Thus, we get many examples of
classical structures such as R as a real closed field, C, Fp, p a prime, etc. which are
decidable. All these results are due to Tarski. Since this topic is beyond the scope of
this book, we refer the reader to [59] for details.

2.14 Model Completeness

A theory T is calledmodel complete if whenever M, N |= T and N is a substructure
ofM , N is an elementary substructure ofM . This notionwas introduced and used, for
instance, to proveHilbertNullstellensatz (Theorem2.15.8) and give amodel theoretic
proof of Artin’s theorem on Hilbert’s seventeenth problem (Theorem 2.15.9) in [51].

Proposition 2.14.1 If T is model complete and has a model which is a prime struc-
ture of T , then T is complete.
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Proposition 2.14.2 If T has quantifier elimination, it is model complete.

Proof Let M, N |= T and M be a substructure of N . We need to show that the
inclusion map i : M ↪→ N is an elementary embedding. Take a formula ϕ[x] and an
a ∈ M . By elimination of quantifiers, there is an open formula ψ[x] such that

T |= ∀x(ϕ[x] ↔ ψ[x]).

So,
M |= ϕ[a] ⇔ M |= ψ[a],

N |= ϕ[a] ⇔ N |= ψ[a]

and since M is a substructure of N ,

M |= ψ[a] ⇔ N |= ψ[a].

The result follows now. �

Corollary 2.14.3 The theories DLO, DAG, ODAG, ACF, RCF and RCOF are
model complete.

Proposition 2.14.4 Let T be a model complete theory. Then

1. The class of all models of T is closed under unions of chains.
2. T is a ∀∃ theory.

Proof By model completeness, every chain of models of T is an elementary chain.
Hence, their unions are models of T . By Corollary 2.4.6, (1) implies (2). �

Proposition 2.14.5 An L-theory T is model complete if and only if for every model
M of T , T ∪ Diag(M) is a complete theory.

Proof Note that T ∪ Diag(M) is complete if and only if every model of T ∪
Diag(M) is elementarily equivalent to M . Further, every model of T ∪ Diag(M) is
elementarily equivalent to M if and only if T is model complete. The result follows.

�

Proposition 2.14.6 Let T be a theory. The following statements are equivalent:

1. T is model complete.
2. For every M, N |= T with N � M, for every formula ϕ[x] without parameters,

for every a ∈ N,
M |= ϕ[a] ⇒ N |= ϕ[a].

3. Every model of T is an existentially closed model of T .
4. Every existential formula is equivalent in T to a universal formula.
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5. Every formulaϕ[x] (without parameters) is equivalent in T to a universal formula
ψ[x] (without parameters).

6. Every formula ϕ[x] (without parameters) is equivalent in T to a existential for-
mula ξ [x] (without parameters).

Proof (1) implies (2) because for a model complete theory T , every submodel of a
model of T is an elementary submodel. (3) is a special case of (2).

Now assume (3). Take M, N |= T with N � M . Let ϕ[x] be an existential for-
mula, and a ∈ N . By (3), N is existentially closed in M . Hence, M |= ϕ[a] ⇒ N |=
ϕ[a]. Therefore, by Proposition 2.4.3, ϕ is equivalent to an universal formula.

Clearly, (4), (5) and (6) are equivalent. (5) and (6) together imply that T is model
complete. �

Let T be an L-theory. An L-theory T ′ is called a model companion of T if it
satisfies the following three conditions:

1. T ′ is model complete.
2. Every model T has an extension which is a model of T ′.
3. Every model T ′ has an extension which is a model of T .

Example 2.14.7 1. The theory of infinite sets is a model companion of the empty
theory.

2. DLO is a model companion of the theory of linearly ordered sets.
3. DAG is a model companion of the theory of torsion-free abelian groups.
4. ODAG is a model companion of the theory of ordered groups.
5. ACF is a model companion of the theory of integral domains.

Proposition 2.14.8 A theory T can have at most one model companion.

Proof Let T0 and T1 be model companions of T . Start with a model M0 of T0. Get an
extension M of M0 that models T . Then get a model N0 of T1 that extends M . There
exists a model N of T that extends N0, Now get a model M1 of T0 that extends N .
Proceeding similarly, we get a chain of L-structures

M0 � N0 � M1 � N1 � · · ·

such that {Mk} is a chain of models of T0 and {Nk} is a chain of models of T1.
But T0 and T1 are model complete. Hence these two chains are elementary. Let
M ′ = ∪kMk = ∪k Nk . Then M0 is an elementary substructure of M ′ and M ′ |= T1.
Thus, every model of T0 is a model of T1. Likewise, every model of T1 is a model of
T0. �

Exercise 2.14.9 A linearly ordered set (D,<) is called discrete if every element
of D that is not the least element has an immediate predecessor and every element
that is not the greatest element has an immediate successor. Show that the theory
of discrete linear orders with no least element and no greatest element is not model
complete. In Exercise 4.7.8 it is shown that this theory is complete.

http://dx.doi.org/10.1007/978-981-10-5098-5_4
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2.15 Some Applications to Algebra and Geometry

Let F be a field. A set C ⊂ F
n is called constructible if and only if it belongs to

the algebra of subsets of Fn generated by sets of the form {a ∈ F
n : f (a) = 0},

f ∈ F[X1, . . . , Xn]. Since ACF has quantifier elimination, we have the following
result:

Proposition 2.15.1 For every algebraically closed field F, C ⊂ F
n is constructible

if and only if it is definable.

This is a generalisation of

Theorem 2.15.2 (Chevalley Projection Theorem) If F is an algebraically closed
field and C ⊂ F

n+1 constructible, then its projection πFn (C) ⊂ F
n is constructible.

If F is a real closed ordered field, then D ⊂ F
n is definable if and only if it belongs

to the algebra An of subsets of Fn generated by sets of the form {a ∈ F
n : p(a) <

0}, where p ∈ F[X1, . . . , Xn]. Geometers call sets in An , n ≥ 1, semi-algebraic. A
function f : Fn → F

m is called semi-algebraic if its graph is semi-algebraic. So,
semi-algebraic sets and functions in a real closed field are precisely those which are
definable. This can be thought of as the counterpart of Chevalley’s theorem in real
case. We now have the following result of Tarski and Seidenberg.

Theorem 2.15.3 (Tarski–Seidenberg Theorem) If F is a real closed field and
f : Fn → F

m, C ⊂ F
n and D ⊂ F

m semi-algebraic, then f (C) and f −1(D) are
semi-algebraic.

Since RCF is complete, every model of RCF is elementarily equivalent to the
ordered field of realsR or of real algebraic numbersRalg . Hence, Th(R) = Th(Ralg)

is the set of all theorems of RCF . This is very useful in proving many theorems of
RCF . We illustrate it by proving Rolle’s theorem for real closed fields.

Let F be any field and
∑n

i=0 ai X
i ∈ F[X ]. Then the formal derivative of f is the

polynomial f ′(X) = ∑n
i=1 iai X

i−1.

Theorem 2.15.4 (Rolle’s Theorem for Real Closed Fields) Let F be a real closed
field, a < b in F and f ∈ F[X ] be such that f (a) = f (b). Then there is a < c < b
such that f ′(c) = 0.

Proof For each d ≥ 1, consider the sentence ϕ given by

∀x∀x∀y((x < y ∧
d∑

i=0

xi x
i =

d∑

i=0

xi y
i ) → ∃z(x < z < y ∧

d−1∑

i=0

i xi z
i = 0)).

By classical Rolle’s theorem for R, ϕ ∈ Th(R). Since RCF is complete, it follows
that RCF |= ϕ. �
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Theorem 2.15.5 Let ϕ be a sentence of the language of the theory of fields. The
following statements are equivalent:

(i) C |= ϕ.
(ii) ϕ is true in some algebraically closed field of characteristic 0.
(iii) ACF(0) |= ϕ.
(iv) There is an m such that for all prime p > m, ACF(p) |= ϕ.
(v) There is an m such that for all prime p > m, ϕ is true in some algebraically

closed field of characteristic p.
(vi) ACF(p) |= ϕ for infinitely many primes p.

Proof Clearly (i) implies (ii). Since any two models of ACF(0) are elementarily
equivalent, (ii) implies (iii). Clearly (iii) implies (i).

Now assume (iii). Then by the compactness theorem, T |= ϕ, where T consists of
some finitely many axioms of ACF(0). Hence, there is an m such that for no prime
p > m, p �= 0 belongs to T . Thus, ACF(p) |= ϕ for all p > m. Thus, (iii) implies
(iv).

Clearly (iv) implies (v). The statement (v) implies (iv) because each ACF(p) is
complete. (iv) clearly implies (vi).

We now show that (vi) implies (iii). Let ACF(0) �|= ϕ. Since ACF(0) is complete,
it follows that ACF(0) |= ¬ϕ. Since (iii) implies (v), there is an m such that for all
primes p > m, ACF(p) |= ¬ϕ. This completes the proof. �

Let p > 0 be a prime and Fp the algebraic closure of the field with p elements.
It is a standard fact of algebra that every finitely generated subfield of Fp is finite.
Using this we easily get the following result.

Proposition 2.15.6 Let f1, . . . , fn ∈ Fp[X1, . . . , Xn] be such that f = ( f1, . . . ,
fn) : Fn

p → F
n
p is injective. Then f is surjective.

Proof Assume that f is not surjective. Take any b /∈ range( f ). LetK be the smallest
subfield of Fp that contains b and coefficients of f1, . . . , fn . As observed above K
is finite. But then f : Kn → K

n is one-to-one but not onto. This is a contradiction
since Kn is finite. �

Theorem 2.15.7 (Ax [1]) Let F be an algebraically closed field and f1, . . . ,
fn ∈ F[X1, . . . , Xn] be such that f = ( f1, . . . , fn) : Fn → F

n is injective. Then f
is surjective.

Proof Let each fi be of degree at most d. It is not hard to see that there is a sentence
ϕ of the language of fields saying that if f1, . . . , fn are polynomials of degree at
most d and if the map f = ( f1, . . . , fn) is injective, it is surjective.

LetF be of characteristic p for some prime p > 1. By the last propositionFp |= ϕ.
Since any two models of ACF(p) are elementarily equivalent, F |= ϕ. As Fp |= ϕ

for all prime p > 1, by the above theorem, ACF(0) |= ϕ also. �
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We now give some applications of model completeness.
Recall that for an ideal I ⊂ K[X ],

√
I = { f ∈ K[X ] : f n ∈ I for some n ≥ 1}.

Then
V(I ) = V(

√
I ).

Theorem 2.15.8 (Hilbert Nullstellensatz) LetK be an algebraically closed field and
I an ideal in K[X ]. Then

I(V(I )) = √
I .

Proof Weclearly have
√
I ⊂ I(V(I )). If possible, suppose there is an f ∈ I(V(I )) \√

I . By prime decomposition theorem (Theorem B.2.4), there is a prime ideal P ⊃√
I not containing f . Since P is a prime ideal in K[X ], K[X ]/P is an integral

domain.
Let F be the algebraic closure of the quotient field ofK[X ]/P . By Hilbert’s basis

theorem (Theorem B.2.3), we fix a basis g1, . . . , gk ∈ √
I generating

√
I . Note that

each Xi can be regarded as an element ofK[X ]. Because f /∈ P and g1, . . . , gk ∈ √
I ,

we have

F |= ∧k
i=1gi ([X1], . . . , [Xn]) = 0 ∧ f ([X1], . . . , [Xn]) �= 0.

In particular,
F |= ∃y(∧k

i=1gi (y) = 0 ∧ f (y) �= 0).

By model completeness of RCF ,

K |= ∃y(∧k
i=1gi (y) = 0 ∧ f (y) �= 0).

This gives an a ∈ K such that for all 1 ≤ i ≤ k, gi (a) = 0 and f (a) �= 0. But if
gi (a) = 0 for all 1 ≤ i ≤ k, as g1, . . . , gk generate

√
I , a ∈ V(

√
I ) = V(I ). Since

f ∈ I(V(I )), f (a) = 0. This contradiction proves the result. �

17th problem in Hilbert’s famous list of 23 problems was

Hilbert’s Seventeenth problem Let f ∈ R(X) be a rational function such that
for no x ∈ R

n, f (x) < 0. Then is it true that f is a sum of squares of finitely many
rational functions?

This problem was answered in the affirmative by Artin. Abraham Robinson
pointed out a strikingly beautiful proof of Artin’s theorem using model completeness
of RCOF. We refer the reader to the appendix in algebra and geometry for relevant
definitions and results on real closed fields.
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Theorem 2.15.9 Let F be a real closed field and f ∈ F(X) = F(X1, . . . , Xn) a
rational function over F in n variables such that for no x ∈ F

n, f (x) < 0. Then f
is a sum of squares of rational functions over F.

Proof By Proposition B.3.4, the field of rational functions F(X) is real. Suppose f
is not a sum of squares. By Theorem B.3.7, there is a linear order< on the field F(X)

of rational functions over F making it into an ordered field such that f < 0.
Let K be the real closure of F(X) order compatible with <. Then

K |= ∃x( f (x) < 0).

(Take xi = Xi ∈ K.) By model completeness of RCF ,

F |= ∃x( f (x) < 0).

But there is no a ∈ F such that f (a) < 0. Hence, f must be a sum of squares of
rational functions over F. �



Chapter 3
Spaces of Types

Abstract In this chapter, we shall make a general study of types. This topic is quite
important because most of the modern concepts and techniques of model theory are
based on types. We introduce Stone topology on spaces of complete types. Omitting
types theorem is an important result proved in this chapter. A systematic study of
types was first made by Vaught in [66].

3.1 Realised Types

Let L be a first-order language and M an L-structure. For a ∈ Mn , we define

tpM(a) = {ϕ[x] : M |= ϕ[a],ϕ an L − formula},

and call it the type of a in M . Note that if M � N , tpM(a) = tpN (a). Also observe
that for every formula ϕ[x], exactly one of ϕ[x] and ¬ϕ[x] belongs to tpM(a). So,
tpM(a) may be considered to be the collection of everything that can be said about
the tuple a.

Next take any A ⊂ M . We define

tpM(a/A) = {ϕ[x] : M |= ϕ[a],ϕ an LA − formula},

and call it the relative type of a in M over A, or simply the type of a in M over A.
Again note that if A ⊂ M � N , then tpM(a/A) = tpN (a/A).

Let M , N be L-structures, A ⊂ M (including A = ∅) and f : A → N a map.
Recall f is called partial elementary if for every L-formulaϕ[x] and for every a ∈ A,

M |= ϕ[a] ⇔ N |= ϕ[ f (a)].

Note that if for some A ⊂ M there is a partial elementary map f : A → N , then
M � N . Further, the empty function from M into N is partial elementary if and only
if M and N are elementarily equivalent.

© Springer Nature Singapore Pte Ltd. 2017
H. Sarbadhikari and S.M. Srivastava, A Course on Basic Model Theory,
DOI 10.1007/978-981-10-5098-5_3
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Suppose a ∈ Mn and b ∈ Nn . Then tpM(a) = tpN (b) if and only if the map
a → b is partial elementary. Further, assume that A ⊂ M and a, b ∈ Mn . Then
tpM(a/A) = tpM(b/A), if and only if the map f : A ∪ {ai : i < n} → M , where
f |A is the identity map on A and f (ai ) = bi , i < n, is partial elementary.

Proposition 3.1.1 Let M be an L-structure and a, b ∈ Mn. Then tpM (a) = tpM(b),
if and only if there is an elementary extension N of M and an automorphism α :
N → N such that α(a) = b. Moreover, if L and M are countable, we can choose
N to be countable.

Proof The if part of the result is clear. So, we need to prove only the only if part.

Assume that a, b ∈ Mn are such that tpM(a) = tpM(b). Set M0 = M . By
repeatedly using Proposition 2.5.2, we define an elementary chain

M0 � N0 � M1 � N1 � M2 � N2 � · · ·

and elementary embeddings αk : Mk → Nk satisfying the following conditions:

1. α0(a) = b.
2. For each k, αk+1 extends αk .
3. For each k, Nk ⊂ αk+1(Mk+1).

Taking N = ∪kMk = ∪k Nk and α = ∪kαk , we get our result.

Since tpM(a) = tpM(b), M0 
 a
β→ b ∈ M0 is partial elementary. Hence, by

Proposition 2.5.2, there exists an elementary extension N0 of M0 and an elementary
extension α0 : M0 → N0 of β.

Now assume that Mi , Ni , αi , i ≤ k have been defined. Hence,

Nk ⊃ αk(Mk)
α−1
k→ Mk ⊂ Nk

is partial elementary. By Proposition 2.5.2, we get Mk+1 
 Nk and an elementary
extension βk : Nk → Mk+1 of α−1

k .
Then

Mk+1 ⊃ βk(Nk)
β−1
k→ Nk ⊂ Mk+1

is partial elementary. By Proposition 2.12.3, there exist Nk+1 
 Mk+1 and an ele-
mentary extension αk+1 : Mk+1 → Nk+1 of β−1

k . Clearly, αk+1 extends αk . �
Let α be an ordinal number and a = {aβ : β < α} a sequence in M of length

α. Then also, we can talk of tpM(a) by starting with a first-order language with
a sequence of variables x = {xβ : β < α} of length α. For a formula ϕ (with
free variables), ϕ[a] will denote the LM -formula obtained by replacing each free
occurrence of xβ in ϕ by aβ . With these definitions, we define

tpM(a) = {ϕ[x] : M |= ϕ[a],ϕ an L − formula}.

http://dx.doi.org/10.1007/978-981-10-5098-5_2
http://dx.doi.org/10.1007/978-981-10-5098-5_2
http://dx.doi.org/10.1007/978-981-10-5098-5_2
http://dx.doi.org/10.1007/978-981-10-5098-5_2
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tpM(a/A) in this case is defined as before.
We shall prove results for types of finite sequences only. But the reader should

observe that many of the arguments done in the conventional first-order language
goes through in this general set up also where the sequence of variables is of length
α, α an arbitrary ordinal.

3.2 n-Types

Let M be an L-structure, A ⊂ M , n ≥ 1, and p = p(x) a set of LA-formulas ϕ[x],
where x = (x0, . . . , xn−1). We call p a n-type in M over A if for every finite set
ϕ0, . . . ,ϕk−1 of formulas in p there is a a ∈ Mn such that M |= ∧i<kϕi [a]. This is
equivalent to saying that p is a n type in M over A if for every finite set ϕ0, . . . ,ϕk−1

of formulas in p there is an elementary extension N of M and a a ∈ Nn such that
N |= ∧i<kϕi [a]. If A = ∅, we call p(x) just a n-type in M .

Clearly, for every a ∈ Mn , tpM(a/A), or any subset of tpM(a/A), is a n-type in
M over A. Further, if N 
 M and a ∈ Nn , then tpN (a/A) is a n-type in M over A.
Later, we shall see that every n-type in M over A is a subset of tpN (a/A) for some
N 
 M and a ∈ Nn .

We say that p is realised in M if p ⊂ tpM(a/A) for some a ∈ M . In this case,
we say that a realises p and write a |= p. The set of all realisations of p in M will
be denoted by p(M). If no a in M realises p, we say that M omits p.

Example 3.2.1 Consider the standard model N of Peano arithmetic. Let

p(x) = {x > n : n ∈ ω}.

Then p(x) is a type in N, which is omitted in N.

Since every model of Diagel(M) is an elementary extension of M , note that p
is a n-type in M over A if and only if p ∪ Diagel(M) is finitely satisfiable. Now a
straightforward application of compactness theorem gives us the following result.

Proposition 3.2.2 Let M be an L-structure, A ⊂ M and p(x) a set of L A-formulas
ϕ[x], where x = (x0, . . . , xn−1). Then p is an n-type in M over A, if and only if
there is a N 
 M and a a ∈ Nn such that N |= ϕ[a] for every ϕ ∈ p.

In fact, we can say more.

Proposition 3.2.3 Given any L-structure M, there is an elementary extension N of
M such that for every A ⊂ M, every type p(x) over A is realised in N.

Proof For each n-type p(x) (over some subset A of M), add a n-tuple of constant
symbols cp to L . Note that

P = Diagel(M) ∪ {ϕ[cp] : ϕ[x] ∈ p}
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is finitely satisfiable.Hence,P has amodel, say N . Then N is an elementary extension
of M such that for every p ∈ P , the interpretation of cp realises p in N . �

Remark 3.2.4 If κ ≥ ℵ0 and |L|, |M | ≤ κ, then every n-type p in M over A is
realised in an elementary extension N of M with |N | ≤ κ. This can now be easily
seen by downward Löwenheim–Skolem theorem.

AnObservation. Let p(x) be a n-type in M over A and ϕ[x] an LA-formula such
that none of ϕ and ¬ϕ belongs to p. Then, at least one of p ∪ {ϕ} or p ∪ {¬ϕ} is
a n-type in M over A. If not, then there exist finite �1,�2 ⊂ p such that neither
�1 ∪ {ϕ} nor �2 ∪ {¬ϕ} is satisfiable in M . But then �1 ∪ �2 ⊂ p is finite and not
satisfiable in M . This contradicts that p is a type in M over A.

A n-type p(x) inM over A is called a complete n-type in M over A if for every LA-
formula ϕ[x] either ϕ or ¬ϕ is in p. Since p is finitely satisfiable, this is equivalent
to saying that exactly one of ϕ and ¬ϕ is in p. Using Zorn’s lemma and the above
observation, we see that every n-type in M over A is contained in a complete n-type
in M over A. Further, complete n-types in M over A are precisely maximal n-types
in M over A.

We let Sn(M/A) denote the set of all complete n-types in M over A. If A = ∅, we
shall write Sn(M) instead of Sn(M/∅). Note that p ∈ Sn(M/A) if and only if there
is an elementary extension N of M and a n-tuple a ∈ N such that p = tpN (a/A).
Thus, each complete n-type in M is the collection of all statements that hold for
some n-tuple in an elementary extension of M , though such a n-tuple may not exist
in M . If α is an ordinal number, then Sα(M/A) will denote the set of all complete
types in M over A in a sequence x = {xβ : β < α} of variables of length α.

Here are some simple observations on complete n-types in M over A, which will
be used in the sequel without specific mention. Let p, q ∈ Sn(M/A).

(1) p ⊂ q ⇒ p = q: If possible, suppose there exists ψ ∈ q\p. Since p is
complete, ¬ψ ∈ p ⊂ q. Thus, both ψ,¬ψ ∈ q contradicting that q is finitely
satisfiable.

(2) Let ϕ[x] ∈ p, ψ[x] an L A-formula and M |= ∀x(ϕ → ψ). Then ψ ∈ p.
Suppose not. Then ¬ψ ∈ p. Since M |= ∀x(ϕ → ψ), {ϕ,¬ψ} is not satisfiable in
M , a contradiction. It follows that if M |= ∀x(ϕ[x] ↔ ψ[x]), then either both ϕ, ψ
belong to p or none of these two belongs to p.

(3) ϕ1 ∨ · · · ∨ ϕk ∈ p if and only if ϕi ∈ p for some 1 ≤ i ≤ k. If part follows
from (2). If no ϕi ∈ p, then by the completeness of p, ¬ϕ1, . . . ,¬ϕk ∈ p. Since
{∨k

i=1ϕi ,¬ϕ1, . . . ,¬ϕk} is not satisfiable, we have ϕ1 ∨ · · · ∨ ϕk /∈ p.
(4) ϕ1 ∧ · · · ∧ ϕk ∈ p if and only if ϕi ∈ p for all 1 ≤ i ≤ k. This is easily seen

as in (3).
Now, we define types in an L-theory T . Let T be an L-theory and p = p(x) a set

of L-formulas ϕ[x], where x = (x0, . . . , xn−1). We call p a n-type in T if p ∪ T is
finitely satisfiable. By compactness theorem, this is equivalent to saying that there
is a model M of T in which p is realised. p will be called a complete n-type in T
if for every L-formula ϕ[x] either ϕ or ¬ϕ is in p. Sn(T ) will denote the set of all
complete n-types in T . Similar observations as above are easily seen to be true.
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Exercise 3.2.5 Let T be a complete theory and M |= T . For every n ≥ 1, show that
Sn(T ) = Sn(M).

3.3 Stone Topology on the Space of Complete Types

Let M be an L-structure and A ⊂ M . For an LA-formula ϕ[x], x = (x0, . . . , xn−1),
define

[ϕ] = {p ∈ Sn(M/A) : ϕ ∈ p}.

We then have

(∗) [x0 �= x0] = ∅ and [x0 = x0] = Sn(M/A).
(∗) [ϕ] ∩ [ψ] = [ϕ ∧ ψ].
(∗) [ϕ] ∪ [ψ] = [ϕ ∨ ψ].
(∗) Sn(M/A) \ [ϕ] = [¬ϕ].
This shows that {[ϕ] : ϕ an L A − formula} is a base of a topology on Sn(M/A)

which is zero-dimensional, i.e. the topology has a clopen base. We equip Sn(M/A)

with this topology and call it the Stone topology.
Sn(M/A) is Hausdorff: Let p �= q ∈ Sn(M/A). Then, there is a ϕ ∈ p \ q. Since

q is complete, ¬ϕ ∈ q. Thus, p ∈ [ϕ], q ∈ [¬ϕ]. Since [ϕ] ∩ [¬ϕ] = ∅, our
contention follows.

Sn(M/A) is compact: Let F = {[ϕ] : ϕ an L A − formula} be a family of basic
clopen sets with finite intersection property. Then γ = {ϕ : [ϕ] ∈ F} is a n-type in
M over A: Let ϕ1, . . . ,ϕk ∈ γ. By our hypothesis, there is a n-type p in M over A
that contains each of ϕ1, . . . ,ϕk . Hence, {ϕ1, . . . ,ϕk} is satisfiable in M . So, there
is a complete n-type p ⊃ γ in M over A. This implies that p ∈ ∩F .

If L and A are countable, then Sn(M/A) has a countable base. This implies that
Sn(M/A) is metrisable. The following theorem sums up the above observations.

Theorem 3.3.1 Sn(M/A) is a compact, zero-dimensional, Hausdorff space. More-
over, if L and A are countable, Sn(M/A) is a compact, zero-dimensional metrisable
space.

We make a series of simple but useful observations on the topology on the space
of complete types.

Lemma 3.3.2 Let M be an L-structure and A ⊂ B ⊂ M. Define

·|A : Sn(M/B) → Sn(M/A)

by
p|A = {ϕ ∈ p : ϕ an L A − formula}, p ∈ Sn(M/B).
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Then, ·|A : Sn(M/B) → Sn(M/A) is a continuous surjection.

Proof Let q ∈ Sn(M/A). Then q is a type in M over B. Let p ∈ S1(M/B) contain
q. Since q is complete (over A), p|A = q. This proves that the map |A is surjective.

It is also a continuous map: Let ϕ[x] be an LA-formula. Then,

(|A)−1([ϕ]) = {p ∈ Sn(M/B) : ϕ ∈ Sn(M/B)}.

�

We call p|A a restriction of p, p an extension of p|A.
Lemma 3.3.3 Let M, N be L-structures, A ⊂ M, f : A → N partial elementary
and B = f (A). For p ∈ Sn(M/A), define

f (p) = {ϕ[x, f (a)] : ϕ[x, y] an L − formula & ϕ[x, a] ∈ p}.

The map p → f (p) from Sn(M/A) to Sn(N/ f (A)) is a homeomorphism.

Proof Since f is one-to-one and f, f −1 are elementary, it is easily seen that p →
f (p) is a bijection from Sn(M/A) to Sn(N/B).
This map is continuous: Take any L-formula ϕ[x, y] and b ∈ B. Then, there is a

unique tuple a ∈ A such that f (a) = b. Now note that f −1([ϕ[x, b]]) = [ϕ[x, a]].
By usual topology arguments or by reversing the above argument, we see the map
p → f (p) from Sn(M/A) to Sn(N/B) is a homeomorphism. �

Lemma 3.3.4 Let M be an L-structure and A ⊂ M. For p(x, y) ∈ Sn+m(M/A),
define

π(p) = {ϕ[x, a] : ϕ[x, a] ∈ p(x, y)}.

Then, π : Sn+m(M/A) → Sn(M/A) is a homeomorphism.

Proof Arguing as in Lemma 3.3.2, we see that π(p) ∈ Sn(M/A) and π :
Sn+m(M/A) → Sn(M/A) is a continuous surjection.

The map π is open also. To see this take an L A-formula ψ[x, y]. Let p[x, y] ∈
Sn+m(M/A) contain ψ[x, y]. Then ϕ[x] = ∃yψ[x, y] ∈ p. If not, then ¬ϕ[x] ∈ p.
But {¬ϕ[x],ψ[x, y]} is not satisfiable which is a contradiction. Now take any q(x) ∈
Sn(M/A) containing ϕ[x]. Let N 
 M realise q, say by b. Since N |= ϕ[b], there
is a c ∈ N such that N |= ψ[b, c]. This shows that q ∪ {ψ[x, y]} is a (n + m)-type
in M over A. Hence, there is a p(x, y) ∈ Sn+m(M/A) such that π(p) = q. Thus, we
have proved that π([ψ]) = [ϕ].

Next take an a ∈ Mn . For each p(x, y) ∈ Sn+m(M/A) with π(p) = tpM(a/A)

define

h(p) = {ψ[a, y] : ψ[x, y] ∈ p}.
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For every ψ[x, y] ∈ p, ∃yψ[x, y] ∈ p. So, by our assumption, M |= ∃yψ[a, y].
Now it is easily seen that h(p) ∈ Sm(M/Aa). Conversely, for any q ∈ Sm(M/Aa),
define

f (q) = {ψ[x, y] : ψ[a, y] ∈ q}.

Then, f (q) ∈ Sn+m(M/A), π( f (q)) = tpM(a/A) and f = h−1. Also note that for
any L Aa -formula ψ[a, y], h−1([ψ[a, y]]) = [ψ[x, y]]. Hence, h is continuous, and
so a homeomorphism. �

Remark All these arguments hold for Sα(M/A) where α is an ordinal num-
ber. In particular, the Stone topology on Sα(M/A) is compact, Hausdorff, and
zero-dimensional.

Let T be a first-order theory and n ≥ 1. Likewise, we topologise Sn(T ). For an
L-formula ϕ[x], x = (x0, . . . , xn−1), define

[ϕ] = {p ∈ Sn(T ) : ϕ ∈ p}.

These form a base of a topology on Sn(T ) with respect to which Sn(T ) is a compact,
Hausdorff, zero-dimensional space. Moreover, if L is countable, Sn(T ) is a compact.
zero-dimensional, metric space.

Exercise 3.3.5 Let T be an L-theory. Show that A ⊂ Sn(T ) is clopen if and only if
A = [ϕ] for some L-formula ϕ. Show also that A is closed if and only if there is a
set of L-formulas F such that

A = {p ∈ Sn(T ) : F ⊂ p}.

Exercise 3.3.6 Let T be an L-theory. For p(x, y) ∈ Sn+m(T ),where x = (x0, . . . ,
xn−1) and y = (y0, . . . , ym−1), define

π(p) = {ϕ[x] : ϕ[x] ∈ p}.

Show that π(p) ∈ Sn(T ) and the map p → π(p) from Sn+m(T ) to Sn(T ) is contin-
uous, open, and surjective.

3.4 Isolated Types

Let M be an L-structure and A ⊂ M . A p ∈ Sn(M/A) is called an isolated type if p
is an isolated point of Sn(M/A). So, p is isolated if and only if {p} = [ϕ] for some
L A-formula ϕ[x].
Proposition 3.4.1 Let p ∈ Sn(M/A) and ϕ[x] an L A-formula satisfiable in M.
Then, the following two conditions are equivalent.
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1. {p} = [ϕ].
2. For every L A-formula ψ[x],

ψ[x] ∈ p ⇔ M |= ∀x(ϕ[x] → ψ[x]).

3. For every L A-formula ψ[x],

ψ[x] ∈ p ⇒ M |= ∀x(ϕ[x] → ψ[x]).

Proof Assume (1) and let ψ[x] be an LA-formula. Since p is a complete type, ψ ∈ p
wheneverM |= ∀x(ϕ[x] → ψ[x]). Now assume thatM �|= ∀x(ϕ[x] → ψ[x]). Then
{ϕ,¬ψ} is satisfiable in M . So, there is a complete n-type in M over A containing
ϕ and ¬ψ. Since p is the only complete n-type in M over A containing ϕ, ¬ψ ∈ p.
Hence, ψ /∈ p.

Now let (2) be true and (1) false. Get a q ∈ Sn(M/A) containing ϕ different from
p. Suppose ψ[x] is an L A-formula in q \ p. Since p is complete, ¬ψ ∈ p. Hence,
by (2), M |= ∀x(ϕ[x] → ¬ψ[x]). But then {ϕ,ψ} is not satisfiable in M . This
contradicts that q is a type.

We now prove that (3) implies (2). Let

M |= ∀x(ϕ[x] → ψ[x]).

If possible, suppose ψ[x] /∈ p. Since p is complete, ¬ψ[x] ∈ p. By (3),

M |= ∀x(ϕ[x] → ¬ψ[x]).

Since there exists an a ∈ M such that M |= ϕ[a] , we have now a contradiction. �

We shall need this notion for incomplete types also. A n-type p in M over A ⊂ M
(not necessarily complete) is called isolated, if there is an LA-formula ϕ[x] such that

ψ[x] ∈ p ⇒ M |= ∀x(ϕ[x] → ψ[x]).

If {p} = [ϕ], we say that ϕ isolates p. We make a series of preliminary observa-
tions first.

Remark 3.4.2 If ϕ and ϕ′ isolate p, then M |= ∀x(ϕ[x] ↔ ϕ′[x])
Remark 3.4.3 If A ⊂ B ⊂ M , a ∈ M and ϕ[x] is an L A-formula that isolates
tpM(a/B), then ϕ isolates tpM(a/A)

Remark 3.4.4 If ϕ[x, y] is an L A-formula that isolates tpM(a, b/A), then ϕ[x, b]
isolates tpM(a/Ab).
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Remark 3.4.5 If tpM(a, b/A) is isolated, then tpM(a/A) is isolated. To see this
let ψ[x, y] be an L A-formula that isolates tpM(a, b/A). Then ∃yψ[x, y] isolates
tpM(a/A): Let ϕ[x] be an L A-formula. Then

M |= ϕ[a] ⇔ M |= ∀x∀y(ψ[x, y] → ϕ[x])
⇔ M |= ∀x(∀y¬ψ[x, y] ∨ ϕ[x])
⇔ M |= ∀x((∃yψ[x, y]) → ϕ[x])

Proposition 3.4.6 Let M be an L-structure and A ⊂ B ⊂ M. Suppose for every
b ∈ Bm, tpM(b/A) is isolated. Then for every a ∈ Mn, tpM(a/B) is isolated implies
that tpM(a/A) is isolated.

Proof Get an L-formulaψ[x, y] and a b ∈ B such thatψ[x, b] isolates tpM(a/B). By
the last remark, the proof will be complete if we show that tpM(a, b/A) is isolated.

Get an L A-formula ϕ[y] that isolates tpM(b/A). We show that ψ[x, y] ∧ ϕ[y]
isolates tpM(a, b/A). Fix an L A-formula η[x, y]. Then

M |= η[a, b] ⇔ M |= ∀x(ψ[x, b] → η[x, b])
⇔ M |= ∀y(ϕ[y] → ∀x(ψ[x, y] → η[x, y]))
⇔ M |= ∀x∀y((ψ[x, y] ∧ ϕ[y]) → η[x, y])

This completes the proof. �

A variant of this result is the following, whose proof is left for the reader.

Remark 3.4.7 If tpM(b/A) and tpM(a/Ab) are isolated, then tpM(a, b/A) is iso-
lated.

Remark 3.4.8 If a ∈ acl(A), then tpM(a/A) is isolated. Since a ∈ acl(A), there
is an L A-formula ϕ[x] and a n ≥ 1 such that M |= ϕ[a] ∧ ∃=nxϕ[x]. We choose
such a ϕ with n least possible. If there exists a ψ[x] ∈ tpM(a/A) such that M �|=
∀x(ϕ[x] → ψ[x]), then the number of b ∈ M such that M |= (ϕ∧ψ)[b] is less than
n. This is a contradiction. Hence, ϕ isolates tpM(a/A).

Exercise 3.4.9 Let M be an L-structure, A ⊂ M and a ∈ acl(A). Show that
tpM(a/A) is isolated.

Proposition 3.4.10 Let M be an L-structure and A ⊂ B ⊂ M |= T be such that
for every d ∈ B, tpM(d/A) is isolated. Assume that tpM(a/B) is isolated. Then, for
every b ∈ B, tpM(a, b/A) is isolated.

Proof Let θ1[x, z] be an L-formula and c ∈ B be such that θ1[x, c] isolates
tpM(a/B). Take any b ∈ B. Let θ2[y, z] be an L A-formula isolating tpM(b, c/A).

Now let ϕ[x, y] ∈ tpM(a, b/A). Then, ϕ[x, b] ∈ tpM(a/B). Hence,

M |= ∀x(θ1[x, c] → ϕ[x, b]),
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i.e.,
∀x(θ1[x, z] → ϕ[x, y]) ∈ tpM(b, c/A).

Therefore,
M |= ∀y∀z(θ2[y, z] → ∀x(θ1[x, z] → ϕ[x, y])).

By prenex operations, we now get

M |= ∀x∀y∀z(θ2[y, z] → θ1[x, z] → ϕ[x, y]).

Therefore,
M |= ∀x∀y∀z((¬θ2[y, z] ∨ ¬θ1[x, z]) ∨ ϕ[x, y]).

Hence,
M |= ∀x∀y(∀z(¬θ2[y, z] ∨ ¬θ1[x, z]) ∨ ϕ[x, y]).

Thus,
M |= ∀x∀y(∃z(θ2[y, z] ∧ θ1[x, z]) → ϕ[x, y]). (∗)

Conversely, let ϕ[x, y] be an LA-formula such that (∗) holds. Since

M |= θ2(b, c) ∧ θ1(a, c),

ϕ[x, y] ∈ tpM(a, b/A). Thus, the L A-formula ∃z(θ2[y, z] ∧ θ1[x, z]) isolates
tpM(a, b/A). �

Let T be an L-theory and p ∈ Sn(T ). We say that p is an isolated type in T if
it is an isolated point of Sn(T ). So, p ∈ Sn(T ) is isolated if and only if there is an
L-formula ϕ[x] such that {p} = [ϕ]. In this case, we say that ϕ isolates p. Again,
we have the following theorem whose proof we leave for the reader.

Proposition 3.4.11 Let p ∈ Sn(T ) and ϕ[x] be a consistent L-formula. Then, the
following statements are equivalent.

1. {p} = [ϕ].
2. For every L-formula ψ[x],

ψ[x] ∈ p ⇔ T |= ∀x(ϕ[x] → ψ[x]).

3. For every L-formula ψ[x],

ψ[x] ∈ p ⇒ T |= ∀x(ϕ[x] → ψ[x]).

Example 3.4.12 If T is a complete theory, then every isolated type in T is realised
in every model of T . To see this, take an isolated type p(x) in T . Let ϕ[x] be an
L-formula that isolates p. Now take any model M of T . Then M |= ∃xϕ[x]. If not,
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then M |= ¬∃xϕ[x]. Since T is complete, this shows that T |= ¬∃xϕ[x]. But then
T ∪ {∃xϕ[x]} is not satisfiable. This is a contradiction. Now let a ∈ M be such that
M |= ϕ[a]. Since ϕ isolates p, for every ψ[x] ∈ p, T |= ∀x(ϕ[x] → ψ[x]). Hence,
M |= ψ[a]. This completes the proof.

Example 3.4.13 Let M be an L-structure, A ⊂ M and a ∈ An . Then, the formula
∧i<nxi = ai isolates tp(a/A).

Example 3.4.14 For every k ∈ N
n , the formula ∧i<nxi = ki isolates tpN(k).

Example 3.4.15 ConsiderR |= RCOF . Let a < b be two real numbers. Then, there
exist integers n,m with n > 0 such that n ·a < m < n ·b. It follows that the formula
n · x < m is in tpR(a) but not in tpR(b). Thus |S1(R)| ≥ c.

Example 3.4.16 Consider the theory DLO . Take an isolated p(x) ∈ Sn(DLO).
Since DLO is complete, p(x) is realised in Q, say by r = (r0, . . . , rn−1). So,
p = tpQ(r).

We now show that every realised type tpQ(r) is isolated. For simplicity, assume
that r0, r1, . . . , rn−1 are all distinct. Suppose π is the permutation of 0, 1, . . . , n − 1
such that rπ(0) < rπ(1) < · · · < rπ(n−1) and

ψ[x] = xπ(0) < xπ(1) < · · · < xπ(n−1).

Note that for t, s ∈ Q
n , t → s is an order isomorphism if and only if there is an

α ∈ Aut (Q) such that α(t) = s. Using this it is easy to show that ψ[x] isolates
tpQ(r). We invite the reader to complete the proof.

Example 3.4.17 Consider Q |= DLO . Let p ∈ S1(Q/Q). Since p is a complete
1-type in Q over Q, for each a ∈ Q,

x < a ∨ x = a ∨ a < x ∈ p.

Hence, for each a ∈ Q, exactly one of the formulas x < a, x = a, a < x belongs
to p.

Assume that for some a ∈ Q, x = a is in p. If possible, suppose there exists a
ψ[x] ∈ tp(a/Q) which is not in p. But then, by the completeness of p, ¬ψ ∈ p.
This is a contradiction because {x = a,¬ψ[x]} is not satisfiable in Q. Hence, by
completeness, p = tp(a/Q). We also see that in this case p is isolated by x = a.

Assume that p ∈ S1(Q/Q) is not realised in Q. Set

L p = {a ∈ Q : a < x ∈ p} & Up = {b ∈ Q : x < b ∈ p}.

Then L p ∩ Up = ∅, L p ∪ Up = Q, a < b whenever a ∈ L p and b ∈ Up, if a ∈ L p

and a′ < a in Q, a′ ∈ L p, whereas if b ∈ Up and b < b′, b′ ∈ Up. So, each
p ∈ S1(Q/Q) determines a cut (L p,Up) in Q.
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Conversely, suppose (L ,U ) is a cut in Q. Then,

{a < x : a ∈ L} ∪ {x < b : b ∈ U }

is finitely satisfiable inQ. So, there is a complete 1-type containing all these formulas.
Now let p, q be complete 1-types over Q such that

p, q ∈ ∩a∈L [a < x] ∩ ∩b∈U [x < b].

This implies that p and q contain the same atomic LQ-formulas ϕ[x]. By induction
on the rank of open formulas and completeness of p and q, it follows that p and q
contain the same open LQ-formulas ϕ[x]. Since DLO has quantifier elimination,
it follows that p = q. Thus, there is a natural one-to-one correspondence between
S1(Q/Q) and cuts in Q.

This immediately implies that |S1(Q/Q)| = 2ℵ0 .

Example 3.4.18 Let K |= ACF and A ⊂ K. Let κ denote the prime field of K, A
the subfield generated by A and n ≥ 1.

We claim that p → p|A is a bijection from Sn(K/A) → Sn(K/A). It is easy to see
that thismap is a surjection. (We have noted this in Sect. 3.3) Take p �= q ∈ Sn(K/A).
Then there is an LA-formula ϕ[x, a] such that ϕ ∈ p and ¬ϕ ∈ q. Now note
that there exist b1, . . . , bm ∈ A and for each ai , an fi ∈ κ(X1, . . . Xm) such that
ai = fi (b1, . . . , bm). It is fairly routine to get an L A-formula ψ′[x] with parameters
b1, . . . , bm such that ψ′ ∈ p and ¬ψ′ ∈ q.

For a complete n-type p in Sn(K/A), define

Ip = { f [X ] ∈ A[X ] : f (x) = 0 ∈ p}.

Let f (X), g(X) ∈ A[X ]. Then,

K |= ∀x(( f (x) = 0 ∧ g(x) = 0) → ( f + g)(x) = 0)

and
K |= ∀x( f (x) = 0 → ( f · g)(x) = 0).

Since p is complete, these imply that Ip is an ideal on A[X ]. Now suppose
f, g ∈ A[X ] and f · g ∈ Ip, i.e., ( f · g)(x) = 0 ∈ p. This is equivalent to

f (x) = 0 ∨ g(x) = 0 ∈ p.

Since p is complete, either f (x) = 0 ∈ p or g(x) = 0 ∈ p. It follows that f ∈ Ip
or g ∈ Ip, i.e., Ip is a prime ideal.

Interestingly, every prime ideal J of A[X ] induces a complete n-type p over A
such that J = Ip and this correspondence between Sn(K/A) and the Spec(A[X ]),
the set of all prime ideals of A[X ], is a bijection.
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By Proposition 9.2.8, for every prime ideal J in A[X ], there is a prime ideal I in
K[X ] such that

J = I ∩ A[X ].

Then,K[X ]/I is an integral domain. LetF denote the algebraic closure of its quotient
field. By model-completeness of ACF , F is an elementary extension of K. Set
ai = [Xi ] ∈ F. Note that, for f ∈ K[X ],

f (a) = 0 ⇔ f ∈ I.

So, if p = tp(a/A), Ip = J .
The quantifier elimination of ACF helps us to prove that this correspondence is

one-to-one. Let p, q ∈ Sn(K/A) and Ip = Iq . Any open LA-formula is equivalent
to a disjunction of formulas of the form

∧m
i=i ( fi (x) = 0) ∧ ∧n

j=1(g j (x) �= 0),

fi , g j ∈ A[X ]. Since Ip = Iq , it follows that both p and q contain the same open
LA-formulas. Since ACF has quantifier elimination, it follows that p and q contain
same formulas and so are equal.

We close this section by giving an application of isolated types.

Proposition 3.4.19 Let T be a complete theory, M, N |= T and ϕ a strongly min-
imal L-formula such that dim(ϕ(M)) = dim(ϕ(N )). Then, there is an elementary
bijection g : ϕ(M) → ϕ(N ).

Proof Let A be a basis of ϕ(M) and B that of ϕ(N ). Take any bijection f : A → B,
Then f is partial elementary by Proposition 2.12.3. By Zorn’s lemma, there exists
a maximal partial elementary extension g : A′ → B ′ of f with A′ ⊂ ϕ(M) and
B ′ ⊂ ϕ(N ). If possible, suppose there exists an a ∈ ϕ(M) \ A′. Since a ∈ acl(A′),
tpM(a/A′) is isolated by Remark 3.4.8. Let ψ[x, a] be an L A′-formula isolating
tpM(a/A′). In particular, M |= ∃x(ψ[x, a] ∧ ϕ[x]). So there exists a b ∈ ϕ[N ]
such that N |= ψ[b, g(a)]. It is easily seen that g ∪ {(a, b)} is partial elementary,
contradicting the maximality of g. Thus, dom(g) = ϕ(M). Similarly, we show that
dom(g−1) = ϕ(N ). �

Applying this result to the formula x = x , we have the following important result
as a corollary.

Corollary 3.4.20 If T is a complete, strongly minimal theory and M, N |= T , then
M and N are isomorphic if and only if dim(M) = dim(N ).

Corollary 3.4.21 Let T be a countable, complete, strongly minimal theory. Then,
for all λ > ℵ0, T is λ-categorical.

http://dx.doi.org/10.1007/978-981-10-5098-5_2
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Proof Let M, N |= T be of cardinality λ > ℵ0 and A, B be bases of M and N
respectively. Then

|M | = |acl(A)| = max{|A|,ℵ0} = λ.

Hence, |A| = λ. By the same argument |B| = λ. The result follows from the last
corollary. �

3.5 Algebraic Types

Let M be an L-structure and A ⊂ M . An LA-formula ϕ[x] is called algebraic if
there exists a positive integer n such that

M |= ∃=nϕ[x].

The integer n is called the degree of ϕ and is denoted by deg(ϕ). If no such n exists,
ϕ is called non-algebraic.

A p ∈ SM
1 (A) is called algebraic if it contains an algebraic formula. Otherwise

p is called non-algebraic.

Proposition 3.5.1 Let p ∈ SM
1 (A) be an algebraic type. Then p is an isolated type.

In particular, p is realised in M.

Proof Get a ϕ[x] ∈ p realised by minimum number of elements in M . Let ψ ∈ p.
Thenϕ∧ψ ∈ p. So, (ϕ∧ψ)(M) = ϕ(M). This implies thatM |= ∀x(ϕ[x] → ψ[x]).
Hence, p is isolated by ϕ by Proposition 3.4.1. �

Proposition 3.5.2 p ∈ SM
1 (A) is algebraic if and only if p has only finitely many

realisations in every elementary extension of M.

Proof Letϕ[x] ∈ p and suppose there is an n ≥ 1 such that M |= ∃=nxϕ[x]. Hence,
N |= ∃=nxϕ[x] whenever N is an elementary extension of M . Conversely assume
that p is non-algebraic. Add constant symbols {ci : i ∈ ω} and consider the theory

T = Diagel(M) ∪ {ci �= c j : i �= j} ∪ {ϕ[ci ] : ϕ ∈ p ∧ i ∈ ω}.

This is finitely satisfiable in M . Hence, it has a model N which is an elementary
extension of M in which p has infinitely many realisations. �

Proposition 3.5.3 Let p ∈ SM
1 (A) be non-algebraic and A ⊂ B. Then, p has a

non-algebraic extension q ∈ SM
1 (B).

Proof Consider

q = p ∪ {¬ψ : ψ an algebraic LB − formula}.
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Then q is finitely satisfiable. Otherwise, there exist algebraic LB-formulaψ1, . . . ,ψn

and a ϕ ∈ p such that

M |= ∀x(ϕ[x] → (ψ1[x] ∨ · · · ∨ ψn[x])).

This implies that ϕ ∈ p is algebraic, a contradiction. Extend q to a complete type
over B, say r . Clearly, r is complete and contains no algebraic LB-formula. �

3.6 Omitting Types Theorems

Let T be a complete theory. In the last section we saw that if p is an isolated n-
type in T , then there is no model M of T which omits p. Quite interestingly the
converse of this fact is also true if T is a countable consistent theory. This is proved
by imitatingHenkin style proof of the compactness theorem that we presented earlier.
The following theorem is due to Henkin [19] and Orey [45].

Theorem 3.6.1 (OmittingTypesTheorem)Let T be a countable consistent L-theory
and p a non-isolated n-type in T . Then, there is a countable model M of T that
omits p.

Proof We add countably many distinct new constant symbols {ck} to the language
of T and no new non-logical axiom. Denote the new language by L and the new
theory by T also. Let {ψn} be an enumeration of all closed L-formulas and {ak} an
enumeration of all n-tuples of new constants cm’s.

We shall get a complete Henkin simple extension T ∗ of T and a countable model
M of T ∗ such that

(a) Every element of M is the interpretation of some ck .
(b) For every k, there is a formula ψ[x] ∈ p such that M �|= ψ[iak ].
It will then follow that M is a countable model of the original T that omits p.

To construct such a T ∗ we shall first define a sequence of closed L-formulas {ϕn}
such that

(c) For every k, T [ϕk] is consistent.
(d) For k < l, T |= ϕl → ϕk .
(e) For every k, if ψk is an existential sentence ∃vη[v] such that T [ϕ2k] |= ψk , then

T [ϕ2k+1] |= ηv[cm] for some m.
(f) For every k, there is a ψ ∈ p such that T [ϕ2k+2] |= ¬ψ[ak].
Take ϕ0 to be any sentence consistent with T . Suppose ϕ2k has been defined so

that T [ϕ2k] is consistent.
If ψk is not an existential sentence, or if T [ϕ2k] �|= ψk , we take ϕ2k+1 = ϕ2k .

Otherwise, ψk is a closed existential formula, say ∃vη[v], and T [ϕ2k] |= ψk . Since
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only a finite number of the new constants cl appear in ϕ2k and ψk , take a constant
symbol cm that does not occur in ϕ2k and ψk . Set ϕ2k+1 = ϕ2k ∧ ηv[cm].

We need to show that T [ϕ2k+1] is consistent, i.e., T [{ϕ2k, ηv[cm]}] has a model.
To see this take a model N of T [ϕ2k]. Then N |= ψk . So, there is a b ∈ N such that
N |= ηv[b]. Now interpret cm by b in N . We definitely have T [ϕ2k+1] |= ηv[cm].

Let ak = (ci1 , . . . , cin ). Replace each occurrences of ci j inϕ2k+1 by a new variable
x j and each cm /∈ {ci j : 1 ≤ j ≤ n} occurring in ϕ2k+1 by a new variable ym to get
ϕ′ and set ϕ′′[x] = ∃yϕ′. Because p is not isolated, there is a ψ[x] ∈ p such that

T �|= ∀x(ϕ′′ → ψ). (∗)

Set ϕ2k+2 = ϕ2k+1 ∧ ¬ψ[ak]. We must show that T [ϕ2k+2] is consistent. By (∗),
there is a model N of T and a b ∈ N such that

N |= ϕ′′[b] ∧ ¬ψ[b].

Interpreting ci j by b j , 1 ≤ j ≤ n, we see that N |= ϕ2k+2. This completes our
construction.

Let T ′ be the theory T [{ϕk : k ≥ 0}]. Then, T ′ is a countable consistent Henkin
theory such that for every k there exists a ψ ∈ p such that T ′ |= ¬ψ[ak]. By Linden-
baum’s theorem, T ′ has a complete simple extension T ∗. Clearly, T ∗ is countable.

Let M be the canonical model of T ∗ obtained in the proof of Theorem 2.2.3. We
claim that every element in M is an interpretation of some ck . To see this, take a
variable-free term t = f t1 · · · tl and consider ψ = ∃x(x = t). Then T ′ |= ψ. So,
ψ must have occurred at some stage (e) in our construction, giving us a cl such that
T ∗ |= cl = t . �

Proposition 3.6.2 Let T be a countable consistent theory and {pm} a sequence of
non-isolated n-types in T . Then, there is a countable model of T that omits each
of p.

This is proved by imitating the last proof with the following change. For each k of
the form2q(2r+1)−1we ensure that there is aψ ∈ pq such that T [ϕ2k+2] |= ¬ψ[ar ].
This clearly can be done. The model M thus built will still be countable such that
for each q and each r , there is a ψ ∈ pq such that M �|= ψ[ar ].
Example 3.6.3 Omitting types theorem is not necessarily true if T is not countable.
Let T be the theory with uncountably many constant symbols and no other non-
logical symbol. Let C ∪ D be the set of all constant symbols with C uncountable, D
countably infinite, and C ∩ D = ∅. The axioms of T are formulas c �= c′, where c
and c′ are distinct constant symbols that belong to C .

Let p(x) = {x �= d : d ∈ D}. Clearly p(x) is a 1-type in T . Let ϕ[x] be a
formula consistent with T . Since only finitely many constants occur in ϕ, there is a
d ∈ D such that ϕ[x] ∧ (x = d) is consistent with T . Thus, p is not isolated. As
every model of T is uncountable, p(x) is realised in every model of T .

http://dx.doi.org/10.1007/978-981-10-5098-5_2
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3.7 Cardinalities of the Spaces of Complete Types

In this section, we prove two results on possible cardinalities of spaces of complete
types. We need to fix some notation. 2<N will denote the set of all finite sequence
of 0’s and 1’s including the empty sequence e. For s, t ∈ 2<N and ε = 0, 1, |s| will
denote the length of s, s ≺ t will mean that t extends s and sε will stand for the
concatenation of s and ε.

Lemma 3.7.1 Let T be an L-theory and ϕ[x], x = (x0, . . . , xn−1), an L-formula
such that [ϕ] �= ∅ and contains no isolated type in T . Then, there exists a formula
ψ[x] such that

[ϕ ∧ ψ] �= ∅ �= [ϕ ∧ ¬ψ].

Proof Suppose for every ψ, [ϕ ∧ ψ] �= ∅ implies [ϕ ∧ ¬ψ] = ∅. Set

p = {ψ : T |= ∀x(ϕ → ψ)}.

Since T ∪ {ϕ} is satisfiable, T ∪ p is satisfiable. In particular, p is a n-type in T .
Also p is complete: Suppose not. Then there is a formula ψ[x] such that

T �|= ∀x(ϕ → ψ) & T �|= ∀x(ϕ → ¬ψ).

This implies that both T [ϕ ∧ ψ] and T [ϕ ∧ ¬ψ] are satisfiable. Hence,

[ϕ ∧ ψ] �= ∅ �= [ϕ ∧ ¬ψ],

a contradiction.
Sinceϕ isolates p, we have a contradiction to the fact that [ϕ] contains no isolated

type. �

Theorem 3.7.2 Let T be an L-theory such that isolated types are not dense in Sn(T ).
Then |Sn(T )| ≥ 2ℵ0 .

Proof We are now going to use the last lemma and for each s ∈ 2<N define an
L-formula ϕs satisfying the following conditions:

1. If s ≺ t , T |= ϕt → ϕs .
2. [ϕs] �= ∅ and contains no isolated types in T .
3. If s �= t and |s| = |t |, T [ϕs] |= ¬ϕt .

For empty sequence e, let ϕe be an L-formula such that [ϕe] �= ∅ and contains
no isolated types.

Suppose ϕs is defined so that [ϕs] �= ∅ and contains no isolated types. Further,
t ≺ s implies that T |= ϕs → ϕt . By the last lemma, there is a formula ψ such that
[ϕs ∧ψ] as well as [ϕs ∧¬ψ] are non-empty. Set ϕs0 = ϕs ∧ψ and ϕs1 = ϕs ∧¬ψ.
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Since [ϕs] does not contain an isolated type, neither of [ϕs0] and [ϕs1] contains an
isolated type. Our construction is complete.

For each α ∈ 2N, {ϕα|n : n ∈ ω} is a type in T . Choose and fix a pα ∈ Sn(T ).
Suppose α �= β ∈ 2N. Get an n such that α|n �= β|n. Then ϕα|n ∈ pα\pβ . This
completes the proof. �

A variant of the above argument gives us the next result. We need a lemma first.

Lemma 3.7.3 Let κ be an infinite cardinal, L a κ-language, M an L-structure,
A ⊂ M of cardinality at most κ and ϕ[x] an L A-formula such that |[ϕ[x]]| > κ.
Then, there is an L A-formulaψ[x] such that |[ϕ∧ψ]| > κ as well as |[ϕ∧¬ψ]| > κ.

Proof Suppose not. Set
p = {ψ : |[ϕ ∧ ψ]| > κ}.

Note thatϕ ∈ p. Since [ϕ] = [ϕ∧ψ]∪[ϕ∧¬ψ], for eachψ, eitherψ or¬ψ belongs
to p. So, by our assumption, for every ψ exactly one of ψ, ¬ψ belongs to p.

We claim that p∪T hA(M) is finitely satisfiable. If not, then there existsψ1, . . . ,ψk

in p such that {∧k
i=1ψi } ∪ ThA(M) is not satisfiable. In particular, ∧k

i=1ψi /∈ p.
Hence, ∨k

i=1¬ψi ∈ p. But this implies that |[ϕ ∧ ¬ψi ]| > κ for some 1 ≤ i ≤ k, a
contradiction.

Thus, p is a complete n-type and for every ψ /∈ p, |[ϕ ∧ ψ]| ≤ κ. Now note that

[ϕ] = {p} ∪ ∪ψ /∈p[ϕ ∧ ψ].

Since L and A are of cardinality atmostκ, it follows that |[ϕ]| ≤ κ. This contradiction
proves our result. �

Theorem 3.7.4 Let T be a countable complete theory, M |= T andκ ≥ ℵ0. Suppose
there exists A ⊂ M of cardinality κ such that |SM

n (A)| > κ. Then, there exists a
countable A0 ⊂ A such that |SM

n (A0)| = 2ℵ0 .

Proof Since |A| = κ and T is countable, there are only κ-many LA-formulas. So,
there is an L A-formula ϕe such that |[ϕe]| > κ.

For each s ∈ 2<N will define an L A-formula ϕs satisfying the following condi-
tions:

1. If s ≺ t , T |= ϕt → ϕs .
2. |[ϕs]| > κ.
3. If s �= t and |s| = |t |, T [ϕs] |= ¬ϕt .

Suppose ϕs is defined so that |[ϕs]| > κ. By the last lemma, there is a formula ψ
such that |[ϕs ∧ ψ]| as well as |[ϕs ∧ ¬ψ]| are greater than κ. Set ϕs0 = ϕs ∧ ψ and
ϕs1 = ϕs ∧ ¬ψ. Our construction is complete.

For each α ∈ 2N, {ϕα|k : k ∈ ω} is a n-type in M over A. Choose and fix
a pα ∈ ∩n[ϕα|n]. Suppose α �= β ∈ 2N. Get an n such that α|n �= β|n. Then,
ϕα|n ∈ pα \ pβ .
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Let A0 be the set of all parameters from A that appear in ϕs’s. Clearly, A0 is
countable and all the pα’s are complete n-types over A0. In particular,
|SM

n (A0)| = 2ℵ0 . �

Corollary 3.7.5 Let T be a countable, complete theory, with M |= T and A ⊂ M
countable. Then, exactly one of the following holds:

1. |SM
n (A)| ≤ ℵ0.

2. |SM
n (A)| = 2ℵ0 .

By imitating these proofs, we get the following two results.

Lemma 3.7.6 Let M be an L-structure and A ⊂ M. Supposeϕ[x] is an L A-formula
such that [ϕ] �= ∅ and contains no isolated type. Then, there is an L A-formula ψ
such that

[ϕ ∧ ψ] �= ∅ �= [ϕ ∧ ¬ψ].

Theorem 3.7.7 Let T be a countable, complete theory, M |= T , and A ⊂ M.
Suppose isolated types are not dense in SM

n (A). Then, there exists a countable A0 ⊂ A
such that |SM

n (A0)| = 2ℵ0 .

Remark 3.7.8 Suppose A ⊂ M is countable and |SM
n (A)| < 2ℵ0 . Then isolated types

are dense in SM
n (A).



Chapter 4
Good Structures and Good Theories

Abstract In this chapter, we initiate a systematic study of important classes of
structures and theories. Of particular importance are saturated structures and ℵ0-
categorical and stable theories. We also introduce Morley rank and Morley degrees
and generalise the notion of independence in minimal sets given in Chap.2 to forking
independence.

4.1 Homogeneous Structures

LetM be an L-structure and κ an infinite cardinal. We callM κ-homogeneous if for
all A ⊂ M of cardinality less than κ, for all partial elementary map f : A → M and
for all a ∈ M, there is a partial elementary map g : A ∪ {a} → M extending f . This is
the same as saying the following: For every sequences a, b ∈ M of length < κ with
tpM(a) = tpM(b), for every a ∈ M there is a b ∈ M such that tpM(aa) = tpM(bb).
We call M homogeneous if it is |M|-homogeneous.

We call M κ-strongly homogeneous if for all A ⊂ M of cardinality less than κ,
every partial elementary map f : A → M extends to an automorphism of M. This
is the same as saying the following: For every sequences a, b ∈ M of length < κ,
tpM(a) = tpM(b) if and only if there is an automorphism g ofM such that g(a) = b.
We call M strongly homogeneous if it is |M|-strongly homogeneous.

Example 4.1.1 The linearly ordered set of rationals Q is strongly homogeneous.
This follows from Exercise 1.6.11.

Following the back and forth argument, we have the following theorem.

Proposition 4.1.2 Every homogeneous L-structure is strongly homogeneous.

Proof Let A ⊂ M be of cardinality less than that of M and f : A → M partial ele-
mentary. Enumerate M \ A = {aα : α < |M|}. Set f0 = f . By transfinite induction,
for each α < |M|, we define a partial elementary map fα from a subset ofM intoM
such that
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(∗) |domain(fα)| < |M|,
(∗) for β < α < |M|, fα extends fβ ,
(∗) fα = ∪β<αfβ if α is limit, and
(∗) aα belongs to the domain as well as to the range of fα+1.

This will complete the proof, because ∪α<|M|fα will be an automorphism of M
extending f .

Suppose fα has been defined. If aα is in the domain of fα, set g = fα. Otherwise, by
homogeneity, there is a partial elementary extension g of fα from domain(fα) ∪ {aα}
toM.

If aα is in the range of g, take fα+1 = g. Otherwise, by homogeneity, there is
a partial elementary map h extending g−1 from range(g) ∪ {aα} to M. Now take
fα+1 = h−1. �

Corollary 4.1.3 Let M be an infinite homogeneous L-structure, A ⊂ M with |A| <

|M|anda, b ∈ Mn. Then tpM(a/A) = tpM(b/A) if and only if there is anα ∈ Aut(M)A
such that α(a) = b. In particular, a ∈ M has finitely many conjugates in M over A
if and only if tpM(a/A) has only finitely many realisations in M.

Proof Note that |A ∪ {ai : i < |a|}| < |M|} and f : A ∪ {ai : i < |a|} → M such that
f is identity on A and f (a) = b is partial elementary. Hence, the result follows from
the last proposition. �

Lemma 4.1.4 Let M be an L-structure and a, b ∈ Mn be such that a → b is partial
elementary. Then for every c ∈ M, there is an elementary extension N of M and a
d ∈ N such that (a, c) → (b, d) is partial elementary. Further, if M is infinite and L
countable, we can choose N so that |N | = |M|.
Proof Consider the theory

T = Diagel(M) ∪ {ϕ[x, b] : M |= ϕ[c, a]}.

Since a → b is partial elementary, whenever M |= ϕi[c, a], i < n, M |= ∃x ∧i

ϕi[x, b]. Thus, T is finitely satisfiable. Hence, there is an L-structure N in which
T is realised. Further, by downward Löwenheim–Skolem theorem, if L is countable
and M infinite, we can choose N so that |N | = |M|. Such an N has all the desired
properties. �

Lemma 4.1.5 Let M be an infinite L-structure with L countable. Then there exists
an elementary extension N of M satisfying the following conditions:

1. |N | = |M|, and
2. whenever a, b ∈ M with a → b partial elementary, for every c ∈ M there is a

d ∈ N such that (a, c) → (b, d) is partial elementary.

Proof Let {(aα, bα, cα) : α < |M|} be an enumeration of all finite tuples (a, b, c)
in M with a → b partial elementary. Applying the last lemma repeatedly, by trans-
finite induction, we can build an elementary chain {Nα : α < |M|} of L-structures
satisfying the following conditions:
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(∗) N0 = M.
(∗) Nα = ∪β<αNβ if α is limit.
(∗) ∀α < |M|(|Nα| = |M|), and
(∗) ∀α < |M|∃dα ∈ Nα+1((aα, bα, cα) → (aα, bα, dα) is partial elementary).

Finally, take N = ∪α<|M|Nα. �

Proposition 4.1.6 Let M be an infinite L-structure with L countable. Then there
exists a ℵ0-homogeneous elementary extension N of M such that |N | = |M|.
Proof Set N0 = M. By repeatedly applying the last lemma, we have an elementary
chain {Nk : k ∈ ω} such that whenever a, b ∈ Nk with a → b partial elementary, for
every c ∈ Nk there is a d ∈ Nk+1 such that (a, c) → (b, d) is partial elementary. Now
take N = ∪kNk . �

Using the back-and-forth argument, we get the following surprising result.

Proposition 4.1.7 Let M and N be countable homogeneous L-structures. The fol-
lowing conditions are equivalent.

1. M and N are isomorphic.
2. For every k ≥ 1,

{tpM(a) : a ∈ Mk} = {tpN (b) : b ∈ Nk}.

Proof Clearly (1) implies (2). Next assume (2). Then for every n ∈ ω, |M| = n if
and only if |N | = n. Further, if M is finite, M is isomorphic to N . So, assume that
|M| = |N | = ℵ0. Fix enumerations {ak} and {bk} of M and N , respectively.

Set a′
0 = a0 and consider tpM(a′

0). By our hypothesis, there is a b ∈ N such that
tpM(a′

o) = tpN (b). Let b′
0 be the first such b in the above enumeration of N .

Now let b′
1 be the first element in the enumeration of N different from b′

0. By our
hypothesis, there exists a, a′ ∈ M such that tpM(a, a′) = tpN (b′

0, b
′
1). In particular,

tpM(a) = tpN (b′
0) = tpM(a′

0). So, a → a′
0 is partial elementary. SinceM is homoge-

neous, there is an a′′ ∈ M such that (a, a′) → (a′
0, a

′′) is partial elementary. There-
fore, tpN (b′

0, b
′
1) = tpM(a, a′) = tpM(a′

0, a
′′). Since b′

0 
= b′
1, x 
= y is in tpN (b′

0, b
′
1).

This implies that a′
0 
= a′′. We let a′

1 denote the first such a′′ in the enumeration of
M.

Now let a′
2 be the first element in the enumeration of M not belonging to

{a′
0, a

′
1}. By our hypothesis, there exist b, b′, b′′ ∈ N such that tpN (b, b′, b′′) =

tpM(a′
0, a

′
1, a

′
2). In particular, tpN (b, b′) = tpM(a′

0, a
′
1) = tpN (b′

0, b
′
1). So, (b, b

′) →
(b′

0, b
′
1) is partial elementary. Since N is homogeneous, there exists a b′′′ ∈ N

such that (b, b′, b′′) → (b′
0, b

′
1, b

′′′) is partial elementary. Hence, tpN (b′
0, b

′
1, b

′′′) =
tpN (b, b′, b′′) = tpM(a′

0, a
′
1, a

′
2). Since a

′
2 /∈ {a′

0, a
′
1}, b′′′ /∈ {b′

0, b
′
1}. Let b′

2 be the first
such b′′′ in the enumeration of N .
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Continuing this back-and-forth method, we shall get enumerations {a′
k} and {b′

k}
ofM andN , respectively, such that for every k, (a′

o, . . . , a
′
k) → (b′

o, . . . , b
′
k) is partial

elementary. Plainly, a′
i → b′

i defines an isomorphism fromM to N . �
We now extend this result for arbitrary cardinal numbers.

Proposition 4.1.8 Let M and N be elementarily equivalent L-structures with N
κ-homogeneous, where κ is an infinite cardinal. Suppose for every a ∈ Mn there
exists b ∈ Nn such that tpM(a) = tpN (b). Then for every A ⊂ M with |A| ≤ κ, there
is a partial elementary map f∞ : A → N.

Proof First assume that A is finite, say A = {a0, . . . , an}. By our hypothesis, there
exist b0, . . . , bn ∈ B such that tpM(a) = tpN (b). Plainly, ai → bi, i ≤ n, is an ele-
mentary map from A into N .

We complete the proof by induction on |A|. Let λ ≤ κ and the result be true for
A ⊂ M of cardinality less than λ. Take any A = {aα : α < λ} ⊂ M of cardinality
λ. By induction on α < λ, we define elementary maps fα : {aβ : β < α} → N such
that fα extends fβ whenever β < α. This will then complete the proof by taking
f∞ = ∪α<λfα.

Suppose α < λ and fβ , β < α, have been defined. If α is a limit ordinal, we define
fα = ∪β<αfβ . Now suppose α = β + 1 is a successor ordinal. By our assumption,
there is a partial elementarymap f : {aγ : γ ≤ β} → N . LetB = f ({aγ : γ < β}) and
C the range of fβ . Note that every partial elementary map is injective. So, we have a
partial elementary map g = fβ ◦ f −1 : B → C. Since N is κ-homogeneous, there is
a partial elementary map h : B ∪ {f (aβ)} → N extending g. Suppose b = h(f (aβ)).
Take fα = fβ ∪ {(aβ, b)}. �
Proposition 4.1.9 Let M and N be elementarily equivalent homogeneous
L-structures such that |M| = |N |. The following conditions are equivalent.

1. M and N are isomorphic.
2. For every k ≥ 1,

{tpM(a) : a ∈ Mk} = {tpN (b) : b ∈ Nk}.

Proof We need to prove (2) implies (1) only. Further, we can assume that |M| =
|N | = κ > ℵ0. Fix enumerationsM = {aα : α < κ} and N = {bα : α < κ}. Set f0 to
be the empty function.

By induction, we define partial elementary maps fα,α < κ, as follows: We take
f0 to be the empty function. Assume fα has been defined. Let a be the first element in
the above enumeration ofM that does not belong to the domain of fα. Arguing as the
last proposition we see that there is a partial elementary map, say g = fα ∪ {(a, b)}
into N . Now let b be the first element in the above enumeration of N not in the range
of g. Similarly there is a partial elementary map, say h = g−1 ∪ {(b, a)} intoM. We
take fα+1 = h−1. In the limit case, we take fα = ∪β fβ .

Plainly, f = ∪α<κfα is an isomorphism fromM onto N . �
Exercise 4.1.10 Equip Q × R with lexicographic order. Show that it is not homo-
geneous.
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Exercise 4.1.11 Let κ be a regular cardinal and {Mα : α < κ} an elementary chain
of κ-homogeneous L-structures. Show that ∪α<κMα is κ-homogeneous.

Exercise 4.1.12 LetM be a countable structure of a countable language L and a, b ∈
Mn. Show that tpM(a) = tpM(b) if and only if there is an elementary extension N of
M and a f ∈ Aut(N) such that f (a) = b.

Exercise 4.1.13 Show that every algebraically closed field is homogeneous.

4.2 Atomic Structures

We call an L-structure M atomic if for every n ≥ 1 and every a ∈ Mn, tpM(a) is
isolated.

Example 4.2.1 Consider the linearly ordered set Q. In Example 3.4.16 we showed
that tpQ(a) is isolated for every finite tuple a of rational numbers. Hence,Q is atomic.

Example 4.2.2 Consider the ordered field R. In Example 3.4.15, we saw that
tpR(a) 
= tpR(b) whenever a and b are distinct real numbers. Since there are only
countably many formulas, there are at most countably many isolated tpR(a). Hence,
the ordered field R is not atomic.

Theorem 4.2.3 Every countable atomic L-structure M is homogeneous.

Proof Let a, b ∈ Mn such that the map a → b is partial elementary. Take an a 
= ai,
i < n. Since M is atomic, there is a formula ϕ[x0, . . . , xn] that isolates tpM(a, a). In
particular,M |= ϕ[a, a] implyingM |= ∃xϕ[a, x]. Since a → b is partial elementary,
M |= ∃xϕ[b, x]. Hence, there is a b ∈ M such that

M |= ϕ[b, b]. (∗).

The proof will be completed by showing that

tpM(a, a) = tpM(b, b).

Let ψ[x, x] ∈ tpM(a, a). Then

M |= ∀x∀x(ϕ[x, x] → ψ[x, x]).

By (∗), M |= ψ[b, b], i.e. ψ ∈ tpM(b, b). So, tpM(a, a) ⊂ tpM(b, b). This implies
that tpM(a, a) = tpM(b, b). �

Theorem 4.2.4 Let T be a countable complete theory. Then a model M of T is prime
if and only if it is countable and atomic.

http://dx.doi.org/10.1007/978-981-10-5098-5_3
http://dx.doi.org/10.1007/978-981-10-5098-5_3
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Proof LetM |= T be prime. Since every countable consistent theory has a countable
model (Corollary 1.7.7), everyprimemodel of a countable theory is countable.Hence,
M is countable.

Take any a ∈ M. If possible, suppose tpM(a) is non-isolated. By omitting types
theorem (Theorem 3.6.1), there is a modelN of T omitting tpM(a). SinceM is prime,
there is an elementary embeddingα : M → N . However, asα : M → N elementary,
α(a) realises tpM(a). This contradiction proves the only if part of the result.

To prove the converse, letM be a countable atomic model of T and N |= T . Fix
an enumeration {ak} ofM. SinceM is atomic, for each (a0, . . . , ak) there is a formula
ϕk[x0, . . . , xk] that isolates tpM(a0, . . . , ak). By induction, for each k, we shall define
a partial elementary map αk : {ai : i < k} → N such that αk+1 extends αk for each
k. It will follow that α = ∪kαk : M → N is elementary.

Since T is complete,M andN are elementarily equivalent. So, the empty function
fromM to N is indeed elementary. Suppose αk : {ai : i < k} → N has been defined
and is partial elementary.

SinceM |= ϕk[ao, . . . , ak],M |= ∃xϕk[a0, . . . , ak−1, x]. Since αk is partial ele-
mentary,wegetN |= ∃xϕk[αk(a0), . . . ,αk(ak−1), x]. This gives us ab ∈ N such that
N |= ϕk[αk(a0), . . . ,αk(ak−1), b]. We let αk+1 : {ai : i ≤ k} → N be the extension
of αk with αk+1(ak) = b. We need to show that αk+1 is partial elementary. Because
ϕk isolates tpM(a0, . . . , ak), as we argued earlier,

tpM(a0, . . . , ak) = tpN (αk+1(a0), . . . ,αk+1(ak)),

showing that αk+1 is partial elementary. �

As a corollary we get,

Example 4.2.5 The field of all algebraic numbers, Fp, p a prime, the set of all real
algebraic numbers both as a field as well as an ordered field and Q both as models
of DAG and ODAG are atomic.

Theorem 4.2.6 Let T be a countable complete L-theory andM and N prime models
of T. Then M and N are isomorphic.

Proof By the last theorem (Theorem 4.2.4), M and N are countable and atomic.
Hence, they are homogeneous by Theorem 4.2.3. Also, each realised types inM and
N is isolated. Then since T is complete, M and N realise the same complete types.
To see this take an a ∈ Mn and an L-formula ϕ[x] that isolates tpM(a) ∈ Sn(T). So,
for every L-formula ψ[x],

M |= ψ[a] ⇔ T |= ∀x(ϕ[x] → ψ[x]).

Since M |= ∃xϕ[x], as T is complete, there is a b ∈ Nn such that N |= ϕ[b]. It
follows that tpN (b) = tpM(a). Similarly, we prove that for every b ∈ Nn, there is
an a ∈ Mn such that tpM(a) = tpN (b). Hence, by Theorem 4.1.7, M and N are
isomorphic. �

http://dx.doi.org/10.1007/978-981-10-5098-5_1
http://dx.doi.org/10.1007/978-981-10-5098-5_3
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Proposition 4.2.7 Let T be a complete theory. If T has an atomic model, then iso-
lated types are dense in Sn(T).

Proof Fix an atomic M |= T . Suppose [ϕ[x]] 
= ∅. Then there is a model N |= T
such that N |= ∃xϕ. Since T is complete, M |= ∃xϕ. So, there exists a ∈ M such
that M |= ϕ[a]. Thus, tpM(a) ∈ [ϕ]. Since M is atomic, tpM(a) is isolated and our
result is proved. �

Interestingly, the converse of this result is true for countable, complete theories.
The proof is a Henkin type construction of models.

Theorem 4.2.8 Let T be a countable complete theory such that for every n ≥ 1,
isolated types are dense in Sn(T). Then T has a countable atomicmodel. In particular,
T have a prime model.

Proof Weadd an infinite sequence of distinct and new constants, say c0, c1, c2, . . ., to
T but no newnon-logical axiom and still call the theoryT . Let {ϕn} be an enumeration
of all the sentences of T .

By induction on n, we shall now define a sequence of sentences {ψn} such that
T [{ψn}] is a complete Henkin theory whose canonical structure is a countable atomic
model of T .

We take ψ0 = ∃x(x = x). Suppose n = 3m and ψ0, . . . ψn have been defined.
If T [ψn ∧ ϕm] is satisfiable, we takeψn+1 = ψn ∧ ϕm, else setψn+1 = ψn ∧ ¬ϕm.

So, T [ψn+1] is consistent.
If ϕm is not a closed existential formula, we take ψn+2 = ψn+1. Suppose ϕm

is a closed existential formula, say ∃xϕ[x]. If T [ψn+1] � ϕm, take ψn+2 = ψn+1.
Otherwise, we take the first new constant symbol ck not occurring in T [ψn+1] and
set ψn+2 = ψn+1 ∧ ϕ[ck]. It is easy to see that T [ψn+2] is consistent.

Finally, let k be the first integer such that the constants occurring in T [ψn+2] are
among c0, . . . , ck . By choosing a variant of ψn+2, if necessary, let ψ[x0, . . . , xk] be
such thatψn+2 = ψ[c]. So, [ψ] 
= ∅. Let p ∈ [ψ] be an isolated (k + 1)-type, isolated
by, say η[x]. We set ψn+3 = ψn+2 ∧ η[c]. Clearly, T [ψn+3] is consistent.

It is fairly routine to check that T [{ψn}] is a complete Henkin theory. LetM be its
canonical model. We claim that M is an atomic model of T . Take a ∈ M. Let k be
the least integer such that all ai’s occur among (c0)M, . . . , (ck)M and there exists an
m = 3j + 2 such that all the constants occurring in ψm occur among c0, . . . , ck . By
our construction, tpM[cM] is isolated. Hence, as proved before, tpM(a) is isolated. �

Corollary 4.2.9 Let T be a countable complete theory such that for some n ≥ 1,
|Sn(T)| < 2ℵ0 . Then T has a prime model.

Proof LetM |= T . Since T is complete, Sn(T) = SMn (∅). Under our hypothesis, by
Corollary 3.7.8, isolated points are dense in Sn(T). The result now follows by the
last theorem. �

http://dx.doi.org/10.1007/978-981-10-5098-5_3
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4.3 Saturated Structures

LetM be an L-structure and κ an infinite cardinal. We callM κ-saturated if for every
A ⊂ M of cardinality less than κ, every type in S1(M/A) is realised inM. We callM
saturated if it is |M|-saturated.
Proposition 4.3.1 If M is κ-saturated, κ ≥ ℵ0, and x is a sequence of distinct vari-
ables of lengthα ≤ κ, then for every A ⊂ M of cardinality less thanκ, every complete
type p(x) over A is realised in M.

Proof By transfinite induction, we define a sequence {aβ : β < α} in M such that
for every β < α, {aγ : γ < β} realises the type pβ({xγ : γ < β}) over A defined by

{∃{xδ : δ ≥ β}ϕ[{xγ : γ < β}, {xδ : δ ≥ β}] : ϕ ∈ p(x)}.

Suppose β < α and {aγ : γ < β} satisfying the above condition have been defined.
Now consider the 1-type

q(xβ) = {∃{xδ : δ > β}ϕ[{aγ : γ < β}, xβ, {xδ : δ > β}] : ϕ ∈ p(x)}

over A ∪ {aγ : γ < β}. Since κ is infinite, |A ∪ {aγ : γ < β}| < κ. As M is
κ-saturated, there is an aβ ∈ M realising q(xβ). This completes the construction
and our proof. �

Proposition 4.3.2 LetM and N be L-structures with N κ-saturated, κ ≥ ℵ0, A ⊂ M
of cardinality less than κ, f : A → N partial elementary and a ∈ M \ A. Then there
is a partial elementary map g : A ∪ {a} → N that extends f .

Proof Take any a ∈ An and a formula ϕ[x, x] of L such that M |= ϕ[a, a]. Then
M |= ∃xϕ[x, a]. Since f is partial elementary,N |= ∃xϕ[x, f (a)]. From this it easily
follows that

p = {ϕ[x, f (a)] : a ∈ An ∧ M |= ϕ[a, a]}

is finitely satisfiable in N , i.e. p is a 1-type over f (A) which is of cardinality less
than κ. Since N is κ-saturated, there is a b ∈ N that realises it. This implies that
tpM(a, a) = tpN (b, f (a)). So, g = f ∪ {(a, b)} is partial elementary. This proves our
result. �

Corollary 4.3.3 Every κ-saturated L-structure is κ-homogeneous.

Corollary 4.3.4 Every saturated L-structure is strongly homogeneous.

A model M of an L-theory T is called κ-universal if every model N of T of
cardinality less that κ is elementarily embedded intoM.

Proposition 4.3.5 Let T be a complete theory. Then every κ-saturated model M of
T is κ+-universal.
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Proof Let N |= T and |N | ≤ κ. Fix an enumeration {aα : α < κ} of N . For α < κ,
set Aα = {aβ : β < α}.

Set f0 to be the empty function. Since T is complete, M and N are elementarily
equivalent. So, f0 is partial elementary. Proceeding by transfinite induction and using
the last proposition repeatedly, for each α < κ, we get a partial elementary map
fα : Aα → M such that fα extends fβ whenever β < α and fα = ∪β<αfβ ; if α is a
limit ordinal. Then f = ∪α<κfα : N → M is an elementary embedding. �

A converse of this result is true.

Proposition 4.3.6 Let κ ≥ ℵ0. Every κ-homogeneous, κ+-universal model M of a
κ-theory T is κ-saturated. Moreover, if κ is uncountable and T countable, we can
replace the condition κ+-universality by κ-universality of M.

Proof Let A ⊂ M be of cardinality < κ and p ∈ S1(M/A). Then, by downward
Löwenheim–Skolem theorem, there is an infinite elementary substructure N of M
containing A of cardinality ≤ κ. Moreover, if κ is uncountable and T countable, we
get N of cardinality < κ. Since p ∈ S1(N/A), there is an elementary extension N ′ of
N such that |N ′| = |N | and there is a a ∈ N ′ that realises p. By the universality ofM,
there is an elementary embedding f : N ′ → M. Now f −1 : f (A)→A ⊂ M is partial
elementary. So, by homogeneity of M, there is a b ∈ M such that f −1 ∪ {(f (a), b)}
is partial elementary. Then b realises p in M. �

Proposition 4.3.7 Let M be κ-saturated, A ⊂ M of cardinality less than κ, λ < κ
and M ′ an elementary extension of M. Then for every sequence {aα : α < κ} of
λ-tuples in M ′ of length κ there is a sequence {bα : α < κ} of λ-tuples in M of length
κ such that

tpM({bα : α < κ}/A) = tpM
′
({aα : α < κ}/A).

Proof We build {bα : α < κ} by transfinite induction. Suppose α < κ and bβ ∈ Mλ,
β < α, have been defined so that

tpM({bβ : β < α}/A) = tpM
′
({aβ : β < α}/A).

Since M is κ-saturated, there exist b
′
β , β ≤ α, inMλ such that

tpM({b′
β : β ≤ α}/A) = tpM

′
({aβ : β ≤ α}/A).

This implies that

tpM({b′
β : β < α}/A) = tpM

′
({aβ : β < α}/A) = tpM({bβ : β < α}/A).

Therefore, b
′
β → bβ , β < α, is partial elementary over A. Since M is κ-saturated,

by Corollary 4.3.3, it is κ-homogeneous. Hence, there exists a bβ ∈ Mλ such that

b
′
β → bβ , β ≤ α, is partial elementary over A. This implies that
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tpM({bβ : β ≤ α}/A) = tpM
′
({aβ : β ≤ α}/A).

The proof is easily seen now. �

Theorem 4.3.8 Let M |= T be an ℵ0-homogeneous model that realises every com-
plete type in T. Then M is ℵ0-saturated.

Proof Let a ∈ Mn and p(x) a complete m-type over a. Consider

q[x, y] = {ϕ[x, y] : ϕ[x, a] ∈ p}.

By our assumptions, there is a (b, c) ∈ Mm+n that realises q. This implies that c → a
is partial elementary. By homogeneity of M, there is a partial elementary extension
(b, c) → (d, a) of c → a. This implies that d realises p. �

This result is true for all cardinality provided T is complete.

Theorem 4.3.9 Let T be a complete theory. Then every κ-homogeneous model M
of T that realises every p ∈ Sn(T) for all n ≥ 1 is κ-saturated.

Proof By Proposition 4.3.6, it is sufficient to prove that M is κ+-universal. Take
N |= T of cardinality ≤ κ. Since T is complete, M and N are elemenatarily
equivalent. By hypothesis, for every tuple a ∈ N , there is a b ∈ M such that
tpN (a) = tpM(b) . Hence, by Proposition 4.1.8, N is elementarily embeddable
inM. �

As a consequence, we now give a characterization of countable complete, theories
that has a countable saturated model.

Theorem 4.3.10 Let T be a countable complete theory. Then T has a countable
saturated model if and only if | ∪n Sn(T)| ≤ ℵ0.

Proof Let M be a countable, saturated model of T . Since for every n ≥ 1, Sn(T) =
Sn(M), only if part is easy.

For proving if part, start with a countable N0 |= T . Let {pk : k ∈ ω} = ∪nSn(T).
Get an elementary chain {Nk : k ∈ ω}of countableL-structures such that for every k ∈
ω, pk is realised in Nk+1. Then ∪kNk |= T is countable and realises all p ∈ ∪nSn(T).
By Proposition 4.1.6, there is a homogeneous, countable, elementary extension N of
∪kNk . By the last theorem, N is saturated. �

Below we give another criterion for quantifier elimination. Let M and N be L-
structures and I(M,N) denote the set of all finite partial isomorphisms M � a →
b ∈ N . We say thatM,N has back-and-forth property if for every a → b in I(M,N)

following two conditions are satisfied.

(∗) For every c ∈ M, there is a d ∈ N such that ac → bd is in I(M,N).
(∗) For every d ∈ N , there is a c ∈ N such that ac → bd is in I(M,N).
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Theorem 4.3.11 Let T be an L-theory. The following conditions are equivalent.

(a) T has quantifier elimination.
(b) For every pair of models M, N of T and every a → b ∈ I(M,N), tpM(a) =

tpN (b).
(c) For every pair of ℵ0-saturated models M, N of T, I(M,N) has back-and-forth

property.

Proof The equivalence of (a) and (b) is proved in Theorem 2.9.5. Assume (b) and
takeℵ0-saturatedmodelsM,N of T and a a → b ∈ I(M,N). Then, by (b), tpM(a) =
tpN (b). Now take any c ∈ M and consider

p(x) = {ϕ[b, x] : M |= ϕ[a, c]}.

Then for any finite set ϕ1[b, x], . . . ,ϕk[b, x] ∈ p(x), M |= ∃x∧k
i=1ϕi[a, x]. Since

tpM(a) = tpN (b),N |= ∃x ∧k
i=1 ϕi[b, x]. Thus p(x) is type inN over b. SinceN isℵ0-

saturated, there is a d ∈ N that realises p(x). This implies that ac → bd ∈ I(M,N).
Similarly using that M is ℵ0-saturated, (b) implies that for every d ∈ N there is a
c ∈ M such that ac → bd ∈ I(M,N).

Assuming (c) we prove (b) now. So, takeM,N |= T and a → b ∈ I(M,N). Let
M ′,N ′ be ℵ0-saturated elementary extensions of M,N , respectively. It is sufficient
to show that tpM

′
(a) = tpN

′
(b). By induction on the complexity of L-formulas ϕ[x]

we show that for every a → b ∈ I(M,N),

M ′ |= ϕ[a] ⇔ N ′ |= ϕ[b]. (∗)

By hypothesis, (∗) holds for all atomic ϕ. Clearly, the set of ϕ satisfying (∗) is closed
under ¬ and ∨. Now let ψ[x, x] satisfy (∗), and ϕ[x] = ∃xψ[x, x]. Take a a → b ∈
I(M,N). Assume thatM ′ |= ϕ[a]. SinceM ′ � M,M |= ϕ[a]. So, there exists c ∈
M such thatM |= ψ[a, c]. Hence,M ′ |= ψ[a, c]. By back and forth property, there
is a d ∈ N such that ac → bd is in I(M,N). By induction hypothesis,N ′ |= ψ[b, d].
Hence, N ′ |= ϕ[b]. Similarly, we prove that N ′ |= ϕ[b] implies M ′ |= ϕ[a] �

Theorem 4.3.12 Let T be a theory such that for every pair of ℵ0-saturated models
M, N of T, I(M,N) is non-empty and has the back-and-forth property. Then T is
complete.

Proof Take any twoM,N |= T . We are required to show thatM and N are elemen-
tarily equivalent. By the last result, T has quantifier elimination. LetM ′ andN ′ beℵ0-
saturated, elementary extensions of M and N respectively. By our hypothesis, there
exists a → b ∈ I(M ′,N ′). Since T has quantifier elimination, tpM

′
(a) = tpN

′
(b). In

particular,M ′ and N ′ are elementarily equivalent. Hence,M and N are elementarily
equivalent. �

Theorem 4.3.13 Let L be a countable language and {Mm : m ∈ ω} a sequence of
L-structures. Suppose U is a free ultrafilter on ω. Then the ultraproduct MU =
×mMm/U is ℵ1-saturated.

http://dx.doi.org/10.1007/978-981-10-5098-5_2
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Proof Let A ⊂ MU be countable and �[x] a type over A in MU . Enumerate A =
{[(anm)] : n ∈ ω}. Since A and L are countable, �[x] is countable. Enumerate �[x] =
{ϕk[x] : k ∈ ω}. Set

ψk[x] = ∧i≤kϕi[x].

For eachm ∈ ω, let ψm
k [x] be the formula obtained from ψk by replacing each occur-

rence of [(ani )] by anm.
Since�[x] is a type inMU , each ψk[x] is realised inMU , say by ([(bk0m)], [(bk1m)],

[(bk2m)], . . .). Since U is free, by Los’ fundamental lemma on ultraproduct,

Vk = {m ≥ k : Mm |= ψm
k [bk0m, bk1m, bk2m, . . .]} ∈ U .

Set Wk = ∩i≤kVi. Clearly, Wk’s are decreasing and ∩kWk = ∅. Further, for each k,
Wk ∈ U .

For each i ∈ ω, define a sequence (bim) ∈ ×mMm satisfying

bim = bkim

for m ∈ Wk \ Wk+1. For m /∈ W0, choose bim ∈ Mm arbitrarily.
We claim that ([(b0m)], [(b1m)], [(b2m)], . . .) ∈ MU realises �[x]. Take a k ∈ ω.

We prove that
MU |= ψk[([(b0m)], [(b1m)], [(b2m)], . . .)].

We show this by proving that

Wk = ∪i≥k(Wi \ Wi+1) ⊂ {m ∈ ω : Mm |= ψm
k [b0m, b1m, b2m, . . .]}.

Let i ≥ k and m ∈ Wi \ Wi+1. Then bjm = bijm for every j ∈ ω. But then

Mm |= ψm
i [bi0m, bi1m, bi2m, . . .].

Since i ≥ k, it follows that

Mm |= ψm
k [bi0m, bi1m, bi2m, . . .].

Thus,
Wi \ Wi+1 ⊂ {m ∈ ω : Mm |= ψm

k [b0m, b1m, b2m, . . .]}

for every i ≥ k. The proof is complete now. �
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4.4 Existence of Saturated Structures and Monster Model

In this section,weprove several results on the existence of saturated structures leading
to show the existence of monster models for complete theories.

Lemma 4.4.1 Let L be a countable language, M an L-structure and κ ≥ ℵ0. Then
there is an elementary extension N of M of cardinality ≤ |M|κ such that for every
A ⊂ M of cardinality ≤ κ, every p(x) ∈ S1(M/A) is realised in N.

Proof Let {pα : α < |M|κ} be an enumeration of all complete 1-types in M over
subsets of M of cardinality ≤ κ. Set N0 = M. There exists an elementary chain
{Nα : α < |M|κ} of L-structures such that

(∗) Nα = ∪β<αNβ if α < |M|κ is limit,
(∗) |Nα| ≤ |M|κ,
(∗) pα is realised in Nα+1.

Now take N = ∪α<|M|κNα. �

Theorem 4.4.2 Let L be a countable language, M an L-structure and κ ≥ ℵ0. Then
there is a κ+-saturated elementary extension N of M of cardinality ≤ |M|κ.
Proof Set N0 = M. Applying the last lemma repeatedly, by transfinite induction, get
an elementary chain {Nα : α < |M|κ} of L-structures such that
(∗) Nα = ∪β<αNβ if α < |M|κ is limit,
(∗) |Nα| ≤ |M|κ,
(∗) each complete 1-type in Nα over a subset of Nα of cardinality ≤ κ is realised in

Nα+1.

Take N = ∪α<|M|κNα. �

As a consequence of this, under GCH, we show the existence of saturated models
of any regular cardinality. Assume that T is a countable theory with an infinite model.
Then T hasmodels of every infinite cardinality. In the last theorem, replacing amodel
M of T be an elementary extension of cardinality 2κ (which equals κ+ under GCH),
we get the following result.

Proposition 4.4.3 Assume GCH. Let T be a countable theory with an infinite model
and κ ≥ ℵ0. Then T has a saturated model of cardinality κ+.

From this, we can deduce that under the same hypothesis, T has a saturated model
of any regular cardinality.

Proposition 4.4.4 Assume GCH. Let T be a countable theory with an infinite model
and κ ≥ ℵ0 a regular cardinal. Then T has a saturated model of cardinality κ.
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Proof We have already proved the result if in addition κ is a successor cardi-
nal. Assume that κ is not a successor cardinal. Then applying the successor case
repeatedly, we get an elementary chain {Mα : ℵα < κ} of models of T such that
Mα = ∪β<αMβ whenever α is a limit ordinal and for each α, Mα is saturated of
cardinality ℵ+

α . Now take M = ∪ℵα<κMα. �

Next result is a very useful one.

Theorem 4.4.5 Let κ ≥ ℵ0 and M an L-structure. Then M has a κ+-saturated,
κ+-strongly homogeneous elementary extension M∞.

Proof SetM0 = M. By Theorem 4.4.2, there exists an elementary chain {Mα : α <

κ+} of L-structures satisfying the following conditions:

1. For each limit α,Mα = ∪β<αMβ , and
2. for every α, Mα+1 is |Mα|+-saturated.

Set M∞ = ∪α<κ+Mα.
Now let A ⊂ M∞ be of cardinality ≤ κ and p ∈ S1(M∞/A). Since κ+ is regular,

there is an α < κ+ such that A ⊂ Mα. In particular, |A| ≤ |Mα|. SinceMα+1 � M∞,
p ∈ S1(Mα+1/A). Since Mα+1 is |Mα|+-saturated, p is realised in Mα+1. This shows
that M∞ is κ+-saturated.

Now we proceed to show thatM∞ is κ+-strongly homogeneous. We start with an
A ⊂ M∞ of cardinality ≤ κ and a partial elementary f : A → M∞. By regularity of
κ+, there is a α < κ+ such that A ⊂ Mα and f (A) ⊂ Mα+1. By tranfinite induction,
we define partial elementary maps fβ : Mα+β → Mα+β+1, β < κ+, satisfying

1. f0 extends f ,
2. fβ extends fγ whenever γ < β < κ+,
3. fβ = ∪γ<β fγ if β is limit.
4. Mα+β ⊂ range(fβ+1).

Since A ⊂ Mα, |A| ≤ |Mα|. Since Mα+1 is |Mα|+-saturated, by Corollary 4.3.3,
there is an elementary extension f0 : Mα → Mα+1 of f .

Suppose fγ has been defined for all γ < β. If β is limit, take fβ = ∪γ<β fγ .
Let β = γ + 1 be a successor ordinal. Then

f −1
γ : fγ(Mα+γ) → Mα+γ+1

is partial elementary, fγ(Mα+γ) ⊂ Mα+γ+1 and

|fγ(Mα+γ)| = |Mα+γ | = |fγ(Mα+γ) ∪ Mα+γ |.

We extend f −1
γ to a partial elementary map

g : fγ(Mα+γ) ∪ Mα+γ → Mα+γ .
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Now extend
g−1 : Mα+γ ∪ g(Mα+γ) → Mα+γ+1 ⊂ Mα+γ+2

to a partial elementary map

fγ+1 : Mα+γ+1 → Mα+γ

Finally, take f∞ = ∪β<κfβ . Then f∞ is an automorphism ofM∞ extending f . �

Remark 4.4.6 This result tells that every consistent theory T with infinite models
has a κ+-saturated, κ+-strongly homogeneous model M for arbitrarily large κ. So,
depending upon problems at hand, by choosing κ sufficiently large, every model
that one is likely to get is of cardinality ≤ κ. Hence, every model one is likely to
encounter will be elementarily embedded into M and all parameters set subsets of
M of cardinality ≤ κ. Indeed, from next chapter onwards, we shall often fix a κ+-
saturated, κ+-strongly homogeneous model M for sufficiently large κ and call it a
monster model.

4.5 Some Consequences of Saturability

Theorem 4.5.1 Let M and N be saturated L-structures such that |M| = |N | = κ,
say. Then M and N are isomorphic.

Proof By Corollary 4.3.4,M and N are homogeneous. Fix enumerationsM = {aα :
α < κ} and N = {bα : α < κ}. Consider p[x] = tpM(a0). Since N is saturated, there
is a b ∈ N that realises it. We let a′

0 = a0 and b′
0 ∈ N to be the first element in

the above enumeration of B such that tpM(a′
0) = tpN (b′

0). Then a′
0 → b′

0 is partial
elementary.

Suppose for 0 < α < κ, {a′
β ∈ M : β < α} and {b′

β ∈ N : β < α} have been
defined so that for every β < α, (a′

γ : γ < β) → (b′
γ : γ < β) is partial elementary.

If α is a limit ordinal, then (a′
β : β < α) → (b′

β : β < α) is partial elementary.
Suppose α is an odd successor ordinal, say β + 1. Let b′

α be the first element in
the enumeration of N different from b′

γ , γ < α. By our assumption, (b′
γ : γ < β) →

(a′
γ : γ < β) is partial elementary. SinceM is homogeneous, there is an a ∈ M such

that (b′
γ : γ ≤ α) → ((a′

γ : γ < α), a) is partial elementary. We let a′
α denote first

such a in the enumeration of M.
If α is an even successor ordinal order, we take a′

α the first element in the enumer-
ation of M different from a′

γ , γ < α. By the same argument, there is a b ∈ B such
that (a′

γ : γ′ ≤ α) → ((b′
γ, γ < α), b) is partial elementary. We let b′

α the first such
element in the above enumeration of B.

Thus, we have defined enumerations M = {a′
α : α < κ} and N = {b′

α : α < κ}
such for every α < κ, (a′

β : β < α) → (b′
β : β < α) is partial elementary. It follows

that (a′
β : β < κ) → (b′

β : β < κ) is an isomorphism fromM to N . �
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Proposition 4.5.2 Let M be κ-saturated, A ⊂ M with |A| < κ and tpM(b/A) have
only finitely many realisations in M. Then b ∈ acl(A).

Proof Suppose the number of realisations of tpM(b/A) inM is m. Consider

� = {ϕ[vi] : ϕ[x] ∈ tpM(b/A), i = 0, . . . ,m} ∪ {∧0≤i<j≤m(vi 
= vj)}.

Byour assumptions,� is not realised inM. SinceM isκ-saturated and |A| < κ, a finite
fragment of � is not realised in M. Hence, there exist ϕ1[x], . . . ,ϕk[x] ∈ tpM(b/A)

such that
M |= (∧m

i=0 ∧k
j=1 ϕj[vi]) → ∨0≤i<j≤mvi = vj.

Now note that the formula ∧k
j=1ϕj[x] witnesses b ∈ acl(A). �

As a corollary, we have the following important result.

Theorem 4.5.3 Let M be a saturated model and A ⊂ M with |A| < |M|. Then the
following conditions are equivalent.

1. b ∈ acl(A).
2. b has only finitely many conjugates over A, i.e. b ∈ ACL(A).
3. tpM(b/A) has only finitely many realisations in M.

Proposition 4.5.4 Let M be an ℵ0-saturated L-structure and ϕ[x, a] a minimal LM-
formula in M. Then ϕ is strongly minimal in M.

Proof Let N be an elementary extension of M. Take an LN -formula ψ[x, b]. Since
M is ℵ0-saturated, there is a c ∈ M such that tpM(a, c) = tpN (a, b). Hence, for every
integer n,

M |= ∃=nx(ϕ[x, a] ∧ ψ[x, c]) ⇔ N |= ∃=nx(ϕ[x, a] ∧ ψ[x, b])

and

M |= ∃=nx(ϕ[x, a] ∧ ¬ψ[x, c]) ⇔ N |= ∃=nx(ϕ[x, a] ∧ ¬ψ[x, b]).

Since one of ϕ(M, a) ∩ ψ(M, c), ϕ(M, a) ∩ ψ(M, c)c is finite, one of ϕ(N, a) ∩
ψ(N, b), ϕ(N, a) ∩ ψ(N, b)c is finite. �

Theorem 4.5.5 Let M be a saturated L-structure, A ⊂ M with |A| < |M| and X ⊂
Mn be definable. Suppose for all σ ∈ GA, σ(X) = X. Then X is A-definable.

Proof Let ϕ[x, z] be an L-formula and m ∈ M be such that X = ϕ(M,m). Set

� = {ϕ[x,m],¬ϕ[y,m]} ∪ {ψ[x] ↔ ψ[y] : ψ an LA − formula}.

Then � is not realised inM: Suppose not. Let (a, b) ∈ M realises �. In particular,
the map f fixing A pointwise and sending a to b is partial elementary. Since M is
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saturated, it is strongly homogeneous (Corollary 4.3.4). Hence, f has an extension
to a σ ∈ GA. But then a ∈ X and b = σ(a) /∈ X. This contradicts our hypothesis.

Since M is saturated, there is a finite fragment of � that is not realised in M. So,
there exist LA-formulas ψ0[x], . . . ,ψm−1[x] such that

M |= ∀x∀y(∧i<m(ψi(x) ↔ ψi(y)) → (ϕ[x,m] ↔ ϕ[y,m])).

For any s ∈ 2m, set
θs[x] = ∧s(i)=1ψi(x) ∧ ∧s(i)=0¬ψi(x).

Let
S = {s ∈ 2m : ∃b ∈ X(M |= θs[b])}.

We claim that
a ∈ X ⇔ M |= ∨s∈ S θs[a].

Let a ∈ X. Define
s(i) = 1 ifM |= ψi[a]

= 0 ifM |= ¬ψi[a]

Then s ∈ S and M |= θs[a]
On the other hand, let there be a s ∈ S such that M |= θs[a]. Then there exists

b ∈ X such that M |= θs[b]. This implies that a ∈ X.
We have shown that the LA-formula ∨s∈Sθs[x] defines X. �

We recast this theorem in the context of a monster model. Let κ be a sufficiently
large cardinal and M a κ+-saturated, κ+-strongly homogeneous model of a theory
T . According to our convention, every parameter set is of cardinality ≤ κ. We have
the following result.

Theorem 4.5.6 Let A ⊂ M and X ⊂ Mn be definable. Then X is A-definable if and
only if for all σ ∈ AutA(M), σ(X) = X.

Corollary 4.5.7 Let M be a saturated L-structure, A ⊂ M and |A| < |M|. Then
DCL(A) = dcl(A).

Proof Earlierwe saw that dcl(A) ⊂ DCL(A). By the last TheoremDCL(A) ⊂ dcl(A)

because M is saturated. �

We now give an application to elimination of imaginaries and show that ACF has
elimination of imaginaries.

Proposition 4.5.8 Let T be a complete L-theory with infinite models. Suppose for
every model M of T, every equivalence L-formula θ[x, y] in M and for every a ∈ M,
there is a tuple b ∈ M such that for every σ ∈ Aut(M), σ(θ(M, a)) = θ(M, a) if and
only if σ(b) = b. Then T has semi-uniform elimination of imaginaries.
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Proof Take an equivalence formula θ[x, y] in T . Suppose M is a monster model of T
and an a ∈ M. Get b as in the hypothesis. By Theorem 4.5.5, our hypothesis implies
that θ(M, a) is b-definable. Fix an L-formula ϕ[x, z] such that

M |= ∀x(θ[x, a] ↔ ϕ[x, b]).

Suppose c ∈ M satisfies tpM(c) = tpM(b) and

M |= ∀x(θ[x, a] ↔ ϕ[x, c]).

Then b → c is partial elementary. SinceM is a monster model, there is a σ ∈ Aut(M)

such that σ(b) = c. Hence,

σ(θ(M, a)) = σ(ϕ(M, b)) = ϕ(M, c) = θ(M, a).

Hence, by our hypothesis c = b.

(I) There is a formula ψ[z] ∈ tpM(b) such that

M |= ∀z∀z′((ψ[z] ∧ ψ[z′] ∧ ∀x(θ[x, a] ↔ ϕ[x, z])

∧∀x(θ[x, a] ↔ ϕ[x, z′])) → z = z′).

To see this, assume to the contrary. For each ψ[z] ∈ tpM(b), let �[z, z′] be the
formula

ψ[z] ∧ ψ[z′] ∧ ∀x(θ[x, a] ↔ ϕ[x, z]) ∧ ∀x(θ[x, a] ↔ ϕ[x, z′]) ∧ z 
= z′.

Now consider
p(z, z′) = {�[z, z′] : ψ[z] ∈ tpM(b)}.

By our assumption, p(z, z′) is finitely satisfiable. By saturability of M, p(z, z′) is
realised in M. But this contradicts what we have just proved.

Now consider the formula ϕ′[x, z] = ϕ[x, z] ∧ ψ[z]. So,

M |= ∀z∀z′(∀x(θ[x, a] ↔ ϕ′[x, z]) ∧ ∀x(θ[x, a] ↔ ϕ′[x, z′])) → z = z′).

(II) There exists a finite sequence of L-formulas ϕ0[x, z], . . . ,ϕn[x, z] such that

M |= ∀y ∨n
i=0 ∃=1z∀x(θ[x, y] ↔ ϕi[x, z]).

Assume to the contrary, we are going to derive a contradiction. For each L-formula
ϕ[x, z], let �[y] be the formula

¬∃=1z∀x(θ[x, y] ↔ ϕ[x, z]).
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Set
q(y) = {�[y] : ϕ[x, z] an L − formula}.

By our assumption, q(y) is finitely satisfiable inM. Hence, by saturability ofM, q(y)
is realised in M, say by a. This implies that for a ∈ M, there is no L-formula ϕ[x, z]
such that there is a unique b ∈ M satisfying ∀x(θ[x, a] ↔ ϕ[x, b]). We have arrived
at a contradiction.

Let ϕ0[x, z], . . . ,ϕn[x, z] satisfy our claim. For each 0 ≤ i ≤ n, set

ψi[y] = ∃=1z∀x(θ[x, y] ↔ ϕi[x, z]) ∧ ∧j<i¬∃=1z∀x(θ[x, y] ↔ ϕj[x, z])

and
ξi[x, z] = ∃y(θ[x, y] ∧ ψi[y] ∧ ϕ[x, z]).

Then
M |= ∀y∃=10 ≤ i ≤ n∃=1z∀x(θ[x, z] ↔ ξi[x, z]).

Since every model M of T is elementarily embedded in a monster model of T , it
follows that T has semi-uniform elimination of imaginaries. �

We refer the reader to Sect. B.2 for relevant definitions and results from algebraic
geometry used in proving the following theorem.

Theorem 4.5.9 ACF has uniform elimination of imaginaries.

Proof By Proposition 1.12.5, it is sufficient to show that ACF has semi-uniform
elimination of imaginaries. Let K |= ACF and ϕ[x, y] be an equivalence formula of
K. Take an a ∈ K, X = a/ϕ, the equivalence class of a, and Z its closure. Then Z is
a constructible set.

Let I be a radical ideal such that Z = V(I) and k0 be the smallest subfield such
that I is algebraically defined over k0. Then k0 is finitely generated, generated by a
tuple say b. Let p1, . . . , pm be polynomials with coefficients among b such that

Z = ∩m
i=1{x : pi(x) = 0}.

Thus, Z is definable over b.
Let σ be an automorphism of K. By Theorem B.2.14, σ fixes k0 pointwise

if and only if σ(Z) = Z if and only if σ(b) = b. By Lemma B.2.9, σ(X) = X
implies σ(Z) = Z . Conversely, suppose σ(Z) = Z . and Y = σ(X). So, Y and X have
the same closure Z . But then by Lemma B.2.12, X ∩ Y 
= ∅. Hence, X = σ(X).
So, σ fixes X if and only if σ fixes b pointwise. By Proposition 4.5.8, ACF has
semi-uniform elimination of imaginaries. �

We close this section with a technical result that will be used later.

Lemma 4.5.10 Let M be a κ-saturated structure and |I|, |J| < κ. Suppose {ϕi[x] :
i ∈ I} and {ψj[x] : j ∈ J} are LM-formulas with

http://dx.doi.org/10.1007/978-981-10-5098-5_1
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∪i∈Iϕi(M) = (∪j∈Jψj(M))c.

Then there is a finite I0 ⊂ I such that

∪i∈I0ϕi(M) = ∪i∈Iϕi(M).

Proof Set
A = ∪i∈Iϕi(M) & B = ∪j∈Jψj(M).

By our hypothesis, A = Bc. Now consider

�[x] = {¬ϕi[x] : i ∈ I} ∪ {¬ψj[x] : j ∈ J}.

By our assumption, � is not realised in M. Note that � uses fewer than κ-many
parameters. Since M is κ-saturated, �[x] is not a type in M, i.e. a finite subset of it
is not realised in M. Let I0 ⊂ I and J0 ⊂ J be finite sets such that

{¬ϕi[x] : i ∈ I0} ∪ {¬ψj[x] : j ∈ J0}

is not realised in M. Suppose for a ∈ M, M |= ϕi[a] for some i ∈ I . Then M |=
¬ψj[a] for all j ∈ J0. Hence, M |= ϕi[a] for some i ∈ I0. �

4.6 Type Definable Sets

Let M be an L-structure, A ⊂ M, α an ordinal number and D ⊂ Mα. We call D
invariant over A if for every automorphism f ∈ AutA(M) that fixes A pointwise,
f (a) ∈ D whenever a ∈ D. We say that D is type definable over A if there is a set
p(x) of LA-formulas in variables x = {xβ : β < α} such thatD = p(M), the set of all
realisations of p.

Clearly, Mα and ∅ are type definable over empty set. Let

{Bi = pi(M) ⊂ Mα : pi[x] a set of LA-formulas, i ∈ I}

be a family of type definable sets over A. Then ∩iBi = q(M), where q = ∪ipi. Next
let B = p(M) and C = q(M), where p and q are sets of LA-formulas. It is easy to
check that B ∪ C = r(M), where

r(x) = {ϕ[x] ∨ ψ[x] : ϕ ∈ p,ψ ∈ q}.

Thus, we see that the set of all type definable sets over A is the family of all closed
sets of a topology on Mα.
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Exercise 4.6.1 Let κ be an infinite cardinal, λ < κ,M a κ-saturated L-structure and
E ⊂ Mλ invariant. Set

{pi(x) : i ∈ I} = {tp(a/∅) : a ∈ E}.

Show that E = ∪i∈Ipi(M).

Proposition 4.6.2 Let M be a κ-saturated L-structure, A ⊂ M of cardinality < κ,
α < κ, x = {xγ : γ < α} and y = {yγ : γ < β} variables. If D ⊂ Mα × Mβ is type
definable over A, then E = projMα(D) is type definable over A.

Proof Let p(x, y) be a set of LA-formulas and D = p(M). Without any loss of gen-
erality, we assume that p is closed under finite conjunctions. Consider the following
set of LA-formulas

q(x) = {∃yϕ[x, y] : ϕ ∈ p}.

Clearly projMα(D) ⊂ q(M). Conversely, let a ∈ q(M). Set

r(y) = {ϕ[a, y] : ϕ[x, y] ∈ p}.

Then r(y) is a type over a set of cardinality < κ. Since M is κ-saturated, there is a
b ∈ M that realises r. But then (a, b) ∈ D, implying a ∈ projMα(D). �

Proposition 4.6.3 Let M be a κ-saturated, κ-strongly homogenous L-structure,
A,B ⊂ M of cardinalities less than κ and λ < κ. Suppose D ⊂ Mλ is type defin-
able over B and invariant over A. Then D is type definable over A.

Proof EnumerateA = a = {aγ : γ < α} andB = b = {bγ : γ < β}. In what follows
x = {xγ : γ < λ} and y = {yγ : γ < β} are variables.

Let p(x, y) be a set of L-formulas such that D = p(M, b). We first see that if
tp(c/A) = tp(b/A), then D = p(M, c): There exists a f ∈ AutA(M) such that f (b) =
c. Since D is invariant over A, d ∈ D if and only if f (d) ∈ D. Now note that

d ∈ D = p(M, b) ⇔ f (d) ∈ p(M, c).

Consider

q(x) = {∃y(ϕ[y] ∧ ψ[x, y]) : ϕ[y] ∈ tp(b/a) and ψ[x, y] ∈ p(x, y)}.

Clearly, D ⊂ q(M). Conversely, let c ∈ q(M). Consider

r(y) = {ϕ[y] ∧ ψ[c, y] : ϕ[y] ∈ tp(b/a) and ψ[x, y] ∈ p(x, y)}.

Then r(y) is a type inM over a cwhich is of cardinality< κ. SinceM is κ-saturated,
there is a d that realises r(y). But then tp(d/a) = tp(b/a) and c |= p(x, d). By the
above observation, it follows that c ∈ D. �
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4.7 ℵ0-Categorical Theories

In this section, we give several characterizations of countable, ℵ0-categorical theo-
ries.

Proposition 4.7.1 If T is a countable, ℵ0-categorical theory with an infinite model,
then T is complete.

Proof If possible, suppose there exists a sentence ϕ which is undecidable in T .
Then by downward Löwenheim–Skolem theorem, there exist infinite, countable
M,N |= T such thatM |= ϕ andN |= ¬ϕ. But thenM andN can’t be isomorphic,
a contradiction. �

Theorem 4.7.2 (Engeler [12], Ryll-Nardzewski [53] and Svenonius [60]) Let T be
a countable complete theory. The following statements are equivalent.

1. T is ℵ0-categorical.
2. For every n ≥ 1, every type p ∈ Sn(T) is isolated.
3. For every n ≥ 1, Sn(T) is finite.
4. For every n ≥ 1, there exist finitely many L-formulas, ϕ0[x], . . . , ϕk[x], where

x = (x0, . . . , xn−1), such that for every L-formula ψ[x],

T |= ∀x(ψ[x] ↔ ϕi[x])

for some 0 ≤ i ≤ k.
5. Every model M of T is atomic.
6. Every countable model M of T is atomic.

Proof (1) implies (2): Let there exist a p ∈ Sn(T) which is not isolated. Since T is
countable, there exists a countable M |= T that realises p and a countable N |=
T that omits p. But then M and N are two countable models of T which are not
isomorphic.

(2) implies (3): This is so because Sn(T) is compact.
(3) implies (4): Let p1, . . . , pk be all complete n-types in T . Since Sn(T) is Haus-

dorff, each pi is isolated, say by θi, 1 ≤ i ≤ k. It is easily checked that for any
L-formula ψ[x],

T |= ∀x(ψ[x] ↔ ∨ψ∈pjθj[x]).

The proof is easily seen now.
(4) implies (5): Let M |= T and a ∈ Mn. Set

θ[x] = ∧M |=ϕi[a]ϕi[x] ∧ ∧M 
 |=ϕi[a]¬ϕi[x].

We claim that θ isolates tpM(a). Take any L-formula ψ[x].
Let T |= ∀x(θ[x] → ψ[x]). Since θ[x] ∈ tpM(a), ψ[x] ∈ tpM(a).
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Conversely, assume that ψ[x] ∈ tpM(a) and b be any element in M such that
M |= θ[b]. Then tpM(b) = tpM(a). Hence, ψ[x] ∈ tpM(b). Thus,

ψ ∈ tpM(a) ⇔ M |= ∀x(θ[x] → ψ[x]).

(6) implies (1): Let M |= T be countable. So, M is a countable atomic model of
T . Therefore, by Theorem 4.2.4, it is prime. Thus, every countable model of T is
prime. By Theorem 4.2.6, any two prime models of a countable complete theory are
isomorphic. Thus, T is ℵ0-categorical. �

Corollary 4.7.3 Let T be a countable, ℵ0-categorical theory, M |= T and A ⊂ M
finite. Then acl(A) is finite. In particular, finitely generated substructures of models
of T are finite.

Proof Let A = {a0, . . . , an−1}. Let ϕ1[x0, . . . , xn], . . . , ϕk[x0, . . . , xn] be a finite set
of L-formulas such that any L-formula ψ[x0, . . . , xn] is equivalent in T to some ϕi.
Let

I = {i : ϕi(a0, . . . , an−1,M) is finite}.

Then
|acl(A)| ≤

∑

i∈I
|ϕi(a0, . . . , an−1,M)| < ∞. �

Theorem 4.7.4 Let T be a countable complete theory. Then the following statements
are equivalent.

(a) T is ℵ0-categorical.
(b) Every model M of T is ω-saturated.
(c) Every countable M |= T is saturated.

Proof (a) implies (b): Let A = {a0, . . . , an−1} ⊂ M. Since T is countable and ℵ0-
categorical, by Theorem 4.7.2, there exist only finitely many L-formulas ϕ1[x0, . . . ,
xn], . . . , ϕk[x0, . . . , xn] modulo equivalence in T . Hence, there exist at most k many
LA-formulasψ[xn]modulo equivalence inM. This implies that SM1 (A) is finite. Hence,
each p[xn] ∈ SM1 (A) is isolated, say by ϕp[xn]. Any element inM that realises ϕp[xn]
realises p[xn].

(c) implies (a): This follows from Theorem 4.5.1. �

Exercise 4.7.5 IfM is a κ-saturated L-structure, show that |M| ≥ κ.

Exercise 4.7.6 Let κ ≥ ℵ0,M, N L-structures with N κ-saturated and A ⊂ M with
|A| < κ. Then for every B ⊂ M of cardinality < κ, every partial elementary map
f : A → N has a partial elementary extension g : A ∪ B → N .

Exercise 4.7.7 Let T be a theory with a constant symbol. Then T has quantifier
elimination if and only if wheneverM,N |= T , N |M|+-saturated, A a substructure
of M and f : A → N an embedding, f admits an elementary extension g : M → N
of f .
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Exercise 4.7.8 Let T be the theory of discrete linear orders with no first no last
elements. Show that ifM and N are ℵ0-saturated models of T , then I(M,N) is non-
empty and has the back and forth property. Conclude that T is a complete theory
which is not model complete.

Exercise 4.7.9 Let T be a ℵ0-categorical theory and M |= T . Show that for every
n ≥ 1 there is a m ≥ 1 such that whenever A ⊂ M is of cardinality n, acl(A) is of
cardinality at most m.

Exercise 4.7.10 Call an L-structure M locally finite if for every finite A ⊂ M, the
substructure of M generated by A is finite. Show that the models of ℵ0-categorical
theories are locally finite.

4.8 Stable Theories

For an infinite cardinal κ, we call T κ-stable if for all M |= T , for all A ⊂ M
of cardinality ≤ κ, |SM1 (A)| ≤ κ. Note that for a 
= b in A, tpM(a/A) 
= tpM(b/A).
Hence, if |A| = κ, |SM1 (A)| ≥ κ. So, T is κ-stable if and only if for allM |= T , for all
A ⊂ M of cardinality κ, |SM1 (A)| = κ. If κ = ℵ0, κ-stable theories are traditionally
called ω-stable. A theory T is called stable if it is κ-stable for some κ ≥ ℵ0. The
concept of stable theory was introduced by Morley in [43].

Proposition 4.8.1 Let κ ≥ ℵ0 and T κ-stable. Then for every n ≥ 1, for every M |=
T and for every A ⊂ M of cardinality κ, |Sn(M/A)| = κ.

Proof We prove the result by induction on n. Assume the hypothesis for n − 1. Take
aM |= T and A ⊂ M of cardinality κ. Get an elementary extensionN ofM in which
each p ∈ S1(M/A) is realised. We have

S1(N/A) = {tpN (a/A) : a ∈ N}.

Hence, |{tpN (a/A) : a ∈ N}| = κ.
Consider the map π : Sn(N/A) → S1(N/A) defined by π(p(x0, . . . , xn−1)) =

{ϕ[xn−1] : ϕ[xn−1] ∈ p}. By Lemma 3.3.4, |tpN (a/A)| = |Sn−1(N/Aa)|. By induc-
tion hypothesis, |Sn−1(N/Aa)| = κ. It follows that |Sn(N/A)| = κ. �

Example 4.8.2 Consider DLO. In Example 3.4.17 we saw that |S1(Q/Q)| = 2ℵ0 .
Hence, DLO is not ω-stable.

Example 4.8.3 Now consider RCF and RCOF and R with usual interpretations. In
Example 3.4.15, we showed that viewingR as amodel ofRCOF, |S1(R)| ≥ c. Hence,
RCOF is not ω-stable. Since < is definable in the field R, it follows that RCF is not
ω-stable.

http://dx.doi.org/10.1007/978-981-10-5098-5_3
http://dx.doi.org/10.1007/978-981-10-5098-5_3
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Example 4.8.4 LetF |= ACF,A ⊂ F andA the subfield generated byA. Then |A| ≤
|A| ≤ max{|A|,ℵ0}. In Example 3.4.18 we observed that

|Sn(F/A)| = |Spec(A[X])|.

By Hilbert basis theorem, every ideal in a polynomial ring over a field is finitely
generated. Hence,

|Spec(A[X])| = |A| = max{|A|,ℵ0}.

It follows that ACF is κ-stable for all κ ≥ ℵ0.

Let κ ≥ ℵ0. Suppose there is a model M of T and an A ⊂ M of cardinality κ
such that |Sn(M/A)| > κ. By Theorem 3.7.4, there is a countable A0 ⊂ A such that
|Sn(M/A0)| ≥ 2ℵ0 . This gives us the following important result.

Theorem 4.8.5 If T is ω-stable, then T is κ-stable for all cardinal κ > ℵ0.

By Theorem 3.7.2, if there is a M |= T and A ⊂ M such that isolated types are
not dense in Sn(M/A), then there is a countable A0 ⊂ A such that |Sn(M/A0)| ≥ 2ℵ0 .
This gives us the following result.

Proposition 4.8.6 Let T be ω-stable, M |= T and A ⊂ M. Then isolated types are
dense in Sn(M/A) for all n.

Corollary 4.8.7 If T is a countable complete ω-stable theory, then T has a prime
model.

Proof This follows from the last proposition and Theorem 4.2.8. �

We now show that a countable, complete, ω-stable theory has a saturated model
of cardinality κ for each regular cardinal κ.

Proposition 4.8.8 Let κ be a regular cardinal, T a countable, complete, κ-stable
theory and M |= T of cardinality κ. Then M has an elementary saturated extension
N of cardinality κ.

Proof In the proof of Theorem 4.4.2, take Nα, α < κ, of cardinality κ. �

Corollary 4.8.9 Let T be a countable,ω-stable complete theorywith infinitemodels.
Then for each regular cardinal κ, T has a saturated model of cardinality κ.

Proof Take any regular cardinal κ. Since T has an infinite model, T has a model M
of cardinality κ. Since T is ω-stable, T is κ-stable by Theorem 4.8.5. The result now
follows from the last result. �

Let M be an L-structure. A binary tree of LM-formulas is a system {ϕε[x] : ε ∈
2<ω} of LM-formulas such that for every ε ∈ 2<ω and every δ = 0 or 1,

1. M |= ϕε,δ[x] → ϕε[x],

http://dx.doi.org/10.1007/978-981-10-5098-5_3
http://dx.doi.org/10.1007/978-981-10-5098-5_3
http://dx.doi.org/10.1007/978-981-10-5098-5_3
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2. M |= ϕε,δ[x] → ¬ϕε,1−δ[x], and
3. M |= ∃xϕε[x].

For such a system, the set A0 of all parameters of ϕε, ε ∈ 2<ω is countable and
|Sn(M/A0)| ≥ c.

A theory T is called totally transcendental if no model M of T has a binary tree
of LM-formulas. We now have the following result.

Theorem 4.8.10 If T is ω-stable, T is totally transcendental.

With essentially the same argument, we have the next two consequence of ω-
stability.

Theorem 4.8.11 If T is ω-stable and M |= T infinite, then there is an LM-formula
ϕ[x] minimal in M.

Proof Suppose there is no LM-formula minimal in M. We then show that there is a
binary tree of LM-formulas.

Letϕ∅[x] be the formula x = x. Suppose for some ε ∈ 2<ω ,ϕε[x] has been defined.
Since ϕε[x] is not minimal in M and ϕε(M) is infinite, there is an LM-formula ψ[x]
such that both ϕε(M) ∩ ψ(M) and ϕε(M) ∩ ψ(M)c are infinite. Take

ϕε,0[x] = ϕε[x] ∧ ψ[x] and ϕε,1[x] = ϕε ∧ ¬ψ[x].

Our result follows from the last theorem. �

Proposition 4.8.12 Let T be ω-stable and M |= T uncountable. Then there is an
LM-formula ϕ[x] such that ϕ(M) is uncountable and for every LM-formula ψ[x]
exactly one of (ϕ ∧ ψ)(M), (ϕ ∧ ¬ψ)(M) is uncountable.

Proof First note that for every LM-formula ϕ[x] such that ϕ(M) is uncountable and
for everyLM-formulaψ[x], at least one of (ϕ ∧ ψ)(M), (ϕ ∧ ¬ψ)(M) is uncountable.

If possible, suppose a formulaϕ satisfying the claim of the Lemma does not exist.
To complete the proof, we show that there is a binary tree of LM-formulas.

Take ϕ∅[x] to be the formula x = x. Since M is uncountable, ϕ∅(M) is uncount-
able. Suppose for a σ ∈ 2<ω , a LM formula ϕσ[x] have been defined so that ϕσ(M)

is uncountable. Then by our assumption, there is an LM-formula ψ[x] such that both
of (ϕσ ∧ ψ)(M), (ϕσ ∧ ¬ψ)(M) are uncountable. Set

ϕσ0 = ϕσ ∧ ψ & ϕσ1 = ϕσ ∧ ¬ψ.

The proof is complete now. �

Next we show that models M of a ω-stable theory admit prime model extension
of every A ⊂ M.

Theorem 4.8.13 Let T be ω-stable, M |= T and A ⊂ M. Then there is an elemen-
tary substructure N of M which is a prime model extension of A. Further, for every
a ∈ N, tpN (a/A) is isolated.
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Proof For ordinals α, we define Aα ⊂ M satisfying

(a) A0 = A.
(b) α < β ⇒ Aα ⊂ Aβ .
(c) If α is limit, then Aα = ∪β<αAβ .
(d) If Aα is such that there is an isolated complete 1-type p over Aα realised in

M \ Aα, then Aα+1 = Aα ∪ {aα}, where aα ∈ M \ Aα realises one such p.

Let δ be the first ordinal α such that Aα cannot be further enlarged by (d). Set
N = Aδ .

We first show that N is closed under each f M , f a function symbol. Take a ∈ N =
Aδ . Let a = f M(a). Since T is ω-stable, by Proposition 4.8.6, there is an isolated type
p ∈ SM1 (Aδ) containing the formula x = f (a). Let ψ[x] be an LN -formula isolating p.
Then a is the only element that realises p. Hence, a ∈ Aδ . We treatN as a substructure
of M canonically.

To show that N is an elementary substructure of M, take an LN -formula ϕ[x]
such that for some a ∈ M, M |= ϕ[a]. Since T is ω-stable and [ϕ] 
= ∅, there is an
isolated type p containing ϕ by Proposition 4.8.6. Let ψ[x] isolate p and b ∈ M be
such that M |= ψ[b]. This shows that p is realised in M. Hence, p is realised in N ,
say by c. Then N |= ϕ[c].

We now show thatN is a prime model extension of A. So fixN ′ |= T and a partial
elementary map f : A → N ′. We need to get an elementary extension g : N → N ′
of f . Set f0 = f . Inductively, for each α ≤ δ, we define a partial elementary map
fα : Aα → N ′ such that fα extends fβ whenever β < α and for limit α, fα = ∪β<αfβ .

Let α < δ and fα have been defined. We know that tpN (aα/Aα) is isolated.
Let ψ[x, a], a ∈ Aα, isolate tpN (aα/Aα). In particular, N |= ∃xψ[x, a]. Hence,
N ′ |= ∃xψ[x, fα(a)]. Choose a b ∈ N ′ such that N ′ |= ψ[b, fα(a)]. It also follows
that ψ[x, fα(a)] isolates tpN

′
(b/fα(Aα)). This implies that fα+1 = fα ∪ {(aα, b)} :

Aα+1 → N ′ is partial elementary. Now take g = fδ .
Finally we show that for every a ∈ N , tpN (a/A) is isolated. By induction on α,

we show that for every a ∈ Aα, tpN (a/A) is isolated. We only need to show that if
the hypothesis is true for α, it is true for α + 1 also. Take (aα, . . . , aα, b) ∈ Aα+1,
with b ∈ Aα. By induction hypothesis, tpN (b/A) is isolated and by the construction
tpN (aα/Aα) is isolated. Hence, by Proposition 3.4.6, tpN (aα, b/A) is isolated. This
proves our claim when the sequence (aα, . . . , aα) is of length 1.

Now take (aα, . . . , aα) of length n − 1 ≥ 1. Consider the formula

θ1[x1, . . . , xn] = ∧n−1
i=1 (xi = xn).

Then θ1[x1, . . . , xn−1, aα] isolates p = tpN (aα, . . . , aα/Aα+1). Let θ2[xn, y] be an
LA-formula isolating tpN (aα, b/A).

Now take a ϕ[x1, . . . , xn−1, xn, y] ∈ tpN (aα, . . . , aα, aα, b/A). Then

ϕ[x1, . . . , xn−1, aα, b] ∈ tpN (aα, . . . , aα/Aα+1).

http://dx.doi.org/10.1007/978-981-10-5098-5_3
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Hence,

N |= ∀x1 . . . ∀xn−1(θ1[x1, . . . , xn−1, aα] → ϕ[x1, . . . , xn−1, aα, b]).

i.e. the formula

∀x1 . . . ∀xn−1(θ1[x1, . . . , xn] → ϕ[x1, . . . . . . , xn, y]) ∈ tpN (aα, b/A).

Therefore,

N |= ∀x1 . . . ∀xn∀y((θ2[xn, y] ∧ θ1[x1, . . . , xn]) → ϕ[x1, . . . , xn, y]).

Then the LA-formula θ2[xn, y] ∧ θ1[x1, . . . , xn] isolates tpN (aα, . . . , aα, aα, b/A).
�

As a consequence, we have the following useful theorem.

Theorem 4.8.14 Let T beω-stable andM |= T uncountable. Then there is a proper
elementary extension N of M such that every countable type q(x) over M realised in
N is also realised in M.

Proof Choose and fix an LM formula ϕ[x] as in the Proposition 4.8.12. Let

p[x] = {ψ[x] : ψ an LM − formula & ϕ[M] ∩ ψ[M] uncountable}.

If ψ1, . . . ,ψn ∈ p[x], then each of ϕ[M] ∩ ¬ψ1[M], . . . ,ϕ[M] ∩ ¬ψn[M] is count-
able. Hence, ϕ[M] ∩ (∧n

i=1ψi)[M] is uncountable. This shows that p[x] is a 1-type
overM. Further, for everyLM formulaψ[x], eitherψ or¬ψ is inp. Hence, p ∈ SM1 (M).

If possible, suppose there is a c ∈ M realising p[x]. Since x 
= c is an LM-formula
in p[x], we contradict that c realises p[x]. Let M ′ be an elementary extension of M
in which p[x] is realised, say by c. Then c /∈ M.

By the last theorem, there is an elementary substructure N ofM ′ which is a prime
model extension ofM ∪ {c}. Further, for every b ∈ N , tpN (b/M ∪ {c}) is isolated. In
particular, N is a proper elementary extension ofM.

Let q(x) be a countable type overM realised in N , say by b. Let θ[x, x] be an LM
formula such that θ[x, c] isolates tpN (b/M ∪ {c}). Since ∃xθ[x, x] is an LM formula
realised by c, it belongs to p. Further, q[x] ⊂ tpN (b/M ∪ {c}). So, for everyψ[x] ∈ q,
∀x(θ[x, x] → ψ[x]) is realised by c and hence belongs to p.
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Thus,
� = {∃xθ[x, x]} ∪ {∀x(θ[x, x] → ψ[x]) : ψ[x] ∈ q}

is a countable subset of p[x]. Enumerate � = {γn[x] : n < ω}. Then for each n < ω,

ϕ(M) \ γn(M)

is countable. Therefore, there is a d ∈ ϕ(M) that realises each of γn[x]. Then any
d ∈ M such that M |= θ[d, d] realises q. �

4.9 Morley Rank

We now proceed to systematically introduce key notions of Morley rank and Morley
degree introduced by Morley in [43] to prove his famous categoricity theorem. Mor-
ley’s categoricity theorem will be proved in the next chapter. We shall not present
Morley’s original proof. We shall present a much simpler proof due to Baldwin and
Lachlan that appeared in [5]. Morley rank can be viewed as the generalisation of the
notion of dimension to theories more general than minimal theories.

Let M be an L-structure. By induction on ordinals α, for every LM-formula ϕ[x]
we define ‘MRM(ϕ) ≥ α’ as follows:

1. MRM(ϕ) ≥ 0 if ϕ[M] 
= ∅.
2. If α is limit,MRM(ϕ) ≥ α if for all β < α, MRM(ϕ) ≥ β.
3. MRM(ϕ) ≥ α + 1 if there exist LM- formulasψ1[x],ψ2[x], . . . such that for each

n,MRM(ψn) ≥ α and ψ1(M),ψ2(M), . . . are pairwise disjoint subsets of ϕ(M).

IfMRM(ϕ) ≥ α for every ordinalα, wewriteMRM(ϕ) = ∞, and ifϕ(M) = ∅, we
putMRM(ϕ) = −∞. For an ordinalα,MRM(ϕ) = α ifMRM(ϕ) ≥ α butMRM(ϕ) �

α + 1. We say that an LM-formula ϕ hasMorley rank inM ifMRM(ϕ) = α for some
ordinal α. We shall writeMRM(ϕ) < ∞ if ϕ has Morley rank inM or if ϕ(M) = ∅.

Here are some simple observations.

Remark 4.9.1 MRM(ϕ) ≥ 1 if and only if ϕ(M) is infinite. Consequently,
MRM(ϕ) = 0 if and only if ϕ(M) is a non-empty finite set and MRM(ϕ) = 1 if
ϕ is minimal in M.

Remark 4.9.2 IfMRM(ϕ) ≥ α and β < α, then there is an LM-formulaψ[x] ofMor-
ley rank β such that ψ(M) ⊂ ϕ(M). This is easily seen by induction on α.

Remark 4.9.3 Letϕ[x] andψ[x] be LM-formulas andM |= ∀x(ϕ[x] → ψ[x]). Then
MRM(ϕ) ≤ MRM(ψ). So, if ϕ(M) = ψ(M), MRM(ϕ) = MRM(ψ).
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Remark 4.9.4 Let ϕ[x] be an LM-formula and ψ[x, y] = ϕ[x]. Then MRM(ψ) ≥
MRM(ϕ). By induction on ordinals α, it is easy to see that MRM(ϕ) ≥ α ⇒
MRM(ψ) ≥ α. Note that MRM(ψ) may be strictly larger than MRM(ϕ). To see this,
letM be infinite and MRM(ϕ) = 0. Then MRM(ψ) ≥ 1.

Remark 4.9.5 Let ϕ[x] and ψ[x] be LM-formulas. Then

MRM(ϕ ∨ ψ) = max{MRM(ϕ),MRM(ψ)}.

By Remark 4.9.3, MRM(ϕ ∨ ψ) ≥ max{MRM(ϕ),MRM(ψ)}.
By induction on ordinals α, we now show that

MRM(ϕ ∨ ψ) ≥ α ⇒ max{MRM(ϕ),MRM(ψ)} ≥ α. (∗)

Since (ϕ ∨ ψ)(M) = ϕ(M) ∪ ψ(M), this is true for α = 0.
Let λ be limit, (∗) hold for all α < λ and MRM(ϕ ∨ ψ) ≥ λ. Then MRM(ϕ ∨

ψ) ≥ α for all α < λ. By induction hypothesis, for every α < λ, max{MRM(ϕ),

MRM(ψ)} ≥ α so that either MRM(ϕ) ≥ α or MRM(ψ) ≥ α. Hence, at least one
of ϕ, ψ is of Morley rank ≥ α for an unbounded in λ set of α < λ. Thus
max{MRM(ϕ),MRM(ψ)} ≥ λ.

Now let (∗) hold for all ordinals≤ α andMRM(ϕ ∨ ψ) ≥ α + 1. Get LM-formulas
ψ1,ψ2, . . . of Morley rank ≥ α such that ψ1(M),ψ2(M), . . . are pairwise dis-
joint subsets ofϕ(M) ∪ ψ(M). ThenMRM(ψn) = MRM((ϕ ∧ ψn) ∨ (ψ ∧ ψn)) ≥ α.
Therefore, either for infinitely many n, MRM(ϕ ∩ ψn) ≥ α or for infinitely many n,
MRM(ψ ∩ ψn) ≥ α. So, at least one of MRM(ϕ) or MRM(ψ) ≥ α + 1.

Remark 4.9.6 Letψ[x, y] be an LM-formula andϕ[x] = ∃yψ[x, y]. ThenMRM(ψ) ≥
MRM(ϕ). We prove by induction on ordinals α thatMRM(ϕ) ≥ α ⇒ MRM(ψ) ≥ α.
This will establish our contention. This is clear forα = 0 and for limit ordinalsα. So,
assume the hypothesis forα. SupposeMRM(ϕ) ≥ α + 1. In particular,MRM(ϕ) ≥ α.
Hence, by induction hypothesis,MRM(ψ) ≥ α. SinceMRM(ϕ) ≥ α + 1, there exist
LM-formulas ϕ1[x],ϕ2[x], . . ., each of rank ≥ α, such that ϕ1(M),ϕ2(M), . . . are
pairwise disjoint, non-empty subsets of ϕ(M). Let ψi[x, y] = ϕi[x], i = 1, 2, . . .. By
Remark 4.9.4, each of ψ1,ψ2, . . . is of rank ≥ α. Hence, by induction hypothesis,
MRM(ψ ∧ ψi) ≥ α. But ψ1(M) ∩ ψ(M),ψ2(M) ∩
ψ(M), . . . are pairwise disjoint subsets of ψ(M). Thus, MRM(ψ) ≥ α + 1.

Remark 4.9.7 Let MRM(ϕ) = ∞. Note that there exists an ordinal α such that the
Morley rank of every formula having an ordinal Morley rank is of Morley rank < α.
So, there exist formulas ϕ0, ϕ1, each of Morley rank ∞, such that ϕ0(M), ϕ1(M)

partition ϕ(M).

Theorem 4.9.8 Let M be a ℵ0-homogeneous structure and a, b ∈ M be such that
tpM(a) = tpM(b). Then for every L-formulas ϕ[x, y],

MRM(ϕ[x, a]) = MRM(ϕ[x, b]).
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Proof By induction on ordinals α, we show that for every L-formula ϕ[x, y],
MRM(ϕ[x, a]) ≥ α ⇒ MRM(ϕ[x, b]) ≥ α. (∗)

The result will then follow from symmetry.
Since tpM(a) = tpM(b),

M |= ∃xϕ[x, a] ⇔ M |= ∃xϕ[x, b].

Hence, (∗) holds for α = 0.
Suppose λ is a limit ordinal and (∗) holds for all α < λ, then

MRM(ϕ[x, a]) ≥ λ ⇔ ∀α < λ(MRM(ϕ[x, a]) ≥ α)

⇔ ∀α < λ(MRM(ϕ[x, b]) ≥ α)

⇔ MRM(ϕ[x, b]) ≥ λ

Now assume that (∗) holds for all β ≤ α and ϕ[x, y] is an L-formula. Assume
that MRM(ϕ[x, a]) ≥ α + 1. Get L-formulas ψ1[x, y1],ψ2[x, y2], . . . and a1, a2, . . .
inM such for each n,MRM(ψn[x, an]) ≥ α and
ψ′
1(M),ψ′

2(M), . . . are pairwise disjoint subsets of ϕ(M), where ψ′
n[x] = ψn[x, an].

Since tpM(a)=tpM(b), a → b is partial elementary. SinceM is ℵ0-homogeneous,
inductively we define b1, b2, . . . such that for each n,

(a, a1, . . . , an) → (b, b1, . . . , bn)

is partial elementary. In particular, for each n,

tpM(a, a1, . . . , an) = tpM(b, b1, . . . , bn).

Since tpM(an) = tpM(bn) andMRM(ψn[x, an]) ≥ α, by inductionhypothesis,MRM(ψn[x, bn]) ≥
α.

Since tpM(a, an) = tpM(b, bn) and

M |= ∀x(ψn[x, an] → ϕ[x, a]),

it follows that
M |= ∀x(ψn[x, bn] → ϕ[x, b]).

Let m 
= n. Since tpM(an, am) = tpM(bn, bm) and

M |= ¬∃x(ψn(x, an) ∧ ψm(x, am)),

we have
M |= ¬∃x(ψn(x, bn) ∧ ψm(x, bm)).

It follows that MRM(ϕ[x, b]) ≥ α + 1. �
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Theorem 4.9.9 Let M be an ℵ0-saturated L-structure and ϕ an LM-formula. Then
for every ℵ0-saturated elementary extension N of M, MRM(ϕ) = MRN (ϕ).

Proof By induction on ordinalsα, we show that for every LM-formulaϕ,MRM(ϕ) ≥
α if and only ifMRN (ϕ) ≥ α.

Since N is an elementary extension ofM, the argument at α = 0 or limit is clear.
Assume that the assertion holds for all α ≤ λ. Take any LM-formula ϕ such

that MRM(ϕ) ≥ λ + 1. Get LM-formulas ψ1,ψ2, . . . such that MRM(ψn) ≥ λ for
each n and ψ1(M),ψ2(M), . . . are pairwise disjoint subsets of ϕ(M). By induction
hypothesis, for each n, MRN (ψn) ≥ λ. Since N is an elementary extension of M,
ψ1(N), ψ2(N), . . . are pairwise disjoint subsets of ϕ(N). Thus, MRN (ϕ) ≥ λ + 1.

Conversely, assume thatMRN (ϕ) ≥ λ + 1. Get LN -formulas ψ1, ψ2, . . . such that
MRN (ψn) ≥ λ for each n and ψ1(N),ψ2(N), . . . are pairwise disjoint subsets of
ϕ(N). Let L-formulas θ[x, y], θ1[x, y1], θ2[x, y2], . . ., a ∈ M and b1, b2, . . . ∈ N be
such that ϕ = θ[x, a] and ψn = θn[x, bn], n ≥ 1. Using ℵ0-saturatedness and hence
ℵ0-homogeneity of M, inductively we now pick a1, a2, . . . inM such that for all k,

tpM(a, a1, . . . , ak) = tpN (a, b1, . . . , bk).

We take a1 that realises tpN (b1/a) in M. Suppose a1, . . . , an have been defined.
Get a′

1, . . . , a
′
n+1 that realises tp

N (b1, . . . , bn+1/a) inM. Then

tpM(a, a′
1, . . . , a

′
n) = tpN (a, b1, . . . , bn) = tpM(a, a1, . . . , an).

Therefore, by ℵ0-homogeneity of M, there exists an+1 such that

tpM(a, a1, . . . , an+1) = tpM(a, a′
1, . . . , a

′
n+1) = tpN (a, b1, . . . , bn+1).

Since N is an elementary extension ofM,

tpN (bn) = tpM(an) = tpN (an).

Hence, by the last theorem,

MRN (θn[x, an]) = MRN (θn[x, bn]) ≥ λ.

Therefore, by induction hypothesis, MRM(θn[x, an]) ≥ λ. Since

tpM(a, a1, . . . , ak) = tpN (a, b1, . . . , bk),

θ1[M, a1], θ2[M, a2], . . . are pairwise disjoint subsets of ϕ(M). Thus, MRM(ϕ) ≥
λ + 1. �

Proposition 4.9.10 Let M0, M1 be ℵ0-saturated elementary extensions of an L-
structure M and ϕ an LM-formula. Then MRM0(ϕ) = MRM1(ϕ).
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Proof By Proposition 2.8.1 and Theorem 4.4.2, there is a common elementary ℵ0-
saturated extension N of M0 and M1. Hence, by the last theorem,

MRM0(ϕ) = MRN (ϕ) = MRM1(ϕ). �

All these suggest that we can define rank of a formula independent of the structure
fromwhere the parameters come. Fix a first-order theory T . Given a problem at hand,
there is a sufficiently large cardinal κ such that every model M of interest will be
of cardinality ≤ κ. From now onwards, we assume that all models of interest are
elementary substructures of a monster model M which is κ+-saturated and κ+-
strongly homogeneous. We fix such a monster model M. All ϕ will be LM-formulas.
A sentence ϕ is true will mean that it is true in M. By sets, we shall mean subsets of
Mn, n ≥ 1. Finally, we define

MR(ϕ) = MRM(ϕ).

Let X ⊂ Mn be a definable set, defined by say ϕ[x]. We define

MR(X) = MR(ϕ).

We have

1. MR(X) is well defined.
2. If X ⊂ Y , then MR(X) ≤ MR(Y).
3. MR(X) = 0 if and only if X is a finite non-empty set.
4. If X is minimal, then MR(X) = 1.
5. MR(X ∪ Y) = max{MR(X),MR(Y)}.
6. For a limit ordinal α, MR(X) ≥ α if and only if for every β < α, MR(X) ≥ β.
7. MR(X) ≥ α + 1 if and only if there exist pairwise disjoint definable subsets

Y1,Y2, . . . of X each of rank ≥ α.
8. IfMR(X) ≥ α, then for every β < α, X has a definable subset Y of rank β.

4.10 Morley Degree

Let α be an ordinal. Call two definable subsets X,Y ⊂ Mn α-equivalent if
MR(X�Y) < α. This defines an equivalence relation on definable subsets of Mn.
Call a definable set X α-strongly minimal ifMR(X) = α and for every definable sub-
set Y of X, either Y is of rank < α or X \ Y is of rank < α. Thus, 0-strongly minimal
sets are precisely singletons and 1-strongly minimal sets are precisely minimal sets.

http://dx.doi.org/10.1007/978-981-10-5098-5_2
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Call a formulaϕα-stronglyminimal ifϕ(M) isα-stronglyminimal. Two formulas
ϕ, ψ will be called α-equivalent if ϕ(M) and ψ(M) are α-equivalent. We shall call
an LA-formula ϕ α-strongly minimal over A ifMR(ϕ) = α and for every LA-formula
ψ,MR(ϕ ∧ ψ) < α or MR(ϕ ∧ ¬ψ) < α.

Theorem 4.10.1 Every definable subset X of rank α < ∞ is a pairwise disjoint
union of α-strongly minimal sets X1, . . . ,Xd. The decomposition is unique modulo
α-equivalence.

Proof Set X0 = X. Suppose the assertion is not true. In particular, X0 is not α-
strongly minimal. So, X0 is a disjoint union of definable sets X1,Y1 each of rank α.
At least one of these does not admit the above decomposition. Without any loss of
generality, assume that Y1 is not a finite disjoint union of α-strongly minimal sets.
Now expressY1 as a disjoint union of definable setsX2,Y2 of rankα such thatY2 is not
a finite disjoint union of α-strongly minimal sets. Proceeding inductively, we define
definable subsets X1,X2, . . ., Y1,Y2, . . . of X of rank α such that Yn−1 is a disjoint
union of Xn and Yn. But then X1,X2, . . . are pairwise disjoints definable subsets of X
of rank α. Hence, MR(X) ≥ α + 1, a contradiction.

For uniqueness, let X be a disjoint union of α-strongly minimal sets Y1, . . . ,Ye.
We have Y1 = ∪i(Y1 ∩ Xi). As Y1 is α-strongly minimal, there is a unique 1 ≤ i ≤ d
such that MR(Y1 ∩ Xi) = α. Using the fact that Y1 and Xi are α-strongly minimal,
it is easy to see that MR(Y1�Xi) < α. Same arguments will also show that 1 is the
unique 1 ≤ j ≤ e such that MR(Yj ∩ Xi) = α. By rearranging Xis, we can assume
that i = 1. Proceeding thus, we see the uniqueness. �

For a definable set X having a Morley rank, the positive integer d obtained above
is called the Morley degree of X, denoted by MD(X). For a formula ϕ, we define
MD(ϕ) = MD(ϕ(M)). If MR(ϕ) = α and MD(ϕ) = d, then there exist α-strongly
minimal formulas ϕ1, . . . ,ϕd such that ϕ1(M), . . . ,ϕd(M) partitions ϕ(M) and
these ϕ1, . . . ,ϕd are unique modulo α-equivalence. We call ϕ1, . . . ,ϕd components
of ϕ.

Now let ϕ be an LA-formula of Morley rank α < ∞. Then arguing as above,
we can get α-strongly minimal LA-formulas ϕ1, . . . ,ϕk over A such that ϕ(M) is
a disjoint union of ϕ1(M), . . . ,ϕk(M). These ϕ1, . . . ,ϕk are unique (among LA-
formulas) modulo α-equivalence. Note that k ≤ MD(ϕ). We shall call ϕ1, . . . ,ϕk

components of ϕ over A. We call k the Morley degree of ϕ over A.

Example 4.10.2 A formulaϕ is definitional if and only ifMR(ϕ)=0 andMD(ϕ)=1.

Example 4.10.3 If ϕ is an algebraic formula then MR(ϕ)=0 and MD(ϕ)=deg(ϕ).

Example 4.10.4 A-definable setϕ(M) is minimal if and only ifMR(ϕ)=MD(ϕ)=1.

Example 4.10.5 Let ϕ be an LA-formula and ϕ1, . . . ,ϕk its components over A.
Then

MD(ϕ) =
∑

i

MD(ϕi).
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Proposition 4.10.6 For an LM-formula ϕ[x] the following statements are equiva-
lent.

(A) MR(ϕ) = ∞.
(B) There is a binary tree {ϕε[x] : ε ∈ 2<ω} of LM-formulas such that ϕ∅[x] = ϕ[x]
Proof If MR(ϕ) = ∞, then by induction on the length of ε ∈ 2<ω , we can easily
define a binary tree of LM-formulas {ϕε[x] : ε ∈ 2<ω} satisfying (a) withMR(ϕε) =
∞ for every ε.

On the other hand, if (B) holds, then MR(ϕε) = ∞ for all ε. Suppose not.
Then choose an ε such that MR(ϕε) is of minimal rank α and of minimal degree
among ϕε′ of rank α. But then MD(ϕε,0) < MD(ϕε), a contradiction. In particular,
MR(ϕ) = ∞. �

Corollary 4.10.7 Let T be a totally transcendental, countable complete theory with
infinite models and M |= T. Then for every LM-formula ϕ, MR(ϕ) < ∞.

4.11 Rank and Degree of Types

Let p ∈ Sn(A). We define the Morley rank of p by

MR(p) = min{MR(ϕ) : ϕ ∈ p}.

IfMR(p) < ∞, we define the Morley degree of p by

MD(p) = min{MD(ϕ) : ϕ ∈ p ∧ MR(ϕ) = MR(p)}.

Let p ∈ Sn(A) have a Morley rank α < ∞ and Morley degree d. Choose a
ϕ ∈ p such that MR(ϕ) = α and MD(ϕ) = d. Take any LA-formula ψ. Then both
MR(ϕ ∧ ψ) and MR(ϕ ∧ ¬ψ) cannot be of rank α. Because then their degrees
will be < d. Thus, ϕ is α-strongly minimal over A. Now assume that ψ ∈ p is
such that MR(ϕ) = MR(ψ) and MD(ϕ) = MD(ψ). Since MR(ϕ) = max{MR(ϕ ∧
ψ),MR(ϕ ∧ ¬ψ)} exactly one of these equals α. SinceMR(ϕ ∧ ψ) = α, it also fol-
lows thatMR(ϕ ∧ ¬ψ) < α. By the same argument,MR(ψ ∧ ¬ϕ) < α. Thus,ϕ and
ψ are α-equivalent.

Theorem 4.11.1 Let T be a countable, complete theory with infinite models. The
following conditions are equivalent.

1. T is ω-stable.
2. T is totally transcendental theory.
3. Every formula has a Morley rank.

Proof In Theorem 4.8.10, we proved that (1) implies (2). In Corollary 4.10.7, we
showed that (2) implies (3).
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We now show that (3) implies (1). Let T satisfies (3), M |= T and A ⊂ M
countable. By (3), for every p ∈ Sn(M/A), MR(p) < ∞. Choose ϕp ∈ M with
MR(ϕp) = MR(p) and MD(ϕp) least possible. Then, ϕp determines p:

p = {ψ : ψ an LA − formula ∧ MR(ϕp ∧ ¬ψ) < α}.

So, if p 
= q ∈ Sn(A), then ϕp 
= ϕq. Since T and A are countable, this shows that
Sn(M/A) is countable. �

Let α < ∞. For an α-strongly minimal LA-formula ϕ[x] over A, we define

pϕ = {ψ[x] : ψ an LA − formula ∧ MR(ϕ ∧ ¬ψ) < α}.

Note that p = pϕp and for α-strongly minimal ϕ, ϕ = ϕpϕ
.

We shall writeMR(a/A) forMR(tp(a/A)) and MD(a/A) for MD(tp(a/A)).

Proposition 4.11.2 Let ϕ[x] be a consistent LA-formula, |A| < |M|. Then
(a) For every a, MR(a/A) ≥ 0.
(b) MR(a, b/A) ≥ MR(a/A)

(c) MR(ϕ) = max{MR(p) : ϕ ∈ p ∈ Sn(A)}.
(d) If X is a definable set over A, then

MR(X) = max{MR(a/A) : a ∈ X}.

(e) If ϕ has Morley rank, then

MD(ϕ) =
∑

{MD(p) : ϕ ∈ p ∈ Sn(A) ∧ MR(p) = MR(ϕ)}.

(f ) If p ∈ Sn(A) has Morley rank and B ⊃ A, then

MD(p) =
∑

{MD(q) : p ⊂ q ∈ Sn(B) ∧ MR(p) = MR(q)}.

(g) If p ∈ Sn(A) has Morley rank and B ⊃ A, then p has at least one and at most
MD(p) many extensions q ∈ Sn(B) of the the same rank.

Proof (a) Since tp(a/A) is non-empty and every ϕ[x] ∈ tp(a/A) is obviously con-
sistent, (a) is seen trivially.

(b)Letψ[x, y] ∈ tp(a, b/A) andϕ[x] = ∃yψ[x, y]. Thenϕ ∈ tp(a/A) andMR(ψ) ≥
MR(ϕ). (b) follows.

(c) First assume that MR(ϕ) = ∞. Let p be a complete n-type containing

{ψ : ψ an LA − formula ∧ MR(ϕ ∧ ¬ψ) < ∞}.

It is easily seen that p contains ϕ and MR(p) = ∞.
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Let MR(ϕ) = α < ∞ and p a complete n-type over A containing

{ψ[x] : ψ an LA − formula ∧ MR(ϕ ∧ ¬ψ) < α}.

Then ϕ ∈ p and MR(p) = α.
(d) Indeed, (c) and (d) are the same statements because M is saturated.
(e) Assume that MR(ϕ) = α < ∞. Let ϕ1, . . . ,ϕk be the components of ϕ over

A. Then pϕ1 , . . . , pϕk are all the complete n-types over A containing ϕ of Morley
rank α. Further, MD(pϕi) = MD(ϕi), 1 ≤ i ≤ k. Since MD(ϕ) = ∑

i MD(ϕi), (e)
follows.

(f) Assume thatMR(p) = α < ∞. Let ϕ1, . . . ,ϕk be the components of ϕp over
A. For eachϕi, letψi1 , . . . ,ψiji

be the components ofϕi overB and qij = pψij
∈ Sn(B),

1 ≤ j ≤ ji, 1 ≤ i ≤ k. Then qijs are all q ∈ Sn(B) of Morley rankMR(p) that extends
p. Further

MD(p) =
∑

i

MD(ϕi) =
∑

i

∑

j

MD(ψij ) =
∑

i

∑

j

MD(qij).

(g) This is a direct consequence of (f). �

Theorem 4.11.3 Let A ⊂ M be of cardinality less than |M| and b algebraic over
A ∪ {a}. Then MR(a, b/A) = MR(a/A).

Proof By (b) above,MR(a, b/A) ≥ MR(a/A). By induction on ordinals α, we show
that MR(a, b/A) ≥ α ⇒ MR(a/A) ≥ α. For α = 0 or limit, the steps are trivial.

Assume that b is algebraic over A ∪ {a} and MR(a, b/A) ≥ α + 1. By induction
hypothesis, MR(a/A) ≥ α. If possible, suppose MR(a/A) = α. Choose a ϕ[x] ∈
tp(a/A) ofMorley rankα. LetMD(ϕ) = d andϕ1, . . . ,ϕd be theα-stronglyminimal
components of ϕ.

Since b is algebraic over A ∪ {a}, there exists an LA-formula ψ[x, y] and anm ≥ 1
such that

M |= ψ[a, b] ∧ ∃=myψ[a, y].

Set
θ[x, y] = ϕ[x] ∧ ψ[x, y] ∧ ∃=myψ[x, y].

Since θ ∈ tp(a, b/A), MR(θ) ≥ α + 1. So, there exist LM-formulas θ1[x, y],
θ2[x, y], . . ., each of rank ≥ α, such that θ1(M), θ2(M), . . . are pairwise disjoint
subsets of θ(M). Set ξk[x] = ∃yθk[x, y], k ≥ 1.

For every k ≥ 1,MR(ξk) ≥ α: SinceMR(θk[x, y]) ≥ α, there exist c, d such that

M |= θk[c, d] andMR(c, d/A ∪ {bk}) ≥ α, where bk ∈ M are the parameters occur-
ring in θk . So, by induction hypothesis, MR(c/A ∪ {bk}) ≥ α. Clearly, M |= ξk[c].
Hence, MR(ξk) ≥ α.
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Since M |= ξk → ∨d
i=1ϕi, for each k ≥ 1, there is a ik such thatMR(ξk ∧ ϕik ) ≥

α. Note that for infinitely many k, iks are the same. So we can assume that for all k,
MR(ξk ∧ ϕ1) ≥ α.

For every k ≥ 1,MR(ϕ1 ∧ ∧k
i=1ξi) ≥ α: Suppose this is not true and k is the first

integer for which this inequality fails. Then k > 1 and

MR(ϕ1 ∧ ∧k−1
i=1 ξi),MR(ϕ1 ∧ ξk ∧ ¬ ∧k−1

i=1 ξi) ≥ α.

This contradicts that ϕ1 is α-strongly minimal.

We now have MR(∧k
i=1ξi) ≥ α for each k ≥ 1. Since M is saturated, there exists

c ∈ M such that for every k,M |= ξk[c]. For each k get a dk such thatM |= θk[c, dk].
Since θ1(M), θ2(M), . . . are pairwise disjoint, d1, d2, . . . are all distinct. This, in
particular, implies thatM |= ψ[c, dk] for each k. Since M |= ∃=myψ[c, y], we have
a contradiction. �

Theorem 4.11.4 Let T be a strongly minimal theory and A ⊂ M. Then

MR(a1, . . . , an/A) = dim(a1, . . . , an/A).

Proof Recall that by our convention, |A| < |M|. By the last theorem, without loss of
generality, we assume that a1, . . . , an are independent over A and show that

MR(a1, . . . , an/A) = n.

We prove this by induction on n.
Case :n = 1. Let a1 be independent over A. Let ϕ[x] ∈ tp(a1/A). As a1 is inde-

pendent overA,ϕ(M) is infinite. Hence,MR(a1/A) ≥ 1. SinceT is stronglyminimal,
every definable subset of M is either finite or cofinite in M. So, MR(ϕ) = 1. Thus,
MR(a1/A) = 1.

inductive step. Assume that the result is true for all n < m and a1, . . . , am are
algebraically independent over A.

Let M be an elementary substructure of M such that |M| < |M| and M ⊃
A ∪ {a1, . . . , am−1}. As M is algebraically closed in M (Proposition 1.10.2 (vii)),
for every b ∈ M \ M, a1, . . . , am−1, b is independent over A. Take ϕ[x1, . . . , xm] ∈
tp(a1, . . . , am/A). As T is strongly minimal,

{b ∈ M : M |= ϕ[a1, . . . , am−1, b]}

is cofinite. Thus, there exists a sequence b0, b2, . . . such that for each i, a1, . . . ,
am−1, bi are independent over A and M |= ϕ[a1, . . . , am−1, bi].

Set ϕi[x1, . . . , xm] = ϕ[x1, . . . , xm] ∧ xm = bi. Then, by induction hypothesis,
MR(ϕi) ≥ m − 1 and ϕ0(M),ϕ1(M), . . . are pairwise disjoint subsets of ϕ(M).
Thus, MR(a1, . . . , am/A) ≥ m.

http://dx.doi.org/10.1007/978-981-10-5098-5_1
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We now proceed to show that MR(a1, . . . , am/A) ≤ m. Let ϕ[x1, . . . , xm] ∈
tp(a1, . . . , am/A). Let ψ[x1, . . . , xm] be an LM-formula such that ψ(M) ⊂ ϕ(M)

and M |= ¬ψ[a1, . . . , am]. We now show thatMR(ψ) < m. This will complete the
proof.

Take any b1, . . . , bm such that (b1, . . . , bm) ∈ ψ(M). If b1, . . . , bm were alge-
braically independent over A, ai → bi, 1 ≤ i ≤ m, would be partial elementary over
A and then tp(a1, . . . , am/A) = tp(b1, . . . , bm/A). But this is not the case. Thus,

MR(b1, . . . , bm/A) = dim(b1, . . . , bm/A) < m,

whenever M |= ψ[b1, . . . , bm]. So,

MR(ψ) = max{MR(b1, . . . , bm/A) : (b1, . . . , bm) ∈ ψ(M)} < m. �

4.12 Definable Types

A type p[x] ∈ Sn(A) is called definable over B if for every L-formula ϕ[x, y] there is
an LB-formula dpϕ[y] such that

∀a ∈ A(ϕ[x, a] ∈ p ⇔ M |= dpϕ[a]).

Assume that A = M � M and B ⊂ M. Suppose ϕ[x, y] an L-formula and d′
pϕ[y]

another choice. Then
M |= ∀y(dpϕ[y] ↔ d′

pϕ[y]).

Example 4.12.1 Let p ∈ Sn(A) be isolated. Fix an L-formula ψ[x, y] and a ∈ A such
that ψ[x, a] isolates p. For every L-formula ϕ[x, y] take

dp(y) = ∀x(ψ[x, a] → ϕ[x, y])

to witness that p is definable over a.

In this section, we prove that if T is a complete, ω-stable theory, then every type
in Sn(A) is definable over a finite A0 ⊂ A and give some consequences of this result
on definable sets. We prove some preliminary results first.

A formula ϕ[x, y] is said to have the order property if there exist sequences
{am}, {bn} in M such that

∀m∀n(M |= ϕ[am, bn] ⇔ m < n).

Proposition 4.12.2 An ω-stable theory T has no formula with order property.

Proof If possible, suppose a formula ϕ[x, y] has the order property and sequences
{am}, {bn} in M are such that
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∀m∀n(M |= ϕ[am, bn] ⇔ m < n).

For each rational r, add new and distinct constant symbols cr, dr and axioms so that
the interpretations of these in every model are distinct.

Clearly the theory T ∪ {ϕ[cr, ds] : r < s} ∪ {¬ϕ[cr, ds] : r ≥ s} is finitely satis-
fiable. Hence, by compactness theorem, it has a model, sayM. For brevity, we denote
the interpretations of cr, ds in M by cr, ds respectively. Thus,

∀r∀s(M |= ϕ[cr, ds] ⇔ r < s).

For each rational s, we have

(−∞, s) = {r ∈ Q : M |= ϕ[cr, ds]}.

Since T is ω-stable, by Theorem 4.11.1, MR(ϕ[x, ds]) < ∞. Now choose an LM-
formula ψ[x] of minimal Morley rank and minimal Morley degree such that the
set

{r ∈ Q : M |= ψ[cr]}

is an infinite interval. Let r belong to the interior of this set. Consider the formulas

ψ0[x] = ϕ[x, dr] ∧ ψ[x] & ψ1[x] = ¬ϕ[x, dr] ∧ ψ[x].

Then {q ∈ Q : M |= ψi[cq]}, i = 0, 1, are infinite intervals in Q. By the min-
imality of the rank of ψ, it follows that MR(ψ0) = MR(ψ) = MR(ψ1). But then
MD(ψ0) < MD(ψ) and we have arrived at a contradiction. �

Lemma 4.12.3 Let M |= T and ϕ[x] be an LM-formula and ψ[x] an LM-formula.
Suppose MR(ϕ) = MR(ϕ ∧ ψ) = α. Then there is an a ∈ M such thatM |= ϕ[a] ∧
ψ[a].
Proof Since there is an irreducible component ϕ′ of ϕ over M such that MR(ϕ′ ∧
ψ) = MR(ϕ ∧ ψ), without any loss of generality, we assume that MD(ϕ) = 1.

We prove the result by induction on α. Let α = 0. Since MR(ϕ ∧ ψ) = 0, there
exists an a ∈ M such that M |= ϕ[a] ∧ ψ[a]. Since M is an elementary submodel
of M and MR(ϕ) = 0, ∅ 
= ϕ(M) = ϕ(M). Hence, a ∈ M.

Assume that the result is true for all β < α and ϕ,ψ are as in the hypothesis
of the result. Since MD(ϕ) = 1, MR(ϕ ∧ ¬ψ) = β < α. Now we get LM-formulas
ϕ0[x],ϕ1[x], . . . of Morley rank β such that ϕ0(M),ϕ1(M), . . . are pairwise disjoint
subsets of ϕ(M). Since MR(ϕ ∧ ¬ψ) = β, MR(ϕk ∧ ¬ψ) < β for all but finitely
many k. Fix such a k. Then MR(ϕk ∧ ψ) = β. So, by induction hypothesis, there is
an a ∈ M such that M |= ϕk[a] ∧ ψ[a]. This implies that M |= ϕ[a] ∧ ψ[a]. �

The following is the main technical result of this section.
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Theorem 4.12.4 Let T be ω-stable, M |= T ℵ0-saturated of cardinality < |M| and
ϕ[x, y], ψ[x] LM-formulas with MR(ψ) = α. Then the set

X = {a ∈ M : MR(ϕ[x, a] ∧ ψ[x]) = α}

is M-definable. Moreover, if ϕ and ψ are LA-formulas, A ⊂ M, then X is A-definable.

Proof Let ψ1, . . . ,ψd be α-strongly minimal components of ψ over M (or over A
for the last part of the result). Then

X = ∪d
i=1{a ∈ M : MR(ϕ[x, a] ∧ ψi[x]) = α}.

This shows that we need to prove the result under the assumption that the Morley
degree of ψ over M (over A for the last part of the result) is 1.

Claim: For each a ∈ M such that MR(ϕ[x, a] ∧ ψ[x]) = α, there is a finite set
Xa ⊂ ϕ[M, a] ∩ ψ[M] such that for all b,

Xa ⊂ ϕ[M, b] ⇒ MR(ϕ[x, b] ∧ ψ[x]) = α.

Assuming that our claim is false, we show that ϕ has the order property. Since T
is ω-stable, this will contradict Proposition 4.12.2.

Let a ∈ M witness that our claim is false. In particular,MR(ϕ[x, a] ∧ ψ[x]) = α.
Hence, by Lemma 4.5.10, there is an c0 ∈ M such thatM |= ϕ[c0, a] ∧ ψ[c0]. Since
c0 ∈ ϕ[M, a] ∩ ψ[M], by our assumption, there is a b0 such that c0 ∈ ϕ[M, b0] and
MR(ϕ[x, b0] ∧ ψ[x]) < α.

Now assume that c0, b0, . . . , cm, bm have been defined such that for all 0 ≤ i ≤ m,

ci ∈ ϕ[M, a] ∩ ψ(M) & MR(ϕ[x, bi] ∧ ψ[x]) < α.

Since
MR(ϕ[x, a] ∧ ψ[x] ∧ ∧m

i=0¬ϕ[x, bi]) = α,

by Lemma 4.5.10, there exists a

cm+1 ∈ ϕ[M, a] ∩ ψ[M] \ ∪m
i=0ϕ[M, bm].

Since {c0, . . . , cm+1} ⊂ ϕ[M, a] ∩ ψ[M], by our assumption, there is a bm+1 such
that

{c0, . . . , cm+1} ⊂ ϕ[M, bm+1] & MR(ϕ[x, bm+1] ∧ ψ[x]) < α.

For ai = ci+1, i ∈ ω, M |= ϕ[ai, bj] ⇔ i < j. Thus, our claim is proved.
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Now consider

X = {X ⊂ ψ(M) : |X| < ℵ0 ∧ (X ⊂ ϕ(M, a) ⇒ MR(ϕ[x, a] ∧ ψ[x]) = α)}.

For each X ∈ X , set
ϕX [y] = ∧b∈Xϕ[b, y].

By our claim.

MR(ϕ[x, a] ∧ ψ[x]) = α ⇔ ∃X ∈ X (M |= ϕX [a]).

Arguing similarly with ¬ϕ[x, y], we see that ‘MR(¬ϕ[x, a] ∧ ψ[x]) = α’ is
equivalent to finite or infinite disjunction of LM-formulas. Since Morley degree of ψ
is 1,

MR(ϕ[x, a] ∧ ψ[x]) = α ⇔ MR(¬ϕ[x, a] ∧ ψ[x]) 
= α

Hence, by Lemma 4.5.10, ‘MR(ϕ[x, a] ∧ ψ[x]) = α’ is equivalent to disjunction of
finitely many ϕX . This proves the first part of our result.

Now assume that ψ is an LA-formula, A ⊂ M. Take any σ ∈ GA. Since M is
ℵ0-homogeneous, by Theorem 4.9.8,

MR(ϕ[x, a] ∧ ψ[x]) = α ⇔ MR(ϕ[x,σ(a)] ∧ ψ[x]) = α.

So, any automorphism ofM that fixes A pointwise, fixes

{a ∈ M : MR(ϕ[x, a] ∧ ψ[x]) = α}

setwise. Hence, by Theorem 4.5.5, this set is A-definable. �

As a consequence of this theorem, we now have

Theorem 4.12.5 If T is a complete,ω-stable theoryM |= T and A ⊂ M, then every
type in Sn(M/A) is definable over some finite subset A0 of A.

Proof Let p[x] ∈ Sn(A) be of Morley rank α. Fix ψ[x] ∈ p of rank α and of minimal
degree. Let A0 ⊂ A be a finite set such that ψ is an LA0 -formula. For any L-formula
ϕ[x, y] and any a ∈ A,

ϕ[x, a] ∈ p ⇔ MR(ϕ[x, a] ∧ ψ[x]) = α.

The result now follows from the last theorem. �

Corollary 4.12.6 Let T be an ω-stable complete theory, M |= T, A ⊂ M and D ⊂
Mn A-definable. Then every definable X ⊂ Dm is A ∪ D-definable.
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Proof Let ϕ[x, y] be an L-formula and b ∈ M be such that ϕ[x, b] defines X. Then

X = {a ∈ Dm : ϕ[a, y] ∈ tp(b/D)}.

Since tp(b/D) is definable over D by the last theorem, X is definable over
A ∪ D. �

4.13 Forking Independence

Throughout this section, we assume that T is a countable, complete, ω-stable theory.

The main purpose of this section is to generalise the notion of independence to
ω-stable theories. The key notion of forking independence as well as all results of
this section is due to Shelah [54].

Let A ⊂ B, p ∈ Sn(A), q ∈ Sn(B) and p ⊂ q. We say that q is a forking extension
of p (or that q forks over p) ifMR(q) < MR(p). Otherwise, q is called a non-forking
extension of p or we say that q does not fork over p.

In Proposition 4.11.2 (g), we proved the following.

Theorem 4.13.1 Let p ∈ Sn(A) and MR(p) < ∞. Then p has at least one and at
most MD(p) many non-forking extensions over Sn(B) for every B ⊃ A.

We say that a is independent from B over A if MR(a/A ∪ B) = MR(a/A), i.e.
tp(a/A ∪ B) does not fork over tp(a/A), and write

a |�A B.

Remark 4.13.2 If T is strongly minimal, by Theorem 4.11.4,

a |�A B ⇔ dim(a/A ∪ B) = dim(a/A).

Thus, this is a generalisation of the notion of independencewe introduced for strongly
minimal theories. For stable theories, we shall see that forking independence enjoys
several properties of algebraic independence.

Proposition 4.13.3 (Monotonicity) a |�A B ⇒ ∀C ⊂ B(a |�A C).

Proof This follows from

MR(a/A) ≥ MR(a/A ∪ C) ≥ MR(a/A ∪ B).

�
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Proposition 4.13.4 (Finite Basis) a |�A B ⇔ ∀ finite B0 ⊂ B(a |�A B0).

Proof Only if part follows frommonotonicity. Now assume that a 
 |�A B. Then there
exists a ϕ[x] ∈ tp(a/A ∪ B) such thatMR(ϕ) < MR(a/A). Let B0 ⊂ B be a finite set
such that ϕ is an LA∪B0 -formula, then a 
 |�A B0. �

Proposition 4.13.5 (Transitivity) a |�A b, c ⇔ a |�A b ∧ a |�A,b c.

Proof We haveMR(a/A) ≥ MR(a/A, b) ≥ MR(a/A, b, c). The result is easily seen
now. �

Proposition 4.13.6 (Symmetry) a |�A b ⇔ b |�A a.

Proof Assume that a |�A b. Let MR(a/A) = α = MR(a/A, b),MR(b/A) = β.

Case 1. A is a ℵ0-saturated model.

If possible, suppose MR(b/A, a) < β. We shall arrive at a contradiction. Choose
ϕ[x] ∈ tp(a/A) such that MR(ϕ) = α, ψ[y] ∈ tp(b/A) such that MR(ψ) = β and
γ[x, y] ∈ tp(a, b/A) withMR(γ[a, y]) < β.

ByTheorem4.12.4, there is anLA-formula ξ[x]defining {c : MR(ψ[y] ∧ γ[c, y]) 
=
β}. SinceMR(ψ) = β, ξ defines {c : MR(ψ[y] ∧ γ[c, y]) < β}.Note that ξ ∈ tp(a/A).

SinceMR(a/A, b) = α and the formulaϕ[x] ∧ ξ[x] ∧ γ[x, b] ∈ tp(a/A, b),MR(ϕ[x] ∧
ξ[x] ∧ γ[x, b]) = α. Therefore, by Lemma 4.12.3, there is an a′ ∈ A such that

M |= ϕ[a′] ∧ ξ[a′] ∧ γ[a′, b].

In particular, MR(ψ[y] ∧ γ[a′, y]) < β. But ψ[y] ∧ γ[a′, y] ∈ tp(b/A) and
MR(b/A) = β. We have arrived at a contradiction and our result is proved in this
case.

General Case. Let M be a saturated model containing A such that |M| < |M|.

Choose b
′ ∈ M realising a non-forking extension of tp(b/A) toM.

Claim. There is a c ∈ M such that tp(a, b/A) = tp(c, b
′
/A).

To see this, set
q[x] = {ρ[x, b′] : ρ[x, y] ∈ tp(a, b/A)}.

Then q is a type over A, b
′
. Hence, by saturability of M, there is a c ∈ M realising q.

Let a′ ∈ M realise a non-forking extension of tp(c/Ab
′
) toMb

′
.



4.13 Forking Independence 149

Claim. MR(c/Ab
′
) = MR(a/Ab).

To see this, take aλ[x, y] ∈ tp(c, b
′
/A). Thenρ = λ[x, b′] ∈ tp(c/Ab

′
) andλ[x, b] ∈

tp(a/Ab).
Since tp(b/A) = tp(b

′
/A), MR(λ[x, b]) = MR(λ[x, b′]). then

MR(a′/M) ≥ MR(a′/Mb
′
) = MR(c/Ab

′
) = MR(a/Ab) = α.

and
MR(a′/M) ≤ MR(a′/A) = MR(c/A) = MR(a/A) = α.

Thus, a′ |�M b
′
. By case 1, b

′ |�M a′.
Hence, as tp(a, b/A) = tp(a′, b

′
/A), MR(b/Aa) = MR(b

′
/Aa′). So,

β = MR(b/A) ≥ MR(b/Aa) = MR(b
′
/Aa′) ≥ MR(b

′
/Ma′) = β.

Thus, b |� a. �

Proposition 4.13.7 a |�A acl(A).

Proof Take any finite tuple b ∈ acl(A). By Theorem 4.11.3, we have 0 ≤ MR(b/Aa)
≤ MR(b/A) = 0, i.e. b |�A a. Hence, by symmetry, b |�A a. The result now follows
from the finite basis property. �

Proposition 4.13.8 a, b |�A C ⇔ (a |�A C ∧ b |�A,a C).

Proof By finite basis property of forking, without any loss of generality, we assume
that C is a finit tuple c. Now.

a, b |�A c ⇔ c |�A a, b (symmetry)
⇔ c |�A a ∧ c |�A,a b (transitivity)
⇔ a |�A c ∧ b |�A,a c (symmetry)

�



Chapter 5
Morley Categoricity Theorem

Abstract In this chapter, we present the proof of Baldwin and Lachlan of the
Morley categoricity theorem. The proof uses among other things indiscernibles and
Vaughtian pair of models. Morley’s theorem is a very important milestone in model
theory. It heralded the modern era of model theory. The concept of indiscernibles
was introduced by Ehrenfeucht and Mostowski [11].

5.1 Existence of Indiscernibles

Let M be an L-structure, A ⊂ M , λ an ordinal and X = {xi : i ∈ I } ⊂ Mλ. We call
X a set of indiscernibles over A if for every LA-formula ϕ[v1, . . . , vn], v1, . . . , vn

λ-tuples of distinct variables, and n-tuples (xi1 , . . . , xin ), (x j1 , . . . , x jn ) in X ,

M |= ϕ[xi1 , . . . , xin ] ↔ ϕ[x j1 , . . . , x jn ].

If A = ∅ and X is a set of A-indiscernibles, then we simply call X a set of indis-
cernibles. If for some i �= j ∈ I , xi = x j , then all xi ∈ X are the same. Therefore,
a set of A-indiscernibles elements are usually assumed to be distinct.

Next suppose that (I,<) is a linearly ordered set, (xi : i ∈ I ) a sequence in Mλ

and A ⊂ M . We call (xi : i ∈ I ) a set of order indiscernibles over A if for every
L A-formula ϕ[v1, . . . , vn] and i1 < . . . < in , j1 < . . . < jn in I

M |= ϕ[xi1 , . . . , xin ] ↔ ϕ[x j1 , . . . , x jn ].

If A = ∅, we call {xi : i ∈ I } a sequence of order indiscernibles.
Again, if (xi : i ∈ I ) is a set of order indiscernibles and if for some i < j ∈ I ,

xi = x j , then all xi are the same. Hence, we always assume that elements of a set of
order indiscernibles are all distinct.

We shall be proving results mostly for λ = 1. Readers should observe that most
of the results we prove hold for general λ with exactly the same proof.

© Springer Nature Singapore Pte Ltd. 2017
H. Sarbadhikari and S.M. Srivastava, A Course on Basic Model Theory,
DOI 10.1007/978-981-10-5098-5_5
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Here is a surprising result.

Theorem 5.1.1 Let T be a theory with an infinite model. Then, for every linearly
ordered set (I,<), T has a model M with a set of order indiscernibles (xi : i ∈ I ),
xi distinct.

Proof Let M be an infinite model of T . Fix a linear order < on M . Take new
constant symbols {ci : i ∈ I } and let T ′ be the extension of T whose new axioms are
the following sentences:

1. ci �= c j , i �= j .
2. ϕ[ci1 , . . . , cik ] → ϕ[c j1 , . . . , c jk ], ϕ[v1, . . . , vn] an L-formula, i1 < . . . < ik , j1

< . . . < jk .

We show that T ′ is finitely satisfiable. Then, by compactness theorem, T ′ has
model N in which (cNi : i ∈ I ) is a sequence of distinct order indiscernibles.

Let T0 ⊂ T ′ be finite. Let I0 be the set of all i ∈ I such that ci appears in T0 and
ϕ1, . . . ,ϕm be all the L-formulas that appear in T0 under clause (2). Let v1, . . . , vn
be all the variables that have a free occurrence in ϕ1, . . . ,ϕm .

Let [M]n denote the set of all finite subsets of M of cardinality n. We define F :
[M]n → P({1, . . . ,m}) as follows. Let A = {a1, . . . , an} ∈ [M]n with a1 < . . . <

an . Then,
F(A) = { j ≤ m : M |= ϕ j [a1, . . . , an]}.

By Ramsey theorem (Theorem 8.5.2), M has an infinite homogeneous subset X , i.e.
F |[X ]n takes a constant value, say η ⊂ {1, . . . ,m}. For each i ∈ I0, choose bi ∈ X
such that whenever i < i ′, bi < bi ′ . Interpret cMi = bi , i ∈ I0.

For every i1 < . . . < in in I0 and every 1 ≤ j ≤ m,

M |= ϕ j [bi1 , . . . , bin ] ⇔ j ∈ η.

Thus, we have got a model of T0. �

LetM be amodel of T , (I,<) a linearly ordered set and X = {xi : i ∈ I }, A ⊂ M .
We define the Ehrenfeucht–Mostowski type of X over A, denoted by EM(X/A), to
be the set of L A-formulas ϕ[v0, . . . , vn−1] satisfying

∀i0 < . . . < in−1(M |= ϕ[xi0 , . . . , xin−1 ]).

We shall write EM(X) instead of EM(X/∅).
Note that if X = (xi : i ∈ I ) is an infinite set of order indiscernibles over A ⊂ M ,

then a L A-formula ϕ[v1, . . . , vn] ∈ EM(X/A) if and only if M |= ϕ[xi1 , . . . , xin ]
for some i1 < . . . < in .

The following is a very general result on the existence of order indiscernibles.

Theorem 5.1.2 Let T be an L-theory and (I,<) an infinite linearly ordered set.
Let M |= T , X = {xi : i ∈ I } ⊂ M with i �= i ′ ⇒ xi �= xi ′ . Then, for every infinite
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linearly ordered set (J,<), there is an elementary extension N of M having an
infinite set Y = {y j : j ∈ J }of order indiscernibles indexedby J such that EM(Y ) =
EM(X).

Proof Add new constant symbols {c j : j ∈ J }. Let T ′ be the theory having following
axioms:

Diagel(M),

{c j �= c j ′ : j �= j ′ ∈ J },

{ϕ[c j1 , . . . , c jn ] : ϕ[v1, . . . , vn] ∈ EM(X), j1 < . . . < jn}

and
{ϕ[c j1 , . . . , c jn ] ↔ ϕ[c j ′1 , . . . , c j ′n ] : ϕ[v1, . . . , vn] an L − formula,

j1 < . . . < jn, j
′
1 < . . . < j ′n}.

We show that T ′ has a model, say N . Take y j = cNj , j ∈ J . Then, Y = {y j : j ∈ J }
is a set of order indiscernibles in N with EM(Y ) = EM(X).

By compactness theorem, it is sufficient to show that T ′ is finitely satisfiable. Let
C ⊂ J be finite and F a finite set of L-formulas. Without any loss of generality, we
assume that no variable other than v0, . . . , vn−1 is free in any ϕ ∈ F . So, each ϕ ∈ F
can be represented as ϕ[v0, . . . , vn−1]. Suppose T0 consists of

{c j �= c j ′ : j �= j ′ ∈ C},

{ϕ[c j0 , . . . , c jn−1 ] : ϕ ∈ F ∩ EM(X) ∧ j0 < . . . < jn−1 ∈ C}

and
{ϕ[c j0 , . . . , c jn−1 ] ↔ ϕ[c j ′0 , . . . , c j ′n−1

] : ϕ ∈ F

∧ j0 < . . . < jn−1, j
′
0 < . . . < j ′n−1 ∈ C}.

To complete the proof we now show that M |= T0.
Let

[X ]n = {(xik : k < n) : i0 < . . . < in−1 ∈ I }.

We define an equivalence relation ∼ on [X ]n by

x ∼ x ′ ⇔ ∀ϕ ∈ F(M |= ϕ[x] ↔ ϕ[x ′]).

This is a finite equivalence relation on [X ]n . Hence, by Ramsey’s theorem (Theo-
rem 8.5.2), there exists an infinite X ′ ⊂ X homogeneous with respect to ∼. Now
interpret c j in M , j ∈ C , by xi j ∈ X ′ such that j → i j is order-preserving. Thus, M
models T0. �
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We give another proof of the existence of order indiscernibles. The technique used
here is important and will be imitated later.

Theorem 5.1.3 Let N � M be L-structures, ℵ0 ≤ |N | < |M |, λ ≤ |N | and M be
|N |-saturated. Then, there is a sequence c0, c1, c2, c3, . . . of distinct elements in Mλ

which are order indiscernibles over N.

Proof Take any c0 ∈ Mλ \ Nλ. Let U be an ultrafilter on Nλ containing {ϕ(N ) :
ϕ[x] ∈ tpM(c0/N )}.

Let {ξi [x] : i ∈ I } be an enumeration of all Nc0-formulas. For each i ∈ I , set

θi [x] =
{

ξi [x] if ξi (N ) ∈ U ,

¬ξi [x] if¬ξi (N ) ∈ U .

Then, q0(x) = {θi [x] : i ∈ I } is a type in M over Nc0. Since M is |N |-saturated,
q0 is realised in M . Choose any c1 |= q0 in M .

Note that c1 �= c0. If not, then the formula x = c0 is inq0. But this implies c0 ∈ Nλ.
Suppose c0, c1, . . . , cn have been defined. Let {η j [x] : j ∈ J } be an enumeration

of all Nc0c1 . . . cn-formulas. For each j ∈ J , set

θ j [x] =
{

η j [x] if η j (N ) ∈ U ,

¬η j [x] if¬η j (N ) ∈ U .

Then, qn(x) = {θ j [x] : j ∈ J } is a type in M over Nc0c1 . . . cn . By the same
reason, qn is realised in M . Take any cn+1 |= qn in M .

By induction on n, we show that for every 0 ≤ i1 < . . . < in , 0 ≤ j1 < . . . < jn ,

tpM(ci1 , . . . , cin/N ) = tpM(c j1 , . . . , c jn/N ).

Initial Case: Letm ≥ 1. Then, both c0 and cm satisfy the same set of LN -formulas,
viz. those that define sets in U . Hence, tpM(c0/N ) = tpM(cm/N ).

Inductive Step. Assume the hypothesis for all pairs of increasing sequences of
length n. Take any i1 < . . . < in < in+1 and j1 < . . . < jn < jn+1. By induction
hypothesis,

tpM(ci1 , . . . , cin/N ) = tpM(c j1 , . . . , c jn/N ).

Hence, there exists a f ∈ AutN (M) such that f (cip ) = c jp for all p ≤ n. So, for
every LN -formula ϕ[x, x1, . . . , xn] and every a ∈ M

M |= ϕ(a, ci1 , . . . , cin ) ⇔ M |= ϕ( f (a), c j1 , . . . , c jn ).

Therefore,

tp(cin+1 , ci1 , . . . , cin/N ) = tp( f (cin+1), c j1 . . . , c jn/N ).
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It follows that both c jn+1 and f (cin+1) satisfy the same set of Nc j1 . . . , c jn -formulas,
viz. those that define sets in U . Hence,

tp(cin+1 , ci1 , . . . , cin/N ) = tp( f (cin+1), c j1 . . . , c jn/N ) = tp(c jn+1 , c j1 , . . . , c jn/N ).

�
Proposition 5.1.4 Let κ > ℵ0, M a κ-saturated L-structure, A ⊂ M of cardinality
less than κ and λ < κ. Suppose a0, a1, a2, . . . is a sequence of order indiscernibles
over A in Mλ. Then, there exist a−1, a−2, a−3, . . . such that

. . . , a−3, a−2, a−1, a0, a1, a2, a3, . . .

is a sequence of order indiscernibles over A.

Proof We first show that there exists a a−1 ∈ Mλ such that a−1, a0, a1, a2, a3, . . . is
a sequence of order indiscernibles over A.

Using this repeatedly, by induction, we get a−1, a−2, a−3, . . . ∈ Mλ such that for
every k,

a−k, . . . , a−3, a−2, a−1, a0, a1, a2, a3, . . .

is a sequence of order indiscernibles over A. This will complete the proof.
Take any k ≥ 1 and any LA-formulaϕk[x, x1, . . . , xk]. For i = i1 < . . . < ik and

j = j1 < . . . < jk , let ψ(ϕk, i, j) denote the L A-formula

ϕk[x, ai1 , . . . , aik ] ↔ ϕk[x, a j1 , . . . , a jk ].

For i = i1 < . . . < ik and j = j0 < j1 < . . . < jk , let ξ(ϕk, i, j) denote the L A-
formula

ϕk[x, ai1 , . . . , aik ] ↔ ϕk[a j0 , a j1 , . . . , a jk ].

Let p(x) consist of all formulas of the formψ(ϕk, i, j) and ξ(ϕk, i, j) for all possible
k, ϕk , i and j . Since a0, a1, a2, . . . are order indiscernibles over A, it is easy to check
that p(x) is a finitely satisfiable set of formulas over a set of parameters of cardinality
< κ. Since M is κ-saturated, p(x) is realised in M . Any a−1 ∈ M realising p(x)
witnesses our claim. �

Using the same idea one can easily prove the following theorem. Its proof is left
to the reader as a simple exercise.

Proposition 5.1.5 Let κ > ℵ0, M a κ-saturated L-structure, A ⊂ M of cardinality
less than κ and λ < κ. Suppose a0, a1, a2, . . . is a sequence of order indiscernibles
over A in Mλ. Then, for each ω0 ≤ α < κ there exists a aα ∈ Mλ such that

a0, a1, a2, a3, . . . aα, . . . , α < κ

are order indiscernibles over A.
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5.2 Applications of Indiscernibility

From now on, if X = {xi : i ∈ I } is a sequence of order indiscernibles, then we
linearly order X by xi < x j ⇔ i < j and replace I by X itself.

Theorem 5.2.1 Let T be a complete, strongly minimal theory, M |= T and A =
{ai : i ∈ I } an independent set in M. Then, for every positive integer k and k-tuples
a, b in A, tpM(a) = tpM(b). Thus, A is a set of indiscernibles.

Proof This follows from Proposition 2.12.3 by takingψ[x] to be x = x , N = M and
X = ∅ to conclude that the bijection a → b is partial elementary. �

Assume that T has built-in Skolem functions, M |= T and X an infinite set of
order indiscernibles in M . Then, every element of the Skolem hullH(X) of X can be
represented as t[xi0 , . . . , xin−1], where t[v] is an L-termand xi0 < . . . < xin−1 in X .We
have alreadyobserved thatH(X) is an elementary substructure ofM (Theorem1.8.2).
Therefore, H(X) is a model of T . Such models are called Ehrenfeucht–Mostowski
models.

Theorem 5.2.2 Let T be a theory with built-in Skolem functions, M, N |= T , X, Y
infinite sets of order indiscernibles in M and N, respectively, such that EM(X) =
EM(Y ). Suppose σ : X → Y is an order-preserving map. Then, σ can be extended
to an elementary embedding τ : H(X) → H(Y ). Moreover, if σ is onto, τ will be an
isomorphism.

Proof Let t[v] be an L-term and x0 < . . . < xn−1 an increasing sequence in X .
Define

τ (t[x]) = t[σ(x)].

Then,
(1) τ is well defined and one-to-one: Let x and x ′ be increasing sequences in X .

Sinceσ is order-preserving, X andY are sets of indicernibles and EM(X) = EM(Y ),
we have

M |= t[x] = s[x ′]

if and only if
N |= t[σ(x)] = s[σ(x ′)].

(2) Finally, let ϕ[v1, . . . , vn] be an L-formula t1[v], . . . , tn[v] L-terms and x ∈ X
an increasing sequence in X . Since EM(X) = EM(Y ), we have

M |= ϕ[t1[x], . . . , tm[x]] ⇔ N |= ϕ[t1[σ(x)], . . . , tm[σ(x)]].

(3) Assume that σ is onto. Then, t[y] = τ (t[σ−1(y)]), y an increasing sequence
in Y . So, τ is onto.

Our proof is complete. �

http://dx.doi.org/10.1007/978-981-10-5098-5_2
http://dx.doi.org/10.1007/978-981-10-5098-5_1
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Theorem 5.2.3 Let T be a countable theory with an infinite model. Then, for every
infinite cardinal κ, T has a model M of cardinality κ such that for every countable
A ⊂ M, M realises only countably many types in SM

1 (A).

Proof Let T ∗ be the Skolemisation of T and N |= T ∗ having a sequence X = {xα :
α < κ} of order indiscernibles of typeκ. Since T , and hence T ∗, has an infinitemodel,
such an N exists. Take M = H(X). Then, |M | = κ. Let A ⊂ M be countable. Then,
each a ∈ A can be expressed as ta[xa], where xa is a finite increasing sequence in
X . Let Y be the set of all x ∈ X that appear in xa , a ∈ A. Then, Y is countable.

For y1 < . . . < yn and z1 < . . . < zn in X , we define

y ∼Y z ⇔ ∀i∀y ∈ Y ((yi = y ↔ zi = y) ∧ (yi < y ↔ zi < y)).

The importance of this equivalence relation is the following. If y ∼Y z, then for
every a1 = t1[x], . . . , am = tm[x] in A with x an increasing sequence in Y , for every
L-formula ϕ[u, v1, . . . , vn] and for every term t[w1, . . . , wn],

M |= ϕ[t[y], a1, . . . , am] ↔ ϕ[t[z], a1, . . . , am].

Thus, the cardinality of types over A realised in M is ≤ | ∪n Xn/ ∼Y |.
But y ∼Y z if and only if for all i ,
(1) yi ∈ Y and yi = zi
or
(2) yi /∈ Y and zi /∈ Y and there is no element of Y between yi and zi .
Thus, each ∼Y -equivalence class gives a finite partition of Y into intervals. Since

Y is well-ordered and countable, there are only countably many finite partitions of
Y into intervals. �

As an application of indiscernibles, we give the following important sufficient
condition for ω-stability of a theory.

Theorem 5.2.4 Let T be a countable theory with an infinite model. Suppose T is
κ-categorical, where κ is an uncountable cardinal. Then, T is ω-stable.

Proof Suppose T is not ω-stable. Then, there is a N ′ |= T and countable A ⊂ N ′
such that SN ′

1 (A) is uncountable. If |N ′| > κ, we replace it by an elementary substruc-
ture containing A of cardinality κ which exists by downward Löwenheim–Skolem
theorem. On the other hand, if |N ′| < κ, we replace it by an elementary extension of
cardinality κ which exists by upward Löwenheim–Skolem theorem. Thus, without
any loss of generality, we assume that |N ′| = κ. Now take an elementary extension
N of N ′ of cardinality κ that realises ℵ1 many types in SN

1 (A).
On the other hand, by the last theorem, T has a model M of cardinality κ such

that M realises only countably many types in SM
1 (A) for every countable A ⊂ M .

But then M and N are not isomorphic. This contradicts that T is κ-categorical. �
We now show that if T is a stable theory, then every infinite set of order indis-

cernibles in a model of T is in fact a set indiscernibles. We need the following
lemma.
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Lemma 5.2.5 For every infinite cardinal κ, there is an order-dense linearly ordered
set (I,<) of cardinality greater than κ that has a dense subset J of cardinality at
most κ.

Proof Let λ be the least cardinal such that κ < 2λ. Take I = Qλ with lexicographic
ordering. So, for f, g ∈ I , f < g if f (α) < g(α), where α < λ is the least ordinal
β such that f (β) �= g(β). Take

J = { f ∈ I : ∃α < λ∀γ ≥ α( f (γ) = 0)}.

It is easy to see that |I | > κ, I is order dense, |J | ≤ κ and J is dense in I . �

Theorem 5.2.6 Let T be a countable κ-stable theory, κ ≥ ℵ0. Suppose M |= T and
X ⊂ M is an infinite set of order indiscernibles. Then, X is a set of indiscernibles
in M.

Proof Let x1 < . . . < xn be in X , ϕ[v1, . . . , vn] a formula without parameters and
M |= ϕ[x1, . . . , xn]. Let Sn denote the permutation group of {1, . . . , n}. Consider

� = {σ ∈ Sn : M |= ϕ[xσ(1), . . . , xσ(n)]}.

We need to show that � = Sn . Assume to the contrary. We shall contradict that T is
κ-stable. Get σ ∈ �, τ ∈ Sn \ � and a transposition ε = (i, i + 1) ∈ Sn , i < n, such
that τ = σ ◦ ε.

Let I and J be as in the last example. By Theorem 5.1.2, we have a model N |= T
having a set of order indiscernibles Y of order type I such that EM(X) = EM(Y ).
Let Z be a dense subset of Y with |Z | ≤ κ. Takeψ[v1, . . . , vn] = ϕ[vσ(1), . . . , vσ(n)].
Since EM(X) = EM(Y ), there exist y1 < . . . < yn in Y such that

N |= ψ[y1, . . . , yi , yi+1, . . . , yn]

and
N |= ¬ψ[y1, . . . , yi+1, yi , . . . , yn].

Let x < y be in Y . Since Z is dense in Y , there exist z1 < . . . < zn−1 in Z such that

zi−1 < x < zi < y < zi+1.

But then
N |= ψ[z1, . . . , zi−1, x, zi , . . . , zn−1]

and
N |= ¬ψ[z1, . . . , zi−1, y, zi , . . . , zn−1].

Hence, tpN (x/Z) �= tpN (y/Z). Since |Y | > κ and |Z | ≤ κ, this contradicts that T
is κ-stable. �
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For the next result, we need an example.

Example 5.2.7 Let κ be an infinite cardinal, I = κ × Q with lexicographic order.
For all A ⊂ κ, define an order isomorphism σA : I → I by

σA(α, r) = (α, r) if α ∈ A
= (α, r + 1) if α ∈ κ \ A.

Then, for A �= B, σA �= σB. Thus, there are 2κ many automorphisms of I .

Theorem 5.2.8 Let T be a countable theory with an infinite model. Then, for every
κ ≥ ℵ0, T has a model of cardinality κ with 2κ many automorphisms.

Proof Let T ∗ be the Skolemisation of T . By Theorem 5.1.2, T ∗ has a model M
with a set of order indiscernibles X of order type I = κ × Q described above. Take
N = H(X).

By Theorem 5.2.2, N |= T , |N | = κ and N has 2κ many automorphisms. �

Theorem 5.2.9 Let T be a theory with built-in Skolem functions, M |= T , p ∈
SM
n (∅) such that M omits p. Assume that M contains an infinite set X of order

indiscernibles. Then, for every infinite cardinal κ, T has a model of cardinality κ
that omits p.

Proof Under our hypothesis, by Theorem 5.1.2, T has a model N ′ having an infinite
set Y of order indiscernibles of order type κ such that EM(X) = EM(Y ). Now take
N = H(Y ). Then, N |= T and |N | = κ.

If possible, suppose (t1(y), . . . , tn(y)), y an increasing tuple of elements in Y ,
realises p. Take an increasing tuple x in X of the same length as that of y. Since
EM(X) = EM(Y ), for every L-formula ϕ[v1, . . . , vn],

M |= ϕ[t1(x), . . . , tn(x)] ⇔ N |= ϕ[t1(y), . . . , tn(y)].

So, (t1(x), . . . , tn(x) in M realises p. This is a contradiction. �

5.3 Vaughtian Pair of Models

Throughout this section we assume that T is a countable complete theory with infinite
models.

Let κ > λ ≥ ℵ0. We say that T has a (κ,λ)-model if there is a model M |= T
and an L-formula ϕ[x] such that |M | = κ and |ϕ(M)| = λ.

Proposition 5.3.1 Let κ > ℵ0 and T be κ-categorical. Then, for no κ > λ ≥ ℵ0, T
has a (κ,λ)-model.
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Proof If possible, let for some κ > λ ≥ ℵ0, there exist a M |= T and an L-formula
ϕ such that |M | = κ and |ϕ(M)| = λ. Add κ many new constants {cα : α < κ} to
L . Consider the theory

T ′ = T ∪ {cα �= cβ : α < β < κ} ∪ {ϕ[cα] : α < κ}.

Then, M is a model of each finite part of T ′. Hence, by compactness and downward
Löwenheim–Skolem theorem, there is a N |= T ′ of cardinality κ. Further, |ϕ(N )| =
κ. Since |ϕ(M)| = λ < κ, M and N are not isomorphic. This contradicts that T is
κ-categorical. �

We say that (N , M) is aVaughtian pair of models of T ifM is a proper elementary
substructure of N and there is an LM -formula ϕ[x] such that ϕ(N ) = ϕ(M) and
infinite.

Proposition 5.3.2 If T has a (κ,λ)-model, then T has a Vaughtian pair of models.

Proof Let N |= T andϕ an L-formula such that |N | = κ and |ϕ(N )| = λ. By down-
ward Löwenheim–Skolem theorem, there is an elementary substructure M of N con-
taining ϕ(N ) of cardinality λ. Clearly, ϕ[x] witnesses that (N , M) is a Vaughtian
pair of models of T . �

Using downward Löwenheim–Skolem theorem, we get the following result.

Proposition 5.3.3 If T has noVaughtian pair ofmodels, M |= T and X ⊂ M infinite
and definable. Then, |X | = |M |.
Proof Let an L-formula ϕ[x, x] and a ∈ M be such that X = ϕ(M, a). If possi-
ble, suppose |X | < |M |. By downward Löwenheim–Skolem theorem, there is an
elementary substructure N of M containing X ∪ {a} such that |N | = |X |. But then
ϕ witnesses that (M, N ) is a Vaughtian pair of models of T which contradicts our
hypothesis. �

Theorem 5.3.4 Let T have no Vaughtian pair of models, M |= T and X ⊂ M infi-
nite and X-definable. Then, M has no proper elementary substructure containing X.
Moreover, if T is ω-stable, M is a prime model extension of X.

Proof If there is a proper elementary substructure N ofM containing X , then (M, N )

is a Vaughtian pair of models of T , witnessed by an LX -formula ϕ that defines X .
Assume that T is ω-stable. By Theorem 4.8.13, there is a prime model extension

N over X which, without any loss of generality, we can assume to be an elementary
substructure of M . But then N = M . Thus, M is a prime model extension of X . �

Set L∗ = L ∪ {U }, where U is a unary predicate symbol. A Vaughtian pair of
models (N , M) will be canonically regarded as an L∗-structure with universe N and
UN = M .

http://dx.doi.org/10.1007/978-981-10-5098-5_4
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To each L-formula ϕ[x0, . . . , xn−1] we associate an L∗-formula ϕU as follows:

ϕU [x0, . . . , xn−1] = ϕ[x0, . . . , xn−1]

if ϕ is atomic;

(¬ϕ)U = ¬ϕU , (ϕ ∨ ψ)U = ϕU ∨ ψU ;

and
(∃xϕ)U = ∃x(U [x] ∧ ϕU ).

It is easy to see that if (N , M) is a Vaughtian pair of models regarded canonically
as an L∗-structure, ϕ[x] an L-formula and a ∈ M , then

M |= ϕ[a] ⇔ (N , M) |= ϕU [a].

Proposition 5.3.5 If T has a Vaughtian pair of models, then T has a Vaughtian pair
(N0, M0) with N0 countable.

Proof Let (N , M) be a Vaughtian pair of models of T and ϕ[x] an LM -formula such
that ϕ[M] is infinite and ϕ(N ) = ϕ(M). Let a ∈ M be the parameters occurring in
ϕ. We regard (N , M) as an L∗-structure. By Löwenheim–Skolem theorem, (N , M)

has a countable elementary substructure (N0, M0) such that a ∈ N0. Since (N , M) |=
U [ai ] for all i , (N0, M0) |= U [ai ] for all i . Hence, a ∈ M0.

Since (N , M) |= ∃x¬U [x], (N0, M0) |= ∃x¬U [x]. Hence, M0 is a proper subset
of N0. For every L-formula ψ[v], we have

(N , M) |= ∀v((ψ[v] ∧ ∧iU [vi ]) → ψU [v]).

Hence,
(N0, M0) |= ∀v((ψ[v] ∧ ∧iU [vi ]) → ψU [v]).

This shows that M0 is an elementary L-substructure of N0. Since ϕ(N ) is infinite,
for each k,

(N , M) |= ∃x1 . . . ∃xk(∧k
i=1ϕ[xi ] ∧ ∧i< j xi �= x j ).

Hence,
(N0, M0) |= ∃x1 . . . ∃xk(∧k

i=1ϕ[xi ] ∧ ∧i< j xi �= x j ).

Thus, ϕ(N0) is infinite.

(N , M) |= ∀x(ϕ[x] → U [x]).

Hence,
(N0, M0) |= ∀x(ϕ[x] → U [x]).
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This shows that ϕ(N0) = ϕ(M0). �

Lemma 5.3.6 Let T be an L-theory with no Vaughtian pair of models. Suppose M
is a model of T and ϕ[x, y] an LM formula. Then, there is a positive integer n such
that for all b ∈ M, |ϕ(M, b)| > n ⇒ |ϕ(M, b)| ≥ ℵ0.

Proof If M is finite, any n > |M | will do our job. Now assume that M is infinite.
Suppose such an integer n does not exist. For every n, fix a bn ∈ M such that n <

|ϕ(M, bn)| < ℵ0. Fix a proper elementary extension N of M which exists because
M is infinite. Since N is an elementary extension of M , for each n, ϕ(N , bn) =
ϕ(M, bn).

Let

L∗ = LN ∪ {U } ∪ {c00, . . . , c0m−1, c10, . . . , c1m−1, . . .} ∪ {d0, . . . , dp−1},

where m is the arity of x and p is the arity of y. Let T ∗ consist of the following L∗
sentences:

1. Diagel(N , M).
2. ck �= cl , k < l.
3. ϕ[ck, d], k ∈ ω.
4. ∧ jU [d j ].
5. ∀x(ϕ[x, d] → ∧iU [xi ]),
where ck = (ck0, . . . , ckm−1), k ∈ ω, and d = (d0, . . . , dp−1).

Given any finite set of elements in T ∗, we can choose n large enough to see that
these finitely many formulas are realised in (N , M). So, by compactness theorem,
there is an elementary extension (N ′, M ′) of (N , M) and a b ∈ N ′ realising T ∗.
But then (N ′, M ′) is a Vaughtian pair of models of T . This contradiction proves the
result. �

Theorem 5.3.7 If T has no Vaughtian pair of models, M |= T and ϕ[x] an LM

formula minimal in M. Then, ϕ is strongly minimal over M.

Proof If possible, suppose ϕ is not strongly minimal. Then, there is an elementary
extension N of M , an L-formula ψ[x, y] and b ∈ N such that both ϕ(N ) ∩ ψ(N , b)
and ϕ(N ) ∩ ¬ψ(N , b) are infinite, i.e. for every positive integer n,

N |= ∃y(∃>nx(ϕ[x] ∧ ψ[x, y]) ∧ ∃>nx(ϕ[x] ∧ ¬ψ[x, y])).

Since ϕ is minimal in M , by the last Lemma, there ia a positive integer n such that

M |= ∀y(∃≤nx(ϕ[x] ∧ ψ[x, y]) ∨ ∃≤nx(ϕ[x] ∧ ¬ψ[x, y])).

Since N is an elementary extension of M , we have a contradiction. �

Corollary 5.3.8 If T is a ω-stable theory with no Vaughtian pair of models and
M |= T , then there is a strongly minimal LM-formula.
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Proof This follows from Theorem 4.8.11 and the last theorem. �

Before we prove our next theorem, we make a couple of observations.

Lemma 5.3.9 Let (N , M) be a countable Vaughtian pair of models of T , a ∈ N and
p an n-type in N over a. Then, there is a countable elementary extension (N ′, M ′)
of (N , M) and a b ∈ N ′ realising p.

Proof It is easily seen that q = p ∪ Diagel(N , M) is finitely satisfiable in (N , M).
Therefore, there is a countable elementary extension (N ′, M ′) of (N , M) realising
q. This shows that there is a b ∈ N ′ realising p. �

Lemma 5.3.10 Let (N , M) be a countable Vaughtian pair of models of T . Then,
there exists a countable elementary extension (N ′, M ′) of (N , M) such that if b ∈ M
and p a complete type in N over b realised in N, then p is realised in M ′.

Proof Since N (and M) are countable, there are only countably many p above. So,
if we prove that for each complete type p over some b ∈ M realised in N there is
a countable elementary extension (N ′, M ′) of (N , M) such that p is realised in M ′,
then by iterating the construction we shall get a desired extension.

Now consider

q[v] = Diagel(N , M) ∪ {ϕU [v, b] : ϕ[v, b] ∈ p}.

For ϕ1, . . . ,ϕk ∈ p
N |= ∃v ∧k

i=1 ϕi [v, b].

Since M is an elementary substructure of N ,

M |= ∃v ∧k
i=1 ϕi [v, b].

Therefore,
(N , M) |= ∃v(∧m

j=1U (v j ) ∧ ∧k
i=1ϕ

U
i [v, b]),

where v = (v1, . . . , vm). Thus, q[v] is finitely satisfiable in (N , M). Hence, there is
a countable elementary extension (N ′, M ′) of (N , M) in which q[v] is realised. Any
c ∈ N ′ realising q[v] belongs to M ′ and realises p. �

Theorem 5.3.11 Let (N , M) be a countable Vaughtian pair of models of T . Then,
there is a countable Vaughtian pair of models (N∞, M∞) of T which is an elementary
extension of (N , M) such that both N∞ and M∞ are homogeneous and realise the
same complete types in T . In particular, M∞ and N∞ are isomorphic by Proposition
4.1.7.

Proof Set N0 = N and M0 = M . We shall now define an elementary chain {(Nk,

Mk)} of countable L∗-structures satisfying the following:

http://dx.doi.org/10.1007/978-981-10-5098-5_4
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(a) If p ∈ Sn(T ) is realised in N3k , then it is realised in M3k+1.
(b) If a, b, c ∈ M3k+1 and tpM3k+1(a) = tpM3k+1(b), then there is a d ∈ M3k+2 such

that tpM3k+2(a, c) = tpM3k+2(b, d).
(c) If a, b, c ∈ N3k+2 and tpN3k+2(a) = tpN3k+2(b), then there is a d ∈ N3k+3 such

that tpN3k+3(a, c) = tpN3k+3(b, d).

(a) clearly follows from 5.3.10. To see (b), consider

p[x] = {ϕ[b, x] : M3k+1 |= ϕ[a, c]}.

Forϕ1, . . . ,ϕm ∈ p,M3k+1 |= ∃x ∧m
i=1 ϕi [a, x]. Hence,M3k+1 |= ∃x ∧m

i=1 ϕi [b, x].
(b) now follows from 5.3.10. Similarly, (c) follows from 5.3.9.

Finally, we take N∞ = ∪k Nk and M∞ = ∪kMk . �

Theorem 5.3.12 If T has a Vaughtian pair of models, then T has a (ℵ1,ℵ0) model.
In particular, if T has a (κ,λ) model for some κ > λ ≥ ℵ0, T has a (ℵ1,ℵ0) model.

Proof Since T has a Vaughtian pair of models, by Proposition5.3.5 and the last
theorem, T has a countable Vaughtian pair of models (N , M) such that M and N
are homogeneous and realise same types in Sn(T ), n ≥ 1. Therefore, M and N are
isomorphic byProposition 4.1.7. Letϕ[x]be an LM -formula such thatϕ(M) = ϕ(N )

is infinite.
Set N0 = N . By induction we are going to define a strictly ascending elementary

chain of models {Nα : α < ω1} such that for all α < ω1, Nα is isomorphic to M
and ϕ(Nα+1) = ϕ(Nα)(= ϕ(M)). Then, ∪α<ω1Nα will be a (ℵ1,ℵ0) model for T
witnessed by ϕ.

Let α be limit and suppose, for all β < α, Nβ has been defined satisfying the
above conditions. Take Nα = ∪β<αNβ . Since each Nβ is homogeneous, Nα is homo-
geneous. Also Nα and M realise the same types. Since both Nα and M are countable,
by Proposition 4.1.7 they are isomorphic. It is also clear that ϕ(Nα) = ϕ(M).

Suppose Nα have been defined. Fix an isomorphism g : M → Nα. Take Nα+1 =
(N \ M) ∪ Nα. We can canonically make Nα+1 into an L-structure isomorphic to
N with an isomorphism from N → Nα+1 mapping M onto Nα. The result is easily
seen now. �

5.4 Morley Categoricity Theorem

We are now in a position to give a proof of Morley Categoricity Theorem—a corner
stone of modern model theory.

Theorem 5.4.1 If an ω-stable theory T has a (ℵ1,ℵ0)model, it has a (κ,ℵ0)model
for all κ > ℵ1.

http://dx.doi.org/10.1007/978-981-10-5098-5_4
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Proof Let M |= T be of cardinality ℵ1 and ϕ[x] an L-formula such that |ϕ(M)| =
ℵ0. Get a proper elementary extension N of M as in Theorem 4.8.14. Now consider

q[x] = {ϕ[x]} ∪ {x �= a : a ∈ ϕ(M)}.

Since |ϕ(M)| = ℵ0, q[x] is a countable 1-type over M . Further, it is omitted in M .
Hence, it is omitted in N . Thus, ϕ(N ) = ϕ(M).

If |N | > κ, we replace N by an elementary substructure N ′ of N containingϕ(M)

of cardinality κ. Then, N ′ is a (κ,ℵ0) model of T witnessed by ϕ[x].
If |N | < κ, we can iterate the process and get a strictly ascending elementary

chain {Nα : α ≤ δ} such that N0 = M , Nα = ∪β<αNβ if α is limit, ϕ(Nα) = ϕ(M)

for all α ≤ δ till |Nδ| = κ. Then, Nδ is a (κ,ℵ0) model of T witnessed by ϕ. �
Theorem 5.4.2 If T is κ-categorical for some uncountable κ, then T has no
Vaughtian pair of models.

Proof Let T be κ-categorical for some uncountable κ. By Theorem 5.2.4, T is ω-
stable. If possible, assume that T has a Vaughtian pair of models. Then, by Theorem
5.3.12, T has a (ℵ1,ℵ0) model. Since T is ω-stable, by the last theorem, it has a
(κ,ℵ0) model, say M , witnessed by an L-formula ϕ[x].

Add κ-many distinct new constants {cα : α < κ} to LM and consider

� = Diagel(M) ∪ {cα �= cβ : α < β < κ} ∪ {ϕ[cα] : α < κ}.

Clearly, � is finitely satisfiable in M . Hence, by the compactness theorem, � has
a model, say N ′. We then have M � N ′ and |N ′| ≥ κ. Next take an elementary
substructure N of N ′ containing X = {cN ′

α : α < κ} of cardinality κ. We also have
|ϕ(N )| = κ. But then M and N cannot be isomorphic. �

Finally, we prove Baldwin–Lachlan theorem that immediately proves Morley
categoricity theorem.

Theorem 5.4.3 (Baldwin–Lachlan) Let κ be any uncountable cardinal. Then, T is
κ-categorical if and only if T is ω-stable and has no Vaughtian pair of models.

Proof Only if part follows from Theorem 5.2.4 and the last theorem. Conversely,
assume that T is ω-stable and has no Vaughtian pair of models. Since T is ω-stable,
by Corollary 4.8.7 it has a prime model, say M0. Let M, N |= T , each of cardinality
κ. Without any loss of generality, we assume that M0 is a common elementary
substructure of both M and N .

Fix an L-formula ϕ[x, x] and a ∈ Mn
0 such that ϕ[x, a] is strongly minimal over

M0. Such a formula exists by Corollary 5.3.8. Set

ψ[x, a] = ϕ[x, a] ∨ ∨i<nx = ai .

Then, ψ is also strongly minimal. Since T has no Vaughtian pair of models,
|ψ(M)| = |ψ(N )| = κ. Since κ is uncountable and T countable, dim(ψ(M)) =
dim(ψ(N )) = κ.

http://dx.doi.org/10.1007/978-981-10-5098-5_4
http://dx.doi.org/10.1007/978-981-10-5098-5_4
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By Proposition 3.4.19, there is a partial elementary bijection f : ψ(M) → ψ(N ).
But M is a prime model extension of ψ(M) by Theorem 5.3.4. Hence, there is an
elementary map g : M → N extending f . Since T has no Vaughtian pair of models,
N has no proper elementary substructure containingψ(N ). Hence, g is onto N . Thus,
we have proved that g is an isomorphism. �

Corollary 5.4.4 (Morley Categoricity Theorem) Let κ,λ > ℵ0 and T a countable
complete theory with infinite models. Then, T is κ-categorical if and only if it is
λ-categorical.

http://dx.doi.org/10.1007/978-981-10-5098-5_3


Chapter 6
Strong Types

Abstract In this chapter, we make a systematic study of Lascar strong types and
Kim–Pillay strong types. We also introduce Galois topological group of a complete
theory. We close this chapter by showing connections of these with descriptive set
theory.

6.1 General Facts on Bounded, Invariant,
Equivalence Relations

Throughout this chapter, we assume thatT is a countable complete theory.We also fix
a monster model M of T which is κ-saturated and κ-strongly homogeneous, where κ
is a (fixed) large strongly inaccessible cardinal. A subset A of M will be called small
if |A| < κ. Also, a sequence a in M is small if its length is < κ.

Let λ < κ and E an equivalence relation on M
λ. We shall use M

λ/E to denote the
set of all E-equivalence classes and π : M

λ → M
λ/E the quotient map. For a ∈ M

λ,
often we shall write [a] instead of π(a). Also, in what follows x, y, z, etc. will denote
sequences of distinct variables of length λ and |T | = max{λ,ℵ0}.

We call E invariant if whenever a E b and σ ∈ Aut(M), σ(a)E σ(b). We call E
bounded if |Mλ/E| < κ.

In this chapter, we introduce several bounded, invariant, equivalence relations
on M

λ, λ < κ. For each of these equivalence relations E, for every a ∈ M
λ, the

set {b ∈ M
λ : tp(b/∅) = tp(a/∅)} is E invariant. So, each E-equivalence class C is

contained in a set of the form {b ∈ M
λ : tp(b/∅) = tp(a/∅)}, a ∈ M

λ. For this reason,
E-equivalence classes are called strong types.

Three very important strong types are the so-called Shelah strong types, Kim–
Pillay strong types and Lascar strong types. These strong types and associated Galois
groups (which will be introduced later in the chapter) play an important role in stable,
simple and NIP theories. These topics also have connections with descriptive set
theory which we shall point out at the end of this chapter.

LetE be a bounded, invariant, equivalence relation onM
λ. Assume that |Mλ/E| =

μ < κ. Let S = {aα ∈ M
λ : α < μ} be a cross section ofM

λ/E, i.e. S intersects each
E-equivalence class in exactly one point. Then, for every D ⊂ M

λ/E, π−1(D) is
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S-invariant: Take a ∈ π−1(D) and f ∈ AutS(M). Suppose aα E a. SinceE is invariant,
f (aα)E f (a). But f (aα) = aα. Hence, f (a)E a implying that f (a) ∈ π−1(D).

CallD ⊂ M
λ/E closed if π−1(D) is type-definable over a small set. Since π−1(D)

is S-invariant, by Proposition4.6.3,D is closed if and only ifπ−1(D) is type-definable
over S. Now it is entirely routine to check that the set of all closed sets in M

λ/E is
precisely the set of all closed sets of a topology on M

λ/E. We shall call this topology
the logic topology.

Remark 6.1.1 Let E be an invariant equivalence relation on M
λ. By Exercise4.6.1,

there is a set {pi(x, y) : i ∈ I}of complete types over emptyset such thatE = ∪ipi(M).
Suppose M

′ is another monster model of T and E′ = ∪ipi(M′). Then, E′ is invariant
and an equivalence relation on M

′λ.
For instance, we see thatE′ is symmetric. Suppose a′ E ′b

′
. So, there exists a i0 ∈ I

such that (a′, b
′
) |= pi0 . If possible, suppose ¬(b

′
E′a′). For each i ∈ I there exists a

ϕi ∈ pi such that M
′ |= ¬ϕi[b′

, a′]. Then, (a′, b
′
) |= q(x, y), where q(x, y) is the set

of L-formulas
pi0(x, y) ∪ {¬ϕi[y, x] : i ∈ I}.

Hence, it is a type over empty set. Since M is κ-saturated, it is realised by some
(a, b) ∈ M. But then a E b and¬(bEa). This is a contradiction since E is symmetric.
Thus, we have proved that E′ is symmetric.

We now prove a surprising result that for every bounded, invariant, equivalence
relation E on M

λ, |Mλ/E| has a common upper bound less than κ.

Theorem 6.1.2 Let E be a bounded, invariant, equivalence relation on M
λ, λ < κ.

Then,

|Mλ/E| ≤ 2(|T |(2|T |)).

Proof Since E is invariant, by Proposition4.6.1, there is a family {pj(x, y) : j ∈ J}
of complete types over empty set such that E = ∪j∈Jpj(M). Note that

| ×j∈J pj| ≤ |T |(2|T |) = ν,

say. Then, 2(|T |(2|T |)) = �1(ν).
Set μ = �1(ν)+. If possible, suppose there is a sequence {aα : α < μ} of pairwise

E-inequivalent elements in M
λ of length μ. Then, for every α < β < μ, there is a

�(α,β) ∈ ×j∈Jpj

such that for every j ∈ J ,
M |= ¬�(α,β)(j)[aα, aβ].

http://dx.doi.org/10.1007/978-981-10-5098-5_4
http://dx.doi.org/10.1007/978-981-10-5098-5_4
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By Erdös–Rado theorem (Theorem8.5.4), this correspondence has an infinite
homogeneous set, i.e. there is an infinite subset I ⊂ μ such that for every α < β in
I , �(α,β) is the same, say � ∈ ×j∈Jpj.

Now consider the following set of formulas without parameters in variables {xα :
α < κ} with each xα = {xαβ : β < λ} (with {xαβ : β < λ,α < κ} distinct):

q((xα)α<κ) = {xα 
= xβ : α < β < κ} ∪ {¬�(j)[xα, xβ] : j ∈ J,α < β < κ}.

Then, {aα : α ∈ I} witnesses that q is finitely satisfiable in M. Hence, there is an
elementary extension M

′ of M in which q is realised, say by (b
′
α)α<κ.

By Proposition4.3.7, there is a sequence (cα)α<κ of λ-tuples in M such that

tpM((cα)α<κ/∅) = tpM
′
((b

′
α)α<κ/∅).

This implies that for all α < β < κ, [cα] 
= [cβ]. This contradicts that E is
bounded. �

Theorem 6.1.3 Let λ < κ and E be a bounded, invariant, type-definable, equiva-
lence relation on M

λ. Then,
|Mλ/E| ≤ 2|T |.

Proof Since E is invariant and type-definable, by Proposition4.6.3, E is type-
definable over empty set. Hence, in the last proof, we can replace a family of types
by a single type p(x, y) over empty set which is of cardinality at most |T |. So, in this
case corresponding � function takes values in p, a set of cardinality at most |T |. We
take μ = �1(|T |)+ and repeat the same argument to arrive at a contradiction. �

Remark 6.1.4 Let E be a bounded, invariant equivalence relation. Assume that
E = ∪i∈Ipi(M) where {pi(x, y)} is a family of types over empty set. Take another
monster model M

′ and define E′ = ∪i∈Ipi(M′). In Remark6.1.1 we saw that E′ is
an equivalence relation on M

′. From the above argument, it follows that E′ is also
bounded.

Let A ⊂ M be small and λ < κ. For a, b ∈ M
λ, define

a ≡A b ⇔ tpM(a/A) = tpM(b/A).

Proposition 6.1.5 ≡A is a bounded, A-invariant equivalence relation on M
λ.

Proof Clearly, ≡A is an A-invariant equivalence relation on M
λ. Let the set of all

LA-formulas ϕ[x, y] be of cardinality μ < κ. Enumerate all such formulas by {ϕα :
α < μ}. Set ϕ0

α = ϕα and ϕ1
α = ¬ϕα.

Now note that for every ≡A-equivalence class C, there is a unique function ε :
μ → {0, 1} such that

C = ∩α<μϕ
ε(α)
α (M).

http://dx.doi.org/10.1007/978-981-10-5098-5_4
http://dx.doi.org/10.1007/978-981-10-5098-5_4
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Further, this correspondence is one-to-one. Hence,

|Mλ/ ≡A | ≤ 2μ.

The result follows because κ is strongly inaccessible. �

Corollary 6.1.6 ≡∅ is a bounded, invariant, equivalence relation on M
λ.

The proof of the following result is an imitation of the proof of Theorem5.1.3.

Theorem 6.1.7 Let M be a small elementary substructure of M. Assume that a ≡M

b, a, b ∈ M
λ. Then, there is a sequence c1, c2, c3, . . . in M

λ such that both the
sequences a, c1, c2, c3, . . . and b, c1, c2, c3, . . . are order indiscernibles over M.

Proof Let U be an ultrafilter on Mλ containing {ϕ(M) : ϕ[x] ∈ tpM(a/M)}.
Let {ξi[x] : i ∈ I} be an enumeration of all Mab-formulas. For each i ∈ I , set

θi[x] =
{

ξi[x] if ξi(M) ∈ U ,

¬ξi[x] if ¬ξi(M) ∈ U .

Then, q0(x) = {θi[x] : i ∈ I} is a type in M overMab. Since M is κ-saturated, q0
is realised in M. Choose any c1 |= q0 in M.

Suppose c1, · · · , cn have been defined. Let {ηj[x] : j ∈ J} be an enumeration of
allMabc1 · · · cn-formulas. For each j ∈ J , set

θj[x] =
{

ηj[x] if ηj(M) ∈ U,

¬ηj[x] if ¬ηj(M) ∈ U .

Then, qn(x) = {θj[x] : j ∈ J} is a type inM overMabc1 · · · cn. By the same reason,
qn is realised in M. Take any cn+1 |= qn in M.

Set c0 = a or b. To conclude the result, we show that c0, c1, c2, . . . is a sequence
of order indiscernibles over M.

Fix c0 = a. By induction on n, we show that for every 0 ≤ i1 < · · · < in, 0 ≤ j1 <

· · · < jn,
tpM(ci1 , · · · , cin/M) = tpM(cj1 , · · · , cjn/M).

Initial Case: Let m ≥ 1. Then, both a and cm satisfy the same set of LM-formulas,
viz. those that define sets in U . Hence, tpM(a/M) = tpM(cm/M).

Inductive Step. Assume the hypothesis for all pairs of increasing sequences
of length n. Take any i1 < · · · < in < in+1 and j1 < · · · < jn < jn+1. By induction
hypothesis,

tpM(ci1 , · · · , cin/M) = tpM(cj1 , · · · , cjn/M).

Hence, there exists a f ∈ AutM(M) such that f (cip) = cjp for all p ≤ n. So, for every
LM-formula ϕ[x, x1, · · · , xn],

http://dx.doi.org/10.1007/978-981-10-5098-5_5
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ϕ(M, ci1 , · · · , cin) = ϕ(M, cj1 , · · · , cjn).

We also have

tp(cin+1 , ci1 , · · · , cin/M) = tp(f (cin+1), cj1 · · · , cjn/M).

It follows that both cjn+1 and f (cin+1) satisfy the same set of Mcj1 · · · , cjn -formulas,
viz. those that define sets in U . Hence,

tp(cin+1 , ci1 , · · · , cin/M) = tp(f (cin+1), cj1 · · · , cjn/M) = tp(cjn+1 , cj1 , · · · , cjn/M).

�

6.2 Shelah Strong Types and Kim–Pillay Strong Types

Afinite equivalence relation is an equivalence relationwith finitelymany equivalence
classes.

(I) Let ESh be the intersection of all finite equivalence relations on M
λ which are

definable over empty set. Since the cardinality of the set of all L-formulas without
parameters is |T | and since the number of equivalence classes of a finite equiva-
lence relation is less than ℵ0, we can easily see that the number of ESh-equivalence
classes is at most ℵ|T |

0 . Since each ∅-definable equivalence relation is invariant, ESh

is invariant too. Also, note that ≡∅ is the intersection of all equivalence relations
of the {ϕ(M),¬ϕ(M)}, where ϕ[x] varies over all L-formulas without parameters,
ESh ⊂≡∅. It follows that each ESh-equivalence class is contained in a ≡∅-class. This
equivalence relation was introduced by Shelah and plays a fundamental role in sta-
bility theory. In his honour, ESh-equivalence classes are called Shelah strong types.
Readers should see books of Shelah [54] and of Pillay [47] for this topic.

(II) Let EKP be the intersection of all type-definable, bounded, invariant equiv-
alence relations on M

λ. By Proposition4.6.3, every type-definable, invariant set is
∅-type-definable. Hence, EKP is the intersection of all bounded, ∅-type-definable
equivalence relations. Clearly, EKP is invariant and EKP ⊂ ESh. By Theorem6.1.3,
for each bounded, ∅-type-definable equivalence relation E on M

λ, |Mλ/E| ≤ 2|T |.
Since the set of all types over empty set is of cardinality ≤ 2|T |, it follows that

|Mλ/EKP| ≤ (2|T |)(2
|T |) < κ,

because κ is strongly inaccessible. Thus, EKP is a bounded, invariant, equivalence
relation. Since the intersection of any family of type-definable equivalence relations
is type-definable, we have the following proposition.

Proposition 6.2.1 EKP is the finest, bounded, type-definable equivalence relation
on M

λ and |Mλ/EKP| ≤ 2|T |.

http://dx.doi.org/10.1007/978-981-10-5098-5_4
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This equivalence relation was introduced by Kim and Pillay in [25]. In their
honour, EKP-equivalence classes are called Kim–Pillay strong types. We shall make
more historical comments on this topic later in this chapter.

6.3 Lascar Strong Types

Let EL be the intersection of all bounded, invariant, equivalence relations on M
λ. By

Proposition4.6.1, for every bounded, invariant, equivalence relation E on M
λ, there

is a set {pi(x, y) : i ∈ I} of types over empty set such that E = ∪i∈Ipi(M). Hence, the
set of all bounded, invariant, equivalence relations is of cardinality at most 22

|T | = μ,
say. In Theorem6.1.2, we showed that for every bounded, invariant, equivalence
relation E on M

λ, |Mλ/E| ≤ 2(2|T |) = ν, say. It follows that |Mλ/EL| ≤ νμ < κ.
Thus, EL is the finestest bounded, invariant equivalence relation on M

λ and M
λ,

|Mλ/EL| ≤ 2(2|T |). In particular, EL ⊂ EKP.
We now proceed to give several other descriptions ofEL. Let a, b ∈ M

λ.We define

a E0 b ⇔ ∃M � M(|M| < κ & a ≡M b),

and

a E1 b ⇔ ∃a0, a1, a2, . . . ∈ M
λ(a0 = a, a1 = b & a0, a1, a2, . . . are order indiscernibles).

We make a series of easily provable observations now.

1. E0 is reflexive, symmetric and invariant.
2. The transitive closure of E0, denoted by trcl(E0), is an invariant equivalence

relation.
3. Fix any smallM � M. Then, ≡M⊂ trcl(E0). Hence, trcl(E0) is bounded. In par-

ticular, EL ⊂ trcl(E0).
4. E1 is reflexive and invariant.
5. Let a E1 b. Take a sequence a0, a1, a2, . . . ∈ M

λ such that a0 = a, a1 = b and
a0, a1, a2, . . . are order indiscernibles. By Proposition5.1.4, there exist a−1, a−2,

a−3, . . . ∈ M
λ such that

. . . , a−3, a−2, a−1, a0, a1, a2, a3, . . .

are order indiscernibles. This implies that b, a, a−1, a−2, . . . are order indis-
cernibles. It follows that E1 is symmetric. Hence, trcl(E1) is an invariant equiva-
lence relation.

6. E1 ⊂ EL: Suppose not. Get a, b such that a E1 b and ¬(aELb). By Proposi-
tion5.1.5, for each α < κ there exists a aα ∈ Mλ such that a0 = a, a1 = b and

a0, a1, a2, a3, · · · aα, . . . , α < κ

http://dx.doi.org/10.1007/978-981-10-5098-5_4
http://dx.doi.org/10.1007/978-981-10-5098-5_5
http://dx.doi.org/10.1007/978-981-10-5098-5_5
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are order indiscernibles. In particular, for every α < β < κ, tpM(a, b) = tpM

(aα, aβ). Hence, there exists f ∈ Aut(M) such that f (a) = aα and f (b) = aβ .
Since EL is invariant, it follows that ¬(aαELaβ). This contradicts that EL is
bounded. We now see that trcl(E1) ⊂ EL.

7. E0 ⊂ trcl(E1): Let a E0 b. GetM � M small such that a ≡M b. By Theorem6.1.7,
there is a sequence c1, c2, c3, . . . in M

λ such that both the sequences a, c1, c2,
c3, . . . and b, c1, c2, c3, . . . are order indiscernibles. In particular, a E1 c1 and
bE1c1. This implies that a trcl(E1) b.

We have proved the following theorem.

Theorem 6.3.1 EL = trcl(E0) = trcl(E1).

As a consequence of these descriptions of Lascar strong types, we can realise them
as orbits under the action of a subgroup of the automorphism group of the monster
model.

Let AutfL(M) denote the smallest subgroup of Aut(M) containing each of
AutM(M),M � M,M small. Each element of AutfL(M) is of the form σn ◦ · · · ◦ σ0,
where σi ∈ AutMi(M), Mi � M small, 0 ≤ i ≤ n. Automorphisms of M belonging
to AutfL(M) are sometimes called strong automorphisms. The group AutfL(M) was
introduced by Lascar in [33].

Proposition 6.3.2 For any σ ∈ Aut(M), the following statements are equivalent:

1. σ ∈ AutfL(M).
2. σ fixes all Lascar strong types setwise.
3. For all small M � M, σ fixes the Lascar strong types containing m, where m is

an enumeration of M.
4. There exists a small M � M, σ fixes the Lascar strong types containing m, where

m is an enumeration of M.

Proof Let σ = σn ◦ · · · ◦ σ0, where σi ∈ AutMi(M),Mi � M small, 0 ≤ i ≤ n. Take
any a ∈ M

λ. Set a0 = a. Now suppose ai+1 = σi(ai), 0 ≤ i ≤ n. Then, for each
0 ≤ i ≤ n, ai+1 ≡Mi ai. Hence, σ(a) = an+1 trcl(E0) a. This shows that σ fixes the
Lascar strong type containing a. We have shown that (1) implies (2).

To complete the proof, we only need to show that (4) implies (1). Let M � M,
|M| < κ and suppose σ ∈ Aut(M) fixes the Lascar strong types containingm, where
m is an enumeration ofM. Since EL = trcl(E0) and σ(m)ELm, σ(m) trcl(E0) m. Set
m0 = σ(m). We get smallMi � M, 0 ≤ i ≤ n, andm1, · · · ,mn,mn+1 = m such that
for all 0 ≤ i ≤ n,mi ≡Mi mi+1. Then, for each0 ≤ i ≤ n, there exists aσi ∈ AutMi(M)

such thatmi+1 = σi(mi). Hence,m = (σn ◦ · · · ◦ σ0 ◦ σ)(m) implyingσn ◦ · · · ◦ σ0 ◦
σ ∈ AutM(M) ⊂ AutfL(M). It follows that σ ∈ AutfL(M). �

Proposition 6.3.3 AutfL(M) is a normal subgroup of Aut(M).

Proof Take anyM � M, |M| < κ, σ ∈ AutM(M) and τ ∈ Aut(M). It is sufficient to
show that τ−1 ◦ σ ◦ τ ∈ AutfL(M). Fix an enumeration m of M. By (2) of the last
proposition, σ(τ (m))ELτ (m). Since EL is invariant, τ−1(σ(τ (m)))ELm. Hence, by
(4) of the last proposition, τ−1 ◦ σ ◦ τ ∈ AutfL(M). �
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Theorem 6.3.4 EL equals the orbit equivalence relation on M
λ under the action of

AutfL(M).

Proof Take any smallM � M, σ ∈ AutM(M) and a ∈ M
λ. Suppose b = σ(a). Then,

b ≡M a. But ≡M⊂ E0 ⊂ trcl(E0) = EL. Now it is clear that for every σ ∈ AutfL(M),
a EL σ(a).

Conversely, let a EL b. Then, a trcl(E0) b. Then, there exist smallM0, · · · ,Mn−1 �
M, and a1, · · · , an−1 ∈ M

λ such that a ≡M0 a1, a1 ≡M1 a2, · · · , an−2 ≡Mn−2 an−1,
an−1 ≡Mn−1 b. It follows that there exist σi ∈ AutMi(M), 0 ≤ i ≤ n, such that σ0(a) =
a1, σi(ai) = ai+1, 1 ≤ i < n − 1, and σn−1(an−1) = b. Hence, b = σ(a), where σ =
σn−1 ◦ · · · ◦ σ0 ∈ AutfL(M). �

We give a few simple consequences of this theorem.

Proposition 6.3.5 Let σ ∈ Aut(M). The following statements are equivalent:

1. σ ∈ AutfL(M).
2. For every invariant set Y ⊂ M

λ, λ < κ, for every bounded, invariant equivalence
relation E on Y and for every a ∈ Y, aEσ(a).

3. For some small elementary substructure m = M of M, mELσ(m).

Proof Since Y is invariant, extending E on M
λ by declaring any two elements not

in Y equivalent, we get a bounded, invariant equivalence relation on M
λ containing

E. Since Y is also invariant, it follows that EL|Y ⊂ E. By the last Theorem6.3.4,
a EL σ(a) if σ ∈ AutfL(M). Hence, (1) implies (2).

(2) implies (3) by taking Y = p(M), where p = tp(m). (1) follows from (3) by
Proposition6.3.2. �

We now give another description of the logic topology on M
λ/E, where E is

a bounded, invariant equivalent relation on M
λ. Fix any small M � M. Consider

Sλ(M/M) with Stone topology. This makes Sλ(M/M) a compact, Hausdorff, zero-
dimensional topological space. Let a, b ∈ M

λ be such that tpM(a/M) = tpM(b/M),
i.e. a E0 b. Since E0 ⊂ EL, a EL b. Since EL ⊂ E, it follows that a E b. Thus, we have
a surjection fM : Sλ(M/M) → M

λ/E defined by fM(tpM(a/M)) = [a], a ∈ M
λ.

Proposition 6.3.6 D ⊂ M
λ/E is closed in the logic topology if and only if f −1

M (D)

is closed in the Stone topology.

Proof Define g : M
λ → Sλ(M/M) by g(a) = tpM(a/M), a ∈ M

λ. Then, π = fM ◦
g, where π : M

λ → M
λ/E is the quotient map.

Assume that f −1
M (D) is closed in the Stone topology. Get a set p(x) of LM-formulas

such that
f −1
M (D) = ∩ϕ∈p[ϕ].

Then, for any a ∈ M
λ,



6.3 Lascar Strong Types 175

a ∈ π−1(D) ⇔ tpM(a/M) ∈ f −1
M (D)

⇔ ∀ϕ ∈ p(tpM(a/M) ∈ [ϕ])
⇔ a |= p.

This shows that π−1(D) = p(M). Hence, D is closed in the logic topology.
Next assume that D ⊂ M

λ is closed in the logic topology, i.e. π−1(D) is type-
definable. Since EL ⊂ E, by Theorem6.3.4, π−1(D) is invariant under the action of
AutfL(M). In particular, it is invariant over M. Hence, by Proposition4.6.3, there
is a set of LM-formulas p(x) such that π−1(D) = p(M). From here, it is entirely
routine to check that f −1

M (D) = ∩ϕ∈p[ϕ]. So, f −1
M (D) ⊂ Sλ(M/M) is closed in the

Stone topology. �

The equivalence relation EL for n-tuples was introduced by Lascar in [33] as
the orbit equivalence under the action of AutfL(M). In his honour, EL-equivalence
classes are called Lascar strong types. A detailed study of it was made in [25] by Kim
and Pillay where, in particular, it was shown that EL is the finest bounded invariant
equivalence relation. Significantly, Kim and Pillay showed that if T is so-called
simple, then EL = EKP. It is pertinent to point out that stable theories are simple.
Thus, the paper of Kim and Pillay is of fundamental importance for Lascar strong
types that brought this topic into model theory. Readers should see the books of
Casanovas [7] and of Wagner [67] as well as the papers of Kim and Pillay [25],
Lascar and Pillay [34], Newelski [44], Casanovas, Lascar, Pillay and Ziegler [8] and
Hart, Kim and Pillay [17] for more on this topic.

6.4 The Galois Group GalL(T)

Note that we have fixed a large strongly inaccessible cardinal κ and that by a monster
model of T we mean a κ-saturated, κ-strongly homogeneous model of T .

For any monster model M of T , we set GalL(M) = Aut(M)/AutfL(M). In this
section, we show that for any two monster models M and N of T , GalL(M) and
GalL(N) are isomorphic. In the next section, we shall give a topology to GalL(M)

which will make it into a compact topological group. Further, for any two monster
models M and N of T , we shall show that there is an isomorphism from GalL(M)

to GalL(N) which is also a homeomorphism. By GalL(T), we shall mean GalL(M)

for some monster model M of T .
Fix a monster model M of T . As before, let π : Aut(M) → GalL(M) be the

quotient map. For σ ∈ Aut(M), we shall often write [σ] for π(σ).
Let M

′ � M. Choose any small M,N � M and N ′ � M
′ having enumerations

n = N and n′ = N ′ such that tp(n′/M) = tp(n/M). Take any σ ∈ Aut(M′). Then,
there exists a sequence a in M such that

a |= tp(σ(n′)/M).

http://dx.doi.org/10.1007/978-981-10-5098-5_4
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In particular,
tp(a) = tp(σ(n′)) = tp(n′) = tp(n).

Hence, there is a τ ∈ Aut(M) such that τ (n) = a. Note that

tp(τ (n)/M) = tp(σ(n′)/M).

We now make a series of very crucial observations which will help to define an
isomorphism between GalL(M) and GalL(N).

1. Let τ ′ be another automorphism of M such that τ ′(n) = a. Then, τ and τ ′ agree
on the small elementary substructure N of M. Hence, [τ ] = [τ ′].

2. Next assume that N0 � M and N ′
0 � M

′ are another pair of substructures with
enumerations n0 and n′

0, respectively, such that tp(n′
0/M) = tp(n0/M). Also,

assume that τ0 ∈ Aut(M) is such that tp(τ0(n0)/M) = tp(σ(n′
0)/M). We show

that [τ ] = [τ0].

SinceN ′ andN ′
0 are small and elementarily equivalent, by Proposition2.8.1, there

is a small N ′
1 � M

′ which is a common elementary extension of both N ′ and N ′
0.

Fix an enumeration n′
1 of N

′
1. By Proposition4.3.7, there is a sequence n1 ∈ M

such that tp(n1/M) = tp(n′
1/M). Let δ ∈ Aut(M) be such that tp(δ(n1)/M) =

tp(σ(n′
1)/M). To complete the proof, we now show that [τ ] = [δ] = [τ0].

Proof of [δ] = [τ ] :Without any loss of generality, we assume that n′
1 = n′a′. Let

n1 = ba, where the length of b equals the length of n′ and the length of a equals
the length of a′. We have the following:

tp(n/M) = tp(n′/M) = tp(b/M), (1)

and
tp(τ (n)/M) = tp(σ(n′)/M) = tp(δ(b)/M). (2)

By (1), there is a g ∈ AutM(M) ⊂ AutfL(M) such that g(n) = b. Hence, by (2),
tp(τ (n)/M) = tp(δ(g(n))/M). Therefore, by observation (1), [τ ] = [δ ◦ g] =
[δ].

Similarly, we prove that [τ0] = [δ].
3. Next take a different M0 � M. By Proposition2.8.1, there is a small M1 � M

which is a common elementary extension of both M and M0. Get τ ∈ M such
that tp(τ (n)/M1) = tp(σ(n′)/M1). In particular, tp(τ (n)/M) = tp(σ(n′)/M) and
tp(τ (n)/M0) = tp(σ(n′)/M0). This shows that [τ ] does not depend onM either.

Thus, we have a well-defined map

αM
′

M
: Aut(M′) → GalL(M)

http://dx.doi.org/10.1007/978-981-10-5098-5_2
http://dx.doi.org/10.1007/978-981-10-5098-5_4
http://dx.doi.org/10.1007/978-981-10-5098-5_2
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defined as follows: Choose any pair of smallM,N � M andN ′ � M
′ with enumera-

tions n = N and n′ = N ′ such that tp(n′/M) = tp(n/M). For any σ ∈ Aut(M′). Take
any τ ∈ Aut(M) such that tp(τ (n)/M) = tp(σ(n′)/M). Define αM

′
M

(σ) = [τ ].
Let σ = id be the identity automorphism of Aut(M′). In this case, we can choose

τ to be the identity automorphism of M. Thus, αM
′

M
(id) = e, the identity element of

GalL(M).
Next let σ,σ′ ∈ Aut(M′), M,N = n � M, N ′ = n′ � M

′ with tp(n′/M) = tp
(n/M). Get τ ∈ Aut(M) such that tp(τ (n)/M) = tp(σ(n′)/M). Nowget τ ′ ∈ Aut(M)

such that tp(τ ′(τ (n))/M) = tp(σ′(σ(n′))/M). This shows that

αM
′

M
(σ′ ◦ σ) = αM

′
M

(σ′) · αM
′

M
(σ).

Thus, we have shown that

4. αM
′

M
: Aut(M′) → GalL(M) is a homomorphism.

Further, assume that M
′ is λ+-saturated and λ+-strongly homogeneous, where

λ = |M|. We have the following:

(a) αM
′

M
is onto: Fix small elementary substructuresM and n = N ofM. Take n′ = n.

Let τ ∈ Aut(M). Since M
′ is λ+-strongly homogeneous, there is an extension

σ ∈ Aut(M′) of τ . Then, αM
′

M
(σ) = [τ ].

(b) ker(αM
′

M
) ⊂ AutfL(M′): Let σ ∈ Aut(M′) be such that αM

′
M

(σ) = e. Take small
elementary substructures M, n = N of M. By our hypothesis, there is a τ ∈
AutfL(M) such that tp(σ(n)/M) = tp(τ (n)/M) = tp(τ ′(n)/M), where τ ′ ∈ Aut
(M′) is an extension of τ . Note that if τ ∈ AutfL(M), then every extension τ ′ of
τ belongs to AutfL(M′). There is a δ ∈ AutM(M′) ⊂ AutfL(M′) such that σ(n) =
δ(τ ′(n)). This implies that [σ] = [δ ◦ τ ′] = e, i.e. σ ∈ AutfL(M′).

(c) AutfL(M′) ⊂ ker(αM
′

M
): Let N ′ � M

′ be small and σ ∈ AutN ′(M′). Suffices to
show that αM

′
M

(σ) = e. Fix any enumeration n′ of N ′. For any smallM � M, by
Proposition4.3.7, there is a sequence n in M such that tp(n/M) = tp(n′/M) =
tp(σ(n′)/M). Therefore, corresponding to σ we can choose τ = id. Hence,
αM

′
M

(σ) = e.

We have now proved that

5. If M
′ is a |M|+-saturated, |M|+-strongly homogeneous elementary extension

of M, then αM
′

M
induces an isomorphism, denoted by βM

′
M
, from GalL(M′) to

GalL(M).

Theorem 6.4.1 Let M and N be two monster models of T. Then, GalL(M) and
GalL(N) are isomorphic.

Proof Recall that we have fixed a large strongly inaccessible cardinal κ and M and
N are κ-saturated, κ+-strongly homogeneous models of T . In particular, they are
elementarily equivalent. Let λ = max{|M|+, |N|+}. Using Theorem4.4.5, get a λ-
saturated, λ-strongly homogeneous model M

′ of T which is a common elementary
extension of both M and N. By observation 5 above, GalL(M) as well as GalL(N)

are isomorphic to GalL(M′). �

http://dx.doi.org/10.1007/978-981-10-5098-5_4
http://dx.doi.org/10.1007/978-981-10-5098-5_4
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6.5 Topology on GalL(T)

We now proceed to define a topology on GalL(M) which will make it into a topo-
logical group. Let M � M be small. We fix an enumeration m of M. Set

S(m) = {tpM(a/M) : a ≡∅ m} ⊂ Sλ(M/M).

Then,
S(m) = ∩{[ϕ] : M |= ϕ[m],ϕ an L-formula}.

Hence, S(m) is closed in Sλ(M/M) under the Stone topology. In particular, S(m) is
compact. We make a series of observations now.

1. Suppose σ,σ′ ∈ Aut(M) are such that tpM(σ(m)/M) = tpM(σ′(m)/M). Then,
there exists a τ ∈ AutM(M) such that τ (σ′(m)) = σ(m). Hence,

σ−1 ◦ τ ◦ σ′ = (σ−1 ◦ τ ◦ σ) ◦ (σ−1 ◦ σ′) ∈ AutM(M) ⊂ AutfL(M).

Since AutfL(M) is a normal subgroup of Aut(M), σ−1 ◦ τ ◦ σ ∈ AutfL(M). It
follows that σ−1 ◦ σ′ ∈ AutfL(M). Thus, we have a well-defined map

ρm : S(m) → GalL(M)

defined by
ρm(tpM(σ(m)/M)) = [σ], σ ∈ Aut(M).

2. Next take smallM � N � M. Take enumerationsM = m and N = m n. We have
the restriction map r : S(m n) → S(m) defined by

r(tpM(σ(m n)/N) = tpM(σ(m)/M)), σ ∈ Aut(M).

This map is continuous and onto. Further, ρm ◦ r = ρN .

We equipGalL(M)with the largest topologymaking ρm continuous for somefixed
m = M � M, |M| < κ. This topology is independent ofM. To see this, take any two
small elementary substructures M and M ′ of M. Since M and M ′ are elementarily
equivalent, by Proposition2.8.1, there is a common elementary extension N of M
and M ′ which is a small elementary substructure of M. Thus, without any loss of
generality, we assume M � N . Fix an enumeration m n of N . Let D ⊂ GalL(M).
Then,ρ−1

m n(D) = r−1(ρ−1
m (D)). It is noweasy to see thatρ−1

m (D) is closed if and only if
ρ−1
m n(D) is closed. Following usual notation from topology, for any setX ⊂ GalL(M),

X will denote the closure of X.
Since S(m) is compact, we have the following theorem.

Theorem 6.5.1 GalL(M) is compact.

http://dx.doi.org/10.1007/978-981-10-5098-5_2
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Proposition 6.5.2 π : Aut(M) → GalL(M) is continuous.

Proof Define ηm : Aut(M) → S(m) by

ηm(σ) = tp(σ(m)/M), σ ∈ Aut(M).

Then, π = ρm ◦ ηm. So, our result will be proved if we show that ηm is continuous.
Take any σ0 ∈ Aut(M) and assume that tp(σ0(m)/M) ∈ [ϕ[x]], where ϕ is an

LM-formula. Let m = (mβ)β<λ and suppose variables having a free occurrence in
ϕ are among xβ0 , · · · , xβn . Then, for any σ ∈ Aut(M) such that σ(mβi) = σ0(mβi),
0 ≤ i ≤ n, ηm(σ) ∈ [ϕ]. �

Proposition 6.5.3 For D ⊂ GalL(M), the following conditions are equivalent:

1. D is closed.
2. {σ(m) : [σ] ∈ D} is type-definable over M for every small elementary substruc-

ture m = M of M.
3. {σ(a) : [σ] ∈ D} is type-definable for every small sequence a in M.
4. {σ(m) : [σ] ∈ D} is type-definable for some small elementary substructure m =

M of M.
5. {σ(m) : [σ] ∈ D} is type-definable overM for some small elementary substructure

m = M of M.

Proof Let D ⊂ GalL(M) be closed and m = M a small elementary substructure
of M. Get a set p(x) of LM-formula such that ρ−1

m (D) = ∩ϕ∈p[ϕ]. Then, for any
σ ∈ Aut(M),

[σ] ∈ D ⇔ tpM(σ(m)/M) ∈ ρ−1
m (D)

⇔ ∀ϕ ∈ p(M |= ϕ[σ(m)])
⇔ σ(m) ∈ p(M).

Thus, we have proved that (1) implies (2). Next assume (2) and take any small
sequence a, say of length λ < κ. Take a small elementary substructureM = m = a b
of M, say of length μ < κ. By (2), there is a set p(x y), x of length λ, x y of length
μ, of LM-formulas such that {σ(m) : [σ] ∈ D} = p(M). Set q(x) = {ϕ[x] : ϕ ∈ p}.
Then, q(M) = {σ(a) : [σ] ∈ D}. So, (2) implies (3)

Clearly, (3) implies (4). To see that (4) implies (5), get M as in (4). Since
AutM(M) ⊂ AutfL(M) and EL is the orbit equivalence relation under the action of
AutfL(M), the set {σ(m) : [σ] ∈ D} is invariant overM. Hence, by Proposition4.6.3,
{σ(m) : [σ] ∈ D} is type-definable over M.

Now assume (5). Get a set p(x) of LM-formulas such that p(M) = {σ(m) : [σ] ∈
D}. Then, it is easily seen that ρ−1

m (D) = ∩ϕ∈p[ϕ]. Hence, D is closed. �

The next result is technical but quite useful.

Proposition 6.5.4 Let m = M be a small elementary substructure of M, p(x) =
tp(m) and G a closed subgroup of GalL(M). Then, there is an ∅-type-definable,
bounded, equivalence relation R on p(M) such that

http://dx.doi.org/10.1007/978-981-10-5098-5_4
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[σ] ∈ G ⇔ σ(m) R m.

Proof SinceG is closed inGalL(M), by Proposition6.5.3, there is a set ofL-formulas
q(x, y) such that

q(M,m) = {σ(m) : [σ] ∈ G}.

Set R′ = q(M). We show that R = R′|p(M) is a bounded equivalence relation on
p(M). Since R is clearly invariant, this will complete the proof.

Since e = [id] ∈ G, (m,m) |= q. Since q is without any parameter, (σ(m),

σ(m)) |= q for every σ ∈ Aut(M). This shows that R is reflexive.
Now take any twoσ, τ ∈ Aut(M) such that (σ(m), τ (m)) |= q. Then, (τ−1(σ(m)),

m) |= q. Hence, [τ−1 ◦ σ] ∈ G. Since G is a subgroup, [σ−1 ◦ τ ] ∈ G. Hence,
((σ−1 ◦ τ )(m),m) |= q. This implies that (τ (m),σ(m)) |= q. So, R is symmetric.

We leave the routine proof of the transitivity of R for the reader.
Rmust be bounded because ¬R(τ (m),σ(m)) implies that σ and τ are in different

cosets of AutfL(M). �

We give below another useful description of the topology on GalL(M).

Theorem 6.5.5 A set D ⊂ GalL(M) is closed if and only if whenever U is an ultra-
filter on an index set I, M

′ = M
U , {σi : i ∈ I} ⊂ Aut(M) such that for each i ∈ I,

[σi] ∈ D, αM
′

M
((�iσi)

U ) ∈ D.

Proof ‘If’ part: Take any small m = M � M. Set X = ρ−1
m (D). Take q(x) = tp

(σ(m)/M) ∈ X , σ ∈ Aut(M). We are required to show that [σ] ∈ D.
Let I denote the set of all finite subsets of q(x). Suppose i = {ϕ1, · · · ,ϕk} ⊂ q.

Then, q ∈ ∩k
j=1[ϕj]. Since q is in the closure of X, there is a σi ∈ Aut(M) with

[σi] ∈ D such that σi(m) |= i.
For each ϕ ∈ q, set Bϕ = {i ∈ I : ϕ ∈ i}. Clearly, {Bϕ : ϕ ∈ q} has finite intersec-

tion property. Let U be an ultrafilter on I containing {Bϕ : ϕ ∈ q}.
Set σ′ = (�iσi)

U . Then, by Łoś Theorem2.1.3, tp(σ′(m)/M) = q = tp(σ(m)/

M). This implies that αM
′

M
(σ′) = [σ] by the definition of αM

′
M
. By our hypothesis,

[σ] = αM
′

M
(σ′) ∈ D.

‘Only if’ part: Now assume that D is closed. Fix any small m � M. By Proposi-
tion6.5.3, there is a set p(x) of LM-formulas such that p(M) = {σ(m) : [σ] ∈ D}.

Take any index set I , an ultrafilter U on I and for each i ∈ I a σi ∈ Aut(M)

such that [σi] ∈ D. Set M
′ = M

U and σ′ = (�iσi)
U . We are required to show that

αM
′

M
(σ′) ∈ D.
Since each σi(m) |= p, σ′(m) |= p. Get τ ∈ Aut(M) such that tp(τ (m)/M) =

tp(σ′(m)/M). Since p(x) ⊂ tp(σ′(m)/M), τ (m) |= p(x). Hence, [τ ] ∈ D.
Since tp(σ′(m)/M) = tp(τ (m)/M), αM

′
M

(σ′) = [τ ]. Therefore, αM
′

M
(σ′) ∈ D. �

Using the fact that for an ultrafilter U on a set I , whenever a subset A of I is not
in U , Ac ∈ U , we easily get the following result.

Corollary 6.5.6 AsubsetU ofGalL(M) is open if andonly ifwhenever {σi : i ∈ I} ⊂
Aut(M) is such that αM

′
M

((�iσi)
U ) ∈ V , V open in GalL(M), {i ∈ I : [σi] ∈ V } ∈ U .

http://dx.doi.org/10.1007/978-981-10-5098-5_2
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Proposition 6.5.7 Let A ⊂ GalL(M) = Aut(M)/AutfL(M). Then, [σ] ∈ A if and
only if there exist a non-empty set I, an ultrafilter U on I, for each i ∈ I a [σi] ∈ A
such that αM

′
M

((πi∈Iσi)
U ) = [σ], where M

′ = MU .

Proof Fix a small elementary substructure m = M of M.
LetB be the set of all elements of the formαM

′
M

((πi∈Iσi)
U ), whereU is an ultrafilter

on an index set I , for each i ∈ I , [σi] ∈ A and M
′ = MU . By Theorem6.5.5, A ⊂

B ⊂ A. Therefore, it is sufficient to show that B is closed.
Take any index set I , an ultrafilter U on I and [σi] ∈ B, i ∈ I . Then, for each i ∈ I ,

there is an ultrafilter Ui on an index set Ji and for each j ∈ Ji a [σj
i ] ∈ A such that

[σi] = αMi
M

((πj∈Jiσ
j
i)
Ui),

where Mi = M
Ui . We consider M as an elementary substructure of Mi canonically.

By the definition of αMi
M
, we have

tp(σi(m)/M) = tp((πj∈Jiσ
j
i)
Ui(m)/M).

By Łoś theorem, it follows that for every LM-formula ϕ[x],

|= ϕ[σi(m)] ⇔ {j ∈ Ji :|= ϕ[σj
i(m)]} ∈ Ui. (∗)

Next, consider M
′ = M

U . Let

[σ] = αM
′

M
((σi)

U
i∈I).

This implies that
tp(σ(m)/M) = tp((σi)

U
i∈I(m)/M).

By Łoś theorem, for every LM-formula ϕ[x],

|= ϕ[σ(m)] ⇔ {i ∈ I :|= ϕ[σi(m)]} ∈ U . (∗∗)

Now set J = ∪i({i} × Ji) and

V = {V ⊂ J : {i ∈ I : {j ∈ Ji : (i, j) ∈ V } ∈ Ui} ∈ U}.

It is routine to check that V is an ultrafilter on J .
Set M

′′ = M
V . Using (∗) and (∗∗), it is now easy to check that

[σ] = αM
′′

M
((π(i,j)∈Jσ

j
i)
V) ∈ B.

By Theorem6.5.5, it follows that B is closed. �

Proposition 6.5.8 Translations on GalL(M) are homeomorphisms.
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Proof LetD ⊂ GalL(M) be closed and τ ∈ Aut(M).We show that [τ ] · D is closed in
GalL(M). Fix any small elementary substructurem = M ofM. By Proposition6.5.3,
there is a set of L-formulas p(x, y) such that

p(M,m) = {σ(m) : [σ] ∈ D}.

Then,
p(M, τ (m)) = {τ (σ(m)) : [σ] ∈ D}.

Hence, [τ ] · D is closed in GalL(M) by Proposition6.5.3.
We have proved that for every τ ∈ Aut(M), [σ] → [τ ] · [σ] is continuous. Hence,

it is a homeomorphism. Similarly, we show that for every τ ∈ Aut(M), [σ] → [σ] ·
[τ ] is a homeomorphism. �
Proposition 6.5.9 Inversion on GalL(M) is a homeomorphism.

Proof Let D ⊂ GalL(M) be closed. Fix any small elementary substructure m = M
of M. By Proposition6.5.3, there is a set of L-formulas p(x, y) such that

p(M,m) = {σ(m) : [σ] ∈ D}.

Consider
q(x, y) = {ϕ[y, x] : ϕ[x, y] ∈ p}.

It is easy to see that q(M,m) = {σ(m) : [σ]−1 ∈ D}. The result follows. �
The following surprising result will be used to show that {e} is a normal subgroup

of GalL(M).

Lemma 6.5.10 If [σ] ∈ {[τ ]}, then [τ ] ∈ {[σ]}. In particular, if [σ] ∈ {[τ ]}, then
{[τ ]} = {[σ]}.
Proof Set [τ ] ≤ [σ] if [τ ] ∈ {[σ]}. Since GalL(M) is compact, by Zorn’s lemma,
GalL(M) has a minimal element, say [σ0] i.e. [τ ] ≤ [σ0] implies [σ0] ≤ [τ ].

Take any other [σ] ∈ GalL(M) and assume that [τ ] ≤ [σ], i.e. [τ ] ∈ {[σ]}.
Then, by Proposition6.5.8, [σ0 ◦ σ−1 ◦ τ ] ∈ {[σ0]}. Since [σ0] is minimal, we have
[σ0] ≤ [σ0 ◦ σ−1 ◦ τ ]. Hence, by Proposition6.5.8, [σ] ∈ {[τ ]}. So, every element
of GalL(M) is a minimal element. The result is clear now. �
Proposition 6.5.11 {e} is a normal subgroup of GalL(M).

Proof Let [σ], [τ ] ∈ {e}. Hence, [σ] · [τ ] ∈ {[σ]} = {e}. Next, [τ ] ∈ {e} implies that
e ∈ {[τ−1]}. Then, [τ−1] ∈ {e}.

Next, take [σ] ∈ [e] and τ ∈ Aut(M). Then, [σ ◦ τ ] ∈ [e] · [τ ] = [τ ]. Hence,
[τ−1 ◦ σ ◦ τ ] ∈ [τ−1] · [τ ] = [e]. �

The next technical result will be used to show that GalL(M) is a topological
group. Since we have already proved that inversion on GalL(M) is continuous, we
shall need to show only that the product on GalL(M) is jointly continuous.



6.5 Topology on GalL(T) 183

Lemma 6.5.12 Let σ, τ ∈ Aut(M) be such that whenever U � [σ] and V � [τ ] are
open, U ∩ V 
= ∅. Then, {[σ]} = {[τ ]}.
Proof Suppose {[σ]} 
= {[τ ]}. To complete the proof, we shall obtain open U � [σ]
and V � [τ ] such that U ∩ V = ∅.

By Lemma6.5.10, [τ ] /∈ {[σ]}. Fix a small m = M � M and set p(x) = tp(m).
By Proposition6.5.4, there is an ∅-type-definable bounded equivalence relation R on
p(M) such that

[σ] ∈ {e} ⇔ σ(m) R m.

Let q(x, y) be a set of L-formulas such thatR = q(M).Without any loss of generality,
we assume that q is closed under finite conjunctions.

By Proposition6.5.8, {[σ]} = [σ] · {e}. Since [τ ] /∈ {[σ]}, we have [σ−1] · [τ ] =
[σ−1 ◦ τ ] /∈ {e}. Hence, there is a ϕ[x, y] ∈ q such that |= ¬ϕ[(σ−1 ◦ τ )(m),m].
Since q is without parameters, |= ¬ϕ[τ (m),σ(m)].

We claim that there exists a ψ ∈ q such that ψ[x, y] ∧ ψ[y, z] ∧ ¬ϕ[x, z] is not
satisfiable by any 3-tuple (a, b, c) in p(M). Suppose not. Then,

r(x, y, z) = p(x) ∪ p(y) ∪ p(z) ∪ {ψ[x, y] ∧ ψ[y, z] ∧ ¬ϕ[x, z] : ψ ∈ q}

is a type over empty set in M. Hence, by saturability of M, it is realised in M. This
implies that R is not transitive which is a contradiction.

Put
r(z) = {∃y(¬ψ[τ (m), y] ∧ ξ[z, y]) : ξ ∈ q}

and
s(z) = {∃x(¬ψ[x,σ(m)] ∧ ξ[x, z]) : ξ ∈ q}.

Set
C1 = {γ ∈ Aut(M) : γ(m) |= r}

and
C2 = {γ ∈ Aut(M) : γ(m) |= s}.

We now show that whenever γ ∈ C1 and σ ∈ AutfL(M), σ ◦ γ ∈ C1. Towards show-
ing this note that γ(m) |= r implies that

r′(y) = {¬ψ[τ (m), y]} ∪ {ξ[γ(m), y]) : ξ ∈ q}

is a type over a small set. Hence, by saturability of M, there is an a |= r′. Note
that EL|p(m) ⊂ R. Since EL is the orbit equivalence relation under the action of
AutfL(M), for every σ ∈ AutfL(M), (σ ◦ γ)(m)Rγ(m). Hence, (σ ◦ γ)(m)Ra, i.e.
((σ ◦ γ)(m), a) |= q. It follows that σ ◦ γ ∈ C1. Similarly, we show that whenever
γ ∈ C2 and σ ∈ AutfL(M), σ ◦ γ ∈ C2. These together with the definitions of C1
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and C2 show that π(C1) and π(C2) are closed in GalL(M), where π : Aut(M) →
GalL(M) is the quotient map.

Since |= ¬ϕ[τ (m),σ(m)], for every γ ∈ Aut(M),

|= ¬ψ[τ (m), γ(m)] ∨ ¬ψ[γ(m),σ(m)].

Suppose |= ¬ψ[τ (m), γ(m)]. As (γ(m), γ(m)) |= q, we see that γ ∈ C1. If ¬ψ
[γ(m),σ(m)], by the same reason, γ ∈ C2. Thus, Aut(M) = C1 ∪ C2.

Using ψ ∈ q, it easily seen that τ /∈ C1 and σ /∈ C2. Take U = π(C1)
c and V =

π(C2)
c. �

Theorem 6.5.13 GalL(M) is a topological group.

Proof We need to prove that the map ([σ], [τ ]) → [σ] · [τ ] = [σ ◦ τ ] from GalL
(M) × GalL(M) to GalL(M) is continuous at each ([σ0], [τ0]). Since the translation
is a homeomorphism on GalL(M), without any loss of generality, we assume that
[σ0] = [τ0] = e.

Let U � e be an open set. We are required to show that there exists an open set
V � e such that whenever [σ], [τ ] ∈ V , [σ ◦ τ ] ∈ U . Suppose such an open set V
does not exist. For each open V � e, get [σV ], [τV ] ∈ V such that [σV ◦ τV ] /∈ U .

Let I be the set of all open neighbourhood of e. For each V ∈ I , let AV = {W ∈
I : W ⊂ V }. Then, the family of subsets {AV : V ∈ I} of I has the finite intersection
property. Let U be an ultrafilter on I containing each AV , V ∈ I .

Set M
′ = M

U and

[σ] = αM
′

M
((πV∈IσV )U ) ∧ [τ ] = αM

′
M

((πV∈IτV )U ).

Claim. {e} = {[σ]} = {[τ ]}.
Take openU ′ � [σ] and V ′ � e. To prove {e} = {[σ]}, by Lemma6.5.12, it is suf-

ficient to show thatU ′ ∩ V ′ 
= ∅. By Corollary6.5.6, A = {V ∈ I : [σV ] ∈ U ′} ∈ U .
Hence, A ∩ AV ′ 
= ∅, containing W , say. Then, [σW ] ∈ U ′ ∩ W ⊂ U ′ ∩ V ′. Simi-
larly, we prove that {e} = {[τ ]}.

By Theorem6.5.5,

[σ ◦ τ ] = αM
′

M
((πV∈IσV ◦ τV )U ) /∈ U.

By Proposition6.5.11, it follows that [σ ◦ τ ] ∈ {e}. Hence, by Lemma6.5.10,
e ∈ {[σ ◦ τ ]}. We have arrived at a contradiction because [σ ◦ τ ] /∈ U and U is an
open neighbourhood of e. �

Proposition 6.5.14 Let M
′ � M be |M|+-saturated and |M|+-strongly homoge-

neous. Then,
βM

′
M

: GalL(M
′) → GalL(M)

is a homeomorphism.
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Proof βM
′

M
is continuous : Let D ⊂ GalL(M) be closed. Fix any small m = M � M.

By Proposition6.5.3, there is a set p(x) of LM-formulas such that

p(M) = {σ(m) : [σ] ∈ D}.

To show that βM
′

M
is continuous, we show that

p(M′) = {σ′(m) : [σ′] ∈ (βM
′

M
)−1(D)}.

Take [σ′] ∈ (βM
′

M
)−1(D). Assume that βM

′
M

([σ′]) = [τ ] ∈ D. Hence, τ (m) |= p. Since
αM

′
M

(σ′) = [τ ],
tp(σ′(m)/M) = tp(τ (m/M)).

Since p is a set of LM-formulas, σ′(m) |= p.
We now show the reverse inclusion. Let M

′ � a |= p. By Proposition4.3.7, there
is b ∈ M such that tp(a/M) = tp(b/M). Hence, there is a [σ] ∈ D such that b =
σ(m). There is g ∈ AutM(M′) such that g(σ(m)) = a. Since M

′ is |M|+-strongly
homogeneous, there is an extension σ′′ ∈ Aut(M′) of σ. Note that βM

′
M

([σ′′]) = [σ].
Set σ′ = g ◦ σ′′. Then, [σ′] = [σ′′]. Since σ′(m) = g(σ′′(m)) = g(σ(m)) = a, our
proof is complete.

(βM
′

M
)−1is continuous : LetD ⊂ GalL(M′) be closed. Fix any smallm = M � M.

By Proposition6.5.3, there is a set p(x) of LM-formulas such that

p(M′) = {σ′(m) : [σ′] ∈ D}.

To complete the proof, we show the following:

p(M) = {σ(m) : [σ] ∈ βM
′

M
(D)}.

Take [σ] ∈ βM
′

M
(D). Since M

′ is |M|+-strongly homogeneous, there is an exten-
sion σ′ ∈ Aut(M′) of σ. Clearly, tp(σ′(m)/M) = tp(σ(m)/M). This implies that
βM

′
M

([σ′]) = [σ]. Since βM
′

M
is one-to-one, we must have [σ′] ∈ D. Inclusion from

right to left follows.
For the reverse inclusion, let M

′ ⊃ M � a |= p. Then, there is a [σ′] ∈ D such
that σ′(m) = a. Set αM

′
M

(σ′) = [σ]. Then, tp(σ(m)/M) = tp(σ′(m)/M) = tp(a)/M.
Hence, there is a g ∈ AutM(M) such that g(σ(m)) = a = σ′(m). Since [σ] = [g ◦
σ] ∈ βM

′
M

(D), our proof is complete. �

This theorem tells that for any two monster models M and N, GalL(M) and
GalL(N) are homeomorphic. In fact, there is an isomorphism from GalL(M) onto
GalL(N)which is a homeomorphism. Thus,GalL(M) is an invariant of T , i.e. it does
not depend on the monster model M. From now on, GalL(T)will stand for GalL(M)

for somemonster modelM of T .GalL(T) is called theGalois group of T . This group
was introduced by Lascar in [33].

http://dx.doi.org/10.1007/978-981-10-5098-5_4
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6.6 The Group Gal0(T)

We set
Gal0(T) = {e},

Galc(T) = GalL(T)/Gal0(T)

and
AutfKP(M) = π−1(Gal0(T)),

where π : Aut(, M) → GalL(T) is the quotient map. The group Galc(T) is called
the closed Galois group of T .

We make a series of simple observations.

1. In Proposition6.5.11, we proved that Gal0(T) is a normal subgroup of GalL(T).
2. SinceGal0(T) is a normal subgroup ofGalL(T), AutfKP(M) is a normal subgroup

of Aut(M).
3. Since AutfL(M) is a normal subgroup of Aut(M), AutfL(M) is a normal subgroup

of AutfKP(M).
4. Gal0(T) is isomorphic to AutfKP(M)/AutfL(M). This is because π : AutfKP

(M) → Gal0(T) is an epimorphism with kernel AutfL(M).
5. Galc(T) is a compact topological group.
6. Since {e′}, e′ the identity of Galc(T), is closed, Galc(T) is Hausdorff.

Theorem 6.6.1 Let λ < κ and Y ⊂ M
λ a type-definable, EL-invariant set. Then, Y

is AutfKP(M)-invariant.

Proof Set
S = {σ ∈ Aut(M) : σ(Y) = Y}.

We need to show that AutfKP(M) ⊂ S. For a ∈ Y , let

S(a)+ = {σ ∈ Aut(M) : σ(a) ∈ Y}

and
S(a)− = {σ ∈ Aut(M) : σ−1(a) ∈ Y}.

Then, S = ∩a∈Y (S(a)+ ∩ S(a)−). Since EL is the orbit equivalence on M
λ under

the action of AutfL(M) and since Y is assumed to be EL-invariant, for every a ∈ Y ,
S(a)+ ∩ S(a)− ⊃ AutfL(M).

Next assume that σ ∈ S and τ ∈ AutfL(M). Then, τ (σ(Y)) = τ (Y) = Y . Thus,
AutfL(M) ◦ S = S. By the same argument, we see that for every a ∈ Y , AutfL(M) ◦
S(a)+ = S(a)+ and S(a)− ◦ AutfL(M) = AutfL(M) ◦ S(a)− = S(a)−. It follows that

S = ∩a∈Y (AutfL(M) ◦ S(a)+ ∩ AutfL(M) ◦ S(a)−).
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We shall complete the proof by showing that for every a ∈ Y ,

AutfKP(M) ⊂ AutfL(M) ◦ S(a)+

and
AutfKP(M) ⊂ AutfL(M) ◦ S(a)−.

Fix an a ∈ Y . Note that

AutfL(M) ◦ S(a)+ = π−1(π(S(a)+))

and
AutfL(M) ◦ S(a)− = π−1(π(S(a)−)).

The proof will be complete if we show that π(S(a)+),π(S(a)−) ⊃ Gal0(T). Since
e ∈ π(S(a)+),π(S(a)−), our contention will follow if we show that π(S(a)+),

π(S(a)−) are closed in GalL(T). Note that π(S(a)−) = π(S(a)+)−1. Hence, we need
to show only π(S(a)+) is closed in GalL(T). We are going to use Theorem6.5.5.

Take any smallM � M. Since Y is EL-invariant, it is invariant overM. Further, it
is type-definable. Hence, by Proposition4.6.3, there is a type p(x) over M such that
Y = p(M).

Take an ultrafilterU on an index set I . SetM′ = M
U .We treatM′ as an elementary

extension ofM canonically. For each i ∈ I , choose σi ∈ Aut(M) such that σi(a) ∈ Y ,
i.e. σi(a) |= p. Set σ = (πi∈Iσi)

U . Suppose

[τ ] = αM
′

M
(σ). (∗)

We need to show that τ (a) |= p.
Take a small elementary substructure N of M containing a. Enumerate N = n =

ab. By (∗),
tpM

′
(σ(ab)/M) = tpM(τ (ab)/M).

By Łoś theorem, for every LM-formula, ψ[xy], we have

M |= ψ[τ (ab)] ⇔ M
′ |= ψ[σ(ab)] ⇔ {i ∈ I : M |= ψ[σi(ab)]} ∈ U .

In particular, for every ϕ[x] ∈ p,

M |= ϕ[τ (a)] ⇔ M
′ |= ϕ[σ(a)].

Since {i ∈ I : ϕ[σi(a)]} = I ∈ U , M |= ϕ[τ (a)] and our proof is complete. �

http://dx.doi.org/10.1007/978-981-10-5098-5_4
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6.7 EKP as an Orbit Space

Fix a λ < κ. Let F denote the orbit equivalence relation on M
λ under the action of

AutfKP(M). We make a series of simple observations first.

1. Since each Kim–Pillay strong type is type-definable and EL-invariant, by
Theorem6.6.1, AutfKP(M) stabilises all Kim–Pillay strong types. Thus, F ⊂ EKP.

2. By Theorem6.3.4, EL is the orbit equivalence relation under the action of
AutfL(M) and EL is bounded. Since AutfL(M) ⊂ AutfKP(M), we see that F is
bounded.

3. Since AutfKP(M) is a normal subgroup of Aut(M), it is easily checked that F is
invariant.

Theorem 6.7.1 F is type-definable over empty set.

Proof Take any smallM � M. Fix an enumeration m of M. Set

A(m) = {a : a ≡∅ m}

and
S(m) = {tp(a/M) : a ∈ A(m)}.

Note that A(m) = {σ(m) : σ ∈ Aut(M)}. Recall that we have an onto map

ρm : S(m) → GalL(T)

defined by
ρm(tp(σ(m)/M)) = [σ], σ ∈ Aut(M).

We set
� : A(m) × A(m) → S(m) × S(m)

by
�(σ(m), τ (m)) = (tp(σ(m)/M), tp(τ (m)/M)), σ, τ ∈ Aut(M),

� = ρm × ρm : S(m) × S(m) → GalL(T) × GalL(T)

and
� : GalL(T) × GalL(T) → GalL(T)

defined by
�([σ], [τ ]) = [τ−1 ◦ σ], σ, τ ∈ GalL(T).

Step 1. E = F|A(m) is type-definable over empty set.
Set A = �−1(�−1(�−1(Gal0(T)))). We shall prove Step 1 by showing that A is

type-definable and A = E.
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Since Gal0(T) is closed, �−1(�−1(Gal0(T)c)) is open in S(m) × S(m). Hence,
there exist families of LM-formulas {ϕi[x] : i ∈ I} and {ψi[y] : i ∈ I} such that

�−1(�−1(Gal0(T)c)) = ∪i∈I([ϕi] × [ψi]).

Set
q(x, y) = {¬ϕi[x] ∨ ¬ψi[y] : i ∈ I}.

It is fairly routine to check that A = q(M).
Now we show that E = A. Fix a, b ∈ A(m).
Suppose a E b. Get σ ∈ AutfKP(M) and τ ∈ Aut(M) such that b = τ (m) and a =

σ(b) = σ(τ (m)). Hence,

�(�(�(a, b))) = [τ−1 ◦ σ ◦ τ ] ∈ Gal0(T)

because AutfKP(M) is a normal subgroup of Aut(M). Thus, (a, b) ∈ A, proving that
E ⊂ A.

Conversely, assume that (a, b) ∈ A. Set a = σ(m) and b = τ (m). We have [τ−1 ◦
σ] ∈ Gal0(T). This implies that τ−1 ◦ σ ∈ AutfKP(M). Therefore,

σ ◦ τ−1 = σ ◦ (τ−1 ◦ σ) ◦ σ−1 ∈ AutfKP(M).

Since b = τ ◦ σ−1(a), A ⊂ E.
By observation (3) above, E is invariant. Hence, by Proposition4.6.3, E is type-

definable over empty set, say by a set of L-formulas p(x, y).

Claim. For any a, b ∈ M
λ,

aFb ⇔ ∃c(a m ≡∅ b c ∧ c |= p(x,m)).

Assuming the claim, we complete the proof first. Consider

q(x, y, z) = {ϕ[x,m] ↔ ϕ[y, z] : ϕ an L-formula} ∪ p(z,m).

By our claim, F = proj(q(M)). Hence, by Proposition4.6.2, F is type-definable.
Proof of the claim. Suppose aFb. Get σ ∈ AutfKP(M) such that b = σ(a).

Take c = σ(m). Then, tp(a,m/∅) = tp(b, c/∅). Further, c |= p(x,m). Thus, we have
proved the implication from left to right.

Conversely, let a m ≡∅ b c ∧ c |= p(x,m). Get σ ∈ Aut(M) such that σ(a m) =
b c. Since p type definesF|A(m), cFm. Hence, there exists a τ ∈ AutfKP(M) such that
τ (m) = c = σ(m) implying τ−1 ◦ σ(m) = m. It follows that τ−1 ◦ σ ∈ AutfL(M) ⊂
AutfKP(M). Since τ ∈ AutfKP(M), σ ∈ AutfKP(M). Thus, aFb.

Since F is type-definable and invariant, by Proposition4.6.3, F is type-definable
over empty set. �

http://dx.doi.org/10.1007/978-981-10-5098-5_4
http://dx.doi.org/10.1007/978-981-10-5098-5_4
http://dx.doi.org/10.1007/978-981-10-5098-5_4
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Theorem 6.7.2 EKP = F, the orbit equivalence relation under the action of
AutfKP(M).

Proof In the beginning of this section, we observed that F is bounded and F ⊂ EKP.
In the last theorem, we proved that F is type-definable over empty set. Since EKP

is the smallest, ∅-type-definable, bounded equivalence relation, EKP ⊂ F. Hence,
EKP = F. �

6.8 Connection with Descriptive Set Theory

Throughout this section, T is a countable complete theory, λ a countable ordinal
and parameter sets are countable. Further, by small substructures of the monster, we
shall mean countable substructures.

We let S(x, y/A) denote the set of all complete types over A in variables x, y of
equal length and of length a countable ordinal λ. We equip S(x, y/A) with the Stone
topology. Then, S(x, y/A) is a compact, metrisable, zero-dimensional space.

We refer the reader to [58, Sect. 3.6] for the definition Borel sets in a metrisable
space of additive (multiplicative) class α, 1 ≤ α < ω1.

Let r : S(x, y/A) → S(x, y/∅) denote the canonical restriction map. The map r is
continuous and onto. By (Theorem 5.2.11, [58]), we have the following.

Proposition 6.8.1 For every countable ordinal α and every B ⊂ S(x, y/∅), r−1(B)

is Borel of additive (multiplicative) class α if and only if B is Borel of additive
(multiplicative) class α.

Now let E be a bounded, invariant, equivalence relation on M
λ, where as usual

M is a monster model of T . Define

EA = {tp(a, b/A) : a E b} ⊂ S(x, y/A).

Note that EA = r−1(E∅). We call E Borel of additive (multiplicative) class α if E∅
is Borel of additive (multiplicative) class α. By the last proposition, we have the
following result.

Proposition 6.8.2 The following statements are equivalent:

1. E is Borel of additive (multiplicative) class α.
2. EA is Borel of additive (multiplicative) class α for all countable A.
3. EA is Borel of additive (multiplicative) class α for some countable A.

Next, fix a smallM � M.Wedefine abinary relationEM onS(x/M) as follows:We
make an observation first. Take any a, a′, b, b

′ ∈ M
λ such that tp(a/M) = tp(a′/M)

and tp(b/M) = tp(b
′
/M). Then, a ≡M a′. Hence, a EL a

′. But EL is the smallest
bounded, invariant, equivalence relation. Therefore, a E a′. By the same argument,
bEb

′
. It follows that
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a E b ⇔ a′ E b
′
.

Let p(x) = tp(a/M) and q(x) = tp(b/M). We define

pEMq ⇔ a E b.

By the above remark, this is well defined.
It is easy to check that EM is an equivalence relation on S(x/M).
Now consider a map h : S(x, y/M) → S(x/M) × S(x/M) defined by

h(tp(a, b/M)) = (tp(a/M), tp(b/M)), a, b ∈ M
λ.

It is easy to check that h is well defined and onto. Clearly, h−1(EM) = EM .
h is continuous: Let ϕ[x],ψ[y] be LM-formulas and a, b ∈ M

λ be such that

(tp(a/M), tp(b/M)) ∈ [ϕ] × [ψ].

Then, h([ξ]) ⊂ [ϕ] × [ψ], where ξ[x, y] = ϕ[x] ∧ ψ[y].
By (Theorem 5.2.11, [58]), it follows the following proposition.

Proposition 6.8.3 For every α < ω1, EM is Borel of additive (multiplicative) class
α if and only if EM is Borel of additive (multiplicative) class α.

Let X and Y be Polish spaces, and E and F be equivalence relations on X and Y ,
respectively. We say that Borel cardinality of E is less than or equal to F, written
E ≤B F, if there is a Borel function f : X → Y such that

∀x, y ∈ X(xEy ⇔ f (x)Ff (y)).

We say E and F have the same Borel cardinality, written |E| =B |F|, if both E ≤B F
and F ≤B E hold. It is clear that =B is reflexive, symmetric and transitive.

Theorem 6.8.4 Let M,N � M be countable. Then, the Borel cardinalities of EM

and EN are equal.

Proof SinceM and N are countable and elementarily equivalent, there is a common
countable elementary extension of M and N . Hence, without any loss of generality,
we can assume that M � N .

We have a continuous, onto restrictionmap r : S(x/N) → S(x/M). For any a, b ∈
M

λ, we have

tp(a/N)ENtp(b/N) ⇔ a E b ⇔ tp(a/M)EMtp(b/M).

This shows that EN ≤B EM .
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By Novikov’s selection theorem (Theorem 5.7.1, [58]), there is Borel map s :
S(x/M) → S(x/N) such that r ◦ s = id. We have

s(tp(a/M))ENs(tp(b/M)) ⇔ tp(a/M) = r(s(tp(a/M)))EMr(s(tp(b/M))) = tp(b/M).

This shows that EM ≤B EN . �

The connection with descriptive set theory is important to understand the spaces
of strong types and associated Galois groups as mathematical objects. The idea
of measuring the complexity of bounded, invariant equivalence relations via Borel
cardinalities was formulated in the paper of Krupinski, Pillay and Solecki [30]. In this
paper, it was conjectured thatEL restricted to a Kim–Pillay strong type is either trivial
or non-smooth, i.e. there is no Borel function inducing the equivalence relation. This
conjecture was proved byKaplan,Miller and Simon in [24]. This result was extended
by Kaplan and Miller in [23] and by Krupinski and Rzepecki in [29]. Finally, a very
general trichotomy theorem for arbitrary strong types was proved by Krupinski,
Pillay and Rzepecki in [28]. For more recent results, see [26, 27]. For relevance of
these in stability theory and model theory, see [46, 50].



Chapter 7
Model Theory of Valued Fields

Abstract This chapter is devoted to the model theory of valued fields, which is
due to Ax and Kochen. We also present Ax–Kochen’s solution of Artin’s conjecture
that for every prime p, the field of p-adic real numbers Qp is a C2(d) field for
every d ≥ 1 (See [2–4]). This was probably the first occasion when model theoretic
methods were used to solve an outstanding conjecture in mathematics. This chapter
requires a good knowledge of valued fields. It is a specialised topic not commonly
covered in graduate courses. In Appendix C, we have given a self-contained account
of the theory of valued fields that we require. The reader not familiar with valued
fields should go through Sect. C.1 before proceeding with this chapter.

7.1 The Language for Valued Fields

In Sect.C.1, it is shown that there is a one-to-one correspondence between valuation
subrings V and divisibility relations | on a field F. Further, the value group can be
taken to be F×/V× with valuation the quotient map v : F× → F×/V×.

We are going to take the language for valued fields to be the extension of the
language of rings by a divisibility relation symbol |. There are several reasons to
start with a divisibility relation:

1. It makes sense on a commutative ring with identity.
2. It is easy to characterize substructures of a fieldwith divisibility relations. They are

precisely integral domains with divisibility relations. (See Proposition C.1.16.)
3. If V is the corresponding valuation subring, we can express x ∈ V by the formula

1|x and x ∈ V× by 1|x ∧ x |1.
4. If v is a compatible valuation, then we can express many statements involving

v: v(x) ≥ 0 ⇔ 1|x , v(x) ≤ v(y) ⇔ x |y, v(x) < v(y) ↔ y 	 |x , v(x) = 0 ↔
(x |1 ∧ 1|x), etc., in terms of the divisibility relation.

From now on, the language of a valued field is an extension of the language of
rings with a new binary relation symbol |. This language is further extended by
definitions by adding unary predicate symbols V and V× defined by

V (x) ↔ 1|x and V×(x) ↔ (1|x ∧ x |1)
© Springer Nature Singapore Pte Ltd. 2017
H. Sarbadhikari and S.M. Srivastava, A Course on Basic Model Theory,
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respectively. The above remarks show that if v is a compatible valuation, then various
statements involving the valuation v can be expressed in our language. It is easily
seen that the classes of all integral domains with a divisibility relation, all valued
fields, all algebraically closed valued fields and all algebraically closed valued fields
of a fixed characteristic are elementary. Also note that char(F∼) = p, p > 0, is
expressed by the formula ¬p|1 and char(F∼) = 0 by the set of formulas {p|1 :
p a positive prime}.

We are now going to show that the truth of first-order statements in the residue
field or in the value group of a valued field can be decided in the valued field itself.

By induction on the length of a formula ϕ in the language of rings, we define a
formula ϕr in the language of valued fields as follows:

(t1 = t2)r = (V (t1) ∧ V (t2) ∧ ¬V×(t1 − t2)),

(¬ϕ)r = ¬ϕr ,

(ϕ ∨ ψ)r = ϕr ∨ ψr .

and
(∃xϕ)r = ∃x(V (x) ∧ ϕr ).

By induction on the length of a formula ϕ[x0, · · · , xn−1] in the language of rings,
it is easy to check that for all valued fields (F, V ) and all a0, · · · , an−1 ∈ V

F∼ |= ϕ[[a0], · · · , [an−1]] ⇔ (F, V ) |= ϕr [a0, · · · , ar ].

By induction on the length of a formula ϕ in the language of ordered groups, we
define a formula ϕg in the language of valued fields as follows:

(t1 = t2)g = ∃x(V×(x) ∧ x · t1 = t2),

(t1 < t2)g = ∃x(¬V×(x) ∧ V (x) ∧ x · t1 = t2),

(¬ϕ)g = ¬ϕg,

(ϕ ∨ ψ)g = ϕg ∨ ψg,

and
(∃xϕ)g = ∃x(x 	= 0 ∧ ϕg).

By induction on the length of a formulaϕ[x0, · · · , xn−1] in the language of ordered
groups, it is easy to check that for every valued field (F, V ) with value group � and
every a0, · · · , an−1 ∈ F×,

� |= ϕ[v(a0), · · · , v(an−1)] ⇔ (F, V ) |= (ϕ[a0, · · · , an−1])g.



7.1 The Language for Valued Fields 195

As a corollary, we get

Theorem 7.1.1 If (F, V ) is κ-saturated, so are its residue field F∼ and the value
group �.

In Sect.C.6,wedefined that a valuedfield (F, V ) isHenselian if for every algebraic
extensionL ofF, V has a unique extension toL. As an easy consequence of Theorem
C.6.2 giving several characterizations ofHenselian valuedfields,we get the following
result.

Proposition 7.1.2 The class of all Henselian valued fields is elementary.

Proof For each n > 1, let Hn denote the formula

∧n−1
i=0 V (xi ) → ∀x[(V (x) ∧ ¬V×(xn + ∑n−1

i=0 xi xi )
∧V×(nxn−1 + ∑n−1

i=1 i xi x
i−1))

→ ∃y(V (y) ∧ ¬V×(x − y) ∧ yn + ∑n−1
i=0 xi yi = 0)].

Then, the class of all Henselian valued fields is the set of all models of the theory
of valued fields extended by axioms {Hn : n > 1}. ��

7.2 Ultraproduct of Valued Fields

Example 7.2.1 Take a family of valued fields {(Fi , vi , �i ) : i ∈ I } and U an ultra-
filter on I . Now set �′

i = �i ∪ {∞i } with a <i ∞i for all a ∈ �i . By Theo-
rem 2.1.3, (×i�

′
i )/U = �(U) ∪ {∞} where ∞ = [(∞i )] and [(ai )] < ∞ for all

[(ai )] ∈ (×i�i )/U .
We now define a valuation vU on the ultraproduct F(U) = (×iFi )/U with value

group �(U) = (×i�i )/U as follows:

vU ([(ai )]) = [(vi (ai ))].

Using Theorem 2.1.3, it is quite easy to check that this defines a valuation on the
ultraproduct

Proposition 7.2.2 The residue field of the ultraproduct F(U) equals (×iF
∼
i )/U , the

ultraproduct of the residue fields of Fi s.

Proof The valuation subring of F(U) is given by

V (U) = {[(ai )] ∈ F(U) : vU ([(ai )]) ≥ 0}.

By Theorem 2.1.3, for each [(ai )] ∈ V (U), {i ∈ I : ai ∈ Vi } ∈ U . Hence, there
exists (bi ) such that [(bi )] = [(ai )] and bi ∈ Vi for all i ∈ I .

http://dx.doi.org/10.1007/978-981-10-5098-5_2
http://dx.doi.org/10.1007/978-981-10-5098-5_2
http://dx.doi.org/10.1007/978-981-10-5098-5_2
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We consider themap q that assigns [(ai )] to [([bi ])] ∈ (×iF
∼
i )/U . Using Theorem

Theorem 2.1.3 it is easy to check that q is well defined and is an epimorphism. We
now compute the kernel of q. Let bi ∈ Vi , i ∈ I . By Theorem 2.1.3,

[([bi ])] = 0 ⇔ {i ∈ I : bi ∈ Mi } ∈ U .

But {i ∈ I : bi ∈ Mi } = {i ∈ I : vi (bi ) > 0}. Hence, by Theorem 2.1.3,

q([(ai )]) = 0 ⇔ vU ([(ai )]) > 0.

Thus, the kernel of q is the unique maximal ideal of V U . This proves the result. ��
The next theorem is a direct consequence of Theorem 4.3.13

Theorem 7.2.3 Let U be a free ultrafilter on the set of all primes P. Then ×pQp/U
and ×pFp((X))/U are both ℵ1-saturated.

Proposition 7.2.4 If A = {i ∈ I : (Fi , Vi ) is Henselian} ∈ U , then (F(U), V (U))

is Henselian.

Proof Take a polynomial

f (X) = Xn + an−1Xn−1 + an−2Xn−2 + · · · + a1X + a0 ∈ V (U)[X ]

with an−1 /∈ M(U) and an−2, · · · , a0 ∈ M(U). We need to show that f has a root in
F(U).

Let a j = [(a j
i )], 0 ≤ j ≤ n − 1. Then, by Theorem 2.1.3, An−1 = {i ∈ I :

an−1
i ∈ V i \ Mi } and A j = {i ∈ I : a j

i ∈ Mi }, j = 0, · · · , n − 2, are all in U .
Therefore, B = A ∩ ∩n−1

j=0A j ∈ U . Fix an i ∈ B. Since Fi is Henselian, there is a

root bi ∈ Fi of fi (X) = xn + an−1
i Xn−1 + an−2

i Xn−2 + · · · + a0i . Set bi = 0 for
i ∈ I \ B. Then f ([(bi )]) = 0 by Theorem 2.1.3. ��
Corollary 7.2.5 Let P denote the set of all primes and U a free ultrafilter on P. Then
×pQp/U and ×pFp((X))/U are ℵ1-saturated Henselian valued fields with same
residue field ×pFp/U of characteristic 0 and same value group ZP/U .

We call a field F a Ci (d) field, if every homogeneous polynomial of total degree
d in more than di variables has a non-zero root. It is easy to see that the the class of
all Ci (d) fields is elementary.

Let p(X1, · · · , Xdi+1, · · · , Xn) be a homogeneous polynomial of total degree d.
Consider

q(X1, · · · , Xdi+1) = p(X1, · · · , Xdi+1, 0, · · · , 0).

Then q is a homogeneous polynomial of degree d in di + 1 variables. If q = 0, then
(1, · · · , 1, 0, · · · , 0) is a non-zero root of p. Otherwise, if a is a non-zero root of
q(X1, · · · , Xdi+1), (a, 0, · · · , 0) is a non-zero root of p(X1, · · · , Xdi+1, · · · , Xn).
Hence, F is a Ci (d)-field if and only if every homogeneous polynomial p(X1, · · · ,

Xdi+1) of degree d over F in di + 1 variables has a non-zero root.

http://dx.doi.org/10.1007/978-981-10-5098-5_2
http://dx.doi.org/10.1007/978-981-10-5098-5_2
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Proposition 7.2.6 Let {Fi : i ∈ I } be a family of fields and U an ultrafilter on I .
Then, the ultraproduct F(U) is a Ci (d) field if and only if {l ∈ I : Fl is a Ci (d) field}
∈ U .
Proof Let

A = {l ∈ I : Fl is a Ci (d) field} ∈ U .

Suppose p(X1, · · · , Xm) is a homogeneous polynomial overF(U) of degreem > di .
Let c1 = [(c1l )], · · · , ck = [(ckl )] be all the coefficients of p in some order. For each
l ∈ A, let pl be the homogeneous polynomial over Fl obtained from p by replacing
each c j by c j

l . Let al ∈ Fl be a non-zero root of pl . For l /∈ I , take al = 0. By
Theorem 2.1.3, [(al)] 	= 0 and is a root of p.

Now assume that A /∈ U . Since U is an ultrafilter, Ac ∈ U . For each l ∈ Ac,
get a homogeneous polynomial pl(X1, · · · , Xdi+1) over Fl that has no non-zero
root. Assume that all monomials in degree(d) occur in each pl , may be some with
coefficient 0. Let c1l , · · · , ckl be all the coefficients of pl in some order. Define c j

l = 0
for l ∈ A. Set c j = [(c j

l )] ∈ F(U).
Let p be the corresponding homogeneous polynomial over F(U) obtained

from pl with c j
l replaced by c j . If possible, suppose p has a non-zero root

a = ([(a1l )], · · · , [(aml )]), where m = di + 1. Since a 	= 0, by Theorem 2.1.3,
∪m

j=1{l ∈ I : a j
l 	= 0} ∈ U . Since U is maximal,

A j = {l ∈ I : a j
l 	= 0} ∈ U

for some 1 ≤ j ≤ m. So, A j ∩ Ac 	= ∅. Take an l ∈ A j ∩ Ac. Then pl has a non-zero
root which is a contradiction. ��

7.3 Ax–Kochen Theorem on Artin’s Conjecture

It was known that for every prime p, the field of formal Laurentz series Fp((X))

over Fp is a C2(d) field for every d ≥ 1. SinceQp and Fp((X)) have many algebraic
properties in common, Artin conjectured that for all primes p,Qp is aC2(d) field for
every d ≥ 1. This is not exactly correct. However, using model-theoretic methods,
Ax–Kochen showed that for every d ≥ 1,Qp is aC2(d) field for all but finitely many
primes p. In this section we are going to prove Ax–Kochen theorem.

Lemma 7.3.1 Let G be a torsion-free abelian group having a non-trivial cyclic
subgroup H such that [G : H ] < ∞. Then G is cyclic.

Proof We prove the result by induction on [G : H ]. Suppose [G : H ] = n > 1
and the result holds for all integers less than n. Let g be a generator of H . Take a
x ∈ G \ H . By our hypothesis, there exists a > 1 such that xa ∈ H . Suppose b ∈ Z

is such that xa = gb. Let d = (a, b). Set y = xa/dg−b/d . Then yd = eg . Since G is

http://dx.doi.org/10.1007/978-981-10-5098-5_2
http://dx.doi.org/10.1007/978-981-10-5098-5_2
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torsion free, y = eg . Replacing a by a/d and b by b/d if necessary, without any loss
of generality, we assume that (a, b) = 1

Now get p, q ∈ Z such that pa + qb = 1. Set h = gpxq . Then

ha = gapxaq = gap+bq = g.

And
hb = gbpxbq = xapxbq = xap+bq = x .

Thus, H = 〈g〉 is a proper subgroup of the cyclic subgroup H ′ = 〈h〉 ofG. Therefore,
[G : H ′] < n. Hence, G is cyclic by the induction hypothesis. ��
Theorem 7.3.2 Let (K1, V1, v1) and (K2, V2, v2) be Henselian-valued fields with
same residue fields of characteristic 0 and the same value group �. Assume that K2

is ℵ1-saturated. Suppose F is a countable, Henselian subfield of K1 with respect to
v1 with v1(F) pure in � (i.e., �/v1(F) is torsion-free) and σ : F → K2 a value
preserving embedding such that [a] = [σ(a)] for every a ∈ F ∩ V1. Then for every
b1, · · · , bk ∈ K1, there exists a countable subfield F′ ⊃ F(b1, · · · , bk) of K1 which
is Henselian with respect to v1 such that v1(F

′) is pure in � and to which σ admits
a value preserving extension σ′ : F′ → K2 such that [a] = [σ′(a)] for every
a ∈ F′ ∩ V1.

Proof By Proposition C.7.9, we get a countable subfield F′ of K1 such that F′ ⊃
F(b1, · · · , bk) and v1(F

′) is pure in�. SinceK1 is Henselian and since Henselization
of a countable-valued field is countable and an immediate extension (Proposition
C.7.2), without any loss of generality, we assume that F′ is Henselian with respect
to v1. Set �′ = v1(F

′).
By Zorn’s lemma, there exists a maximal (H,σ′) where F ⊂ H ⊂ F′ and σ′ :

H → K2 a value preserving embedding extending σ such that [a] = [σ′(a)] for
every a ∈ H ∩ V1 and v1(H) pure in �. If possible, suppose H is not Henselian
with respect to v1. Then, σ′(H) is not Henselian. Let Hh ⊂ K1 be the Henselization
of H and σ′(H)h ⊂ K2 be that of σ′(H). By the uniqueness of Henselization of
valued fields (see Sect.C.7), it follows that there is a value preserving isomorphism
τ : Hh → σ′(H)h ⊂ K2 extending σ′ such that [a] = [τ (a)] for every a ∈ Hh ∩ V1.
This contradicts the maximality of (H,σ′). So, H is Henselian with respect to v1.

To complete the proof, we show thatH = F′.We first show thatF′ is an immediate
extension of H.

Step 1. F′∼ = H∼.

If possible, suppose F′∼ 	= H∼. Let [x] ∈ F′∼ \ H∼.
Let [x] be transcendental over H∼. Then, x is transcendental over H. Let y ∈ V2

be such that [y] = [x]. Since the residue fields of K1 and K2 are the same, such a y
exists in K2. If possible, suppose [y] is algebraic over σ′(H)∼. Let

[y]m + [σ′(am−1)][y]m−1 + · + [σ′(a1)][y] + [σ′(a0)] = 0.
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Since for every a ∈ H ∩ V1, [a] = [σ′(a)] and [y] = [x], we then have

[x]m + [am−1][x]m−1 + · + [a1][x] + [a0] = 0.

This contradicts that [x] is transcendental over H∼. So, [y] is transcendental over
σ′(H)∼. Also note that v1(x) = v2(y) = 0. Therefore, by Theorem C.2.2,

v1(
∑n

i=0 ai x
i ) = min{v1(ai ) : 0 ≤ i ≤ n}

= min{v2(σ′(ai )) : 0 ≤ i ≤ n}
= v2(

∑n
i=0 σ′(ai )yi )

This implies that the isomorphism τ : H(x) → σ′(H) that extends σ′ and sends
x to y is value preserving.

To arrive at a contradiction, we now need to show that [ f/g] = [τ ( f/g)] for every
f/g ∈ H(x) ∩ V1. First take a polynomial

f (x) =
n∑

i=0

ai x
n ∈ H[x] ∩ V1.

Then v1( f ) = min{v1(ai ) : 0 ≤ i ≤ n} ≥ 0. Hence, each ai ∈ V1. Since z → [z]
is a homomorphism, it now follows that [ f ] = [τ ( f )]. It also follows that whenever
f, g ∈ H[x] ∩ V×

1 , [ f/g] = [τ ( f/g)].
Next let f/g ∈ H(x)∩M1. Since τ is value preserving, τ ( f/g) ∈ σ′(H)(y)∩M2.

Hence, [ f/g] = 0 = [τ ( f/g)].
Now take f

g ∈ H(x) ∩ V×
1 . Let f (x) = ∑n

i=0 ai x
i and g(x) = ∑n

j=0 b j x j .
Hence, by Theorem C.2.2,

v1( f ) = min{v1(ai ) : 0 ≤ i ≤ n} = min{v1(b j ) : 0 ≤ j ≤ m} = v1(g).

Let v1(aI ) = min{v1(ai ) : 0 ≤ i ≤ n} and v1(bJ ) = min{v1(b j ) : 0 ≤ j ≤ m}.
Then

[ f/g] = [aI /bJ ][ f ′/g′],

where f ′, g′ ∈ H[x] ∩ V×
1 . Now note that [ f ′/g′] = [τ ( f ′/g′)]. So,

[τ ( f/g)] = [σ′(aI /bJ )][τ ( f ′/g′)] = [aI /bJ ][ f ′/g′] = [ f/g].

Thus we have proved [x] has to be algebraic over H∼.
We now show that [x] is not algebraic over H∼ either. Suppose not. Let

f (X) = Xm + am−1X
m−1 + · · · + a1X + a0 ∈ (H ∩ V1)[X ]

be such that f ∼ is the minimal polynomial of [x] over H∼.
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In case 2 of Proposition C.7.9, using Hensel’s lemma we showed that f has a
root in F′ with residue class [x]. Without any loss of generality, we take x to be
such a root. Clearly, v1(x) = 0. In case 2 of Proposition C.7.9, we showed that
v1(H(x)) = v1(H[x]) = v1(H).

Arguing as above, using Hensel’s lemma, σ′( f ) has a root with residue class [x].
We take y to be such a root. So, we have a canonical isomorphism τ : H(x) →
σ′(H)(y). Since H is Henselian, there is exactly one valuation on every algebraic
extension of H extending v1. Hence, τ is also value preserving.

We have arrived at a contradiction in this case too.
Step 2. v1(F

′) = v1(H).

Suppose not. Get x ∈ F′ such that v1(x) /∈ v1(H). Replacing x by x−1 if neces-
sary, without any loss of generality, we assume that x ∈ V1. Since v1(x) /∈ v1(H),
0 < v1(x) < ∞. Also note that [x] = 0.

Since v1(H) is pure in �, for no non-zero integer l, lv1(x) ∈ v1(H). So, for
0 ≤ i 	= j < ∞ and ai , a j ∈ H, v1(ai xi ) 	= v1(a j x j ). Hence, by Lemma C.1.9,

v1(

m∑

i=0

ai x
i ) = min{v1(ai xi ) : 0 ≤ i ≤ m}

whenever a0, · · · , am ∈ H. Further, if not all a0, · · · , am are 0,

v1(

m∑

i=0

ai x
i ) = min{v1(ai ) + iv1(x) : 0 ≤ i ≤ m} < ∞.

Hence, x is not algebraic over H.
Since K1 and K2 have the same value group, there exists a y ∈ K2 such that

v2(y) = v1(x) > 0. In particular, [y] = 0 = [x]. Since v1(H) = v2(σ
′(H)), by the

above argument, for 0 ≤ i 	= j < ∞ and bi , b j ∈ σ′(H), v2(bi yi ) 	= v2(b j y j ). As
before, this proves that y is transcendental over σ′(H) and v1( f (x)) = v2(σ

′( f )(y))
for every f ∈ H[x]. Thus, the isomorphism σ′′ from H(x) to σ′(H)(y) sending x
to y and a ∈ H to σ′(a) is value preserving. As in case of Step 1, it follows that
[ f
g ] = [σ′′( f

g )] for every f
g ∈ H(x) ∩ V1.

However, v1(H(x)) may not be pure in �′. Take

H∗ = {z ∈ F′ : z is algebraic over H(x)}.

We first show that v1(H
∗) is pure in �′. Suppose there exists a ∈ F′×, b ∈ H∗ and

m > 1 such that mv1(a) = v1(b). Then v1(
am

b ) = 0. Since the residue fields of H
and F′ are the same (Step 1), there exists a c ∈ H ∩ V1 such that v1(c) = 0 and
[ amb ] = [c].
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Now consider the polynomial

f (Z) = Zm − am

bc
∈ (F′ ∩ V1)[Z ].

Then

v1( f (1)) = v1(c − am

b
) − v1(c) = v1(c − am

b
) > 0,

and
v1( f

′(1)) = v1(m) = 0

because char(K∼
1 ) = 0. Since F′ is Henselian, by Hensel’s lemma, f has a root, say

z, in F′ with residue 1. In particular, v1(z) = 0. Now ( az )
m = bc ∈ H∗. Thus, a

z ∈ F′
and is algebraic over H∗. So, a

z ∈ H∗. But then v1(a) = v1(
a
z ) ∈ v1(H

∗). Thus, we
have proved that v1(H∗) is pure in �′.

To arrive at a contradiction, we shall extend σ′ to a value preserving embedding τ
to H∗ such that [τ (a)] = [a] for every a ∈ H∗ ∩ V1. We shall use ℵ1-saturability of
K2 to achieve this. Enumerate H∗ = {an : n ∈ N}. We take a type over a countable
A ⊂ K2 consisting of the following formulas:

Xi + X j = Xk if ai + a j = ak,

Xi · X j = Xk if ai · a j = ak,

Xn = σ′(an) if an ∈ H

v2(Xn) = v1(an)

and
[Xn] = [an] if v1(an) ≥ 0.

Suffices to show that every finite set of these formulas is realized inK2. This will
follow if we show the following: Let H(x) ⊂ H′ ⊂ H∗, [H′ : H(x)] < ∞. Then σ′
admits a value preserving extension τ to H′.

Let H′ = H(x,α) be a finite extension of H(x). By Chevalley’s fundamental
inequality, [v1(H′) : v1(H(x))] < ∞. Since v1(H) is pure in �′,

v1(H(x)) = v1(H) ⊕ Zv1(x).

Also
v1(H

′) = v1(H) ⊕ G

with G an infinite torsion-free abelian group with [G : Zv1(x)] < ∞. Hence,
G = Zv1(y) for some y ∈ H′ by Lemma 7.3.1. Since H is Henselian with residue
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field of characteristic 0, it is algebraically maximal by Theorem C.7.8. So, y is
transcendental over H. Hence,

v1(H(y)) = v1(H) ⊕ Zv1(y) = v1(H
′)

by Theorem C.2.3. Thus, by Step 1,H′ is an immediate extension ofH(y). Note that
H(y) must contain x . So, H(x,α) is an algebraic extension of H(y). Hence, H′ is
contained in the Henselization ofH(y). Replacing x by y in the argument contained
in the first part of step 1, we see σ′ can be extended to a value preserving extension
τ to the Henselization (H(y))h of H(y). We have thus contradicted the maximality
of (H,σ′)

We have now proved that F′ is an immediate extension ofH. If possible, suppose
there exists an x ∈ F′ \H. Without any loss of generality, we assume that v1(x) ≥ 0.
SinceH is Henselian with residue field of characteristic 0, it is algebraically maximal
by Theorem C.7.8. So, x is transcendental over H. Enumerate H = {an : n ∈ H}
with a0 = 0.

Since the value groups of F′ and H are the same (Step 2) and x /∈ H, for every n,
there is a bn ∈ H× such that

v1(x − an) = v1(bn).

Claim 1. There exists a y ∈ K2 such that for every n,

v1(bn) = v1(x − an) = v2(y − σ′(an)). (∗)

SinceK2 is ℵ1-saturated, it is sufficient to show that for everym, there is a y ∈ K2

satisfying (∗) for every n ≤ m. Let

v1(x − ap) = min{v1(x − ai ) : 0 ≤ i ≤ m}.

Since the residue fields of F′ andH are the same, there exists a c ∈ H∩ V1 such that
[ x−ap

bp
] = [c]. Hence,

v1(x − ap − bpc) > v1(bp) = v1(x − ap) ≥ v1(x − ai )

for every 0 ≤ i ≤ m. Set d = ap − bpc ∈ H. In particular, v1(x − d) > v1(x) ≥ 0.
Hence, v1(d) ≥ 0 and [x] = [d].

For 0 ≤ i ≤ m,

v1(d − ai ) = v1((x − ai ) − (x − di )) = v1(x − ai ) = v1(bi ).

Now take y = σ′(d). Thus, by ℵ1-saturability of K2 there is a y ∈ K2 satisfying (∗)
for all n.
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Since y /∈ σ′(H) and σ′(H) is Henselian and finitely ramified, it is algebraically
maximal by Theorem C.7.8. Hence, y will necessarily be transcendental over σ′(H).
Claim 2. For every f (x) ∈ H[x], v1( f (x)) = v2(σ

′( f )(y)).

Then the isomorphism τ from H(x) to σ′(H)(y) sending x to y and a ∈ H to
σ′(a) will necessarily be a value preserving extension of σ′. This will contradict the
maximality of (H,σ′) and will finally prove our theorem.

We prove claim 2 by induction on d = degree( f ). Claim 1 proves the hypothesis
for d = 1. Let the statement be true for all p(x) ∈ H[x] of degree less than d and
f (x) ∈ H[x] be an irreducible polynomial of degree d. Set

H1 = H[x]/( f ).

Since H1 is just the space of all polynomials in H[x] of degree less than d, we can
restrict v1 to it. Now let g, h ∈ H[x] be of degree less than d. Write

gh = q f + r

with degree(r) < d. If always v1(r(x)) = v1(gh(x)), then v1|H1 would be a
valuation. It will follow thatH has a proper, algebraic immediate extension. But such
an extension does not exist because H is Henselian. Hence, there exist g, h ∈ H1

such that
v1(r(x)) 	= v1(gh(x)) = v1(g(x)) + v1(h(x)).

Hence,

v1( f (x)) = −v1(q(x)) + v1(r(x) − gh(x))
= −v1(q(x)) + min{v1(r(x)), v1(gh(x))}.

By induction hypothesis

v2(σ
′(r)(y)) 	= v2(σ

′(g)(y)) + v2(σ
′(h)(y)) = v2(σ

′(gh)(y)).

Therefore,

v2(σ
′(q f )(y)) = v2(σ

′(r)(y) − σ′(gh)(y))
= min{v2(σ′(r)(y)), v2(σ′(gh)(y))}

So,

v2(σ
′( f )(y)) = −v2(σ

′(q)(y)) + min{v2(σ′(r)(y)), v2(σ′(gh)(y))}
= −v1(q(x)) + min{v1(r(x), v1(gh(x))} = v1( f ).

The first equality holds by the induction hypothesis. ��
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Theorem 7.3.3 (Ax–Kochen) Let d ≥ 1. Then

Ad = {p ∈ P : Qp is not a C2(d) field},

where P denotes the set of all prime numbers, is finite.

Proof If possible, suppose Ad is infinite. Let U be a free ultrafilter on P containing
Ad . Consider

K1 = ×pQp/U and K2 = ×pFp((X))/U .

Then bothK1 andK2 are ℵ1-saturated Henselian fields (Theorem 4.3.13) with same
residue field ×pFp/U of characteristic 0 and same value group � = ×pZ/U which
is torsion free (Corollary 7.2.5). Since Ad ∈ U , K1 is not a C2(d) field (Proposition
7.2.6). It is well known that Fp((X)) is a C2(d) field for all primes p. Hence, K2 is
a C2(d) field (Proposition 7.2.6).

From the common properties of K1 and K2 listed above and using K2 is a C2(d)

field, we are going to prove that K1 is a C2(d) field. Thus we shall arrive at a
contradiction.

Let vi denote the valuation on Ki , i = 1, 2. Note that both v1 and v2 are trivial
on the prime field Q. So, Q is Henselian with respect to both v1 and v2, the identity
isomorphism id : (Q, v1) → (Q, v2) is value preserving with �/v1(Q) = � torsion
free.

Let f ∈ K1[X1, · · · , Xd2+1] be a homogeneous polynomial of degree d. Assume
that all monomials in X1, · · · , Xd2+1 of degree d occur in f , possibly some with
coefficient 0. We now proceed to show that f has a non-zero root.

Let a1, · · · , an be all the coefficients of f in some order. By Theorem 7.3.2, there
is a countable Henselian subfield F1 ⊃ Q(a1, · · · , an) such that �/v1(F1) is torsion
free and there exists a value-preserving extension σ : F1 → K2 of id.

Set F2 = σ(F1) and g = σ( f ). Then g is a homogeneous polynomial over K2 of
degree d in X1, · · · , Xd2+1. SinceK2 is a C2(d) field, g has a non-zero solution, say
x1, · · · , xd2+1. By the last theorem, there is an embedding τ : F2(x1, · · · , xd2+1) →
K1 extendingσ−1. Then τ (x1), · · · , τ (xd2+1) is a non-zero root of f .We have arrived
at a contradiction now. ��

7.4 Quantifier Elimination and Model Completeness
of Valued Fields

Wesawearlier that given anyvaluation subringV of afieldF, there exists an extension
of V to the algebraic closure F. Further, such an extension is essentially unique, i.e.
if V1 and V2 are two extensions of V to F. there is an F-automorphism α of F such
that α(V1) = V2. It follows that if | is a valuation divisibility relation on D, then
there is (essentially a unique) valuation divisibility relation on F extending |.

http://dx.doi.org/10.1007/978-981-10-5098-5_4


7.4 Quantifier Elimination and Model Completeness of Valued Fields 205

We are now in a position to prove quantifier elimination for theory of algebraically
closed fields with nontrivial valuation divisibility relation.

Theorem 7.4.1 The theory of algebraically closed fields with non-trivial valuation
divisibility relation admits quantifier elimination.

Proof Let (F1, |1), (F2, |2) be two algebraically closed fields with non-trivial valu-
ation divisibility relations, and (D, |) a common substructure. Let F be the quotient
field of D. Note that there is an F-isomorphism f of the algebraic closure of F in F1

onto the algebraic closure of F in F2 that takes |1 to |2. It follows that we can assume
that (F, |) is a common substructure of (F1, |1) and (F2, |2) with F also algebraically
closed.

Let ϕ[x, a] be an open formula with parameters a ∈ D ⊂ F. Suppose there
exists a t ∈ F1 such that F1 |= ϕ[t, a]. We need to produce a s ∈ F2 such that
F2 |= ϕ[s, a]. If t ∈ F, we simply take s = t . So, we assume that t ∈ F1 \ F. Then
t is transcendental over F. Set F′ = F(t) and |′ = |1|F′. Let κ = |F|. Since there
exists a κ+-saturated elementary extension of F2, without any loss of generality, we
assume that F2 is κ+-saturated.

Let V , V ′ and V2 denote the valuation subrings of F, F′ and F2 respectively. We
shall produce anF-monomorphism from (F′, V ′) into (F2, V2) respectively. This will
complete our proof.

Let �, �′ and �2 denote the value groups, v, v′ and v2 the valuations and F∼ =
V/M , F′∼ = V ′/M ′ and F∼

2 = V2/M2 denote the residue fields of (F, V ), (F′, V ′)
and (F2, V2) respectively.

Case1 : F∼ 	= F′∼.Note that there is a canonical embedding of F∼ into F′∼. Take
[x] ∈ F′∼ \F∼. So, x /∈ F. In particular, x is transcendental over F. Also, v′(x) = 0.
Hence, by Theorem C.2.2, for every a0, · · · , am ∈ F, v′(

∑
i ai x

i ) = mini v(ai ).
Using saturability ofF2,wenowproduce a x2 ∈ F2 transcendental overF. Towards

showing this consider

�(x) = {1|x ∧ x |1} ∪ {1|a − x ∧ a − x |1 : a ∈ V×}.

Since F is algebraically closed, F∼ is algebraically closed, and so infinite. Hence,
�[x] is finitely satisfiable in F. So, �(x) is satisfiable in F2, say by x2. Then, [x2] ∈
F∼
2 \ F∼. As before, it follows that x2 /∈ F and so is transcendental over F. Hence,

there is an F-isomorphism g from F(x) onto F(x2) that sends x to x2. Like before,
since [x2] is transcendental over F∼, we see that

v2(
∑

i

ai x
i
2) = min

i
v(ai ).

It follows that g preserves the valuation divisibility relation.
Since x ∈ F(t), there exist polynomials p(X), q(X) ∈ F[X ] with q 	= 0 such

that x = p(t)
q(t) . So, p(t) − xq(t) = 0. Thus, t is algebraic over F(x). Hence,

F′ = F(t) is algebraic over F(x). Since F2 is algebraically closed, we now have
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an F-monomorphism from F′ into F2. Since extensions of a valuation subring to the
algebraic closure is essentially unique, we can easily modify the F-monomorphism
so that the valuation divisibility relations are also preserved.

Case2 :� 	= �′ Recall that we can assume � = F×/V× and �′ = F′×/V ′×.
Clearly, there is a natural, order preserving embedding of� into�′. Now take x ∈ V ′
such that v′(x) ∈ �′ \ �. So, x /∈ F. By Theorem C.2.3, for every a0, · · · , an ∈ F,

v′(
∑

i

ai x
i ) = min

i
{v(ai ) + iv′(x)}.

Now consider the following:

�(v0) = {¬v0|a : v(a) < v′(x) & a ∈ F} ∪ {¬a|v0 : v′(x) < v(a) & a ∈ F}.

Since �2 is divisible and |2 is non-trivial, �(v0) is finitely satisfiable in F2. Hence,
by saturability, there exists an x2 ∈ F2 such that for all a ∈ F, v(a) < v′(x) →
v(a) < v2(x2) and v′(x) < v(a) → v2(x2) < v(a). Since v(x) /∈ �, it follows that
v2(x2) /∈ �. As before, for a0, · · · , an ∈ F,

v2(
∑

i

ai x
i
2) = min

i
{v(ai ) + iv2(x)}.

Since F is algebraically closed, x2 is transcendental over F. By the above observation
the canonical F-isomorphism from F(x) onto F2 preserves the valuations. The proof
in this case is completed as in case 1.

Case3 :F∼ = F′∼ & � = �′. In this case, we prove that there exists a t2 ∈ F2

such that
∀a ∈ F(v′(t − a) = v2(t2 − a)).

Assuming this we complete the proof first. Let g : F(t) → F2(t2) be the
F-isomorphism with g(t) = t2. Now take a0, · · · , an ∈ F with n > 0 and an 	= 0.
Since F is algebraically closed, write

∑

i

ai X
i = an(X − b1) · · · (X − bn),

b1, · · · , bn ∈ F.
Then

v′(
∑

i

ai t
i ) = v(an) +

∑

i

v′(t − bi ) = v(an) +
∑

i

v2(t2 − bi ) = v2(g(
∑

i

ai t
i )).

It follows that g preserves the valuations too and the proof is complete.
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It remains to show the existence of a t2 ∈ F2 satisfying the above condition. Since
� = �′, for every a ∈ F, we get a ta ∈ F such that v′(t − a) = v(ba). Now consider

�(v0) = {v0 − a|ta ∧ ta|v0 − a : a ∈ F}.

We now show that � is finitely satisfiable in F. Then, by saturability, it is satisfiable
in F2, say by t2. Clearly t2 satisfies the above condition.

Take a1, · · · , an ∈ F. Let k be such that for a = ak , v(ta) = maxi v(tai ). Since
v′(t − a) = v(ta), (t − a)t−1

a ∈ V ′×. Since F∼ = F′∼, there is a c ∈ V such that

[(t − a)t−1
a ] = [c].

Set d = a + cta ∈ F. Then

v′(
t − d

ta
) > 0,

i.e.,
v′(t − d) > v(ta).

It follows that for all 1 ≤ i ≤ n,

v′(t − d) > v(ta) ≥ v(tai ).

Hence,
v(d − ai ) = v′((t − ai ) − (t − d)) = v′(t − ai ) = v(tai ).

Our proof is complete now. ��
Corollary 7.4.2 The theory T of algebraically closed, non-trivial valued fields is
model complete. It is the model companion of the theory of valued fields.

Proof Thefirst part is a direct consequence of quantifier elimination for T . Let (F, V )

be a valued field. If V 	= F, then recall that V can be extended to the algebraic closure
F which is then an algebraically closed non-trivial valued field extending (F, V ). If
V = F, first get a non-trivial valuation onF(X) and take its extension to the algebraic
closure of F(X). ��
Corollary 7.4.3 The theory T of non-trivial, algebraically closed valued fields with
fixed characteristic and fixed characteristic of the residue field is complete.

Proof By quantifier elimination proved in Theorem 7.4.1, it is sufficient to show the
existence of a prime structure in all possible cases. If char(F) = char(F∼) = 0, then
Q with trivial valuation is a prime structure. If char(F) = char(F∼) = p > 0, then
Fp with trivial valuation is a prime structure. If char(F) = 0 and char(F∼) = p > 0,
then Q with p-adic valuation is a prime structure. ��



Appendix A
Set Theory

In this chapter, we present the results and concepts from naive set theory that we
shall need. Some of the proofs are omitted. For cardinals and ordinals, the reader
may see ([58], Chap. 1) and for infinite combinatorics ([22], Chap. 9).

A.1 Ordinal Numbers

A well-ordered set is a linearly ordered set (W,<) such that every non-empty subset
A of W has a (unique) least element.Well-ordering principle, in notation W OP, is the
statement “every set can be well-ordered”. Throughout this book, we have assumed
W OP.

For any u ∈ W ,
W (u) = {v ∈ W : v < u}

is called an initial segment of W .

Proposition A.1.1 If (W,<) is a well-ordered set and u ∈ W , then there is no
order-preserving injection f : W → W (u).

Proof Suppose to the contrary an order-preserving injection f : W → W (u) exists.
Set

u0 = u & ∀n(un+1 = f (un)).

Then A = {u0, u1, . . .} ⊂ W is a non-empty set with no least element. This is a
contradiction. �

We have the following two methods of transfinite induction.

Theorem A.1.2 Let (W,<) be a well-ordered set.

1. (Proof by transfinite induction.) Suppose for each u ∈ W , Pu is a statement
such that whenever Pv holds for all v < u, Pu holds. Then for all u ∈ W , Pu

holds.
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2. (Definition by transfinite induction.) Let X be a set and F : I(W ) → X a
function, where I(W ) is the set of all functions from an initial segment of W to
X. Then there is a unique function G : W → X such that

∀u ∈ W (G(u) = F(G|W (u))).

The class of all ordinal numbers (or simply ordinals) is a class ON such that each
α ∈ ON is a well-ordered set and every well-ordered set is order isomorphic to a
unique α ∈ ON. That such a class exists follows from Zermelo–Fraenkel axioms.
Ordinal numbers will generally be denoted by α, β and γ with or without suffixes or
prefixes.

For ordinals α,β, we write α < β if α is order isomorphic to an initial segment
of β. This initial segment is necessarily unique. We have the following trichotomy
theorem for ordinals.

Proposition A.1.3 1. For ordinals α,β, exactly one of α < β, α = β, β < α
holds.

2. Every set of ordinal numbers is well-ordered by <.

In view of this proposition, we identify each ordinal α with {β ∈ ON : β < α}
with the ordering as defined above.

Note that two finite well-ordered sets W1, W2 are order isomorphic if and only if
they have the same number of elements. The ordinals corresponding to finite well-
ordered sets are denoted in increasing order by 0, 1, 2, . . .. The set {0, 1, 2, . . .} is
denoted by ω. Note that by our convention, 0 = ∅ and n = {o, . . . , n − 1}, n ∈ ω.

Let α,β be ordinals. Choose well-ordered sets (W1,<1), (W2,<2) order isomor-
phic to α,β respectively with W1 ∩ W2 = ∅. Set W = W1 ∪ W2. For u, v ∈ W ,
define u < v by

1. u, v ∈ W1 and u <1 v.
2. u, v ∈ W2 and u <2 v.
3. u ∈ W1 and v ∈ W2.

The ordinal corresponding to (W,<) is denoted by α+β. An ordinal of the form
α + 1 is called a successor ordinal. An ordinal which is not a successor ordinal
is called a limit ordinal. It is not hard to prove that every ordinal α has a unique
representation α = β + n, β a limit ordinal and n ∈ ω. In this case, we call α an
even ordinal if n is even and an odd ordinal if n is odd.

A.2 Axiom of Choice

The well-ordering principle W OP is a non-constructive principle which merely
asserts the existence of a well-ordering of an arbitrary set without specifying any. In
mathematics, there are two more such non-constructive principles which are com-
monly used.We state these and show that they are equivalent statements in Zermelo–
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Fraenkel set theory. It has been shown that they are undecidable in Zermelo–Fraenkel
set theory.

Axiom of Choice. (AC) For every family {Xi : i ∈ I} of non-empty sets, there is
a function f : I → ∪i∈I Xi such that for every i ∈ I , f (i) ∈ Xi.

A function f satisfying this condition is called a choice function for {Xi : i ∈ I}.
The set of all choice function for {Xi : i ∈ I} is denoted by ×i∈I Xi. If each Xi = X,
we denote this set by XI .

Let (P,≤) be a partially ordered set. A chain in P is a subset C of P such that
≤ |C is a linear order on C.

(Zorn’s Lemma.) (ZL) Let (P,≤) be a non-empty partially ordered set such that
every chain in P is bounded above. Then (P,≤) has a maximal element.

The following is a theorem of Zermelo–Fraenkel set theory.

Theorem A.2.1 The following statements are equivalent.

(a) Zorn’s Lemma.
(b) Well-ordering principle.
(c) Axiom of choice.

Proof (a) implies (b): Let X be a set. If X = ∅, then empty relation well orders X.
Assume that X 
= ∅. Set

P = {(A,<) : A ⊂ X & < a well-order on A}.

Then P is non-empty. Define

(A,<) ≺ (B,<1) ⇔ (A,<) is an initial segment of (B,<1).

If {(Ai,<i) : i ∈ I} is a chain C in P, then ∪C is an upper bound of C. Hence, P

has a maximal element, say (A,<). We claim that A = X. For otherwise, take an
x ∈ X \ A. Now extend < to a well-order on A ∪ {x} by declaring x larger than every
a ∈ A. This contradicts the maximality of (A,<).

(b) implies (c): Given a family of non-empty sets {Xi : i ∈ I}, set X = ∪iXi. By
(b), there is a well-order < on X. Define f (i) to be the least element of Xi, i ∈ I .

(c) implies (a): Let (P,≤) be a non-empty partially ordered set such that every
chain C in P has an upper bound in P.

Let C denote the set of all chains in P. For each chain C, define

C′ = {p ∈ P : ∀x ∈ C(x < p)}

and set

C0 = {C ∈ C : C′ 
= ∅}.
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By the axiom of choice, there is a function f : C0 → P such that f (C) ∈ C′ for every
C ∈ C0. For each chain C, define its successor s(C) as follows:

s(C) =
{

C if C′ = ∅,

C ∪ {f (C)} otherwise.

We need to show that there exists a chain C such that s(C) = C. (Then an upper
bound of C (that exists by the hypothesis) will be a maximal element.)

We call a family M of chains a normal family if the following three conditions
are satisfied.

(1) The empty chain ∅ ∈ M.
(2) If {Ci : i ∈ I} ⊂ M and C = ∪iCi is a chain, then C ∈ M.
(3) s(C) ∈ M whenever C ∈ M.

The set of all chains C is a normal family. Further, it is easy to check that the
intersection of a set of normal families of chains is normal.

LetN denote the intersection of all normal families of chains. ThenN is a normal
family of chains that is contained in all normal families.

Main Observation. For every chain C, D ∈ N either C ⊂ D or D ⊂ C.

Assume this for the time being. Let

C0 = ∪C∈N C.

By the above observation, C0 is a chain. SinceN is normal, C0 ∈ N . Moreover, it is
the largest element ofN . By the same reason, s(C0) ∈ N . Thus, s(C0) ⊂ C0 ⊂ s(C0)

and the proof of Zorn’s lemma is complete.
We now proceed to prove the main observation. Call a chain C ∈ N good if for

every D ∈ N , either C ⊂ D or D ⊂ C. We need to prove that every C ∈ N is good.
The following is the crucial property of good sets:

Fact. If C is good, for every N ∈ N either N ⊂ C or s(C) ⊂ N .

Assuming this fact, we complete the proof of the main observation first. Towards
proving this, consider

M1 = {C ∈ N : C is good}.

We have the following:

(i) Since the empty chain ∅ is contained in all chains, ∅ ∈ M1.
(ii) Suppose {Ci : i ∈ I} ⊂ M1 and C = ∪iCi is a chain. Take any D ∈ N . If each

Ci ⊂ D, C ⊂ D. Otherwise, there is a Ci 
⊂ D. But Ci ∈ M1. So, D ⊂ Ci ⊂ C.
(iii) Now let C ∈ M1, i.e., C is good and D ∈ N . Then by the above fact, either

D ⊂ C ⊂ s(C) or s(C) ⊂ D.
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These prove that M1 ⊂ N is normal. Hence, M1 = N . This proves the main
observation.

It remains to prove the fact which we do now. Let C ∈ N be a good chain.
Consider

M2 = {N ∈ N : N ⊂ C ∨ s(C) ⊂ N}.

Suffices to show that M2 is normal.

(a) Clearly, the empty chain ∅ ⊂ C. Hence, ∅ ∈ M2.
(b) Suppose {Ni : i ∈ I} ⊂ M2 and N = ∪iNi is a chain. Then N ∈ N . If each

Ni ⊂ C, N ⊂ C. Otherwise, there is a Ni 
⊂ C. Since Ni ∈ M2, s(C) ⊂ Ni ⊂ N .
(c) Now let N ∈ M2. If s(C) ⊂ N , s(C) ⊂ s(N). So assume that N ⊂ C. Since C is

good and s(N) ∈ N , either s(N) ⊂ C or C ⊂ s(N). In the first case s(N) ∈ M2.
In the second case, we have N ⊂ C ⊂ s(N). But s(N) differs from N by at most
one point. So, either C = N ⊂ s(N) or C = s(N) implying s(N) ⊂ C.

We have now proved that M2 is normal. Thus, we have completed the proof of
Zorn’s lemma. �
Remark A.2.2 The proof of Zorn’s lemma from the axiom of choice presented above
is due to Hausdorff.

We shall be using minor variants of these three equivalent principles.

A.3 Cardinal Numbers

Let X and Y be any two sets. We shall |X| ≤ |Y | if there is an injection f : X → Y .
In this case, we say that the cardinality of X is less than or equal to that of Y . We
shall write |X| = |Y | if there is a bijection f : X → Y . In this case, we say that the
cardinality of X is equal to that of Y . We shall write |X| < |Y | if |X| ≤ |Y | & |X| 
=
|Y |.
Theorem A.3.1 For sets X and Y, we have

1. |X| < |P(X)| = |2X |, where P(X) denotes the power set of X. (Recall that 2X is
the set of all indicator functions on X.)

2. (Cantor–Dedekind–Schroder–Bernstein Theorem.)

(|X| ≤ |Y | ∧ |Y | ≤ |X|) ⇒ |X| = |Y |.

3. (AC) X is infinite if and only if |X| = |Y | for some proper subset Y of X.
4. (AC) |X| ≤ |Y | or |Y | ≤ |X|.
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5. (AC) If X is infinite,
|X| = |X × {0, 1}| = |X × X|.

6. (AC) If {Xi : i ∈ I} and {Yi : i ∈ I} such that |Xi| < |Yi| for all i ∈ I, then
| ∪i Xi| < | ×i Yi|.

7. (WOP) There is an ordinal α such that |X| = |α|.
A set X is called countable if |X| ≤ |ω|. Otherwise, X is called uncountable. It

is useful to see that countable union of countable sets is countable. An ordinal α is
called countable if α as a set is countable.

A cardinal number is an ordinal number λ such that for every ordinal β < λ,
|β| < |λ|. ByWOP, for each set X, there is a cardinal number λ such that |X| = |λ|.
In this case, we shall write |X| = λ and call λ the cardinality of X. Cardinal numbers
will be denoted by λ, μ, ν and κ with or without suffixes.

If λ and μ are cardinal numbers, we define λ · μ = |λ × μ| and λμ = |λμ|, where
λμ on the right-hand side stands for the set of all functions fromμ to λ.Let {λi : i ∈ I}
is a family of cardinal numbers. Suppose {Xi : i ∈ I} is a family of pairwise disjoint
sets such that for each i ∈ I , |Xi| = λi. Then we define

∑
i λi = | ∪i Xi|.

Since every set of ordinal numbers is well-ordered, every set of cardinal numbers
is well-ordered. Therefore, for any set of cardinals {λi : i ∈ I}, supi λi makes sense.
For any cardinal λ, λ+ denotes the least cardinal greater than λ. We call λ+ the
successor of λ. Such cardinals are also called successor cardinals. Other cardinals
are called limit cardinals. From the last theorem, we easily get

Theorem A.3.2 1. For every cardinal λ, λ < 2λ.
2. (λ ≤ μ ∧ μ ≤ λ) ⇒ λ = μ.

3. If λ ≤ μ and μ is infinite, then

μ = λ + μ = λ · μ.

4. If λ, μ, ν are cardinals, then

λμ · λν = λμ+ν & (λμ)ν = λμ·ν .

Note that ω is a cardinal number. Indeed, it is the least infinite cardinal number.
By transfinite induction, we define a class of cardinals {ℵα : α ∈ ON} as follows:

ℵ0 = ω,

ℵα+1 = ℵ+
α ,

and for limit α,
ℵα = sup{ℵβ : β < α}.
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These ℵ’s are all the infinite cardinals. There are two very famous hypotheses on
these ℵ’s.

Continuum Hypothesis. (CH) 2ℵ0 = ℵ1.

Generalised Continuum Hypothesis. (GCH) ∀α ∈ ON(2ℵα = ℵα+1).

For an ordinal α, we define the cofinality of α, denoted by cf (α) to be the least
ordinal β such that there is a map f : β → α with α = sup{f (γ) : γ < β}. Clearly,
cf (α) is a cardinal number. An infinite cardinal κ is called a regular cardinal if
cf (κ) = κ. Otherwise, κ is called a singular cardinal. Every successor cardinal κ is
regular, so is ℵ0. ℵω is a singular cardinal.

It is known that |R| = 2ℵ0 . So, 2ℵ0 is also referred to as the continuum and is
denoted by c.

A.4 Ultrafilters

Let I be a non-empty set. A filter on I is a family F of subsets of I satisfying the
following conditions:

(∗) ∅ /∈ F and I ∈ F .
(∗) A, B ∈ F ⇒ A ∩ B ∈ F .
(∗) If A ∈ F and B ⊃ A, B ∈ F .

It is clear that if F is a filter, it satisfies finite intersection property, i.e. for every
finite F ′ ⊂ F , ∩ F ′ 
= ∅.
Remark A.4.1 Let B be a family of subsets of I with finite intersection property.
Then

F = {A ⊂ I : ∃B1, . . . Bn ∈ B(∩jBj ⊂ A)}

is a filter on I . Indeed, the filter F described above is the smallest filter containing B
which we shall refer to as the filter generated by B.

Given a filter F on I , consider

P = {F ′ : F ′ ⊃ F and F ′ a filter on I}.

SinceF ∈ P, P 
= ∅. P is a partially ordered set, partially ordered by the inclusion⊂.
If {Fa : a ∈ A} is a chain in P, ∪aFa is a filter on I containing each Fa. So, by

Zorn’s lemma, F is contained in a maximal filter. Maximal filters are also called
ultrafilters. Combining this with the above remark, we have

Proposition A.4.2 Every family B of subsets of I with finite intersection property is
contained in an ultrafilter on I.
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Proposition A.4.3 Let F be a filter on I. The following conditions are equivalent.

(a) F is an ultrafilter.
(b) If B ⊂ I is such that B ∩ A 
= ∅ for every A ∈ F , B ∈ F .
(c) For B1, . . . , Bn ⊂ I, ∪nBn ∈ F ⇔ ∃1 ≤ i ≤ n(Bi ∈ F).
(d) Whenever A ∪ B ∈ F , A or B is in F .
(e) For every B ⊂ I, B ∈ F or I\B ∈ F .

Proof Assume (a). If B satisfies the hypothesis of (b), F ∪ {B} satisfies the finite
intersection property. Hence, there is a filter F ′ ⊃ F ∪ {B}. The maximality of F
implies B ∈ F .

Now assume (b). Let B1, . . . , Bn ⊂ I and no Bi ∈ F , 1 ≤ i ≤ n. By (b),
there exist A1, . . . An ∈ F such that Bi ∩ Ai = ∅, 1 ≤ i ≤ n. This implies that
∪1≤i≤nBi) ∩ (∩1≤i≤nAi) = ∅. Since ∩1≤i≤nAi ∈ F , it follows that ∪1≤i≤nBi /∈ F .
Since the reverse implication is clear, (b) implies (c).

(d) is a special case of (c) and (e) is a special case of (d).
Now assume (e). Suppose there is a filter F ′ on I containing F properly. Take

B ∈ F ′ that does not belong to F . By (e), I \ B ∈ F . So, both B, I \ B ∈ F ′ which is
not possible because F ′ is a filter. This contradiction shows that (e) implies (a). �

Corollary A.4.4 If U is an ultrafilter on I, then ∩ U contains at most one point.

Proof Suppose x 
= y in I belong to all sets in U . Then both {x} and {y} satisfy (b).
Hence, both these sets belong to U . This is a contradiction. �

An ultrafilter F is called free or non-principal if ∩F = ∅. Otherwise, it is called
a principal ultrafilter. Thus, U is a principal ultrafilter on I if and only if U = {A ⊂
I : x ∈ A} for some x ∈ I . Clearly, a free ultrafilter does not contain a finite set. In
particular, every ultrafilter on a finite set I is principal. Conversely, if I is infinite,
the family of all cofinite (complement of finite) subset of I has finite intersection
property. Hence, there is a free ultrafilter on I . Also, note that a free ultrafilter on I
contains every cofinite subset of I .

A.5 Some Infinite Combinatorics

If u = (u(0), . . . , u(n − 1)) is a finite sequence and i < n, then we define
u|i = (u(0), . . . , u(i − 1)) and call it an initial segment of u. By taking i = 0,
we see that the empty sequence e either equals u or is an initial segment of u. For
finite sequences u, v, we write u � v if either u = v or u is an initial segment of
v. For a finite sequence u, |u| will denote its length. If u = (u(0), . . . , u(n − 1))
and v = (v(0), . . . , v(m − 1)) are finite sequences, then their concatenation
uv = (u(0), . . . , u(n − 1), v(0), . . . , v(m − 1)). For an infinite sequence α =
(α(0),α(1), . . .) and n ∈ ω, α|n = (α(0), . . . ,α(n − 1)).
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A tree T is a non-empty set of finite sequences such that whenever u ∈ T all the
initial segments of u are in T . Thus, the empty sequence e belongs to every tree T .
If T is a tree and u ∈ T , then we define

Tu = {v : uv ∈ T}.

Note that T = Te and Tu = ∪{Tv : u � v ∧ |v| = |u| + 1} ∪ {u}. A tree T is called
finitely splitting if for all u ∈ T , {v ∈ T : u � v ∧ |v| = |u| + 1} is finite. An infinite
sequence α = (α(0),α(1), . . .) such that for every n ∈ ω, α|n ∈ T is called an
infinite branch of T .

Theorem A.5.1 (König’s infinity Lemma) Every finitely splitting, infinite tree T has
an infinite branch.

Proof We define an infinite branch α of T by induction such that for every n ∈ ω,
Tα|n is infinite. By our hypothesis, it is not very hard to see that such an α exists. �

For any set X and any cardinal μ, [X]μ will denote the set of all subsets of X of
cardinality μ. For a map f : [X]μ → Y , a subset Z ⊂ X is called homogeneous if f
is constant on [Z]μ. For cardinals κ, λ, μ and η, one writes

κ → (η)
μ
λ

if whenever |X| ≥ κ, every function of f : [X]μ → λ has a homogeneous set of
cardinality ≥ η.

Theorem A.5.2 (Ramsey Theorem) For every n ≥ 1 and every infinite set X, every
function f from [X]n into a finite set Y has an infinite homogeneous set, i.e. for every
m, n ≥ 1,

ℵ0 → (ℵ0)
n
m.

Proof We prove this result by induction on n. It is obvious for n = 1. Let the result
be true for n, X be an infinite set and f a function from [X]n+1 into a finite set Y .

Set Z0 = X and take any z0 ∈ Z0. Define f0 : [Z0 \ {z0}]n → Y by

f0(A) = f ({z0} ∪ A), A ∈ [Z0 \ {z0}]n.

By induction hypothesis, there exists an infinite homogeneous set Z1 ⊂ Z0 \ {z0} for
f0.

Now assume that Z0 ⊃ Z1 ⊃ . . . ⊃ Zk , each infinite, and for i < k, zi ∈ Zi have
been defined. Take any zk ∈ Zk . Define fk : [Zk \ {zk}]n → Y by

fk(A) = f ({zk} ∪ A), A ∈ [Zk \ {zk}]n.

By induction hypothesis there exists an infinite homogeneous set Zk+1 ⊂ Zk \ {zk}
for fk .
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Set Z∞ = {z0, z1, . . .}. For each k, each subset A of Z∞ of cardinality n + 1 with
zk ∈ A and A \ {zk} ⊂ {zi : i > k} takes the same value. Since there are only finitely
many possibilities, the value will be the same for infinitely many k’s. The set of these
zk’s is infinite and homogeneous for f . �

We now prove yet another important result in infinite combinatorics known as
Erdös–Rado theorem. For any infinite cardinal κ and any ordinal α, we define Beth
cardinals �α(κ) by transfinite induction as follows:

�0(κ) = κ,

�α(κ) = sup
β<α

�β(κ) if α limit,

�α+1(κ) = 2�α(κ).

The following simple identities will be used in the proof of Erdös–Rado theorem
without mention.

Lemma A.5.3 For every 2 ≤ μ ≤ �α+1(κ),

μ�α(κ) = �α+1(κ).

Proof We have

�α+1(κ) = 2�α(κ) ≤ κ�α(κ) ≤ �α+1(κ)�α(κ) = (2�α(κ))�α(κ) = �α+1(κ).

The result is easily seen from here.

Theorem A.5.4 (Erdös–Rado Theorem) For every infinite cardinal κ and every
n ≥ 0,

�n(κ)+ → (κ+)n+1
κ .

Proof We prove the result by induction on n. For n = 0 the result is trivially seen.
Suppose the result is true for n − 1. Set λ = �n(κ)+ and take any f : [λ]n+1 → κ.

For any α < λ, define fα : [λ \ {α}]n → κ by

fα(A) = f (A ∪ {α}), A ∈ [λ \ {α}]n.

Inductively we define

X0 ⊂ X1 ⊂ · · · ⊂ Xα ⊂ · · · ⊂ λ, α < �n−1(κ)+
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such that

1. X0 = �n(κ);
2. Xα = ∪β<αXβ , if α is limit;
3. |Xα| = �n(κ), and
4. for all Y ⊂ Xα of cardinality≤ �n−1(κ) and all β ∈ λ\Y , there is a γ ∈ Xα+1 \Y

such that fβ |[Y ]n = fγ |[Y ]n.

We only need to define Xα+1 from Xα so that Xα+1 satisfies (3) and (4). Take any
Y ⊂ Xα of cardinality at most �n−1(κ). By the last Lemma A.5.3, the number of
such Y is �n(κ). For each such Y , by the last Lemma A.5.3 again, there are at most
�n(κ) many functions from [Y ]n to κ. So,

|{fβ|[Y ]n : Y ⊂ Xα ∧ |Y | ≤ �n−1(κ) ∧ β ∈ λ \ Y}| ≤ �n(κ).

Hence, Xα+1 with desired properties exists.
Now set

X = ∪α<�n−1(κ)+Xα.

If Y ⊂ X and |Y | ≤ �n−1(κ), then there is an α < �n−1(κ)+ such that Y ⊂ Xα. So,
for every β ∈ λ \ Y there is a γ ∈ X\Y such that fβ |[Y ]n = fγ |[Y ]n.

Now choose any δ ∈ λ \ X. Inductively we define yα ∈ X, α < �n−1(κ)+
satisfying

fyα
|[{yβ : β < α}]n = fδ|[{yβ : β < α}]n.

(y0 ∈ X is chosen arbitrarily.)
By induction hypothesis there is a Z ⊂ {yα : α < �n−1(κ)+} of cardinality ≥ κ+

which is homogeneous for fδ .
Let α0 < · · · < αn be such that yαi ∈ Z , i ≤ n.

f ({yα0 , . . . , yαn}) = fyαn
({yα0 , . . . , yαn−1}) = fδ({yα0 , . . . , yαn−1}).

It follows that Z is homogeneous for f . �
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B.1 Field Extensions and Galois Group

Let F be a field. A field K is called a field extension of F if F a subfield of K. If K

is a field extension of F, then K is canonically a vector space over F. We let [K : F]
denote the dimension of K as a vector space over F. We call K a finite extension of
F if [K : F] < ℵ0.

An element a ∈ K is called algebraic over F if there is a polynomial f (X) ∈ F[X]
such that f (a) = 0. Otherwise, a is called transcendental overF. If a ∈ K is algebraic
over F, then there is a unique monic irreducible polynomial f (X) ∈ F[X] such that
f (a) = 0. f is called the minimal polynomial of a. An extension field K of F is called
an algebraic extension of F if every a ∈ K is algebraic over F. A field K is called
algebraically closed if every polynomial f (X) ∈ K[X] has a root in K.

Let K be an extension of F and a ∈ K. We set

F[a] = {f (a) ∈ K : f (X) ∈ F[X]}

and
F(a) = {f (a)/g(a) ∈ K : f (X), g(X) ∈ F[X] & g(a) 
= 0}.

Proposition B.1.1 et F be a field and f (X) ∈ F[X] an irreducible polynomial. Let
(f ) denote the smallest ideal in F[X] containing f . Then

1. (f ) is a maximal ideal and the quotient F[X]/(f ) is a field and an algebraic
extension of F. Further, [F[X]/(f ) : F] = degree(f ).

2. f has a root in F[X]/(f ).
3. Every finite extension of F is an algebraic extension of F.
4. If K is a finite extension of F and L a finite extension of K, then L is a finite

extension of F.
5. Let K be an extension of F and a ∈ K. Then a is algebraic over F if and only if

[F(a) : F] < ℵ0 and equals the degree of the minimal polynomial of a over F.
Further, in this case F(a) = F[a].

© Springer Nature Singapore Pte Ltd. 2017
H. Sarbadhikari and S.M. Srivastava, A Course on Basic Model Theory,
DOI 10.1007/978-981-10-5098-5
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Theorem B.1.2 Every field F has an algebraically closed, algebraic extension K.
Further, if K

′ is another such extension of F, then there is an isomorphism h : K →
K

′ such that h|F is identity on F.

We call K the algebraic closure of F and denote it by F. By the above theorem,
algebraic closure of a field is unique in the above sense.

An element a ∈ F is called separable over F if f ′(X) 
= 0 where f (X) is the
minimal polynomial of a and f ′(X) its formal termwise derivative. This is equivalent
to saying that f ′(a) 
= 0. In this case, a is called a simple root of f . An algebraic
extension K of F is called a separable extension of F if every a ∈ K is separable
over F. We set

F
s = {a ∈ F : a separable over F}.

F
s is a field, called the separable closure of F. If K is a separable extension of F,

then there is an embedding h : K → F
s such that h|F is identity on F.

Proposition B.1.3 Let a ∈ F.

1. If a ∈ F is separable over F and f (X) ∈ F[X] its minimal polynomial, then all
roots of f are separable over F.

2. If a is separable over F, then F[a] is a separable extension of F.
3. If K is a separable extension of F and L a separable extension of K, then L is a

separable extension of F.
4. (Fs)s = F

s.

Proposition B.1.4 For every d > 1, there is a field F such that F is not algebraically
closed but every f (X) ∈ F[X] of degree ≤ d (and > 1) has a root in F

Proof Take any prime p > d and consider K = Fp(Y), the field of rational functions
over Fp in variable Y . We now show that F = K

s, the separable closure of K, will
do our job.

K has an element a such that for no b ∈ K, bp = a. For instance, Y ∈ K has this
property. Since K is of characteristic p, for every x, y ∈ K, (x − y)p = xp − yp. This
implies that all the roots of Xp − a ∈ K[X] are equal. In particular, it has no root in
F = K

s. Thus, we have shown that F is not algebraically closed.
Let f (X) ∈ F[X] with 1 < degree(f ) ≤ d. Suppose c ∈ F = K is a root of

f . Without any loss of generality assume that f (X) ∈ F[X] is the monic minimal
polynomial of c. Since F is of characteristic p > d, the formal derivative f ′ of f
satisfies 1 ≤ degree(f ′) < degree(f ). If possible, let c /∈ F = K

s. Then f ′(c) = 0.
This is a contradiction. So, f (X) has a root in F. �

Proposition B.1.5 If F is of characteristic 0 or if F is of characteristic p > 0 and
for every x ∈ F there is a y ∈ F such that x = yp, then F

s = F. Otherwise, F
s

� F.

Proposition B.1.6 Let F be of characteristic p > 0 and a ∈ F. Then there is a
natural number k such that apk

is separable over F. So, given a1, . . . , an ∈ F, there

is a natural number k such that each apk

i , 1 ≤ i ≤ n, is separable over F.
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An algebraic extension K of F is called a normal extension of F if whenever an
irreducible polynomial f (X) ∈ F[X] has a root in K, all its roots are in K. So, F and
F

s are normal extensions of F. Also, if K is a normal extension of F, so is K ∩ F
s.

Proposition B.1.7 Let K be a field extension of F. Then K is a finite normal extension
of F if and only if K is the splitting field of some f (X) ∈ F[X].

The Galois group G(K, F) ⊂ K
K. We equip K

K with the product of discrete
topology on K and G(K, F) with the subspace topology. If F ⊂ L ⊂ K, then
G(K, L) is a closed subset of G(K, F).

In the rest of this section, we assume that K is a normal separable extension of F.

Proposition B.1.8 If F ⊂ L ⊂ K. Then K is a normal separable extension of L.

Proof Suppose f (X) ∈ L[X] is an irreducible polynomial which has a root, say a,
in K. Let g(X) ∈ F[X] be the minimal polynomial of a over F. Then f (X) divides
g(X). So, all the roots of f are roots of g. Thus, all the roots of f are in K. �

We have a map from the set of all fields L, F ⊂ L ⊂ K, to the set of all closed
subgroups of G(K, F), given by L → G(K, L). The fundamental theorem of Galois
theory states that this correspondence is a bijection.

We now proceed to describe the inverse of this correspondence. Let H be a closed
subgroup of G(K, F). Set

F(H) = {x ∈ K : ∀σ ∈ H(σ(x) = x)}.

Then

(a) F(H) is a subfield of K and F ⊂ F(H).
(b) H ⊂ G(K, F(H)).
(c) If F ⊂ L ⊂ K, then L ⊂ F(G(K, L)).

F(H) is called the fixed field of H.

Theorem B.1.9 (The Fundamental Theorem of Galois Theory) Let K be a normal,
separable extension of F.

1. If H is a closed subgroup of G(K, F), then H = G(K, F(H)).
2. If F ⊂ L ⊂ K, then L = F(G(K, L)).

B.2 Ring of Polynomials and Zariski Topology

A good but probably not well-known reference for commutative algebra is [16].
Let R be a commutative ring with identity. An ideal in R subring I of R such that

whenever a ∈ I , b · a ∈ I for all b ∈ R. We assume that all ideals are proper. The
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ideal I is called a maximal ideal if it is not a proper subset of any ideal. It is called a
prime ideal if whenever a · b ∈ I , a or b is in I .

Fix an ideal I in R. For x, y ∈ R, define

x ∼ y ⇔ x − y ∈ I.

Then ∼ is an equivalence relation on R. Let R/I be the set of all equivalence classes.
For x, y ∈ R, define

(x + I) + (y + I) = x + y + I

and
(x + I) · (y + I) = x · y + I.

This makes R/I into a commutative ring with identity. The following result is quite
easy to prove.

Proposition B.2.1 Let I be an ideal in R. Then

1. I is a maximal ideal if and only if R/I is a field.
2. I is a prime ideal if and only if R/I is an integral domain.

For an ideal I in R, we set

√
I = {x ∈ R : xn ∈ I for some n ≥ 1}.

√
I is an ideal, called the radical of I . The ideal I is called a radical ideal if I = √

I .
R is called a noetherian ring if it has no strictly increasing infinite sequence of

ideals. This is clearly equivalent to saying that every ideal in R is finitely generated.
Since a field has no non-trivial proper ideal, every field is a Noetherian ring.

Proposition B.2.2 If R is a Noetherian ring, so is the ring of polynomials R[X] over
R in one variable.

By induction, now we get

Theorem B.2.3 (Hilbert Basis Theorem) For every field K, the ring of polynomials
K[X1, . . . , Xn] is Noetherian. Hence, each ideal in K[X1, . . . , Xn] is finitely gener-
ated.

Theorem B.2.4 (Prime Decomposition Theorem) Let K be a field and I ⊂ K[X] a
radical ideal. Then there exist prime ideals P1, . . . , Pk such that I = ∩k

i=1Pi.

LetR be a commutative ringwith identity andS a subring.Wecall an element x ∈ R
integral over S if there exist a1, . . . , an ∈ S such that xn+a1xn−1+· · ·+an−1x+an =
0. The ring R is called an integral extension of S if every element in R is integral over
S.
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Proposition B.2.5 The set

{x ∈ R : x integral over S}

is a ring.

It is clear that every algebraic extension F of a field K is an integral extension of
K. Thus, we have the following result.

Proposition B.2.6 If a field F is an algebraic extension of a field K, then F[X1, . . . ,

Xn] is an integral extension of K[X1, . . . , Xn].
Proposition B.2.7 ([16], Proposition 4.2.4.) Let R be a commutative ring with iden-
tity and S a subring of R. Assume that R is an integral extension of S. Then for every
prime ideal P in S, there is a prime ideal Q in R such that P = Q ∩ S.

Proposition B.2.8 Let F be a field, K a subfield and P ⊂ K[X1, . . . , Xn] a
prime ideal. Then there is a prime ideal Q ⊂ F[X1, . . . , Xn] such that P =
Q ∩ K[X1, . . . , Xn].
Proof Let T ⊂ F be a maximal algebraically independent subset of F over K and
L ⊂ F the subfield generated byK∪T . Since F is an algebraic extension ofL, by the
last proposition, it is sufficient to show that there is a prime ideal Q ⊂ L[X1, . . . , Xn]
such that P = Q ∩ K[X1, . . . , Xn].

Let D ⊂ L be the subring generated by K ∪ T . Then D is an integral domain with
L its quotient field.

Claim. The subring P[T ] ⊂ D[X1, . . . , Xn] generated by P ∪ T is a prime ideal.

We can view D[X1, . . . , Xn] as the polynomial ring K[X1, . . . , Xn][T ]. Hence, our
claim will be proved if we show that K[X1, . . . , Xn][T ]/P[T ] is an integral domain.
Since T is algebraically independent over K,

K[X1, . . . , Xn][T ]/P[T ] = K[X1, . . . , Xn]
P

[T ].

Since P is a prime ideal, K[X1,...,Xn]
P is an integral domain Hence, K[X1,...,Xn]

P [T ] is an
integral domain.

Since T is transcendental over K, P[T ] ∩K[X1, . . . , Xn] = P. Consider the local-
ization

Q = {a

s
∈ L[X1, . . . , Xn] : a ∈ P[T ] ∧ s ∈ D \ {0}}.

By ([1], Proposition 2.3.14), Q is a prime ideal in L[X1, . . . , Xn]with Q∩D[X1, . . . ,

Xn] = P[T ]. It follows that Q ∩ K[X1, . . . , Xn] = P. �
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Let K be a field. For S ⊂ K[X], define

V(S) = {x ∈ K
n : f (x) = 0 ∀f ∈ S}.

If I(S) is the ideal generated by S, then by Hilbert basis theorem, there exist finitely
many g1, . . . , gk ∈ S that generate I(S). In particular,

V(S) = V(I(S)) = ∩k
i=1{x ∈ K[X] : gi(x) = 0}.

It is now easy to see that

T = {V(S) ⊂ K
n : S ⊂ K[X]}

is closed under finite unions and arbitrary intersections. Further, it contains ∅ andK
n.

Hence, T is the family of all closed sets of a topology on K
n. We call this topology

the Zariski topology on K
n and sets of the form V(S) Zariski closed. Following

Chevalley, a subset C ⊂ K
n is called constructible if it belongs to the Boolean

algebra generated by Zariski closed sets in K
n.

For X ⊂ K
n, set

I(X) = {f ∈ K[X] : f (x) = 0 ∀x ∈ X}.

Then I(X) is a radical ideal in K[X] and if X ⊂ Y ⊂ K
n, I(Y) ⊂ I(X). We also

have

1. X ⊂ V(I(X)) for all X ⊂ K
n.

2. S ⊂ I(V(S)) for all S ⊂ K[X].
3. For S ⊂ T ⊂ K[X], V(T) ⊂ V(S).
4. V(S) = V(I(V(S))) for all S ⊂ K[X].
5. For an ideal I ⊂ K[X], V(I) = V(

√
I).

Let K be any field. We equip K
n with Zariski topology. So, sets of the form

D(f ) = {x ∈ K
n : f (x) 
= 0},

f ∈ K[X], form a subbase for the topology. For Z ⊂ K
n, Z will denote the closure

of Z in Zariski topology on K
n. A closed set C ⊂ K

n is called irreducible if there do
not exist non-empty, closed C1, C2 � C such that C = C1 ∪ C2.

Let σ ∈ Aut(K). We define σ : K
n → K

n by

σ(a1, . . . , an) = (σ(a1), . . . ,σ(an)), (a1, . . . , an) ∈ K
n

Lemma B.2.9 For any A ⊂ K
n and any σ, σ(A) = σ(A).
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Proof It is enough to show that σ(A) ⊂ σ(A): Then

σ−1(σ(A)) ⊂ σ−1(σ(A)) = A.

Hence,
σ(A) ⊃ σ(A).

To complete the proof, take any x = (x1, . . . , xn) ∈ σ(A) and ∩k
j=1D(fj), f1, . . . , fk ∈

K[X1, . . . , Xn], a basic open set containing x. Suppose

fj(X1, . . . , Xn) =
∑

aj
I X

i1
1 . . . Xin

n .

We have ∑
aj

I x
i1
1 . . . xin

n 
= 0, 1 ≤ j ≤ k. (B.1)

We are required to show that there exists a = (a1, . . . , an) ∈ σ(A)

such that ∑
aj

I a
i1
1 . . . ain

n 
= 0

for each 1 ≤ j ≤ k. Take y = (y1, . . . , yn) ∈ A such that x = σ(y). By (1), we have

∑
σ−1(aj

I)y
i1
1 . . . yin

n 
= 0, 1 ≤ j ≤ k.

Hence, there exists z = (z1, . . . , zn) ∈ A such that

∑
σ−1(aj

I)z
i1
1 . . . zin

n 
= 0, 1 ≤ j ≤ k.

Now take ai = σ(zi), 1 ≤ i ≤ n. Then (a1, . . . , an) ∈ σ(A) and

∑
aj

I a
i1
1 . . . ain

n 
= 0, 1 ≤ j ≤ k.

�

Lemma B.2.10 Every non-empty closed set C has unique representation

C = C1 ∪ · · · ∪ Cm,

where C1, . . . , Cm are irreducible closed sets such that for every 1 ≤ j ≤ m, Cj 
⊂
∪i 
=jCi.

Proof Let C be a Zariski closed set such that C = C0 is not a finite union of
irreducible closed sets. Then C0 = C1 ∪ D1, where C1 and D1 are Zariski closed sets
and C1, D1 
= C0. One of these must not be a finite union of irreducible closed sets.
Let C1 be one such. Then C1 = C2 ∪ D2, where C2 and D2 are Zariski closed sets
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and C2, D2 
= C1 with C2 not a finite union of irreducible closed sets. Proceeding
similarly, we get an infinite descending sequence C0 ⊃ C1 ⊃ C2 ⊃ . . . of Zariski
closed sets. This contradicts that K[X1, . . . , Xn] is Noetherian.

Thus,C = ∪n
i=1Ci, where eachCi is irreducible closed.We can get a subcollection

of these so that the union is irredundant. Now let C = ∪m
i=1Ci = ∪n

j=1Fj be two
representations of C as irredundant unions of irreducible closed sets. Consider J =
{j ≤ n : C1 ∩ Fj 
= ∅}. As C1 is irreducible, there must be j ∈ J such that Fj ⊃ C1.
Doing the same argument with Fj, we get a Ci ⊃ Fj. Because of the irredundancy,
i = 1. Hence, C1 = Fj. By reordering Fjs, we assume that C1 = F1. Proceeding
thus, we easily see that m = n and {C1, . . . , Cm} = {F1, . . . , Fm}. �

We call C1, . . . , Cm the irreducible components of C an the representation C =
C1 ∪ . . . ∪ Cm satisfying above conditions to be redundant.

Lemma B.2.11 Let
Z = ∪m

i=1(Ci ∩ Ui),

where C1, . . . , Cm are irreducible closed sets, U1, . . . , Um Zariski open and Ci∩Ui 
=
∅, 1 ≤ i ≤ m, be a constructible set. Then Z is dense in each irreducible component
of Z.

Proof Set Fi = Ci ∩U c
i , 1 ≤ i ≤ m. Either Ci ∩Ui = Ci or Fi is a proper non-empty

closed subset of Ci. Then

Ci = (Ci ∩ Ui) ∪ Fi ⊂ Ci ∩ Ui ∪ Fi ⊂ Ci.

As Ci is irreducible, it follows that Ci = Ci ∩ Ui. Thus, Z = ∪m
i=1Ci. Also, for each

1 ≤ i ≤ m,
Ci ⊃ Z ∩ Ci ⊃ Ci ∩ Ui = Ci.

Thus, Z is dense in each irreducible component of Z .

Lemma B.2.12 Let Z1 and Z2 be constructible sets with the same closure, say Z.
Then Z1 ∩ Z2 = ∅.

Proof Write
Z1 = ∪m

i=1(Ci ∩ Ui),

and
Z2 = ∪k

j=1(Dj ∩ Vj),

where C1, . . . , Cm, D1, . . . , Dk are irreducible closed, U1, . . . , Um,
V1, . . . , Vk Zariski open, Ci ∩ Ui 
= ∅ 
= Dj ∩ Vj, 1 ≤ i ≤ m, 1 ≤ j ≤ k Then,

Z = ∪iCi = ∪jDj.
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Since C1, . . . , Cm and D1, . . . , Dk are irreducible, it follows that there exist i, j such
that Ci = Dj. If Ci = Ci ∩ Ui or Dj = Dj ∩ Vj, then Z1 ∩ Z2 
= ∅. Assume that
Ci 
= Ci ∩ Ui and Dj 
= Dj ∩ Vj. So, Ci ∩ U c

i and Ci ∩ V c
j are proper, non-empty

closed subsets of Ci. Since Ci is irreducible, this implies that

Ci \ ((Ci ∩ U c
i ) ∪ (Ci ∩ V c

j )) = (Ci ∩ Ui) ∩ (Dj ∩ Vj) 
= ∅.

Hence, Z1 ∩ Z2 
= ∅. �
Finally, we need a result of André Weil from Algebraic Geometry. (See [32, 68].)
We see that K

[n] = K[X1, . . . , Xn] is a vector space over K with the set of all
monomials Mα(X) = Xα1

1 . . . Xαn
n a basis. Let I be an ideal in K

[n]. By Hilbert
basis theorem it is finitely generated. Now let k be a subfield of K. We say that
I is algebraically definable over k if it has a basis consisting of polynomials with
coefficients in k.

Note that I is a vector subspace of K
[n]. So, we have a quotient space K

[n]/I . Let
{Mβ(X)} be a maximal set of monomials which are independent modulo I . So, each
monomial Mα(X) has a unique representation

Mα(X) =
∑

β

aαβMβ(X) (modulo I).

We need one more notation. If σ : K → K is an automorphism, and f (X) =∑
α aαMα(X) ∈ K

[n], then f σ(X) = ∑
α σ(aα)Mα(X). Further, Iσ = {f σ :

f ∈ I}.
Theorem B.2.13 (André Weil) There exists a subfield k0 of K such that

1. I is algebraically definable over k0, and
2. If I is algebraically definable over a subfield k of K, then k0 ⊂ k.

Further, for every automorphism σ of K, Iσ = I if and only if σ fixes k0 pointwise.

Proof As above, let B = {Mβ(X)} be a basis of K
[n] modulo I and let {Mγ(X)} be

the set of remaining monomials. Let

Mγ(X) =
∑

β

aγβMβ(X) (modulo I).

Take any f ∈ I . Then f has a unique representation

f = ∑
γ

aγMγ(X) + ∑
β

bβMβ(X)

= ∑
γ

aγ(Mγ(X) − ∑
β

aγβMβ(X)) + ∑
β

cβMβ(X)

Because f and Mγ(X)−∑
β aγβMβ(X) are in I and {Mβ(X)} linearly independent

modulo I , each cβ = 0. Now it is easily seen that I has a basis consisting of finitely
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many polynomials of the form Mγ(X) − ∑
β aγβMβ(X). We fix a finite basis D of I

consisting of polynomials of the form Mγ(X)−∑
β aγβMβ(X). Let k0 be the subfield

of K generated by the set of all aγβ appearing in this finite basis of I . Thus, I is
algebraically definable over k0.

Now let k be a subfield of K and I have a basis f1, . . . , fm ∈ k[X].
Let M0(X) be one of the Mγ(X) not appearing in B. Then

M0(X) −
∑

β

a0βMβ(X) =
m∑

i=1

gifi,

where gi = ∑
α yiαMα(X). Introduce an indeterminate Yiα whenever yiα 
= 0 and set

Gi =
∑

α

YiαMα(X).

Denote Y = (Yiα). We then have

m∑
i=1

Gifi =
∑

γ

lγ(Y)Mγ(X) +
∑

β

lβ(Y)Mβ(X),

where lγ(Y) and lβ(Y) are linear forms with coefficients in k.
The system of linear equations l0(Y) = 1 and lγ(Y) = 0 for all γ 
= 0 over k has

a solution in K. Hence, it has a solution, y′ = (y′
iα) in k. Let

g′
i =

∑
α

y′
iαMα(X).

Let
m∑

i=1

g′
i fi = M0(X) −

∑
β

zβMβ(X).

Since {Mβ(X)} is a basis ofK
[n] modulo I , a0β = zβ ∈ k. Since M0(X) among Mγ(X)

not appearing in B was arbitrary, each aγβ ∈ k. Thus, k0 ⊂ k.
Now let σ be an automorphism of K. Suppose σ fixes k0 pointwise. Then σ fixes

a basis of I pointwise. But then Iσ = I . Conversely, let Iσ = I . Then for each γ such
that Mγ(X) − ∑

β aγβMβ(X) appears in D,

Mγ(X) −
∑

β

σ(aγβ)Mβ(X) ∈ Iσ = I.

By uniqueness of the representation, it follows that σ(aγβ) = aγβ for all γ, β. Thus,
σ fixes k0 pointwise. �
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In terms of Zariski closed sets, this result recasts as follows.

Theorem B.2.14 Let K |= ACF and Z ⊂ K
n Zariski closed. Let I be a radical

ideal such that Z = V(I) and k0 the smallest subfield such that I is algebraically
defined over k0. Then for any automorphism σ of K, σ(Z) = Z if and only if σ fixes
k0 pointwise.

Proof Note that

σ(Z)

= ∩∑
α aαMα(X)∈I{σ(x) ∈ K

n : ∑
α

aαMα(x) = 0}

= ∩∑
α aαMα(X)∈I{σ(x) ∈ K

n : σ

(∑
α

aαMα(x)

)
= ∑

α
σ(aα)Mα(σ(x)) = 0}

= V(Iσ)

By Hilbert Nullstellensatz, I = I(Z) and Iσ = I(σ(Z)). Hence, Iσ = I if and
only if σ(Z) = Z . The result now follows from the last theorem. �

B.3 Real Closed Fields

We refer the reader to [6, 61] for detailed accounts of real closed fields and for real
algebraic geometry.

We call an ordered field F real closed if

1. ∀x∃y(x = y2 ∨ x + y2 = 0), i.e. for every x ∈ F, either x or −x has a square root
and

2. every polynomial in one variable over F of odd degree has a root in F.

Example B.3.1 Besides R, the field of real algebraic numbers, denoted by Ralg , is a
real closed field.

Note that in a real closed field F, if x ∈ F is a square, it must be ≥ 0, and if x ≥ 0
there is a unique y ≥ 0 such that x = y2. We then write

√
x for y. Also note that

0 ≤ x ≤ y ⇒ √
x ≤ √

y.

Remark B.3.2 If F is a real closed field, it has a unique ordering, because its non-
negative elements are given by

F
+ = {x ∈ F : ∃y ∈ K(y 
= 0 ∧ x = y2)}.

This also shows that the ordering of F is definable in the language of rings. However,
it may not be definable by an open formula. If F = R and < is defined by an open
formula, R

+ should be either finite or cofinite, which it is not. Also note that every
definable subset of F is definable in the language of rings.
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Let F be a real closed field. We can canonically topologies F
n. Indeed, we have a

F-valued metric on F
n.

For x = (x1, . . . , xn) ∈ F, we define its norm by

|x| =
√

x21 + · · · + x2n .

For x, y ∈ F, we define their inner product by

〈x, y〉 =
n∑

i=1

(xi · yi).

Now we follow the classical proof of Cauchy–Schwarz inequality to get

Theorem B.3.3 (Cauchy–Schwarz Inequality) If F is a real closed field and x, y ∈
F, then

|〈x, y〉| ≤ |x| · |y|.

Proof Take any λ ∈ F and set

zi = xi − λ · yi, 1 ≤ i ≤ n.

Then
n∑

i=1

z2i = |y|2 · λ2 −
(
2

∑
i

xi · yi

)
· λ +

∑
i

x2i ≥ 0.

Hence, (
|y| · λ − 〈x, y〉

|y|
)2

−
(( 〈x, y〉

|y|
)2

− |x|2
)

≥ 0

for all λ ∈ F. By taking λ = 〈x,y〉
|y|2 , we get the Cauchy–Schwarz inequality as

above. �

For x, y ∈ F, define
ρ(x, y) = |x − y|.

For x, y, z ∈ F, it is easy to check the following:

1. ρ(x, y) ≥ 0.
2. ρ(x, y) = 0 ⇔ x = y.
3. ρ(x, y) = ρ(y, x).
4. ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

The last fact follows from

(5) (Triangle inequality) |x + y| ≤ |x| + |y|,
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which can be proved by Cauchy–Schwarz inequality as usual. By using ρ like a
metric, we have usual topology on F

n. In fact, we can regard F
n as an inner product

space. Thus, there is a geometry based on real closed fields, which is called real
algebraic geometry. This is a rich branch of mathematics and model theory plays a
significant role in real algebraic geometry.

We call a field real if −1 is not a sum of squares. Note that every ordered field
is real. Further, a field F is real if and only if for all a ∈ F,

∑
i a2

i = 0 implies each
ai = 0.

Proposition B.3.4 Let F be a real field. Then the field of rational functions
F(X1, . . . , Xn) is real.

Proof Our result will be proved if we show that for polynomials f1(X), . . . , fk(X)

over F,
∑

i f 2i = 0 implies each fi = 0. We prove this by induction on n. In the case
n = 1, let fi(X) = ∑

j aijXj with
∑

i f 2i = 0. Since F is real, note that the leading
coefficients of those fi whose degree is the highest among those of f1, . . . , fk are zero.
So, each fi must be 0. For inductive step, note that

F[X1, . . . , Xn] = F[X1, . . . , Xn−1][Xn].

�

Lemma B.3.5 Let F be a real field and a 
= 0 in F. Then F[√a] is real if and only
if −a is not a sum of squares in F.

Proof If F[√a] is real and −a is a sum of squares, then a + ∑
i b2

i = 0. This implies
that a = 0. This proves the only if part. Now assume that F[√a] is not real. Then we
get x, y ∈ F such that y 
= 0 and

∑
i(xi + yi

√
a)2 = 0. This, in particular, implies

that
∑

i x2i + a
∑

i y
2
i = 0. Hence

−a = (
∑

i x2i )(
∑

i y
2
i )

(
∑

i y
2
i )

2
,

contradicting that −a is not a sum of squares. �

Now, by Zorn’s lemma, we get the following result:

Theorem B.3.6 Every real field K has a real algebraic extension F such that in F

for every a ∈ F, either a is a square or −a is a sum of squares.

Proof Set
P = {F : F real algebraic extension of K}.

Then K ∈ P showing that P is non-empty. We partially order P by inclusion ⊂. Note
that if {Fα} is a chain in P, ∪αFα is an upper bound of the chain in P. So, by Zorn’s
lemma, P has a maximal element, say F. This works. �
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Now assume that F is a real field such that for every a ∈ F either a is a square or
−a is a sum of squares. Since F is real, this implies that for every a 
= 0, exactly one
of a and −a is a sum of squares. We define

x < y ⇔ ∃z ∈ F

(
z 
= 0 ∧ y = x +

∑
i

z2i

)
, x, y ∈ F.

Then < is a linear order on F making it into an ordered field.
IfK is a real field with no proper real algebraic extension, then the above ordering

will be called the canonical order of K. The above result, in particular, gives us the
following result of Artin and Schreier.

Theorem B.3.7 Let F be a real field and a ∈ F not a sum of squares. Then there is
an order < on F making F into an ordered field and a < 0.

Corollary B.3.8 A field is orderable if and only if it is real.

The following result is also due to Artin and Schreier.

Theorem B.3.9 (Weierstrass Nullstellensatz) Let K be a real field with no proper
real algebraic extension, < its canonical order, f [X] ∈ K[X] and a < b ∈ K be such
that f (a) · f (b) < 0. Then there is a c ∈ K with a < c < b and f (c) = 0.

Proof First we observe that it is sufficient to show that f has a root in K. Let
c0, . . . , cn−1 be all the roots of f less than a. Then

f (x) = (x − c0) . . . (x − cn−1) · g(x),

where g is a polynomial having no root less than a. Note that g(a) ·g(b) < 0.We now
work similarly with the roots d0, . . . , dm−1 of f greater than b. They are precisely the
roots of g greater than b. We write

g(x) = (x − d0) . . . (x − dm−1) · h(x),

with h having no roots either less than a or greater than b. Still we have h(a)·h(b) < 0.
Any root of h is a root of f between a and b.

Suppose there is a polynomial f ∈ K[X] and a < b such that f (a) · f (b) < 0 but
f has no root in K. We choose one such f of least degree. It is easily seen that f is
irreducible. Then F = K[X]/(f (X)) is a proper algebraic extension of K, and so not
real. Set α = [X] ∈ F. We then get non-zero polynomials gi(X) ∈ K[X], 1 ≤ i ≤ k,
such that

∑
i g

2
i (α) = 0. Hence,

∑
i g

2
i (X) = f (X) · h(X) for some h. We choose

such an h of the least degree. Note that we can arrange things so that the degree of
each gi is less than the degree of f . This implies that the degree of h is less than the
degree of f . Since f (a) · h(a), f (b) · h(b) ≥ 0, and f (a) · f (b) < 0, either h(a) = 0
or h(b) = 0 or h changes sign between a and b. Since f was one such polynomial
of least degree with no root, h has a root r in K. Since K is real, r is a root of each
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gi. Hence, there exist polynomials hi(X) ∈ K[X] such that gi(X) = (X − r) · hi(X),
1 ≤ i ≤ k. Since f has no root in K, this implies that (X − r)2 divides h(X). Let
h(X) = (X − r)2 · f1(X). Now, we get

∑
i h2

i (X) = f (X) · f1(X) contradicting that h
has the least possible degree satisfying such an identity. �

Artin and Schreier proved the following crucial result.

Theorem B.3.10 Let K be a real field. Then the following statements are equivalent.

(a) K has no proper real algebraic extension.
(b) K is real closed.
(c) The ring K[i] = K[X]/(X2 + 1) is algebraically closed.

dummy

Proof Suppose K has no proper real algebraic extension. Let< denote the canonical
order of K and a > 0 be in K. Consider the polynomial

f (X) = X2 − a

in K[X]. Then f (0) < 0 and f (1+ a) > 0. By Weierstrass Nullstellensatz (Theorem
B.3.9), there is a c ∈ K such that f (c) = 0. Thus every positive element of K has a
square root in K.

Now take a monic polynomial f (X) ∈ K[X] of odd degree. Then, arguing as in
the case of R, we can find a < b such that f (a) < 0 < f (b). Hence, f has a root in
K by Weierstrass nullstellensatz. Thus, (a) implies (b).

We now show that (b) implies (c). We first note that it is sufficient to prove that
every f ∈ K[X] has a root in K[i]. To see this, take any g ∈ K[i][X]. Let g denote
the polynomial obtained from g by replacing all its coefficients by their conjugates.
Then g · g ∈ K[X]. Hence, by our assumption, it has a root, say α, in K[i]. So, α is
a root of either g or g. If α is not a root of g, the conjugate α of α is a root of g.

Fix f ∈ K[X]. Let d = 2m(2n + 1) be the degree of f . By induction on m, we
show that f has a root inK[i]. If m = 0, the degree of f is odd. So, by (b), it has a root
in K ↪→ K[i]. Now assume that the assertion is true for m − 1. Let r1, . . . , rd be all
the roots of f in an algebraic closure K of K. For any k ∈ Z, consider the polynomial

gk(X) = �1≤p<q≤d(X − rp − rq − krp · rq) ∈ K[X].

This is invariant under all transpositions of r1, . . . , rd and so is symmetric in
r1, . . . , rd . Since all the elementary symmetric polynomials in r1, . . . , rd are coef-
ficients of f , they belong to K. It is well known that every symmetric polynomial
in r1, . . . , rd are functions of elementary symmetric polynomials. Hence, each gk is
a polynomial over K. The degree of gk equals d(d−1)

2 = 2m−1n′, n′ odd. By induc-
tion hypothesis, each gk has a root in K[i]. By pigeonhole principle, there exist
1 ≤ p < q ≤ d and k 
= l such that

rp + rq + krp · rq, rp + rq + lrp · rq ∈ K[i].
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For such p, q, rp + rq and rp · rq are in K[i]. It follows that rp, rq ∈ K[i]. We have
shown that (b) implies (c).

To show that (c) implies (a), first note that by (c) K[i] is the only non-trivial
algebraic extension of K. Further, K[i] is clearly not real. Hence, K has no proper
real algebraic extension. �

Corollary B.3.11 Let F, K be real closed fields with F a subfield of K. Then every
root in K of a polynomial f (X) over F lies in F.

Proof Let x ∈ K be a root of a polynomial f (X) ∈ F[X]. Note that the subfield
generated by F and x is a real algebraic extension of F. But F has no proper real
algebraic extension. Hence, x ∈ F. �

Remark B.3.12 Let F be a real closed field and a 
= 0 be in F. Then, a is a square if
and only if −a is not a sum of squares.

A real algebraic extension of K with no proper real algebraic extension will be
called a real closure of K.

Remark B.3.13 Consider the real field F = Q(X) of rational functions over Q.
Clearly, F[√X] and F[√−X] are real fields. Their real closures are not isomorphic
over F.

However, there is a unique result for ordered fields.

Proposition B.3.14 Let (K, 0, 1,+, ·,<) be an ordered field, 0 < x ∈ K which is
not a square in K, then there is an order on the extension field K[√x] extending the
order < on K.

Proof For a + b
√

x, c + d
√

x in K[√x], define

a + b
√

x < c + d
√

x

if any one of the following conditions is satisfied.

(i) b = d and a < c.
(ii) b < d and either a < c or (a−c)2

(b−d)2
< x.

(iii) b > d and c > a and x < (a−c)2

(b−d)2
.

It is entirely routine to check that this works. �

Theorem B.3.15 Let (K,<) be an ordered field. Then there is a real closure of K

whose canonical order is compatible with <. If K1, K2 are real closed algebraic
extensions of K, then there is a unique order-preserving isomorphism α : K1 → K2

fixing K.
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Proof Consider

P = {(F,<′) : F an ordered algebraic extension of K ∧ <′ |K =<},

partially ordered by the inclusion ⊂. By Zorn’s lemma it has a maximal element, say
(K′,<′). Hence, every positive element of K

′ has a square root in K
′. Note that K

′
does not have a proper real algebraic extension because then its canonical ordering
would extend < since every positive element of K has a square root in K

′. Clearly,
K

′ satisfies the desired properties. We omit the proof of the uniqueness. �

If K is an ordered field, a real closed algebraic extension of K preserving < is
called the real closure of K. Note that Ralg is the real closure of Q.



Appendix C
Valued Fields

Weare nearly self-contained in this chapter. However, the interested reader is referred
to [2–4] for further study.

C.1 Basic Definitions and Examples

Let F be a field and (�,+,≤) an ordered abelian group. A valuation on F is a
surjective map v : F → � ∪ {∞} satisfying the following three conditions:

(i) v(x) = ∞ iff x = 0.
(ii) v(x · y) = v(x) + v(y).
(iii) v(x + y) ≥ min{v(x), v(y)}.

In particular, a valuation v on F is an epimorphism from F
× to �. The valuation v

identically equal to 0 on F is called the trivial valuation on F. The group � is called
the valuation group.

Example C.1.1 Let F = Q be the field of all rational numbers and p > 1 a prime.
Let r = pi a

b 
= 0, p 
 |a, b. Define vp(r) = i. It is easily checked that this defines a
valuation on Q. vp is called the p-adic valuation on Q.

Example C.1.2 Let K be a field and F = K(X), the field of rational functions over
K. For f

g

= 0, define v∞(

f
g
) = deg(g) − deg(f ). It is easy to check that this defines

a valuation on F. v∞ is called the degree valuation on K(X).

Example C.1.3 Let F be as in Example 1.2 and p ∈ K[X] an irreducible polynomial.
For r = pi f

g

= 0 with p 
 |f , g, we define vp(r) = i. It is easy to check that vp is a

valuation on F. It is called the p-adic valuation on K(X).

Example C.1.4 Let F be a field and F((X)) denote the field of formal Laurent series
over F. So, an element f in F((X)) has a formal representation
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f (X) =
∞∑

i=m

aiX
i,

where m ∈ Z and am 
= 0. In this case we define v(f ) = m. It is easy to check that v
is a valuation on F((X)).

For any valuation v, we have

1. v(1) = v(1 · 1) = v(1) + v(1). This implies that v(1) = 0
2. 0 = v(1) = v(−1 · −1) = 2v(−1). Since � is ordered, it is torsion-free. Hence,

v(−1) = 0. Also, v(−x) = v(−1) + v(x) = v(x)
3. Let x ∈ F

×. Then 0 = v(1) = v(x · x−1) = v(x) + v(x−1). So, v(x−1) = −v(x).

Given a valuation v : F → � ∪ {∞}, define

V = {x ∈ F : v(x) ≥ 0}.

Then V is a subring of F with identity such that for every x ∈ F
×, at least one of x

or x−1 belongs to V . Such a subring is called a valuation subring of F.

A valued field consists of a field F and a valuation subring V of F.

A valuation v on F is called compatible with V if V = {x ∈ F : v(x) ≥ 0}. Let
(F, V ) be a valued field and v a compatible valuation. Consider

M = {x ∈ V : v(x) > 0}.

Then M is an ideal in V . If v(x) = 0, v(x−1) = −v(x) = 0. Thus, V \ M = V ×, the
set of all units of V . Hence, M is the unique maximal ideal of V . Note that an x ∈ F

×
is not in V iff x−1 ∈ M. Clearly, V × is a subgroup of F

×. Further, F
∼ = V/M is a

field, called the residue field of (F, V ).
For a ∈ V , [a] will denote its class in F

∼ = V/M and for f ∈ V [X], f ∼ ∈ F
∼[X]

is obtained by replacing each coefficient a of f by [a].
Note that char(F) = p > 0, then char(F∼) = p. Hence, if char(F∼) = 0, then

char(F) = 0. However, char(F∼) need not be 0 even if char(F) = 0. This is shown
in the next example.

Example C.1.5 Let p > 1 be a prime number and vp the p-adic valuation on Q as
defined in Example C.1.1. Then the corresponding valuation subring equals

Vp =
{a

b
: (a, b) = 1 & p 
 |b

}
.

Thus Vp = Z(p), the localization ofZ by the prime ideal (p). The maximal ideal of Vp

equals pZ(p). It follows that the residue field is of characteristic p. Further, the residue
field in this case equals Fp. To see this, consider the quotient map q : Z → Z/pZ =
Fp. Clearly, for every b /∈ pZ, q(b) is non-zero in Fp. So, we define h : Z(p) → Fp
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by h(a/b) = q(a).q(b)−1, where (a, b) = 1 and p 
 |b. Its kernel is clearly pZ(p) and
range Fp. Thus, the residue field in this case is Fp.

Example C.1.6 Next consider the p-adic valuation on K(X), p ∈ K[X] irreducible.
Its valuation subring equals

{
f

g
∈ K(X) : (f , g) = 1 & p 
 |g

}
= K[X](p),

the localization of K[X] by the prime ideal (p). Its maximal ideal is pK[X](p). Let
q : K[X] → K[X]/(p) be the quotient map. For g /∈ (p), q(g) 
= 0. So, we have
an epimorphism h : K[X](p) → K[X]/(p) defined by h(f /g) = q(f )q(g)−1 whose
kernel is pK[X](p). Thus, the residue field in this case if K[X]/(p).

Example C.1.7 Consider the degree valuation v∞ on the field of rational functions
K(X) over a field K. Its valuation subring

V∞ =
{

f

g
∈ K(X) : degree(g) ≥ degree(f )

}

whose units are precisely those f
g

∈ K(X) for which degree(g) = degree(f ). An

element in the valuation subring has the representation
∑m

i=0 aiXi∑m
i=0 biXi with bm 
= 0. We

define h : V∞ → K by

h

(∑m
i=0 aiXi∑m
i=0 biXi

)
= am/bm.

This is an epimorphism with kernel the maximal ideal of V∞. It follows that the
residue field in this case is K.

Example C.1.8 Consider the field F((X)) of formal Laurent series over a field F and
the valuation defined by

v

( ∞∑
i=m

aiX
i

)
= m,

where am 
= 0. Then the corresponding valuation subring is the ring of all formal
power series F[[X]] and the maximal ideal M consists of all power series of the form∑∞

i=1 aiXi. The residue field in this case is easily seen to be isomorphic to F.

Lemma C.1.9 If x1, . . . , xn ∈ F and for all i 
= j, v(xi) 
= v(xj). Then v(
∑

i xi) =
mini v(xi).

Proof Suppose k is such that v(xk) = mini v(xi). Then for i 
= k, xix
−1
k ∈ M. Now

suppose v(
∑

i xi) > v(xk). Then x−1
k

∑
i xi ∈ M. Thus, 1 ∈ M, contradicting that M

is a proper ideal of V . �
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Proposition C.1.10 Let v : F → �∪{∞} be a valuation with V = {x ∈ F : v(x) ≥
0}. Then � is isomorphic to F

×/V ×.

Proof Consider the epimorphism v : F
× → �. Then its kernel is V ×. This implies

the result. �

Remark C.1.11 Wecan pull back the order on� toF
×/V × tomake this isomorphism

preserve the order too. In other words, if we define

[x] ≤ [y] ⇔ yx−1 ∈ V

we see that the ordered group � is isomorphic to the ordered group F
×/V ×. This

idea gives us the next theorem.

Theorem C.1.12 Let V be a valuation subring of a field F. Then there exists an
ordered abelian group (�,+,≤) and a valuation v : F → � ∪ {∞} such that
V = {x ∈ F : v(x) ≥ 0}.
Proof Let V × be the set of all units of V . This is a subgroup of the (abelian) groupF

×.
We take � = F

×/V ×. We shall denote the group operation of � by+. Let v : F
× →

� = F
×/V × be the quotient map. Set v(0) = ∞. Since v is a homomorphism, we

have
v(x · y) = v(x) + v(y).

Define ≤ on � by
[x] ≤ [y] ⇔ y · x−1 ∈ V .

This is well-defined: Let x · (x′)−1 ∈ V × and y′ · y−1 ∈ V ×. Then

y · x−1 = (y · (y′)−1) · (y′ · (x′)−1) · (x′ · x−1).

So, y′ · (x′)−1 ∈ V will imply that y · x−1 ∈ V . Clearly, ≤ is a linear order on �.
For x, y, z ∈ F

×, note that (y · z) · (x · z)−1 = y · x−1. Therefore,

[x] ≤ [y] ⇒ [x] + [z] ≤ [y] + [z].

Next, if possible, let there exist x, y ∈ F
× such that v(x + y) < min{v(x), v(y)}, i.e.

[x + y] < [x] and [x + y] < [y]. Then,

x−1 · (x + y) = 1 + x−1 · y /∈ V

and
y−1 · (x + y) = 1 + y−1 · x /∈ V .
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Since 1 ∈ V , then neither of x · y−1, y · x−1 is in V . This contradicts that V is a
valuation ring. So, we have

v(x + y) ≥ min{v(x), v(y)}.

Note that [1] = 0. So,
0 ≤ [x] ⇔ x ∈ V .

This implies that
V = {x ∈ F : v(x) ≥ 0}.

�

We call valuations vi : F
× → �i, i = 1, 2, on a field F isomorphic if

{x ∈ F : v1(x) ≥ 0} = {x ∈ F : v2(x) ≥ 0},

i.e. they induce the same valuation subrings. From the above arguments, it follows
that.

Proposition C.1.13 Two valuations vi : F
× → �i, i = 1, 2, on a field F are

isomorphic if and only if there is an order-preserving isomorphism ρ : �1 → �2

such that v2 = ρ ◦ v1.

Now we determine the set of all valuations modulo isomorphism on the field Q

of all rational numbers and the field of all rational functions F(X) over a field F.

Proposition C.1.14 Let v be a non-trivial valuation on Q. Then there is a prime
p > 1 such that v is isomorphic to the p-adic valuation vp on Q.

Proof Let V be the valuation subring and M the unique maximal ideal of V . Clearly,
V contains Z. Since v is non-trivial, V 
= Q and M 
= 0. Now note that M must
contain a non-zero integer. If not, then v(a) = 0 for every non-zero integer a implying
that v is trivial. Since M is a prime ideal of V , by the prime decomposition, there
is a prime p > 1 in M. If q 
= p is another prime, we have ap + bq = 1 for some
a, b ∈ Z. Since M is proper, it follows that q /∈ M. So, v(q) = 0 if q 
= p is a positive
prime. Hence, if r = pi a

b such that p 
 |a, b, v(r) = v(pi) = iv(p) with v(p) > 0.
Now it is easy to see that v is isomorphic to vp. �

Proposition C.1.15 Let F be a field and v a non-trivial valuation on F(X) such
that v is trivial on F. If v(X) ≥ 0, then v is isomorphic to vp for some irreducible
polynomial p ∈ F[X]. Otherwise, v is isomorphic to the degree valuation v∞.

Proof Let V be the valuation subring corresponding to v and M its unique maximal
ideal.
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Suppose v(X) ≥ 0. Then v(f ) ≥ 0 for all polynomials f ∈ F[X], implying that
F[X] ⊂ V . Since v is non-trivial, M contains a monic irreducible polynomial p.
Arguing as in the proof of the last proposition, we see that p is the only irreducible
monic polynomial in M. As in the last proposition, we see that v is isomorphic to vp.

If v(X) < 0, v(X−1) > 0. So, v(Xm) < v(Xn) whenever m > n. Now consider∑n
i=0 aiXi−n with an 
= 0. By Lemma C.1.9 it follows that

v

(
n∑

i=0

aiX
i−n

)
= v(an) = 0.

This implies that v(
∑n

i=0 aiXi) = v(Xn) provided an 
= 0. Hence,

v

(∑n
i=0 aiXi∑m
j=0 bjXj

)
= v(Xn) − v(Xm) = (m − n)v(X−1),

with v(X−1) > 0 where an, bm 
= 0. Now, it easily seen that v is isomorphic
to v∞. �

In standard algebra, one has to start with an integral domain D and consider the
quotient field of D. Similar situation arises for valued fields also. What should be
an additional structure on an integral domain D so that its quotient field becomes a
valued field with the valuation suitably connected with the additional structure on
D? We take up this problem now.

Let (F, V ) be a valued field and v be a compatible valuation V . For a, b ∈ F,
define

a|b ⇔ ∃c ∈ V (ac = b).

Note that for a 
= 0, a|b if and only if ba−1 ∈ V . We have the following:

(a) 1|0 & 0 
 |1.
(b) ∀x(x|x).
(c) ∀x, y, z((x|y & y|z) ⇒ x|z).
(d) ∀x, y(x|y ∨ y|x).
(e) ∀x, y∀z 
= 0(x|y ⇔ xz|yz).
(f) ∀x, y, z((z|x & z|y) ⇒ z|x + y).
(g) ∀x, y(x 
 |y ⇔ v(y) < v(x)).

Most of these are trivial to prove. To see (d), note that x 
 |y implies that yx−1 /∈ V .
So, xy−1 = z ∈ V . Thus, yz = x implying that y|x.

To see (g), note that x 
 |y implies that y|x. So, there exists z ∈ V such that x = yz.
Hence v(x) = v(y) + v(z) and v(z) ≥ 0. If v(z) = 0, z ∈ V ×. But then y = xz−1

and z−1 ∈ V . Hence, x|y, a contradiction. To prove the converse, without any loss of
generality, we assume that x 
= 0. Now v(y) < v(x) implies that v(xy−1) > 0. So,
z = xy−1 ∈ M. In particular, z is not a unit in V and zy = x. So, x 
 |y.
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Also note the following:

∀x(1|x ⇔ x ∈ V ), (*)

and
∀x(x|1 ⇔ x−1 ∈ V ).

Any binary relation x|y satisfying (a)–(f), is called a valuation divisibility relation
on F. If | is a valuation divisibility relation on F and V = {x ∈ F : 1|x}, then V is
a valuation ring of F. Thus there is a one-to-one correspondence between valuation
divisibility relations on F and valuation subrings of F.

Ourmain interest in valuation divisibility relations stems from the followinguseful
result.

Proposition C.1.16 Let D be an integral domain and x|y a binary relation on D
satisfying (a)–(f). Then there is a unique valuation divisibility relation on the quotient
field F of D extending x|y on D.

Proof For a
b , c

d , define
a

b
| c

d
⇔ ad|bc.

The result follows. �

We close this section with a simple general result on valued fields.

Proposition C.1.17 Let (F, v) be an algebraically closed valued field. Then its value
group, say �, is divisible.

Proof Let a ∈ � and m > 1 an integer. Since v is a surjection to � ∪ {∞}, there is a
y ∈ F such that v(y) = a. Since F is algebraically closed, there is an x ∈ F such that
xm = y. Set b = v(x) ∈ �. Then mb = v(xm) = v(y) = a. Thus, we have proved
that � is divisible. �

C.2 Extensions of Valuations on Rational Function Fields

Theorem C.2.1 Let v : F → � ∪ {∞} be a valuation. Assume that � is an ordered
subgroup of an ordered group �′ and γ ∈ �′. For f (X) = ∑n

i=0 aiXi ∈ F[X], define

w(f ) = min{v(ai) + iγ : 0 ≤ i ≤ n},

and for f
g

∈ F(X), define

w(
f

g
) = w(f ) − w(g).
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Then w is a well-defined valuation on F(X) extending v with w(X) = γ. Its value
group is the subgroup of �′ generated by � ∪ {γ}.
Proof Clearly w(0) = ∞, w(a) = v(a) for all a ∈ F and w(X) = γ.

Take f (X) = ∑n
i=0 aiXi and g(X) = ∑n

i=0 biXi in F[X]\{0}. For every 0 ≤ i ≤ n.

v(ai + bi) + iγ ≥ min{v(ai), v(bi)} + iγ
= min{v(ai) + iγ, v(bi) + iγ}
≥ min{w(f ), w(g)}

Therefore,
w(f + g) ≥ min{w(f ), w(g)}.

Now f g = ∑2n
k=0 ckXk , where ck = ∑

i+j=k aibj. Let i + j = k. Then

v(aibj) + kγ = (v(ai) + iγ) + (v(bj) + jγ) ≥ w(f ) + w(g).

Hence, w(f g) ≥ w(f ) + w(g).
To prove the opposite inequality, let

i0 = min{i : w(f ) = v(ai) + iγ},

and
j0 = min{j : w(g) = v(bj) + jγ}.

Set k = i0 + j0. Now,

ck =
⎛
⎝ ∑

i<i0,i+j=k

aibj

⎞
⎠ + ai0bj0 +

⎛
⎝ ∑

j<j0,i+j=k

aibj

⎞
⎠ .

For i < i0, v(ai)+ iγ > v(ai0)+ i0γ by the definition of i0. Therefore, for i < i0 and
i + j = k,

v(aibj) + kγ = (v(ai) + iγ) + (v(bj) + jγ) > v(ai0bj0) + kγ.

Hence, for all i < i0 and i + j = k,

v(aibj) > v(ai0bj0
).

Similarly, for all j < j0 and i + j = k,

v(aibj) > v(ai0bj0
).
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By Lemma C.1.9, it follows that

v(ck) = v(ai0bj0).

Thus,
v(ck) + kγ = v(ai0) + i0γ + v(bj0) + j0γ = w(f ) + w(g).

This implies that
w(f g) ≤ w(f ) + w(g).

Hence, w(f g) = w(f ) + w(g) for all polynomials f , g ∈ F(X).
Let f1

g1
= f2

g2
. Then f1g2 = f2g1. Therefore,

w(f1) + w(g2) = w(f2) + w(g1).

This implies that w is well-defined. It is now easy to check that

w

(
f1
g1

f2
g2

)
= w

(
f1
g1

)
+ w

(
f2
g2

)
.

Assume thatw(
f1
g1

) ≥ w(
f2
g2

). Thenw(f1)+w(g2) ≥ w(f2)+w(g1), i.e.w(f1g2) ≥
w(f2g1). Now,

w
(

f1
g1

+ f2
g2

)
= w

(
f1g2+f2g1

g1g2

)
= w(f1g2 + f2g1) − w(g1g2)
≥ min{w(f1g2), w(f2g1)} − w(g1g2)
≥ w(f2) + w(g1) − w(g1) − w(g2)

= min{w(
f1
g1

), w(
f2
g2

)}

Our result is proved now. �
Theorem C.2.2 Let v : F → �∪{∞} be a valuation and K a subfield. Let v(x) = 0
and [x] ∈ F

∼ be transcendental over K
∼. Then, whenever a0, . . . , an ∈ K,

v

(
n∑

i=0

aix
i

)
= min{v(ai) : 0 ≤ i ≤ n}.

Further, v(K(x)) = v(K) and K(x)∼ = K
∼([x]).

Proof Let f = ∑n
i=0 aixi 
= 0. Choose a k ≤ n such that

v(ak) = min{v(ai) : 0 ≤ i ≤ n}.

Then f = ak
∑n

i=0 bixi, where bi = aia
−1
k . So, v(bi) ≥ 0 for each i and bk 
= 0. As

v(x) = 0, v(
∑n

i=0 bixi) ≥ 0.
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Since [x] is transcendental over K
∼,

∑n
i=0 bixi is a unit in the valuation subring

of F. Hence, v(
∑n

i=0 bixi) = 0. It follows that

v(f ) = v(ak) = min{v(ai) : 0 ≤ i ≤ n}.

It is now clear that v(K(x)) = v(K).
Let v(f ) ≥ 0. Then each v(ai) ≥ 0. So,

[f ] =
n∑

i=o

[ai][x]i ∈ K
∼([x]).

This implies that K(x)∼ ⊂ K
∼([x]).

Conversely, let f ∈ V [x], where V is the valuation subring of K. Then
v(f ) ≥ 0. Hence, [f ] ∈ K(x)∼. This shows thatK∼([x]) ⊂ K(x)∼. Thus, our result is
proved. �

Theorem C.2.3 Let v be a valuation on a field K with value group �. Let K be a
subfield of a field F, � an ordered subgroup of an ordered group �′ such that �′/�

is torsion-free, γ ∈ �′ \ � and x ∈ F transcendental over K. Then there is a unique
valuation w on K(x) extending v such that w(x) = γ. Further, the value group of
K(x) is � ⊕ Zγ and the residue fields of K and K(x) are the same.

Proof Let f = ∑n
i=0 aixi with a0, . . . , an ∈ K. Arguing as in the proof of Theorem

C.2.1, we see that
w(f ) = min{v(ai) + iγ : 0 ≤ i ≤ n} (*)

and for f
g

∈ K(x),

w

(
f

g

)
= w(f ) − w(g)

defines a valuation on K(x) extending v and such that w(x) = γ.
Let w be a valuation on K(x) extending v and such that w(x) = γ. We now show

that w satisfies (∗) which will prove the uniqueness part of the result.
Let f = ∑n

i=0 aixi ∈ K[x]. Take 0 ≤ i 
= j ≤ n. By our hypothesis, w(aixi) =
v(ai) + iγ for every 0 ≤ i ≤ n. If ai = aj,

w(aix
i) − w(ajx

j) = (i − j)γ 
= 0

because �′/� is torsion-free. Now assume that ai 
= aj. If possible, suppose
w(aixi) = w(ajxj). But then

(i − j)γ = v(aj) − v(ai) ∈ �

contradicting that �′/� is torsion-free. Thus, whenever 0 ≤ i 
= j ≤ n, w(aixi) 
=
w(ajxj). This implies that
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w(f ) = min{w(aix
i) : 0 ≤ i ≤ n} = min{v(ai) + iγ : 0 ≤ i ≤ n}.

Clearly, the value group of K(x) equals � ⊕ Zγ. The sum is direct because �′/� is
torsion-free.

We now show that the residue fields of K and K(x) are the same.

Claim. If h ∈ K(x) \ {0}, h is of the form axr(1 + u) with a ∈ K, r ∈ Z and
u ∈ K(x) with w(u) > 0.

Assuming the claim we complete the proof first. Since w(u) > 0 = w(1), by
Lemma C.1.9,

w(1 + u) = min{w(1), w(u)} = w(1) = 0.

Therefore, w(h) = v(a) + r · γ. If w(h) = 0, v(a) + r · γ = 0. Since r · γ /∈ �, it
follows that v(a) = 0 and r = 0 when w(h) = 0. Then

w(h − a) = w(au) = v(a) + w(u) = w(u) > 0.

Thus [h] = [a] in the residue field of K(x). Since [a] is in the residue field of K, the
result follows.

Proof of the claim. Let h = f
g
, where f (x) = ∑n

i=0 aixi, g(x) = ∑m
j=0 bjxj,

ai, bj ∈ K, 0 ≤ i ≤ n and 0 ≤ j ≤ m. We know that there exist 0 ≤ i0 ≤ n and
0 ≤ j0 ≤ m such that for all i 
= i0 and for all j 
= j0,

w(f ) = v(ai0) + i0 · γ < v(ai) + i · γ

and
w(g) = v(bj0) + j0 · γ < v(bj) + j · γ.

We have

f = ai0x
i0

⎛
⎝1 +

∑
i 
=i0

ai

ai0xi0
xi

⎞
⎠ = ai0x

i0(1 + u1), say

and

g = bj0x
j0

⎛
⎝1 +

∑
j 
=j0

bj

bj0xj0
xj

⎞
⎠ = bj0x

j0(1 + u2), say.

By the choice of i0 and j0, w(u1), w(u2) > 0. Set

u = u1 − u2
1 + u2

.
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By Lemma C.1.9, w(1 + u2) = 0. Further, w(u1 − u2) = min{w(u1), w(u2)} > 0.
Hence w(u) > 0. The claim follows since

f

g
= ai0

bj0

xi0−j0(1 + u).
�

C.3 Valuations Induced by a Norm

The p-adic valuations have an important property that they are induced by the so-
called non-Archimedean absolute values. An absolute value or a norm on a field K

is a map | · | : K → [0,∞) satisfying the following three conditions:

(a) |x| = 0 ⇔ x = 0.
(b) ∀x, y(|x · y| = |x||y|).
(c) ∀x, y(|x + y| ≤ |x| + |y|).

The absolute value is called non-Archimedean if instead of (c) the following
stronger property is satisfied:

(c’) ∀x, y(|x + y|) ≤ max{|x|, |y|}.
Otherwise, the absolute value is calledArchimedean. These properties derive their

names from the following observation.

Proposition C.3.1 An absolute value | · | on a field K is non-Archimedean if and
only if {|n| : n ∈ N} is bounded.

Proof Suppose | · | is a non-Archimedean absolute value on K. Then |n| ≤ |1| for
every n ∈ N.

Conversely, assume that |n| < M for every n ∈ N. Let x, y ∈ K and n a positive
integer. Then

|x + y|n = |(x + y)n| =
∣∣∣∣∣

n∑
i=0

nCi x
iyn−i

∣∣∣∣∣ ≤ (n + 1)M max{|x|, |y|}n.

So,
|x + y| ≤ (n + 1)1/nM1/n max{|x|, |y|}.

By taking limit as n → ∞, we see that |x + y| ≤ max{|x|, |y|}. �

Example C.3.2 The usual absolute values on Q, R and C are Archimedean absolute
values.
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Example C.3.3 Let p > 1 be a prime. Consider the field Q of all rational numbers.
For a non-zero r = pi a

b with p 
 |a, b, define

|r|p = e−i.

Then | · |p is a non-Archimedean absolute value on Q. It is called the p-adic absolute
value.

Example C.3.4 Now consider the field of all rational functions K(X) over a field
K. Let p ∈ K[X] be irreducible. For a non-zero rational function f = pi g

h , p 
 |g, h,
define

|f |p = e−i.

Then | · |p defines a non-Archimedean absolute value on K(X). It is called the p-adic
absolute value. An important special case is obtained by taking p = X.

Let | · | be an absolute value on a field K. Then |1| = |1 · 1| = |1|2. Therefore,
|1| = 1. Further, | − 1|2 = | − 1 · −1| = |1| = 1. Therefore, | − 1| = 1. It follows
that for every x 
= 0, | − x| = |x| and |x−1| = |x|−1.

An absolute value on a field K canonically induces a metric on it which is of
fundamental importance. If | · | is an absolute value on K, we have a metric on K

defined by (x, y) → |x − y|, x, y ∈ K.
We can carry out the standard completion of a metric space. Given an absolute

value | · | on a field K, we show that the metric completion K is a field and | · | can
be extended to a complete absolute value on K, where an absolute value is called
complete if it induces a complete metric. We describe this briefly below.

For Cauchy sequences (an), (a′
n), define (an) ∼ (a′

n) if |an − a′
n| → 0 as n → ∞.

The∼ is an equivalence relation on the set of all Cauchy sequences. Let [(an)] denote
the equivalence class of a Cauchy sequence (an). Let (an) ∼ (a′

n) and (bn) ∼ (b′
n).

Then (an + bn) and (an · bn) are Cauchy sequences and (an + bn) ∼ (a′
n + b′

n) as
well as (an · bn) ∼ (a′

n · b′
n). For a ∈ K, we let a denote the equivalence class of

the constant sequence (a, a, a, . . .). Also, note that ||an| − |a′
n|| ≤ |an − a′

n|. These
show that K is a field with [(an)] + [(bn)] = [(an + bn)], [(an)] · [(bn)] = [(an · bn)],
0 the additive identity and 1 the multiplicative identity. Further, |[(an)]| = limn |an|
defines a complete absolute value on K. Also, a → a is an isometric monomorphic
embedding of K onto a dense subfield of K.

Given an absolute value | · | on a field K, define

v(x) = − ln(|x|), x ∈ K. (*)

Then v defines a valuation on K if and only if | · | is non-Archimedean. Now assume
that v is a valuation on a field K with value group and ordered subgroup of the
additive group of reals. Then

|x| = e−v(x), x ∈ K,
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defines a non-Archimedean norm on K. Note that p-adic valuations defined above
are induced by corresponding p-adic absolute values. A valuation will be called non-
Archimedean if it is induced by a non-Archimedean absolute value or equivalently
its value group is an additive subgroup of reals.

Let v and | · | be related by (∗) and V the corresponding valuation subring. Then
a sequence {xn} is Cauchy if and only if

∀M > 0∃N ∈ N∀n, m ≥ N(v(xn − xm) ≥ M).

The valuation v is called complete ifK is complete with respect to the metric induced
by corresponding absolute value. Also note that xn → x if and only if v(xn−x) → ∞.

Let V be the corresponding valuation subring andM the maximal ideal of V . Take
any x ∈ K. Then

x + M = {z ∈ K : v(z − x) > 0} = {z ∈ K : |z − x| < 1}.

Thus, x + M is the open unit ball with centre at x.

Example C.3.5 Let p > 1 be a prime number. The completion of Q with respect
to the p-adic absolute value is denoted by Qp. It is called the field of p-adic real
numbers. We denote its valuation by vp itself. Its valuation subring is denoted by Zp.
Its elements are called p-adic integers. Clearly, Qp is of characteristic 0.

Proposition C.3.6 Let | · | be a non-Archimedean absolute value on a field K with
v corresponding valuation. Let K be the metric completion of K with respect to | · |,
| · | the canonical extension of | · | and v corresponding valuation. Then the residue
fields and the value groups of K and K are isomorphic.

Proof Let V be the valuation subring of K and M the maximal ideal of V . Also, let
V be the valuation subring of K and M the maximal ideal of V .

There is a canonical monomorphism α : V/M ↪→ V /M. Let x ∈ V . Then x + M
is an open neighbourhood of x. Since K is dense in K, there exists a y ∈ K such that
y ∈ x + M ⊂ V . Since V = V ∩ K, y ∈ V . Clearly, the residue class of y is mapped
to the residue class of x. So, α is an isomorphism.

Again, there is a canonical monomorphism β : K
×/V × ↪→ K

×
/V

×
. Now take

an x ∈ K
×
. Since K is dense in K, there is y ∈ K such that v(x − y) > v(x). Clearly,

y 
= 0 and v(y) = v(y − x + x) = v(x) by Proposition 1.1. So, yx−1 ∈ V
×
. Hence,

β([y]) = [x]. So, β is an isomorphism. �

Corollary C.3.7 The residue field of Qp is Fp.

Corollary C.3.8 The residue field of the completion of (F(X), vp), p ∈ F[X] irre-
ducible, is F[X]/(p).
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C.4 p-adic Expansion and Hensel’s Lemma

A valued field (K, v) is called a discrete-valued field of rank 1 if its value group is
isomorphic to Z. (Q, vp), (Qp, vp), (F(X), v∞), (F(X), vp), p ∈ F[X] irreducible,
are discrete-valued fields of rank 1. We observed in the last section that such a v is
induced by a non-Archimedean norm.

Let (K, v) be a discrete-valued field of rank 1. An element π ∈ K is called a
normalizer if v(π) = 1. Note that any two normalizers are associates in the valuation
subring V of K. Also, if v(x) = n 
= 0, then x and πn are associates in V . Note that
p is a normalizer for (Qp, vp), p > 1 a prime; X−1 is a normalizer for (F(X), v∞)

and p is a normalizer of (F(X), vp), p ∈ F[X] irreducible.
Theorem C.4.1 Let (K, v) be a discrete-valued field of rank 1, π a normalizer and
R ⊂ V intersects each residue class in exactly one point with R ∩ M = {0}. Then
every x ∈ K

× has a unique π-adic representation x = ∑∞
i=n aiπ

i for some integer n
with an, an+1, . . . in R. Moreover, if K is complete with respect to v, then for every
sequence {am : m ≥ n} in R, the series

∑∞
i=n aiπ

i is convergent.

Proof Let v(x) = n. Then v(xπ−n) = 0. Take an ∈ R that belongs to the residue
class of xπ−n. Since xπ−n −an is an element of the maximal ideal, v(xπ−n −an) > 0.
Let m = v(x − anπ

n). Then

m = v(πm) = v(x − anπ
n) > n

and v(π−m(x − anπ
n)) = 0. Let am ∈ R be in the residue class of π−m(x − anπ

n).
Set k = v(x − anπ

n − amπm). Then

k = v(πk) = v(x − anπ
n − amπm) > m

and v(π−k(x − anπ
n − amπm)) = 0. We proceed similarly. Either the method termi-

nates or we get an infinite series representation x = ∑∞
i=n aiπ

i. The series converges
to x because v(x − ∑k

i=n aiπ
i) > k → ∞.

To see the uniqueness of this representation, assume that

∞∑
i=n

aiπ
i =

∞∑
i=n

biπ
i,

where ai, bi ∈ R for all i ≥ n and there exists an i such that ai 
= bi. Let i0 be the
least i such that ai 
= bi. Then ai0 − bi0 ∈ V ×. Hence,

v((ai0 − bi0)π
i0) = i0

and for all i > i0, v((ai − bi)π
i) ≥ i > i0. Therefore, for every l > i0,
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v((ai0 − bi0)π
i0 +

l∑
i>i0

(ai − bi)π
i) = i0.

It follows that v(
∑∞

i=n(ai − bi)π
i) 
= ∞. This is a contradiction.

The last part of the result follows from the fact that the sequence of partial sums
{∑k

i=n aiπ
i : k ≥ n} of the series ∑∞

i=n aiπ
i is Cauchy. �

Corollary C.4.2 Every p-adic real number x ∈ Qp has a unique p-adic expansion
x = ∑∞

i=n xipi with each xi ∈ {0, 1, . . . , p − 1}. Its valuation subring Zp consists of
all x = ∑∞

i=n xipi with n ≥ 0 and each xi ∈ {0, 1, . . . , p − 1}. It follows that Zp is
the closure of Z in Qp. The maximal ideal of Zp is the set of all x = ∑∞

i=1 xipi with
xi ∈ {0, 1, . . . , p − 1}.
Corollary C.4.3 The completion of (F(X), vX) is the field of all Laurent series
F((X)). Its valuation subring is the ring of power series F[[X]] with the maximal
ideal the set of all power series

∑∞
n=1 aiXi with a1, a2, . . . ∈ F.

For f (X) = ∑n
i=0 aiXi, f ′(X) = ∑n

i=1 iaiXi−1 is called the formal derivative of f .

Theorem C.4.4 Let v be a non-Archimedean, complete valuation on a field K with
V the corresponding valuation subring. Suppose f ∈ V [X] and a0 ∈ V satisfies
v(f (a0)) > 2v(f ′(a0)). Then there exists an a ∈ V with f (a) = 0 and v(a − a0) >

v(f ′(a0)).

Proof Let f (X) = ∑n
i=0 piXi. Set b0 = f ′(a0) ∈ V . By the hypothesis, v(b0) < ∞.

So, b0 
= 0. Set c0 = f (a0)
b20

. Then f (a0) = c0b2
0. Further, v(c0) > 0. Choose ε > 0

such that v(f (a0)) ≥ 2v(b0) + ε. Set a1 = a0 − b0c0. Then

f (a0 − b0c0) =
n∑

i=0
pi(a0 − b0c0)i

=
n∑

i=0

i∑
j=0

(−1)j iCj pia
i−j
0 (b0c0)j

= f (a0) +
n∑

i=0

i∑
j=1

(−1)j iCj pia
i−j
0 (b0c0)j

= f (a0) − b0c0f ′(a0) + (b0c0)2d0,

where d0 ∈ V . Thus, f (a1) = (b0c0)2d0. Hence,

v(f (a1)) ≥ v(b2
0) + 2v(

f (a0)
b20

)

= 2v(f (a0)) − v(b2
0)≥ 2v(b2

0) + 2ε − v(b2
0)= v(b2

0) + 2ε.
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By similar computation, there exists a b ∈ V such that f ′(a1) = f ′(a0)− b0c0b =
b1, say. Since c0 is in themaximal ideal of V , so is c0b. Hence, v(bc0) > 0. Therefore,
v(1 − bc0) = v(1) = 0 by Lemma C.1.9. Hence, v(b1) = v(b0).

Set c1 = f (a1)
b21

. Then v(c1) ≥ 2ε. Set a2 = a1−b1c1 and repeat the same argument

with a1 replaced by a2, b0 by b1 and c0 by c1. Set b2 = f ′(a2) and c2 = f (a2)
b22

.

Proceeding inductively, we get a sequence (an) in V such that an+1 = an − bncn,
where bn = f ′(an) and cn = f (an)

b2n
with v(bn) = v(b0) and v(cn) ≥ 2nε.

We now show that (an) is Cauchy. Let n < m. Then

v(am − an) = v

(
m−1∑
i=n

(ai+1 − ai)

)

≥ min{v(ai+1 − ai) : i = n, . . . , m − 1}
≥ v(b0) + 2nε → ∞.

Let an → a. Since each an ∈ V , a ∈ V . Note that

v(f (an)) = v(cn) + 2v(bn) = v(cn) + 2v(b0) → ∞.

So, v(f (a)) = ∞ implying that f (a) = 0.
Since for every n, v(an − a0) ≥ v(b0) + ε. Hence, v(a − a0) > v(f ′(a0)). �

Theorem C.4.5 (Hensel’s Lemma)Let v be a complete, non-Archimedean valuation
on a field K with V the corresponding valuation subring. Let K

∼ denote the corre-
sponding residue field. Suppose f ∈ V [X] and a0 ∈ V are such that f ∼([a0]) = 0
and (f ′)∼([a0]) 
= 0. Then there exists an a ∈ V such that f (a) = 0 and [a] = [a0].
In particular, if

f (X) = Xn + bn−1Xn−1 + bn−2Xn−2 + b1X + b0 ∈ V [X]

with bn−1 ∈ V ×, b0, . . . , bn−2 ∈ M, then f has a root in V .

Proof Under the first part of the hypothesis, f (a0) ∈ M and f ′(a0) ∈ V ×. Thus,
v(f ′(a0)) = 0 and v(f (a0)) > 0, implying that v(f (a0)) > 2v(f ′(a0)). So, by the
above proposition, there exists an a ∈ V such that f (a) = 0 and v(a − a0) >

v(f ′(a0)) = 0. This implies that a − a0 belongs to the maximal ideal. Hence, [a] =
[a0].

Now let f be as in the second part of the hypothesis. Then

f ∼(x) = Xn−1(X + [bn−1])

and
f ′∼(X) = Xn−2(nX + (n − 1)[bn−1]).

Then f ∼(−[bn−1]) = 0 and f ′∼([−bn−1]) = [−bn−1]n−1 
= 0. Now we use the first
part to conclude our claim. �
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C.5 Algebraic Extensions of Valued Fields

We now turn our attention to extensions of valued fields. Suppose (K, VK) is a valued
field and F a subfield of K. Set VF = VK ∩ F. Then VF is a valuation subring of F.
In this case, we call VK an extension of VF.

Note that V ×
F

= V ×
K

∩ F. So, MF = MK ∩ VF.
We have canonical morphisms VF ↪→ VK → K

∼ with kernel of the composition
MF. So, we have amonomorphismF

∼ → K
∼. Thus,F∼ can be regarded as a subfield

of K
∼. We call f = [K∼ : F

∼] the residue index.
As we saw, the valuation groups can be taken to be �1 = F

×/V ×
F

and �2 =
K

×/V ×
K
. Clearly,we can assume that the ordered group�1 is embedded in the ordered

group �2. The index [�2 : �1] is called the ramification index, and is denoted by e.

Theorem C.5.1 Let (F, V ) be a field and K an extension of F. Then there is a
valuation subring R of K extending V .

Proof Let M be the unique maximal ideal of V . We are going to use Zorn’s lemma
to prove our result. Let P be

{R : K ⊃ R ⊃ V, R a ring and the ideal of R generated by M is proper}.

Since V ∈ P, P 
= ∅. The hypothesis of Zorn’s lemma is satisfied with P equipped
with inclusion relation. Let R be a maximal element of P and MR the ideal in R
generated by M.

Claim 1. V = R ∩ F.

If possible, suppose there exists an x ∈ (R ∩ F) \ V . Since V is a valuation
ring, x−1 ∈ V . Since x /∈ V , x−1 is not a unit in V , and so belongs to M. But then
1 = x · x−1 ∈ MR implying that MR is not proper. This is a contradiction.

Claim 2. R is a valuation subring of K.

Let x ∈ K. If possible, suppose x, x−1 /∈ R. We shall show that R[x] or R[x−1]
belongs to P. This will contradict the maximality of R and our claim will be proved.

Suppose neither R[x] nor R[x−1] belong to P. Then 1 belongs to ideal in R[x]
generated by M as well as to the ideal in R[x−1] generated by M. So, we have

1 =
n∑

i=0

aix
i =

m∑
j=0

bjx
−j,

where a’s and b’s belong to MR. We choose m and n minimum possible. Further,
without any loss of generality, we assume that 1 ≤ m ≤ n.

We have
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1 − b0 = (1 − b0)
n∑

i=0

aix
i

and

anxn = anxn
m∑

j=0

bjx
−j.

Thus,

(1 − b0)anxn = an

m∑
j=1

bjx
n−j.

Hence,

1 − b0 = (1 − b0)
n−1∑
i=0

aix
i + an

m∑
j=1

bjx
n−j,

or

1 = b0 + (1 − b0)
n−1∑
i=0

aix
i + an

m∑
j=1

bjx
n−j.

Since all the coefficients are in MR, we get the contradiction of the minimality
of n. �

Our next result is to show that if a valued field (F2, V2) is an algebraic extension
of (F1, V1), then the residue field F

∼
2 is an algebraic extension of F

∼
1 . This will be

shown easily by showing that if F2 is a finite extension of F1, then F
∼
2 is a finite

extension of F
∼
1 .

Let (F1, V1) ⊂ (F2, V2) be valued fields with V2 an extension of V1, i.e. V1 =
V2 ∩ F1. Let vi : Fi → �i ∪ {∞} be compatible valuations, i = 1, 2. We assume
that �1 is an ordered subgroup of �2 and v2 an extension of v1. Let Mi be the unique
maximal ideal of Vi, i = 1, 2. Set

F
∼
i = Vi/Mi, i = 1, 2,

the corresponding residue fields.

Lemma C.5.2 Let ω1, . . . ,ωf ∈ V2 be such that [ω1], . . . , [ωf ] ∈ F
∼
2 are indepen-

dent over F
∼
1 and π1, . . . ,πe ∈ F

×
2 such that v2(π1), . . . , v2(πe) are representatives

of different cosets of �2/�1. Then, for every aij ∈ F1, 1 ≤ i ≤ f , 1 ≤ j ≤ e,

v2

⎛
⎝∑

ij

aijωiπj

⎞
⎠ = min{v2(aijωiπj)}.

In particular, {ωiπj} is an independent set over F1.
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Proof Since each [ωi] 
= 0, ωi ∈ V ×
2 . So, v2(ωi) = 0 for all i. Thus, for every i, j,

v2(aijωiπj) = v2(aijπj).
Without loss of generality, assume that not all aij = 0. Choose 1 ≤ I ≤ f and

1 ≤ J ≤ e such that

v2(aIJπJ) = min{v2(aijπj) : 1 ≤ i ≤ f , 1 ≤ j ≤ e}.

Note that for every i, v2(aiJπJ) ≥ v2(aIJπJ). So, v2(aiJ) ≥ v2(aIJ). Thus, aiJa−1
IJ ∈

V1. Also, note the following:

v2(aIJωIπJ) = min{v2(aijωiπj) : 1 ≤ i ≤ f , 1 ≤ j ≤ e}.

We claim that v2(aIJπJ) = v2(aIJωIπJ) < v2(aijωiπj) = v2(aijπj) for all j 
= J
and for all i: Otherwise,

v2(πJ) − v2(πj) = v2(aij) − v2(aIJ) ∈ �1.

This implies that
∀i∀j 
= J(aijωiπj(aIJωIπJ)

−1 ∈ M2).

Hence, ∑
i

∑
j 
=J

aijωiπj(aIJωIπJ)
−1 ∈ M2.

Set z = ∑
ij aijωiπj. If possible, suppose v2(z) > v2(aIJωIπJ). Then,

z(aIJωIπJ)
−1 ∈ M2. By subtracting, we get

∑
i

aiJ(aIJ)
−1ωiω

−1
I ∈ M2.

Since ωI ∈ V2, we have ∑
i

aiJ(aIJ)
−1ωi ∈ M2.

We also have aijπj(aIJπJ)
−1 ∈ M2 whenever j 
= J . We have observed that each

aiJ(aIJ)
−1 ∈ V1. Further, aIJa−1

IJ = 1. So, [ω1], . . . , [ωf ] are not independent over
F

∼
1 . This contradiction proves the first part of the result.
To show the independence of {ωiπj}, let aij ∈ F1 be so chosen that z = 0. Then

v2(aijωiπj) = v2(aij) + v2(ωi) + v2(πj) = ∞ for all i, j. Since v2(ωi) = 0, it follows
that v2(aij) + v2(πj) = ∞. But v2(πj) ∈ �2. So, v2(aij) = ∞ implying that aij = 0.
�

Corollary C.5.3 (Chevalley’s Fundamental Inequality) Let f = [F∼
2 : F

∼
1 ], e =

[�2 : �1] and n = [F2 : F1]. If n < ∞, then
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e · f ≤ n.

In particular, if F2 is a finite extension of F1, then F
∼
2 is a finite extension of F

∼
1 and

�1 is a subgroup of �2 of finite index.

Theorem C.5.4 Suppose (F1, V1) and (F2, V2) are valued fields with F1 a subfield
of F2 and V2 an extension of V1. Let �1 denote the value group of F1 and �2 that of
F2. If F2 is algebraic over F1, F

∼
2 is also algebraic over F

∼
1 and �2/�1 is a torsion

group.

Proof Let x ∈ (V2)
×. To show that F

∼
1 [[x]] is a finite extension of F

∼
1 . Since x is

algebraic overF1,F1[x] = F1(x) is a field, sayL. Further,L ⊂ F2 is a finite extension
of F1. Set VL = V2 ∩ L. Then VL is a valuation subring of L and an extension of V1.
The unique maximal ideal of VL is given by

ML = M2 ∩ L,

where M2 the unique maximal ideal of V2.
Since L is a finite extension of F1, by Chevalley’s fundamental inequality (Corol-

lary C.5.3), L
∼ = VL/ML is a finite extension of F

∼
1 . In particular, [x]L is algebraic

over F
∼
1 .

To show our result, it is sufficient to get a0, . . . , an ∈ V1, not all inM1—the unique
maximal ideal of V1, such that

∑n
i=0 aixi ∈ ML, or equivalently in M2. Since [x]L is

algebraic over F
∼
1 , there exist a0, . . . , an ∈ V1, not all in M1, such that

n∑
i=0

[ai]L([x]L)i = 0,

i.e.
n∑

i=0

aix
i ∈ ML.

Now take a x ∈ F2\F1. SinceF2 is an algebraic extension ofF1, [F1[x] : F1] < ∞.
Let � = v2(F1[x]). Then, by Chevalley’s fundamental inequality (Corollary C.5.3),
[� : �1] < ∞. This, in particular, implies that there exists a m > 1 such that
mv2(x) ∈ �1. Thus, we have proved that �2/�1 is a torsion group. �

Theorem C.5.5 Let (N, V ′) be an algebraic extension of (F, V ), v′ a compatible
valuation on N and σ ∈ G(N, F). Then

1. v′ ◦ σ is a valuation on N with value ring σ−1(V ′).
2. If σ(V ′) = V ′, then v′ ◦ σ = v′.
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Proof The first part of the result is trivially verified. We proceed to prove the second
part.

Let �′ be the value group of (N, V ′) and � ⊂ �′ that of (F, V ). Since v′ ◦ σ is a
valuation on N compatible with V ′, there exists an isomorphism ρ : �′ → �′ such
that ρ ◦ v′ = v′ ◦ σ. To complete the proof, we show ρ = id�′ .

Step 1. ρ|� = id� .

First, take γ ∈ �. Get x ∈ F
× such that γ = v′(x). But σ|F = idF. So,

ρ(γ) = ρ(v′(x)) = v′(σ(x)) = v′(x) = γ.

Thus, ρ|� = id� .
Now take any x ∈ N \ F. We need to show that ρ(v′(x)) = v′(x). Since N is

an algebraic extension of F, F[x] is a finite extension of F. Set �′′ = v′(F[x]).
Then [�′′ : �] < ∞ by Chevalley’s fundamental inequality (Corollary C.5.3). This
implies that there exists a positive integer n such that nv′(x) ∈ �. Hence, nρ(v′(x)) =
ρ(nv′(x)) = nv′(x). Since �′ is torsion-free, it follows that ρ(v′(x)) = v′(x). �

Lemma C.5.6 Let (F1, V1) be a valued field, F2 an algebraic extension of F1, and
V2, V ′

2 valuation subrings of F2 extending V1. Then, V2 ⊂ V ′
2 implies that V2 = V ′

2.

Proof Assume that V2 ⊂ V ′
2. We have M ′

2 ⊂ M2 ⊂ V2. To see this take a x ∈ M ′
2.

If possible, suppose x /∈ V2. Then x−1 ∈ V2 ⊂ V ′
2. Since x ∈ M ′

2, we get 1 ∈ M ′
2

contradicting that M ′
2 is a proper ideal. Thus x ∈ V2. If x /∈ M2, x−1 ∈ V2 ⊂ V ′

2. This
implies that 1 ∈ M ′

2 as before.
We see that V2/M ′

2 is a subring of V ′
2/M ′

2.

Observation 1. V2/M ′
2 is a valuation subring of (F′

2)
∼.

Let [x] 
= 0 be an element of V ′
2/M ′

2. If x ∈ V2, [x] ∈ V2/M ′
2. Otherwise, x

−1 ∈ V2.
But then [x]−1 ∈ V2/M ′

2.

Observation 2. V2/M ′
2 is a field.

For x ∈ V1, let [x] ∈ V1/M1 and [x]′ ∈ V2/M ′
2 be corresponding cosets. This

defines a natural embedding of F
∼
1 = V1/M1 into V2/M ′

2.
Let 0 
= [x]′ ∈ V2/M ′

2 ⊂ V ′
2/M ′

2. If x ∈ V1, [x]−1 exists in V1/M1. In particular,
[x]′ has an inverse in V2/M ′

2. Now consider the case when x /∈ V1. Then F
∼
1 [[x]′] ⊂

V2/M ′
2 is also a field because V ′

2/M ′
2 is an algebraic extension of F

∼
1 . Thus, [x]′ has

an inverse in V2/M ′
2. Since V2/M ′

2 is already a ring, our claim is proved now.

Since V2/M ′
2 is a field and a valuation subring of V ′

2/M ′
2, V2/M ′

2 = V ′
2/M ′

2. Now
let x ∈ V ′

2. Then, there exists a y ∈ V2 such that x − y ∈ M ′
2 ⊂ M2 ⊂ V2. So,

x ∈ V2. �
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We shall use the following version of Chinese remainder theorem for valued fields
repeatedly.

Theorem C.5.7 (Chinese Remainder Theorem) Let V1, . . . , Vk be valuation sub-
rings of a field F with M1, . . . , Mk their respective unique maximal ideals. Suppose
Vi 
⊂ Vj whenever 1 ≤ i 
= j ≤ k. Then for every (a1, . . . , ak) ∈ ×k

i=1Vi, there exists
an a ∈ ∩k

i=1Vi such that a = ai(mod Mi), 1 ≤ i ≤ k.

Remark C.5.8 Let V1 ⊂ V2 be valuation subrings of a field F with V1 
= V2 and
M1, M2 the maximal ideals of V1, V2 respectively. In the proof of Lemma C.5.6, we
saw that M2 ⊂ M1. Choose a1 ∈ V ×

1 and a2 ∈ M2. If possible, suppose there exists
an a ∈ V1 ∩ V2 such that a − a1 ∈ M1 and a − a2 ∈ M2 ⊂ M1. Then a1 − a2 ∈ M1.
So, as a2 ∈ M2 ⊂ M1, a1 ∈ M1. This is a contradiction. Hence, the result is not true
without the condition ∀1 ≤ i 
= j ≤ n(Vi 
⊂ Vj).

Proof Set R = ∩iVi. We need to show that the canonical morphism

R → V1/M1 × · · · × Vn/Mn

is an epimorphism. Set

Pi = R ∩ Mi, 1 ≤ i ≤ n.

Then, Pi is a prime ideal of R, 1 ≤ i ≤ n: Let a · b ∈ Pi = R ∩ Mi and a, b ∈ Vi \ Mi.
Then, a−1, b−1 ∈ Vi. So, 1 = (a · b) · (b−1 · a−1) ∈ Mi, contradicting that Mi is
proper.

Our main result will be proved by proving the following two statements:

Claim I: The canonical morphism R/Pi → Vi/Mi is an isomorphism.

Claim II: The canonical morphism R → R/P1 × · · · × R/Pn is an epimorphism.

Since Pi is a prime ideal in R, R\Pi is a multiplicative set. Hence, the localization
of R at Pi is possible. As usual, let

RPi = {a/b : a, b ∈ R & b /∈ Pi}

denote the localization of R at Pi. Note that if b ∈ R \ Pi, b ∈ V ×
i , a/b = ab−1/1.

So, we treat RPi as a subring of Vi.
Fix 1 ≤ i ≤ n.

The following is the main observation to prove our result.

Main Observation. Vi = RPi .

We draw several corollaries first.
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(1) For all 1 ≤ i 
= j ≤ k, Pi 
⊂ Pj. Otherwise,

Vj = RPj ⊂ RPi ⊂ Vi,

contradicting our hypothesis

(2) For all 1 ≤ j ≤ k,
∀1 ≤ j ≤ k(∩i 
=jPi 
⊂ Pj).

For each 1 ≤ i 
= j ≤ k, choose bi ∈ Pi \ Pj. These exist by (1). Then

cj = �i 
=jbi ∈ ∩i 
=jPi \ Pj.

(3) Every proper ideal in R is contained in some P1, . . . , Pk .

Let I be an ideal not contained in any of P1, . . . , Pk . For each 1 ≤ j ≤ k, choose
an aj ∈ I \ Pj and cj ∈ ∩i 
=jPi \ Pj as in (2).

Consider d = ∑
j ajcj. We claim that for every 1 ≤ i ≤ k, d /∈ Pi: Let 1 ≤ i ≤ k,

d ∈ Pi. But for all j 
= i, ajcj ∈ Pi. So, aici ∈ Pi. Since ai, ci /∈ Pi and Pi is prime,
we have a contradiction.

Since d ∈ I ⊂ R = ∩iVi, it follows that d−1 ∈ Vi for all i, i.e. d−1 ∈ R. But then
1 = dd−1 ∈ I . So, I is not a proper ideal.

From (1) and (3), we get the following.

(4) P1, . . . , Pk are distinct and are all the maximal ideals of R.

We assume these facts and complete the proof first.

Proof of claim I. Consider R/Pi ↪→ Vi/Mi = RPi/Mi. Since Pi = R ∩ Mi, ↪→ is
a monomorphism.

Claim: Let b ∈ R \ Pi. Then the class of b−1 in Vi/Mi belongs to the range of ↪→.

This will complete the proof as follows: Let ab−1 ∈ RPi . Then the class [ab−1] =
[a][b−1] of ab−1 in RPi/Mi is in the range of ↪→.

Since Pi is a maximal ideal in R by observation (4) above, R/Pi is a field. So,
there exists a c ∈ R such that [bc] = 1, i.e. 1 − bc ∈ Pi ⊂ Mi. This shows that the
image of [c] under ↪→ is [b−1]. Hence, claim I is proved.

Proof of claim II. Choose a1, . . . , an ∈ R. To get an a ∈ R such that ∀i(a − ai ∈
Pi). We prove this by induction on n.

Let n = 2. Since P1, P2 are distinct maximal ideals in R and P1 + P2 is an ideal
containing P1 and P2, P1 + P2 = R. Given a1, a2 ∈ R, get p1 ∈ P1 and p2 ∈ P2

such that a1 − a2 = p1 − p2. Take a = a1 − p1 = a2 − p2. Thus, a − a1 ∈ P1 and
a − a2 ∈ P2.

Inductive step. Let a1, . . . , am ∈ R. By induction hypothesis, suppose there
exists bm−1 ∈ R such that bm−1 − ai ∈ Pi for all 1 ≤ i < m. We shall produce
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a bm ∈ R such that bm − bm−1 ∈ ∩i<mPi and bm − am ∈ Pm. Then for i < m,
bm − ai = (bm − bm−1) + (bm−1 − ai) ∈ Pi.

We saw in (2) that∩i<mPi 
⊂ Pm andPm is amaximal ideal. So, (∩i<mPi)+Pm = R.
Hence, there exist q ∈ Pm and p ∈ ∩i<mPi such that bm−1 − am = p − q. Set
bm = bm−1 − p = am − q ∈ R. Thus, bm − am ∈ Pm and bm − bm−1 ∈ ∩i<mPi.

Proof of the main observation. We have already seen that RPi ⊂ Vi. It remains
to show that Vi ⊂ RPi . Take any a ∈ Vi and set

Ia = {j : a ∈ Vj}.

For j ∈ Ia, let αj denote the class of a in Vj/Mj. Now choose a prime number p > 2
such that

∀j ∈ Ia(p > char(Vj/Mj) & αj 
= 1 ⇒ α
p
j 
= 1).

Since for any field K, if x 
= 1 is in K, xp = 1 for at most one prime p, such a prime
p exists.

Now set b = ∑p−1
k=0 ak .

We shall observe the following.

(i) ∀j ∈ Ia(b ∈ Vj). (This follows from the definition of Ia.)
(ii) ∀j ∈ Ia(b /∈ Mj).
(iii) ∀j ∈ Ia(b−1 ∈ Vj). (This follows from (i) and (ii).)
(iv) ∀j /∈ Ia(b−1 ∈ Vj).
(v) b−1 ∈ R. (This follows from (iii) and (iv).)
(vi) ∀j ∈ Ia(b−1 ∈ R \ Pj). (This follows from (i), (iii) and (v).)
(vii) ab−1 ∈ R.

Assuming these, note that a = (ab−1)(b−1)−1 ∈ RPi .

Proof of (ii). Fix j ∈ Ia. Then

[b] =
p−1∑
k=0

αk
j .

If αj = 1, [b] = p 
= 0 because p > char(Vj/Mj). This implies that b /∈ Mj if
αj = 1. Now assume that αj 
= 1. Then

[b] =
p−1∑
k=0

αk
j = 1 − α

p
j

1 − αj

= 0.

So, b /∈ Mj in this case too.
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Proof of (iv). Take a j /∈ Ia. So, a /∈ Vj. Since Vj is a valuation ring, it follows
that a−1 ∈ Vj. Since a /∈ Vj, a−1 is not a unit in Vj and so belongs to Mj. Since Mj is
proper, it follows that

p−1∑
k=0

a−k ∈ Vj \ Mj = V ×
j .

As a−1 ∈ Vj and

b =
p−1∑
k=0

ak = ap−1
p−1∑
k=0

a−k,

b−1 ∈ Vj.

Proof of (vii). For j ∈ Ia, ab−1 ∈ Vj by (iii). If j /∈ Ia,

ab−1 = a−(p−2)

(
p−1∑
k=0

a−k

)−1

∈ Vj

because p > 2. Thus, ab−1 ∈ R. �

Theorem C.5.9 Let K be an algebraic extension of F, V a valuation subring of F

and F
s the separable closure of F. If [K∩F

s : F] = n, then K has at most n valuation
subrings extending V .

Proof Let V1, . . . , Vm be distinct valuation subrings of K, each extending V . Then
∀1 ≤ i 
= j ≤ n(Vi 
⊂ Vj)byLemmaC.5.6.ByChinese remainder theorem (Theorem
C.5.7), for each 1 ≤ i ≤ m there exists a ci ∈ ∩m

j=1Vj such that ci − 1 ∈ Mi and for
all other 1 ≤ j 
= i ≤ m, ci ∈ Mj.

Since K ⊂ F, each ci is algebraic over F. So, if F is of characteristic 0, each
c1, . . . , cm is separable over F. Otherwise, there is a natural number k such that each

cpk

1 , . . . , cpk

m is separable over F.

We now show that cpk

1 , . . . , cpk

m are independent over F. It will then follow that
m ≤ n and the proof will be complete.

Let
m∑

i=1

aic
pk

i = 0,

a1, . . . , am ∈ F not all 0.
Choose j so that v(aj) ≤ v(ai) for all i. So, v(aj) < ∞ implying that aj 
= 0.

Further,
cpk

j = −
∑
i 
=j

aia
−1
j cpk

i ∈ Mj.
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Since Mj is maximal, it is prime. Hence, cj ∈ Mj. We also have 1 − cj ∈ Mj. Thus,
1 ∈ Mj contradicting the maximality of Mj. �

We now proceed to prove one of our main theorems.

Proposition C.5.10 Let (F, V ) be a valued field, K a finite, normal, separable,
extension of F and V1, V2 valuation subrings of K, both extensions of V . Then there
is an F-automorphism σ of K such that σ(V1) = V2.

Proof Let G = G(K, F). Since K is a finite, normal, separable, extension of F,
|G| = |[K : F]| < ∞.

Set
H1 = {σ ∈ G : σ(V1) = V1}

and
H2 = {σ ∈ G : σ(V2) = V2}.

We partition G into the cosets of H1 and into the set of cosets of H2:

G = ∪n
i=1H1σ

−1
i = ∪m

j=1H2τ
−1
j .

Claim: ∃i, j(σi(V1) = τj(V2)).

Then σ = τ−1
j ◦ σi will do the job.

Suppose ∀i, j(σi(V1) 
= τj(V2)). Since σ1, . . . ,σn are pairwise inequivalent mod-
ulo H1, σi(V1) 
= σi′(V1) for all 1 ≤ i 
= i′ ≤ n. Similarly, τj(V2) 
= τj′(V2) for all
1 ≤ j 
= j′ ≤ m.

So, σ1(V1), . . . ,σn(V1), τ1(V2), . . . , τm(V2) are distinct extensions of V toK. Let
M1 be the unique maximal ideal of V1 and M2 that of V2. Hence, σi(M1) is the unique
maximal ideal of σi(V1) for all 1 ≤ i ≤ n, and τj(M2) is the unique maximal ideal
of τj(V2) for all 1 ≤ j ≤ m.

By the Chinese remainder theorem (Theorem C.5.7), there exists a ∈ ∩iσi(V1) ∩
∩jτj(V2) such that a − 1 ∈ ∩iσi(M1) and a ∈ ∩jτj(M2).

Claim. ∀σ ∈ G(σ(a − 1) ∈ M1 & σ(a) ∈ M2).

Let σ = ρ ◦ σ−1
i = δ ◦ τ−1

j where ρ ∈ H1 and δ ∈ H2. Then σ(a − 1) =
ρ(σ−1

i (a − 1)). So, σ(a − 1) ∈ ρ(M1) = M1. Thus, σ(a) − 1 ∈ M1 for all σ ∈ G.
Similarly, we prove that σ(a) ∈ M2.

Now let N(a) be the product of all σ(a), σ ∈ G. Then N(a) ∈ M2 and N(a)−1 ∈
M1.

Claim. N(a) ∈ F.

(This will imply that N(a) ∈ M2 ∩ F = M and N(a) − 1 ∈ M1 ∩ F = M. Thus,
1 ∈ M contradicting the maximality of M and the proof will be complete.)



266 Appendix C: Valued Fields

Let f be the minimal polynomial of a over F. Since K is a normal extension of F

and a ∈ K, all its roots belong to K. As seen before, {σ(a) : σ ∈ G} is the set of all
roots of f . So, N(a) is the constant term of f . Hence, N(a) ∈ F. �

Corollary C.5.11 The condition of separability can be dropped from Proposition
C.5.10.

Proof Let K be a finite normal extension of F and V1, V2 valuation subrings of K,
both extending V .

Set L = F
s ∩ K. Then F ⊂ L ⊂ K. So, L is a finite, separable extension of F.

Since F ⊂ L ⊂ F
s, L

s = F
s. So, L = L

s ∩ K.
We now show that L is a normal extension of F: Let f (X) ∈ F[X] be monic and

irreducible with a root, say a, in L. Since a is separable over F, f ′ 
= 0. Since f is
irreducible, it is the minimal polynomial of all its roots. Since f ′ 
= 0, all its roots
are separable over F. Since K is a normal extension of F, it contains all roots of f
because it contains a. Thus, L is a finite, separable, normal extension of F.

By our assumption, there is an F-automorphism σ of L such that σ(V1 ∩ L) =
V2 ∩ L. Get an F-automorphism τ of F extending σ.

Then τ (K) = K: Since K is a finite normal extension of F, it is the splitting field
of a polynomial g(X) ∈ F[X]. So, τ maps roots of g to roots of g. The assertion is
seen now.

[K ∩ L
s : L] = [L : L] = 1. Hence, by Theorem C.5.9, a valuation subring of L

has exactly one extension to K. Now τ (V1) ⊃ V2 ∩ L as well as V2 ⊃ V2 ∩ L. So,
τ (V1) = V2. �

Proposition C.5.12 Proposition C.5.10 is true for all normal extensions of F. In
particular, this is true of K = F.

Proof LetK be a normal extension ofF and V1, V2 valuation subrings ofK extending
V . We are going to use Zorn’s lemma. Consider

P = {(L, τ ) : F ⊂ L ⊂ K & τ ∈ G(L, F) & τ (V1 ∩ L) = V2 ∩ L}.

Then (F, id) ∈ P. By Zorn’s lemma, P has a maximal element, say (L, τ ).

Claim. L = K.

Suppose not. Take α ∈ K\L. Let f be the minimal polynomial of α over F and L
′

the splitting field of f overL. We extend τ to an F-automorphism of F and denote the
extension by τ itself. Since τ keeps F fixed and f is a polynomial over F, τ permutes
the roots of f . Thus τ (L′) = L

′.
Consider V ′

1 = V1 ∩ L
′ and V ′′

1 = τ−1(V2 ∩ L
′). Note that L

′ is a finite, normal
extension of L. Hence, by the finite case, there is an L-automorphism ρ of L

′ such
that ρ(V ′

1) = V ′′
1 . Now, set σ = τ ◦ ρ. Then σ is an F-automorphism of L

′ extending
τ and (L′,σ) ∈ P. This contradicts the maximality of (L, τ ). �
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C.6 Henselian Valued Fields

A valued field (F, V ) is called Henselian if for every algebraic extension L of F, V
has a unique extension to L.

Proposition C.6.1 The following are equivalent:

(a) (F, V ) is Henselian.
(b) V has a unique extension to F.
(c) V has a unique extension to F

s.
(d) V has a unique extension to every finite, normal, separable extension of F.

Proof Clearly (a) implies (b), (c) and (d).
Suppose there is aK ⊂ F to which V has extensions V1 
= V2. By Theorem C.5.1,

these can be extended to F. Thus (b) implies (a).
Suppose V1 
= V2 are two extensions of V to F. Since (Fs)s = F

s ⊂ F, we have
(Fs)s ∩ F = F

s, by Theorem C.5.9, V1 ∩ F
s 
= V2 ∩ F

s and both are extensions of V
to F

s. Thus, (c) implies (b).
Suppose V1 
= V2 be extensions of V to F

s. Then by Lemma C.5.6, V1 
⊂ V2. Let
α ∈ V1 \ V2, f the minimal polynomial of α over F and K its splitting field over F.
Then K is a finite, normal, separable extension of F and α ∈ (V1 ∩ K) \ (V2 ∩ K).
Thus, (d) implies (c). �

Let (F, V ) be a valued field with v : F → � ∪ {∞} a compatible valuation. Note
that we can extend this valuation to a valuation on the field of rational functions F(X)

as follows:
w(a0 + a1X + · · · + anXn) = min{v(a0), . . . , v(an)}.

and
w(f /g) = w(f ) − w(g).

Call an f ∈ F[X] primitive if w(f ) = 0. We have the following facts:

(1) If f is primitive, f ∈ V [X].
(2) f · g is primitive whenever f and g are primitive.
(3) Every f ∈ F[X] is of the form af1 where a ∈ F and f1 primitive: take a to be a

coefficient of f with minimum valuation.
(4) Let f ∈ V [X] ⊂ F[X] and f = g1 . . . gn with gi’s irreducible in F[X]. Then there

exists a constant multiple hi ∈ V [X] of gi, 1 ≤ i ≤ n, such that f = h1 . . . hn.
(Write f = af1 with f1 primitive and gi = bihi with hi primitive, 1 ≤ i ≤ n. Then

f = af1 = bh1 . . . hn,

where b = b1 . . . bn. But then v(b) = v(a) ≥ 0. Now replace h1 by bh1.)
(5) Thus, very polynomial over V is a product of polynomials over V which are

irreducible in F[X]. In particular, if F is algebraically closed, so is F
∼.
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(6) Assume that f ∈ V [X] is monic and f = h1 . . . hn with each hi ∈ V [X] and
irreducible in F[X]. Let bi be the leading coefficient of hi, 1 ≤ i ≤ n. Then
1 = b1 . . . bn. Hence, each bi is a unit in V . Now take gi = b−1

i hi. Then, each
gi ∈ V [X], is monic, irreducible in F[X], and f = g1 . . . gn.

Theorem C.6.2 Let (F, V ) be a valued field. The following are equivalent.

(a) (F, V ) is Henselian.
(a’) If f ∈ V [X] is monic and irreducible in F[X], then there exists a g ∈ V [X]

monic with g∼ ∈ F
∼[X] irreducible such that f ∼ = (g∼)s for some s ≥ 1.

(b) Let f , g, h ∈ V [X] be monic and f ∼ = g∼h∼ with g∼, h∼ relatively prime in
F

∼[X]. Then there exist monic g1, h1 ∈ V [X] with f = g1 · h1 and g∼
1 = g∼,

h∼
1 = h∼. In particular, deg(g) = deg(g∼) = deg(g∼

1 ) = deg(g1) and deg(h) =
deg(h∼) = deg(h∼

1 ) = deg(h1).
(c) (Hensel Lemma) Suppose f ∈ V [X] is monic and f ∼ has a simple root a∼ ∈ F

∼.
Then there exists a1 ∈ V such that a∼

1 = a∼ and f (a1) = 0.
(c’) (Eisenstein Criterion) Suppose f (x) = Xn + an−1Xn−1 + an−2Xn−2 + · · · +

a1X + a0 ∈ V [X] with an−1 /∈ M and an−2, . . . , a0 ∈ M. Then f has a root in
(V ⊂) F.

(c”) (c’) under the additional hypothesis that f has all roots distinct in F.

Proof (a) implies (a’): Let (F, V ) be Henselian and f ∈ V [X] be monic and irre-

ducible in F[X]. Let V be the extension of V to the algebraic closure F and v a
compatible valuation on F. Note that there is a canonical embedding of F

∼ into
V /M.

Write
f (x) = �n

i=1(x − xi),

where xi ∈ F, 1 ≤ i ≤ n. The product x1 . . . xn, being the constant term of f , is in V .
Therefore,

v(x1 . . . xn) = v(x1) + · · · + v(xn) ≥ 0.

Hence, at least one xi ∈ V . Since f is irreducible, for every 1 ≤ j ≤ n, there is an
F-automorphism σ of F such that σ(xi) = xj. But σ(V ) is an extension of V to F

and F is Henselian. Hence, σ(V ) = V . Therefore, every xj ∈ V . Also, either all xi

or no xi belong to the unique maximal ideal M of V .
If all xi ∈ M,

f ∼(X) = πn
i=1(X − [xi]) = Xn,

and X is irreducible.
Now consider the case when each xi is a unit in V .

Claim: f ∼ cannot be written as the product of two relatively prime polynomials
in F

∼[X].
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This will imply that f ∼ is a power of an irreducible polynomial g∼ ∈ F
∼[X].

To get g monic, note that, without any loss of generality, we can assume that the
coefficients of g are units in V . We write g = ag1 with g1 ∈ V [X] monic and a a
unit in V . If f ∼ = (g∼)s, s ≥ 1, f ∼ = (a∼)s(g∼

1 )s. But f ∼ and g∼
1 are monic. So,

(a∼)s = 1 and (a’) will be proved.
Proof of the claim. If possible, suppose

f ∼ = �n
i=1(X − [xi]) = g∼ · h∼ ∈ F

∼[X] ⊂ V /M[X].

So, [xi]’s give all the roots of g∼ and h∼. These being relatively prime, their sets of
roots are disjoint. Say, [xj]’s are roots of g∼ and [xk]’s that of h∼.

Since f is irreducible, there is an F-automorphism σ of F with σ(xj) = xk . Since
[xj] is a root of g∼, we have g(xj) ∈ M. Then g(xk) = σ(g(xj)) ∈ σ(M) = M because
(F, V ) is Henselian. This is a contradiction.

Proof of (a’) implies (b): Let f , g, h ∈ V [X] be monic, g∼, h∼ ∈ F
∼[X] be rel-

atively prime and f ∼ = g∼ · h∼. To get monic g1, h1 ∈ V [X] such that g∼ = g∼
1 ,

h∼ = h∼
1 and f = g1 · h1.

By observation (6) made above, let f = f1 . . . fn, where f1, . . . , fn ∈ V [X] are
monic and irreducible in F[X]. For each 1 ≤ i ≤ n, get monic gi ∈ V [X] and si ≥ 1
such that g∼

i is irreducible in F
∼[X] and f ∼

i = (g∼
i )si . Thus,

f ∼ = f ∼
1 . . . f ∼

n = �n
i=1(g

∼
i )si = g∼ · h∼.

Since g∼ and h∼ are relatively prime, there exists I ⊂ {1, . . . , n} such that

g∼ = �i∈I(g
∼
i )si & h∼ = �i/∈I(g

∼
i )si .

Take g1 = �i∈I fi and h1 = �i/∈I fi.

Proof of (b) implies (c): Let f ∈ V [X] be monic and f ∼ have a simple root a∼ ∈
F

∼. So,
f ∼(X) = (X − a∼)g∼ = (X − a)∼g∼

with (X − a)∼ and g∼ relatively prime. Note that g∼ is also monic. We can write
f = g1 · h1, g1, h1 ∈ V [X] monic and g∼

1 = X − a∼. We must have g1 = X − a1.
Thus f (a1) = 0 and a∼ = a∼

1 .

Proof of (c) implies (c’): Let

f (X) = Xn + an−1Xn−1 + an−2Xn−2 + · · · + a1X + a0

with an−1 /∈ M and an−2, . . . , a1, a0 ∈ M. So,

f ∼ = Xn−1(X + a∼
n−1).
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Thus, −a∼
n−1 is a simple root of f ∼. Hence, f has a root in V ⊂ F by (c).

Proof of (c”) implies (a): Let (F, V ) satisfy (c”) and be not Henselian. Let K be
a finite, normal, separable extension of F with V having more than one extensions
to K. Say, V1, . . . , Vm, m > 1, are all the extensions of V to K.

Consider
H = {σ ∈ G(K, F) : σ(V1) = V1}

and L = F(H) ⊃ F. By Galois correspondence (Theorem B.1.9), G(K, L) = H.
This inclusion is proper: If not, then F(H) = F = F(G(K, F)). Since Galois

correspondence is one-to-one (Theorem B.1.9), H = G(K, F). But by Proposition
C.5.10, there exists a σ ∈ G(K, F) = H such σ(V1) = V2. This is a contradiction
because V1 
= V2.

Set V ′
i = Vi ∩ L, i = 1, . . . , m.

Claim: V ′
1 
= V ′

i for all i 
= 1.

If possible, suppose there exists an i > 1 such that V ′
1 = V ′

i = VL, say. So, V1

and Vi are two extensions of VL. Also, K is a normal extension of L. So, by the last
Corollary C.5.11, there exists a σ ∈ G(K, L) = H such that σ(V1) = Vi. This is a
contradiction.

Without any loss of generality, assume that V ′
1, . . . , V ′

t are all the distinct V ′
i ’s

and let R = ∩V ′
i . By the Chinese remainder theorem (Theorem C.5.7), there exists

a β ∈ R such that β − 1 ∈ M ′
1 and β ∈ M ′

j for all 1 < j ≤ t. Suppose k > t. Then
there is a 1 < j ≤ t such that V ′

j = V ′
k implying that M ′

k = M ′
j . Thus, β − 1 ∈ M ′

1,
β ∈ ∩i>1M ′

i and β ∈ R ⊂ L.
Let f be the minimal polynomial of β over F. If possible, suppose β ∈ F. So,

β − 1 ∈ M ′
1 ∩ F = M and also β ∈ M ′

2 ∩ F = M, contradicting that M is proper.
Thus, β /∈ F. Hence, since f is minimal, f has no root in F.

Let
f (X) = Xn + an−1Xn−1 + · · · + a1X + a0

and β = β1, . . . ,βn be all the roots of f . Note that no root of f belongs to F. Since K

is a normal separable extension of F, all βi’s belong to K and are distinct. We shall
arrive at a contradiction of (c”) by showing that an−1 ∈ V × and a0, . . . , an−2 ∈ M.

Claim. β2, . . . ,βn ∈ M1.

Let j > 1. Let τ ∈ G(K, F) such that τ (β1) = βj. So, τ /∈ H = G(K, L). Since
τ−1 /∈ H, τ−1(V1) 
= V1. Let τ−1(V1) = Vi for some i > 1. Hence, τ (Mi) = M1.
Since β1 ∈ Mi, βj = τ (β1) ∈ M1.

By simple theory of equations, a0, . . . , an−2 ∈ M1 ∩ F = M.
We have 1 − β1 ∈ M1. But

an−1 = −(β1 + · · · + βn).
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So,
1 + an−1 = 1 − β1 − (β2 + · · · + βn) ∈ M1.

But an−1 ∈ V . So, 1 + an−1 ∈ M. Since M is proper, this implies that an−1 is a unit
in V . �

Corollary C.6.3 The fields Qp of p-adic reals and of Laurent series Fp((X)) over
Fp, p any prime, are Henselian.

It is a standard fact that these two valued fields satisfy (c).

Corollary C.6.4 Let (F, V ) be Henselian and K a subfield of F. Set L = K
s ∩F and

VL = V ∩ L. Then (L, VL) is Heneselian. In particular, if K is a separably closed
subfield of F, i.e. K

s ∩ F = K, then (K, V ∩ K) is Henselian.

Proof First assume that L = K. Let

f (x) = xn + an−1xn−1 + · · · + a1x + a0 ∈ VL[x]

with an−1 /∈ M and a0, . . . , an−2 ∈ M and f have all roots distinct. Then, by (c”), f
has a root α ∈ F. Suppose α /∈ L. Let g be the minimal polynomial of α over K.
Then g|f . So, g has all roots distinct. This shows that α is separable over K. Thus,
α ∈ K

s ∩ F = L. Hence, (L, V ∩ L) is Henselian by (c”).
In the general case, note that K ⊂ L ⊂ K

s. So, L
s = K

s. Hence, L
s ∩ F =

K
s ∩ F = L. So, (L, VL) is Henselian by the above case. �

C.7 Henselization of a Valued Field

An extension (F′, V ′) of (F, V ) is called a Henselization of (F, V ) if the following
two conditions are satisfied:

1. (F′, V ′) is Henselian.
2. If (F′′, V ′′) is a Henselian extension of (F, V ), then there exists a unique F-

embedding α of F
′ into F

′′ such that α(V ′) ⊂ V ′′.

We now proceed to prove the existence of a Henselization of a valued field (F, V )

which is clearly unique modulo F-isomorphism.
Let V s be an extension of V to F

s. Set

Gh = Gh(V s) = {σ ∈ G(Fs, F) : σ(V s) = V s}

and
F

h = F
h(V s) = F(Gh),
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the fixed field of Gh. We also set

V h = F
h ∩ V s.

We shall prove that (Fh, V h) is a Henselization of (F, V ).

(A) Gh is closed in G(Fs, F).

Proof Let σ ∈ G(Fs, F) \ Gh. We have to show that there exists a finite, normal,
separable extension L of F such that

σ · G(Fs, L) ∩ Gh = ∅.

Since σ /∈ Gh, σ(V s) 
= V s. If σ(V s) ⊂ V s, since both are extensions of V and
F

s is an algebraic extension of F, they will be equal (Lemma C.5.6). Hence, there
exists an α ∈ V s such that σ(α) /∈ V s.

Let f be the minimal polynomial of α over F and L the splitting field of f . Since
α ∈ F

s, L is a finite, normal, separable extension of F.
Now suppose τ ∈ G(Fs, F) such that τ |L = σ|L. But then τ (α) = σ(α) /∈ V s.

Hence, τ (α) ∈ τ (V s)\V s implying that V s 
= τ (V s). Thus, σ · G(Fs, L) ∩ Gh = ∅.
(B) (Fh, V h) is Henselian.

Proof Since Gh is closed, by Galois correspondence (Theorem B.1.9),

Gh(V s) = G(Fs, F
h).

If possible, suppose (Fh, V h) is not Henselian. Then there exists an extension V ′s
of V h to (Fh)s = F

s such that V ′s 
= V s. By Corollary C.5.11, there is a ρ ∈
G(Fs, F

h) = Gh(V s) such that ρ(V s) = V ′s. This is a contradiction.

(C) (F, V ) is Henselian iff F
h = F.

Proof The if part is the assertion (B). Conversely, if (F, V ) is Henselian, V s is the
only extension of V to F

s. So,

Gh(V s) = {σ ∈ G(Fs, F) : σ(V s) = V s} = G(Fs, F).

Hence, the fixed field of Gh(V s) is F, i.e. F
h = F.

(D) Let V ′s be another extension of V to F
s and ρ ∈ G(Fs, F) such that ρ(V s) =

V ′s. Then
ρGh(V s)ρ−1 = Gh(V ′s)

and
ρ(Fh(V s)) = F

h(V ′s).
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Proof Let σ ∈ Gh(V s). Then

ρ(σ(ρ−1(V ′s))) = ρ(σ(V s)) = ρ(V s) = V ′s.

Thus,
ρGh(V s)ρ−1 ⊂ Gh(V ′s).

By the same argument,
ρ−1Gh(V ′s)ρ ⊂ Gh(V s).

Hence,
ρGh(V s)ρ−1 = Gh(V ′s).

Now take x ∈ F
h(V s) and σ ∈ Gh(V ′s). There is a τ ∈ Gh(V s) such that

σ = ρτρ−1. So,

σ(ρ(x)) = ρ(τ (ρ−1(ρ(x)))) = ρ(τ (x)) = ρ(x).

Thus, ρ(Fh(V s)) ⊂ F
h(V ′s). Similarly, we prove that ρ−1(Fh(V ′s)) ⊂ F

h(V s).
Hence, ρ(Fh(V s)) = F

h(V ′s).

(E) Let (F1, V1) be aHenselian extension of (F, V ). Then there is anF-embedding
from (Fh, V h) into (F1, V1).

Proof By Corollary C.6.4, (Fs ∩ F1, V1 ∩ F
s) is Henselian. Hence, replacing F1

by F
s ∩ F1 and restricting V1 to it, without any loss of generality, we assume that

F1 ⊂ F
s. Let V s

1 be an extension of V1 to F
s. Since (F1, V1) is Henselian, V s

1 is
unique.

Note that V s is the unique extension of V h toF
s. So, both V s and V s

1 are extensions
of V toF

s. Hence, byCorollary C.5.11, there is a ρ ∈ G(Fs, F) such that ρ(V s) = V s
1 .

Then
ρ(Fh) = ρ(Fh(V s)) = F

h(V s
1 ) = F

h
1 = F1. (*)

The second equality holds by (D) and the last one by (C).
Now

ρ(V h) = ρ(V s ∩ F
h) = ρ(V s) ∩ ρ(Fh) = V s

1 ∩ F1 = V1.

(F) The embedding ρ obtained in (E) is unique.

Proof Let τ : (Fh, V h) → (F1, V1) be another F-embedding. We need to show that
τ = ρ|Fh. We extend τ to an F-automorphism of F

s. Denote the extension by τ itself.
(Extend τ to F and then observe that τ (Fs) = F

s.)
We are required to show that ρ−1 ◦ τ |Fh = id|Fh. But F

h is the fixed field of
Gh(V s). Hence, suffices to show that ρ−1 ◦ τ ∈ Gh(V s), i.e. ρ−1(τ (V s)) = V s.
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Now τ (V h) ⊂ V1 ⊂ V s
1 and since V h ⊂ V s, τ (V h) ⊂ τ (V s). Since

(Fh, V h) Henselian, so is (τ (Fh), τ (V h)). Hence, τ (V s) = V s
1 = ρ(V s). Thus, ρ−1

(τ (V s)) = V s.

(G) Let (F′, V ′) be a Henselization of (F, V ). Then there exists an extension V s

of V to F
s such that (F′, V ′) = (Fh, V h).

Proof Since there is a F-isomorphism from F
h onto F

′ and F
h ⊂ F

s, F
′ ⊂ F

s. Let
V s be the unique extension of V ′ to F

s. We have

Gh(V s) = {σ ∈ G(Fs, F) : σ(V s) = V s} ⊃ G(Fs, F
′).

(If τ ∈ G(Fs, F
′), τ (V ′) = V ′ ⊂ V s. As V ′ ⊂ V s, V ′ = τ (V ′) ⊂ τ (V s). So, both

V s and τ (V s) are extensions of V ′. Since (F′, V ′) is Henselian, τ (V s) = V s.)
By Theorem B.1.9, the above inclusion implies that

F
h(V s) = F(Gh(V s)) ⊂ F(G(Fs, F

′)) = F
′.

As proved earlier (Fh, V h) is a Henselization of (F, V ) and so is (F′, V ′).
Let i : (Fh(V s), V h) ↪→ (F′, V ′) be the inclusion map and ρ : (F′, V ′) →

(Fh, V h) is an embedding. So, i ◦ ρ : (F′, V ′) → (F′, V ′) is an embedding. Hence,
by uniqueness, i ◦ ρ = idF′ . Hence, the two Henselizations are the same.

We have thus proved the following theorem.

Theorem C.7.1 Every valued field (F, V ) admits a Henselization and every
Henselization of (F, V ) is of the form (Fh, V h) for some extension V s of V to F

s.

An extension (F2, V2) of (F1, V1) is called an immediate extension of (F1, V1) if
the following two conditions are satisfied:

1. ∀x ∈ V2∃y ∈ V1(x − y ∈ M2).
2. ∀x ∈ F

×
2 ∃y ∈ F

×
1 (x · y−1 ∈ V ×

2 ).

Clearly, the first condition can be relaxed to ∀x ∈ V2∃y ∈ F1(x − y ∈ M2). There
is a canonical embedding F

∼
1 ↪→ F

∼
2 . The first condition says that this map is onto.

So, f = [F∼
2 : F

∼
1 ] = 1.

The second condition says that if�2 = F
×
2 /V ×

2 and�1 = F
×
1 /V ×

1 are correspond-
ing value groups, then the canonical embedding �1 ↪→ �2 is an isomorphism. Thus,
e = [�2 : �1] = 1. Let v2 be a compatible valuation on F2. The second condition is
equivalent to the statement ∀x ∈ F2∃y ∈ F1(v2(y) = v2(x)).

Our next result states that the Henselization (Fh, V h) is an immediate extension
of (F, V ).



Appendix C: Valued Fields 275

Proposition C.7.2 Let (N, V1) be a finite, normal, separable extension of (F, V ).
Suppose

H = {σ ∈ G(N, F) : σ(V1) = V1}

and L = F(H), the fixed field of H. Then (L, V1 ∩L) is an immediate extension of F.

Proof Let V1, . . . , Vm be all the extensions of V to N and V ′
i = Vi ∩ L. Then

Observation 1. ∀i > 1(V ′
1 
= V ′

i ).

Proof Suppose there exists an i > 1 such that V ′
i = V ′

1. So, V1 and Vi are extensions
to N of a valuation subring of L. Hence, there exists a σ ∈ G(N, L) such that
σ(V1) = Vi 
= V1. But G(N, L) = H. We have arrived at a contradiction.

Step 1. Let x ∈ V ′
1. Set R = ∩iV ′

i . By Chinese remainder theorem (Theorem
C.5.7), there exists a y ∈ R ⊂ L such that x − y ∈ M1 and y ∈ Mi for all i > 1.
If y ∈ F, we have verified the first condition for x. So, assume that y /∈ F. Let
y = y1, y2, . . . , yn be all the roots of the minimal polynomial of y over F. Then
y1, . . . , yn are distinct.

Observation 2. ∀j > 1(yj ∈ M1).

Let j > 1 and σ ∈ G(N, F) be such that σ(y1) = yj 
= y1. So, σ /∈ G(N, L) = H.
So, σ−1 /∈ H. Therefore, V1 
= σ−1(V1) = Vi for some i. Hence, yj = σ(y1) ∈
σ(Mi) = M1.

Take z = y1 + · · · + yn ∈ F. Then x − z = (x − y1) − y2 − · · · − yn ∈ M1.

Step 2. Let ω be a valuation on L and x ∈ L
×. Then there exists a y ∈ F such that

ω(x) = ω(y).

Proof By Chinese remainder theorem (Theorem C.5.7), there exists a β ∈ R such
that β − 1 ∈ M1 and β ∈ Mi for all i > 1. Since M1 is proper, it follows that
β ∈ V1 \ M1. Hence

ω(β) = 0. (C.1)

If τ ∈ H = G(N, L), τ (β) = β. Hence,

∀τ ∈ H(ω(τ (β)) = ω(β) = 0). (C.2)

Now let τ ∈ G(N, F) \ H. Get i > 1 such that τ (Vi) = V1. Then τ (Mi) = M1.
Hence, ω(τ (β)) > 0. Thus,

∀τ ∈ G(N, F) \ H(ω(τ (β)) > 0). (C.3)

Fix an x ∈ L
×. We now make our final observation to complete the proof.
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Observation 3. ∃k > 0∀τ ∈ G(N, F) \ H(ω(βkx) 
= ω(τ (βkx))).

By (1), for every positive integer k, ω(βkx) = ω(x). Also, since the value group
is torsion-free, by (2), for positive integers k, l

ω(τ (βkx)) = ω(τ (βlx)) ⇒ kω(τ (β)) = lω(τ (β)) ⇒ k = l.

So, ω(βkx) = ω(x) = ω(τ (βkx)) for at most one positive integer k. Hence, our
observation follows because G(N, F) is finite.

Now take z = βkx ∈ L
×. Then ω(z) = ω(x). If z ∈ F, we are done. Otherwise,

let
f (t) = tm + am−1tm−1 + · · · + a1t + a0

be the minimal polynomial of z over F and z = z1, . . . , zm be all the roots of f which
are distinct and belong to N.

Now let j > 1 and τ ∈ G(N, F) be such that τ (z1) = zj 
= z1. Then, τ /∈
G(N, L) = H. Thus

∀j > 1(ω(z1) 
= ω(zj)). (C.4)

First assume that there is no j > 1 such that ω(zj) < ω(z1). Then ∀j > 1(ω(z1) <

ω(zj)). Since ω is a valuation,

ω(x) = ω(z1) = ω(z1 + · · · + zm) = ω(−a1).

We then take y = −a1. In the other case, let zj1 , . . . , zjr be all the zj such that
ω(zj) < ω(z1). Since ω is a valuation, it follows that

ω(ar) = ω(±zj1 . . . zjr )

and
ω(ar+1) = ω(∓z1 · zj1 . . . zjr ).

So, y = ar+1

ar
has the desired properties. �

Theorem C.7.3 (Fh, V h) is an immediate extension of (F, V ).

Proof Take any x ∈ F
h \ F. Then F[x] is a finite extension of F and

x ∈ F[x] ⊂ F
h ⊂ F

s.

Let K be the splitting field of the minimal polynomial f of x over F. Then K is a
finite, separable, normal extension of F. Set

H = {τ ∈ G(K, F) : τ (V s ∩ K) = V s ∩ K}.
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Since x ∈ F
h ∩ K, by the last proposition, our result will be proved if we show the

following:

Main Step. F
h ∩ K = F(H).

Proof We have Gh = {σ ∈ G(Fs, F) : σ(V s) = V s}.
Claim. H = {σ|K : σ ∈ Gh}.
Assume the claim for the time being. Then

F(H) = F(Gh) ∩ K = F
h ∩ K.

Proof of the claim. Now K is the splitting field of f . Suppose f (α) = 0. Then,
for every σ ∈ G(Fs, F), f (σ(α)) = σ(f (α)) = 0. Further, if σ(V s) = V s, we get
that σ(V s ∩ K) ⊂ V s ∩ K. Since both V s ∩ K and σ(V s ∩ K) are extensions of V
to K and K is an algebraic extension of F, σ(V s ∩ K) = V s ∩ K (Lemma C.5.6).
Hence,

H ⊃ {σ|K : σ ∈ Gh}.

For the opposite inclusion, let τ ∈ H and σ an F-automorphism of F
s extending

τ . Then σ(V s) and V s are extensions of V s ∩ K. So, there exists a ρ ∈ G(Fs, K)

such that ρ(σ(V s)) = V s. In other words, ρ ◦ σ ∈ Gh and

ρ ◦ σ|K = ρ|K ◦ σ|K = idK ◦ τ = τ .

�

Avalued field (F, V ) is called algebraically maximal if it has no proper, algebraic,
immediate extension.

Corollary C.7.4 If (F, V ) is algebraically maximal, it is Henselian.

The converse of this corollary is not true. A Henselian field will be algebraically
maximal under an additional condition which we describe now.

A valued field (F, V ) with valuation v : F
× → � is called finitely ramified if one

of the following two conditions are satisfied.

1. char(F∼) = 0.
2. char(F∼) = p > 0 and there are only finitely many elements of � between 0 and

v(p).

Remark C.7.5 If (F1, V1) is an immediate extension of (F, V ), then (F, V ) is finitely
ramified if and only if (F1, V1) is finitely ramified. It follows that if (F, V ) is finitely
ramified, then its Henselization (Fh, V h) is also finitely ramified.
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Proposition C.7.6 Let (F, V ) be a finitely ramified valued field. Then

(a) char(F) = 0.
(b) If char(F∼) = p > 0, then for every positive integer n, there are only finitely

many elements between 0 and v(n).

Proof If char(F∼) = 0, then char(F) = 0. Now suppose char(F∼) = p > 0. If
possible, suppose char(F) > 0. But then char(F) = p, i.e. p = 0 in F. Hence.
v(p) = ∞. So, there are infinitely many elements of � between 0 and v(p). This
contradicts that (F, V ) is finitely ramified. Therefore, the characteristic of F must
be 0.

Now assume that char(F∼) = p > 0 and n = pkm be a positive integer with
p 
 |m. So, m 
= 0 in F

∼ implying that m /∈ M. So, v(m) = 0. Hence, v(n) = kv(p).
Since there are only finitely many elements of � between 0 and v(p), we now see
that there are only finitely many elements of � between 0 and v(n). �

Proposition C.7.7 The following statements are equivalent.

(i) If (F, V ) is finitely ramified, then (Fh, V h) is algebraically maximal.
(ii) Every finitely ramified, Henselian valued field (F, V ) is algebraically maximal.

Proof (i) implies (ii): If (F, V ) is Henselian, (F, V ) = (Fh, V h). Thus, (ii) follows
from (i).

(ii) implies (i): Assume that (F, V ) is finitely ramified. Since (Fh, V h) is an imme-
diate extension of (F, V ), (Fh, V h) is also finitely ramified and Henselian. Hence,
(Fh, V h) is algebraically maximal by (ii). �

Theorem C.7.8 Every finitely ramified, Henselian valued field (F, V ) is alge-
braically maximal.

Proof Let (F1, V1) be a finitely ramified, Henselian valued field that has a proper
immediate algebraic extension, say (F2, V2). We shall arrive at a contradiction.With-
out any loss of generality, we assume that F2 = F1[y] for some y ∈ F2 \ F1. Let F3

be the splitting field of the minimal polynomial f of y over F1. Let V3 be an extension
of V2 to F3 and v a compatible valuation on F3.

Let y = y1, . . . , yn be all the roots of f . So,
∑

i yi ∈ F1. For each i, fix a σi ∈
G(F3, F1) such that σi(y) = yi.

Observation 1. ∀b ∈ F1∀i(v(σi(y) − b) = v(y − b)).

Let σi ∈ G(F3, F1). Note that σi(V3) and V3 are extensions of V1 to F3 which is an
algebraic extension of F1. Since (F1, V1) is Henselian, it follows that σi(V3) = V3.
Hence, as observed earlier, v ◦ σi = v. Therefore, for any b ∈ F1

(v(σi(y) − b) = v(σi(y − b)) = v(y − b)).
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Set a =
∑

i yi

n .

Observation 2. ∃b ∈ F1(v(y − a) + v(n) < v(y − b)).

Set b0 = a. Since y ∈ F2 \ F1 and b0 ∈ F1, y − b0 ∈ F
×
2 . Since (F2, V2) is an

immediate extension of (F1, V1), there exists a c ∈ F
×
1 such that (y − b0)c−1 ∈ V ×

2 .
So, v((y − b0)c−1) = v(y − b0) − v(c) = 0. Thus, v(y − b0) = v(c).

Again since (F2, V2) is an immediate extension of (F1, V1), there exists a d ∈ V1

such that (y − b0)c−1 − d ∈ M2. Therefore, v((y − b0)c−1 − d) > 0. Set b1 =
b0 + cd ∈ F1. Then

v(y − b0) = v(c) < v(c((y − b0)c
−1 − d)) = v(y − b1).

Proceeding similarly we show that there exists a sequence {bn} in F1 such that

v(y − b0) < v(y − b1) < v(y − b2) < . . . .

Since there are only finitely many elements of � between 0 and v(n), it follows that

v(y − a) + v(n) < v(y − bk)

for some k.

Using these two observations, we now show a contradiction. Fix a b ∈ F1 as in
observation 2. By Observation 1,

v(y − b) ≤ v

(∑
i

(σi(y) − b)

)
= v(n(a − b)) = v(a − b) + v(n).

So, by observation 2,

v(y − a) + v(n) < v(y − b) ≤ v(a − b) + v(n).

Hence,
v(y − a) < v(a − b). (C.5)

By observation 2,
v(y − a) < v(y − b). (C.6)

By (1) and (2),

v(y − a) < v((y − b) − (a − b)) = v(y − a),

a contradiction. �
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Proposition C.7.9 Let (K, V, v) be a Henselian valued field with value group � such
that char(K∼) = 0. Then for every countable subfield F of K there is a countable
extension F

′ of F in K such that v(F′) is pure in �, i.e. �/v(F′) is torsion-free.

Proof Set
�′ = {γ ∈ � : ∃m ≥ 1(mγ ∈ v(F))}.

Since � is ordered, it is torsion-free. Therefore, for every δ ∈ v(F) and every m ≥ 1,
there exists at most one γ ∈ � such that mγ = δ. Since v(F) is countable, it follows
that �′ is countable. Also, note that �′ is pure in �. Enumerate �′ = {γn : n ∈ K}.

Inductively we shall define a sequence {Fn} of countable subfields of K such that
F0 = F and for every n, γn ∈ v(Fn+1) ⊂ �′ and Fn ⊂ Fn+1,. Then, F

′ = ∪nFn will
have all the desired properties.

Assume that we have defined Fn. Get an x ∈ K
× such that v(x) = γn. By the

definition of �′, there exists an m ≥ 1 such that mγn ∈ v(F). Let a ∈ F
× be such that

v(a) = mγn = v(xm).

Set d = xm

a ∈ V ×, V the valuation subring of K. We first show that

Fn(d)∼ = F
∼
n ([d]) and v(Fn(d)) = v(Fn).

Case 1. [d] is transcendental over F
∼
n .

If d were algebraic over Fn, clearly it would be algebraic over V ∩Fn. But then [d]
would be algebraic overF∼

n . Thus,d is transcendental overFn.We also havev(d) = 0.
By Theorem C.2.2, in this case, Fn(d)∼ = F

∼
n ([d]) and v(Fn(d)) = v(Fn).

Case 2. [d] is algebraic over F
∼
n .

Let
f (X) = Xm + am−1Xm−1 + · · · + a1X + a0 ∈ (V ∩ Fn)[X]

be an irreducible polynomial such that

f ∼(X) = Xm + [am−1]Xm−1 + · · · + [a1]X + [a0]

is the minimal polynomial of [d] over F
∼
n . We then have f (d) ∈ M. So, v(f (d)) > 0.

Also, f ′(d) ∈ V \ M. As K is Henselian, by Hensel’s lemma (Theorem C.4.5), f has
a root in V with residue class [d]. We replace d by one such root and denote it by d
itself.

We clearly have

[F∼
n [[d]] : F

∼
n ] = degree(f ∼) = degree(f ) = [Fn(d) : Fn].
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Now note that F
∼
n [[d]] ⊂ Fn(d)∼. Hence, by Chevalley’s fundamental inequality

(Corollary C.5.3),

degree(f ∼) ≤ [F∼
n [[d]] : F

∼
n ][v(Fn(d)) : v(Fn)]

≤ [Fn(d)∼ : F
∼
n ][v(Fn(d)) : v(Fn)]

≤ [Fn(d) : Fn]
= degree(f ∼).

This implies that Fn(d)∼ = F
∼
n ([d]) and v(Fn(d)) = v(Fn) in this case also.

Now consider the polynomial

g(Z) = Zm − xm

ad
∈ V [Z].

Since char(K∼) = 0, v(g′(1)) = v(m) = 0. Since xm

a and d have the same residue,
v( xm

a − d) > 0. Therefore,

v(g(1)) = v

(
1 − xm

ad

)
= v

(
xm

a
− d

)
− v(d) = v

(
xm

a
− d

)
> 0.

Thus, by Hensel’s lemma (Theorem C.4.5), g has a root z ∈ V × with residue class
1. In particular, v(z) = 0.

We define Fn+1 = Fn(d, x
z ).

So, Fn+1 is algebraic over Fn(d). Hence, by Theorem C.5.4, v(Fn+1) is torsion
over v(Fn(d)) = v(Fn) ⊂ �′. Therefore, v(Fn+1) ⊂ �′. Further,

γn = v(x) = v

(
x

z

)
∈ v(Fn+1). �
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elementary, 24
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sets and functions, 29

Definition by transfinite induction, 214
Derivation, 11
Diagram

atomic, 18
elementary, 24

Dimension of subsets of minimal structures,
76

Divisible hull, 16
DLO, 9

E
Ehrenfeucht–Mostowski type, 154
Elementarily equivalent structures, 23
Elementary class of structures, 8
Elementary diagram, 24
Elementary extension, 23
Elementary substructure, 23
Elimination of imaginary , 40
Embedding, 14

elementary, 23
Equivalence relation

bounded, 169
invariant, 169

Erdös-Rado Theorem, 222
Exchange lemma, 74
Expression, 1

length of, 1
Extension

of structure, 4
elementary, 23

of theory, 7
conservative, 7
simple, 7

F
Field, 10

Ci(d), 200
algebraically closed, 11
differential, 11
differentially closed, 11
of characteristic 0, 11
of characteristic p, 11
ordered, 11
pseudofinite, 55
real closed, 11, 235
real, 237

real closure, 240
Field extension, 225

finite, 225
normal, 227

Filter, 219
Fixed field, 227
Forking extension of a type, 149
Formula, 2

∃∀-, 3
∀∃-, 3
L-, 2
algebraic, 35, 100
atomic, 2
closed, 3
closure of, 3
definitional, 34
equivalence, 38, 40, 42
existential, ∃-, 3
having order property, 145
in conjunctive normal form, CNF, 6
in disjunctive normal form, DNF, 6
in prenex normal form, 6
non-algebraic, 35, 100
open, quantifier free, 3
rank of, 2
subformula of, 3
undecidable in a theory, 7
universal, ∀, 3
with parameters, 5

Fundamental theorem of Galois theory, 227

G
Galois group, 19

of a theory, 187
closed, 188

Graph
random, 13

Group, 9
abelian , 9

ordered, 9
divisible, 9
torsion free, 9

G-space, 12

H
Hensel’s Lemma, 259
Hilbert basis theorem, 228
Hilbert Nullstellensatz, 83
Hilbert’s Seventeenth problem, 83
Homomorphism, 13

endomorphism, 14
epimorphism, 14
monomorphism, 14
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I
Imaginary element, 39
Independent set, 75
Indiscernibles, 153
Integral domain, 10
Isolated type 2, 95, 96
Isomorphism, 19

partial, 66

K
König’s infinity lemma, 221
κ-strongly homogeneous, 107
(κ,λ)-model, 161

L
Löwenheim–Skolem theorem

downward, 25
upward, 60

Language
κ-, 2
countable, 2
extension of, 1
first order, 1
many-sorted, 37
restriction of, 1
signature of, 1

Linear order, 8
dense, 9
discrete, 9

Literal, 6
Logic topology, 170

M
Minimal formula, 72

strongly, 72
Minimal polynomial, 225
Minimal set, 72
Model

κ-universal, 114
algebraically prime, 67
existentially closed, 57
monster, 121
of theory, 6
prime, 78

Model companion, 80
Monster model, 121
Morley categoricity theorem, 168
Morley degree

of a formula, 140
of a set, 140
of a type, 141

Morley rank
of a definable set, 139
of a formula, 135
of a type, 141

N
Noetherian ring, 228
Norm, 254
Normalizer, 257

O
Omitting types theorem, 101
Ordered divisible hull, 16
Order indiscernibles, 153
Order property, 145
Ordinal, 214

even, 214
limit, 214
odd, 214
successor, 214

P
p-adic integers, 256
Partial elementary map, 66
Peano arithmetic, 13
Pointclass, 30
Prime decomposition theorem, 228
Prime model extension, 67
Proof by transfinite induction, 213

Q
Quantifier elimination, 63

R
Radical ideal, 228
Radical of an ideal, 228
Ramification index, 260
Ramsey theorem, 221
Relativisation of formula, 32
Residue field, 244
Residue index, 260

S
Semi-algebraic set and function, 81
Semi-uniformelimination of imaginaries, 43
Sentence, 3

decidable in a theory, 7
Separable closure of field, 226



290 Index

Separable element over a field, 226
Separable extension of field, 226
Simple root, 226
Skolem function, 28

definable, 28
Skolem hull, 28
Stabiliser

pointwise, 19
setwise, 19

Stone topology, 91
Strong type

Kim–Pillay , 174
Lascar, 177
Shelah, 173

Structure, 4
κ- saturated, 114
κ-homogeneous, 107
L-, 4
atomic, 111
decidable, 5, 7
homogeneous, 107
interpretation in, 4
locally finite, 130
saturated, 114
universe of, 4
with definable Skolem functions, 29
strongly homogeneous, 107

Substitutability, 3
Substructure, 4

elementary, 23
existentially closed, 17

T
Tautologically equivalent formulas, 6
Tautology, 6
Term, 2

L-, 2
subterm of, 2

Theorem of
theory, 6

Theory, 6
∃∀, 7
∀∃, 7
κ-, 6
κ-categorical, 20
κ-stable, 130
ω-stable, 130
axiomatised, 78
complete, 7
consistent, 7
countable, 6
decidable, 7

equivalent formulas in, 8
existential, 7
finitely axiomatisable, 7
first order, 6
inductive, 18
model complete, 78
stable, 130
strongly minimal, 72
totally transcendental, 132
undecidable, 7
universal, 7
with built in Skolem functions, 27
O-minimal, 73

Theory of
structure, 5

Tree, 221
finitely splitting, 221

Type
algebraic, 100
complete, 90
isolated, 93, 96
non-algebraic, 100
omitted, 89
over a parameter set, 89
realised, 89
strong, 169

Type definable set, 126
Types

definable, 145

U
Ultrapower of a model, 48
Ultraproduct of models, 48
Uniform elimination of imaginaries, 41
Uniformly 1-eliminable, 41
Unltrafilter, 219

free, non-principal, 220
principal, 220

V
Valuation, 243

p-adic, 243
complete, 256
degree, 243
divisibility relation, 249
group, 243
non-archimedean, 256
subring, 244
trivial, 243

Valued field, 244
algebraically maximal, 281
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discrete of rank 1, 257

finitely ramified, 281

Henselian, 271

Henselization, 275

immediate extension, 278

Vaught Categoricity Theorem, 60

Vaughtian pair of models, 162

Vector space, 12

W
Weierstrass Nullstellensatz, 238
Well-ordered set, 213
Well-ordering principle, 213

Z
Zariski closed set, 230
Zariski topology, 230
Zorn’s lemma, 215
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