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Preface

Model theory is a branch of mathematical logic that studies mathematical structures
through sentences of a suitable formal language concerning the elements of
structures. Since mathematicians rarely exploit the precise syntactical structure of
sentences, model theory gives new techniques to mathematics. These have been
used very successfully to settle some outstanding conjectures in hardcore
mathematics.

Therefore, model theory is a subject in its own right. It has its own deep concepts
and is rich in techniques. Currently, it is a very active and challenging area of
research. The main purpose of this book is to usher young researchers into this
beautiful, challenging and useful subject.

About the Book

This book is an exposition of the most basic ideas of model theory. It is primarily
aimed at lower undergraduate students who would like to work in model theory.
Knowledge of logic will be helpful, though not essential, for this book. This book is
a book on model theory and not mathematical logic. So, we completely avoid
proof theoretic approach. Throughout the book, the style is semantic except for
introducing languages and interpretations (i.e. structures) formally. This enables us
to get into the subject rather quickly.

Chapters 1-6 constitute the core of model theory which all researchers should
start with. In Chap. 7, we have presented model theory of valued fields. It also
contains the full proof of Ax-Kochen theorem on Artin’s conjecture on the field of
p-adic reals.

Because we have put equal stress on applications, a good background in algebra
is required. In Appendices A—C, we give necessary background material from set
theory and algebra that is required for this book. Some background material on

vii



viii Preface

algebra has also been presented in the main text as we go along. It is hoped that this
will make the book self-contained.

Ideally, the book should be covered in two semesters. The first two chapters
contain most of the basic concepts and basic results to get started. These two
chapters contain standard materials that are traditionally covered in the first intro-
duction to the subject. It can also be taught to senior undergraduate students.

Chapter 1 mainly concentrates on basic concepts. It includes first-order lan-
guage, its terms and formulas and its structures, homomorphisms, embeddings and
elementary embeddings, Skolemization of a theory, definability, etc. In order to
handle definable equivalence classes, a brief introduction of many-sorted logics,
imaginary elements and elimination of imaginaries is presented. In the first reading,
if time does not permit, sections on many-sorted logics and elimination of imagi-
naries can be skipped.

Chapter 2 contains most of the introductory techniques and results. Ultraproduct
of structures and Lo$ fundamental lemma, compactness theorem and its conse-
quences, upward Lowenheim Skolem theorem, quantifier elimination and model
completeness are some of the most basic results presented in the chapter. These are
used to present the model theory of dense, linearly ordered sets without end points,
torsion-free divisible abelian groups and ordered divisible abelian groups, alge-
braically closed fields and real closed fields. The chapter concludes with some
applications in algebra and geometry such as Hilbert Nullstellensatz, Ax’s theorem
on polynomials, Chevalley’s projection lemma on algebraically closed fields and its
real counterpart Artin—Seidenberg theorems on real closed fields, solution of
Hilbert's seventeenth problem, etc.

Both Chaps. 1 and 2 end up with a large number of exercises. They are an
integral part of the subject. Several concepts are introduced in the exercises.
Readers should work out all the exercises. Much of the material presented in the
exercises are used later.

Chapters 3-6 can be termed as the beginning of modern model theory and
require a bit of sophistication. In Chap. 3, we make a systematic study of types.
Types are used to define most of the modern concepts and are essential for the
development of modern model theory. Chapters 4 and 5 form the bedrock of
modern model theory. In Chap. 4, we introduce important subclasses of structures
and theories. Of particular interest are topics on saturated structures and stable
theory. We introduce Morley rank and Morley degree as well as forking inde-
pendence in Chap. 4. In Chap. 5, we introduce indiscernibles and prove Morley
categoricity theorem. In Chap. 6, we initiate the study of strong types. Strong types
are equivalence classes of the so-called bounded, invariant, equivalence relations.
We introduce mainly Lascar strong types and Kim—Pillay strong types. Strong types
are important for stable theories, simple theories, independence, etc. These are also
interesting mathematical objects. To illustrate this, we show their connection with
descriptive set theory.

There are many important topics such as stability theory, simple theory and
independence, NIP theories, etc. that are not covered in this book. This is primarily
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because we want this to remain an introductory graduate level text book to get
started in model theory.
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Chapter 1
Introductory Concepts

Abstract In this chapter, we present most of the introductory concepts. Numerous
examples and exercises are given as we go along. In a sense, it sets up our vocabulary.
Readers new to logic should read this chapter carefully and work out all the exercises.

1.1 Languages, Terms and Formulas

In this section, we present the syntax of first-order logic.
The signature S of a first-order language L consists of

(i) a set of constant symbols {c; : i € I},
(ii) for each positive integer n, a set of n-ary function symbols {f; : j € J,}, and
(iii) for each n > 1, a set of n-ary relation symbols {p; : k € K, }.

Above sets may not necessarily be non-empty. Besides these symbols, to make a
first-order statement, each language L also has

(iv) a sequence of variables xg, x1, X2, . . .,

(v) connectives — (negation) and V (disjunction),
(vi) 3 (existential quantifier) and
(vii) the equality symbol =, a binary relation symbol.

All these constitute a first-order language. We shall be a bit informal and also use
letters x, y, z, u, v, w with or without suffixes for variables. The ordering x, x1, . . .
of variables will be called the alphabetical order of the variables. A finite sequence of
elements in L will be called an expression in L. For an expression s, |s| will denote the
length of s. Sometimes we shall write |y| = n to indicate that y = (yg, ..., Y,—1) IS
an-tuple of variables. If S and S’ are signatures of L and L’ respectivelyand S C &,
i.e. each constant symbol in § is a constant symbol in S’ each n-ary function symbol
in S is a n-ary function symbol in &’ and each n-ary relation symbol in S is a n-ary
relation symbol in &', we call L” an extension of L or L a restriction of L'.

Let L be a first-order language with signature S. We set

|L| = max{|S], ¥o}.

© Springer Nature Singapore Pte Ltd. 2017 1
H. Sarbadhikari and S.M. Srivastava, A Course on Basic Model Theory,
DOI 10.1007/978-981-10-5098-5_1



2 1 Introductory Concepts

If  is an infinite cardinal and |L| < k, we call L a xk-language. Ry-languages will
simply be called countable languages.

Let L be a first-order language. The set of all ferms of L (also called L-terms) is
the smallest set 7 of expressions in L that contains all variables and constant symbols

and is closed under the following operation: wheneverty, ..., t, € 7, ft; ...1, € T,
where f is any n-ary function symbol of L. We shall write #[xo, . .., x,—] to indicate
that 7 is a term in which no variable other than xg, ..., x,_; occurs.

Exercise 1.1.1 Let L be a first-order language.

1. If L is countable, show that the set of all L-terms is of cardinality Ry.
2. If k is an infinite cardinal and L a k-language, show that the set of all L-terms
is of cardinality < k.

To avoid confusion, we shall follow usual mathematical convention of using paren-
theses, commas, etc., to express a term. For instance, if f and g are binary function
symbols, instead of writing g f xyz, we shall write g( f (x, y), z). On the other hand,
we shall also drop parentheses when there is no possibility of confusion. Further, we
shall adopt the convention of association to the right for omitting parentheses. For
instance, instead of writing #; + (, + (f3 + t4)), we shall write 1} + t, + 13 + 14.

Ift[xg, ..., xp—1], t0, . .., t,— are terms, then ¢[ty, ..., t,—1] will denote the term
obtained from ¢ by simultaneously replacing each occurrence of x; in ¢ by #;, i < n.

Exercise 1.1.2 Show that if ¢[xg,...,x,—1], to,...,%,—1 are terms, then
tlto, ..., t,—1] is a term.

(Hint: Use induction on the length of 7.)

We define the set of all subterms of a term ¢ by induction on the length of 7 as
follows: ¢ is a subterm of 7. If f#;...7, isasubtermof¢,soiseacht,1 <i <n.An
expression is a subterm of ¢ if and only if it is obtained as above.

Expressions of the form pt, . . .t,, where p is an n-ary relation symbol (including
the equality symbol =) and 71, .. ., t, are terms, are called atomic formulas. In this
case p is the equality symbol, we write #; = #, instead of = #,1,.

A formula of L, also called an L-formula, is inductively defined as follows: every
atomic formula is a formula—these are all the formulas of rank 0; if ¢ and ) are
formulas of rank < k and v is a variable, then —¢ (the negation of ¢); vy (an
instantiation of ) and ¢ Vv v (the disjunction of ¢ and ) are formulas of rank
<k + 1. The set of expressions so obtained are all the formulas of L. The rank
of a formula ¢ is the least k such that ¢ is of rank < k. We shall follow standard
convention and use parentheses to avoid ambiguities.

Exercise 1.1.3 Let L be a first-order language.

1. If L is countable, show that the set of all L-formulas is of cardinality 8.
2. If kis aninfinite cardinal and L a x-language, show that the set of all L-formulas
is of cardinality < k.
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There are more logical connectives and quantifiers that are commonly used. But
they are all defined in terms of —, Vv and 3 as follows:

Yvp is an abbreviation of —=3v—p, @ A ¥ abbreviates —(—p V =), ¢ — P is
an abbreviation of (—p) VvV ¥ and ¢ < 1 abbreviates (p — 1) A (¥ — ). The
connective A is called conjunction and the quantifier V the universal quantifier.

As in the case of terms, we adopt the convention of association to the right for
omitting parentheses. This means that ¢ V¢ v {istoberead as ¢ V (¢ V &); o V
Y Vv EVNistoberead as ¢ V (¢ Vv (€ VvV 1)) and so on. Further, p — ¢ — £ is to
bereadas o —> (¥ — &); o —> ) > £ —> nistoberead as ¢ — (Y — (£ — 1))
and so on.

If 1, ..., ¢, are formulas, we shall often write VI_,¢; for ¢ vV ---V ¢, and
AN i for o1 A A, Also, we shall often write ¢ # s instead of —(t =),
where ¢ and s are terms. Further, we shall often write Jvy instead of vy ... Jv,_1¢
and Yvp instead of Vvy ... Yv,_1¢.

The set of all subformulas of a formula ¢ is the smallest set S(¢) of formulas of
L that contains ¢ and satisfies the following conditions: whenever —) or Jv) is in
S(¢), sois 1, and whenever ¢ Vv £ is in S(¢), so are ) and €.

An occurrence of a variable v in a formula ¢ is bound if it occurs in a subformula
of the form Jv); otherwise, the occurrence is called free. A variable is said to be free
in ¢ if it has a free occurrence in . We shall write [vo, .. ., v,] if ¢ is a formula all
of whose free variables belong to the set {vy, ..., v,}. Note that this does not mean
that each of vy, .. ., v, has a free occurrence in ¢. Let ¢[xo, . . ., x,,] be an L-formula
in which x, has a free occurrence. Then the formula Vxy . . . Vx, ¢ is called the closure
of .

A formula with no free variable is called a closed formula or a sentence. A formula
that contains no quantifiers is called an open formula or quantifier free. A formula
of the form Jvyp, ¢ open, will be called an existential formula or a 3-formula and
those of the form Yv, ¢ open, universal formulas or V-formulas. Likewise formulas
of the form Vx3yyp (IxVyp), ¢ open, will be called V3-formulas (respectively IV
formulas).

Let ¢ be a term, v a variable and ¢ a formula of a language L. We say that the
term t is substitutable for v in ¢ if for each variable w occurring in ¢, no subfor-
mula of ¢ of the form Jw1) contains an occurrence of v that is free in . If terms
ti, ..., t, are substitutable for vy, ..., v, respectively in ¢, then @, [t1, ..., t;],
or [ty ..., t,] when there is no possibility of confusion, called an instance of p, will
denote the expression obtained from ¢ by simultaneously replacing all free occur-
rences of vy, ..., v, in @by 1, ..., t, respectively. Note that whenever we shall talk
of vy, w1, ..., 1], it will be assumed that #1, ..., t, are substitutable in ¢ for
Vi, ..., Uy, respectively.

Exercise 1.1.4 Assume that terms ¢, . . ., £, are substitutable for vy, ..., v, respec-
tively in a formula . Show that @[z, ..., t,] is a formula.

If ¢[x] is a formula, the sentence

Axg ... A1 (Vx(plx] = VT (x = x;)))
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will be abbreviated by

A, xporby I, 11xp.
Also,

Ixp A =3, xp

will be abbreviated by

A, xp orby I, 11X,
Finally, the formula

d_.xp

will stand for
A, xp A dspxe.

1.2 Structures and Truth in a Structure

Let L be a first-order language. A structure for L or an L-structure consists of

* anon-empty set M,

* for each constant symbol ¢, an element cMof M,

* for each n-ary function symbol f, a n-ary map f¥ : M" — M and

* for each n-ary relation symbol p, a n-ary relation p™ C M" on M.

It is customary to denote a structure like this as M and call M the universe
of M. However, we shall call M itself the structure. ¢¥, f¥ and p™ are called
interpretations of ¢, f and p respectively in M. Further, when the underlying structure
is understood, we shall often use the same symbol for constant, function and relation
symbols and their respective interpretations in M. Thus, often we shall write c, f, p
for ¢, fM and pM, respectively.

Let L’ be an extension of L and M’ be an L’-structure. By ignoring the interpre-
tations of symbols in L" which are not symbols in L, we get an L-structure, say M.
In this case, we call M a reduct of M’ to L or M’ an expansion of M to L'.

Let M be an L-structure and N C M. Suppose for every constant symbol c,
c¢™ € N and N is closed under each f, f a function symbol. Then N can be
canonically made into an L-structure by defining ¢V = ¢, ¢ a constant symbol, and
fV and p" to be the restrictions of f™ and pM to N, where f and p are function
and relation symbols, respectively. Such an N C M is called a substructure of M.
In this case, we also call M an extension of N. We shall write NE M or M O N
if N is a substructure of M. It is emphasised that we have reserved the notation C
for the set theoretic subset relation and are using C for substructure relation among
structures of a language.

If M is an L-structure and A C M, L 4 will denote the extension of L obtained by
adding each a € A as a new constant symbol. Thus, elements of A have dual role—
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as elements of A as well as constant symbols of L 4. This will cause no confusion
because from the context the role of a € A will be clear. L y,-formulas will be called
formulas with parameters and L ,-formulas formulas with parameters in A. Every
formula with parameters will be thought of in the form ¢[X, a] where ¢[X, y] is an
L-formulaanda € M. Often we shall suppress parameters a and simply say that ¢[x]
is a formula with parameters. We shall regard M as an L ;-structure by interpreting
each constant symbol a € M by a itself.

For a variable free L ;-term ¢, we define the value of ¢ in M, denoted by M by
induction on the length of ¢ as follows.

1. t™ =M if t = c, ¢ a constant symbol.
2. tM = MM tM), where f is a n-ary function symbol, 1, .. ., t, variable
freeterms and t = f(¢1,...,t,).

Let M be an L-structure. By induction on the rank of L, -sentences ¢, we now
define when is ¢ true in M, written M = ¢. We shall write M [~ ¢ if ¢ is not true
in M. In this case, we also say that ¢ is false in M.

1. If ¢t and s are variable free L ,-terms,
MEt=sot"M ="

2. If pt; ...t, is a variable free atomic formula, then

MEpt...t, o pMal, ... M

3. For Lj-sentences ¢ and 1,

ME-p&SMEp&EMEeVY S MEpor M = 1.

4. M =3xp & M | pyla] forsome a € M.
A formula with free variables is said to be true in M if its closure is true in M.
Exercise 1.2.1 Let ¢ and 1 be closed formulas. Show the following.

1. M =pAyifandonlyif M = pand M = 9.

2. M &= p — ¢ if and only if either M }= @ or M = 1.

3. M E ¢ <> @ if and only if either both ¢ and ) are true in M or both are false in
M.

4. M =VYvpifandonly if M = pla] foralla e M.

If M is an L-structure, T h(M) denotes the set of all L-sentences true in M and is
called the theory of M. More generally, if M is a class of L-structures, then Th(M)
will denote the set of all L-sentences true in all M € M.

If the signature of L is finite, we call M decidable if there is an algorithm which
decides whether a closed L-formula ¢ is true in M or not, i.e. whether p € Th(M)
or not. See [59, Chap. 6] for details.
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If an L-formula ¢ is true in all L-structures, we call it a tautology. We shall write
= ¢ if ¢ is a tautology. We call ¢ and v tautologically equivalent if ¢ <> 1) is a
tautology.

Exercise 1.2.2 Show the following.

—— and ¢ are tautologically equivalent.

= (¢ V 1) and =~ A — are tautologically equivalent.

= (¢ A 1) and = V — are tautologically equivalent.

YA @ VEand (o A1) V (p AE) are tautologically equivalent.

eV (@A and (¢ V1Y) A (pVE) are tautologically equivalent.

p — 1 — &and ¢ — ¢ — £ are tautologically equivalent.

—3Jvy and Yv— are tautologically equivalent.

—Yvy and Jv— are tautologically equivalent.

@ Vv Jvy and Jv(yp V 1) are tautologically equivalent if v is not free in ¢.
Vv Vv and Yu(p Vv ) are tautologically equivalent if v is not free in ¢.
If w does not occur in ¢, then Vv and Ywp,[w] are equivalent.

i B RO ol

—_

Exercise 1.2.3 Let ¢, 1 and £ be closed formulas. Show that ¢ — 1) — ¢ and
(¢ = 1Y) — £ are not tautologically equivalent.

Exercise 1.2.4 A formula is called a literal if it is either atomic or the negation of
an atomic formula. A formula ¢ is said to be in disjunctive normal form (DNF in
short) if it is in the form vfle /\'}= | pij with each ¢;; a literal. A formula ¢ is said to
be in conjunctive normal form (CNF in short) if it is in the form /\f=1 V;f"z | pij with
each ¢;; aliteral. A formula ¢ is said to be in prenex normal form if it is in the form
Qovo ... Qn—1v,-1%, where each Q; is either an existential quantifier or a universal
quantifier and 1) is open. Show the following.

1. Every open formula ¢ is tautologically equivalent to a formula ) in DNF as well
astoaformulain CNF.

2. Every formula ¢ is tautologically equivalent to a formula ¢/ in prenex normal
form.

A first-order theory or simply a theory T consists of a first-order language L(T)
or simply L and a set of L-formulas, called the axioms of T'. For a cardinal k > R, T
is called a k-theory if |L(T)| < k. Ro-theories are simply called countable theories.
A model of T is an L-structure M in which each axiom of T is true. If M is a model
of T, we shall write M |= T. A formula ¢ is called a theorem of T, written T = ¢,
if it is true in all models of T'.

A set of L-sentences 7" is said to axiomatise T if every formula in T is a theorem
of 7" and also every ¢ € T’ is a theorem of 7.

Exercise 1.2.5 Show that 7" axiomatises 7 if and only if 7 and 7" have the same
class of models.
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A theory T is called finitely axiomatisable if there is a finite set of sentences that
axiomatises 7. Theories T and 7" in the same language will be considered to be the
same if each axiomatises the other one.

Exercise 1.2.6 Show that T is finitely axiomatisable if and only if there is an L(T)-
sentence ¢ such that for every structure M of L(T), M = p < M =T.

For a theory T, Ty (T3, Tv3, Tavy) will denote the set of all universal (respectively
existential, V3, 3V) sentences which are theorems of 7'. A theory T is called universal
(existential, V3, V) if Ty (respectively T3, Tys, Tav) axiomatises 7 .

Assume that the signature of L is finite. An L-theory T is called decidable if there
is an algorithm to decide whether an L-sentence ¢ is a theorem of 7 or not. If T is
not decidable, it is called undecidable. An L-structure M is called decidable if there
is an algorithm to decide if an L-sentence is true in M or not. See [59, Chap. 6] for
relevant definitions.

A theory T’ is called an extension of T if L(T’) is an extension of L(T) and every
axiom of T is a theorem of T'. If T is an extension of T" with L(T") = L(T), then
we call T’ a simple extension of T. If T is a theory and T a set of L(T')-formulas,
then T'[I"] will denote the simple extension of 7" obtained by adding I" to the set of
axioms. If 7’ is an extension of T such that every L(T)-formula that is a theorem of
T’ is also a theorem of T, then we call T’ a conservative extension of T .

If T’ is an extension of 7 and M = T’, we can regard M as a model of T by
ignoring the interpretations of symbols in L(7") that are not in L(7). This model of
T is called the restriction of M to T'.

Exercise 1.2.7 If T’ is an extension of T, show that every theorem of 7 is a theorem
of T'.

Exercise 1.2.8 Let 7’ be an extension of an L-theory T obtained by adding new
constant symbols ¢y, . . ., ¢,—1 and no new axiom. For any L-formula ¢[vo, . .., v,—1]
show that

T =Yupl[v] & T' = plco, ..., cpil-

Conclude that T’ is a conservative extension of 7.

Exercise 1.2.9 For closed L(T) formulas ¢y, ..., @, show that

Tlot, ..ol Ep o TEE— ...on — 0,

where ¢ is any L(T)-formula.

A closed formula ¢ is said to be decidable in T if either ¢ or =y is a theorem of
T.If ¢ is not decidable in 7', we say that ¢ is undecidable in T or  is independent
of the axioms of T .

A theory T is called consistent if it has a model. The theory T is called complete
if itis consistent and if every closed formula is decidable in 7. Otherwise, T is called
incomplete.
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A class & of L-structures is called elementary if there is an L-theory T such that
M e Eifandonlyif M = T.Moreover, if T is finite, we call € finitely axiomatisable.
Formulas ¢[x] and ¥ [x] are called equivalent in T, written ¢ =7 v or simply
p=,if
T EVx(p < ).

Exercise 1.2.10 Show that for any theory 7', =7 is an equivalence relation on the
set of all formulas of T'.

Exercise 1.2.11 Let T be a first-order L-theory. Show that the following statements
are equivalent.

. Every existential L-formula is equivalent in 7' to a universal L-formula.

. Every universal L-formula is equivalent in 7' to an existential L-formula.
. Every L-formula is equivalent in T to a universal L-formula.

Every L-formula is equivalent in 7" to an existential L-formula.

B LN =

Exercise 1.2.12 If 7’ is a conservative extension of 7 and T is consistent, show that
T’ is consistent.

Exercise 1.2.13 Show that a class M of L-structures is elementary if and only if
M={M:METh(M)}.

Remark 1.2.14 So far we have followed the tradition in presenting syntax and seman-
tics of first-order logic where there are only Ro-many variables. This is sufficient
because terms, formulas, proofs, etc., are of finite length. But for model theory, it is
at times convenient to have uncountably many variables, say {x; : i € I} where I is
uncountable and x;s distinct. Most of the definitions clearly make sense even when
the number of variables is uncountable.

Exercise 1.2.15 Let L be a first-order language with Ry-many variables and L’ be
obtained from L by adding uncountably many variables. Show that every L’-sentence
is tautologically equivalent to an L-sentence.

1.3 Examples of Theories

Example 1.3.1 The language for the theory of linearly ordered sets L O has one
binary relation symbol <. The axioms of L O are the following:

(1.1) Vx—(x < x).
(1.2) VxVyVz(x <y Ay <2) = X < 2).
(1.3) VxVy(x < yVx =yVy<ux).

Sometimes we shall write x > y in place of y < x; x < y as well as y > x will
abbreviate the formulax <y v x = y.
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The theory of dense linearly ordered sets without end points, denoted by DL O,
has the same language as that of L O. In addition to the axioms of L O it has following
axioms

(1.4) VaVy((x <y) = Fz(x <z A Z < Yy)).
(1.5) Vx3Iy(y < x).
(1.6) VxIy(x < y).

A linearly ordered set D is called discrete if every element of D which is not the
first element has an immediate predecessor and every element which is not the last
element has an immediate successor.

Exercise 1.3.2 Show that the class of all discrete linearly ordered sets with no end
points is elementary.

Example 1.3.3 The set of all rational numbers Q with usual order is a model of
DL O and the set Z of all integers with usual order is model of the theory of discrete
linearly ordered sets with no end points.

Example 1.3.4 The language for the theory of groups has a constant symbol e, two
binary function symbols 4 and — and the following axioms:

(2.1) VxVyVzx + (y +2) = (x +y) +2).
22) Vx(x +e=x Ne+x =x).

23) Vxdy(x+y=eny+x =ce).

(24) VxVyVz(x —y =z < x=z+Y).

The theory of abelian groups has in addition the following axiom:
(2.5) VaVy(x +y =y +x).
In case of abelian groups, the identity symbol is taken to be O instead of e. In this

language, for any » > 1 and any variable x, nx will stand for the term

X+ -+x.
—

n times

The theory of torsion-free abelian groups has, besides (2.1)—(2.5), for each n > 1,
the following axiom:

(2.6) Vx(x #0 — nx # 0).

The theory of torsion-free divisible abelian groups, denoted by D AG, has, besides
(2.1)—~(2.6), for each n > 1, the following axiom:

(2.7) Vx3Iy(ny = x).

The language for the theory of ordered abelian groups is an extension of the
language of groups by a binary relation symbol <. Its axioms are axioms of LO
(1.1)—(1.3), axioms of abelian groups (2.1)—(2.5) and the following axiom:
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2.8) VaVyWzx <y > x+z<y+2).

The language for the theory of divisible ordered abelian groups, denoted by
ODAG, is the same as that of ordered abelian groups. Its axioms are axioms of
ordered abelian groups and (2.7).

Example 1.3.5 The group of integers Z is a model of the theory of ordered abelian
groups and Q and R are models of O DAG. The group Z/nZ of integers modulo
n is an abelian group which is not torsion free. The group S, of permutations of
n-elements, n > 3, is a group which is not abelian.

Exercise 1.3.6 Show that a substructure of a group is a group.
Exercise 1.3.7 Show that every nonzero ordered abelian group is infinite.
Exercise 1.3.8 Show that every ordered abelian group is torsion free.

Exercise 1.3.9 Show that every ordered divisible abelian group is a dense linearly
ordered set without end points.

Example 1.3.10 The language for the theory of commutative rings with identity is an
extension of the language of groups by having one more constant symbol 1, and one
more binary function symbol -. The axioms of this theory are the axioms (2.1)—(2.5)
of abelian groups together with the following axioms:

(3.1) VxVyVz(x - (y-2) = (x-y)-2).
B2) Vx(x-1=xA1-x=x).

(3.3) WxVyVzx - (y+2)=x-y+x-2).
(3.4) VaVy(x -y =y -x).

For any variable x and n > 1, x" will stand for the term

x. e .x'
—_————

n times

Note that a substructure of a commutative ring R with identity is a subring of R.
The theory of integral domains has one more axiom:

(3.5 VaVy(x -y =0— (x =0Vvy=0))

A ring R is called ordered if it is equipped with a linear order < on R such that
for every x, y, z € R the following conditions are satisfied.

(3.6) 0 <xand0 < yimply 0 < x - y.
(3.7) x <yimpliesx +z <y + z.

The theory of fields has the same language as that of the theory of commutative
rings with identity. Its axioms are the axioms (2.1)—(2.5) of abelian groups, axioms
(3.1)—(3.4) of the theory of commutative rings with identity and
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(3.8) 0#1.
(39) Vx(x #0 — Jy(x -y = 1)).

The theory of algebraically closed fields, denoted by AC F, has in addition to the
axioms of fields, for each n > 1 the following axiom:

(3.10) Vxo...Vx,(x, #0 — Ix,p1(xo + X1 - X1 + -+ x5 -x,’f_H = 0).

The theory of fields of characteristic p, p a prime, in addition to field axioms, has
the following axiom:

(3.11) p=0,
where n denotes the term
I+---+1,
————
n times

n> 1.
The theory of fields of characteristic 0 in addition to the field axioms has the
axiom:

(3.12) n #0,

for each n > 1. The theory of algebraically closed fields of characteristic p, p a
prime, will be denoted by AC F (p) and that of characteristic 0 by AC F(0).

A field IF of characteristic 0 is called a differential field if there is a unary function
¢ satisfying the following axioms:

(3.13) d(x +y) =d(x) +d(y).
(3.14) 6(x-y) =0(x)-y+x-5(y).

The function § is called a derivation. Since this theory has no relation symbol
(except, of course, equality), its atomic formulas are polynomial expressions in pow-
ers of §. We call a differential field [ differentially closed if whenever a conjunction
of finitely many literals with parameters in F has a solution in an extension of F, it
has a solution in [F. We shall not prove here that the class of all differentially closed
fields is elementary.

A field IF is called ordered if in addition it is equipped with a linear order < making
it into an ordered ring.

The theory of ordered fields is denoted by O F. A field F is called orderable if
there is a linear order < on [ making it into an ordered field.

The theory of real closed fields has two equivalent definitions.

(1) It is a field satisfying the following additional axioms:

(3.15) VxAy(x =y> VvV x +y>=0).
(3.16) Foreveryn > 1,

Yy . V(1 xi 4+ x2 £0).
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(3.17) Foreveryoddn > 1,
VX .. V20 (X # 0 = I (X0 + X1 - Xpg1 4+ + X - Xy, = 0).

(ii) Equivalently, a real closed field is an ordered field that satisfies axioms (3.15)
and (3.17).

The theory without order relation and having (3.15)—(3.17) as additional axioms
will be denoted by RCF and that with order relation will be denoted by RCOF'.
The field of real numbers and that of real algebraic numbers are models of RC F and
of RCOF.

Exercise 1.3.11 Show that every algebraically closed field is infinite.
Exercise 1.3.12 Let I be an orderable field. Show the following.

1. There does not exist xq, ..., x, such that —1 = x% + - +x5.
2. 30 xF=0—> A (x; = 0).

Exercise 1.3.13 Show that an algebraically closed field is not orderable. Also show
that no finite field is orderable

Example 1.3.14 Let (IF,0, 1, +,-) be a field. The theory of vector spaces over F
is an extension of the theory of abelian groups with an additional unary function
symbol r- for each r € IF, and the following additional axioms:

4.1) vx(1-x =x),

4.2) VaxVy(r - (x+y)=r-x+r-y),
@3) Vx(r+'s) - x=r-x+s-x),
4.4) Vx(r-(s-x)=(@r-s)-x),

where r, s € F.
It is easily seen that the class of left R-modules, R a commutative ring with
identity, is elementary.

Exercise 1.3.15 Show that the class of torsion-free divisible abelian groups is pre-
cisely the class of all vector spaces over the field of rational numbers Q.

Example 1.3.16 Let G be a group. A G-spaceisaset X withamap-: G x X — X
(we shall write g - x for -(g, x)) satisfying the following axioms:

(5.1) Vx(e-x = x), where e € G is the identity element of G.
(5.2) Foreveryg,h € G,g-(h-x) = (gh) - x.

In this case, we say that G acts on X and the map - : G x X — X the action of
G on X. Clearly, the class of all G-spaces is elementary. The action is called free if
forall g # e, g-x # x for all x. For each x € X, {g - x : g € G} is called the orbit
of x. Note that orbits partition X. We denote the space of all orbits by X/G.
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Example 1.3.17 The signature for Peano Arithmetic P A contains a constant symbol
0, a unary function symbol S (which designates the successor function), two binary
function symbols + and -, and a binary relation symbol <. Its axioms are:

(6.1) Vx(—(Sx = 0)).

(6.2) VaVy(Sx =Sy - x =y).

(6.3) Vx(x +0 =x).

(6.4) VxVy(x + Sy =Sx +y)).

(6.5) Vx(x-0=0).

(6.6) VaxVy(x-Sy = (x-y)+x).

(6.7) Vx(—(x < 0)).

(6.8) VaVy(x < Sy <> (x <yVvx=y).
(6.9) For every formula ¢[x], the formula

»[0] = Vx(p — ¢[Sx]) = Vxo.
Example 1.3.18 The language for the theory of (undirected) graphs has a binary

relation symbol E and following axioms:

(7.1) Vx—E(x, x).
(7.2) VxVy(E(x,y) = E(y,x)).

A random graph is a graph with following axioms:

(7.3) IxIy(x #y)
(7.4) Foreveryn > 1,

;x;y(/\i<n /\j<n (xi 75 ))j) - EIZ(/\i<nE(xi’ Z) /\j<n —'(E(Yj, Z) NZ 75 y]))
Note that random graphs are all infinite.

An L-structure where L has only a binary relation symbol E is called a directed
graph. A directed graph with no loop and no cycle is called a tree. So its axioms are

(7.5) Yx—E(x,x).
(7.6) Foreveryn > 1,

=3x (X0 = Xp—1 A Nicn—1 E(xi, Xig1)).

Exercise 1.3.19 Show that the class of all bipartite graphs is elementary.

Exercise 1.3.20 Show that the class of all infinite sets is elementary.

1.4 Homomorphism

Let M and N be L-structures. A homomorphism from M to Nisamaph : M — N
satisfying the following conditions:
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1. For every constant ¢, h(cM) = ¢V,
2. For every n-ary function symbol f and every @ € M", h(fM(a)) = fN(h(a@)).
3. For every n-ary relation symbol p and every a € M",

M = plal = N [ plh(@)],

ie.
pM (@ = p"(h(@)).

For any M, id), will denote the identity morphism on M. If M, M, and M;
are L-structures and h; : My — M, and h, : M, — M3 are homomorphisms, then
their composition hy o by : My — M3 is a homomorphism. Thus, it is easy to see
that the class of all L-structures and homomorphisms form a category under the
composition. If a homomorphism is one-to-one, it is called a monomorphism and it
is called an epimorphism if it is surjective. A homomorphism f : M — M is called
an endomorphism of M. End (M) will denote the set of all endomorphisms of M.

Proposition 1.4.1 Let M and N be L-structures and h: M — N a homomor-
phism. Suppose f and p are k-ary function and relation symbols respectively and
t[xo, -« Xn—1l, tolx0,s - - - Xu—1l, - . ., tr—1[X0, - . ., Xyu—1] are L-terms. Then for every
aeM”,

(a) h(t"[a]) = tN[h(@)).

(b) M = pley'[al,.... 1" \[@ll = N = pli [h@), ..., 1) [h@]].

Proof (a) is proved by induction on the length || of z. (b) is straightforward from
(a). O

Exercise 1.4.2 1. Let M, N be L-structures and f, g : M — N homomorphisms.
Show that {a € M : f(a) = g(a)} is a substructure of M.
2. Let M be an L-structure and X C M.

(a) Show that there is a smallest substructure of M containing X.

(b) We say that X is a generator of M if M is the only substructure of M contain-
ing X. Let N be another L-structure and f, g : M — N homomorphisms
such that f|X = g|X. Show that f = g.

1.5 Embedding

A homomorphism & : M — N is called an embedding if instead of condition (3) of
the definition of homomorphism in Sect. 1.4, the following condition is satisfied:

(4) For every n-ary relation symbol p and every a € M",

M = plal & N = plh@a)].
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Since = is a relation symbol, an embedding is one-to-one. However, a one-to-one
homomorphism need not be an embedding.

Example 1.5.1 Let the signature of L have only a binary relation symbol <. Take
M = N = {0, 1}. Define
x<Mysx=y

and
foy<:>(x=y)\/(x=O/\y=1).

Then the identity map from M to N is a bijective homomorphism but not an embed-
ding.

Example 1.5.2 If M is a substructure of N, then the inclusion map i : M < N is
an embedding.

Example 1.5.3 From standard algebra argument, we know that substructures of fields
are precisely integral domains. Indeed, every integral domain D is embedded into
its quotient field Q(D).

Example 1.5.4 Every countable linearly ordered set (M, <) is embeddable in the
set of all rational numbers Q with usual order. Enumerate M = {ag, a1, az, .. .}.
Set h(ap) = 0. Suppose for n > 1, we have defined an order-preserving map 5 :
{ag,...,a,-1} = Q.1fa, < q; foralli < n, define h(a,) to be any rational number
less than every h(ay), .. ., h(a,—1). On the other hand, if @, > a; foralli < n, define
h(a,) to be any rational number greater than every h(ay), . . ., h(a,—;). Otherwise,
there exista; < aj,i, j < n,suchthata; < a, < ajandfornok <n,a; < a; < a;.
Then we define h(a,) to be any rational number » such that h(a;) <r < h(a;).
Inductively, we have thus defined an embedding 2 : M — Q.

Example 1.5.5 Let H be a torsion-free abelian group. Then there is a torsion-free,
divisible abelian group G and an embedding o : H — G such that for every torsion-
free, divisible abelian group G’ and every embedding 5 : H — G’, there is a unique
embedding v : G — G’ such that § =~ o a.

To see this, set
E={(h,n):heHn>0}

Define an equivalence relation ~ on E by
(h,n) ~(W,n) < n'h =nh'

Let % denote the equivalence class containing (&, n) € E and set

G=E/~ :{g:(h,n)eE},
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the quotient space,

0=

’

0
1

h W . n'h +nh'

n n nn'

s

h K B n'h —nh'

n n nn'

and P
a(h) = T heH.

These are well defined. Note that m -~ = <. It is fairly easy to see that these make
G into a torsion-free divisible abelian group with « : H — G an embedding.

Now given a torsion-free, divisible abelian group G’ and an embedding (3 :
H — G, definey:G — G’ by

h h) h
7(—)=5( ), - egG,

n n n

where @ is the unique element g of G’ such that ng’ = 3(h).
The group G obtained above is unique upto isomorphism and is called the divisible
hull of H.

Example 1.5.6 Let H be an ordered abelian group. Then there is a divisible, ordered,
abelian group G and an embedding o : H — G such that for every divisible, ordered,
abelian group G’ and every embedding 5 : H — G’, there is a unique embedding
v:G — G’ suchthat f =~vyoa.

Let < denote the ordering on H. Every ordered abelian group is torsion-free. We
proceed as in the last example, and define

!
— < — & nh <nk.
n n’

The ordered abelian group G thus defined is unique upto isomorphism and is called
the ordered divisible hull of H.

Example 1.5.7 Let D be an ordered integral domain and K its quotient field. Every
element of KK can be expressed in the form & € K with d > 0 For , 5 € K with
b,d > 0, define

<—-—<%a-d<b-c,

SRS
Al e

and a
ala) = T aeD.
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This makes the quotient field K into an ordered field with o : D — K an (order-
preserving) embedding. Further, for every ordered field [F and every order-preserving
embedding 5 : D — T, there is a unique order-preserving embedding v : K — F
such that y o @ = .

Proposition 1.5.8 Let M, N be L-structures. Thenamap h : M — N is an embed-
ding if and only if for every open formula p[xy, . .., x,—1] and everya € M,

M = ¢lal < N | ¢lh(@)]. ()

Proof We first prove the if part. For any constant symbol ¢, M = ¢ = c. Hence,
by (x), N = h(cM) = c,ie. h(cM) = V.

Now let f be an n-ary function symbol, @ € M and b = fM(@). Since y =
fxo...x,—11s an open formula and M = b = f(a), by (x), N = h(b) = f(h(a)),
ie. h(b) = fN(h(@)).

For a n-ary relation symbol p, p[xg ... x,—1]is an open formula. Clearly for every
aceM,

M = plal & N | plh(a)]

is a special case of (). Thus, if part is proved.
Only if part follows because

{elxo, ... . xp1] : Va e M(M = ¢lal < N = plh(@))}

contains all atomic formulas and is closed under — and V. |

Exercise 1.5.9 Let M, N be L-structures and f : M — N an embedding. Show the
following:

1. For every existential formula [x] and every a € M,

M = plal = N = ¢l f@)].

2. For every universal formula ¢[x] and every a € M,

N Eolf(@] = M k= plal.

Exercise 1.5.10 Let 7 be a theory and ¢[Xx] a formula. Assume that there is a
universal formula ¥[x] such that ¢ =7 . Show that whenever M, N =T, N E M
anda € N, M E gla] = N E ¢lal.

Exercise 1.5.11 A substructure N of an L-structure M is called existentially closed
in M if whenever an existential L y-sentence Ix[x] is true in M, itis true in N. Let
M = T. Show the following:
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1. Every substructure of M is a model of Ty.
2. Every extension of M is a model of T3.
3. Every existentially closed substructure of a model of T is a model of Ty3.

Let (I, <) be a linearly ordered set and {M; : i € I} afamily of L-structures such
thati < j = M; E M;.Suchafamily {M; : i € I}is called a chain of L-structures.
Set M = U,‘61M,'.

* We put c” = ™ for some i € I where c is a constant symbol.
* Ifa € M", thena € M for somei € I. Let f be a n-ary function symbol and
p an-ary relation symbol. We define

M@ = M@ & p" @ & p"(@.

These are well defined and make M into an L-structure such that M; = M for
each i € I. The structure M so defined is called the union of {M; : i € I}.

Proposition 1.5.12 Let T be a V3 theory. Then the union of a chain of models of T
is amodel of T.

Proof Let {M; :i € I} be a chain of models of T and M = U; M;. Take an axiom
Vx3yelx, y], o open,of T anda € M. Thena € M; forsomei € I.Since M; =T,
M; = ¢la, b] for some b € M; C M. Since M; & M, M = ¢la, b]. U

The converse of this result is true and will be proved in Corollary 2.4.6.
A theory T is called inductive if the union of a chain of models of T is a model
o ITfM is an L-structure, then the atomic diagram of M, denoted by Diag(M), is
{plal : M = plal, p arelation symbol
U{—=pla] : M |~ plal, p arelation symbol}.

Theorem 1.5.13 (Atomic Diagram Theorem.) Let M be an L-structure. Then N |=
Diag(M) if and only if there is an embedding h : M — N.

Proof Let N = Diag(M). Define h : M — N by
h@) =a", ae M.
Then for every atomic formula p[xg...x,_ ] and everya € M,
M = pla]l & N = plh(a@)].

By the arguments contained in the proof of Proposition 1.5.8, this implies that 4 is
an embedding.
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Conversely, let # : M — N be an embedding. To avoid ambiguity, let i, stand
for the constant symbol a in Ly, a € M. Set ¢[x] to be the atomic formula i, = x.
Then M = [a]. Since h is an embedding, N = ¢[h(a)]. Hence, a” = h(a). Using
once again the fact that 4 is an embedding, we have N = Diag(M). (Il

1.6 Isomorphism and Categoricity of Theories

Let M, N be L-structures. An isomorphism h : M — N is an embedding which
is also a bijection. Two L-structures M and N are called isomorphic if there is
an isomorphism & : M — N. It is easily seen that the inverse of an isomorphism
and the composition of two isomorphisms are isomorphisms. If 7 : M — N is an
embedding, then 2 (M) is a substructure of N isomorphic to M.

We write M = N if there is an isomorphism from M to N. It is easily seen that =
is an equivalence relation on the class of all L-structures. Sometimes we shall write
h : M = N to say that % is an isomorphism from M onto N.

An isomorphism 4 : M — M is called an automorphism of M. The set of all
automorphisms of M is denoted by Aut (M). It forms a group under composition.
The group Aut (M) acts on M canonically by

c-x=0x), xeM,o e Aut(M).
Also, note that for each n > 1, Aut (M) acts on M" by
g-a=ga), ge Aut(M),a e M".
For A C M, we define
Autp(M) = {0 € Aut(M) : Vx € A(o(x) = x)}.

So, Auts(M) is the subgroup of pointwise stabilisers of A. Elements of Aut, (M)
are called automorphisms of M over A. Further, we define

Aut( (M) = {0 € Aut (M) : o(A) = A},

the subgroup of setwise stabilisers or simply stabilisers of A.
If K is a field and IL a subfield, then Auz(K)y, is generally denoted by G (K, L).
It is called the Galois group of K over L.

Proposition 1.6.1 Let M, N be L-structuresandh : M — N anisomorphism. Then
for every formula @[xq, ..., x,—1] and everya € M,

M E ¢lal & N = ¢lh@)]. ()
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Proof Set
@ = {plxo, ..., xu—1]1:Va € M(M = plal < N | plh(@)D}.

Clearly @ contains all atomic formula ¢[x] and is closed under negation and dis-
junction. Therefore, it is sufficient to show that whenever [x, xg, ..., X,—1] € P,
so is dx . Take any a € M". Then

M = Ixplx,a]l & M = ¢la, al for some a € M
< N E ¢lh(a), h(@)]
< N = lb, h(a)] for some b € N
< N E Ixplx, h(a)]

Second equivalence holds by our assumption and third equivalence holds because &
is a surjection. The proof is complete now. (]

Let k > Ry be a cardinal number. A theory T is called k-categorical if any two
models of T of cardinality x are isomorphic.

Example 1.6.2 The theory of infinite sets is x-categorical for every infinite cardinal
K.

Example 1.6.3 For every k > Ry, DAG is k-categorical.

Proof Let Gy, G, = DAG, |G| = |G;| > 8. Then G4, G, are vector spaces over
Q of the same dimension. Hence, they are isomorphic as vector spaces. In particular,
they are isomorphic as models of DAG.

Exercise 1.6.4 Let G be a group of cardinality < . Show that the theory of free
G-spaces is A-categorical for all A > max{R, x}.

Exercise 1.6.5 Show that DAG has exactly Rp-many pairwise non-isomorphic
countable models such that any other countable model of DAG is isomorphic to
one of them.

Example 1.6.6 For every k > Ry, ACF(p), p = 0 or prime, is x-categorical.

Proof Note that if IF is an algebraically closed field and |F| = k > 8, then F is of
transcendence degree «. Our claim follows from the fact that any two algebraically
closed fields of the same characteristic and same transcendence degree are isomor-
phic. See [31, Chap. VIII, Sect. 1] for relevant definitions and result. U

Example 1.6.7 DLO is Ry-categorical.

Proof Let Q, Q, = DL O be countable. Enumerate Q; = {r,} and Q, = {s,,,}. Set
no = 0 and my = 0. Suppose for some i, ny, ..., ny and my, ..., my; have been
defined so that the map f defined by



1.6 Isomorphism and Categoricity of Theories 21
f(rnj) = Sm;, 0= ] < 2i,

is injective and order-preserving.

Now let m»; 1 be the first natural number k such that s; is different from each of
Smj» J < 2i. Since Q; &= DL O, there is a natural number [ such that r; is different
fromeachofr,;, j < 2i and the extension of f sending r; to s,p,,., is order-preserving.
Set ny;41 to be the first such /. Then the map f(r,;) = sw,, j < 2i + 1, is injective
and order-preserving.

Now define n,; 1, to be the first natural number / such that 7; is different from
each of Fngs J < 2i 4+ 1. Again observe that there is a natural number k such that
sy 1s different from each of Smj» J < 2i + 1, and the extension of the above map by
defining f (7,,,.,) = sk is order-preserving. Set so; > to be the least such k. It is easily
checked that f : Q; — @, thus defined is an isomorphism O

Exercise 1.6.8 Show that DL O is not k-categorical for any x > Ry.

Remark 1.6.9 Using compactness theorem (which will be proved in the next section),
it will be easy to show that for every infinite cardinal x, there is an abelian group
G and a non-abelian group G, such that |G| = |G;| = k. It follows that the theory
of groups is not x-categorical for any infinite cardinal . Thus, so far we have seen
examples of the following possibilities for a theory 7':

1. T is k-categorical for all kK > .

2. T is k-categorical for no k > .

3. T is Ry-categorical but not x-categorical for any £ > N.
4. T is not Ry-categorical but is x-categorical for all kK > K.

Los conjectured that these are all the possibilities, i.e. if T is k-categorical for
some k > N, itis A\-categorical forall A > 8. In a remarkable contribution to model
theory, Morley [43] proved the conjecture of Los. This paper of Morley contains some
of the most significant concepts of model theory and heralded a new era in the subject.
We shall prove Morley’s theorem later in the book.

Remark 1.6.10 The argument contained in the last proof, known as back and forth
argument, is very useful in model theory. We shall prove many results using this
technique.

Exercise 1.6.11 Let M,N &= DLO, [M|=|N|=RXy, AC M finite and f :
A — N an order-preserving injection. Then there is an isomorphism g : M — N
extending f.

Exercise 1.6.12 Consider the ordered space QQ of rational numbers. Show that for
each n > 1, the number of orbits in Q" under the action of Aut(Q) is finite.

Example 1.6.13 The theory of random graphs is ¥y-categorical.
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Proof The proof uses the back and forth argument as in the case of the last Exam-
ple 1.6.7. Let G; = (Vi, Ey) and G, = (V,, E3) be two countable random graphs.
Enumerate V| = {aq; : i € w}and V, = {b; : i € w}. We define a sequence of partial,
one-to-one finite functions {f, : n € w} from V) into V, satisfying the following
conditions:

. folao) = by.

. a; € domain(f),i € w.

. bi e range(fri+1),1 € w.

.n<m= f, C fu.

. For every n € w and every a, @’ € domain(f,), (a,d’) € E; & (fu.(a), fu(d))
€ E,.

[ O I

This will complete the proof because then U, f,, : Vi — V, will be an isomorphism.
Suppose i € w and f,; have been defined. If b; € range(fs;), take frir1 = fo-
Otherwise, set g = fzjl,

X ={gb;) : bj € domain(g) N (b;,b;) € Es}

and
Y ={g(b;) : b; € domain(g) N (b, b;) ¢ E>}.

Since V) is a random graph, there is a a; € Vi \ (X UY) such that (a;, ax) € E;
whenever a; € X and (a;,a;) ¢ E; foralla; € Y. Set h = g U {(b;, ax)} and take

frimn=h"l
Supposei € wand f,; ) has beendefined. If a; 1 € domain(fyi1),take fri40 =
fai41. Otherwise, set

X ={frr1(a)) : aj € domain(friy1) A (aiy1,a;) € Er}

and
Y = {fa+1(aj) : a; € domain(fri1) N (a;,a;) ¢ Eq}.

Clearly, X and Y are finite disjoint subsets of V,. Since V, is a random graph, there
isab, € Vo \ (XUY) such that (b}, by) € E, whenever b; € X and (b, by) ¢ E»
forall b; € Y. Take faiy2 = fait1 U {(aiy1, D)} 0

For the following exercise, see [58] for relevant definitions and results.

Exercise 1.6.14 Let M be an L-structure. Equip MY with the product of discrete
topologies on M and Aut(M) C M with the subspace topology. So, basic open
sets of Aut (M) are of the form

2@, b) = {f € Aut(M) : f(@) = b},

where @, b € M", n > 1. Note that for any a € M, Autz(M) = X(a, a). Show the
following:
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1. Show that H C Aut(M) is closed if and only if every g € Aut (M) such that for
every finite tuple @ in M there is a h € H with h(a) = g(a) belongs to H.

2. For A C M, Auts(M) is a closed set in Aut(M). In particular, Galois groups of

a field K over its subfields are closed in Aut (K).

Aut (M) is a topological group.

4. A subgroup G of Aut(M) is open if and only if it contains Autz(M) for some
finite tuple @ € M. (Hint: Note that £(a,b) C G = X (b,a) C G.)

5. A subgroup G of Aut(M) is open if and only if it is a union of sets of the form
Autz(M), a a finite tuple of elements in M of fixed length.

6. A subgroup G is dense if and only if for each n > 1 and each a € M", the orbits

W

{g-a:geGy={g-a:ge Aut(M)}.

7. If M and the signature of L are countable, then Aut (M) isa G set, i.e. acountable
intersection of open sets, in M. Conclude that in this case Aut (M) is a Polish
space, i.e. a completely metrisable, second countable space.

1.7 Elementary Embedding

So far nothing significantly different from usual approach to mathematics has been
done. We have formally presented the syntax and semantics of first-order logic fol-
lowed by mathematicians. Notions of homomorphisms, embeddings, isomorphisms
are quite standard. Because logic deals with formulas, we get new and very useful
notion of embedding and equivalence of models which we are going to introduce
now. This can be viewed as the first gift of logic to mathematics. Most of the concepts
introduced in this section are due to Tarski and Vaught [63].

The converse of Proposition 1.6.1 is not true in general. More specifically, let
M, N be L-structures and i : M — N be such that for every L-formula [x] and
everya € M,

M | plal < N = ¢lh(a)]. (%)

Then 4 is an embedding but may not be surjective. (See Example 1.7.8.)

A map h: M — N satistfying condition (x) of Proposition 1.6.1 is called an
elementary embedding. A substructure M of N is called an elementary substructure
of N if the inclusion map i : M — N is elementary. In this case, we also call N
an elementary extension of M and write M < N or N > M. We shall also write
h:M < Nifh: M — N is elementary.

Two L-structures M and N are called elementarily equivalent, written M >~ N,
if they satisfy the same closed L-formulas. Clearly ~~ is an equivalence relation on
the class of all L-structures. With these definitions we have the following result.

Theorem 1.7.1 A theory T is complete if and only if it is consistent and models of
T are pairwise elementarily equivalent.
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Let M, N be L-structures and there be an elementary embedding from M to
N. Then M =~ N. Further, M >~ N implies that for every L-theory T, M =T &
NET.

Proposition 1.7.2 Let T be a complete theory. If T has an infinite model, all its
models are infinite. In fact, if there is a finite model M of T, then for all N =T,
IN| = [M].

Proof Let M =T and |M| =n. Then M =3_,x(x = x). Since N~ M, N
A_,x(x =x),i.e. |N| =n. [l

If M is an L-structure, we define the elementary diagram of M by
Diag,(M) = {¢ : v an L sentence & M |= p}.

By slightly modifying the proof of atomic diagram theorem 1.5.13, we get

Proposition 1.7.3 N = Diag. (M) if and only if there is an elementary embedding
h:M — N.

The proof is left to the reader as a simple exercise.

Proposition 1.7.4 (Tarski—Vaught Test) Let M be an L-structure and N a subset
of M. Then N is the universe of an elementary substructure of M if and only if for
every L-formula p[x,X], |x| = 1, and everya € N

M = 3xplx,al = 3Ib € N(M = ¢lb, a)) (%)
Proof 1If part: We first show that if N satisfies (), N is a substructure of M.

Let ¢ be a constant symbol. Then M = 3x(x = ¢). Hence, M |= b = ¢ for some
beN.So,c™=beN.

Next let f be a n-ary function symbol and a;, ...,a, € N. Since M = Ix(x =
fla,...,ay)), M=b= f(a,...,a,) for some b e N. This implies that
fM(ay, ..., a,) € N. Thus, we can regard N as a substructure of M by taking

pY = pM|N, where p is a relation symbol.
By the given condition,

® = {pl[x]:Va e N(M |= ¢la] < N = ¢la))}

contains all atomic formula and is closed under —, vV and 3. Hence, N is an elementary
substructure of M.

Only if part: Since N < M, M = Ixp[x, a]implies N = Axp[x, a]. Hence N =
wlb,a] forsomeb € N.As N < M, M |= ¢[b, a]. [l

Let (I, <) be a linearly ordered set and {M; : i € I} a family of L-structures such
thati < j = M; < M;.Such afamily {M; : i € I}is called an elementary chain of
L-structures.
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Proposition 1.7.5 If{M; : i € I} is an elementary chain of L-structures, then M =
Uier M; is an elementary extension of each of M;.

Proof Let ® be
{o[x]: pisan L — formula Vi € IVa € M;(M; = pla]l & M E plal)}.

Clearly, @ contains all atomic formulas and whenever ¢, 1) € ®, =, ¢ V 1) € D.
Now let p[x,x] € ® and a € M;. Suppose M; = Ixp[x, a]. Get a € M; such
that M; = ¢la, a]. Then, by induction hypothesis, M = ¢[a, a]. Hence, M |=
Axplx, al.
Next suppose M |= Ixp[x, a]. Then thereisa j > i anda € M; such that M |=
¢la, a]. Hence, by induction hypothesis, M; |= ¢la, a]. Since M; = Axp[x, a] and
M; < M;, M; = 3xyplx,al. (|

A weaker form of the following result was proved by Lowenheim in [38] and for
countable L and countable X it was Skolem in [56]. In the most general form as
stated below it was proved by Tarski and Vaught in [63].

Theorem 1.7.6 (Downward Lowenheim—Skolem Theorem.) Let M be an
L-structure and X C M. Then there is an elementary substructure N of M con-
taining X such that |N| < max{|L|, | X|}.

Proof Inductively we define a sequence of { N} of subsets of M as follows: Ny = X.
Suppose Ny has been defined and | V| < max{|L|, | X|}. Thenthe setof L y,-formulas
plx] is of cardinality < max{|L|, |X|}. Whenever ¢[x], |x| = 1, is an Ly, -formula
and M |= Ixp[x], we choose a b, € M such that M |= ¢[b,]. Let N4 consist of
elements of Vi and all these b,,. Then [Ny (| < max({|L|, |X]}.

Now take N = U;Ny. Then |[N| < max{|L|, | X|}. It is routine to check that N is
an elementary substructure of M. d

Corollary 1.7.7 (Skolem) Every countable, consistent theory has a countable model.

Example 1.7.8 Let T be a countable theory with an uncountable model, say M. For
instance, we may take R = DLO,R = ODAG orC = ACF(0). Since T is count-
able, M has a countable, elementary substructure, say N. Thus, we get an elementary
embedding, namely the inclusion map i : N < M which is not surjective.

We see that downward Lowenheim—Skolem theorem is a technique to build small
models. In the next chapter, we shall prove so-called upward Lowenheim—Skolem
theorem which will give us a technique to build large models.

A linearly ordered set (A, <) is called complete if every set B C A which is
bounded above has a least upper bound.

Proposition 1.7.9 (Cantor) Every complete, order dense, linearly ordered set (A, <)
with more than one point is uncountable.
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Proof 1f possible, suppose A is countable. Since |A| > 1, |A| = Ny. Enumerate A =
{a,} withayg < a;. Set xg = ap and yy = a;. Note that xo < yg. Letxg < --- < x, <
Yn < --- < Yo have been defined. Let /, be the first integer such that x, < a;, < y,.
Set x,+1 = a;,. Now let r,, be the first integer such that x,1; < a,, < y,. Set y,4+1 =
ar,.

Thus, we have defined xg < x; < x2 < --- < y» < y1 < ¥p. Since A is complete,
sup{x,} exists in A. But by our construction for no p, x, < a, <y, for all n. This
contradiction completes the proof. (|

Corollary 1.7.10 The class of all complete, order dense, linearly ordered sets is not
elementary.

This shows a limitation of expressibility power of first-order languages—*“that a
linearly ordered set is complete” is not expressed by any set of first-order sentences
of a first-order language whose signature is countable.

Exercise 1.7.11 Show that the class of all complete ordered fields is not elementary.

Exercise 1.7.12 Let N be an elementary substructure of an L-structure M. Show
that for every g € Aut (M), g(N) is an elementary substructure of M.

Exercise 1.7.13 Show that if there is an extension M’ of M in which N is elemen-
tarily embedded, then N is existentially closed in M.

Exercise 1.7.14 Let T be a first-order theory such that every formula is equivalent
in T to an existential formula. Show that every submodel N of a model M of T is
an elementary submodel of M.

Exercise 1.7.15 Let M, N be L-structures and |N| < R. Show that every elemen-
tary embedding 4 : N — M is an isomorphism.

Exercise 1.7.16 Let (/, <) be a directed set. Suppose {M; : i € I} is a family of L-
structures and whenever i < j, there is a homomorphism f;; : M; — M satisfying
the following properties:

(a) fi; is the identity morphism on M; for eachi € I, and
b) i <j=<k= fijofii= fu-

We call ({M; :i € I},{fj; :i < j}) adirect system of L-structures. The direct
limit of this system consists of an L-structure M and foreachi € I, ahomomorphism
fi : M; — M satisfying the following conditions:

(© i<j= fjofji= fi,and

(d) Whenever N is an L-structure and g; : M; — N, i € I, a homomorphism such
thati < j = g;j o fji = g, there is a unique homomorphism g : M — N with
go fi =g;foralli e I.
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Show thatif (M, {f; : M; — M}) and (N, {g; : M; — N}) are direct limits of
({M; :i eI}, {fji :i < j}), then there is a unique isomorphism » : M — N
such that g; = h o f; foreachi € I.

To show the existence of the direct limitof ({M; : i € I}, {fji :i < j}),set M’
to be the disjoint sum of {M; : i € I}. (Note that, without any loss of generality,
we can assume that M;’s are pairwise disjoint.) Fora; € M; anda; € M;,define

a; ~a; < 3k >1, j(frila) = fij(aj)).

Show that ~ is an equivalence relation on M’.

Let M = M’/ ~ denote the set of all ~-equivalence classes, ¢ : M’ — M the
quotient map and f; = q|M;,i € 1.

If c is a constant symbol, show that cM ~ ¢Mi for all i, j € I.

For any constant symbol ¢, define ¢ = g(c™) foranyi € I.

Given (ai, ..., a,) € M’, show that there is an i € I and (b1, ..., b,) € M;
such thata; ~ b; forall 1 <[ < n.

If f is a n-ary function symbol and p a n-ary relation symbol, define

Man,....q@)) =q(f™ b, ..., b))

and
pM (g, ..., q(ay) & pMi (b1, ..., by,

where (b1, ..., b,) are as in (V).

Show that these are well defined and makes M into an L-structure so that
(M, {fi : M; — M}) is the direct limit of ({M; :7 € I}, {fj; :i < j}).

Show that if each fj; is an embedding, so is each f;, and if each f}; is an
epimorphism, so is each f;.

If each fj; is elementary, each f; is elementary. Further, in (d) above if each
g; 1s elementary, the unique g : M — N satisfying go f; = g; foralli € I is
elementary.

Assume that T is a V3 theory, each M; =T and each f;; is an embedding.
Show that M =T.

Skolemization of a Theory

The main idea contained in this section was initiated by Skolem in [55].
A theory T is called a Skolem theory or that it has built in Skolem functions if for
every formula ¢[x, yi, ..., y,], T has a n-ary function symbol f such that

T EVy@Exelx, y1 = olf (). YD.
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Theorem 1.8.1 Every theory T can be extended to a theory T such that

1. T has built in Skolem functions.
2. |L(TH| = [L(T)].
3. Any model M of T can be expanded to be a model of T™.

Proof SetTy = T and My = M. Having defined 7; and M;, let T; | be the extension
of T; obtained as follows: For each formula ¢[x, yi, ..., y,] of T;, introduce a new
n-ary function symbol f, and an axiom

Vy@xelx, y1 = o[ fo(3). ¥D.

We call functions f,, Skolem functions.

For any formula ¢[x, y] andanya € M;,if M; |= Ix¢[x, a], define fg"‘“ (@) =>b
such that M; = ¢[b, a]. Otherwise, define fé”’*' (a) € M; arbitrarily. Note that the
universe of M;; remains My = M. We have expanded M; to a model M;; of T; 4,
by giving interpretations of new function symbols.

Nowset TH = U;T; and M = U; M;. Ttis easily checked that (1)—(3) are satisfied.

O
We say that T has definable Skolem functions if for every formula ¢[x, y] there is a
formula 1 [x, y] such that

T E=EVy@oixylx, I A Gxelx, 1 — Vx(@[x, y] = ¢lx, D).

In this case, we can introduce a new function symbol f,, that picks up a x such that
Y[x, y], i.e. we introduce an axiom

x = fo[v] < ¥lx, 1.

Take an L-theory T with built in Skolem functions. Let M =T and X C M. We
define
H(X) = {t"[a] : @ € X, t[v] an L-term}.

We call H(X) the Skolem hull of X. We now get a differently worded proof of
downward Lowenheim—Skolem Theorem.

Theorem 1.8.2 H(X) is an elementary substructure of M containing X and
"H(X)| < max{|X|, |L]}.

Proof Take an L-formula ¢[x, y]. Since T has built in Skolem functions, there is a
n-ary function symbol f such that

T =Vy@Exelx, y1 = ¢l f (). YD.



1.8 Skolemization of a Theory 29
Leth € H(X). Thena = f¥(b) € H(X). Further,
M = 3xp[x, bl = M = pla, b].

The result now follows from Proposition 1.7.4. (]

An L-structure A is said to have definable Skolem functions if T4 (A) has definable
Skolem functions. This is the same as saying that for every L-formula ¢[x, y] there
is an L-formula ¥[x, y] such that

A EVy@=ixylx, I A Gxelx, y] = Vx(@lx, y]1 = ¢lx, yD)).

Example 1.8.3 Let T be the Peano Arithmetic P A. Given any formula ¢[x, ], let
¥[x, ¥] be the formula

(Vz=elz, yIAx = 0) v (plx, VI A Vz(z < x = —¢[z, V]).

Then

PA EVYy@oixylx, Y1 A @xelx, Y] = Vx@lx, ] — ¢lx, ¥D)).
Thus, P A has definable Skolem functions.

Exercise 1.8.4 If T is a Skolem theory, show that for every formula ¢[x] there is
an open formula v[x] such that

T = Vx(e[x] < ¢[x]).

Exercise 1.8.5 Let T be a Skolem theory and M, N &= T. Show that M T N =
M < N.

Exercise 1.8.6 Show that the ring of integers Z has definable Skolem functions.
(Hint Use Lagrange’s theorem: Every nonnegative integer is a sum of squares of four
integers.)

1.9 Definability

Let M be an L-structure. A subset X C M" is called definable if there is an L ;-
formula [x] such that
X={aeM:ME pla]}.

The set X defined by ¢[x] will be denoted by (M ). Moreover, if ¢ is an L 4-formula,
A C M, we call X A-definable. Note that if X is A-definable, there is a finite B C A
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such that X is B-definable. We call f : M" — M™ A-definable, A C M, if its graph
is A-definable.

Example 1.9.1 The set of all nonnegative real numbers is an (-definable subset of
the field R. It is defined by the formula 3y (x = y?).

Example 1.9.2 For every a € M", the singleton {a} is definable. It is defined by the
Ly -formula A;_, (x; = a;).

Remark 1.9.3 Tt is important to note that the notion of definability is very much
dependent on the language. For instance, there are at most continuum many definable
subsets of the field R. Let X C R be not definable in the language of rings. Introduce
a new unary relation symbol p to the language of rings and interpret p® = X. Then
X is defined by the formula p[x] in the new language.

A family C of subsets of M", n > 1, is called a pointclass. Using the fact that the
set of all L-formulas is the smallest set of expressions containing all atomic formulas
and closed under —, v and 3, the reader can easily prove the following result.

Theorem 1.9.4 Let M be an L-structure. The pointclass of all definable sets in M
is the smallest pointclass D satisfying the following conditions:

1. If o[X] is an atomic formula, then the set
faeM: MEplal} €D.

2. If A,BC M"areinD, soare AU B and M" \ A.
3. IfAC M""isinD, so is its projection

T(A) = {@ € M" : 3a € M(@, a) € A)).
4. IfAC M"™ isin D andb € M", the section
Ay={aeM":(a,b)c A)eD.

Exercise 1.9.5 Show that the pointclass D of definable sets in M is closed under
finite unions, finite intersections and under substitutions by definable functions, i.e.
ifACM"isinD and fi,..., f, : M™ — M are definable, so is the set B C M™
defined by

aeB <& (fi@),..., fr(a)eA.

In particular, if A is definable, sois M x A.

Exercise 1.9.6 Show thatif A C M"*! is definable, so is its co-projection B C M"
defined by
aeB & VYaeM((a,a) € A).
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Exercise 1.9.7 Show that f = (fi,..., f;) : M¥ — M" is definable if and only if
each of f1, ..., f; is definable.

Exercise 1.9.8 Show that if f : M* — M’ and g : M' — M"™ are definable, so is
their composition g o f : M¥ — M™.

Exercise 1.9.9 Let D C R” be definable. Show that its closure D with respect to
the usual topology is definable in the language of ordered fields.

Exercise 1.9.10 Let K be a field and M,, ., (K) denote the set of all m x n matrices
over K. We identify M,,,, (K) with K™” in a canonical way. We shall follow usual
convention and write M,,(K) in place of M,,.,(K). Show the following:

1. The determinant function A — |A|, A € M, (K) is #-definable.
2. The set of all n x n non-singular matrices G L, (K) is #J-definable.
3. The matrix multiplication M,,y, (K) x M, x;(K) — M,,»;(K) is #-definable.

Exercise 1.9.11 If D is the pointclass of all definable sets in M, then show that
|D| < max{|L|, |M|}.

Example 1.9.12 Let F be a field and R = F[ X, ..., X,,] the ring of polynomials
over . We regard FF as the set of all polynomials of degree 0. Then F is an J-definable
subset of the ring R. It is defined by

xeFex=0viyx-y=1).

Example 1.9.13 If IF is a real closed field, then < on I is definable in the language
of rings. It is defined by

x<y&d(z#£#O0Ay=x+2z-2).

Example 1.9.14 1t was proved by Lagrange that every positive integer is a sum of
squares of four integers. (See [21, Chap. 17, Sect.7]). From this it follows that N is
an (-definable subset of the ring Z:

x € N 37132353324 (x = 27 + -+ - + 23).

Example 1.9.15 Let K be a field. A subset X of K” is defined by an atomic formula
if and only if it is the set of all zeros of a polynomial f € K[Xy, ..., X,].

Example 1.9.16 Itis known thatif K is an algebraically closed field of characteristic
0,thering R = K[X|, ..., X, ] of polynomials over K satisfies Fermat’s last theorem,
i.e. for every k > 2 whenever f, g, h € K[Xy,..., X, ], f, g, h all nonzero, fk +
¢* = h* implies that £, g, h € K [31, Chap. IV, Sect.7].

If K is an algebraically closed field of characteristic zero, K is a J-definable subset
of the field of rational functions K(Xy, ..., X,). For instance, it is defined by the
formula

Iyxd =14y
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Proposition 1.9.17 Let M be an L-structure, A C M and D C M" A-definable.
Then f(D) = D for every f € Auty(M).

Proof Let ¢[x,al,a € A, define D. For every b € M, we have

beD & M = plb,al
< M EelfO), f@)]
< M = plf(b),al
< f(b)e D

The second equivalence holds because f is an automorphism of M. The first and
the last equivalence holds because ¢[x, a] defines D whereas the third equivalence
holds because f € Auts(M). Our proof is complete. (]

For every finite sequence a of complex numbers, there is a real number r and a
complex number s not in R such that there is a field isomorphism f : C — Cfixinga
pointwise and mapping r to s: To see this consider the field extension F = Q(a). Note
that IF is countable. Take a real r transcendental over [F and a complex number s which
is not real and transcendental over IF. Then there is an isomorphism f : F(r) — F(s)
which fixes I pointwise and for which f(r) = s. Again note that F(r) and F(s) are
countable. Now take transcendence bases {b, : « < ¢} and {c, : @ < ¢} of C over
F(r) and F(s) respectively. Using standard arguments we can show that there is an
automorphism g of C such that g|F(r) = f and g(b,) = ¢, forall & < ¢. This g has
the desired properties.

This observation and Proposition 1.9.17 imply the following:

Example 1.9.18 The set of all real numbers R is not a definable subset of the field
of complex numbers C.

Let M be an L-structure, N © M definable, defined by an L j,-formula, say ¢[x].
For L y-formulas 1) we define its relativisation to N, denoted 1", by induction on
[1)] as follows: if 1) is atomic, 1" is 1),

=N = -V, @ v =N vyt

and
Ay)N =y (plyl A M),

Proposition 1.9.19 For every Ly-formula )[x] and every b € N,
N = lb] & M = ¢V [b].

Proof We prove the result by induction on the rank of . The result is clearly true
for atomic ¢ and it is true for = (¢ Vv 1) if it is true for ) (respectively for ¢ and

). B
Now suppose the result is true for 1/[x, X]. Set n[x] = Ixv. Take any b € N.
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Suppose M = n™[b]. Then there is a b € M such that M |= ¢[b] as well as
M =¥V [b, b]. Since ¢ defines N, b € N. By induction hypothesis, N = [b, b].
Thus, N = n[b].

Now assume that 5 € N and N k= 7[b]. So, there is a b € N such that N =
w[b,E]. By induction hypothesis, M = wN[b,Z]. Since ¢ defines N, M = [b].
This proves that M = " [b]. O

Remark 1.9.20 In a remarkable result Julia Robinson proved that N is a ()-definable
subset of the ordered field Q. This very interesting result is remarkable for many
reasons. First Julia Robinson had to prove a deep result in diophantine number
theory to produce a formula &[x] in the language of rings with identity such that
for a rational number q, Q = &[q] if and only if ¢ is a natural number. This result
also implies that the field Q is undecidable [13, 52]. Note that if the signature of
L is finite and N © M definable, then there is an algorithm to compute the function
Y — ¥V defined above. This implies that if M is decidable, then N is decidable.
Equivalently, if N is undecidable, then so is M. The famous first incompleteness
theorem of Godel states that N is undecidable [59, Theorem 7.2.1]. Undecidability
of Q follows now. We remark that Tarski showed that R as an ordered field and C as
a field are decidable [62].

1.10 Definable and Algebraic Closures

Let M be an L-structure and A C M. Elements of the orbit of b € M under the action
of Auts (M), the pointwise stabiliser of A, are called conjugates of b over A.

Anelementa € M is algebraically definable over A if its orbit under the action of
Auty (M) is asingleton, namely {a}. This is the same as saying that any automorphism
of M that fixes A pointwise, fixes a. We set

DCL(A) = {a € M : a algebraically definable over A}

and call it the definable closure of A in algebraic sense. A set A C M is called
definably closed in algebraic sense if DCL(A) = A. Elements of DC L(#) will be
called definable elements of M in algebraic sense.

The following statements are easy to prove.

A C DCL(A).

A CB= DCL(A) C DCL(B).
DCL(DCL(A)) = DCL(A)

B C DCL(A) = DCL(B) C DCL(A).
DCL(A) is a substructure of M containing A.

Dbk e =

(3) follows from the fact that Auts (M) C Autg(M), where B = DCL(A).
For every constant symbol ¢, c¥ € DCL(#)(C DCL(A)) because o(cM) = cM
for every endomorphism o of M. Let f be an n-ary function symbol and a €
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DCL(A). Then for every o € Auty(M),
o(fM@) = M@ = "@.

Hence, DCL(A)isclosedunder f* forevery function symbol f. These observations
imply that DCL(A) is canonically a substructure of M containing A.)

An element a € M is algebraic over A in algebraic sense if it has only finitely
many conjugates over A, i.e. the orbit of a under the action of Aut, (M) is finite. We
set

ACL(A) = {a € M : a algebraic in algebraic sense over A}

and call it the algebraic closure of A in algebraic sense. A set A C M 1is called
algebraically closed in algebraic sense it ACL(A) = A. Also elements in AC L(¥)
are called algebraic elements of M in algebraic sense. We have

1. AC DCL(A) C ACL(A).
2. AC B= ACL(A) C ACL(B).

An L 4-formula ¢[x] will be called a definitional formula it M = 3_1xp[x]. An
element a € M is definable over A if {a} is A-definable, i.e. there is a definitional
L s-formula p[x] such that M = p[a]. We set

dcl(A) = {a € M : a definable over A}

and call it the definitional closure of A. A set A C M is called definably closed it
dcl(A) = A. Elements of dcl(¥) are called definable elements of M.

Proposition 1.10.1 For every A, B C M,

(i) AC B =dcl(A) Cdcl(B).
(ii) A Cdcl(A) C DCL(A)
(iii) dcl(dcl(A)) = dcl(A).
(iv) dcl(A) is a substructure of M containing A.

Proof (i) is entirely trivial.

For any a € A, the L -formula x = a witnesses that a € dc/(A). Take any a €
dcl(A). So, there exists a definitional L 4-formula ¢[x] such that M = ¢[a]. Now
take any o € Auty(M). Then M = p[o(a)]. These two facts imply that o(a) = a.
Thus, (ii) is proved.

Since A C dcl(A),dcl(A) C dcl(dcl(A)). Now take any a € dcl(dcl(A)). Then
there exists an L-formula ¢[x, y] and a b € dcl(A) such that

M = pla, bl A 3_ixlx, bl.
There exists an a € A and for each i, an L-formula ¢;[y;, z] such that

M = pilb;,al A A_1yiilyi, al.
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Take
Ylx, z1 = Iy (plx, Y1 A Aiwilyis Z1)-

Then
M = Yla, al A I xy[x, al.

This shows that dcl(dcl(A)) C dcl(A).

The formula x = ¢ witnesses that ¢ € dcI(A), ¢ a constant symbol. Now let
ai,...,a, €dcl(A) and f a n-ary function symbol. Suppose ¢;[yi1], ..., ©n[Val
are L 4-formulas witnessing ay, ..., a, € dcl(A), respectively. Then the formula

Fynigilyil Ax = fyr...yn)

witnesses that f™ (ay, ..., a,) € dcl(A). Now it is easy to see dcl(A) is a substruc-
ture of M containing A. (]

An L 4-formula o[x] is called algebraic if there exists a positive integer n such that
M E= 3, xp[x].

The integer n is called the degree of ¢ and is denoted by deg(¢). If no such n exist, ¢
is called non-algebraic. Anelementa € M is algebraic over A if there is an algebraic
L 4-formula ¢[x] such that M = ¢la].
We set
acl(A) = {a € M : a algebraic over A}

and call it the algebraic closure of A. Note that
lacl(A)| < max{|L]|, |A[}.

A set A C M is called algebraically closed if acl(A) = A. Elements of acl({}) are
called algebraic elements of M.
The following result is easily seen.

Proposition 1.10.2 For A, B C M,

(i) AC B = acl(A) C acl(B).
(ii) Ifa € acl(A), there is a finite Ay C A such that a € acl(Ay).
(iii) A C dcl(A) C acl(A) C ACL(A). In particular, every b € acl(A) has only
finitely many conjugates over A.
(iv) acl(acl(A)) = acl(A).
(v) B Cacl(A) = acl(B) C acl(A).
(vi) acl(A) is a substructure of M.
(vii) Let A C M and N an elementary extension of M. Then the algebraic closure of
Ain N equals the algebraic closure of A in M. In particular, M is algebraically
closedin N.
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Proof (i) and (ii) are entirely trivial. _
Leta € acl(A). Get an L-formula ¢[x, y],ann > 1 and b € A such that

M = ¢la, b] A, x¢[x, b].

Let aj, ..., a, be all the elements a’ € M such that M = o[a’, b]. For every o €
Aut (M), ~
M = plo(a), o(D)],

i.e. B
M = plo(a), b].

Butthen o(a) = a; forsome 1 <i < n.Thus,a € ACL(A). (iii) is easily seen now.
Nextleta € acl(acl(A)). Get an L-formula p[x, y] and a@ € acl(A) such that for
some positive integer k,

M = pla,al A _kxplx, al.

Letb € A be such that for each ¢; € @, there is an L-formula wilyi, z] and a positive
integer k; such that 3 3
M = pila;, bl A 3, yipilyi, b].

Then the L 4-formula
Ylx, b] = Iy(plx, Y1 A Ioexplx, V1A Aipilyi, b1 A A3k, yipilyi, b1)

witnesses that a € acl(A). (iv) follows. (v) is easily seen.
If f is an n-ary function symbol and ay, ..., a, € acl(A), then the formula x =
f(ay, ..., a,) witnesses that

My, ... a,) €dcl(ay, ..., a,) C acl(acl(A)) = acl(A).

(vi) is easily seen now.
(vii) Let ¢[x] be an L 4-formula. Then for every n > 1,

M =3 ,xp[x] & N =3, xp[x].

Hence, any a € N such that N |= ¢[a] must belong to M. (]

Exercise 1.10.3 Let L and L' be first-order languages, M an L-structure and N an
L'-structure. We say that N is interpretable in M if there is an L'-structure N’ C M*
for some k > 1 such that

(1) N’ is definable,
(i) N’ is isomorphic to N and
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(iii) the interpretations of L’-symbols in N’ are definable in M.

1. Show the group G L, (K) of non-singular n x n matrices over K is interpretable
in the field K.

2. Show that the groups O(n) and SO (n) are interpretable in the field R of real
numbers.

3. Show that the groups U (n) and SU (n) are interpretable in the field C of complex
numbers.

1.11 Many-Sorted Logic and Imaginary Elements

In mathematics, one builds various structures from a given structure or one simul-
taneously considers several structures. For instance, one simultaneously considers
the quotients of a structure, orbit spaces of group actions or varieties over a field,
etc. Thus, one has structures of many sorts and functions and relations on their prod-
ucts. Traditional model theory that we have described so far is a special case of
many-sorted model theory having only one sort.

We now briefly describe the formal system of many-sorted logic. Many of the
argument of one-sorted logic can easily be seen to hold in the many-sorted case also.

A many-sorted language consists of

(%) anon-empty set S of sorts,
(%) for each sort s, a set of constant symbols, generically denoted by c;, of sort s,

(x) for each finite sequence s = (s1, ..., s,) of sorts, a set Ry of relation symbols
of sort 5, and
() for each finite sequences = (sy, ..., s,) of sorts and a sort s, a set F5, of function

symbols of sort 5.
Besides these, the language also has

() for each sort s, a sequence of variables x°, x!, ..,
(%) for each sort s, a binary equality symbol =;, and
(%) =, Vv,3,,5€8.

We shall often drop sort suffixes on variables, quantifiers and equality symbols.
This will cause no confusion.

The set of terms of sort s, s € S, is the smallest collection of expressions that
contains each variable and each constant symbol of sort s and expressions of the
form f(#,...,t,—1), where f is a function symbol of sort (sg, ..., s,—1,s) and
to, ..., t,—1 are terms of sorts sy, .. ., s, respectively.

Atomic formulas are expressions #; =, f,, where ?|, t, are terms of sort s and
R(#,...,t,), where R is a relation symbol of sort (sq, ..., s,) and #, ..., , terms
of sorts sy, ..., s,, respectively. We build up L-formulas ¢[xo, ..., x,—;] with vari-
ables xg, ..., x,—; of sorts sp, ..., s,—; respectively from atomic formulas using
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connectives and quantifiers in the usual way. In particular, if ©[xg, ..., x,—1] is a
formula and x; is a variable of sort s;, then 3, x; ©[xo, . .., x,—1] is a formula.
If L is a many-sorted language, an L-structure M consists of

(%) for each sort s, a non-empty set s(M),
(%) for each constant symbol ¢, of sort s, an element ¢ € s(M),

(%) for each relation symbol R of sort (si,...,s,), a set RM C s;(M) x --- x
s, (M), and
(x) for each function symbol f of sort (si,...,s,,s), a function fM s1(M) x

e X S (M) — s(M).

If x is a variable of sort s, sometimes one writes M, for s(M) and calls it the
universe of sort x or simply the universe of x. We define the truth of a formula in M
in the usual way.

Let M and \V be L-structures. A homomorphism / : M — A consists of maps
s(h) : s(M) = s(N), s € S, satisfying

(x) for each constant ¢ of sort s, i(c¥) = ¢V,
(x) foreachrelation symbol R of sort (sy, ..., s,)and (ai,...,a,) € s;(M) x --- X
sn(M),
M= Ry, ...,a,) = N = R (h(a)), ..., ha,)),

and
(x) for each function symbol f of sort (sy,...,s,,s) and (aj,...,a,) € s;(M) x
- X Sn(M)’

h(fM(ay, ... a0) = fN(h(ar), ..., hiay)).

Definitions of embedding, elementary embedding, isomorphism, substructure,
elementary substructure, etc., should be clear to the reader now. Most of the results
proved so far (and many to be proved later) for one-sorted logic will easily generalise
to many-sorted cases.

Many-sorted language is a useful device to treat equivalence classes as elements
of a structure of a many-sorted language. It is also used to code definable sets by an
element of a multisorted structure.

To demonstrate these, let us fix an L-theory T. Let ¢[x, y] be an L-formula,
|x| = |y| = n, such that

T = “¢[x,y]is an equivalence relation.”
Such a ¢ will be called an equivalence formula in T . For each equivalence formula

@ in T, we introduce a sort S,,. These sorts include a sort S— corresponding to the
formula x = y, x, y of length 1.
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The many-sorted language L? (which depends on T also) has S, ¢ an equiva-
lence formula in 7', as sorts. For each equivalence formula ¢ in T as above, L¢/ has
a function symbol f, of sort (S_, ..., S=, S,).

—

n times
The theory 7% has language L°? and following axioms:.

(x) T.
(*) For each equivalence formula ¢ in T,

elxy, X, Yol & folxn, oo, x0) = fo(01, -0, V)
(*) For each equivalence formula ¢ in T,
Vy of sort S,3x1, ..., x, of sort S_(y =s, Soxt, oo xp)).

Let M = T. Then we get a model M¢? of T°? canonically:

(k) S—(M*¢) =M.

(+) For each equivalence formula ¢[x, y]in 7 with [X| = || = n, S¥" = M"/E,,
where E,, is the equivalence relation on M" defined by . In this case we interpret
[, by the quotient map [ : M" — M"/E,,.

Thus, an equivalence class of a (J-definable equivalence relation on M" now has
become an element of M¢?. For this reason elements of M7 are called imaginary ele-
ments. The concept of imaginary elements was introduced by Shelah in [54, Sect. 3.6]
as a means to consider imaginary elements such as equivalence classes as genuine
elements.

Each definable set in M* has a natural code in M*?: Let [x, ¥] be an L-formula,
aeM,|x| =kand |a| =nand X = p[M,a] C M*. Now consider the formula

01y, y21 = Vx(p[x, ¥(] < o[X, ¥,]).

Clearly 6 is an equivalence formula in 7. Let a/Ey € Sy(M°?) be the equivalence
class containing a@. Then a/Ejy is the unique point such that X = ¢'[M*?,a/Ey],
where

Y'Ix, y1 =3F3(fs3) =y A @IX, FD.

Here variables in X and y are of sort S_ and variable y is of sort Sy.

This code is clearly not unique because it depends on the formula that defines X.
But each code is definable in terms of any other code: Let ¥[x, b] be another formula
defining X,

0'[z1, 221 = VX (YIX, 71] < ¢I[*, 22]),

and

Y'Ix, 2] = Fz(fy @) = z A YL, 2D).
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Then the formula
Elz,a/Egl = VX (¢'[X, a/Egl < Y'[X, z])

defines b/Ey.

1.12 Elimination of Imaginaries

Let M be an L-structure and ¢[X, ¥] an L-formula. If
{@,b) e M" x M" : M |= yla, b]}

is an equivalence relation on M", we say that “@[x, V] is an equivalence formula on
M.” Further, each equivalence class a/E,, a € M", is called an imaginary element
of M.

We say that M has elimination of imaginaries if for every equivalence formula
w[x,y] on M and each @ € M", there is an L-formula v[x, 7] and a unique beM
suchthata/E, = y[M, b]. The notion of elimination of imaginaries was introduced
by Poizat in [50].

In terms of M9, this is equivalently defined as follows.

Proposition 1.12.1 An L-structure M has elimination of imaginaries if and only if
for every equivalence formula 0[x, y] on M and everya € M, thereisab € M such
thata/Egy € dcl(b) and b € dcl(a/Eyp).

Proof Suppose M has elimination of imaginaries, 6[X, y] an equivalence formula on

M anda € M;Since M has elimination of ima_ginaries, there is an L-formula ¢[X, 7]
and a unique b € M such thata/Ey = @[M, b]. Now consider the L¢7-formula

Y[z,Z] = VX (fi(x) = z < ¢, Z]),

where variable z is of sort Sy. Then a/ Ey is the unique imaginary c such that M¢? =
Ylc, b]. This implies that @/Ey € dcl(b). Also, b is the unique d € M such that
M® \=[a/Ey, d]. So, b € dcl(@/Ey).

We now prove if part of the result. Let @, beM, f[x, y] an equivalence formula
on M and [z, 7] and [z, 7] be L¢-formulas with z of sort Sy such that a/Ey
is the unique imaginary ¢ satisfying M¢ = +[c, b] and b the unique d € M with
M® \=/[a/Ey, d]. Set

elx, 21 = YLfo(0), Z A Y[ fo(X), 2.

Then b is the unique d such that a/Ey = p[M, d]. O

Some authors define elimination of imaginaries in term of M¢/. However, we
shall not take this approach.
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If we can choose ¥ independent of @ also, then we say that M admits uniform
elimination of imaginaries. Thus, we say that M admits uniform elimination of imag-
inaries if for every equivalence formula ¢[x, y] on M, there is an L-formula ¢[x, 7],
|X] = n and |Z| = m, such that

M = Vy3_1zVx(plx, y] < ¥Ix, zD).

In this case, there is a J-definable fu_nction F : M" — M™ such that a, b e M" are
equivalent if and only if F(a) = F(b). We can take F to be defined by the formula

01y, z] = Vx(¢lx, y] < ¢[x, Z]).

Also, note that the converse is true, i.e. if for every equivalence formula ¢[x, y] on
M, there is a J-definable function F : M" — M™ suchthata, b € M" are equivalent
if and only if F (@) = F (b), then M admits uniform elimination of imaginaries. For
L-formula x[x, 7] defined by

z=F(x),

we have
M | Vy3_zvx(¢lx, y]1 < xI[x, zD).

A theory T has elimination of imaginaries if each of its models has elimination
of imaginaries.
Proposition 1.12.2 Let T be an L-theory. The following statements are equivalent.

1. T has elimination of imaginaries.
2. Forevery M = T andforeverydefinable X C M", there is an L-formula y)[x, 7]
and a unique a € M such that X = ¢Y[M, a].

Proof Clearly (2) implies (1). Assuming (1) we prove (2). Let M =T, ¢[x, y] be
an L-formula with |y| = m,a € M™ and X = ¢[M, a]. Consider

00y, ¥.1 = VX (¢[x, ¥i] < ¢[x, y,D).
Then @ is an equivalence formula on M. By (1) there is an L-formula +/'[y,, Z] and

aunique b € M such thata/0 = '[M, b].
Now consider the L-formula

YIx. 21 =Yy, ([, 2] < ox, 31D

Then b € M is the unique tuple such that X = )[M, b). (|

An L-structure M is called uniformly 1-eliminable if for every L-formula ¢[x, y]
there is an L-formula v[x, Z] such that

M = Vy3a_ ZVx(plx, V] < ¥[x, Z]).
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Theorem 1.12.3 If an L-structure M has definable Skolem functions and is uni-
formly 1-eliminable, then M has uniform elimination of imaginaries.

Proof Take an equivalence L-formula ¢[X, y] on M. We shall show that there is a
#-definable function F = (F}, ..., F,) : M" — M" such that

1. Va € M"M = ¢[F(a), a], and
2. Va,a' € M"(M = pla,a’l = F@) = F(d)).

We shall define Fi, ..., F, inductively. To define Fj, consider
e1lx1, y1 = 3x; ... Ix,0[x, V1.
By uniform 1-elimination, there exists an L-formula v;[x;, z] such that
M = Vy3_i1zVxi(p1lxr, Y1 < Y1lx, 2D).

Since M has definable Skolem functions, corresponding to 1, there is a formula
&1[x1, 7] such that

M =VZ@Eoixi&ilx, 2 A @xhilxr, 71 = Yxalx, 7 = ilx, ).
Thus, we have a function F;(y) defined by
x1 = Fi(3) < FTz(Vx(p1lx, ¥] < ¥ilx, 2D A &ilx, 2D

Note that
M E o[y, Y11= Fi(y) = ().

Assume Fi, ..., F;_; have been defined. Consider the formula

Gilxi, y1 = Axiq1, .. A0 F1(D)s oo Fi (0), Xy Xipts -+ -0 X0, V1

Now by uniform I-elimination, get v;[x;, z] corresponding to ¢; and then, using
definable Skolem functions on v); get &;[x;, z] as above. This gives us an J-definable
function F;(y) as above. [l

Now let 7" be an L-theory. An L-formula ¢[x, y] is called an equivalence formula
(in T) if
T = “p is an equivalence relation”,

i.e.itis an equivalence formula on each model M of T'. The theory T is said to admit

elimination of imaginaries if for every equivalence formula ¢[X, y], there exists a
formula 1 [x, Z] such that

T = Vy3-12Vx(plx, y] < ¥[x, zD.
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In this case, every model of 7" has uniform elimination of imaginaries.
Example 1.12.4 Peano arithmetic (P A) has uniform elimination of imaginaries.

More examples will be given later.

An L-structure M is said to have semi-uniform elimination of imaginaries if
for every equivalence formula ¢[X, y] in M, there is a finite sequence of formulas
{pilx,Z] : i < m} such that

M = Vy3d_ii < m3_1ZVX(p[X, Y] < @i, Z]).

Proposition 1.12.5 Let M be an L-structure and there exist variable free termst, s
suchthat M =t # s. Then if M has semi-uniform elimination of imaginaries, it has
uniform elimination of imaginaries.

Proof Let ¢[x,y] and {¢;[x, Z] : i < m} be as in the definition above. Define
WYX, Z, wo, vy Win—1] = Viem (0i[X, ZI A (Wi = 8) AN jzi(w) = 1)).
Then
M =VYy3_iz, wy, ..., wyu— VX (@[x, V] < ¥[X,Z, wo, - - ., Wiy—1]).

O

A theory T has semi-uniform elimination of imaginaries if for every equivalence
formula ¢[x, y], there is a finite sequence of formulas {¢;[X, z] : i < m} such that

T = Vy3d—ii < m3_iZVx(p[X, y] < @ilX, Z]).

Remark 1.12.6 1If there exist two variable free terms ¢, s suchthat T =t # sand T
has semi-uniform elimination of imaginaries, then 7 has elimination of imaginaries.

Exercise 1.12.7 Let M, N = T be isomorphic. Show that M¢? and N“? are isomor-
phic models of 7.

Exercise 1.12.8 Let T be a first-order theory and M = T°?. Show that there is a
model M of T such that M = M*“9.



Chapter 2
Basic Introductory Results

Abstract The goal of this chapter is to present basic introductory techniques of
model theory. The main results presented are f.o§ fundamental lemma on ultra-
product of structures, compactness theorem and quantifier elimination. These are
cornerstones of model theory. A large number of applications given in this chapter
bear testimony to the importance of these results. We also introduce the notion of
independence and dimension in minimal sets. Finally we give several applications
of the results proved in this section in algebra and geometry. A large number of
examples and exercises are given as we go along.

2.1 Ultraproduct of Structures

In this section, we introduce ultraproduct of models. It is a notion of the product of
structures and a basic technique of constructing new models from old ones. It made
its first appearance in Skolem [57]. The fundamental lemma was proved by .o in
[36]. Since then ultraproduct has become a basic tool in model theory.

Let L be a first-order language and F a filter on a non-empty set /. Suppose for
each i € I we are given an L-structure M; of L. Set

M = x;c M;.
For «, B € M, define
a~Bsfiel  al)=p>G0)}eF.
Since I € F, ~ is reflexive. Clearly, it is symmetric. Since F is closed under finite
intersections and supersets, ~ is transitive. Thus, ~ is an equivalence relation on

X;M;. For « € M, [«] will denote the ~-equivalence class containing «. We set

MF)=M/~ ={la]:aec M}.
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We interpret the nonlogical symbols of L as follows:

M(F) _

1. If ¢ is a constant symbol, ¢ [ee], where (i) = ¢Mi, i e 1.

2. If p is an n-ary relation symbol,
PPl e & i€ 1 pMien @, .. ()} € F.
3. If f is an n-ary function symbol, we define

Bl = M (e, ..., [en]),

where

BGi) = fM (@ (0). ... an(i), i €1.
We need to show that p”) and fM) are well defined. Suppose o; ~ B;,
1 < j < n. Since F is closed under finite intersections, there is an X € F such that
a;(i) = p;@) forall 1 < j <nandalli € X. This implies the well-definedness of
pM) and M),
Proposition 2.1.1 For every term t[x] and every o, ..., 1, B € M,

M Naol, .. a1l = (Bl & {i € Tt [ag(i), ..., au_1(0)] = B(i)} € F.

Proof The result is proved easily by induction on the length of 7. The details are left
for the reader as an easy exercise. (]

Proposition 2.1.2 For every atomic formula ¢[x] and every @ € M,
MF) E ollaol, ..., lanll < {i € I M; | plao(), ..., a1 (D]} € F. (%)
Proof Let t[x], s[x] be terms and «y, ..., o,—1 € M. Define
BGi) = tMag(i), ... ap1 (D], i €1

and
vy (@) = sMaoi), ..., o1 ()], i € 1.

By the last Proposition 2.1.1,
M [aol. ..., [ = [B]

and
sMPlaol, . . ., [ai11] = [¥].

Thus, () holds for #[x] = s[x] and gy, ..., ;1.
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Let ¢[x] be an atomic formula p[#[X], ..., t,,[X]] and every «g, ..., 0,1 € M.
Set
Bi) =1}"ao(@). ..., D] i €L 1< j<m.
Then

MF) = plt!" P (a0l .. (i), - P ([ap], - -+, [an1 )]
& M(F) E pliil, ..., [Bulll
sliel M = p[th' [og (D), .o oty (D)], ..., t,’,‘ff[ao(i), Lo (D] e F

The first equivalence holds by the last Proposition 2.1.1 and the last equivalence
holds by definition. O

In a fundamental contribution to model theory £.os showed that () holds for every
formula if F is an ultrafilter on /.

Theorem 2.1.3 (Lo$ Fundamental Lemma) Let U be an ultrafilter on I, ¢[x] an
L-formula and [ap], . . ., [au—1] € MU). Then

MU) = ollaol, - .., a1l S {i el : M = elag(@), ..., a—10)]} €U.
(%)

Proof For atomic ¢, (xx) follows from the last Proposition 2.1.2. Suppose ¢ satisfies
(*x) and  is the formula —¢. Take [«g], ..., [@n—1] € M(U). Then

MU) = Yllaol, ..., [an1]l < MU) = ellaol, ..., [en-1]]
c{iel: M Eola)]} ¢U
sliel: M Eyla@d]} €U,

wherea (i) = (ag(i), ..., a,—1(i)). The second equivalence holds because ¢ satisfies
() whereas the third equivalence holds because I/ is an ultrafilter. Similarly we show
that if ¢ and 1 satisfy (), so does ¢ V .

Now assume that () holds for {[xo, x1, ..., x,], n > 0 and all («, ..., a,) €
Mt Consider ¢ = Axpy. Take any oy, ..., o, € M such that

MU) E ellail, ..., [an]l.

Then there exists [ag] € M (U) such that

MU) = Yllaol, - .. [oa]].

By our hypothesis,
{iel: M Eylal),...,an()]} €U.

This clearly implies that
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{iel: M =ola(),...,a,@)]} €U.
To prove the converse, assume that the set
U={iel : M Eopla(@),...,0,(0)]} €U.
So, for each i € U there exists an (i) € M; such that

M; = Yloao(), ..., an(@)].

Take any extension «g of i — (i), € U, to I. Then by our assumption

MU) = Yllaol, - .., [on]].

Thus,
MWU) = ollail, ..., [o,]].

The result is thus seen by induction on the rank of ¢. O

If U is an ultrafilter on I, the structure M (If) is called the ultraproduct of M;’s.
If each M; = M, it is denoted by M¥ and is called an ultrapower of M.

Let{M; :i € I} and {N; : i € I} be families of sets and I/ an ultrafilter on /. Let
gi, hi : M; — N;,i € I, be arbitrary maps. Define

{giziell~ythi:iells{iel: g =h}el.

It is easy to see that ~, is an equivalence relation.
Fix {gi:iel}~yfhi:iel} and @ = (a;) ~ (a)) =a’. Then (g;(a;)) ~
(hi(a})). Hence, we have a well-defined map

(T 9" ([(a)]) = [(gi(ai)].

We make a series of simple observations whose proofs are left to the reader as a
simple exercise.

1. If {i € I : g; is onto} € U, then (IT;g;) is onto.
2. If {i € I : g; is one-to-one} € U, then (l'I,-g,-)“ is one-to-one.

Next assume that each M; and each N;, i € I, are L-structures.

3. If {i € I : g; is ahomomorphism} € U, then (Higi)” is a homomorphism. It
follows thatif {i € I : g; is an embedding (isomorphism)} € U, then (I1; gi)“ is
an embedding (isomorphism).

4. Using LoS$ theorem (Theorem 2.1.3), it is easy to see that if {i € [ : g; is

elementary} € I/, then (IT;g;)" is elementary.

Corollary 2.1.4 Let T be an L-theory and {M; : i € I} a family of models of T.
Then for every ultrafilter U on I, the ultraproduct M () is a model of T
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Remark 2.1.5 Ultraproduct gives a new notion of product in the category of models
of T; in particular, in any category of algebraic structures such as groups, rings,
fields, etc. Further, by choosing the ultrafilter ¢/ suitably, one gets a model M (i)
with some desired properties.

Since M () isinasense alimitof {M; : i € I}, in general, no reasonable converse
of the corollary exists. However, if 7 has only finitely many axioms, a converse of
the corollary is true.

Proposition 2.1.6 Let {M; : i € I} be a family of L-structures and U an ultrafilter
on I. Suppose an L-theory T has finitely many axioms only and M(U) = T. Then
{iel:M ET}el.

Proof Let ¢y, ..., ¢, be all the axioms of T. Since M(U) =T, foreach 1 <k <n,
theset Ay ={iel: M; =@} €U.Then A = Nj<x<,Ax € U and foreveryi € A,
M; =T. O

Corollary 2.1.7 Let {K; : i € I} be a family of rings, U an ultrafilter on I and
p > 0a prime. Then the ultraproduct K(U{) is a field of characteristic p if and only
if{i € I : K is a field of characteristic p} is in U.

Example 2.1.8 For each prime p > 0, let K, be a field of characteristic p and U
a free ultrafilter on the set of all primes. Then the ultraproduct K(I{) is a field of
characteristic 0. To see this, let P denote the set of all primes. Fix a prime p. Since U
isfree,{g € P :q > p} € U.Since K, |= p # Oforeveryqg > p,char(K(U)) # p
by Lo$ Theorem 2.1.3. Our claim follows.

Proposition 2.1.9 A class C of L-structures is elementary if and only if C is closed
under elementary equivalences and ultraproducts.

Proof The only if part is clear from £.o$ theorem (Theorem 2.1.3). So, assume that C
is closed under elementary equivalences and ultraproducts and 7 = T h(C). We now
show that C is precisely the class of all models of 7'. Clearly, it M e C, M = T.

Now assume that M = T'. Let I denote the set of all non-empty finite subsets of
Th(M). Note that for each i € I there is a M; € C such that M; = Ai. If not, then
—(Ai) € T. But then both Ai and —(Ai) are true in M which is a contradiction. For
each sentence ¢ € Th(M), set

A, ={iel:pci}

Given ¢q, ..., ¢,
{(pl, ey (0/(} S /\I;zlij.

This implies that there is an ultrafilter ¢/ containing each A,, ¢ € Th(M). Set

N = XiGIMi/u-
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By our hypothesis N € C. Our proof will be complete if we show that M is elemen-
tarily equivalent to N. But for any ¢ € Th(M),

A, Cliel: M = o).

Thus, Th(M) C Th(N). This implies that these two sets are equal, i.e. M and N are
elementarily equivalent. O

This result can be easily used to show that various classes of structures are
not elementary. To illustrate this let L have no nonlogical symbol. So any
non-empty set is an L-structure. Let C be the class of all finite sets. For k > 0,
let X = {0, ...,k — 1}. Take any free ultrafilter I/ on the set of all positive inte-
gers. Now consider X = x; Xy /U. For any positive integer m, let o, € X X be a
sequence which is eventually m. Then for m # n, [a,,] # [®,]. Thus, X is infinite.
Hence, C is not closed under ultraproducts. So, C is not elementary.

We saw earlier that the class of all fields of positive characteristic is not closed
under ultraproducts. Hence, the class of all fields of positive characteristic is not
elementary.

Exercise 2.1.10 Let I/ be an ultrafilter on / with NI/ = {j}. Suppose {M; : i € I}
is a family of L-structures. Show that M ({/) is isomorphic to M.

Exercise 2.1.11 Let M be an L-structure and ¢/ an ultrafilter on /. Define the inclu-
sionmap j : M — MY by
J&x) =lex],x € M,

where ¢, : I — M isthe constant map ¢, (i) = x,i € I.Show that j is an elementary
embedding.

2.2 Compactness Theorem

In this section, we prove the compactness theorem for first-order theories. Because
of its great importance, we also give several variants of this theorem. This was
first proved for countable theories by Godel in [15]. For general theories, it was
independently proved by Mal’tsev in [39, 40] and by Henkin in [18].

Theorem 2.2.1 (Compactness theorem) An L-theory T has a model if and only if
each finite T' C T has a model.

Proof If part: Foreach finitei C T, let M; be amodelofi.Set/ = {i : i C T finite}.
For each sentence ¢, set

B,={iel:peci}.

Let o1,...,0, €T. {@1,...,90,) €N_ By Thus, the family {B, : ¢ € T} has
finite intersection property. Hence, it is contained in an ultrafilter /.
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We claim that M(U{) =T. Let ¢ € T. Then for every i € B,, M; |= ¢. Hence,
by Lo§ theorem, M () = ¢.

The only if part is entirely trivial. This completes the proof of the compactness
theorem. (]

We give an alternative proof of compactness theorem. This is essentially the
semantic version of the syntactical proof given originally. This proof gives yet another
technique of building models which will be used later also.

Let T be a finitely satisfiable set of L-sentences. The following observation is
trivially seen.

Fact. For any L-sentence ¢, at least one of T U {¢} and T U {—¢} is finitely
satisfiable.

A finitely satisfiable set 7' of L-sentences will be called complete if for every
sentence ¢, ¢ or —y is in 7. Using Zorn’s lemma, it is immediately seen that.

Theorem 2.2.2 (Lindenbaum Theorem) Every finitely satisfiable set of L-sentences
is contained in a complete set of finitely satisfiable L-sentences.

We leave the detail for the reader as a simple exercise.

A set of finitely satisfiable L-sentences 7' will be called Henkin if whenever a
closed sentence of the form dx¢ € T, there is a constant symbol ¢ such that ¢, [c] €
T. Note that if T is complete and finitely satisfiable, then the sentence Ix(x = x) €
T. Otherwise, —=3x(x = x) € T, contradicting that T is finitely satisfiable. This, in
particular, implies that L has constant symbols.

The main idea of the proof is the following.

Theorem 2.2.3 Every complete, Henkin set of finitely satisfiable L-sentences T has
a model.

Proof Let M’ denote the set of all variable-free L-terms. By the above remark,
M’ # (. 1f t and s are variable-free terms, define

t~sift=seT.

Using finite satisfiability and completeness of T, it can be easily proved that ~ is an
equivalence relation on M’. For instance, if #{, 1», t3 are variable-free L-terms and
t) ~ t; and t, ~ t3 hold, then #; ~ 73 must hold. For otherwise, by completeness of
T,y =t,th = 3,11 # t3 € T. This contradicts the finite satisfiability of 7.

Let M = M’/ ~, the set of all ~-equivalence classes. For any variable-free term 7,
let [#] denote the equivalence class containing 7. For any constant symbol c, take c™ =
[c]. Let f be a n-ary function symbol, R a n-ary relation symbol and [#(], . .., [#,] €
M. Define

MAn), ) =t )]
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and
RM™([t1,...,[t.]) © RIt1, ..., t,] € T.

Using completeness and finite satisfiability of 7 it is easy to see that these are well
defined. Thus, we have defined an L-structure M.
By induction on the rank of ¢, we now show that for every L, -sentence ¢,

MEp&sopcT. ()

() is true for all atomic ¢ by the definition of M. Suppose (x) holds for ¢ and
Y = —¢. Then
MEyoMEepsSepe¢eT Sy eT.

The second equivalence holds by the induction hypothesis and the third equivalence
holds because T is complete.

Next, we assume that () holds for ¢ and ¥ and € = ¢ Vv . Suppose M = &. Then
M = ¢ or M = . Without any loss of generality, assume that M |= ¢. Then by
induction hypothesis, ¢ € T. Hence, by the completeness of 7', £ € T. Conversely,
let £ € T. Then by the completeness of 7, ¢ € T or ¥ € T. Hence, by induction
hypothesis, M = ¢ or M = . In either case, M = &.

Finally, let () holds for all L ;-sentences of length less than the length of Ix¢[x]
which is assumed to be closed. Suppose M |= Jx¢. Then there exists [¢] € M such
that M = ¢[[¢]]. So, by induction hypothesis, ¢[[¢]] € T. Hence, by completeness of
T,3xp[x] € T.Now assume that Ix¢[x] € T. Since T is Henkin, there is a constant
csuchthat ¢, [c] € T. So, by induction hypothesis, M = ¢,[c]. Thus, M = Ixp[x].

(]

The model of T obtained in the last proposition is called the canonical model of
T. To complete the proof of compactness theorem, we need one more result.

Proposition 2.2.4 Let T be a finitely satisfiable set of L-sentences. Then there is
an extension Ly, of L obtained by adding new constant symbols only and a finitely
satisfiable, Henkin set of Lo-sentences Too that contains T.

Proof Set Ly =L and Ty = T. Suppose L, and a finitely satisfiable set of L,-
sentences T, have been defined. For each L, -sentence of the form Ix¢[x] which is
not an L,,-sentence for any m < n, we add a new constant symbol c3,, to L, and the
sentence Ix@[x] — ¢, [cay,]to T),. Call the resulting language L, and resulting set
of L,41-sentences 7, . It is straightforward to check that 7}, is finitely satisfiable.

We put Lo, = U, L, and T, = U, T,,. These satisfy the conclusions of the propo-
sition. U

Proof of the compactness theorem. Let 7 be a finitely satisfiable set of L-
sentences. Then we obtain L., and T as in the last proposition. By Lindenbaum
Theorem 2.2.2, there is a complete finitely satisfiable set of L.-sentences T’ con-
taining Tw.. Then 7" is Henkin. The canonical model of 7’ is a model of T'. O
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Exercise 2.2.5 Let L be a first-order language and 7 the set of all complete L-
theories. This set of exercises defines a topology on 7 making it into a compact,
Hausdorff, zero-dimensional space. For each L-sentence ¢, set

B,={TeT:9peT}

and B = {B,, : ¢ an L — sentence}. Show the following.

1. Bis closed under finite intersection and complementation. Thus, it is a base of a
zero-dimensional, topology 7 on 7.

2. Show that (7, t) is a compact, Hausdorff topological space.

3. Show that (7, t) is metrizable if the language L is countable.

There are some variants of compactness theorem which are quite useful.

Theorem 2.2.6 For any sentence ¢, T |= ¢ if and only if T' |= @ for some finite
T"CT.

Proof The if part is clear. For only if part, suppose for no finite 7', T’ = ¢. This
implies that every finite part of 7" = T U {—¢} has a model. Hence, by compactness
theorem, 7" has a model, say M. Butthen M =T and M |~ ¢. So, T 1~ ¢. O

Let L be a first-order language and ® a set of formulas of L. Let vy, vy, ... be all
the variables (finitely or countably many), v;’s distinct, that has a free occurrence in a
¢ € . We say that ® is satisfiable if there is a structure M for L and ap, a;, ... € M
such that for all p[vy, ..., v,—1] € ®, M = p[a]. We say that ® is finitely satisfiable
if every finite &' C @ is satisfiable.

Proposition 2.2.7 Every finitely satisfiable ® is satisfiable.

Proof Introduce in L a new constant ¢; corresponding to each v; that has a free
occurrence in ¢ and call the resulting language L’. Now consider

@' = {gp[c] : p[v] € P}

Note that @ is satisfiable if and only if ®’ has a model. By the compactness Theorem
2.2.1, it is sufficient to prove that each finite part of @’ has a model. This follows
because @ is finitely satisfiable. O

Proposition 2.2.8 Let M be an L-structure and ® a set of L-formulas such that
every finite ® C @ is satisfiable in an elementary extension of M. Then there is an
elementary extension N of M in which ® is satisfiable.

Proof Consider W = ® U Diag,;(M). By our hypothesis, W is finitely satisfiable.
Hence, there is an L-structure N in which W is satisfiable. Since N = Diag.; (M),
N is an elementary extension of M. The proof is complete. (]

Remark 2.2.9 Let L be a first-order language with uncountably many variables and
® a set of L-formulas. In this case also the notion of finite satisfiability and satisfia-
bility for & makes sense. Further, the last two propositions are seen to be true.
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2.3 Some Consequences of Compactness Theorem

Proposition 2.3.1 Let L be the language with constants 0, 1, binary function symbols
+ and - and a binary relation symbol <. Let N denote the standard model of natural
numbers. There is a structure M for L elementarily equivalent to the standard model
N and having an element b such that for every natural number n, n < b.

Proof Introduce a new constant symbol ¢ to L. For each natural number m, let A,
be the formula m < c¢. Now consider the theory

N’ = Diag,;(N) U {A,, : m € N}.

Since every finite set of natural numbers has an upper bound in N, N is a model of
each finite part of N'. Hence, by the compactness theorem, N" has a model M. This
model has the required properties with b = cy,. (]

Proposition 2.3.2 There is a non-Archimedean ordered field *R elementarily equiv-
alent to the ordered field R.

Proof Let L denote the language of the theory of ordered fields. Add a new constant
symbol ¢ to Lg. For natural numbers n, let A, be the formula n < ¢ and consider

T = Diag,(R) U{A, : n € N}.

Since the real line R is a model of each finite 7/ C T, by the compactness theorem,
T has a model. Any model *R of T does the job. (]

Proposition 2.3.3 The class of all well-ordered sets is not elementary.

Proof If possible, suppose there is a first-order theory 7 whose models are precisely
well-ordered sets. Add to T a sequence {c,} of distinct and new constants and set
T'=T U{cpt1 < cu:n € o). Then, T’ is finitely satisfiable. Hence, by compact-
ness theorem, 7’ has a model, say M. But then {c¥} is a non-empty subset of M
with no least element. This is a contradiction. (]

Proposition 2.3.4 The class of all fields of characteristic 0 is not finitely axiomati-
zable.

Proof Let T be the theory of fields and ¢, denote the sentence n # 0, n > 1. If
possible, suppose 1 is a sentence in the language of rings such that M = 1 if and
only if M is a field of characteristic 0. So, T[{¢, : n > 1}] = . By compactness
theorem, there is a positive integer N such that

TIAN @il = .

Let p > N be prime. It follows that F,, = v, a contradiction. (I
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Exercise 2.3.5 Show that the class of all algebraically closed fields is not finitely
axiomatizable.

(Hint: Use Proposition B.1.4)

Exercise 2.3.6 Show that the class of all archimedean ordered fields is not elemen-
tary.

Exercise 2.3.7 A graph (V, E) is called connected if for every x # y € V, there
exist xg, ..., x, € V such that xo = x, x, = y and for all i < n, E[x;, x;11]. Show
that the class of all connected graphs is not elementary.

Exercise 2.3.8 Show that the class of all torsion-free groups is not finitely axioma-
tizable.

Exercise 2.3.9 Show that a class C of L-structures is finitely axiomatizable if and
only if both C and its complement are elementary.

Exercise 2.3.10 Let F denote the class of all finite fields. Call a field F pseudofinite
if it is infinite and a model of Tk (F). Show that the class of all pseudofinite fields is
elementary and non-empty.

Using compactness theorem we now show that every field is a subfield of an
algebraically closed field. By easy algebra arguments, this will imply the existence
of the algebraic closure of each field.

We shall use a standard fact from algebra. Let [F be a field and f(X) € F[X]
an irreducible polynomial. Let (f) denote the ideal in F[X] generated by f. Then
F[X]/(f) is a field extension of IF in which f has a root. It then follows that given
finitely many polynomials fi, ..., f, € F[X] there is a field extension K of F in
which each of fi, ..., f, has aroot.

Proposition 2.3.11 Let IF be a field. Then there is a field extension K of F such that
every polynomial f(X) € F[X] has a root in K.

Proof Let T denote the theory of fields in the language L of rings with identity. For
each polynomial f(X) € F[X] introduce a new constant symbol ¢, to Ly. Let ¢y
be the sentence f(cf) =0of Ly U {cy : f € F[X]}. By the above observation, each
finite subset of the theory

T'=T U Diag(F) U{p,: f € FIX]}

has a model. Hence, by compactness theorem, 7' has a model, say K. Such a K does
our job. (]

Proposition 2.3.12 Every field is a subfield of an algebraically closed field.

Proof Let Fy be a field. By repeatedly applying the last Proposition 2.3.11, we
get a chain of fields Fo CT F; £ F, C ... such that for each n, every polynomial
f(X) € F,[X] has aroot in F,, ;. Now take K = U, [F,,. ([l
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2.4 Preservation Results

In this section, we use compactness theorem and prove several so-called preservation
results.

Proposition 2.4.1 Let N be a substructure of an L-structure M. Then N is exis-
tentially closed in M if and only if there is an extension M’ of M in which N is
elementarily embedded.

Proof ‘If part’ is easy and was left as an exercise in Chap. 1. Assume then N is
existentially closed in M. Take T = Diag.;(N) U Diag(M). Sufficient to prove that
T has a model. If not, then by the compactness theorem, there is an open L-formula
¢lx]anda € M suchthat M = ¢[a] and Diag.;(N) = ¢la]. Hence, there exists an
elementary extension N’ of N such that ¢[a] is not satisfiable in N’. This implies that
N’ = Ixg[x]. Hence, N = Jx¢[x]. This contradicts that N is existentially closed
in M. O

Proposition 2.4.2 [. Let T be a first-order theory. Then M = Ty if and only if it
is a substructure of a model N of T.

2. A theory T is universal if and only if every substructure of a model of T is a
model of T.

Proof (1): ‘If part’ was given as an exercise in Chap. 1. Conversely, let M = T.
Set T’ = T U Diag(M). It is sufficient to show that T’ is consistent. If not, then by
compactness theorem, thereis a finite set I’ C Diag(M) such that T[I"] has no model.
Let ¢1[x], ..., ¢,[X] be open formulas and ¢ € M suchthatI" = {¢;[c], ..., g,[c]}.
It now follows that 7' [3x A7_; ¢;[¥]] has no model. So, T = Vx— A7_, ¢;[X]. In
other words, Vx— A?_, ¢;[x] € Ty. So, M |= Vx— A!_, ¢;[x]. This contradicts that
A ¢i[c] € Diag(M).

(2) follows from (1) because T is universal if and only if 7" and Ty have the same
class of models. [l

Proposition 2.4.3 Let T be a theory and ¢[x] a formula. The following are equiv-
alent:

1. There is a universal formula W [x] such that T |= VX (¢[X] <> ¥[X]).
2. Whenever M,N =T, NCT M anda € N, M | ¢la] = N E ¢la].

Proof (1) implies (2) is easy and was given as an exercise in Chap. 1. So, assume (2).
Add new constants ¢ to the language of T and consider the theories, 71 = T [¢[c]]
and T, = T[—¢[c]]. Then (2) says that no substructure of a model of 7} can be a
model of 7,. But substructures of models of 7} are precisely models of (77)y. Thus,
by (2), (T})v U T is inconsistent. Since a finite conjunction of universal sentences is
tautologically equivalent to a universal sentence, by compactness theorem, we get a
Y[c] € (Ty)v such that T>[v[c]] has no model. It follows that

T'lglcl]l = el & T[—glcl]l = —~ylcl.
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Hence,
T | Vx(plx] < ¢[xD.

O

Proposition 2.4.4 M = Ty3 if and only if there is a N =T such that M is an
existentially closed substructure of N.

Proof ‘If part’ is easy and was given as an exercise in Chap. 1. For the converse, let
M = Ty3 and T’ be the set of all universal L j;-sentences true in M.

Sufficient to show that T U T” has amodel, say N: Then N |= T'. Since T’ contains
the atomic diagram of M, M has an embedding in N. Let ¢ be an existential L ;-
sentence true in N. If possible suppose ¢ is not true in M. Then —¢, a universal
L j;-sentence, is true in M. But then N = —¢ which is a contradiction.

If possible, suppose T U T’ is inconsistent. By compactness theorem, there exist

universal L y-sentences ¢y, . . ., ¢ truein M such that T |= = Ak, ¢;. Since = AF_,
@i is equivalent to a closed existential formula, it belongs to Tvs. So, M = = A, ;.
Hence, M = —¢; for some 1 <i < k. This contradicts that M = ¢;. ([l

A model M of a theory T is called an existentially closed model of T if M is
existentially closed in every extension N 2 M which is a model of T'.

Corollary 2.4.5 Let T be a V3 theory and T' = Ty. Then every existentially closed
model of T" is a model of T.

Proof Let M be an existentially closed model of 7' = Ty,. By Proposition 2.4.2, there
is an extension N of M that models 7. Let Vx3y¢[y, X], ¢ open, be in Ty3. Take
anya € M.Then N = Jyg[y, a]. Note that M, N |= T’. Since M is an existentially
closed model of T', M = Jyply, al. O

Corollary 2.4.6 A theory T is V3 if and only if T is inductive.

Proof ‘Only if” part is easy and was proved in Proposition 1.5.12. So, assume that
the class of models of T is closed under unions of chains. Let M, = Tys. We shall
find an elementary extension M, of M, which is a model of 7. This will prove that
My = T and the proof will be complete.

Applying Propositions 2.4.4 and 2.4.1 alternatively, we have

MyT NoCMENEMLE--.
such that for each k, M is existentially closed in Ny, Ny =T and M;,; is an

elementary extension of M. Set Noo = Uy Ny and M, = U M;.. By our hypothesis,
No = T.But Mo, = Ny. So, M, = T. Further, My < M. ([l
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2.5 Extensions of Partial Elementary Maps

In this section using compactness theorem, we prove results on the extensions of
partial elementary maps.

Proposition 2.5.1 Let M, N be L-structures, A C M, f : A — N a partial ele-
mentary map and a € M. Then there is an elementary extension N' of N and a
partial elementary map g : AU {a} — N’ that extends f. Moreover, if L, A and N
are countable, we can choose N' to be countable.

Proof Suppose a € A and ¢[x, X], an L-formula, is such that M = ¢[a, a]. Then
M = Jxg[x,a]. Since f is partial elementary, N = dxp[x, f(a)]. From this it is
entirely routine to see that every finite subset of

T = Diaga(N)U{glx, f(@]:a € ANM k= ¢la, al}

is finitely satisfiable in N. Hence, by compactness theorem, it is satisfiable. Therefore,
there is an elementary extension N’ of N and a b € N’ such that N’ |= ¢[b, f(a)]
whenever M = ¢[a, a]. Now take g = f U {(a, b)}.

In case L, A and N are countable, T is countable. Therefore, a countable model
N’ of T exists. O

Applying this result repeatedly, by transfinite induction, we also have the following
result.

Proposition 2.5.2 Let M, Ny be L-structures, A C M and fy: A — Ny partial
elementary. Then there exists an elementary extension N, of Ny such that fy can be
extended to an elementary embedding foo : M — No. Moreover, if L, M and Ny
are countable, we can choose N4 to be countable.

Proof Fix an enumeration {a, : « < |M|} of M. By transfinite induction, for each
a < |M], we shall get an L-structure N, and a partial elementary map f, : A U {ag :
B < a} — N, satisfying the following conditions:

1. Ngyi is an elementary extension of Ny, Ny = UgoNg if o is a limit ordinal.
2. fus1 extends f, and f, = Ugq fp if o limit.

Suppose f,, N, satisfying the desired properties have been defined. If a, €
domain(fy), we set Nyy1 = N, and f,41 = f,. Otherwise, by the last Proposi-
tion 2.5.1, there is an elementary extension N,;; of N, and a partial elementary
map

Ja+1 1 AU{ap 1 B < a} = Noyi

extending f;,. Finally take Noo = Uy <y Ny and foo = Uy fo.
In case L, M and N, are countable, enumerate M = {a,} and proceed as above
but choose at each stage N, countable. O
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Proposition 2.5.3 Let M, N be L-structures and A C M, B C N. Suppose f :
A — B is a partial elementary map. Then f has a partial elementary extension
f" racl(A) — acl(B). Moreover, if f is surjective, we can choose f' to be surjective
also.

Proof By Zorn’s lemma, there is a maximal elementary extension f’: A’ — B’
of f with A" C acl(A) and B’ C acl(B). Note that acl(A") = acl(A). If possible,
suppose there exists a € acl(A’)\A’. Get an L-formula ¢[x,y],a € A" and n > 1
such that

M = ¢la,al A 3I_,xp[x, al.

Choose ¢ and @ such that n is minimal possible. Since f': A" — B’ is partial ele-
mentary,
N k= 3oxelx, f/@)].

Clearly, there exists b € acl(B) such that N = ¢[b, f'(a)].

We claim that ' U {(a, b)} is partial elementary. (This will complete the proof
of the first part of the result.) Let ¥[x, y] be an L-formula, b € A’ such that M =
¥[a, b]. By the minimality of 7,

M = Vx(¢lx,al — ¥lx, b]).

Hence,

N E Vx(glx, f'@]1— vlx, f'®)]).

Thus, N = y[b, f'(b)].
Now assume that f is surjective. Then acl(B) = acl(B’). Let b € acl(B). Since
f is surjective, there exist an L-formula ¢[x,y],ana € A and an > 1 such that

N = ¢lb, f(@] A 3=xelx, f(@)].

Then M = 3_,x¢[x,al. Letay,...,a, be all a € acl(A) such that M = ¢la, al.
Since f’is defined on acl(A), b = f'(a;) for some i. O

2.6 Upward Lowenheim—Skolem Theorem

In Theorem 1.7.6 we proved Downward Lowenheim—Skolem Theorem which can
be viewed as a method for building models of smaller cardinalities. In this section,
we present a technique for building large models. First such result was proved by
Tarski in 1928 who showed that every first-order theory with an infinite model has an
uncountable model. The so-called Upward Lowenheim—Skolem theorem (Theorem
2.6.3) appeared in a paper by Tarski and Vaught in [63].
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Proposition 2.6.1 Ifatheory T has arbitrarily large finite models, it has an infinite
model.

Proof Let {c, : n € N} be a sequence of distinct symbols not appearing in L. Let 7’
be the extension of 7" obtained by adding each ¢, as a new constant symbol and for
each m < n, let the formula ¢, # ¢,, be an axiom.

Since T has arbitrarily large finite models, each finite 7" C T’ has a model. Hence,
by the compactness theorem, 7’ has a model. Clearly, any model of 7" is infinite and
amodel of T. O

Theorem 2.6.2 Let k be an infinite cardinal and T a consistent k -theory. Assume
that T has an infinite model M. Then T has a model of cardinality k.

Proof Fix aset {c, : ¢ < «} of cardinality « of distinct symbols not appearing in L.
Let L’ be the extension of L obtained by adding each ¢, as a constant symbol. Set
I' ={cy # cp : ¢ < B < «} and consider the theory 7’ = T'[I'] with language L'.

We claim that 7" is finitely satisfiable. To see this, fix a finite subset I/ of I.
Letcy,, ..., ¢y be all the new constants that appear in a formula in I''. Since M is
infinite, there exist distinct elements by, . .., by of M. Interpret ¢,, by b;, 1 <i < k.
Thus we get a model of T[I"']. Hence, by the compactness theorem, 7" has a model.
Now note that any model of 7" is of cardinality at least x and a model of 7.

Fix a model M of T’. By downward Loéwenheim—Skolem Theorem 1.7.6, M has
an elementary substructure N of cardinality at most k. Evidently |M| = «. (]

Theorem 2.6.3 (Upward Lowenheim—Skolem theorem) Let k be an infinite cardi-
nal and L a «k-language. Then every infinite structure N of L of cardinality at most
K has an elementary extension M of cardinality .

Proof Note that elementary diagram Diag.;(N) of N is a consistent k-theory. Fur-
ther, N is an infinite model of Diag.;(N). Hence, Diag,;(N) has a model M of
cardinality « by the last theorem. Since M = Diag.;(N), M is an elementary exten-
sion of N. (I

Exercise 2.6.4 Show that there are structures of arbitrarily large infinite cardinality
elementarily equivalentto N = P A.

2.7 Some Complete Theories

The following theorem was independently proved by £.0§ in [37] and Vaught in [65].

Theorem 2.7.1 (Vaught’s Categoricity Theorem) Let k be an infinite cardinal and
T a consistent k -theory all of whose models are infinite. If T is k-categorical, T is
complete.
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Proof Suppose a sentence ¢ is not decidable in 7. The theories 77 = T [¢] and
T, = T[—¢] are consistent. Since T has no finite models, both 7} and 7, have infinite
models. So, T} and 7, have models M; and M, respectively of cardinality « by
Theorem 2.6.2. Hence, by the hypothesis of the theorem, they are isomorphic. But
@ is true in M, and false in M, contradicting that 7 is x-categorical. Hence, T is
complete. (I

Example 2.7.2 Thetheory T of infinite sets is x -categorical for every infinite cardinal
k, Hence, it is complete.

We saw in Chap. | that DL O is 8y-categorical and DAG and ACF(p), p =0
or prime, are k -categorical for all uncountable «. Further, these three are countable
theories with all models infinite. Hence,

Example 2.7.3 DLO, DAG and ACF(p), p = 0 or prime, are complete theories.
In particular, any two models of these theories are elementarily equivalent.

Exercise 2.7.4 Let G be an infinite group and 7 the theory of free G-spaces. Show
that T is complete.

Exercise 2.7.5 Show that the theory of random graphs is complete.

2.8 Amalgamation

We continue with applications of compactness theorem and give quite handy condi-
tions under which two structures have a common elementary extension.

Proposition 2.8.1 Let A and B be elementarily equivalent L-structures. Then there
is an elementary extension C of A such that there is an elementary embedding
g:B— C.

Proof Let B’ be an L-structure, f : B — B’ an isomorphism and A N B’ = ). Take
T = Diag.(A) U Diag,;(B’).

Let y1[b], ..., ¥ulb] € Diag,(B'). Then B' = 3y A"_, ¥;[7]. Since A and B’ are
elementarily equivalent, A |= 3y A’;_; ¥;[y]. Thus, A is a model of each finite part
of T. Hence, by compactness theorem, 7" has a model, say C. Take g =i o f. Then
g : B — C is elementary and C an elementary extension of A. (]

The following theorem is due to Abraham Robinson ([51], Theorem 4.2.2).

Theorem 2.8.2 (Elementary Amalgamation Theorem) Let A and B be L-structures
andda € A, b € B be such that (A, @) is elementarily equivalent to (B, b). Let (@) 4
be the substructure of A generated by a and f : (a)s — B the embedding such
that f(a) = b. Then there is an elementary extension C of A and an elementary
embedding g : B — C such that g(f (a)) = g(E) =a.
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Proof Replacing B by an isomorphic copy if necessary, without loss of generality,
we assume that A N B = ¢J. Set

T = Diag.(A) U{¢la,c]: ¢[b,c] € Diag.,(B) A bNc = ).

Note that since (A, @) and (B, b) are elementarily equivalent, A = Iy¢[a, y],
whenever ¢[b, ¢] € Diag.;(B) and b N ¢ = . Now, it is fairly routine to see that A
models every finite part of 7. Hence, by compactness theorem, 7" has a model.

Let C }= T.Then C is an elementary extension of A. Define g : B — C be g(b) =
@ and g(b) = b€, if c ¢ b. Then g is an elementary embedding of B into C. (I

Let A, B, C and D be L-structures such that A is a common elementary sub-
structure of B and C and B and C are elementary substructures of D. We call D a
heir-coheir amalgamation of B and C over A or a coheir-heir amalgamation of C
and B over A if for all L-formulas ¢[X, y], wheneverb € B,¢ € C and D = ¢l[c, b],
there is an @ € A such that B = ¢|a, bl.

The following theorem is due to Lascar and Poizat [35].

Theorem 2.8.3 Let A, B, C be L-structures with A a common elementary substruc-
ture of B and C. Then, there is a common elementary extension D of B and C which
is a heir-coheir amalgamation of B and C over A.

Proof Replacing B by an isomorphic copy if necessary, without loss of generality,
we assume that B N C = A. Let T’ be the theory

{(—¢lc,bl:be B A ceC A Vae AB = —gla, b))},

and
T = Diag,(B) U Diag,(C)UT'.

Clearly, it is sufficient to show that 7 has a model. This will follow if we show
that B models every finite part of Diag.,(C) U T’.

Letae A,be B, ceC\A, —~¢[a,cbl,...,—gla,c, bleT and y[a,c] e
Diage(C). So, foralla’,a” € A, B = —g;la’,a",bl,1 <i <k.

Now, C | ¥[a, c] implies that C = Iyy[a, y]. Hence, A = Iyy[a, y]. So,
there exists a” € A such that A = y[a, a”]. Thus, B |= y[a, a”]. Clearly, B =
—gila,a’,b),1 <i <k. O

Remark 2.8.4 By interchanging the role of B and C in the above proof, we get a
coheir-heir amalgamation of B and C over A. We shall see later that in a stable
theory, every heir-coheir amalgam is a coheir-heir amalgam.

Remark 2.8.5 Let D be a heir-coheir amalgamation of B and C over A. Suppose
b e B,c e Cand D |= b = c. Then there exists a € A such that B = b = a. So, the
overlap of B and C in D remains A. Such amalgamations are called strong.
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2.9 Quantifier Elimination

In this section, we introduce yet another important technique in model theory, namely
quantifier elimination. This was introduced and systematically studied by Tarski [62].
Results and examples that follow are due to him.

Let T be an L-theory. We say that T has quantifier elimination if for every L-
formula ¢[x] there is an open L-formula v [x] such that

T =Vx(plx] < ¢[x)).

Example 2.9.1 Let ¢ be a sentence decidable in 7" and the language of T have a
constant symbol, say c. Then T @ <> c=cif T Eg,else T = ¢ < ¢ #c.

In the rest of this section, we present some necessary and sufficient conditions
for T to have quantifier elimination. Some examples of theories having quantifier
elimination are given in the next section.

Proposition 2.9.2 A theory T has quantifier elimination if and only if for every open
formula ¢[x, ), there is an open formula \[y] such that

T =VYy(@Exelx, y]) < ¥IyD.

Proof Since only if part of the result is clear, we need to prove if part only. By
induction on the rank of formulas, we prove that for every formula ¢[x] of L there
is an open formula ¥ [x] such that

T = Vx(elx] < ¢[x)). ()

() is clearly true for open . It is easy to prove that if (x) is true for ¢, it is true for
—. If (*) holds for ¢ = ¢ and ¢ = ¢, it holds for ¢; V ¢;.

To complete the proof, assume that () holds for ¢[x, y]. Get an open formula

n[x, y] such that
T = VxVy(plx, y] < nlx, yD.

This implies that
T = VYy((@Exglx, y1) < 3xnlx, y]).

By our hypothesis, there is an open formula v[y] such that
T = VYy(@xnlx,yD) < ¥[yD.

Now it is clear that
T EVYy(@xelx,y]) < v[D.

Our proof is complete. O
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Theorem 2.9.3 Let T be a theory with a constant symbol ¢ and ¢[X] a formula of
T. The following are equivalent:

(1) There is an open formula [x] such that

T = Vx(e[x] < ¢[x]). (%)

(2) For any two models M, N |= T, for any common substructure A of M, N and
foranya € A,

M = ¢lal & N E ¢lal.

(3) Foranytwomodels M, N =T, for any common finitely generated substructure
A of M, N and for any a € A,

M = glal & N = ¢lal.

Proof (1) implies (2): Take M, N, A and a as in (2). By (1), there is an open formula
¥[x] such that T = Vx (¢ (X) < ¥ (X)). So,

M = ¢(a) & M = ylal

and

N E¢@) < N = ylal.

But A being a common substructure of M and N, since a € A and ¥ is open,

MEvy@ < AEY@ < N Ey@).

Hence,
M = g¢(a) & N E¢(a).

(3) is a special case of (2).

(3) implies (1): Assume that p[x] satisfies (3). When a closed formula ¢ satisfies
(3), ¢ is either true in all models or in none. Now note that 7 |= ¢ <> ¢ = cif T = ¢.
Otherwise T = —¢ when T = ¢ <> ¢ # c. The same argument works when ¢[x]
is not closed but decidable in T, i.e. YVx¢[x] is decidable in T'.

It remains to prove the result in case both T [¢[x]] and T [—¢[X]] are satisfiable.
Introduce new constants ¢ to the language to get a new language, say L’. Let T’ be
the new theory whose language is L’ but no new nonlogical axiom. Consider

I'={ylc]: T" = ¢[x] — ¥I[x], ¥ open}.

We first see that it is sufficient to prove that

T'[I'] = ¢lc]. ()
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Then by compactness theorem, there exist ¥y[c], ..., ¥,—i[c] € I such that
T' = Ai<n¥ilc] — olcl.
Since ¢ are new constants, it follows that
T EVx(plx] < Nia¥ilx])

and A; -, ¥;[x] is open.
We prove () by contradiction. So, assume that

T'[I'] | glel.

Let
M = T'[T'TU {—¢[c]}.

Let A be the substructure of M generated by ¢. So A is finitely generated. Now
consider
A =T U Diag(A) U {¢p[c]}.

We claim that A has a model. If not, then by compactness theorem, there exist
Ynlcl, ..., ¥ulc] € Diag(A) such that

T' = N_ ¥ilc] — —olcl.
Since ¢ are new constants,

T = AL ¥i[E] — —pl].
Set ¥ [x] = — AI_, ¥i[X]. Note that v is open. We have,

T = ¢o[x] — ¥Ix].
Thus, ¥[c] € I'. Hence, M = v[c]. Since ¥ is open and MecA A = ¥ [c], con-
tradicting that ¢ [c], ..., ¥,[c] € Diag(A).
Now take a model N = A. By the Atomic diagram Theorem 1.5.13, A is a sub-

structure of N. But M = —gp[c] and N k= ¢[c]. This contradicts (3) and proves ().
|

Since every open formula is equivalent to an open formula in disjunctive normal
form (DN F), we now easily see that

Proposition 2.9.4 Let T be a theory with a constant. The following are equivalent:

(1) T has quantifier elimination.
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(2) For every conjunction of literals ¢[x, V], for any two models M, N =T, for
every common substructure A of M, N and for everya € A, if thereisab ¢ M
such that M |= ¢[b, a, there is a c € N such that N = ¢[c, al.

The simple proof of this result is left to the reader as a simple exercise.

Let T be an L theory, M, N =T, ACMand BCN.Amap f:A— B is
called a partial isomorphism if f is onto and for every atomic L-formula p[Xx] and
everya € A,

M | glal & N = ¢l f(@)]. ()

It is easy to see that every partial isomorphism f : A — B is a bijection and for
every open L-formula ¢[X] and every a € A,

M | glal & N = ¢l f(@)].

If, moreover, (x) is satisfied for every formula ¢[Xx] and every a € A, we call f a
partial elementary. In the next chapter, we shall study partial elementary maps in
detail.

Theorem 2.9.5 A theory T has quantifier elimination if and only if for every pair
of models M, N of T every finite partial isomorphism M > a — b € N is partial
elementary.

Proof The only if part of the result being clear, we prove the if part only. Take an
L-formula ¢[X], x = (x0, ..., Xp—1)-

I'[x] = {¢¥[x]: ¥[x] anopen L — formula & T = Vx(¢[x] — ¥[X])}.
Add new constants ¢, . .., ¢,—; and consider

Ile] = {ylc] : v[x] € T[x]}.

Claim. T[T'[c]] = ¢lc].

Assuming the claim, we complete the proof first. Since I'[c] is closed under
conjunctions, by compactness theorem, there is a ¥ [c] € I'[c] such that T [y [c]] =
¢[c]. It follows that

T =Vx(y[x] — ¢[x]).

But we already have

T = Vx(elx] = ¢[x].

Hence,
T | Vx(plx] < ¢[xD.
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Proof of the claim. Suppose the claim does not hold. Then there exists a M =
T[T[cllU {—¢lcl}. Leta; = cM,i < n. Set

plx] = {£[x] : £[x] an open L — formula & M = &[a]}.

Then T U p[x] U {¢[x]} is satisfiable: If not, then it is not finitely satisfiable. Hence,
there is a formula £[X] € p[x] such that

T = Vx(p[x] — —&[x]).

This forces —£[x] € I'[x] which is_a contradiction. 3
Thus, there exist N =T and b € N such that N = ¢[b] and for every open
formula £[x],

M = &[a]l < N = &[b].

Since M = —¢[a], we have arrived at a contradiction. U

We close this section by giving an application of partial elementary maps to
quantifier elimination. Let M be a model of a theory 7 and A T M. We say that M
is prime over A or that M is a prime model extension of A if for every model N of
T and every partial elementary map i : A — N, there is an elementary embedding
g: M — N such that h = g|A. We say that T has algebraically prime models if
every model A of Ty has an extension M = T such that M is prime over A. Recall
that A |= Ty if and only if it has an extension to a model of 7' (Proposition 2.4.2).

Example 2.9.6 Consider the theory ACF of algebraically closed fields. Let D be
an integral domain and F the algebraic closure of the fraction field of D. We know
that given any K = ACF and a partial elementary map 2 : D — K (an embedding,
in particular), there is an embedding g : I — K such that 4 = g|D. Since ACF has
quantifier elimination, g is elementary.

Example 2.9.7 Consider the theory RC O F of real closed fields. Let D be an ordered
integral domain and IF the real closure of the ordered fraction field of D. We know that
given any K |= RCF and an elementary map & : D — K, there is an embedding ¢ :
F — Ksuchthath = g|D. Since RC O F has quantifier elimination, g is elementary.

Example 2.9.8 Consider the theory DL O of dense linearly ordered sets with no end
points. Let (A, <) be a linearly ordered sets. We define a dense linearly ordered set
A* as follows: If A has a least element, say x, add a copy of Q with the usual order to
the left of x, if A has a greatest element, say y, add a copy of QQ with the usual order
to the right of y and if x < y are two elements of A with no element in between, add
a copy of Q with the usual order between x and y. There is a canonical inclusion map
f A< A*. Now givenany B = DL O and a partial elementary map 2 : A — B,
it is easy to define an embedding g : A* — B such thath = g o f. Since DL O has
quantifier elimination, g is elementary.

We leave the proof of following theorem for readers as an exercise:
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Theorem 2.9.9 Let T be a theory such that

1. T has algebraically prime models, and
2. foranytwo M, N =T with M T N, for any conjunction of literals ¢[x,y] and
foreverya € M,
N E dxplx,a]l = M = Ixe[x, al.

Then T has quantifier elimination.

Exercise 2.9.10 Show that the theory T of vector spaces over a fixed field has
quantifier elimination.

2.10 Examples of Quantifier Elimination

In the following examples, we use Proposition 2.9.4 without mentioning it.

Example 2.10.1 The theory DLO of dense linear orders without end points has
quantifier elimination.

Proof Let ¢[x, y] be a conjunction of literals. For instance, suppose
olx,y]=y1 < - <Y1 <X <Y < <Yy

Suppose M, N = DLO, A is a common substructure of M, N, a € A and there is
ab € M satisfying

a<---<ai_1<b<a <---<a,.
This, in particular, implies that
a < - < a1 < a; <---<day.
Since N = DLO, there is a ¢ € N such that
a) << a1 <c<a <---<dy.

Cases when ¢[x, y]is “x < y; <--- < y,”or “y; <--- <y, < x” are dealt with
similarly because N has no end points. (]

Example 2.10.2 The theory D AG of torsion-free divisible abelian groups has quan-
tifier elimination.

Proof Wetake G, G, = DAG, acommon subgroup H C G, G,.Letg[x, y]bea
conjunction of literals. Suppose a € H. Replacing H by its divisible hull considered
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as a common subgroup of both G| and G,, we further assume that H too is divisible.
Now ¢[x, ], being a conjunction of literals, it can be assumed to be of the form

N Z(ni,yj Fnix =0) AN D (v +nlyx #0). ()
j=1 j=1
Assume that there is a b € G such that
Gi = ¢lb, al.
We need to show that there is a ¢ € G, such that
G = ¢lc, al.

Since H is a substructure of G5, it is sufficient to show that there is such a c in H.
If any n; # 0, as H is divisible,

m; o
Zj:l njd;
— €

n;

b=—

and we are done. So, assume that all n; = 0. Then b disappears from the equalities
appearing in (k). Since H is infinite, we can certainly find a ¢ € H satisfying all
inequalities in (x). (]

Example 2.10.3 The theory O DAG of ordered divisible abelian groups has quanti-
fier elimination.

Proof As in the above case, we take ordered divisible abelian groups G| and G»,
a common subgroup H, a conjunction of literals ¢[x,y] and an a € H. Assume
that there is a b € G, such that G| |= ¢[b, a]. Again, as in the last example, it is
sufficient to show that if H' is the ordered divisible hull of H, thereis a c € H' such
that H' |= ¢[c, a]. Towards showing this, note that we can assume that p[x, y] is of
the form

rp

mi
k—1 -1
Ao E (nijyj +nix = 0) A A Zo( E n’pjyj < n;x).
j=1 Jj=1

Since H’ is order-dense, arguing as in the last example, we get a required ¢ € H'. [J

Example 2.10.4 Let K be a field. Then the theory T of infinite vector spaces over K
has quantifier elimination.

Proof Let Vi, V, =T and V be a common subspace of V| and V. Let ¢[x] be an
open Ly-formula and there exists an a € V; such that V| = ¢[a]. We need to show
that V, = Jxe[x].
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If a eV, since V is a substructure of V; and V, and ¢ open, V; = ¢lal.
Next assume that a ¢ V. If V = V,, since V, is infinite, it has a proper elemen-
tary extension, say V,. If V) = 3x¢[x], V> = Ixp[x]. Hence, without any loss of
generality, we assume that V # V,. Let b € V,\V. Set L; = span(V U {a}) and
Ly = span(V U {b}). There is a linear isomorphism f : L} — L, fixing V point-
wise and f (a) = b. This implies that L, = ¢[b]. Since ¢ is open, V, = ¢[b]. U

Example 2.10.5 The theory ACF of algebraically closed fields has quantifier elim-
ination.

Proof Note that a substructure of a field is an integral domain. Also, recall that if
D is an integral domain, its quotient field embeds into every field in which D is
embedded. Therefore, as in the last two cases, we only need to show that whenever
F C K are algebraically closed fields, ¢[x, y] a conjunction of literals and a € F, if
there is a b € K such that K = ¢[b, a], there is a ¢ € [F such that F = ¢[c, a]. Now
note that we can take ¢[x, a] in the form

AZy(Pi(x) = 0) A AT (Q(x) #0),

Pi[X]’s and Q;[X]’s are polynomials over the smallest subfield of ' generated by
a.If k > 1, b € F because it is algebraically closed. Otherwise, since [ is infinite, it
certainly has a ¢ which is not a root of any Q ;[X] which works for us. ([l

It is interesting to ask if the converse of Proposition 1.9.17 is true? We shall come
back to this question later.

Corollary 2.10.6 Let K be an algebraically closed field and A C K. Then a €
acl(A) if and only if a is algebraic in usual algebra sense over the subfield k gener-
ated by A.

Proof Leta € acl(A). By quantifier elimination and the fact that every open formula
is equivalent to a formula in disjunctive normal form, there exist polynomial terms
pi(x,y),i <n,q;(x,y), j <m,and a € A such that

A,-p,»(a,ﬁ) =0A quj(a,ﬁ) 75 0,

and that this equation has only finitely many solutions. But then n > 0. Hence a is
algebraic over k. If part is straight forward. (|

Exercise 2.10.7 Let G = DAG and A C G. Show that acl(A) = dcl(A) and it
equals the smallest divisible subgroup of G generated by A.

Exercise 2.10.8 Let V be an infinite vector space over a field K and A C V. Show
that acl(A) = dcl(A) and it equals the vector subspace of V' generated by A.

Example 2.10.9 The theory RC O F of real closed fields has quantifier elimination.
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Proof As in the cases of say ODAG and ACF etc. we only need to show that if
¢[x, y] is a conjunction of literals, F C K = RCOF and a € F, then

K E Ix¢lx,a] = F = Jxplx, al.

We can assume that ¢[x, y] is of the form

m

Nz (Pi(x,3) = 0) AN (q;(x,7) > 0),

with p;, g; being terms.
Choose a b € K such that
K & ¢lb, al.

If any of the equality term is present, since [F has no proper real algebraic extension
(Theorem B.3.10), b € F.

So, assume no p; is present. Since [F has no proper real algebraic extension, roots
of g;’s, if any, belong to IF. If a ¢; has no root in the field and since ¢;(b,a) >
0, by Weierstrass Nullstellensatz (Theorem B.3.9), ¢;(c,a) > 0 for all ¢ € F. By
considering finitely many roots of all g;’s (all of which belong to F), we find a
non-empty open interval / in K with end points in[F such thath € I and ¢;(x, @) > 0
forallx € I andforall 1 < j < m. Using the order-denseness of F, we haveab € F
that lies in 7. This b witnesses [F = ¢[b, a. U

Exercise 2.10.10 Show that the theory of random graphs has quantifier elimination
and it is complete.

Exercise 2.10.11 Let K be a field. Show that the theory of infinite vector spaces
over K is complete.

2.11 Strongly Minimal and O-Minimal Theories

As a consequence of the fact that AC F has quantifier elimination, we get

Proposition 2.11.1 Let F be an algebraically closed field. Then F is infinite and
D C F is definable if and only if D is either finite or cofinite in F.

Proof Note that a subset D of F is defined by an atomic formula if and only if it is
the set of all roots of a polynomial in F. Hence, such a set D C T is finite. Boolean
algebra of subsets of ' generated by all finite sets consists of all finite and cofinite
sets. These are precisely sets defined by open formulas. Our claim is followed by
Example 2.10.5. (]

The same argument shows the following.

Proposition 2.11.2 Let G be atorsion-free divisible abelian group. Then G is infinite
and D C G is definable if and only if D is either finite or cofinite in G.
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Corollary 2.11.3 R is not a definable subset of the field C of complex numbers.

Corollary 2.11.4 Z and N are not definable subsets of the group Q of rational
numbers.

Remark 2.11.5 In a remarkable discovery, J. Robinson produced a formula ¢[x] in
the language of rings such that for a rational number r,

QEelrlereN.
(See [13, 52]).

Let M be an L-structure and A C M". We call A minimal if A is infinite and if for
every Ly -formula ¢[x] either A N o(M) or A\p(M) = A N —@(M) is finite. Thus,
M is a minimal structure if and only if M is infinite and every definable subset of M
is either finite or cofinite in M.

An L -formula ¢[x] is called minimal in M if (M) is minimal; it is called
strongly minimal in M if ¢ is minimal in every elementary extension of M.

A theory T is called strongly minimal if every M = T is minimal. It follows that
if T is strongly minimal, every model of T is strongly minimal. Whatever may be
the language L, clearly all finite subsets and their complements in an L-structure
M 1is definable. Thus definable subsets of models of a strongly minimal theory have
simplest possible structure. This notion was introduced by Marsh [42]. Its importance
was shown by Baldwin and Lachlan to give a simpler proof of Morley categoricity
theorem [5].

Example 2.11.6 ACF and DAG are strongly minimal.

Remark 2.11.7 Consider the theory RCF' of real closed fields (without order rela-
tion). The field of real numbers R is a model of it. We also have

x>0&Iyx=y-y).

This shows that the real closed field R is not minimal. Hence, RC F does not admit
quantifier elimination.

Exercise 2.11.8 Show that the theory T of vector spaces over a fixed field is strongly
minimal.

Proposition 2.11.9 Let M be an L-structure and ¢[x] an L-formula. The following
conditions are equivalent:

1. @ is strongly minimal in M.
2. @ is minimal in every structure N which is elementarily equivalent to M.

Proof Since every elementary extension of M is elementarily equivalentto M, clearly
(2) implies (1).
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Now assume (1) and let N be elementarily equivalent to M. By Proposition
2.8.1, there exists an elementary extension A of M and an elementary embedding ¢ :
N — A.Let ¢[x, y] be an L-formula and @ € N. By (a), either ¢ (A) N ¥ (A, g(a))
or p(A) N =Y (A, g(a)) is finite. Since g is elementary, either ¢(N) N (N, a) or
@(N) N =Y (N, a) is finite. Thus, (1) implies (2). (Il

Let (X, <) be a linearly ordered set. An interval in X is a subset / of X such that
whenever x < yarein/ andx <z<y,zel.

Here is a very important class of theories. Let T be a theory whose language has
a binary relation symbol < such that for every M |= T, <M is a linear order on M.
We call T O-minimal if for every M =T, D C M is definable if and only if D is
a finite union of intervals. Here ‘O’ stands for order. This concept was defined by
Pillay and Steinhorn in [48, 49]. Today O-minimality is a major tool in geometry.

Since the theories DL O, ODAG and RC OF have quantifier elimination, we
have the following example.

Example 2.11.10 Theories DLO, ODAG and RC O F are O-minimal.

Example 2.11.11 The theory ODAG of ordered abelian groups has definable
Skolem functions. To see this, let ¢[X, y] be a formula. By quantifier elimination,
we know that “{y : ¢[X, y]} is a finite union of intervals and singletons.” We define
¥ [x, y] as the disjunction of following formulas:

(Vz=olx, z] v Vz[x, z]) Ay =0,
zVu < zo[x,ul AVw > z3v < w—[x,v] Ay =27—1),
Fz(Vu > zp[x, u] AVw < z3v > w—e[x,v]Ay=z+ 1),

Az1, 2(Vu < 217X, ul A (V21 < u < 220[X, u)) V (21 = 22 A @[X, 21])

Z1+ 22
2

AYV > 70370 <u < v—o@[x,ul Ay =

).
Then

ODAG EVx(@=1yy[x, yI A Gyelx, y] = Yy [x, y] — o[x, yD)).

Further, ¥ [x, y] defines a function F whose graph is the set defined by ¥ [x, y]. We
also have

ODAG = VxVx'(Vy(¢[X, y] < ¢lx', y]) > F(X) = F(x')).

In this sense, we call F invariant.
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Example 2.11.12 We extend the idea contained in the last Example further. Let
¢[x, y] be a formula of O DAG. By induction on the arity n of y, we show that there
exists an invariant definable function y = F(X) such that

ODAG = Vx@yplx,yl — o[x, F(x)].

For n = 1, this is done above.
For inductive step, take a formula ¢[X, yi, ..., y,+1]. By induction hypothesis,
there exists an invariant, definable Skolem function f(x, y;) such that

ODAG EVy VX @yz ... Iyu19lx, ] — olx, y1, f&, y)D.

By case n = 1, there exists an invariant definable Skolem function g(X) such that

ODAG EVx@@yiplx, y1, f(X, yD] = o[x, gx), f (X, g&x)D.

Now take

F(&x) = (9Xx), f(x, g(x)).
Then F(X) is an invariant function such that
ODAG E Vx(3yelx, ¥yl — ¢lx, F)D.
Further note that if [X, y] is an equivalence formula, then F (x) is a definable section
of ¢.

Example 2.11.13 Exactly the same arguments as in the last two examples show
that RC O F has definable Skolem functions. Further, since we can introduce < in
an extension by definition of RCF, we see that RCF too has definable Skolem
functions.

Example 2.11.14 By Theorem 1.12.3 it follows that ODAG, RCOF and RCF
admit uniform elimination of imaginaries.

The theory of algebraically closed fields AC F also admits uniform elimination of
imaginaries. However, it requires considerable work. This will be proved in Sect. 4.3.

2.12 Independence and Dimension in Minimal Sets

In this section, we generalise the notions of independence and basis to models of
strongly minimal theories.

Theorem 2.12.1 (Exchange Lemma) Let M be an L-structure, A C M and X an
L p-definable minimal set. Leta, b € X be suchthatb € acl(A U {a}) \ acl(A). Then
a € acl(AU{b}).
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Proof 1f possible, suppose there exists b € acl(A U {a}) \ acl(A) such that a ¢
acl(A U {b}). We shall arrive at a contradiction.
Since b € acl(A U {a}), there exists an L 4-formula ¢[x, y] and n > 1 such that

M = ¢lb, a] A I x¢lx, al.

Since X is minimal A-definable and a € X\acl(A U {b}), there exists a finite set
Y C M such that for all c € X\Y,

M = ¢lb, c] A3_yxelx, c].
Let [y] be an L 4-formula that defines X and |Y| = m. We have

M =3y A Yy (N # y) AYIYD — (elb, yI A Foaxelx, y])).

Since b ¢ acl(A), there exists an infinite set Z C M such that for all b’ € Z,

M =3y 3y (Yy((Ai(y # 3i) AYIYD — (@lb', y] A 3oxelx, yD).
Take distinct elements by, ..., b, € Z. Then there exists a ¢ € X such that
M = N_oelbi, cl A3 xelx, c].

This is a contradiction. O

We say that A C M is independent if foreverya € A,a ¢ acl(A\{a}).IfC C M,
we say that A is independent over C if foreverya € A, a ¢ acl(C U (A\{a})). This,
in particular, implies that A N C = @J. A subset B of A is called a basis of A if B is
independent and acl(B) = acl(A). Equivalently, B is a maximal independent subset
of A.

Proposition 2.12.2 Let X be an ()-definable minimal subset of an L-structure M
and A, B independent subsets of X with A C acl(B). Then

1. Let Ay C A, By C B and Ay U By a basis for acl(B). Then for every a € A\ Ay,
there is a b € By such that Ao U {a} U (Bo\{b}) is a basis of acl(B).

2. |Al = |BI.

3. ForeveryY C X, any two bases of Y have the same cardinality.

Proof Let C C By be aset of minimum cardinality such thata € acl(Ay U C). Since
A is independent, C # {. Take a b € C. Because C is of minimum possible cardi-
nality,

ae€acl(AgUC) \ acl((AgU )\ {b}).
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Therefore, by exchange lemma (Theorem 2.12.1),
b € acl((Ag U {a}) U (C\{b})).

Hence,
acl(B) = acl((Ag U {a}) U (Bo\{h})).

Weclaimthata ¢ acl(Ag U (Bo\{b})).Forotherwise,b € acl(Ay U (By\{b})) which
contradicts that Ay U By is a basis of ac/(B). Using exchange lemma (Theo-
rem 2.12.1) it is easy to see that (AgU {a}) U (Bp\{b}) is independent. Thus,
(Ao U {a}) U (Bo\{b}) is a basis of acl(B). This proves (1).

First we prove (2) when B is finite. Let |B| = n. Set Ay = 0. Take any a; € A.
Get b; € B such that {a;} U (B\{b;}) is a basis of acl(B). Such an a; exists
by (1). Suppose 1 <i <n and ay,...,a; € A and by, ...,b; € B be such that
{ai,...,a;} U (B\{by, ..., b;}) is a basis of acl(B). If A # {ay, ..., a;}, take any
aiy1 € A\{ay,---,a;}. Get bjy1 € B\{by,...,b;} such that {aj,...,a;+1}VU
(B\{b1,...,b;i+1} is a basis of acl(B). Such an a;,; exists by (1). This process
must stop in a maximum of n steps. Thus, |A| < n. If B is infinite

A =U{ANacl(By) : By C B finite}.

Hence, |A| < |B]|. Thus, (2) is proved.
(3) is a direct corollary of (2). O

Let M be an L-structure, X a #-definable minimal setin M and A C X. Then any
two bases of A have the same cardinality which we call the dimension of A, denoted
by dim(A).

Proposition 2.12.3 Let M and N be L-structures, X C M, Y C N and g : X —
Y partial elementary. Suppose [x] is an L-formula minimal in both M and N,
{ay : @ < k} a sequence in (M) independent over X and {b, : @ < Kk} a sequence
in ¥ (N) independent over Y. Then the extension g : X U{a, : o <k} = Y U {by :
a < k} of g (Which we denote by g itself) defined by g(a,) = by, @ < k, is partial
elementary.

Proof Setgg = g|(X U{a, : o < B}), B < k. Suffices to show that each gg is partial
elementary. This will follow if we show that whenever gg is partial elementary, so is
9p+1-

Assume that 8 < « and gg is partial elementary. Take an L-formula ¢[X, Yy, z],
@e{a,:a < pByandb € X. Suppose

M = ¢la, b, agl.

Since (M) is minimal and ag ¢ acl(X U {ay : o < B}), there exists a natural num-
ber m such that _
M = 3nz(¥lz] A —ela, b, z]).
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Since gp is partial elementary, we have

N E 3oz l2] A —elgp@), gp(b), z].

As ¥ (N) is minimal and bg ¢ acl(Y U {by : « < B}), we must have

N = ¢lgp(@), gp(b), bgl.

If MW= <p[5,_l_7, agl, we repeat the above argument with —¢ to see that N =
¢lgp(a), gg(b), bgl. Our proof is complete now. O

Our next few exercises show that these notion of independence and basis generalise
corresponding notions in vector spaces and fields.

Exercise 2.12.4 Let K be a field, V an infinite vector space over K and A C V.
Show the following:

1. A is an independent set if and only if A is linearly independent.
2. Aisabasis of V if and only if A is a basis of V in linear algebra sense.
3. dim(V) equals the vector space dimension of V.

Exercise 2.12.5 Let F be an algebraically closed field and A C F. Show the follow-
ing:

1. A is an independent set if and only if A is algebraically independent.
2. Ais abasis of IF if and only if A is a transcendence basis of F.
3. dim([F) equals the transcendence degree of [F over the prime field.

2.13 More Complete Theories

Quantifier elimination can be used to prove completeness of theories.

Proposition 2.13.1 Let T have quantifier elimination and M an L-structure such
that T U Diag(M) is consistent. Then T U Diag(M) is complete.

Proof Let My, M =T U Diag(M). Then M T M, M, and M|, M, = T. Take a
sentence ¢. By quantifier elimination of 7, there is an open sentence ¥ such that
T = ¢ < . Now

MiEpoMiEYyoMEY o MEY S MEQ.

This completes the proof. U

An L-structure M is called a prime structure of an L-theory T if M is embeddable
in every model of T'.
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Corollary 2.13.2 If T has quantifier elimination and a prime structure M, then T
is complete.

Proof This follows from the fact thatif N =T, then N =T U Diag(M). (I

Now note the following:

. Q &= DLO and it embeds into all models of DLO.

. Q &= DAG and it embeds into all models of DAG.

. Q = ODAG and it embeds into all models of O DAG.

. The field of all algebraic numbers is a model of AC F(0) that embeds into all
models of AC F(0).

5. Let p be a prime and Fp the algebraic closure of the field F,. Then F,, is a model

of AC F(p) that embeds into all models of AC F(p).
6. The field R, is a real closed field that embeds into all models of RCF .

AW N =

Thus,

Theorem 2.13.3 The theories DLO, DAG, ODAG, ACF(p), p =0 or prime,
and RCF are all complete. Hence, models of these theories are elementarily equiv-
alent.

A model M of a theory T is called a prime model of T if it is elementarily
embeddable into every N |= T.If T has quantifier elimination, then every model of
T which is a prime structure of 7 is a prime model of 7. So, DLO, DAG, ODAG,
ACF(p), p =0 or prime, and RC F have prime models.

Remark 2.13.4 A word on decidability of theories and decidable structures: Suppose
T is a theory with finitely many nonlogical symbols. Then Godel coded each formula
of T, a finite sequence of logical and nonlogical symbols, by a natural number. The
theory T is called axiomatised if the set of codes of its axioms is computable. In a
landmark result, Godel showed that a complete, axiomatised theory is decidable. It
follows that every model of such a T is decidable. Thus, we get many examples of
classical structures such as R as a real closed field, C, F,,, p aprime, etc. which are
decidable. All these results are due to Tarski. Since this topic is beyond the scope of
this book, we refer the reader to [59] for details.

2.14 Model Completeness

A theory T is called model complete if whenever M, N =T and N is a substructure
of M, N is an elementary substructure of M. This notion was introduced and used, for
instance, to prove Hilbert Nullstellensatz (Theorem 2.15.8) and give a model theoretic
proof of Artin’s theorem on Hilbert’s seventeenth problem (Theorem 2.15.9) in [51].

Proposition 2.14.1 [f T is model complete and has a model which is a prime struc-
ture of T, then T is complete.
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Proposition 2.14.2 [f T has quantifier elimination, it is model complete.

Proof Let M, N =T and M be a substructure of N. We need to show that the
inclusion map i : M < N is an elementary embedding. Take a formula ¢[x] and an
a € M. By elimination of quantifiers, there is an open formula v/ [x] such that

T = Vx(plx] < ¢[x]).

So,
M = glal & M = ¢lal,

N E¢lal & N = ¢lal

and since M is a substructure of N,

M = ylal & N = ylal.
The result follows now. O

Corollary 2.14.3 The theories DLO, DAG, ODAG, ACF, RCF and RCOF are
model complete.

Proposition 2.14.4 Let T be a model complete theory. Then

1. The class of all models of T is closed under unions of chains.
2. T is a V3 theory.

Proof By model completeness, every chain of models of T is an elementary chain.
Hence, their unions are models of 7. By Corollary 2.4.6, (1) implies (2). (Il

Proposition 2.14.5 An L-theory T is model complete if and only if for every model
M of T, T U Diag(M) is a complete theory.

Proof Note that T U Diag(M) is complete if and only if every model of T U
Diag(M) is elementarily equivalent to M. Further, every model of T U Diag(M) is
elementarily equivalent to M if and only if 7' is model complete. The result follows.

]

Proposition 2.14.6 Let T be a theory. The following statements are equivalent:

1. T is model complete.
2. Forevery M, N =T with N T M, for every formula ¢[x] without parameters,
foreverya € N,
M = glal = N E g¢lal.

3. Every model of T is an existentially closed model of T.
4. Every existential formula is equivalent in T to a universal formula.
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5. Everyformula ¢[x] (without parameters) is equivalent in T to a universal formula
Y [x] (without parameters).

6. Every formula ¢[x] (without parameters) is equivalent in T to a existential for-
mula E[x] (without parameters).

Proof (1) implies (2) because for a model complete theory T, every submodel of a
model of T is an elementary submodel. (3) is a special case of (2).

Now assume (3). Take M, N =T with N T M. Let ¢[x] be an existential for-
mula, anda € N.By (3), N is existentially closed in M. Hence, M = ¢la] = N
plal. Therefore, by Proposition 2.4.3, ¢ is equivalent to an universal formula.

Clearly, (4), (5) and (6) are equivalent. (5) and (6) together imply that 7" is model
complete. O

Let T be an L-theory. An L-theory T’ is called a model companion of T if it
satisfies the following three conditions:

1. T’ is model complete.
2. Every model T has an extension which is a model of 7’.
3. Every model T’ has an extension which is a model of T'.

Example 2.14.7 1. The theory of infinite sets is a model companion of the empty
theory.

DL O is a model companion of the theory of linearly ordered sets.

D AG is a model companion of the theory of torsion-free abelian groups.

O D AG is a model companion of the theory of ordered groups.

ACF is a model companion of the theory of integral domains.

DA e

Proposition 2.14.8 A theory T can have at most one model companion.

Proof Let T;y and T} be model companions of 7'. Start with a model M, of Tj. Get an
extension M of M, that models 7. Then get a model Ny of T; that extends M. There
exists a model N of T that extends Ny, Now get a model M, of T that extends N.
Proceeding similarly, we get a chain of L-structures

MyENoEMENE---

such that {M;} is a chain of models of T, and {N,} is a chain of models of T.
But Ty and 7} are model complete. Hence these two chains are elementary. Let
M’ = UM} = Ui Ni. Then M, is an elementary substructure of M’ and M’ = T.
Thus, every model of T is a model of 7;. Likewise, every model of 7; is a model of
1. ([

Exercise 2.14.9 A linearly ordered set (D, <) is called discrete if every element
of D that is not the least element has an immediate predecessor and every element
that is not the greatest element has an immediate successor. Show that the theory
of discrete linear orders with no least element and no greatest element is not model
complete. In Exercise 4.7.8 it is shown that this theory is complete.
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2.15 Some Applications to Algebra and Geometry

Let [ be a field. A set C C " is called constructible if and only if it belongs to
the algebra of subsets of " generated by sets of the form {a € " : f(a) = 0},
f e F[Xy, ..., X,]. Since ACF has quantifier elimination, we have the following
result:

Proposition 2.15.1 For every algebraically closed field F, C C F" is constructible
if and only if it is definable.

This is a generalisation of

Theorem 2.15.2 (Chevalley Projection Theorem) If F is an algebraically closed
field and C C F"™*! constructible, then its projection mg. (C) C F" is constructible.

If F'is areal closed ordered field, then D C " is definable if and only if it belongs
to the algebra A, of subsets of " generated by sets of the form {a € F" : p(a) <
0}, where p € F[Xy, ..., X,]. Geometers call sets in A,, n > 1, semi-algebraic. A
function f : F" — F” is called semi-algebraic if its graph is semi-algebraic. So,
semi-algebraic sets and functions in a real closed field are precisely those which are
definable. This can be thought of as the counterpart of Chevalley’s theorem in real
case. We now have the following result of Tarski and Seidenberg.

Theorem 2.15.3 (Tarski—Seidenberg Theorem) If F is a real closed field and
f:F" > F", C CF" and D C F" semi-algebraic, then f(C) and f~'(D) are
semi-algebraic.

Since RCF is complete, every model of RCF is elementarily equivalent to the
ordered field of reals R or of real algebraic numbers R,;,. Hence, Th(R) = Th(R,,)
is the set of all theorems of RC F. This is very useful in proving many theorems of
RCF. We illustrate it by proving Rolle’s theorem for real closed fields.

Let IF be any field and >"_ a; X' € F[X]. Then the formal derivative of f is the
polynomial f'(X) = >/_ ia; X'~ ".

Theorem 2.15.4 (Rolle’s Theorem for Real Closed Fields) Let F be a real closed
field,a < binF and f € F[X] be such that f(a) = f(b). Then thereisa <c <b
such that f'(c) = 0.

Proof For each d > 1, consider the sentence ¢ given by

d d d—1

VxVxVy((x <y A Zx,-xi = Zx,-yi) - Jzx <z<yA Zix,-zi =0)).
i=0 i=0 i=0

By classical Rolle’s theorem for R, ¢ € Th(R). Since RC F is complete, it follows
that RCF = ¢. O
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Theorem 2.15.5 Let ¢ be a sentence of the language of the theory of fields. The
following statements are equivalent:

(i) CEo.
(ii) @ is true in some algebraically closed field of characteristic 0.
(iii) ACF(0) = .
(iv) There is an m such that for all prime p > m, ACF (p) = ¢.
(v) There is an m such that for all prime p > m, ¢ is true in some algebraically
closed field of characteristic p.
(vi) ACF(p) = ¢ for infinitely many primes p.

Proof Clearly (i) implies (ii). Since any two models of AC F(0) are elementarily
equivalent, (ii) implies (iii). Clearly (iii) implies (i).

Now assume (iii). Then by the compactness theorem, T = ¢, where T consists of
some finitely many axioms of AC F(0). Hence, there is an m such that for no prime
p > m, p # 0belongs to T. Thus, ACF(p) = ¢ for all p > m. Thus, (iii) implies
@iv).

Clearly (iv) implies (v). The statement (v) implies (iv) because each AC F(p) is
complete. (iv) clearly implies (vi).

‘We now show that (vi) implies (iii). Let AC F (0) = ¢.Since AC F (0) is complete,
it follows that AC F'(0) |= —¢. Since (iii) implies (v), there is an m such that for all
primes p > m, ACF(p) = —¢. This completes the proof. (I

Let p > 0 be a prime and Fl, the algebraic closure of the field with p elements.
It is a standard fact of algebra that every finitely generated subfield of F,, is finite.
Using this we easily get the following result.

Proposition 2.15.6 Let fi,..., f, € F,[X\,..., X,] be such that f = (fi,...,
IDE F’;, — F’; is injective. Then f is surjective.

Proof Assume that f is not surjective. Take any b ¢ range(f). Let K be the smallest

subfield of F,, that contains b and coefficients of fi, ..., fn. As observed above K
is finite. But then f : K" — K" is one-to-one but not onto. This is a contradiction
since K" is finite. (Il

Theorem 2.15.7 (Ax [1]) Let F be an algebraically closed field and fi, ...,
fo € F[Xy, ..., X,] be such that f = (fi1, ..., fn) : F" — F" is injective. Then f
is surjective.

Proof Let each f; be of degree at most d. It is not hard to see that there is a sentence
¢ of the language of fields saying that if f, ..., f, are polynomials of degree at
most d and if the map f = (fi, ..., f,) is injective, it is surjective.

Let IF be of characteristic p for some prime p > 1. By the last proposition F,, = o.
Since any two models of AC F'(p) are elementarily equivalent, F = ¢. As Fp Ee
for all prime p > 1, by the above theorem, AC F (0) = ¢ also. (|



2.15 Some Applications to Algebra and Geometry 83

We now give some applications of model completeness.
Recall that for an ideal / C K[X],

VI={f eK[X]: f" €I forsomen > 1}.

Then
V() = VWI).

Theorem 2.15.8 (Hilbert Nullstellensatz) Let K be an algebraically closed field and
I an ideal in K[X]. Then
V() = V1.

Proof Weclearly have VI cIOV()). If possible, suppose thereisan f € Z(V (1)) \
V1. By prime decomposition theorem (Theorem B.2.4), there is a prime ideal P D
VT not containing f. Since P is a prime ideal in K[X], K[X] /P is an integral
domain.

Let F be the algebraic closure of the quotient field of K[X]/P. By Hilbert’s basis

theorem (Theorem B.2.3), we fix a basis g1, ..., g € VT generating /1. Note that
each X; canberegarded as an element of K[ X ]. Because f ¢ Pandg, ..., gx € \/7,
we have

F = AL g (X XD = 0A fAXD, ... [X]) #0.

In particular,
F = 35(A,6:3) =0 A £(3) # 0).

By model completeness of RCF,

K = 35~ 6:(3) = 0 A £(7) #0).

This gives an a € K such that for all 1 <i <k, g;(@) =0 and f(a) # 0. But if
gi@ =0forall 1 <i <k, asgi,...,qg generate /I, a € V(~T) = V(I). Since
feZWV)), f(@) = 0. This contradiction proves the result. U

17th problem in Hilbert’s famous list of 23 problems was

Hilbert’s Seventeenth problem Let f € R(X) be a rational function such that
fornox € R", f(x) <O0. Then is it true that f is a sum of squares of finitely many
rational functions?

This problem was answered in the affirmative by Artin. Abraham Robinson
pointed out a strikingly beautiful proof of Artin’s theorem using model completeness
of RCOF. We refer the reader to the appendix in algebra and geometry for relevant
definitions and results on real closed fields.
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Theorem 2.15.9 Let T be a real closed field and f € FX)=FX,,...,X,) a
rational function over I in n variables such that for no x € F", f(x) < 0. Then f
is a sum of squares of rational functions over F.

Proof By Proposition B.3.4, the field of rational functions F(X) is real. Suppose f
is not a sum of squares. By Theorem B.3.7, there is a linear order < on the field F(X)
of rational functions over F making it into an ordered field such that f < 0.

Let K be the real closure of F(X) order compatible with <. Then

KE3Ix(fx) <0).
(Take x; = X; € K.) By model completeness of RCF,
FE=3x(f(x) <0).

But there is no @ € F such that f(a) < 0. Hence, f must be a sum of squares of
rational functions over F. ]



Chapter 3
Spaces of Types

Abstract In this chapter, we shall make a general study of types. This topic is quite
important because most of the modern concepts and techniques of model theory are
based on types. We introduce Stone topology on spaces of complete types. Omitting
types theorem is an important result proved in this chapter. A systematic study of
types was first made by Vaught in [66].

3.1 Realised Types

Let L be a first-order language and M an L-structure. For a € M", we define
tpM (@) = {¢[x] : M = plal, ¢ an L — formula},

and call it the type of @ in M. Note that if M < N, tp™ (@) = tp™ (@). Also observe
that for every formula ¢[x], exactly one of ¢[Xx] and —p[x] belongs to tpM (@). So,
tpM (@) may be considered to be the collection of everything that can be said about
the tuple a.

Next take any A C M. We define

tpM(@/A) = {o[x] : M = ¢lal, p an L, — formula},

and call it the relative type of a in M over A, or simply the type of a in M over A.
Again note thatif A C M < N, then tpM(a/A) = tp" (@/A).

Let M, N be L-structures, A C M (including A = @) and f : A — N a map.
Recall f is called partial elementary if for every L-formula ¢[x] and foreverya € A,

M = ¢lal © N E olf@].

Note that if for some A C M there is a partial elementary map f : A — N, then
M =~ N.Further, the empty function from M into N is partial elementary if and only
if M and N are elementarily equivalent.

© Springer Nature Singapore Pte Ltd. 2017 85
H. Sarbadhikari and S.M. Srivastava, A Course on Basic Model Theory,
DOI 10.1007/978-981-10-5098-5_3



86 3 Spaces of Types

Suppose @ € M" and b € N”. Then tp™ (@) = tp" (b) if and only if the map
@ — b is partial elementary. Further, assume that A ¢ M and @, b € M". Then
tpM(@/A) = tpM(b/A), if and only if the map f : AU {a; : i <n} — M, where
f1A is the identity map on A and f(a;) = b;, i < n, is partial elementary.

Proposition 3.1.1 Let M be an L-structure anda, b € M". Thentp™ (@) = tp™ (b),
if and only if there is an elementary extension N of M and an automorphism o :
N — N such that a(a) = b. Moreover, if L and M are countable, we can choose
N to be countable.

Proof The if part of the result is clear. So, we need to prove only the only if part.

Assume that @, b € M" are such that tp™ (@) = tpM(b). Set My = M. By
repeatedly using Proposition 2.5.2, we define an elementary chain

My XNy XMy XN XM XN, <---

and elementary embeddings oy : M; — Ny satisfying the following conditions:

. ap@) =b.
2. For each k, a4 extends ay.
3. Foreach k, Ny C a1 (Mp41)-

—_

Taking N = Uy M} = Uy Ny and oo = Uy, we get our result.

Since tpM (@) = tp™(b), My > a L he M, is partial elementary. Hence, by
Proposition 2.5.2, there exists an elementary extension Ny of M, and an elementary
extension «q : My — Ny of (.

Now assume that M;, N;, «;, i < k have been defined. Hence,

—1
Ne D ap(My) % My C Ny

is partial elementary. By Proposition 2.5.2, we get M;,; > N; and an elementary
extension [ : Ny — My of a,:l.
Then

B!
M1 D Bu(Ny) = Ni C My

is partial elementary. By Proposition 2.12.3, there exist Ny > M4 and an ele-
mentary extension a1 @ Miy1 — Niy1 of 5 I Clearly, oy extends ay. O

Let o be an ordinal number and @ = {a3 : § < a} a sequence in M of length
a. Then also, we can talk of tp™ (@) by starting with a first-order language with
a sequence of variables x = {x3 : 8 < a} of length a. For a formula ¢ (with
free variables), [a] will denote the L j-formula obtained by replacing each free
occurrence of xg in ¢ by ag. With these definitions, we define

tpM (@) = {¢[x] : M [= plal, ¢ an L — formula}.
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tpM(a/A) in this case is defined as before.

We shall prove results for types of finite sequences only. But the reader should
observe that many of the arguments done in the conventional first-order language
goes through in this general set up also where the sequence of variables is of length
«, « an arbitrary ordinal.

3.2 n-Types

Let M be an L-structure, A C M,n > 1, and p = p(x) a set of L 4-formulas ¢[x],
where X = (xg, ..., Xx,—1). We call p a n-type in M over A if for every finite set
©0, - - ., r—1 of formulas in p there is aa € M" such that M |= A;_xp;[a]. This is
equivalent to saying that p is an type in M over A if for every finite set oy, ..., ©r—|
of formulas in p there is an elementary extension N of M and aa € N" such that
N = Aicapilal. If A = @, we call p(X) just a n-type in M.

Clearly, for every @ € M", tpM(@/A), or any subset of tp™ (@/A), is a n-type in
M over A. Further, if N > M and @ € N", then tp" (@/A) is a n-type in M over A.
Later, we shall see that every n-type in M over A is a subset of tp" (a/A) for some
N > M anda € N".

We say that p is realised in M if p C tp™(a/A) for some @ € M. In this case,
we say that a realises p and write a = p. The set of all realisations of p in M will
be denoted by p(M). If no a in M realises p, we say that M omits p.

Example 3.2.1 Consider the standard model N of Peano arithmetic. Let
px)={x>n:necw}

Then p(x) is a type in N, which is omitted in N.

Since every model of Diag,; (M) is an elementary extension of M, note that p
is a n-type in M over A if and only if p U Diag,.; (M) is finitely satisfiable. Now a
straightforward application of compactness theorem gives us the following result.

Proposition 3.2.2 Let M be an L-structure, A C M and p(X) a set of L s-formulas
p[x], where X = (xo, ..., Xn—1). Then p is an n-type in M over A, if and only if
thereisa N = M and aa € N" such that N |= pla] for every p € p.

In fact, we can say more.

Proposition 3.2.3 Given any L-structure M, there is an elementary extension N of
M such that for every A C M, every type p(x) over A is realised in N.

Proof For each n-type p(X) (over some subset A of M), add a n-tuple of constant
symbols ¢, to L. Note that

P = Diaga(M) U {plc,] : o[x] € p}
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is finitely satisfiable. Hence, P has amodel, say N. Then N is an elementary extension
of M such that for every p € P, the interpretation of ¢, realises p in N. O

Remark 3.2.4 If Kk > Ry and |L|, |M| < K, then every n-type p in M over A is
realised in an elementary extension N of M with |N| < k. This can now be easily
seen by downward Lowenheim—Skolem theorem.

An Observation. Let p(x) be a n-type in M over A and ¢[x] an L 4-formula such
that none of ¢ and — belongs to p. Then, at least one of p U {¢} or p U {—p} is
a n-type in M over A. If not, then there exist finite &, &, C p such that neither
@, U {p} nor &, U {—¢} is satisfiable in M. But then ®; U &, C p is finite and not
satisfiable in M. This contradicts that p is a type in M over A.

A n-type p(x) in M over A is called a complete n-type in M over A if forevery L 4-
formula [x] either ¢ or = is in p. Since p is finitely satisfiable, this is equivalent
to saying that exactly one of ¢ and —¢ is in p. Using Zorn’s lemma and the above
observation, we see that every n-type in M over A is contained in a complete n-type
in M over A. Further, complete n-types in M over A are precisely maximal n-types
in M over A.

We let S, (M /A) denote the set of all complete n-types in M over A.If A = (J, we
shall write S, (M) instead of S, (M /@). Note that p € S,,(M/A) if and only if there
is an elementary extension N of M and a n-tuple @ € N such that p = tp" (@/A).
Thus, each complete n-type in M is the collection of all statements that hold for
some n-tuple in an elementary extension of M, though such a n-tuple may not exist
in M. If « is an ordinal number, then S,(M/A) will denote the set of all complete
types in M over A in a sequence X = {x5 : B < «} of variables of length .

Here are some simple observations on complete n-types in M over A, which will
be used in the sequel without specific mention. Let p, g € S,(M/A).

(1) p € g = p = g: If possible, suppose there exists 1 € g\p. Since p is
complete, =) € p C g. Thus, both 1, =) € g contradicting that ¢ is finitely
satisfiable.

(2) Let p[x] € p, ¥[x] an Ls-formula and M | Vx(¢ — ). Then ¢ € p.
Suppose not. Then —1) € p. Since M = Vx (¢ — ), {¢, =1} is not satisfiable in
M, a contradiction. It follows that if M = Vx(p[x] <> ¥[x]), then either both ¢, ¥
belong to p or none of these two belongs to p.

(3) 1 V.-V, e pifandonly if ¢; € p for some 1 <i < k. If part follows
from (2). If no ¢; € p, then by the completeness of p, =1, ..., =y € p. Since
{VE_ 0i, =1, ..., ) is not satisfiable, we have @1 V -+ V ¢ ¢ p.

@) 1 NNy € pifandonlyif ¢; € pforall 1 <i < k. This is easily seen
asin (3).

Now, we define types in an L-theory 7. Let T be an L-theory and p = p(X) a set
of L-formulas ¢[x], where X = (xq, ..., Xx,—1). Wecall pan-typein T if pUT is
finitely satisfiable. By compactness theorem, this is equivalent to saying that there
is a model M of T in which p is realised. p will be called a complete n-type in T
if for every L-formula ¢[x] either ¢ or —¢ is in p. S, (T") will denote the set of all
complete n-types in 7. Similar observations as above are easily seen to be true.
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Exercise 3.2.5 Let T be a complete theory and M = T. For every n > 1, show that
Sp(T) = Su(M).

3.3 Stone Topology on the Space of Complete Types

Let M be an L-structure and A C M. For an L 4-formula ¢[x], X = (xq, ..., X4—1),
define

[l ={p € Su(M/A) : p € p}.
We then have

(%) [x0 # x0] = ¥ and [xp = xo] = S, (M/A).
() [l N [Y] = [p A ).

() [Pl U [¥] = [ Vv ]

(%) Sp(M/A)\ [p] =[]

This shows that {[¢] : ¢ an L, — formula} is a base of a topology on S, (M/A)
which is zero-dimensional, i.e. the topology has a clopen base. We equip S, (M /A)
with this topology and call it the Stone topology.

S,(M/A) is Hausdorff: Let p # g € S,(M/A). Then, thereisa ¢ € p\ g. Since
q is complete, ¢ € ¢q. Thus, p € [¢], ¢ € [—p]. Since [¢] N [—p] = @, our
contention follows.

S,(M/A) is compact: Let F = {[] : ¢ an L, — formula} be a family of basic
clopen sets with finite intersection property. Then v = {p : [¢] € F} is a n-type in
M over A: Let ¢y, ..., pr € v. By our hypothesis, there is a n-type p in M over A
that contains each of ¢y, ..., . Hence, {¢1, ..., ¢} is satisfiable in M. So, there
is a complete n-type p D «vin M over A. This implies that p € NF.

If L and A are countable, then S, (M /A) has a countable base. This implies that
S, (M /A) is metrisable. The following theorem sums up the above observations.

Theorem 3.3.1 S,(M/A) is a compact, zero-dimensional, Hausdorff space. More-
over, if L and A are countable, S,,(M/A) is a compact, zero-dimensional metrisable
space.

We make a series of simple but useful observations on the topology on the space
of complete types.

Lemma 3.3.2 Let M be an L-structure and A C B C M. Define

1A S, (M/B) — S,(M/A)

plA={p e p:pan Ly — formula}, p € S,(M/B).
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Then, -|A : S,(M/B) — S,(M/A) is a continuous surjection.

Proof Letq € S,(M/A). Then ¢ is a type in M over B. Let p € S;(M/B) contain
q. Since ¢ is complete (over A), p|A = g. This proves that the map | A is surjective.
It is also a continuous map: Let ¢o[X] be an L 4-formula. Then,

(1A) (e = (p € Su(M/B) : ¢ € S,(M/B)}.

We call p|A a restriction of p, p an extension of p|A.

Lemma 3.3.3 Let M, N be L-structures, A C M, f : A — N partial elementary
and B = f(A). For p € S,(M/A), define

f(p) ={olx, f(@)]: ¢lx,yl an L — formula & ¢[x, a] € p}.

The map p — f(p) from S,(M/A) to S,(N/f (A)) is a homeomorphism.

Proof Since f is one-to-one and f, f~! are elementary, it is easily seen that p —
f(p) is a bijection from S,(M/A) to S,,(N/B).

This map is continuous: Take any L-formula o[, 7] and b € B. Then, there is a
unique tuple @ € A such that f(@) = b. Now note that f~'([¢[x, b]]) = [¢[X, all.
By usual topology arguments or by reversing the above argument, we see the map
p — f(p) from S,(M/A) to S,,(N/B) is a homeomorphism. O

Lemma 3.3.4 Let M be an L-structure and A C M. For p(X,y) € Syam(M/A),
define
m(p) = {plx,al : plx,al € p(x,y)}.

Then, 7 : Syom(M/A) — S,(M/A) is a homeomorphism.

Proof Arguing as in Lemma 3.3.2, we see that n(p) € S,(M/A) and 7
Sntmmyay —> S,(M/A) is a continuous surjection.

The map 7 is open also. To see this take an L 4-formula ¢[Xx, y]. Let p[x,y] €
Sptm(M/A) contain ¢[x, y]. Then ¢[x] = Jyy[x, y] € p. If not, then —p[X] € p.
But {—p[x], ¥[x, y]} is not satisfiable which is a contradiction. Now take any ¢ (x) €
S,(M/A) containing @[x]. Let N > M realise ¢, say by b. Since N |= ¢[b], there
isac € N such that N = 9[b, ¢]. This shows that ¢ U {1[x, 7]} is a (n 4+ m)-type
in M over A. Hence, thereis a p(X,y) € Sy+m(M/A) such that 7(p) = ¢g. Thus, we
have proved that w([¥']) = [¢].

Next take an @ € M". For each p(x, %) € Sptm(M/A) with w(p) = tpM(a/A)
define

h(p) = {¥la,yl : ¥I[x,yl € p}.
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For every ¢[x,y] € p, Iyv[x,y] € p. So, by our assumption, M = Fyy[a, y].
Now it is easily seen that £(p) € S,,(M/Aa). Conversely, for any g € S,,(M/Aa),
define

f@) ={lx, yl :yla,yl € q}.

Then, f(q) € Syam(M/A), m(f(q)) = tpM(@/A) and f = h~'. Also note that for
any L 5 -formula ¥[a, 7], h~ ' ([v[a, §]]) = [[x, ¥]]. Hence, h is continuous, and
so a homeomorphism. O

Remark All these arguments hold for S,(M/A) where « is an ordinal num-
ber. In particular, the Stone topology on S,(M/A) is compact, Hausdorff, and
zero-dimensional.

Let T be a first-order theory and n > 1. Likewise, we topologise S, (7). For an
L-formula ¢[x], X = (xo, ..., X,—1), define

[l ={p € Su(T): v € p}.

These form a base of a topology on S, (T') with respect to which S,,(7T") is a compact,
Hausdorff, zero-dimensional space. Moreover, if L is countable, S, (T') is a compact.
zero-dimensional, metric space.

Exercise 3.3.5 Let T be an L-theory. Show that A C S, (T) is clopen if and only if
A = [¢] for some L-formula . Show also that A is closed if and only if there is a
set of L-formulas F such that

A={peS,(T):FCp}

Exercise 3.3.6 Let T be an L-theory. For p(x,%y) € Sy4m(T),where x = (xg, ...,
Xp—1) andy = (Yo, - .., Ym—1), define

m(p) = {plx]: ¢[x] € p}.

Show that w(p) € S,(T) and the map p — w(p) from Sy, (T) to S, (T) is contin-
uous, open, and surjective.

3.4 Isolated Types

Let M be an L-structureand A C M. A p € S,(M/A) is called an isolated type if p
is an isolated point of S, (M/A). So, p is isolated if and only if {p} = [] for some
L 4-formula o[x].

Proposition 3.4.1 Let p € S,(M/A) and ¢[X] an L s-formula satisfiable in M.
Then, the following two conditions are equivalent.
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1. {p} =gl
2. For every L s-formula [x],

YIx] € p & M = Vx(p[x] — ¢I[xD).
3. For every L a-formula 1[x],
YIx] € p = M = VX (p[X] — ¢[x]).

Proof Assume (1) and let ¢)[x] be an L 4-formula. Since p is a complete type, ) € p
whenever M = Vx (p[x] — 1[Xx]). Now assume that M = Vx (p[x] — ¥[X]). Then
{v, =)} is satisfiable in M. So, there is a complete n-type in M over A containing
o and —. Since p is the only complete n-type in M over A containing ¢, =) € p.

Hence, 9 ¢ p.
Now let (2) be true and (1) false. Geta g € S, (M /A) containing ¢ different from

p. Suppose Y[x] is an L 4-formula in g \ p. Since p is complete, =) € p. Hence,
by 2), M = Vx(p[x] — —[x]). But then {p, ¥} is not satisfiable in M. This
contradicts that g is a type.

We now prove that (3) implies (2). Let

M = Vx(p[x] — [x]).
If possible, suppose ¥[x] ¢ p. Since p is complete, —)[x] € p. By (3),
M = VE(p[X] — —0[E]).

Since there exists an a € M such that M = ¢[a], we have now a contradiction. []

We shall need this notion for incomplete types also. A n-type pin M over A C M
(not necessarily complete) is called isolated, if there is an L 4-formula ¢[X] such that

Y[x] € p = M = Vx(p[x] = [x]).

If {p} = [p], we say that ¢ isolates p. We make a series of preliminary observa-
tions first.

Remark 3.4.2 If p and ¢’ isolate p, then M = Vx(p[x] <> ¢'[X])

Remark 343 If A C B C M,a € M and ¢[x] is an L4-formula that isolates
tpM(@/B), then ¢ isolates tp™ (a/A)

Remark 3.4.4 1If gf[f, 7l is an L 4-formula that isolates tp™ (a, E/A), then ¢[x, b]
isolates tp™ (a/Ab).
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Remark 3.4.5 1f tp™ (@, b/A) is isolated, then 1p™(@/A) is isolated. To see this
let ¢[X, 7] be an L -formula that isolates tp™ (a, b/A). Then Iy[x, 7] isolates
tpM(a/A): Let p[x] be an L 4-formula. Then

M = plal & M = VxVy()[x, y] — ¢[X])
< M EVX(Vy—ylx, yl v o[x])
< M EVx(@Eyylx, yD) — ¢lx])

Proposition 3.4.6 Ler M be an L-structure and A C B C M. Suppose for every
b e B", tpM(b/A) is isolated. Then for everya € M", tp™ (a/B) is isolated implies
that tpM @/ A) is isolated.

Proof Getan L-formula+[X,%]andab € B suchthatt[x, b]isolatestp™ (@/B). By
the last remark, the proof will be complete if we show that tpM (a, E/ A) is isolated.

Get an L 4-formula ¢[7] that isolates tp™ (E/ A). We show that ¥[x, y] A ¢[y]
isolates 1p™ (@, b/ A). Fix an L 4-formula 7[x, 7]. Then

M = nla, b] & M = Vx([x, b] — nlx, b)
& M = Vy(plyl — YX@Ix, 71 — nlx, 71)
& M = VIVY((IE, Y1 A elyl) — nlx, 7))

This completes the proof. O
A variant of this result is the following, whose proof is left for the reader.

Remark 3.4.7 1f tp™(b/A) and tp™ (a/Ab) are isolated, then tp™ (@, b/A) is iso-
lated.

Remark 3.4.8 If a € acl(A), then tpM(a/A) is isolated. Since a € acl(A), there
is an L s-formula ¢[x] and an > 1 such that M = ¢la] A 3_,xp[x]. We choose
such a <p with n least possible. If there exists a 1)[x] € tp™(a/A) such that M -
Vx(p[x] — ¥[x]), then the number of b € M such that M = (o A)[b] is less than
n. This is a contradiction. Hence, ¢ isolates tp™ (a/A).

Exercise 3.4.9 Let M be an L-structure, A C M and a € acl(A). Show that
tpM(a/A) is isolated.

Proposition 3.4.10 Let M be an L-structure and A C B C M |= T be such that
Jor every d € B, tpM (d/A) is isolated. Assume that tp™ (@ B) is isolated. Then, for
everyb € B, tpM (@, b/A) is isolated.

Proof Let 04[x, 7] bg an L-formula and ¢ € B be such that 6[Xx, E]_ isolates
tp"(@/B). Take any b € B. Let 6,[7, Z] be an L s-formula isolating 1p" (b, ¢/ A).
Now let [, 7] € tpM (@, b/ A). Then, ¢[x, b] € tpM (@/B). Hence,

M = Vx(6,[x,¢] — ¢[x, b)),



94 3 Spaces of Types

ie.,
VX (0:1[x, 2] > oIX, Y1) € tpM (b, T/ A).

Therefore,
M = Yyvz(hhly, 7] — Vx(01[x, 2] — olX, y])).

By prenex operations, we now get

M | VxVyvz(0aly, z] — 0.1[x,Z] — »IX, y]).

Therefore,

M = Vxvyvz((=th[y, z] v =0:[x,Z]) V ¢lx, y]).
Hence,

M = VxvVy(Vz(=bs(y, 7] v =0i[X, Z]) V ¢lx, y]).
Thus,

M = VxVy(Fz(0a[y, z] A 01[x, 2)) — olx, yD).
Conversely, let ¢[x, y] be an L 4-formula such that (%) holds. Since

M = 6,(b,¢) A6,(@,0),

(%)

olx, 7] € tpY(a, E/A). Thus, the L4-formula 3z(6,[y, z] A 6:[x,z]) isolates

tpM@, b/ A).

O

Let T be an L-theory and p € S,(T). We say that p is an isolated type in T if
it is an isolated point of S, (7). So, p € S,(T) is isolated if and only if there is an
L-formula ¢[x] such that {p} = [¢]. In this case, we say that ¢ isolates p. Again,

we have the following theorem whose proof we leave for the reader.

Proposition 3.4.11 Let p € S,(T) and p[x] be a consistent L-formula. Then, the

following statements are equivalent.

L {p} =l¢l
2. For every L-formula ¥[x],

Ylxl € p & T E Vx(elx] — YIx]D).
3. For every L-formula 1[X],

YIxl € p=T E Vx(p[x] = p[X]).

Example 3.4.12 If T is a complete theory, then every isolated type in T is realised
in every model of T. To see this, take an isolated type p(X) in T. Let ¢[x] be an
L-formula that isolates p. Now take any model M of T. Then M |= Ixp[x]. If not,
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then M = —3xp[x]. Since T is complete, this shows that T |= —3xp[x]. But then
T U {Ixp[x]} is not satisfiable. This is a contradiction. Now let a € M be such that
M = ¢la]. Since ¢ isolates p, for every ¢[x] € p, T = Vx(p[x] — 9[x]). Hence,
M = +[a]. This completes the proof.

Example 3.4.13 Let M be an L-structure, A C M and a € A”". Then, the formula
Ai<nXi = a; isolates tp(a/A).

Example 3.4.14 For every k € N", the formula A;-,x; = k; isolates tpN(z).

Example 3.4.15 Consider R = RCOF.Leta < bbetwo real numbers. Then, there
exist integers n, m withn > O such thatn-a < m < n-b. It follows that the formula
n-x < misintp®(a) but not in tp® (b). Thus |S;(R)| > c.

Example 3.4.16 Consider the theory DL O. Take an isolated p(x) € S,(DLO).
Since DLO is complete, p(X) is realised in Q, say by ¥ = (rg,...,r,—1). So,
p=1p%@).

We now show that every realised type #p@(7) is isolated. For simplicity, assume
that ro, 11, ..., r,—; are all distinct. Suppose 7 is the permutation of 0, 1, ..., n — 1
such that rr0) < rrq) < -+ < rr@—1) and

Y[IX] = Xz0) < Xz(1) <+ < Xrp(u—1)-

Note that for 7,5 € Q", 7 — 5 is an order isomorphism if and only if there is an
a € Aut(Q) such that «(f) = 5. Using this it is easy to show that )[Xx] isolates
tpR (7). We invite the reader to complete the proof.

Example 3.4.17 Consider Q = DLO. Let p € §,(Q/Q). Since p is a complete
1-type in Q over Q, for each a € Q,

xX<aVvVx=avVvVa<Xxep.

Hence, for each a € Q, exactly one of the formulas x < a, x = a, a < x belongs
to p.

Assume that for some a € Q, x = a is in p. If possible, suppose there exists a
Y[x] € tp(a/Q) which is not in p. But then, by the completeness of p, = € p.
This is a contradiction because {x = a, —%[x]} is not satisfiable in Q. Hence, by
completeness, p = tp(a/Q). We also see that in this case p is isolated by x = a.

Assume that p € S§1(Q/Q) is not realised in Q. Set

L,={aecQ:a<xep)&U,={beQ:x <bep}
Then L, NU, =9¥,L,UU, =Q,a <bwhenevera e L,andb e U,,ifaec L,

anda’ < ainQ,a € L,, whereasif b € U, and b < b, b" € U,. So, each
p € $1(Q/Q) determines a cut (L, Up) in Q.
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Conversely, suppose (L, U) is a cut in Q. Then,
fa<x:aelLlU{x <b:belU}

is finitely satisfiable in Q. So, there is a complete 1-type containing all these formulas.
Now let p, g be complete 1-types over Q such that

P.q € Nuerla < x] N Mpey[x < b].

This implies that p and ¢ contain the same atomic Lg-formulas ¢[x]. By induction
on the rank of open formulas and completeness of p and ¢, it follows that p and ¢
contain the same open Lg-formulas ¢[x]. Since DL O has quantifier elimination,
it follows that p = ¢q. Thus, there is a natural one-to-one correspondence between

$1(Q/Q) and cuts in Q.
This immediately implies that |S;(Q/Q)| = 2™.

Example 3.4.18 Let K = ACF and A C K. Let x denote the prime field of K, A
the subfield generated by A and n > 1.

We claim that p — p|A is abijection from S, (K/A) — §,(K/A). Itis easy to see
that this map is a surjection. (We have noted this in Sect. 3.3) Take p # g € S, (K/A).
Then there is an Ly-formula ¢[x, a] such that ¢ € p and —¢ € g. Now note
that there exist by, ..., b, € A and for each a;, an f; € k(X1,...X,,) such that
a; = fi(by, ..., by).Itis fairly routine to get an L 4-formula ¢/’[x] with parameters
by, ..., b, suchthat’ € p and /' € q.

For a complete n-type p in S, (IK/A), define

I, ={f[X] € A[X]: f(x) =0 € p}.
Let f(X), g(X) € A[X]. Then,
KEYX(fX)=0Agx)=0) — (f+9X)=0)

and
KEVI(f(x)=0— (f -9 =0).

Since p is complete, these imply that /, is an ideal on A[X]. Now suppose
frgeAlX]and f-ge I, ie., (f-g)(x) =0 € p. This is equivalent to

J&E) =0vgXx) =0¢€p.

Since p is complete, either f(X) =0 € p or g(x) = 0 € p. It follows that f € I,
org € I,,ie., I, is a prime ideal.

Interestingly, every prime ideal J of A[X] induces a complete n-type p over A
such that J = I, and this correspondence between S, (K/A) and the S, pec(A[X)),
the set of all prime ideals of A[X], is a bijection.
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By Proposition 9.2.8, for every prime ideal J in A[X], there is a prime ideal / in
K[X] such that -
J =1NA[X].

Then, K[X]/1 is an integral domain. Let IF denote the algebraic closure of its quotient
field. By model-completeness of ACF, F is an elementary extension of K. Set
a; = [X;] € F. Note that, for f € K[X],

f@=0% fel.

So,if p=tp@/A), I, =J.

The quantifier elimination of AC F helps us to prove that this correspondence is
one-to-one. Let p, g € S,(K/A) and I, = I,. Any open L -formula is equivalent
to a disjunction of formulas of the form

AN (fix) = 0) AN (g (X) # 0),

fivgj € A[X]. Since I » = Iy, it follows that both p and g contain the same open
L p-formulas. Since AC F has quantifier elimination, it follows that p and g contain
same formulas and so are equal.

We close this section by giving an application of isolated types.

Proposition 3.4.19 Let T be a complete theory, M, N = T and ¢ a strongly min-
imal L-formula such that dim(p(M)) = dim(@(N)). Then, there is an elementary
bijection g : p(M) — @(N).

Proof Let A be abasis of ¢(M) and B that of ¢(NN). Take any bijection f : A — B,
Then f is partial elementary by Proposition 2.12.3. By Zorn’s lemma, there exists
a maximal partial elementary extension g : A — B’ of f with A" C (M) and
B’ C ¢(N). If possible, suppose there exists an a € ¢(M) \ A’. Since a € acl(A’),
tpM(a/A’) is isolated by Remark 3.4.8. Let 1[x, @] be an L 4 -formula isolating
tpM(a/A)). In particular, M = Ix(Y[x, a] A ¢[x]). So there exists a b € @[N]
such that N = ¢[b, g(a)]. It is easily seen that g U {(a, b)} is partial elementary,
contradicting the maximality of g. Thus, dom(g) = ¢@(M). Similarly, we show that
dom(g™") = @(N). O

Applying this result to the formula x = x, we have the following important result
as a corollary.

Corollary 3.4.20 If T is a complete, strongly minimal theory and M, N =T, then
M and N are isomorphic if and only if dim(M) = dim(N).

Corollary 3.4.21 Let T be a countable, complete, strongly minimal theory. Then,
SJorall A > Ro, T is \-categorical.
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Proof Let M, N = T be of cardinality A\ > R, and A, B be bases of M and N
respectively. Then
M| = |acl(A)| = max{|A[, Ro} = A.

Hence, |A| = A. By the same argument |B| = A. The result follows from the last
corollary. (|

3.5 Algebraic Types

Let M be an L-structure and A C M. An L 4-formula ¢[x] is called algebraic if
there exists a positive integer n such that

M E 3,00x].

The integer n is called the degree of ¢ and is denoted by deg (). If no such n exists,
 is called non-algebraic.

A p € S)(A) is called algebraic if it contains an algebraic formula. Otherwise
p is called non-algebraic.

Proposition 3.5.1 Let p € SY(A) be an algebraic type. Then p is an isolated type.
In particular, p is realised in M.

Proof Get a ¢[x] € p realised by minimum number of elements in M. Let ¢ € p.
Then pAy € p.So, (pAY)(M) = o(M). Thisimpliesthat M = Vx (p[x] — ¥[x]).
Hence, p is isolated by ¢ by Proposition 3.4.1. (I

Proposition 3.5.2 p € SM(A) is algebraic if and only if p has only finitely many
realisations in every elementary extension of M.

Proof Let p[x] € p and suppose thereisann > 1 suchthat M = 3_,x¢[x]. Hence,
N E 3_,x¢[x] whenever N is an elementary extension of M. Conversely assume
that p is non-algebraic. Add constant symbols {c; : i € w} and consider the theory

T = Diaga(M)U{c; #¢;:i # j}Ulplal:pep A i ew).

This is finitely satisfiable in M. Hence, it has a model N which is an elementary
extension of M in which p has infinitely many realisations. (]

Proposition 3.5.3 Let p € SM(A) be non-algebraic and A C B. Then, p has a
non-algebraic extension g € S (B).

Proof Consider

g = p U {— : 1 an algebraic L — formula}.
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Then g is finitely satisfiable. Otherwise, there exist algebraic L z-formula )y, ..., ¥,
and a ¢ € p such that

M EVx(plx] = (@ilx] V-V, [x]).

This implies that o € p is algebraic, a contradiction. Extend ¢ to a complete type
over B, say r. Clearly, r is complete and contains no algebraic L z-formula. O

3.6 Omitting Types Theorems

Let T be a complete theory. In the last section we saw that if p is an isolated n-
type in T, then there is no model M of T which omits p. Quite interestingly the
converse of this fact is also true if 7 is a countable consistent theory. This is proved
by imitating Henkin style proof of the compactness theorem that we presented earlier.
The following theorem is due to Henkin [19] and Orey [45].

Theorem 3.6.1 (Omitting Types Theorem) Let T be a countable consistent L-theory
and p a non-isolated n-type in T. Then, there is a countable model M of T that
omits p.

Proof We add countably many distinct new constant symbols {c;} to the language
of T and no new non-logical axiom. Denote the new language by L and the new
theory by T also. Let {1,} be an enumeration of all closed L-formulas and {a;} an
enumeration of all n-tuples of new constants c,,’s.

We shall get a complete Henkin simple extension 7* of 7 and a countable model
M of T* such that

(a) Every element of M is the interpretation of some cy.
(b) For every k, there is a formula ¥[x] € p such that M = ¢[i,, .

It will then follow that M is a countable model of the original 7 that omits p.
To construct such a T* we shall first define a sequence of closed L-formulas {¢,}
such that

(c) Forevery k, T[] is consistent.

(d) Fork <1, T = ¢ — ¢.

(e) For every k, if ¢, is an existential sentence Jvn[v] such that T [¢o] &= ¥, then
T [pax+1] E nulen] for some m.

(f) For every k, there is a 1) € p such that T [p12] = —Ylak].

Take ¢( to be any sentence consistent with 7. Suppose ¢, has been defined so
that T [¢o¢] is consistent.

If 4y is not an existential sentence, or if T[py] &= ¥y, we take worr1 = Y.
Otherwise, 1) is a closed existential formula, say Jvn[v], and T[px] E 9. Since
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only a finite number of the new constants ¢; appear in (y; and 1y, take a constant
symbol ¢, that does not occur in ¢y, and . Set por+1 = @ A Nylcm]-

We need to show that T'[¢o;41] is consistent, i.e., T [{¢ o, nv[cn]}] has a model.
To see this take a model N of T[py]. Then N = 1/;. So, there is a b € N such that
N E n,[b]. Now interpret ¢, by b in N. We definitely have T [@ax+1] = nylcm].

Letay = (¢, - - -, ci,)- Replace each occurrences of ¢;; in ¢;+1 by anew variable
xj and each ¢, ¢ {c;; : 1 < j < n} occurring in ¢+ by a new variable y,, to get
¢’ and set ¢"[x] = Jy’. Because p is not isolated, there is a )[X] € p such that

T B Vx (" — ). ()

Set Y12 = Po+1 A —-1&[ak]._ We must show that T [(pa42] is consistent. By (%),
there is amodel N of T and a b € N such that

N E ¢"[B] A —B].

Interpreting c;; by bj, 1 < j < n, we see that N = ¢p2. This completes our
construction.

Let 7’ be the theory T[{y) : k > 0}]. Then, T’ is a countable consistent Henkin
theory such that for every & there exists a1y € p such that 7’ = —1[a,]. By Linden-
baum’s theorem, 7’ has a complete simple extension 7*. Clearly, 7* is countable.

Let M be the canonical model of 7* obtained in the proof of Theorem 2.2.3. We
claim that every element in M is an interpretation of some c;. To see this, take a
variable-free term ¢ = [t ---f; and consider ¢y = Jx(x = ). Then T’ = 4. So,
1) must have occurred at some stage (e) in our construction, giving us a ¢; such that
T " =c¢ =t. ([l

Proposition 3.6.2 Let T be a countable consistent theory and {p,,} a sequence of
non-isolated n-types in T. Then, there is a countable model of T that omits each

of p.

This is proved by imitating the last proof with the following change. For each k of
the form 29(2r+1)—1 we ensure that thereisa® € p, suchthat T'[py 2] = —¢[a,].
This clearly can be done. The model M thus built will still be countable such that
for each g and each r, there is a ¢ € p, such that M = [a,].

Example 3.6.3 Omitting types theorem is not necessarily true if 7' is not countable.
Let T be the theory with uncountably many constant symbols and no other non-
logical symbol. Let C U D be the set of all constant symbols with C uncountable, D
countably infinite, and C N D = @. The axioms of T are formulas ¢ # ¢’, where ¢
and ¢’ are distinct constant symbols that belong to C.

Let p(x) = {x # d : d € D}. Clearly p(x) is a 1-type in T. Let ¢[x] be a
formula consistent with 7. Since only finitely many constants occur in ¢, there is a
d € D such that p[x] A (x = d) is consistent with 7. Thus, p is not isolated. As
every model of T is uncountable, p(x) is realised in every model of T.
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3.7 Cardinalities of the Spaces of Complete Types

In this section, we prove two results on possible cardinalities of spaces of complete
types. We need to fix some notation. 2<N will denote the set of all finite sequence
of 0’s and 1’s including the empty sequence e. For s, € 2<N and ¢ = 0, 1, |s| will
denote the length of s, s < 7 will mean that ¢ extends s and se will stand for the
concatenation of s and e.

Lemma 3.7.1 Let T be an L-theory and p[x], X = (xo, ..., Xn—1), an L-formula
such that [¢] # ¥ and contains no isolated type in T. Then, there exists a formula
Y[x] such that

[eAY] #0 # [ A=)

Proof Suppose for every v, [ A 9] # ¥ implies [p A —p] = @. Set

p={:T =V¥x(p— )}

Since T U {¢} is satisfiable, T U p is satisfiable. In particular, p is a n-type in T'.
Also p is complete: Suppose not. Then there is a formula ¢[X] such that

T EVI(e = V) & T E VX (e — ).
This implies that both T[p A ¥] and T [ A —1)] are satisfiable. Hence,

oAl #0 # [ A ],

a contradiction.
Since @ isolates p, we have a contradiction to the fact that [¢] contains no isolated
type. (I

Theorem 3.7.2 Let T be an L-theory such that isolated types are not dense in S, (T).
Then |S,(T)| > 2%.

Proof We are now going to use the last lemma and for each s € 2<N define an
L-formula ¢ satisfying the following conditions:

1. Ifs <6, T = o = ;.
2. [ys] # ¥ and contains no isolated types in 7.
3. If s #tand |s| = |t], T[ps] E —pr.

For empty sequence e, let ¢, be an L-formula such that [¢,] # @ and contains
no isolated types.

Suppose ; is defined so that [¢;] 7 @ and contains no isolated types. Further,
t < s implies that T = ¢, — ¢;. By the last lemma, there is a formula ¢/ such that
[ips A1p] as well as [p; A =] are non-empty. Set ¢, = s A and g = g A Y.
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Since [¢;] does not contain an isolated type, neither of [¢,0] and [¢1] contains an
isolated type. Our construction is complete.

For each a € 2N, {©Yan : n € w}isatypein T. Choose and fix a p, € S, (7).
Suppose a # 3 € 2. Get an n such that a|n # B|n. Then pa, € po\pgs. This
completes the proof. (]

A variant of the above argument gives us the next result. We need a lemma first.

Lemma 3.7.3 Let k be an infinite cardinal, L a k-language, M an L-structure,
A C M of cardinality at most k and p[x] an L s-formula such that |[o[X]]| > k.
Then, there is an L s-formula 1[x] such that |[p AY]| > kaswell as |[p A—Y]| > K.

Proof Suppose not. Set
p =1l Ayl > k).

Note that ¢ € p. Since [¢] = [p AYP]U[p A —1)], for each 1, either ¢ or —) belongs
to p. So, by our assumption, for every v exactly one of ), =) belongs to p.

We claim that pUT h 4 (M) is finitely satisfiable. If not, then there exists ¢y, . .., ¥
in p such that {A¥_ 1} U Tha(M) is not satisfiable. In particular, A¥_ 1 ¢ p.
Hence, vf:pz/)i € p. But this implies that |[¢ A —);]| > Kk forsome | <i <k, a
contradiction.

Thus, p is a complete n-type and for every ¥ ¢ p, |[¢ A ¥]| < k. Now note that

[p] = {p} U Uyg,ple AL

Since L and A are of cardinality at most «, it follows that |[¢]| < . This contradiction
proves our result. O

Theorem 3.7.4 Let T be a countable complete theory, M ‘=T and k > Ry. Suppose
there exists A C M of cardinality r such that |SM(A)| > k. Then, there exists a
countable Ay C A such that |SM (Ag)| = 2%.

Proof Since |A| = x and T is countable, there are only x-many L 4-formulas. So,
there is an L 4-formula ¢, such that |[¢.]| > k.

For each s € 2<" will define an L 4-formula ¢, satisfying the following condi-
tions:

1. IfS<[,T':§0t_>SDS-
2. lpsll > 5.
3. If s # t and |s| = |t], Tes] = ;.

Suppose @ is defined so that |[¢,]| > k. By the last lemma, there is a formula 1)
such that |[¢; A ]| as well as |[p; A —)]| are greater than k. Set w0 = s A ¥ and
ps1 = @y A . Our construction is complete.

For each o € 2N, {@aik © k € w} is a n-type in M over A. Choose and fix
a pa € Nul@anl- Suppose v # 3 € 2N, Get an n such that aln # B|n. Then,
Paln € Pa \ Pp-
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Let Ap be the set of all parameters from A that appear in ¢,’s. Clearly, Ay is
countable and all the p,’s are complete n-types over Ap. In particular,
ISM(Ag)| = 2. ]

Corollary 3.7.5 Let T be a countable, complete theory, with M (=T and A C M
countable. Then, exactly one of the following holds:

1. [SM(A)| < R,.
2. |SM(A)] = 2.

By imitating these proofs, we get the following two results.

Lemma 3.7.6 Let M be an L-structure and A C M. Suppose o[x]is an L o-formula
such that [¢] # ¥ and contains no isolated type. Then, there is an L o-formula 1)
such that

[e APl #D #[p A=l

Theorem 3.7.7 Let T be a countable, complete theory, M = T, and A C M.
Suppose isolated types are not dense in SM (A). Then, there exists a countable Ay C A
such that |SM(Ap)| = 2™.

Remark 3.7.8 Suppose A C M is countable and [SM (A)| < 2™. Then isolated types
are dense in SM(A).



Chapter 4
Good Structures and Good Theories

Abstract In this chapter, we initiate a systematic study of important classes of
structures and theories. Of particular importance are saturated structures and -
categorical and stable theories. We also introduce Morley rank and Morley degrees
and generalise the notion of independence in minimal sets given in Chap. 2 to forking
independence.

4.1 Homogeneous Structures

Let M be an L-structure and « an infinite cardinal. We call M k-homogeneous if for
all A C M of cardinality less than &, for all partial elementary map f : A — M and
foralla € M, there is a partial elementary map g : AU {a} — M extending f. This is
the same as saying the following: For every sequences @, b € M of length < « with
" (@) = tpM (b), for every a € M there is a b € M such that p™ (aa) = p™ (bb).
We call M homogeneous if it is |[M |-homogeneous.

We call M k-strongly homogeneous if for all A C M of cardinality less than &,
every partial elementary map f : A — M extends to an automorphism of M. This
is the same as saying the following: For every sequences @, b € M of length < &,
oM (@) = tpM (b) if and only if there is an automorphism g of M such that g(a) = b.
We call M strongly homogeneous if it is |M|-strongly homogeneous.

Example 4.1.1 The linearly ordered set of rationals Q is strongly homogeneous.
This follows from Exercise 1.6.11.

Following the back and forth argument, we have the following theorem.
Proposition 4.1.2 Every homogeneous L-structure is strongly homogeneous.

Proof Let A C M be of cardinality less than that of M and f : A — M partial ele-
mentary. Enumerate M \ A = {a,, : o < |M|}. Set fy = f. By transfinite induction,
for each o < |M|, we define a partial elementary map f,, from a subset of M into M
such that

© Springer Nature Singapore Pte Ltd. 2017 105
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(%) |domain(fo)| < |M],

(x) for B < a < |M|, f,, extends f3,

(%) fo = Upg<qfp if cv is limit, and

(%) a, belongs to the domain as well as to the range of £, .

This will complete the proof, because U, jsf, Will be an automorphism of M
extending f.

Suppose f,, has been defined. If a,, is in the domain of f,,, set g = f,,. Otherwise, by
homogeneity, there is a partial elementary extension g of f,, from domain(f,) U {a,}
to M.

If a, is in the range of g, take f,+; = g. Otherwise, by homogeneity, there is
a partial elementary map h extending g~! from range(g) U {a,} to M. Now take
f at+l = hl. 0

Corollary 4.1.3 Let M be an infinite homogeneous L-structure, A C M with |A| <
IM|anda, b € M". Thentp™ (a/A) = ™ (b/A) ifand only ifthere is an o € Aut(M),
such that o«(@) = b. In particular, a € M has finitely many conjugates in M over A
if and only if tp™ (a/A) has only finitely many realisations in M.

Proof Notethat [AU{a; : i <|al}| < [M|}andf :AU{a; :i < |al} — M such that
f is identity on A and f(a) = b is partial elementary. Hence, the result follows from
the last proposition. O

Lemma 4.1.4 Let M be an L-structure and a, b € M" be such thata — b is partial
elementary. Then for every c € M, there is an elementary extension N of M and a
d € N such that (a, c) — (E, d) is partial elementary. Further, if M is infinite and L
countable, we can choose N so that |[N| = |[M|.

Proof Consider the theory
T = Diaga(M) U {¢[x, b] : M = p[c, al}.

Since @ — b is partial elementary, whenever M |= g;[c,al, i <n, M |=3x A;
wilx, E]. Thus, T is finitely satisfiable. Hence, there is an L-structure N in which
T is realised. Further, by downward Lowenheim—Skolem theorem, if L is countable
and M infinite, we can choose N so that |N| = |M|. Such an N has all the desired
properties. (I

Lemma 4.1.5 Let M be an infinite L-structure with L countable. Then there exists
an elementary extension N of M satisfying the following conditions:

1. |N| = |M]|, and 3
2. whenever a,b € M with @ — b partial elementary, for every c € M there is a
d € N such that (a, c) — (b, d) is partial elementary.

Proof Let {(du, ba, ca) : @ < |M|} be an enumeration of all finite tuples (a, b, )
in M with @ — b partial elementary. Applying the last lemma repeatedly, by trans-
finite induction, we can build an elementary chain {N, : « < |M|} of L-structures
satisfying the following conditions:
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(x) No=M.

(%) No = UpgoNp if o is limit.

(x) Yo < [M[(INo| = [M]), and

(%) Ya < [M|3dy € Nay1((@a, bas o) = (@a, by, dy) is partial elementary).

Finally, take N = U,y No. (Il

Proposition 4.1.6 Let M be an infinite L-structure with L countable. Then there
exists a No-homogeneous elementary extension N of M such that |N| = |M|.

Proof Set Ny = M. By repeatedly applying the last lemma, we have an elementary
chain {N; : k € w} such that whenever a, be Ny witha — b partial elementary, for
every ¢ € Ny thereisad € Ny, such that (a, ¢) — (5, d) is partial elementary. Now
take N = U;Ng. O

Using the back-and-forth argument, we get the following surprising result.

Proposition 4.1.7 Let M and N be countable homogeneous L-structures. The fol-
lowing conditions are equivalent.

1. M and N are isomorphic.
2. Foreveryk > 1, o
(M (@) :a e M) = (1p" (b) : b € N¥).

Proof Clearly (1) implies (2). Next assume (2). Then for every n € w, |[M| = n if
and only if |[N| = n. Further, if M is finite, M is isomorphic to N. So, assume that
[M| = |N| = Ry. Fix enumerations {a;} and {b;} of M and N, respectively.

Set aj, = ao and consider 1 (a}). By our hypothesis, there is a b € N such that
tp"(a)) = 1p™ (b). Let b), be the first such b in the above enumeration of N.

Now let b} be the first element in the enumeration of N different from b,. By our
hypothesis, there exists a, @’ € M such that ip" (a, a') = tp" (b}, b}). In particular,
" (a) = 1p" (by) = tpM(ap). So, a — aj is partial elementary. Since M is homoge-
neous, there is an a” € M such that (a, ') — (a;, a”) is partial elementary. There-
fore, tp" (by, b)) = tpM(a, a') = tp™(a, a"). Since by # b, x # yisin tp" (b}, b)).
This implies that a;, # a”. We let a] denote the first such a” in the enumeration of
M.

Now let a; be the first element in the enumeration of M not belonging to
{aj, a}}. By our hypothesis, there exist b, ', b” € N such that Vb, b, b)) =
o (a}y, d, @,). In particular, tp" (b, b') = tpM(ay, a)) = tp" (b}, b}). So, (b, b') —
(bg, b)) is partial elementary. Since N is homogeneous, there exists a b € N
such that (b, ', b") — (b, b}, b") is partial elementary. Hence, tpV (by, by, 0" =
" (b, b, b") = 1pM(d), d,. d}). Since d} ¢ {d)), d;},b" ¢ (b}, b}}. Letb) be the first
such " in the enumeration of N.
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Continuing this back-and-forth method, we shall get enumerations {a; } and {b;}
of M and N, respectively, such that forevery k, (a,,, ..., a;) — (b, ..., b;) is partial

elementary. Plainly, a; — b defines an isomorphism from M to N. ]
We now extend this result for arbitrary cardinal numbers.

Proposition 4.1.8 Let M and N be elementarily equivalent L-structures with N
k-homogeneous, where k is an infinite cardinal. Suppose for every a € M" there
exists b € N" such that tp™ (@) = tp™ (b). Then for every A C M with |A| < k, there
is a partial elementary map f, : A — N.

Proof First assume that A is finite, say A = {ay, . .., a,}. By our hypothesis, there
exist by, ..., b, € B such that tp™ (@) = tp™ (b). Plainly, a; — b;, i < n, is an ele-
mentary map from A into N.

We complete the proof by induction on |A|. Let A < x and the result be true for
A C M of cardinality less than \. Take any A = {a, : « < A} C M of cardinality
A. By induction on o < A, we define elementary maps f;, : {a3 : 5 < a} = N such
that f,, extends fz whenever 3 < o. This will then complete the proof by taking
foo = Ua<)\fa~

Suppose < A andf3, B < o, have been defined. If « is a limit ordinal, we define
Jfa = Up<afs. Now suppose a = 3+ 1 is a successor ordinal. By our assumption,
there is a partial elementary map f : {a, : v < 8} — N.LetB =f({a, : v < 3}) and
C the range of f. Note that every partial elementary map is injective. So, we have a
partial elementary map g = f3 of ! : B — C. Since N is k-homogeneous, there is
a partial elementary map & : BU {f(a3)} — N extending g. Suppose b = h(f(ag)).
Take fo = f U {(a5. b)}. O

Proposition 4.1.9 Let M and N be elementarily equivalent homogeneous
L-structures such that |M| = |N|. The following conditions are equivalent.

1. M and N are isomorphic.
2. Foreveryk > 1, o
(" @ :ae My = (" () : b eNY.

Proof We need to prove (2) implies (1) only. Further, we can assume that |M| =
IN| = k > Rg. Fix enumerations M = {a, : @« < k}and N = {b,, : a < k}. Set f, to
be the empty function.

By induction, we define partial elementary maps f,,, « < k, as follows: We take
fo to be the empty function. Assume f,, has been defined. Let a be the first element in
the above enumeration of M that does not belong to the domain of f,,. Arguing as the
last proposition we see that there is a partial elementary map, say g = f, U {(a, b)}
into N. Now let b be the first element in the above enumeration of N not in the range
of g. Similarly there is a partial elementary map, say # = g~! U {(b, a)} into M. We
take f,.1 = h~'. In the limit case, we take f,, = Uafs.

Plainly, f = U,~f, is an isomorphism from M onto N. O

Exercise 4.1.10 Equip Q x R with lexicographic order. Show that it is not homo-
geneous.
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Exercise 4.1.11 Let x be a regular cardinal and {M,, : a < x} an elementary chain
of k-homogeneous L-structures. Show that U, ..M, is k-homogeneous.

Exercise 4.1.12 Let M be a countable structure of a countable language L and @, be
M". Show that tp™ (@) = tp™ (b) if and only if there is an elementary extension N of
M and af € Aut(N) such that f(a) = b.

Exercise 4.1.13 Show that every algebraically closed field is homogeneous.

4.2 Atomic Structures

We call an L-structure M atomic if for every n > 1 and every a € M", tp™ (a) is
isolated.

Example 4.2.1 Consider the linearly ordered set Q. In Example 3.4.16 we showed
that 1p@(@) is isolated for every finite tuple @ of rational numbers. Hence, Q is atomic.

Example 4.2.2 Consider the ordered field R. In Example 3.4.15, we saw that
tp™(a) # tp™(b) whenever a and b are distinct real numbers. Since there are only
countably many formulas, there are at most countably many isolated #p™ (). Hence,
the ordered field R is not atomic.

Theorem 4.2.3 Every countable atomic L-structure M is homogeneous.

Proof Leta, b € M" such that the map @ — b is partial elementary. Take an a # a;,
i < n. Since M is atomic, there is a formula ¢[xo, . . ., x,] that isolates p™ (@, a). In
particular, M |= ¢[a, a] implying M |= 3xyp[a, x]. Sincea — b is partial elementary,
M E= Exgp[z, x]. Hence, there is a b € M such that

M = ¢lb, b). ().
The proof will be completed by showing that
" (@, a) = M b, b).
Let ¥[x, x] € tp™ (@, a). Then
M = VxVx(plx, x] — ¥[x, x]).

By (x), M |= ¢[b,b), ie. ¥ € tp™ (b, b). So, ™ (@, a) C tp™ (b, b). This implies
that 1p™ (a, a) = tp™ (b, b). O

Theorem 4.2.4 Let T be a countable complete theory. Then a model M of T is prime
if and only if it is countable and atomic.
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Proof LetM = T be prime. Since every countable consistent theory has a countable
model (Corollary 1.7.7), every prime model of a countable theory is countable. Hence,
M is countable.

Take any @ € M. If possible, suppose tp™ (@) is non-isolated. By omitting types
theorem (Theorem 3.6.1), there is a model N of T omitting tp™ (). Since M is prime,
there is an elementary embedding o : M — N.However, as « : M — N elementary,
a(a) realises tpM (a). This contradiction proves the only if part of the result.

To prove the converse, let M be a countable atomic model of 7 and N |= T. Fix
an enumeration {a; } of M. Since M is atomic, for each (ay, . . ., a;) there is a formula
wrlxo, . .., xx] thatisolates M (ay, ..., a). By induction, for each k, we shall define
a partial elementary map oy : {a; : i < k} — N such that oy extends oy for each
k. It will follow that @ = Uray : M — N is elementary.

Since T is complete, M and N are elementarily equivalent. So, the empty function
from M to N is indeed elementary. Suppose oy : {a; : i < k} — N has been defined
and is partial elementary.

Since M = yrlay, ..., al, M = Ixpilao, ..., ar—1, x]. Since «y is partial ele-

mentary, we getN = Ixpr[ax(ap), ..., ax(ar—1), x]. This givesusab € N suchthat
N E orlar(ag), ..., axlax—1), b]. Welet ag4 : {a; : i < k} — N be the extension
of oy with iy (ax) = b. We need to show that ay, is partial elementary. Because
oy isolates tpM(ao, ..., ay), as we argued earlier,

M (ag, ..., ar) = tp" (i1 (ap), - . ., a1 (@),
showing that oy is partial elementary. 0

As a corollary we get,

Example 4.2.5 The field of all algebraic numbers, Fw p a prime, the set of all real
algebraic numbers both as a field as well as an ordered field and Q both as models
of DAG and ODAG are atomic.

Theorem 4.2.6 Let T be a countable complete L-theory and M and N prime models
of T. Then M and N are isomorphic.

Proof By the last theorem (Theorem 4.2.4), M and N are countable and atomic.
Hence, they are homogeneous by Theorem 4.2.3. Also, each realised types in M and
N is isolated. Then since T is complete, M and N realise the same complete types.
To see this take an @ € M" and an L-formula ¢[¥] that isolates p¥ (a) € S, (T). So,
for every L-formula ¥[x],

M | Jlal < T = Vx(plx] — ¢[x]).

Since M = Fxp[x], as T is complete, there is a b € N" such that N = gp[E]. It
follows that p" (b) = tp™ (@). Similarly, we prove that for every b € N”, there is
an @ € M" such that pp™ (@) = tp" (b). Hence, by Theorem 4.1.7, M and N are
isomorphic. O
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Proposition 4.2.7 Let T be a complete theory. If T has an atomic model, then iso-
lated types are dense in S, (T).

Proof Fix an atomic M = T. Suppose [¢[x]] # @. Then there is amodel N = T
such that N = 3x¢. Since T is complete, M = Ixp. So, there exists a € M such
that M = o[a). Thus, tp (@) € [¢]. Since M is atomic, tp™ () is isolated and our
result is proved. (]

Interestingly, the converse of this result is true for countable, complete theories.
The proof is a Henkin type construction of models.

Theorem 4.2.8 Let T be a countable complete theory such that for every n > 1,
isolated types are dense in S, (T). Then T has a countable atomic model. In particular,
T have a prime model.

Proof We add an infinite sequence of distinct and new constants, say co, ¢, 2, . . ., t0
T but no new non-logical axiom and still call the theory 7. Let {,} be an enumeration
of all the sentences of 7.

By induction on n, we shall now define a sequence of sentences {v,,} such that
T[{v,}]is a complete Henkin theory whose canonical structure is a countable atomic
model of T

We take 19 = Ix(x = x). Suppose n = 3m and vy, . . . ¥, have been defined.

If Ty, A pn]is satisfiable, we take 1,11 = ¥, A @, else set Y1 = U, A —@y,.
So, T[t,+1] is consistent.

If ¢, is not a closed existential formula, we take v, 1» = 1,1+1. Suppose ¢,
is a closed existential formula, say Ixp[x]. If T[Y,41]1 % om, take 10 = Uyq.
Otherwise, we take the first new constant symbol ¢; not occurring in T[] and
set Y12 = Yni1 A lek]. It is easy to see that T[v),4,] is consistent.

Finally, let k be the first integer such that the constants occurring in 7[v,,] are
among ¢, . . ., ¢x. By choosing a variant of 1,1, if necessary, let ¥)[xo, . .., x;] be
such that v, = ¥[c]. So, [¢] # @. Letp € [¢)] be an isolated (k + 1)-type, isolated
by, say n[x]. We set ¥, 13 = 1,42 A nlc]. Clearly, T[t,3] is consistent.

It is fairly routine to check that T[{v,}] is a complete Henkin theory. Let M be its
canonical model. We claim that M is an atomic model of 7. Take @ € M. Let k be
the least integer such that all a;’s occur among (co)y, - - . , (cx)y and there exists an
m = 3j 4 2 such that all the constants occurring in v, occur among cy, . .., ¢x. By
our construction, p™[cy] is isolated. Hence, as proved before, tp™ (a) is isolated. O]

Corollary 4.2.9 Let T be a countable complete theory such that for some n > 1,
[S,(T)| < 2%. Then T has a prime model.

Proof Let M = T. Since T is complete, S,(T) = SM (). Under our hypothesis, by
Corollary 3.7.8, isolated points are dense in S, (7). The result now follows by the
last theorem. (I
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4.3 Saturated Structures

Let M be an L-structure and ~ an infinite cardinal. We call M k-saturated if for every
A C M of cardinality less than &, every type in S;(M /A) is realised in M. We call M
saturated if it is |M|-saturated.

Proposition 4.3.1 IfM is k-saturated, k > Ny, and X is a sequence of distinct vari-
ables of length o < K, then for every A C M of cardinality less than k, every complete
type p(x) over A is realised in M.

Proof By transfinite induction, we define a sequence {ag : 8 < a} in M such that
for every 8 < a, {a, : v < [3} realises the type pg({x, : 7 < B}) over A defined by

{Fxs : 0 = BYollxy 1y < Bl {xs : 6 = B} : 0 € p(0)}.

Suppose 3 < acand {a, : v < (3} satisfying the above condition have been defined.
Now consider the 1-type

q(xg) = {Axs: 0 > Blollay 1 v < Bl xg, {xs: 0 > [} : o € p(X)}

over AU{a, :v < (). Since x is infinite, [AU{a,:v < B} <kK. As M is
k-saturated, there is an ag € M realising g(xs). This completes the construction
and our proof. (]

Proposition 4.3.2 Let M and N be L-structures with N k-saturated, k > Rg,A C M
of cardinality less than k, f : A — N partial elementary and a € M \ A. Then there
is a partial elementary map g : AU {a} — N that extends f.

Proof Take any a € A" and a formula ¢[x, X] of L such that M = ¢la, a]. Then
M = Jxylx, al. Since f is partial elementary, N = Jx[x, f(a)]. From this it easily
follows that

p=H{elx.f(@]:ac A" AM = ¢la,al}

is finitely satisfiable in N, i.e. p is a 1-type over f(A) which is of cardinality less
than x. Since N is x-saturated, there is a b € N that realises it. This implies that
tpM (a, @) = tp" (b, f(@)). So, g = f U {(a, b)} is partial elementary. This proves our
result. O

Corollary 4.3.3 Every k-saturated L-structure is k-homogeneous.
Corollary 4.3.4 Every saturated L-structure is strongly homogeneous.

A model M of an L-theory T is called x-universal if every model N of T of
cardinality less that « is elementarily embedded into M.

Proposition 4.3.5 Let T be a complete theory. Then every k-saturated model M of
T is k*-universal.
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Proof Let N = T and |[N| < k. Fix an enumeration {a,, : @ < k} of N. For a < k&,
setA, = {as: 0 < al.

Set fy to be the empty function. Since 7T is complete, M and N are elementarily
equivalent. So, fj is partial elementary. Proceeding by transfinite induction and using
the last proposition repeatedly, for each a < k, we get a partial elementary map
fo i Aq = M such that f,, extends f3 whenever § < « and f, = Ug_f3; if a is a
limit ordinal. Then f = U, .f,, : N — M is an elementary embedding. O

A converse of this result is true.

Proposition 4.3.6 Let x > Rg. Every k-homogeneous, k" -universal model M of a
k-theory T is k-saturated. Moreover, if Kk is uncountable and T countable, we can
replace the condition k™ -universality by k-universality of M.

Proof Let A C M be of cardinality < x and p € S;(M/A). Then, by downward
Lowenheim—Skolem theorem, there is an infinite elementary substructure N of M
containing A of cardinality < x. Moreover, if « is uncountable and 7 countable, we
get N of cardinality < . Since p € S;(N/A), there is an elementary extension N’ of
N such that |[N'| = |N| and there is aa € N’ that realises p. By the universality of M,
there is an elementary embedding f : N’ — M. Now f~! : f(A)—A C M is partial
elementary. So, by homogeneity of M, there is a b € M such that f~!' U {(f(a), b)}
is partial elementary. Then b realises p in M. (I

Proposition 4.3.7 Let M be k-saturated, A C M of cardinality less than k, A < k
and M' an elementary extension of M. Then for every sequence {a, : o < K} of
\-tuples in M' of length k there is a sequence {b, : o < K} of A-tuples in M of length
K such that

ipM (b - 0 < K}/A) = 1p™ ({@n : @ < K}/A).

Proof We build {b, : o < k} by transfinite induction. Suppose o < « and Eg e M,
3 < «, have been defined so that

ipM({by - B < a}/A) = p™ (@ : B < a}/A).
Since M is k-saturated, there exist Efg, B <a,inM A such that
M7 . M= .
" ({by: B < a}/A) =" ({as : B < a}/A).
This implies that
M7 . M= . M.
" ({bs: B <a}/A) =" ({as: B < a}/A) =tp” ({bs : B < a}/A).

Therefore, E/ﬁ — 55, 0 < «, is partial elementary over A. Since M is rk-saturated,
by Corollary 4.3.3, it is k-homogeneous. Hence, there exists a B@ € M* such that
B:/, — Eg, 0 < «, is partial elementary over A. This implies that
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M (7, . M=
ip" ({bs : B = a}/A) =1p” ({as : B < a}/A).
The proof is easily seen now. ]

Theorem 4.3.8 Let M = T be an Ry-homogeneous model that realises every com-
plete type in T. Then M is Ry-saturated.

Proof Leta € M" and p(x) a complete m-type over a. Consider
q[x, y1 = {¢[x, y] : ¢lx, a] € p}.

By our assumptions, there is a (5, C) € M™"" that realises ¢. This implies that¢ — a
is partial elementary. By homogeneity of M, there is a partial elementary extension
(b,c) — (d,a) of ¢ — a. This implies that d realises p. O

This result is true for all cardinality provided T is complete.

Theorem 4.3.9 Let T be a complete theory. Then every k-homogeneous model M
of T that realises every p € S,(T) for all n > 1 is k-saturated.

Proof By Proposition 4.3.6, it is sufficient to prove that M is k™ -universal. Take
N = T of cardinality < k. Since T is complete, M and N are elemenatarily
equivalent. By hypothesis, for every tuple @ € N, there is a b € M such that
N (@) = tpM(b) . Hence, by Proposition 4.1.8, N is elementarily embeddable
inM. (]

As a consequence, we now give a characterization of countable complete, theories
that has a countable saturated model.

Theorem 4.3.10 Let T be a countable complete theory. Then T has a countable
saturated model if and only if | U, S,(T)| < Ro.

Proof Let M be a countable, saturated model of 7. Since for every n > 1, S,(T) =
S, (M), only if part is easy.

For proving if part, start with a countable Ny |= T. Let {p; : k € w} = U, S, (T).
Getanelementary chain {N; : k € w} of countable L-structures such that forevery k
w, py is realised in Nyy. Then Uy N, = T is countable and realises all p € U,,S,,(T).
By Proposition 4.1.6, there is a homogeneous, countable, elementary extension N of
Uy Ng. By the last theorem, N is saturated. O

Below we give another criterion for quantifier elimination. Let M and N be L-
structures and Z(M, N) denote the set of all finite partial isomorphisms M > a —
b € N. We say that M, N has back-and-forth property if for every @ — bin Z(M, N)
following two conditions are satisfied.

(%) Forevery c € M, there is ad € N such that ac —>_Ed isinZ(M,N).
(x) Foreveryd € N, there is a c € N such that ac — bd isin Z(M, N).
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Theorem 4.3.11 Let T be an L-theory. The following conditions are equivalent.

(a) T has quantifier elimination. 3

(b) For every pair of models M, N of T and every a — b € Z(M,N), M (a) =
N (b).

(c) For every pair of Ro-saturated models M, N of T, Z(M, N) has back-and-forth
property.

Proof The equivalence of (a) and (b) is proved in Theorem 2.9.5. Assume (b) and
takei&o—saturated models M, N of T andad@ — b € Z(M, N). Then, by (b), tp™ (a) =
tp" (b). Now take any ¢ € M and consider

px) = {¢lb,x]: M = ¢la, cl}.

Then for any finite set @1[5, xl, ..., @k[Z, xlepx), M = Elx/\f-‘zlgp,-[ﬁ, x]. Since
M (@) = tp" (b),N = Ix AL, i[b, x]. Thus p(x) is type in N over b. Since N is Ro-
saturated, there is ad € N that realises p(x). This implies that ac — bd €T (M,N).
Similarly using that M is Ny-saturated, (b) implies that for every d € N there is a
¢ € M such that ac — bd € T(M, N).

Assuming (c) we prove (b) now. So, take M,N = T anda — beI(M,N).Let
M’, N' be Ry-saturated elementary extensions of M, N, respectively. It is sufficient
to show that pp™' (@) = ™ (b). By induction on the complexity of L-formulas ¢[x]
we show that for every @ — be I(M,N),

M' = glal & N = o[b). (%)

By hypothesis, () holds for all atomic (. Clearly, the set of ¢ satisfying (x) is closed
under — and V. Now let ¢[x, x] satisfy (x), and ¢[X] = Axy[X, x]. Take a a — be
Z(M,N). Assume that M" = p[a]. Since M’ = M, M = ¢[a]. So, there exists ¢ €
M such that M = [a, c]. Hence, M’ |= [a, c]. By back and forth property, there
isad € N suchthatac — bd isinZ(M, N). By induction hypothesis, N’ = v[b, d].
Hence, N' = o[b]. Similarly, we prove that N’ = o[b] implies M’ = la] O

Theorem 4.3.12 Let T be a theory such that for every pair of Ry-saturated models
M, N of T, Z(M, N) is non-empty and has the back-and-forth property. Then T is
complete.

Proof Take any two M, N = T.We are required to show that M and N are elemen-
tarily equivalent. By the last result, 7" has quantifier elimination. Let M" and N’ be 8-
saturated, elementary extensions of M and N respectively. By our hypothesis, there
exists@a — b € Z(M', N'). Since T has quantifier elimination, p™ (@) = p"'(b). In
particular, M’ and N’ are elementarily equivalent. Hence, M and N are elementarily
equivalent. O

Theorem 4.3.13 Let L be a countable language and {M,, : m € w} a sequence of
L-structures. Suppose U is a free ultrafilter on w. Then the ultraproduct MY =
XMy JU is Ry -saturated.
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Proof Let A C MY be countable and ®[x] a type over A in MY, Enumerate A =
{[(a})] : n € w}. Since A and L are countable, ®[x] is countable. Enumerate ®[x] =
{or[x] : k € w}. Set

Yr[X] = Ai<kpilX].
For each m € w, let ¢'[x] be the formula obtained from 1); by replacing each occur-
rence of [(a})] by a,.

Since ®[x] is a type in MY, each r[X] is realised in MY, say by ([(b’{)m)], [(b’fm)],
[(b’;m)], ...). Since U is free, by Los’ fundamental lemma on ultraproduct,

Vi ={m=>k:M, = "Bk, bk b, 1) el

1m>

Set Wy = N« V;. Clearly, W}’s are decreasing and Ny Wy = (. Further, for each &,
W € U.
For each i € w, define a sequence (b;,) € x,,M,, satisfying
b = bt

m

form € Wy \ Wiy1. For m ¢ Wy, choose by, € M, arbitrarily.
We claim that ([(Do,)], [(D1)], [(D2)], - ..) € MY realises ®[x]. Take a k € w.
We prove that
MY = Gl (Lom)], [(B1)], [(b2n)], - . )],

We show this by proving that
Wi = Uik (Wi \ W) C{m e w : My, |= Y7 [boms bims bom, - - .1}
Leti > kand m € W; \ Wiy. Then b;,, = b}m for every j € w. But then
My = " [D, bl Do - 1.
Since i > k, it follows that
M,, = b, b, Bhs - -]

Thus,
‘/Vi \ VVH—] C {m e w :Mm '= wlr(n[b()m’ blm’ b2m7 . ]}

for every i > k. The proof is complete now. (]



4.4 Existence of Saturated Structures and Monster Model 117

4.4 Ecxistence of Saturated Structures and Monster Model

In this section, we prove several results on the existence of saturated structures leading
to show the existence of monster models for complete theories.

Lemma 4.4.1 Let L be a countable language, M an L-structure and xk > Xy. Then
there is an elementary extension N of M of cardinality < |M|" such that for every
A C M of cardinality < k, every p(x) € S;(M/A) is realised in N.

Proof Let {p, : « < |M|"} be an enumeration of all complete 1-types in M over
subsets of M of cardinality < k. Set Ny = M. There exists an elementary chain
{N, : a < |M|"} of L-structures such that

(%) Ny = UpgoNpif a < [M]" is limit,
(x) |Nal < [M]7,
(%) pqo isrealised in Ny .

Now take N = Uy <|m=Na- O

Theorem 4.4.2 Let L be a countable language, M an L-structure and k > Y. Then
there is a k' -saturated elementary extension N of M of cardinality < |M|".

Proof Set Ny = M. Applying the last lemma repeatedly, by transfinite induction, get
an elementary chain {N,, : a < [M|"} of L-structures such that

(%) Ny = UpgoNpif o < [M]" is limit,

(%) [Nal = IM]",

(*) each complete 1-type in N, over a subset of N,, of cardinality < x is realised in
N(H—] .

Take N = Ua<|M‘HNa. O

As a consequence of this, under GCH, we show the existence of saturated models
of any regular cardinality. Assume that T is a countable theory with an infinite model.
Then T has models of every infinite cardinality. In the last theorem, replacing a model
M of T be an elementary extension of cardinality 2% (which equals x™ under GCH),
we get the following result.

Proposition 4.4.3 Assume GCH. Let T be a countable theory with an infinite model
and k > Rg. Then T has a saturated model of cardinality k™.

From this, we can deduce that under the same hypothesis, 7" has a saturated model
of any regular cardinality.

Proposition 4.4.4 Assume GCH. Let T be a countable theory with an infinite model
and k > Ny a regular cardinal. Then T has a saturated model of cardinality k.
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Proof We have already proved the result if in addition s is a successor cardi-
nal. Assume that x is not a successor cardinal. Then applying the successor case
repeatedly, we get an elementary chain {M,, : R, < k} of models of T such that
M, = Uz_,Mpz whenever « is a limit ordinal and for each o, M, is saturated of
cardinality X. Now take M = Uy, .M, O

Next result is a very useful one.

Theorem 4.4.5 Let k> 8¢ and M an L-structure. Then M has a k" -saturated,
kYt -strongly homogeneous elementary extension M.

Proof Set My = M. By Theorem 4.4.2, there exists an elementary chain {M,, : a <
k1) of L-structures satisfying the following conditions:

1. For each limit o, M,, = Ug.,Mp, and
2. forevery a, M is |M,|"-saturated.

Set Moo = Uyt M.

Now let A C My, be of cardinality < x and p € §1(M/A). Since k™ is regular,
there is an o < k™ such that A C M,,. In particular, |A| < |M,|. Since M1 < M,
p € S1(Mqy1/A). Since M1 is |M,|"-saturated, p is realised in M, . This shows
that M, is kT -saturated.

Now we proceed to show that M, is ' -strongly homogeneous. We start with an
A C My, of cardinality < x and a partial elementary f : A — M. By regularity of
kT, thereis a @ < k™ such that A C M,, and f(A) C M. By tranfinite induction,
we define partial elementary maps f3 : M5 — Maip+1, B < KT, satisfying

1. fo extends f,

2. f3 extends f, whenever v < § < k™,
3. f3 = Uygf, if B is limit.

4. M5 C range(fs41).

Since A C M,,, |A| < |M,|. Since M is |M,|"-saturated, by Corollary 4.3.3,
there is an elementary extension fy : M, — M, of f.

Suppose £, has been defined for all v < 3. If 3 is limit, take f3 = U, 4.

Let 8 = v + 1 be a successor ordinal. Then

fw_l S Morr) = Mot
is partial elementary, f,(M,4) C Mq44+1 and
s (M| = M| = 1y (M) U Mo |-
We extend f;l to a partial elementary map

8 :fw'(Ma—M) UM(H-A/ — M(H_A’,_
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Now extend

871 Moy U gMoyy) = Moyt C Moyqyio

to a partial elementary map

f“/-H : M(x+’)’+l - Ma-‘rw’
Finally, take foo = Ug.,f3. Then fi is an automorphism of M, extending f. [J

Remark 4.4.6 This result tells that every consistent theory 7 with infinite models
has a x*-saturated, x*-strongly homogeneous model M for arbitrarily large «. So,
depending upon problems at hand, by choosing « sufficiently large, every model
that one is likely to get is of cardinality < x. Hence, every model one is likely to
encounter will be elementarily embedded into Ml and all parameters set subsets of
M of cardinality < . Indeed, from next chapter onwards, we shall often fix a x™-
saturated, " -strongly homogeneous model M for sufficiently large x and call it a
monster model.

4.5 Some Consequences of Saturability

Theorem 4.5.1 Let M and N be saturated L-structures such that |M| = |N| = k,
say. Then M and N are isomorphic.

Proof By Corollary 4.3.4, M and N are homogeneous. Fix enumerations M = {a,, :
a < k}and N = {b, : a < k}. Consider p[x] = tp™ (ap). Since N is saturated, there
is a b € N that realises it. We let aj; = ap and b, € N to be the first element in
the above enumeration of B such that 7™ (a;) = ™ (b,). Then aj, — by is partial
elementary.

Suppose for 0 < a < K, {ai,,, €M : (3 < a} and {b/ﬂ € N : 3 < a} have been
defined so that for every 8 < a, (ai/, Yy < fB) > (bg, v < [3) is partial elementary.
If o is a limit ordinal, then (a}; : 8 < a) — (b}; : B < ) is partial elementary.

Suppose « is an odd successor ordinal, say‘ B+ 1. Let b, be the first element in
the enumeration of N different from b%,, v < a. By our assumption, (bi/ Ty < fB) >
(d, : v < ) is partial elementary. Since M is homogeneous, there is an a € M such
that (b : v < a) = ((d} : v < @), a) is partial elementary. We let al, denote first
such a in the enumeration of M.

If o is an even successor ordinal order, we take a;, the first element in the enumer-
ation of M different from ai/, v < a. By the same argument, there is a b € B such
that (ai/ Y <o) —> ((bi/,, v < a), b) is partial elementary. We let b/, the first such
element in the above enumeration of B.

Thus, we have defined enumerations M = {@, : @ < k} and N = {b/, : a < K}
such for every a < &, (ajj 1B < a) = (b : B < «)is partial elementary. It follows
that (a; : 8 < k) — (b}; : B < k) is an isomorphism from M to N. (I
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Proposition 4.5.2 Let M be k-saturated, A C M with |A| < k and tp™ (b/A) have
only finitely many realisations in M. Then b € acl(A).

Proof Suppose the number of realisations of tp™ (b/A) in M is m. Consider
I = {plvl : plxl € p¥ (B/A), i =0, ..., m} U {Aosicjzm (Vi # V).

By our assumptions, I" is notrealised in M. Since M is k-saturated and |A| < k, afinite
fragment of T is not realised in M. Hence, there exist ¢, [x], ..., r[x] € tp™ (b/A)
such that

M = (AL, /\le wilvil) = Vo<icj<mvi = v;.
Now note that the formula /\;.‘:lcpj [x] witnesses b € acl(A). O

As a corollary, we have the following important result.

Theorem 4.5.3 Let M be a saturated model and A C M with |A| < |M|. Then the
following conditions are equivalent.

1. b € acl(A).
2. b has only finitely many conjugates over A, i.e. b € ACL(A).
3. tpM(b/A) has only finitely many realisations in M.

Proposition 4.5.4 Let M be an R-saturated L-structure and ©[x, a] a minimal Ly -
Sformula in M. Then ¢ is strongly minimal in M.

Proof Let N be an elementary extension of M. Take an LN-forr_nula P[x, b]. Since
M is R¢-saturated, there is a ¢ € M such that 1p" (@, ¢) = tp" (a, b). Hence, for every
integer n,

M = 33 (pl%, a AYIE, ) & N | 3X(¢Ix, al A PIx, b))
and
M = 33 (p[F, al A ~Ix,]) © N & 3_,3(¢[X, @] A =[x, b)).

Since one of (M, a) NY(M,c), p(M,a) NY(M,c) is finite, one of (N, a) N
P(N, b), o(N,a) NY(N, b)° is finite. O

Theorem 4.5.5 Let M be a saturated L-structure, A C M with |A| < |M| and X C
M" be definable. Suppose for all 0 € Gy, 0(X) = X. Then X is A-definable.

Proof Let ¢[x, 7] be an L-formula and m € M be such that X = p(M, m). Set

I' = {¢[x, ml, —p[y, ml} U {¢[x] <> ¥[y] : ¥ an Ly — formula}.

Then I' is not realised in M: Suppose not. Let (a, b) € M realises I. In particular,
the map f fixing A pointwise and sending a to b is partial elementary. Since M is
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saturated, it is strongly homogeneous (Corollary 4.3.4). Hence, f has an extension
toao € G4.Butthena@ € X and b = o(a) ¢ X. This contradicts our hypothesis.

Since M is saturated, there is a finite fragment of I" that is not realised in M. So,
there exist Ly-formulas ¥g[x], . .., ¥,—1[x] such that

M = VXYY (Nicn($i(X) < 1)) = (@[x, m] < @[y, m])).

For any s € 2™, set
05[X] = Asiy=10i (%) A Agiy=0—1i(X).

Let _ _
S={se2":Ibe XM E 6,b]}.

We claim that
aceX &M E Vicsblal.

Leta € X. Define
s() =1 ifM = ;lal
=0 if M & —ilal

Thens € Sand M = 6,[a]

On the other hand, let there be a s € S such that M = 6,[a]. Then there exists
b € X such that M = 6,[b]. This implies thata € X.

We have shown that the Ly-formula Vv cg6,[X] defines X. U

We recast this theorem in the context of a monster model. Let « be a sufficiently
large cardinal and M a x*-saturated, x"-strongly homogeneous model of a theory
T. According to our convention, every parameter set is of cardinality < x. We have
the following result.

Theorem 4.5.6 Let A C M and X C M" be definable. Then X is A-definable if and
only if for all o € Aut,(M), o(X) = X.

Corollary 4.5.7 Let M be a saturated L-structure, A C M and |A| < |M|. Then
DCL(A) = dcl(A).

Proof Earlier we saw thatdcl(A) C DCL(A). By the last Theorem DCL(A) C dcl(A)
because M is saturated. O

We now give an application to elimination of imaginaries and show that ACF has
elimination of imaginaries.

Proposition 4.5.8 Let T be a complete L-theory with infinite models. Suppose for
every model M of T, every equivalence L-formula 0[x,y] in M and for everya € M,
there is a tuple b € M such that for every o € Aut(M), o(0(M, @)) = (M, a) if and
only if o(b) = b. Then T has semi-uniform elimination of imaginaries.
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Proof Take an equivalence formula 6[x, y] in 7. Suppose M is a monster model of T
and ana € M. Get b as in the hypothesis. By Theorem 4.5.5, our hypothesis implies
that §(M,, @) is b-definable. Fix an L-formula ¢[x, z] such that

M [ VX(9[x, a] < ¢Ix, D).
Suppose ¢ € M satisfies 1p™ () = p™(b) and

M E Vx(0[x, @] < ¢[x, ).

Thenb — ¢ ‘is partial elementary. Since M is a monster model, thereisa o € Aur(M)
such that o(b) = ¢. Hence,

a(0(M, @) = a(p(M, b)) = p(M, ©) = (M, a).
Hence, by our hypothesis ¢ = b.
(I) There is a formula 1[z] € ™ (b) such that
M = VZVZ (Y[Z] A I A VE(OIR, al < ¢IF, Z])
AVE(IX, a] < ¢[%,7]) = 2 =12).

To see this, assume to the contrary. For each ¥[z] € pM (E), let W[z, 7] be the
formula

Y[Z] AT AVIO[X, a] < ¢[X, Z]) AVX(OIx, a] <> o[x, 7D AT #7.

Now consider 3
pE.7) = (V[z.71: vE] € " (B)).

- =

By our assumption, p(Z,7’) is finitely satisfiable. By saturability of M, p(z,7’) is
realised in M. But this contradicts what we have just proved.
Now consider the formula ¢'[X, 7] = ¢[X, 7] A ¥[Z]. So,
M = Vz¥Z (YX(0[X, al < ¢'[X, Z]) A VX(OIX, a] < ¢'[%,7]) = 2=7).
(IT) There exists a finite sequence of L-formulas g [x, Z], ..., ©,[x, Z] such that

M E Vy Vil 3=12VX(0[X, ] < @ilX, ZD).

Assume to the contrary, we are going to derive a contradiction. For each L-formula
plx, 7], let ®[y] be the formula

—3212VX (0%, y] < oI, ZD.
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Set
q®) = {®[y] : ¢[x, z] an L — formula}.

By our assumption, g(y) is finitely satisfiable in M. Hence, by saturability of M, g(y)
is realised in M, say by a. This implies that for @ € M, there is no L-formula ¢[x, 7]
such that there is a unique beM satisfying Vx(0[x, a] < ¢[Xx, b]) We have arrived
at a contradiction.

Let po[x, 7z, . .., wulx, Z] satisfy our claim. For each 0 <i < n, set

%ily] = 32 2VX (01X, ¥] < @ilx, ZD A Aj<im3=2VE (01X, ¥] < ¢l 2D

and
&ilx, z1 = FyOLx, y] A i) A %, Z]).

Then
M = Vy3_,0 <i < nd_ 1 2VX(0[x, Z] < &lx, 2)).

Since every model M of T is elementarily embedded in a monster model of 7, it
follows that 7" has semi-uniform elimination of imaginaries. (]

We refer the reader to Sect. B.2 for relevant definitions and results from algebraic
geometry used in proving the following theorem.

Theorem 4.5.9 ACF has uniform elimination of imaginaries.

Proof By Proposition 1.12.5, it is sufficient to show that ACF has semi-uniform
elimination of imaginaries. Let K = ACF and ¢[x, y] be an equivalence formula of
K. Take ana € K, X = a/, the equivalence class of @, and Z its closure. Then Z is
a constructible set.

Let I be a radical ideal such that Z = V(1) and k( be the smallest subfield such
that / is algebraically defined over ko. Then ko is finitely generated, generated by a
tuple say b. Let py, ..., p,, be polynomials with coefficients among b such that

Z =" (% pi® = 0}.

Thus, Z is definable over b.

Let o be an automorphism of K. By Theorem B.2.14, o fixes ky pointwise
if and only if ¢(Z) = Z if and only if o(b) = b. By Lemma B.2.9, o(X) =X
implies 0(Z) = Z. Conversely, suppose 0(Z) = Z.and Y = o(X). So, Y and X have
the same closure Z. But then by Lemma B.2.12, X N Y # (. Hence, X = o(X).
So, o fixes X if and only if o fixes b pointwise. By Proposition 4.5.8, ACF has
semi-uniform elimination of imaginaries. ]

‘We close this section with a technical result that will be used later.

Lemma 4.5.10 Let M be a k-saturated structure and |I|, |J| < k. Suppose {p;[x] :
i € I} and {j[X] : j € J} are Ly-formulas with
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Uierpi(M) = (Ui (M))°.
Then there is a finite Iy C I such that
Uier,pi(M) = Uier0:(M).

Proof Set
A = VUjerpi(M) & B = Uje 9j(M).

By our hypothesis, A = B¢. Now consider
Lx] = {—pilx] - i e T U{—y[x] 1 j € T}

By our assumption, I" is not realised in M. Note that I" uses fewer than x-many
parameters. Since M is x-saturated, I'[xX] is not a type in M, i.e. a finite subset of it
is not realised in M. Let Iy C I and J, C J be finite sets such that

{—pilx] : i € I} U{—lx] - j € Jo}

is not realised in M. Suppose for a € M, M = p;[a] for some i € I. Then M =
—pjla] for all j € Jo. Hence, M = ;[a] for some i € I. ([l

4.6 Type Definable Sets

Let M be an L-structure, A C M, « an ordinal number and D C M“. We call D
invariant over A if for every automorphism f € Auts (M) that fixes A pointwise,
f(a) € D whenever a € D. We say that D is type definable over A if there is a set
p(x) of Ly-formulas in variables X = {x3 : § < o} such that D = p(M), the set of all
realisations of p.

Clearly, M“ and ¢ are type definable over empty set. Let

{B; = pi(M) C M“ : p;[x] a set of Ly-formulas, i € I}
be a family of type definable sets over A. Then N;B; = q(M), where g = U;p;. Next

let B=p(M) and C = q(M), where p and q are sets of L4-formulas. It is easy to
check that BU C = r(M), where

r(x) = {elx] VYIx] : ¢ € p, Y € q}.

Thus, we see that the set of all type definable sets over A is the family of all closed
sets of a topology on M.
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Exercise 4.6.1 Let s be an infinite cardinal, A\ < k, M a k-saturated L-structure and
E C M” invariant. Set

{pix):iel}={tp(a/P) :ac k).

Show that E = Uig[pj(M)-

Proposition 4.6.2 Let M be a k-saturated L-structure, A C M of cardinality < K,
a<k X={xy:y<alandy ={y,:v < [} variables. If D C M* x M" is type
definable over A, then E = projy. (D) is type definable over A.

Proof Let p(x,y) be a set of Ly-formulas and D = p(M). Without any loss of gen-
erality, we assume that p is closed under finite conjunctions. Consider the following
set of L4-formulas

q(x) = {Iyplx, y] : ¢ € p}.
Clearly projy« (D) C q(M). Conversely, leta € g(M). Set
r(y = {ela,y] : ¢lx, y] € p}.

Then r(y) is a type over a set of cardinality < x. Since M is x-saturated, there is a
b € M that realises r. But then (@, b) € D, implying @ € projy«(D). (]

Proposition 4.6.3 Let M be a k-saturated, k-strongly homogenous L-structure,
A, B C M of cardinalities less than k and X\ < k. Suppose D C M is type defin-
able over B and invariant over A. Then D is type definable over A.

Proof Enumerate A =a = {a, : vy < a}and B = b= {by : v < B}. In what follows
X={xy:v<Alandy = {y, : v < (3} are variables.

Let p(x,y) be a set of L-formulas such that D = p(M, b). We first see that if
tp(c/A) = tp(b/A) then D = p(M ¢): There exists a f € Auty (M) such that f (b)
€. Since D is invariant over A, d € D if and only if f (d) € D. Now note that

deD=pM,b) & f(d) e€pM,7).
Consider
q(®) = {F (3] A Y%, 3] : ¢[3] € tp(b/a) and YIX, ] € pE, )}
Clearly, D C g(M). Conversely, let ¢ € g(M). Consider
r@) = (¢l AYIE. 311 ¢B] € p(b/@) and YIT, 3] € p(R. 7).
Then r(y) is a type in M over a ¢ which is of cardinality < r. Since M is x-saturated,

there is a d that realises (7). But then 1p(d/a) = tp(b/a) and ¢ = p(x, d). By the
above observation, it follows that ¢ € D. |
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4.7 R)-Categorical Theories

In this section, we give several characterizations of countable, Ry-categorical theo-
ries.

Proposition 4.7.1 If T is a countable, Ry-categorical theory with an infinite model,
then T is complete.

Proof 1f possible, suppose there exists a sentence ¢ which is undecidable in T.
Then by downward Lowenheim—Skolem theorem, there exist infinite, countable
M,N = TsuchthatM = pand N = —p.Butthen M and N can’t be isomorphic,
a contradiction. O

Theorem 4.7.2 (Engeler [12], Ryll-Nardzewski [53] and Svenonius [60]) Let T be
a countable complete theory. The following statements are equivalent.

. T is Ry-categorical.

. Foreveryn > 1, every type p € S,(T) is isolated.

. Foreveryn > 1, S,(T) is finite.

. For every n > 1, there exist finitely many L-formulas, polX], ..., ©r[X], where
X = (X0, ..., Xy—1), such that for every L-formula 1)[X],

A W N~

T = VX(@[x] < ¢ilx])

for some 0 <i <k.
5. Every model M of T is atomic.
6. Every countable model M of T is atomic.

Proof (1) implies (2): Let there exist a p € S,(T) which is not isolated. Since T is
countable, there exists a countable M = T that realises p and a countable N =
T that omits p. But then M and N are two countable models of 7" which are not

isomorphic.
(2) implies (3): This is so because S, (T) is compact.
(3) implies (4): Let py, ..., pr be all complete n-types in T. Since S,,(T) is Haus-

dorff, each p; is isolated, say by 6;,, 1 <i < k. It is easily checked that for any
L-formula v [x],
T | VE(GIE] < Vie, 613D

The proof is easily seen now.
(4) implies (5): Let M = T anda € M". Set

01x] = Am = pu@ @il X1 A A e pya— @il

We claim that § isolates #p™ (a). Take any L-formula [X].
Let T = Vx(0[x] — [x]). Since 0[x] € pp™ (@), ¥[X] € tp" (@).
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Conversely, assume that ¥[x] € " (@) and b be any element in M such that
M = 0[b]. Then tp" (b) = tp™ (a). Hence, y[x] € tp™ (b). Thus,

Y epM@ & M = VxO[x] — Px).

(6) implies (1): Let M = T be countable. So, M is a countable atomic model of
T. Therefore, by Theorem 4.2.4, it is prime. Thus, every countable model of T is
prime. By Theorem 4.2.6, any two prime models of a countable complete theory are
isomorphic. Thus, T is ¥y-categorical. (]

Corollary 4.7.3 Let T be a countable, Ry-categorical theory, M = T and A C M
finite. Then acl(A) is finite. In particular, finitely generated substructures of models
of T are finite.

Proof LetA = {ag, ..., a,—1}. Let pi[xo, ..., Xu], ..., @xlxo, ..., x,] be a finite set
of L-formulas such that any L-formula ¥[xo, ..., x,] is equivalent in T to some ;.
Let

I ={i:yia,...,an—1, M) is finite}.

Then
lacl(A)] < " lpi(ag. - ... an-1. M)| < 0. O

iel

Theorem 4.7.4 Let T be a countable complete theory. Then the following statements
are equivalent.

(a) T is Ry-categorical.
(b) Every model M of T is w-saturated.
(¢) Every countable M = T is saturated.

Proof (a) implies (b): Let A = {ag, ..., a,—1} C M. Since T is countable and Ry-
categorical, by Theorem 4.7.2, there exist only finitely many L-formulas ¢ [xo, ...,
Xnl, - .., @klxo0, - .., x,] modulo equivalence in 7. Hence, there exist at most k many
Ls-formulas v[x,] modulo equivalence in M. This implies that S }l"’ (A) is finite. Hence,
each p[x,] € S’l"’ (A) is isolated, say by ,[x,]. Any element in M that realises ¢, [x,]
realises p[x;,].

(c) implies (a): This follows from Theorem 4.5.1. U

Exercise 4.7.5 If M is a k-saturated L-structure, show that [M| > k.

Exercise 4.7.6 Let x > 8y, M, N L-structures with N k-saturated and A C M with
|A| < k. Then for every B C M of cardinality < k, every partial elementary map
f A — N has a partial elementary extension g : AUB — N.

Exercise 4.7.7 Let T be a theory with a constant symbol. Then 7 has quantifier
elimination if and only if whenever M, N = T, N |M|"-saturated, A a substructure
of M and f : A — N an embedding, f admits an elementary extension g : M — N

of f.



128 4 Good Structures and Good Theories

Exercise 4.7.8 Let T be the theory of discrete linear orders with no first no last
elements. Show that if M and N are R(-saturated models of 7', then Z(M, N) is non-
empty and has the back and forth property. Conclude that 7 is a complete theory
which is not model complete.

Exercise 4.7.9 Let T be a 8y-categorical theory and M = T. Show that for every
n > 1 there is a m > 1 such that whenever A C M is of cardinality n, acl(A) is of
cardinality at most m.

Exercise 4.7.10 Call an L-structure M locally finite if for every finite A C M, the
substructure of M generated by A is finite. Show that the models of 8y-categorical
theories are locally finite.

4.8 Stable Theories

For an infinite cardinal x, we call T k-stable if for all M = T, for all A C M
of cardinality < k, S} (A)| < k. Note that for a # b in A, tp™(a/A) # " (b/A).
Hence, if |A| = &, |S11u (A)] = k.So, T is k-stable if and only if forall M = T, forall
A C M of cardinality &, |S’l"’ (A)| = k. If Kk = Ny, k-stable theories are traditionally
called w-stable. A theory T is called stable if it is k-stable for some x > Ry. The
concept of stable theory was introduced by Morley in [43].

Proposition 4.8.1 Let k > Ry and T k-stable. Then for everyn > 1, forevery M =
T and for every A C M of cardinality k, |S,(M/A)| = k.

Proof We prove the result by induction on n. Assume the hypothesis for n — 1. Take
aM = TandA C M of cardinality . Get an elementary extension N of M in which
each p € S| (M/A) is realised. We have

S1(N/A) = {tp" (a/A) : a € N}.

Hence, |{tp" (a/A) : a € N}| = k.

Consider the map 7 : S,(N/A) — S;(N/A) defined by 7w(p(xp, ..., X,—1)) =
{@[xu—1] : @[x,—1] € p}. By Lemma 3.3.4, |tp" (a/A)| = |S,_1(N/Aa)|. By induc-
tion hypothesis, |S,—; (N /Aa)| = . It follows that |S,,(N/A)| = k. O

Example 4.8.2 Consider DLO. In Example 3.4.17 we saw that |S;(Q/Q)| = 2™.
Hence, DLO is not w-stable.

Example 4.8.3 Now consider RCF and RCOF and R with usual interpretations. In
Example 3.4.15, we showed that viewing R as a model of RCOF', |S; (R)| > ¢. Hence,
RCOF is not w-stable. Since < is definable in the field R, it follows that RCF is not
w-stable.
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Example 4.8.4 LetF &= ACF,A C F and A the subfield generated by A. Then |A| <
|A| < max{|A|, Ro}. In Example 3.4.18 we observed that

1S, (F/A)| = |Spec(AIX)].

By Hilbert basis theorem, every ideal in a polynomial ring over a field is finitely
generated. Hence, .
[Spec(A[XD)| = |A] = max{]A[, ¥o}.

It follows that ACF is k-stable for all x > 8.

Let k > Ry. Suppose there is a model M of T and an A C M of cardinality s
such that |S,(M /A)| > k. By Theorem 3.7.4, there is a countable Ay C A such that
IS, (M/Agy)| = 2%, This gives us the following important result.

Theorem 4.8.5 [f T is w-stable, then T is k-stable for all cardinal k > V.

By Theorem 3.7.2, if thereisa M |= T and A C M such that isolated types are
not dense in S, (M /A), then there is a countable Ay C A such that |S, (M /Ag)| > 2%,
This gives us the following result.

Proposition 4.8.6 Let T be w-stable, M = T and A C M. Then isolated types are
dense in S,,(M /A) for all n.

Corollary 4.8.7 If T is a countable complete w-stable theory, then T has a prime
model.

Proof This follows from the last proposition and Theorem 4.2.8. (I

We now show that a countable, complete, w-stable theory has a saturated model
of cardinality ~ for each regular cardinal &.

Proposition 4.8.8 Let « be a regular cardinal, T a countable, complete, r-stable
theory and M = T of cardinality k. Then M has an elementary saturated extension
N of cardinality k.

Proof In the proof of Theorem 4.4.2, take N,,, o < k, of cardinality k. O

Corollary 4.8.9 Let T be a countable, w-stable complete theory with infinite models.
Then for each regular cardinal k, T has a saturated model of cardinality k.

Proof Take any regular cardinal x. Since T has an infinite model, 7" has a model M
of cardinality k. Since T is w-stable, T is k-stable by Theorem 4.8.5. The result now
follows from the last result. O

Let M be an L-structure. A binary tree of Ly-formulas is a system {p[X] : € €
2<%} of Lys-formulas such that for every € € 2<% and every § = 0 or 1,

L. M = ps[x] = pelx],
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2. M '= 9966[i] - ﬁ‘pe,l—é[f]’ and
3. M e T [x).

For such a system, the set Ay of all parameters of ¢., € € 2<% is countable and
[Sx(M/Ao)| > c.

A theory T is called totally transcendental if no model M of T has a binary tree
of Ly;-formulas. We now have the following result.

Theorem 4.8.10 If T is w-stable, T is totally transcendental.

With essentially the same argument, we have the next two consequence of w-
stability.

Theorem 4.8.11 If T is w-stable and M = T infinite, then there is an Ly-formula
plx] minimal in M.

Proof Suppose there is no Ly-formula minimal in M. We then show that there is a
binary tree of Ly;-formulas.

Let pg[x] be the formulax = x. Suppose for some € € 2=, p.[x] has been defined.
Since p,[x] is not minimal in M and (M) is infinite, there is an Ly,-formula v[x]
such that both ¢ (M) N (M) and (M) N (M) are infinite. Take

©e0lx] = @e[x] Aplx] and @, 1[x] = e A —P[x].

Our result follows from the last theorem. O

Proposition 4.8.12 Let T be w-stable and M \= T uncountable. Then there is an
Ly-formula p[x] such that p(M) is uncountable and for every Ly-formula [x]
exactly one of (o N )(M), (p A —=1p)(M) is uncountable.

Proof First note that for every Ly-formula ¢[x] such that (M) is uncountable and
for every Ly -formula ¢[x], atleast one of (¢ A ¥)(M), (¢ A =) (M) is uncountable.

If possible, suppose a formula  satisfying the claim of the Lemma does not exist.
To complete the proof, we show that there is a binary tree of L,-formulas.

Take @y[x] to be the formula x = x. Since M is uncountable, yy(M) is uncount-
able. Suppose for a o € 2<%, a Ly, formula ¢, [x] have been defined so that ¢, (M)
is uncountable. Then by our assumption, there is an Ly,-formula «/[x] such that both
of (s AYV)M), (p, A —1))(M) are uncountable. Set

<Pao=<Pa/\¢&<P01=<Pa/\_‘¢-

The proof is complete now. O

Next we show that models M of a w-stable theory admit prime model extension
ofevery A C M.

Theorem 4.8.13 Let T be w-stable, M = T and A C M. Then there is an elemen-
tary substructure N of M which is a prime model extension of A. Further, for every
ac N, (p"(a@/A) is isolated.
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Proof For ordinals o, we define A, C M satisfying

(a) Ay = A.

(b) a < f=A,CA;s

(c) If v is limit, then A, = Ug,Ag.

(d) If A, is such that there is an isolated complete 1-type p over A, realised in
M\ A,,then A,y = A, U {a,}, where a, € M \ A, realises one such p.

Let § be the first ordinal « such that A, cannot be further enlarged by (d). Set
N = As;.

We first show that N is closed under each f¥, f a function symbol. Take @ € N =
As.Leta = fM(@). Since T is w-stable, by Proposition 4.8.6, there is an isolated type
pE Sfl"’ (As) containing the formula x = f(a). Let 1[x] be an Ly-formula isolating p.
Then a is the only element that realises p. Hence, a € A;. We treat N as a substructure
of M canonically.

To show that N is an elementary substructure of M, take an Ly-formula ¢[x]
such that for some a € M, M = [a]. Since T is w-stable and [] # @, there is an
isolated type p containing ¢ by Proposition 4.8.6. Let 1/[x] isolate p and b € M be
such that M = «[b]. This shows that p is realised in M. Hence, p is realised in N,
say by c. Then N = ¢[c].

We now show that N is a prime model extension of A. So fix N’ |= T and a partial
elementary map f : A — N’. We need to get an elementary extension g : N — N’
of f. Set fy = f. Inductively, for each « < §, we define a partial elementary map
fo 1 Ao = N’ such that f,, extends f3 whenever § < « and for limit «, fo, = Ugqfs-

Let av < ¢ and £, have been defined. We know that " (a, /A,) 1s isolated.
Let v[x,dl, a € A,, isolate tp"(a,/A.). In particular, N = Jxe[x, a]. Hence,
N’ | IxY[x, fo(@)]. Choose a b € N’ such that N |= ¢[b, f,(a)]. It also follows
that ¥[x, f,(@)] isolates tpN'(b/fa(Aa)). This implies that f,+1 = f, U {(a., D)} :
Any1 — N’ is partial elementary. Now take g = f;.

Finally we show that for every @ € N, tp" (@/A) is isolated. By induction on a,
we show that for every @ € A, tp" (a/A) is isolated. We only need to show that if
the hypothesis is true for «, it is true for a 4 1 also. Take (a,, .. ., dq, E) € Anti,
with b € A,. By induction hypothesis, #p" (b/A) is isolated and by the construction
1N (an /Ao) is isolated. Hence, by Proposition 3.4.6, tp" (aa, b/A) is isolated. This

proves our claim when the sequence (a,, ..., a,) is of length 1.
Now take (a,, - .., a,) of length n — 1 > 1. Consider the formula
Orlx1, ., %] = AL (6 = x).
Then 0)[x1, ..., X,—1, ds] isolates p = tp" (aa, ..., an/Aat1). Let 65[x,,y] be an

Ly-formula isolating 1™ (a., b/A). B
Now take a @[x1, ..., X,_1, %, ¥] € PV (@a, ..., aa, an, b/A). Then

@[xla cees Xn—1, Ao, Z] € tpN(aa’ cee a(y/Aa+l)'
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Hence,

N = V. Y (010X, -y Xty dal = @IXL, -0y X1, da, D).
i.e. the formula

Vxp . V1 (01X, - x] = olxg, el X, Y1) € tpN(aa, l_)/A).
Therefore,

N E Vxi...Vx,Y9((02[x,, YI A O1[x1, - . ., x0]) = @lx1, -0y X0, VD).

Then the Ly-formula 6,[x,,¥] A 0[x1, ..., x,] isolates tp¥(aq, ..., da, G, E/A).
O

As a consequence, we have the following useful theorem.

Theorem 4.8.14 Let T be w-stable and M \= T uncountable. Then there is a proper
elementary extension N of M such that every countable type q(x) over M realised in
N is also realised in M.

Proof Choose and fix an Ly, formula ¢[x] as in the Proposition 4.8.12. Let
plx] = {¥[x] : ¢ an Ly, — formula & @[M] N 1)[M] uncountable}.

If ¢, ..., 9, € plx], then each of p[M] N =y [M], ..., p[M] N —,[M] is count-
able. Hence, p[M] N (A7_;1;)[M] is uncountable. This shows that p[x] is a 1-type
over M. Further, for every Ly, formula [x], either ¢ or —) is in p. Hence, p € S} (M).

If possible, suppose there is a ¢ € M realising p[x]. Since x # c is an Ly -formula
in p[x], we contradict that ¢ realises p[x]. Let M’ be an elementary extension of M
in which p[x] is realised, say by c. Then ¢ ¢ M.

By the last theorem, there is an elementary substructure N of M’ which is a prime
model extension of M U {c}. Further, for every b e N, p"(b/M U{c})isisolated. In
particular, N is a proper elementary extension of M.

Let ¢(%) be a countable type over M realised in N, say by b. Let A[X, x] be an Ly
formula such that 0[X, c] isolates 7p" (E/M U {c}). Since Ix0[x, x] is an Ly, formula
realised by c, it belongs to p. Further, g[x] C tp" (E/M U {c}). So, for every Y[X] € ¢,
Vx(6[x, x] — ¥[x]) is realised by ¢ and hence belongs to p.
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Thus,
I = {Ix0[x, x]} U {(VX(Ox, x] — ¢[x]) : ¥[x] € ¢}

is a countable subset of p[x]. Enumerate I' = {~,[x] : n < w}. Then for eachn < w,

©(M) \ Y (M)

i_s countable. Therefore, tl_lere is a d € p(M) that realises each of v,[x]. Then any
d € M such that M = 0[d, d] realises g. O

4.9 Morley Rank

We now proceed to systematically introduce key notions of Morley rank and Morley
degree introduced by Morley in [43] to prove his famous categoricity theorem. Mor-
ley’s categoricity theorem will be proved in the next chapter. We shall not present
Morley’s original proof. We shall present a much simpler proof due to Baldwin and
Lachlan that appeared in [5]. Morley rank can be viewed as the generalisation of the
notion of dimension to theories more general than minimal theories.

Let M be an L-structure. By induction on ordinals «, for every Ly,-formula ¢[x]
we define ‘MRY () > o’ as follows:

1. MRY (o) > 0if [M] # 0.

2. If v is limit, MRY (o) > « if for all 8 < a, MRM (@) > 3.

3. MRM(p) > a + 1if there exist Ly;- formulas v, [X], ¥, [X], . . . such that for each
n, MRM (1),)) > « and ¥; (M), ¢, (M), . . . are pairwise disjoint subsets of ¢ (M).

If MRM (¢) > o forevery ordinal o, we write MR () = oo, andif p(M) = @, we
put MR (¢) = —o0. Foran ordinal o, MR (p) = atift MRM () > acbut MR () #
a + 1. We say that an Ly;-formula ¢ has Morley rank in M if MRM () = « for some
ordinal cv. We shall write MRY () < oo if ¢ has Morley rank in M or if o(M) = §.

Here are some simple observations.

Remark 4.9.1 MRM(p) > 1 if and only if (M) is infinite. Consequently,
MRM () = 0 if and only if ©(M) is a non-empty finite set and MRM (p) = 1 if
o is minimal in M.

Remark 4.9.2 If MRM (¢) > acand 3 < «, then there is an Ly;-formula v[x] of Mor-
ley rank 3 such that (M) C @(M). This is easily seen by induction on c.

Remark 4.9.3 Let p[x] and ¢[x] be Ly;-formulas and M = Vx(p[x] — ¢[x]). Then
MRY (¢) < MRY (1)). So, if (M) = (M), MR (@) = MR (1)).
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Remark 4.9.4 Let o[x] be an Ly-formula and 9[X,y] = ¢[X]. Then MRM () >
MRM (). By induction on ordinals c, it is easy to see that MRM(p) > o =
MRM (1)) > . Note that MRY (1)) may be strictly larger than MRY (). To see this,
let M be infinite and MR (¢) = 0. Then MRM (¢)) > 1.

Remark 4.9.5 Let ¢[x] and ¢ [x] be Ly,-formulas. Then
MRY (¢ v 1) = max{MR" (¢), MR™ (1)},

By Remark 4.9.3, MRM (¢ v 1) > max{MRM (), MRM (1))}.
By induction on ordinals o, we now show that

MRY (p v 1) > a = max{MR™ (p), MR (1)} > a. (%)

Since (¢ V )(M) = (M) U (M), this is true for o = 0.

Let A\ be limit, (%) hold for all & < A\ and MRY (o \ 1)) > \. Then MR (p v
1) > « for all o < ). By induction hypothesis, for every o < A\, max{MRY (),
MRM (1)} > « so that either MRM () > o or MR (1)) > .. Hence, at least one
of ¢, ¢ is of Morley rank > o for an unbounded in A set of o < A. Thus
max{MR" (¢), MR™ ()} = \.

Now let () hold for all ordinals < o and MRY (o Vv ¢)) > « + 1. Get Ly,-formulas
U1, ¥y, ... of Morley rank > « such that (M), ¥,(M), ... are pairwise dis-
joint subsets of (M) U 1) (M). Then MRM (1),,)) = MR ((¢ A ) vV (¢ A 10,)) > .
Therefore, either for infinitely many n, MR™ (o N 4,) > « or for infinitely many n,
MRM (1) N 1)) > . So, at least one of MR () or MRM (1)) > o + 1.

Remark 4.9.6 Let1[x, ¥] be an Ly-formula and ¢[x] = Iy [X, ). Then MRY (1)) >
MR (). We prove by induction on ordinals o that MRM (¢) > o« = MRY (¢)) > a.
This will establish our contention. This is clear for « = 0 and for limit ordinals «. So,
assume the hypothesis for o. Suppose MRY () > « + 1.In particular, MRM (¢) > a.
Hence, by induction hypothesis, MRM (1)) > . Since MRM (¢) = a+ 1, there exist
Ly-formulas o1 [x], p2[x], ..., each of rank > «, such that (M), p,(M), ... are
pairwise disjoint, non-empty subsets of o (M). Let ¢;[x, ¥] = ¢;[x],i = 1,2, ....By
Remark 4.9.4, each of ¥y, ¢, ... is of rank > «. Hence, by induction hypothesis,
MRM (3 A apy) = cv. But Y1 (M) NY(M), P2 (M) N
(M), ... are pairwise disjoint subsets of ¢)(M). Thus, MRM (1)) > o + 1.

Remark 4.9.7 Let MRY () = oo. Note that there exists an ordinal o such that the
Morley rank of every formula having an ordinal Morley rank is of Morley rank < a.
So, there exist formulas g, ¢, each of Morley rank oo, such that po(M), @ (M)
partition ©(M).

Theorem 4.9.8_ Let M be a Ry-homogeneous structure and a, b € M be such that
tpM (@) = tpM (b). Then for every L-formulas ©[X, y],

MRM (¢[x, a]) = MRY (¢[x, b)).
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Proof By induction on ordinals «, we show that for every L-formula ¢[x, y],
MRY (¢[%,al) = o = MRY (¢[%, b)) = . ()

The result will then follow from symmetry.
Since tpM (a) = M (b),

M = Txp[x,al © M = Ixe[x, b.

Hence, () holds for o = 0.
Suppose A is a limit ordinal and (x) holds for all « < A, then

MRM (¢[X, @) = \ & Ya < \(MRY (¢[X, @) > a)
& Ya < \(MRM (¢[x, b)) > o)
& MR (¢[x, b)) > A

Now assume that () holds for all 8 < « and ¢[x, y] is an L-formula. Assume
that MR (o[, @) > a + 1. Get L-formulas [, ¥, 1, 2 [X, ,], ... and @y, @, . ..
in M such for each n, MRM (¢,,[X, @,]) > o and
P (M), P5(M), ... are pairwise disjoint subsets of (M), where ¢, [X] = 1,[X, a,].

Since i (@)=tp™ (b), @ — b is partial elementary. Since M is Ry-homogeneous,
inductively we define El, Ez, ... such that for each n,

@, a,...,a,) — (b, by, ..., by)
is partial elementary. In particular, for each n,
M@, a,...,a,) =tp" b, by, ..., by).
Since (p™ @,) = ™ (b,) and MRM (4),,[%, @,]) > «, by induction hypothesis, MRY (1,[%, b,]) >
h Since 1p™ (@, a,) = tp™ (b, b,) and
M = Vx(ulx, an] — ¢lx, al),

it follows that B B
M = VX(,ulx, b,] — @Ix, b]).

Let m # n. Since 1" (@,, a,,) = tp™ (b,, b,,) and
M E =3I, an) A Yu(X, am)),

we have _ _
M = —'3)_6(%@ bn) A wm()_ﬁ bm))

It follows that MRM (o[, b]) > o+ 1. O
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Theorem 4.9.9 Let M be an R-saturated L-structure and @ an Ly -formula. Then
for every ¥o-saturated elementary extension N of M, MR™ () = MR" ().

Proof By induction on ordinals cv, we show that for every Ly,-formula o, MR () >
a if and only if MRY (¢) > a.

Since N is an elementary extension of M, the argument at o = 0 or limit is clear.

Assume that the assertion holds for all @ < A\. Take any Ly -formula ¢ such
that MRM () > A + 1. Get Ly-formulas 1, 1, ... such that MRM (¢),,) > \ for
each n and ¥; (M), ¥» (M), . .. are pairwise disjoint subsets of ¢(M). By induction
hypothesis, for each n, MRY (1) > \. Since N is an elementary extension of M,
Wi (N), ¥ (N), ... are pairwise disjoint subsets of (V). Thus, MRY () > X + 1.

Conversely, assume that MRN (©) = A+ 1. Get Ly-formulas 1)y, 15, . .. such that
MRY (1,) = X for each n and ¥ (N), Y»(N), ... are pairwise disjoint subsets of
©(N). Let L-formulas 0[%, y1, 0, [%, 1, »[X, V5], ....,a € M and by, by, ... € N be
such that ¢ = 6[x, a] and v, = 6,[Xx, bl n > 1. Using Ry-saturatedness and hence
Ro-homogeneity of M, inductively we now pick ay, as, ... in M such that for all k,

lpM(a, ai,...,ay) = tpN(ﬁ, E], e Ek)

We take a; that realises tpN (51 /_E) in M_. Suppose ay, ..., a, have been defined.
Getd,,...,a,,, thatrealises tp" (by, ..., byy1/a) in M. Then
wM@a,....a)=p"@hb,....,b) =tp"@a,...,a,).

Therefore, by 8p-homogeneity of M, there exists a,,; such that
M@, an, ... du) =tpM@ @, ....a,,,) =tp" @b, ... by
Since N is an elementary extension of M,
p" (by) = p" @) = p" @,).

Hence, by the last theorem,

MR (6,[%,@,)) = MR" (0,[X, by]) = \.
Therefore, by induction hypothesis, MR (,[x, @,]) > \. Since

oM@, a,....a0) =" @by, ..., b,

0,[M, a1, 0,[M, @], ... are pairwise disjoint subsets of p(M). Thus, MR (p) >
A+ 1. O

Proposition 4.9.10 Let My, M| be Ry-saturated elementary extensions of an L-
structure M and o an Ly -formula. Then MRM () = MR (¢p).
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Proof By Proposition 2.8.1 and Theorem 4.4.2, there is a common elementary Rg-
saturated extension N of M, and M,. Hence, by the last theorem,

MR (p) = MR (¢) = MR" (p). O

All these suggest that we can define rank of a formula independent of the structure
from where the parameters come. Fix a first-order theory T'. Given a problem at hand,
there is a sufficiently large cardinal « such that every model M of interest will be
of cardinality < k. From now onwards, we assume that all models of interest are
elementary substructures of a monster model M which is kT -saturated and x*-
strongly homogeneous. We fix such a monster model Ml. All ¢ will be Ly;-formulas.
A sentence ¢ is true will mean that it is true in M. By sets, we shall mean subsets of
M", n > 1. Finally, we define

MR(p) = MR" ().
Let X C M" be a definable set, defined by say ¢[x]. We define
MR(X) = MR(y).

We have

. MR(X) is well defined.

. IfX C Y, then MR(X) < MR(Y).

. MR(X) = 01if and only if X is a finite non-empty set.

. If X is minimal, then MR(X) = 1.

. MR(X UY) = max{MR(X), MR(Y)}.

. For a limit ordinal o, MR(X) > « if and only if for every 3 < a, MR(X) > 3.

. MR(X) > o+ 1 if and only if there exist pairwise disjoint definable subsets
Yy, Ys, ... of X each of rank > «.

8. If MR(X) > «, then for every 8 < «, X has a definable subset Y of rank £3.

~N N RN

4.10 Morley Degree

Let a be an ordinal. Call two definable subsets X, Y C M" «-equivalent if
MR(XAY) < «. This defines an equivalence relation on definable subsets of M".
Call a definable set X a-strongly minimal if MR(X) = « and for every definable sub-
set Y of X, either Y is of rank < avor X \ Y is of rank < «. Thus, 0-strongly minimal
sets are precisely singletons and 1-strongly minimal sets are precisely minimal sets.
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Call a formula ¢ a-strongly minimal if p(M) is a-strongly minimal. Two formulas
, ¥ will be called a-equivalent if (M) and (M) are a-equivalent. We shall call
an Ly-formula ¢ a-strongly minimal over A if MR () = « and for every Ls-formula
¥, MR(p A ) < aor MR(p A =) < au

Theorem 4.10.1 Every definable subset X of rank o < oo is a pairwise disjoint
union of a-strongly minimal sets Xy, ..., X4. The decomposition is unique modulo
a-equivalence.

Proof Set Xy = X. Suppose the assertion is not true. In particular, Xy is not a-
strongly minimal. So, Xj is a disjoint union of definable sets X, Y; each of rank a.
At least one of these does not admit the above decomposition. Without any loss of
generality, assume that Y] is not a finite disjoint union of «a-strongly minimal sets.
Now express Y as a disjoint union of definable sets X3, ¥> of rank o such that Y, is not
a finite disjoint union of a-strongly minimal sets. Proceeding inductively, we define
definable subsets X, X, ..., Y|, Y2, ... of X of rank « such that ¥, is a disjoint
union of X,, and Y,,. But then X;, X, ... are pairwise disjoints definable subsets of X
of rank «.. Hence, MR(X) > « + 1, a contradiction.

For uniqueness, let X be a disjoint union of a-strongly minimal sets Y7, ..., Y.
We have Y| = U;(Y] N X;). As Y] is a-strongly minimal, there isaunique 1 <i <d
such that MR(Y| N X;) = «. Using the fact that Y| and X; are a-strongly minimal,
it is easy to see that MR(Y;AX;) < «. Same arguments will also show that 1 is the
unique 1 <j < e such that MR(Y; N X;) = «. By rearranging X;s, we can assume
that i = 1. Proceeding thus, we see the uniqueness. (I

For a definable set X having a Morley rank, the positive integer d obtained above
is called the Morley degree of X, denoted by MD(X). For a formula ¢, we define
MD(p) = MD(p(M)). If MR(yp) = o and MD(p) = d, then there exist a-strongly
minimal formulas ¢y, ..., @, such that (M), ..., ps(M) partitions (M) and
these ¢y, ..., @q are unique modulo a-equivalence. We call ¢y, . . ., ¢, components
of ¢.

Now let ¢ be an Ls-formula of Morley rank o < co. Then arguing as above,
we can get a-strongly minimal Ls-formulas ¢y, ..., ¢ over A such that (M) is
a disjoint union of (M), ..., pr(M). These ¢y, ..., ¢ are unique (among Ly-
formulas) modulo a-equivalence. Note that k < MD(yp). We shall call ¢y, ..., ¢
components of p over A. We call k the Morley degree of ¢ over A.

Example 4.10.2 A formula ¢ is definitional if and only if MR(¢)=0 and MD(p)=1.
Example 4.10.3 1If ¢ is an algebraic formula then MR ()=0 and MD(p)=deg(y).
Example 4.10.4 A-definable set (o(M) is minimal if and only if MR(¢)=MD(p)=1.

Example 4.10.5 Let ¢ be an Ly-formula and ¢y, ..., ¢ its components over A.
Then

MD(p) = > MD(y)).
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Proposition 4.10.6 For an Ly-formula p[X] the following statements are equiva-
lent.

(A) MR(yp) = oo.
(B) There is a binary tree {p[X] : € € 2=“} of Ly-formulas such that pg[x] = ¢[x]

Proof If MR(p) = oo, then by induction on the length of € € 2<“, we can easily
define a binary tree of Ly-formulas {¢[X] : € € 2<%} satisfying (a) with MR(¢.) =
oo for every e.

On the other hand, if (B) holds, then MR(p.) = oo for all e. Suppose not.
Then choose an € such that MR(yp,) is of minimal rank o and of minimal degree
among @, of rank a. But then MD(¢c0) < MD(p,.), a contradiction. In particular,
MR(p) = oo. [

Corollary 4.10.7 Let T be a totally transcendental, countable complete theory with
infinite models and M = T. Then for every Lyj-formula o, MR(p) < o0.

4.11 Rank and Degree of Types

Let p € S, (A). We define the Morley rank of p by
MR(p) = min{MR(p) : ¢ € p}.
If MR(p) < oo, we define the Morley degree of p by
MD(p) = min{MD(yp) : p € p A MR(p) = MR(p)}.

Let p € S,(A) have a Morley rank o < co and Morley degree d. Choose a
¢ € p such that MR(yp) = o and MD(yp) = d. Take any Ls-formula 1. Then both
MR(p A1) and MR(p A —1)) cannot be of rank «. Because then their degrees
will be < d. Thus, ¢ is a-strongly minimal over A. Now assume that i € p is
such that MR(yp) = MR(y)) and MD(p) = MD(%)). Since MR(p) = max{MR(p A
1), MR(p A —))} exactly one of these equals «.. Since MR(p A 1)) = «, it also fol-
lows that MR(¢ A —)) < . By the same argument, MR(¢) A —¢) < «. Thus,  and
1) are a-equivalent.

Theorem 4.11.1 Let T be a countable, complete theory with infinite models. The
following conditions are equivalent.

1. T is w-stable.
2. T is totally transcendental theory.
3. Every formula has a Morley rank.

Proof In Theorem 4.8.10, we proved that (1) implies (2). In Corollary 4.10.7, we
showed that (2) implies (3).



140 4 Good Structures and Good Theories

We now show that (3) implies (1). Let T satisfies 3), M =T and AC M
countable. By (3), for every p € §,(M/A), MR(p) < co. Choose ¢, € M with
MR(p,) = MR(p) and MD(p,) least possible. Then, ¢, determines p:

p =1{Y 4 an Ly — formula A MR(p, A —1)) < a}.

So, if p # g € §,(A), then ¢, # ,. Since T and A are countable, this shows that
S,(M/A) is countable. O

Let a < oo. For an a-strongly minimal Ls-formula ([x] over A, we define
Py = {Y[x] : 9 an Ly — formula A MR(p A —1)) < o}

Note that p = p,,, and for a-strongly minimal @, ¢ = ¢, .
We shall write MR(a/A) for MR(tp(a/A)) and MD(a/A) for MD(tp(a/A)).

Proposition 4.11.2 Let p[X] be a consistent La-formula, |A| < |M|. Then

(a) Foreverya, MR(a/A) > 0.

(b) MR(a,b/A) > MR(a/A)

(¢) MR(p) = max{MR(p) : ¢ € p € Sy(A)}.
(d) If X is a definable set over A, then

MR(X) = max{MR(a/A) : a € X}.
(e) If ¢ has Morley rank, then

MD(p) = D {MD(p) : ¢ € p € S,(4) A MR(p) = MR(g)}.
(f) Ifp € S,(A) has Morley rank and B > A, then

MD(p) = > {MD(q) : p C q € S,(B) A MR(p) = MR(q)}.

(g) If p € S, (A) has Morley rank and B D A, then p has at least one and at most
MD(p) many extensions q € S, (B) of the the same rank.

Proof (a) Since tp(a/A) is non-empty and every [x] € tp(a/A) is obviously con-
sistent, (a) is seen trivially.

(b)Lety[x, y] € tp(a, b/A) and p[X] = Iy[x, y]. Then ¢ € tp(a/A) and MR () >
MR(p). (b) follows.

(c) First assume that MR(p) = oo. Let p be a complete n-type containing

{tp : ¢ an Ly — formula A MR(p A =) < o0}.

It is easily seen that p contains ¢ and MR(p) = oo.
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Let MR(p) = o < oo and p a complete n-type over A containing
{v[x] : ¢ an Ly — formula A MR(p A =) < a}.

Then ¢ € p and MR(p) = a.

(d) Indeed, (c) and (d) are the same statements because M is saturated.

(e) Assume that MR(p) = o < 00. Let ¢y, ..., ¢k be the components of ¢ over
A. Then p,,, ..., p,, are all the complete n-types over A containing ¢ of Morley
rank «. Further, MD(p,,) = MD(y;), 1 <i < k. Since MD(p) = >, MD(yp)), (e)
follows.

(f) Assume that MR(p) = o < 00. Let ¢y, ..., i be the components of ¢, over
A.Foreachg;, let;, ..., %,. be the components of ¢; over Band g;; = py, € S,(B),
1 <j <ji,1 <i<k.Thengsareall g € S,(B) of Morley rank MR(p) that extends
p. Further

MD(p) = Y MD(g) = »_ > MD(h;) = »_ > MD(gy).
i i J i J

(g) This is a direct consequence of (f). ([l

Theorem 4.11.3 Let A C M be of cardinality less than |M| and b algebraic over
AU {a}. Then MR(a, b/A) = MR(a/A).

Proof By (b) above, MR(a, b/A) > MR(a/A). By induction on ordinals o, we show
that MR(a, b/A) > o = MR(a/A) > «. For a = 0 or limit, the steps are trivial.

Assume that b is algebraic over A U {a} and MR(a, b/A) > o + 1. By induction
hypothesis, MR(a/A) > «. If possible, suppose MR(a/A) = a. Choose a ¢[x] €
tp(a/A) of Morley rank ov. Let MD () = d and ¢y, . . . , (g be the a-strongly minimal
components of .

Since b is algebraic over A U {a}, there exists an L4-formula ¢[X, y] andanm > 1
such that

M [ 4la, bl A Imyla, yl.

Set
01x, y] = p[x] A [x, y] A oy lx, y].

Since 6 € tp(a,b/A), MR(A) > a+ 1. So, there exist Ly-formulas 6[Xx, y],
0,[x, y], ..., each of rank > «, such that 6;(M), 6,(M), ... are pairwise disjoint
subsets of §(M). Set & [x] = Iybi[x, yl, k > 1.

For every k > 1, MR(&;) > a: Since MR(6,[x, y]) > «, there exist ¢, d such that
M E 6[c,d]and MR(c,d/A U {Ek 1) > «a, where Zk_e M are the parameters occur-
ring in 6. So, by induction hypothesis, MR(c/A U {b;}) > «. Clearly, Ml = &[c].
Hence, MR(&;) > .
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Since M = & — vf’zlapi, for each k > 1, there is a iy such that MR(& A ;) >
a. Note that for infinitely many k, i;s are the same. So we can assume that for all &,
MR A 1) = o

For every k > 1, MR(¢1 A /\legi) > a: Suppose this is not true and £ is the first
integer for which this inequality fails. Then £ > 1 and

MR(p1 A NZIE). MR(p1 A G A= A &) 2 o
This contradicts that ¢ is a-strongly minimal.

We now have MR(/\L&) > « for each k > 1. Since M is saturated, there exists
¢ € Misuchthatforevery k, M |= &[c]. Foreachk getad; suchthatM = 6;[c, di].
Since 6, (M), 6,(M), ... are pairwise disjoint, dy, d», ... are all distinct. This, in
particular, implies that M = 1[c, di] for each k. Since Ml = 3_,,y¢[c, y], we have
a contradiction. O

Theorem 4.11.4 Let T be a strongly minimal theory and A C M. Then
MR(ay, ..., a,/A) =dim(ay, ..., a,/A).

Proof Recall that by our convention, |[A| < |M|. By the last theorem, without loss of
generality, we assume that ay, .. ., a, are independent over A and show that

MR(ay, ..., a,/A) = n.

We prove this by induction on .

Case :n = 1. Let a; be independent over A. Let p[x] € tp(a;/A). As a; is inde-
pendent over A, (M) is infinite. Hence, MR(a; /A) > 1. Since T is strongly minimal,
every definable subset of M is either finite or cofinite in M. So, MR(¢) = 1. Thus,
MR(a,/A) = 1.

inductive step. Assume that the result is true for all » < m and ay, ..., a, are
algebraically independent over A.

Let M be an elementary substructure of M such that |M| < [M| and M D
AU{ay,...,an—1}. As M is algebraically closed in M (Proposition 1.10.2 (vii)),
for every b € M\ M, ay, ..., ayn—1, b is independent over A. Take p[xy, ..., x,] €
tp(ay, ..., an/A). As T is strongly minimal,

(beM:M = olai, ..., an1,bl}

is cofinite. Thus, there exists a sequence by, by, ... such that for each i, ay, ...,
am—1, b; are independent over A and M = ¢lay, ..., an—1, bil.
Set wi[x1, ..., xn] = @lx1, ..., Xm] A X, = b;. Then, by induction hypothesis,

MR(p;) > m —1 and po(M), p; (M), ... are pairwise disjoint subsets of ¢ (M).
Thus, MR(ay, ..., a,/A) > m.
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We now proceed to show that MR(ay, ..., a,/A) <m. Let o[x|,...,x,] €
tp(ay, ..., an/A). Let Y¥[xy, ..., x,] be an Ly-formula such that ¥)(M) C (M)
andM = —[ay, ..., a,]. We now show that MR()) < m. This will complete the
proof.

Take any by, ..., b, such that (by,...,b,) € Y(M). If by, ..., b, were alge-
braically independent over A, a; — b;, 1 < i < m, would be partial elementary over
A and then tp(ay, ..., a,/A) = tp(by, ..., b, /A). But this is not the case. Thus,

MR(by, ..., b,/A) =dim(b, ..., b,/A) < m,
whenever Ml |= ¢[by, ..., b,]. So,

MR(p) = max{MR(by, ..., bn/A) : (by, ..., by) € (M)} < m. 0

4.12 Definable Types

A type p[x] € S, (A) is called definable over B if for every L-formula [X, y] there is
an Lg-formula d,¢[y] such that

Va e A(glx.al e p & M = dyplal).

Assume that A = M < M and B C M. Suppose ¢[x, y] an L-formula and d,¢[y]
another choice. Then

M = Vy(dyely] < d,ely)).

Example 4.12.1 Letp € S,(A) be isolated. Fix an L-formula ¢[x, y] and a@ € A such
that 1 [x, @] isolates p. For every L-formula ¢[x, y] take

d,(y) = Vx(¥[x, a]l — ¢[x,y])
to witness that p is definable over a.

In this section, we prove that if T is a complete, w-stable theory, then every type
in S, (A) is definable over a finite Ag C A and give some consequences of this result
on definable sets. We prove some preliminary results first.

A formula ¢[x, y] is said to have the order property if there exist sequences
{@n}, {b,} in M such that

vmvVn(M E elan, En] S m < n).

Proposition 4.12.2 An w-stable theory T has no formula with order property.

Proof 1f possible, suppose a formula ¢[x, y] has the order property and sequences
{a,}, {b,} in M are such that
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VmVn(M = @[ay, by] < m < n).

For each rational r, add new and distinct constant symbols ¢, d, and axioms so that
the interpretations of these in every model are distinct.

Clearly the theory T U {¢[c,, d):r< st U {—¢lc,, dJ:r> s} is finitely satis-
fiable. Hence, by compactness theorem, it has a model, say M. For brevity, we denote

the interpretations of ¢,, ds in M by ¢,, d, respectively. Thus,
ViVs(M = plc,,dy] & r < ).
For each rational s, we have
(—00,8) ={reQ: M = ¢[c,, dsl}.

Since T is w-stable, by Theorem 4.11.1, MR(¢l[x, ES]) < 00. Now choose an Ly;-
formula ¥[x] of minimal Morley rank and minimal Morley degree such that the
set

{reQ:M = Jle ]}

is an infinite interval. Let r belong to the interior of this set. Consider the formulas
Yol X] = [F. d,] A YIF] & 1[F] = ~9[F, d,] A PIF].

Then {g € Q: M = ilcyl}, i =0, 1, are infinite intervals in Q. By the min-
imality of the rank of 1, it follows that MR(vy) = MR(v)) = MR(1;). But then
MD(vp9) < MD(%)) and we have arrived at a contradiction. (I

Lemma 4.12.3 Let M = T and ¢[x] be an Ly -formula and ¥[x] an Ly-formula.
Suppose MR () = MR(o N ) = a. Thenthereisana € M suchthat M = pla] A

Ylal.

Proof Since there is an irreducible component ¢’ of ¢ over M such that MR(p' A
1) = MR(p A ), without any loss of generality, we assume that MD(p) = 1.

We prove the result by induction on «. Let o = 0. Since MR(p A ¥) = 0, there
exists an a € M such that M = p[a] A ¢[a]. Since M is an elementary submodel
of M and MR(p) =0, ¥ # (M) = ¢(M). Hence, a € M.

Assume that the result is true for all 5 < « and ¢, ¥ are as in the hypothesis
of the result. Since MD(p) = 1, MR(¢ A —) = 3 < . Now we get Ly,-formulas
wolx], p1[x], ... of Morley rank § such that ¢y (M), @1 (M), ... are pairwise disjoint
subsets of p(M). Since MR(p A =) = B, MR(px A —)) < 3 for all but finitely
many k. Fix such a k. Then MR(p; A ¥) = 3. So, by induction hypothesis, there is
ana € M such that M = ¢g[a] A ¢[a]. This implies that M = pla] A ¢¥[a]. O

The following is the main technical result of this section.
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Theorem 4.12.4 Let T be w-stable, M = T Ry-saturated of cardinality < |M| and
plx, y], ¥[x] Ly -formulas with MR(v)) = «. Then the set

X = {a € M : MR(p[%, @] A ¥[X]) = a}

is M-definable. Moreover, if p and 1) are La-formulas, A C M, then X is A-definable.

Proof Let v, ..., 1, be a-strongly minimal components of ¢ over M (or over A
for the last part of the result). Then

X = UL {a e M : MR(¢[X, @] A i[X]) = o).

This shows that we need to prove the result under the assumption that the Morley
degree of i) over M (over A for the last part of the result) is 1.

Claim: For each a € M such that M_R(ap[)_c, al A Y[x]) = «, there is a finite set
Xz C ¢[M, a] N 4[M] such that for all b,

Xz C ¢[M, b] = MR([X, b] A [X]) = a.

Assuming that our claim is false, we show that ¢ has the order property. Since T’
is w-stable, this will contradict Proposition 4.12.2.

Let a € M witness that our claim is false. In particular, MR(p[X, a] A Y[X]) = a.
Hence, by Lemma 4.5.10, there is an ¢y € M suchthat M = [cy, a] A ¥[co]. Since
co € ¢[M, a] Ny [M], by our assumption, there is a Eo such that ¢y € ¢[M, EO] and
MR(@IE, bl A $1F) < o )

Now assume that ¢y, by, ..., Cn, b, have been defined such that forall0 < i < m,

G € oM, al N (M) & MR(p[X, bi]l A Y[X]) < o

Since 3
MR(p[x, a] A Y[xX] A ANZy—@lX, bi]) = o,

by Lemma 4.5.10, there exists a

Cot1 € PIM, @] N PIM]\ U pIM, by,].

i=

Since {cg, ..., cm+1} C @IM, a] NY[M], by our assumption, there is a E”H,l such
that
{607 ceey Em-H} C @[Ma bm+1] & MR(QO[%, bm+l] A w[f]) < Q.

Fora, =¢;y1,i e w,M E ¢la;, l_Jj] & i < j. Thus, our claim is proved.
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Now consider
X = (X CoM) : X <Ro A (X C p(M, @) = MR(SIT, @l A Y[F]) = a)).

For each X € X, set B
ox[V] = ApexlD, 31

By our claim.
MR(p[x,al AY[X]) = o & 3X € XM E pxla)).
Arguing similarly with —[X, y], we see that ‘MR(—¢[x, a] A Y[X]) = o’ is
equivalent to finite or infinite disjunction of Ly-formulas. Since Morley degree of
is 1,

MR(plx, a]l A P[x]) = a & MR(=¢[x, al A Y[X]) # a

Hence, by Lemma 4.5.10, ‘MR(¢[X, a] A 1[X]) = o’ is equivalent to disjunction of
finitely many ¢x. This proves the first part of our result.

Now assume that v is an Ls-formula, A C M. Take any o € G,4. Since M is
Rp-homogeneous, by Theorem 4.9.8,

MR(p[x, al A Y[X]) = o & MR(p[X, 0(@)] A Y[X]) = a.
So, any automorphism of M that fixes A pointwise, fixes
{a e M : MR(plx, a] A Y[X]) = o}
setwise. Hence, by Theorem 4.5.5, this set is A-definable. |

As a consequence of this theorem, we now have

Theorem 4.12.5 If T is a complete, w-stable theoryM = T and A C M, then every
type in S, (M /A) is definable over some finite subset Ay of A.

Proof Let p[x] € S,(A) be of Morley rank . Fix ¥[X] € p of rank « and of minimal
degree. Let Ag C A be a finite set such that 1) is an Ly, -formula. For any L-formula
p[x,y] and any a € A,

pl[x, al € p & MR(¢[x, a] A P[x]) = o

The result now follows from the last theorem. O

Corollary 4.12.6 Let T be an w-stable complete theory, M = T, A C M and D C
M" A-definable. Then every definable X C D™ is A U D-definable.
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Proof Let o[, y] be an L-formula and b € M be such that ¢[%, b] defines X. Then
X ={aeD": ¢la,y € tp(b/D)).

Since tp(b/D) is definable over D by the last theorem, X is definable over
AUD. O

4.13 Forking Independence

Throughout this section, we assume that T is a countable, complete, w-stable theory.

The main purpose of this section is to generalise the notion of independence to
w-stable theories. The key notion of forking independence as well as all results of
this section is due to Shelah [54].

LetA C B,p € S,(A), g € Sy(B) and p C q. We say that g is a forking extension
of p (or that g forks over p) if MR(q) < MR(p). Otherwise, q is called a non-forking
extension of p or we say that g does not fork over p.

In Proposition 4.11.2 (g), we proved the following.

Theorem 4.13.1 Let p € S,,(A) and MR(p) < oo. Then p has at least one and at
most MD(p) many non-forking extensions over S, (B) for every B D A.

We say that a is independent from B over A if MR(a/A U B) = MR(a/A), i.e.
tp(a/A U B) does not fork over tp(a/A), and write

L, B

Remark 4.13.2 If T is strongly minimal, by Theorem 4.11.4,
a ], B dim(@/AUB) = dim(a/A).

Thus, this is a generalisation of the notion of independence we introduced for strongly
minimal theories. For stable theories, we shall see that forking independence enjoys
several properties of algebraic independence.

Proposition 4.13.3 (Monotonicity)a | , B=VYC C B(@ |, O).

Proof This follows from

MR(a/A) > MR(@/A U C) > MR(a/A U B).
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Proposition 4.13.4 (Finite Basis) a | A B &V finite By C B(a 6L A Bo)-

Proof Only if part follows from monotonicity. Now assume thata / , B. Then there
exists a p[x] € tp(a/A U B) such that MR(p) < MR(a/A).Let By C B be a finite set
such that ¢ is an Lyup,-formula, then a L 4 Bo- O

ol

Proposition 4.13.5 (Transitivity) @ | , beceal A bnral n

Proof We have MR(a/A) > MR(a/A, b) > MR(@/A, b, ¢). The result is easily seen
now. |

Proposition 4.13.6 (Symmetry)a | , beb | n

Proof Assume thata | , b. Let MR(a/A) = o = MR(a/A, b), MR(b/A) = 3.

Case 1. A is a Ry-saturated model.

If possible, suppose MR(b/A, @) < (3. We shall arrive at a contradiction. Choose
©[X] € tp(a/A) such that MR(p) = a, ¥[y] € tp(b/A) such that MR(1)) = 3 and
VX, y1 € tp@@, b/A) with MR(yla,y]) < 3.
By Theorem4.12.4, there is an L4-formula {[X] defining {c : MR([y] A y[c, y]) #
B}.Since MR(v)) = [3,& defines {¢ : MR(¢[y] A ~v[c,y]) < (}.Notethat{ € tp(a/A).
Since MR(@/A, b) = avand the formula [X] A £[X] A Y[R, b] € tp(@/A, b), MR([X] A
E[x] A v, E]) = «. Therefore, by Lemma 4.12.3, there is an @’ € A such that

M [ gl@] A gl@lAqyla, bl.
In particular, MR@[F]A~[@, 7)) < B. But ¢[y]A~[@. 3] € p®/A) and
MR(b/A) = (. We have arrived at a contradiction and our result is proved in this
case.
General Case. Let M be a saturated model containing A such that |M| < |M].
Choose b € M realising a non-forking extension of p(b/A) to M.
Claim. There is a ¢ € M such that 1p(a@, b/A) = 1p(c, E//A).

To see this, set . _
qlx]1 = {plx, b 1: plx,y] € tp(@, b/A)}.

Then ¢ is a type over A, b . Hence, by saturability of M, there is ac € M realising g.
Let @ € M realise a non-forking extension of tp(E/AE/) to Mb.
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Claim. MR(G/Ab) = MR(@/Ab).

Tosee this, take a A[%., 7] € 1p(¢, b /A). Thenp = A[X. b | € tp(c/Ab ) and \[X., b] €
ip(@/AD).
Since tp(b/A) = tp(b JA), MR(\[X, b]) = MR(A[X, b ]). then

MR@ /M) > MR(@ /Mb) = MR(G/AD) = MR(a/Ab) = a.

and
MR(@ /M) < MR(@ /A) = MR(G/A) = MR(@/A) = a.
Thus, @ | ,, . By case 1, b L,
Hence, as tp(@, b/A) = tp(@, b JA), MR(b/AG) = MR(b /A@). So,

B = MR(b/A) > MR(b/AG) = MR(b' /A@) > MR(b /Ma@) = 5.
Thus, b | a. O
Proposition 4.13.7 @ | , acl(A).

Proof Take any finite tuple b € acl(A). By Theorem 4.11.3, we have 0 < MR (b/Aa)
<MR(b/A) = 0,ie. b | , @ Hence, by symmetry, b | , @. The result now follows
from the finite basis property. (I

Proposition 4.13.8 a, b Lice@l,Cna b L. 0.

Proof By finite basis property of forking, without any loss of generality, we assume
that C is a finit tuple ¢. Now.
abl,cecl,a (symmetry)
&cl,a nc L, b (transitivity)
S a T ADb L. € (symmetry)

a



Chapter 5
Morley Categoricity Theorem

Abstract In this chapter, we present the proof of Baldwin and Lachlan of the
Morley categoricity theorem. The proof uses among other things indiscernibles and
Vaughtian pair of models. Morley’s theorem is a very important milestone in model
theory. It heralded the modern era of model theory. The concept of indiscernibles
was introduced by Ehrenfeucht and Mostowski [11].

5.1 Existence of Indiscernibles

Let M be an L-structure, A C M, Aanordinaland X = {X; :i € [} C M?. We call

X a set of indiscernibles over A if for every L 4-formula ¢[vy,...,v,], V1, ..., 0,
A-tuples of distinct variables, and n-tuples (x;,, ..., x;,), (Xj,,...,X;,) in X,
M ': (p[f[l, v ,f[”] <> (,O[Yj], ey fj“].

If A= and X is a set of A-indiscernibles, then we simply call X a set of indis-
cernibles. If for some i # j € I, X; =X, then all x; € X are the same. Therefore,
a set of A-indiscernibles elements are usually assumed to be distinct.

Next suppose that (1, <) is a linearly ordered set, (x; : i € I) a sequence in M*
and A C M. We call (x; : i € I) a set of order indiscernibles over A if for every
L s-formula p[vy, ..., v,]and iy < ... <iy, j1 <...< jypin [

M = olxi, .. X0, ] < olX, .0, X,

If A =0, wecall {x; : i € I} asequence of order indiscernibles.

Again, if (x; : i € I) is a set of order indiscernibles and if for some i < j € I,
X; = X}, then all x; are the same. Hence, we always assume that elements of a set of
order indiscernibles are all distinct.

We shall be proving results mostly for A = 1. Readers should observe that most
of the results we prove hold for general \ with exactly the same proof.

© Springer Nature Singapore Pte Ltd. 2017 151
H. Sarbadhikari and S.M. Srivastava, A Course on Basic Model Theory,
DOI 10.1007/978-981-10-5098-5_5



152 5 Morley Categoricity Theorem

Here is a surprising result.

Theorem 5.1.1 Let T be a theory with an infinite model. Then, for every linearly
ordered set (I, <), T has a model M with a set of order indiscernibles (x; : i € I),
x; distinct.

Proof Let M be an infinite model of 7. Fix a linear order < on M. Take new
constant symbols {c¢; : i € I} andlet T’ be the extension of T whose new axioms are
the following sentences:

1. Ci#Cj,i#j.
2. ¢lciy, - e ] = wlej, oo el ol ..o, v.] an L-formula, i < ... < i, ji
<...<jk.

We show that 7’ is finitely satisfiable. Then, by compactness theorem, 7" has
model N in which (clN 11 € I) is a sequence of distinct order indiscernibles.

Let Ty C T’ be finite. Let Iy be the set of all i € I such that ¢; appears in Ty and
©1, ..., ©n be all the L-formulas that appear in Tj under clause (2). Let vy, ..., v,
be all the variables that have a free occurrence in ¢y, ..., ©p.

Let [M]" denote the set of all finite subsets of M of cardinality n. We define F :
[M]" — P{1,...,m}) as follows. Let A = {ay, ...,a,} € [M]" witha; < ... <
a,. Then,

F(A)y={j <m:MEglar.....a,).

By Ramsey theorem (Theorem 8.5.2), M has an infinite homogeneous subset X, i.e.
F|[X]" takes a constant value, say n C {1, ..., m}. For eachi € I, choose b; € X
such that whenever i < i’, b; < by. Interpret ¢ = b;, i € I.

Foreveryi; <...<i,in lpandevery 1 < j <m,

M = plb;,....b ] & jeEn.
Thus, we have got a model of 7. O

Let M beamodelof T, (I, <) alinearly orderedsetand X = {x; : i € I}, A C M.
We define the Ehrenfeucht—Mostowski type of X over A, denoted by EM (X /A), to
be the set of L 4-formulas ¢[vo, ..., v,—] satisfying

Vi() <...< in_](M '= cp[x,-o, . ,xim]).

We shall write EM (X) instead of EM (X /).

Note thatif X = (x; : i € I)is an infinite set of order indiscernibles over A C M,
then a L4-formula ¢[vy, ..., v,] € EM(X/A) if and only if M = ¢[x;,, ..., x; ]
forsomei; < ... <i,.

The following is a very general result on the existence of order indiscernibles.

Theorem 5.1.2 Let T be an L-theory and (I, <) an infinite linearly ordered set.
Let M =T, X ={x;:i € 1} C M withi # i’ = x; # xi. Then, for every infinite
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linearly ordered set (J, <), there is an elementary extension N of M having an
infinite setY = {y; : j € J}oforderindiscerniblesindexedby J suchthat EM(Y) =
EM(X).

Proof Add new constant symbols {c; : j € J}.Let T’ be the theory having following
axioms:
Diage (M),

(cj#cpij#i el
{olcj, ..., c; ] plvi, ..o, v] € EM(X), j1 <...< ju)

and
{plcjys-nmncj )= wlej, ooy cpl gl ..., v] an L — formula,

<o <juji <...<J}

We show that 7’ has a model, say N. Take y; = ci.v,j € J.Then, Y ={y; : jeJ}
is a set of order indiscernibles in N with EM(Y) = EM(X).

By compactness theorem, it is sufficient to show that 7’ is finitely satisfiable. Let
C C J be finite and F a finite set of L-formulas. Without any loss of generality, we
assume that no variable other than vy, ..., v,—; isfreeinany ¢ € F.So,eachp € F
can be represented as ¢[vy, . .., v,—1]. Suppose Ty consists of

(cj#cptj#j €Ch
{olcjy, .. ovcj l:pe FODEM(X) A jo<...< ju—1 € C}

and
{olcjps - v cj ] < gp[cjé,...,cj’;_l] tp€eF

ANjo<.oo<jutsjo<...<jr_ €ChL

To complete the proof we now show that M = T.
Let
[X]"={(x;, tk<n)tip<...<iy_ €I}

We define an equivalence relation ~ on [X]" by

X ~x & Ve F(M = o[x] < ¢[x']).
This is a finite equivalence relation on [X]". Hence, by Ramsey’s theorem (Theo-
rem 8.5.2), there exists an infinite X’ C X homogeneous with respect to ~. Now

interpret ¢; in M, j € C,by x;; € X’ such that j — i; is order-preserving. Thus, M
models Ty. O
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We give another proof of the existence of order indiscernibles. The technique used
here is important and will be imitated later.

Theorem 5.1.3 Let N < M be L-structures, Xy < |N| < |M|, A < |N| and M be
|N|-saturated. Then, there is a sequence ¢y, €1, C2, C3, . . . of distinct elements in M
which are order indiscernibles over N.

Proof Take any ¢y € M* \ N*. Let U be an ultrafilter on N* containing {©(N) :
pIx] € 1pM (€o/N)}.
Let {&;[x] : i € I} be an enumeration of all Ncy-formulas. For each i € I, set

— _J&Ix] if&EG(N) €U,
Oilx1 = [ —&[X]if & (N) € U.

Then, go(x) = {6;[x] : i € I}isatypein M over Ncy. Since M is | N |-saturated,
qo is realised in M. Choose any ¢; = go in M.

Notethatc; # cp. If not, then the formulaXx = ¢y isin go. Butthisimpliescy € N A,

Suppose ¢y, 1, ..., ¢, have been defined. Let {n;[x] : j € J} be an enumeration
of all Ncyc ...c,-formulas. For each j € J, set

= _ | milx] ifn(N) e U,
O = ] s @1 iy (V) e U

Then, g,(x) = {0;[x]: j € J} is a type in M over Ncoc ...c,. By the same
reason, g, is realised in M. Take any ¢,1| = ¢, in M.
By induction on n, we show that forevery 0 <i; < ... <i,,0<j; < ... < ju,

tpM (e, ..., ¢, /N) = tp™ (@, ...,cj/N).

Initial Case: Letm > 1. Then, both ¢y and ¢, satisfy the same set of L y-formulas,
viz. those that define sets in /. Hence, tp™ (cy/N) = tp™ (C,,/N).

Inductive Step. Assume the hypothesis for all pairs of increasing sequences of
length n. Take any i} < ... <i, <iy4; and j; < ... < j, < ju4+1. By induction
hypothesis,

tpM (i, ..., ¢, /N)=tp"(c;,...,c; /N).
Hence, there exists a f € Auty(M) such that f(c;,) =c;, for all p < n. So, for
every Ly-formula ¢[X,X,...,X,] andeverya €¢ M
M E=y@,c,...,c,) & MEo(f@),cj,...,cj,).
Therefore,

tp(Ciyy» Ciy» -+ Ciy /N) = tp(f(Ci, ), Cjy -+ Cj, /N).
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It follows that both ¢; ., and f(c;,,,) satisfy the same set of Ncj, ..., c¢; -formulas,
viz. those that define sets in /. Hence,

tp(Ci,,,s Ciy» - .-, Ci,/N) =tp(f(Ci,.,),Cj ..., Cj,/N) =tp(Cj,,,Cj,...,Cj/N).

O

Proposition 5.1.4 Let k > Ry, M a k-saturated L-structure, A C M of cardinality
less than k and A < k. Suppose ay, a\, a,, ... is a sequence of order indiscernibles
over A in M. Then, there exista_1,a—y,a—3, . .. such that

.,d_3,d_,d_1,0d0,01,0d2,0d3, ...

is a sequence of order indiscernibles over A.

Proof We first show that there existsaa_; € M M such that@_;, @y, @i, a2, as, . .. is
a sequence of order indiscernibles over A.

Using this repeatedly, by induction, we geta_y,a_»,a_3,... € M A such that for
every k,

a_j,...,a_3,a_2,a_1,dp,d|,ds,as, ...

is a sequence of order indiscernibles over A. This will complete the proof.
B Take any k > 1 and any LA_—fgrmulagok[)?, X1,...,x¢).Fori =i; < ... <ipand
J=Jj1 <...< ji let(px, i, j) denote the L 4-formula

elx,ai,....a,] < olx,aj,, ... a;,]

Fori=i <...<ig andf:jo <j1 <...<ji, let f(apk,f,f) denote the L4-
formula
gak[)_c, 5,-1, . ,Eik] <> @k[ﬁjo,ﬁjl, e ,Ejk].

Let p(x) consist of all formulas of the form ¢ (¢y, i, j) and £(yy, i, j) for all possible
k, or, i and ; Since ay, ai, a,, . . . are order indiscernibles over A, it is easy to check
that p(X) is a finitely satisfiable set of formulas over a set of parameters of cardinality
< k. Since M is k-saturated, p(x) is realised in M. Any a_; € M realising p(x)
witnesses our claim. O

Using the same idea one can easily prove the following theorem. Its proof is left
to the reader as a simple exercise.

Proposition 5.1.5 Let k > Ny, M a k-saturated L-structure, A C M of cardinality
less than k and A < k. Suppose ay, a\, as, ... is a sequence of order indiscernibles
over A in M. Then, for each wy < o < Kk there existsaa, € M A such that

50,51,52,53,...5(1,..., a < K

are order indiscernibles over A.
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5.2 Applications of Indiscernibility

From now on, if X = {x; : i € I} is a sequence of order indiscernibles, then we
linearly order X by x; < x; & i < j and replace I by X itself.

Theorem 5.2.1 Let T be a complete, strongly minimal theory, M =T and A =
{ai =i € I} an independent set in M. Then, for every positive integer k and k-tuples
a,bin A, tpM(a) = tpM(b). Thus, A is a set of indiscernibles.

Proof This follows from Proposition 2.12.3 by taking ¢[x] tobe x = x, N = M and
X = {J to conclude that the bijection @ — b is partial elementary. (]

Assume that T has built-in Skolem functions, M =T and X an infinite set of
order indiscernibles in M. Then, every element of the Skolem hull H(X) of X can be
represented as ¢[x;,, . .., x;,_, ], wheret[v]isan L-termand x;, < ... < x;,_,in X.We
have already observed that H (X) is an elementary substructure of M (Theorem 1.8.2).
Therefore, H(X) is a model of T. Such models are called Ehrenfeucht—Mostowski
models.

Theorem 5.2.2 Let T be a theory with built-in Skolem functions, M\, N =T, X, Y
infinite sets of order indiscernibles in M and N, respectively, such that EM(X) =
EM(Y). Suppose o : X — Y is an order-preserving map. Then, o can be extended
to an elementary embedding T : H(X) — H(Y). Moreover, if o is onto, T will be an
isomorphism.

Proof Let t[v] be an L-term and x¢p < ... < Xx,_; an increasing sequence in X.
Define

T(t[x]) = t[e(0)].

Then,

(1) 7 is well defined and one-to-one: Let ¥ and x’ be increasing sequences in X.
Since o is order-preserving, X and Y are sets of indicerniblesand EM (X) = EM(Y),
we have

M Et[x] = s[x']

if and only if o
N Etlo(X)] = s[o(x)].

(2) Finally, let p[vy, ..., v,] be an L-formula #[v], ..., t,[v] L-terms and X € X
an increasing sequence in X. Since EM (X) = EM(Y), we have

M = pln[X], ... tulX]] & N = elnlo@)], ... tulo(X)]].

(3) Assume that ¢ is onto. Then, t[y] = 7(t[c~'(7)]), ¥ an increasing sequence
in Y. So, 7 is onto.
Our proof is complete. O
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Theorem 5.2.3 Let T be a countable theory with an infinite model. Then, for every
infinite cardinal k, T has a model M of cardinality k such that for every countable
A C M, M realises only countably many types in S (A).

Proof Let T* be the Skolemisation of 7 and N = T* having a sequence X = {x,, :

a < k}oforderindiscernibles of type k. Since T, and hence T*, has an infinite model,

such an N exists. Take M = H(X). Then, |M| = k. Let A C M be countable. Then,

each a € A can be expressed as 7,[x“], where X“ is a finite increasing sequence in

X. Let Y be the set of all x € X that appear in x“, a € A. Then, Y is countable.
Fory, <...<y,andz; <... <z, in X, we define

Y~y 2o ViVyeY((yi=y<o =)A<y <z <Y).

The importance of this equivalence relation is the following. If y ~y Zz, then for

every a; = t[x], ..., a, = t,[x]in A with X an increasing sequence in Y, for every
L-formula ¢[u, vy, ..., v,] and for every term t[wy, ..., w,],
M = plt[y], ar, ..., an] < plt[z], a1, ..., anl.

Thus, the cardinality of types over A realised in M is < |U, X"/ ~y |.

Buty ~y 7 if and only if for all 7,

(I)y;€Yandy =z

or

(2) y; ¢ Y and z; ¢ Y and there is no element of Y between y; and z;.

Thus, each ~y-equivalence class gives a finite partition of Y into intervals. Since
Y is well-ordered and countable, there are only countably many finite partitions of
Y into intervals. (]

As an application of indiscernibles, we give the following important sufficient
condition for w-stability of a theory.

Theorem 5.2.4 Let T be a countable theory with an infinite model. Suppose T is
k-categorical, where k is an uncountable cardinal. Then, T is w-stable.

Proof Suppose T is not w-stable. Then, there is a N’ =T and countable A C N’
such that S {v '(A) isuncountable. If [N'| > &, we replace it by an elementary substruc-
ture containing A of cardinality x which exists by downward Lowenheim—Skolem
theorem. On the other hand, if |N’| < k, we replace it by an elementary extension of
cardinality x which exists by upward Lowenheim—Skolem theorem. Thus, without
any loss of generality, we assume that |N'| = . Now take an elementary extension
N of N’ of cardinality  that realises 8| many types in S} (A).

On the other hand, by the last theorem, 7 has a model M of cardinality x such
that M realises only countably many types in S} (A) for every countable A C M.
But then M and N are not isomorphic. This contradicts that T is x-categorical. [

We now show that if T is a stable theory, then every infinite set of order indis-
cernibles in a model of T is in fact a set indiscernibles. We need the following
lemma.
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Lemma 5.2.5 For every infinite cardinal k, there is an order-dense linearly ordered
set (I, <) of cardinality greater than k that has a dense subset J of cardinality at
most K.

Proof Let \ be the least cardinal such that x < 2*. Take I = Q" with lexicographic
ordering. So, for f,g € I, f < gif f(a) < g(a), where a < A is the least ordinal
(B such that f(3) # g(0). Take

J={fel:3a<AVy=>a(f(y) =0)}.

It is easy to see that |/| > k, I is order dense, |J| < s and J is dense in /. O

Theorem 5.2.6 Let T be a countable k-stable theory, k > Ry. Suppose M =T and
X C M is an infinite set of order indiscernibles. Then, X is a set of indiscernibles
in M.

Proof Letx; < ... <x, bein X, ¢[vy, ..., v,] a formula without parameters and
M = o[xy, ..., x,]. Let S, denote the permutation group of {1, ..., n}. Consider

F={oce€S, :MEoplxs s Xeml}-

We need to show that I' = §,,. Assume to the contrary. We shall contradict that T is
k-stable. Geto € I', 7 € S, \ I and a transposition ¢ = (i,i + 1) € S,,i < n, such
that T = o oe.

Let I and J be as in the last example. By Theorem 5.1.2, we haveamodel N |= T
having a set of order indiscernibles Y of order type I such that EM (X) = EM(Y).
Let Z be adense subset of Y with |Z| < k. Take Y[vy, ..., vy] = @lVsq1)s - - s Vo) -
Since EM(X) = EM(Y), there exist y; < ... < y, in Y such that

N'21/1[)’1,-~-,)’iayi+1,~--’)7n]

and
N |: _‘T/}[)’l» ey Yidls Vi °"1yn]~

Letx < ybein Y. Since Z is dense in Y, there exist z; < ... < z,—1 in Z such that
Ti—1 <X <Zi <Y <Zitl-

But then
N E Y[z, ooy Zic1s Xy iy e v oy Zu1)

and
N ’Z _‘1/)[21, e Zi—15 Y5 Zis -~'7anl]'

Hence, tp™ (x/Z) # tp™(y/Z). Since |Y| > & and |Z| < , this contradicts that T
is k-stable. ([
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For the next result, we need an example.

Example 5.2.7 Let k be an infinite cardinal, I = k x Q with lexicographic order.
For all A C k, define an order isomorphism o4 : I — I by

oala,r) = (a, 1) ifae A
=(a,r+1)ifaekr\A.

Then, for A # B, 04 # op. Thus, there are 2" many automorphisms of I.

Theorem 5.2.8 Let T be a countable theory with an infinite model. Then, for every
Kk > Vo, T has a model of cardinality k with 2% many automorphisms.

Proof Let T* be the Skolemisation of 7. By Theorem 5.1.2, T* has a model M
with a set of order indiscernibles X of order type I = x x Q described above. Take
N ="H(X).

By Theorem 5.2.2, N =T, |N| = x and N has 2" many automorphisms. (]

Theorem 5.2.9 Let T be a theory with built-in Skolem functions, M =T, p €
SM() such that M omits p. Assume that M contains an infinite set X of order
indiscernibles. Then, for every infinite cardinal k, T has a model of cardinality x
that omits p.

Proof Under our hypothesis, by Theorem 5.1.2, T has a model N’ having an infinite
set Y of order indiscernibles of order type x such that EM (X) = EM(Y). Now take
N =H((Y). Then, N =T and |N| = k.

If possible, suppose (;(¥), ..., t,(¥)), ¥ an increasing tuple of elements in Y,
realises p. Take an increasing tuple X in X of the same length as that of y. Since
EM(X)= EM(Y), for every L-formula ¢[vy, ..., v,],

MEelt(X), ...t < N Eolt(y), ... ta (D]

So, (t;(X), ..., t,(x) in M realises p. This is a contradiction. O

5.3 Vaughtian Pair of Models

Throughout this section we assume that T is a countable complete theory with infinite
models.

Let kK > A > 8. We say that T has a (k, \)-model if there is a model M =T
and an L-formula ¢[x] such that |M| = « and |p(M)| = .

Proposition 5.3.1 Let k > Ny and T be k-categorical. Then, forno k > X\ > 8y, T
has a (k, \)-model.
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Proof If possible, let for some k > A > Ry, there exista M = T and an L-formula
o such that |M| = k and |@(M)| = A. Add k many new constants {c, : @ < Kk} to
L. Consider the theory

T"=TU{cy #cp:a<pf<rlU{plea] : a < k).

Then, M is a model of each finite part of 7’. Hence, by compactness and downward
Lowenheim—Skolem theorem, there isa N = T’ of cardinality «. Further, |p(N)| =
k. Since |p(M)| = A < kK, M and N are not isomorphic. This contradicts that T is
k-categorical. ]

We say that (N, M) is a Vaughtian pair of models of T if M is a proper elementary
substructure of N and there is an Lj-formula ¢[x] such that ¢(N) = (M) and
infinite.

Proposition 5.3.2 If T has a (k, \)-model, then T has a Vaughtian pair of models.

Proof Let N =T and p an L-formula such that |[N| = x and [p(N)| = A. By down-
ward Lowenheim—Skolem theorem, there is an elementary substructure M of N con-
taining w(N) of cardinality \. Clearly, p[x] witnesses that (N, M) is a Vaughtian
pair of models of 7. U

Using downward Lowenheim—Skolem theorem, we get the following result.

Proposition 5.3.3 IfT hasno Vaughtian pair of models, M |= T and X C M infinite
and definable. Then, | X| = |M|.

Proof Let an L-formula ¢[x,Xx] and @ € M be such that X = o(M, a). If possi-
ble, suppose |X| < |M|. By downward Lowenheim—Skolem theorem, there is an
elementary substructure N of M containing X U {a} such that |[N| = | X|. But then
o witnesses that (M, N) is a Vaughtian pair of models of 7" which contradicts our
hypothesis. (]

Theorem 5.3.4 Let T have no Vaughtian pair of models, M =T and X C M infi-
nite and X -definable. Then, M has no proper elementary substructure containing X.
Moreover, if T is w-stable, M is a prime model extension of X.

Proof If there is a proper elementary substructure N of M containing X, then (M, N)
is a Vaughtian pair of models of 7', witnessed by an L x-formula ¢ that defines X.
Assume that T is w-stable. By Theorem 4.8.13, there is a prime model extension
N over X which, without any loss of generality, we can assume to be an elementary
substructure of M. But then N = M. Thus, M is a prime model extension of X. [J

Set L* = L U{U}, where U is a unary predicate symbol. A Vaughtian pair of
models (N, M) will be canonically regarded as an L*-structure with universe N and
UM =M.
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To each L-formula ¢[xy, ..., x,—1] we associate an L*-formula <pU as follows:

Y0y -+ oy Xno1] = @lX0s - -+, Xpi]

if ¢ is atomic;
)V ==¢", (v’ =" vyl

and
@xp)¥ = I U] A ).

It is easy to see that if (N, M) is a Vaughtian pair of models regarded canonically
as an L*-structure, ¢[x] an L-formula and @ € M, then

M = glal & (N, M) = ¢Y[al.

Proposition 5.3.5 IfT has a Vaughtian pair of models, then T has a Vaughtian pair
(No, My) with Ny countable.

Proof Let (N, M) be a Vaughtian pair of models of 7" and ¢[x] an L j;-formula such
that @[ M] is infinite and ¢ (N) = @(M). Let @ € M be the parameters occurring in
. We regard (N, M) as an L*-structure. By Lowenheim—Skolem theorem, (N, M)
has a countable elementary substructure (Ny, My) suchthata € Ny. Since (N, M) =
Ula;] for all i, (Ng, My) = Ula;] for all i. Hence, a € M.

Since (N, M) = Ix—U|x], (No, My) = Ix—U[x]. Hence, M is a proper subset
of Ny. For every L-formula ¢ [v], we have

(N, M) = Yo(([v] A AUy 1) — Y [0]).

Hence,

(No, Mo) = Vo((W[0] A AU Lvi]) — 97 [0)).
This shows that M is an elementary L-substructure of Ny. Since ¢(N) is infinite,
for each k,

(N, M) = 3xr . 3N LT A Aicjxi # x)).

Hence,
(No, Mo) = Fx1 ... I (A @l 1 A Aicjxi # X)),

Thus, ¢ (Np) is infinite.
(N, M) EVx(plx] = Ulx]).

Hence,
(No, Mp) = Vx(plx] = Ulx]D).
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This shows that ¢(Ny) = @(My). U

Lemma 5.3.6 Let T be an L-theory with no Vaughtian pair of models. Suppose M
is amodel of T and p[x,y] an Ly formula. Then, there is a positive integer n such
that forallb € M, |o(M,b)| > n = |p(M, b)| > Ry.

Proof If M is finite, any n > |M| will do our job. Now assume that M is infinite.
Suppose such an integer n does not exist. For every n, fix a b, € M such that n <
lo(M, b,)| < Ry. Fix a proper elementary extension N of M which exists because
M is infinite. Since N is an elementary extension of M, for each n, p(N, b,) =
©(M, by).

Let

L* =Ly U{U}U{coo, ..., Com=1,C10s -+ > Clm—1, .- -} U{do, ..., dp_1},

where m is the arity of X and p is the arity of y. Let 7* consist of the following L*
sentences:

Diag, (N, M).

Ek 75 El, k<.

o[k, d, k € w.
niULd;].

Vx(plx, d] — N U[x]),

bl

where ¢, = (Cx0s - - ., Ckm—1), k € w, and d = (dy, . . ., dy_1).

Given any finite set of elements in 7*, we can choose n large enough to see that
these finitely many formulas are realised in (N, M). So, by compactness theorem,
there is an elementary extension (N’, M) of (N, M) and a b € N’ realising T*.
But then (N’, M’) is a Vaughtian pair of models of T'. This contradiction proves the
result. O

Theorem 5.3.7 If T has no Vaughtian pair of models, M =T and @[X] an Ly
formula minimal in M. Then, ¢ is strongly minimal over M.

Proof 1f possible, suppose ¢ is not strongly minimal. Then, there is an elementary
extension N of M, aIlL—formula [x,y]and b € N such that both o(N) N (N, b)
and @(N) N —)(N, b) are infinite, i.e. for every positive integer n,

N E Iy Enx (e[XI AYIX, YD) A FnX (9[XTA —0IX, Y1).
Since ¢ is minimal in M, by the last Lemma, there ia a positive integer n such that
M = VY@ X (eIXI A YLK, YD) V 3<uX (@[X] A =[x, V).

Since N is an elementary extension of M, we have a contradiction. O

Corollary 5.3.8 If T is a w-stable theory with no Vaughtian pair of models and
M =T, then there is a strongly minimal L y-formula.
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Proof This follows from Theorem 4.8.11 and the last theorem. (]
Before we prove our next theorem, we make a couple of observations.

Lemma 5.3.9 Let (N, M) be a countable Vaughtian pair of models of T, a € N and
p an n-type in N over a. Then, there is a countable elementary extension (N M)
of (N, M) and a b € N’ realising p.

Proof 1Tt is easily seen that g = p U Diag,; (N, M) is finitely satisfiable in (N, M).
Therefore, there is a countable elementary extension (N ', M") of (N, M) realising
q. This shows that there is a b € N’ realising p. ]

Lemma 5.3.10 Ler (N, M) be a countable Vaughtian pair of models of T. Then,
there exists a countable elementarz extension (N', M") of (N, M) such thatifb € M
and p a complete type in N over b realised in N, then p is realised in M.

Proof Since N (and M) are countable, there are only countably many p above. So,
if we prove that for each complete type p over some b € M realised in N there is
a countable elementary extension (N', M’) of (N, M) such that p is realised in M’,
then by iterating the construction we shall get a desired extension.

Now consider

qv] = Diag (N, M) U {oV[v,b] : ¢[v,b] € p}.

Foroy, ..., €p \ B
N = Jv A i, b].

Since M is an elementary substructure of N,
M =30 AL @i, Bl

Therefore, _
(N, M) = Fo(NT_ U (v)) A Ao [V, b)),

where v = (vy, ..., v,). Thus, g[v] is finitely satisfiable in (N, M). Hence, there is
a countable elementary extension (N', M) of (N, M) in which ¢[v] is realised. Any
¢ € N’ realising ¢[v] belongs to M’ and realises p. |

Theorem 5.3.11 Let (N, M) be a countable Vaughtian pair of models of T. Then,
there is a countable Vaughtian pair of models (Noo, Moo) of T which is an elementary
extension of (N, M) such that both N, and My, are homogeneous and realise the

same complete types in T. In particular, M, and N, are isomorphic by Proposition
4.1.7.

Proof Set Ny = N and M, = M. We shall now define an elementary chain {(N,
M)} of countable L*-structures satisfying the following:
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(a) If p € S, (T) is realised in N3, then it is realised in M3 1.

(b) If @, b, c € M3y and tp™+1 (@) = tp™++1(b), then there is a d € M3, such
that rpM*+2 (@, ¢) = tpM*+ (b, d).

(c) If @, b, ¢ € N3jp» and tp™Ne2 (@) = tp™*+2(b), then there is a d € Niry3 such
that tp™*+ (@, c) = tp™*+ (b, d).

(a) clearly follows from 5.3.10. To see (b), consider
plxl = {@lb, x]: M3y = ola, cl.

Forpi, ..., om € p, M3y = Ix AL, pila, x]. Hence, M3y = 3x AL, goi[l_a, x].
(b) now follows from 5.3.10. Similarly, (c) follows from 5.3.9.
Finally, we take N, = U Ny and M, = Ui M. ([l

Theorem 5.3.12 If T has a Vaughtian pair of models, then T has a (R, Ry) model.
In particular, if T has a (k, \) model for some k. > \ > Rg, T has a (N1, Rg) model.

Proof Since T has a Vaughtian pair of models, by Proposition5.3.5 and the last
theorem, 7" has a countable Vaughtian pair of models (N, M) such that M and N
are homogeneous and realise same types in S, (T), n > 1. Therefore, M and N are
isomorphic by Proposition4.1.7. Let p[x] be an L j;-formula such that (M) = p(N)
is infinite.

Set Np = N. By induction we are going to define a strictly ascending elementary
chain of models {N, : @ < w} such that for all & < wy, N, is isomorphic to M
and ©(Not1) = @(No) (= @(M)). Then, U, ., N, will be a (Ry, Xp) model for T
witnessed by ¢.

Let « be limit and suppose, for all § < «, N has been defined satisfying the
above conditions. Take N, = U, N3. Since each Ng is homogeneous, N,, is homo-
geneous. Also N, and M realise the same types. Since both N, and M are countable,
by Proposition 4.1.7 they are isomorphic. It is also clear that (N, ) = @(M).

Suppose N, have been defined. Fix an isomorphism g : M — N,,. Take N,y =
(N\ M)U N,. We can canonically make N, into an L-structure isomorphic to
N with an isomorphism from N — N, mapping M onto N,. The result is easily
seen now. (]

5.4 Morley Categoricity Theorem
We are now in a position to give a proof of Morley Categoricity Theorem—a corner
stone of modern model theory.

Theorem 5.4.1 I[fan w-stable theory T has a (R, Ro) model, it has a (k, Ry) model
forall k > Ry.
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Proof Let M |= T be of cardinality ®; and ¢[x] an L-formula such that |p(M)| =
Ro. Get a proper elementary extension N of M as in Theorem 4.8.14. Now consider

glx] ={elxJU{x #a:a e pM)}.

Since |p(M)| = Ry, g[x] is a countable 1-type over M. Further, it is omitted in M.
Hence, it is omitted in N. Thus, o(N) = o(M).

If [N| > k, wereplace N by an elementary substructure N’ of N containing (M)
of cardinality . Then, N’ is a (k, 8¢) model of 7" witnessed by p[x].

If IN| < K, we can iterate the process and get a strictly ascending elementary
chain {N, : a < ¢} such that Ny = M, N, = U Ng if a is limit, p(N,) = o(M)
for all < § till |[Ns| = k. Then, N is a (k, 8g) model of T witnessed by . U

Theorem 5.4.2 If T is k-categorical for some uncountable k, then T has no
Vaughtian pair of models.

Proof Let T be k-categorical for some uncountable x. By Theorem 5.2.4, T is w-
stable. If possible, assume that T has a Vaughtian pair of models. Then, by Theorem
5.3.12, T has a (R, ®g) model. Since T is w-stable, by the last theorem, it has a
(k, Ro) model, say M, witnessed by an L-formula p[x].

Add k-many distinct new constants {c,, : « < k} to Ly, and consider

I'=Diaga(M)U{cy, #c5:a < < r}U{plca] : a < K}.

Clearly, I' is finitely satisfiable in M. Hence, by the compactness theorem, I" has
a model, say N’. We then have M < N’ and |N’| > k. Next take an elementary
substructure N of N’ containing X = {cV "o < K} of cardinality k. We also have
|©(N)| = k. But then M and N cannot be isomorphic. ([l

Finally, we prove Baldwin-Lachlan theorem that immediately proves Morley
categoricity theorem.

Theorem 5.4.3 (Baldwin-Lachlan) Let x be any uncountable cardinal. Then, T is
k-categorical if and only if T is w-stable and has no Vaughtian pair of models.

Proof Only if part follows from Theorem 5.2.4 and the last theorem. Conversely,
assume that 7" is w-stable and has no Vaughtian pair of models. Since T is w-stable,
by Corollary 4.8.7 it has a prime model, say My. Let M, N = T, each of cardinality
k. Without any loss of generality, we assume that M, is a common elementary
substructure of both M and N.

Fix an L-formula ¢[x, X] and @ € M such that ¢[x, a] is strongly minimal over
M. Such a formula exists by Corollary 5.3.8. Set

Ylx,al = ¢lx,al Vv Viex = a;.
Then, ) is also strongly minimal. Since 7 has no Vaughtian pair of models,

|[Yp(M)| = |¢p(N)| = k. Since k is uncountable and 7 countable, dim(¥(M)) =
dim((N)) = k.
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By Proposition 3.4.19, there is a partial elementary bijection f : ¢)(M) — (N).
But M is a prime model extension of (M) by Theorem 5.3.4. Hence, there is an
elementary map g : M — N extending f. Since T has no Vaughtian pair of models,
N has no proper elementary substructure containing ©)(N). Hence, g is onto N. Thus,
we have proved that g is an isomorphism. (]

Corollary 5.4.4 (Morley Categoricity Theorem) Let k, A > Ro and T a countable
complete theory with infinite models. Then, T is k-categorical if and only if it is
A-categorical.
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Chapter 6
Strong Types

Abstract In this chapter, we make a systematic study of Lascar strong types and
Kim-Pillay strong types. We also introduce Galois topological group of a complete
theory. We close this chapter by showing connections of these with descriptive set
theory.

6.1 General Facts on Bounded, Invariant,
Equivalence Relations

Throughout this chapter, we assume that 7 is a countable complete theory. We also fix
amonster model M of T which is x-saturated and x-strongly homogeneous, where «
is a (fixed) large strongly inaccessible cardinal. A subset A of M will be called small
if |A| < k. Also, a sequence @ in M is small if its length is < K.

Let A\ < x and E an equivalence relation on M*. We shall use M /E to denote the
set of all E-equivalence classes and 7 : M* — M*/E the quotient map. Fora € M,
often we shall write [a] instead of 7(a). Also, in what follows X, y, z, etc. will denote
sequences of distinct variables of length A and |7'| = max{\, Ro}.

We call E invariant if whenever aE b and o € Aut(M), (@) E o(b). We call E
bounded if M} /E| < k.

In this chapter, we introduce several bounded, invariant, equivalence relations
on M*, \ < k. For each of these equivalence relations E, for every a € M*, the
set {b € M : 1p(b/¥) = tp(@/¥)} is E invariant. So, each E-equivalence class C is
contained in a set of the form {b € M : 1p(b/¥) = tp(a/¥)},a € M. For this reason,
E-equivalence classes are called strong types.

Three very important strong types are the so-called Shelah strong types, Kim—
Pillay strong types and Lascar strong types. These strong types and associated Galois
groups (which will be introduced later in the chapter) play an important role in stable,
simple and NIP theories. These topics also have connections with descriptive set
theory which we shall point out at the end of this chapter.

Let E be abounded, invariant, equivalence relation on M*. Assume that |M*/E| =
i< k.LetS = {a, € M* : a < ) beacross section of M*/E, i.e. S intersects each
E-equivalence class in exactly one point. Then, for every D ¢ M*/E, 7~ (D) is
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S-invariant: Take @ € 7' (D) andf € Auts(M). Suppose @, E @. Since E is invariant,
f(@a.) Ef(a@). But f(a,) = a,. Hence, f (@) E @ implying that f(a) € 7' (D).

Call D C M/E closed if 7= (D) is type-definable over a small set. Since 7! (D)
is S-invariant, by Proposition4.6.3, D is closed if and only if 7! (D) is type-definable
over S. Now it is entirely routine to check that the set of all closed sets in M /E is
precisely the set of all closed sets of a topology on M* /E. We shall call this topology
the logic topology.

Remark 6.1.1 Let E be an invariant equivalence relation on M. By Exercise4.6.1,
thereisaset {p;(x,y) : i € I} of complete types over emptysetsuchthat E = U;p;(M).
Suppose M is another monster model of T and E’ = U;p;(M). Then, E’ is invariant
and an equivalence relation on M.

For instance, we see that E is symmetric. Suppose @' E b So, there existsa iy € 1
such that (@,0) = Pi,- If possible, suppose —~(b'E'@). For each i € I there exists a
i € p; such that M = —-cp,-[E/, a']. Then, (@', 5/) E q(x,y), where ¢(X, y) is the set
of L-formulas

Piy (X, Y) Uf=pily, X] - i € 1}.

Hence, it is a type over empty set. Since M is k-saturated, it is realised by some
(a, b) € M. Butthen a E b and —(bEa). This is a contradiction since E is symmetric.
Thus, we have proved that E is symmetric.

We now prove a surprising result that for every bounded, invariant, equivalence
relation E on M, |M*/E| has a common upper bound less than &.

Theorem 6.1.2 Let E be a bounded, invariant, equivalence relation on M\ < k.
Then,

N

IMP/E| < 2071

Proof Since E is invariant, by Proposition4.6.1, there is a family {p;(X,y) : j € J}
of complete types over empty set such that £ = U,¢;p;(M). Note that

17|
| Xjer pjl < ITI%D = v,

say. Then, 2071°"") — 3, ).

Set 1 = J;(v)*. If possible, suppose there is a sequence {a,, : a < u} of pairwise
E-inequivalent elements in M of length y.. Then, for every a < 3 < p, there is a

D8 € Xjesp;

such that for every j € J,
M |= ﬁq)(a,ﬁ) (]) [a()u a/i]-
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By Erdos—Rado theorem (Theorem 8.5.4), this correspondence has an infinite
homogeneous set, i.e. there is an infinite subset / C p such that for every o < (3 in
I, @, ) is the same, say ® € Xje;p;.

Now consider the following set of formulas without parameters in variables {X,, :
o < k) witheach X, = {x,5 : f < A} (with {xo5 : B < A, a < &} distinct):

q(()_ca)oKrf) = {xa #xﬂ Lo < 6 < /Q} U {ﬁq)(/)[xa’)_cﬂ] J eJ,a< ﬂ < K’}'

Then, {a, : o € I} witnesses that ¢ is finitely satisfiable in M. Hence, there is an
elementary extension M’ of Ml in which g is realised, say by (E;)Mﬁ.
By Proposition4.3.7, there is a sequence (C,)q<x Of A-tuples in M such that

P (@) azr/D) = P ((B,)0<r /D).

This implies that for all @ < 8 < &, [c.] # [cs]. This contradicts that E is
bounded. U

Theorem 6.1.3 Let \ < k and E be a bounded, invariant, type-definable, equiva-
lence relation on M. Then,
IMA/E| < 2!

Proof Since E is invariant and type-definable, by Proposition4.6.3, E is type-
definable over empty set. Hence, in the last proof, we can replace a family of types
by a single type p(x, y) over empty set which is of cardinality at most |T|. So, in this
case corresponding @ function takes values in p, a set of cardinality at most |T'|. We
take 1 = J;(|T|)" and repeat the same argument to arrive at a contradiction. O

Remark 6.1.4 Let E be a bounded, invariant equivalence relation. Assume that
E = Uep;i(M) where {p;(x,y)} is a family of types over empty set. Take another
monster model M’ and define £’ = U;¢;p;(M’). In Remark 6.1.1 we saw that E’ is
an equivalence relation on M. From the above argument, it follows that E’ is also
bounded.

Let A C M be small and \ < . Fora, b € M, define
a=4b< p"@/A) = p™(b/A).
Proposition 6.1.5 =, is a bounded, A-invariant equivalence relation on M.

Proof Clearly, =, is an A-invariant equivalence relation on M*. Let the set of all
Ls-formulas ¢[x, y] be of cardinality i < . Enumerate all such formulas by {¢, :
a < ). Set ) = @, and @), = =,
Now note that for every =4-equivalence class C, there is a unique function ¢ :
u — {0, 1} such that
C= mn,</1,90;(a) (M)


http://dx.doi.org/10.1007/978-981-10-5098-5_4
http://dx.doi.org/10.1007/978-981-10-5098-5_4

170 6 Strong Types
Further, this correspondence is one-to-one. Hence,
Ay — Jz
M7/ =4 | <2
The result follows because « is strongly inaccessible. (]
Corollary 6.1.6 =y is a bounded, invariant, equivalence relation on M.

The proof of the following result is an imitation of the proof of Theorem5.1.3.

Theorem 6.1.7 Let M be a small elementary substructure of M. Assume that a =y

b, a,b € M?. Then, there is a sequence ¢y, Ca,C3, ... In M?* such that both the
sequences d, ¢1, €3, C3, ... and b, ¢y, ¢3, C3, . . . are order indiscernibles over M.

Proof Let U be an ultrafilter on M* containing {p(M) : p[x] € M@/ M)}.
Let {&;[x] : i € I} be an enumeration of all Mab-formulas. For each i € I, set

- | &Ix1 it &) e U,
Oitx] = [ =& [x] if =& (M) € U.

Then, go(X) = {0;[X] : i € I} is a type in Ml over Mab. Since M is x-saturated, ¢o
is realised in M. Choose any ¢; = g in M.

Suppose ¢, - - - , ¢, have been defined. Let {r;[X] : j € J} be an enumeration of
all Mabe, - - - ¢,-formulas. For each jeJ,set

= milxl i (M) e U,
Oilx1 = [ —ny[%] if —n; (M) € U.

Then, g, (x) = {6;[x] : j € J}isatype inM over Ma@be, - - - ¢,. By the same reason,
qn is realised in M. Take any ¢,4+1 = ¢, in ML
Set ¢y = a or b. To conclude the result, we show that ¢y, ¢, €3, . . . is a sequence
of order indiscernibles over M.
Fix ¢y = a. By induction on n, we show that forevery0 < i) < --- < ,,0 <j; <
- < jnv
" @ T /M) = 1pM (@, T,/ M.

Initial Case: Let m > 1. Then, both a and ¢,, satisfy the same set of Ly,-formulas,
viz. those that define sets in /. Hence, tp™(@/M) = tp™(c,,/M).

Inductive Step. Assume the hypothesis for all pairs of increasing sequences
of length n. Take any i} < -+ < i, <1iy4; and j; < --- < j, < jut1. By induction
hypothesis,

@, - e /M) = p™ @, - ¢, /M).

Hence, there exists a f € Auty (M) such that f(¢;) = ¢;, for all p < n. So, for every
Ly-formula ¢[x, X1, - -+, X,],
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oM,c, -+ ,¢,) =oM,c, - ,C).
We also have
tp(Ciypys Ciys - o+ 5 Gy /M) = tp(f (€, ). Cjy -+ 5 € /M.
It follows that both ¢;,,, and f(c;,, ) satisfy the same set of M¢;, - - - , ¢; -formulas,

viz. those that define sets in /. Hence,
tp(zinJrl 7El‘l [ Ein/M) = tp(f(zinJrl)’Ejl o E]n/M) = tp(EjnJrl ’Ejl [ EJII/M)

O

6.2 Shelah Strong Types and Kim-Pillay Strong Types

A finite equivalence relation is an equivalence relation with finitely many equivalence
classes.

(I) Let Eg;, be the intersection of all finite equivalence relations on M* which are
definable over empty set. Since the cardinality of the set of all L-formulas without
parameters is |7'| and since the number of equivalence classes of a finite equiva-
lence relation is less than 8¢, we can easily see that the number of Egj,-equivalence
classes is at most Ngﬂ. Since each ¢J-definable equivalence relation is invariant, Egj,
is invariant too. Also, note that =y is the intersection of all equivalence relations
of the {o (M), ~p (M)}, where [x] varies over all L-formulas without parameters,
Eg, C=y. It follows that each Egj,-equivalence class is contained in a =gp-class. This
equivalence relation was introduced by Shelah and plays a fundamental role in sta-
bility theory. In his honour, Eg,-equivalence classes are called Shelah strong types.
Readers should see books of Shelah [54] and of Pillay [47] for this topic.

(IT) Let Egp be the intersection of all type-definable, bounded, invariant equiv-
alence relations on M*. By Proposition4.6.3, every type-definable, invariant set is
(#)-type-definable. Hence, Ekp is the intersection of all bounded, {J-type-definable
equivalence relations. Clearly, Egp is invariant and Exp C Eg;. By Theorem6.1.3,
for each bounded, #-type-definable equivalence relation E on M*, |M*/E| < 2/71,
Since the set of all types over empty set is of cardinality < 2!7!, it follows that

IM*/Exp| < 2TH™ < &,

because & is strongly inaccessible. Thus, Exp is a bounded, invariant, equivalence
relation. Since the intersection of any family of type-definable equivalence relations
is type-definable, we have the following proposition.

Proposition 6.2.1 Exp is the finest, bounded, type-definable equivalence relation
on M* and |M’\/EKP| < 2IT1,
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This equivalence relation was introduced by Kim and Pillay in [25]. In their
honour, Exp-equivalence classes are called Kim—Pillay strong types. We shall make
more historical comments on this topic later in this chapter.

6.3 Lascar Strong Types

Let £, be the intersection of all bounded, invariant, equivalence relations on M, By
Proposition4.6.1, for every bounded, invariant, equivalence relation £ on M, there
isaset {p;(x,y) : i € I} of types over empty set such that £ = U;;p;(M). Hence, the
set of all bounded, invariant, equivalence relations is of cardinality at most 22" — 1,
say. In Theorem6.1.2, we showed that for every bounded, invariant, equivalence
relation £ on M, |MA/E| < 202" — v, say. It follows that |M’\/EL| <" < K.
Thus, E;, is the finestest bounded, invariant equivalence relation on M* and M?,
IM*/E; | < 2@"). In particular, E;, C Egp.

We now proceed to give several other descriptions of E; . Leta, b € M. We define

GEyb < IM <M(M| < k & a =y b),
and
@E\ b < Jag,ay,az, ... € M’\(Eo =a,ay = b & ap, ay, az, ... are order indiscernibles).

We make a series of easily provable observations now.

1. Ey is reflexive, symmetric and invariant.

2. The transitive closure of Ey, denoted by trcl(Eyp), is an invariant equivalence
relation.

3. Fix any small M < M. Then, =y, C trcl(Ey). Hence, trcl(Ep) is bounded. In par-
ticular, E; C trcl(Ep).

4. E is reflexive and invariant.

5. Let aE; b. Take a sequence aop, d;, dy, ... € M* such that @y = a, @, = b and
aop, ai, az, . . . are order indiscernibles. By Proposition 5.1.4, there exist a_;, a_,
a_3, ... € M such that

.,a_3,d_»,d_y,dy, di, dz, as, . ..

are order indiscernibles. This implies that b, a,a_y,a_o, ... are order indis-
cernibles. It follows that E; is symmetric. Hence, trcl(E}) is an invariant equiva-
lence relation.

6. E; C E;: Suppose not. Get @, b such that aE, b and —(@E.b). By Proposi-
tion 5.1.5, for each o < « there exists a @, € M* such that @y = @, a, = b and

dp, a1, d2,0a3, Ao, ..., C<K
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are order indiscernibles. In particular, for every o < 8 < &, tp"(@, b) = tp™
(an, ag). Hence, there exists f € Aut(M) such that f(a) =a, and f (E) =ag.
Since Ej is invariant, it follows that —(a,Eras). This contradicts that Ej is
bounded. We now see that trcl(E;) C E;.

7. Ey C trcl(Ey): Leta Ey b.GetM < M small such that@ =y, b. By Theorem6.1.7,
there is a sequence ¢y, ¢», C3, ... in M* such that both the sequences a, C1, C2,
C3,... and l_), C1,C2, C3, ... are order indiscernibles. In particular, a E; ¢; and
bE,\¢,. This implies that @ trcl(E)) b.

We have proved the following theorem.
Theorem 6.3.1 E; = trcl(Ey) = trcl(EY).

As aconsequence of these descriptions of Lascar strong types, we can realise them
as orbits under the action of a subgroup of the automorphism group of the monster
model.

Let Autfp (M) denote the smallest subgroup of Aut(M) containing each of
Autyy (M), M < M, M small. Each element of Autf; (M) is of the form o, o - - - o 0y,
where o; € Auty, (M), M; < M small, 0 <i < n. Automorphisms of M belonging
to Autfy (M) are sometimes called strong automorphisms. The group Autf; (M) was
introduced by Lascar in [33].

Proposition 6.3.2 For any o € Aut(M), the following statements are equivalent:

1. o € Autfy(M).

2. o fixes all Lascar strong types setwise.

3. For all small M < M, o fixes the Lascar strong types containing m, where m is
an enumeration of M.

4. There exists a small M < M, o fixes the Lascar strong types containing m, where
m is an enumeration of M.

Proof Leto = 0, 0 --- 009, where 0; € Auty,(M), M; < M small, 0 < i < n. Take
any a € M?*. Set @y = a. Now suppose a;+; = 0;(a;), 0 <i < n. Then, for each
0 <i <n,ai11 =um, a;. Hence, o(a) = a,4 trcl(Ep) a. This shows that o fixes the
Lascar strong type containing a. We have shown that (1) implies (2).

To complete the proof, we only need to show that (4) implies (1). Let M < M,
IM| < k and suppose o € Aut(M) fixes the Lascar strong types containing 77, where
m is an enumeration of M. Since E; = trcl(Ey) and o (m)E; m, o (m) trcl(Ey) m. Set
my = o(m). We getsmallM; < M,0 <i <n,andmy, --- ,m,, m,+; = m such that
forall0 <i < n,m; =y, m;+1. Then,foreachO < i < n,thereexistsao; € Auty, (M)
such thatm; |, = o;(m;). Hence,m = (0, 0 - - - 0 0y 0 0)(m) implying o, o - - - 0 0 ©
o € Autyy (M) C Autfy (M). It follows that o € Autf; (M). (I

Proposition 6.3.3 Autf; (M) is a normal subgroup of Aut(M).

Proof Take any M < M, |M| < K, 0 € Autyy(M) and 7 € Aut(M). It is sufficient to
show that 77! o0 0 o 7 € Autf; (M)). Fix an enumeration 7 of M. By (2) of the last
proposition, o(7(m))E; (7). Since E; is invariant, 7! (o (7(m)))E,m. Hence, by
(4) of the last proposition, 77! o 0 o T € Autf; (M). (I
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Theorem 6.3.4 E; equals the orbit equivalence relation on M under the action of
Autfy (M).

Proof Take any smallM < M, o € Auty,(M) anda € M. Supposez = o(a). Then,
b=y a.But=yC Ey C trcl(Ey) = Er. Now it is clear that for every o € Autf; (M),
aE; o(a).

Conversely, leta E;, b. Then, a trcl (Ey) b. Then, there exist small My, - M,_1 <
M, and @y, --- ,@,—1 € M* such that @ =, @, @ =y, da, -+ » G2 =m, , Gn—1
apn—1 =u,_, b. It follows that there exist o € Auty, (M), 0 < i < n, suchthatoy(a) =
ay,oi(a;) =dir1,1 <i<n—1,and o,_1(a,—1) = b. Hence, b = o(a), where 0 =
Op—10---00 GAMUCL(M) O

We give a few simple consequences of this theorem.

Proposition 6.3.5 Let o € Aut(M). The following statements are equivalent:

1. o € Autfy (M).

2. Forevery invariant set Y C M*, X\ < k, for every bounded, invariant equivalence
relation E on Y and for every a € Y, aEo (a).

3. For some small elementary substructure m = M of M, mE o (m).

Proof Since Y is invariant, extending E on M* by declaring any two elements not
in Y equivalent, we get a bounded, invariant equivalence relation on M containing
E. Since Y is also invariant, it follows that E;|Y C E. By the last Theorem6.3.4,
akE; o(a) if o € Autfy (M). Hence, (1) implies (2).

(2) implies (3) by taking Y = p(M), where p = tp(m). (1) follows from (3) by
Proposition 6.3.2. O

We now give another description of the logic topology on M*/E, where E is
a bounded, invariant equivalent relation on M*. Fix any small M < M. Consider
S\(M/M) with Stone topology. This makes S)(IM /M) a compact, Hausdorff, zero-
dimensional topological space. Let @, b € M be such that 7p™ (@ /M) = ™ (b/M),
i.e.aEyb.Since Ey C E;,aEy b. Since E;, C E, it follows that @ E b. Thus, we have
a surjection fy; : S\(M/M) — M*/E defined by fy, (tp"(a/M)) = [a], a € M.

Proposition 6.3.6 D C M/E is closed in the logic topology if and only if fu L(D)
is closed in the Stone topology.

Proof Define g : M — S\(M/M) by g(@) = tp™(a/M),a € M*. Then, m = fy; o
g, where 7 : M* — M"/E is the quotient map.

Assume that f;, (D) is closed in the Stone topology. Get a set p(¥) of Ly,-formulas
such that

fir (D) = Nyeplipl.

Then, for any a € M,
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aen (D) & pM@/M) ef, (D)
& Vo € pip"@/M) € [pl)
& akE=p.

This shows that 7~ (D) = p(M). Hence, D is closed in the logic topology.

Next assume that D C M* is closed in the logic topology, i.e. 7' (D) is type-
definable. Since E; C E, by Theorem6.3.4, 7~ 1(D) is invariant under the action of
Autf; (M). In particular, it is invariant over M. Hence, by Proposition4.6.3, there
is a set of Ly-formulas p(x) such that 7= (D) = p(M). From here, it is entirely
routine to check that fA;I(D) = Nyeplipl. So, fAZI(D) C S\(M/M) is closed in the
Stone topology. ]

The equivalence relation E; for n-tuples was introduced by Lascar in [33] as
the orbit equivalence under the action of Autf; (M). In his honour, E; -equivalence
classes are called Lascar strong types. A detailed study of it was made in [25] by Kim
and Pillay where, in particular, it was shown that Ey, is the finest bounded invariant
equivalence relation. Significantly, Kim and Pillay showed that if T is so-called
simple, then E; = Egp. It is pertinent to point out that stable theories are simple.
Thus, the paper of Kim and Pillay is of fundamental importance for Lascar strong
types that brought this topic into model theory. Readers should see the books of
Casanovas [7] and of Wagner [67] as well as the papers of Kim and Pillay [25],
Lascar and Pillay [34], Newelski [44], Casanovas, Lascar, Pillay and Ziegler [8] and
Hart, Kim and Pillay [17] for more on this topic.

6.4 The Galois Group Galy (T)

Note that we have fixed a large strongly inaccessible cardinal x and that by a monster
model of T we mean a s-saturated, x-strongly homogeneous model of 7.

For any monster model M of T, we set Gal;, (M) = Aut(M) /Autfy (M). In this
section, we show that for any two monster models M and N of T, Gal;, (M) and
Galp (N) are isomorphic. In the next section, we shall give a topology to Gal, (M)
which will make it into a compact topological group. Further, for any two monster
models M and N of 7', we shall show that there is an isomorphism from Gal; (M)
to Gal; (N) which is also a homeomorphism. By Gal.(T), we shall mean Gal; (M)
for some monster model M of 7.

Fix a monster model M of 7. As before, let 7 : Aut(M) — Gal, (M) be the
quotient map. For o € Aut(M), we shall often write [o] for 7 (o).

Let M’ = M. Choose any small M, N < M and N' < M’ having enumerations
7 =N and 7' = N’ such that ip(n' /M) = tp(n/M). Take any o € Aut(M'). Then,
there exists a sequence @ in M such that

a E ip(a@)/M).


http://dx.doi.org/10.1007/978-981-10-5098-5_4

176 6 Strong Types

In particular,

tp(@ = tp(o(n)) = p(') = tp(n).

Hence, there is a 7 € Aut(M) such that 7(n) = a. Note that

(@) /M) = tp(o(@)/M).

We now make a series of very crucial observations which will help to define an

isomorphism between Gal; (M) and Gal; (N).

1.

2.

Let 7/ be another automorphism of M such that 7/(77) = a. Then, 7 and 7’ agree
on the small elementary substructure N of M. Hence, [7] = [7'].

Next assume that Ny < M and N(/) < M are another pair of substructures with
enumerations 77y and 7, respectively, such that (/M) = tp(nig/M). Also,
assume that 79 € Aut(M) is such that tp(1o(10) /M) = tp(a(r_zé))/M). We show
that [7] = [70].

Since N’ and N are small and elementarily equivalent, by Proposition2.8.1, there
is a small N{ < M’ which is a common elementary extension of both N' and N;.

Fix an enumeration 7} of N|. By Proposition4.3.7, there is a sequence 77; € M
such that tp(n, /M) = tp(ny/M). Let 6 € Aut(M) be such that tp(6(n;)/M) =
tp(a(ﬁ’l) /M). To complete the proof, we now show that [7] = [d] = [70].

Proof of [8] = [7] : Without any loss of generality, we assume that 7, = 7'a@’. Let

711 = ba, where the length of b equals the length of 77’ and the length of @ equals
the length of @'. We have the following:

/M) = p@ /M) = tp(b/M), (1)

and
tp(r(0) /M) = tp(a () /M) = tp(6(D)/M). (2

By (1), there is a g € Autyy (M) C Autfy (M) such that g(n) = b. Hence, by (2),
tp(t(n)/M) = tp(6(g(m))/M). Therefore, by observation (1), [T]=[do g] =
[4].

Similarly, we prove that [19] = [J].

. Next take a different My < M. By Proposition2.8.1, there is a small M| < M

which is a common elementary extension of both M and M. Get 7 € M such
that tp(7(7) /M) = tp(c(@)/M;). In particular, tp(7(7) /M) = tp(c(@')/M) and
tp(T(n)/My) = tp(c(')/My). This shows that [7] does not depend on M either.

Thus, we have a well-defined map

M Aur(M') — Galy (M)
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defined as follows: Choose any pair of small M, N < M and N’ < M with enumera-
tions 77 = N and 7’ = N’ such that tp(' /M) = tp(n/M). For any o € Aut(M'). Take
any 7 € Aur(M) such that tp(7(n) /M) = tp(c(7')/M). Define QM (o) =[1].

Let 0 = id be the identity automorphism of Auz(M). In this case, we can choose
7 to be the identity automorphism of M. Thus, a%/(id) = e, the identity element of
Galp(M).

Next let 0,0’ € Aut(M'), M,N =71 <M, N' =7 <M with tp#E' /M) = tp
(n/M).Gett € Aut(M) such that ip(t(n) /M) = tp(c (7)) /M).Now get 7’ € Aut(M)
such that tp(7'(1(n)) /M) = tp(c’ (o (")) /M). This shows that

M M M
ap (0" 0 0) = agy (0) - oy (0).

Thus, we have shown that
4, a%‘{ s Aut(M') — Galp (M) is a homomorphism.

Further, assume that M’ is A" -saturated and A" -strongly homogeneous, where
A = |M]|. We have the following:

(a) a%l is onto: Fix small elementary substructures M and 77 = N of M. Take 7’ = 7.
Let 7 € Aur(M). Since M is A*-strongly homogeneous, there is an extension
o € Aut(M) of 7. Then, &}f (o) = [7].

(b) ker(a%/) C Autfy (M): Let 0 € Aut(M') be such that a%l (0) = e. Take small
elementary substructures M,7n = N of M. By our hypothesis, there is a 7 €
Autfy (M) such that tp(c(m)/M) = tp(t(n)/M) = tp(7'(n) /M), where 7" € Aut
(M) is an extension of 7. Note that if 7 € Autf; (M), then every extension 7’ of
7 belongs to Autfy (M). There is a & € Auty (M) C Autfy (M) such that o(n) =
d(7'(m)). This implies that [c] = [0 o 7] = e, i.e. o € Autf (M').

(¢) Autfy(M) C ker(a%/): Let N/ < M be small and o € Auty (M'). Suffices to
show that aM'(U) = e. Fix any enumeration 77’ of N’. For any small M < M, by
Proposition4.3.7, there is a sequence 7 in M such that ip(n/M) = tp(7' /M) =
tp(o(7')/M). Therefore, corresponding to o we can choose 7 = id. Hence,
QM (o) =e.

We have now proved that

5. If M is a |M|"-saturated, |M[|*-strongly homogeneous elementary extension
of M, then a%' induces an isomorphism, denoted by BM', from Gal, (M) to
Galy (M).

Theorem 6.4.1 Let M and N be two monster models of T. Then, Gal (M) and
Galy (N) are isomorphic.

Proof Recall that we have fixed a large strongly inaccessible cardinal x and M and
N are x-saturated, x*-strongly homogeneous models of T. In particular, they are
elementarily equivalent. Let A = max{|M|™, [N|T}. Using Theorem4.4.5, get a \-
saturated, A-strongly homogeneous model M of T which is a common elementary
extension of both M and N. By observation 5 above, Gal; (M) as well as Gal (N)
are isomorphic to Galp (M). O
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6.5 Topology on Galy (T)

We now proceed to define a topology on Gal; (M) which will make it into a topo-
logical group. Let M < M be small. We fix an enumeration 7z of M. Set

S@m) = {tp"@/M) : a =5 m} C S\(M/M).

Then,
S(@m) = N{[¢] : M = p[m], ¢ an L-formula}.

Hence, S(im) is closed in S)(M/M) under the Stone topology. In particular, S(m) is
compact. We make a series of observations now.

1. Suppose o, 0’ € Aut(M) are such that tp" (o (m)/M) = tp" (o’ (m)/M). Then,
there exists a 7 € Auty (M) such that (¢’ (m)) = o(m). Hence,

o loroo =@ 'oT00)o (07! 00’) € Autyy (M) C Autfy (M).

Since Autf; (M) is a normal subgroup of Aut(M), 0! o7 oo € Autfy (M). It
follows that 0~! o ¢’ € Autf; (M). Thus, we have a well-defined map

pm  S(m) — Galp (M)

defined by
pr(tp™ (o (m) /M) = [o], o € Aut(M).

2. Next take small M < N < M. Take enumerations M = m and N = m 1. We have
the restriction map r : S(m n) — S(m) defined by

rtp"(c@n)/N) = p™ (o (@) /M)), o € Aut(M).

This map is continuous and onto. Further, pz o r = py.

We equip Galy, (M) with the largest topology making pz; continuous for some fixed
m =M <M, M| < k. This topology is independent of M. To see this, take any two
small elementary substructures M and M’ of M. Since M and M’ are elementarily
equivalent, by Proposition2.8.1, there is a common elementary extension N of M
and M’ which is a small elementary substructure of M. Thus, without any loss of
generality, we assume M < N. Fix an enumeration m n of N. Let D C Gal, (M).
Then, p%lﬁ (D) = r~! (p%1 (D)).Itis now easy to see that p%l (D) isclosedif and only if
%IE(D) is closed. Following usual notation from topology, for any set X C Gal; (M),
X will denote the closure of X.
Since S(m) is compact, we have the following theorem.

Theorem 6.5.1 Gal; (M) is compact.
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Proposition 6.5.2 7 : Aut(M) — Gal, (M) is continuous.
Proof Define ng : Aut(M) — S(m) by

n(0) = tp(o(m) /M), o € Aut(M).

Then, ™ = pg o M. So, our result will be proved if we show that 7 is continuous.

Take any oy € Aut(M) and assume that tp(oo(m)/M) € [p[Xx]], where ¢ is an
Ly-formula. Let m = (mg)3<) and suppose variables having a free occurrence in
( are among Xg,, - - - , X3,. Then, for any o € Aut(M) such that o(mg,) = oo(mg,),
0 <i=<n nmo) € el O

Proposition 6.5.3 For D C Gal;, (M), the following conditions are equivalent:

1. D is closed.

2. {o(m) : [o] € D} is type-definable over M for every small elementary substruc-
ture m = M of M.

3. {o() : [o] € D} is type-definable for every small sequence a in M.

4. {o(m) : [o] € D} is type-definable for some small elementary substructure m =
M of ML

5. {o(m) : [o] € D}istype-definable over M for some small elementary substructure
m = M of M.

Proof Let D C Gal, (M) be closed and m = M a small elementary substructure

of M. Get a set p(x) of Ly-formula such that ,om1 (D) = Ngeplel. Then, for any
o € Aut(M),

[o] € D & p"(a(m)/M) € p,' (D)
& Vo € pM | plo(m)])
& o(m) € p(M).

Thus, we have proved that (1) implies (2). Next assume (2) and take any small
sequence @, say of length A < «. Take a small elementary substructure M = 71 = a b
of M, say of length ;1 < k. By (2), there is a set p(xX ), X of length A, X y of length
u, of Ly-formulas such that {o(m) : [c] € D} = p(M). Set g(x) = {¢[x] : ¢ € p}.
Then, g(M) = {o(a) : [c] € D}. So, (2) implies (3)

Clearly, (3) implies (4). To see that (4) implies (5), get M as in (4). Since
Autyy (M) C Autfy (M) and E; is the orbit equivalence relation under the action of
Autfy (M), the set {o(m) : [c] € D} is invariant over M. Hence, by Proposition4.6.3,
{o(m) : [o] € D} is type-definable over M.

Now assume (5). Get a set p(x) of Ly,-formulas such that p(M) = {o(m) : [0] €
Dj}. Then, it is easily seen that pi1 (D) = Nyeplel. Hence, D is closed. O

m
The next result is technical but quite useful.
Proposition 6.5.4 Let m = M be a small elementary substructure of M|, p(x) =

tp(m) and G a closed subgroup of Galy(M). Then, there is an (-type-definable,
bounded, equivalence relation R on p(M) such that
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[c]l € G & o(m) Rm.

Proof Since G is closed in Galy, (M), by Proposition 6.5.3, there is a set of L-formulas
q(x,y) such that
gM, m) = {o(m) : [0] € G}.

Set R' = g(M). We show that R = R'|[p(M) is a bounded equivalence relation on
p(M). Since R is clearly invariant, this will complete the proof.

Since e = [id] € G, (m, m) = q. Since g is without any parameter, (o(m),
o(m)) = q for every o € Aut(M). This shows that R is reflexive.

Now take any two o, 7 € Aut(M) such that (o (i), 7(7)) = q. Then, (t—' (o (m)),
m) = q. Hence, [T ' oo] € G. Since G is a subgroup, [c~' o 7] € G. Hence,
(™ or)(m), m) = g. This implies that (7(m), o(m)) = gq. So, R is symmetric.

We leave the routine proof of the transitivity of R for the reader.

R must be bounded because —R(7 (), o (m)) implies that o and 7 are in different
cosets of Autfy (M). O

We give below another useful description of the topology on Galy (IM).

Theorem 6.5.5 A set D C Gal. (M) is closed if and only if whenever U is an ultra-
filter on an index set I, M = MY, {0; : i € I} C Aut(M) such that for each i € I,
[01] € D, eyt (o)) € D.

Proof ‘If’ part: Take any small m =M < M. Set X = p%l (D). Take q(x) =1tp
(c(m)/M) € X, o € Aut(M). We are required to show that [o] € D.

Let I denote the set of all finite subsets of g(x). Suppose i = {¢1, -+, vr} C q.
Then, g € ﬂ;‘:l[goj]. Since ¢ is in the closure of X, there is a 0; € Aur(M) with
[o;] € D such that o;(m) = i.

Foreach ¢ € g,setB, = {i € I : ¢ € i}. Clearly, {B, : ¢ € g} has finite intersec-
tion property. Let I/ be an ultrafilter on / containing {B,, : ¢ € q}.

Set o’ = (IT;01)". Then, by Lo§ Theorem?2.1.3, tp(c’(m)/M) = q = tp(c(m)/
M). This implies that QM (¢’) = [o] by the definition of a%'. By our hypothesis,
[0] = ot () € D.

‘Only if” part: Now assume that D is closed. Fix any small 2 < M. By Proposi-
tion6.5.3, there is a set p(x) of Ly,-formulas such that p(M) = {o(m) : [c] € D}.

Take any index set /, an ultrafilter ¢/ on [ and for each i € [ a o; € Aut(M)
such that [0;] € D. Set M = MY and ¢’ = (I1,0,)". We are required to show that
oMo'y e D.

Since each o;(m) = p, o/ (m) = p. Get T € Aut(M) such that tp(7(m)/M) =
tp(o’(m)/M). Since p(x) C tp(c’(m)/M), 7(@m) = p(). Hence, [7] € D.
Since tp(o’ (i) /M) = tp(7(m)/M), aii (0') = [7]. Therefore, A}k (¢') € D. O

Using the fact that for an ultrafilter I/ on a set I, whenever a subset A of [ is not
inU, A € U, we easily get the following result.

Corollary 6.5.6 A subsetU of Gal, (M) is open ifand only if whenever{o; : i € I} C
Aut (M) is such that OLM,((H,'O})M) eV, VopeninGal,(M),{i el :[o;]] e V} elU.
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Proposition 6.5.7 Let A C Galp(M) = Aut(M)/Autfy M). Then, [o] € A if and
only if there exist a non-empty set I, an ultrafilter U on I, for eachi € I a[o;] € A
such that &b ((mie;o)¥) = [0], where M = MY.
Proof Fix a small elementary substructure m = M of M.

Let B be the set of all elements of the form QM ((miero)¥), where U is an ultrafilter
on an index set /, for each i € I, [0;] € A and M’ = MY. By Theorem6.5.5, A C
B C A. Therefore, it is sufficient to show that B is closed.

Take any index set /, an ultrafilter ¢/ on I and [0;] € B, i € I. Then, foreachi € I,
there is an ultrafilter I{; on an index set J; and for eachj € J; a [aJl.] € A such that

[0i] = ab¥ ((mjes, o)),

where M; = MY . We consider M as an elementary substructure of M; canonically.
.. M
By the definition of oy, we have

1p(o;(m) /M) = tp((wjes, o)™ (i) /M).
By Los§ theorem, it follows that for every L;-formula ¢[x],
= ploim)] & i € J; = plojm)]) € U ()
Next, consider M/ = M“. Let
[o] = ajf (@)

This implies that
(o (m)/M) = tp((0;)iL, (im) /M).

By Lo§ theorem, for every Ly,-formula ¢[x],
Eelom] < {i el = ploim)]} e U. (%)
Now set J = U;({i} x J;) and
V={VcJ:{iel:{jeld :Uj) eV}el}el).

It is routine to check that V is an ultrafilter on J.
Set M” = M. Using (x) and (xx), it is now easy to check that

[0] = adf (7 jyeso)Y) € B.
By Theorem 6.5.5, it follows that B is closed. (]

Proposition 6.5.8 Translations on Galp, (M) are homeomorphisms.
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Proof LetD C Galp (M) beclosedand 7 € Aut(M). We show that [7] - Dis closed in
Galy (M). Fix any small elementary substructure m = M of M. By Proposition6.5.3,
there is a set of L-formulas p(x, y) such that

p(M, m) = {o(m) : [0] € D}.

Then,
pM, 7(m)) = {7(c(m)) : [0] € D}.

Hence, [7] - D is closed in Gal; (M) by Proposition 6.5.3.

We have proved that for every 7 € Aut(M), [c] — [7] - [o] is continuous. Hence,
it is a homeomorphism. Similarly, we show that for every 7 € Aut(M), [0] — [o] -
[7] is a homeomorphism. O

Proposition 6.5.9 Inversion on Galp, (M) is a homeomorphism.

Proof Let D C Galp, (M) be closed. Fix any small elementary substructure m = M
of M. By Proposition 6.5.3, there is a set of L-formulas p(x, ¥) such that

p(M, m) = {o(m) : [c] € D}.

Consider
q(x,y) = {ely, x] : ¥[x,¥] € p}.

It is easy to see that g(M, m) = {o(m) : [¢]~' € D}. The result follows. O

The following surprising result will be used to show that {e} is a normal subgroup
of Galy,(M).

Lemma 6.5.10 [f [0] € {[7']} then [1] € {[o]}. In particular, if [o] € {[T]} then
{71} = {lo 1.

Proof Set [1] < [o] if [7] € {[c1}. Since Gal, (M) is compact, by Zorn’s lemma,
Gal; (M) has a minimal element, say [oo] i.e. [T] < [op] implies [op] < [T].

Take any other [o] € Gal (M) and assume that [7] < [o], i.e. [T] € m.
Then, by Proposition 6.5.8, [0g o 0! o 7] € {[0p]}. Since [op] is minimal, we have
[00] < [09 0 o' o 7]. Hence, by Proposition6.5.8, [o] € m So, every element
of Gal; (M) is a minimal element. The result is clear now. O

Proposition 6.5.11 {e} is a normal subgroup of Galy (M).

Proof Let[o], [T] € E. Hence, [¢] - [7] € {[0]} = {e}. Next, [7] € {e} implies that
e € {[T~'1}. Then, [7'] € {e}.

Next, take [0] € [e] and T € Aut(MD). Then, [coT] € [el- [7] = [7]. Hence,
[t 'ooorlelr '] 7] = el O

The next technical result will be used to show that Gal;, (M) is a topological
group. Since we have already proved that inversion on Gal; (M) is continuous, we
shall need to show only that the product on Gal; (M) is jointly continuous.
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Lemma 6.5.12 Let o, 7 € Aut(M) be such that whenever U > [o]and V > [T] are
open, UNV # @. Then, {[o]} = {[T]}.

Proof Suppose {[c]} # {[T]}. To complete the proof, we shall obtain open U > [o]
and V 3 [r]suchthat UNV = @.

By Lemma6.5.10, [7] ¢ {[¢]}. Fix a small 1 = M < M and set p(x) = tp(m).
By Proposition 6.5.4, there is an ¢J-type-definable bounded equivalence relation R on
p(M) such that

(0] € {e} & o(m) R m.

Let g(x, y) be a set of L-formulas such that R = ¢g(M). Without any loss of generality,
we assume that ¢ is closed under finite conjunctions.

By Proposition 6.5.8, {[o]} = [o] - {e}. Since [7] ¢ {[¢]}, we have [c~']-[7] =
[0~ o 7] ¢ {e}. Hence, there is a ¢[X,¥] € ¢ such that = —p[(c~! o 7)(m), m].
Since ¢ is without parameters, = —p[7(m), o(in)].

We claim that there exists a ¢ € g such that ¥[x, y] A ¥[y, Z] A =[x, Z] is not
satisfiable by any 3-tuple (a, b, ¢) in p(M). Suppose not. Then,

r(x,y,2) = p®x) UpQ) UpR) U X, I ALy, 2V A —plx, 2] - ¢ € g}

is a type over empty set in M. Hence, by saturability of M, it is realised in M. This
implies that R is not transitive which is a contradiction.

Put
r(@) = {3y(—=ylr(m), Y] A €[z, ¥]) : € € q}
and
5() = {FTx(—yY[x, c(m)] A E[X, 2]) - € € g).
Set
Cy ={y € Aur(M) : v(m) = r}
and

Gy ={y € Aut(M) : v(m) = s}.

We now show that whenever v € C; and o € Autfy (M), 0 o v € C;. Towards show-
ing this note that y(m) = r implies that

r'3) = {(=¢lr(m), 31} U {£lv(m). ¥ : € € g}

is a type over a small set. Hence, by saturability of M, there is an @ = r’. Note
that E7 |p(m) C R. Since E; is the orbit equivalence relation under the action of
Autfy (M), for every o € Autfy (M), (0 o~)(m)Rv(m). Hence, (0 o y)(m)Ra, i.e.
(o 07y)(m), a) = q. It follows that o o v € C;. Similarly, we show that whenever
v € C, and o € Autfi (M), 0 oy € C,. These together with the definitions of C,
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and C, show that w(C;) and 7w(C,) are closed in Gal; (M), where 7 : Aut(M) —
Galg (M) is the quotient map.
Since = —p[7(m), o(m)], for every v € Aut(M),

= —Ylr(m), y(m)] v —ply(m), o(m)].

Suppose = —[7(m), v(m)]. As (y(m), y(m)) = g, we see that v € Cy. If =)
[v(m), o(m)], by the same reason, v € C,. Thus, Aut(M) = C; U C;.

Using 1 € g, it easily seen that 7 ¢ C; and 0 ¢ C,. Take U = w(C;)“ and V =
w(Cy)°. (I

Theorem 6.5.13 Gal, (M) is a topological group.

Proof We need to prove that the map ([o], [T]) — [o] - [7] = [0 o 7] from Gal],
M) x Galp (M) to Gal; (M) is continuous at each ([og], [79]). Since the translation
is a homeomorphism on Gal; (M), without any loss of generality, we assume that
[oo] = [T0] =e.

Let U > e be an open set. We are required to show that there exists an open set
V 5 e such that whenever [o], [7] € V, [0 o 7] € U. Suppose such an open set V
does not exist. For each open V > e, get [oy], [Ty] € V such that [oy o Ty] ¢ U.

Let 7 be the set of all open neighbourhood of e. Foreach V e I, let Ay = {W €
I : W C V}. Then, the family of subsets {Ay : V € I} of I has the finite intersection
property. Let I/ be an ultrafilter on / containing each Ay, V € I.

Set M/ = MY and

(0] = abf ((ryverov)?) A [1] = ol (mvermv)?).

Claim. e} = ([T = [I71). -

Take open U’ 3 [o] and V' > e. To prove {e} = {[c]}, by Lemma6.5.12, it is suf-
ficient to show that U’ N V' £ (. By Corollary6.5.6,A ={V €1 : [oy] € U’} e U.
Hence, AN Ay # ¥, containing W, say. Then, [ow] € U'NW C U’ N V’. Simi-
larly, we prove that {e} = {[]}.

By Theorem6.5.5,

[0 07l =adf (ryerov o Tv)Y) ¢ U.

By Proposition6.5.11, it follows that [c o 7] € @. Hence, by Lemma6.5.10,
e € {[o o T]}. We have arrived at a contradiction because [0 o 7] ¢ U and U is an
open neighbourhood of e. (I

Proposition 6.5.14 Let M’ > M be |M|"-saturated and |M|*-strongly homoge-

neous. Then,
B Galp(M') — Galy (M)

is a homeomorphism.
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Proof ﬁ%l is continuous : Let D C Galyp (M) be closed. Fix any small m = M < M.
By Proposition 6.5.3, there is a set p(x) of Ly,-formulas such that

pM) = {o(m) : [0] € D}.
To show that BM is continuous, we show that
pO) = {o'(m) : [0'] € (i)~ (D).

Take [0'] € (BY)~!(D). Assume that B ([¢']) = [7] € D.Hence, 7 (i) = p. Since
M
(o’ (m) /M) = tp(r(m/M)).

Since p is a set of Ly -formulas, o’ (i) = p.

We now show the reverse inclusion. Let M > @ = p. By Proposition4.3.7, there
is b € M such that tp(a/M) = tp(b/M). Hence, there is a [0] € D such that b =
o (). There is g € Auty (M) such that g(o(m)) = a. Since M is |M|*-strongly
homogeneous, there is an extension o” € Aut(M') of o. Note that 61%1'([0”]) = [o].
Set 0/ = g o 0”. Then, [¢'] = [¢”]. Since ¢'(m) = g(o”(m)) = g(o(m)) = a, our
proof is complete.

(6M’)’1is continuous : Let D C Galp (M) be closed. Fix any smallm = M < M.
By Proposition 6.5.3, there is a set p(x) of Ly,-formulas such that

pM') = {o'(m) : [0'] € D}.
To complete the proof, we show the following:
pM) = {o(m) : [0] € By (D).

Take [o] € 611\\,’[{1/ (D). Since M is |M|*-strongly homogeneous, there is an exten-
sion o’ € Aut(M') of o. Clearly, tp(c’'(m)/M) = tp(c(m)/M). This implies that
B ([o']) = [o]. Since B is one-to-one, we must have [0] € D. Inclusion from
right to left follows.

For the reverse inclusion, let M’ > M 3 @ = p. Then, there is a [0'] € D such
that o’ (m) = a. Set oz%/ (¢/) = [o]. Then, tp(c(m)/M) = tp(c’(m)/M) = tp(a)/M.
Hence, there is a g € Auty (M) such that g(o(m)) = a = o’(m). Since [0] = [g o
o] e HM/ (D), our proof is complete. ([l

This theorem tells that for any two monster models M and N, Gal; (M) and
Galy (N) are homeomorphic. In fact, there is an isomorphism from Gal; (M) onto
Gal; (N) which is a homeomorphism. Thus, Gal; (M) is an invariant of 7, i.e. it does
not depend on the monster model M. From now on, Galy (T) will stand for Gal; (M)
for some monster model M of T'. Gal.(T) is called the Galois group of T. This group
was introduced by Lascar in [33].
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6.6 The Group Galy(T)

We set

Galy(T) = {e},
Gal (T) = Gal (T)/Galy(T)

and
Autfp(M) = 7~ (Galy(T)),

where 7 : Aut(, M) — Gal(T) is the quotient map. The group Gal.(T) is called
the closed Galois group of T.
We make a series of simple observations.

—_

. In Proposition 6.5.11, we proved that Galy(T) is a normal subgroup of Gal; (T).

2. Since Galy(T) is anormal subgroup of Galy (T), Autfxp(M) is a normal subgroup
of Aut(M).

3. Since Autf; (M) is a normal subgroup of Aut(M), Autf;, (M) is a normal subgroup
OfAI/tI;fKP(M)

4. Galy(T) is isomorphic to Autfxp(M)/Autfy,(M). This is because 7 : Autfxp
(M) — Galy(T) is an epimorphism with kernel Autfy (M).

5. Gal.(T) is a compact topological group.

6. Since {¢'}, ¢ the identity of Gal.(T), is closed, Gal.(T) is Hausdorff.

Theorem 6.6.1 Let A\ < kand Y ¢ M* a type-definable, E -invariant set. Then, Y
is Autfgp(M)-invariant.

Proof Set
S={oceAut(M) : o(Y) =Y}

We need to show that Autfxp(M) C S. Fora € Y, let
S@*t ={occAut(M) : o(a) € Y}

and
S@~ ={ocecAur(M):0c '@ e Y)}.

Then, S = Nzey(S@ ™+ NS(@) ™). Since Ey is the orbit equivalence on M* under
the action of Autf; (M) and since Y is assumed to be Ej -invariant, for every a € Y,
S@* NS@~ D Autf; (M).

Next assume that ¢ € S and 7 € Autf,(M). Then, 7(c(Y)) = 7(Y) = Y. Thus,
Autfp(M) o § = S. By the same argument, we see that for every a € Y, Autfy (M) o
S@™* = S@" and S(@)~ o Autfy (M) = Autfy (M) o S(@)~ = S(a)~. It follows that

S = Naey (Autfr. (M) o S@)" N Autfy, (M) o S@)7).
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We shall complete the proof by showing that for everya € Y,
Autfxp(M) C Autfy, (M) o S@)*

and
Autfgp(M) C Autfy (M) o S(a)”.

Fix ana € Y. Note that
Autfy(M) o S@" =77 (r(S@™))

and
Autfy(M) o S@)~ = (m(S@)")).

The proof will be complete if we show that 7(S(@) ™), 7(S(@)~) D Galy(T). Since
eecm(S@™), 7(S@) ), our contention will follow if we show that w(S(@)™"),
7(S(@) ") are closed in Gal; (T). Note that 7(S(@)~) = 7(S(@)*)~'. Hence, we need
to show only w(S(@)™) is closed in Galr (T). We are going to use Theorem6.5.5.

Take any small M < M. Since Y is E; -invariant, it is invariant over M. Further, it
is type-definable. Hence, by Proposition4.6.3, there is a type p(x) over M such that
Y = p(M).

Take an ultrafilter /{ on an index set /. Set M = M“. We treat M’ as an elementary
extension of M canonically. For each i € I, choose o; € Aut(M) such thato;(a) € Y,
ie. 0;(@) = p. Set o = (micro)Y. Suppose

[7] = o (0). (%)

We need to show that 7(a) = p.

_ Take a small elementary substructure N of M containing a. Enumerate N = n =
ab. By (%), 3 3

ip"" (o(@b) /M) = 1" (7(@b)/M).
By Los theorem, for every Ly,-formula, ¥[xy], we have
M k= ¢[7(@b)] & M’ = plo(@b)] < {i € I : M = [oi(@b)]} € U.

In particular, for every p[x] € p,

M E pl7(@)] & M E ¢lo(@).

Since {i € I : ploi(a)]} =1 € U, M = p[7(a)] and our proof is complete. O
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6.7 Egp as an Orbit Space

Fix a A < k. Let F denote the orbit equivalence relation on M* under the action of
Autfgp(M). We make a series of simple observations first.

1. Since each Kim-Pillay strong type is type-definable and Ej-invariant, by
Theorem 6.6.1, Autfxp (M) stabilises all Kim—Pillay strong types. Thus, F C Egp.

2. By Theorem6.3.4, E; is the orbit equivalence relation under the action of
Autfy (M) and E; is bounded. Since Autf;, (M) C Autfxp(M), we see that F is
bounded.

3. Since Autfxp(M) is a normal subgroup of Aut(M), it is easily checked that F' is
invariant.

Theorem 6.7.1 F is type-definable over empty set.

Proof Take any small M < M. Fix an enumeration 7 of M. Set
A(m) ={a:a =45 m}

and
S(m) = {tp(a/M) :a € A(m)}.

Note that A(m) = {o(m) : 0 € Aut(M)}. Recall that we have an onto map

pmi - S(m) — Gal (T)

defined by
pm(tp(oc(m)/M)) = [o], o € Aut(M).
We set
O : A(m) x A(m) — S(m) x S(m)
by

O(o(m), T(m)) = (tp(c(m) /M), tp(T(m)/M)), o, T € Aut(M),
WV = pm X pm 2 S(m) x S(m) — Gal (T) x Gal (T)

and
O Gal (T) x Gal (T) — Galy(T)

defined by
O([ol, 7)) = [ ' o0l, 0,7 € Gal (T).

Step 1. E = F|A(m) is type-definable over empty set.
Set A = O~ ' (W1 (@~ (Galy(T)))). We shall prove Step 1 by showing that A is
type-definable and A = E.
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Since Galy(T) is closed, ¥~ (®~1(Galy(T) )) is open in S(im) x S(). Hence,
there exist families of Ly,-formulas {;[X] : i € I} and {«;[y] : i € I} such that

V(@ (Galy(T))) = Uier([pi] x [11]).

Set
qx,y) = {—ilx] v =yl i e 1}.

It is fairly routine to check that A = g(M).

Now we show that E = A. Fix @, b € A(m).

Suppose a E b.Geto € Autfgp(M) and 7 € Aut(M) such that b= 7(m) and a =
o(b) = o(7(m)). Hence,

O(V(O@@, b)) =[r oo or] e Galy(T)

because Autfxp (M) is a normal subgroup of Aut(M). Thus, (a, E) € A, proving that
E CA.

Conversely, assume that (a, E) € A. Seta = o(m) and b= T(m). We have [T~ o
o] € Galy(T). This implies that 77! o o € Autfgp(M). Therefore,

cor '=00( 'o0)oo " € Autfyxp(M).

Since b =To007'(@),A CE.
By observation (3) above, E is invariant. Hence, by Proposition4.6.3, E is type-
definable over empty set, say by a set of L-formulas p(x, y).

Claim. For any @, b € M,
aFb < 3c(@m =4 b¢ AT = p(x, m)).
Assuming the claim, we complete the proof first. Consider
q(x.5,2) = {plx, m] < ¢[y,Z] : ¢ an L-formula} U p(zZ, m).

By our claim, F = proj(g(M)). Hence, by Proposition4.6.2, F' is type-definable.

Proof of the claim. Suppose @Fb. Get o € Autfxp(M) such that b = o(a).
Take ¢ = o (7). Then, tp(a, m/¥) = tp(b, ¢/¥). Further, ¢ = p(x, m). Thus, we have
proved the implication from left to right.

Conversely, let a m =y bTAT = p(x, m). Get 0 € Aut(M) such that o(a m) =
bc. Since p type defines F|A (), cFm. Hence, there exists a 7 € Autfip(M) such that
7(m) = ¢ = o(m) implying 77! o o(m) = m. It follows that 7= 0 o € Autf; (M) C
Autfip(M). Since 7 € Autfxp(M), o € Autfxp(M). Thus, aFb.

Since F is type-definable and invariant, by Proposition4.6.3, F'is type-definable
over empty set. (]
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Theorem 6.7.2 Exp = F, the orbit equivalence relation under the action of
Autfgp(MD).

Proof In the beginning of this section, we observed that F' is bounded and F' C Ekp.
In the last theorem, we proved that F is type-definable over empty set. Since Egp
is the smallest, #-type-definable, bounded equivalence relation, Exp C F. Hence,
Exp =F. |

6.8 Connection with Descriptive Set Theory

Throughout this section, T is a countable complete theory, A\ a countable ordinal
and parameter sets are countable. Further, by small substructures of the monster, we
shall mean countable substructures.

We let S(x, y/A) denote the set of all complete types over A in variables X, y of
equal length and of length a countable ordinal A\. We equip S(x, y/A) with the Stone
topology. Then, S(x, y/A) is a compact, metrisable, zero-dimensional space.

We refer the reader to [58, Sect.3.6] for the definition Borel sets in a metrisable
space of additive (multiplicative) class «, 1 < o < wy.

Letr: S(x,y/A) — S(x,y/¥) denote the canonical restriction map. The map r is
continuous and onto. By (Theorem 5.2.11, [58]), we have the following.

Proposition 6.8.1 For every countable ordinal o and every B C S(x,y/%), r~'(B)
is Borel of additive (multiplicative) class « if and only if B is Borel of additive
(multiplicative) class o.

Now let E be a bounded, invariant, equivalence relation on M*, where as usual
M is a monster model of 7. Define

Ejx = {tp(a@, b/A) : GEb} C S(x,5/A).

Note that E4 = r~!(Ey). We call E Borel of additive (multiplicative) class « if Ey
is Borel of additive (multiplicative) class . By the last proposition, we have the
following result.

Proposition 6.8.2 The following statements are equivalent:

1. E is Borel of additive (multiplicative) class c.
2. Ey is Borel of additive (multiplicative) class o for all countable A.
3. Ej is Borel of additive (multiplicative) class o for some countable A.

Next, fix asmall M < M. We define a binary relation EM on S (x/M) as follows: We
make an observation first. Take any @, @, b, b e M such that tp(@/M) = tp(a@ /M)
and tp(b/M) = tp(E//M). Then, a =y @'. Hence, aE; @'. But E; is the smallest
bounded, invariant, equivalence relation. Therefore, a E @'. By the same argument,
BED . Tt follows that
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aEb < dED.

Let p(xX) = tp(a/M) and q(x) = tp(E/M). We define
pEMq & GED.

By the above remark, this is well defined.
It is easy to check that EM is an equivalence relation on S(x/M).
Now consider amap 4 : S(x,y/M) — S(x/M) x S(x/M) defined by

h(tp(@, b/M)) = (ip@/M), p(b/M)), a, b € M.

It is easy to check that & is well defined and onto. Clearly, h~' (EM) = Ej;.

h is continuous: Let ¢[x], ¥[y] be Ly-formulas and a, b € M be such that
(1p(@/M), p(b/M)) € [p] x [].

Then, A([€]) C [¢] x [¥], where £[x, y] = @[xX] A P[]
By (Theorem 5.2.11, [58]), it follows the following proposition.

Proposition 6.8.3 For every o < wy, Ey is Borel of additive (multiplicative) class
a if and only if EM is Borel of additive (multiplicative) class c.

Let X and Y be Polish spaces, and E and F be equivalence relations on X and Y,
respectively. We say that Borel cardinality of E is less than or equal to F, written
E <g F, if there is a Borel function f : X — Y such that

Vx,y € X(xEy < f(x)Ff (y)).

We say E and F have the same Borel cardinality, written |E| =5 |F|, if both E <g F
and F' <p E hold. It is clear that =5 is reflexive, symmetric and transitive.

Theorem 6.8.4 Let M, N < M be countable. Then, the Borel cardinalities of EM
and EV are equal.

Proof Since M and N are countable and elementarily equivalent, there is a common
countable elementary extension of M and N. Hence, without any loss of generality,
we can assume that M < N.

We have a continuous, onto restriction map r : S(¥/N) — S(x/M).Foranya, b €
M*, we have

tp(@/N)ENtp(b/N) < aEb < tp(@a/M)EM tp(b/M).

This shows that EN <g EM.
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By Novikov’s selection theorem (Theorem 5.7.1, [58]), there is Borel map s :
S(xX/M) — S(X/N) such that r o s = id. We have

sp@/M)NEN s(ip(b/M)) & tp@/M) = r(s(p@/M))EM r(s(ip(b/M))) = tp(b/M).

This shows that EM <z EN. O

The connection with descriptive set theory is important to understand the spaces
of strong types and associated Galois groups as mathematical objects. The idea
of measuring the complexity of bounded, invariant equivalence relations via Borel
cardinalities was formulated in the paper of Krupinski, Pillay and Solecki [30]. In this
paper, it was conjectured that £}, restricted to a Kim—Pillay strong type is either trivial
or non-smooth, i.e. there is no Borel function inducing the equivalence relation. This
conjecture was proved by Kaplan, Miller and Simon in [24]. This result was extended
by Kaplan and Miller in [23] and by Krupinski and Rzepecki in [29]. Finally, a very
general trichotomy theorem for arbitrary strong types was proved by Krupinski,
Pillay and Rzepecki in [28]. For more recent results, see [26, 27]. For relevance of
these in stability theory and model theory, see [46, 50].



Chapter 7
Model Theory of Valued Fields

Abstract This chapter is devoted to the model theory of valued fields, which is
due to Ax and Kochen. We also present Ax—Kochen’s solution of Artin’s conjecture
that for every prime p, the field of p-adic real numbers Q, is a C»(d) field for
every d > 1 (See [2—4]). This was probably the first occasion when model theoretic
methods were used to solve an outstanding conjecture in mathematics. This chapter
requires a good knowledge of valued fields. It is a specialised topic not commonly
covered in graduate courses. In Appendix C, we have given a self-contained account
of the theory of valued fields that we require. The reader not familiar with valued
fields should go through Sect. C.1 before proceeding with this chapter.

7.1 The Language for Valued Fields

In Sect. C.1, it is shown that there is a one-to-one correspondence between valuation
subrings V and divisibility relations | on a field F. Further, the value group can be
taken to be F* / V> with valuation the quotient map v : F* — F*/V*,

We are going to take the language for valued fields to be the extension of the
language of rings by a divisibility relation symbol |. There are several reasons to
start with a divisibility relation:

1. It makes sense on a commutative ring with identity.

2. Itiseasy to characterize substructures of a field with divisibility relations. They are
precisely integral domains with divisibility relations. (See Proposition C.1.16.)

3. If V is the corresponding valuation subring, we can express x € V by the formula
l|lx and x € V* by 1]|x A x]|1.

4. If v is a compatible valuation, then we can express many statements involving
v:vx) > 0<% lix,v(x) <v@y) < x|y, v(x) <v(y) <y fx,vx) =0 <
(x|1 A 1]x), etc., in terms of the divisibility relation.

From now on, the language of a valued field is an extension of the language of
rings with a new binary relation symbol |. This language is further extended by
definitions by adding unary predicate symbols V and V * defined by

V(x) < I|x and V*(x) < (1|x A x[1)
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respectively. The above remarks show that if v is a compatible valuation, then various
statements involving the valuation v can be expressed in our language. It is easily
seen that the classes of all integral domains with a divisibility relation, all valued
fields, all algebraically closed valued fields and all algebraically closed valued fields
of a fixed characteristic are elementary. Also note that char(F~) = p, p > 0, is
expressed by the formula —p|1 and char(F~) = 0 by the set of formulas {p|1 :
p a positive prime}.

We are now going to show that the truth of first-order statements in the residue
field or in the value group of a valued field can be decided in the valued field itself.

By induction on the length of a formula ¢ in the language of rings, we define a
formula ¢, in the language of valued fields as follows:

(th =1), = (V) A V() A=Vt — 1)),
(_'Qp)r = "%r,

(¢V¢)r = @r VI/)P

and
Fxp)r =Ix(V(xX) A @r).
By induction on the length of a formula ¢[xy, - - - , x,—] in the language of rings,
it is easy to check that for all valued fields (FF, V) and all ag, - -- ,a,—1 € V

F~ = ollaol, - - -, [an—1ll & F, V) = ¢lao, - -, arl.

By induction on the length of a formula ¢ in the language of ordered groups, we
define a formula ¢, in the language of valued fields as follows:

ti=h0)g=Ix(V*@)Ax-11 =1),
(1 <h)g=Ix(=V)AVEX)AX -] = 1),
() = ~¢g,
(P Vih)g = g V Uy,

and
Fxp)e =Tx(x #0 A p,).

By induction on the length of a formula [ xg, - - - , x,—] in the language of ordered
groups, it is easy to check that for every valued field (I, V') with value group I" and
every ap, - -+ , a,—1 € F*,

I'E¢lva), -+ s v(an-D] < ([F, V) = (¢lag, -+, an—1])g-
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As a corollary, we get

Theorem 7.1.1 If (F, V) is k-saturated, so are its residue field ¥~ and the value
group I

In Sect. C.6, we defined that a valued field (IF, V') is Henselian if for every algebraic
extension IL of IF, V has a unique extension to L. As an easy consequence of Theorem
C.6.2 giving several characterizations of Henselian valued fields, we get the following
result.

Proposition 7.1.2 The class of all Henselian valued fields is elementary.

Proof For eachn > 1, let H, denote the formula
AZo V(i) = Yx[(V () A=V (6" + 3005 xix)
AV* (x4 3 i xi=h)
— (V) A=V —y) Ay + D0 x5y = 0)].

Then, the class of all Henselian valued fields is the set of all models of the theory
of valued fields extended by axioms {H, : n > 1}. m]

7.2 Ultraproduct of Valued Fields

Example 7.2.1 Take a family of valued fields {(F;, v;, [;) : i € I} and U an ultra-
filter on I. Now set I/ = TI'; U {oo;} with a <; oo; for all a € I';. By Theo-
rem 2.1.3, (x;T))/U = I'(U) U {oo} where oo = [(00;)] and [(a;)] < oo for all
[(@a)] € (x;T'H)/U.

We now define a valuation v¥ on the ultraproduct F(I/) = (x;[F;)/U with value
group I'(U) = (x;I;)/U as follows:

(@] = [(vi(a))].

Using Theorem 2.1.3, it is quite easy to check that this defines a valuation on the
ultraproduct

Proposition 7.2.2 The residue field of the ultraproduct F(U) equals (x;F;") /U, the
ultraproduct of the residue fields of T;s.

Proof The valuation subring of F(l{) is given by
V) = (@] € FU) = v* ([(a)]) = 0).

By Theorem 2.1.3, for each [(a;)] € V(U), {i € I : a; € V;} € U. Hence, there
exists (b;) such that [(b;)] = [(a;)] and b; € V; foralli € I.
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We consider the map g that assigns [(a;)] to [([b;])] € (x;IF;")/U. Using Theorem
Theorem 2.1.3 it is easy to check that g is well defined and is an epimorphism. We
now compute the kernel of g. Let b; € V;,i € I. By Theorem 2.1.3,

[((b;D]=0<{iel b eM}el.
But{i e I :b; € M;} ={i € I : v;(b;) > 0}. Hence, by Theorem 2.1.3,
q([(a)]) =0 < v ([(a)]) > 0.

Thus, the kernel of g is the unique maximal ideal of V¥. This proves the result. O
The next theorem is a direct consequence of Theorem 4.3.13

Theorem 7.2.3 Let U be a free ultrafilter on the set of all primes IP. Then x ,Q, /U
and x ,IF,((X))/U are both R-saturated.

Proposition 7.2.4 If A = {i € I : (F;, V;) is Henselian} € U, then (FU), V(U))
is Henselian.

Proof Take a polynomial
FX)=X"+a"'X" " 40" 2X" 2 4 4 a' X 44" e VAUH[X]

witha"' ¢ M) anda" 2, --- ,a® € M(U4). We need to show that f has a root in
FU). ,
Let a/ = [(¢/)],0 < j < n — 1. Then, by Theorem 2.1.3, A,_; = {i € I :

a" ! e Vix\M'Yand A; ={i el :al € M}, j=0,---,n—2,are all in Y.

i i

Therefore, B = AN ﬂ'};(l)A j € U.Fixani € B. Since F; is Henselian, there is a
root b; € F; of fi(X) = x" +a ' X"~ +a! X" 2 + ... +a. Set b; = 0 for
i € I\ B.Then f([(b;)]) = 0 by Theorem 2.1.3. O

Corollary 7.2.5 Let P denote the set of all primes and U a free ultrafilter on IP. Then
x,Qp/U and x,F,((X))/U are R,-saturated Henselian valued fields with same
residue field x ,I¥, /U of characteristic 0 and same value group ZFJU.

We call a field F a C;(d) field, if every homogeneous polynomial of total degree
d in more than d' variables has a non-zero root. It is easy to see that the the class of
all C;(d) fields is elementary.
Let p(Xy, -+, Xgit1, -+, X;) be ahomogeneous polynomial of total degree d.
Consider
qX1, - Xgp) = p(Xi, -+, Xgip1, 0, -+, 0).

Then ¢ is a homogeneous polynomial of degree d in d’ + 1 variables. If ¢ = 0, then
(1,---,1,0,---,0) is a non-zero root of p. Otherwise, if @ is a non-zero root of
q(X1,--+,X4i+1), @, 0,---,0) is a non-zero root of p(Xy, -+, Xgiry, -+, Xp).
Hence, [F is a C;(d)-field if and only if every homogeneous polynomial p(Xy, - - -,
Xyi41) of degree d over F in d' + 1 variables has a non-zero root.
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Proposition 7.2.6 Let {F; : i € I} be a family of fields and U an ultrafilter on 1.
Then, the ultraproduct F(U) is a C;(d) field if and only if {l € I : F; is a C;(d) field}
eu.

Proof Let

A={lel:FisaC;(d) field} € U.
Suppose p(X1, - - - , X,,) is ahomogeneous polynomial over F(I/) of degree m > d".
Letc! = [(¢)], -+, ¢k = [(c})] be all the coefficients of p in some order. For each

I € A, let p; be the homogeneous polynomial over IF; obtained from p by replacing
each ¢/ by ¢]. Let a; € F; be a non-zero root of p;. For [ ¢ I, take ¢; = 0. By
Theorem 2.1.3, [(a4;)] # 0 and is a root of p.

Now assume that A ¢ U. Since U is an ultrafilter, A € U. For each [ € A€,
get a homogeneous polynomial p;(Xy,---, X4i11) over [; that has no non-zero
root. Assume that all monomials in degree(d) occur in each p;, may be some with
coefficient 0. Let c,l, s, cf‘ be all the coefficients of p; in some order. Define le =0
forl € A. Sete/ = [(c])] € FQ).

Let p be the corresponding homogeneous polynomial over F(l{) obtained
from p; with ¢/ replaced by ¢/. If possible, suppose p has a non-zero root
a = ([(@)]), - ,[@"]), where m = d' + 1. Since a # 0, by Theorem 2.1.3,
UL {l € I : af # 0} € U. Since U is maximal,

Aj={lel:al #0)elU

forsome 1 < j <m.So, A;NA° # ). Takean/ € A; N A°. Then p; has a non-zero
root which is a contradiction. 0O

7.3 Ax-Kochen Theorem on Artin’s Conjecture

It was known that for every prime p, the field of formal Laurentz series F,((X))
over[F, is a C,(d) field forevery d > 1. Since Q, and F,((X)) have many algebraic
properties in common, Artin conjectured that for all primes p, Q, is a C»(d) field for
every d > 1. This is not exactly correct. However, using model-theoretic methods,
Ax—Kochen showed that forevery d > 1, Q,, is a C5(d) field for all but finitely many
primes p. In this section we are going to prove Ax—Kochen theorem.

Lemma 7.3.1 Let G be a torsion-free abelian group having a non-trivial cyclic
subgroup H such that [G : H] < oo. Then G is cyclic.

Proof We prove the result by induction on [G : H]. Suppose [G : H] = n > 1
and the result holds for all integers less than n. Let g be a generator of H. Take a
x € G\ H. By our hypothesis, there exists @ > 1 such that x* € H. Suppose b € Z
is such that x® = g%. Letd = (a, b). Set y = x*/?g=b/4 Then y¢ = eg. Since G is
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torsion free, y = e,. Replacing a by a/d and b by b/d if necessary, without any loss
of generality, we assume that (a, b) = 1
Now get p, g € Z such that pa + gb = 1. Set h = gPx?. Then

ht = gx = gt = g.

And

ht = gPPxPt = xaxba — xartha —

Thus, H = (g) is a proper subgroup of the cyclic subgroup H' = (k) of G. Therefore,
[G : H'] < n. Hence, G is cyclic by the induction hypothesis. O

Theorem 7.3.2 Let (Ky, Vi, vy) and (K;, Vs, v2) be Henselian-valued fields with
same residue fields of characteristic 0 and the same value group T'. Assume that K,
is Ny-saturated. Suppose [ is a countable, Henselian subfield of K, with respect to
vy with vi(F) pure in T (i.e., I'/v(IF) is torsion-free) and o : F — K, a value
preserving embedding such that [a] = [o(a)] for every a € F N V|. Then for every
by, -, by € Ky, there exists a countable subfield ¥ D F(by, - - - , by) of K| which
is Henselian with respect to v\ such that v{(F’) is pure in T and to which o admits
a value preserving extension o' : F' — K, such that [a] = [0’ (a)] for every
aclF' N V.

Proof By Proposition C.7.9, we get a countable subfield F" of K; such that " D>
F(by, - -, by) and vy (F") is pure in I'. Since KK is Henselian and since Henselization
of a countable-valued field is countable and an immediate extension (Proposition
C.7.2), without any loss of generality, we assume that F’ is Henselian with respect
to vy. Set I'" = vy (IF).

By Zorn’s lemma, there exists a maximal (H, ¢’) where F ¢ H C F’ and ¢’ :
H — K, a value preserving embedding extending o such that [a] = [0'(a)] for
every a € H N V; and v;(H) pure in I'. If possible, suppose H is not Henselian
with respect to v;. Then, ¢’ (H) is not Henselian. Let H" C K; be the Henselization
of H and o'(H)" C K, be that of ¢/(H). By the uniqueness of Henselization of
valued fields (see Sect.C.7), it follows that there is a value preserving isomorphism
7 :H" - ¢'(H)" C K, extending ¢’ such that [a] = [7(a)] for every a € H' N V.
This contradicts the maximality of (H, ¢’). So, H is Henselian with respect to v;.

To complete the proof, we show that H = F’. We first show that F” is an immediate
extension of H.

Step 1. F'~ =H".

If possible, suppose '~ = H™. Let [x] € '~ \ H™.

Let [x] be transcendental over H™. Then, x is transcendental over H. Let y € V,
be such that [y] = [x]. Since the residue fields of K; and K, are the same, such a y
exists in K. If possible, suppose [y] is algebraic over o’ (H) ™. Let

1" + [0 (@n-DIYI" " + - + [0/ (@)]1y] + [0/ (a0)] = 0.
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Since for every a € HN Vi, [a] = [¢/(a)] and [y] = [x], we then have
[x1" + [ 1[x1" " + - + [ar][x] + [ao] = 0.

This contradicts that [x] is transcendental over H™. So, [y] is transcendental over
o’ (H)~. Also note that vy (x) = v2(y) = 0. Therefore, by Theorem C.2.2,

v (g aix') = min{vy(a;) : 0 < i < n}
= min{vy(0’(a;)) : 0 <i <n}

=00 @)y

This implies that the isomorphism 7 : H(x) — ¢’(H) that extends ¢’ and sends
X to y is value preserving.

To arrive at a contradiction, we now need to show that [ f/g] = [7(f/g)] for every
f/g € H(x) N V. First take a polynomial

fx) = Za,-x” e H[x]1N V.

i=0

Then v;(f) = min{v;(a;) : 0 <i < n} > 0. Hence, each a; € V. Since z — [z]
is a homomorphism, it now follows that [ f] = [7(f)]. It also follows that whenever

frg € HIxIN Vi, [f/gl = [T(f/9)].
Nextlet f/g € H(x)N M,. Since 7 is value preserving, 7(f/g) € o' (H)(y) N\ M,.

Hence, [f/g] =0 = [7(f/g)]- ' '

Now take § € H(x) N V. Let f(x) = >/ _ja;x" and g(x) = Z'}ZO bix’.
Hence, by Theorem C.2.2,

vi(f) = min{vi(a;) : 0 <i <n} =minfvi(b;) : 0 < j <m}=v1(g).
Let vi(a;) = min{vi(a;) : 0 < i < n}and v;(b;) = min{vi(b;) : 0 < j < m}.
Then
[f/g]=lar/bs1Lf'/g'].
where f', g’ € H[x] N V;*. Now note that [ f'/g'] = [7(f'/g")]. So,
[T(f/8)] = [o'(ar/bHIT(f'/g)] = lar/bsILf /8] = [f/g].

Thus we have proved [x] has to be algebraic over H™.
We now show that [x] is not algebraic over H™ either. Suppose not. Let

fX)=X"4a, X" "+ +a X +a e HNV)[X]

be such that f~ is the minimal polynomial of [x] over H™.
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In case 2 of Proposition C.7.9, using Hensel’s lemma we showed that f has a
root in " with residue class [x]. Without any loss of generality, we take x to be
such a root. Clearly, v;(x) = 0. In case 2 of Proposition C.7.9, we showed that
v (H(x)) = vi(Hx]) = vy (H).

Arguing as above, using Hensel’s lemma, o’ (f) has a root with residue class [x].
We take y to be such a root. So, we have a canonical isomorphism 7 : H(x) —
o’(H)(y). Since H is Henselian, there is exactly one valuation on every algebraic
extension of H extending v;. Hence, 7 is also value preserving.

We have arrived at a contradiction in this case too.

Step 2. Ul(F/) = Ul(H).

Suppose not. Get x € F’ such that v;(x) ¢ v, (H). Replacing x by x~! if neces-
sary, without any loss of generality, we assume that x € V;. Since v;(x) ¢ v (H),
0 < v1(x) < 00. Also note that [x] = 0.

Since vi(H) is pure in I', for no non-zero integer /, [v;(x) € v;(H). So, for
0<i#j<ooanda;,a; €H,vi(ax") # vi(a;jx’/). Hence, by Lemma C.1.9,

vl(Za[xi) = min{v; (@;x") : 0 <i < m}
i=0

whenever ag, - - - , a,, € H. Further, if not all ag, - - - , a,, are 0,

vl(Zaixi) = min{v;(@;) +ivi(x) : 0 <i <m} < oo.
i=0

Hence, x is not algebraic over H.

Since K, and K, have the same value group, there exists a y € K, such that
v2(¥) = v1(x) > 0. In particular, [y] = 0 = [x]. Since v;(H) = v,(c’(H)), by the
above argument, for 0 < i # j < oo and b;, b; € o'(H), va(biy') # vz(bjyj). As
before, this proves that y is transcendental over o’ (H) and vy (f (x)) = v2(c’(f)(¥))
for every f € H[x]. Thus, the isomorphism ¢” from H(x) to ¢’/ (H)(y) sending x
to y and a € H to ¢/(a) is value preserving. As in case of Step 1, it follows that
[f] = [a”(f)] for every f e H(x) N V.

However, v; (H(x)) may not be pure in I'". Take

H* = {z € F" : z is algebraic over H(x)}.

We first show that vy (H*) is pure in I'. Suppose there exists a € F'*, b € H* and
m > 1 such that mv,(a) = v{(b). Then vl(%m) = 0. Since the residue fields of H
and " are the same (Step 1), there exists a ¢ € H N V; such that v;(c) = 0 and

m

(2] = [c].
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Now consider the polynomial

m

f(2)=2" - ;‘)—C e (F nV)[Z].

Then ” ”
(£ (1) = vy (c — “7) —v1(e) = v (c — %) >0,

and

v (f' (1) = vi(m) =0

because char (K]") = 0. Since F’ is Henselian, by Hensel’s lemma, f has a root, say
z, in IF” with residue 1. In particular, v; (z) = 0. Now (‘f)”‘ = bc € H*. Thus, % el
and is algebraic over H*. So, ‘Z—‘ € H*. But then vy (a) = Ul(‘;’) € vy (H*). Thus, we
have proved that v, (H*) is pure in "

To arrive at a contradiction, we shall extend ¢’ to a value preserving embedding T
to H* such that [7(a)] = [a] for every a € H* N V. We shall use X|-saturability of
K to achieve this. Enumerate H* = {a, : n € N}. We take a type over a countable
A C K, consisting of the following formulas:

Xi+X; =X ifa; +a; = a,
Xi-X; =Xy ifa; -a; = a,
X, =0'(ay) if a, € H
12(X,) = vi(ay,)

and
[Xn] = [an] if Ul(an) = 0.

Suffices to show that every finite set of these formulas is realized in K. This will
follow if we show the following: Let H(x) ¢ H' c H*, [H' : H(x)] < oo. Then ¢’
admits a value preserving extension 7 to H'.

Let H' = H(x, «) be a finite extension of H(x). By Chevalley’s fundamental
inequality, [v; (H') : v (H(x))] < oo. Since v, (H) is pure in "/,

v (HX)) = vi(H) & Zv; (x).

Also
vi(H) =vH &G

with G an infinite torsion-free abelian group with [G : Zv;(x)] < oo. Hence,
G = Zv(y) for some y € H' by Lemma 7.3.1. Since H is Henselian with residue
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field of characteristic 0, it is algebraically maximal by Theorem C.7.8. So, y is
transcendental over H. Hence,

v HO) = vi(H) & Zvi(y) = vi(H)

by Theorem C.2.3. Thus, by Step 1, H' is an immediate extension of H(y). Note that
H(y) must contain x. So, H(x, ) is an algebraic extension of H(y). Hence, H' is
contained in the Henselization of H(y). Replacing x by y in the argument contained
in the first part of step 1, we see ¢’ can be extended to a value preserving extension
7 to the Henselization (H(y))" of H(y). We have thus contradicted the maximality
of (H, o)

We have now proved that F’ is an immediate extension of H. If possible, suppose
there exists an x € "\ H. Without any loss of generality, we assume that v (x) > 0.
Since H is Henselian with residue field of characteristic 0, it is algebraically maximal
by Theorem C.7.8. So, x is transcendental over H. Enumerate H = {a, : n € H}
with ap = 0.

Since the value groups of " and H are the same (Step 2) and x ¢ H, for every n,
there is a b, € H* such that

v (x — a,) = vi(b,).
Claim 1. There exists a y € K, such that for every n,
vi(by) = vi(x — a,) = v2(y — o' (an)). (%)

Since K is N -saturated, it is sufficient to show that for every m, thereisay € K,
satisfying (x) for every n < m. Let

vi(x —ap,) =min{v;(x —a;) : 0 <i <m}.

Since the residue fields of F’ and H are the same, there exists a ¢ € H N V; such that
[J%] = [c]. Hence,

vi(x —a, —byc) > vi(by) = vi(x —ap) = vilx —a)
forevery 0 <i <m.Setd = a, — b,c € H. In particular, v (x —d) > v;(x) > 0.
Hence, vi(d) > 0 and [x] = [d].
For0 <i <m,

vid—a) =vi((x —a;) — (x —dp)) =vi(x —a;) = vi(h).

Now take y = ¢’(d). Thus, by R;-saturability of K, there is a y € K, satisfying (x)
for all n.
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Since y ¢ o'(H) and o’ (H) is Henselian and finitely ramified, it is algebraically
maximal by Theorem C.7.8. Hence, y will necessarily be transcendental over o’ (H).
Claim 2. For every f(x) € H[x], vi(f(x)) = va(a’'(f)(y)).

Then the isomorphism 7 from H(x) to ¢’(H)(y) sending x to y and a € H to
o’(a) will necessarily be a value preserving extension of ¢’. This will contradict the
maximality of (H, ¢’) and will finally prove our theorem.

We prove claim 2 by induction on d = degree( f). Claim 1 proves the hypothesis
for d = 1. Let the statement be true for all p(x) € H[x] of degree less than d and
f(x) € H[x] be an irreducible polynomial of degree d. Set

Hy = Hlx1/(f).

Since H is just the space of all polynomials in H[x] of degree less than d, we can
restrict vy to it. Now let g, 4 € H[x] be of degree less than d. Write

gh=aqf +r

with degree(r) < d. If always v;(r(x)) = vi(gh(x)), then v{|H; would be a
valuation. It will follow that H has a proper, algebraic immediate extension. But such
an extension does not exist because H is Henselian. Hence, there exist g, h € Hj
such that

vi(r(x)) # vi(gh(x)) = vi(g(x)) + vi(h(x)).

Hence,

vi(f(x) = —vi(g(x)) + v (r(x) — gh(x))

—v1(g(x)) + min{v; (r(x)), vi(gh(x))}.

By induction hypothesis

V(0 (r)(y)) # v2(0' (&) () + v2(a’ (h) () = va2 (' (gh) (V).
Therefore,

v2(0’(gf)(y) = v2(0’'(r)(y) — o' (gh)(y))
= min{v, (¢’ (r)(¥)), v2(c’(gh)(y))}

So,

V2 (0’ () () = —v2(0'(g)(y)) + min{vy (o’ () (¥)), v2(0'(gh)(¥))}
= —v((g(x)) +min{v (r (x), vi(gh(x))} = vi(f).

The first equality holds by the induction hypothesis. O
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Theorem 7.3.3 (Ax-Kochen) Let d > 1. Then
Ag=1{p eP:Q, isnot a C(d) field},

where P denotes the set of all prime numbers, is finite.

Proof 1f possible, suppose A, is infinite. Let U be a free ultrafilter on P containing
Ay. Consider
K; = x,Q,/U and K, = x,F,((X))/U.

Then both K; and K, are R-saturated Henselian fields (Theorem 4.3.13) with same
residue field x ,IF, /U of characteristic O and same value group I' = x ,Z/U which
is torsion free (Corollary 7.2.5). Since A; € U, K is not a C,(d) field (Proposition
7.2.6). It is well known that F, ((X)) is a C,(d) field for all primes p. Hence, K; is
a C»(d) field (Proposition 7.2.6).

From the common properties of K; and K, listed above and using K is a C»(d)
field, we are going to prove that K; is a C,(d) field. Thus we shall arrive at a
contradiction.

Let v; denote the valuation on K;, i = 1, 2. Note that both v; and v, are trivial
on the prime field Q. So, Q is Henselian with respect to both v, and v, the identity
isomorphism id : (Q, v;) — (Q, vy) is value preserving with I'/v;(Q) = I torsion
free.

Let f € Ki[Xy, -+, X4241] be a homogeneous polynomial of degree d. Assume
that all monomials in X, .-, X2 of degree d occur in f, possibly some with
coefficient 0. We now proceed to show that f has a non-zero root.

Letay, --- , a, be all the coefficients of f in some order. By Theorem 7.3.2, there
is a countable Henselian subfield F; D Q(ay, - - - , a,) such that I /v, (F}) is torsion
free and there exists a value-preserving extension o : F; — K, of id.

SetF, = o(F)) and g = o (f). Then g is a homogeneous polynomial over K, of
degree d in Xy, - -+, X241. Since K is a C,(d) field, g has a non-zero solution, say
X1, ,Xg241. By the last theorem, there is an embedding 7 : Fo(xy, - -+ , xp241) —
K, extending o~ '.Then7(x)), -, T(x4241) is anon-zero root of f. We have arrived
at a contradiction now. m]

7.4 Quantifier Elimination and Model Completeness
of Valued Fields

We saw earlier that given any valuation subring V of afield IF, there exists an extension
of V to the algebraic closure F. Further, such an extension is essentially unique, i.e.
if Vi and V, are two extensions of V to F. there is an F-automorphism « of F such
that a(Vy) = V5. It follows that if | is a valuation divisibility relation on D, then
there is (essentially a unique) valuation divisibility relation on FF extending |.
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We are now in a position to prove quantifier elimination for theory of algebraically
closed fields with nontrivial valuation divisibility relation.

Theorem 7.4.1 The theory of algebraically closed fields with non-trivial valuation
divisibility relation admits quantifier elimination.

Proof Let (Fy, |1), (IF2, |2) be two algebraically closed fields with non-trivial valu-
ation divisibility relations, and (D, |) a common substructure. Let [F be the quotient
field of D. Note that there is an F-isomorphism f of the algebraic closure of F in [
onto the algebraic closure of I in [F; that takes |, to |,. It follows that we can assume
that (IF, |) is a common substructure of (Fy, |;) and (F,, |») with IF also algebraically
closed.

Let ¢[x, a] be an open formula with parameters a € D C F. Suppose there
exists a t € [F; such that F; = ¢[¢, a]. We need to produce a s € [F, such that
F, = ¢ls,al. If t € F, we simply take s = 7. So, we assume that 7 € F; \ F. Then
t is transcendental over F. Set ' = F(¢) and |' = ||F’. Let x = |F|. Since there
exists a x*-saturated elementary extension of Iy, without any loss of generality, we
assume that F, is x*-saturated.

Let V, V" and V, denote the valuation subrings of IF, " and IF, respectively. We
shall produce an F-monomorphism from (F’, V) into (F,, V,) respectively. This will
complete our proof.

Let ', I'” and I'; denote the value groups, v, v" and v, the valuations and F~ =
V/M,F~ = V'/M' and F; = V,/M, denote the residue fields of (F, V), (F', V')
and (IF,, V) respectively.

Casel : F~ # F'7. Note that there is a canonical embedding of F~ into F'"~". Take
[x] e "\ F~. So, x ¢ F. In particular, x is transcendental over FF. Also, v'(x) = 0.
Hence, by Theorem C.2.2, for every ag, - - - ,a,, € F, v’(zi a;x") = min; v(g;).

Using saturability of I, we now produce ax, € I, transcendental over IF. Towards
showing this consider

D) ={llx Ax|1}U{lla —xAa—x|l:aeV*}

Since F is algebraically closed, ™ is algebraically closed, and so infinite. Hence,
®[x] is finitely satisfiable in IF. So, ® (x) is satisfiable in [, say by x,. Then, [x,] €
F5 \ F~. As before, it follows that x, ¢ [ and so is transcendental over . Hence,
there is an F-isomorphism g from F(x) onto F(x,) that sends x to x;. Like before,
since [x,] is transcendental over ™, we see that

v2(§ a;x5) = min v(a;).
l
i

It follows that g preserves the valuation divisibility relation.

Since x € F(¢), there exist polynomials p(X), ¢(X) € F[X] with ¢ # 0 such
that x = % So, p(t) — xq(t) = 0. Thus, ¢ is algebraic over F(x). Hence,
' = F(¢) is algebraic over F(x). Since F, is algebraically closed, we now have
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an F-monomorphism from F’ into F,. Since extensions of a valuation subring to the
algebraic closure is essentially unique, we can easily modify the F-monomorphism
so that the valuation divisibility relations are also preserved.

Case2 :T" # I'" Recall that we can assume I' = F*/V>* and I = F'*/V’*.
Clearly, there is a natural, order preserving embedding of I' into I'". Now take x € V’
such that v'(x) € "\ . So, x ¢ F. By Theorem C.2.3, for every ag, - - - , a, € F,

v’(z a;x") = min{v(a;) +iv'(x)}.

Now consider the following:
®(vg) = {—wgla : v(a) < V' (x) &a € F} U {=alvy : V' (x) < v(a) & a € F}.

Since I'; is divisible and |, is non-trivial, ® (vp) is finitely satisfiable in . Hence,
by saturability, there exists an x, € [, such that for all a € F, v(a) < v'(x) —
v(a) < va(xz) and v'(x) < v(a) — v2(xz) < v(a). Since v(x) ¢ T, it follows that
va(x2) ¢ I'. As before, forag, --- ,a, €T,

1O aixh) = min{v(a;) + iva(x)}.

Since F is algebraically closed, x; is transcendental over F. By the above observation
the canonical F-isomorphism from F(x) onto [F, preserves the valuations. The proof
in this case is completed as in case 1.

Case3 :F~ =~ & I' =I". In this case, we prove that there exists a t, € F,
such that

Va e FQ'(t — a) = vy(t, — a)).
Assuming this we complete the proof first. Let g : F(r) — TF,(r;) be the

F-isomorphism with g(¢) = t,. Now take ag, - -- ,a, € F withn > 0 and a, # 0.
Since I is algebraically closed, write

D aiX! =ay(X —by) - (X = by),

blv"' 7bl‘l E]F'
Then

V'O aithy = v(ay) + D vt = b) = vla) + D vty = bi) = 128D ait')).

It follows that g preserves the valuations too and the proof is complete.
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It remains to show the existence of at, € [F, satisfying the above condition. Since
' =T, foreverya € IF, we getat, € IF such that v'(t — a) = v(b,). Now consider

O (vg) = {vo —alty, ANty|lvg —a :a € F}.

We now show that @ is finitely satisfiable in [F. Then, by saturability, it is satisfiable
in [, say by #,. Clearly t, satisfies the above condition.

Take ay, --- ,a, € F. Let k be such that for a = a;, v(t,) = max; v(t,,). Since
V(t —a) =v(t,), (t —a)t,' € V'*.Since F~ = F'", there is a ¢ € V such that

[t —a)t, '] =[c].

Setd = a + ct, € F. Then
,t—d
v (

) >0,

a

ie.,
V(t—=d) > v(t,).

It follows that forall 1 <i <n,
V't —d) > v(ta) > v(ty,).

Hence,
v(d —a;) =v'((t —a;) — (t —d)) =Vt —a;) =v(tg,).

Our proof is complete now. O

Corollary 7.4.2 The theory T of algebraically closed, non-trivial valued fields is
model complete. It is the model companion of the theory of valued fields.

Proof The first partis a direct consequence of quantifier elimination for 7. Let (F, V)
be a valued field. If V # F, then recall that V can be extended to the algebraic closure
T which is then an algebraically closed non-trivial valued field extending (F, V). If
V =T, first get a non-trivial valuation on F(X) and take its extension to the algebraic
closure of F(X). O

Corollary 7.4.3 The theory T of non-trivial, algebraically closed valued fields with
fixed characteristic and fixed characteristic of the residue field is complete.

Proof By quantifier elimination proved in Theorem 7.4.1, it is sufficient to show the
existence of a prime structure in all possible cases. If char (F) = char (F~) = 0, then
Q with trivial valuation is a prime structure. If char (F) = char(F~) = p > 0, then
[, with trivial valuation is a prime structure. If char (F) = O and char (F~) = p > 0,
then Q with p-adic valuation is a prime structure. O



Appendix A
Set Theory

In this chapter, we present the results and concepts from naive set theory that we
shall need. Some of the proofs are omitted. For cardinals and ordinals, the reader
may see ([58], Chap. 1) and for infinite combinatorics ([22], Chap.9).

A.1 Ordinal Numbers

A well-ordered set is a linearly ordered set (W, <) such that every non-empty subset
A of W has a (unique) least element. Well-ordering principle, in notation W OP, is the
statement “every set can be well-ordered”. Throughout this book, we have assumed
WOP.
Foranyu e W,
Wu)={veW:v<u}

is called an initial segment of W.

Proposition A.1.1 If (W, <) is a well-ordered set and u € W, then there is no
order-preserving injection f : W — W (u).

Proof Suppose to the contrary an order-preserving injection f : W — W (u) exists.
Set
ug = u & n(ups1 = f (un)).

Then A = {up, uy,...} C W is a non-empty set with no least element. This is a
contradiction. O

We have the following two methods of transfinite induction.
Theorem A.1.2 Let (W, <) be a well-ordered set.

1. (Proof by transfinite induction.) Suppose for each u € W, P, is a statement
such that whenever P, holds for all v < u, P, holds. Then for allu € W, P,
holds.

© Springer Nature Singapore Pte Ltd. 2017 209
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2. (Definition by transfinite induction.) Let X be a set and F : Z(W) — X a
Sfunction, where Z(W) is the set of all functions from an initial segment of W to
X. Then there is a unique function G : W — X such that

Yue W(Gu) = F(G|W(u))).

The class of all ordinal numbers (or simply ordinals) is a class ON such that each
o € ON is a well-ordered set and every well-ordered set is order isomorphic to a
unique o € ON. That such a class exists follows from Zermelo—Fraenkel axioms.
Ordinal numbers will generally be denoted by «, 5 and y with or without suffixes or
prefixes.

For ordinals «, 3, we write « < (3 if « is order isomorphic to an initial segment
of 3. This initial segment is necessarily unique. We have the following trichotomy
theorem for ordinals.

Proposition A.1.3 1. For ordinals «, (3, exactly one of o < 3, @« = 3, < «
holds.
2. Every set of ordinal numbers is well-ordered by <.

In view of this proposition, we identify each ordinal o with {3 € ON : § < a}
with the ordering as defined above.

Note that two finite well-ordered sets W, W, are order isomorphic if and only if
they have the same number of elements. The ordinals corresponding to finite well-
ordered sets are denoted in increasing order by 0, 1,2, .... The set {0, 1,2, ...} is
denoted by w. Note that by our convention, 0 = andn ={o,...,n— 1},n € w.

Let o, 3 be ordinals. Choose well-ordered sets (W1, <;), (W,, <») order isomor-
phic to «, 3 respectively with Wy N W, = (. Set W = W, U W,. Foru,v € W,
define u < v by

1. u,ve Wyand u < v.
2. u,ve Woandu <, v.
3. ue Wyand v € W,.

The ordinal corresponding to (W, <) is denoted by o + 3. An ordinal of the form
a + 1 is called a successor ordinal. An ordinal which is not a successor ordinal
is called a limit ordinal. 1t is not hard to prove that every ordinal o has a unique
representation &« = 3 + n, § a limit ordinal and n € w. In this case, we call « an
even ordinal if n is even and an odd ordinal if n is odd.

A.2 Axiom of Choice

The well-ordering principle WOP is a non-constructive principle which merely
asserts the existence of a well-ordering of an arbitrary set without specifying any. In
mathematics, there are two more such non-constructive principles which are com-
monly used. We state these and show that they are equivalent statements in Zermelo—



Appendix A: Set Theory 211

Fraenkel set theory. It has been shown that they are undecidable in Zermelo—Fraenkel
set theory.

Axiom of Choice. (AC) For every family {X; : i € I} of non-empty sets, there is
a function f : I — U/ X; such that for every i € I, f(i) € X;.

A function f satisfying this condition is called a choice function for {X; : i € I}.
The set of all choice function for {X; : i € I} is denoted by x;/X;. If each X; = X,
we denote this set by X'.

Let (P, <) be a partially ordered set. A chain in P is a subset C of [P such that
< |C is a linear order on C.

(Zorn’s Lemma.) (ZL) Let (P, <) be a non-empty partially ordered set such that
every chain in P is bounded above. Then (P, <) has a maximal element.

The following is a theorem of Zermelo—Fraenkel set theory.

Theorem A.2.1 The following statements are equivalent.

(a) Zorn’s Lemma.
(b) Well-ordering principle.
(c) Axiom of choice.

Proof (a) implies (b): Let X be a set. If X = @, then empty relation well orders X.
Assume that X # (. Set

P={A,<):ACX& < awell-order on A}.
Then P is non-empty. Define
(A, <) < (B, <1) & (A, <) is an initial segment of (B, <1).

If {(A;, <;) : i € I} is achain C in P, then UC is an upper bound of C. Hence, P
has a maximal element, say (A, <). We claim that A = X. For otherwise, take an
x € X\ A. Now extend < to a well-order on A U {x} by declaring x larger than every
a € A. This contradicts the maximality of (A, <).

(b) implies (c): Given a family of non-empty sets {X; : i € I}, set X = U;X;. By
(b), there is a well-order < on X. Define f (i) to be the least element of X;, i € I.

(c) implies (a): Let (P, <) be a non-empty partially ordered set such that every
chain C in P has an upper bound in PP.

Let C denote the set of all chains in IP. For each chain C, define

C'={peP:VxeCkx<p))
and set

Co={CeC:C #0).
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By the axiom of choice, there is a function f : Cy — P such that f (C) € C’ for every
C € Cy. For each chain C, define its successor s(C) as follows:

C if ¢’ =9,
SO =1 UL} otherwise.

We need to show that there exists a chain C such that s(C) = C. (Then an upper
bound of C (that exists by the hypothesis) will be a maximal element.)

We call a family M of chains a normal family if the following three conditions
are satisfied.

(1) The empty chain ¥ € M.
(2) If{C; : i e I} € M and C = U;C; is a chain, then C € M.
(3) s(C) € M whenever C € M.

The set of all chains C is a normal family. Further, it is easy to check that the
intersection of a set of normal families of chains is normal.

Let A denote the intersection of all normal families of chains. Then N is a normal
family of chains that is contained in all normal families.

Main Observation. For every chain C, D € A either C C D or D C C.

Assume this for the time being. Let
Co = Ucen C.

By the above observation, Cj is a chain. Since N is normal, Cy € N. Moreover, it is
the largest element of A. By the same reason, s(Cq) € A Thus, s(Cy) C Cy C s(Cp)
and the proof of Zorn’s lemma is complete.

We now proceed to prove the main observation. Call a chain C € N good if for
every D € NV, either C C D or D C C. We need to prove that every C € N is good.
The following is the crucial property of good sets:

Fact. If C is good, for every N € A either N C C or s(C) C N.

Assuming this fact, we complete the proof of the main observation first. Towards
proving this, consider
M ={C e N :C is good}.

We have the following:

(i) Since the empty chain ¢ is contained in all chains, ¥ € M;.
(ii) Suppose {C; :i € I} C M and C = U;C; is a chain. Take any D € N. If each
C; C D, C C D. Otherwise, thereisa C; ¢ D.But C; € M,.So,D C C; C C.
(iii) Now let C € M, i.e., C is good and D € N. Then by the above fact, either
DcCcs(C)ors(C)cCD.
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These prove that M; C N is normal. Hence, M| = A. This proves the main
observation.
It remains to prove the fact which we do now. Let C € N be a good chain.
Consider
My={NeN:NcCvs(C)CN}

Suffices to show that M, is normal.

(a) Clearly, the empty chain ¥ C C. Hence, ¥ € M,.

(b) Suppose {N; :i € I} C My and N = U;N; is a chain. Then N € N. If each
N; C C,N C C.Otherwise, thereisa N; ¢ C. Since N; € M»,s(C) C N; C N.

(¢) NowletN € M,. If s(C) C N, s(C) C s(N). So assume that N C C. Since C is
good and s(N) € N, either s(N) C C or C C s(N). In the first case s(N) € M,.
In the second case, we have N C C C s(N). But s(V) differs from N by at most
one point. So, either C = N C s(N) or C = s(N) implying s(N) C C.

We have now proved that M, is normal. Thus, we have completed the proof of
Zorn’s lemma. B

Remark A.2.2 The proof of Zorn’s lemma from the axiom of choice presented above
is due to Hausdorff.

We shall be using minor variants of these three equivalent principles.

A.3 Cardinal Numbers

Let X and Y be any two sets. We shall |X| < |Y] if there is an injection f : X — Y.
In this case, we say that the cardinality of X is less than or equal to that of Y. We
shall write |X| = |Y] if there is a bijection f : X — Y. In this case, we say that the
cardinality of X is equal to that of Y. We shall write |[X| < |Y]if | X| < |Y| & |X]| #
Y.

Theorem A.3.1 For sets X and Y, we have

1. 1X| < |PX)| = |2X|, where P(X) denotes the power set of X. (Recall that 2% is
the set of all indicator functions on X.)
2. (Cantor-Dedekind—Schroder-Bernstein Theorem.)

(IXI = IYIATY] = IX]) = IX]=[Y].

3. (AC) X is infinite if and only if |X| = |Y| for some proper subset Y of X.
4. (AC) |X] = [Y]or |Y] = IX].
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5. (AC) If X is infinite,
IX| = 1X x {0, 1} = |X x X]|.

6. (AC) If {X; : i € I} and {Y; : i € I} such that |X;| < |Y;| for alli € I, then
Ui Xil <% Yil.
7. (WOP) There is an ordinal o such that |X| = |«|.

A set X is called countable if | X| < |w|. Otherwise, X is called uncountable. It
is useful to see that countable union of countable sets is countable. An ordinal « is
called countable if « as a set is countable.

A cardinal number is an ordinal number A\ such that for every ordinal 5 < A,
|G] < |Al. By WOP, for each set X, there is a cardinal number A such that | X| = |A|.
In this case, we shall write |[X| = A and call A the cardinality of X. Cardinal numbers
will be denoted by A, i, v and k with or without suffixes.

If A and p are cardinal numbers, we define A - 4 = |\ x p| and M = |\*|, where
A on the right-hand side stands for the set of all functions from p to A.Let {)\; : i € I}
is a family of cardinal numbers. Suppose {X; : i € I} is a family of pairwise disjoint
sets such that for each i € I, |X;| = A;. Then we define > \; = | U; X;|.

Since every set of ordinal numbers is well-ordered, every set of cardinal numbers
is well-ordered. Therefore, for any set of cardinals {); : i € I}, sup; \; makes sense.
For any cardinal A\, A* denotes the least cardinal greater than \. We call AT the
successor of A. Such cardinals are also called successor cardinals. Other cardinals
are called limit cardinals. From the last theorem, we easily get

Theorem A.3.2 1. For every cardinal \, A < 2.
2. A uAps<dN)= A A=pu.
3. If A\ < pand p is infinite, then
p=A+p=Ap.
4. If \, u, v are cardinals, then
AN = MY & (A = N

Note that w is a cardinal number. Indeed, it is the least infinite cardinal number.
By transfinite induction, we define a class of cardinals {8, : & € ON} as follows:

Ry = w,
_Qt
Na«H - Naa

and for limit a,
R, =sup{Rsg: 8 < a}.
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These \’s are all the infinite cardinals. There are two very famous hypotheses on
these N’s.

Continuum Hypothesis. (CH) 2™ = R;.
Generalised Continuum Hypothesis. (GCH) Yoo € ON(2% = R, 1).

For an ordinal o, we define the cofinality of o, denoted by cf («) to be the least
ordinal (3 such that there is amap f : § — « with o = sup{f () : v < §}. Clearly,
cf (o) is a cardinal number. An infinite cardinal « is called a regular cardinal if
cf (k) = k. Otherwise, « is called a singular cardinal. Every successor cardinal  is
regular, so is 8. 8, is a singular cardinal.

It is known that |R| = 2% So, 2% is also referred to as the continuum and is
denoted by c.

A.4 Ultrafilters

Let I be a non-empty set. A filter on I is a family F of subsets of I satisfying the
following conditions:

(%) ¢ Fandl € F.
(x) A Be F=ANBeF.
(x) IfAe FandBD A,B € F.

It is clear that if F is a filter, it satisfies finite intersection property, i.e. for every
finite 7' C F,NF' # .

Remark A.4.1 Let BB be a family of subsets of / with finite intersection property.
Then
F={ACI:3B,,...B, € B(ﬂ,B/ CcC A)}

is a filter on /. Indeed, the filter 7 described above is the smallest filter containing B
which we shall refer to as the filter generated by 5.

Given a filter F on I, consider
P={F :F D> Fand F afilter onI}.

Since F € P, P # (. Pis a partially ordered set, partially ordered by the inclusion C.

If {#, : a € A} is a chain in P, U,F, is a filter on [ containing each F,. So, by
Zorn’s lemma, F is contained in a maximal filter. Maximal filters are also called
ultrafilters. Combining this with the above remark, we have

Proposition A.4.2 Every family BB of subsets of I with finite intersection property is
contained in an ultrafilter on I.
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Proposition A.4.3 Let F be a filter on 1. The following conditions are equivalent.

(a) F is an ultrafilter.

(b) If BC Iissuchthat BNA # () foreveryA € F, B € F.
(c) ForBy,...,B, CI,U,B, € F <3l <i=<n(B; eF).
(d) Whenever AUB € F, AorBisinF.

(e) ForeveryBC I, Be ForI\Be F.

Proof Assume (a). If B satisfies the hypothesis of (b), F U {B} satisfies the finite
intersection property. Hence, there is a filter 7/ > F U {B}. The maximality of F
implies B € F.

Now assume (b). Let By,...,B, C I andno B; € F,1 < i < n. By (b),
there exist A, ...A, € F such that B, N A; = ¢, 1 < i < n. This implies that
UISiSnBi) n (ﬂlsignAi) = (. Since ﬂlsiinA,- e F, it follows that UISiSnBi ¢ F.
Since the reverse implication is clear, (b) implies (c).

(d) is a special case of (c) and (e) is a special case of (d).

Now assume (e). Suppose there is a filter ' on I containing F properly. Take
B € F' that does not belong to F. By (e), I \ B € F. So, both B, I \ B € F’ which is
not possible because F is a filter. This contradiction shows that (e¢) implies (a). [

Corollary A.4.4 IfU is an ultrafilter on I, then N U contains at most one point.

Proof Suppose x # y in I belong to all sets in /. Then both {x} and {y} satisfy (b).
Hence, both these sets belong to /. This is a contradiction. O

An ultrafilter F is called free or non-principal if N\F = (J. Otherwise, it is called
a principal ultrafilter. Thus, U is a principal ultrafilter on / if and only if &/ = {A C
I : x € A} for some x € I. Clearly, a free ultrafilter does not contain a finite set. In
particular, every ultrafilter on a finite set / is principal. Conversely, if I is infinite,
the family of all cofinite (complement of finite) subset of / has finite intersection
property. Hence, there is a free ultrafilter on /. Also, note that a free ultrafilter on /
contains every cofinite subset of /.

A.5 Some Infinite Combinatorics

Ifu = w@),...,u(n — 1)) is a finite sequence and i < n, then we define
uli = w(0),...,u(@ — 1)) and call it an initial segment of u. By taking i = 0,
we see that the empty sequence e either equals u or is an initial segment of u. For
finite sequences u, v, we write u < v if either u = v or u is an initial segment of

v. For a finite sequence u, |u| will denote its length. If u = (u(0), ..., u(n — 1))
and v = (v(0),...,v(m — 1)) are finite sequences, then their concatenation
uv = 0),...,u(n — 1),v(0),...,v(m — 1)). For an infinite sequence o =

((0), a(l),..)and n € w, aln = (a(0), ..., a(n — 1)).
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A tree T is a non-empty set of finite sequences such that whenever u € T all the
initial segments of u are in 7. Thus, the empty sequence e belongs to every tree 7.
If T is a tree and u € T, then we define

T.={v:uveT}.

Notethat T =T, and T, = U{T}, : u < v A |v] = |u| + 1} U {u}. A tree T is called
finitely splitting if forallu e T, {v € T : u < v A |v| = |u| + 1} is finite. An infinite
sequence o = (a(0), a(l),...) such that for every n € w, a|n € T is called an
infinite branch of T.

Theorem A.5.1 (Ko6nig’s infinity Lemma) Every finitely splitting, infinite tree T has
an infinite branch.

Proof We define an infinite branch « of T by induction such that for every n € w,
T, 1s infinite. By our hypothesis, it is not very hard to see that such an « exists. [J

For any set X and any cardinal p, [X]* will denote the set of all subsets of X of
cardinality p. For amap f : [X]* — Y, asubset Z C X is called homogeneous if f
is constant on [Z]”. For cardinals x, A, i and 7, one writes

K — ()

if whenever |X| > &, every function of f : [X]* — A has a homogeneous set of
cardinality > 7.

Theorem A.5.2 (Ramsey Theorem) For every n > 1 and every infinite set X, every
function f from [X]" into a finite set Y has an infinite homogeneous set, i.e. for every
m,n > 1,

Ro — (Ro),-

Proof We prove this result by induction on n. It is obvious for n = 1. Let the result
be true for n, X be an infinite set and f a function from [X]"**! into a finite set Y.
Set Zy = X and take any zy € Z. Define fj : [Zy \ {z0}]" — Y by

Jo(A) =f({z} UA), A €[Z\ {z0}]".

By induction hypothesis, there exists an infinite homogeneous set Z; C Z \ {zo} for

Jo.
Now assume that Zy D Z; D ... D Z, each infinite, and for i < k, z; € Z; have
been defined. Take any z; € Z;. Define f; : [Z; \ {zx}]" — Y by

Je() =f(at UA), A €[Z\ {zl]"

By induction hypothesis there exists an infinite homogeneous set Z;; C Z; \ {zx}
for f;.
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Set Zoo = {z0, 21, . . .}. For each k, each subset A of Z, of cardinality n + 1 with
zt € Aand A\ {zx} C {z; : i > k} takes the same value. Since there are only finitely
many possibilities, the value will be the same for infinitely many &’s. The set of these
z;’s is infinite and homogeneous for f. (]

We now prove yet another important result in infinite combinatorics known as
Erdos—Rado theorem. For any infinite cardinal s and any ordinal «, we define Beth
cardinals 3,(k) by transfinite induction as follows:

So(k) = K,

(k) = supJp(k) if o limit,

f<a
Jasi (k) =270,

The following simple identities will be used in the proof of Erdos—Rado theorem
without mention.

Lemma A.5.3 Forevery?2 < u < J.41(K),
p =301 (k).
Proof We have
Toni (k) =230 < 3O <3 4 (00 = @FO)FE =34 (k).

The result is easily seen from here.

Theorem A.5.4 (Erdos—Rado Theorem) For every infinite cardinal x and every
n=>0,

w7 = WO
Proof We prove the result by induction on n. For n = 0 the result is trivially seen.

Suppose the result is true for n — 1. Set A\ = J,(x)* and take any f : [\]"T! — k.
For any o < A, define f, : [\ \ {a}]" — & by

JoA) =fAU{a}), Ae[A\{a}]"
Inductively we define

XoCX|C--CXaC--CA a<Iiw?t
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such that

. X = :n(’{);

. Xo = Ug_o X3, if a is limit;

. 1X.] = 3,(k), and

. forall Y C X, of cardinality < 3,_;(xk) andall 3 € A\ Y, thereisay € X, 41\ Y
such that f3|[Y]" = f,|[Y]".

We only need to define X,,1; from X, so that X, satisfies (3) and (4). Take any
Y C X, of cardinality at most 3, _|(x). By the last Lemma A.5.3, the number of
such Y is 3, (k). For each such Y, by the last Lemma A.5.3 again, there are at most
3, (k) many functions from [Y]" to . So,

B W N =

BT 0 Y CXo ALY < Ty (B) A B € A\ YH < Tu(k).

Hence, X,,+; with desired properties exists.
Now set
X = Ua<:l,,,1(n')+Xa-

IfY C X and |Y| < 3,_(k), then there is an o < 3,_(x)" such that Y C X,. So,
forevery 3 € A\ Y there is ay € X\Y such that f3|[Y]" = f,|[Y]".

Now choose any § € A\ X. Inductively we define y, € X, @ < 3,_1(k)*"
satisfying

Joll{ys : B < )" =f5ll{yp : B < o}]".

(yo € X is chosen arbitrarily.)

By induction hypothesis there isa Z C {y, : @ < J,_1(x)"} of cardinality > x*
which is homogeneous for f;.

Letoy < -+ < ay besuch thaty,, € Z,i < n.

f({yaoa cees ya”}) :fy,,,, ({yaov e yan,l}) :ﬁi({yaos s ya,l,l})-

It follows that Z is homogeneous for f. [
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B.1 Field Extensions and Galois Group

Let IF be a field. A field K is called a field extension of I if F a subfield of K. If K
is a field extension of FF, then K is canonically a vector space over F. We let [K : ]
denote the dimension of K as a vector space over F. We call K a finite extension of
Fif [K:F] < 8.

Anelement a € Kis called algebraic over I if there is a polynomial f (X) € F[X]
such thatf (a) = 0. Otherwise, a is called transcendental over F. If a € K is algebraic
over I, then there is a unique monic irreducible polynomial f(X) € F[X] such that
f(a) = 0.f is called the minimal polynomial of a. An extension field K of I is called
an algebraic extension of F if every a € K is algebraic over F. A field K is called
algebraically closed if every polynomial f(X) € K[X] has a root in K.

Let K be an extension of F and a € K. We set

Fla] = {f(a) € K: f(X) € F[X]}

and
F(a) = {f(@)/g9(@) € K: f(X), g(X) € F[X] & g(a) # 0}.

Proposition B.1.1 et F be a field and f(X) € F[X] an irreducible polynomial. Let
(f) denote the smallest ideal in F[X] containing f. Then

1. (f) is a maximal ideal and the quotient F[X]/(f) is a field and an algebraic
extension of F. Further, [F[X]/(f) : F] = degree(f).

2. f has a root in F[X]/(f).

3. Every finite extension of F is an algebraic extension of F.

4. If K is a finite extension of F and 1L a finite extension of K, then 1L is a finite
extension of IF.

5. Let K be an extension of F and a € K. Then a is algebraic over F if and only if
[F(a) : F] < Ry and equals the degree of the minimal polynomial of a over F.
Further, in this case F(a) = F[a].
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Theorem B.1.2 Every field F has an algebraically closed, algebraic extension K.
Further, if K is another such extension of I, then there is an isomorphism h : K —
K’ such that h|F is identity on F.

We call K the algebraic closure of F and denote it by F. By the above theorem,
algebraic closure of a field is unique in the above sense.

An element a € F is called separable over F if f'(X) # 0 where f(X) is the
minimal polynomial of a and f’(X) its formal termwise derivative. This is equivalent
to saying that f'(a) # 0. In this case, a is called a simple root of f. An algebraic
extension K of I is called a separable extension of I if every a € K is separable
over F. We set

F* = {a € F : a separable over F}.

F* is a field, called the separable closure of F. If K is a separable extension of F,
then there is an embedding /4 : K — F* such that 4| is identity on F.

Proposition B.1.3 Lera € .

1. Ifa € T is separable over F and f(X) € F[X] its minimal polynomial, then all
roots of f are separable over F.

2. If ais separable over I, then Fla] is a separable extension of F.

3. If Kis a separable extension of F and . a separable extension of K, then L is a
separable extension of F.

4. (F) =P

Proposition B.1.4 Foreveryd > 1, thereis a field F such that T is not algebraically
closed but every f(X) € F[X] of degree < d (and > 1) has a root in F

Proof Take any prime p > d and consider K = [F,,(Y), the field of rational functions
over I, in variable Y. We now show that F = K’, the separable closure of K, will
do our job.

K has an element a such that for no b € K, b’ = a. For instance, Y € K has this
property. Since K is of characteristic p, for every x, y € K, (x — y)? = x” — y”. This
implies that all the roots of X” — a € K[X] are equal. In particular, it has no root in
F = K. Thus, we have shown that F is not algebraically closed.

Let f(X) € F[X] with 1 < degree(f) < d. Suppose ¢ € F = K is a root of
f. Without any loss of generality assume that f(X) € F[X] is the monic minimal
polynomial of ¢. Since FF is of characteristic p > d, the formal derivative f” of f
satisfies 1 < degree(f’) < degree(f). If possible, let ¢ ¢ F = K*. Then f’(c) = 0.
This is a contradiction. So, f(X) has a root in F. O

Proposition B.1.5 If F is of characteristic 0 or if ¥ is of characteristic p > 0 and
for every x € F thereis ay € F such that x = y?, then F° = F. Otherwise, F* C T.

Proposition B.1.6 Let F be of characteristic p > 0 and a € F. Then there is a
koL . ™
natural number k such that a” is separable over F. So, given ay, ..., a, € F, there

k
is a natural number k such that each af , 1 <i <n, is separable over F.
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An algebraic extension K of I is called a normal extension of F if whenever an
irreducible polynomial f(X) € F[X] has a root in K, all its roots are in K. So, F and
[ are normal extensions of IF. Also, if K is a normal extension of [F, so is K N [F*.

Proposition B.1.7 LetK be afield extension of F. Then Kis a finite normal extension
of F if and only if K is the splitting field of some f(X) € F[X].

The Galois group G(K, F) ¢ K¥X. We equip K¥ with the product of discrete
topology on K and G(K, IF) with the subspace topology. If F C L C K, then
G (K, L) is a closed subset of G (K, IF).

In the rest of this section, we assume that K is a normal separable extension of F.

Proposition B.1.8 IfF C L C K. Then K is a normal separable extension of L.

Proof Suppose f(X) € L[X] is an irreducible polynomial which has a root, say a,
in K. Let g(X) € F[X] be the minimal polynomial of a over F. Then f(X) divides
g(X). So, all the roots of f are roots of g. Thus, all the roots of f are in K. (I

We have a map from the set of all fields L, F C L. C K, to the set of all closed
subgroups of G (K, IF), given by . - G (K, LL). The fundamental theorem of Galois
theory states that this correspondence is a bijection.

We now proceed to describe the inverse of this correspondence. Let H be a closed
subgroup of G(K, F). Set

FH)={xeK:Vo e H(c(x) = x)}.

Then

(a) F(H) is asubfield of K and F C F(H).
(b) HC G(K, F(H)).
(¢) fFcCcLcCK, thenL C F(G(K, L)).

F(H) is called the fixed field of H.
Theorem B.1.9 (The Fundamental Theorem of Galois Theory) Let K be a normal,

separable extension of .

1. IfH is a closed subgroup of G(K, ), then H = G(K, F(H)).
2. IfFCL CK thenL = F(G(K, L)).

B.2 Ring of Polynomials and Zariski Topology

A good but probably not well-known reference for commutative algebra is [16].
Let R be a commutative ring with identity. An ideal in R subring I of R such that
whenever a € I, b - a € I for all b € R. We assume that all ideals are proper. The



224 Appendix B: Algebra

ideal I is called a maximal ideal if it is not a proper subset of any ideal. It is called a
prime ideal if whenevera-b € I,aorbisinl.
Fix an ideal / in R. For x, y € R, define

x~y&sx—yel.

Then ~ is an equivalence relation on R. Let R/I be the set of all equivalence classes.
For x, y € R, define
G+D+@wW+D=x+y+1

and
x+D-y+DhHh=x-y+1.

This makes R/I into a commutative ring with identity. The following result is quite
easy to prove.

Proposition B.2.1 Let I be an ideal in R. Then

1. I is a maximal ideal if and only if R/I is a field.
2. Iis a prime ideal if and only if R/I is an integral domain.

For an ideal I in R, we set
VI={x€eR:x"elforsomen > 1}.

V1 is an ideal, called the radical of I. The ideal I is called a radical ideal if I = V.

R is called a noetherian ring if it has no strictly increasing infinite sequence of
ideals. This is clearly equivalent to saying that every ideal in R is finitely generated.
Since a field has no non-trivial proper ideal, every field is a Noetherian ring.

Proposition B.2.2 [fR is a Noetherian ring, so is the ring of polynomials R[X] over
R in one variable.

By induction, now we get

Theorem B.2.3 (Hilbert Basis Theorem) For every field K, the ring of polynomials
K[Xi, ..., X,] is Noetherian. Hence, each ideal in K[Xy, ..., X,] is finitely gener-
ated.

Theorem B.2.4 (Prime Decomposition Theorem) Let K be a field and I C K[X] a
radical ideal. Then there exist prime ideals Py, ..., Py such that [ = N*_ P;.

Let R be acommutative ring with identity and S a subring. We call an elementx € R
integral over S if there existay, . .., a, € S such that x” +ax" '+ ta,_x+a, =
0. The ring R is called an integral extension of S if every element in R is integral over
S.
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Proposition B.2.5 The set
{x € R : x integral over S}

is a ring.

It is clear that every algebraic extension I of a field K is an integral extension of
K. Thus, we have the following result.

Proposition B.2.6 Ifa field F is an algebraic extension of a field K, then F[ X1, ...,
X1 is an integral extension of K[X1, ..., X,].

Proposition B.2.7 ([16], Proposition 4.2.4.) Let R be a commutative ring with iden-
tity and S a subring of R. Assume that R is an integral extension of S. Then for every
prime ideal P in S, there is a prime ideal Q in R such that P = QN S.

Proposition B.2.8 Let F be a field, K a subfield and P C K[Xi,...,X,] a
prime ideal. Then there is a prime ideal Q C F[Xy,...,X,] such that P =
ONK[X,,...,X,]

Proof Let T C T be a maximal algebraically independent subset of F over K and
L C F the subfield generated by KUT. Since F is an algebraic extension of L, by the
last proposition, it is sufficient to show that there is a prime ideal O C L[X{, ..., X,]
such that P = Q N K[X4, ..., X,].

Let D C L be the subring generated by KU 7. Then D is an integral domain with
LL its quotient field.

Claim. The subring P[T] C D[X], ..., X,] generated by P U T is a prime ideal.

We can view D[X], ..., X,] as the polynomial ring K[X{, ..., X,,][T]. Hence, our
claim will be proved if we show that K[X|, ..., X,,]J[T]/P[T] is an integral domain.
Since T is algebraically independent over K,

K[Xi, ..., X,]
KXy, ..., X,1T1/PIT] = #[T].
Since P is a prime ideal, w is an integral domain Hence, KIX,.... ] [T]is an
integral domain.
Since T is transcendental over K, P[T]NK[X], ..., X,] = P. Consider the local-

ization u
0= {; eL[Xy,....X,]:ae€ P[T] A s e D\ {0}}.

By ([1], Proposition 2.3.14), Q is a prime ideal in L[X1, ..., X, ] with QN D[Xy, ...,
X,| = P[T]. It follows that Q N K[X}, ..., X,] = P. ([l
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Let K be a field. For S ¢ K[X], define
V) ={xeK":fX) =0Vf € S}.

If 1(S) is the ideal generated by S, then by Hilbert basis theorem, there exist finitely
many gp, ..., gr €S that generate /(S). In particular,

V(S) = VU(S)) = NE_, {x € K[X] : g:;(x) = 0}.
It is now easy to see that
T =) cK":ScKX]

is closed under finite unions and arbitrary intersections. Further, it contains ¢ and K”.
Hence, 7 is the family of all closed sets of a topology on K”. We call this topology
the Zariski topology on K" and sets of the form V(S) Zariski closed. Following
Chevalley, a subset C C K" is called constructible if it belongs to the Boolean
algebra generated by Zariski closed sets in K".

For X C K", set

I(X) = {f e K[X]:f(x) =0Vx € X}.

Then Z(X) is a radical ideal in K[X] and if X ¢ ¥ c K", Z(Y) C Z(X). We also
have

1. X C V(Z(X)) forall X c K".

2. S CZWV(S)) forall S ¢ K[X].

3. For S ¢ T c K[X], V(T) C V(S).

4. V(S) = VIZV(S))) forall S ¢ K[X].
5. For an ideal I c K[X], V() = V(V/T).

Let K be any field. We equip K" with Zariski topology. So, sets of the form
D(f) ={x e K" : f(x) # 0},
f € K[X], form a subbase for the topology. For Z C K", Z will denote the closure
of Z in Zariski topology on K". A closed set C C K" is called irreducible if there do

not exist non-empty, closed Cy, C; C C such that C = C; U G;.
Let o € Aut(K). We define o : K" — K" by

o(ay,...,a,) = (c(ay), ...,o0(a,)), (ai,...,a,) € K"

Lemma B.2.9 Forany A C K" and any o, o(A) = o(A).



Appendix B: Algebra

Proof 1t is enough to show that o(A) C o(A): Then

o (o) c o~ (0(A)) = A.

Hence, B L
o(A) D a(A).

To complete the proof, take any X = (x1, ..., x,) € o(A) and ﬂ’.‘le(fj),fl, ..

J
K[Xi, ..., X,], a basic open set containing X. Suppose

FXrL LX) =D aX) X

We have o '
Dlap L xh#£0, 1<j<k.

We are required to show that there exists a = (ay, ..., a,) € 0(A)

such that o ‘
Za’,alf co.ar #0

227

(B.1)

foreach 1 <j < k. Take ¥ = (yi, ..., y,) € A such that X = o (7). By (1), we have

>oTNapy) .y £0. 1<) <k
Hence, there exists 7 = (zq, ..., z,) € A such that

>oTNdpd .. #£0. 1<j <k
Now take a; = o(z;), | <i <n.Then (ai,...,a,) € 0(A) and

> @) ...di #£0, 1 <j<k.

|
Lemma B.2.10 Every non-empty closed set C has unique representation
C=CU---UCGCy,
where C\, ..., Cy, are irreducible closed sets such that for every 1 <j <m, C; ¢

U,»#C,-.

Proof Let C be a Zariski closed set such that C = Cj is not a finite union of
irreducible closed sets. Then Cy = C; U Dy, where C; and D, are Zariski closed sets
and Cy, Dy # Cy. One of these must not be a finite union of irreducible closed sets.
Let C; be one such. Then C; = C, U D,, where C, and D, are Zariski closed sets
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and C,, D, # C; with C, not a finite union of irreducible closed sets. Proceeding
similarly, we get an infinite descending sequence Cy D C; D C; D ... of Zariski
closed sets. This contradicts that K[X|, ..., X,] is Noetherian.

Thus, C = U]_, C;, where each C; is irreducible closed. We can get a subcollection
of these so that the union is irredundant. Now let C = U, C; = UL, F; be two
representations of C as irredundant unions of irreducible closed sets. Consider J =
{j <n:C NF; #0¥}. As C, is irreducible, there must be j € J such that F; D C;.
Doing the same argument with Fj, we get a C; D Fj. Because of the irredundancy,
i = 1. Hence, C; = Fj. By reordering F;s, we assume that C; = F;. Proceeding
thus, we easily see that m = nand {Cy, ..., C,} ={F|, ..., Fu}. O

We call Cy, ..., Cy, the irreducible components of C an the representation C =
C; U...U (G, satisfying above conditions to be redundant.

Lemma B.2.11 Let
Z=UL (C;NU)),

where Cy, ..., Cyareirreducible closed sets, Uy, . . ., U,, Zariski open and C;NU; #*
@, 1 <i < m, be a constructible set. Then Z is dense in each irreducible component
of Z.

Proof SetF; = C;NUf,1 < i < m.Either C;NU; = C; or F; is a proper non-empty
closed subset of C;. Then

C=CNU)UF, CcC;,NU;UF; C C;.

As C; is irreducible, it follows that C; = C; N U;. Thus, Z= UL Ci. Also, for each
1 <i<m,

Thus, Z is dense in each irreducible component of Z.

Lemma B.2.12 Let Z, and Z, be constructible sets with the same closure, say Z.
Then Zl ﬂZz ={.

Proof Write
Z) = VUL (CNUy,

and
Z =U_(D;N V),

where Cy, ..., C,,, Dy, ..., Dy are irreducible closed, Uy, ..., U,,
Vi,..., Vi Zariskiopen, C;NU; #¥ #D;NV;, 1 <i <m,1 <j < k Then,

Z = U,'C,‘ = Uij.
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Since Cy, ..., Cy, and Dy, ..., Dy are irreducible, it follows that there exist i, j such
that C; = D;. If C; = CiNU; or D; = D; NV, then Z; N Z, # (. Assume that
Ci # CiNU;and D; # D;NV;. So, C; N Uf and C; N Vjc are proper, non-empty
closed subsets of C;. Since C; is irreducible, this implies that

G\ (GNUH UGNV =(CNU)ND; NV # 0.

Hence, Z, N Z, # @. [l

Finally, we need a result of André Weil from Algebraic Geometry. (See [32, 68].)

We see that K" = K[X, ..., X,] is a vector space over K with the set of all
monomials M,(X) = X{'...X% a basis. Let I be an ideal in K"\. By Hilbert
basis theorem it is finitely generated. Now let k be a subfield of K. We say that
I is algebraically definable over k if it has a basis consisting of polynomials with
coefficients in k.

Note that I is a vector subspace of K. So, we have a quotient space K" /I. Let
Mg (X)} be a maximal set of monomials which are independent modulo /. So, each
monomial M, (X) has a unique representation

M,(X) =" a,sMs(X) (modulo I).
8

We need_ one more notation. If_ oc: K —= Kisan agtomorphism, and f (}_() =
>, acM,X) € K", then f7(X) = Y o(a,)My(X). Further, I7 = {f7 :
fell.

Theorem B.2.13 (André Weil) There exists a subfield ky of K such that

1. 1 is algebraically definable over ko, and
2. If I is algebraically definable over a subfield k of K, then ky C k.

Further, for every automorphism o of K, I° = I if and only if o fixes ko pointwise.

Proof As above, let B = {M3(X)} be a basis of KI"l modulo 7 and let {M,(X)} be
the set of remaining monomials. Let

M,(X) = Z a,;M3(X) (modulo I).
3

Take any f € I. Then f has a unique representation
=2 a,M,X)+ > bsMsX)
Y B
= Zaw (MN,(X) - Z avﬂMH(X)) + Z CﬁMH(X)
il B 8

Because f and M., (X) — > ; a,sMy(X) are in I and {M3(X)} linearly independent
modulo 7, each ¢y = 0. Now it is easily seen that I has a basis consisting of finitely
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many polynomials of the form Mv()_( ) —> 3 aWM/g()_( ). We fix a finite basis D of 1

consisting of polynomials of the form M, X)— > s aysMgs (X). Let ky be the subfield
of K generated by the set of all a,g appearing in this finite basis of /. Thus, I is
algebraically definable over k.

Now let k be a subfield of K and [ have a basis fi, ..., f. € k[X].

Let My(X) be one of the M, (X) not appearing in B. Then

m

My(X) — za()ﬂMﬂ()_() = Z gifi,
153 i=1

where g; = 2, YiaMo (X). Introduce an indeterminate Y;, whenever Yia 7 0 and set

Gi = Z quMa(Y)
Denote Y = (Y;,). We then have
m
D G =D LONMX) + D (M),
i=1 ol B

where [, (Y) and /5(Y) are linear forms with coefficients in k.
The system of linear equations /o (Y) = I and [,(Y) = 0 for all v # O over k has
a solution in K. Hence, it has a solution, ¥’ = (y;,) in k. Let

gi= > YuMaX).
«

Let "
> gifi = Mo(X) — > 25Mp(X).
i=1 8

Since {M3(X)} is a basis of KI" modulo 1, ags = z5 € k. Since My(X) among M., (X)
not appearing in B was arbitrary, each a3 € k. Thus, kg C k.

Now let o be an automorphism of K. Suppose o fixes ky pointwise. Then o fixes
a basis of I pointwise. But then /7 = [. Conversely, let /7 = I. Then for each ~ such
that M, (X) — > ; a,3M3(X) appears in D,

M,(X) = ola)MpX) e I” =1.
3

By uniqueness of the representation, it follows that o'(a,3) = a,g for all 7, 3. Thus,
o fixes ko pointwise. (]
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In terms of Zariski closed sets, this result recasts as follows.

Theorem B.2.14 Let K = ACF and Z C K" Zariski closed. Let I be a radical
ideal such that Z = V(I) and kg the smallest subfield such that I is algebraically
defined over ky. Then for any automorphism o of K, 0(Z) = Z if and only if o fixes
ko pointwise.

Proof Note that

o(2)
=Ny am,@erto® e K" : > a My (X) = 0}

«

= mza anM,Y(Y)eI{O-(Y) eK':0o (Z auMa(f)) = ZO’((I(Y)MQ(O'(.Y)) = O}
— V(%)

By Hilbert Nullstellensatz, I = Z(Z) and I° = Z(o(Z)). Hence, I° = I if and
only if 0(Z) = Z. The result now follows from the last theorem. (Il

B.3 Real Closed Fields

We refer the reader to [6, 61] for detailed accounts of real closed fields and for real
algebraic geometry.
We call an ordered field [F real closed if

1. Vxy(x = y* Vx+y? =0), i.e. forevery x € F, either x or —x has a square root
and
2. every polynomial in one variable over [F of odd degree has a root in FF.

Example B.3.1 Besides R, the field of real algebraic numbers, denoted by R, is a
real closed field.

Note that in a real closed field IF, if x € I is a square, it must be > 0, and if x > 0
there is a unique y > 0 such that x = y>. We then write \/x for y. Also note that

O<x<y=Vx=</y.

Remark B.3.2 If IF is a real closed field, it has a unique ordering, because its non-
negative elements are given by

Ft={xeF:3yecKy#0Ax=1y)).

This also shows that the ordering of [F is definable in the language of rings. However,
it may not be definable by an open formula. If F = R and < is defined by an open
formula, R* should be either finite or cofinite, which it is not. Also note that every
definable subset of F is definable in the language of rings.
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Let IF be a real closed field. We can canonically topologies . Indeed, we have a
[F-valued metric on F”.
Forx = (x1, ..., x,) € F, we define its norm by

X = /27 + -+ 22

For x, y € IF, we define their inner product by
&) =D ().
i=1

Now we follow the classical proof of Cauchy—Schwarz inequality to get

Theorem B.3.3 (Cauchy—Schwarz Inequality) If I is a real closed field and X,y €
F, then

[, 9| < Ix1 - [9l.
Proof Take any A € I and set
=x—Ay, 1 <i<n

Then

anziz = [g]*- N\ —(ZZxryi)-)\Jerf > 0.
i=1 - -

— —\\ 2 — —\\ 2
(- 52) -((57) -)=0

for all A € F. By taking A = %I@, we get the Cauchy—Schwarz inequality as

above. |

Hence,

For x,y € IF, define
p(xX, ) =X =7l

For X, y,7z € T, it is easy to check the following:

L p(x,y) > 0.

2. pE ) =0x=7.

3. p(x,y) = p(y, X).

4. p(x,2) < p(x,y) + p(¥,2).

The last fact follows from

(5) (Triangle inequality) |x + y| < |x| + |y,



Appendix B: Algebra 233

which can be proved by Cauchy—Schwarz inequality as usual. By using p like a
metric, we have usual topology on F”. In fact, we can regard " as an inner product
space. Thus, there is a geometry based on real closed fields, which is called real
algebraic geometry. This is a rich branch of mathematics and model theory plays a
significant role in real algebraic geometry.

We call a field real if —1 is not a sum of squares. Note that every ordered field
is real. Further, a field IF is real if and only if for all a € T, Zi ai2 = (0 implies each
a; = 0.

Proposition B.3.4 Let F be a real field. Then the field of rational functions
F(Xy,...,X,) is real.

Proof Our result will be proved if we show that for polynomials f; (X), . .., fi (X)
overF, >, fi2 = 0 implies each f; = 0. We prove this by induction on 7. In the case
n=1,letfi(X) = zi a; X’ with Zifiz = 0. Since F is real, note that the leading
coefficients of those f; whose degree is the highest among those of f1, . . ., f; are zero.
So, each f; must be 0. For inductive step, note that

FIXi,.... X, =F[X,, ..., Xu111X0]

O

Lemma B.3.5 Let I be a real field and a # 0 in F. Then F[\/a] is real if and only
if —a is not a sum of squares in F.

Proof If F[/a] is real and —a is a sum of squares, then @ + >, b? = 0. This implies
that @ = 0. This proves the only if part. Now assume that F[\/a] is not real. Then we
get X,y € Fsuch that 7 # 0 and >, (x; + yi/a)> = 0. This, in particular, implies
that >, x> +a > ;y? = 0. Hence

g = OIERION )
iy
contradicting that —a is not a sum of squares. O
Now, by Zorn’s lemma, we get the following result:

Theorem B.3.6 Every real field K has a real algebraic extension F such that in F
for every a € T, either a is a square or —a is a sum of squares.

Proof Set
P = {F : [F real algebraic extension of K}.

Then K € IP showing that IP is non-empty. We partially order IP by inclusion C. Note
that if {F,} is a chain in P, U, F, is an upper bound of the chain in IP. So, by Zorn’s
lemma, P has a maximal element, say IF. This works. O
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Now assume that I is a real field such that for every a € I either a is a square or
—a is a sum of squares. Since [F is real, this implies that for every a # 0, exactly one
of a and —a is a sum of squares. We define

x<y<:>EIZe]F(Z;éO/\yzx—i—zzf),x,yeF.

1

Then < is a linear order on F making it into an ordered field.

If K is a real field with no proper real algebraic extension, then the above ordering
will be called the canonical order of K. The above result, in particular, gives us the
following result of Artin and Schreier.

Theorem B.3.7 Let F be a real field and a € F not a sum of squares. Then there is
an order < on F making F into an ordered field and a < 0.

Corollary B.3.8 A field is orderable if and only if it is real.
The following result is also due to Artin and Schreier.

Theorem B.3.9 (Weierstrass Nullstellensatz) Let K be a real field with no proper
real algebraic extension, < its canonical order; f[X] € K[X]and a < b € K be such
that f(a) - f(b) < 0. Then there isac € Kwitha < c¢ < bandf(c) =0.

Proof First we observe that it is sufficient to show that f has a root in K. Let
co, ..., Cy_1 be all the roots of f less than a. Then

fx) =& —co)...(x —cp—1) - g(),

where g is a polynomial having no root less than a. Note that g(a) - g(b) < 0. We now
work similarly with the roots dy, . . ., d,,—1 of f greater than b. They are precisely the
roots of g greater than b. We write

gx) = (x—do)...(x —dp_1) - h(x),

with & having no roots either less than a or greater than b. Still we have i(a)-h(b) < O.
Any root of A is a root of f between a and b.

Suppose there is a polynomial f € K[X] and a < b such that f(a) - f(b) < O but
f has no root in K. We choose one such f of least degree. It is easily seen that f is
irreducible. Then F = K[X]/(f (X)) is a proper algebraic extension of K, and so not
real. Set o = [X] € F. We then get non-zero polynomials g;(X) € K[X], 1 <i <k,
such that >, g?(e) = 0. Hence, >, g?(X) = f(X) - h(X) for some h. We choose
such an & of the least degree. Note that we can arrange things so that the degree of
each g; is less than the degree of f. This implies that the degree of # is less than the
degree of f. Since f(a) - h(a), f(b) - h(b) > 0, and f(a) - f(b) < O, either h(a) = 0
or h(b) = 0 or h changes sign between a and b. Since f was one such polynomial
of least degree with no root, / has a root r in K. Since K is real, r is a root of each
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gi. Hence, there exist polynomials /;(X) € K[X] such that ¢;(X) = (X — r) - h;(X),
1 < i < k. Since f has no root in K, this implies that (X — r)? divides h(X). Let
h(X) = (X — r)? - fi(X). Now, we get >, hl.z(X) = f(X) - f1(X) contradicting that &
has the least possible degree satisfying such an identity. (]

Artin and Schreier proved the following crucial result.

Theorem B.3.10 Let K be a real field. Then the following statements are equivalent.

(a) K has no proper real algebraic extension.
(b) Kis real closed.
(¢c) The ring K[i] = K[X1/(X? + 1) is algebraically closed.

dummy

Proof Suppose K has no proper real algebraic extension. Let < denote the canonical
order of K and @ > 0 be in K. Consider the polynomial

fX)=X>—a

in K[X]. Then f(0) < 0 and (1 + a) > 0. By Weierstrass Nullstellensatz (Theorem
B.3.9), there is a ¢ € K such that f(c) = 0. Thus every positive element of K has a
square root in K.

Now take a monic polynomial f(X) € K[X] of odd degree. Then, arguing as in
the case of R, we can find a < b such that f(a) < 0 < f(b). Hence, f has a root in
K by Weierstrass nullstellensatz. Thus, (a) implies (b).

We now show that (b) implies (c). We first note that it is sufficient to prove that
every f € K[X] has a root in K[{]. To see this, take any g € K[/][X]. Let g denote
the polynomial obtained from g by replacing all its coefficients by their conjugates.
Then g - g € K[X]. Hence, by our assumption, it has a root, say «, in K[i]. So, a is
aroot of either g or g. If « is not a root of g, the conjugate & of « is a root of g.

Fix f € K[X]. Let d = 2"(2n + 1) be the degree of f. By induction on m, we
show that f has aroot in K[i]. If m = 0, the degree of f is odd. So, by (b), it has a root
in K < K[i]. Now assume that the assertion is true form — 1. Let rq, ..., ry be all
the roots of f in an algebraic closure K of K. For any k € Z, consider the polynomial

gk(X) = nl§p<q§d(X —Fp =t — ki"p . }’q) € K[X]

This is invariant under all transpositions of ry,...,r; and so is symmetric in
1, ..., rq. Since all the elementary symmetric polynomials in ry, ..., ry are coef-
ficients of f, they belong to K. It is well known that every symmetric polynomial
inry, ..., ry are functions of elementary symmetric polynomials. Hence, each gy is
a polynomial over K. The degree of g; equals ‘@ = 2"y, n’ odd. By induc-
tion hypothesis, each g; has a root in K[i]. By pigeonhole principle, there exist

1 <p < q<dandk # [ such that

Ty 41y +kry -1y, 1y + 1y +1r, -1, € K[
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For such p, g, r, + r, and r,, - r, are in K[i]. It follows that r,, r, € K[i]. We have
shown that (b) implies (c).

To show that (c) implies (a), first note that by (c) K[i] is the only non-trivial
algebraic extension of K. Further, K[{] is clearly not real. Hence, K has no proper
real algebraic extension. (]

Corollary B.3.11 Let IF, K be real closed fields with F a subfield of K. Then every
root in K of a polynomial f (X) over I lies in FF.

Proof Let x € K be a root of a polynomial f(X) € F[X]. Note that the subfield
generated by F and x is a real algebraic extension of F. But F has no proper real
algebraic extension. Hence, x € F. O

Remark B.3.12 Let IF be a real closed field and a@ # 0 be in [F. Then, a is a square if
and only if —a is not a sum of squares.

A real algebraic extension of K with no proper real algebraic extension will be
called a real closure of K.

Remark B.3.13 Consider the real field F = Q(X) of rational functions over Q.
Clearly, F[+/X] and F[«/—X] are real fields. Their real closures are not isomorphic
over F.

However, there is a unique result for ordered fields.

Proposition B.3.14 Ler (K, 0, 1, +, -, <) be an ordered field, 0 < x € K which is
not a square in K, then there is an order on the extension field K[/x] extending the
order < on K.

Proof For a + b./x, ¢ + d/x in K[\/x], define
a+byx < c+dyx

if any one of the following conditions is satisfied.

(1) b=danda < c.

i 1 _~2
(ii) b < d and either a < c or EZ_;}
(a—c)*
b—d)?"

< X.

(iii) b >dand ¢ > aand x <

It is entirely routine to check that this works. O

Theorem B.3.15 Let (K, <) be an ordered field. Then there is a real closure of K
whose canonical order is compatible with <. If K, K, are real closed algebraic
extensions of K, then there is a unique order-preserving isomorphism o : K| — K,

fixing K.
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Proof Consider
P = {(F, <) : F an ordered algebraic extension of K A <" |K =<},

partially ordered by the inclusion C. By Zorn’s lemma it has a maximal element, say
(K’, <’). Hence, every positive element of K’ has a square root in K'. Note that K’
does not have a proper real algebraic extension because then its canonical ordering
would extend < since every positive element of K has a square root in K'. Clearly,
K’ satisfies the desired properties. We omit the proof of the uniqueness. (]

If K is an ordered field, a real closed algebraic extension of K preserving < is
called the real closure of K. Note that R, is the real closure of Q.



Appendix C
Valued Fields

We are nearly self-contained in this chapter. However, the interested reader is referred
to [2—4] for further study.

C.1 Basic Definitions and Examples

Let F be a field and (I", 4+, <) an ordered abelian group. A valuation on F is a
surjective map v : F — I' U {oo} satisfying the following three conditions:

1) v(x) = oc0iff x = 0.
(i) v(x-y) =vx) + vY).
(iii) v(x 4+ y) > min{v(x), v(y)}.

In particular, a valuation v on [F is an epimorphism from > to I". The valuation v
identically equal to O on F is called the trivial valuation on F. The group I' is called
the valuation group.

Example C.1.1 Let F = Q be the field of all rational numbers and p > 1 a prime.
Letr = pi% # 0,p Ja, b. Define v,(r) = i. It is easily checked that this defines a
valuation on Q. v, is called the p-adic valuation on Q.

Example C.1.2 Let K be a field and F = K(X), the field of rational functions over
K. For f:; # 0, define veo (%) = deg(g) — deg(f). It is easy to check that this defines
a valuation on IF. vy, is called the degree valuation on K(X).

Example C.1.3 LetF be as in Example 1.2 and p € K[X] an irreducible polynomial.

For r = p”; # 0 with p Af, g, we define v,(r) = i. It is easy to check that v, is a
valuation on F. It is called the p-adic valuation on K(X).

Example C.1.4 Let T be a field and F((X)) denote the field of formal Laurent series
over . So, an element f in F((X)) has a formal representation

© Springer Nature Singapore Pte Ltd. 2017 239
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[e¢]
fX) =" ax',
i=m

where m € Z and a,, # 0. In this case we define v(f) = m. It is easy to check that v
is a valuation on F((X)).

For any valuation v, we have

1. v(1) =v( - 1) = v(1) + v(1). This implies that v(1) =0

2. 0=v() =v(—1-—1) =2v(—1). Since I is ordered, it is torsion-free. Hence,
v(—1) = 0. Also, v(—x) = v(—1) + v(x) = v(x)

3. Letx e F*. Then 0 = v(1) = v(x - x 1) = v(x) + v(x™"). So, v(x~ 1) = —v(x).

Given a valuation v : F — T" U {00}, define
V={xeF:vx) >0}

Then V is a subring of F with identity such that for every x € F*, at least one of x
or x~! belongs to V. Such a subring is called a valuation subring of F.

A valued field consists of a field [F and a valuation subring V of F.

A valuation v on F is called compatible with V if V. = {x € F : v(x) > 0}. Let
(F, V) be a valued field and v a compatible valuation. Consider

M={xeV: :vkx) >0}

Then M is anidealin V. If v(x) = 0, v(x~!) = —v(x) = 0. Thus, V \ M = V*, the
set of all units of V. Hence, M is the unique maximal ideal of V. Note that an x € F*
isnotin V iff x~! € M. Clearly, V* is a subgroup of F*. Further, F~ = V/M is a
field, called the residue field of (IF, V).

For a € V, [a] will denote its class in F~ = V/M and for f € V[X],f~ € F~[X]
is obtained by replacing each coefficient a of f by [a].

Note that char(F) = p > 0, then char(F~) = p. Hence, if char(F~) = 0, then
char(IF) = 0. However, char(IF™) need not be 0 even if char(IF) = 0. This is shown
in the next example.

Example C.1.5 Let p > 1 be a prime number and v, the p-adic valuation on Q as
defined in Example C.1.1. Then the corresponding valuation subring equals

sz{g:(a,b)zl&p/{b}.

Thus V, = Z,), the localization of Z by the prime ideal (p). The maximal ideal of V,
equals pZ,). It follows that the residue field is of characteristic p. Further, the residue
field in this case equals F,. To see this, consider the quotient map g : Z — Z/pZ =
F,. Clearly, for every b ¢ pZ, q(b) is non-zero in F,. So, we define & : Z,) — F,
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by h(a/b) = q(a).q(b)~", where (a, b) = 1 and p /b. Its kernel is clearly pZ(p) and
range I,. Thus, the residue field in this case is IF,.

Example C.1.6 Next consider the p-adic valuation on K(X), p € K[X] irreducible.
Its valuation subring equals

[g eRKX): f.9=1&p /fg] = K[X]),

the localization of K[X] by the prime ideal (p). Its maximal ideal is pK[X],. Let
q : K[X] — KI[X]/(p) be the quotient map. For g ¢ (p), g(g) # 0. So, we have
an epimorphism / : K[X],) — K[X]/(p) defined by h(f/g) = q(f)q(g)~" whose
kernel is pK[X],). Thus, the residue field in this case if K[X]/(p).

Example C.1.7 Consider the degree valuation v, on the field of rational functions
K(X) over a field K. Its valuation subring

Voo = [g € K(X) : degree(g) = degree(f )]

whose units are precisely those % € K(X) for which degree(g) = degree(f). An

element in the valuation subring has the representation %Lf” Z;( with b,, # 0. We
i=0 "t
define h : Vo, — Kby

Dimo @iX i
h m i
Zi:O biX'

This is an epimorphism with kernel the maximal ideal of V.. It follows that the
residue field in this case is K.

) = ap/bpy.

Example C.1.8 Consider the field F((X)) of formal Laurent series over a field I and

the valuation defined by
oo
v (Z a;X ’) =m,

where a,, # 0. Then the corresponding valuation subring is the ring of all formal
power series F[[X]] and the maximal ideal M consists of all power series of the form
> 2, a;X". The residue field in this case is easily seen to be isomorphic to F.

Lemma C.1.9 Ifxi,...,x, € Fandforalli #j, v(x;) # v(x)). Then v(>_, x;) =
mini U(.X,').

Proof Suppose k is such that v(x;) = min; v(x;). Then for i # k, xixk_l € M. Now
suppose v(>"; x;) > v(x). Then x,;l > Xi € M.Thus, 1 € M, contradicting that M
is a proper ideal of V. O
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Proposition C.1.10 Letv : F — I'U{oo} be a valuationwithV = {x € F : v(x) >
0}. Then T is isomorphic to F* |V *.

Proof Consider the epimorphism v : F* — TI'. Then its kernel is V*. This implies
the result. ]

Remark C.1.11 We canpull back the orderonI" to F* / V* to make this isomorphism
preserve the order too. In other words, if we define

Kl<lylew'ev

we see that the ordered group I' is isomorphic to the ordered group F*/V*. This
idea gives us the next theorem.

Theorem C.1.12 Let V be a valuation subring of a field F. Then there exists an
ordered abelian group (I', +, <) and a valuation v : F — T" U {oo} such that
V={xeF:vkx) >0}

Proof Let V> be the set of all units of V. This is a subgroup of the (abelian) group F*.
We take I' = F*/ V *. We shall denote the group operation of I by +. Letv : F* —
I' = F*/ V> be the quotient map. Set v(0) = oo. Since v is a homomorphism, we
have

v(x-y) =v(x) +v(y).

Define < on I" by
Kl<lyleyx'eV.

This is well-defined: Let x - (x')~' € VX and 5/ - y~! € V*. Then
-1 _ n—1 ’ n—1 ’ —1
yx =) )@ &))@ X,

So,y - (x)~! € V will imply that 5y - x~! € V. Clearly, < is a linear order on I".
For x, 7,z € F*, note that (y - z) - (x - z)~! =y - x~!. Therefore,

[x] < ] = [x] + [z] < [y] + [z].

Next, if possible, let there exist x, y € > such that v(x 4+ y) < min{v(x), v(y)}, i.e.
[x +y] < [x] and [x + y] < [y]. Then,

=14+ yg Vv

and
y oy =14y xegV.
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Since 1 € V, then neither of x - 4!, - x~! is in V. This contradicts that V is a
valuation ring. So, we have

v(x +7) = min{v(x), v(y)}.

Note that [1] = 0. So,
O0<[x]xeV.

This implies that
V={xelF:vkx) >0}

We call valuations v; : F* — I';,i = 1, 2, on a field F isomorphic if
xeF:vikx) >0} ={xelF: vk >0}

i.e. they induce the same valuation subrings. From the above arguments, it follows
that.

Proposition C.1.13 Tiwo valuations v; : F* — T';, i = 1,2, on a field F are
isomorphic if and only if there is an order-preserving isomorphism p : I'y — I'p
such that v = p o vy.

Now we determine the set of all valuations modulo isomorphism on the field Q
of all rational numbers and the field of all rational functions IF(X) over a field IF.

Proposition C.1.14 Let v be a non-trivial valuation on Q. Then there is a prime
p > 1 such that v is isomorphic to the p-adic valuation v, on Q.

Proof Let V be the valuation subring and M the unique maximal ideal of V. Clearly,
V contains Z. Since v is non-trivial, V. # Q and M # 0. Now note that M must
contain a non-zero integer. If not, then v(a) = 0 for every non-zero integer a implying
that v is trivial. Since M is a prime ideal of V, by the prime decomposition, there
isaprime p > 1in M. If ¢ # p is another prime, we have ap + bg = 1 for some
a, b € Z. Since M is proper, it follows that g ¢ M. So, v(g) = 0if g # p is a positive
prime. Hence, if r = p’4 such that p /a, b, v(r) = v(p) = iv(p) with v(p) > 0.
Now it is easy to see that v is isomorphic to v),. ]

Proposition C.1.15 Let F be a field and v a non-trivial valuation on F(X) such
that v is trivial on F. If v(X) > 0, then v is isomorphic to v, for some irreducible
polynomial p € F[X]. Otherwise, v is isomorphic to the degree valuation vu,.

Proof Let V be the valuation subring corresponding to v and M its unique maximal
ideal.
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Suppose v(X) > 0. Then v(f) > 0 for all polynomials f € F[X], implying that
F[X] C V. Since v is non-trivial, M contains a monic irreducible polynomial p.
Arguing as in the proof of the last proposition, we see that p is the only irreducible
monic polynomial in M. As in the last proposition, we see that v is isomorphic to v,,.

If v(X) < 0, v(X~") > 0. So, v(X") < v(X") whenever m > n. Now consider
> o aX ™" with a, # 0. By Lemma C.1.9 it follows that

v (Z aiXi") = v(a,) = 0.

i=0

This implies that v(Z:’ZO a;X") = v(X") provided a, # 0. Hence,

> aiX »
Wl S | = v X)) —v(X™) = (m —nmu(XT),
(Z/:O b]XJ
with v(X~") > 0 where a,, b,, # 0. Now, it easily seen that v is isomorphic
0 Voo- O

In standard algebra, one has to start with an integral domain D and consider the
quotient field of D. Similar situation arises for valued fields also. What should be
an additional structure on an integral domain D so that its quotient field becomes a
valued field with the valuation suitably connected with the additional structure on
D? We take up this problem now.

Let (F, V) be a valued field and v be a compatible valuation V. For a, b € F,
define

alb < 3c € V(ac = D).

Note that for a # 0, a|b if and only if ba~! € V. We have the following:

(@ 110 & 0 f1.

(b) Vx(x|x).

©) Vx,y, z((xly & ylz) = xz).

(d) Vx, y(xly v ylx).

(e) Vx, yVz # 0(x|ly < xz|yz).

) Vx,y, z(zlx & z|ly) = zlx + ).
(&) Vx, y(x fy < v(y) < vx)).

Most of these are trivial to prove. To see (d), note that x [y implies that yx~! ¢ V.
So, xy~! =z € V. Thus, yz = x implying that y|x.

To see (g), note that x [y implies that y|x. So, there exists z € V such thatx = yz.
Hence v(x) = v(y) + v(z) and v(z) > 0. If v(z) = 0,z € V*. But then y = xz~!
and z~! € V. Hence, x|y, a contradiction. To prove the converse, without any loss of
generality, we assume that x # 0. Now v(y) < v(x) implies that v(xy~') > 0. So,
z=xy~! € M. In particular, z is not a unitin V and zyy = x. So, x Jy.
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Also note the following:
Vx(l|x & x € V), (*)

and
Vx|l & x~ e V).

Any binary relation x|y satisfying (a)—(f), is called a valuation divisibility relation
on F. If | is a valuation divisibility relation on F and V = {x € F : 1|x}, then V is
a valuation ring of F. Thus there is a one-to-one correspondence between valuation
divisibility relations on F and valuation subrings of FF.

Our main interest in valuation divisibility relations stems from the following useful
result.

Proposition C.1.16 Let D be an integral domain and x|y a binary relation on D
satisfying (a)—(f). Then there is a unique valuation divisibility relation on the quotient
field F of D extending x|y on D.

Proof For 3, 5, define
glg & ad|bc.
The result follows. O

We close this section with a simple general result on valued fields.

Proposition C.1.17 Let (F, v) be an algebraically closed valued field. Then its value
group, say T, is divisible.

Proof Leta € I and m > 1 an integer. Since v is a surjection to I" U {oo}, there is a
y € F such that v(y) = a. Since F is algebraically closed, there is an x € F such that
x" =y.Setb = v(x) € I'. Then mb = v(x™) = v(y) = a. Thus, we have proved
that I" is divisible. (]

C.2 Extensions of Valuations on Rational Function Fields

Theorem C.2.1 Letv : F — T U{oco} be a valuation. Assume that T is an ordered
subgroup of an ordered group T and v € T''. For f(X) = >, a;X' € F[X], define

w(f) = min{v(a;) +iv: 0 <i < n},
andf0r§ € F(X), define

w(g) = w(f) —w(y).
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Then w is a well-defined valuation on F(X) extending v with w(X) = ~. Its value
group is the subgroup of T generated by T U {~}.

Proof Clearly w(0) = oo, w(a) = v(a) foralla € F and w(X) = 7.
Take f(X) = > 1 ya; X and g(X) = >, b:X"in F[X]\{0}. Forevery 0 < i < n.

v(a; + by) + iy = min{v(a), v(b)} + iy
= min{v(a;) + i, v(b;) + iv}
min{w(f), w(g)}

v

Therefore,
w(f + g) = min{w(f), w(g)}.

Now fg = >y cxXk, where ¢; = 3, ., aibj. Leti +j = k. Then

i+j=
v(a;by) +ky = (v(a) +iv) + () +j7) = w(f) + w(g).

Hence, w(fg) > w(f) + w(g).
To prove the opposite inequality, let

ip = min{i : w(f) = v(a;) + v},

and
Jo =min{j : w(g) = v(b)) +j7}.

Set k = ip + jo. Now,
Cr = Z Clibj + aiobjo + Z a,»bj
i<ig,i+j=k J<jo.i+j=k

Fori < iy, v(a;) + iy > v(a;,) + ipy by the definition of iy. Therefore, for i < iy and
i+j=k,

v(aibj) + ky = (v(a;) + i) + (v(by) + jy) > v(a,b;,) + k.
Hence, foralli < iyandi+j =k,
v(aib;) > v(digp,,)-
Similarly, for all j < joand i +j =k,

v(aibj)) > v (dighy,)-
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By Lemma C.1.9, it follows that
v(ck) = v(a;,bj).

Thus,
v(cr) + kv = v(ap) + ioy + v(bj) +joy = w(f) + w(g).

This implies that
w(fg) = w(f) + w(g).

Hence, w(fg) = w(f) + w(g) for all polynomials f, g € F(X).
Let ]gi‘] = ]’%. Then f1g> = f>g9:1. Therefore,

w(f) + w(g2) = wfz) + wlgy).

This implies that w is well-defined. It is now easy to check that

(fl fz) . (fl ) (fz)
wl—— | =wl—)+wl{—).
g1 92 g1 92

Assume that w(L) > w(£). Then w(f))+w(g2) = w(f)+w(g)),ie w(figs) =

w(fgg]). NOW,
L hY) — figatho
w (911 + 922) =w ( l !271922 1)
= w(f192 +291) — w(g192)
> min{w(f192), w(f291)} — w(g192)
> w(f2) +w(g) —w(g) — w(g2)
— i b i3
= min{w(;-), w(g)}
Our result is proved now. O

Theorem C.2.2 Letv : F — I'U{o0} be a valuation and K a subfield. Let v(x) = 0
and [x] € F~ be transcendental over K~. Then, whenever ay, . .., a, € K,

v (z aix’) = min{v(a;) : 0 < i <n}.
i=0
Further, v(K(x)) = v(K) and K(x)~ = K~ ([x]).
Proof Letf = > ,ax' # 0. Choose a k < n such that
v(ar) = min{v(q;) : 0 <i < n}.

Then f = a; Z?:o bix!, where b; = aiak_l. So, v(b;) > 0 for each i and by # 0. As
v(x) =0, v(X 1, bix) > 0.
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Since [x] is transcendental over K™, Z?:o bix' is a unit in the valuation subring
of F. Hence, v(X__, bix') = 0. It follows that

v(f) = v(ax) = min{v(g;) : 0 < i < n}.

It is now clear that v(K(x)) = v(K).
Let v(f) > 0. Then each v(a;) > 0. So,

n

[f1 =D laillx] € K™ ([x]).

i=o0

This implies that K(x)™ C K™ ([x]).

Conversely, let f € V[x], where V is the valuation subring of K. Then
v(f) > 0.Hence, [f] € K(x)™. This shows that K~ ([x]) C K(x)™. Thus, our result is
proved. O

Theorem C.2.3 Let v be a valuation on a field K with value group T'. Let K be a
subfield of a field F, T an ordered subgroup of an ordered group T’ such that "'/ T’
is torsion-free, v € T'\ I and x € T transcendental over K. Then there is a unique
valuation w on K(x) extending v such that w(x) = ~. Further, the value group of
K(x) is ' @ Z~y and the residue fields of K and K(x) are the same.

Proof Letf = >!_jaix' with ag, ..., a, € K. Arguing as in the proof of Theorem
C.2.1, we see that
w(f) = min{v(a;) +iv:0 <i < n} *)

and for Jgiz € K(x),

w (J:) =w(f) —w(g)
g

defines a valuation on K(x) extending v and such that w(x) = 7.

Let w be a valuation on K(x) extending v and such that w(x) = . We now show
that w satisfies () which will prove the uniqueness part of the result.

Letf = > jaix' € K[x]. Take 0 < i # j < n. By our hypothesis, w(a;x’) =
v(a;) + iy forevery 0 <i <n.Ifa; = a;,

w(aix') — wax') = (i —j)y #0

because I''/T is torsion-free. Now assume that a; # q;. If possible, suppose
w(aix') = w(a;x’). But then

=Dy =v(@) —v(@) el

contradicting that I’/ T is torsion-free. Thus, whenever 0 < i # j < n, w(a;x’) #
w(a;x’). This implies that
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w(f) = min{w(a;x’) : 0 < i < n} =min{v(a;) +iv:0<i<n}.

Clearly, the value group of K(x) equals I" @& Z~. The sum is direct because I''/ T" is

torsion-free.
‘We now show that the residue fields of K and K(x) are the same.
Claim. If h € K(x) \ {0}, & is of the form ax" (1 + u) witha € K, r € Z and

u € K(x) with w(u) > 0.
Assuming the claim we complete the proof first. Since w(u) > 0 = w(l), by

Lemma C.1.9,
w(l 4+ u) = min{w(1), w(u)} = w(l) =0.

Therefore, w(h) = v(a) +r-~v. lfwh) =0,v(a) +r-v=0.Sincer-~v ¢ T, it
follows that v(a) = 0 and r = 0 when w(h) = 0. Then

wh —a) = wlau) = v(a) + w(u) = w(u) > 0.

Thus [/] = [a] in the residue field of K(x). Since [a] is in the residue field of K, the

result follows.
n 1 m i
i=0 aix', gx) = Zj:(] bjx],
< ip < nand

Proof of the claim. Let &# = %, where f(x) = >
ai,bj € K,0 <i <nand0 <j < m. We know that there exist 0
0 < jo < m such that for all i # i and for all j # jo,

w(f) = vlai) +io-y <v(a) +i-~y

w(g) = v(bj) +jo-v <vb) +j-7.

and
We have
f= a,-oxio 1+ z a'a;iox" = aioxio(l + up), say
i#ip 0
and
Jo bj J Jo
g=bj X" |1+ bt | = bjyx* (1 4+ up), say.
j#io !

By the choice of iy and jo, w(u;), w(uz) > 0. Set
=

u = .
14+u,
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By Lemma C.1.9, w(1 4 uy) = 0. Further, w(u; — up) = min{w(u;), w(uz)} > 0.
Hence w(u) > 0. The claim follows since

i — %xio*jo(l + u).
g bjo O

C.3 Valuations Induced by a Norm

The p-adic valuations have an important property that they are induced by the so-
called non-Archimedean absolute values. An absolute value or a norm on a field K
isamap |- | : K — [0, co) satisfying the following three conditions:

@ |x=0<x=0.
(®) Vx, y(lx -yl = |xllyD).
(© Vx,y(lx +yl = Ix| + [yD.

The absolute value is called non-Archimedean if instead of (c) the following
stronger property is satisfied:

(") Vx, y(lx + yI) = max{|x], [y}.

Otherwise, the absolute value is called Archimedean. These properties derive their
names from the following observation.

Proposition C.3.1 An absolute value | - | on a field K is non-Archimedean if and
only if {|n| : n € N} is bounded.

Proof Suppose | - | is a non-Archimedean absolute value on K. Then |n| < |1] for
every n € N.

Conversely, assume that |n| < M for every n € N. Let x, y € K and n a positive
integer. Then

chixiy"’i < (n+ 1)M max{|x|, |y|}".

i=0

lx+yl" =1+ p)" =

So,
Ix +yl < (n+ DY"M'" max{|x], lyl}.

By taking limit as n — oo, we see that |x + y| < max{|x|, |y|}. [

Example C.3.2 The usual absolute values on QQ, R and C are Archimedean absolute
values.
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Example C.3.3 Letp > 1 be a prime. Consider the field Q of all rational numbers.
For a non-zero r = p' 5 withp fa, b, define

Irl, = e .

Then | - |, is a non-Archimedean absolute value on Q. It is called the p-adic absolute
value.

Example C.3.4 Now consider the field of all rational functions K(X) over a field
K. Let p € K[X] be irreducible. For a non-zero rational function f = pi%, p /g, h,
define

Ifl,=e"".

Then | - |, defines a non-Archimedean absolute value on K(X). It is called the p-adic
absolute value. An important special case is obtained by taking p = X.

Let | - | be an absolute value on a field K. Then |1| = |1 - 1| = [1]|*. Therefore,

[1| = 1. Further, | — 1|> = | — 1 - —1] = [1| = 1. Therefore, | — 1| = 1. It follows
that for every x # 0, | — x| = |x| and |x~!| = |x|~".

An absolute value on a field K canonically induces a metric on it which is of
fundamental importance. If | - | is an absolute value on K, we have a metric on K

defined by (x,y) — |x —y|,x,y € K.

We can carry out the standard completion of a metric space. Given an absolute
value | - | on a field K, we show that the metric completion K is a field and | - | can
be extended to a complete absolute value on K, where an absolute value is called
complete if it induces a complete metric. We describe this briefly below.

For Cauchy sequences (a,), (a,,), define (a,) ~ (a)) if |a, — a)| — Oasn — oo.
The ~ is an equivalence relation on the set of all Cauchy sequences. Let [(a,,)] denote
the equivalence class of a Cauchy sequence (a,). Let (a,) ~ (a,) and (b,) ~ (b)).
Then (a, + b,) and (a, - b,) are Cauchy sequences and (a, + b,) ~ (a, + b)) as
well as (a, - b,) ~ (a), - b)). For a € K, we let a denote the equivalence class of
the constant sequence (a, a, a, . . .). Also, note that ||a,| — |a,|| < |a, — a,|. These
show that K is a field with [(@,)] + [(bx)] = [(@n + ba)]. [(@n)] - [(Ba)] = [(an - ba)],
0 the additive identity and 1 the multiplicative identity. Further, |[(a,)]| = lim,, |a,|
defines a complete absolute value on K. Also, @ — @ is an isometric monomorphic
embedding of K onto a dense subfield of K.

Given an absolute value | - | on a field K, define
v(x) = —In(lx]), xeK. ()
Then v defines a valuation on K if and only if | - | is non-Archimedean. Now assume
that v is a valuation on a field K with value group and ordered subgroup of the

additive group of reals. Then

x| =™, xeK,
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defines a non-Archimedean norm on K. Note that p-adic valuations defined above
are induced by corresponding p-adic absolute values. A valuation will be called non-
Archimedean if it is induced by a non-Archimedean absolute value or equivalently
its value group is an additive subgroup of reals.

Let v and | - | be related by () and V the corresponding valuation subring. Then
a sequence {x,} is Cauchy if and only if

VM > 03aN € NVn,m > N(v(x, — x,,) > M).

The valuation v is called complete if K is complete with respect to the metric induced
by corresponding absolute value. Also note thatx, — xif and only if v(x, —x) — oc.

Let V be the corresponding valuation subring and M the maximal ideal of V. Take
any x € K. Then

x+M={zeK:v(z—x)>0={zeK:|z—x| < 1}.

Thus, x + M is the open unit ball with centre at x.

Example C.3.5 Let p > 1 be a prime number. The completion of Q with respect
to the p-adic absolute value is denoted by Q,. It is called the field of p-adic real
numbers. We denote its valuation by v, itself. Its valuation subring is denoted by Z,,.
Its elements are called p-adic integers. Clearly, Q, is of characteristic 0.

Proposition C.3.6 Let | - | be a non-Archimedean absolute value on a field K with
v corresponding valuation. Let K be the metric completion of K with respect to | - |,

| - | the canonical extension of | - | and v corresponding valuation. Then the residue
fields and the value groups of K and K are isomorphic.

Proof Let V be the valuation subring of K and M the maximal ideal of V. Also, let
V be the valuation subring of K and M the maximal ideal of V.

There is a canonical monomorphism o : V/M < V /M.Letx € V. Then x + M
is an open neighbourhood of x. Since K is dense in K, there exists a y € K such that
yex+M cC V.Since V=VNK,y e V. Clearly, the residue class of y is mapped
to the residue class of x. So, « is an isomorphism.

Again, there is a canonical monomorphism 3 : K*/V* — K" /VX. Now take
anx € K. Since K is dense in K, there is y € K such that o(x —y) > v(x). Clearly,
y # 0and v(y) = v(y — x + x) = v(x) by Proposition 1.1. So, yx~! € v*. Hence,
G([y]) = [x]. So, 3 is an isomorphism. O

Corollary C.3.7 The residue field of Q, is ).

Corollary C.3.8 The residue field of the completion of (IF(X), v,), p € F[X] irre-
ducible, is F[X]/(p).
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C.4 p-adic Expansion and Hensel’s Lemma

A valued field (K, v) is called a discrete-valued field of rank 1 if its value group is
isomorphic to Z. (Q, vy,), (Q,, v,), (F(X), ve), (F(X), vp), p € F[X] irreducible,
are discrete-valued fields of rank 1. We observed in the last section that such a v is
induced by a non-Archimedean norm.

Let (K, v) be a discrete-valued field of rank 1. An element 7 € K is called a
normalizer if v(m) = 1. Note that any two normalizers are associates in the valuation
subring V of K. Also, if v(x) = n # 0, then x and 7" are associates in V. Note that
p is a normalizer for (Q,, v,), p > 1 a prime; X! is a normalizer for (F(X), vso)
and p is a normalizer of (F(X), v,), p € F[X] irreducible.

Theorem C.4.1 Let (K, v) be a discrete-valued field of rank 1, m a normalizer and

R C V intersects each residue class in exactly one point with RN\ M = {0}. Then

every x € K* has a unique -adic representation x = Y = a;7' for some integer n

with ay, a,y1, ... in R. Moreover, if K is complete with respect to v, then for every
. . . 00 i

sequence {a,, : m > n} in R, the series > a;m' is convergent.

Proof Let v(x) = n. Then v(x7~™") = 0. Take a, € R that belongs to the residue
class of x7—". Since x7 " — a,, is an element of the maximal ideal, v(x7~" —a,) > 0.
Letm = v(x — a,7"). Then

m=v(@") =v(x —a, ") >n

and v(7 " (x — a,7)) = 0. Let a,, € R be in the residue class of 77" (x — a,7").
Setk = v(x — a,7" — a,, ). Then

k=v(@) =vix — " — apm™) > m

and v(7 ¥ (x — a, 7™ — a,, ™)) = 0. We proceed similarly. Either the method termi-
nates or we get an infinite series representation x = »_ -~ a;7'. The series converges

i=n
to x because v(x — >+ ai') > k — oo,

To see the uniqueness of this representation, assume that

o0 o0
E a;m = E b,
i=n

i=n

where a;, b; € R for all i > n and there exists an i such that a; # b;. Let iy be the
least i such that a; # b;. Then a;, — b;, € V*. Hence,

v((a;, — b)) = io

and for all i > iy, v((a; — b))7") > i > iy. Therefore, for every [ > i,
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!
v((ai, — bi)T + D (a; — b)) = io.

>

It follows that v(3";2, (a; — b;)7') # oo. This is a contradiction.
The last part of the result follows from the fact that the sequence of partial sums
(3% am' : k > n} of the series 37 a;7' is Cauchy. a

Corollary C.4.2 Every p-adic real number x € Q, has a unique p-adic expansion
x = > xip' with each x; € {0, 1, ..., p — 1}. Its valuation subring 7, consists of
all x = Zﬁn x,pi withn > 0 and each x; € {0, 1, ..., p — 1}. It follows that Z,, is
the closure of Z in Q,. The maximal ideal of Z, is the set of all x = 2| x;p' with
xie€{0,1,...,p—1}L

Corollary C.4.3 The completion of (F(X), vx) is the field of all Laurent series
F((X)). Its valuation subring is the ring of power series F[[X]] with the maximal
ideal the set of all power series z,fil a X witha,,ay, ... € F.

Forf(X) = > ya:X',f'(X) = DI, ia;X"~" is called the formal derivative of f.

Theorem C.4.4 Let v be a non-Archimedean, complete valuation on a field K with
V the corresponding valuation subring. Suppose f € V[X] and ay € V satisfies
v(f(ag)) > 2v(f’'(ag)). Then there exists an a € V with f(a) = 0 and v(a — ay) >
v(f’(ao)).

Proof Letf(X) = >.I_,piX'. Set by = f'(ag) € V. By the hypothesis, v(by) < oco.

So, by # 0. Set ¢ = L% Then f(ap) = cob3. Further, v(co) > 0. Choose € > 0
0

such that v(f(ap)) > 2v(bg) + €. Set a; = ag — bocy. Then

f(aop — boco) = X pilag — boco)’
=0

= > > (~Wicpah (boco)

i=0j=0

= f(ao) + i i(—l)jicjpiagfj(boco)j

i=0j=1

= f(ao) — bocaf"(ao) + (boco)?do,

where dy € V. Thus, f(a;) = (boco)*dy. Hence,

\%

v(f (@) = v(bg) + 20
2v(f (ag)) — v(by)
20(b3) + 2¢ — v(b3)
v(b%) + 2e.

vl
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By similar computation, there exists a b € V such that f'(a;) = f’(ag) — bocob =
b1, say. Since ¢y is in the maximal ideal of V', sois cob. Hence, v(bcy) > 0. Therefore,
v(1 — bcy) = v(1) = 0 by Lemma C.1.9. Hence, v(b;) = v(by).

Setc) = f(bif'). Then v(c;) > 2e. Seta, = a; —bjc; and repeat the same argument

with a; replaced by ay, by by by and ¢y by ¢;. Set by = f'(ay) and ¢; = J%
Proceeding inductively, we get a sequence (a,) in V such that a,; = a, — b,,2c,,,
where b, = f'(a,) and ¢, = 1% with v(b,) = v(bo) and v(c,) = 2"e.

‘We now show that (a,) is Cauchy. Let n < m. Then

min{_v(a,-ﬂ —aj):i=n,...,m—1}
v(bg) + 2" - 0.

m—1
U(Clm - an) =V (z (ai+1 - ai))

IV IV

Let a, — a. Since each a,, € V, a € V. Note that
v(f(an)) = v(cy) + 2v(by) = v(cy) + 2v(by) — oo.

So, v(f(a)) = oo implying that f(a) = 0.
Since for every n, v(a, — ap) > v(by) + €. Hence, v(a — ag) > v(f'(ap)). O

Theorem C.4.5 (Hensel’s Lemma) Let v be a complete, non-Archimedean valuation
on a field K with V the corresponding valuation subring. Let K™ denote the corre-
sponding residue field. Suppose f € V[X] and ay € V are such that f~ ([ap]) = 0
and (f)~ ([ag]) # O. Then there exists an a € V such that f (a) = 0 and [a] = [agp].
In particular, if

FX) =X"+ by X"+ by o X2+ b1 X + by € VX]

withb,_y € VX, by, ...,b,—» € M, then f has a rootinV.

Proof Under the first part of the hypothesis, f(ap) € M and f'(ap) € V*. Thus,
v(f'(ap)) = 0 and v(f(ag)) > 0, implying that v(f(ag)) > 2v(f'(ap)). So, by the
above proposition, there exists an a € V such that f(a) = 0 and v(a — ay) >
v(f'(ap)) = 0. This implies that a — ay belongs to the maximal ideal. Hence, [a] =
[ao]-

Now let f be as in the second part of the hypothesis. Then

o) =X"NX + [byr])

and
X)) = X" 2(nX + (n — D[by_1 D).

Then f~(—[b,—11) = 0 and "~ ([—b,_1]) = [—bu—1]""" # 0. Now we use the first
part to conclude our claim. O
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C.5 Algebraic Extensions of Valued Fields

‘We now turn our attention to extensions of valued fields. Suppose (K, Vi) is a valued
field and [ a subfield of K. Set Vg = Vx NF. Then Vy is a valuation subring of F.
In this case, we call Vi an extension of Vg.

Note that Vi = Vi NF. So, My = Mx N V.

We have canonical morphisms Vg < Vg — K™ with kernel of the composition
Mp. So, we have amonomorphism F~ — K. Thus, ™ can be regarded as a subfield
of K™. We call f = [K™ : F™] the residue index.

As we saw, the valuation groups can be taken to be I'i = F*/V“ and I'; =
K>/ Vg . Clearly, we can assume that the ordered group I'; is embedded in the ordered
group I'5. The index [I"; : I';] is called the ramification index, and is denoted by e.

Theorem C.5.1 Let (F, V) be a field and K an extension of F. Then there is a
valuation subring R of K extending V.

Proof Let M be the unique maximal ideal of V. We are going to use Zorn’s lemma
to prove our result. Let P be

{R:K DR D V,R aring and the ideal of R generated by M is proper}.

Since V € P, P # (. The hypothesis of Zorn’s lemma is satisfied with P equipped
with inclusion relation. Let R be a maximal element of P and My the ideal in R
generated by M.

Claim1. V =RNF.

If possible, suppose there exists an x € (R N ) \ V. Since V is a valuation
ring, x~! e V. Since x ¢V, x~!is not a unit in V, and so belongs to M. But then
1 =x-x~! € Mg implying that My, is not proper. This is a contradiction.

Claim 2. R is a valuation subring of K.

Let x € K. If possible, suppose x, x~! ¢ R. We shall show that R[x] or R[x~']
belongs to IP. This will contradict the maximality of R and our claim will be proved.

Suppose neither R[x] nor R[x~!] belong to P. Then 1 belongs to ideal in R[x]
generated by M as well as to the ideal in R[x~'] generated by M. So, we have

n m
; »
l:Ea[x:Ebjx/,
i=0 j=0

where a’s and b’s belong to M. We choose m and n minimum possible. Further,
without any loss of generality, we assume that 1 <m < n.
We have
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1 —by=(1—bo) > a'

i=0
and
m
a X" = ax” Z bix™.
=0
Thus,
m
(1 — by)a,x" = a, Zb,-x"*f.
j=1
Hence,
n—1 m
L—bo=(1—bo) D ax'+ay y bx"7,
i=0 j=1
or

m

n—1
1 = by + (1 — by) Za,x" +ay, Zb,x"*f.

i=0 j=1

Since all the coefficients are in Mg, we get the contradiction of the minimality
of n. ]

Our next result is to show that if a valued field (IF,, V») is an algebraic extension
of (I, V1), then the residue field IF;" is an algebraic extension of IF|". This will be
shown easily by showing that if I, is a finite extension of I, then 5 is a finite
extension of .

Let (IF, V;) C (IF,, V») be valued fields with V, an extension of Vi, i.e. V| =
Vo, NFy. Letv; : F; — T'; U {oo} be compatible valuations, i = 1, 2. We assume
that I'; is an ordered subgroup of I'; and v, an extension of v;. Let M; be the unique
maximal ideal of V;, i = 1, 2. Set

F; = Vi/M;, i=1,2,

the corresponding residue fields.

Lemma C.5.2 Letwy,...,wr € V, be such that [w1], ..., [wr] € F; are indepen-
dentover F{ and my, ..., 7, € IFZX such that vy (), ..., v2(m,.) are representatives
of different cosets of I's/ I'y. Then, for everya; € Fi, 1 <i<f,1<j<e,

1% Za,;,-wm,' = min{vz(aijwmj)}.
i

In particular, {w;m;} is an independent set over IF;.
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Proof Since each [w;] # 0, w; € V,*. So, va(w;) = 0 for all i. Thus, for every i, j,
Uz((lijwiﬂ'j) = Uz(aijﬂ'j).

Without loss of generality, assume that not all a; = 0. Choose 1 < I < f and
1 < J < e such that

v(aymy) = min{vy(a;m) 1 <i<f,1 <j<e}

Note that for every i, va(a;ym;) > va(aymy). So, va(aiy) > va(ayy). Thus, a,-;a,‘ll €
V1. Also, note the following:

v (aywrmy) = min{vy(qwim) 1 1 <i <f,1<j<e}

We claim that vy (ay7y) = va(aywimy) < va(ajwim) = va(aym;) forall j #J
and for all i: Otherwise,

va(my) — v2(m;) = va(ay) — va(ay) € I'1.

This implies that
VlV] ;ﬁ J(aijwmj(aywlm)fl € M;).

Hence,
ZzaijwMannn)“ € M.
i A
Set z = Z,-ja,jwmj. If possible, suppose v2(z) > wvy(aywimy). Then,

Z(aywim) ™ € M,. By subtracting, we get

1
Z aiy(ay)” wiwy € M.
i

Since w; € V>, we have
-1
Zau(dﬂ) wi € M>.
i

We also have aijﬂj(aum)" € M, whenever j # J. We have observed that each
a;(ay)~" € V. Further, aual}1 = 1. So, [wi], ..., [wy] are not independent over
;. This contradiction proves the first part of the result.

To show the independence of {w;;}, let a;; € IF| be so chosen that z = 0. Then
v (ajjw;m;) = va(ay) + va(w;) + va(mj) = oo forall i, j. Since vy (w;) = 0, it follows
that vy(a;;) + v2(m;) = oo. But va(7;) € I'z. So, va(a;;) = oo implying that a;; = 0.
O

Corollary C.5.3 (Chevalley’s Fundamental Inequality) Let f = [} : F], e =
[Ty :Tylandn = [F, : Fy]. If n < oo, then
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e-f <n.

In particular, if F, is a finite extension of Iy, then ¥ is a finite extension of F| and
Iy is a subgroup of Ty of finite index.

Theorem C.5.4 Suppose (F, V1) and (IF,, V,) are valued fields with F| a subfield
of T, and V, an extension of V. Let I'| denote the value group of Fy and ', that of
IF,. If F, is algebraic over IFy, 5 is also algebraic over Fy and T',/ Iy is a torsion

group.

Proof Let x € (V). To show that F"[[x]] is a finite extension of F}". Since x is
algebraic over IF|, IF| [x] = [F; (x) is afield, say LL. Further, L. C I, is a finite extension
of F;. Set Vi, = V, N L. Then V7, is a valuation subring of [l and an extension of V.
The unique maximal ideal of Vi, is given by

My, =M,NL,

where M, the unique maximal ideal of V.

Since L is a finite extension of I, by Chevalley’s fundamental inequality (Corol-
lary C.5.3), L™ = Vi,/My, is a finite extension of F}". In particular, [x]y, is algebraic
over [F}".

To show our result, it is sufficient to get ay, . . ., a, € Vi, notall in M{—the unique
maximal ideal of V;, such that Z?:o a;x' € My, or equivalently in M>. Since [x]™ is
algebraic over IF{", there exist ap, ..., a, € Vi, not all in M, such that

n

> lail (1" =0,

i=0

i.e.

n
E aixi e M.
i=0

Now take ax € [F,\[F;. Since IF, is an algebraic extension of IFy, [IF{[x] : [F{] < oo.
Let I' = v, (F;[x]). Then, by Chevalley’s fundamental inequality (Corollary C.5.3),
[T : T'1] < oo. This, in particular, implies that there exists a m > 1 such that
muv,(x) € I'}. Thus, we have proved that I'; / I is a torsion group. O

Theorem C.5.5 Let (N, V') be an algebraic extension of (IF, V), v’ a compatible
valuation on N and 0 € G(N, F). Then

1. V' o o is a valuation on N with value ring o~ (V").
2. If o(V') =V/, thenv oo =,
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Proof The first part of the result is trivially verified. We proceed to prove the second
part.

Let I'’ be the value group of (N, V') and I' C T" that of (IF, V). Since v o g is a
valuation on N compatible with V", there exists an isomorphism p : I — T"" such
that p o v = v’ o 0. To complete the proof, we show p = idy.

Step 1. p|I" = idr.

First, take v € I'. Get x € [F* such that v = v'(x). But o|F = idy. So,
p(y) = p('(x)) =v' () =v'(x) =7.

Thus, p|I" = idy.

Now take any x € N\ F. We need to show that p(v'(x)) = v'(x). Since N is
an algebraic extension of F, F[x] is a finite extension of F. Set I'" = v/(F[x]).
Then [T : T'] < oo by Chevalley’s fundamental inequality (Corollary C.5.3). This
implies that there exists a positive integer n such that nv’(x) € I'. Hence, np(v'(x)) =
p(mv'(x)) = nv'(x). Since I is torsion-free, it follows that p(v'(x)) = v'(x). O

Lemma C.5.6 Letr (IF, V) be a valued field, F, an algebraic extension of F1, and
Va2, V3 valuation subrings of F, extending Vy. Then, V, C V, implies that V, = V.

Proof Assume that V, C V;. We have M) C M, C V,. To see this take a x € Mj.
If possible, suppose x ¢ Va. Then x~' € Vo C V. Since x € M), we get 1 € M}
contradicting that M} is a proper ideal. Thus x € V5. If x ¢ Mp,x~! € V5, C V. This
implies that 1 € M} as before.

We see that V,/Mj is a subring of V,/Mj}.

Observation 1. V, /M, is a valuation subring of (IF})~.

Let[x] # Obe anelementof V,/M,.If x € Vs, [x] € Vo/M},. Otherwise,x~! € V.
But then [x]™! € Vo/Mj,.

Observation 2. V, /M, is a field.

For x € Vi, let [x] € Vi/M; and [x]' € V,/M} be corresponding cosets. This
defines a natural embedding of F}" = V; /M| into V,/Mj.

Let O # [x]' € Va/M} C Vy/M,. If x € Vi, [x]7! exists in Vi /M;. In particular,
[x] has an inverse in V,/M}. Now consider the case when x ¢ V;. Then F{[[x]'] C
V2 /Mj is also a field because V, /M) is an algebraic extension of F;". Thus, [x] has
an inverse in V,/M,. Since V, /M is already a ring, our claim is proved now.

Since V,/Mj is a field and a valuation subring of V; /M, Vo /M, = V, /M. Now
let x € V;. Then, there exists ay € V, such that x —y € M), C M, C V,. So,
x € V,. O
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We shall use the following version of Chinese remainder theorem for valued fields
repeatedly.

Theorem C.5.7 (Chinese Remainder Theorem) Let Vi, ..., Vi be valuation sub-
rings of a field F with M, . .., M. their respective unique maximal ideals. Suppose
Vi & V; whenever 1 <i # j < k. Then for every (ai, ..., a) € xf.‘zl Vi, there exists

ana € ﬂf:l Vi such that a = a;(mod M;), 1 <i <k.

Remark C.5.8 Let Vi C V, be valuation subrings of a field F with V| # V, and
M, M, the maximal ideals of V;, V, respectively. In the proof of Lemma C.5.6, we
saw that M, C M;. Choose a; € V| and a, € M,. If possible, suppose there exists
ana € ViNV,suchthata —ay e Myanda —a, € M, C M. Thena; — a, € M.
So,asa, € M, C My, a; € M. This is a contradiction. Hence, the result is not true
without the condition V1 < i #j < n(V; £ V)).
Proof Set R = N;V;. We need to show that the canonical morphism
R— Vi/M| x ---xV,/M,
is an epimorphism. Set
Pi=RNM;, 1<i<n.

Then, P; is aprime ideal of R, 1 <i <n:Leta-b € P,=RNM;anda,b € V;\ M,.
Then, a=', b~ € V;.So,1 = (a-b)- (b~' - a~') € M,, contradicting that M; is
proper.

Our main result will be proved by proving the following two statements:

Claim I: The canonical morphism R/P; — V;/M; is an isomorphism.

Claim II: The canonical morphism R — R/P; X --- X R/P, is an epimorphism.

Since P; is a prime ideal in R, R\ P; is a multiplicative set. Hence, the localization
of R at P; is possible. As usual, let

Rp,={a/b:a,b e R&b ¢ P;}

denote the localization of R at P;. Note thatif b € R\ P;, b € V,*, a/b = ab™'/1.
So, we treat Rp, as a subring of V;.
Fix1 <i<n.

The following is the main observation to prove our result.
Main Observation. V; = Rp,.

‘We draw several corollaries first.
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(1) Forall 1 <i#j <k, P; ¢ P;. Otherwise,
Vi=Rp, CRp, C 'V,
contradicting our hypothesis

(2) Forall 1 <j <k,
V1 <j < k(NigiPi ¢ Pj).

Foreach 1 <i#j <k, choose b; € P; \ P;. These exist by (1). Then
¢ = H,‘#jbi € ﬂ,-#Pi \Pj

(3) Every proper ideal in R is contained in some Py, ..., Pk.

Let I be an ideal not contained in any of Py, ..., P;. For each 1 <j < k, choose
an a; EI\Pj andcj € ﬂi#jPi\Pj as in (2).

Consider d = Zj ajcj. We claim that forevery 1 <i<k,d ¢ Pi:Letl <i <k,
d € P;. But for all j # i, ajc; € P;. So, aic; € P;. Since a;, ¢; ¢ P; and P; is prime,
we have a contradiction.

Since d € I C R = N;V,, it follows that ' € V; for all i, i.e. d~! € R. But then
1 =dd~" € 1. So, I is not a proper ideal.

From (1) and (3), we get the following.

(4) Py, ..., P, are distinct and are all the maximal ideals of R.

We assume these facts and complete the proof first.

Proof of claim I. Consider R/P; < V;/M; = Rp,/M;. Since P; = RN M;, — is
a monomorphism.

Claim: Let b € R\ P;. Then the class of b~! in V;/M; belongs to the range of — .

This will complete the proof as follows: Let ab' e Rp,. Then the class [ab~ '] =
[al[b~ '] of ab~ ! in Rp./M; is in the range of —.

Since P; is a maximal ideal in R by observation (4) above, R/P; is a field. So,
there exists a ¢ € R such that [bc] = 1,i.e. 1 — bc € P; C M;. This shows that the
image of [c] under < is [6~']. Hence, claim I is proved.

Proof of claim II. Choose ay, ..., a, € R. To get an a € R such that Vi(a — a; €
P;). We prove this by induction on 7.

Let n = 2. Since P, P, are distinct maximal ideals in R and P; + P is an ideal
containing Py and P,, Py + P, = R. Given aj,a; € R, getp; € Py and p; € P,
such that a; — ay = p; — p;. Take a = a; — p;1 = a» — p>. Thus, a — a; € P; and
a—adap e Pz.

Inductive step. Let ay,...,a, € R. By induction hypothesis, suppose there
exists b, € R such that b, —a; € P; forall | < i < m. We shall produce
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ab, € R such that b,, — b,,_; € N,_,,P; and b,, — a,, € P,. Then for i < m,
by —a; = (by — by—1) + (bn—1 — a;) € P;.

We saw in (2) that N;_,,P; ¢ P,, and P,, is amaximal ideal. So, (N;.,,P;)+P,, = R.
Hence, there exist ¢ € P,, and p € N;.,,P; such that b,, | — a,, = p — q. Set
by, =bu_1—p=a,—q € R.Thus, b,, —a,, € P, and b,, — b,,_1 € NinP;.

Proof of the main observation. We have already seen that Rp, C V;. It remains
to show that V; C Rp,. Take any a € V; and set

I,={j:acV}.

For j € 1,, let o denote the class of a in V;/M;. Now choose a prime number p > 2
such that
Vj € I,(p > char(V;/M)) & o # 1 = a]’? £ 1).

Since for any field K, if x # 1 is in K, x” = 1 for at most one prime p, such a prime
P exists.
Now set b = > }_ Oa

We shall observe the following.

(1) Vj € I,(b € V;). (This follows from the definition of /,.)
(i) Vj e I,(b ¢ M;).
(i) Vj e L,(b~' e V;). (This follows from (i) and (ii).)
(iv) V) ¢ L™ € V).
(v) b~! € R. (This follows from (iii) and (iv).)
(vi) Vj e I(b~' e R\ P;). (This follows from (i), (iii) and (v).)
(vii) ab™' € R
Assuming these, note that a = (@ HobH e Rp,.

Proof of (ii). Fix j € I,. Then

p—1
(b= 2 _aj.
k=0

If aj = 1, [b] = p # 0 because p > char(V;/M;). This implies that b ¢ M; if
aj = 1. Now assume that «; # 1. Then

p—

[b] = Z

So, b ¢ M; in this case too.

l—ozj
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Proof of (iv). Take aj ¢ I,. So, a ¢ V. Since V; is a valuation ring, it follows
thata™' € V;.Since a ¢ Vj, a~! is not a unit in V; and so belongs to M;. Since M; is
proper, it follows that

Asale V; and
p—1 p—1
b= Zak = g’! Za‘k,
k=0 k=0

b~ eV,
Proof of (vii). Forj € I,, ab™" € V; by (iii). If j ¢ L,

-1

p—1
ab™' = a(”z)( ak) eV
k=0

because p > 2. Thus, ab™! € R. O

Theorem C.5.9 Let K be an algebraic extension of ¥, V a valuation subring of F
and IF* the separable closure of F. If [KNT? : F] = n, then K has at most n valuation
subrings extending V.

Proof Let Vi, ..., V, be distinct valuation subrings of K, each extending V. Then
V1 <i#j<n(V; £ V;) byLemmaC.5.6. By Chinese remainder theorem (Theorem
C.5.7), foreach 1 <i < mthere exists ac; € ﬁjmlej such that ¢; — 1 € M, and for
allother 1 <j #i <m,c; € M.
Since K C T, each ¢; is algebraic over F. So, if I is of characteristic 0, each
ci, ..., Cyis separable over IF. Otherwise, there is a natural number k such that each
k

A, dj: is separable over F.
We now show that c’l’k, e, cj,)nk are independent over F. It will then follow that

m < n and the proof will be complete.
Let

ai,...,a, € Fnotall 0.
Choose j so that v(a;) < v(g;) for all i. So, v(a;) < oo implying that a; # 0.
Further,
K 1 p
G == aa;'d €M;.
i#j
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Since M; is maximal, it is prime. Hence, ¢; € M;. We also have 1 — ¢; € M;. Thus,
1 € M; contradicting the maximality of M;. O

We now proceed to prove one of our main theorems.

Proposition C.5.10 Let (F, V) be a valued field, K a finite, normal, separable,
extension of F and Vy, V, valuation subrings of K, both extensions of V. Then there
is an F-automorphism o of K such that o (Vi) = V,.

Proof Let G = G(K, F). Since K is a finite, normal, separable, extension of F,
|G| = |[K: F]| < oo.
Set
H, = {O’E G ZO'(V]) = V]}

and
H, = {U eG:0W) = Vz}.

We partition G into the cosets of H; and into the set of cosets of H:
G =UL Ho; ' =UL HT .
Claim: 3i, j(0;(V1) = 7;(V2)).

Then o = 7; ' o 0; will do the job.

Suppose Vi, j(0:(V1) # 7j(V2)). Since oy, . . ., 0, are pairwise inequivalent mod-
ulo Hy, 0i(Vy) # oy(Vy) forall 1 <i # i < n. Similarly, 7;(V») # 7(V>) for all
l<j#j=m

So,01(VY), ...,0,(V1), 1(V2), ..., (V3) are distinct extensions of V to K. Let
M, be the unique maximal ideal of V| and M, that of V,. Hence, o;(M,) is the unique
maximal ideal of o;(V;) forall 1 <i < n, and 7;(M) is the unique maximal ideal
of 7j(V,) forall 1 <j <m.

By the Chinese remainder theorem (Theorem C.5.7), there exists a € N;o; (V) N
ﬂjTj(Vg) such thata — 1 € N;o;(M,) and a € ijj(Mz).

Claim. Vo € G(c(a—1) e M| & o(a) € M>).

Let 0 = pooi_1 = 507}_1 where p € H| and 6 € H,. Then o(a — 1) =
p(o7 (@ —1)). So, a(a — 1) € p(M;) = M. Thus, o(a) — 1 € M, forall o € G.
Similarly, we prove that o(a) € M.

Now let N (a) be the product of all 0(a), 0 € G. Then N(a) € M, and N(a) — 1 €
M.

Claim. N(a) € F.

(This will imply that N(a) e M\, NF =M and N(a) — 1 € M NF = M. Thus,
1 € M contradicting the maximality of M and the proof will be complete.)
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Let f be the minimal polynomial of a over F. Since K is a normal extension of I
and a € K, all its roots belong to K. As seen before, {o(a) : 0 € G} is the set of all
roots of f. So, N (a) is the constant term of f. Hence, N(a) € F. O

Corollary C.5.11 The condition of separability can be dropped from Proposition
C.5.10.

Proof Let K be a finite normal extension of F and V|, V, valuation subrings of K,
both extending V.

Set =F° NK. Then F C L C K. So, L is a finite, separable extension of [F.
SinceFCcL Cc F,L* =F°. So,L =L*NK.

We now show that LL is a normal extension of [F: Let f(X) € F[X] be monic and
irreducible with a root, say a, in L. Since a is separable over IF, f £ 0. Since f is
irreducible, it is the minimal polynomial of all its roots. Since f’ # 0, all its roots
are separable over IF. Since K is a normal extension of F, it contains all roots of f
because it contains a. Thus, L is a finite, separable, normal extension of F.

By our assumption, there is an F-automorphism ¢ of IL such that o(V; N L) =
V> N L. Get an F-automorphism 7 of F extending o.

Then 7(K) = K: Since K is a finite normal extension of I, it is the splitting field
of a polynomial g(X) € F[X]. So, 7 maps roots of g to roots of g. The assertion is
seen now.

[KNL*:L]=[L:L]=1.Hence, by Theorem C.5.9, a valuation subring of I
has exactly one extension to K. Now 7(V;) D V, N L as well as V, D V, N L. So,
T(V]) = V2. [l

Proposition C.5.12 Proposition C.5.10 is true for all normal extensions of F. In
particular, this is true of K = TF.

Proof Let K be anormal extension of [F and V;, V; valuation subrings of K extending
V. We are going to use Zorn’s lemma. Consider

P={L,n):FCLcK&7eGI,F)&7(ViNL)=V,NL}L
Then (FF, id) € P. By Zorn’s lemma, P has a maximal element, say (L, 7).
Claim. L. = K.

Suppose not. Take o € K\ L. Let f be the minimal polynomial of o over F and L
the splitting field of f over L. We extend 7 to an F-automorphism of F and denote the
extension by 7 itself. Since 7 keeps F fixed and f is a polynomial over [F, 7 permutes
the roots of f. Thus 7(IL") = L.

Consider V/ = V; N L' and V| = 77! (V, N L’). Note that I’ is a finite, normal
extension of L. Hence, by the finite case, there is an L-automorphism p of " such
that p(V/) = V|". Now, set 0 = 7 o p. Then ¢ is an F-automorphism of " extending
7 and (', o) € . This contradicts the maximality of (L, 7). ([l
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C.6 Henselian Valued Fields

A valued field (F, V) is called Henselian if for every algebraic extension L of F, V
has a unique extension to L.

Proposition C.6.1 The following are equivalent:

(a) (F, V) is Henselian.

(b) V has a unique extension to F.

(c) V has a unique extension to TF°.

(d) V has a unique extension to every finite, normal, separable extension of I.

Proof Clearly (a) implies (b), (c) and (d).

Suppose there is a K C T to which V has extensions V| # V,. By Theorem C.5.1,
these can be extended to IF. Thus (b) implies (a).

Suppose V; # V5 are two extensions of V to F. Since (F*)* = F* C T, we have
TFH N F =TI, by Theorem C.5.9, Vi NF* # V, NF* and both are extensions of V
to IF¥. Thus, (c) implies (b).

Suppose V| # V, be extensions of V to F. Then by Lemma C.5.6, V| ¢ V;. Let
a € Vi \ Va, f the minimal polynomial of o over [F and K its splitting field over F.
Then K is a finite, normal, separable extension of F and o« € (V; N K) \ (V> N K).
Thus, (d) implies (c). (I

Let (IF, V) be a valued field with v : F — I' U {00} a compatible valuation. Note
that we can extend this valuation to a valuation on the field of rational functions [F(X)
as follows:

w(ag + a1 X + - -+ a,X") = min{v(ay), ..., v(a,)}.

and

w(f/g9) = w(f) — w(g).
Call an f € F[X] primitive if w(f) = 0. We have the following facts:

(1) Iff is primitive, f € V[X].

(2) f - g is primitive whenever f and g are primitive.

(3) Every f € F[X] is of the form af; where a € F and f; primitive: take a to be a
coefficient of f with minimum valuation.

(4) Letf € VIX] C F[X]andf = g; ... g, with g;’s irreducible in F[X]. Then there
exists a constant multiple ; € V[X]of g;, | <i <n,suchthatf =hy...h,.
(Write f = af) with f| primitive and g; = b;h; with h; primitive, 1 < i < n. Then

f =afi =bhy ... h,,
where b = b; ... b,. But then v(b) = v(a) > 0. Now replace h; by bh;.)

(5) Thus, very polynomial over V is a product of polynomials over V which are
irreducible in F[X]. In particular, if F is algebraically closed, so is F™.
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(6) Assume that f € V[X] is monic and f = h;...h, with each h; € V[X] and
irreducible in F[X]. Let b; be the leading coefficient of 4;, | < i < n. Then
1 = by ...b,. Hence, each b; is a unit in V. Now take g; = bl._lhi. Then, each
g; € V[X], is monic, irreducible in F[X], and f = g; ... g,.

Theorem C.6.2 Let (F, V) be a valued field. The following are equivalent.

(a) (F, V) is Henselian.

(a’) Iff € VI[X] is monic and irreducible in F[X], then there exists a g € V[X]
monic with g~ € F~[X] irreducible such that f~ = (¢~)* for some s > 1.

(b) Letf,g,h € V[X] be monic and f~ = g~ h™ with g~, h™ relatively prime in
F~[X]. Then there exist monic g\, hy € V[X]withf = g1 - hy and g = g~,
hy" = h™. Inparticular, deg(g) = deg(g™) = deg(g;") = deg(g1) and deg(h) =
deg(h™) = deg(hy’) = deg(hy).

(c) (Hensel Lemma) Supposef € V[X]is monicandf™ has a simple roota™ € F~.
Then there exists a; € V such that ay = a~ and f(a;) = 0.

(c’) (Eisenstein Criterion) Suppose f(x) = X" + a,_1 X" + Ay X2 4+ 4
aiX +ag € VIX]Iwitha,—, ¢ M and a,—», ...,ay9 € M. Then f has a root in
(VoF.

(c”) (¢’) under the additional hypothesis that f has all roots distinct in F.

Proof (a) implies (a’): Let (F, V) be Henselian and f € V[X] be monic and irre-
ducible in F[X]. Let V be the extension of V to the algebraic closure Fand v a
compatible valuation on FF. Note that there is a canonical embedding of F~ into
V/M.
Write
f) =T (x — x),

where x; € F,1 <i<n.The product x; . .. x,, being the constant term of f, isin V.
Therefore,
v(xy...x,) = vx) + -+ ulx) = 0.

Hence, at least one x; € V. Since f is irreducible, for every 1 < j < n, there is an
F-automorphism o of F such that o(x;) = x;. But o(V) is an extension of V to F
and F is Henselian. Hence, o(V) = V. Therefore, every x; € V. Also, either all x;
or no x; belong to the unique maximal ideal M of V.
Ifall x; € M,
X)) =ml X = [x]) = X",

and X is irreducible.
Now consider the case when each x; is a unitin V.

Claim: f~ cannot be written as the product of two relatively prime polynomials
in F7[X].
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This will imply that ™~ is a power of an irreducible polynomial ¢~ € F™[X].
To get g monic, note that, without any loss of generality, we can assume that the
coefficients of g are units in V. We write g = ag; with g; € V[X] monic and a a
unitin V. If f~ = (¢7)%, s = 1, f~ = (@”)°(gy)°. But f~ and g;” are monic. So,
(a™)* = 1 and (a’) will be proved.

Proof of the claim. If possible, suppose

fF=0,X-[xD)=g"-h~ eF[X] C V/M[X].

So, [x;]’s give all the roots of ¢~ and /4™. These being relatively prime, their sets of
roots are disjoint. Say, [x;]’s are roots of g~ and [x;]’s that of 4™

Since f is irreducible, there is an F-automorphism & of F with o(x;) = xi. Since
[x;]isarootof g™, we have g(x;) € M. Then g(x;) = o(g(x))) € (M) = M because
(F, V) is Henselian. This is a contradiction.

Proof of (a’) implies (b): Let f, g, h € V[X] be monic, g~, h~ € F~[X] be rel-
atively prime and f~ = ¢~ - ™. To get monic g;, h; € V[X] such that g~ = g7,
h~ =th andf=91 -hy.

By observation (6) made above, let f = fi...f,, where fi,...,f, € V[X] are
monic and irreducible in F[X]. For each 1 <i < n, get monic g; € V[X] and s; > 1
such that g;” is irreducible in F~[X] and f;~ = (g;")*. Thus,

R =T ) =g
Since g~ and A~ are relatively prime, there exists I C {1, ..., n} such that
g~ = Mier(g7)" & h™ = Migr(g7)".
Take g1 = [igrfi and hy = T,gf;.

Proof of (b) implies (c): Let f € V[X] be monic and f~ have a simple root a™ €
F~. So,

ffX=X-a)g =X-a)g"
with (X — @)™ and ¢~ relatively prime. Note that g™ is also monic. We can write
f =91 -hi, g, € VIX] monic and g = X — a”. We must have g = X — a;.
Thus f(a;) =0and a™ = a7

Proof of (c) implies (c’): Let

fX) =X"+a, X" +a, X"+ +aX+a
witha, | ¢ M and a,_», ...,a1,ay € M. So,

F=xX""X+da ).
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Thus, —a;,_, is a simple root of /™. Hence, f has arootin V C IF by (c).

Proof of (¢”) implies (a): Let (I, V) satisfy (c”) and be not Henselian. Let K be
a finite, normal, separable extension of [F with V having more than one extensions
to K. Say, Vi, ..., V,,, m > 1, are all the extensions of V to K.

Consider

H={oceGK,F):0(V) =V}

and L. = F(H) D F. By Galois correspondence (Theorem B.1.9), G(K,LL) = H.
This inclusion is proper: If not, then F(H) = F = F(G(K, [)). Since Galois
correspondence is one-to-one (Theorem B.1.9), H = G(K, F). But by Proposition
C.5.10, there exists a 0 € G(K,F) = H such o(V;) = V5. This is a contradiction
because Vi #£ V5.
SetV/!=V,NL, i=1,...,m.

Claim: V| # V/ for all i # 1.

If possible, suppose there exists an i > 1 such that V| = V/ = Vp,, say. So, V}
and V; are two extensions of V. Also, K is a normal extension of L. So, by the last
Corollary C.5.11, there exists a 0 € G(K, L) = H such that 0(V;) = V;. This is a
contradiction.

Without any loss of generality, assume that V|, ..., V/ are all the distinct Vs
and let R = NV/. By the Chinese remainder theorem (Theorem C.5.7), there exists
afl € Rsuchthatf—1 € Mjand § € M} forall 1 <j <1 Suppose k > 7. Then
there is a 1 < j < t such that Vj/ =V, implying that M} = MJ/ Thus, 8 — 1 € My,
BeNi=M and 3 eR CL.

Let f be the minimal polynomial of 3 over F. If possible, suppose 5 € F. So,
B—1eM NF =M andalso § € M, NF = M, contradicting that M is proper.
Thus, # ¢ F. Hence, since f is minimal, f has no root in F.

Let

fX) =X"+a,.1 X"+ +arX +a

and 0 = (3, ..., B, be all the roots of f. Note that no root of f belongs to FF. Since K
is a normal separable extension of F, all 3;’s belong to K and are distinct. We shall
arrive at a contradiction of (¢”) by showing thata,_; € V> and ay, ..., a,—» € M.

Claim. 52, ey ﬁn (S] Ml.

Letj > 1. Let 7 € G(K, F) such that 7(3;) = §;. So, 7 ¢ H = G(K, LL). Since
V¢ H, 77 Y(V)) # V. Let 7~!(V}) = V;, for some i > 1. Hence, 7(M;) = M.
Since ﬁ[ S M,', ﬁj = T(ﬁ]) € M].

By simple theory of equations, ag, ..., a,—2 € M\ NF =M.
We have 1 — 3 € M,. But

g = —(Br+ -+ ).
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So,
l+a, 1 =1-61—(Bo+---+ 5 € M.

Buta,_; € V.So, 1+ a,—; € M. Since M is proper, this implies that a,,_ is a unit
inV. ([l

Corollary C.6.3 The fields Q, of p-adic reals and of Laurent series F,((X)) over
F,, p any prime, are Henselian.

It is a standard fact that these two valued fields satisfy (c).

Corollary C.6.4 Let (F, V) be Henselian and K a subfield of F. Set L. = K* NF and
Vi, = VN L. Then (IL, V) is Heneselian. In particular, if K is a separably closed
subfield of F, i.e. K NF =K, then (K, V NK) is Henselian.

Proof First assume that . = K. Let
f@) =x"+a, X"+ Faix+ag € Vilx]

with a,_; ¢ M and ay, ..., a,—» € M and f have all roots distinct. Then, by (c”), f
has a root o € F. Suppose @ ¢ L. Let g be the minimal polynomial of « over K.
Then g|f. So, g has all roots distinct. This shows that « is separable over K. Thus,
a € K°NTF = L. Hence, (I, V N L) is Henselian by (c”).

In the general case, note that K C L. C K*. So, L' = K*. Hence, L* "N F =
K*NF = L. So, (L, V1) is Henselian by the above case. O

C.7 Henselization of a Valued Field

An extension (F’, V') of (IF, V) is called a Henselization of (F, V) if the following
two conditions are satisfied:

1. (F, V') is Henselian.
2. If (F”, V") is a Henselian extension of (IF, V), then there exists a unique F-
embedding a of F’ into F” such that a(V') C V”.

We now proceed to prove the existence of a Henselization of a valued field (F, V')
which is clearly unique modulo F-isomorphism.
Let V* be an extension of V to F*. Set

G"=G"V*) = {0 e GE',F):o(V*) =V}

and
F" = F'(V*) = F(G"),
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the fixed field of G". We also set
VhE=TF"nv:.
We shall prove that (F", V") is a Henselization of (I, V).
(A) G" is closed in G(F°, TF).

Proof Let 0 € G(IF*, IF) \ G". We have to show that there exists a finite, normal,
separable extension L of F such that

o-GEF,L)nG" =g.

Since o ¢ G, o(V*) # V3. If o(V*) C V¥, since both are extensions of V and
[ is an algebraic extension of I, they will be equal (Lemma C.5.6). Hence, there
exists an a € V? such that o(«) ¢ V*.

Let f be the minimal polynomial of o over IF and L the splitting field of f. Since
a € [, L is a finite, normal, separable extension of IF.

Now suppose 7 € G(IF¥, IF) such that 7| = o|L. But then 7() = o(ax) ¢ V*.
Hence, 7(a) € 7(V*)\V* implying that V* # 7(V*). Thus, o - G(F*, L) N G = ¢.

(B) (F", V") is Henselian.
Proof Since G" is closed, by Galois correspondence (Theorem B.1.9),
G"(V*) = G(F*, ).

If possible, suppose (F", V") is not Henselian. Then there exists an extension V'
of V! to (F")* = F* such that V* # V*. By Corollary C.5.11, there is a p €
G(F*, F"y = G(V*) such that p(V*) = V’*. This is a contradiction.

(C) (F, V) is Henselian iff F* = .

Proof The if part is the assertion (B). Conversely, if (F, V) is Henselian, V* is the
only extension of V to F*. So,

G"(V*) = {0 € G(F*,F) : (V) = V*} = G(F*, F).
Hence, the fixed field of G"(V*) is F, i.e. F" = F.

(D) Let V¥ be another extension of V to IF* and p € G(IF*, IF) such that p(V*) =
V’S. Then
pG" (VP =GNV

and
p(Fh(V.S)) — Fh(V/S).
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Proof Let o € G"(V*). Then
pa(p™ (V) = p(a(V) = p(V*) = V"

Thus,
pG"(Vp™h C G"(V").

By the same argument,
p~'G"(V*)p c GM(V).

Hence,
th(VS)p—l — Gh(V/S).

Now take x € F"(V*) and ¢ € G"(V"). There is a 7 € G"(V*) such that
o= prp~L. So,

a(p(x)) = p(r(p~ (p(x)))) = p(T(x)) = p(x).

Thus, p(F*(V*)) c F"(V’). Similarly, we prove that p~'(F"(V")) c F*V*).
Hence, p(F"(V*)) = F(V").

(E) Let (Fy, V) be a Henselian extension of (I, V). Then there is an F-embedding
from (F", V") into (Fy, V).

Proof By Corollary C.6.4, (F° N F1, V; N F¥) is Henselian. Hence, replacing F;
by F* N F; and restricting V) to it, without any loss of generality, we assume that
F; C F’. Let V; be an extension of V; to F’. Since (F;, V;) is Henselian, V is
unique.
Note that V* is the unique extension of V" toTFs. So, both V* and V| are extensions
of V toF*. Hence, by Corollary C.5.11, thereisa p € G(IF*, IF) such that p(V*) = V.
Then
p(E") = p(F"(V*)) = F"(V}) =F} =F,. *)

The second equality holds by (D) and the last one by (C).
Now
p(V") = p(V* NF" = p(V*) N p(F") = V{ NFy = V.

(F) The embedding p obtained in (E) is unique.

Proof Let 7 : (F", V") — (F,, V}) be another F-embedding. We need to show that
T = p|F". We extend 7 to an F-automorphism of . Denote the extension by T itself.
(Extend 7 to F and then observe that 7(F*) = F*.)

We are required to show that p~! o 7|F" = id|F". But F" is the fixed field of
G"(V*). Hence, suffices to show that p~! o 7 € G"(V?),ie. p~ (7(V*)) = V°.
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Now 7(V") c Vi C V; and since V" C V¢, 7(V") C 7(V*). Since
(F", V") Henselian, so is (7(F"), 7(V")). Hence, 7(V*) = Vi = p(V?). Thus, p’1
(T(V%)) =V

(G) Let (', V') be a Henselization of (IF, V). Then there exists an extension V*
of V to IF* such that (F, V) = (F", V).

Proof Since there is a F-isomorphism from F” onto F' and F" C F*, ' C F*. Let
V* be the unique extension of V' to F*. We have

G"V%) ={oc € GF*,F): o(V*) = V*} D GF*, F).

If7e GE,F), 7(V)Y=V' C V5. As V' C V5, V' = 7(V') C 7(V?). So, both
VS and 7(V?¥) are extensions of V'. Since (', V') is Henselian, 7(V*) = V%))
By Theorem B.1.9, the above inclusion implies that

F'(V*) = F(G"(V*)) C F(G(F*,F)) =F.

As proved earlier (F", V") is a Henselization of (F, V) and so is (F’, V').

Let i : (F"(V*), V") < (F,V’) be the inclusion map and p : (F', V') —
(F", V) is an embedding. So, i o p : (F/, V') — (F', V') is an embedding. Hence,
by uniqueness, i o p = idp . Hence, the two Henselizations are the same.

We have thus proved the following theorem.

Theorem C.7.1 Every valued field (F,V) admits a Henselization and every
Henselization of (F, V) is of the form (F", V') for some extension V* of V to F°.

An extension (IF,, V) of (IF, V) is called an immediate extension of (F;, Vy) if
the following two conditions are satisfied:

1. Vx e oAy e Vilx —y € Mp).
2. Vx e Py e Fi(x-y~ ! € V).

Clearly, the first condition can be relaxed to Vx € V,3y € F;(x —y € M;). There
is a canonical embedding ;" < [F7". The first condition says that this map is onto.
So,f =[F; :F{T=1.

The second condition says thatif ', = F>'/V,* and 'y = I}/ V,* are correspond-
ing value groups, then the canonical embedding I'j < T, is an isomorphism. Thus,
e=[I'; : '] = 1. Let v, be a compatible valuation on [F,. The second condition is
equivalent to the statement Vx € o3y € F(v2(y) = v2(x)).

Our next result states that the Henselization (F”, V") is an immediate extension
of (F, V).
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Proposition C.7.2 Let (N, Vi) be a finite, normal, separable extension of (F, V).
Suppose
H = {0’ € G(N, IF) . O'(Vl) = V]}

and . = F(H), the fixed field of H. Then (IL, Vi NL) is an immediate extension of IF.

Proof Let Vi, ..., V,, be all the extensions of V to Nand V/ = V; N L. Then
Observation 1. Vi > 1(V| # V/).
Proof Suppose there exists ani > 1 such that V/ = V/. So, V| and V; are extensions

to N of a valuation subring of L. Hence, there exists a 0 € G(N, L) such that
o(Vy) =V; # V. But G(N, L) = H. We have arrived at a contradiction.

Step 1. Let x € V|. Set R = N;V/. By Chinese remainder theorem (Theorem
C.5.7), there exists ay € R C L such that x —y € M| and y € M; forall i > 1.
If y € F, we have verified the first condition for x. So, assume that y ¢ F. Let
Y = Y1, Y2, ..., Y, be all the roots of the minimal polynomial of y over F. Then
Y1, - - ., Yp are distinct.

Observation 2. Vj > 1(y; € M)).

Letj > lando € G(N, F) be suchthat o(y;) = y; # y1.So,0 ¢ G(N,L) = H.
So, 0~! ¢ H. Therefore, V| # o~'(V;) = V; for some i. Hence, Yy = o(y1) €
o(M;) =M.

Takez=y;+---+y, € F.Thenx —z=x—y;) —yo — - — yu € M.

Step 2. Let w be a valuation on L and x € L. Then there exists a y € [F such that
W) = w(y).
Proof By Chinese remainder theorem (Theorem C.5.7), there exists a 3 € R such
that 3 — 1 € M) and B € M; for all i > 1. Since M, is proper, it follows that
B € Vi \ M. Hence
w(B) =0. (C.1)

Ifre H=GN,L), 7(8) = 5. Hence,
V7 € Hw(T(B) = w(B) = 0). (C.2)

Now let 7 € G(N,F) \ H. Get i > 1 such that 7(V;) = V;. Then 7(M;) = M.
Hence, w(7(3)) > 0. Thus,

V7 e G(N,IF) \ Hw(r(8)) > 0). (C.3)

Fix an x € L*. We now make our final observation to complete the proof.
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Observation 3. 3k > O¥7 € G(N, F) \ H(w(3*x) # w(r(3*x))).

By (1), for every positive integer k, w(3*x) = w(x). Also, since the value group
is torsion-free, by (2), for positive integers k, [

w(T(B%) = w(T(B'x) = kw(1(B) = lw(T(B) = k = L.

So, w(B*x) = w(x) = w(r(B*x)) for at most one positive integer k. Hence, our
observation follows because G (N, F) is finite.

Now take z = #*x € L*. Then w(z) = w(x). If z € F, we are done. Otherwise,
let
f@O =1"+an """+ +ait +a

be the minimal polynomial of z over F and z = zy, . . ., z,, be all the roots of f which
are distinct and belong to N.
Now let j > 1 and 7 € G(N,F) be such that 7(z;) = z; # z;. Then, 7 ¢
G(N,LL) = H. Thus
Vj > H(w(z1) # w(z)). (C4)

First assume that there is no j > 1 such that w(zj) < w(z;). ThenVj > 1(w(z1) <
w(zj)). Since w is a valuation,

wx) =w@) =w@ + -+ 7)) =w(—ap).

We then take y = —a;. In the other case, let z;,, ..., z;, be all the z; such that
w(zj) < w(z1). Since w is a valuation, it follows that

w(ay) = w(tz, ...z,)

and
w(@r+1) = w(Fz1 - gy ---Z,)-

So,y = “'a—f‘ has the desired properties. (I
Theorem C.7.3 (F", V") is an immediate extension of (F, V).
Proof Take any x € " \ F. Then F[x] is a finite extension of F and

x e Flx] CF" C F.

Let K be the splitting field of the minimal polynomial f of x over F. Then K is a
finite, separable, normal extension of [F. Set

H={reGKTF): (V' NK) =V NK}.



Appendix C: Valued Fields 277

Since x € F" N K, by the last proposition, our result will be proved if we show the
following:

Main Step. F'NK = F(H).
Proof We have G = {0 € G(F*,F) : 6(V*) = V*}.
Claim. H = {0|K : 0 € G"}.
Assume the claim for the time being. Then
F(H)=FGHNK=F'"nK.

Proof of the claim. Now K is the splitting field of f. Suppose f(«) = 0. Then,
for every 0 € G(F*, F), f(o(a)) = o(f(a)) = 0. Further, if o(V*) = V*, we get
that (V¥ N K) C V¥ N K. Since both V* N K and o (V* N K) are extensions of V
to K and K is an algebraic extension of I, o(V* N K) = V* N K (Lemma C.5.6).
Hence,

H>{o|K:0o e G"}.

For the opposite inclusion, let 7 € H and o an F-automorphism of F* extending
7. Then o(V?¥) and V* are extensions of V¥ N K. So, there exists a p € G(F*, K)
such that p(a(V*)) = V?. In other words, po o € G" and

porK=pKooglK=idgor=r.
O

A valued field (F, V) is called algebraically maximal if it has no proper, algebraic,
immediate extension.

Corollary C.7.4 If (IF, V) is algebraically maximal, it is Henselian.

The converse of this corollary is not true. A Henselian field will be algebraically
maximal under an additional condition which we describe now.

A valued field (IF, V) with valuation v : F* — T is called finitely ramified if one
of the following two conditions are satisfied.

1. char(F~) =0.
2. char(F~) = p > 0 and there are only finitely many elements of I" between 0 and

v(p).

Remark C.7.5 If (IF}, V) is an immediate extension of (F, V'), then (I, V) is finitely
ramified if and only if (I, V}) is finitely ramified. It follows that if (IF, V) is finitely
ramified, then its Henselization (F", V") is also finitely ramified.
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Proposition C.7.6 Let (F, V) be a finitely ramified valued field. Then

(a) char(F) = 0.
(b) If char(F~) = p > O, then for every positive integer n, there are only finitely
many elements between 0 and v(n).

Proof If char(F~) = 0, then char(F) = 0. Now suppose char(F~) = p > 0. If
possible, suppose char(F) > 0. But then char(F) = p, i.e. p = 0 in F. Hence.
v(p) = oo. So, there are infinitely many elements of I" between 0 and v(p). This
contradicts that (IF, V) is finitely ramified. Therefore, the characteristic of F must
be 0.

Now assume that char(F~) = p > 0 and n = p*m be a positive integer with
p fm.So, m # 0 in F~ implying that m ¢ M. So, v(m) = 0. Hence, v(n) = kv(p).
Since there are only finitely many elements of I" between 0 and v(p), we now see
that there are only finitely many elements of I" between 0 and v(n). (]

Proposition C.7.7 The following statements are equivalent.

(i) If (F, V) is finitely ramified, then (F", V") is algebraically maximal.
(ii) Every finitely ramified, Henselian valued field (F, V) is algebraically maximal.

Proof (i) implies (ii): If (F, V) is Henselian, (F, V) = (F", V"). Thus, (ii) follows
from (i).

(ii) implies (i): Assume that (I, V) is finitely ramified. Since (F", V") is an imme-
diate extension of (F, V), (F", V) is also finitely ramified and Henselian. Hence,
(F", V) is algebraically maximal by (ii). O

Theorem C.7.8 Every finitely ramified, Henselian valued field (IF, V) is alge-
braically maximal.

Proof Let (Fy, V;) be a finitely ramified, Henselian valued field that has a proper
immediate algebraic extension, say (IF,, V,). We shall arrive at a contradiction. With-
out any loss of generality, we assume that I, = IF{[y] for some y € [, \ Fy. Let I3
be the splitting field of the minimal polynomial f of y over ;. Let V3 be an extension
of V, to [F5 and v a compatible valuation on [F3.

Lety = yi, ..., Y, be all the roots of f. So, >".y; € ;. For each i, fix a o; €
G (IF5, Fy) such that 0;(y) = y;.

Observation 1. Vb € FVi(v(o;(y) — b) = v(y — b)).

Leto; € G(IF3, IF{). Note that o;(V3) and V; are extensions of V| to [F3 which is an
algebraic extension of [F;. Since (I, V) is Henselian, it follows that o;(V3) = V3.
Hence, as observed earlier, v o o; = v. Therefore, for any b € I,

(v(oi(y) —b) = v(oi(y — b)) = v(y — b)).
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Seta = &b,

Observation 2. 3b € F{(v(y — a) + v(n) < v(y — b)).

Set by = a. Since y € F, \ Fy and by € Fy, y — by € F5. Since (F», V») is an
immediate extension of (Fy, V), there exists a ¢ € F such that (y — by)c! € V.
So, v((y — bo)c™") = v(y — by) — v(c) = 0. Thus, v(y — by) = v(c).

Again since (IF,, V,) is an immediate extension of (IFy, V;), there exists ad € V;

such that (y — by)c™' —d € M,. Therefore, v((y — bo)c™' —d) > 0. Set b; =
by + c¢d € F;. Then

vy = bo) = v(e) < vie((y —bo)e™ —d)) = v(y —by).
Proceeding similarly we show that there exists a sequence {b,} in [F; such that
vy —bo) <v(y—0b) <vly—b) <....
Since there are only finitely many elements of I" between 0 and v(n), it follows that
v(y —a) +vn) < vy —b)
for some k.

Using these two observations, we now show a contradiction. Fix a b € [F; as in
observation 2. By Observation 1,

v(y —b) = U(Z(Ui(y) - b)) =v(n(a — b)) =v(a —b) +v(n).
So, by observation 2,
vy —a)+vn) <v(y—b) <via—b)+vn).

Hence,
v(y —a) <v(a—D>). (C.5)

By observation 2,
vy —a) < v(y —b). (C.6)

By (1) and (2),
vy —a) <v({(y—b) —(a—b)) =v(y —a),

a contradiction. O
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Proposition C.7.9 Let (K, V, v) be a Henselian valued field with value group T such
that char(K™) = 0. Then for every countable subfield ' of K there is a countable
extension F" of F in K such that v(F’) is pure in T, i.e. T'/Jv(F’) is torsion-free.

Proof Set
I"={yel :3dm> 1(my € v(F))}.

Since I is ordered, it is torsion-free. Therefore, for every § € v(FF) and every m > 1,
there exists at most one v € I' such that my = §. Since v(F) is countable, it follows
that I'" is countable. Also, note that I' is pure in I". Enumerate I'" = {~, : n € K}.

Inductively we shall define a sequence {F,,} of countable subfields of K such that
Fo = I and for every n, 7, € v(F,4+1) C I"and F,, C F,4,. Then, F' = U,F, will
have all the desired properties.

Assume that we have defined [F,. Get an x € K* such that v(x) = ~,. By the
definition of I/, there exists an m > 1 such that m, € v(IF). Leta € F* be such that

v(a) = my, = v(x™).
Setd = % € V*, V the valuation subring of K. We first show that
F,(d)” =F, (Id]) and v(F,(d)) = v(Fy).
Case 1. [d] is transcendental over F".

If d were algebraic over F,, clearly it would be algebraic over V NF,,. But then [d]
would be algebraic over IF;,". Thus, d is transcendental over IF,,. We also have v(d) = 0.
By Theorem C.2.2, in this case, F,,(d)™ = F, ([d]) and v(F,(d)) = v(IF,,).

Case 2. [d] is algebraic over [

Let
fOO) =X"+au X"+ +aX +ae (VNF,)X]

be an irreducible polynomial such that
) = X"+ [ap]X" 4+ [a1]X + [ao]

is the minimal polynomial of [d] over F,,. We then have f(d) € M. So, v(f(d)) > 0.
Also, f'(d) € V \ M. As K is Henselian, by Hensel’s lemma (Theorem C.4.5), f has
aroot in V with residue class [d]. We replace d by one such root and denote it by d
itself.

We clearly have

[F,[[d]] : F,] = degree(f™) = degree(f) = [F,(d) : F,].
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Now note that F'[[d]] C F,(d)”. Hence, by Chevalley’s fundamental inequality
(Corollary C.5.3),

degree(f™) < [F[ld]] : F 1[v(F.(d)) : v(F,)]
< [Fu(@)™ : Fv(F,(d)) = v(F,)]
< [Fn(d) : F]
= degree(f™).

This implies that F,,(d)™ = F, ([d]) and v(F,(d)) = v(F,) in this case also.
Now consider the polynomial

m

92 =7" - e vzl
ad

Since char(K™) = 0, v(¢’(1)) = v(m) = 0. Since % and d have the same residue,
v(%m —d) > 0. Therefore,

v(g(l)):v(l—ﬁ)=v(x—m—d)—v(d)=v(x—m—d) > 0.
ad a a

Thus, by Hensel’s lemma (Theorem C.4.5), g has a root z € V* with residue class
1. In particular, v(z) = 0.

We define F,,, = F,(d, ’Z—‘).

So, F, is algebraic over F,(d). Hence, by Theorem C.5.4, v(F,) is torsion
over v(IF,(d)) = v(F,) C I''. Therefore, v(FF,;1) C I'". Further,

Yo =v(x) =V ()Z—C) e v(F,41). 0
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