
Many-Objective Optimization for Virtual
Machine Placement in Cloud Computing

Fabio López-Pires and Benjamín Barán

Abstract Resource allocation in cloud computing datacenters presents several
research challenges, where the Virtual Machine Placement (VMP) is one of the
most studied problems with several possible formulations considering a large num-
ber of existing optimization criteria. This chapter presents themain contributions that
studied for the first time Many-Objective VMP (MaVMP) problems for cloud com-
puting environments. In this context, two variants of MaVMP problems were formu-
lated and different algorithms were designed to effectively address existing research
challenges associated to the resolution of Many-Objective Optimization Problems
(MaOPs). Experimental results proved the correctness of the presented algorithms,
its effectiveness in solving particular associated challenges and its capabilities to
solve problem instances with large numbers of physical and virtual machines for: (1)
MaVMP for initial placement of VMs (static) and (2) MaVMP with reconfiguration
of VMs (semi-dynamic). Finally, open research problems for the formulation and
resolution of MaVMP problems for cloud computing (dynamic) are discussed.

1 Introduction

This chapter presents contributions related to the Virtual Machine Placement (VMP)
problem from a Many-Objective Optimization perspective. Provider-oriented VMP
problems can be enunciated as the process of assigning physical machines (PMs)
to host requested virtual machines (VMs) in multi-tenant environments. Depending
on particular requirements of a cloud computing infrastructure, the VMP problem
could be formulated as several different optimization problems, considering several
different objective functions. It is important to notice that these requirements may
change over time and be defined as dynamic resource management policies. These

F. López-Pires (B)
Itaipu Technological Park, Hernandarias, Paraguay
e-mail: fabio.lopez@pti.org.py

B. Barán
National University of Asunción, San Lorenzo, Paraguay
e-mail: bbaran@pol.una.py

© Springer Nature Singapore Pte Ltd. 2017
S. Chaudhary et al. (eds.), Research Advances in Cloud Computing,
DOI 10.1007/978-981-10-5026-8_12

291

292 F. López-Pires and B. Barán

particular considerations open different possible environments and formulations for
theVMPproblem.As a previouswork by the authors,more than 60different objective
functions were identified in the specialized VMP literature [1, 2].

In real-world cloud computing infrastructures, the resolution of VMP problems
could require the optimization of several objective functions in practical cases. This
particular requirement could be clearly noted taking into account the large number of
already studied objective functions, which could be formulated considering different
possible approaches for modeling each objective function. In this context, Cloud
Service Providers (CSPs) might be faced with the need to simultaneously optimize
several conflicting objective functions when solving VMP problems.

It is important to consider that optimization problems simultaneously optimiz-
ing more than three objective functions are commonly known as Many-Objective
Optimization Problems (MaOPs), as defined in [3]. In this context, there are several
current research challenges for the resolution of MaOPs [4, 5].

Many-ObjectiveOptimization is still considered anunexploreddomain in resource
management of cloud computing infrastructures [6], although there are already a few
many-objective formulations proposed for the VMP problem in the specialized lit-
erature [7–9], as presented in this chapter.

The following sections present contributions and research challenges for different
variants of Many-Objective VMP (MaVMP) problems, such as: (1) MaVMP for
initial placement of VMs (static), (2) MaVMP with reconfiguration of VMs (semi-
dynamic) and (3) MaVMP for cloud computing environments (dynamic).

2 Many-Objective VMP for Initial Placement of VMs

Considering that no many-objective formulation for the VMP problem was pre-
sented in the literature [2, 9], basic static environments such as initial placement
of VMs were first studied [8]. This section presents a general many-objective opti-
mization framework which is able to consider as many objective functions as needed
when solving a MaVMP problem for initial placement of VMs (see Sect. 2.1). As an
example of utilization of the presented framework, a first formulation of a MaVMP
problem is presented, considering the simultaneous optimization of the following
five objective functions: (1) power consumption, (2) network traffic, (3) economical
revenue, (4) quality of service (QoS) and (5) network load balancing.

In the formulation of the MaVMP for initial placement of VMs to be presented in
Sect. 2.2, a multilevel priority is associated to each VM, representing a Service Level
Agreement (SLA) considered in the placement process, in order to effectively priori-
tize important VMs (e.g., in peaks situationswhere the total requestedVMs resources
are higher than available PMs resources). To solve the formulated MaVMP for ini-
tial placement of VMs, an interactive Memetic Algorithm (MA) was proposed (see
Sect. 2.3) considering particular challenges associated to the resolution of a MaVMP
problem, as the potentially unmanageable number of non-dominated solutions that
compose a Pareto set approximation Pknown.

Many-Objective Optimization for Virtual Machine Placement in Cloud Computing 293

2.1 Many-Objective Optimization Framework

The general many-objective optimization framework for the VMP problem proposed
in [8] considers that as the number of conflicting objectives of aMaVMPproblem for-
mulation increases, the total number of non-dominated solutions normally increases
(even exponentially in somecases), being increasinglydifficult to discriminate among
solutions using only the dominance relation [4]. For this reason, it is recommended
the utilization of lower and upper bounds associated to each objective function fz(x),
where z ∈ {1, . . . , q} (Lz ≤ fz(x) ≤ Uz), to be able to iteratively reduce the number
of possible non-dominated solutions of Pknown.

A formulation of aMaVMP for initial placement ofVMs, based onmany objective
functions and constraints to be detailed in Sect. 2.2, may be written as:

Optimize:

y = f (x) = [f1(x), f2(x), f3(x), . . . , fq(x)] typically with q > 3, (1)

where for example:

f1(x) = power consumption;

f2(x) = inter-VM network traffic;

f3(x) = economical revenue;

f4(x) = quality of service;

f5(x) = network load balancing;

.

.

.

fq(x) = any other considered objective function.

(2)

subject to constraints as:

e1(x) : unique placement of VMs;

e2(x) : assure provisioning of highest SLA;
e3(x) : processing resource capacity of PMs;

e4(x) : memory resource capacity of PMs;

e5(x) : storage resource capacity of PMs;

e6(x) : f1(x) ∈ [L1,U1];
e7(x) : f2(x) ∈ [L2,U2];
e8(x) : f3(x) ∈ [L3,U3];
e9(x) : f4(x) ∈ [L4,U4];
e10(x) : f5(x) ∈ [L5,U5];

...

er(x) : any other considered constraint.

(3)

294 F. López-Pires and B. Barán

2.2 Problem Formulation

A few articles have already proposed formulations of a pure multi-objective VMP
problem (MVMP), considering the simultaneous optimization of at most three objec-
tive functions [10, 11]. A previous work of the authors proposed for the first time a
MaVMP formulation [8]. This section presents a formulation of a MaVMP problem
considering the following five objective functions to be simultaneously optimized:
(1) power consumption, (2) network traffic, (3) economical revenue, (4) quality of
service and (5) network load balancing. In the presented MaVMP formulation, a
multilevel priority is associated to each VM considered in the placement process in
order to effectively prioritize VMs. Formally, the presented offline (static) MaVMP
problem for initial placement of VMs can be enunciated as [8]:

Given a set of PMs, H = {H1,H2, ...,Hn}, a network topology G (as illustrated in
Figure 1) and a set of VMs, V = {V1, V2, ..., Vm}, it is sought a correct placement of
the set of VMs V into the set of PMs H satisfying the r constraints of the problem and
simultaneously optimizing all q objective functions defined in this formulation (as
energy consumption, network traffic, economical revenue, QoS and load balancing
in the network), in a pure many-objective context.

2.2.1 Input Data

The presented formulation of the MaVMP problem for initial placement of VMs
models a virtualized datacenter infrastructure, composed byPMs,VMsand a network
topology that interconnects PMs.

l5 l6

H1 H2 H3 H4

l1 l2 l3 l4

AcƟve paths of M
m13 = {l1, l5, l6, l3}
m14 = {l1, l5, l6, l4}
m34 = {l3, l4}

V3 V1 V2

100 Mbps 100 Mbps 100 Mbps 100 Mbps

1000 Mbps 1000 Mbps

V4

Total traffic per path
m13 = 4 Mbps
m14 = 2 Mbps
m34 = 4 Mbps

Fig. 1 Example of placement in a virtualized datacenter infrastructure, composed by PMs, a net-
work topology and VMs

Many-Objective Optimization for Virtual Machine Placement in Cloud Computing 295

The set of PMs is represented as amatrixH ∈ R
n×4. Each PMHi is represented by

processing resources of CPU (as ECU),1 RAM [GB], storage [GB], and a maximum
power consumption [W] as:

Hi = [Hcpui,Hrami,Hhddi, pmaxi], ∀i ∈ {1, ..., n} (4)

where

Hcpui: Processing resources of Hi;
Hrami: RAM memory resources of Hi;
Hhddi: Storage resources of Hi;
pmaxi: Maximum power consumption of Hi;
n: Number of PMs.

It should be mentioned that the proposed notation is general enough to include
additional characteristics associated to each PM such as Graphic Processing Units
(GPUs) or Network Interface Cards (NICs) just to cite a few.

As shown in the example of Fig. 1, a network topology of a virtualized datacenter
is represented as:

G: Network topology;
L: Set of links la in G. For simplicity, links are assumed as semi-duplex in what

follows;
M: Set of paths for all-to-all PM network interconnections;
K : Capacity set of the communication channels, typically in [Mbps].

The set of VMs requested by customers is represented as a matrix V ∈ R
m×5.

Each VM Vj requires processing resources of CPU (as ECU) (see Footnote 1), RAM
[GB], and storage [GB], providing an economical revenue Rj [$] to the provider.

A SLA is also assigned to each VM to indicate its priority level. Consequently, a
Vj is represented as:

Vj = [Vcpuj, V ramj, Vhddj,Rj, SLAj], ∀j ∈ {1, ...,m} (5)

where

Vcpuj: Processing requirements of Vj;
V ramj: Memory requirements of Vj;
Vhddj: Storage requirements of Vj;
Rj: Economical revenue for locating Vj;
SLAj: Service Level Agreement SLAj of a Vj. If the highest priority level is s, then

SLAj ∈ {1, . . . , s};
m: Number of VMs.

1http://aws.amazon.com/ec2/faqs.

http://aws.amazon.com/ec2/faqs

296 F. López-Pires and B. Barán

The traffic between VMs is represented as a matrix T ∈ R
m×m. Each Vj requires

network communication resources [Mbps] to communicate with other VMs. The
network traffic between requested VMs is represented as:

Tj = [Tj1,Tj2, ...,Tjm], ∀j ∈ {1, ...,m} (6)

where

Tjk: Average network traffic between Vj and Vk [Mbps]. Note that it is considered
that Tjj = 0.

Figure1 presents an example of a virtualized datacenter, composed by 4PMs (H =
{H1,H2,H3,H4}) and a network topology considering six physical network links
(L = {l1, l2, l3, l4, l5, l6}). In this example, the set of capacity for each communication
channel is K = {100, 100, 100, 100, 1000, 1000} [Mbps]. Using shortest path, a
path m12 between H1 and H2 uses links {l1, l2}, i.e., m12 = {l1, l2}. Analogously,
m13 = {l1, l5, l6, l3} and m14 = {l1, l5, l6, l4}, as shown in Fig. 1. All four requested
VMs of Fig. 1 are correctly located into one of the available PMs.

2.2.2 Output Data

Apossible solution x indicates a complete placement of eachVMVj into the necessary
PMs Hi, considering the many-objective optimization criteria applied. A placement
(or solution x to the proposed VMP problem) is represented as a matrix P = {Pji}
of dimension (m x n), where Pji ∈ {0, 1} indicates if Vj is located (Pji = 1) or not
(Pji = 0) for execution on a PM Hi (i.e., Pji : Vj → Hi).

2.2.3 Constraint 1: Unique Placement of VMs

A VM Vj should be executed on a single PM Hi or alternatively, it could be not
located into any PM if the associated SLA is not the highest level of priority s (i.e.,
SLAj < s). This constraint is mathematically formulated as:

n∑

i=1

Pji ≤ 1 ∀j ∈ {1, ...,m} (7)

where

Pji: Binary variable equals 1 if Vj is located on Hi; otherwise, it is 0.

Many-Objective Optimization for Virtual Machine Placement in Cloud Computing 297

2.2.4 Constraint 2: Assure SLA Provisioning

A VM Vj with the highest level of SLA (i.e., SLAj = s) must be mandatorily located
to run on a PM Hi. Consequently, this constraint is expressed as:

n∑

i=1

Pji = 1 ∀j such that SLAj = s (8)

2.2.5 Constraints 3–5: Physical Resources Capacities of PMs

A PM Hi must be able to meet the requirements of all VMs Vj that are located to
run on Hi. In this chapter, it is not considered the overbooking of resources [12].
Consequently, these constraints can be mathematically formulated as:

m∑

j=1

Vcpuj × Pji ≤ Hcpui (9)

m∑

j=1

V ramj × Pji ≤ Hrami (10)

m∑

j=1

Vhddj × Pji ≤ Hhddi (11)

∀i ∈ {1, ..., n}, i.e., for all physical machine Hi.

2.2.6 Adjustable Constraints

The work presented in [8] proposed the utilization of lower and upper bounds asso-
ciated to each objective function to reduce the number of possible solutions of the
Pareto set approximation Pknown, when needed by a decision-maker. Consequently,
this set of adjustable bounds can be formulated as the following constraints:

fz(x) ∈ [Lz,Uz], ∀z ∈ {1, . . . , q} (12)

A VMP problem can be defined as a many-objective optimization problem, when
considering the simultaneous optimization of more than three objective functions.
As a concrete example, this chapter proposes the simultaneous optimization of the
following five objective functions.

298 F. López-Pires and B. Barán

2.2.7 Objective Function 1: Power Consumption Minimization

Based on [13] formulation, the work presented in [8] also proposes the minimization
of power consumption, represented by the sum of the power consumption of each
PM Hi:

f1(x) =
n∑

i=1

((pmaxi − pmini) ×Ucpui + pmini) × Yi (13)

where

f1(x): Total power consumption of the PMs;
pmini: Minimum power consumption of Hi. It should be noted that pmini ≈

pmaxi × 0.6 according to [13];
Ucpui: Utilization ratio of processing resources used by Hi;
Yi: Binary variable that equals 1 if Hi is turned on; otherwise, it is 0.

2.2.8 Objective Function 2: Inter-VM Network Traffic Minimization

Shrivastava et al. proposed in [14] the minimization of network traffic among VMs
by maximizing locality. Based on this approach, the work presented in [8] proposes
Eq. (14) to estimate network traffic represented by the sum of average network traffic
generated by each VM Vj, that is located to run on any PM, with other VMs Vk that
are located to run on different PMs.

f2(x) =
m∑

j=1

m∑

k=1

(Tjk × Djk) (14)

where

f2(x): Total network traffic among VMs;
Tjk: Average network traffic between Vj and Vk [Mbps]. Note that it is considered

that Tjj = 0.
Djk: Binary variable that equals 1 if Vj and Vk are located in different PMs; other-

wise, it is 0.

The traffic between two VMs Vj and Vk which are located on the same PM Hi

does not contribute to increase the total network traffic given by Eq. (14); therefore,
Djk = 0 if Pji = Pki = 1.

2.2.9 Objective Function 3: Economical Revenue Minimization

Based on [11], the work presented in [8] proposes Eq. (15) for the estimation of the
total economical revenue that a datacenter receives when supporting the requested

Many-Objective Optimization for Virtual Machine Placement in Cloud Computing 299

resources of its customers, represented by the sum of the obtained revenue of each
VM Vj that is located for execution on any PM.

f3(x) =
m∑

j=1

(Rj × Xj) (15)

where

f3(x): Total economical revenue for placing VMs;
Xj: Binary variable that equals 1 ifVj is located for execution on anyPM; otherwise,

it is 0.

2.2.10 Objective Function 4: QoS Maximization

In the work presented in [8], the QoS maximization proposes to locate the maximum
number ofVMswith the highest level of priority associated to the SLA.This objective
function is formulated in Eq. (16).

f4(x) =
m∑

j=1

(ĈSLAj × SLAj × Xj) (16)

where

f4(x): Total QoS figure for a given placement;
Ĉ: Constant, large enough to prioritize services with a larger SLA over the ones

with a lower SLA.

2.2.11 Objective Function 5: Network Load Balancing Optimization

Thework presented in [8] calculates the total amount of network traffic going through
a semi-duplex link la as:

Tla =
n∑

i=1

n∑

i′=1

Faii′ ×
⎛

⎝
m∑

j=1

m∑

j′=1

Pji × Pj′i′ × Djj′ × Tjj′

⎞

⎠ (17)

where:

Tla: Total amount of traffic going through link la [Mbps];
mii′ : Network path between Hi and H ′

i ;
Faii′ : Binary variable that equals 1 if la ∈ mii′ ; otherwise, it is 0.

300 F. López-Pires and B. Barán

Inspired in the formulation presented in [15], the work presented in [8] calculates
the Maximum Link Utilization (MLU) as:

MLU = max
∀la∈L

(
Tla
Cla

)
(18)

where:

MLU : Maximum Link Utilization;
Cla: Channel capacity of link la [Mbps].

In [8], the load balancing optimization of the network is formulated as the mini-
mization of the MLU, denoted as:

f5(x) = MLU (19)

2.3 Interactive Memetic Algorithm for MaVMP

A Memetic Algorithm (MA) could be understood as an Evolutionary Algorithm
(EA) that in addition to the standard selection, crossover, and mutation operators
of most Genetic Algorithms (GAs) includes a local optimization operator to obtain
good solutions even at early generations of an EA [16]. In the VMP context, it is
valuable to obtain good quality of solutions in short time. Consequently, a MA could
be considered as a promising solution technique for VMP problems.

The work presented in [8] proposes an interactive MA for solving the VMP
problem in amany-objective context, considering the proposed formulationpresented
in Sect. 2.2 to simultaneously optimize the five objective functions presented in the
previous section. The proposed algorithm is extensible to consider as many objective
functions as needed while only minor modifications may be needed if the number of
objective functions changes.

It was shown in [5] that many-objective optimization using Multi-Objective Evo-
lutionaryAlgorithms (MOEAs) is an active research area, havingmultiple challenges
that need to be addressed. The interactive MA presented in this section is a viable
way to solve a MaVMP problem, including desirable ranges of values for the objec-
tive functions in order to interactively control the possible huge number of feasible
non-dominated solution. The interactive MA presented in Algorithm 1 is based on
the MA proposed in [11] and works as described next:

At step 1, the algorithm verifies that the problem is solvable (considering only
VMs with SLAj = s) to continue its execution. If the problem could not be solved,
the algorithm returns an appropriate error message. If the problem is solvable, the
algorithm continues with step 2, generating a set of aleatory population P0, whose
candidate solutions are repaired at step 3 to ensure that P0 contains feasible solutions
only. Then, the algorithm tries to improve solutions at step 4 using a local search.With
the obtained non-comparable solutions, the first Pareto set approximation Pknown is

Many-Objective Optimization for Virtual Machine Placement in Cloud Computing 301

Algorithm 1: Interactive Memetic Algorithm
Data: datacenter infrastructure (see Section2.2.1)
Result: Pareto set approximation Pknown

1 check if the problem has a solution
2 initialize set of solutions P0
3 P′

0 = repair infeasible solutions of P0
4 P′′

0 = apply local search to solutions of P′
0

5 update set of solutions Pknown from P′′
0

6 t = 0;Pt = P′′
0

7 while stopping criterion is not met do
8 Qt = selection of solutions from Pt ∪ Pknown
9 Q′

t = crossover and mutation of solutions of Qt
10 Q′′

t = repair infeasible solutions of Q′
t

11 Q′′′
t = apply local search to solutions of Q′′

t
12 update set of solutions Pknown from Q′′′

t
13 increment t
14 if interaction is needed then
15 ask for decision-maker modification of (Lz and Uz)
16 end
17 Pt = non-dominated sorting from Pt ∪ Q′′′

t
18 end
19 return Pareto set approximation Pknown

generated at step 5. After initialization at step 6, evolution begins (iterations between
steps 7 and 18). The evolutionary process follows the same behavior: solutions are
selected considering the union of Pknown with the evolutionary set of solutions (or
population) also known as Pt (step 8), crossover and mutation operators are applied
as usual (step 9), and solutions are eventually repaired, as there may be infeasible
solutions (step 10). Improvements of solutions may be generated at step 11 using
local search in the evolutionary population Pt (local optimization operators). At step
12, the Pareto set approximation Pknown is updated (if applicable); while at step 13
the generation counter is updated. At step 15, the decision-maker adjusts the lower
and upper bounds if it is necessary, while at step 17 a new evolutionary population
Pt is selected. The evolutionary process stops according to defined stopping criterion
(as maximum number of generations), returning at the end the set of found non-
dominated solutions Pknown at step 19.

2.3.1 Population Initialization

Initially, a set of solutions P0 is randomly generated. Each possible solution (or
individual) x is represented as a chromosome C = [C1,C2, . . . ,Cm] (matrix P in
Sect. 2.2.2). The possible values that can take each Ck for VMs with the highest
value of SLAj (SLAj = s) are in the range [1, n]. On the other hand, for VMs Vj

with SLAj < s, Ck can take values in the range [0, n]. Within these ranges defined
by the SLAj of each Vj, the algorithm ensures that all VMs Vj with the highest level

302 F. López-Pires and B. Barán

of priority will be located for execution on a PM Hi, while for a VM Vj with lower
levels of priority SLAj, there is always a probability larger than 0 that it may not be
located for execution in any PM.

2.3.2 Infeasible Solution Reparation

With a random generation at the initialization phase (step 2 of Algorithm 1) and/or
solutions generated by genetic operators (step 9 of Algorithm 1), infeasible solutions
may appear, i.e., the resources required by the VMs allocated on particular PMs
could exceed available resources, or at least one objective function may not meet
adjustable constraints.

Repairing infeasible solutions (steps 3 and 10 of Algorithm 1) may be done in
two stages: first, in the feasibility verification process, the population is classified in
two classes: feasible or infeasible (Algorithm 2). Next, in the process of repairing
infeasible solutions (Algorithm 3), the infeasible solutions are repaired in threeways:
(1) migrating some VMs to an available hardware, (2) turning on some PMs and then
migrating VMs to them, or (3) turning off some VMs with SLAj < s.

2.3.3 Local Search

With a population composed by feasible solutions only, a local search is performed
(steps 4 and 11 of Algorithm 1) improving solutions found until then in the evolu-
tionary population. The local search pseudocode is presented in Algorithm 4.

For each individual in the evolutionary populationPt , the interactiveMAproposed
in [8] attempts to optimize a solution with a local search (step 2 of Algorithm 4).

Algorithm 2: Feasibility Verification
Data: set of solutions Pt
Result: set of feasible solutions P′

t
1 while there are solutions not verified do
2 feasible = true ; i = 1
3 while i ≤ n and feasible = true do
4 if solution does not satisfy constraints (3-5) then
5 feasible = false ; break
6 else
7 increment i
8 end
9 end

10 if feasible = false then
11 call Algorithm 3 (repair solution)
12 end
13 end
14 return set of feasible solutions P′

t

Many-Objective Optimization for Virtual Machine Placement in Cloud Computing 303

Algorithm 3: Infeasible Solutions Reparation
Data: infeasible solution
Result: feasible solution

1 feasible = false ; j = 1
2 while j ≤ m and feasible = false do
3 if it is possible then
4 migrate Vj to H ′

i (i
′ 	= i)

5 else
6 if SLAj 	= s then
7 turn off Vj on Hi
8 else
9 replace solution with another solution from Pknown

10 end
11 end
12 end
13 return feasible solution

Algorithm 4: Local Search
Data: set of feasible solutions P′

t
Result: set of feasible optimized solutions P′′

t
1 probability = random number between 0 and 1
2 while there are solutions not verified do
3 if probability < 0.5 then
4 Try to turn off all the possible Hi by migrating all the Vj assigned to H ′

i with available
resources (i′ 	= i) and then try to turn on all the possible Vj (using SLAj priority order)
assigning them to a Hi with available resources

5 else
6 Try to turn on all the possible Vj (using SLAj priority order) assigning them to a Hi

with available resources and then try to turn off all the possible Hi by migrating all
the Vj assigned to H ′

i with available resources (i
′ 	= i)

7 end
8 end
9 return set of feasible optimized solutions P′′

t

For this, with probability 1
2 , the algorithm tries maximizing the number of allocated

VMs with higher level of priority, locating all possible VMs that were not located
so far, increasing f3(x) (total economical revenue) and f4(x) (total quality of service)
(steps 3 to 5 of Algorithm 4). Additionally, also with probability 1

2 , the algorithm
tries minimizing the number of PMs turned on, directly reducing f1(x) (total power
consumption) (steps 6 to 8 of Algorithm 4). With the proposed probabilistic local
search method, a balanced exploitation of objective functions (economical revenue,
quality of service and power consumption) is achieved, as experimentally verified
with results presented in next section.

304 F. López-Pires and B. Barán

2.3.4 Fitness Function

The fitness function considered in the proposed algorithm is the one proposed in
[17]. This fitness defines a non-domination rank in which a value equal to its Pareto
dominance level (1 is the highest level of dominance) is assigned to each individual
of the population. Between two solutions with different non-domination rank, the
individual with lower value (higher level of dominance) is considered better.

To compare solutions with the same non-domination rank, a crowding distance
is used. Basically, a crowding distance finds the Euclidean distance (properly nor-
malized when the objectives have different measure units) between each pair of
solutions, based on the q objectives, in a hyper-dimensional space [17]. The solution
with higher crowding distance is considered better.

2.3.5 Variation Operators

The proposed interactive MA considers a Binary Tournament approach for selecting
individuals for crossover and mutation [18]. The crossover operator used in the
presented work is the single point cross-cut [18]. The selected individuals in the
ascending population are replaced by descendants individuals.

The work presented in [8] uses a mutation method in which each gene is mutated
with a probability 1

m , wherem represents the number of VMs. This method offers the
possibility of full uniform gene mutation, with a very low probability (but larger than
zero), which is beneficial to the exploration of the search space, reducing the prob-
ability of stagnation in a local optimum. The population evolution in the proposed
interactive MA is based on the population evolution proposed in [17]. A popula-
tion Pt+1 is formed from the union of the best known population Pt and offspring
population Qt , applying non-domination rank and crowding distance.

2.3.6 Many-Objective Considerations

Given that the number of non-dominated solutions may rapidly increase, an inter-
active approach is recommended. That way, a decision-maker can introduce new
constraints or adjust existing ones, while the execution continues learning about the
shape of the Pareto front in the process. For simplicity, the present work considers
lower and upper bounds associated to each objective function in order to help the
decision-maker to reduce interactively the potential huge number of solutions in the
Pareto set approximation Pknown, while observing the evolution of its corresponding
Pareto front PFknown to the region of his preference.

Many-Objective Optimization for Virtual Machine Placement in Cloud Computing 305

Table 1 Types of PMs considered in experiments. For notation see Eq. (4)

PM type Hcpu [ECU] Hram [GB] Hhdd [GB] pmax [W]

h1.small 4 16 150 440

h1.medium 180 512 10000 1000

h1.large 350 1024 10000 1300

2.4 Experimental Results

This section summarizes experimental results obtained by the proposed algorithm [8]
in carefully designed experiments to validate its effectiveness considering challenges
associated to the resolution of a MaVMP problem previously introduced.

First, Experiment 1 performed a quality evaluation of the solutions obtained by
the proposed algorithm against optimal solutions obtained with an exhaustive search
algorithm in two different scenarios. Next, Experiment 2 performed an evaluation
using lower and upper bounds associated to each objective function f (z) (Lz ≤
fz(x) ≤ Uz) to be able to converge to a manageable number of solutions in the Pareto
set approximation. Finally, Experiment 3 evaluates the proposed algorithm solving
instances of the problem with large numbers of PMs and VMs. For simplicity, all
experiments considered a datacenter infrastructure composed by PMs interconnected
in a simple two-tier network topology.

2.4.1 Experimental Environment

Different problem instances were proposed for the above-mentioned experiments
considering both homogeneous and heterogeneous hardware configurations of PMs,
as well as homogeneous and heterogeneous VMs instance types offered by Amazon
Elastic Compute Cloud (EC2).2 A detailed description of the hardware configuration
of the PMs and VMs instance types considered for the experiments is presented in
Tables1 and 2 respectively. Additionally, a general description of the considered
problem instances including its decision space size is presented in Table3.

The complete set of datacenter infrastructure input files used for the experiments
with the corresponding experimental results are available online.3

Algorithms considered in the experiments were implemented using ANSI C pro-
gramming language (gcc) and the source code is available online3. All the pre-
sented experiments were executed on a CentOS 6.5 Linux Operating System, with
an Intel(R) Xeon(R) CPU E5530 at 2.40GHz processor and 8 GB of RAM.

2http://aws.amazon.com/ec2/instance-types.
3https://github.com/flopezpires/iMaVMP.

http://aws.amazon.com/ec2/instance-types
https://github.com/flopezpires/iMaVMP

306 F. López-Pires and B. Barán

Table 2 Instance types of VMs considered in experiments. For notation see Eq. (5)

Instance type Vcpu [ECU] Vram [GB] Vhdd [GB] R [$]

t2.micro 1 1 0 9

t2.small 1 2 0 18

t2.medium 2 4 0 37

m3.medium 1 4 4 50

m3.large 2 8 32 100

m3.× large 4 15 80 201

m3.2× large 8 30 160 403

c3.large 2 4 32 75

c3.× large 4 8 80 151

c3.2× large 8 15 160 302

c3.4× large 16 30 320 604

c3.8× large 32 60 640 1209

r3.large 2 15 32 126

r3.× large 4 30 80 252

r3.2× large 8 61 160 504

r3.4× large 16 122 0 320

r3.8× large 32 244 0 320

Table 3 Problem instances considered in experiments, all with 50% of VMs with SLA s = 2

Experiment Input # PMs # VMs PMs and VMs (n + 1)m

1 3× 5.vmp 3 5 Homogeneous 1024

1 4× 8.vmp 4 8 Heterogeneous 390625

2 12× 50.vmp 12 50 Heterogeneous ∼5 × 1055

3 100× 1000.vmp 100 1000 Heterogeneous ∼2 × 102004

2.4.2 Experiment 1: Quality of Solutions

To compare the results obtained by the proposed interactive MA and to validate its
proper operation, an Exhaustive Search Algorithm (ESA) was also implemented for
finding all (n + 1)m possible solutions of a given instance of the VMP problem,
when this alternative is computationally possible for the authors. These results were
compared to the results obtained by the proposed interactive MA.

Considering that this particular experiment aims to validate the good level of
exploration in the set of feasible solutions Xf , the local search of the algorithm was
disabled, strengthening its capability of exploration rather than the rapid convergence
to good solutions even in early generations of the population.

Many-Objective Optimization for Virtual Machine Placement in Cloud Computing 307

Table 4 Summary of results obtained by the proposed algorithm in Experiment 1

Input P∗ size Pknown size Execution time
(ESA) (s)

Execution time
(MA) (s)

3× 5.vmp 51 51 ∼1 ∼12

4× 8.vmp 30 30 ∼720 ∼29

For each problem instance considered in this experiment (see Table3), one run of
the exhaustive search algorithm was completed, obtaining the optimal Pareto set P∗
and its corresponding Pareto front PF∗.

Furthermore, 10 runs of the proposed algorithm were completed, after evolving
populations composed by 100 individuals for 100 generations at each run. The results
obtained by the proposed algorithm for each run were combined to obtain the Pareto
set approximation Pknown and its corresponding Pareto front PFknown.

For both considered problem instances, the proposed algorithm obtained 100% of
the solutions of P∗ and its corresponding PF∗. Additionally, the proposed algorithm
performed well in execution time against the ESA, even obtaining the same optimal
results in less execution time for the 4× 8.vmp scenario. A summary of the number
of elements in the corresponding Pareto sets obtained and the execution time of both
algorithms is presented in Table4.

2.4.3 Experiment 2: Interactive Bounds

For the problem instance considered in this experiment (12× 50.vmp), one run of
the proposed algorithmwas completed, after evolving populations of 100 individuals
for 300 generations. The number of generations was incremented for this experiment
from 100 to 300, taking into account the large number of possible solutions for the
particular considered problem (see Table3). An interactive adjustment of the lower
or upper bounds associated to each objective function was performed after every 100
generations in order to converge to a treatable number of solutions. It is important to
remark that the interactive adjustment used in this experiment is only one of several
possible ones. As an example, we may consider: (1) automatically adjusting a % of
the lower bounds associated to maximization objective functions when the Pareto
front has a defined number of elements or (2) manually adjusting upper bounds
associated to minimization objective functions until the Pareto front does not have
more than 20 elements, just to cite a pair of alternatives.

The Pareto front approximation PFknown represents the complete set of Pareto
solutions considering unrestricted bounds (Lz = −∞ and Uz = ∞). On the other
hand, Pareto front approximation PFreduced represents the reduced set of Pareto solu-
tions obtained by interactively adjusting bounds Lz and Uz. In the first 100 gener-
ations, the proposed algorithm obtained 251 solutions with unrestricted bounds. A
decision-maker evaluated the bounds associated to f1(x) (power consumption) and
adjusted the upper boundU1 toU ′

1 = 9000 [W], selecting only 35 out of the 251 solu-

308 F. López-Pires and B. Barán

Fig. 2 Summary of results
obtained in Experiment 2
using adjusted lower and
upper bounds

100 200 300

102

103

251

484
965

35 36

68 63

17

Number of generations

N
um

be
r o

f s
ol

ut
io

ns

unrestricted bounds
adjustable bounds

tions (not considering 216 otherwise feasible solutions) for the PFreduced as shown
in Fig. 2. After 200 generations, the algorithm obtained a total of 484 solutions with
unrestricted bounds. Considering instead U ′

1 = 9000 [W], the algorithm only found
68 solutions. The decision-maker evaluated the bounds associated to f2(x) (network
traffic) and adjusted the upper bound U2 to U ′

2 = 115 [Mbps], selecting only 36 out
of the 68 solutions (not considering 32 otherwise feasible solutions) for the PFreduced .
Finally, after 300 generations, the algorithm obtained a total of 965 solutions with
unrestricted bounds. Considering U ′

1 = 9000 [W] and U ′
2 = 115 [Mbps], the algo-

rithm found 63 solutions. The decision-maker evaluated the bounds associated to
f3(x) (economical revenue) and adjusted the lower bound L3 to L′

3 = 13500 [$],
selecting only 17 out of the 63 solutions (not considering 46 feasible solutions) for
the final PFreduced as shown in Fig. 2. Clearly, at the end of the iterative process,
the decision-maker found 17 solutions according to his preferences instead of the
unmanageable number of 965 candidate solutions.

2.4.4 Experiment 3: Algorithm Scalability

It should be noted that increasing the number of PMs and VMs in a VMP problem
could result in extremely large decision spaces, considering all (n + 1)m possible
solutions (see Table3). Consequently, algorithms designed for the resolution of VMP
problems should be able to effectively solve VMP problem instances composed by
large numbers of VMs and PMs in a reasonable time.

For the problem instance considered in this experiment (100× 1000.vmp), one
run of the proposed algorithm was completed, after evolving populations composed
by 100, 200, and 300 individuals for 500 generations. For this particular experiment,
the Pareto front approximation PFknown represents the complete set of Pareto solu-

Many-Objective Optimization for Virtual Machine Placement in Cloud Computing 309

Table 5 Summary of results obtained by the proposed algorithm in Experiment 3

Input # of individuals Pknown size # of generations

100× 1000.vmp 100 397 100

100× 1000.vmp 200 399 100

100× 1000.vmp 300 509 100

100× 1000.vmp 100 769 200

100× 1000.vmp 200 811 200

100× 1000.vmp 300 1087 200

100× 1000.vmp 100 1103 300

100× 1000.vmp 200 1329 300

100× 1000.vmp 300 1641 300

100× 1000.vmp 100 1434 400

100× 1000.vmp 200 1791 400

100× 1000.vmp 300 2178 400

100× 1000.vmp 100 1742 500

100× 1000.vmp 200 2192 500

100× 1000.vmp 300 2719 500

tions considering unrestricted bounds for each fz(x) (Lz = −∞ andUz = ∞) in order
to experimentally demonstrate that large instances of the formulated MaVMP prob-
lem could result in unmanageable number of solutions. A summary of the results
obtained by the proposed algorithm is presented in Table5. The obtained results
prove the capabilities of the proposed algorithm to effectively solve instances of
the proposed MaVMP problem with large numbers of PMs and VMs, as consid-
ered in real-world scenarios. Additionally, it could be observed that increasing the
number of individuals on populations or the number of generations, the algorithm
obtained larger numbers of non-dominated solutions with unrestricted bounds. Con-
sidering that the proposed algorithm could find more non-dominated solutions than
the obtained in this particular experiment if more computational resources for cal-
culation are considered (or increasing the number of individuals or the number of
generations), it could be noted the importance of including additional methods to the
Pareto dominance relation (e.g., adjustable bounds) for the selection of a manageable
subset of Pknown in MaVMP problems for initial placement of VMs.

3 Many-Objective VMP with Reconfiguration of VMs

Once an initial placement of VMs has been performed (as presented in Sect. 2), a
virtualized datacenter could be reconfigured through live migration in order to main-
tain efficiency in operations, considering that the set of requested VMs changes over
time (i.e., the set V presented in Sect. 2.2.1 is a function of time). Studying this

310 F. López-Pires and B. Barán

particular semi-dynamic formulation of aMaVMPwith reconfiguration of VMs rep-
resents a first approximation to dynamic formulations in real-world cloud computing
environments, where several dynamic parameters should also be considered.

According to [2, 9], the optimization of the power consumption is themost studied
objective function in VMP literature [13, 19]. Furthermore, network traffic [20] and
economical revenue [21, 22] are also verymuch studied as objective functions for the
VMP problem. For a VMP problem formulation with reconfiguration of VMs, two
additional objective functions associated to migration of VMs represent challenges
for CSPs: minimizing the total number of VM migrations [23] as well as the total
network traffic overhead due to VM migrations [24].

Considering the large number of existing objective functions for theVMPproblem
identified in [2, 9], López-Pires and Barán have proposed in [8, 25] a many-objective
optimization framework in order to consider as many objective functions as needed
when solving a MaVMP problem for initial placement of VMs in virtualized data-
centers (see Sect. 2). To the best of the authors’ knowledge, there was no published
work presenting a formulation of a MaVMP problem with reconfiguration of VMs.
Consequently, this section extends the formulations presented in Sect. 2 [8, 25] pre-
senting the first MaVMP with reconfiguration of VMs, considering this time the
simultaneous optimization of the following five objective functions: (1) power con-
sumption, (2) inter-VM network traffic, (3) economical revenue, (4) number of VM
migrations, and (5) network traffic overhead for VM migrations [7].

To solve the formulated MaVMP problem, the interactive MA presented in
Sect. 2.3 was extended to consider particular challenges associated to the resolution
of a MaVMP problem with reconfigurations of VMs, as next introduced.

Several challenges need to be addressed forMaVMP formulationswith reconfigu-
ration of VMs. In Pareto-based algorithms, the Pareto set approximation can include
a large number of non-dominated solutions. Selecting one of the non-dominated
solutions can be considered a problem for a MaVMP problem. In consequence, the
work presented in [7] evaluates the following five selection strategies: (1) random, (2)
preferred solution, (3) minimum distance to origin, (4) lexicographic order (provider
preference), and (5) lexicographic order (service preference) to identify convenient
strategies for automatic selection of a non-dominated solution.

3.1 Problem Formulation

This chapter presents the formulation of a MaVMPwith reconfiguration of VMs [7],
considering this time the simultaneous optimization of the following five objective
functions: (1) power consumption, (2) inter-VM network traffic, (3) economical
revenue, (4) number of VM migrations and (5) network traffic overhead for VM
migrations. Formally, the presented offline (semi-dynamic) MaVMP problem with
reconfiguration of VMs can be enunciated as:

Many-Objective Optimization for Virtual Machine Placement in Cloud Computing 311

Given the available PMs and their specifications, the requested VMs and their speci-
fications, the network traffic between VMs and the current placement of the VMs, it is
sought a new placement of the set of VMs in the set of PMs, satisfying the constraints
of the problem while simultaneously optimizing all defined objective functions (as
power consumption, inter-VM network traffic, economical revenue, number of VM
migrations and network traffic overhead for VMmigration), in a puremany-objective
context, before selecting a specific solution for a given time instant t.

3.1.1 Input Data

The set of available PMs is represented as a matrixH ∈ R
n×4, previously introduced

in Sect. 2.2.1 (see Eq. (4)). Accordingly, the set of VMs at instant t is now represented
as a matrix V (t) ∈ R

m×5:

V (t) =
⎡

⎣
Vcpu1 V ram1 Vhdd1 SLA1 R1

.

Vcpum(t) V ramm(t) Vhddm(t) SLAm(t) Rm(t)

⎤

⎦ (20)

Each Vj represents the required processing resources of CPU [ECU], RAMmem-
ory [GB], storage [GB], SLA, and revenue [$]:

Vj = [Vcpuj, V ramj, Vhddj, SLAj,Rj], ∀j ∈ {1, . . . ,m(t)} (21)

where

Vcpuj: Processing requirements of Vj;
V ramj: Memory requirements of Vj;
Vhddj: Storage requirements of Vj;
Rj: Economical revenue for placing Vj;
SLAj: Service Level Agreement SLAj of a Vj, where SLAj ∈ {0, 1, . . . , s} being s

the highest priority level;
m(t): Number of VMs at instant t, then m(t) ∈ {1, . . . ,mmax};
mmax: Maximum number of VMs.

Once a Vj is powered off by the tenant, its resources are released, so the physical
resources can be reused. For simplicity, the index j is not considered to be reused;
therefore, for the work presented in [7] Vj is not a function of time.

The traffic between VMs at instant t is represented as a matrix T(t) ∈ R
m(t)×m(t):

T(t) =
⎡

⎣
T1,1(t) . . . T1,m(t)(t)
.

Tm(t),1(t) . . . Tm(t),m(t)(t)

⎤

⎦ (22)

In Eq. (22), Tjk(t) represents the average communication rate in [Mbps], between
VM Vj and VM Vk at instant t. Note that we can consider Tjj(t) = 0.

The placement at instant t is represented as a matrix P(t) ∈ R
m(t)×n:

312 F. López-Pires and B. Barán

P(t) =
⎡

⎣
P1,1(t) . . . P1,n(t)
.

Pm(t),1(t) . . . Pm(t),n(t)

⎤

⎦ (23)

where:
Pji(t) ∈ {0, 1} indicates if Vj is located (Pji = 1) or not (Pji = 0) for execution

on a PM Hi (i.e., Pji(t) : Vj → Hi) at instant t.

3.1.2 Output Data

A solution of the problem at each instant is a new VM placement P(t + 1). In
order to accommodate a new placement, a series of management actions (MAc) (i.e.,
VM migrations, creation or destruction) must be performed. These are presented by
the following output data: (1) the new VM placement and (2) the list of required
management actions.

The new placement at instant (t + 1) is represented as a matrix P(t + 1) of
dimension m(t + 1) × n:

P(t + 1) =
⎡

⎣
P1,1 . . . P1,n

.

Pm(t+1),1 . . . Pm(t+1),n

⎤

⎦ (24)

where Pji(t+1) ∈ {0, 1} indicates if Vj is located (Pji(t+1) = 1) or not (Pji(t+1) =
0) for execution on a PM Hi at instant t (i.e., Pji(t + 1) : Vj → Hi).

The set of necessary management actions in order to evolve from P(t) to P(t+1)
is represented by:

MAct→t+1 = [
MAc(V1), . . . ,MAc(Vm(t+1))

]
(25)

whereMAc(Vj) ∈ {0, 1, 2, 3}which represents the management actions that a hyper-
visor must execute in order to accommodate P(t + 1) corresponding to Vj.
Values returned by the MAc(Vj) function should be interpreted as follows:

MAc(Vj) = 0: no management action is necessary, i.e., Pji(t + 1) = Pji(t),∀i;
MAc(Vj) = 1: a new VM Vj is placed on a PM Hi, i.e., Pji(t + 1) = 1;
MAc(Vj) = 2: an existingVMVj ismigrated fromHi′ to anotherHi, i.e.,Pji′ (t) = 1

and Pji(t + 1) = 1;
MAc(Vj) = 3: a VM Vj is shutdown, i.e., Pji(t) = 1 but Pji(t + 1) = 0.

3.1.3 Constraint 1: Unique Placement of VMs

A VM Vj should be located to run on a single PM Hi or alternatively, it could be not
located in any PM if the associated SLAj is not the highest level of priority (in [7]
s = 2). Consequently, this constraint is expressed as:

Many-Objective Optimization for Virtual Machine Placement in Cloud Computing 313

n∑

i=1

Pji(t) ≤ 1 ∀j ∈ {1, ...,m(t)}, ∀t (26)

where

Pji(t): Binary variable equals 1 if Vj is located to run on Hi at instant t; otherwise,
it is 0.

3.1.4 Constraint 2: Assure SLA Provisioning

A VM Vj with the highest level of SLA (s = 2) must necessarily be located to run
on a PM Hi. Consequently, this constraint is expressed as:

n∑

i=1

Pji(t) = 1 ∀j such that SLAj = s

∀t where Vj should be active.

(27)

It should be remarked that different levels of SLA can be considered, as presented
in [8].

3.1.5 Constraints 3–5: Physical Resources Capacities of PMs

A PM Hi must have sufficient available resources to meet the requirements of all
VMs Vj that are located to run on Hi at instant t. In the work presented in [7], the
overbooking of resources [26] is not considered; consequently, the set of constraints
can be mathematically formulated as:

m(t)∑

j=1

Vcpuj × Pji(t) ≤ Hcpui (28)

m(t)∑

j=1

V ramj × Pji(t) ≤ Hrami (29)

m(t)∑

j=1

Vhddj × Pji(t) ≤ Hhddi (30)

∀i ∈ {1, ..., n}, i.e., for all physical machines Hi and ∀t.

314 F. López-Pires and B. Barán

Next section presents five objective functions that are simultaneously optimized
in the presented MaVMP formulation with reconfiguration of VMs. These objective
functions are mathematically formulated as follows.

3.1.6 Objective Function 1: Power Consumption Minimization

Based on Eq. (13), the power consumption at each discrete time t can be represented
by the sum of the power consumption of each PM Hi:

f1(x, t) =
n∑

i=1

((pmaxi − pmini) ×Ucpui(t) + pmini) × Yi(t) (31)

where

f1(x, t): Total power consumption of the PMs at each discrete time t;
Ucpui(t): Utilization ratio of processing resources used by Hi at instant t;
Yi(t): Binary variable equals 1 if Hi is turned on; otherwise, it is 0.

3.1.7 Objective Function 2: Inter-VM Network Traffic Minimization

A very much studied approach for inter-VM network traffic minimization is the
placement of VMs with high communication rate in the same PM (or at least in the
same rack) to avoid the utilization of network resources (or at least core network
equipment).

The minimization of network traffic among VMs, by maximizing locality, was
proposed in [14]. Based on Eq. (14), Eq. (32) represents the sum of average network
traffic between VM Vj and VM Vk when located on different PMs.

f2(x, t) =
m(t)∑

j=1

m(t)∑

k=1

(Tjk(t) × Djk(t)) (32)

where

f2(x, t): Total inter-VM network traffic at each discrete time t;
Djk(t): Binary variable that equals 1 if Vj and Vk are located in different PMs at

instant t; otherwise, it is 0.

The traffic between two VMs Vj and Vk located on the same PM Hi does not con-
tribute to increase the total network traffic given by Eq. (32); therefore, Djk(t) = 0
if Pji(t) = Pki(t) = 1.

Many-Objective Optimization for Virtual Machine Placement in Cloud Computing 315

3.1.8 Objective Function 3: Economical Revenue Maximization

Based on Eq. (15), Eq. (33) is presented to estimate the total economical revenue
that a datacenter receives for meeting the requirements of its customers, represented
by the sum of the economical revenue obtainable by each VM Vj that is effectively
located for execution on any PM at instant t.

f3(x, t) =
m(t)∑

j=1

(Rj × Xj(t)) (33)

where

f3(x, t): Total economical revenue for placing VMs at each discrete time t;
Xj(t): Binary variable that equals 1 if Vj is located for execution on any PM at

instant t; otherwise, it is 0.

3.1.9 Objective Function 4: Number of VM Migrations Minimization

Performance degradation may occur when migrating VMs from one PM to another
[24]. Logically, it is desirable that the number of migrated VMs is kept to a minimum
for better quality of service (QoS). Therefore, Eq. (34) represents the number of VM
migrations at time instant t:

f4(x, t) =
m(t)∑

j=1

Zj(t) (34)

where

f4(x, t): Number of VM migrations at instant t;
Zj(t): Binary variable that equals 1 if MA(Vj) = 2, i.e., Vj is migrated, see (25);

otherwise, it is 0 (Vj is not migrated).

3.1.10 Objective Function 5: Network Traffic Overhead for VM
Migrations Minimization

As explained in [24], the overhead of VM migrations on network resources is pro-
portional to the memory size of the migrated VM. In the work presented in [7], (35)
is proposed to minimize the amount of RAM memory that must be copied between
PMs at instant t.

f5(x, t) =
m(t)∑

j=1

V ramj × Zj(t) (35)

where

316 F. López-Pires and B. Barán

f5(x, t): Network traffic overhead for VM migrations at instant t;

It should be mentioned that there are other possible modeling approaches to estimate
the migration overhead, as presented in [27].

Finally, it should be noted that the main difference between the above-described
objective functions for theMaVMPwith reconfiguration ofVMs (see Eqs. (31)–(35))
with the ones previously presented in Sect. 2 for the MaVMP for initial placement of
VMs (see Eqs. (13)–(18)) is that Eqs. (31)–(35) are calculated at each discrete time
t.

3.2 Extended Memetic Algorithm for MaVMP

The work presented in [7] extends the interactive MA proposed in [8, 25] for solving
theMaVMPproblemwith reconfiguration ofVMs, as the one formulated in Sect. 3.1.
The proposed algorithm simultaneously optimizes the five objective functions pre-
sented in the previous sections.

Many-objective optimization using Multi-Objective Evolutionary Algorithms
(MOEAs) is an active research area, with multiple challenges that need to be
addressed regarding scalability analysis, solutions visualization, algorithm design,
and experimental algorithm evaluation as shown in [5]. At each time instant, the set of
feasible placement solutions can be composed by a large number of non-dominated
solutions. Therefore, the algorithm proposed in [7] automatically selects one of the
possible placements after each time instant according to one of the considered selec-
tion strategies (see Sect. 3.3). The proposed algorithm is based on the one proposed
in Sect. 2 [8] and it works as follows (see Algorithm 5):

The algorithm iterates over each set of requested VMs received at each instant t.
At step 3, the algorithm verifies if the problem has at least one solution to continue
with next steps. If there is no possible solution to the problem, the algorithm returns
an appropriate error message. If the problem has at least one solution, the algorithm
proceeds to step 4 in order to determine the current placement. After the first iteration,
the current placement is the one selected from the previous iteration.

At step 5, a set P0 of candidates is randomly generated. These candidates are
repaired at step 6 to ensure that P0 contains only feasible solutions. Then, the algo-
rithm tries to improve candidates at step 7 using local search. With the obtained
non-dominated solutions, the first set Pknown (Pareto set approximation) is generated
at step 8. After initialization in step 9, evolution begins (between steps 10 and 18).

The evolutionary process basically follows the same behavior: solutions are
selected from the union of Pknown with the evolutionary set of solutions (or pop-
ulation) also known as Pu (step 11), crossover and mutation operators are applied
as usual (step 12), and eventually solutions are repaired, as there may be infeasible
solutions (step 13). Improvements of solutions of the evolutionary population Pu

may be generated at step 14 using local search (local optimization operators).

Many-Objective Optimization for Virtual Machine Placement in Cloud Computing 317

At step 15, the Pareto set approximation Pknown is updated (if applicable); while at
step 16 the generation (or iteration) counter is updated. At step 17 a new evolutionary
population Pu is selected. The evolutionary process is repeated until the algorithm
meets a stopping criterion (such as a maximum number of generations), returning
one solution Pselected from the set of non-dominated solutions Pknown in step 20, using
one of the selection strategies presented in Sect. 3.3.

It should be mentioned that the main phases of Algorithm 5 are based on the ones
previously presented in Sect. 2 (see Sects. 2.3.1–2.3.5 for details).

3.3 Solution Selection Strategies

Several challenges need to be addressed for a MaVMP problem with reconfiguration
of VMs. In Pareto-based algorithms, the Pareto set approximation can include a large
number of non-dominated solutions; therefore, selecting one of the non-dominated
solutions (step 19 of Algorithm 5) can be considered as a new difficulty for MaVMP
problems with reconfiguration of VMs.

The work presented in [7] performed an experimental evaluation of the following
five selection strategies: (1) random, (2) preferred solution, (3) minimum distance

Algorithm 5: Extended Memetic Algorithm
Data: datacenter infrastructure (see Section3.1.1) and solution selection strategy parameter
Result: solution Pselected for instant t

1 t = 0
2 while there are VM requests to process do
3 check if the problem has a solution
4 Pprevious = Pselected
5 initialize set of solutions P0
6 P′

0 = repair infeasible solutions of P0
7 P′′

0 = apply local search to solutions of P′
0

8 update set of solutions Pknown from P′′
0

9 u = 0;Pu = P′′
0

10 while is not stopping criterion do
11 Qu = selection of solutions from Pu ∪ Pknown
12 Q′

u = crossover and mutation of solutions of Qu
13 Q′′

u = repair infeasible solutions of Q′
u

14 Q′′′
u = apply local search to solutions of Q′′

u
15 update set of solutions Pknown from Q′′′

u
16 increment number of generations u
17 Pu = non-dominated sorting from Pu ∪ Q′′′

u
18 end
19 Pselected = selected solution (selection strategy parameter)
20 return Pselected
21 increment instant t; reset Pknown

22 end

318 F. López-Pires and B. Barán

to origin, (4) lexicographic order (provider preference), and (5) lexicographic order
(service preference), as next explained.

3.3.1 Random (S1)

Considering that the Pareto set approximation is composed by non-dominated solu-
tions, randomly selecting one of the solutions could be an acceptable strategy.

3.3.2 Preferred Solution (S2)

A solution is defined as preferred to another non-comparable solution when it is
better in more objective functions [28]. When several solutions can be considered as
preferred ones (there is a tie), only one of these solutions is randomly selected.

3.3.3 Minimum Distance to Origin (S3)

The solution with the minimum Euclidean distance to the origin is selected, consid-
ering all normalized objective functions in a minimization context. For this purpose,
f3(x, t) is redefined as the difference between the maximum possible revenue at
instant t and the attainable revenue of each possible solution. When several solutions
have equal Euclidean distance, only one of these solutions is randomly selected.

3.3.4 Lexicographic Order

Each objective function is given in an order of evaluation, similar to the ordering of
letters in a dictionary. The objective functions can be arranged in severalways in order
of priority. The work presented in [7] proposes two different lexicographic orders,
representing the possible preferences associated to providers (provider preference)
and quality of service (service preference). Logically, different orders of priority
criteria may be considered depending on each specific context.

• Provider preference order (S4):Thepriority order is: (1) economical revenue, (2)
power consumption, (3) inter-VM network traffic, (4) number of VM migrations
and (5) network traffic overhead for VM migration.

• Service preference order (S5): The priority order is: (1) number of VM migra-
tions, (2) network traffic overhead for VM, (3) inter-VM network traffic, (4) power
consumption, and (5) economical revenue.

The work presented in [7] evaluates the above-mentioned selection strategies,
where several experiments were performed. The following subsections summarize
the experimental results.

Many-Objective Optimization for Virtual Machine Placement in Cloud Computing 319

Table 6 Hardware configuration of PM types considered in Experiment 4

PM type Hardware configuration Number of PMs

Hcpu
[ECU]

Hram
[GB]

Hhdd
[GB]

pmax [W] 10× 100.vmp 100× 1000.vmp

h1.small 180 512 10,000 1,000 3 30

h1.medium 260 512 10,000 1,350 3 30

h1.large 350 1,024 10,000 1,800 3 30

h2.large 400 1,024 10,000 2,000 1 10

Total PMs 10 100

Table 7 Instance types of VMs considered in experiments. For notation see Eq. (20)

Instance type Vcpu [ECU] Vram [GB] Vhdd [GB] R [$]

t2.micro 1 1 0 9

t2.small 1 2 0 18

t2.medium 2 4 0 37

m3.medium 1 4 4 50

m3.large 2 8 32 100

m3.× large 4 15 80 201

m3.2× large 8 30 160 403

c3.large 2 4 32 75

c3.× large 4 8 80 151

c3.2× large 8 15 160 302

c3.4× large 16 30 320 604

c3.8× large 32 60 640 1209

r3.large 2 15 32 126

r3.× large 4 30 80 252

r3.2× large 8 61 160 504

r3.4× large 16 122 0 320

r3.8× large 32 244 0 320

3.4 Experimental Environment

The Extended Memetic Algorithm presented in Sect. 3.2 was implemented using the
ANSI C programming language (gcc). The source code is available online.4

The experimental scenarios included heterogeneous PMs with hardware config-
urations described in Table6. Considered VMs were based on real instance types
offered by Amazon Elastic Compute Cloud (EC2) [29] as presented in Table7.

4https://github.com/dihara/MaVMP.

https://github.com/dihara/MaVMP

320 F. López-Pires and B. Barán

The experiments were performed considering two different experimental scenar-
ios (a small and a medium sized datacenter infrastructure) simulating a theoretical
day (i.e., 24 h) in a datacenter where VMs requests are received and processed hourly.
In these experiments, the following configurations were considered:

• 10 × 100.vmp: Problem instance with 10 PMs initially running 100 VMs.
• 100 × 1000.vmp: Problem instance with 100 PMs initially running 1,000 VMs.

For simplicity, in what follows, the traffic between VMs was considered as con-
stant, i.e., Ti,j(t) = Ti,j. The initial load for Experiment 4 represents 28% of CPU
resources while in Experiment 5, it is 33% of CPU resources (see Table9).

Experiments for each selection strategy were repeated 10 times, given the proba-
bilistic nature of the ExtendedMemetic Algorithm. Results are analyzed in Sect. 3.5.
The average number of non-dominated solutions found with each selection strategy
is shown in Table8. It can be seen that in both experiments, a similar average number
of solutions and standard deviation were observed for all strategies.

Table 8 Number of non-dominated solutions per selection strategy

Selection strategy 10× 100.vmp 100× 1000.vmp

Average Standard Dev. Average Standard Dev.

Random 25.2 8.6 36.2 11.3

Preferred solution 24.0 8.6 37.7 9.2

Distance to origin 21.4 8.7 30.8 10.1

Provider preference 20.8 9.9 24.0 8.7

Service preference 34.5 9.5 38.9 9.1

Table 9 Details of Experiment 4

Parameters 10× 100.vmp 100× 1000.vmp

PM 10 100

Available CPU 2,770 27,700

Initial # VM 100 1,000

VMs with SLA 0 26 325

VMs with SLA 1 38 344

VMs with SLA 2 36 331

Initial CPU load 784 (28%) 9,023 (33%)

Initial revenue 33,973 US$ 330,645 US$

Discrete time instants 24 h 24 h

Many-Objective Optimization for Virtual Machine Placement in Cloud Computing 321

Selection
strategy

Dominance Preference
Objective functions averages (row column) (row p column)

f1(x) f2(x) f3(x) f4(x) f5(x) S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

10x100.vmp
S1 9, 908 19, 981 32, 623 44 1, 526
S2 9, 827 19, 991 32, 623 8 180
S3 9, 639 19, 228 32, 623 6 124
S4 8, 543 21, 038 32, 623 19 520
S5 10, 395 21, 957 32, 623 5 150

100x1000.vmp
S1 104, 559 371, 664 325, 217 650 26, 886
S2 104, 835 373, 467 325, 217 37 1, 204
S3 104, 378 370, 489 325, 217 26 804
S4 103, 175 374, 210 325, 217 92 3, 531
S5 104, 860 373, 230 325, 217 20 618

Fig. 3 Selection Strategy Comparison. For selection strategy notation see Sect. 3.3

3.5 Experiment 4: Selection Strategy Evaluation

Figure3 summarizes the results obtained in both experiments. As expected, when the
lexicographic order is used, the most important objective function is the one with the
best results, i.e., the S4 strategy (provider preference) obtains the best results in power
consumption f1(x, t), with 20% less power consumption than the worst strategy in
the 10× 100.vmp instance and 2% less power consumption than the worst strategy
in 100× 1000.vmp. Analogously, when service perspective is prioritized (strategy
S5), the objective functions f4(x, t) and f5(x, t) obtain the best results (Table9).

However, as the focus of the work presented in [7] is the simultaneous optimiza-
tion of all five objective functions with a multi-objective approach, a comparison is
made considering the concept of Pareto dominance. As seen in Fig. 3 (dominance
column), the S3 strategy dominates S2 and S1 in both experiments; however, it is
non-comparable with respect to S4 and S5 in both tested problem instances.

Given that S3 cannot be declared as the best strategy considering exclusively
Pareto dominance, a further comparison of selection strategies using the preference
criteria (i.e., larger number of better objective functions) [5] is presented in the
corresponding column of Fig. 3.

Itmay seem intuitive that the S2 strategy (that uses the preference criterion) should
be the best; however, Table3 shows that strategy S3 is preferred not only to S2 but
also to S1 and to S4 in both tested problem instances. Additionally, it can be seen
that S3 is preferred to S5 in problem instance 10× 100.vmp while no strategy is
preferred to S3, indicating that S3 (distance to origin) is the best strategy for solving
the presented MaVMP problem formulation with reconfiguration of VMs.

As a consequence of the above results, for production cloud datacenters, instead of
calculating all the Pareto set or a Pareto set approximation, the S3 strategy (distance
to origin) could be used to combine all considered objective functions into only

322 F. López-Pires and B. Barán

one objective function, therefore solving the studied problem considering a Multi-
Objective solved asMono-Objective (MAM)approach. It is important tomention that
the obtained results are consistent with the selection strategy evaluation presented in
[28] for solution of a traffic engineering problem in computer networks.

4 Open Research Problems: Many-Objective VMP
for Cloud Computing Environments

After demonstrating the viability to formulate and solveMaVMP problems for initial
placement of VMs and MaVMP problems with reconfiguration of VMs, this section
presents relevant open research topics for the formulation and resolution of MaVMP
problems for cloud computing environments.

4.1 IaaS Environments for VMP Problems

In real-world environments, IaaS providers dynamically receive requests for the
placement of VMswith different characteristics according to different dynamic para-
meters. In this context, preliminary results of the authors identified that the most
relevant dynamic parameters in the VMP literature are [30]: (1) resource capacities
of VMs (associated to vertical elasticity) [31], (2) number of VMs of a cloud ser-
vice (associated to horizontal elasticity) [32] and (3) utilization of resources of VMs
(relevant for overbooking) [20]. Considering the mentioned dynamic parameters,
environments for IaaS formulations of VMP problems could be classified by one or
more of the following classification criteria: (1) service elasticity and (2) overbooking
of physical resources [30].

In order to model these advanced IaaS environments, cloud services (i.e., a set of
interrelated VMs) are considered instead of just VMs. A cloud service may represent
cloud infrastructures for basic services such as Domain Name Service (DNS), web
applications or even elastic applications such as MapReduce programs [30].

To the best of the authors’ knowledge, there is no published work considering all
these fundamental criteria, directly related to the most relevant dynamic parameters
in the specialized literature [30]. CSPs efficiently solving formulations of the VMP
problem in advanced IaaS environments considering service elasticity, including both
vertical and horizontal scaling of cloud services, as well as overbooking of physical
resources, including both server (CPU and RAM) and networking resources will
represent a considerable advance on this research area and its cloud datacenters will
be able to scale according to trending types of requirements with sufficient flexibility.
A recommended path for future work is exploring and addressing challenges of par-
ticular environments identified in [30] as research opportunities before considering
this advanced IaaS environment for solving VMP problems.

Many-Objective Optimization for Virtual Machine Placement in Cloud Computing 323

4.2 Uncertainty in VMP for Cloud Computing

Extensive research of uncertainty issues could be found in several fields such as:
computational biology and decision-making in economics, just to cite a few. Par-
ticularly, studies of uncertainty for cloud computing are limited and uncertainty in
resource allocation and service provisioning have not been adequately addressed,
representing research challenges [33].

According to [33], uncertainties in cloud computing could be grouped into: (1)
parametric and (2) system uncertainties. Parametric uncertainties may represent
incomplete knowledge and variation of parameters, as presented in the considered
VMP problem. The analysis of these uncertainties quantifies the effect of random
input parameters on model outputs [33].

Research challenges in the context of VMP problems include designing novel
resourcemanagement strategies to handle uncertainty in an effectiveway, as described
by Tchernykh et al. in [33]. IaaS providers must satisfy requests for virtual resources
in highly dynamic environments. Due to the randomness of customer requests, algo-
rithms for solving VMP problems should be evaluated under uncertainty.

4.3 Two-Phase Optimization Schemes for VMP Problems

The VMP could be formulated as both online and offline optimization problems
[2]. A VMP problem formulation is considered to be online when solution tech-
niques (e.g., heuristics) makes decisions on-the-fly, without knowing upcoming VM
requests [24]. On the other hand, if solution techniques have a complete knowledge
of future VM requests of a problem instance, the VMP problem formulation is con-
sidered to be offline [11]. Considering the on-demand model of cloud computing
with dynamic resource provisioning and dynamic workloads of cloud applications
[34], the resolution of VMPproblems should be performed as fast as possible in order
to be able to support these dynamic requirements. In this context, the VMP problem
for IaaS environments was mostly studied in the VMP literature considering online
formulations, taking into consideration that VM requests are unknown a priori [2].

It is important to consider that online decisions made along the operation of a
cloud computing infrastructure negatively affects the quality of obtained solutions of
VMP problems when comparing to offline decisions [35]. Clearly, offline algorithms
present a substantial advantage over online alternatives, when considering the quality
of obtained solutions. This advantage is presented for the following twomain reasons:
(1) an offline algorithm has a complete knowledge of future VM requests of a VMP
problem instance (which is impracticable on real-world IaaS environments because
VM requests are uncertain) and (2) it considers migration of VMs between PMs,
reconfiguring the placement when convenient.

To improve the quality of solutions obtained by online algorithms, the VMP prob-
lemcould be formulated as a two-phase optimization problem, combining advantages

324 F. López-Pires and B. Barán

of online and offline formulations for IaaS environments. In this context, VMP prob-
lems could be decomposed into two different subproblems: (1) incremental VMP
(iVMP) and (2) VMP reconfiguration (VMPr) [36]. This two-phase optimization
strategy combines both online (iVMP) and offline (VMPr) algorithms for solving
each considered VMP subproblem.

The iVMP subproblem is considered for attending dynamic arriving requests
where VMs should be created, modified and removed at runtime. Consequently, this
subproblem should be formulated as an online problem and solved as fast as possible,
where existing heuristics could be reasonably appropriate. Additionally, the VMPr
subproblem is considered for improving the quality of solutions obtained by the
iVMP, reconfiguring a current placement P(t) through migration of VMs between
PMs to an improved placement P′(t). This VMPr subproblem could be formulated
offline, where alternative solution techniques could result more suitable (e.g., meta-
heuristics).

The considered iVMP + VMPr optimization scheme has been briefly studied in
the specialized literature. Consequently, several challenges for IaaS environments
remain unaddressed or could be improved, considering that only basic methods have
been proposed, specifically for VMPr Triggering and VMPr Recovering methods:

• ResearchQuestion 1 (RQ1): when theVMPr problem should be triggered? (VMPr
Triggering method).

• Research Question 2 (RQ2): what should be done with cloud service requests
arriving during the VMPr reconfiguration period? (VMPr Recovering method).

Research should advance by proposing more sophisticated VMPr Triggering
methods, probably considering several different objective functions, as presented
in this chapter for MaVMP problems. Additionally, most of the existing research
works do not consider any VMPr Recovering method, when applicable. Only Cal-
cavecchia et al. studied in [37] a very basic approach, canceling the VMPr whenever
a new request is received. Consequently, the VMPr is only performed in periods with
no requests that could result unrealistic for IaaS providers. Future works could be
focused on proposing novel VMPr Recovering methods.

References

1. López-Pires, F., & Barán, B. (2015). Virtual machine placement literature review. http://arxiv.
org/abs/1506.01509.

2. López-Pires, F., & Barán, B. (2015). A virtual machine placement taxonomy. In Proceedings
of the 2015 IEEE/ACM 15th International Symposium on Cluster, Cloud and Grid Computing.
IEEE Computer Society.

3. Cheng, J., Yen, G. G., & Zhang, G. (2014, October). A many-objective evolutionary algo-
rithm based on directional diversity and favorable convergence. In 2014 IEEE International
Conference on Systems, Man and Cybernetics (SMC) (pp. 2415–2420).

4. Farina, M., & Amato, P. (2002). On the optimal solution definition for many-criteria optimiza-
tion problems. In Proceedings of the NAFIPS-FLINT International Conference (pp. 233–238).

http://arxiv.org/abs/1506.01509
http://arxiv.org/abs/1506.01509

Many-Objective Optimization for Virtual Machine Placement in Cloud Computing 325

5. von Lücken, C., Barán, B., & Brizuela, C. (2014). A survey on multi-objective evolutionary
algorithms for many-objective problems.Computational Optimization and Applications, 1–50.

6. Guzek,M.,Bouvry, P.,&Talbi, E.-G. (2015).A survey of evolutionary computation for resource
management of processing in cloud computing. Computational Intelligence Magazine, IEEE,
10(2), 53–67.

7. Ihara, D., López-Pires, F., & Barán, B. (2015). Many-objective virtual machine placement for
dynamic environments. In Proceedings of the 2015 IEEE/ACM 8th International Conference
on Utility and Cloud Computing. IEEE Computer Society.

8. López-Pires, F., & Barán, B. (2015). A many-objective optimization framework for virtualized
datacenters. In Proceedings of the 2015 5th International Conference on Cloud Computing and
Service Science (pp. 439–450).

9. López-Pires, F., & Barán, B. (2017). Cloud computing resource allocation taxonomies. Inter-
national Journal of Cloud Computing (To appear).

10. Gao, Y., Guan, H., Qi, Z., Hou, Y., & Liu, L. (2013). A multi-objective ant colony system
algorithm for virtual machine placement in cloud computing. Journal of Computer and System
Sciences, 79, 1230–1242.

11. López-Pires, F., & Barán, B. (2013). Multi-objective virtual machine placement with service
level agreement: A memetic algorithm approach. In Proceedings of the 2013 IEEE/ACM 6th
International Conference on Utility and Cloud Computing (pp. 203–210). IEEE Computer
Society.

12. Tomás, L., & Tordsson, J. (2013). Improving cloud infrastructure utilization through overbook-
ing. In Proceedings of the 2013 ACM Cloud and Autonomic Computing Conference, CAC’13
(pp. 5:1–5:10). New York, NY, USA.

13. Beloglazov, A., Abawajy, J., & Buyya, R. (2012). Energy-aware resource allocation heuristics
for efficient management of data centers for cloud computing. Future Generation Computer
Systems, 28(5), 755–768.

14. Shrivastava, V., Zerfos, P., Lee, K.-W., Jamjoom, H., Liu, Y.-H., & Banerjee, S. (2011).
Application-aware virtual machine migration in data centers. In INFOCOM, 2011 Proceedings
IEEE (pp. 66–70). IEEE.

15. Donoso, Y., Fabregat, R., Solano, F., Marzo, J.-L., & Barán, B. (2005). Generalized multiob-
jective multitree model for dynamic multicast groups. In 2005 IEEE International Conference
on Communications, 2005. ICC 2005 (Vol. 1, pp. 148–152). IEEE.

16. Báez, M., Zárate, D., & Barán, B. (2007). Adaptive memetic algorithms for multi-objective
optimization. In 2007 XXXIII Latin American Computing Conference (CLEI) (Vol. 2007).

17. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiob-
jective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2),
182–197.

18. Coello Coello, C., Lamont, G. B., & Van Veldhuizen, D. A. (2007). Evolutionary algorithms
for solving multi-objective problems. Springer.

19. Sun, M., Gu, W., Zhang, X., Shi, H., & Zhang, W. (2013). A matrix transformation algorithm
for virtual machine placement in cloud. In 2013 12th IEEE International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom) (pp. 1778–1783). IEEE.

20. Anand, A., Lakshmi, J., & Nandy, S. K. (2013). Virtual machine placement optimization sup-
porting performance SLAs. In 2013 IEEE 5th International Conference on Cloud Computing
Technology and Science (CloudCom) (Vol. 1, pp. 298–305. IEEE.

21. Sato, K., Samejima,M.,&Komoda,N. (2013). Dynamic optimization of virtualmachine place-
ment by resource usage prediction. In 2013 11th IEEE International Conference on Industrial
Informatics (INDIN) (pp. 86–91). IEEE.

22. Shi, L., Butler, B., Botvich, D., & Jennings, B. (2013). Provisioning of requests for virtual
machine sets with placement constraints in iaas clouds. In 2013 IFIP/IEEE International Sym-
posium on Integrated Network Management (IM 2013) (pp. 499–505). IEEE.

23. Li, W., Tordsson, J., & Elmroth, E. (2011). Modeling for dynamic cloud scheduling via migra-
tion of virtual machines. In 2011 IEEE Third International Conference on Cloud Computing
Technology and Science (CloudCom) (pp. 163–171). IEEE.

326 F. López-Pires and B. Barán

24. Beloglazov, A., & Buyya, R. (2012). Optimal online deterministic algorithms and adaptive
heuristics for energy and performance efficient dynamic consolidation of virtual machines in
cloud data centers. Concurrency and Computation: Practice and Experience, 24(13), 1397–
1420.

25. López-Pires, F., & Barán, B. (2017). Many-objective virtual machine placement. Journal of
Grid Computing (In Review).

26. Tomás, L., & Tordsson, J. (2013). Improving cloud infrastructure utilization through over-
booking. In Proceedings of the 2013 ACM Cloud and Autonomic Computing Conference (p.
5).

27. Svärd, P., Hudzia, B.,Walsh, S., Tordsson, J., &Elmroth, E. (2015). Principles and performance
characteristics of algorithms for live vm migration. ACM SIGOPS Operating Systems Review,
49(1), 142–155.

28. Talavera, F., Crichigno, J., & Barán, B. (2005). Policies for dynamical multiobjective environ-
ment of multicast traffic engineering. In IEEE ICT.

29. Amazon Web Services (2015, June). Amazon ec2 instances. http://aws.amazon.com/ec2/
instance-types/.

30. Ortigoza, J., López-Pires, F., & Barán, B. (2016, April). A taxonomy on dynamic environments
for provider-oriented virtual machine placement. In 2016 IEEE International Conference on
Cloud Engineering (IC2E) (pp. 214–215).

31. Li, K., Wu, J., & Blaisse, A. (2013). Elasticity-aware virtual machine placement for cloud
datacenters. In 2013 IEEE 2nd International Conference on Cloud Networking (CloudNet)
(pp. 99–107). IEEE.

32. Wang, W., Chen, H., & Chen, X. (2012). An availability-aware virtual machine placement
approach for dynamic scaling of cloud applications. In 2012 9th International Conference
on Ubiquitous Intelligence & Computing and 9th International Conference on Autonomic &
Trusted Computing (UIC/ATC) (pp. 509–516). IEEE.

33. Tchernykh, A., Schwiegelsohn, U., Alexandrov, V., & Talbi, E.-G. (2015). Towards under-
standing uncertainty in cloud computing resource provisioning. Procedia Computer Science,
51, 1772–1781.

34. Mell, P., & Grance, T. (2009). The nist definition of cloud computing. National Institute of
Standards and Technology, 53(6), 50.

35. López-Pires, F., Barán, B., Amarilla, A., Benítez, L., Ferreira, R., & Zalimben, S. (2016).
An experimental comparison of algorithms for virtual machine placement considering many
objectives. In 9th Latin America Networking Conference (LANC) (pp. 75–79).

36. Zheng, Q., Li, R., Li, X., Shah, N., Zhang, J., Tian, F., et al. (2015). Virtual machine consoli-
dated placement based on multi-objective biogeography-based optimization. Future Genera-
tion Computer Systems.

37. Calcavecchia, N. M., Biran, O., Hadad, E., & Moatti, Y. (2012). Vm placement strategies for
cloud scenarios. In 2012 IEEE 5th International Conference on Cloud Computing (CLOUD)
(pp. 852–859). IEEE.

http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/

	Many-Objective Optimization for Virtual Machine Placement in Cloud Computing
	1 Introduction
	2 Many-Objective VMP for Initial Placement of VMs
	2.1 Many-Objective Optimization Framework
	2.2 Problem Formulation
	2.3 Interactive Memetic Algorithm for MaVMP
	2.4 Experimental Results

	3 Many-Objective VMP with Reconfiguration of VMs
	3.1 Problem Formulation
	3.2 Extended Memetic Algorithm for MaVMP
	3.3 Solution Selection Strategies
	3.4 Experimental Environment
	3.5 Experiment 4: Selection Strategy Evaluation

	4 Open Research Problems: Many-Objective VMP for Cloud Computing Environments
	4.1 IaaS Environments for VMP Problems
	4.2 Uncertainty in VMP for Cloud Computing
	4.3 Two-Phase Optimization Schemes for VMP Problems

	References

