Sanjay Chaudhary
Gaurav Somani
Rajkumar Buyya Editors

Research
Advances

in Cloud
Computing

@ Springer

Research Advances in Cloud Computing

Sanjay Chaudhary - Gaurav Somani
Rajkumar Buyya
Editors

Research Advances in Cloud
Computing

@ Springer

Editors

Sanjay Chaudhary Rajkumar Buyya
School of Engineering and Applied Science School of Computing and Information
Ahmedabad University Systems
Ahmedabad, Gujarat The University of Melbourne
India Melbourne, VIC
Australia

Gaurav Somani

Department of Computer Science and
Engineering

Central University of Rajasthan

Ajmer, Rajasthan

India

ISBN 978-981-10-5025-1 ISBN 978-981-10-5026-8 (eBook)
DOI 10.1007/978-981-10-5026-8

Library of Congress Control Number: 2017949490

© Springer Nature Singapore Pte Ltd. 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

To my wife (Sunita), Son (Mandar) and
Daughter (Anuradha)

—Sanjay Chaudhary

To my wife (Priyanka), Daughter (Anaya),
and Nephew (Aradhya)

—QGaurav Somani

To my wife (Smrithi) and Daughters (Soumya
and Radha)

—Rajkumar Buyya

Foreword

Cloud computing is still growing by leaps and bounds and is likely to be used in all
major server centers in future. This will be driven by both the low-cost and rich
features of clouds. It is hard to see how traditional institutional data centers can
compete except for specialized services such as supercomputing or real-time
response to nearby components of the Internet of things. Progress in clouds comes
from both the commercial and research communities and their collaboration. This
timely book addresses many critical open topics that can be divided into three areas:

1. Programming model, infrastructure, and runtime
2. Resource management
3. Security.

The programming model, infrastructure, and runtime chapters include a futuristic
chapter on serverless computing—one of the most promising cloud topics covering
micro-services, event-based execution, and the FaaS function as a service model.
Other chapters cover high availability, simulation, classification, migration, and
virtual network performance. High-performance computing in big data and
streaming issues are considered.

The resource management chapters cover resource scheduling including VM
placement and use of gaming techniques for pricing and allocation. The important
broad topics of auto-scaling and energy management are covered thoroughly.

The security chapters cover broad topics including interoperability, access
control, use of trusted computers, and the important special issues raised by
containers. A major application focus is health care. Forensic analysis of intrusion
events is a fascinating topic.

The value of the book can be measured by the interest of the topics and
the quality of the chapter authors. However, a key measure is the credentials of the
editors who have put together this magnificent collection. The expertise of the
editors covers the three areas as seen in their brief research descriptions below.

Sanjay Chaudhary has made significant contributions in the cloud resource
management and allocation methods. Sanjay brings a vast research experience in
working on various issues related to cloud infrastructure, performance, SaaS

vii

viii Foreword

application development, application migration, and workflow scheduling in cloud
computing environments. Sanjay also brings a rich experience of working with grid
computing systems which have helped him in contributing to various resource
management aspects of cloud computing.

Gaurav Somani has worked on multiple aspects of cloud computing domain
such as resource management, metering, verification and accounting, and a number
of security issues. Gaurav has made a number of significant contributions in the
area of attack mitigation and recovery in cloud computing. VM backup, secure
deduplication, performance isolation, and DDoS attack prevention are few
important research problems he has addressed in the recent past.

Rajkumar Buyya has a very rich experience of developing production-level
systems related to cloud computing and grid computing systems. He has made
significant contributions in terms of highly cited papers related to the software
systems related to overall management of cloud resources. Raj and his group have
developed two popular software packages, Aneka and CloudSim, which are for
cloud computing research and production usages.

I commend the book “Research Advances in Cloud Computing” to all
computing professionals. Read and Enjoy!

Bloomington, USA Geoffrey Fox
May 2017 Chair, Intelligent Systems Engineering
School of Informatics and Computing

Distinguished Professor of Computing

Engineering, and Physics, Director of the

Digital Science Center, Indiana University

Preface

Cloud computing is a novel computing paradigm which has changed the way
enterprise or Internet computing is performed. Today, for almost all the sectors in
the world, cloud computing is synonym to on-demand provisioning and delivery of
IT services in a pay-as-you-go model. The success story of cloud computing as a
technology is credited to the long-term efforts of computing research community
across the globe. Software as a Service (SaaS), Platform as a Service (PaaS), and
Infrastructure as a Service (IaaS) are the three major cloud product sectors. Each
one of these product sectors has their effects and reaches to various industries. If
forecasts are to be believed, then more than two-third of all the enterprises across
the globe will be entirely run in cloud by 2026. These enthusiastic figures have led
to huge funding for research and development in cloud computing and related
technologies. University researchers, research labs in industry, and scholars across
the globe have recreated the whole computing world into a new cloud enabled
world. This has been only possible by coordinated efforts into this direction. Today,
almost every university across the globe has cloud computing and its related
technologies included in their computer science curriculum. Additionally, there are
extensive efforts on innovation and technology creation in the direction of cloud
computing. These efforts are much visible in the reputed cloud computing research
platforms like international conferences and journals.

We feel that there is a significant need to systematically present quality research
findings of recent advances in cloud computing for the benefit of community of
researchers, educators, practitioners, and industries. Although there are large
numbers of journals and conferences available, there is a lack of comprehensive and
in-depth tutored analysis on various new developments in the field of cloud
computing. This book on “Research Advances in Cloud Computing” discusses
various new trends, designs, implementations, outcomes, and directions in the
various areas of cloud computing. This book has been organized into three sections:

ix

X Preface

1. Programming model, infrastructure, and runtime
Resource Management
. Security.

W

The first chapter on “Serverless Computing: Current Trends and Open Problems”
covers various serverless platforms, APIs, their key characteristics, technical
challenges, and related open problems. Recently, enterprise application architectures
are shifting to containers and micro-services, and it provides enough reasons for
serverless computing. The chapter provides detailed requirements of different pro-
gramming models, platforms, and the need of significant research and development
efforts to make it matured enough for widespread adoption.

Cloud providers face the important challenge regarding resource management
and aim to provide services with high availability relying on finite computational
resources and limited physical infrastructure. Their key challenge is to manage
resources in an optimal way and to estimate how physical and logical failures can
impact on users’ perception. The second chapter on “Highly Available Clouds:
System Modeling, Evaluations and Open Challenges”, presents literature survey on
high availability of cloud and mentions the main approaches for it. It explores
computational modeling theories to represent a cloud infrastructure focusing on
how to estimate and model cloud availability.

The third chapter on “Big Data Analytics in Cloud—A Streaming Approach”
discusses streaming approach for data analytics in cloud. Big data and cloud have
become twin words—used sometimes interchangeably. Interpretation of big data
brings in idea of mining and analytics. There is significant literature on cloud that
discusses infrastructure and architecture but a very little literature for algorithms
required for mining and analytics. This chapter focuses on online algorithms that
can be used for distributed, unstructured data for learning and analytics over Cloud.
It also discusses their time complexity, presents architecture for deploying them
over cloud, and concludes with presenting relevant open research directions.

Cloud data centers must be capable to offer scalable software services, which
require an infrastructure with a significant amount of resources. Such resources are
managed by specific software to ensure service-level agreements based on one or
more performance metrics. Within such infrastructure, approaches to meet
non-functional requirements can be split into various artifacts, distributed across
different operational layers, which operate together with the aim of reaching a
specific target. Existing studies classify such approaches using different terms,
which usually are used with conflicting meanings by different people. Therefore, it
is necessary a common nomenclature defining different artifacts, so they can be
organized in a more scientific way. The fourth chapter on “A Terminology to
Classify Artifacts for Cloud Infrastructure” proposes a comprehensive bottom-up
classification to identify and classify approaches for system artifacts at the infras-
tructure level, and organize existing literature using the proposed classification.

The fifth chapter focuses on “Virtual Networking with Azure for Hybrid Cloud
Computing in Aneka”. It provides a discussion on the need of inter-cloud com-
munication in the emerging hybrid, public, or federated clouds. Later, they provide

Preface xi

a case of Azure Virtual Private Network (VPN) services to establish such
inter-cloud connections using an overlay network for hybrid clouds in Aneka
platform. It also presents a functional evaluation of the proposed approach with the
help of experiments.

The sixth chapter on “Building Efficient HPC Cloud with SR-IOV Enabled
InfiniBand: The MVAPICH2 Approach” presents a detailed case of
high-performance computing in cloud. It discusses the single-root I/O virtualization
performance in the InfiniBand interconnects and provides locality aware commu-
nication designs to optimize the overall performance using MVAPICH2 library. It
also proposed advanced designs to support the HPC in cloud computing environ-
ments along with open research problems.

To facilitate effective resource allocation, cloud providers should allocate
resources ahead of service demands, in a way that does not waste resources. The
calculation of optimal allocations requires integer programming, which is compu-
tationally difficult to accomplish. The seventh chapter on “Resource Procurement,
Allocation, Metering, and Pricing in Cloud Computing” proposes an approach
using the uncertainty principle of game theory which achieves close to optimal
results. An approach for time-varying tariffs for cloud services, considering varying
load levels on the cloud provider’s infrastructure, and the time-varying pricing of
electricity from a smart grid, is also proposed. The chapter involves the creation of a
per-instance power consumption model for VMs on a cloud and a power-aware
cloud metering architecture.

Auto-scaling is an important feature of cloud computing which allows flexible
just-in-time allocation and release of computational resources in response to
dynamic and often unpredictable workloads. The eighth chapter on “Dynamic
Selection of Virtual Machines for Application Servers in Cloud Environments”
covers the importance of auto-scaling for web applications whose workload is time
dependent and prone to flash crowds. Reactive auto-scaling policies are successful,
but here the authors are investigating the issue related to which VM type is the most
suitable for the specific application and have proposed an approach for dynamic
VM-type selection. It uses a combination of online machine learning techniques,
works in real time, and adapts to changes in the users’ workload patterns, appli-
cation changes as well as middleware upgrades and reconfigurations. The chapter
has described a prototype, which is tested with the CloudStone benchmark
deployed on AWS EC2 and it has achieved encouraging results.

One of the current concerns of systems designers is related to the growth of
power consumption in cloud computing systems. The techniques to address this
problem range from decisions on locations for data centers to techniques that enable
efficient resource management. Resource allocation, as a process of resource
management, distributes the workload throughout the data center in an efficient
manner, minimizing the power consumption and maximizing the system perfor-
mance. The nineth chapter on “Improving the Energy Efficiency in Cloud
Computing Data Centres Through Resource Allocation Techniques” presents an
overview of the resource management and resource allocation techniques, which
contribute to the reduction of power consumption without compromising the cloud

Xii Preface

user and provider constraints. It also covers two practical cases to illustrate the
theoretical concepts of resource allocation as well as have discussed the open
challenges that resource management will face in the coming years.

The tenth chapter on “Recent Developments in Resource Management in Cloud
Computing and Large Computing Clusters” provides a comprehensive and detailed
overview of overall cloud computing resource allocation framework with a focus on
various resource scheduling algorithms. This chapter also provides a definitive
direction toward cloud scheduling solutions, architectures, and fairness algorithms.

The eleventh chapter on “Resource Allocation for Cloud Infrastructures:
Taxonomies and Research Challenges” provides a classification of VM place-
ments solutions in the form of taxonomies. These taxonomies are prepared for
conceptualization of VM placement problem as provider—broker setting, and
framing it as an optimization problem. Authors also comment on the formation of
cloud markets to provide a basis for multi-objective VM placement algorithms.

The twelth chapter on “Many-Objective Optimization for Virtual Machine
Placement in Cloud Computing” presents a comprehensive discussion on virtual
machine placement problem and extends the discussion by proposing many objec-
tive VM placement algorithms for initial VM placement and reconfiguration. It also
gives an overview of open research problems at the end of the chapter to provide the
scope of future work toward fully dynamic multi-objective VM placement problems.

The thirteenth chapter on “Performance Modeling and Optimization of Live
Migration of Virtual Machines in Cloud Infrastructure” is based on improvement
of the pre-copy algorithm for live migration system. The improved pre-copy
algorithm is developed by three models: (i) compression model, (ii) prediction
model, and (iii) performance model. Each model is used to evaluate downtime and
total migration time of different workloads. The first model performs migration of
different sizes of VM with three workloads: (i) idle system, (ii) kernel compile, and
(iii) static web server. Prediction model works with adaptive dirty rate and adaptive
data rate to evaluate complex workloads running in a VM. The performance model
is used to find dirty pages using dirty page rate model. It is observed that both
prediction model and performance model work efficiently than the existing
framework of Xen. It concludes that three proposed models are able to improve
pre-copy and the results are tested for the same.

Security and privacy being a very active and hot topic of research and discussion
these days, we have five chapters dedicated to the relevant issues associated with
cloud computing security. Isolated containers are rapidly becoming a great alter-
native to traditional virtualized environments. The fourteenth chapter on “Analysis
of Security in Modern Container Platforms” makes two important contributions.
First, it provides a detailed analysis of current security arrangements in the con-
tainer platforms. Second, it offers an experimental analysis of containers by pro-
viding details on common threat and Vulnerabilities Exposures (CVEs) exploits.
This twofold analysis helps in comparing the CVE exploits to be able to compare
with the state-of-the-art security requirements by the popular literature.

The fifteenth chapter on “Identifying Evidence for Cloud Forensic Analysis”
discusses forensic analysis and post-attack evidence collection on the cloud

Preface xiii

computing infrastructures. Authors describe the evidence collection activity at three
different places which are at Intrusion Detection System (IDS), cloud provider API
calls, and VM system calls. It shows a step-by-step attack scenario reconstruction
using the proposed prolog-based tool following the proposed evidence collection
approach. Forensic analysis of cloud computing infrastructures is still in its infancy
and authors provide directions for data collection and forensically capable clouds.

The sixteenth chapter on “An Access Control Framework for Secure and
Interoperable Cloud Computing Applied to the Healthcare Domain” addresses
various health record security issues and provides an FSICC framework
(Framework for Secure and Interoperable Cloud Computing) that provides a
mechanism for multiple sources to register cloud, programming, and web services
and security requirements for use by applications. Future research directions are
provided at the end of this chapter to help the enthusiastic readers about the open
areas.

The seventeenth chapter on “Security and Privacy Issues in Outsourced Personal
Health Record” provides a detailed survey on existing personal health record
management systems (PHRMSs) considering the security and privacy features
provided by each one of them. This state-of-the-art survey is extended by giving
pointers to multiple open research problems in the healthcare domain.

The last in the series of five chapters dedicated to cloud security is a chapter on
“Applications of Trusted Computing in Cloud Context”. Trusted computing para-
digm has been considered as one of the important security research milestones to
leverage various security solutions. This chapter investigates applications of trusted
computing in cloud computing areas where security threats exist, namely in live
virtual machine migration.

Ahmedabad, India Sanjay Chaudhary
Ajmer, India Gaurav Somani
Melbourne, Australia Rajkumar Buyya

Acknowledgements

We are thankful to

Contributing authors

Springer

Suvira Srivastava

Ahmedabad University

Australian Research Council for Future Fellowship
Prof. M.S. Gaur, MNIT, India

Central University of Rajasthan

Antony Raj J.

Family members

XV

Contents

Serverless Computing: Current Trends and Open Problems. 1
Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink,

Vatche Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbabh,

Aleksander Slominski and Philippe Suter

Highly Available Clouds: System Modeling, Evaluations, and Open
Challenges 21
Patricia Takako Endo, Glauco Estacio Gongalves, Daniel Rosendo,

Demis Gomes, Guto Leoni Santos, André Luis Cavalcanti Moreira,

Judith Kelner, Djamel Sadok and Mozhgan Mahloo

Big Data Analytics in Cloud—A Streaming Approach 55
Ratnik Gandhi

A Terminology to Classify Artifacts for Cloud Infrastructure. 75
Fabio Diniz Rossi, Rodrigo Neves Calheiros
and César Augusto Fonticielha De Rose

Virtual Networking with Azure for Hybrid Cloud Computing in

Adel Nadjaran Toosi and Rajkumar Buyya

Building Efficient HPC Cloud with SR-IOV-Enabled InfiniBand: The
MVAPICH2 Approach. 115
Xiaoyi Lu, Jie Zhang and Dhabaleswar K. Panda

Resource Procurement, Allocation, Metering, and Pricing in Cloud
Computing. 141
Akshay Narayan, Parvathy S. Pillai, Abhinandan S. Prasad

and Shrisha Rao

Dynamic Selection of Virtual Machines for Application Servers in
Cloud Environments. 187
Nikolay Grozev and Rajkumar Buyya

Xvii

XVviii Contents

Improving the Energy Efficiency in Cloud Computing Data Centres
Through Resource Allocation Techniques. 211
Belén Bermejo, Sonja Filiposka, Carlos Juiz, Beatriz Gomez

and Carlos Guerrero

Recent Developments in Resource Management in Cloud Computing
and Large Computing Clusters 237
Richard Olaniyan and Muthucumaru Maheswaran

Resource Allocation for Cloud Infrastructures: Taxonomies and
Research Challenges 263
Benjamin Bardn and Fabio Lopez-Pires

Many-Objective Optimization for Virtual Machine Placement in
Cloud Computing 291
Fabio Lopez-Pires and Benjamin Baran

Performance Modeling and Optimization of Live Migration of Virtual
Machines in Cloud Infrastructure 327
Minal Patel, Sanjay Chaudhary and Sanjay Garg

Analysis of Security in Modern Container Platforms. 351
Samuel Laurén, M. Reza Memarian, Mauro Conti and Ville Leppédnen

Identifying Evidence for Cloud Forensic Analysis 371
Changwei Liu, Anoop Singhal and Duminda Wijesekera

An Access Control Framework for Secure and Interoperable Cloud
Computing Applied to the Healthcare Domain. 393
Mohammed S. Baihan and Steven A. Demurjian

Security and Privacy Issues in Outsourced Personal Health Record. ... 431
Naveen Kumar and Anish Mathuria

Applications of Trusted Computing in Cloud Context............... 449
Mohammad Reza Memarian, Diogo Fernandes, Pedro Inacio,
Ville Leppénen and Mauro Conti

About the Editors

Dr. Sanjay Chaudhary is a Professor and Associate Dean of the School of
Engineering and Applied Science, Ahmedabad University, Ahmedabad, India. His
research areas are data analytics, cloud computing, and ICT applications in agri-
culture and rural development. He has authored four books, six book chapters, and
published more than hundred research papers and ten literary articles in interna-
tional conferences, workshops, and journals. He has served on the program com-
mittees of leading international conferences and workshops, and he is also a
member of the review committees of leading journals. He holds a doctorate degree
in computer science from Gujarat Vidyapeeth, Ahmedabad, India. Earlier, he
worked as a Professor and Dean (Academics Programs) at DA-IICT. He has also
worked on various large-scale software development projects for the corporate
sector, co-operative sector, and government organizations. He is actively involved
in various consultancy and enterprise application development projects.

Gaurav Somani is an Assistant Professor at the Department of Computer Science
and Engineering at the Central University of Rajasthan (Ajmer), India. He has
submitted his PhD in Computer Science and Engineering from MNIT, Jaipur, India.
His research interests include distributed systems, network security, cloud com-
puting, and open-source technologies. He has published number of papers in var-
ious conferences and journals of international repute and is a reviewer of many top
journals. Some of his top papers are published in highly reputed journals such as
Computer Networks, Annals of Telecommunications, Computer Communications,
IEEE Cloud Computing, Computers and Electrical Engineering, FGCS, and IEEE
Cloud. He has written a book on “Scheduling and Isolation in Virtualization” which
is published by VDM Verlag Dr. Muller Publishers, Germany. This book is used as
a text/reference book in some graduate-level programs across the globe. He is also a
part of multiple international conferences across the globe where he has played a
role of TPC member, session chair, and invited speaker. He was the keynote and the
tutorial chair at the ICISS 2016. He is a member of IEEE and ACM.

XiX

XX About the Editors

Dr. Rajkumar Buyya is a Redmond Barry Distinguished Professor of Computer
Science and Software Engineering and Director of the Cloud Computing and
Distributed Systems (CLOUDS) Laboratory at the University of Melbourne,
Australia. He is also serving as the founding CEO of Manjrasoft, a spin-off com-
pany of the university, commercializing its innovations in cloud computing. He
served as Future Fellow of the Australian Research Council during 2012-2016. He
has authored over 525 publications and seven text books including “Mastering
Cloud Computing” published by McGraw Hill, China Machine Press, and Morgan
Kaufmann for Indian, Chinese, and international markets, respectively. He has also
edited several books including “Cloud Computing: Principles and Paradigms”
(Wiley Press, USA, Feb 2011). He is one of the highly cited authors in computer
science and software engineering worldwide (h-index=112, g-index=245, 63,900+
citations). Microsoft Academic Search Index ranked Dr. Buyya as #1 author in the
world (2005-2016) for both field rating and citations evaluations in the area of
Distributed and Parallel Computing. Recently, Dr. Buyya is recognized as “2016
Web of Science Highly Cited Researcher” by Thomson Reuters.

Serverless Computing: Current Trends
and Open Problems

Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng,
Stephen Fink, Vatche Ishakian, Nick Mitchell, Vinod Muthusamy,
Rodric Rabbah, Aleksander Slominski and Philippe Suter

Abstract Serverless computing has emerged as a new compelling paradigm for the
deployment of applications and services. It represents an evolution of cloud program-
ming models, abstractions, and platforms, and is a testament to the maturity and wide
adoption of cloud technologies. In this chapter, we survey existing serverless plat-
forms from industry, academia, and open-source projects, identify key characteristics
and use cases, and describe technical challenges and open problems.

I. Baldini - P. Castro () - K. Chang - P. Cheng - S. Fink - N. Mitchell -
V. Muthusamy - R. Rabbah - A. Slominski

IBM Research, New York, USA

e-mail: ioana@us.ibm.com

P. Castro
e-mail: castrop@us.ibm.com

K. Chang
e-mail: Kerry.Chang@ibm.com

P. Cheng
e-mail: perry @us.ibm.com

S. Fink
e-mail: sjfink @us.ibm.com

N. Mitchell
e-mail: nickm@us.ibm.com

V. Muthusamy (B<)
e-mail: vmuthus @us.ibm.com

R. Rabbah
e-mail: rabbah @us.ibm.com

A. Slominski ()
e-mail: aslom@us.ibm.com

V. Ishakian ()
Bentley University, Waltham, USA
e-mail: vishakian @bentley.edu

P. Suter
Two Sigma, New York, USA

© Springer Nature Singapore Pte Ltd. 2017 1
S. Chaudhary et al. (eds.), Research Advances in Cloud Computing,
DOI 10.1007/978-981-10-5026-8_1

2 1. Baldini et al.

1 Introduction

Serverless computing (or simply serverless) is emerging as a new and compelling
paradigm for the deployment of cloud applications, largely due to the recent shift
of enterprise application architectures to containers and microservices [21]. Figure 1
shows the increasing popularity of the “serverless” search term over the last 5 years
as reported by Google Trends. This is an indication of the increasing attention that
serverless computing has garnered in industry trade shows, meetups, blogs, and the
development community. By contrast, the attention of the academic community has
been limited.

From the perspective of an Infrastructure-as-a-Service (IaaS) customer, this par-
adigm shift presents both an opportunity and a risk. On the one hand, it provides
developers with a simplified programming model for creating cloud applications that
abstracts away most, if not all, operational concerns; it lowers the cost of deploying
cloud code by charging for execution time rather than resource allocation; and it is
a platform for rapidly deploying small pieces of cloud-native code that responds to
events, for instance, to coordinate microservice compositions that would otherwise
run on the client or on dedicated middleware. On the other hand, deploying such
applications in a serverless platform is challenging and requires relinquishing to the
platform design decisions that concern, among other things, quality-of-service (QoS)
monitoring, scaling, and fault tolerance properties.

From the perspective of a cloud provider, serverless computing provides an addi-
tional opportunity to control the entire development stack, reduce operational costs
by efficient optimization and management of cloud resources, offer a platform that
encourages the use of additional services in their ecosystem, and lower the effort
required to author and manage cloud-scale applications.

Serverless computing is a term coined by industry to describe a programming
model and architecture where small code snippets are executed in the cloud without
any control over the resources on which the code runs. It is by no means an indication
that there are no servers, simply that the developer should leave most operational
concerns such as resource provisioning, monitoring, maintenance, scalability, and
fault tolerance to the cloud provider.

Interest over time @ :

Fig. 1 Popularity of the term “serverless” as reported by Google Trends

Serverless Computing: Current Trends and Open Problems 3

The astute reader may ask how this differs from the Platform-as-a-Service (PaaS)
model, which also abstracts away the management of servers. A serverless model
provides a “stripped down” programming model based on stateless functions. Similar
to Paas, developers can write arbitrary code and are not limited to using a prepackaged
application. The version of serverless that explicitly uses functions as the deployment
unit is also called Function-as-a-Service (FaaS).

Serverless platforms promise new capabilities that make writing scalable microser-
vices easier and cost-effective, positioning themselves as the next step in the evolution
of cloud computing architectures. Most of the prominent cloud computing providers
including Amazon [1], IBM [24], Microsoft [3], and Google [10] have recently
released serverless computing capabilities. There are also several open-source efforts
including the OpenLambda project [23].

Serverless computing is in its infancy and the research community has produced
only a few citable publications at this time. OpenLambda [23] proposes a refer-
ence architecture for serverless platforms and describes challenges in this space (see
Sect.3.1.3) and we have previously published two of our use cases [5, 29] (see
Sect.5.1). There are also several books for practitioners that target developers inter-
ested in building applications using serverless platforms [12, 27].

1.1 Defining Serverless

Succinctly defining the term serverless can be difficult as the definition will over-
lap with other terms such as PaaS and Software-as-a-Service (SaaS). One way to
explain serverless is to consider the varying levels of developer control over the
cloud infrastructure, as illustrated in Fig.2. The Infrastructure-as-a-Service (IaaS)
model is where the developer has the most control over both the application code
and operating infrastructure in the cloud. Here, the developer is responsible for pro-
visioning the hardware or virtual machines, and can customize every aspect of how
an application gets deployed and executed. On the opposite extreme are the PaaS
and SaaS models, where the developer is unaware of any infrastructure, and con-
sequently no longer has control over the infrastructure. Instead, the developer has

Serverless

custom infrastructure shared infrastructure shared infrastructure
custom application code custom application code shared service code

Hardware/VM Full Stack
Deployment '> Services

<
(12aS) Developer (Saas)
More Control Less

Runs in PaaS

Fig. 2 Developer control and serverless computing

4 1. Baldini et al.

access to prepackaged components or full applications. The developer is allowed to
host code here, though that code may be tightly coupled to the platform.

For this chapter, we will focus on the space in the middle of Fig.2. Here, the
developer has control over the code they deploy into the cloud, though that code has
to be written in the form of stateless functions. (The reason for this will be explained
in Sect. 3.) The developer does not worry about the operational aspects of deployment
and maintenance of that code and expects it to be fault-tolerant and auto-scaling. In
particular, the code may be scaled to zero where no servers are actually running when
the user’s function is not used, and there is no cost to the user. This is in contrast to
PaaS solutions where the user is often charged even during idle periods.

There are numerous serverless platforms that fall into the above definition. In this
chapter, we present the architecture and other relevant features of serverless com-
puting, such as the programming model. We also identify the types of application
workloads that are suitable to run on serverless computing platforms. We then con-
clude with open research problems and future research challenges. Many of these
challenges are a pressing need in industry and could benefit from contributions from
academia.

2 Evolution

Serverless computing was popularized by Amazon in the re:Invent 2014 session
“Getting Started with AWS Lambda” [2]. Other vendors followed in 2016 with
the introduction of Google Cloud Functions [10], Microsoft Azure Functions [3],
and IBM OpenWhisk [24]. However, the serverless approach to computing is not
completely new. It has emerged following recent advancements and adoption of
virtual machine (VM) and then container technologies. Each step up the abstraction
layers led to more lightweight units of computation in terms of resource consumption,
cost, and speed of development and deployment.

Among existing approaches, Mobile Backend as-a-Service (MBaaS) bears a close
resemblance to serverless computing. Some of those services even provided “cloud
functions”, that is, the ability to run some code server-side on behalf of a mobile app
without the need to manage the servers. An example of such a service is Facebook’s
Parse Cloud Code [25]. Such code, however, was typically limited to mobile use
cases.

Software-as-a-Service (SaaS) may support the server-side execution of user pro-
vided functions but they are executing in the context of an application and hence
limited to the application domain. Some SaaS vendors allow the integration of arbi-
trary code hosted somewhere else and invoked via an API call. For example, this is
approach is used by the Google Apps Marketplace in Google Apps for Work [14].

Serverless Computing: Current Trends and Open Problems 5

/ Edge Master \

Worker
ul function main() { code
9} N return {payload:
2 b} "Hello World};
C::Sf 5 } code
> » =
AP| Gateway 2 g
(%]
g a
w H
Cloud
Event Worker
Sources code | e code

o 4

Fig. 3 Serverless platform architecture

3 Architecture

There are a lot of misconceptions surrounding serverless starting with the name.
Servers are still needed, but developers need not concern themselves with managing
those servers. Decisions such as the number of servers and their capacity are taken
care of by the serverless platform, with server capacity automatically provisioned
as needed by the workload. This provides an abstraction where computation (in the
form of a stateless function) is disconnected from where it is going to run.

The core capability of a serverless platform is that of an event processing system,
as depicted in Fig. 3. The service must manage a set of user-defined functions, take an
event sent over HTTP or received from an event source, determine which function(s)
to which to dispatch the event, find an existing instance of the function or create
a new instance, send the event to the function instance, wait for a response, gather
execution logs, make the response available to the user, and stop the function when
it is no longer needed.

The challenge is to implement such functionality while considering metrics such
as cost, scalability, and fault tolerance. The platform must quickly and efficiently
start a function and process its input. The platform also needs to queue events, and
based on the state of the queues and arrival rate of events, schedule the execution of
functions, and manage stopping and deallocating resources for idle function instances.
In addition, the platform needs to carefully consider how to scale and manage failures
in a cloud environment.

6 1. Baldini et al.

3.1 Survey of Serverless Platforms

In this section, we will compare a number of serverless platform. We first list the
dimensions which will be used to characterize the architectures of these platforms,
followed by a brief description of each platform.

3.1.1 Characteristics

There are a number of characteristics that help distinguish the various serverless
platforms. Developers should be aware of these properties when choosing a platform.

e Cost: Typically, the usage is metered and users pay only for the time and resources
used when serverless functions are running. This ability to scale to zero instances
is one of the key differentiators of a serverless platform. The resources that are
metered, such as memory or CPU, and the pricing model, such as off-peak dis-
counts, vary among providers.

e Performance and limits: There are a variety of limits set on the runtime resource
requirements of serverless code, including the number of concurrent requests, and
the maximum memory and CPU resources available to a function invocation. Some
limits may be increased when users’ needs grow, such as the concurrent request
threshold, while others are inherent to the platforms, such as the maximum memory
size.

e Programming languages: Serverless services support a wide variety of program-
ming languages including Javascript, Java, Python, Go, C#, and Swift. Most plat-
forms support more than one programming language. Some of the platforms also
support extensibility mechanisms for code written in any language as long as it is
packaged in a Docker image that supports a well-defined API.

e Programming model: Currently, serverless platforms typically execute a single
main function that takes a dictionary (such as aJSON object) as input and produces
a dictionary as output.

e Composability: The platforms generally offer some way to invoke one serverless
function from another, but some platforms provide higher level mechanisms for
composing these functions and may make it easier to construct more complex
serverless apps.

e Deployment: Platforms strive to make deployment as simple as possible. Typically,
developers just need to provide a file with the function source code. Beyond that
there are many options where code can be packaged as an archive with multiple
files inside or as a Docker image with binary code. As well, facilities to version or
group functions are useful but rare.

e Security and accounting: Serverless platforms are multi-tenant and must isolate

the execution of functions between users and provide detailed accounting so users

understand how much they need to pay.

Monitoring and debugging: Every platform supports basic debugging by using

print statements that are recorded in the execution logs. Additional capabilities may

Serverless Computing: Current Trends and Open Problems 7

be provided to help developers find bottlenecks, trace errors, and better understand
the circumstances of function execution.

3.1.2 Commercial Platforms

Amazon’s AWS Lambda [1] was the first serverless platform and it defined several
key dimensions including cost, programming model, deployment, resource limits,
security, and monitoring. Supported languages include Node.js, Java, Python, and
C#. Initial versions had limited composability but this has been addressed recently.
The platform takes advantage of a large AWS ecosystem of services and makes it easy
to use Lambda functions as event handlers and to provide glue code when composing
services.

Currently available as an Alpha release, Google Cloud Functions [10] provides
basic FaaS functionality to run serverless functions written in Node.js in response
to HTTP calls or events from some Google Cloud services. The functionality is
currently limited but expected to grow in future versions.

Microsoft Azure Functions [3] provides HTTP webhooks and integration with
Azure services to run user provided functions. The platform supports C#, F#, Node.js,
Python, PHP, bash, or any executable. The runtime code is open-source and available
on GitHub under an MIT License. To ease debugging, the Azure Functions CLI
provides a local development experience for creating, developing, testing, running,
and debugging Azure Functions.

IBM OpenWhisk [24] provides event-based serverless programming with the abil-
ity to chain serverless functions to create composite functions. It supports Node.js,
Java, Swift, Python, as well as arbitrary binaries embedded in a Docker container.
OpenWhisk is available on GitHub under an Apache open-source license. The main
architectural components of the OpenWhisk platform are shown in Fig. 4. Compared
to the generic architectural diagram in Fig.3, we can see there are additional com-
ponents handling important requirements such as security, logging, and monitoring.

3.1.3 New and Upcoming Serverless Platforms

There are several serverless projects ranging from open-source projects to vendors
that find serverless a natural fit for their business.

OpenLambda [23] is an open-source serverless computing platform. The source
code is available in GitHub under an Apache License. The OpenLambda paper [15]
outlines a number of challenges around performance such as supporting faster func-
tion startup time for heterogeneous language runtimes and across a load balanced
pool of servers, deployment of large amounts of code, supporting stateful interactions
(such as HTTP sessions) on top of stateless functions, using serverless functions with
databases and data aggregators, legacy decomposition, and cost debugging. We have
identified similar challenges in Sect. 6.

8 1. Baldini et al.

/ Edge Master Log Forwardex

Controller <4—>» Entitlement Consul
Ul
Registrator
AP| Gateway " "
Execution Engine
Workgr g
Invoker
Cloud Worker Executor
Event
Executor
Sources Registrator
Execution Engine Executor

Log
\\ i Forwarder

Fig. 4 IBM openWhisk architecture

Some serverless systems are created by companies that see the need for serverless
computing in the environments they operate. For example, Galactic Fog [13] added
serverless computing to their Gestalt Framework running on top of Mesos D/C. The
source code is available under an Apache 2 license. AuthQ has created webtasks [7]
that execute serverless functions to support webhook endpoints used in complex
security scenarios. This code is also available as open source. Iron.io had a serverless
support for tasks since 2012 [28]. Recently, they announced Project Kratos [16]
that allows developers to convert AWS Lambda functions into Docker images, and
is available under an Apache 2 license. Additionally, they are working with Cloud
Foundry to bring multi-cloud serverless support to Cloud Foundry users [9]. LeverOS
is an open-source project that uses an RPC model to communicate between services.
Computing resources in LeverOS can be tagged, so repeated function invocations can
be targeted to a specific container to optimize runtime performance, such as taking
advantage of warm caches in a container [20].

3.2 Benefits and Drawbacks

Compared to [aaS platforms, serverless architectures offer different tradeoffs in terms
of control, cost, and flexibility. In particular, they force application developers to
carefully think about the cost of their code when modularizing their applications,
rather than latency, scalability, and elasticity, which is where significant development
effort has traditionally been spent.

The serverless paradigm has advantages for both consumers and providers. From
the consumer perspective, a cloud developer no longer needs to provision and manage
servers, VMs, or containers as the basic computational building block for offering

Serverless Computing: Current Trends and Open Problems 9

distributed services. Instead the focus is on the business logic, by defining a set of
functions whose composition enables the desired application behavior. The stateless
programming model gives the provider more control over the software stack, allowing
them to, among other things, more transparently deliver security patches and optimize
the platform.

There are, however, drawbacks to both consumers and providers. For consumers,
the FaaS model offered by the platform may be too constraining for some appli-
cations. For example, the platform may not support the latest Python version, or
certain libraries may not be available. For the provider, there is now a need to man-
age issues such as the lifecycle of the user’s functions, scalability, and fault tolerance
in an application-agnostic manner. This also means that developers have to carefully
understand how the platform behaves and design the application around these capa-
bilities.

One property of serverless platforms that may not be evident at the outset is that the
provider tends to offer an ecosystem of services that augment the user’s functions. For
example, there may be services to manage state, record and monitor logs, send alerts,
trigger events, or perform authentication and authorization. Such rich ecosystems
can be attractive to developers and present another revenue opportunity for the cloud
provider. However, the use of such services brings with it a dependence on the
provider’s ecosystem and a risk of vendor lock-in.

3.3 Current State of Serverless Platforms

There are many commonalities between serverless platforms. They share similar
pricing, deployment, and programming models. The main difference among them is
the cloud ecosystem: current serverless platforms only make it easy to use the services
in their own ecosystem and the choice of platform will likely force developers to use
the services native to that platform. That may be changing as open-source solutions
may work well across multiple cloud platforms.

4 Programming Model

Serverless functions have limited expressiveness as they are built to scale. Their
composition may be also limited and tailored to support cloud elasticity. To maximize
scaling, serverless functions do not maintain state between executions. Instead, the
developer can write code in the function to retrieve and update any needed state. The
function is also able to access a context object that represents the environment in
which the function is running (such as a security context). For example, a function
written in JavaScript could take the input, as a JSON object, as the first parameter,
and context as the second:

10 1. Baldini et al.

function main (params, context) {
return {payload: ’'Hello,’ + params.name
+ ’ from’ + params.place};

4.1 Ecosystem

Due to the limited and stateless nature of serverless functions, an ecosystem of
scalable services that support the different functionalities a developer may require
is essential to having a successfully deployed serverless application. For example,
many applications will require the serverless function to retrieve state from perma-
nent storage (such as a file server or database). There may be an existing ecosystem
of functions that support API calls to various storage systems. While the functions
themselves may scale due to the serverless guarantees, the underlying storage sys-
tem itself must provide reliability and QoS guarantees to ensure smooth operation.
Serverless functions can be used to coordinate any number of systems such as identity
providers, messaging queues, and cloud-based storage. Dealing with the challenges
of scaling of these systems on-demand is as critical but outside the control of the
serverless platform. To increase the adoption of serverless computing, there is a need
to provide such scalable services. Such an ecosystem enables ease of integration and
fast deployment at the expense of vendor lock-in.

4.2 Tools and Frameworks

Creating and managing serverless functions requires several operations. Instead of
managing each function independently, it is much more convenient to have a frame-
work that can logically group functions together to deploy and update them as a unit.
A framework may also make it easier to create functions that are not bound to one
serverless service provider by providing abstractions that hide low-level details of
each serverless provider. Other frameworks may take existing popular programming
models and adapt them for serverless execution. For example, Zappa [30] and Chal-
ice [8] use an @app.route decorator to make it possible to write python code that
looks like a webserver but can be deployed as a serverless function:

@app.route("/{name}/{place}")
def index():
return {"hello": name, "from": place}

Serverless Computing: Current Trends and Open Problems 11

<y Newimage
event
Image
database

Serverless function
to generate
thumbnail

Thumbnail
database

Fig. 5 Image processing

5 Use Cases and Workloads

Serverless computing has been utilized to support a wide range of applications.
From a functionality perspective, serverless and more traditional architectures may
be used interchangeably. The determination of when to use serverless will likely be
influenced by other non-functional requirements such as the amount of control over
operations required, cost, as well as application workload characteristics.

From a cost perspective, the benefits of a serverless architecture are most apparent
for bursty, compute-intensive workloads. Bursty workloads fare well because the
developer offloads the elasticity of the function to the platform, and just as important,
the function can scale to zero, so there is no cost to the consumer when the system
is idle. Compute-intensive workloads are appropriate since in most platforms today,
the price of a function invocation is proportional to the running time of the function.
Hence, I/O bound functions are paying for compute resources that they are not fully
taking advantage of. In this case, a multi-tenant server application that multiplexes
requests may be cheaper to operate.

From a programming model perspective, the stateless nature of serverless func-
tions lends themselves to application structure similar to those found in functional
reactive programming [4]. This includes applications that exhibit event-driven and
flow-like processing patterns.

5.1 Event Processing

One class of applications that are very much suitable for serverless computing is
event-based programming [5, 29]. The most basic example, popularized by AWS
Lambda, that has become the “Hello World” of serverless computing is a simple
image processing event handler function. The function is connected to a data store,
such as Amazon S3 [26], that emits change events. Each time a new image file is
uploaded to a folder in S3, an event is generated and forwarded to the event handler
function that generates a thumbnail image that is stored in another S3 folder. The
flow is depicted in Fig.5. This example works well for serverless demos as the
function is completely stateless and idempotent which has the advantage that in the
case of failure (such as network problems accessing the S3 folder), the function can
be executed again with no side effects. It is also an exemplary use case of a bursty,
compute-intensive workload as described above.

12 1. Baldini et al.

Mobile app

Lat/long 3 day weather
coordinates forecast in French

def main(dict):
zip = gis.geoToZip(dict.get ("coords"))
forecasts = weather.forecast (zip)

firstThreeDays = forecasts[0:3]
translated = language.translate (firstThreeDays , “en", ”“fr")
return {"forecast": filter (translated)}
CoordToZipCode Weather forecast Language translation
service service service

Fig. 6 Offloading API calls and glue logic from mobile app to backend

5.2 API Composition

Another class of applications involves the composition of a number of APIs. In this
case, the application logic consists of data filtering and transformation. For example,
a mobile app may invoke geolocation, weather, and language translation APIs to
render the weather forecast for a user’s current location. The glue code to invoke
these APIs can be written in a short serverless function, as illustrated by the Python
function in Fig. 6. In this way, the mobile app avoids the cost of invoking the multiple
APIs over a potentially resource constrained mobile network connection, and offloads
the filtering and aggregation logic to the backend.

5.3 API Aggregation to Reduce API Calls

API aggregation can work not only as a composition mechanism, but also as a means
to simplify the client-side code that interacts with the aggregated call. For example,
consider a mobile application that allows you to administer an Open Stack instance.
API calls in Open Stack [18] require the client to first obtain an API token, resolve
the URL of the service you need to talk to, then invoke the required API call on that
URL with the API token. Ideally, a mobile app would save energy by minimizing
the number of required calls needed to issue a command to an Open Stack instance.
Figure 7 illustrates an alternative approach where three functions implement the
aforementioned flow to allow authenticated backups in an Open Stack instance. The

Serverless Computing: Current Trends and Open Problems 13

Authenticated Backup

(: invok ,
il t Get API Token Get Server IDs H Create Backup J

event

Fig. 7 Reducing the number of API calls required for a mobile client

database Issue tracker

update .
1 \ !

User
Interaction invoke . invoke
— — Write Record Create Issue

event

API

Fig. 8 Batched invocation for issue tracking

mobile client now makes a single call to invoke this aggregate function. The flow
itself appears as a single API call. Note that authorization to invoke this call can be
handled by an external authorization service, e.g., an API gateway.

5.4 Flow Control for Issue Tracking

Serverless function composition can be used to control the flow of data between two
services. For example, imagine an application that allows users to submit feedback
to the app developers in the form of annotated screenshots and text. In Fig. 8, the
application submits this data to a backend consisting of a scalable database and an
on-premise issue tracking system. The latter is mainly used by the development team
and is not designed to accept high volume traffic. On the other hand, the former is
capable of responding to high volume traffic. We design our system to stage all
feedback records in the database using a serverless function which eliminates the
need to standup a separate server to handle feedback requests but still allow us a
level of indirection between the application and the backend database. Once we
collect a sufficient number of updates, we can batch them together into a single
update, which invokes a function to submit issues to the issue tracker in a controlled
manner. This flow would work for a scalable database system [6] and an issue tracker
system that accepts batched inputs [17].

14 1. Baldini et al.

5.5 Discussion

The workload and its relationship to cost can help determine if serverless is appro-
priate. Infrequent but bursty workloads may be better served by serverless, which
provides horizontal scaling without the need for dedicated infrastructure that charges
for idle time. For more steady workloads, the frequency at which a function is exe-
cuted will influence how economical it can be for caching to occur which allows for
faster execution on warm containers than executing from a cold container. These per-
formance characteristics can help guide the developer when considering serverless.

Interestingly, the cost considerations may affect how a serverless application is
structured. For example, an I/O bound serverless function can be decomposed into
multiple compute bound ones. This may be more complex to develop and debug, but
cheaper to operate.

6 Challenges and Open Problems

We will list challenges starting with those that are already known based on our
experience of using serverless services and then describe open problems.

6.1 System-Level Challenges

Here is a list of challenges at the systems level.

e Cost: Costisafundamental challenge. This includes minimizing the resource usage
of a serverless function, both when it is executing and when idle. Another aspect is
the pricing model, including how it compares to other cloud computing approaches.
For example, serverless functions are currently most economical for CPU-bound
computations, whereas I/O bound functions may be cheaper on dedicated VMs or
containers.

e Cold start: A key differentiator of serverless is the ability to scale to zero, or not
charging customers for idle time. Scaling to zero, however, leads to the problem
of cold starts, and paying the penalty of getting serverless code ready to run.
Techniques to minimize the cold start problem while still scaling to zero are critical.

e Resource limits: Resource limits are needed to ensure that the platform can handle
load spikes and manage attacks. Enforceable resource limits on a serverless func-
tion include memory, execution time, bandwidth, and CPU usage. In additional,
there are aggregate resource limits that can be applied across a number of functions
or across the entire platform.

e Security: Strong isolation of functions is critical since functions from many users
are running on a shared platform.

Serverless Computing: Current Trends and Open Problems 15

e Scaling: The platform must ensure the scalability and elasticity of users’ func-
tions. This includes proactively provisioning resources in response to load, and
in anticipation of future load. This is a more challenging problem in serverless
because these predictions and provisioning decisions must be made with little or
no application-level knowledge. For example, the system can use request queue
lengths as an indication of the load, but is blind to the nature of these requests.

e Hybrid cloud: As serverless is gaining popularity, there may be more than one
serverless platform and multiple serverless services that need to work together. It
is unlikely one platform will have all functionality and work for all use cases.

e Legacy systems: It should be easy to access older cloud and non-cloud systems
from serverless code running in serverless platforms.

6.2 Programming Model and DevOps Challenges

e Tools: Traditional tools that assumed access to servers to be able to monitor
and debug applications are not applicable in serverless architectures, and new
approaches are needed.

e Deployment: Developers should be able to use declarative approaches to control
what is deployed and tools to support it.

e Monitoring and debugging: As developers no longer have servers that they can
access, serverless services and tools need to focus on developer productivity. As
serverless functions are running for shorter amounts of time, there will be many
orders of magnitude more of them running making it harder to identify problems
and bottlenecks. When the functions finish the only trace of their execution is what
the serverless platform’s monitoring infrastructure recorded.

e [DEs: Higher level developer capabilities, such as refactoring functions (e.g., split-
ting and merging functions) and reverting to an older version, etc. will be needed
and should be fully integrated with serverless platforms.

e Composability: This includes being able to call one function from another, creating
functions that call and coordinate a number of other functions, and higher level
constructs such as parallel executions and graphs. Tools will be needed to facilitate
creation of compositions and their maintenance.

e Long running: Currently, serverless functions are often limited in their execution
time. There are scenarios that require long running (if intermittent) logic. Pro-
gramming models and tools may decompose long running tasks into smaller units
and provide necessary context to track them as one long running unit of work.

e State: Real applications often require state, and it is not clear how to manage state
in stateless serverless functions—programing models, tools, and libraries will need
to provide the necessary.

e Concurrency: Expressing concurrency semantics, such as atomicity (function exe-
cutions need to be serialized), etc.

e Recovery semantics: Such as exactly once, at most once, and at least once seman-
tics.

16 1. Baldini et al.

e Code granularity: Currently, serverless platforms encapsulate code at the granu-
larity of functions. It is an open question whether coarser or finer grained modules
would be useful.

6.3 Open Research Problems

Now, we will describe a number of open problems. We frame them as questions to
emphasize that they are largely unexplored research areas.

What are the boundaries of serverless? A fundamental question about serverless
computing is of boundaries: is it restricted to FaaS or is broader in scope? How does
it relate to other models such as SaaS and MBaaS?

As serverless is gaining popularity the boundaries between different types of “as-
a-Service” may be disappearing (see Fig.9). One could imagine that developers not
only write code but also declare how they want the code to run—as FaaS or MBaaS
or PaaS—and can change as needs change. In the future, the main distinction may
be between caring about server (server-aware) and not caring about server details
(serverless). PaaS is in the middle; it makes it very easy to deploy code but developers
still need to know about servers and be aware of scaling strategies, such as how many
instances to run.

Can different cloud computing service models be mixed? Can there be more
choices for how much memory and CPU can be used by serverless functions? Does

Server-less

Smart Contracts

FaaS
MBaaS
Increasing SaaS Server-aware
ease of
scaling Paas

laaS (VMs and bare
metal servers)

Increasing size and lifetime ————

Fig. 9 The figure is showing relation between time to live (x-axis) and ease of scaling (y-axis).
Server-aware compute (bare metal, VMs, IaaS) has long time to live and take longer to scale (time
to provision new resources); serverless compute (FaaS, MBaaS, PaaS, SaaS) is optimized to work
on multiple servers and hide server details

Serverless Computing: Current Trends and Open Problems 17

serverless need to have IaaS-like-based pricing? What about spot and dynamic pricing
with dynamically changing granularity?

Is tooling for serverless fundamentally different from existing solutions? As
the granularity of serverless is much smaller than traditional server-based tools,
we may need new tools to deal well with more numerous but much shorter living
artifacts. How can we make sure that the important “information needle” is not
lost in a haystack? Monitoring and debugging serverless applications will be much
more challenging as there are no servers directly accessible to see what went wrong.
Instead, serverless platforms need to gather all data when code is running and make it
available later. Similarly debugging is much different if instead of having one artifact
(amicroservice or traditional monolithic app) developers need to deal with a myriad
of smaller pieces of code. New approaches may be needed to virtually assemble
serverless pieces into larger units that are easier to understand and to reason about.

Can legacy code be made to run serverless? The amount of existing (“legacy”)
code that must continue running is much larger than the new code created specifically
to run in serverless environments. The economic value of existing code represents
a huge investment of countless hours of developers coding and fixing software.
Therefore, one of the most important problems may be to what degree existing
legacy code can be automatically or semi-automatically decomposed into smaller-
granularity pieces to take advantage of these new pricing models.

Is serverless fundamentally stateless? As current serverless platforms are state-
less will there be stateful serverless services in future? Will there be simple ways
to deal with state? More than that is serverless fundamentally stateless? Can there
be serverless services that have stateful support built-in with different degrees of
quality-of-service?

Will there be patterns for building serverless solutions? How do we combine
low granularity “basic” building blocks of serverless into bigger solutions? How are
we going to decompose apps into functions so that they optimize resource usage?
For example, how do we identify CPU-bound parts of applications built to run in
serverless services? Can we use well-defined patterns for composing functions and
external APIs? What should be done on the server versus client (e.g., are thicker
clients more appropriate here)? Are there lessons learned that can be applied from
OOP design patterns, Enterprise Integration Patterns, etc.?

Does serverless extend beyond traditional cloud platforms? Serverless may
need to support scenarios where code is executed outside of a traditionally defined
data center. This may include efforts where the cloud is extended to include IoT,
mobile devices, web browsers, and other computing at the edge. For example “fog”
computing [22] has the goal of creating a system-level horizontal architecture that
distributes resources and services of computing, storage, control, and networking
anywhere along the continuum from Cloud to IoT. The code running in the “fog”
and outside the Cloud may not just be embedded but virtualized to allow movement
between devices and cloud. That may lead to specific requirements that redefine cost.
For example, energy usage may be more important than speed.

Another example is running code that executes “smart contracts” orchestrating
transactions in a blockchain. The code that defines the contract may be deployed

18 1. Baldini et al.

and running on a network of Hyperledger fabric peer nodes [19], or in Ethereum
Virtual Machines [11] on any node of an Ethereum peer-to-peer network. As the
system is decentralized, there is no Ethereum service or servers to run serverless
code. Instead, to incentivize Ethereum users to run smart contracts they get paid for
the “gas” consumed by the code, similar to fuel cost for an automobile but applied
to computing.

7 Conclusions

In this chapter, we explored the genesis and history of serverless computing in detail.
It is an evolution of the trend toward higher levels of abstractions in cloud program-
ming models, and currently exemplified by the Function-as-a-Service (FaaS) model
where developers write small stateless code snippets and allow the platform to man-
age the complexities of scalably executing the function in a fault-tolerant manner.

This seemingly restrictive model nevertheless lends itself well to a number of com-
mon distributed application patterns, including compute-intensive event processing
pipelines. Most of the large cloud computing vendors have released their own server-
less platforms, and there is a tremendous amount of investment and attention around
this space in industry.

Unfortunately, there has not been a corresponding degree of interest in the research
community. We feel strongly that there are a wide variety of technically challenging
and intellectually deep problems in this space, ranging from infrastructure issues such
as optimizations of the cold start to the design of a composable programming model.
There are even philosophical questions such as the fundamental nature of state in a
distributed application. Many of the open problems identified in this chapter are real
problems faced by practitioners of serverless computing today and solutions have
the potential for significant impact.

We leave the reader with some ostensibly simple questions that we hope will
help stimulate their interest in this area. Why is serverless computing important?
Will it change the economy of computing? As developers take advantage of smaller
granularities of computational units and pay only for what is actually used will that
change how developers think about building solutions? In what ways will serverless
extend the original intent of cloud computing of making hardware fungible and
shifting the cost of computing from capital to operational expenses?

The serverless paradigm may eventually lead to new kinds of programming mod-
els, languages, and platform architectures and that is certainly an exciting area for
the research community to participate in and contribute to.

References

1. Aws lambda. Retrieved December 1, 2016, from https://aws.amazon.com/lambda/.

https://aws.amazon.com/lambda/

Serverless Computing: Current Trends and Open Problems 19

10.
11.

12.

13.

14.

16.

17.
18.
19.

20.
21.

22.
23.
24.
25.

26.
27.

28.

. Awsre:invent 2014 | (mbl202) new launch: Getting started with aws lambda. Retrieved Decem-

ber 1, 2016, from https://www.youtube.com/watch?v=UFj271aTWQA.

. Azure functions. Retrieved December 1, 2016, from https://functions.azure.com/.
. Bainomugisha, E., Carreton, A. L., van Cutsem, T., Mostinckx, S., & de Meuter, W.: A survey

on reactive programming. ACM Computing Surveys, 45(4), 52:1-52:34 (2013). doi:10.1145/
2501654.2501666. http://doi.acm.org/10.1145/2501654.2501666

. Baldini, I, Castro, P., Cheng, P, Fink, S., Ishakian, V., Mitchell, N., et al. (2016). Cloud-native,

event-based programming for mobile applications. In Proceedings of the International Con-
ference on Mobile Software Engineering and Systems, MOBILESoft ’16 (pp. 287-288). New
York, NY, USA: ACM. doi:10.1145/2897073.2897713. http://doi.acm.org/10.1145/2897073.
2897713

. Bienko, C. D., Greenstein, M., Holt, S. E., & Phillips, R. T.: IBM Cloudant: Database as a

Service Advanced Topics. IBM Redbooks (2015)

. Building Serverless Apps with Webtask.io. Retrieved December 1, 2016, from https://authQ.

com/blog/building-serverless-apps-with-webtask/.

. chalice: Python serverless microframework for aws. Retrieved December 1, 2016, from https://

github.com/awslabs/chalice.

. Cloud Foundry and Iron.io Deliver Serverless. Retrieved December 1, 2016, from https://www.

iron.io/cloud-foundry-and-ironio-deliver-serverless/.

Cloud functions. Retrieved December 1, 2016, from https://cloud.google.com/functions/.
Ethereum. Retrieved December 1, 2016, from http://ethdocs.org/en/latest/introduction/what-
is-ethereum.html.

Fernandez, O. (2016). Serverless: Patterns of modern application design using microservices
(Amazon Web Services Edition) (in preparation). https://leanpub.com/serverless.

Galactic Fog Gestalt Framework. Retrieved December 1, 2016, from http://www.galacticfog.
com/.

Google Apps Marketplace. Retrieved December 1, 2016, from https://developers.google.com/
apps-marketplace/.

. Hendrickson, S., Sturdevant, S., Harter, T., Venkataramani, V., Arpaci-Dusseau, A.C., &

Arpaci-Dusseau, R. H. (2016). Serverless computation with openlambda. In 8th USENIX
Workshop on Hot Topics in Cloud Computing, HotCloud 2016, Denver, CO, USA, 20-21
June 2016. https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/
hendrickson.

Introducing Lambda support on Iron.io. Retrieved December 1, 2016, from https://www.iron.
io/introducing-aws-lambda-support/.

Jira. Retrieved December 5, 2016, from https://www.atlassian.com/software/jira.

OpenStack. Retrieved December 5, 2016, from https://www.openstack.org.

Learn Chaincode. Retrieved December 1, 2016, from https://github.com/IBM-Blockchain/
learn-chaincode.

LeverOS. Retrieved December 5, 2016, from https://github.com/leveros/leveros.

NGINX Announces Results of 2016 Future of Application Development and Delivery Survey.
Retrieved December 5, 2016, from https://www.nginx.com/press/nginx-announces-results-of-
2016-future-of-application-development-and-delivery-survey/.

OpenFog Consortium. Retrieved December 1, 2016, from http://www.openfogconsortium.org/.
Openlambda. Retrieved December 1, 2016, from https://open-lambda.org/.

Openwhisk. Retrieved December 1, 2016, from https://github.com/openwhisk/openwhisk.
Parse Cloud Code Getting Started. Retrieved December 1, 2016, from https://parseplatform.
github.io/docs/cloudcode/guide/.

S3 Simple Storage Service. Retrieved December 1, 2016, from https://aws.amazon.com/s3/.
Sbarski, P., & Kroonenburg, S. (2016) Serverless architectures on AWS With examples using
AWS Lambda (in preparation). https://www.manning.com/books/serverless-architectures-on-
aws.

Sharable, Open Source Workers for Scalable Processing. Retrieved December 1, 2016, from
https://www.iron.io/sharable-open-source-workers-for/.

https://www.youtube.com/watch?v=UFj27laTWQA
https://functions.azure.com/
http://dx.doi.org/10.1145/2501654.2501666
http://dx.doi.org/10.1145/2501654.2501666
http://doi.acm.org/10.1145/2501654.2501666
http://dx.doi.org/10.1145/2897073.2897713
http://doi.acm.org/10.1145/2897073.2897713
http://doi.acm.org/10.1145/2897073.2897713
https://auth0.com/blog/building-serverless-apps-with-webtask/
https://auth0.com/blog/building-serverless-apps-with-webtask/
https://github.com/awslabs/chalice
https://github.com/awslabs/chalice
https://www.iron.io/cloud-foundry-and-ironio-deliver-serverless/
https://www.iron.io/cloud-foundry-and-ironio-deliver-serverless/
https://cloud.google.com/functions/
http://ethdocs.org/en/latest/introduction/what-is-ethereum.html
http://ethdocs.org/en/latest/introduction/what-is-ethereum.html
https://leanpub.com/serverless
http://www.galacticfog.com/
http://www.galacticfog.com/
https://developers.google.com/apps-marketplace/
https://developers.google.com/apps-marketplace/
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/hendrickson
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/hendrickson
https://www.iron.io/introducing-aws-lambda-support/
https://www.iron.io/introducing-aws-lambda-support/
https://www.atlassian.com/software/jira
https://www.openstack.org
https://github.com/IBM-Blockchain/learn-chaincode
https://github.com/IBM-Blockchain/learn-chaincode
https://github.com/leveros/leveros
https://www.nginx.com/press/nginx-announces-results-of-2016-future-of-application-development-and-delivery-survey/
https://www.nginx.com/press/nginx-announces-results-of-2016-future-of-application-development-and-delivery-survey/
http://www.openfogconsortium.org/
https://open-lambda.org/
https://github.com/openwhisk/openwhisk
https://parseplatform.github.io/docs/cloudcode/guide/
https://parseplatform.github.io/docs/cloudcode/guide/
https://aws.amazon.com/s3/
https://www.manning.com/books/serverless-architectures-on-aws
https://www.manning.com/books/serverless-architectures-on-aws
https://www.iron.io/sharable-open-source-workers-for/

20 1. Baldini et al.

29. Yan, M., Castro, P., Cheng, P., & Ishakian, V. (2016). Building a chatbot with serverless
computing. In First International Workshop on Mashups of Things, MOTA ’16 (colocated with
Middleware).

30. Zappa: Serverless python web services. Retrieved December 1, 2016, from https://github.com/
Miserlou/Zappa.

https://github.com/Miserlou/Zappa
https://github.com/Miserlou/Zappa

Highly Available Clouds: System Modeling,
Evaluations, and Open Challenges

Patricia Takako Endo, Glauco Estacio Gongalves, Daniel Rosendo,
Demis Gomes, Guto Leoni Santos, André Luis Cavalcanti Moreira,
Judith Kelner, Djamel Sadok and Mozhgan Mahloo

Abstract Cloud-based solution adoption is becoming an indispensable strategy for
enterprises, since it brings many advantages, such as low cost. On the other hand,
to attend this demand, cloud providers are facing a great challenge regarding their
resource management: how to provide services with high availability relying on
finite computational resources and limited physical infrastructure? Understanding the
components and operations of cloud data center is a key point to manage resources in
an optimal way and to estimate how physical and logical failures can impact on users’
perception. This book chapter aims to explore computational modeling theories in
order to represent a cloud infrastructure focusing on how to estimate and model cloud
availability.

P.T. Endo (<)

University of Pernambuco, Recife, Brazil
e-mail: patricia@gprt.br; patricia.endo@upe.br
G.E. Gongalves

Rural Federal University of Pernambuco, Recife, Brazil
e-mail: glauco@gprt.ufpe.br

D. Rosendo - D. Gomes - G.L. Santos - A.L.C. Moreira - J. Kelner - D. Sadok
Federal University of Pernambuco, Recife, Brazil
e-mail: daniel.rosendo @gprt.ufpe.br

D. Gomes
e-mail: demis.gomes @ gprt.ufpe.br

G.L. Santos
e-mail: guto.leoni @gprt.ufpe.br

A.L.C. Moreira
e-mail: andre @ gprt.ufpe.br

J. Kelner

e-mail: jk@gprt.ufpe.br

D. Sadok

e-mail: jamel @ gprt.ufpe.br

M. Mahloo
Ericsson Research, Recife, Brazil
e-mail: mozhgan.mahloo@ericsson.com

© Springer Nature Singapore Pte Ltd. 2017 21
S. Chaudhary et al. (eds.), Research Advances in Cloud Computing,
DOI 10.1007/978-981-10-5026-8_2

22 P.T. Endo et al.

1 Introduction

Cloud providers have gained popularity because they have changed the current and
traditional business models, replacing a huge initial investment by a pay-as-you-go
model, in which users can deploy their applications with guarantees of high availabil-
ity, scalability, and security. Currently, one of the biggest challenges cloud providers
have facing is to guarantee increasingly stringent availability terms on SLAs (Service-
Level Agreements), which is tightly connected to the strategies adopted for the
full-stack failure management (from hardware to software) at their data centers.
Unforeseen data center failures are expensive (for both sides, providers, and users)
and require special attention. The costs of these failures stem from business disrup-
tion, lost revenue, diminished end-user productivity in addition to business reputation.
To mitigate this issue, a deep understanding of the possible failures as well as the
amount of effort and money to spend to fix them is of high interest.

There are some terms commonly used to describe systems performance regard-
ing to their failures handling, such as availability, reliability, MTTF (Mean Time To
Failure) and MTBF (Mean Time Between Failures). However, these concepts are
frequently used without a precise definition and, in several cases, some of these con-
cepts are used interchangeably. A clear definition of these concepts and how they are
related to each other is necessary to understand how cloud services might be impacted
in case of failure. Furthermore, a comprehensive modeling of the cloud infrastructure
and its performance during runtime is vital towards detecting possible single points
of the failure, and calculating the end-to-end availability of the services offered to the
customers. A good starting point for reliability assessment of cloud services would
be to model the hardware system in the data center in order to estimate the availability
of each service, end-to-end, which can be done by defining the involved components
related to each service. This helps to have a reliable architecture while modeling the
data center infrastructures from the beginning to fulfill service requirements.

Considering aforementioned factors, this chapter will introduce essential con-
cepts about high availability for cloud computing, as well as highlighting some open
research questions, via presenting a survey about available modeling theories and
how they can be used by cloud providers to handle service reliability issues.

The chapter aims to equip readers with a good insight about high availability
challenges and modeling of cloud data centers. Specific competencies to be achieved
by the reader at the end of this chapter are:

e To identify the basic principles used for designing and modeling high availability
in cloud data centers;

e To identify what research topics should be relevant in high availability in cloud
computing area in the coming years. This item is important to guide the future
research in this area;

e To know the main available methods proposed by the scientific community on the
cloud mechanisms for high availability, as well as understand how they relate to
each other; and

Highly Available Clouds: System Modeling, Evaluations, and Open Challenges 23

e To comprehend the importance of cloud modeling and analysis in high availability
area, identifying how one can develop solutions for this aspect.

This chapter is organized as follows: Sect.2 describes the basic concepts regarding
cloud high availability, such as definitions of Service Availability Forum (SAF) mod-
els, discussion about reliability versus availability, and some techniques for modeling
high availability in clouds; Sect. 3 presents an overview of possible impacts of out-
ages in cloud data centers, as well as an overview about data centers infrastructure,
and some mechanisms to provide high availability; Sect.4 shows a systematic lit-
erature review about modeling high availability clouds; Sect.5 presents some open
challenges; and finally the Sect. 6 describes our final considerations and future trends.

2 High Availability Concepts

High availability in data centers is of the high importance due to the impact of the
failures on service continuity which can be translated into high operational costs
for cloud providers and costumers. This Section describes some basic concepts and
modeling techniques related to cloud availability.

2.1 SAF Concepts

With emergence of new technologies, several challenges arise for ICT (Informa-
tion and Communications Technology) companies in regard to fulfilling the quality
of their services towards customers. To attend the expectations of users, service
providers need to provide high availability and reliability to their customers. On the
other hand, they must reduce deployment costs of their services. To achieve these
goals, many companies adhere to the open specifications. At this point, the SAF (Ser-
vice Availability Forum) [43] standardizes interfaces to provide high availability to
carrier-grade systems with off-the-shelf hardware platforms, middleware, and appli-
cations. The SAF is a consortium of many ICT companies that provides standardized
solutions for building high availability services [45]. Using the standard solutions
can reduce costs of deployment, human training, and software development, by using
compatible and inter-operable solutions from different vendors.

SAF has developed a set of software specifications interfaces to middleware appli-
cations and carrier-grade platforms [43]. These specifications are divided into: AIS
(Application Interface Specifications) and Hardware Interface Interface Specifica-
tions (named HPI (Hardware Platform Interface)). AIS defines standard interfaces
to developers for building high availability programs that are portable in multi-
ple platforms. On the other hand, the HPI allows ISVs (independent software ven-
dors) provide COTS (commercial off-the-shelf) components, providing hardware

24 P.T. Endo et al.

management platform across multiple heterogeneous platforms. Since this paper is
treating of high availability on data centers, we described only the AIS components,
because its focus is interfaced for providing high availability for services.

2.1.1 Application Interface Specifications

These specifications are formed by 12 services and two frameworks. The services
are classified into three functional groups, and frameworks form another functional
group [43].

The three services functional groups are: Platform Services, Management Ser-
vices and Utility services. Platform Services provide abstraction of the hardware and
operating system from other applications and services. Their components allow mon-
itoring hardware and software components required for the nodes’ operation. These
abstractions facilitate the infrastructure management of clusters and can ensure their
smooth operation. Management Services provide basic and standard management
interfaces that can be used for the implementation and execution of applications and
services. They also offer security, log, and notifications services that facilitate the
management of applications and services. Finally, Utility Services provide common
interfaces in distributed systems with high availability, such as event distribution and
checkpointing messages. The implementation of these services are important for the
system to provide high availability, due to mechanisms of detection and disaster
recovery [15, 16]. Figure 1 shows a general architecture of framework components
proposed by SAF.

SAF also standardizes two frameworks: AMF (Availability Management Frame-
work) and SMF (Software Management Framework). AMF provides functions for
managing availability of applications and middleware, while monitoring other soft-
wares running on a system. In addition, AMF includes functions for error reports,
life cycle management and health monitoring, which provide important information
about services availability. The AFM setting allows prioritization of resources and
provides many redundancy models [43]. On the other hand, SMF is used to manage
the middleware and applications during upgrades. This framework maintains infor-
mation about the availability and deployment of softwares and allows the system
evolution and orchestrating the migration from one configuration to another. The
SMF complements AMF providing a reliable and consistent framework that delivers
and update the software in a system [15, 16].

2.2 Reliability Versus Availability

The reliability term is frequently used without a precise definition and, in several
cases, this concept is used interchangeably with availability. However, these two
terms are not conveying the same message [23]. Reliability can be defined as the
ability of an item to perform its required functions for a stated time and under

Highly Available Clouds: System Modeling, Evaluations, and Open Challenges 25

AIS Management AIS Frameworks AIS Utility Services
Services : 7

Information
Model Management
(IMM)

[)
[)
[J

[Notification (NTF)]
[Log (LOG)]
| security(sEC) |

AlS Platform Services

Hardware Platform Interface (HPI)
AlS HPI
Services and Frameworks Services

Fig. 1 Overview of SAF Framework components [15]

AlS

S Management Services

operational conditions. An item is any component or system, while required functions
are the combinations of necessary actions to provide a service.

Reliability denotes the ability of an item to work properly until a failure occurs,
independent of downtime and repair time. The ability of an item/system to be restored,
using prescribed procedures and resources, to a state that it can perform its required
functions is called maintainability [23]. Reliability is not influenced by maintain-
ability and vice-versa because the former one is measured until a failure occur and
the later one denotes the recovery rate of an item when it fails. A system can be less
reliable and high maintainable or high reliable and less maintainable.

These two concepts (maintainability and reliability) are jointly defining the avail-
ability. According to Toeroe and Tam [47], availability is the percentage of time in
which the service is up during a given interval. The QUEST Forum' describes avail-
ability as the probability that a system is running when it is required. More precisely,
[23] introduces availability of an item/system as the combination of its reliability and
maintainability to perform its required function at a stated instant of time or period.

In other words, availability is a probability of an item is functioning in a time ¢.
This way, an item is more available when it is hard to fail (reliable) and has a high
recovery rate (maintainable). The relation between reliability and maintainability to
improve availability is shown in Table 1.

Thitp://t19000.0rg/about/t19000/overview.html.

http://tl9000.org/about/tl9000/overview.html

26

P.T. Endo et al.

Table 1 Dependency of availability in relation to reliability and maintainability [4]

Reliability Maintainability Availability
Constant Decreases Decreases
Constant Increases Increases
Increases Constant Increases
Decreases Constant Decreases

The availability also can be calculated by service availability, as enlightened in
Eq. 1. During service uptime, the service is operational. The service total time denotes
the period in which a system is evaluated, being operational or not. Therefore, the
service total time is the sum of operational time and the service downtime, as the
Eq.2 shows. In the downtime, the service is not operational, staying in the repair
process until it is concluded.

serviceUptime
serviceAvailability = - P - (1)
serviceTotalTime
serviceTotalTime = serviceUpTime + service DownTime 2)

2.3 MTBF and MTTR

As discussed in Sect. 2.2, the availability can be defined as service uptime over total
service time, where total time is described as the sum of service uptime and service
downtime. These concepts can be associated with the average behavior of the system
for the purpose of availability calculation. In the following formula, the availability
is calculated by division of the MTTF (Mean Time To Failure) and the MTBF (Mean
Time Between Failures). The MTBF also is defined as the sum of MTTF and MTTR
(Mean Time to Repair), indicating the time between the detection of a failure and
the detection of next failure, as showed in Eq. 3.

MTTF MTTF
MTBF ~ MTTF + MTTR

3)

availability =

Figure 2 illustrates the lifecycle of a hypothetical service. The variables d, u, and
tt denote service downtime, uptime, and total time, respectively. A service can be
either in downtime, defined by variables d, d», and d3, or in uptime, with variables
uy, up, and u3. Note that these times can have different values. Denoting n as the
number of failures of system, 3 in our example, the MTTF can be calculated by Eq. 4,
as well as MTTR is defined by Eq. 5. These equations state MTTF and MTTR as the

Highly Available Clouds: System Modeling, Evaluations, and Open Challenges 27

P S S VS S S v S
di ul d2 u2 d3 u3

Fig. 2 MTTF, MTTR and MTBEF related to service uptime, outage time and total time

averages of uptime and downtime, respectively. MTBF corresponds to mean service

total time. '
1

D ui

MTTF = =

“)

n

>
i=1

MTTR = *

4)
n

Some studies such as [13] and [8] do not employ MTTF metric. They replace the
MTTF definition by MTBF, i.e., the authors state MTBF as the mean service uptime,
denoted by time after failure recovery until the next failure. In the aforementioned
studies, availability is calculated using Eq.6. The result of this calculus is similar
of Eq. 3 because MTBF assumes the same meaning that MTTF in these studies. We
recommend the use of Eq. 3.

G MTBF
availability = (6)
MTBF +MTTR

2.4 Techniques for High Availability Modeling

In order to avoid service outage and the consequential financial losses in cloud
data centers, companies are interested in defining and applying formal models to
verify and ensure correctness of hardware and software components to achieve highly
available systems [10].

In this section, we describe various models used to solve real-life cloud high
availability problems. We will mainly focus on the following three topics: (1) what
are the advantages and drawbacks of each approach; (2) which model is better fitted
to which scenarios/systems; and (3) how these models can be combined to extract
the best of each one when modeling and analyzing cloud systems.

28 P.T. Endo et al.

We briefly discuss the different modeling approaches that can be used to evalu-
ate the dependability, availability, reliability, and fault tolerance of systems. These
approaches differ according to their modeling power, ease of use, and system
complexity [31]. In this way, they can be classified into three cathegories: Non-
combinatorial or State-space models; Combinatorial or Non-state-space models; and
Hierarchical and Fixed-Point Iterative models.

The Non-Combinatorial or State-Space Models are good for analyzing and ver-
ifying system behaviors. These models can be built using approaches like Markov
Chains, Semi-Markov processes, Markov Regenerative Processes, Stochastic Petri
Nets, or Stochastic Reward Nets. Those strategies make a state space structure that
models all states and transitions that a system can reach (e.g., failures and repair
operations). They permit the representation of complex systems with resource con-
straints and dependencies between subsystems [12]. However, those models face the
state explosion problem, a problem related to the huge number of states in a system,
making the built model difficult to be solved through analytical tools [10].

The Combinatorial or Non-State-Space Models enable a high level and concise
representation of the relationship between components of systems and subsystems
[48]. In this class, we can find Reliability Block Diagrams, Fault Trees, or Reliability
Graphs. Differently from the state space methods, these methods are free of the state-
space explosion problem. The main disadvantage of using the Combinatorial models
is that they do not enable the representation of system activities and processes, such
as rejuvenation, repairs, and failures.

The Hierarchical and Fixed-Point Iterative Models come to mitigate the weak-
nesses and put together the advantages of the Non-combinatorial and Combinatorial
methods to leverage the analysis and modeling of many kinds of systems. This hybrid
approach is commonly used to model systems with multiple components. In order
to model such systems, it is recommended to use the combination of various simple
methods to build multiple simple models, rather than using a single sophisticated
model [40].

Some examples of models will be presented in Sect.4, in which we present the
results of a systematic review of the literature on the usage of models to assess high
availability on cloud computing data centers.

3 How Do Clouds Achieve High Availability?

According to [8], hardware and software failures are inevitable. Highly available sys-
tems are designed so that no single failure causes unacceptable service disruption.
Cloud providers have a great challenge to manage the data center infrastructure, con-
sidering the continuous need to optimize the resource usage and provide redundancy
at the same time. This section presents some examples of how outages in data centers
affected the service continuity and business reputation of several large companies, as
well as an overview about mechanisms to provide high availability in data centers.

Highly Available Clouds: System Modeling, Evaluations, and Open Challenges 29

3.1 Outages Examples

The growing number of companies using cloud services brought several new chal-
lenges to the cloud providers. Maintaining high availability to meet the demands of
these customers is a difficult task for providers. This demand is dynamic, and cloud
services must be always available as the service interruption may represent high
financial losses for cloud users [20].

Often the root cause of a cloud service unavailability is not completely clear to
its customers, but one can point several recent cases which was made public. For
instance, on March 13, 2009, during an upgrade operational system, the Deployment
Service of Windows Azure began to fail due to network interruption problems. Many
applications that running only one instance stopped when the corresponding server
went down. On October 3, 2009, BitBucket was unavailable for 16 h. The reason
were two DDoS attacks targeted at the network interfaces on Amazon EBS (Elastic
Block Store) service for storage used with EC2 instances [41].

On 2012, Salesforce, a cloud company that provides on-demand software service,
including CRM (customer relationship management), faced an outage that lasted 7 h.
The root cause was a failure in the data center power system which affected several
CRM customers. On May 6, 2014, the cloud service provider, Internap, faced three
interruptions of services at its New York data centers. The reason was a fault in
the power supply system that affected 20 companies, including the online video
streaming platform Livestream. Another example of outage occurred in the Joyent
data center, a company that provides high performance cloud infrastructures services.
The event took place on May 27, 2014, and it was related to a human error that
restarted the whole system. On September 3, 2014, the social network Facebook
was down during 10 min. Many users realized the unavailability and demonstrated
discontent on other social networks [5].

The outages’ cost may be high for companies that provide or use cloud services.
The Ponemon Institute conducted studies about costs of outages in data centers [2].
The recent study performed in 2016, evaluated 63 data centers of 49 companies in
the United States. The survey showed an 7% increase in the average cost of data
center outage of $690,204 in 2013 to $740,357 in 2015. Among the types of costs
associated with outages, which generate more expenses for companies are business
interruptions, something around $256,000. The study also showed that the average
outages times, in 12 months, is 95 min, an increase with respect to 2013 average, that
was 86 min. The study also showed the maximum cost per minute of an outage is
$17,244.

The financial impacts and losses related to service outages can prove the impor-
tance of the high availability mechanism in cloud computing area. The best way to
avoid breach of contract due the unavailability of service is to assess and measure
the availability that data centers are able to deliver.

30 P.T. Endo et al.

3.2 Datacenter Overview

In this section, we present the main components of a data center infrastructure that is
composed of IT equipment (servers, storage, and network), electrical, and mechanical
subsystems. We also present some data center standards that define best practices
and recommendations regarding data center design and infrastructure.

3.2.1 Information Technology Infrastructure

Data center IT equipment may be classified as servers, storage, and networking
devices. Servers are mounted within racks and consist of hardware resources (such
as CPUs, NICs, and RAMs) hosting applications like video streaming and big data.
All the data generated by these applications are stored in storage systems.

Data center storage consists of high capacity (around Terabytes) disk drives or
flash devices. The storage tiers are connected to the servers either directly or through
networking devices (managed by a global distributed file system), forming a NAS
(Network Attached Storage) [7]. The RAID (Redundant Array of Independent Disks)
storage technology can be used to provide high availability, redundancy, and increase
fault tolerance.

Networking equipment manages the internal communication between servers and
storage systems as well as all the input/output data flow from/to the data center. Typi-
cally, a data center network is designed based on three hierarchical levels: core, distri-
bution, and edge. It is through the core level that all data center traffic (ingress/egress)
to the outside world will be managed. Distribution is a level between the edge and
core levels which aggregates the edge switches. Its main goal is simply network
management and cabling reduction. Finally, the edge level passes data from devices
(generating or consuming data) to the distribution or core levels [46].

Manage all these components is a great challenge because hardware clusters have
a deep and complex memory/storage hierarchy, the system is composed of heteroge-
neous components, and there are many failure-prone components. It is necessary to
use an additional software layer to provide an abstraction of this variety of compo-
nents. According to [7], this software layer has three levels: platform level, cluster
level, and application level. The platform-level software is composed of firmware,
operational system, and kernel that provide an abstraction of hardware of a single
machine in the cluster and provide server-level services. The cluster-level software is
related to any software that managed resources at cluster level, such as distributed file
systems, management resource systems, and monitoring systems. The application-
level software is composed of software that implements a particular service. The set
of all software used to monitor, measure, manage and control the data center behavior
is named DCIM (Data Center Infrastructure Management).

Highly Available Clouds: System Modeling, Evaluations, and Open Challenges 31
3.2.2 Power Infrastructure

IT infrastructure needs power facilities with enough capacities (generators and UPSs)
to operate properly. Hence, faults in power system components directly affect the
overall data center availability. The CENELEC EN 50600-2-2 standard defines
requirements and recommendations for planning and designing data center power
supply facilities. The standard introduces Availability Classes from I to IV for the
power supply and distribution systems to address various level of data center avail-
ability by including layers of redundancy.

A typical data center power system architecture includes an utility substation, an
alternate power supply, a transfer switchgear or an ATS (Automatic Transfer Switch),
an UPS (Uninterruptible Power Supply) system, and a PDU (Power Distribution
Unit). The main power supply of a data center is the utility substation. Data centers
may also contain an alternative power feed like fuel cell and renewable energy sources
(such as solar, wind, bioenergy, hydroelectric, and wave) [25]. Both primary and
secondary power sources are connected to an ATS. The ATS provides input for the
cooling and UPS systems. The UPS system routes power to the PDU (rack socket for
cabinets). Finally, a PDU distributes electrical energy to the IT equipment. Figure 5
depicts those components.

3.2.3 Cooling Infrastructure

As the power infrastructure, the cooling (or mechanical) system reliability and main-
tainability are fundamental to a proper data center operation. The heat dissipation of
IT equipment requires the deployment of cooling system design strategies [22, 27].
The ASHRAE TC9.9 standard defines thermal design recommendations regarding
data center cooling technologies, air flow rack level design (hot aisle and cold aisle),
IT equipment (network, storage, and server), and energy-saving techniques (reducing
cooling fans speed).

Data center cooling system equipment can be based on different technologies, such
as central cooling, water-cooled, air-cooled, direct expansion, evaporative cooling,
water economization, direct economization, indirect economization, and economiza-
tion options. Each one differs according to the operation mode, energy efficiency,
costs, heat exchanger technology, and cooling technology [27].

A typical data center cooling system relies on some cooling components, which
includes a CRAC (Computer Room Air Conditioning), chillers, cooling towers, pip-
ing, pumps, heat exchanger, and water treatment systems.

3.3 High Availability Mechanisms

Providing redundancy in data centers comes with a price. There is always a trade-off
between increasing the availability and the amount of required cost investments to

32 P.T. Endo et al.

Fig. 3 Distribution of
service disruption events by
most likely cause at one of
Googles main services,
collected over a period of 6
weeks (adapted from [7])

% of Events
= = [[w w
(=] w =] (= W

v

Config Software Human Network Hardware Other

achieve desired level of reliability [7]. Without protection mechanisms, failures can
make the data center inaccessible to the users, which might lead to SLA violations
and financial losts for the cloud provider. However, having preventive strategies such
as planned maintenance of some components in predefined time intervals can reduce
service downtime when a failure occur, preventing users to be affected by the failure.

Moreover, it is necessary to discover the main sources and severity of failures
which can impact on the data center performance, to offer an uninterrupted service
to the users or meet the SLA requirements. Among the data center components,
as shown in Fig. 3, the major failures are related to the software (almost 35%) and
misconfiguration errors (almost 30%). Hardware components represent between 5%
and 8% of failures, whereas network contributes to around 10% of total data center
failures. Human errors also cause 10% of failures in data centers. Therefore, high
availability mechanisms in a data center must be focused on software failures, so that
if a tolerant mechanism at the software level is implemented robustly, it can maintain
the service up even if certain hardware failure occur [7].

However, it should be noted that reliable hardware architecture planning and
infrastructure design is the basis of any service, meaning that without availability
of redundant network paths and hardware resources, it is not possible to implement
high availability on the software level. Besides, a failure in a hardware component
causes a very high downtime: in network devices, a downtime caused by failures in a
device correspond to 78% of total downtime caused by all probable errors [19]. Data
centers must implement some mechanisms to mitigate unplanned outages. Distrib-
uted storage, health monitoring, and disaster recovery mechanisms are some exam-
ples of available methods to achieve highly available cloud services. These strategies
are complementary: a disaster recovery requires a monitoring health service to check
components and a distributed storage to recovery data in another entity. Distributed
storage focuses on errors on application level and must have an easy configuration to
avoid misconfiguration problems; health monitoring and disaster recovery provide
redundancy in software, but trigger when a failure occurs in the hardware or network.

Highly Available Clouds: System Modeling, Evaluations, and Open Challenges 33

In a similar way, HDFS (Hadoop Distributed File System) [44] also stores data
in geo-diverse nodes. Its architecture is divided into three main nodes: DataNodes,
which stores data blocks and can rebalance data distribution among them; NameN-
ode, which manages files information such as namespace, permissions and mapping
files to DataNodes; and CheckpointNode, that provides fault tolerance and increases
availability saving files and merging it with NameNode.

Regarding to health monitoring, that is related to checking the resources con-
sumption of the application instances running on cloud, we can cite Google System
Health, which offers high availability [7]. This solution monitors the configuration,
activity, and error data from each server, storing this information in a repository that
allows some analytic engine to diagnose and suggests the best approach for repair-
ing or preventing the failure. VMware vSphere? also provides solutions such as the
automatic restart of VMs in the servers, instantaneous live migration, and automatic
remediation by monitoring at application level. These solutions can be integrated
with distributed storage to provide a fast recovery in case of failure.

Disaster recovery has a high adoption rate in data centers. The use of redundant
data centers mitigate the service downtime when an active data center turns inac-
cessible by events such as human errors, fire, terrorist attacks or natural disasters.
Huawei provides a disaster recovery solution [3] in three different levels: application
level, data level, and media level. These levels have different recovery procedures
and times: a failure in application level must be recovered in minutes by replication
of virtual machines; in media level, switches and data are mirrored in another data
center, with the recovery is established in hours; and media level makes a backup of
main data center in others data centers, and its protocol decides which data center
will replace the failed one. The recovery is made in one or more days.

VMware offers a Disaster Recovery-as-a-Service called VMware vCloud Air
Disaster Recovery. This service avoids the data center to implement your own dis-
aster recovery mechanism using a more consolidated service. The service lever-
ages vSphere Replication, as discussed beforehand, to provide robust, asynchronous
replication capabilities at the hypervisor layer. This solution is limited to vSphere
environments.

More information about mechanisms used to achieve high availability in clouds
can be found in [15].

3.4 Commercial Solutions

This section describes briefly some commercial solutions and shows how they pro-
vide high availability.

2VMware: Business Continuity and Disaster Recovery— http://www.vmware.com/solutions/
business-continuity.html.

http://www.vmware.com/solutions/business-continuity.html
http://www.vmware.com/solutions/business-continuity.html

34 P.T. Endo et al.

Fig. 4 Amazon Availability)
Zones (AZ) can be DRV Rt et e b o e L S ety b
considered as separate data
centers, with separate power,
cooling, and Internet access.
The elastic load balancing
can be used to balance traffic
between them [9]

Availability Availability
Zone A Zone B

oy
LS P R R ———

3.4.1 AWS Cloud

The AWS (Amazon Web Services) Cloud provides an elastic load balancing that
automatically distributes incoming application traffic across multiple Amazon EC2
instances, spreaded around the world into multiple regions. Each region is indepen-
dent of the others in order to design highly available applications with low latency
response time to the customers (Fig. 4).

According to AWS site,? the AWS Cloud also supports disaster recovery (DR)
architectures for small customer workload data center failures and for hot standby
environments that enable rapid failover at scale. With data centers in several regions
around the world, AWS provides a set of cloud-based DR services that enable rapid
recovery of the IT infrastructure and data.

3.4.2 Google Cloud Platform

Google Cloud Platform* is a platform that provides services such as compute, storage,
machine learning, big data, and more. In general, Google uses its own tools to keep
the services available, such as GFS (Google File System). GFS is one of the most
well-known distributed storage solutions [18], comprised of disk redundancy and
efficient resource allocation. It is designed to provide efficiency, availability, and
scalability to large volumes of data in data centers. GFS distributes files into chunks
of 64 MB that are managed by a master node.

Google Cloud has a service focused on providing high availability in SQL
instances. The developer configures an instance to failover in a failure case or repli-
cates automatically the data in other zones. When a zone comes unavailable, Google
Cloud failover SQL instance in another zone is available.’

3aws.amazon.com.

“https://cloud.google.com/.
Shttps://cloud.google.com/sql/faq.

http://aws.amazon.com
https://cloud.google.com/
https://cloud.google.com/sql/faq

Highly Available Clouds: System Modeling, Evaluations, and Open Challenges 35
3.4.3 Microsoft Azure

Azure® is the Microsoft platform of cloud computing that offers several services
for host applications. This platform enables to use other Microsoft solutions for
processing data, such as big data and machine learning. Azure has many mecha-
nisms for providing high availability and DR, such as load balancing, replication
of data and redundancy of components. Some mechanisms are executed automati-
cally, but in some cases the application developer should have an additional work
to configure these mechanisms. For instance, Azure load balancing mechanism uses
round-robin to evenly distribute jobs across instances. However, if complexity of jobs
varies greatly, it is possible that some instances assigned with a number of complex
jobs while other instances remain idle [6].

The structure of Azure is also divided logical and physically into regions, that are
composed of data centers. Under some circumstances, it is possible that an entire
region become unavailable, for instance due network failures or natural disasters.
Azure offers redundancy approach and backup of VMs. Azure provides mechanism
that is referred to Geo-Redundant Storage (GRS); GRS replicates storage to a paired
data center hundreds of miles apart within a specific geographic region [15].

3.4.4 IBM Cloud

IBM Cloud comprises a set of cloud computing services including IaaS, PaaS and
SaaS through public, private, and hybrid delivery models. IBM cloud offers specific
products which provide cloud solutions for compute, storage, network, security,
management, data and analytics, that can be combined together with other open or
third-party solutions. For instance, IBM Bluemix is platform that combines PaaS
and JaaS available in local, dedicated, and public and also offers a suite of instant-on
services, including Watson,” Data Analytics, and Mobile Services.® It can deploy a
cloud infrastructure using, for instance, OpenStack or CloudFoundry, without loosing
integration with other cloud solutions like, for instance, IBM Cloud orchestrator,’ a
cloud management platform for automating provisioning of cloud services.

High availability is mainly provided by IBM cloud services themselves but also
by the specific solutions. Also, high availability can be enabled for the cloud service
providers and the applications running in the cloud. IBM Bluemix offers a catalog of
availability monitoring services that can run synthetic tests to proactively detect and
fix performance issues before they impact users. It also has multi-region architectures
ans supports different services configuration and data replication.

Shttps://azure.microsoft.com/pt-br/overview/what-is-azure/.
"https://www.ibm.com/watson/.
8https://www.ibm.com/cloud-computing/bluemix.
“http://www.ibm.com/software/products/en/ibm-cloud-orchestrator.

https://azure.microsoft.com/pt-br/overview/what-is-azure/
https://www.ibm.com/watson/
https://www.ibm.com/cloud-computing/bluemix
http://www.ibm.com/software/products/en/ibm-cloud-orchestrator

36 P.T. Endo et al.

3.5 [Infrastructure Standards and Tiers

Standards such as TIA-942, Uptime Institute, ANSI/BICSI 002, ASHRAE TC9.9,
and CENELEC EN 50600-x define fundamental aspects, best practices, and recom-
mendations regarding data center design and infrastructure. The TIA (Telecommu-
nications Industry Association) covers key topics related to the site space planning,
cabling infrastructure, environmental considerations, and tiered reliability. Based on
the service requirement and the criticality of applications running on the clouds, data
centers can be divided into four tiers with different availability levels.

Uptime Institute consortium provides different recommendations related to the
level of redundant components, points of failure, watts per square foot, and availabil-
ity for each tier. Tier specification goes from Tier 1 to 4, where higher tiers provide
greater availability and inherit requirements of lower tiers. Though, increase in the
reliability comes in the price of higher costs and operational complexities. The tier
classification standards help to compare data centers reliability and design strategies.
Table 2 presents some of these recommendations according to tier classification.

The redundant components refer to the number of IT equipment, cooling, and
power components that comprises the data center infrastructure. In Tier 1, N means
no redundancy indicating that system failures will result in outages. While in Tiers
2, 3, and 4, N + 1 means that there is some level of component redundancy. The
number of delivery paths refers to the number of distribution paths of the power and

Table 2 Uptime Institutes Tier Classification System for data centers [28]

Tiers Description Redundant Number of Availability level
components delivery paths
Tier 1 Basic Planned and N Only 1 99.671%

unplanned activity
may cause system

disruption
Tier 2 Less susceptible to | N+1 Only 1 99.741%
Redundant system disruption

from planned and
unplanned activity

Tier 3 Equipment N+1 1 active and 1 99.982%
Concurrently replacement and passive
Maintainable maintenance do not

require disrupting
computer hardware

operation
Tier 4 Fault Adds fault tolerance |2 (N+1) 2 simultaneously | 99.995%
Tolerant to the infrastructure. active

Sustains a worst
case, unplanned
event with no critical
load impact

Highly Available Clouds: System Modeling, Evaluations, and Open Challenges 37

oo |
| oomn|
e

Transfer
Switchgear

v

Alternate
Power Source

Utility

Electrical Distribution

Mechanical

Bypass Switchgear

v v
- Critical Non-Critical Mechanical
Ill Loads Loads Loads

Fig. 5 Example of a power infrastructure—Tier 1 classification (adapted from BICSI [1])

cooling systems serving the IT equipment. That way, more distribution paths result
in higher overall system availability [17]. Figures 5 and 6 show examples of a power
infrastructure with Tier 1 and 4, respectively.

It is important to highlight that the tier classification relies on the all data cen-
ter segments (IT equipment, electrical infrastructure, mechanical infrastructure, and
facility operations) to deliver the overall availability. Therefore, a data center with a
Tier 2 mechanical system and a Tier 4 electrical system will result in a Tier 2 data
center availability rating.

Another important note is that the tier selection depends on the business require-
ments (such as availability, employment costs, and downtime financial conse-
quences), meaning that a Tier 4 selection may not be the best option for a data
center running non-critical workloads [49].

38 P.T. Endo et al.

Alternate

Power Source |\
Alternate x|
Power Source 4 2=t

Electrical Distribution

3 Switchgear
Utility alternnte Utility
7 Power Source

Alternate
Power Source

¥
Electrical Distribution

e Mechanical Mechanical ;
i Maint g chgear Switchgear _Static:

: B B
= e
i N Loads i

Output Distribution Switchboard

Static |
Bypass |

Mechanical Mechanical

m | Switchgear Switchgear

| | . Critical |
FansPumps

h.

Non-Critical Critical MNon-Critical
Loads Loads Loads

Fig. 6 Example of a power infrastructure—Tier 4 classification (adapted from BICSI [1])

4 Modeling High Availability Clouds

In order to clarify what have been done in the scientific literature about modeling
high availability clouds, we performed a systematic review. Using this method, we
intend to provide reader with a broad view of the field. The following subsections
describe our methodology, results, and some discussions.

The main goal of this systematic review was to answer the following research
questions (RQ):

e RQ.1: What is the current state of the art in high availability cloud modeling?

e RQ.2: What are the most common metrics used to measure HA in cloud systems
models?

e RQ.3: What are the most common data center subsystems modelled to evaluate
high availability in clouds?

e RQ.4: What are the most common approaches used to model high availability for
clouds?

e RQ.5: What are the main remaining research challenges in this field?

The initial search returned 8, 20, 110, and 186 articles from ACM Digital Library,
IEEE Xplore, Springer, and Science Direct, respectively, totaling 324 works. By
reading all abstracts and using the criteria for inclusion or exclusion, we selected 15
papers for data extraction and quality evaluation.

Highly Available Clouds: System Modeling, Evaluations, and Open Challenges 39

Fig. 7 Number of articles 33.3%
per year 2015

6.7%
2014

Fig. 8 Number of articles 26.7%
per research source Springer

Science
Direct

4.1 Overview of High Availability Modeling for Clouds

Considering the RQ.1, Fig. 7 shows the number of published articles per year; while
the Fig. 8 shows the number of articles per research source. As one can note, 2013
and 2015 concentrate most of the works done in this research area; and IEEE is the
research source with more articles published in this area.

To answer the RQ.2, Table 3 summarizes some metrics and their respective defini-
tion presented in various articles addressing highly available cloud solutions. Service
availability and SSA (Steady-State Availability) are the most common metrics used
by authors [13, 24, 30, 35, 36, 42] and are related directly to the available and
operational time of a target service. We also found metrics related to the provider
costs due service unavailability, such as downtime cost analysis [38] and number of
transactions lost [30]. On the other hand, authors in [37] modeled metrics to a spe-
cific application, MMOG (Massively Multiplayer Online Game); these metrics are
related to interruptions caused by game unavailability, and two metrics are interesting
because analyze the unavailability impact on players, severity of the interruptions
and average non-serviced clients.

Answering the RQ.3, the results showed that computing resources are the most
focused subsystems (with 93.3%), which are addressed in the literature, reinforcing
the crucial role of the IT infrastructure.

40 P.T. Endo et al.

Table 3 Main metrics used to evaluate the cloud availability

Metrics Definitions References
Service availability The percentage of served requests in [24]
comparison to the total number of received
requests
The uptime over a year [35]

It can be understood as the probability that [13]
the system is found operational during a
given period of time or has been restored after
the occurrence of a failure event

Steady-state availability (SSA) | Number of nines [36]

Represents the long-term probability that the | [42]
system is operating correctly

and available to perform its functions [30]
Downtime cost analysis caused by a disaster in a data center per year | [38]
in minutes
Number of transactions lost It is the number of transactions lost due to [30]
VMM rejuvenation
Instantaneous non- interruption| Ratio between the measured state update [37]
ratio frequency of the MMOG within one

measurement timestep and the required
minimal frequency

Total non-interruption ratio The percentage of time the MMOG the state | [37]
update frequency equal or greater than the
required frequency, over a given time interval

Duration of the interruptions The start of the failure to the moment when [37]
all affected clients recover

Number of interruptions Number of interruptions in a time interval [37]

Severity of the interruptions The percentage of affected players [37]

Average non-serviced clients Number of clients who were denied service [37]

Fig. 9 The most common o
Combinatorial

approaches used to model Methods =
high availability T 5
Markov Chain 3
Other 8
0 1 2 3 4 5 6 7 8

Finally, considering the RQ.4, Fig. 9 shows the most common approaches used to
model high availability in cloud data centers. In order to detail these solutions, we
will describe them in next subsections.

Highly Available Clouds: System Modeling, Evaluations, and Open Challenges 41
4.1.1 Markov Chain Solutions

Authors in [13, 26, 36] used Markov chain approach to model cloud availabil-
ity. In [26], authors proposed three CTMC (Continuous Time Markov Chain) sub-
models that capture a specific aspect of a cloud data center. These submodels are
RASM (Resource Allocation Submodel), VMPSM (Virtual Machine Provisioning
Submodel), and Availability Model; and the integration between them is shown in
Fig. 10.

While in [36], authors used an extended DTMC (Discrete Time Markov Chain) to
model computing resources of a multi-cloud and a controller (dual layer) to guarantee
system availability while minimize costs (Fig. 11). The DTMC has physical nodes
(that represent concrete elements in the cloud, such as physical server or a pool of
VMs offered by a cloud provider) and logic nodes (that represent the success or
the failure state of the application). The DTMC has control variables and measured

BP [
: RASM

VMPSM_hot

BP, P
> VMPSM_warm

P P

w h
BP, T P,
> VMPSM_cold

Performance Model Outputs:
® Task Rejection Probability
® Total Servicing Delay
[i— e 1
B — [Effective Task
Availlabillity 1 Rejection Probability
Model ' and Effective Total
: servicing Delay

Fig. 10 Submodels integration proposed by [26]

42 P.T. Endo et al.

DESIGN TIME
DTMC Model 1 Load Balancer
2:Cloud 1 S: Cloud 2 ‘ :
Palladio
l i _ Component
& Autoscalling 6: Autoscalling MOde
Group 1 Group 2

RUN TIME

Y.

DTMC Model

Control Monitoring

Fig. 11 Approach proposed by [36]

availability as labels to transitions; and rewards or costs can be introduced. The
DTMC model is meant to be kept alive at runtime, and the controller is responsible
for modifying it, changing the effects on the actual implementation.

Authors in [13] used a different Markov chain, named MRM (Markov Reward
Model), in conjunction with RBD (Reliability Block Diagrams) in order to represent
the system behavior, that cannot be captured by only pure RBDs. The RBD model
(Fig. 12) is used to describe the high-level components, whereas the MRM is used to
model the components involved in the evaluation of availability in [13]. In a similar
way, in [12], authors also used RBD and MRM, but they model the components
involved in the redundancy mechanism. Figure 13 shows the RMR model proposed
to represent a redundant system composed of two nodes.

Highly Available Clouds: System Modeling, Evaluations, and Open Challenges 43

HW 0s cLc

Walrus

HW 0s cC sC
HW 0s KVM NC

Fig. 12 RBDs that represent cloud, Cluster and Nodes Subsystems (from fop to down) proposed
by [13]

FU psl *» UW
| -
Ai_s2
A_s2 sl l /[J._SZ

UF
Asl e

Fig. 13 MRM model that represents a redundant system with two nodes proposed by [12]

4.1.2 Petrinets Solutions

Petrinets are also used to model cloud availability [24, 30, 34, 35, 38, 42]. In [24],
authors presented a SCPN (Stochastic Colored Petri Nets) model, which is a class of
DSPN (Deterministic Stochastic Petri Nets) models, to evaluate the availability of
cloud services and take in consideration the application deployment in geographi-
cally distributed data centers. For that, authors propose five different SCPN building
blocks, shown in Fig. 14: DC (data center), server, VM (virtual machine), load bal-
ancer, and component (multi-tier app).

Petrinets can also be used with others approaches. Still considering the environ-
ment with more than one data center, in [38], authors used SRN (Stochastic Reward
Nets) to model each component (such as VM, host, storage, data center) as subsystem
and the global system is composed of all data centers. Authors consider the disaster

44 P.T. Endo et al.

(3) TLockai (b} Ti_sDCfail (c} —_—

Ti_sfail

DCi_fail Si Si_tfail VM WMi_fail

Ti_DCup

Ti_sup Ti_sup

(d) (e) T_failover_Ci_to_LB Ti_Lost_in_Processing

T_LBD

D_-)O DeniedService

woprzy

Ci_flushing
Lost_in_phasei

Ti_flush X
T_LBi T_Ci_queue_to_Ci_processing Ti_processed

P x x x y
Ci_flushing Ti_flush \T/ I O
O LoadDistributor Ci_queue Ci_processing Crmid

LoadDistributor T_LBi Ci_queue I ; O

Ti_lost LostReq

Fig. 14 SCPN models proposed by [24]

HW 0s

(a) RBD Node
HW os ManagementTool

(b) RBD MS (Management Server)

Fig. 15 RBDs that represent Node and Management Server used by [35] and [34]

tolerant scenario, and make a analysis about the trade-off between system availability
and downtime cost with infrastructure construction cost.

In [35], SPNs were used to describe low-level modeling and RBD is used again at
high-level modeling, forming a hierarchical model to describe system rejuvenation.
The RBD models consider only the non-aging failures. Figure 15a shows that a
node fails only if both hardware (HW) or operating system (OS) fail; and Fig. 15b
shows that a failure in the management tool may provide a fault in the Management
Server, independent of hardware and operating system. The proposed SPN model is
composed of three submodels: (a) Management Server Model, (b) Clock Model and
(c) System Model (Fig. 13).

Following the same combination (including the same RBD models presented in
Fig. 15), the same authors evaluated other rejuvenation policies and find steady-state
availability and expected annual downtime in [34]. The proposed SPN models were

Highly Available Clouds: System Modeling, Evaluations, and Open Challenges 45

MN_fail2

MN_DW MN_fail vM_fail g ow
VM_Rb MN_UP VM_repair

\ RecoverFromAging MN_Dead
[)
L] vy

GetOld AgingEffect old Agingz Criticalage \

MN_DW2

MMN_repair

VM_St

SN_fail O

SN_up DoliveMigration

MN_repair

FailureAging

ClearAging3

RejuvenationNode O

NodeWaiting

Fig. 16 SPN that represents the system submodel proposed by [34]

based on [35], and they improve the model with a Clock Model with check, that is a
enhanced version of Clock Model. The Clock Model with check execute a check on
VMM aging status before perform a live migration. Figure 16 shows the SPN that
represents the proposed system submodel.

In [30], authors studied the effectiveness of VM migration rejuvenation by mod-
eling it more precisely using CTMC model. However, due to the complexity of
construction of CTMC models, the availability models of a server virtualized system
is done in an extension of Petrinets, named SRN (Stochastic Reward Net). In [42],
authors also used SRN, but they used a SRN hierarchical model for modeling mem-
ory virtualization and availability. The proposed SRN is transformed in a MRM to
steady state and/or transient analysis.

4.1.3 Other Solutions

Other approaches were used to model cloud availability. In [32], authors used
Bayesian networks to allocation of cloud resources in order to maximize the service
dependability. Others used mathematical approaches, such as probability distribu-
tion [21] to model the accumulated downtime, statistical distribution [37] to model
MMOGs (Massively multiplayer online games) as a service-based market, and com-
binatorial method [39] to define the availability model, considering the operational
power and replication mechanism.

46 P.T. Endo et al.
4.1.4 Proprietary Tools

There are some commercial tools that simulate a data center infrastructure. 6Sig-
maDCX'? is a commercial simulator that uses CFD (Computational Fluid Dynamics)
technique to provide levels of productivity for data center design, troubleshooting
and operation. 6SigmaDCX models many data center components, such as cool-
ing, power and IT infrastructures. 6SigmaDCX allows 3D model of data center and
configuration of several metrics (such as type of customer, data center floor space
and critical IT load). The simulation results are represented by graphs and can be
integrated with several DCIM (Data Center Infrastructure Management) solutions.

CoolSim'! is a tool for performing occasional simulations to determine the best
location for cooling and IT equipment. This simulator also uses CFD for modeling
the airflow in data centers. An interesting feature of CoolSim is that it allows users
to pay as you go for use of the application through a cloud SaaS delivery model.

However, the main disadvantage of these solutions is the price. For instance,
the annual license of CoolSim is about $15,000. As an alternative, there is other
non-commercial simulators, such as the BigHouse [33], that is a tool focused on
infrastructure for data center systems. Instead of simulating servers using detailed
micro-architectural models, BigHouse raises the level of abstraction using a com-
bination of queuing theory and stochastic modeling. BigHouse leverages statistical
simulation techniques to limit simulation turn around time to the minimum runtime
needed for a desired accuracy.

4.2 Discussion

From the review of the literature, we can observe that the cloud availability can be
modelled from various perspective based on the goal of the study. However, a holistic
view of the all layers are still missing.

We can highlight that each of the presented modeling approaches has its advan-
tages and also disadvantages. For instance, RBDs are commonly used due to their
simplicity, but they are not suitable when detail behaviors of systems need to be
described. Markov chains can be used with RBDs or separately, but it is not scalable
enough for modeling large systems. Hence, to have a comprehensive models and
framework addressing all aspects of high availability in data centers, a combination
of various models should be considered. Until now, a huge effort was put on mod-
eling the computing resources, while the rest of the subsystems, such as power and
cooling systems, are nearly neglected in regarding their availability models.

The RQ.5 that deal with main challenges will be described in next section.

Ohttp://www.futurefacilities.com/solutions/data-centers/.
http://www.coolsimsoftware.com/Home.aspx.

http://www.futurefacilities.com/solutions/data-centers/
http://www.coolsimsoftware.com/Home.aspx

Highly Available Clouds: System Modeling, Evaluations, and Open Challenges 47

5 Open Research Challenges

The enterprise applications that rely on data center infrastructure are inherently more
available, robust, and scalable. Physical resilience is assured by virtual resource
redundancy, and it brings a relatively simple way to deal with a hardware component
outage, by migrating the virtual application to other available and healthy physical
resource. However, according to [17], while the spreading of risk across virtual
systems reduces the risk of physical outage, complexities of running pools of highly
integrated systems have its own challenges.

These challenges include the need to address the deterioration of physical build-
ings and systems of the data center, and also have to embrace the degradation of
virtual servers, storage, and network components. In this section, we highlight some
of the most important challenges in cloud data center availability.

5.1 Cloud Data Center Modeling and Simulation

A comprehensive modeling of the data center system during runtime is the first step
towards detecting possible single points of the failure, and calculating the end-to-end
availability of the services offered to the customers. A good starting point would be
to model the hardware system in the data center in order to calculate the availability
of each service, end-to-end, by defining the involved components related to each
service.

However, according to [11], “because of heterogeneous software/hardware com-
ponents and complicated interactions among them, the probability of failures
improves. The services reliability arouses more attention”. Cloud reliability analysis
and modeling are very critical but hard because of the complexity and large scale of
the system.

Authors in [29] say that “a monolithic model may suffer from intractability and
poor scalability due to vast parameter space”. In this way, some authors have pro-
posed separate submodels for different subsystems of a complex cloud center, such as
[26]. However, one should integrate these subsystems in a coherent way, considering
the general aspect of the model.

Beyond that, there are also some tools that make use of these models to simu-
late data center behavior under different circumstances, such as hardware failures,
resource allocation, and even disasters. However, most of them are focused on phys-
ical and logical layers.

5.2 High-Level Metrics

PUE (Power Usage Effectiveness) has been used as a good metric to classify data cen-
ters’ energy performance. According to [17], PUE determines the energy efficiency

48 P.T. Endo et al.

of data centers, and has been used worldwide in the technology industry, becoming a
mainstream approach to determine data center energy use efficiency. PUE is defined
as Eq.7.

2. Power DeliveredToDataCenter 3" Puechanical + Pelectrical + Pother

PUE =
> ITEquipment PowerUse > Prr

(7

There are many other metrics related to data center performance, such as ERE
(Energy Reuse Effectiveness), WUE (Water Usage Effectiveness), Carbon Usage
Effectiveness (CUE) and Return Temperature Index (RTI), as shown in Table4.
However, common metrics suffer from lack of relation with user perception. For
instance, a system with availability of 0.9999 is down for an of average 52min
during a year. However, if the down time occurs during a peak hour, it has a higher
impact than a failure that occurs when the system load is low, and less users will be
affected by that failure. It is important to look for other metrics that go beyond the
power, mechanical, and IT systems

To address this issue, other high-level metrics can be defined. For instance, we
can consider FIF (Failure Impact Factor) proposed by [14]. FIF helps to measure the
risk of any single failure for the owner. The definition of this parameter can also help
designing a system with improved reliability without investing more than needed.
By using FIF it is possible to define the components with high risk in the system,
and protect them up to the level that guarantees no more than a given number of

Table 4 Data center performance metrics (from [17])
Metric
ERE

Description Equation

Recognize that some
data centers have the
ability to provide energy
that can be reused in
other parts of the facility
or campus

ERE =
AnnualFacilityEnergyUse — Annual EnergyReused

AnnuallIT EnergyUse

AnnualSiteWaterUsage
WUE =

WUE Determine the efficacy
of water use in the data
center, based on the
energy used by the IT

equipment

AnnuallIT EnergyUse

CUE Judge the amount of CUE =

carbon that is expended AnnualC Oremissionscausedbythedatacenter
as compared to the
annual IT energy used in
the data center

AnnuallT EnergyUse

RTI RTI =

Determine the efficacy
of the air management
in a data center

ReturnAirTemp — SupplyAirTemp
RackOutMeanTemp — RackInMeanT emp

* 100

Highly Available Clouds: System Modeling, Evaluations, and Open Challenges 49

customers/services will be affected by a single failure in the system at any given
time. Risk is defined by combining the probability of the failure to occur and the
severity of the incident (scenario) occurring. So, for calculating FIF, first the system
availability should be calculated.

For instance, authors in [14] define a resilience parameter, namely the failure
impact (FI) in rational and irrational environments.'> The F1 in a rational environ-
ment is proportional to the number of customers disconnected by the failure, N,
and the unavailability of the component, U. On the other hand, the F'[in an irra-
tional environment, all failures are statistically independent and all failures have a
binary consequence: connection is fully disconnected (0) or not (1), no intermediate
situations are considered [14]. The FI is given by Eq. 8.

FI=N*xU ®)

where « > 1 leads to more and more irrationality, and o« = 1 is the rational envi-
ronment.

In [37], authors use different metrics in their experiments that reflect the unavail-
ability impact on MMOG players, such as number of interruptions in a time interval,
duration of the interruptions (the start of the failure to the moment when all affected
players recover), severity of the interruptions (% of affected players), average non-
serviced players (# of players who were denied service). These metrics are interest-
ing because relate failures and users interruptions, and were described previously in
Table 3.

Another high-level metric is the lost revenue, a simple way of calculating the
potential loss in a data center outage [17], as shown in Eq.9.

GR
LostRevenue = — x I x H 9)
TH

where G R denotes gross yearly revenue, 7' H denotes total yearly business hours,
I denotes percentage impact, and H denotes number of hours of outage.

According to [17], loss can be viewed in different perspectives, such as monetary
loss, reputational loss, employee productivity loss, client loyalty loss, and also com-
binations of all of these. Every business will suffer different degree of cost and, in
the end, must balance against the risk and the cost of a disruption.

According to [17], “it is important to understand that these metrics should be
used together, providing a range of data points to help understand the efficiency and
effectiveness of a data center; different combinations of these metrics will produce
a synergistic outcome”.

12 According to authors, “an irrational environment is where a network operator is worried more
about a big failure disconnecting all clients for 1 h at the same time than for multiple small failures
throughout the year disconnecting every client for 1 h on average [14].”

50 P.T. Endo et al.

6 Final Considerations

According to Gartner, Inc,'® “by 2020, a corporate “no-cloud” policy will be as rare
as a “no-internet” policy is today”, in other words, the migration to a cloud-based
solution is practically indefeasible. It is interesting to note that it does not means that
everyone will be cloud-based; but the scenario with no-cloud will gradually vanish.

Due to a growing number of companies that using services on cloud, many chal-
lenges begin to emerge. Serving the demand of many services is a task complicated,
due to a limited resources of the data centers. Understanding the cloud data center
is a key point to manage resources and to estimate how physical and logical failures
occurred on a data center can impact their users’ perception.

In this work, we presented basic concepts needed to understand the mechanisms
to provide high availability, consequences of outages in cloud data centers and a data
center infrastructure overview.

Furthermore, we also presented a systematic literature review about cloud high
availability, highlighting the main approaches used to model it. Whereas we have
found Markov Chain, RBD, and Petrinets as main approaches, some articles have
used hybrid approaches, due limitations of each technique.

The cloud data center is a complex and big system composed of other subsystems,
such as power and cooling. Some research questions emerge when we are modeling
these subsystems separately: how can they be integrated in order to improve the
understanding of overall data center behavior? How does a failure in one of these
subsystems affect the overall data center and the cloud users? Which protection
strategies can we suggest to mitigate these negative impacts?

Acknowledgements This work was supported by the RLAM Innovation Center, Ericsson Teleco-
municagdes S.A., Brazil.

References

1. Ansi/bicsi 002, data center design and implementation best practices. Retrieved Novem-
ber 2016, from https://www.bicsi.org/uploadedFiles/BICSI_Website/Global_Community/
Presentations/CALA/Ciordia_002_Colombia_2016.pdf.

2. Cost of data center outages: Data center performance benchmark series. Retrieved November
2016, from http://www.emersonnetworkpower.com/en-US/Resources/Market/Data-Center/
Latest-Thinking/Ponemon/Documents/2016-Cost-of-Data-Center-Outages- FINAL-2.pdf/.

3. Data center disaster recovery and backup solution. enterprise. Retrieved November 2016, from
enterprise.huawei.com/ilink/enenterprise/download/HW_322364.

4. Relationship Between Availability and Reliability. Retrieved November 2016, from http://
www.weibull.com/hotwire/issue26/relbasics26.htm.

5. Top 4 data center outages of 2014. Retrieved November 2016, from http://www.cyrusone.com/
blog/top-5-data-center-outages-of-2014/.

6. Bai, H. (2014). Zen of cloud: Learning cloud computing by examples on microsoft azure. CRC
Press.

Bhttp://www.gartner.com/newsroom/id/3354117.

https://www.bicsi.org/uploadedFiles/BICSI_Website/Global_Community/Presentations/CALA/Ciordia_002_Colombia_2016.pdf
https://www.bicsi.org/uploadedFiles/BICSI_Website/Global_Community/Presentations/CALA/Ciordia_002_Colombia_2016.pdf
http://www.emersonnetworkpower.com/en-US/Resources/Market/Data-Center/Latest-Thinking/Ponemon/Documents/2016-Cost-of-Data-Center-Outages-FINAL-2.pdf/
http://www.emersonnetworkpower.com/en-US/Resources/Market/Data-Center/Latest-Thinking/Ponemon/Documents/2016-Cost-of-Data-Center-Outages-FINAL-2.pdf/
http://www.enterprise.huawei.com/ilink/enenterprise/download/HW_322364
http://www.weibull.com/hotwire/issue26/relbasics26.htm
http://www.weibull.com/hotwire/issue26/relbasics26.htm
http://www.cyrusone.com/blog/top-5-data-center-outages-of-2014/
http://www.cyrusone.com/blog/top-5-data-center-outages-of-2014/
http://www.gartner.com/newsroom/id/3354117

Highly Available Clouds: System Modeling, Evaluations, and Open Challenges 51

7.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.
29.

Barroso, L. A., Clidaras, J., & Holzle, U. (2013). The datacenter as a computer: An introduction
to the design of warehouse-scale machines. Synthesis Lectures on Computer Architecture, 8(3),
1-154.

. Bauer, E., & Adams, R. (2012). Reliability and availability of cloud computing. Wiley.
. Brian Beach. (2014). Pro powershell for amazon web services: DevOps for the AWS cloud. A

press.
Clarke, E. M., Klieber, W., Novacek, M., & Zuliani, P. (2011). Model checking and the state
explosion problem. In LASER Summer School on Software Engineering, pp. 1-30. Springer.
Chen, J., Liu, Y., Cui, H., & Li, Y. (2013). Methods with low complexity for evaluating cloud
service reliability. In Proceedings 16th International Symposium on Wireless Personal Multi-
media Communications, pp. 1-5. IEEE.

Dantas, J., Matos, R., Araujo, J., & Maciel, P. (2012). An availability model for eucalyptus
platform: An analysis of warm-standy replication mechanism. In 2012 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), pp. 1664—1669. IEEE.

Dantas, J., Matos, R., Araujo, J., & Maciel, P. (2015). Eucalyptus-based private clouds: avail-
ability modeling and comparison to the cost of a public cloud. Computing, 97(11), 1121-1140.
Dixit, A., Mahloo, M., Lannoo, B., Chen, J., Wosinska, L., Colle, D., & Pickavet, M. (2014).
Protection strategies for next generation passive optical networks-2. In 2014 International
Conference on Optical Network Design and Modeling, pp. 13—18. IEEE.

Endo, P. T., Rodrigues, M., Gongalves, G. E., Kelner, J., Sadok, D. H., & Curescu, C. (2016).
High availability in clouds: Systematic review and research challenges. Journal of Cloud Com-
puting, 5(1), 16.

Gailey, G., Taubensee, J., Rabeler, C., Glick, A., & Squillace, R.: Azure resiliency
technical guidance: Recovery from a region-wide service disruption. Retrieved Decem-
ber 2016. https://docs.microsoft.com/en-us/azure/resiliency/resiliency-technical-guidance-
recovery-loss-azure-region.

Geng, H. (2014). Data center handbook. Wiley.

Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003). The google file system. In ACM SIGOPS
operating systems review, vol. 37, pp. 29-43. ACM.

Gill, P, Jain, N., & Nagappan, N. (2011). Understanding network failures in data centers: Mea-
surement, analysis, and implications. In ACM SIGCOMM Computer Communication Review,
vol. 41, pp. 350-361. ACM.

Gongalves, G., Endo, P. T., Rodrigues, M., Kelner, J., Sadok, D., & Curescu, C. (2016). Risk-
based model for availability estimation of saf redundancy models. In 2016 IEEE Symposium
on Computers and Communication (ISCC), pp. 886-891. IEEE.

Gonzalez, A.J., & Helvik, B. E. (2013). Hybrid cloud management to comply efficiently with
sla availability guarantees. In 2013 12th IEEE International Symposium on Network Computing
and Applications (NCA), pp. 127-134. IEEE.

Hoelzle, U., & Barroso, L. (2009). The datacenter as a computer. Morgan and Claypool.
Hgyland, A., & Rausand, M. (2009). System reliability theory: models and statistical methods,
vol. 420. Wiley.

Jammal, M., Kanso, A., Heidari, P, & Shami, A. (2016). A formal model for the availability
analysis of cloud deployed multi-tiered applications. pp. 82-87. IEEE.

Kao, W., & Geng, H. (2015). Renewable and clean energy for data centers. Data Center
Handbook, pp. 559-576.

Khazaei, H., Misi¢, J., Misi¢, V .B., & Mohammadi, N. B. (2012). Availability analysis of
cloud computing centers. In Global Communications Conference (GLOBECOM), 2012 IEEE,
pp- 1957-1962. IEEE.

Kosik, W.J., & Geng, H. (2014). Energy and sustainability in data centers. Data Center Hand-
book, pp. 15-45.

ADC Krone. (2008). Tia-942: Data center standards overview.

Longo, F., Ghosh, R., Naik, V.K., & Trivedi, K.S. (2011). A scalable availability model
for infrastructure-as-a-service cloud. In 2011 IEEE/IFIP 41st International Conference on
Dependable Systems & Networks (DSN), pp. 335-346. IEEE.

https://docs.microsoft.com/en-us/azure/resiliency/resiliency-technical-guidance-recovery-loss-azure-region
https://docs.microsoft.com/en-us/azure/resiliency/resiliency-technical-guidance-recovery-loss-azure-region

52

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.
48.
49.

P.T. Endo et al.

Machida, F., Kim, D. S., & Trivedi, K. S. (2013). Modeling and analysis of software rejuvenation
in a server virtualized system with live VM migration. Performance Evaluation, 70(3), 212—
230.

Malhotra, M., & Trivedi, K. S. (1994). Power-hierarchy of dependability-model types. [EEE
Transactions on Reliability, 43(3), 493-502.

Marrone, S. (2015). Using bayesian networks for highly available cloud-based web applica-
tions. Journal of Reliable Intelligent Environments, 1(2—4), 87-100.

Meisner, D., Wu, J., & Wenisch, T. F. (2012). Bighouse: A simulation infrastructure for data
center systems. In 2012 IEEFE International Symposium on Performance Analysis of Systems
and Software (ISPASS), pp. 35-45. IEEE.

Melo, M., Araujo, J., Matos, R., Menezes, J., & Maciel, P. (2013). Comparative analysis
of migration-based rejuvenation schedules on cloud availability. In 2013 IEEE International
Conference on Systems, Man, and Cybernetics, pp. 4110-4115. IEEE.

Melo, M., Maciel, P., Araujo, J., Matos, R., & Aratjo, C. (2013). Availability study on cloud
computing environments: Live migration as a rejuvenation mechanism. In 2013 43rd Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 1-6.
IEEE.

Miglierina, M., Gibilisco, G. P., Ardagna, G. P., & Di Nitto, E. (2013). Model based control
for multi-cloud applications. In 2013 5th International Workshop on Modeling in Software
Engineering (MiSE), pp. 37-43. IEEE.

Nae, V., Prodan, R., & Iosup, A. (2014). Sla-based operations of massively multiplayer online
games in clouds. Multimedia Systems, 20(5), 521-544.

Nguyen, T. A., Kim, D. S., & Park, J. S. (2016). Availability modeling and analysis of a data
center for disaster tolerance. Future Generation Computer Systems, 56, 27-50.

Noor, T. H., Sheng, Q. Z., Yao, L., Dustdar, S., & Anne, H. H. (2016). Ngu. CloudArmor: Sup-
porting reputation-based trust management for cloud services. IEEE Transactions on Parallel
and Distributed Systems, 27(2), 367-380.

Pelanek, R. (2008). Fighting state space explosion: Review and evaluation. In International
Workshop on Formal Methods for Industrial Critical Systems, pp. 37-52. Springer.

Pham, C., Cao, P, Kalbarczyk, Z., & Iyer, R. K. (2012). Toward a high availability cloud:
Techniques and challenges. In IEEE/IFIP International Conference on Dependable Systems
and Networks Workshops (DSN 2012), pp. 1-6. IEEE.

Ro, C. (2015). Modeling and analysis of memory virtualization in cloud computing. Cluster
Computing, 18(1), 177-185.

SAForum. (September, 2011). Service Availability Forum Service Availability Interface—
Overview SAI-Overview-B.05.03. SAForum.

Shvachko, K., Kuang, H., Radia, S., & Chansler, R. (2010). The hadoop distributed file system.
In 2010 IEEE 26th symposium on mass storage systems and technologies (MSST), pp. 1-10.
IEEE.

Szatmdri, Z., Kovi, A., & Reitenspiess, M. (2008). Applying mda approach for the sa forum
platform. In Proceedings of the 2nd Workshop on Middleware-Application Interaction: Affili-
ated with the DisCoTec Federated Conferences 2008, pp. 19-24. ACM.

ASHRAE Technical Committee. (2011). Thermal guidelines for data processing environments
expanded data center classes and usage guidance.

Toeroe, M., & Tam, F. (2012). Service availability: principles and practice. Wiley.

Trivedi, K., Sathaye, A., & Ramani, S. Availability modeling in practice.

Turner, W. P., PE, J. H., Seader, P. E., & Brill, K. J. (2006). Tier classification define site
infrastructure performance. Uptime Institute, 17.

Highly Available Clouds: System Modeling, Evaluations, and Open Challenges 53

Author Biographies

Patricia Takako Endo received her PhD of Computer Science from the Federal University of
Pernambuco (UFPE) in 2014. She is a professor at University of Pernambuco (UPE) since 2010;
and a researcher at Research in Networks and Telecommunication Group (GPRT) since 2009. Her
current research interests are: cloud Computing, and resource management.

Glauco Estacio Gongalves is a professor at Rural Federal University of Pernambuco (UFRPE)
since 2013. He received his Ph.D. degree in Computer Science from the UFPE, respectively in
2007 and 2012. His research interests include: Performance Evaluation of Networked Systems;
Cloud Computing; and Optimization Algorithms for Resource Allocation.

Daniel Rosendo is a Master Student in Computer Science at UFPE. He is taking part of the GPRT
since 2014. His areas of interests are Software-Defined Networking (SDN), Network Manage-
ment, and Internet of Things (IoT).

Demis Gomes is a student of Information Systems at UFRPE and member of GPRT since 2015.
His current research interests are Cloud Computing, Performance Evaluation, Internet of Things,
and Fog Computing.

Guto Leoni Santos is a student of Information Systems at UPE. He is taking part of GPRT and
his research interests include: Distributed Systems, cloud Computing, Performance Evaluation,
Internet of Things, Smart Cities, Neural Networks, and Artificial Intelligence.

André Luis Cavalcanti Moreira received his PhD of Computer Science from the UFPE. His
research topic is in self-organization of cloud networks and adaptation of CDN provisioning algo-
rithms. Currently, he is involved in a research project in a platform for clouds at GPRT.

Judith Kelner received her PhD from the Computing Laboratory at the University of Kent at
Canterbury, UK in 1993. She is a Full Professor at UFPE, since 1979. Currently she leads the
GRVM team as well as coordinates a number of research projects in the areas of multimedia sys-
tems, design of virtual and augmented reality applications, and smart communication devices.

Djamel Sadok received his PhD of Computer Science at the University of Kent at Canterbury,
UK in 1990. He is a member of staft at UFPE since 1993. His research interests include commu-
nication systems, access networks, security, cloud computing and traffic classification. Currently
he leads the GPRT team as well coordinates a number of research projects.

Mozhgan Mahloo works as the researcher in cloud technology department of Ericsson. She holds
a PhD degree in Communication systems from KTH Royal Institute of Technology, Sweden. Her
research interests lie in the general area of cloud computing and networking as well as business
and economic evaluation of such technologies. She is author/co-author of over 12 publications in
international journals and conferences as well as one patent application. She has been involved in
several national projects as well as FP7 European projects.

Big Data Analytics in Cloud—A Streaming
Approach

Ratnik Gandhi

Abstract There is a significant interplay between Big Data and Cloud. Data Mining
and Data Analytics are required for interpretation of Big Data. The literature on
Cloud computing generally discusses infrastructure and architecture, but very little
discussion is found on algorithms required for mining and analytics. This chapter
focuses on online algorithms for learning and analytics that can be used for distributed
and unstructured data over Cloud. It also discusses their time complexity, presents
required architecture for deploying them over Cloud and concludes with presenting
relevant open research directions.

1 Introduction

Small and medium scale organizations, due to lower operational budgets, and lack
of local expertise, are moving rapidly towards cloud based infrastructures. Cloud
infrastructure for Big Data processing and Big Data storage is more reliable and
these organizations have to only focus on internet connectivity. Large organizations,
on the other hand, due to privacy and secrecy issues, are implementing their own
cloud solutions. These organizations can be commercial, educational or scientific
and might be continuously generating data and storing it over the cloud. These
organizations need data analytics over their data for better decision making.

The scientific instrument Large Hadron Collider (LHC) generates 1 TB data per
second. The experiments carried out on such instruments require fast computation
and high accuracy. Also, for better decision making, some of the experiments carried
out needs real-time decision making. Consider a scenario in which people are posting
real time information and updates about catastrophic events over social media such
as Twitter. Is it possible to mine through volume of terra bytes of data and generate
relevant alerts? The scenario requires designing solutions over distributed data and
real time data analytics on them.

R. Gandhi (X))
School of Engineering and Applied Science, Ahmedabad University, Gujarat, India
e-mail: ratnik.gandhi @ahduni.edu.in

© Springer Nature Singapore Pte Ltd. 2017 55
S. Chaudhary et al. (eds.), Research Advances in Cloud Computing,
DOI 10.1007/978-981-10-5026-8_3

56 R. Gandhi

Similarly, due to growth of computational power and sensors on mobile and hand
held devices Business Intelligence and Analytics (BI&A) is also growing [1]. BI&A
requires mobile analytics and visualization of large data. It also needs methods and
tools for integrating data from multiple sensors. Results in [2] propose cloud comput-
ing infrastructure as an effective means to appreciate analytics and visualization for
such large datasets. Further, [2] emphasizes on need of scalable analysis algorithms
for producing timely results—pointing out weakness of existing algorithms. In this
chapter we attempt to answer these questions by presenting computationally efficient
low memory algorithms that can run on data streams and can reuse a bulk of cloud
infrastructure.

The applications discussed consider variety of users and applications through
which data gets generated. Generally, the nature of the Big Data is either structured
or unstructured, i.e., image data, video data, time series data such as temperature or
weather parameter or banking or financial data, etc. One of the important parameter
for algorithms designed for Big Data analytics over cloud is their ability to work with
variety of data. In [3] the definition of Big Data is extended from Volume, Variety,
and Velocity (3V model) to a 4V model—by including a new “V” for Value. The
article further discusses many interesting open research problems, including data
analytics problems discussed in this chapter. The methods presented in this chapter
are not only applicable to structured but unstructured data as well that appreciates
4V model.

Due to rapid increase in sheer volume of the data and the need of continuous data
analytics for better decision making organizations are looking for more real - time
or on the fly computations. Such analysis of continuously generated data leads to
designing of streaming and online algorithms for data analysis.

In this chapter, we introduce Big Data analytics techniques such as: regression
analysis, singular value decomposition and principle component analysis. We also
present Big Data analysis architecture for implementing these techniques and present
streaming algorithms with complexity analysis.

It must be noted here that the algorithms presented in this chapter do not neces-
sarily need cloud infrastructure. What makes them interesting and relevant for cloud
infrastructure is (a) opportunity to distribute data and processing them over streams
(b) distributing computation through cloud infrastructure and (c) significant reusabil-
ity of computational results as well as computing power—offering opportunities to
reduce computational cost for the volume of data analyzed.

Structure of the rest of the chapter is as follows. Section 2 introduces Regression
Analysis with example and presents a classical (offline) and an online algorithm.
Further, it introduces cloud computing architecture for running the online algorithm.
Similarly, Sects.3 and 4 presents offline and online algorithms for computing Sin-
gular Value Decomposition (SVD) and Principle Component Analysis (PCA) along
with its architecture. Section 5 briefly discusses online algorithms for anomaly detec-
tion and k-median clustering. Some implementation aspects on MapReduce-Hadoop
type architecture of presented algorithms are discussed in Sect. 6. Before concluding
in Sects. 7 and 8 presents important research avenues.

Big Data Analytics in Cloud—A Streaming Approach 57

2 Regression Analysis

Consider the scenario in which some industry is monitoring its power consumption
data, or some marketing management consultant observing sales data, or meteoro-
logical departments are generating weather data. In all these cases some of these data
is a simple function of time. And we can think of applying time series analysis. A
method used for observing trend lines on such data is called regression.

2.1 Example

Let the following be set of observations of data of some event.

P1 |P2 (P3 |P4 |P5 |P6 |P7 |P8 |P9

_.
o
[3)
~
[
-
)
%)

Time
Observation

)
~
[\
O
[9%)
—
(@)}
~
3]

These observations can be written as points in R? as a set P ={(1, 2),
(2,4),3,2),(4,9),(5,3),(6,1),(7,6),(8,4), (9, 3)}. A corresponding Fig. 1:

Fig. 1 Event Time series 9 5 *
data - X Axis Time vs. Y
AXis event outcome

—
(]
[}
s
[
o
-
w
o

58 R. Gandhi

We would like to find out a trend line that passes through these set P of points.
There are various approaches for regression: line or linear regression, curves
(using polynomials—non-linear regression) or logistic regression.

2.2 Linear Regression

The idea of linear regression is to pass a candidate line through the data such that
it best represents the trend in the data. It is impossible to pass data through all the
points in general and thus an aim of drawing a line is via minimizing means squared
error (defined below). We show this by following steps (Figs.2, 3 and 4).
Given data points P; = (x;, y;), j = 1 ton,aimsistofindaliney = (By + Bix).
So that the mean squared error MSE = (yj - (ﬁo + ﬁlxj))z is minimum.
We can do this by writing above system of linear equations in the form of following
matrix equation.

1 X1 yl
1 x; Bo »2
XB =y, where X = - , B = 8 | y=1.
1 Xn Yn
Fig. 2 Linear regression [4] y Data point
-...__?(xj.)

|

Point on line”

| (XJ-- fgu + B|Xj)
i—ResiduaI

Residual —
®
LT y=Byt B
1 1 } X
X, x; x
Fig. 3 Linear system for =
regression Predicted Observed
y-value y-value
Bo+Bixi = »
Bo+Bixa = »

ﬁU o ﬂlxu = Yn

Big Data Analytics in Cloud—A Streaming Approach 59

Fig. 4 Linear regression of 94 .
set of input points P

vy
Il

Our aim is to find B and thus we rewrite the above equation as:
xTxp=xTy
Further solving it for 8, we get:
B=(X"X)""x"y
The formula above gives us the required line representing given data points—

minimizing MSE.
For the example, for the given set of points we get,

31
9

—_

ﬂ:
L
15

with line equation y = 0.066 x + 3.44.

2.3 Streaming Linear Regression

Next our aim is to design an algorithm that computes the linear regression in an
online fashion. We do so by observing the linear regression formula:

B=(x"x)"x"y

60 R. Gandhi

If after computing line for the first set (P1-P9) of points we receive new points (let
us say P10, P11) then the new matrices look as follows:

x1 yl 1x1 yl
x2 y2 1x2 y2
xn yn X =|1lxn y =|yn
xp yp Lxp yp
xq yq 1 xq yq

Let us denote the new points corresponding part of matrix X’ as X, and y’ as
Ynew- Then the regression formula can be rewritten as:

—1
lgoverall = (XTX + nyewxnew) (XTy + Xzeanew)

In other words, if we save X7 X matrix of dimension 2 x 2 and X Ty of dimension
2 x 1, we can compute overall new line (old line and new points affecting the old
line) by simply applying the formula above. This is a constant memory polynomial
time algorithm for computing exact linear regression in an online fashion. Another
such algorithm is presented in [5]. Figure 5 gives cloud architecture for the discussed
online regression algorithm.

Stream VM

Construct Xnew Xnew

. :

Construct Ynew

Read Structured or
Unstructured Data

from Multiple CoNstruct Xnew Vnew

distributed Storage|

(] Distributed
Cloud Storage
O <
a-a . ,
o 3 / %
loT Devices £

Fig. 5 Cloud architecture for online regression

Retrieve old X'X and X'y 1

Compute

Output
Regression line
on Dashboard

ﬁoverall

Store (X'X+ Xnew Xnew)
and (Xy+ XnewYew) for
next stream

Big Data Analytics in Cloud—A Streaming Approach 61

2.4 Architecture

Algorithm 1 Streaming Linear Regression on Cloud

Input: New Data (xi,y;) in streaming fashion and old XTX and XTy

Output: Continuously updating Linear Regression on overall (new + old) data

1. Read the input (xj,y;) from stream collected from distributed cloud storage and build matrix
Xnew and vector Ypey-.

2. Compute Matrix Xpew ! Xnew and Xnew | Ynew-

. Retrieve old XX and X"y from cloud storage.

4. Compute

[S§]

—1
Boverall = (XTX + XLangw) (XTy + X;ew)’new)

5. Store (XTX+ Xpew ! Xnew) and (XTy+ XneWTyneW) for next stream computation on cloud stor-
age.
6. Output updated linear regression line on dashboard.

3 Singular Value Decomposition (SVD)

Singular Values and Singular Vectors are tools of significant importance for data
analytics when the data is represented/representable as a matrix. For eg., low rank
approximation of the data, computing principle component analysis, signal process-
ing, pattern recognition, recommendation systems, hotspot detection and computing
pseudo-inverse of a matrix are some of the popular use of SVD.

Singular value decomposition of any m x n matrix A is written as

A=UAVT

where Unxm and Vi, are orthogonal matrices containing left and right singular
vectors respectively. Matrix A, 1S a diagonal matrix with singular values on the
diagonal. A standard algorithm for computing SVD of a given input matrix works
by computing B = AAT, let us say.

AAT = (UAVT) (UAVT) =UAATUT

Matrices U and V are orthogonal and thus UTU = VTV =1 = identity matrix. Further,
AAT is a diagonal square matrix with dimension mxm. We can easily compute ele-
ments of AAT by computing eigenvalues of matrix AAT and vectors of U by comput-
ing corresponding eigenvectors. A similar computation can lead us to matrix V. It is

62 R. Gandhi

0246

A=| 81012 14

16 18 20 22
sascaon wi (a0 au]|~2 AR
-50-29-82|| o 3soofl 7 30 0 "?9
-85 32 4l ¢ ¢ ool AE 880N
-33 76 -.55 .11

Fig. 6 SVD of the image matrix

important to note that, the algorithm for computing SVD internally uses eigenvalue
and eigenvector decomposition—effectively making computational complexity of
SVD algorithm to be O(k?), where k = max(m,n).

3.1 Example

Consider an image given by the following matrix A= (a;) =[024 6;8 10 12 14; 16 18
2022], where each number a;; indicates colour value. Its singular value decomposition
(Fig.6).

3.2 Incremental SVD

There are multiple algorithms for computing Singular Value Decomposition online
[6-9]. In this chapter we discuss a simple algorithm from [9]. First, we define required
notations.

For the given input matrix A € R"*" and its SVD defined as earlier, its” best rank
—k approximate SVD is given by

Apn = U 1,V

where Uyand V! are formed by the first k columns of U and V, respectively and Ay
has the k leading singular values of diagonal matrix A.

3.3 Architecture

Algorithm 2 for computing SVD in an online fashion, as a first step, computes SVD
of original input matrix A = U A, V,' . It is important to note that, if not required, k
can be set to rank of the original matrix A and SVD obtained through Algorithm 2

Big Data Analytics in Cloud—A Streaming Approach 63

Algorithm 2 Incremental Singular Value Decomposition on Cloud
Input: New Data as matrix B and old rank — k SVD U Ay VkT of matrix A

Output: Rank —k approximate SVD of new matrix [A,B]

1. Compute the QR decomposition of matrix (I — UxUT) B = QR.
2. Compute rank-k SVD of the (k + r') x (k + r’) matrix

A UIB| _ 5 ~57
[0 R =UAV

where r’ is the rank of (I — UkUkT) B matrix.
3. With this computation at hand, the best rank-k approximation of new matrix [A,B] is

w3 (31]5)

VM 1

Data
Storage Compute

Amxn = Upa kaT Updated SVD

VM 4

Compute

T
e (e 010) ([9]7)
Compute
(I - UUDB = QR

Distributed
Data Storage

Output best
VM 3 rank- k

approximate
Compute SVD of [A,B]
[A k U,fB

R

Fig. 7 Cloud srchitecture for computing online SVD update

will be exact, rather than approximate. This first computation is carried out on Virtual
Machine 1 and resultant SVD is stored back in local data storage for further use
(Fig.7). This SVD computation runs in O (n?) time, where n = max(n, m).

On receiving the new data through distributed data storage, in the form of a
update matrix B, the matrix with left singular vectors Uy (computed from VM1) is
sent to VM2 for computing QR decomposition. The purpose of QR decomposition
is to orthogonalize and project new vectors into known singular vector space. QR
decomposition over VM2 takes O (n?) time. Matrix R of QR decomposition, along

64 R. Gandhi

with B and left singular vectors Uy, are further utilized on VM3 and SVD is computed.
This computation is exactly same as computing SVD of original input matrix but
the matrix on VM3 is upper triangular and thus the SVD computation is much more
efficient.

Finally, output of VM3 sends Q matrix from VM2 and left and right singular
vectors from VMI are sent to VM4 for computing rank-k SVD of updated matrix
[A,B]. VM4 only does matrix multiplication and thus needs only O (n*®) time. The
output from VM4 is sent back to data storage and it awaits new data update for
further computing new SVD. Overall complexity of updating SVD in an incremental
fashion using Algorithm 2 is O (n?).

3.4 Efficient Rank-1 Update

For most practical purposes, computing rank-1(or low rank) update of SVD is suffi-
cient. For eg., Rank-1 SVD has been applied for hotspot detection from spatiotem-
poral data with application to disease outbreak detection in [10]. There are many
other results that talks about applications of low rank SVD updates [6, 7, 10—13].

Works in [6, 7] presents algorithms that make sure that only singular values are
updated while the left and right singular vector updates are pushed to a later stage
for reducing computational complexity. These updates are computed—Ilater—only
to reduce growth in approximation due to numeric computational errors.

Works in [11, 12] focus on exploiting matrix structure for efficient compu-
tation. The algorithm designed for singular value update models the problem as
Chauchy matrix vector product. Algorithm in [11] computes rank-1 exact update in
O(n’log n) time while the algorithm in [12] uses approximation scheme and com-
putes rank-1 update in O(n’log 1/¢) time, where n is the dimension of the matrix and
€ is accuracy of computation.

It must be noted that the Algorithm 2 presented in this section is an online constant
memory algorithm and it does not require old data for updating SVD.

4 Principle Component Analysis (PCA)

Principle Component Analysis is a method for converting correlated data into linearly
uncorrelated form called Principle components. One of the most important uses of
PCA is to reduce dimensionality of data. In most real life applications the dimension
of the data is very high but information content is low. PCA helps in separating the
low content data from high content by projecting the data in space where most of the
important content is preserved.

Big Data Analytics in Cloud—A Streaming Approach 65

4.1 Example

In Figs. 8 and 9 the Principle Components are obtained such that the first PC is along
the direction of maximum variance and the subsequent PCs are along the direction
of respective subsequent highest variance—orthogonal to the previously computed
PCs. PCA can be used to reduce noise and redundancy in the data [14].

4.2 Model

For computing Principle Component Analysis (PCA) two tools are important—SVD
and eigen decomposition. Information about variance and covariance in the data is
central for PCA. PCs are constructed by finding eigenvectors of covariance matrix of
the data. The diagonal entries in covariance matrix represent autocorrelation while the

Fig. 8 Three dimensional
data, i.e. current feature

space is 3. Green and red are 450
the principle components of 400 -
this data 350 ~_
.
300 — H\'\\. s So, ‘u|.
g] e® &°
250 — rese /o
L [
200 - ';\t’\!_\ - {.*
. e _
1805 ® o ..r': e
% 0,°
100 —| Pe e
M G 500
50 — s /e 0
0 7 7 7 -500
500 400 300 200 100 1] =100 =200
Fig.9 Data given in Fig.8 is 200
projected in the space
created by principle 150 | ° <
components PC1 and PC2. . s ® .
This reduces dimension of 100 | ‘o A .
the data from 3 to 2 . .® *
. == L] .. L]
o wr ot " '. e
[&] L] o . L] P %
o . e . .
I L
. Yae g s
(1] *e " » Nts . 0 . °
il L Y . .. ¢ . L™
o . L *
™ L] L]
-100 + e b4
L] '. .
-150 L I 1 1 i i
-150 -100 -50 0 50 100 150

66 R. Gandhi

off-diagonal entries represent covariance among variables. Zero off-diagonal entries
represent data having no redundancy. The diagonalization of the covariance matrix
is computed by eigen decomposition. This generates eigenvectors and eigenvalues.
The eigenvectors are the PCs (new basis) of the data and eigenvalues represents the
variance corresponding to each PC. Variance as eigenvalues can be thought of as a
weight/priority assigned to each PC in decreasing order of their importance in retain-
ing information in the data. In case of non-square matrix, PCA can be implemented
using SVD.

Let A € R™*" be the data matrix with m being dimension of the data (number of
features) and n being number of data/sample points. PCA computes ak x k projection
matrix P such that

Aprojecled = PTA

where, columns of matrix P = [p;p; . . . px] are the principal components of matrix
A. PCs are the new basis vectors for X.

Algorithm 3 Principle Component Analysis
Input: Input matrix A

Output: Matrix P - Principle Components (PCs) of matrix A.

1. Shift the data by subtracting mean from A, x.
2. Compute covariance matrix
Snxn = AAT~

bt

Compute Eigen Vectors of S.
Use k — eigenvectors of matrix S for constructing k x k projection matrix P.
5. Project A on lower dimensional space by computing P7 A.

»

It must be noted that, in practice—while considering dimensionality reduction
we have m >> n, i.e., number of samples are significantly less than the feature
space (or the dimension of the vectors in matrix A). Computing covariance matrix
AATis very expensive in this case. Thus, for computing PCs, the algorithm first
computes eigenvectors of matrix A7 A. These eigenvectors are then pre-multiplied
by A—producing PCs of AAT.

Algorithm 3 computes PCs either by eigen decomposition or SVD (which in effect
uses eigen decomposition). This sets the complexity of Algorithm 3 to O (n?).

4.3 Incremental Principle Component Analysis

In this section, we present an algorithm for computing Principle Component Analysis
in an online fashion [15]. The algorithm primarily uses idea of Algorithm 2 for
updating SVD, given in Sect.3.2. It must be noted that for applying this algorithm
the data must have low-rank plus shift structure.

Big Data Analytics in Cloud—A Streaming Approach 67

Algorithm 4 Incremental Principle Component Analysis on Cloud
Input: Old and new Data matrices A and A;, where Ajisn X m and Ay isn X r

Output: Rank —k approximate PCs of new matrix A = [A1, A2],x(n4r)

1. Compute the mean shift of matrix A by computing A — E(A).
2. Compute ¥ = (A — E (A))T (A — E(A)), where

R
2_[227 23]'

Compute eigen decomposition of X1 = U AuT.
4. Compute matrices Pjx;,, (Q1)ixr, @2 and Q3 such that

(5818
0> 03 02 03 |°

bt

5. Compute QR decomposition

Q

Latryxa+r) — I:UkUkT:I [Q :| =JK,

1
3

where Uy, is best rank-k approximation of eigen decomposition of X;.
6. Compute SVD of smaller matrix

7| Q1 R
Ay Uy |:Q3] =UAVT,
0 K
where rank-k approximation of P matrix is f’m = |:(I)k] Ag VkT
Ixk

7. Compute best rank-k approximation of

P Q1| _ ~~(Tvio)
8- wa0s (219

Algorithm 4, in Step 1, shifts the data near the origin by subtracting mean E(A)
from the data. Computing mean and shifting data to origin requires O (n*) computa-
tion (for simplicity in analysis we assume n > (m+r)). In Step 2, covariance matrix is
computed and Step 3 computes eigen decomposition of X; block of the covariance
matrix. This decomposition produces eigenvectors U which are further approximated
to rank —k (Uy) and utilized in subsequent computation. These steps require O (m?)
time in worst case. Step 4 offers a different representation of the covariance matrix
% as set of block matrices Py, (Q1)ixr,» @2 and Q3. This representation offers
an opportunity to not only update PCs but allows approximation to factor in. As in
Algorithm 2, QR decomposition of Step 5 takes O ((I + r)?) time and Step 6 SVD
will similarly use an eigen decomposition on upper triangular matrix. These are effi-
cient computation than O (n*) which give us principle components of required — new

68 R. Gandhi

VM1 VM2

Compute Mean Compute Covariance Matrix

Distributed .
Shift - w
i U 1=(A-E@A) (A-

Storage E(4))

QR decomposition/K
- SVDUAVT
Updated PCs of A Compute Eigen decomposition

VM 3

%, = UAUT
Online SVD Cloud
Architecture

Q1, Q3 A, Vie

VM 4

Compute matrices

Prxmi(Q1)ixr, Q2 and Q3

Fig. 10 Cloud architecture for computing PCA online

covariance matrix A. All the parameters, by assumption, are bounded above by n.
Thus, overall running time of the online PCA algorithm is O (n3) It is important to
note that the Algorithm 4 is online PCA update algorithm that uses old data and thus
it is memory inefficient.

4.4 Architecture

Figure 10 presents Cloud based architecture for computing PCA in an online fashion.
It is worth noting that the online PCA cloud architecture given in Fig. 10 uses online
SVD computing architecture shown in Fig.7. This shows amount of infrastructure
reusability. A similar exercise can be carried out to unify and define single architec-
ture for library of data analytics algorithms.

There are other variants of online PCA update algorithms [16]. For memory
limited online PCA algorithm see [17].

Big Data Analytics in Cloud—A Streaming Approach 69

5 Other Algorithms of Interest

In this section we discuss other Big Data analytics related algorithms in brief.

5.1 Online k-Median Clustering

When the data cannot be fitted in memory, the data is generally brought in chunks of
manageable size. One of the methods for performing k-median clustering algorithms
performs clustering in a hierarchical fashion. The idea is for each chunk D; find a
median. Collect the medians of all D; till the median bucket (whose size is size of a
chunk) is not full. Identify median of collected medians and retain it in the median
bucket and for the new chunks start collecting their medians in median bucket again.

When the median of median is found, old data is reassigned their new median
and cluster is updated. This process can continue, as the data volume increases the
cluster stability increases and number of reassignment decreases. A framework for
such k-median clustering is discussed in STREAM framework [18, 19].

5.2 OQutlier Analysis

For most time series data, after understanding trends in the data, one of the most
important analytics is that of finding anomaly or an outlier. There are many ways in
statistics to do outlier analysis, for eg., k-nearest neighbor, support vector machine,
neural networks. The area has developed greatly and there is enough literature devel-
oped on outlier analysis [20].

6 Implementing Algorithms on Map Reduce and Hadoop

As discussed earlier, for computing PCA we need to subtract the mean of the data
and compute it’s SVD. Algorithms such as Lanczos and Stochastic SVD can be used
from Apache Mahout (MapReduce jobs) after appropriate data preprocessing.

As an alternate, Restricted Boltzmann Machines for deep learning can also be
used to achieve dimensionality reduction. The framework allows significant paral-
lelization. Please refer [21] for further discussion on the same.

These implementations allow computation of SVD, online regression and other
applications discussed in Sect. 5.

70 R. Gandhi

7 Open Research Problems

There are many interesting and relevant research problems related to data analytics
on cloud. These research problems can broadly be classified in terms of efficient
deployment problems and efficient design problems.

7.1 Efficient Deployment

It is well known that iterative algorithms cannot be efficiently implemented on
MapReduce type architecture as these technologies help parallelize computation.
The research problems related to efficient deployment would typically ask—how
data analytics algorithms can be modified to exploit given cloud infrastructure for
efficiency. Can some algorithms be parallelized? Can some algorithms be deployed
on Mapper and Reducer like distributed architectures? Algorithms community that
is trying to answer these questions is answering it for specific algorithms—there is
no generic answer so far. Research contributions in the area of designing schemes
that can help convert existing algorithms to algorithms fit for distributed computation
or parallel computation will offer an important platform for many algorithms to be
deployed on Cloud platform immediately. Further, it will help improve computational
efficiency of these analytics.

The scheme should also be able to propose an optimal architecture for deployment
of these algorithms (Fig. 11).

7.2 Efficient Design

The algorithms presented in this chapter have use cases in data analytics over Big
Data as well as many machine learning algorithms. For instance, online SVD and
online PCA algorithms are used for finding variables of importance for data analytics
as well as used for clustering and recommendation algorithms. Efficiency of these
algorithms in the form of computational time/cost and accuracy are of great relevance.

Existing Scheme/ Parallel/Distributed

Algorithms Framework variant of input Algorithm

Fig. 11 Figure shows need to design a scheme/framework for converting existing algorithms to
algorithms that can be parallelized or be deployed on distributed architechture

Big Data Analytics in Cloud—A Streaming Approach 71

Many of these algorithms cannot have an online version that can compute solutions
in an exact form (the solutions are approximate). These approximation needs to be
improved for better accuracies. In the following we list some of the algorithms that
might need immediate answers considering current research scenario (it must be
noted that the literature on efficient online algorithm designing for data analytics
over cloud is sparse or essentially absent).

Online Linear Discriminant Analysis (LDA): Like PCA, LDAs are useful for
dimensionality reduction for Big Data analytics. PCAs are useful for maximizing
variance in data, while LDAs are useful for maximizing the inter-class distances.
Online algorithm for LDA was first presented in [22] with computational complexity
of O(MCn?), where M is number of classes, C is maximum elements in a class and
n is size of the data matrix. There has been many results that attempts to improve
complexity of computing LDA in an online fashion (eg. [23-25]). These results are
either specific for applications [25] or are not efficient enough [23, 24]. Research
in the area of improving complexity and efficiency of online LDA algorithm using
cloud computing would be a very important result.

Online SVD: As discussed earlier, one of the first algorithms for computing SVD
in an online fashion is given in [6, 7]. For many practical scenario, computing low-
rank SVD update is sufficient (for eg., consider the data is coming as one column/row
at a time and we have to update the SVD). An efficient method for updating low-rank
SVD—that uses structural properties of matrix—is presented in [11]. An approxi-
mation based method that improves algorithm in [11] is given in [12]. Recall, the
online SVD update is quite useful for computing PCAs and thus improving effi-
ciency of [11] or approximation accuracies in [12] using cloud computing would be
an important research contribution.

Online PCA: The presented method of online PCA in Sect.4.3 makes use of an
online SVD algorithm [15]. Further, the algorithm is not truly online as it accesses
old data for updating the principle components. This makes the algorithm memory
inefficient. Considering the volume of data and purpose of PCA for dimensionality
reduction — there is an immediate need to develop a truly online PCA algorithm that
does not look up old data for updating PCA.

Similar research questions for efficient implementation of online k-means clus-
tering, Gaussian mixture, online regression, online naive Bayse classification, online
hypothesis testing methods over cloud are unanswered and require immediate
attention.

8 Closing Remarks

There is a significant literature related to cloud computing that discuss optimiza-
tion problems such as resource allocation, its architecture and framework for cloud
and related technologies. Literature related to optimization aspects of algorithms
designed and deployed for cloud infrastructure is very limited or sparse. In this

72 R. Gandhi

chapter, we presented set of algorithms that does optimization and are generally
deployed for large scale data analytics systems over cloud [26].

One of the most important properties of cloud based systems is the infrastructure
to distribute data over many nodes through distributed file systems and allowing
local computations. When the data is not available “in-ram” for computation, the
algorithm design community for cloud focuses on algorithms that run on stream of
data. In this chapter we presented some online algorithms for known static problems
and presented architecture though which the algorithms can be deployed over the
cloud. We further discussed other research problems of importance.

Acknowledgements Author would like to thank Ms. Amoli Rajgor for helping with Figs. 8 and 9.
Author would also like to thank reviewers for constructive comments for improving this chapter.

References

1. Hsinchun, C., Chiang, R. H. L., & Storey, V. C. (2012). Business intelligence and analytics:
From big data to big impact. MIS quarterly, 36(4), 1165-1188.

2. Talia, D. (2013). Toward cloud-based big-data analytics. IEEE Computer Science, 98—101.

3. Kim, T.-K., Stenger, B., Kittler, J., & Cipolla, R. (2015). The rise of “Big Data” on cloud
computing: Review and open research issues. Information Systems, 47, 98—115.

4. Lay, D. C. (2003). Linear algebra and its applications.

5. Nadungodage, C. H., Xia, Y., Li, F.,, Lee, J. J., & Ge, J. (2011). Streamffitter: A real time linear
regression analysis system for continuous data streams. In Database Systems for Advanced
Applications, pp. 458-461. Springer.

6. Brand, M. (2002). Incremental singular value decomposition of uncertain data with missing
values. In European Conference on Computer Vision, pp. 707-720. Springer, Berlin, Heidel-
berg.

7. Brand, M. (2006). Fast low-rank modifications of the thin singular value decomposition. Linear
algebra and its applications, 415(1), 20-30.

8. Kwok, J. T., & Zhao, H. (2003). Incremental eigen decomposition. In Proceedings ICANN,
Istanbul, Turkey, pp. 270-273.

9. Zha, H., & Simon, H. D. (1999). On updating problems in latent semantic indexing. SIAM
Journal on Scientific Computing, 21(2), 782-791.

10. Fanaee-T, H., & Gama, J. (2015). Eigenspace method for spatiotemporal hotspot detection.
Expert systems, 32(3), 454-464.

11. Stange, P. (2008). On the efficient update of the singular value decomposition. PAMM, 8(1),
10827-10828.

12. Gandhi, R., & Rajgor, A. (2017) Updating singular value decomposition for rank one matrix
perturbation. arXiv preprint arXiv:1707.08369.

13. Bunch, J. R., & Nielsen, C. P. (1978). Updating the singular value decomposition. Numerische
Mathematik, 31(2), 111-129.

14. Feng,J., Xu, H., Mannor, S., & Yan, S. (2013). Online PCA for contaminated data. In Advances
in Neural Information Processing Systems, pp. 764-772.

15. Zhao, H., Yuen, P. C., & Kwok, J. T. (2006). A novel incremental principal component analysis
and its application for face recognition. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics) 36(4), 873-886.

16. Weng, J., Zhang, Y., & Hwang, W.-S. (2003). Candid covariance-free incremental principal
component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(8),
1034-1040.

http://arxiv.org/abs/1707.08369

Big Data Analytics in Cloud—A Streaming Approach 73

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Mitliagkas, I., Caramanis, C., & Jain, P. (2013). Memory limited, streaming PCA. In Advances
in Neural Information Processing Systems, pp. 2886—2894.

O’callaghan, L., Mishra, N., Meyerson, A., Guha, S., & Motwani, R. (2002). Streaming-data
algorithms for high-quality clustering. In ICDE?2, 685.

Guha, S., Mishra, N., Motwani, R., & O’Callaghan, L. (2000). Clustering data streams. In
Proceedings of the 41st Annual Symposium on Foundations of Computer Science, pp. 359—
366. IEEE.

Aggarwal, C. C. (2015). Outlier analysis. In Data Mining, pp. 237-263. Springer International
Publishing.

Le, Q. V. (2013). Building high-level features using large scale unsupervised learning. In 2013
IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 8595-8598.
IEEE.

Pang, S., Ozawa, S., & Kasabov, N. (2005). Incremental linear discriminant analysis for clas-
sification of data streams. In IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 35(5), 905-914.

Zhao, H., & Yuen, P. C. (2008). Incremental linear discriminant analysis for face recognition.
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 38(1), 210-221.
Ye, J., Li, Q., Xiong, H., Park, H., Janardan, R., & Kumar, V. (2005). IDR/QR: An incremental
dimension reduction algorithm via QR decomposition. IEEE Transactions on Knowledge and
Data Engineering, 17(9), 1208-1222.

Kim, T.-K., Stenger, B., Kittler, J., & Cipolla, R. (2011). Incremental linear discriminant analy-
sis using sufficient spanning sets and its applications. International Journal of Computer Vision,
91(2), 216-232.

Aggarwal, C. (2013). A survey of stream clustering algorithms. In C. Aggarwal & C. Reddy
(Eds.), Data Clustering: Algorithms and Applications, CRC Press.

A Terminology to Classify Artifacts
for Cloud Infrastructure

Fabio Diniz Rossi, Rodrigo Neves Calheiros
and César Augusto Fonticielha De Rose

Abstract Cloud environments are widely used to offer scalable software services.
To support these environments, organizations operating data centers must maintain
an infrastructure with a significant amount of resources. Such resources are man-
aged by specific software to ensure service level agreements based on one or more
performance metrics. Within such infrastructure, approaches to meet non-functional
requirements can be split into various artifacts, distributed across different oper-
ational layers, which operate together with the aim of reaching a specific target.
Existing studies classify such approaches using different terms, which usually are
used with conflicting meanings by different people. Therefore, it is necessary a com-
mon nomenclature defining different artifacts, so they can be organized in a more
scientific way. To this end, we propose a comprehensive bottom-up classification to
identify and classify approaches for system artifacts at the infrastructure level, and
organize existing literature using the proposed classification.

1 Introduction

Cloud computing is a large-scale computing paradigm, in which a huge amount of
computing resources, usually virtualized, and dynamically scalable in processing
power and storage, provides on-demand services to customers over the Internet. The
best use of resources provided by cloud environments enables reduction of costs for

F.D. Rossi (X))

Federal Institute of Education, Science and Technology,
Farroupilha Campus, Alegrete-RS, Brazil

e-mail: fabio.rossi @iffarroupilha.edu.br

R.N. Calheiros

School of Computing, Engineering and Mathematics,
Western Sydney University, Sydney, Australia
e-mail: rnc @unimelb.edu.au

C.AF. De Rose

Pontifical Catholic University of Rio Grande do Sul (PUCRS),
Porto Alegre, Brazil

e-mail: cesar.derose @pucrs.br

© Springer Nature Singapore Pte Ltd. 2017 75
S. Chaudhary et al. (eds.), Research Advances in Cloud Computing,
DOI 10.1007/978-981-10-5026-8_4

76 ED. Rossi et al.

service providers. Several software artifacts supported by these environments work
together to meet negotiated Service Level Agreements (SLA).

At infrastructure level, SLAs are translated into non-functional requirements,
which describe system attributes that directly affect customer satisfaction (Quality
of Experience). From the perspective of the service provider, this can be understood
as complying with preestablished service level agreement (SLA), on aspects such
as performance, availability, security, interoperability, and so on. The infrastructure
layer can offer the artifacts, in different levels of abstraction, either by devices that
are part of the physical substrate or by the operating systems, in order to meet such
SLAs. Sets of artifacts are generally presented as a solution to meet specific SLA,
and are usually split across different layers.

Informally, there are terms that are used to classify each infrastructure-level arti-
fact. Although different, some of these terms are used synonymously, such as tech-
nique, mechanism, algorithm, strategy, policy, and architecture. Based on the above,
the existing terminology for infrastructure-level artifacts is inconsistent. For exam-
ple, the energy-efficient cloud literature has Dynamic Voltage and Frequency Scaling
(DVES) sometimes classified as a technique [1], a mechanism [2], a policy [3], a strat-
egy [4], or a module [5]. In the same way, virtual machine migration is referred to
as a technique [6], a mechanism [7], or a strategy [8]. Data location, which is a mat-
ter of security, can be referred to as a mechanism [9], a policy [10], or architecture
[11]. There is no unique, unambiguous, common terminology for the terms used for
each whole cloud approach, and this can lead to ambiguity in the description and
comparison of approaches.

In order to organize such artifacts, we propose a terminology that allows classifica-
tion of artifacts at different levels of abstraction. Based on this proposed organization,
we classify studies related to each level of abstraction proposed in the terminology,
in order to better organize them. Afterwards, we summarize the work, making it
possible to view new challenges and trends.

This chapter presents the following contributions:

1. A new comprehensive bottom-up classification of artifacts related to non-
functional requirements for cloud environments;

2. The organization of cloud computing-related literature within this new terminol-
ogy;

3. Adiscussion about research trends and challenges in the area of cloud computing.

This chapter is organized as follows. In the first section, we proposed a new termi-
nology to classify terms used to represent different artifacts of cloud environments
infrastructure layer as well as related work associated to each artifact. In the second
section, we present a discussion about future challenges and trends; The chapter ends
with our conclusions in the third section.

A Terminology to Classify Artifacts for Cloud Infrastructure 77

2 Artifacts Classification Terminology

Cloud computing is widely adopted in the industry of Information Technology (IT),
becoming a standard infrastructure for offering services. It is a paradigm that asso-
ciates the service-oriented model with the flexibility provided by virtualization. Sup-
ported by these concepts, cloud computing can be defined as a model that enables
on-demand access from customers to a set of configurable computing resources
(networks, servers, storage devices, applications, and services) that can be quickly
acquired and released with a minimal management effort or service provider inter-
action. This means that cloud environments consist of a set of services accessed
over the network, providing scalability, Quality of Service (QoS), and inexpensive
computing infrastructure that can be accessed simply and in a pervasive way.

Cloud environments can be utilized to provide service quality levels and intelli-
gent use of resources through service models. These service models define the archi-
tectural standard for the approaches offered in cloud environments. Among these
service models, this work is focused on infrastructure. The primary objective of the
infrastructure layer (Infrastructure-as-a-Service or IaaS) is to provide on-demand
computing resources (such as servers, network, storage, etc.), to meet customers
request. The requirements of services are met by infrastructure platforms that man-
age resources through various components such as load balancers and auto-scalers.
As a result, the infrastructure becomes scalable through the use of characteristics
such as elasticity. OpenStack [12] and Eucalyptus [13] are examples of infrastruc-
ture platforms.

Intelligent approaches should guide the use of these components with the inten-
tion of not causing interference on other metrics. Therefore, within the infrastructure,
there are several abstraction levels. Aiming to organize such different levels of the
same approach, we proposed a bottom-up classification presented in Fig. 1, consid-
ering only laaS level.

A software platform orchestrates components of the infrastructure layer. The
infrastructure platform manages and interconnects different modules, each driven by
ametric. Each of these modules includes a set of abstractions ranging from strategies
to achieve the goal to the hardware support for this strategy to occur. Although the
module described in Fig. 1 refers to energy domain, the proposed classification can be
used similarly to each of the other modules belonging to an infrastructure platform.

Each of the components of the proposed classification is detailed in the rest of
this section.

2.1 Mechanisms
Definition

We define mechanisms as the set of special-purpose tools available in the hardware
and operating system levels. Mechanisms are accessed through Application Pro-

78 ED. Rossi et al.

Fig. 1 This classification
organizes the set of layers of Saas |
components that meet the
requirements of cloud

service provider Platforms

Energy | |Performanc r:“ Security '

laaS é | &
HEAES

Strategies

7\

Policies Models

N/

Algorithms

Techniques Mechanisms

gramming Interfaces (APIs) or programming libraries supported by the operating
system to manage hardware features. In this sense, one can say that a mechanism is
pre-existing in hardware and software, even if it is not used by higher layers.

Related Work

Wau et al. [14] discusses the Dynamic Voltage and Frequency Scaling (DVES) mech-
anism, which is present in modern CPUs to enable changes in their clock frequency
by operating system governors, with the objective of reducing processor voltage to
save energy.

Sleep states are another mechanism, presented by Min et al. [15] as an energy-
efficient option, and it consists of changing the operational state of hardware to
states of greater energy efficiency when idleness is detected in the hardware. Such
mechanism supports a variety of states with many energy saving levels, each one
with specific characteristics, and applied to individual components.

Among works that address mechanism, Lee [16] discusses the new features of a
non-bypassable form of hardware access control (ACH) and manycore virtualization
security protections.

Gueroutetal. [17] present the implementation, simulation, and validation of DVFS
support on Cloudsim simulator [18]. Such implementation has shown that there are
several cloud scenarios where the use of DVFES can offer energy savings.

Rossi et al. [19] present an analysis of various ACPI states as the DVFS states in
addition to sleep states such as standby, hibernate, and soft off, in order to improve

A Terminology to Classify Artifacts for Cloud Infrastructure 79

the trade-off between performance and energy savings for HPC clusters. The work
shows that a smart choice for the states can reduce the energy consumption with a
minimum impact on jobs execution time.

2.2 Techniques

Definition

Techniques are a set of hardware-independent procedures abstracted from the oper-
ating system. In this event, the system may add capabilities on top of those already
supported by hardware and operating system, and enable event handling to meet the
goal of a strategy. Accordingly, it can be said that technique is purposely used as a
method to achieve a target.

Related Work

Clark et al. [20] present the technique of virtual machine consolidation (VMC) for
virtualized environments, such as clouds. This technique regards the transferring of
services hosted in virtual machines from one physical server to another. The migration
of virtual machines across different physical servers brings several advantages such as
load balancing, online maintenance, fault tolerance, and power management. These
benefits can increase flexibility and reduce the complexity of managing physical
resources in such environments, besides reducing the resources usage.

In the same direction cloud firewalling presented by Lee et al. [21] is a technique
that protects cloud hosts from external attacks. Canary presented by Smid et al. [22]
also consists of mechanisms that concentrate external attacks to itself, defending the
cloud provider’s application servers.

Alboaneen et al. [23] present a virtual machine placement technique aimed at
saving energy, but also with concern about application performance. In this technique,
virtual machine consolidation is based on the utilization rate of the hosts that support
applications, in addition to the available bandwidth between these hosts. Based on
these values, the authors predict the workload behavior and decide the number of
virtual machines that each host must support every moment, guiding the virtual
machine placement process.

Ding et al. [24] present a virtual machines allocation technique upon cores using
different frequencies. In certain periods, such allocation is performed again, making
the environment to adjust itself aiming energy savings. By simulation, the authors
claim that their strategy can save up to 20% energy. However, the article assumes that
the change in frequency is performed individually on cores where virtual machines
are attached, but this operation is not standard on modern processors.

80 F.D. Rossi et al.

2.3 Algorithms

Definition

Algorithms consist in the translation of an idea, a statement (called strategy in this
classification), to a logical implementation, in other words, the realization in code
form of policies, models, or both of them. The implementation of such algorithms
manages policies and models for the purpose of adapting techniques and mechanisms
of the infrastructure to meet a strategy.

Related Work

Han et al. [25] presents allocation algorithms (AA) implemented on a cloud resource
management system (RMS), which enables cost-effective elasticity based on uti-
lization rates of the processor, memory, and network, to meet the quality of service
requirements.

Yang et al. [26] proposes an algorithm that exploits a limitation of mobile clouds
based on usage and battery consumption. Thus, the choice of workload size and time
to transmission must be made by an algorithm that controls the mobile device.

Zengetal. [27] presents an algorithm that receives a request from a cloud customer,
and based on metrics such as unit price, distance, responsive team, traffic volume,
storage space, chooses which the host will respond to this customer request.

Beloglazov and Buyya [28] presented a virtual machines allocation algorithm
for cloud environments to saving power. Such algorithm decides when and what
virtual machine should be allocated to available resources, reducing the overhead
and avoiding SLA violations through a minimum amount of migration. When virtual
machines are moved, idle hosts may enter into a sleep state, reducing thereby the
overall power consumption. Results presented energy saving of up to 83% compared
to energy-agnostic scenarios, although they showed a minimal SLA violation.

Duy et al. [29] showed a resource allocation algorithm based on a neural network
model to optimize the power consumption of servers in a cloud. Such workload
prediction model is based on historical usage. In the proposed model, the algo-
rithm turns off unused hosts with the intention of minimizing the number of servers
running, thus also reducing their power consumption. Evaluations showed that this
model could reduce energy consumption by up to 46% compared to energy-agnostic
environments.

Dong et al. [30] stated an algorithm that scales in a multidimensional way the
virtual machines on a homogeneous mobile cloud based on two factors: the CPU
usage rate and the bandwidth among hosts. Based on previous analysis, the minimum
energy consumption and the number of physical machines in operation are derived.
The results enabled the development of an algorithm for virtual machines placement
in order to save power.

Garg et al. [31] presented an algorithm for reducing the carbon dioxide emissions
based on EDF scheduling (Earliest Deadline First). Simulation results showed a
reduction in power consumption by 23% and a decrease in carbon dioxide emissions
of 25%.

A Terminology to Classify Artifacts for Cloud Infrastructure 81

2.4 Models

Definition

A model is a representation or interpretation of reality, or an analysis of a system
fragment according to a certain structure. For cloud computing environments, mod-
els are mathematical formalisms, deterministic or stochastic, expressing relations,
variables, parameters, entities, and relationships between variables and objects or
operations, aiding decisions about resource management. Models are often used to
estimate what are the actual resource needs, depending on high-level metrics based
on the applications or customer behavior.

Related Work

Pietri et al. [32] presented a prediction model (PM) of cloud workloads behavior,
based on the relationships among the number of tasks and minimum and maximum
acceptable time for their execution and some available slots.

Khomonenko and Gindin [33] proposed a multichannel non-Markovian queue
model that analyzes the performance of cloud applications based on many available
resources.

Lakew et al. [34] and Sharma et al. [35] present queueing models to estimate the
response time in applications, and on that basis, indicate many resources that should
be used or released through vertical elasticity.

Niyato et al. [36] stated a Markov model to set the number of active servers for
highest performance. Although shutdown can save a considerable amount of power
and restart operations on hosts, the main purpose was to perform the configuration of
available resources and enable online control according to service behavior, power
consumption, and SLA requirements. Results showed an increase in energy efficiency
by up to 30%, minimally impacting performance.

Maccio and Down [37] introduce the modeling of some sleep states for servers
based on Markov Chains. Such model uses four states: off, setup, busy, and idle. The
setup state is the transition time among the other three states. Through incoming jobs
guided by Poisson behavior, the model optimizes the states on many hosts to meet
SLA constraints.

In the same way, Shen et al. [38] used a Markov model in order to allocate
virtual machines on hosts to save energy, aiming to improve the trade-off between
performance and energy savings. Compared with state of the art suggested at work,
the proposal achieves 23% energy savings.

Guzek et al. [39] presents a Markov model for data centers of cloud computing
that can be applied to represent cloud applications, virtual machines, and physical
hosts. Several features describe each of these entities: processor, memory, storage,
and networking. Results show the DVFS impact on the processing time until the
deadline of the applications.

82 F.D. Rossi et al.

2.5 Policies

Definition

A policy consists of a set of rules and norms that can determine actions through
predetermined thresholds, which promotes a dynamic cloud environment through
changes in the infrastructure to meet particular strategy. Additionally, policies may
limit the decisions on the use of resources, helping to maintain many resources within
the acceptable Quality of Service levels.

Related Work

Suleiman and Venugopal [40] analyzed several policies that determine the minimum
and maximum (MinMax) use of some resources (processor usage) or high-level
metric (response time), aiming to determine when operations of scale-out on cloud
resources should be conducted.

Therefore, policies consist of limits imposed by the service provider, and when
these limits are exceeded, some action must occur. In terms of security for cloud envi-
ronments, Felsch et al. [41] present a number of rules (Filter) that must be followed to
reduce the chance of an attack, such as using different browsers from frequently used
when accessing the cloud, the use of client-side filters, continuous update of envi-
ronments and services, inspection of the HTTP headers of communication between
client and provider, and insertion of security concerns in the development of user
interfaces.

2.6 Strategies

Definition

A strategy is part of the realm of ideas, that is, the way the environment or situation
will be managed and manipulated to meet objectives. In the context of cloud com-
puting, a strategy is a way in which models and policies are applied to the available
computing resources with the intention of improving some aspect of the cloud to
better support services.

Related Work

Alvarruiz et al. [42] propose as a strategy, shut down idle hosts in a cluster, in view to
save energy. In a layer below, policies and models define when such changes occur,
and what limits these changes must obey.

Zhu et al. [43] proposed a strategy that split a cloud into four areas: busy, active
idle, sleep, and shutdown. In the busy area, hosts are allocated to running applications.
The active idle area maintains a certain number of hosts in the idle state waiting to
meet any possible demand. At the sleep state, hosts are kept in a state of suspension;
ending with a level in which the hosts are turned off. Such grouping provides an

A Terminology to Classify Artifacts for Cloud Infrastructure 83

environment that classifies hosts into categories associated with the environment
usage. The results show that this method can reduce power consumption up to 84%,
with an impact on the runtime of up to 8.85%.

2.7 Modules

Definition

Modules are related to non-functional requirements of the cloud environment [44].
The growing number of customers of cloud services makes non-functional require-
ments such as portability, performance, security and mobility, essential in most web
systems. Furthermore, concerns about interoperability, geographic location, energy
saving, and high availability are also part of the mapping and development of non-
functional requirements. In this way, modules aim at intelligent management of
resources by the service provider, in addition to supporting the offered services to
customers with the best Quality of Service. Each module has a particular purpose,
and generally, there are several modules managed by the same platform, working
concurrently and in some cases complementary to each other.

Related Work

Sequeira et al. [45] presents an architectural environment to reduce energy con-
sumption in big data for enterprise cloud applications. Authors define challenges,
implications, benefits, and added value incurred when cloud environments aim at
power saving. A conceptual architecture is described, allowing the visualization of
components necessary to meet a power management module.

Yu et al. [46] discuss security challenges in cloud environments, such as privacy
and data security, external threats, internal threats, and other safety aspects. Also, Yu
et al. discuss technologies that can reduce security risks, proposing a safe framework
for this kind of computing environment.

Gupta et al. [47] suggest the adoption of high-performance applications for cloud
environments. The performance has always been a determining factor in large-scale
environments. Even though clouds were not traditionally the target environment
for batch processing applications, the advent of the big data paradigm raised the
utilization of clouds for such type of applications.

2.8 Platform

Definition

A platform is a software layer that aggregates the management and the interconnec-
tion of capacities among cloud infrastructure modules. Each of these modules can be
defined as a requirement to meet a high-level metric proposed by the cloud service

84 ED. Rossi et al.

provider. Therefore, platforms can handle one or more modules to maintain balance
among different cloud requirements.

Related Work

An example of infrastructure platform is OpenStack [12], an open source platform for
management of public and private clouds. The project aims to provide approaches for
all types of clouds, enabling simplified deployment, massive scalability, and easier
management of resources. The technology consists of a series of interrelated projects
that allow full implementation of a cloud infrastructure approach. The data and
virtual machines can be distributed across multiple data centers, being the OpenStack
responsible for replication and integrity among clusters.

In the same way, Eucalyptus [13] is an open source cloud platform that enables
organizations to create a private cloud environment within its data center using an
existing virtualized infrastructure. Eucalyptus enables organizations to build a pri-
vate cloud compatible with the Amazon Web Service’s API, expanding the existing
virtualized resources based on on-demand services.

Figure 2 summarizes the studies presented in this section to enable better visual-
ization of the approaches.

Fig. 2 Summary of related Wu et al. [48]
work to each component Guérout et al. [22]
classification Mechanism Min et al. [34]

Lee et al. [30]
Rossi et al. [39]
Clark et al. [15]
Alboaneen et al. [12]
Technique Ding et al. [16]
Lee et al. [31]
Smid et al. [44]
Han et al. [25]
Yang et al. [49
Zeng et al. [51
Algorithm Beloglazov and Buyya [14]
Duy et al. [18]

Dong et al. [17]

Garg et al. [21]

Pietri et al. [37]

Khomonenko et al. [26]

Lakew et al. [29]

Sharma et al. [42]

Niyato et al. [35]

Maccio et al. [33]

Shen et al. [43]

Guzek et al. [24]
[Suleiman and Venugopal [45]|
[Felsch et al. [20]

Alvarruiz et al. [13]

Zhu et al. [52]

Sequeira et al. [41]

Module Yu et al. [50]

Gupta et al, [23]

Model

Policy

Strategy

A Terminology to Classify Artifacts for Cloud Infrastructure 85

2.9 Hybrid Solutions

Lefévre and Orgerie [48] showed a cloud strategy that saves power due to many cir-
cumstances, such as startup and shutdown hosts mechanism, controls the resources
usage rate by policies and uses the virtual machines migration technique. An algo-
rithm to predict, through a model, the behavior of the workload has been proposed.
Experimental results showed differences in power consumption among the various
scenarios (an algorithm that turns on/off hosts, an algorithm that migrates virtual
machines, or a mixed algorithm). In such experiments, energy savings of up to 25%
was achieved when compared to an energy-agnostic environment. Moreover, results
revealed that, depending on the type of resource, the best alternative might vary.

Min et al. [15] present a strategy that decides the best sleep state based on typical
workloads for smartphones. To switch from an idle state to another with lower power
consumption, some policies (such as idle time and time in each sleep state) were
used along with an algorithm that is applied to different states on the device. Results
presented energy savings of up to 50%.

Feller et al. [49] suggested a consolidation model for workloads coupled with
an active adjustment of sleep states and changes of processor frequency. The work
shows a part of the proposed model, whose purpose was to minimize the number of
servers that host applications. For this, a model for adjusting the workload on the
servers and setting policies to manage the transitions between idle and off hosts was
presented.

Krioukov et al. [50] introduced a strategy for heterogeneous clusters with a focus
on saving power and making the smallest likely impact on the tasks response time.
Three different architectures were simulated: Nehalem, Atom, and BeagleBoard, and
as a workload trace, seven days of HTTP traffic of Wikipedia were used. The DVFS
mechanism has been used over underutilized hosts, and sleep states on idle hosts,
besides shutdown of part of unused hosts in the cluster. The decision about the fitting
number of hosts to meet input tasks is based on combinatorial optimization model
(knapsack problem), and the results showed an energy saving of up to 27%, with less
than 0.03% of lost requests. In clusters, the use of DVFES is not recommended because
when the frequency of the processor is reduced, so is the number of instructions that
can be performed.

Kliazovich et al. [51] focuses on communication in cloud computing data centers,
presenting a strategy for flow scheduling to provide load balancing of traffic in
data center networks, with the goal of optimizing energy consumption. The correct
distribution of network flows generated by user applications helps to avoid congestion
hotspots and packet loss due to network saturation. As a result, the proposed strategy
improves the quality of applications running in the cloud, modeling delays related
to communication and packet loss associated with congestion.

Wang et al. [52] investigated approaches to resource allocation and power man-
agement through the use of varying workloads and various multi-tier applications.
Metrics of interest were throughput, the number of rejected packets, and queuing
status, among others. Based on these parameters, authors proposed the design of an
adaptive resource allocation algorithm to reduce operating costs.

86 F.D. Rossi et al.

|Leféverc and Orgerie [32]| Mechanism
|Mln et al. [34]| Technique | Algorithm

Feller et al. [19]| Mechanism Model Model
Krioukov et al. [28]| Mechanism Model Strategy Policy

‘Kliazo\rich et al. [27]| Algorithm Policy Strategy Module Strategy
|Wang et al. [47]| Algorithm Policy Strategy Module Module
Santana et al. [40]| Mechanism Module Strategy Module
Model Module
Module

Fig. 3 Summary of hybrid solutions related to the classification components

Santana et al. [53] stated a model for predicting the application’s behavior on web
clusters, in order to apply DVFS mechanism and turned idle hosts off, trying to keep
up the QoS (Quality of Service). The metric assessed was the processor usage rate.
Results presented an energy saving of up to 59%, trying to maintain the quality of
service to 95%. On several occasions, this QoS could not be maintained precisely
due to the procedure of turning off and restarting hosts.

Figure 3 summarizes the studies presented in this section to enable better visual-
ization of the approaches.

3 Open Research Problems

In an analysis of the work discussed in the previous sections, we can infer certain key
points and challenges. We do not expect a practical use of all components of the pro-
posed classification, although several of them could be found during its development.
Therefore, few studies use all the mechanisms and techniques available together.
Probably this is due to interference that a mechanism or technique can cause over
another. For example, an underutilized physical machine may receive a new virtual
machine by migration, have a migrated virtual machine to another physical machine
and placed in a suspended state, or have reduced the frequency of its processors.
However, administration of a cloud environment using all the options together, and
the decision of what each physical machine must support to enable energy saving in
a given moment is not a trivial task. This is one of the main challenges we identified,
namely, how to choose, among all the techniques and mechanisms, which is better
suited to each physical machine.

Decisions about what, how, and when to use a mechanism or technique have
implications on resource utilization. Even SLAs are set between customer and service
provider based on CPU, memory, network, and disk usage. This occurs because the
service provider has control only over the over the quality of service of the outer edge
of its infrastructure. However, several other external factors can influence a quality
of experience (QoE). Therefore, another identified challenge is the translation of
low-level metrics such as resources usage to more tangible high-level metric, such
as total response time or transactions per second.

A Terminology to Classify Artifacts for Cloud Infrastructure 87

Furthermore, there is a paradigm shift in clouds. Initially, the main concern of
the research community was about performance, reflecting the main target of HPC
environments, where performance is the most important system metric. Currently,
there is growing concern about trade-offs, as one particular metric can impact others.
The most common of such trade-offs is found in the energy saving area, where
power may affect performance. Likewise, trade-offs are identified between scalability
and timeliness, security, and encryption on the data, environments, and systems
complexity, etc. Another challenge is the understanding of trade-offs and the way
that SLAs can be met in view of such trade-offs.

The adoption of network support, new devices, and OS-level virtualization also
becomes a challenge. Most of today’s data centers have redundant network paths that
may support link aggregation mechanisms to increase the communication channel
between hosts and enable faster data traffic. Thus, the investigation of how such mech-
anism may affect decisions to improve trade-offs is an interesting research question.
Additionally, OS-level virtualization (such as Linux Containers) consists of virtu-
alized environments that have near-native performance, and they are increasingly
present in large-scale environments. Although this new model still has limitations
on the isolation capabilities, it has potential applicability on environments where
performance is more important, because containers do not incur instantiation delay,
unlike traditional virtual machines.

Finally, it can be noticed that few studies were carried out in real cloud envi-
ronments. Most use simulation to validate their experiments and some use analytics
models. Although there are plenty of available cloud environments that can be used
to verify studies’ results, most of these environments are limited in size or cost. Cloud
environments where the researcher has full control of all commonly required para-
meters are usually small in amount of resources, while large environments such as
Amazon have a cost to the researcher, and do not provide infrastructure-level control
than most research demands. Thus, simulation has been the most used way to assess
research proposals in a large-scale environment. However, simulators may abstract
complex low-level operations that may be necessary for the validation of any module
in particular, and that can affect the accuracy of results. A new challenge then is to
develop more specific simulators to an individual cloud behavior or module, or the
adoption of large cloud environment testbeds for research purposes.

4 Conclusion

The cloud infrastructure research community utilizes different terms for the same
artifacts. In this way, there is the need for unification of the terms to avoid ambi-
guity. Therefore, the main objective of this chapter is to propose a comprehensive
bottom-up classification to organize the existing terms, classifying the artifacts on
different levels of abstraction within the cloud infrastructure layer.

From the creation of this terminology, related work can now be classified by
clarifying which technologies are most commonly used to meet certain modules.

88 F.D. Rossi et al.

This exercise also enabled visualization of new challenges and trends. By analyzing
the data presented in the previous sections, we can list issues that can be explored in
future research, such as:

e The need for approaches that manage various techniques and mechanisms in har-
mony on resources based on pre-defined metrics.

e Better tools for evaluation of research outcomes such as simulators for each module
type, thereby reducing the level of abstraction.

e Evaluation of new virtualization proposals such as containers, which present better
performance issues when compared to traditional virtualization environments.

e The implementation and testing of the approaches in real cloud environments.

Moreover, we also noticed a paradigm shift in the way that cloud environments
are evaluated: while earlier studies focused on single metric (typically performance),
there is now a strong trend on evaluations that consider trade-offs among two or
more metrics. Such studies should be made more frequent, given that there is a need
to balance the various metrics composing cloud environments that are expected to
reduce costs by the side of the service provider, without impacting on the customer’s
Quality of Experience (QoE).

References

1. Zhuo, T., Ling, Q., Zhenzhen, C., Kenli, L., Samee, U., & Khan, K. L. (2016). An energy-
efficient task scheduling algorithm in DVFS-enabled cloud environment. Journal of Grid Com-
puting, 14(1), 55-74.

2. Silva-Filho, A. G., Bezerra, P. T. L. E,, Silva, Q. B., Junior, A. L. O. C., Santos, A. L. M., Costa,
P. H. R,, et al. (2012). Energy-aware technology-based DVFS mechanism for the android
operating system. In Proceedings of the 2012 Brazilian Symposium on Computing System
Engineering (SBESC ’12) (pp. 184—187). Washington, DC, USA: IEEE Computer Society.

3. Stijn, E., & Lieven, E. (2011). Fine-grained DVFS using on-chip regulators. ACM Transcations
Architecture and Code Optimization, 8(1), 24.

4. Hafiz, F. S., Hengxing, T., Ishfaq, A., Sanjay, R., & Phanisekhar, B. (2012). Energy-and
performance-aware scheduling of tasks on parallel and distributed systems. Journal on Emerg-
ing Technologies in Computing Systems, 8(4), 37.

5. Guérout, T., Monteil, T., Da, C. G., Buyya, R., & Alexandru, M. (2013). Rodrigo neves cal-
heiros. Energy-aware simulation with DVFS. Simulation Modelling Practice and Theory, 39,
76-91.

6. Isci, C., Liu, J., Abali, B., Kephart, J. O., & Kouloheris, J. (2011). Improving server utilization
using fast virtual machine migration. IBM Journal of Research and Developement, 55(6), 365—
376.

7. Zhuang, H., Liu, X., Ou, Z., & Aberer, K. (2013). Impact of instance seeking strategies on
resource allocation in cloud data centers. In Proceedings of the 2013 IEEFE Sixth International
Conference on Cloud Computing (CLOUD ’13) (pp. 27-34). Washington, DC, USA: IEEE
Computer Society.

8. Fischer, A., Fessi, A., Carle, G., & de Meer, H. (2011). Wide-area virtual machine migration as
resilience mechanism. In: Proceedings International Workshop on Network Resilience (WNR),
Madrid, Spain, October 4, 2011.

A Terminology to Classify Artifacts for Cloud Infrastructure 89

9.

10.

11.

12.

13.

14.

15.

16.

17.

20.

21.

22.

23.

24.

25.

Zhu, Y., Ma, D., Huang, D., & Hu, Ch. (2013). Enabling secure location-based services in
mobile cloud computing. In Proceedings of the second ACM SIGCOMM workshop on Mobile
Cloud Computing (MCC ’13). New York, NY, USA: ACM (pp. 27-32).

Adam, A. K., & Lee, J. (2013, June). Combining social authentication and untrusted clouds
for private location sharing. In Proceedings of the 18th ACM Symposium on Access Control
Models and Technologies (SACMAT).

Marc, M. T., & Tobias, C. (2012). SecureSafe: A highly secure online data safe industrial use
case. In Proceedings of the First Workshop on Measurement, Privacy, and Mobility (MPM ’12)
(Article 1, 6 pp.). New York, NY, USA: ACM.

Rosado, T., & Bernardino, J. (2014). An overview of openstack architecture. In Proceedings
of the 18th International Database Engineering and Applications Symposium, IDEAS 14 (pp.
366-367). New York, NY, USA: ACM.

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., etal. (2009). The
eucalyptus open-source cloud-computing system. In Proceedings of the 2009 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid, CCGRID ’09 (pp. 124—-131).
‘Washington, DC, USA: IEEE Computer Society.

Wu, C. M., Chang, R. S., & Chan, H. Y. (2014). A green energy-efficient scheduling algorithm
using the DVFS technique for cloud datacenters. Future Generation Computer Systems, 37,
141-147.

Min, A. W., Wang, R., Tsai, J., Ergin, M. A., & Tai, T. Y. C. (2012). Improving energy efficiency
for mobile platforms by exploiting low-power sleep states. In Proceedings of the 9th Conference
on Computing Frontiers, CF 12 (pp. 133—-142). New York, NY, USA: ACM.

Lee, R. B. (2012). Hardware-enhanced access control for cloud computing. In Proceedings
of the 17th ACM Symposium on Access Control Models and Technologies, SACMAT ’12 (pp.
1-2). New York, NY, USA: ACM.

Guerout, T., Monteil, T., Costa, G. D., Calheiros, R. N., Buyya, R., & Alexandru, M. (2013).
Energyaware simulation with DVFS. Simulation Modelling Practice and Theory, 39, 76-91.

. Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A. F,, & Buyya, R. (2011). CloudSim:

A toolkit for modeling and simulation of cloud computing environments and evaluation of
resource provisioning algorithms. Software Practice and Experience, 41(1), 23-50.

. Rossi, F, Xavier, M., Monti, Y., & De Rose, C. (2015). On the impact of energy-efficient

strategies in HPC clusters. In Proceedings International Conference on Parallel, Distributed
and Network-Based Processing (PDP), 23rd Euromicro (pp. 17-21).

Clark, C., Fraser, K., Hand, S., Hansen, J. G., Jul, E., Limpach, C., et al. (2005). Live migration
of virtual machines. In Proceedings of the 2nd Conference on Symposium on Networked Systems
Design and Implementation, NSDI’05 (Vol. 2, pp. 273-286). Berkeley, CA, USA: USENIX
Association.

Lee, S., Purohit, M., & Saha, B. (2013). Firewall placement in cloud data centers. In Proceedings
of the 4th Annual Symposium on Cloud Computing, SOCC ’13 (pp. 52:1-52:2). New York, NY,
USA: ACM.

Smid, H., Mast, P., Tromp, M., Winterboer, A., & Evers, V. (2011). Canary in a coal mine:
Monitoring air quality and detecting environmental incidents by harvesting twitter. CHI ’11
Extended Abstracts on Human Factors in Computing Systems, CHI EA "11 (pp. 1855-1860).
New York, NY, USA: ACM.

Alboaneen, D. A., Pranggono, B., & Tianfield, H. (2014). Energy-aware virtual machine con-
solidation for cloud data centers. In Proceedings of the 2014 IEEE/ACM 7th International
Conference on Utility and Cloud Computing, UCC ’14 (pp. 1010-1015). Washinton, DC,
USA: IEEE Computer Society.

Ding, Y., Qin, X., Liu, L., & Wang, T. (2015). Energy efficient scheduling of virtual machines
in cloud with deadline constraint. Future Generation Computer Systems, 50(C), 62-74.

Han, R., Guo, L., Ghanem, M. M., & Guo, Y. (2012). Lightweight resource scaling for cloud
applications. In Proceedings of the 2012 12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (Ccgrid 2012), CCGRID ’12 (pp. 644-651). Washington, DC,
USA: IEEE Computer Society.

90

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

F.D. Rossi et al.

Yang, L., Cao, J., Yuan, Y., Li, T., Han, A., & Chan, A. (2013). A framework for partitioning and
execution of data stream applications in mobile cloud computing. SIGMETRICS Performance
Evaluation Reviews, 40(4), 23-32.

Zeng, W., Zhao, Y., & Zeng, J. (2009). Cloud service and service selection algorithm research.
In Proceedings of the First ACM/SIGEVO Summit on Genetic and Evolutionary Computation,
GEC 09 (pp. 1045-1048). New York, NY, USA: ACM.

Beloglazov, A., & Buyya, R. (2010). Energy efficient resource management in virtualized
cloud datacenters. In Proceedings of the 2010 10th IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing, CCGRID 10 (pp. 826-831). Washington, DC, USA:
IEEE Computer Socity.

Duy, T. V. T., Sato, Y., & Inoguchi, Y. (2010). Performance evaluation of a green scheduling
algorithm for energy savings in cloud computing. In Proceedings IEEE International Sympo-
sium on Parallel Distributed Processing, Workshops and Phd Forum (IPDPSW) (pp. 1-8).
Dong, Y., Zhou, L., Jin, Y., & Wen, Y. (2015). Improving energy efficiency for mobile media
cloud via virtual machine consolidation. Mobile Network Applications, 20(3), 370-379.
Garg, S. K., Yeo, C. S., & Buyya, R. (2011). Green cloud framework for improving car-
bon efficiency of clouds. In Proceedings of the 17th International Conference on Parallel
Processing—Volume Part I, Euro-Par’11 (pp. 491-502). Berlin, Heidelberg: Springer.

Pietri, L., Juve, G., Deelman, E., & Sakellariou, R. (2014). A performance model to estimate
execution time of scientific workflows on the cloud. In Proceedings of the 9th Workshop on
Workflows in Support of Large-Scale Science, WORKS ’14 (pp. 11-19). Piscataway, NJ, USA:
IEEE Press.

Khomonenko, A. D., & Gindin, S. I. (2014). Stochastic models for cloud computing perfor-
mance evaluation. In Proceedings of the 10th Central and Eastern European Software Engi-
neering Conference in Russia, CEE-SECR ’14 (pp. 20:1-20:6). New York, NY, USA: ACM.
Lakew, E. B., Klein, C., Hernandez-Rodriguez, F., Elmroth, E. (2014). Towards faster response
time models for vertical elasticity. In Proceedings of the 2014 IEEE/ACM 7th International
Conference on Utility and Cloud Computing, UCC ’14 (pp. 560-565). Washington, DC, USA:
IEEE Computer Society.

Sharma, U., Shenoy, P., & Towsley, D. F. (2012). Provisioning multi-tier cloud applications
using statistical bounds on sojourn time. In Proceedings of the 9th International Conference
on Autonomic Computing, ICAC ’12 (pp. 43-52). New York, NY, USA: ACM.

Niyato, D., Chaisiri, S., & Sung, L. B. (2009). Optimal power management for server farm to
support green computing. In Proceedings of the 2009 9th IEEE/ACM International Symposium
on Cluster Computing and the Grid, CCGRID ’09 (pp. 84-91). Washington, DC, USA: IEEE
Computer Society.

Maccio, V., & Down, D. (2015). On optimal policies for energy-aware servers. Performance
Evaluation, 90(C), 36-52.

Shen, D., Luo, J., Dong, F., Fei, X., Wang, W., Jin, G., et al. (2015). Stochastic modeling of
dynamic right-sizing for energy-efficiency in cloud data centers. Future Generation Computer
Systems, 48(C), 82-95.

Guzek, M., Kliazovich, D., Bouvry, P. (2013). A holistic model for resource representation
in virtualized cloud computing data centers. In Proceedings of the 2013 IEEE International
Conference on Cloud Computing Technology and Science—Volume 01, CLOUDCOM 13 (pp.
590-598). Washington, DC, USA: IEEE Computer Society.

Suleiman, B., & Venugopal, S. (2013). Modeling performance of elasticity rules for cloud-based
applications. In Proceedings of the 2013 17th IEEE International Enterprise Distributed Object
Computing Conference, EDOC 13 (pp. 201-206). Washington, DC, USA: IEEE Computer
Society.

Felsch, D., Heiderich, M., Schulz, F., & Schwenk, J. (2015). How private is your private cloud?:
Security analysis of cloud control interfaces. In Proceedings of the 2015 ACM Workshop on
Cloud Computing Security Workshop, CCSW ’15 (pp. 5-16). New York, NY, USA: ACM.
Alvarruiz, F., de Alfonso, C., Caballer, M., & Hernandez, V. (2012). An energy manager for
high performance computer clusters. In Proceedings IEEE 10th International Symposium on
Parallel and Distributed Processing with Applications (ISPA) (pp. 231-238).

A Terminology to Classify Artifacts for Cloud Infrastructure 91

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

Zhu, H., Liu, Y., Lu, K., & Wang, X. (2012). Self-adaptive management of the sleep depths of
idle nodes in large scale systems to balance between energy consumption and response times. In
Proceedings of the 2012 IEEE 4th International Conference on Cloud Computing Technology
and Science (CloudCom), CLOUDCOM ’12 (pp. 633-639). Washington, DC, USA: IEEE
Computer Society.

Villegas, D., & Sadjadi, S. M. (2011). Mapping non-functional requirements to cloud applica-
tions. In SEKE (pp. 527-532). Knowledge Systems Institute Graduate School.

Sequeira, H., Carreira, P., Goldschmidt, T., & Vorst, P. (2014). Energy cloud: Real-time cloud-
native energy management system to monitor and analyze energy consumption in multiple
industrial sites. In Proceedings of the 2014 IEEE/ACM 7th International Conference on Util-
ity and Cloud Computing, UCC 14 (pp. 529-534). Washington, DC, USA: IEEE Computer
Society.

Yu, H., Powell, N., Stembridge, D., Yuan, X. (2012). Cloud computing and security challenges.
In Proceedings of the 50th Annual Southeast Regional Conference, ACM-SE ’12 (pp. 298-302).
New York, NY, USA: ACM.

Gupta, A., Kale, L., Gioachin, F.,, March, V., Suen, C. H., Lee, B. S., et al. (2013). The who,
what, why, and how of high performance computing in the cloud. In /EEE 5th International
Conference on Proceedings Cloud Computing Technology and Science (CloudCom) (Vol. 1,
pp- 306-314).

Lef‘evre, L., & Orgerie, A. C. (2010). Designing and evaluating an energy efficient cloud.
Journal of Supercomputing, 51(3), 352-373.

Feller, E., Rilling, L., Morin, C., Lottiaux, R., & Leprince, D. (2010). Snooze: A scalable,
fault-tolerant and distributed consolidation manager for large-scale clusters. In Proceedings of
the 2010 IEEE/ACM International Conference on Green Computing and Communications and
International Conference on Cyber, Physical and Social Computing, GREENCOM-CPSCOM
"10 (pp. 125-132). Washington, DC, USA: IEEE Computer Society.

Krioukov, A., Mohan, P., Alspaugh, S., Keys, L., Culler, D., & Katz, R. H. (2010). Napsac:
Design and implementation of a power-proportional web cluster. In Proceedings of the First
ACM SIGCOMM Workshop on Green Networking, Green Networking *10 (pp. 15-22). New
York, NY, USA: ACM.

Kliazovich, D., Arzo, S. T., Granelli, F., Bouvry, P., & Khan, S. U. (2013). e-stab: Energy-
efficient scheduling for cloud computing applications with traffic load balancing. In Proceed-
ings of the 2013 IEEE International Conference on Green Computing and Communications
and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, GREENCOM-
ITHINGSCPSCOM’ 13 (pp. 7-13). Washington, DC, USA: IEEE Computer Society.

Wang, X., Du, Z., & Chen, Y. (2012). An adaptive model-free resource and power management
approach for multi-tier cloud environments. Journal of Systems and Software, 85(5), 1135—
1146.

Santana, C., Leite, J. C. B., & Moss’e, D. (2010). Load forecasting applied to soft real-time
web clusters. In Proceedings of the 2010 ACM Symposium on Applied Computing, SAC ’10
(pp- 346-350). New York, NY, USA: ACM.

Author Biographies

Fabio Diniz Rossi holds BS degree in Informatics from the University of the Region of Cam-
panha (URCAMP, Brazil, 2000), M.Sc. (2008) and doctoral (2016) degrees in Computer Science
from the Pontifical Catholic University of Rio Grande do Sul (PUCRS, Brazil). Since 2008, he is
lecturer at Farroupilha Federal Institute (IFFar, Alegrete, RS, Brazil). His primary research inter-
ests are cloud computing and energy efficiency.

92 F.D. Rossi et al.

Rodrigo N. Calheiros is a Lecturer in the School of Computing, Engineering and Mathemat-
ics, Western Sydney University, Australia. He works in the field of Cloud computing and related
areas since 2008, and since them he carried out R&D supporting research in the area. His research
interests also include Big Data, Internet of Things, and their application.

César A. F. De Rose holds BS degree in Computer Science from the Catholic University of Rio
Grande do Sul (PUCRS, Porto Alegre, RS, Brazil, 1990), M.Sc. in Computer Science from the
Federal University of Rio Grande do Sul (CPGCCUFRGS, Porto Alegre, RS, Brazil, 1993), and a
doctoral degree from Karlrsruhe University (Karlsruhe, Germany, 1998). Since 1998, he is a pro-
fessor at PUCRS and a member of the Parallel and Distributed Processing Group. His research
interests include resource management in parallel and distributed architectures and operating sys-
tems. Since 2008, he is the lead researcher at the PUCRS High Performance Laboratory (LAD-
PUCRS).

Virtual Networking with Azure for Hybrid
Cloud Computing in Aneka

Adel Nadjaran Toosi and Rajkumar Buyya

Abstract Hybrid cloud environments are a highly scalable and cost-effective option
for enterprises that need to expand their on-premises infrastructure. In every hybrid
cloud solutions, the issue of inter-cloud network connectivity has to be overcome to
allow communications, possibly secure, between resources scattered over multiple
networks. Network visualization provides the right method for addressing this issue.
We present how Azure Virtual Private Network (VPN) services are used to estab-
lish an overlay network for hybrid clouds in our Aneka platform. First, we explain
how Aneka resource provisioning module is extended to support Azure Resource
Manger (ARM) application programming interfaces (APIs). Then, we walk through
the process of establishment of an Azure Point-to-Site VPN to provide connectiv-
ity between Aneka nodes in the hybrid cloud environment. Finally, we present a
case study hybrid cloud in Aneka and we experiment with it to demonstrate the
functionality of the system.

1 Introduction

Cloud computing is the mainstream paradigm for delivering on-demand and easy-to-
use computing services in a pay-as-you-go model. In this paradigm, consumers and
organizations adopt cloud-based computational resources and services to deploy their
applications and store data. The increasing dependence on information technology
(IT) and global explosion of data over the last decade has fostered this adoption more
than ever. Moreover, this trend is expected to continue in the upcoming decades
as cloud computing becomes the integral and essential part of many emerging IT
technologies such as Internet of things [6] and big data applications [1].

A. Nadjaran Toosi (X)) - R. Buyya

Cloud Computing and Distributed Systems (CLOUDS) Laboratory,

School of Computing and Information Systems, The University of Melbourne,
Melbourne, VIC, Australia

e-mail: anadjaran @unimelb.edu.au

R. Buyya
e-mail: rbuyya@unimelb.edu.au

© Springer Nature Singapore Pte Ltd. 2017 93
S. Chaudhary et al. (eds.), Research Advances in Cloud Computing,
DOI 10.1007/978-981-10-5026-8_5

94 A. Nadjaran Toosi and R. Buyya

Among the many different forms of cloud computing, hybrid clouds, in which
organizations’ on-premises infrastructure are expanded by adding third-party public
cloud resources, provides one of the best blends for hosting applications. A hybrid
cloud allows a seamless integration of an existing on-premises infrastructure (usually
a private cloud) and a public cloud, enabling the cloud bursting deployment model.
In cloud bursting model, applications run in a private infrastructure and bursts onto a
public cloud when the demand for computing capacity spikes. Hybrid cloud delivers
the benefits of both the public cloud and in-house cloud computing infrastructures due
to its native characteristics such as cost reduction and compliance with the location
of sensitive data [18].

In hybrid cloud environments, computational resources are scattered throughout
disparate sets of networks (i.e., private and public cloud networks). One of the main
issues arises in such a scenario is how nodes (e.g., virtual machines) from multiple
sites and clouds are connected together. In other words, there is the issue of managing
two separate sets of IP ranges that would have to be combined to enable automated
resource provisioning and migration across clouds. Allocation of public IP addresses
to nodes requiring communicating with each other provides a viable solution for this
issue. However, providing public IP addresses, in particular public IP addresses for
private cloud resources in the organizational infrastructure, is not always feasible.
Another issue is that in most, if not all, hybrid cloud scenarios, a secure communi-
cation channel needs to be built between the private on-premises infrastructure and
cloud resources as the public Internet is used to transmit data.

The network virtualization techniques are key enablers to address these issues
by constructing of an overlay network over the existing networks such as the Inter-
net. A Virtual Private Network (VPN) is an overlay network that creates a secure
network connection to a private network across a public network. As many more
cloud providers offering VPN services, enterprises, and organizations looking into
hybrid cloud solutions can utilize these VPN services to manage their hybrid cloud
platforms. In this book chapter, we go through the process of building a hybrid cloud
solution for our Aneka platform using virtual network services of Microsoft Azure.

Aneka [7, 17] is a Platform-as-a-Service (PaaS) solution providing a middleware
for the development and deployment of applications in hybrid and multi-clouds.
Aneka provides application developers with Application Programming Interfaces
(APIs) for transparently harnessing and exploiting the physical and virtual computing
resources in heterogeneous networks of workstations, clusters, servers, and data
centers. Scheduling and resource provisioning services provided by Aneka allow for
dynamic growth and shrinkage of the Aneka cloud to meet Quality of Service (QoS)
requirements of deployed applications. This chapter also discusses our extension to
Aneka resource provisioning based on Microsoft Azure Resource Manager (ARM)
deployment model.

The rest of the chapter is organized as follows: Sect. 2 describes hybrid cloud and
its benefits. Section3 discusses the connectivity issue between clouds in a hybrid
cloud environment. Section 4 proposes virtual private networks (VPNs) as a solution
for the connectivity issue in hybrid clouds and explores various Azure VPN con-
nections. In Sect. 5, our Aneka Platform-as-a-Service (PaaS) is introduced as a tool

Virtual Networking with Azure for Hybrid Cloud Computing in Aneka 95

for building a hybrid cloud environment. We explain how Azure VPNs can be used
to provide inter-cloud connectivity for the establishment of Aneka hybrid cloud in
Sect. 6. To demonstrate the effectiveness VPN for hybrid cloud solutions, in Sect. 7,
we represent details of a case study on creation of hybrid cloud combining private
cloud resource (networked desktop computers) and Azure public cloud resources
and the deployment of application on the hybrid cloud infrastructure along with
experimental results. Section 8 defines some open research problems and pathways
for future work. This chapter is summarized in Sect. 9.

2 Hybrid Clouds

The hybrid cloud, as shown in Fig. 1, is an integration of a public cloud provider
such as Microsoft Azure or Amazon Web Services (AWS) with a private cloud plat-
form which is designed to be used within the boundary of a single organization. In a
hybrid cloud environment, the organization that owns the private cloud moves part
of its operations to the external public cloud provider. In this scenario, the public and
private clouds are independent and distinct entities. This allows the organization to
perform protected operations and store sensitive or privileged data on its own pri-
vate infrastructure while retaining the ability to leverage public cloud computational
resources when demand for computation exceeds available capacity. This provides
the following benefits to the organizations:

e Cost savings: Hybrid cloud solutions can increase cost savings. Public clouds’
pay-as-you-go model give the organization the flexibility of using public cloud
resources as much as they require and removes the need for building an internal
infrastructure that endures occasional bursts in demand.

e Security: Improved security is another main benefit of hybrid clouds. In hybrid
cloud model, the organization utilizing hybrid model can run sensitive operations
and store sensitive data in the private cloud platform. This helps to protect privacy of
data and comply with location and regulatory requirements where it is applicable.

b &

Fig.1 Schematic view of a hybrid cloud

96 A. Nadjaran Toosi and R. Buyya

e Scalability: A hybrid cloud environment provides the opportunity to expand capac-
ity by adding external resources to the pool of available resources. This allows for
scaling resources up and down as demands change in order to optimize perfor-
mance and efficiency.

e Availability and Reliability: While private clouds do offer a certain level of avail-
ability, public cloud services will offer a higher level of availability. By replicating
data across hybrid clouds and moving as many non-sensitive tasks as possible to
the public cloud, the organization can benefit from higher availability and fewer
outages. The hybrid cloud model is also an appealing choice for disaster recovery
plans and more reliable systems.

The benefits of hybrid cloud solutions are not limited to the above list. Other
benefits such as business agility, more flexibility, and better accessibility can also be
resulted from successful application of a hybrid cloud solution.

3 Connectivity Issue in Adoption of Hybrid Clouds

Similar to many other IT examples, even though building hybrid clouds bring many
benefits, they still face some challenges that must be addressed before they can be
effectively used. Apart from challenges such as portability, compatibility, and needs
for middleware supporting hybrid clouds, the connectivity issue is an integral part
of every hybrid cloud deployments. Since computational resources in hybrid cloud
environments are scattered across multiple administrative domains, needs for reliable,
responsive and secure connections between machines (either virtual or physical)
residing in separate networks arise.

Even though one might think that the allocation of public IP addresses to these
machines resolves the connectivity issue, there are several technical barriers which
obstruct such application. They include

1. Assigning public IP addresses to all machines in the hybrid cloud is not feasible
in many cases and is a waste of resources. Because IP addresses are limited and
many organizations have access to limited range of public IP addresses.

2. Even if organizations can afford to allocate public IP addresses to private
cloud machines, this involves security risks outweighing its benefits. Moreover,
machines residing in the private infrastructure often located behind organiza-
tional firewalls or network address translation (NAT) that protect them from being
directly accessed by devices from outside networks.

3. Finally, Public IP addresses do not address the issues related to secure commu-
nications between private and public cloud resources.

Issues related to the connectivity issue in the hybrid cloud can be addressed by
network virtualization. Network virtualization is concerned with the construction of
virtual networks over an existing network. In the next section, we discuss how VPN
services can resolve the issues related to connectivity and segregated networks in
hybrid cloud platforms.

Virtual Networking with Azure for Hybrid Cloud Computing in Aneka 97

4 YVirtual Private Networks

A VPN is a cost-effective and secure way of extending an enterprises private net-
work across a public network such as the Internet. It constructs an overlay network
on top of an existing network such as an IP network without changing characteristics
of the underlying network. VPN allow remote resources located outside the local
infrastructure for example a public cloud to securely access local network resources
and vice versa. This creates a secure communication channel for resources scattered
over public and private cloud networks and facilitates automated resource provision-
ing and migration across them.

Thanks to ongoing advances in Network Virtualization solutions and technologies
employed by public cloud providers such as Amazon Virtual Private Cloud (Amazon
VPC),' Google Cloud Virtual Network,” and Microsoft Azure Virtual Networks
(VNet),? building overlay VPNs connecting on-premises networks to public cloud
virtual networks becomes more convenient.

4.1 Microsoft Azure VPNs

In this chapter, we present our experience with using Microsoft Azure Point-to-Site
VPN connections for building a hybrid cloud platform for our Aneka tool (Discussed
in Sect.5). To send network traffic between the on-premises site and Azure Virtual
Network (VNet), Azure provides various VPN connectivity options as follows:

1. Site-to-Site: A Site-to-Site (S2S) VPN connection is a connection over IPsec
(Internet Protocol Security) VPN tunnel. This type of connection requires a VPN
device located in on-premises infrastructure with an assigned public IP address
not behind a NAT. A virtual private network gateway (VPN gateway) must also
be created for the Azure VNet. In Site-to-Site connections, multiple VPN con-
nections from on-premises sites to the VPN gateway can be made which is often
called a “multi-site” connection. Figure 2 shows a sample Site-to-Site VPN con-
nections.

2. Point-to-Site: A Point-to-Site (P2S) connection allows the creation of secure
connections from an individual machine in the on-premises network to the Azure
VNet. This VPN connection is built over SSTP (Secure Socket Tunneling Pro-
tocol) and does not require a VPN device or a public-facing IP address to work.
This solution is used for our case study scenario in Sect. 7 since our hybrid cloud
testbed is built on top of multiple desktop machines behind our organizational
NAT. Figure 3 shows a sample Point-to-Point VPN in Azure.

Thttps://aws.amazon.com/vpc/.
Zhttps://cloud.google.com/virtual-network/.
3https://azure.microsoft.com/en-us/services/virtual-network/.

https://aws.amazon.com/vpc/
https://cloud.google.com/virtual-network/
https://azure.microsoft.com/en-us/services/virtual-network/

98 A. Nadjaran Toosi and R. Buyya

i

& — Ol —

IPSec/IKE
VNET1 Tunnel :
Australia Southeast On-premises
Address Space:] Localsitel
10.10.1.0/24

192.168.1.0/24

VPN Gateway

—OlD —

IPSec/IKE = |
Tunnel .
On-premises
Localsite2
10.2.0.0/16

Fig. 2 Azure Site-to-Site VPN connection

N —

Tunnel VPN Client
VNET1 172.16.201.3
Australia Southeast 7
Address Space: . %
192.168.1.0/24 P2S SSTP
Tunnel VPN Client
VPN Gateway 172.16.201.2
P2S SSTP !
Tunnel VPN Client
172.16.201.1

Fig. 3 Azure Point-to-Site VPN connection

3. VNet-to-VNet: Connecting an Azure virtual network to another Azure virtual
network (VNet-to-VNet) is similar to connecting a VNet to an on-premises site.
Both VNets use a VPN gateway to provide a secure tunnel using IPsec/IKE.
VNet-to-VNet communication can be combined with multi-site connection con-
figurations. Figure 4 illustrates the schematic view of a sample VNet-to-VNet in
Azure.

In addition to above VPN connections, Azure also provides ExpressRoute
for those customers in a co-location with Azure cloud exchange to create private
connections that directly connects their on-premises infrastructure to Azure data
centers.

Virtual Networking with Azure for Hybrid Cloud Computing in Aneka 99

e ¢ ™

VNET1 VNET2
Australia Southeast East US
Address Space: k.-ﬂ Address Space:
192.168.1.0/24 IPSec/IKE 10.10.0.0/16

Tunnel
VPN Gateway VPN Gateway

Fig. 4 Azure VNet-to-VNet VPN connection

5 Aneka Cloud Application Platform

Aneka [17] is a Platform-as-a-Service framework to facilitate the development and
deployment of cloud applications. It offers a collection of tools to build, control,
and monitor an Aneka cloud environment. The Aneka cloud can be composed of
a collection of heterogeneous resources on the public cloud or the premises of an
enterprise, or a combination of both. Aneka provides application developers with
Application Programming Interfaces (APls) for transparently exploiting physical
and virtual resources in the Aneka cloud. Developers express the logic of applica-
tions using programming models and define runtime environments on top of which
applications are deployed and executed. Currently the following four different pro-
gramming models are supported by the Aneka platform [17]:

1. Bag-of-tasks model: expressing bag-of-tasks and workflow applications;

2. Distributed threads model: allowing for execution of applications composed of
independent threads (i.e., threads that do not share data);

3. MapReduce model: leveraged for processing of large data sets based on the imple-
mentation of Google’s MapReduce [10]; and

4. Parameter sweep model: designed for execution of the same task over different
ranges of values and datasets from a given parameter set.

The Aneka framework has been designed and implemented in a service-oriented
fashion. Services are the extension point of the platform allowing for the integration
of new functionalities and the replacement of existing ones with different implemen-
tations. Brief descriptions of some of these services that are central to hybrid cloud
deployment are provided below:

Scheduling: The main role of scheduling service is to assign tasks to available
resources. Aneka can be configured to use static resources that are available from the
beginning of the scheduling process or dynamic resources that can be provisioned
based on the requirements. In a dynamic configuration, the scheduling service com-
municates with the provisioning service to provision or release resources based on
the scheduling algorithm decisions. Scheduling algorithms in Aneka can be devel-
oped to fulfill specific Service Level Agreements (SLA) required by users such as
the satisfaction of deadline or budget constraints for certain applications.

100 A. Nadjaran Toosi and R. Buyya

== Ao Azure Resource Pool

Scheduling Context

!

Scheduling Algorithm
(Resource Provisioning Aware)

amazon EC2 Resource Pool
Wb Services

wweRIe GoGrid Resource Pool

92138 Suluolsinoid
J933ue|A |00d 924n0SAY

O€ex» Xen Resource Pool

Sorvar—

v
a
=
I}
a
=
=
(5]
%3
o}
3
<%
o
o

Fig. 5 The interaction between scheduling and provisioning services for dynamic resource provi-
sioning in Aneka

Provisioning: The provisioning service is in charge of acquiring and releasing
resources from different cloud providers. To satisfy this requirement, Aneka offers a
specialized resource pool connection for each cloud provider that invokes the inter-
face of that specific cloud provider to provision and release resources. These connec-
tions are managed by resource pool manager to create a pool of connections that can
be invoked any time for the specific cloud provider. Resource pool connections can be
created through the Aneka Management Studio for adding static resources or as part
of dynamic resource provisioning configuration for scheduling algorithms. Figure 5
shows an overview of dynamic resource provisioning and the interaction between
scheduling and provisioning services in Aneka. In Sect. 5.2, we present our extension
to Aneka to support Microsoft Azure Resource Manager (ARM) deployment model
for the management of Azure provisioned resources.

Storage: This service is in charge of the management of data and provides an
internal storage for applications. It provides applications with basic file transfer
facilities and performs data transfers among Aneka nodes. The current release of
Aneka provides a storage implementation based on the File Transfer Protocol (FTP)
service.

Apart from the above services, Ankea provides other fundamental services such
as reservation, licensing, accounting, membership, and execution services as part of
its platform services.

5.1 Aneka Architecture

Figure 6 provides the architecture and fundamental services that compose the Aneka
platform. The figure shows a layered view of the Aneka components. Aneka pro-
vides a runtime environment for executing applications by leveraging heterogeneous
resources on the underlying infrastructure built on the top of computing nodes
employed from network of desktop machines, clusters, and data centers. In other
words, the infrastructure layer is a collection of nodes hosting components of Aneka
middleware.

Virtual Networking with Azure for Hybrid Cloud Computing in Aneka 101

Application Development and Management

Software Development Kit Management Kit

AP| Tutorials ~ Samples Management Studio Admin Portal ~ Web services

Middleware - Container

Execution Services
Thread Model Task Model MapReduce Model

o
2 Foundation Services v
— (]
g’ Licensing Membership Accounting Reservation Storage §
=] <
(a]
o

Fabric Services

Resource Provisioning Hardware Profiling
Platform Abstraction Layer (PAL)
Infrastructure
o o []
Desktop Grid Data Center Cluster Cloud

Fig. 6 Aneka framework overview

The middleware provides a collection of services for interactions with the Aneka
cloud. The container represents the unit of deployment for Aneka clouds and the
runtime environment for services. The core functionalities residing in the Platform
Abstraction Layer (PAL) constitute the basic services that are used to control the
infrastructure of Aneka clouds. It provides a uniform interface for management
and configuration of nodes and the container instances deployed on them in the
infrastructure layer. Middleware is composed of two major components represent-
ing the building blocks of Aneka clouds: the Aneka Daemon and Aneka Container.
Each node hosts the Aneka daemon and one or more Aneka container instances. The
daemon is a management component controlling the container instances installed on
the particular node. A node running the Aneka master container plays the role of
resource manager and application scheduler. Nodes running Aneka worker contain-
ers are responsible for processing and executing work units of the applications sent
from the master node. In addition, each container provides a messaging channel for
accessing features of different services provided by the container. There are three
classes of services characterizing the container:

102 A. Nadjaran Toosi and R. Buyya

1. Execution services: are responsible for scheduling and executing applications.
Specialized implementations of these services are defined for the execution of
work units of each programming model supported by Aneka.

2. Foundation services: are in-charge of metering applications, allocating resources,
managing the collection of available nodes, and keeping the registry of services
updated.

3. Fabric services: provide access to the physical and virtualized resources managed
by the Aneka cloud. The Resource Provisioning Service (RPS) enables horizontal
scaling out and allows for elastic and dynamic growth and shrinkage of the Aneka
cloud to meet Quality of Service (QoS) requirements of applications.

The services of the middleware are accessible through a set of interfaces and tools
in the development and management layer. The Software Development Kit (SDK)
embodies a collection of abstractions and APIs for definition of applications and
leveraging existing programming models. The Management Kit contains a collec-
tion of tools for management, monitoring, and administration of Aneka clouds. All
the management functions of the Aneka cloud are made accessible through the Man-
agement Studio, a comprehensive graphical environment providing a global view of
the cloud for administrators.

5.2 Extending Aneka Resource Provisioning with Azure
Resource Manager

Aneka resource provisioning service currently supports provisioning requests for
cloud providers such as Amazon EC2, GoGrid, and Microsoft Azure. In recent years,
Microsoft Azure [4] has undergone a significant transformation and, as a result of
that, two different sets of Azure Resource Manager (ARM) and Classic APIs exist for
resource management and deployment in Azure. The ARM and Classic deployment
models represent two different ways of managing and deploying Microsoft Azure
solutions. Aneka originally supported the Classic deployment model [5] in which
each resource (e.g., storage disk, VM, Public IP address, etc.) existed independently
and there was no way to group them together. In 2014, Azure offered ARM to
simplify the deployment and management of resources by introducing the resource
group concept as a container for resources that share a common lifecycle. In order
to enable Aneka to use the new Azure APIs for resource provisioning, we extended
Aneka by adding an ARM-based resource pool connections.

ARM provides Azure customers with a set of representational state transfer
(REST) APIs to access Azure laaS services. These RESTful APIs provide ser-
vice endpoints that support sets of HTTP operations to access, create, retrieve,
update, and delete the Azure cloud resources. This way, resources in Azure can be
accessed programmatically. Additionally, ARM supports JSON (JavaScript Object
Notation)-based declarative templates to deploy multiple services along with their

Virtual Networking with Azure for Hybrid Cloud Computing in Aneka 103

dependencies. Templates can be used repeatedly to provision resources and deploy
applications. In the simplest structure a template contains the following elements:

JSON
{

"$schema": "",
"contentVersion": "",
"parameters": { },

.,
]

’

"variables": {

"resources": [

"outputs": { }
}

$schema describes the version of the template language. Any value can be pro-
vided for contentVersion and it is used to make sure that the right template
is being used for deployments. To customize resource deployment parameters
values are set. variables are used to simplify the template language expressions.
resources represents resource types that are deployed or updated in a resource
group, e.g., VM, VNet or NIC. outputs are returned after deployments.

We added AzureRMResourcePool class in Aneka as the entry point to
access Microsoft Azure resources based on ARM interfaces. This class imple-
ments the IResourcePool interface of Aneka and in this way, it is transparently
included in the design. AzureRMResourcePool implements Provision ()
and Release () methods of the IResourcePool interface using our Azure tem-
plate stored in azuretemplate. json. The template is responsible for the cre-
ation of a Virtual Machine (VM) and its dependencies such as network interfaces and
OS disk based on a given URI of the VM image. The VM image is a VHD (Virtual
Hard Disk) file containing a Windows Server 2012 operating system on which Aneka
Worker container is configured and installed. In the AzureRMResourcePool
class, we pass to Azure APIs the aforementioned template together with a JSON
object containing parameters for VM required configurations (e.g., Admin user-
name and password, type of VM, etc.) and references to other already created
resources on which creation of a VM is dependent (e.g., virtual network, network
security group for the VM, storage account). These parameters are provided to
AzureRMResourcePoolConfiguration class and are set by the adminis-
trators when they are customizing the Aneka cloud platform. Figure 7 shows a list of
these parameters in a screenshot of Resource Pool Manager Editor window in Aneka
Management Studio. Whenever, AzureRMResourcePool receives a resource
provisioning request, it creates a Resource Group containing the VM and all its
dependencies and returns a reference for this deployment to the Aneka Resource
pool Manger. Release requests are simply satisfied with deleting the resource group.

104 A. Nadjaran Toosi and R. Buyya

Resource Pool Manager Editor e

Select Resource Pool M

Resource Pool Name : |

AzureRM:azure @z A | 1
®mz Z i
' 4 Basic -
Avalaibilty Zone Australia_Southeast
Capaciy 20
Cloud Priority 0
Instance Type Standard_DS1

Number of cores 1

Resource Group Adel_Aneka_Test

URL of the Image https://anekastorage:
Virtual Network id Aneka-VNET-SITE
Virtual Network Subne FrontEnd

VM booting time 250

4 Security
Admin Password
Admin Usemame
Azure Key Vault AnekaKeyVault
Cerdificate URL https://anekakeyvault
Client Id 90158e70-3d93-4237+
Client Secret 557Re 1A9zINGleCsPY
Security Groups Azure Aneka-security
Storage Access Key JgesolWXWvuDsriFxgA
Storage Name anekastorageacc
Subscription Id deb6d 126-5cb8-470f-b
Subscriotion Name Microsoft Azure Soons
Number of cores
Available cores per VM type

Fig. 7 Azure Resource Manager (ARM) resource pool configuration in Aneka

6 Configuration of Azure Point-to-Site VPN Connection for
Aneka Hybrid Cloud

Our aim is to utilize Aneka to expand the computational capacity of a small desktop
cloud built on top several desktop machines by adding extra resources from Azure.
Since we do not have privileged access to networking devices in our organization,
we choose to employ Azure Point-to-Site connection to create our hybrid overlay

Virtual Networking with Azure for Hybrid Cloud Computing in Aneka 105

VPN. The first step for the establishment of a hybrid cloud network spanning over
our on-premises network and the Azure cloud is to create a VNet and a VPN gateway
in Azure.

We created a VNet called Aneka-VNET-SITE for our target Azure region
which is Australia Southeast. The Aneka-VNET-SITE VNet has two sub-
net address ranges of 192.168.1.0/24 called FrontEnd and 192.168.200.0/26 as
GatewaySubnet. In order to add a VPN gateway to this VPN, a public IP address
was created. This IP is used by desktop machines to join the virtual private network.
The IP address created this way was configured and connected to the VPN gateway.

We required certificates as VPN clients need to authenticate with Point-to-Site
VPNss. For this purpose, aroot certificate generated by an enterprise certificate author-
ity (CA), or a self-signed root certificate can be used. We opted to generate a self-
signed root certificate. We exported the public certificate data without a private key as
a Base-64 encoded X.509. This Root certificate is imported to the Point-to-Site con-
figuration of the Azure Gateway we created earlier. We also used our self-signed root
certificate to generate client certificates for our VPN clients. Even though, the same
certificate can be used for multiple clients; we exported a unique certificate includ-
ing the private key for each client. The advantage is that, later on, we can revoke the
certificate for each client individually. The last step is to download and install the
VPN client configuration package for all clients. For each and every client connect-
ing to the virtual network, we installed both the client certificate and a VPN client
configuration package which can be directly downloaded from Azure. At this point,
all clients desktop machines were able to connect to our VPN. Figure 8 shows the
Azure Point-to-Site virtual network and IP address ranges created for our platform.

VPN Client Address Pool:
172.16.201.0/24

& P2S SSTP LN
Tunnel VPN Client
ANEKA-VNET 172.16.201.3
Australia Southeast E
Address Space: 192.168.1.0/24 <_7.-
192.168.1.1 P2S SSTP LEEEEN
192.168.1.2 Tunnel VPN Client
192.168.1.3 i 172.16.201.2
40.127.67.167
an o]
P2S SSTP [
Tunnel VPN Client
172.16.201.1

Fig. 8 Azure Point-to-Site VPN for Aneka

106 A. Nadjaran Toosi and R. Buyya

7 Case Study: A Hybrid Cloud Using Aneka

In this section, we describe a case study hybrid cloud built on top of Aneka platform
and uses Azure virtual networking for connecting computational resources scattered
over two separate networks. First, we make a brief review of some related works
utilizing hybrid cloud environments for executing applications. Second, we describe
the hybrid cloud setup and the established VPN network. Then, we present the
parameter sweep application used to be executed on the hybrid cloud environment.
Finally, some experimental results are provided to demonstrate the functionality of
the design and implementation.

7.1 Related Works

The idea of using public cloud resources to expand the capacity of local infrastruc-
ture has been explored by many studies. Mateescu et al. [14] propose an architecture
that provides a platform for the execution of High-Performance Computing (HPC)
scientific applications. The cornerstone of the proposed architecture is called Elastic
Cluster which makes an expandable hybrid cloud environment. Assungao et al. [9]
analyze the trade-off between performance and usage cost of different provisioning
algorithms for use of resources from the cloud to expand a cluster capacity. Javadi
et al. [12] propose failure-aware resource provisioning policies for hybrid cloud
environments. Xu and Zhao [18] propose a privacy-aware hybrid cloud framework
which supports a tagging mechanism for the location of sensitive data. Belgacem
and Chopard [2] conduct an experimental study of running a large, tightly coupled,
distributed application over a hybrid cloud consisting of resources from Amazon
EC2 clusters and an existing HPC infrastructure. Mattess et al. [15] presents a provi-
sioning algorithm for extending cluster capacity with Amazon EC2 Spot Instances.
Yuan et al. [19] propose a profit maximization model for a private cloud provider by
utilizing the temporal variation of prices in hybrid cloud. Scheduling and resource
provisioning in hybrid cloud has been researched for many other types of application
as well, for example, big data analytics [8], workflows applications [16], online com-
merce [13], mobile phone applications [11] and compute intensive applications [3].

7.2 Hybrid Cloud Setup

In the hybrid cloud environment, we experiment with two desktop machines (one
master and one worker) locating in our CLOUDS laboratory at the University of
Melbourne and a number of virtual machines provisioned from Microsoft Azure.

Virtual Networking with Azure for Hybrid Cloud Computing in Aneka 107

Table 1 Configuration of machines used in the experiments

Machine Type CPU Cores Memory (ON]

Master Intel Core 3.60 CHz 8 16 GB Windows 7
i7-4790

Worker Intel Core2 | 3.00 CHz 2 4GB Windows 7
Duo

Azure Standard DS1 | 2.4 GHz 1 35 Windows

instances Server 2012

BLAST

Application

Public Cloud

Fig. 9 Hybrid cloud testbed

Aneka Master

Aneka Worker

Private Cloud

Table 1 shows the configurations of machines used to setup the hybrid cloud. A
schematic view of the hybrid cloud platform used for running the application is also
depicted in Fig.9.

7.3 BLAST Application

To demonstrate the functionality of the virtual network established for supporting
connectivity among Aneka hybrid cloud resources, we run a parameter sweep appli-
cation using Aneka programming APIs. The application, we execute is called BLAST
(Basic Local Alignment Search Tool) and is a tool for looking similarities among
a given sequence of genes and those stored into classified databases. The BLAST

108 A. Nadjaran Toosi and R. Buyya

application can be downloaded from the National Centre for Biotechnology Infor-
mation (NBCI) website.* The website also provides a classified repository of all
the databases that can be used for similarity searches. We used the database called
“ecoli.nt” for our demonstration purpose.

There are many ways of parallelizing a BLAST query against a database. Here, we
use the Parameter Sweep Model in order to automatically perform several BLAST
queries against the same database. A parameter sweep application is a distributed
application that can be defined by a template task characterized by a set of config-
urable parameters. The template task identifies the set of operations that define the
computation. The configurable parameters represent the way in which the template
task is specialized.

Aneka provides an integrated tool, called Design Explorer, for quickly composing
Parameter Sweep applications, controlling and monitoring their execution on Aneka
Clouds. Parameter sweep applications in Aneka are expressed by the Parameter
Sweep Model (PSM). The Aneka PSM provides the logic for creating the sequence
of task instances from a template task and a given set of parameters. The Design
Explorer provides a way to serialize its PSM data into an XML.

In our case study, we compose two BLAST-based parameter sweep applications
using the Design Explorer tool to run 160 and 320 different queries each has a size
of 1 kb over the ecoli.nt database of size 4652 kb. Each query is a sequence of
characters representing the target genes and it maps to an Aneka independent task.
Figure 10 displays a sample screenshot of the Aneka Design Explorer including a
BLAST project with 320 tasks and the below XML shows its related PSM.

<?xml version="1.0" encoding="Windows-1252"7?>
<psm xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" >
<name>Aneka Blast</name>
<description>BLAST simulation</description>
<workspace>C:\Projects\Explorer\blast</workspace>
<parameters>
<single name="programName" type="String"
comment="The name of the program" value="blastn" />
<single name="database" type="String"
comment="The database file" value="ecoli.nt" />
<range name="sequenceNumber" type="String"
comment="The sequence of the input/output"
from="0" to="319" interval="1" />
</parameters>
<sharedFiles>
<file path="blastall.exe" vpath="blastall.exe" />
<file path="ecoli.nt.nhr" vpath="ecoli.nt.nhr" />
<file path="ecoli.nt.nin" vpath="ecoli.nt.nin" />

“https://blast.ncbi.nlm.nih.gov/Blast.cgi.

https://blast.ncbi.nlm.nih.gov/Blast.cgi

Virtual Networking with Azure for Hybrid Cloud Computing in Aneka 109
. Aneks Design Explorer [E=={RE=SEo8 ==
Eile Edit Help
i S
& Aneka Blast [E= Eon ==
[C:\Program Files (86]\ ka A0 Sweep ModelBLAST\blast.wbch] | |
Froject Contert } Jobt | Sats
2 y WBkb0 [Dkb2t [Hcbds [BkcbT2 [Bkb36 1120 [Hlkb-14
181 [Hab25 [Hicb45 Hleb-73 FBUebs7 FHeb-121 Flcb-145
Bicb2 [Pkb26 [Hb50 Fib-74 pHichs8 [Hkb-122 [cb-145
fHkbd BT [PhbS [DbTS [Dbss 1Pkb-123 (b7
1Bkb4 [Dkb28 [Diob52 (b6 1Eob-100 ko124 [keb-188
185 B2 fHib53 fBeb-77 FHieb-101 fHeb-125 FHlob-143
Hkbs [Hke30 b5 pldb7e k102 1 kb-126 [eb150
Bib7 Bion [Heess [Pib79 1Hcb-103 [H4s-127 B kb5
1Dibd [Hkb32 [Phb56 [Diob-80 [ob104 [db-128 [lob-152
18Jcbd [Hib33 fHieb57 plleb81 FJeb-105 FHJeb-129 153
Tb10 [Hkb-3 b-5e piieb82 1eb-106 1 kb-130 rflob-154
b1 [Bkb35 b5 1eb-83 1Neb-107 [Ae-131 [ab155
TBkb12 [Dkb36 (b0 icb-84 1fcb-108 1 Job-132 [deb-156
1Bb13 [Bkbd7 (Dbl [DUbES [ob-109 1ob133 [Hob157
1Beb-14 [Hkb-38 [Hob62 [Hlob8s 1HJob-110 1134 [flob-158
b5 [Bab39 [Hbs3 (Pcbe? 1fcb-111 [kb-135 [flab-159
18kb16 [Hcb-40 [Hlbse [Hlobes Hlob-112 1 Hkb-136
1Beb17 kb4 [Hobs5 rHob-89 [Hcb-113 1 Hke-137
kb8 [Hkb42 [Hob6s Ficb0 Fliob-114 [flcb-138
PUeb19 (kb3 [Hcb 67 Fcb1 leb-115 pleb139
120 [Hkb4d [Hacb6s FHb52 1Heb-116 [Hkb-140
1B5b21 [Pb45 (b9 [Hkbad 1Beb-117 [Hkb141
kb2 [Bkb-t6 (b7 (b4 ch-118 iieb-142
4 2 Y| pBeb23 [Haed7 [BaeT [Bicb9S Hob-119 fHkb-143
ab 8}
Al Jobs: 160 W 9 '] |4 i s
Console. HH
Time k h Fom To Unmbmtied Sagnglh Oueed Fumng SapngOu Completed Aoted Faled N
il OuotCorscle | [EvorConscle Aoska | B, Debug [% cex ._n?p
H e
]
Fig. 10 Aneka design explorer and BLAST Project
<file path="ecoli.nt.nnd" vpath="ecoli.nt.nnd" />
<file path="ecoli.nt.nni" vpath="ecoli.nt.nni" />
<file path="ecoli.nt.nsd" vpath="ecoli.nt.nsd" />
<file path="ecoli.nt.nsi" vpath="ecoli.nt.nsi" />
<file path="ecoli.nt.nsqg" vpath="ecoli.nt.nsqg" />
</sharedFiles>
<task>
<inputs>

<file path="seqg($sequenceNumber) .txt"
vpath="seq($sequenceNumber) .txt" />
</inputs>
<outputs>
<file path="output ($SsequenceNumber) .txt"
vpath="output ($sequenceNumber) .txt" />
</outputs>

<commands>

110 A. Nadjaran Toosi and R. Buyya

<execute cmd="blastall.exe" args="-p (SprogramName)
-d ($database) -1 seq(SsequenceNumber) .txt
-0 output ($sequenceNumber) .txt" />
</commands>
</task>

</psm>

7.4 Experimental Results

We expanded our hybrid cloud case study by increasing the number of virtual
machines provisioned in Azure. In this scenario, the size of private cloud is con-
stant during the experiments where it remains at two desktop machines and public
cloud resources are provisioned as required. Table2 and Fig. 11 show how the total
execution time is reduced when more public cloud resources were added to the Aneka
hybrid cloud. When there are no public cloud resources available, the execution of
BLAST for 160 and 320 tasks only using private cloud resources takes 215 and 461
s, respectively. These values, respectively, are reduced to 55 and 103 s when 11 VMs
are provisioned from the public cloud. It is worth mentioning that the relative gain
in performance decreases with adding more computational resources into the pool
of resources, which is consistent with Amdahl’s law. This can be clearly seen when
the number of tasks is 160 and the total number of computational cores is increased
from 11 to 13.

Table 2 Configuration of machines used in the experiments

Tasks (#) VMs (#) Private cloud Total CPU cores | Execution time
CPU cores (#) #) (mm:ss)
160 0 2 2 03:35
160 1 2 3 02:33
160 3 2 5 02:05
160 5 2 7 01:17
160 7 2 9 01:02
160 9 2 11 00:56
160 11 2 13 00:55
320 0 2 2 07:41
320 1 2 3 05:00
320 3 2 5 03:15
320 5 2 7 02:33
320 7 2 9 02:06
320 9 2 11 01:54
320 11 2 13 01:43

Virtual Networking with Azure for Hybrid Cloud Computing in Aneka 111

(a) Number of tasks = 160

500

400
O
o

€ 300
=
c
2

g 200
il
19}
a3

100

0

0 1 3 5 7 9 11
Number of VMs
(b) Number of tasks = 320

500

400
2
Q

£ 300
=
c
2

5 200
o
Q
x
w

100

0

0 1 3 5 7 9 11
Number of VMs

Fig. 11 Total execution time of BLAST application with a 160 and b 320 tasks on different hybrid
cloud size

Figure 12 shows the distribution of tasks among Aneka nodes scattered on private
on-premises infrastructure and public cloud resources. Please note that the Aneka
master node is also located in the private infrastructure and communicate with all
worker nodes (See Fig.9). Our experiments demonstrate that the established azure
VPN provides an appropriate platform for running application over Aneka nodes
scattered in multiple separate networks (in different administrative domains) possibly
located behind a NAT or firewalls boundary. Moreover, since the VPN encrypts
the traffic between its connected nodes, all communications are protected against
unauthorized disclosure and confidentiality and privacy of information are enforced.

112 A. Nadjaran Toosi and R. Buyya

192.168.1.7-9090:23

192.168.1.9-9090:21

Fig. 12 Distribution of task among Aneka nodes when there are 160 tasks and 7 CPU cores
available. Labels in the pie chart shows: address of machine—Aneka worker container port: the
number of tasks allocated to that machine. OceanStrom’s VNet IP address is 172.16.201.5

8 Open Research Problems

The fundamental idea of uncoupling resource provisioning from vendor-specific
dependencies is of a great interest for many application platforms such as Aneka.
In this direction, Aneka can be extended to use features of multi-cloud toolkits
and libraries such as JClouds.> However, to setup the VPN network for the Aneka
platform, a great deal of manual work is needed as discussed in this chapter. A
promising avenue to advance technologies for building such VPN is to allow for
the network programmability and the network function virtualization. This leads us
to more research on software-defined networking (SDN)-assisted techniques in the
development of efficient cloud technologies.

In line with our contribution, development of resource provisioning techniques
that can acquire resources from multiple clouds can also be explored. In addition,
dynamic resource provisioning policies are required for judiciously adding resources
to the Aneka cloud based on application requirements such as deadline or budget.
Future directions also include new algorithms for innovative provisioning honoring
user requirements such as privacy and the location of sensitive data. This can be
further extended to support resource allocation techniques in the context of various
other programming models such as MapReduce model.

3JClouds, Available: https:/jclouds.apache.org/.

https://jclouds.apache.org/

Virtual Networking with Azure for Hybrid Cloud Computing in Aneka 113

9 Summary and Conclusions

In this chapter, we outlined our experiences of building a virtual private network
(VPN) for a hybrid cloud environment in our Aneka platform using Azure VPN
services. We described the benefits of a hybrid cloud solution and its connectivity
issue for resources residing behind a NAT or firewalls. We discussed how virtual
private networks (VPNs) resolve this issue. We presented our Aneka Platform-as-a-
Service (PaaS) for building a hybrid cloud environment. We explored through Azure
VPN solutions and we presented how Azure point-to-site VPN connection can be
used for building an Aneka hybrid cloud. To demonstrate the effectiveness of the
VPN for hybrid cloud solutions, we provided details of a case study hybrid cloud for
running a parameter sweep application from the biology domain. Our conclusion is
that the establishment of VPN overlays over hybrid environments provides a feasible
solution for connectivity issue which is more accessible as many more cloud providers
offer VPN services. We also identified a number of open issues that form the basis
for future research directions.

Acknowledgements We thank Australian Research Council (ARC) Future Fellowship and the
Australia-India Strategic Research Fund (AISRF) for their support of our research. We also thank
Microsoft for providing access to the Azure IaaS infrastructure.

References

1. Assuno, M. D., Calheiros, R. N., Bianchi, S., Netto, M. A. S., & Buyya, R. (2015). Big
data computing and clouds: Trends and future directions. Journal of Parallel and Distributed
Computing, 7980, 3—15. Special Issue on Scalable Systems for Big Data Management and
Analytics.

2. Belgacem, M. B., & Chopard, B. (2015). A hybrid HPC/cloud distributed infrastructure: Cou-
pling EC2 cloud resources with HPC clusters to run large tightly coupled multiscale applica-
tions. Future Generation Computer Systems, 42, 11-21.

3. Brock, M., & Goscinski, A. (2012, July). Execution of compute intensive applications on hybrid
clouds (case study with mpiBLAST). In Proceedings of the Sixth International Conference on
Complex, Intelligent, and Software Intensive Systems (pp. 995-1000).

4. Brunetti, R. (2011). Windows Azure Step by Step. Microsoft Press.

5. Buyya, R., & Barreto, D. (2015, December) Multi-cloud resource provisioning with Aneka:
A unified and integrated utilisation of microsoft azure and amazon EC2 instances. In 2015
International Conference on Computing and Network Communications (CoCoNet) (pp. 216—
229).

6. Buyya, R., & Dastjerdi, A. V. (eds.) (2016, May). Internet of Things: Principles and Paradigms.
Burlington, Massachusetts, USA: Morgan Kaufmann.

7. Calheiros, R. N., Vecchiola, C., Karunamoorthy, D., & Buyya, R. (2012). The Aneka plat-
form and QoS-driven resource provisioning for elastic applications on hybrid clouds. Future
Generation Computer Systems, 28(6), 861-870.

8. Clemente-Castell, F. J., Nicolae, B., Katrinis, K., Rafique, M. M., Mayo, R., & Fernndez, J. C.
(2015, December). Enabling big data analytics in the hybrid cloud using iterative mapreduce. In
Proceedings of the 8th IEEE/ACM International Conference on Utility and Cloud Computing
(UCC) (pp. 290-299).

114 A. Nadjaran Toosi and R. Buyya

9. de Assung¢do, M. D., di Costanzo, A., & Buyya, R. (2010). A cost-benefit analysis of using
cloud computing to extend the capacity of clusters. Cluster Computing, 13(3), 335-347.

10. Dean, J., & Ghemawat, S. (2008). Mapreduce: Simplified data processing on large clusters.
Communication of the ACM, 51(1), 107-113.

11. Flores, H., Narayana Srirama, S., & Paniagua, C. (2011). A generic middleware framework
for handling process intensive hybrid cloud services from mobiles. In Proceedings of the 9th
International Conference on Advances in Mobile Computing and Multimedia, MoMM 11,
New York, NY, USA (pp. 87-94). ACM.

12. Javadi, B., Abawajy, J., & Buyya, R. (2012). Failure-aware resource provisioning for hybrid
cloud infrastructure. Journal of Parallel and Distributed Computing, 72(10), 1318-1331.

13. Lackermair, G. (2011). Hybrid cloud architectures for the online commerce. Procedia Computer
Science, World Conference on Information Technology, 3, 550-555.

14. Mateescu, G., Gentzsch, W., & Ribbens, C. J. (2011). Hybrid computingwhere HPC meets grid
and cloud computing. Future Generation Computer Systems, 27(5), 440-453.

15. Mattess, M., Vecchiola, C., & Buyya, R. (2010, September). Managing peak loads by leasing
cloud infrastructure services from a spot market. In Proceedings of the 12th IEEE International
Conference on High Performance Computing and Communications (HPCC) (pp. 180-188).

16. Vasile, M.-A., Pop, F., Tutueanu, R.-1., Cristea, V., & Koodziej, J. (2015). Resource-aware
hybrid scheduling algorithm in heterogeneous distributed computing. Future Generation Com-
puter Systems, 51, 61-T1.

17. Vecchiola, C., Calheiros, R. N., Karunamoorthy, D., & Buyya, R. (2012). Deadline-driven
provisioning of resources for scientific applications in hybrid clouds with Aneka. Future Gen-
eration Computer Systems, 28(1), 58-65.

18. Xu, X., & Zhao, X. (2015, August). A framework for privacy-aware computing on hybrid
clouds with mixed-sensitivity data. In Proceedings of the IEEE International Symposium on
Big Data Security on Cloud (pp. 1344—1349).

19. Yuan, H., Bi, J., Tan, W., & Li, B. H. (2017). Temporal task scheduling with constrained service
delay for profit maximization in hybrid clouds. IEEE Transactions on Automation Science and
Engineering, 14(1), 337-348.

Building Efficient HPC Cloud
with SR-IOV-Enabled InfiniBand:
The MVAPICH2 Approach

Xiaoyi Lu, Jie Zhang and Dhabaleswar K. Panda

Abstract Single Root I/O Virtualization (SR-IOV) technology has been steadily
gaining momentum for high-speed interconnects such as InfiniBand. SR-IOV enabled
InfiniBand has been widely used in modern HPC clouds with virtual machines and
containers. While SR-IOV can deliver near-native I/O performance, recent studies
have shown that locality-aware communication schemes play an important role in
achieving high I/O performance on SR-IOV enabled InfiniBand clusters. To discuss
how to build efficient HPC clouds, this chapter presents a novel approach using the
MVAPICH?2 library. We first propose locality-aware designs inside the MVAPICH2
library to achieve near-native performance on HPC clouds with virtual machines and
containers. Then, we propose advanced designs with cloud resource managers such
as OpenStack and Slurm to make users easier to deploy and run their applications
with the MVAPICH2 library on HPC clouds. Performance evaluations with bench-
marks and applications on an OpenStack-based HPC cloud (i.e., NSF-supported
Chameleon Cloud) show that MPI applications with our designs are able to get near
bare-metal performance on HPC clouds with different virtual machine and container
deployment scenarios. Compared to running default MPI applications on Amazon
EC2, our design can deliver much better performance. The MVAPICH2 over HPC
Cloud software package presented in this chapter is publicly available from http://
mvapich.cse.ohio-state.edu.

X. Lu (X) - J. Zhang - D.K. Panda

Department of Computer Science and Engineering, The Ohio State
University Columbus, Columbus, OH, USA

e-mail: luxi@cse.ohio-state.edu; 1u.932 @osu.edu

J. Zhang
e-mail: zhanjie@cse.ohio-state.edu

D.K. Panda
e-mail: panda@cse.ohio-state.edu

© Springer Nature Singapore Pte Ltd. 2017 115
S. Chaudhary et al. (eds.), Research Advances in Cloud Computing,
DOI 10.1007/978-981-10-5026-8_6

http://mvapich.cse.ohio-state.edu
http://mvapich.cse.ohio-state.edu

116 X. Luetal.

1 Introduction

The last few years have witnessed a rapid increase in the number of processor cores
in modern cluster systems and an equally impressive increase in network bandwidth.
This growth has been fueled by the current trends in multi-/many-core architectures,
and high-performance interconnects such as InfiniBand, Omni-Path, RDMA over
Converged-Enhanced Ethernet (RoCE) and 10/40/100-Gigabit Ethernet with Inter-
net Wide Area RDMA Protocol iWARP). These multi-/many-core architectures and
high-performance interconnects are currently gaining momentum for designing clus-
ters (high-end compute clusters, data centers, and cloud computing platforms). Based
on the November 2016 TOP500 ranking, 37% clusters in the top 500 supercomputers
are using InfiniBand technology and 46% of the Petascale systems on the TOP500
list are connected with InfiniBand.

The deployment of such high-end computing systems is delivering unprecedented
performance to HPC and emerging Big Data applications. However, the cost of such
high-end clusters with balanced memory and network bandwidth has remained pro-
hibitive for a large number of institutions and users. One method to alleviate the
cost bottleneck is to utilize cloud computing model with offering Infrastructure as
a Service (IaaS). IaaS reduces personnel costs by high degrees of automation and a
better overall utilization when compared to dedicated clusters. IaaS provides high-
performance resource sharing strategies capable of sharing critical cluster resources
efficiently among multiple jobs using the system. Virtualization is the classical
method for [aaS-based clouds to share such critical resources and it typically refers to
the act of creating a virtual (instead of physical) version of computer hardware plat-
forms, storage devices, and computer network resources, and so on [1]. [aaS-based
cloud computing platforms with virtualization offer attractive capabilities to consoli-
date complex IT resources in a scalable manner by providing well-configured virtual
machines (VM) or containers. The desirable features of cloud computing solutions
include ease of system configuration and management, fast software deployment,
performance isolation, security, live migration, etc., and these features meet cloud
users’ various resource utilization requirements [2].

During the last decade, cloud computing with virtualization technology has been
widely used in HPC and distributed computing communities. One of the most suc-
cessful cloud computing platforms is Amazon’s Elastic Compute Cloud (EC2), which
utilizes the virtualization technology to consolidate computing, storage, and network-
ing resources for multitenant applications. Although virtualization technology has
the potential to dramatically reduce the cost of compute cycles on HPC and Big
Data systems, several fundamental challenges need to be addressed for designing
virtualized clusters that can deliver the performance of dedicated high-end comput-
ing clusters. A big hurdle of using virtualization technology is the unsatisfactory
virtualized I/O performance delivered by underlying virtualized environments [3].
For example, native high-performance MPI libraries such as MVAPICH2 [4] and
OpenMPI [5] can provide sub-microsecond latencies for point-to-point communi-
cation operations. In contrast, recent studies [6] have shown that MPI libraries on

Building Efficient HPC Cloud with SR-IOV-Enabled InfiniBand ... 117

virtualization-based environments have not been well designed and such situation
incurs significant performance overhead, which limits the adoption of virtualization-
based cloud computing platforms for HPC applications.

The main reason of the poor I/O performance with virtualization designs is that
they do not provide an efficient mechanism to share the PCI bus which connects the
CPU to the network card due to lack of hardware support. Consequently, current gen-
eration solutions can only provide best-effort QoS, which can have a negative impact
on performance. Recently, a new networking virtualization capability, Single Root
I/O Virtualization (SR-IOV) [7] is introduced for high-performance interconnects
such as InfiniBand and high-speed Ethernet. It specifies native I/O Virtualization
(IOV) capabilities and enables us to provision the internal PCI bus interfaces between
multiple virtual machines. SR-IOV opens up new opportunities for designers of HPC
and Big Data middleware to fundamentally redesign their software to provide true
end-to-end QoS. The SR-IOV technology also has the potential to enable near-native
performance for I/O devices on VMs, by virtue of bypassing the hypervisor and host
operating system. With these new capabilities, SR-IOV can significantly reduce the
performance gap between MPI point-to-point internode communication on virtual
machines and that on physical machines [3]. Due to its high-performance nature,
SR-IOV has been emerging as an attractive feature for virtualizing I/O devices on
clouds, and it has been widely used in many cloud computing platforms, such as
Amazon EC2.

HPC applications can benefit from SR-IOV by improving the inter-node commu-
nication performance on virtualized cloud systems. However, purely using SR-IOV
in applications will make inter-VM or inter-container communications within the
same node (intranode) use the network loopback channel, leading to performance
overheads. By contrast, high-performance native MPI and PGAS libraries typically
use shared memory-based or kernel-assisted (e.g., Cross Memory Attach (CMA) [8])
techniques to improve intranode communication performance. This motivates us to
investigate whether similar communication schemes can be adopted for intranode
inter-VM or inter-container communication on SR-IOV-based virtualized environ-
ments. On this front, a novel feature, inter-VM shared memory (IVShmem) [9], was
proposed to support processes across multiple VMs within the same node to utilize
efficient shared memory backed channel to communicate. Using IVShmem can sig-
nificantly improve the performance of intranode inter-VM communication compared
to using SR-IOV-based virtualized network loopback channel [6, 10]. Similarly,
for container-based (e.g., Docker) cloud environments, designing high-performance
container-aware MPI communication library to take advantage of IPC-based shared
memory channel and CMA channel is also crucial to bring more performance benefits
to end users [11].

On the other hand, easy and scalable resource allocation and management offered
by clouds attract more and more users to migrate their applications to the public
clouds or private clouds hosted by their organizations. OpenStack is one of the
most popular open-source frameworks to build a cloud and manage vast amounts of
resources. Slurm [12] is another very popular resource manager and scheduler in HPC
clusters. It has been extended recently to support managing virtual machines [13, 14]

118 X. Luetal.

and containers [15]. But the open-source versions of OpenStack and Slurm do not
have full support for the above features (i.e., SR-IOV and IVShmem) so far. To
ensure achieving high performance for applications in HPC clouds, it is necessary
to enable SR-IOV and IVShmem when building HPC clouds. Additionally, MPI
libraries should be redesigned to adapt to VM or container-based environments so
that they can fully take advantage of the novel features provided in the HPC clouds.

To investigate these topics, this chapter first provides an overview of popular virtu-
alization system software on HPC cloud environments, such as hypervisors, contain-
ers, OpenStack, Slurm, etc. After that, it provides an overview of high-performance
interconnects and communication mechanisms on HPC clouds, such as InfiniBand,
RDMA, SR-IOV, IVShmem, etc. We further discuss the opportunities and technical
challenges of designing high-performance MPI runtime over these environments.
Then, we introduce our proposed novel approaches to enhance MPI library design
over SR-IOV enabled InfiniBand clusters with both virtual machines and containers.
We also discuss how to further integrate these designs into popular cloud management
systems like OpenStack [16] and HPC cluster resource managers like Slurm [13].

Our designs are based on MVAPICH?2 [4], which can fully take advantage of
the high-performance SR-IOV-based network channel for internode communication
as well as IVShmem/IPC-Shm/CMA-based channels for intranode communication.
Comprehensive performance evaluations with benchmarks and applications have
been conducted on an OpenStack-based HPC cloud (i.e., NSF-supported Chameleon
Cloud [17]). We show that our design can deliver near native performance on SR-IOV-
based HPC clouds with VMs and containers. Through the performance comparison
with Amazon EC2, our design can achieve up to 160X performance improvement
on point-to-point communication operations and 65X improvement on collective
operations.

2 Overview of Virtualization System Software

2.1 Hypervisor-Based Virtualization

As shown in Fig. la, a hypervisor (i.e., virtual machine manager) is a program that
allows multiple guests operating systems (OS) in VMs to share a single hardware
host. The host’s processor, memory, and other resources appear to be occupied by
each guest OS itself. The hypervisor interacts with underlying host OS or hard-
ware to manage the host resources and allocates the needed resources to each guest
OS. The hypervisor can guarantee that the VMs cannot disrupt each other. We can
see that the hypervisor is a powerful tool to consolidate available physical com-
puting resources on multiple servers. These resources can be shared efficiently by
applications through hypervisor-based virtualization. However, such type of virtual-
ization incurs additional workload-dependent overhead, since it faithfully replicates
true hardware behaviors. The well-known hypervisor-based virtualization solutions

Building Efficient HPC Cloud with SR-IOV-Enabled InfiniBand ... 119

M v T L vve T !
I App I App |
| Program ! Program i . e
| bins/ P bins/ I | Containerl ! | Container2 I
| libs I libs Pl App L App [
| | | | | Program | | Program |
| P P L [
Redhat : Redhat . . i I
! I P b |
L | 3 L J
Hypervisor Docker Engine
Host OS Host OS
Hardware Hardware
(a) Hypervisor-based Virtualization (b) Container-based Virtualization

Fig. 1 Hypervisor-based and container-based virtualization

include VMware vSphere ESXi, Citrix XenServer, open-source KVM (Kernel-based
Virtual Machine), etc. KVM is a full virtualization solution on Linux, which allows
a user space program to utilize the hardware virtualization features (e.g., Intel VT or
AMD-V) of various processors. This chapter uses KVM hypervisor to run VMs.

2.2 Container-Based Virtualization

For container-based virtualization, as shown in Fig. 1b, the host allows several iso-
lated userspace instances to share the same kernel but possibly run different software
stacks (system libraries, services, and applications). Container-based virtualization
does not need an extra layer of virtual hardware, while it provides a self-contained
execution environment to effectively isolate applications that rely on the same ker-
nel in the host OS. Two core mature Linux technologies are widely used to build
containers. First, cgroups (control groups) is used to group processes and limit their
resources usage. Second, namespace isolation is used to isolate a group of processes
at various levels (i.e., networking, filesystem, users, process identifiers, etc.). The
popular container-based solutions include LXC, Docker [18], Singularity [19], and
Shifter [15]. Docker is one of the most popular open-source container-based virtual-
ization solutions to build and execute containers. The Docker platform offers several
important features, including portable deployment across machines, reuse of con-
tainer image, versioning, and a searchable public registry for images. We use Docker
to run containers, as indicated in this chapter.

120 X. Luetal.

2.3 OpenStack and Other Cloud Resource Managers

OpenStack is one of the most popular cloud resource management systems that con-
trol large pools of computing, storage, and networking resources on a cloud. All
these resources can be managed through a dashboard that gives administrative con-
trol and web access to users. OpenStack clouds are powered by various OpenStack
components or services. These services can be divided into two main categories:
core services and optional services. Among these core services, Nova is one of the
most important components, which is designed to manage and automate pools of
computing resources. Nova can work with many available virtualization technolo-
gies, as well as bare metal. There are also many optional services available in the
OpenStack project. For example, Horizon is the dashboard service to provide a web-
based self-service portal to interact with underlying OpenStack services. Ceilometer
is the telemetry service to monitor and meter the OpenStack cloud for billing, bench-
marking, and statistical purposes. Similar to OpenStack, Nimbus [20] provides a
toolkit for building the IaaS cloud. Nimbus allows deployment of self-configured
virtual clusters via hypervisors, VM schedulers, and contextualization. There are
other similar systems such as Eucalyptus [21], OpenNebula [22] available in the
field. Lu et al. [23, 24] presented Vega LingCloud, which is based on their proposed
asset-leasing model to provide a Resource Single Leasing Point System for consoli-
dated leasing physical and virtual machines on shared cloud infrastructure. Crago et
al. [25] extended OpenStack to support heterogeneous architectures and accelerators,
like GPU. In this chapter, we introduce how to run virtualization aware MPI runtime
and applications on OpenStack efficiently.

2.4 Slurm and SPANK

Simple Linux Utility for Resource Management (Slurm) [12] is an open-source
resource manager for large scale Linux-based clusters. Slurm provides users with
exclusive and/or non-exclusive access to resources. Slurm provides a framework
including controller daemons (s lurmct1d), database daemon (s lurmdbd), com-
pute node daemons (s1lurmd), and a set of user commands (e.g., srun, sbatch,
squeue) to start, execute, and monitor jobs on a set of allocated nodes and manages
a queue of pending jobs to arbitrate contention. Slurm was originally written only
for the Linux operating system, but now supports many other operating systems and
many unique computer architectures. It delivers scalability, portability, fault toler-
ance, and high performance for heterogeneous clusters with up to tens of millions of
processors. Slurm has a very modular design with several optional plugins.

Slurm Plug-in Architecture for Node and job (K)control (SPANK) [26] provides a
generic interface to be used for dynamically modifying the job launch code. SPANK
plugins have the ability to add user options when using srun. SPANK plugins can
be loaded in multiple contexts and points during a Slurm job launch. Thus, SPANK

Building Efficient HPC Cloud with SR-IOV-Enabled InfiniBand ... 121

provides a low-cost and low-effort mechanism to change runtime behavior of Slurm.
In this chapter, we introduce our extensions for Slurm to manage virtual machines
efficiently through SPANK.

3 Overview of High-Performance Interconnects and
Communication Mechanisms

3.1 InfiniBand

InfiniBand is an industry-level networking communication standard. It leverages the
switched fabric topology to provide high bandwidth (up to 200 Gbps for the latest
HDR HCA) and low latency(<1 ps). InfiniBand has been utilized by more than 37%
of the supercomputers in TOP500 ranking (November 2016), as well as many cloud
computing environments and data centers. InfiniBand provides advanced features,
such as Remote Direct Memory Access (RDMA), that enable the design of novel
communication protocols and libraries. The RDMA feature allows applications to
access the memory of remote processes through “zero-copy” communication seman-
tics and without the involvement at remote side. This is a powerful feature and it can
be used to design high-performance communication protocols. The majority of HPC
applications and middleware (such as MPI [4]) take advantage of InfiniBand and its
associated advanced features either via native IB verbs, RoCE [27], or iWARP [28].

3.2 Overview of High-Performance Communication
Mechanisms

PCI Passthrough: This mechanism allows giving access and control of the physical
devices to guest VMs. This means users can use the PCI passthrough mechanism
to assign a PCI device (e.g., NIC, disk controller, etc.) to a guest domain and give
the guest full and direct access to the PCI device. This has two important benefits.
The first is using device passthrough can achieve near-native performance, which is
perfect for I/O intensive applications. The second is the exclusive use of a device
that is not inherently shareable.

Single Root I/0 Virtualization (SR-IOV): To leverage InfiniBand in virtualization
environment efficiently, PCI Express (PCle) sharing technology is required. Single
Root I/O Virtualization (SR-IOV) [7] is a PCI Express (PCle) standard which spec-
ifies the native I/O virtualization capabilities in PCle adapters. SR-IOV provides an
interface that allows a physical PCle device, or a Physical Function (PF), offering
independent Virtual Functions (VF) to different VMs. As shown in Fig. 2a, a PF can
present itself as multiple virtual devices, or Virtual Functions (VFs) through SR-IOV.

122 X. Luetal.

Guest 1 Guest 2 Guest 3 mmap Guest 1 mmap Guest2 mmap Guest 3
Guest OS Guest OS Guest OS region {Sqion region
L U L
VF Driver VF Driver VF Driver l ! l
PGl kemel pCI kemel PCl kemel
Device Device Device
PF Driver - _
(/0 MMU) Qem\ L Qemu L
(ExPress > mmap mmap mmap
(" Virtual Virtual Virtual Physical eventids
Function | Function ! Function Function Host Jdevishm/<names. shared mem fd
SR-IOV Hardware |
(a) SR-IOV Mechanism (b) Inter-VM Shmem Mechanism [26]

Fig. 2 Overview of SR-IOV and Inter-VM Shmem communication mechanisms

Each VF can be dedicated to a single VM through the PCI passthrough, which allows
each VM to directly access the corresponding VF. Each dedicated VF has isolated
context, and all VFs can work concurrently. Hence, SR-IOV is a hardware-based
approach to implementing I/O virtualization. Furthermore, VFs are designed based
on the existing non-virtualized Physical Functions (PFs); hence, the drivers of the
current adapters can also be used to drive the VFs in a portable manner. The virtual
InfiniBand device provided by SR-IOV can be accessed through the PCI passthrough
mechanism, which allows the networking flows bypassing the software switch layer,
to achieve the performance close to physical devices.

Runtime Privilege in Docker: In container context, the runtime privilege mechanism
gives Docker containers the access to all devices. For instance, by executing docker
run - -privileged, Docker will enable access to all devices on the host as well
as set some necessary configuration in SELinux to allow processes running inside
containers to have nearly the same access to the host as processes running outside
containers on the host. This chapter uses this option to give container access to
InfiniBand on the host.

Inter-VM Shared Memory (IVShmem): As one implementation of the IVSh-
mem mechanism, Nahanni [9] provides memory backed data access for co-resident
VMs through shared memory. IVShmem can be used for guest-to-guest and host-to-
guest communications on KVM platform. IVShmem is designed mainly in system
calls layer, and its interfaces are also visible to user space processes. As shown in
Fig.2b, IVShmem contains three components: the guest kernel driver, that imple-
ments userspace I/O device driver model, the modified QEMU supporting PCI device,
and the POSIX shared memory region on the host OS. The shared memory region
is allocated by the host POSIX operations and mapped to QEMU process address
space. The mapped memory can be used by guest applications by being mapped to
guest userspace. Shared Memory Server, a stand-alone host process running outside
of QEMU, is used to facilitate inter-VM notification. Evaluation results illustrate that
both benchmarks and applications achieve better performance with IVShmem sup-
port. However, to fully take advantage of I'VShmem support, the existing applications

Building Efficient HPC Cloud with SR-IOV-Enabled InfiniBand ... 123

and libraries need to be modified because IVShmem does not support transparent
switches between local and remote modes and VM migration is not entirely sup-
ported.

IPC-Shared Memory among Docker Containers: Operating systems such as Linux
usually provide some tools for sharing memory between processes running on the
same host. This mechanism is called Inter-Process Communication (IPC) which per-
forms at the memory speed. It is often used in scientific computing domain such as
MPI. By default, Docker creates a unique IPC namespace for each container. The
Linux IPC namespace can partition shared memory blocks, semaphores, as well as
message queues. The isolated IPC namespace among Docker containers prevents
processes in one container from accessing the memory on the host or in other con-
tainers. In order to achieve shared memory based high-performance communication
across containers, users need to join the containers’ IPC namespaces with the ‘-
—ipc’ flag. This flag has a container mode that will create a new container in the

same IPC namespace as another target container [18].

Cross Memory Attach (CMA): The communication among processes on the same
node (i.e., intranode communication) can usually be optimized because they are shar-
ing the same hardware and host operating system. For Linux, CMA [8] is one of the
kernel-level mechanism for efficient intranode communication. It allows a destination
process to copy data directly from the source process memory into its memory space
through a system call. The symmetrical ability to copy from the current process’s
address space into a destination process’s address space is also provided. Efficient
intranode communication in applications can be achieved through CMA since it
only needs a single copy of the message rather than double copies of the message
via traditional shared memory. CMA has been employed by several MPI commu-
nication libraries for intranode communication and hierarchical collective commu-
nication. Docker provides users the options to share specific namespaces with the
host operating system or other containers. This makes it possible to design flexible
and efficient interaction mechanisms among containers and host while guaranteeing
security. In particular, through enabling sharing namespaces, MPI processes across
Docker instances can use CMA for high-performance intranode-inter-container com-
munication [11].

4 Opportunities and Challenges of Building HPC Clouds

As indicated in Sects. 1 and 3, technology advances in multi-/many-core and net-
working architecture on modern HPC clusters are providing novel features to build
high-performance HPC clouds. Especially, SR-IOV has become an attractive
hardware-level feature that can enable high-performance communication in virtu-
alized environments. SR-IOV has opened many new opportunities to improve the
communication and I/O performance significantly for applications running on HPC
clouds. To understand these opportunities in a quantitative manner, we first study

124 X. Luetal.

5
-*Native Polling 40 VM per core
4| -¢Native Event b VM per socket
8 -+SR-IOV Polli 4 = VM per node
2 3 =SRIOV EO Ing 3 #Native (Shared Memory ON) <
oy - vent % 20 | *Native (Shared Memory OFF) b
g 2 5 4
et 2
< <
— —
1 .—q—v—vﬁ—ﬁﬂ/
N
Ol = s o o ooua=u"
el eseds cealaed8
— N < — O <
Message Size (Bytes) Message Size (Bytes)
(a) MPI Point-to-Point Latency (b) MPI Collective Latency (Bcast)

Fig. 3 Performance results of SR-IOV on multicore InfiniBand clusters

the performance characteristics of SR-IOV on InfiniBand clusters. As demonstrated
in Fig. 3a, the performance of basic point-to-point inter-VM, inter-node communi-
cation operations in both event-based and polling-based modes are similar to that of
native InfiniBand, especially for large messages. This stresses the benefits of using
SR-IOV to achieve network virtualization when compared to other software-based
approaches. However, it is to be noted that there is still a critical performance issue
that needs to be carefully addressed to enable the adoption of SR-IOV in HPC clouds.
For example, in Fig. 3b, it can be observed that the performance of the collective oper-
ation (i.e., MPI_Bcast) with SR-IOV is significantly worse when compared with the
case of native InfiniBand with shared memory-based communication enabled. This
demonstrates that only using SR-IOV-based communication in applications and run-
times will lead to performance overheads. This is because default MPI library design
with SR-IOV will make inter-VM communications within the same node still use
network loopback channel. By contrast, high-performance MPI designs which use
shared memory or CMA-based techniques can enable fast intranode communication.
In this context, another novel feature, [VShmem has been proposed to support shared
memory backed intranode-inter-VM communication, which can be used to address
this limitation of SR-IOV.

For container-based cloud environments, designing high-performance container-
aware MPI communication library to take advantage of the communication
mechanisms of [PC-based shared memory and CMA is also crucial to bring more
performance benefits to end applications.

To achieve high-performance for MPI applications on HPC clouds, it is necessary
to enable virtualized resources as mentioned above (i.e., SR-IOV, IVShmem, IPC-
Shared Memory, and CMA) on HPC clouds. For improved flexibility and resource
utilization, it is important to manage and isolate these virtualized resources to support
running multiple concurrent MPI jobs on different virtual machines and containers.
As this requires knowledge of and some level of control over the underlying physical
hosts, itis very difficult to achieve this from within the MPI library alone which is only
aware of the virtual nodes and resources. In addition, modern multicore architectures

Building Efficient HPC Cloud with SR-IOV-Enabled InfiniBand ... 125

allow users to have the flexibility to choose from various VM/container subscription
policies, such as one VM/container per node, one VM/container per CPU socket,
and one VM/container per CPU core. The choices allow for finer-grained resource
management and scheduling, depending on the resource requirements of various
applications and workloads. Without adequate support from the resource manager,
the user needs to manage various tasks like creating, deploying, initializing, and
destroying virtual machines or containers.

Thus, extracting the best performance from virtualized clusters requires support
from other middleware like job schedulers and resource managers. Easy and scalable
resource management offered by cloud computing systems heavily rely on cloud
resource management systems such as OpenStack. Taking into consideration the
delivery of high-performance HPC applications in the cloud, it is necessary to enable
advanced features such as SR-IOV and IVShmem through OpenStack when building
HPC clouds. Besides, Slurm is also a very popular resource manager used by many
small and large HPC clusters. However, default Slurm design is not aware of these
advanced features, which prevents MPI applications achieving high-performance on
HPC clouds.

All these fundamental issues facing the cloud computing community lead to the
following broad challenges:

1. How to build efficient HPC Clouds with near-native performance for MPI appli-
cations over SR-IOV enabled InfiniBand clusters?

2. How to design a high-performance MPI library to efficiently take advantage of
novel features (e.g., SR-IOV, IVShmem, IPC-Shared Memory, and CMA) pro-
vided in HPC clouds with virtual machines or containers?

3. How to integrate these advanced designs with HPC cloud resource managers such
as OpenStack and Slurm?

4. How much performance improvement can be achieved by our proposed approach
on MPI point-to-point operations, collective operations, and applications in HPC
clouds?

5. Can HPC clouds built by our proposed approach provide orders of magnitude
performance benefits compared with current generation public production clouds,
such as Amazon EC2?

Many novel research works and designs have been proposed in the literature
recently for addressing these challenges. This chapter will briefly introduce the MVA-
PICH2 approach to building efficient HPC clouds in next sections.

S The MVAPICH2 Approach to Build HPC Clouds

To address the above-mentioned challenges, we propose the MVAPICH2-based
approach to build efficient HPC clouds. The MVAPICH2 approach mainly has two
steps. We first propose novel designs inside the MVAPICH2 library to achieve near-
native performance on the virtual machine-based and container-based environments

126 X. Luetal.

[Application J [Application J

MPI Layer
ADI3 Layer

l Communication Coordinati Virtual Machine
& Container
[Locality Detection(VM/Container)] Aware
SMP/IVShmem CMA SR-IOV

Channel

[MPI Layer]
MPI
Library ADI3 Layer

CMA Network
Channel Channel

SMP Channel J [

Channel Channel

Communlca(lon[Shared Memory J [System Call J [InfiniBand J [Shared Memory} [System Call J [InfiniBand
API API

Communication
Device APls

Device APIs Copy Copy

_J

Native Hardware Virtualized Hardware

Fig. 4 The MVAPICH2 approach for building HPC clouds

on HPC clouds. Then, we propose more designs with cloud resource managers such
as OpenStack and Slurm to make users easier to deploy and run their applications
with the MVAPICH2 library on HPC clouds. Through the designs of MVAPICH2
with OpenStack and Slurm, MPI-based applications should be able to get near bare-
metal performance on HPC clouds with different VM and container deployment
scenarios.

The MVAPICH?2 is an open-source MPI library over InfiniBand, Omni-Path, Eth-
ernet/iWARP, and RoCE. MVAPICH?2 follows a layered approach, as shown in the
left-hand side in Fig.4. All MPI-level primitives are implemented in the Abstract
Device Interface V3 (ADI3) layer. There are multiple communication channels on
top of communication device APIs to provide basic message delivery functionali-
ties. Three types of communication channels are available in MVAPICH2: the shared
memory (SMP) channel, the CMA channel, and the network channel. The SMP chan-
nel enables communication over shared memory to processes running on the same
host. The CMA channel can copy the data directly from the source process mem-
ory into the destination process address space via a CMA system call. The network
channel communicates over InfiniBand user-level APIs to other processes.

Asdiscussed earlier, even though default MPI runtime designed for the native envi-
ronment can run with SR-IOV enabled virtualized environment, it does not achieve
the optimal performance. Alternatively, recent studies [6, 10, 11, 16] have shed light
on the significant performance improvements for MPI benchmarks and applications
by designing virtual machine and container locality-aware schemes together with
SR-IOV-based high-performance interconnects. Such an approach, as shown in the
right-hand side in Fig.4, has been emerging and is seen to be an effective way to
design high-performance MPI runtime and applications on modern HPC clouds.

For VM and container-aware MVAPICH2 on HPC clouds, two major compo-
nents are added, which are ‘Communication Coordinator’ and ‘Locality Detec-
tor’ between the ADI3 layer and channel layer. In the channel layer, we integrate
IVShmem channel into the SMP channel, while maintaining the CMA channel and
SR-IOV channel available in VM-based and container-based HPC clouds. The Com-
munication Coordinator is responsible for scheduling communication channel in
the lower channel layer, while the Locality Detector maintains the information of

Building Efficient HPC Cloud with SR-IOV-Enabled InfiniBand ... 127

co-resident VMs/containers on the same host. The Communication Coordinator
makes a decision on going through a channel by utilizing the Locality Detector
to identify whether the communicating VMs/containers are co-resident on the same
host or not. If they are co-resident on a given host, the Communication Coordinator
will select SMP/IVShmem channel or CMA channel for the communication between
these co-located VMs/containers depending on the message size. Otherwise, it will
go through SR-IOV channel. It is also critical to tune MPI performance for all these
channels on top of virtualized architectures. More design details about these com-
ponents as well as designs with OpenStack and Slurm are provided in the following
sections.

6 Designing High-Performance MVAPICH2 on HPC
Clouds

6.1 VM-Aware MVAPICH? on InfiniBand Clusters

As discussed in Sect. 4, a high-performance MPI library on cloud needs to be VM-
aware. In the literature, there are several studies have exploited the facility of inter-
VM shared memory. For Xen hypervisor, XenSocket [29] is a one-way pipe for
high-performance inter-VM communication. It defines a new socket type, and asso-
ciated system calls to utilize the underlying inter-VM shared memory communica-
tion mechanism. Users need to modify their applications and libraries to invoke these
calls explicitly. XWay [30] intercepts TCP socket calls to provide transparent and
high-performance inter-VM communication for TCP-based applications. XWay only
requires modifications to the network protocol stack inside the OS. As a kernel mod-
ule, XenLoop [31] is designed to intercept every outgoing packet from the network
layer. It provides transparency for applications and achieves high communication
performance for co-resident VMs by utilizing shared memory channel. IVC [32] is a
user-level communication library designed for HPC applications, and it also provides
shared memory-based communication for co-resident VMs. MVAPICH2 can take
advantage of the proposed IVC mechanism to improve message passing performance
on clouds.

Based on the new features provided by both SR-IOV and IVShmem, a redesigned
and enhanced MPI library based on KVM hypervisor is proposed [10] to fully exploit
the benefits of the features on SR-IOV and IVShmem enabled InfiniBand clusters.
Two components are introduced in the enhanced architecture, as shown in Fig.5,
which are VM Locality Detector and VM Communication Coordinator.

VM Locality Detector: To enable VM locality-aware communication, it is required
to have an accurate and fast-responsive mechanism to identify co-resident VMs
among all VMs. The design in [10] utilizes a locality detector to achieve this goal.
Based on IVShmem support, as demonstrated in [9], a VM list structure is created
on the IVShmem region of each host, which is visible to all the co-resident VMs.

128 X. Luetal.

Dt e ‘I Dt ‘I
Guest 1 : :

Guest 2

VF
Driver

Virtual Virtual Physical
Function Function Function

InfiniBand HCA

CMA Channel
IVSHMEM Channel
Host Environment — SR-IOV Channel

Fig. 5 Architecture of VM-aware MVAPICH2 on SR-IOV enabled InfiniBand clusters

Every MPI process will write its membership information into the shared VM list
according to its global rank. In this case, the membership information of the processes
is only visible among those co-located VMs on each host. Other positions in the VM
list will be left blank, as they are located on different hosts. The local number of
processes on one host can be acquired by checking the membership information
written in the shared VM list. Similarly, their local ordering will be maintained by
their membership information positions in the VM list. The VM locality detector
is designed to use multiple bytes, and each byte will be used to save the member-
ship information of each MPI process in the co-resident VMs. Because the byte is
the smallest unit for concurrent memory access without a lock, using byte-based
storage can guarantee that multiple MPI processes from co-resident VMs can write
their membership information on corresponding offsets concurrently in a lock-free
manner. This design reduces the locality detection overhead. Moreover, the allocated
memory for maintaining the VM list is small. For example, with an MPI job with
one million processes, the whole VM list only occupies 1 MB memory space. Thus,
it brings excellent scalability on virtualized MPI environments.

VM Communication Coordinator: With the help of VM Locality Detector which
is created and maintained in IVShmem region, the co-resident VMs and associ-
ated MPI processes can be dynamically identified. Based on the gathered locality
information, a Communication Coordinator component is proposed. This component
captures the communication requests from the upper layer and selects the best chan-
nel for a request by checking the processes’ membership information provided by
VM Locality Detector. If the communicating processes are co-resident, VM Commu-

Building Efficient HPC Cloud with SR-IOV-Enabled InfiniBand ... 129

nication Coordinator will schedule them to communicate through high-performance
IVShmem-based channel (from different VMs) or CMA channel (from the same
VM). Otherwise, the SR-IOV channel will be selected for communication.

Communication Channel Optimization in VMs: The default environment setting,
which is optimized for native environment, may not be able to benefit MPI com-
munication in a virtualized environment to the greatest extent. Therefore, both the
IVShmem and SR-IOV channels are further optimized by choosing the optimal pro-
tocol switch point, shared buffer size among processes, the number of the shared
buffer, etc., on the virtualized environment.

Figure 6a—b show the intranode MPI-level point-to-point performance of VM
using SR-IOV on Chameleon cloud. The results indicate that our redesigned MVA-
PICH2 library (denoted as ‘MV2-Virt-SR-IOV’) can achieve up to 160X and 28X
performance improvement regarding latency and bandwidth, compared to the per-
formance on Amazon EC2 platform (denoted as ‘MV2-EC2’). There is less than 8%
overhead, compared to the native performance (denoted as ‘MV2-Native’). For the
inter-node case, as shown in Fig. 6¢c—d, the enhanced MVAPICH?2 library is able to
deliver up to 30X and 16X performance improvement, compared to Amazon EC2,
in terms of latency and bandwidth, respectively. Note that Amazon EC2 does not
support explicitly VM allocations on one physical node so far. To ensure fair com-

100000 12000
+MV2-EC2 — +-MV2-EC2 8%
'z 10000 [MV2-Def-SR-IOV & 10000 |seMV2-Def-SR-IOV 3
; 1000 | =MV2-Virt-SR-IOV g 8000 [®MV2-Virt-SR-I0V,
Q & - i - - 1
g 100 MV2-Native g 6000 MV2-Native
3 10 Z 4000
=)
1 L‘g 2000
mowwmwwxzxxx: O—vov\oxxxzzzz
“’ﬁ;mwgggm -l TEZTETT
Message Size(Bytes) Message Size (Bytes)
(a) Intra-Node Latency (b) Intra-Node Bandwidth
100000 7000
*+MV2-EC2 o~ +MV2-EC2
10000 | 5MV2-Def-SR-IOV 2 09001 Nv2 Def-SR-IOV
< 1000 | #MV2-Virt-SR-IOV S, 000 | = MV2-Virt-SR-IOV,
] 100 +MV2-Native < 4000 |[-+MV2-Native
15} =]
2 2 3000
= 10 S 2000
1 & 1000
OI]ON”’“‘”“MMMMME OFV‘D*\DMMMMMEE
AT NX A XA I G R R S R =
Message Size(Bytes) Message Size (Bytes)
(c) Inter-Node Latency (d) Inter-Node Bandwidth

Fig. 6 Point-to-point communication performance of VM

130 X. Luetal.

parisons, we allocate multiple VMs in one logical group and take the point-to-point
performance numbers for each pair of VMs. The peers with the lowest latency num-
bers are identified as co-located within one physical node (intranode), otherwise,
they are identified as running across two nodes (inter-node).

6.2 Container-Aware MVAPICH? on InfiniBand Clusters

As a lightweight virtualization alternative, container technology has been becoming
popular over the last several years. Many studies focus on comparing the performance
of different kinds of hypervisor-based and container-based virtualization technolo-
gies for HPC applications. Xavier et al. [33] conducted performance evaluations
of hypervisor-based virtualization (Xen) and container-based virtualization (Linux
VServer, OpenVZ, and LXC) for HPC regarding computing, memory, disk, net-
work, application overhead and isolation aspects. Wes Felter et al. [34] investigated
the performance of VM deployments and compared them with the use of Docker.
The results showed that using containers can lead to equal or better performance
than using VMs in almost all cases. Cristian et al. [35] conducted the performance
evaluation of Linux-based container solutions in various ways of container deploy-
ment. The results summarized the limits of using containers, the type of applications
that suffer the most, and the impact of container oversubscription on the applica-
tion performance. Yuyu et al. [36] compared KVM and Docker techniques for HPC
regarding features and performance on Chameleon testbed with 10GigE networks.

Although container-based solution reveals less overhead for HPC, compared to
hypervisor-based solution, it is still necessary to overcome the performance bot-
tleneck as discussed in Sect.4. Therefore, a high-performance design of locality-
aware MPI library for container-based HPC cloud is proposed in [11], which can
dynamically detect co-resident containers and achieve near native performance. The
architecture of the proposed container-aware MVAPICH2 on InfiniBand clusters is
presented in Fig. 7. The main features of this design are:

Container Locality Detector: Container instances can use the shared memory seg-
ments, semaphores, and message queues by sharing IPC namespace with each other.
To detect the process locality information, a container locality list structure is created
in the shared memory region. During the initialization time, every MPI process writes
its locality information into this shared container list according to its global rank. The
blank positions in the list structure indicate that the associated MPI processes are on
the different hosts. The local number of processes can be acquired by accumulating
the written locality information on the shared memory region, and their local order
can be identified by the locality information offsets in the container list. Similar to
the design of VM locality detector, the container locality list is designed by using
multiple bytes to achieve the lock-free design, which can reduce the overhead of con-
current write and read on the container locality list. Once the locality information gets
updated after initialization, the actual communication can take place subsequently.

Building Efficient HPC Cloud with SR-IOV-Enabled InfiniBand ... 131

Fig. 7 Architecture of @7 Containerl | 1 T ot 1
container-aware MVAPICH2
on InfiniBand clusters

MPI Proc

(\
1 IBHCA |
\ ’

PN

! IBHCA |

e NN
| \

& e/]
E @ o

CMA Channel

. IPC-SHM Channel
Host Environment IB HCA Channel

Container Communication Coordinator: Similar to VM Communication Coor-
dinator which is discussed in Sect.6.1, Container Communication Coordinator is
responsible for coordinating the communications among containers based on process
locality as well as message size. As shown in Fig. 7, if the communicating processes
are co-resident, Container Communication Coordinator will schedule them to com-
municate through the IPC-shared memory-based channel for small messages or CMA
channel for large messages. Otherwise, they will go through the HCA channel.

Communication Channel Optimization in Containers: To deliver the optimal MPI
communication performance in the container-based HPC clouds, the three types of
communication channels, shared memory, CMA, and HCA, are further optimized
by choosing the optimal protocol switch point, shared buffer size among processes,
etc. on container-based virtualized environment.

Figure8a and b show the intranode MPI point-to-point performance on the
container-based environment on Chameleon cloud. The results indicate that com-
pared to the default performance (denoted as ‘MV2-Def-Container’), our optimized
MVAPICH2 library (denoted as ‘MV2-Virt-Container’) can improve up to 81% and
191% regarding latency and bandwidth. On the perspective of the collective opera-
tions, the evaluation results, as can be seen in Fig.8c and d, show that there exists
up to 86% and 64% performance improvement for allgather and allreduce operations,
respectively. The detailed environment configuration can be found in [11]. Compared
to native performance (denoted as ‘M V2-Native’), the optimized design can achieve
very similar performance.

132 X. Luetal.

14 , 20000 ,
1 +MV2-Def-Container *-MV2-Def-Container
>*MV2-Virt-Container 2 15000 | >MV2-Virt-Container
g 10 =)\[V2-Native g ®MV2-Native
e ; 10000
S S
S _g 5000
=
<
A 0
NOoX b (X b A o o™ L0
A A SV AINS MNP
1 4 16 64 256 1K 4K 16K 64K VY& E
Message Size (Bytes) Message Size (Bytes)
(a) Intra-Node Latency (b) Intra-Node Bandwidth
4000 100
“*-MV2-Def-Container -*-MV2-Def-Container
= 3000 | Z*MV2-Virt-Container = 80 | *MV2-Virt-Container
2 *MV2-Native 2 *MV2-Native
> > 60
2 2000 5
2 2 4
3 5
1000 20
OHva\ONﬂ'w\or\l vacr\lvw\o
== Iz 2T ERTLFT 2R
— AN o o O — N n o o O
— A < — O <r
Message Size (Bytes) Message Size (Bytes)
(c) Allgather (d) Allreduce

Fig. 8 Point-to-point and collective communication performance of container

7 Integrated Designs with OpenStack and Slurm

7.1 MVAPICH? over OpenStack with SR-IOV

To deliver high-performance for end applications in the cloud, we can see that it
is necessary to enable both SR-IOV and IVShmem when building HPC clouds,
as described in Sect.4. Utilizing MVAPICH2 over OpenStack with SR-IOV to
build high-performance HPC clouds is proposed in [16]. The associated designs
are described below:

Enable SR-IOV in HPC Cloud over OpenStack: Nova is a core component in
OpenStack, which is designed to manage and automate compute resource pools
and work with different virtualization technologies, as well as bare metal and HPC
configurations. During the configuration phase of Nova system, the PCI passthrough
support is enabled by specifying the product ID and the vendor ID of a PCI device
(SR-IOV enabled IB HCA). So all the virtual functions of the specified PCI device
form a resource pool. A free virtual function will be selected from the pool and
passed through to one VM at its launch phase.

Building Efficient HPC Cloud with SR-IOV-Enabled InfiniBand ... 133

Extension to OpenStack: As we have seen above, [VShmem can significantly
improve the communication performance across co-resident VMs compared to purely
using SR-IOV on virtualized InfiniBand clusters, but the current generation Open-
Stack framework does not support it yet. Thus, it is better that OpenStack can be
extended to support IVShmem. The study in [16] describes the basic architecture
of the OpenStack Nova service. Nova-Compute serves primarily as a worker dae-
mon that takes the charge of creating and terminating VM instances. Nova-Compute
accepts instance creation requests from users or other services and converts the
requests into XML files. It then invokes the libvirt library to launch the desired VM
instances. To enable IVShmem, an IVShmem format function is inserted when Nova
generates the VM instance configuration file for libvirt. This function can convert
the IVShmem request to the QEMU namespace XML format for the guest VM.

VM Locality-Aware Support: In the HPC cloud deployed by OpenStack with IVSh-
mem support, each VM can have both SR-IOV and IVShmem enabled. As we dis-
cussed above, we need an effective way to detect co-resident VMs for choosing the
optimized communication channel. The OpenStack controller node has a global view
of all the resources, so it could help for the detection. However, if a failure or time-
out happens during the communication between the controller node and compute
node, we can not update the locality information in a timely manner. In addition, the
OpenStack controller node may become a bottleneck in HPC clouds, if too many
locality information requests come to the control node concurrently. Instead, our
VM-aware MVAPICH2 design allows each VM to acquire and maintain the locality
information on the I'VShmem region, which avoids the unnecessary communication,
possible failure issues and bottlenecks.

7.2 Extending Slurm for Building Efficient HPC Clouds

There have been several studies on building cloud computing environments with
Slurm, Jacobsen et al. [15] present ‘shifter,” which is tightly integrated into Slurm for
managing Docker and other user-defined images. Ismael [37] uses VM for dynamic
fractional resource management and load balancing in a batch cluster environment.
Markwardt et al. [14] propose a solution to run VMs in a Slurm-based batch system.
They use a VM scheduler to keep track of the status of Slurm queue on the VMs.
Ruivo et al. [38] explore the potential use of SR-IOV on InfiniBand in an OpenNebula
cloud toward the efficient support of MPI-based workloads.

As we discussed in Sect. 4, efficient isolation of critical HPC resources, such as
SR-IOV enabled virtual functions and IVShmem devices, requires the aid through the
middleware like job launchers and resource managers, as they have a global view of
the VMs and the underlying physical hosts. To solve such issues, a novel framework,
Slurm-V is proposed in [13], which extends Slurm with virtualization-oriented capa-
bilities such as job submission to dynamically created VMs with isolated SR-IOV
and IVShmem resources. In Slurm-V, three new components are introduced: VM

134 X.Luetal.

Configuration Reader, VM Launcher, and VM Reclaimer. Further, three alternative
designs are proposed to effectively support these three components.

VM Configuration Reader: It extracts the related parameters for VM configura-
tion. Each time when users request physical resources, they can specify the detailed
VM configurations, such as vcpu-per-vm, memory-per-vm, disk-size, vim-per-node,
etc. To support high-performance MPI communication, the user can specify SR-IOV
devices on those allocated nodes, and the number of IVShmem devices which is the
number of concurrent MPI jobs they want to run inside VMs. The VM Configuration
Reader will parse this information and set them in the current Slurm job control envi-
ronment. Thus, the tasks executed on those physical nodes can extract information
from job control environment and take proper actions accordingly.

VM Launcher: Itis mainly responsible for launching required VMs on each allocated
physical node based on user-specified VM configuration. If the user specifies the SR-
IOV enabled device, this component detects those occupied VFs and selects a free
one for each VM. It also loads user-specified VM image from the publicly accessible
storage system, such as NFS or Lustre, to the local node. Then it generates XML file
and invokes libvirtd or OpenStack infrastructure to launch VM. During VM boot, the
selected VF will be passthroughed to VM. To support IVShmem, it assigns a unique
ID for each IVShmem device and sequentially hotplugs them to VMs. In this way,
IVShmem devices can be isolated with each other, such that each concurrent MPI
job will use a dedicated one for inter-VM shared memory-based communication.
Another important functionality is that the VM Launcher records and propagates the
mapping records between local VM and its assigned IP address to all other VMs.
Other functionalities include mounting global storage systems, etc.

VM Reclaimer: Once the MPI job reaches completion, the VM Reclaimer is exe-
cuted. Its responsibilities include reclaiming VMs and the critical resources, such as
unlocking the passthroughed VFs, returning them to VF pool, detaching IVShmem
devices and reclaiming the corresponding host shared memory regions.

Task-based Design: The three new components are treated as three tasks/steps in
a Slurm job. Therefore, the end user needs to implement corresponding scripts and
explicitly insert them in the job batch file. After the job being submitted, srun will
execute these three tasks on allocated nodes.

SPANK Plugin-based Design: In this design, the user can specify all VM configu-
ration options preceded with ‘#SBATCH’ in the batch job file. Once the user submits
the job using sbatch command, the SPANK plugin is loaded and the three components
are invoked, respectively in different contexts. The snapshot and the multithreading
mechanism are utilized to speed up the image transfer and VM launching, respec-
tively. This will further reduce VM deployment time.

SPANK Plugin over OpenStack-based Design: In this design, the VM Launcher
and VM Reclaimer components will accomplish their functionalities by offloading
the tasks to OpenStack infrastructure. The core component of OpenStack, Nova, is
responsible for launching VMs on all allocated compute nodes. For completion, it
also takes care of tearing down the VMs and reclaiming the associated resources.

Building Efficient HPC Cloud with SR-IOV-Enabled InfiniBand ... 135

8 The MVAPICH2-Virt Software Distribution and
Appliance

‘We have put together the above-mentioned designs into the MVAPICH2- Virt [4] soft-
ware distribution. MVAPICH2-Virt, derived from MVAPICH?2, is an MPI library to
exploit the novel features and mechanisms of high-performance networking tech-
nologies with SR-IOV and other virtualization technologies such as IVShmem for
VMs and IPC enabled shared memory and CMA for containers. MVAPICH2-Virt
can deliver the optimized performance for MPI applications running in both VMs
and containers over SR-IOV-enabled InfiniBand clusters.

For processes which are distributed in different VMs/containers, MVAPICH2-Virt
can transparently detect the process locality information to automatically choose the
optimized channel for high-performance communication. Intranode-intra-VM MPI
communication can use CMA channel; Intranode-inter-VM MPI communication can
utilize the IVShmem-based channel; Inter-node-inter-VM MPI communication can
take advantage of SR-IOV-based channel. For containers, all intranode MPI commu-
nication can go through either IPC-based shared memory channel or CMA channel.
Inter-node-inter-container MPI communication will go through the InfiniBand chan-
nel.

Figure 9a and b show the application’s performance with MVAPICH2-Virt (SPEC
MPI and Graph500) on VM-based HPC environment. As we can see, compared
to the default performance, MVAPICH2-Virt library can significantly improve the
application’s performance, while introducing less than 9.5% overhead, compared to
the native performance.

Similarly, Fig. 10a and b show the performance of Class D NAS and Graph500
on container-based HPC environment. The evaluation results indicate that the
MVAPICH2-Virt package is not only able to reduce up to 16% execution time, com-
pared to the default case, but also having minor overhead, compared to the native
performance. All these evaluation results are taken on the Chameleon cloud. Please
refer to [4] for detailed VM and container environment configuration.

400 450

150 OMV2-DefSR-IOV| = ["OMV2-Def-SR-IOV =
o BMV2-Virt-SR-IOV| 2 10| BMV2-Virt-SR-I0V
o 300 B MV2-Native = B MV2-Native
.§ 250 2 300
= 200 £ 250
2 150 g 200 2% 1k
= B=] -~
§ 100 1% 9.5% HH § }(5)3 59 /||
S wlllm) 25, 6
om0 U0 (R TH N = oy (7
RS & @ 0
& F &S 22,10 24,10 24,16 2420 26,10 26,16

&

2 &
& 7 (b) VM Graph500
(a) VM SPECMPI

Fig. 9 Application performance on VM-based HPC environment

136 X. Luetal.

100 - 4 -
90 OMV2-Def-Container OMV2-Def-Container -~
Z g0 BMV2-Virt-Container [11% @ 3.5 | BMV2-Virt-Container T
g 70 | PMV2-Native 2 3 | DMV2-Native
= 60 ﬁ 2.5
g 50 s 2
5 40 215
g 30 2 1
w20 : : = 05| 16% Hﬂ
10 .
0 g : 0 mtm e L
MG.D FT.D EP.D LUD CG.D 22.16 22,20 24,16 2420 26,16 26,20
(a) ContainerNAS (b) ContainerGraph500

Fig. 10 Application performance on container-based HPC environment

/1. Load VM Config \
2. Allocate Ports
3. Allocate FloatinglPs
4. Generate SSH Keypair
5. Launch VM
6. Attach SR-IOV Device
7. Hotplug IVShmem Device
8. Download/Install
MVAPICH2-Virt
9. Populate VMs/IPs
QJ. Associate FloatinglPs

MVAPICH2-Virt
Heat-based
Complex
Appliance

HEAT

HORIZON

- requests NovA H NEUTRON H GLANCE

coerR H swrr H ...

ANOLSAIM

OpenStack

Fig. 11 Overview of OpenStack heat-based complex appliance for MVAPICH2-Virt

To facilitate the end users to quickly deploy a cluster of KVM virtual machines,
which uses the MVAPICH2-Virt library and is configured with SR-IOV for
high-performance communication over InfiniBand, an OpenStack Heat-based
complex appliance for MVAPICH2-Virt is developed and publicly available on
Chameleon [39]. Figure 11 illustrates the structure of the appliance. The end user
can submit a request of deploying VM cluster with MPI stack through MVAPICH2-
Virt Heat-based complex appliance to underlying OpenStack infrastructure. In this
complex appliance, the user just needs to provide a few necessary VM configuration
parameters. Then, the stack is launched with several procedures executed in the back-
ground, which includes load VM config, allocate ports, etc., as shown in the zoom-in

Building Efficient HPC Cloud with SR-IOV-Enabled InfiniBand ... 137

box in Fig. 11. Finally, a cluster of KVM virtual machines with MVAPICH2-Virt
library is deployed. The end user can log into one of the virtual machines and run
MPI jobs in this cluster. Please refer to [39] for more details.

9 Conclusion

Cloud computing with virtualization delivers requested resources by providing a
platform for consolidating IT resources in a scalable, flexible, and elastic manner.
However, there are still a lot of challenges for efficiently running HPC applications
on cloud computing systems. One of the most important hurdles in building efficient
HPC clouds is the poor I/O performance offered by underlying virtualized devices.
The emerging SR-IOV technology seems a promising approach to solve the perfor-
mance issues, and it has been supported by modern high-performance interconnects,
such as InfiniBand and high-speed Ethernet. Because of its near bare-metal perfor-
mance for internode communication, many cloud platforms use SR-IOV in their
production environments. However, the SR-IOV scheme lacks locality-aware com-
munication support, which causes performance overheads for intranode inter-VM
communication.

This chapter presents an overview of popular virtualization system software as
well as high-performance interconnects and communication mechanisms available
on HPC clouds. Based on these technology advancements, we propose an efficient
approach to building HPC clouds based on MVAPICH?2 over OpenStack and Slurm
with SR-IOV. MVAPICH2 MPI library can fully take advantage of high-performance
SR-IOV channel for internode communication as well as IVShmem channel for
intranode communication. For the container-based environment, MVAPICH2 MPI
library can efficiently utilize the network, shared memory, and CMA channels based
on process locality. Performance evaluations with benchmarks and HPC applications
on NSF-supported Chameleon Cloud show that our design can deliver near-native
performance. Further, compared with the performance on Amazon EC2, HPC clouds
built with our approach can exhibit orders of magnitude performance improvement
potential. The MVAPICH2 software library over VMs and containers presented in
this chapter is publicly available from the MVAPICH2 project site [4].

All of these studies are pushing the envelope of converging HPC and Cloud
Computing technologies [40]. By leveraging high-performance interconnects (e.g.,
InfiniBand) and communication mechanisms (e.g., SR-IOV) available on modern
HPC clusters, the novel enhanced designs for MVAPICH2, OpenStack, and Slurm
will play an important role in building current and next-generation HPC clouds.

138 X. Luetal.

10 Open Research Problems

This chapter has proposed designs to solve several challenges associated with high-
performance communication for building efficient HPC clouds. There are still many
open research problems, which can be summarized as the following categories.

Virtual Machine Migration with SR-IOV. One of the biggest challenges facing
the community is how to efficiently migrate virtual machines with SR-IOV devices.
Recent studies [41-43] have shown that SR-IOV-based virtual networks (both Infini-
Band and high-performance Ethernet) will prevent VM migration with current gener-
ation hypervisors (KVM, Xen, ESXi) and InfiniBand or high-performance Ethernet
SR-IOV drivers. Even though these works were proposed, they can only work with
specific versions of hypervisors and vendor drivers. So far, there is no out-of-box
software solution publicly available to migrate VMs with SR-IOV enabled network
interfaces. [t may still take a long way to standardize a solution to work with all differ-
ent hypervisors and hardware devices, by the collaborative effort from researchers,
hardware vendors, and hypervisor/driver developers. On this front, we recently pro-
posed a hypervisor independent and adapter driver independent approach [44] for
VM migration over SR-IOV enabled InfiniBand clusters. This approach can work
efficiently with MPI-based applications, and it can be generalized to other libraries
and middleware.

High-Performance Virtualization Support for Accelerators. Another grand chal-
lenge in the community is how to provide high-performance virtualization support
for accelerators (e.g., GPGPU and Xeon Phi), which are widely used in HPC cloud
environments. One possible solution is to enable SR-IOV support for accelerators,
which will open up many new research opportunities.

Not only just above-mentioned challenges, a lot of other challenges such as
efficient collective algorithms on the cloud, nested virtualization support, cloud-
aware elastic communication schemes, etc. are still facing the community today.
Researchers need to propose novel solutions to handle these challenges to build
efficient HPC clouds with lower cost.

References

1. Virtualization. (2016). https://en.wikipedia.org/wiki/ Virtualization.

2. Rosenblum, M., & Garfinkel, T. (2005). Virtual machine monitors: Current technology and
future trends. Computer, 38(5), 39—-47.

3. Jose, J., Li, M., Lu, X., Kandalla, K., Arnold, M., & Panda, D. K. (2013). SR-IOV support
for virtualization on InfiniBand clusters: Early experience. In Proceedings of 13th IEEE/ACM
International Symposium Cluster, Cloud and Grid Computing (CCGrid), Delft, Netherlands.

4. MVAPICH: MPI over InfiniBand, Omni-Path, Ethernet/iWARP, and RoCE. (2016). http://
mvapich.cse.ohio-state.edu/.

5. OpenMPI: Open Source High Performance Computing. (2016). http://www.open-mpi.org/.

https://en.wikipedia.org/wiki/Virtualization
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://www.open-mpi.org/

Building Efficient HPC Cloud with SR-IOV-Enabled InfiniBand ... 139

6.

e}

10.

12.

13.

14.

17.
18.
19.
20.
21.

22.
23.

24.

25.

26.
217.

28.

29.

Zhang, J., Lu, X., Jose, J., Shi, R., & Panda, D. K. (2014). Can inter-VM Shmem benefit
MPI applications on SR-IOV based virtualized InfiniBand clusters? In Proceedings of 20th
International Conference Euro-Par 2014 Parallel Processing, Porto, Portugal.

. Single Root I/O Virtualization. (2016). http://www.pcisig.com/specifications/iov/single_root.
. Cross Memory Attach (CMA). (2016). http://kernelnewbies.org/Linuxi_3.2.
. Macdonell, A. C. (2011). Shared-memory optimizations for virtual machines. Ph.D. Thesis.

University of Alberta, Edmonton, Alberta, Fall 2011

Zhang, J., Lu, X., Jose, J., Li, M., Shi, R., & Panda, D. K. (2014). High performance MPI
library over SR-IOV enabled InfiniBand clusters. In Proceedings of International Conference
on High Performance Computing (HiPC), Goa, India.

. Zhang, J., Lu, X., & Panda, D. K. (2016). High performance MPI library for container-based

HPC cloud on InfiniBand clusters. In Proceedings of the 45th International Conference on
Parallel Processing (ICPP), Philadelphia, USA.

Yoo, A., Jette, M., & Grondona, M. (2003). SLURM: Simple linux utility for resource man-
agement. In Proceedings of 9th International Workshop (JSSPP 2003), Seattle, WA, USA
Zhang, J., Lu, X., Chakraborty, S., & Panda, D. K. (2016). SLURM-V: Extending SLURM
for building efficient HPC cloud with SR-IOV and IVShmem. In Proceeding of the 22nd
International European Conference on Parallel and Distributed Computing (Euro-Par ’16),
Grenoble, France.

Markwardt, U., Jurenz, M., Rotscher, D., Muller-Pfefferkorn, R., Jakel, R., & Wesarg, B. (2016).
Running virtual machines in a Slurm batch system. http://slurm.schedmd.com/SLUG15/
SlurmVM.pdf.

. Jacobsen, D., Botts, J., & Canon, S. (2016). Never port your code again Docker functionality

with Shifter using SLURM. http://slurm.schedmd.com/SLUG15/shifter.pdf.

. Zhang, J., Lu, X., Arnold, M., & Panda, D. K. (2015). MVAPICH2 over OpenStack with

SR-IOV: An efficient approach to build HPC clouds. In Proceedings of the 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGrid), Shenzhen, China.
Chameleon. (2016). http://chameleoncloud.org/.

Docker. (2016). https://www.docker.com/.

Singularity. (2016). http://singularity.Ibl.gov/.

Keahey, K., Foster, 1., Freeman, T., & Zhang, X. (2005). Virtual workspaces: Achieving quality
of service and quality of life in the grid. Scientific Programming, 13(4), 265-275.
Eucalyptus. (2016). http://eucalyptus.com/.

OpenNebula. (2016). http://opennebula.org.

Peng,J.,Lu, X., Cheng, B., & Zha, L. (2010). JAMILA: A usable batch job management system
to coordinate heterogeneous clusters and diverse applications over grid or cloud infrastructure.
In Proceedings of Network and Parallel Computing, Zhengzhou, China.

Lu, X., Lin, J., Zha, L., & Xu, Z. (2011). Vega LingCloud: A resource single leasing point
system to support heterogeneous application modes on shared infrastructure. In Proceedings
of IEEE 9th International Symposium on Parallel and Distributed Processing with Applications
(ISPA), Busan, Korea.

Crago, S., Dunn, K., Eads, P., Hochstein, L., Kang, D., Kang, M., et al. (2011). Heterogeneous
cloud computing. In Proceedings of 201 1 IEEE International Conference on Cluster Computing
(Cluster), Austin, TX, USA.

SPANK. (2016). https://slurm.schedmd.com/spank.html.

Subramoni, H., Lai, P, Luo, M., & Panda, D. K. (2009). RDMA over ethernet—A preliminary
study. In Proceedings of the 2009 Workshop on High Performance Interconnects for Distributed
Computing (HPIDC’09).

Romanow, A., & Bailey, S. (2003). An overview of RDMA over IP. In Proceedings of Inter-
national Workshop on Protocols for Long-Distance Networks (PFLDnet2003).

Zhang, X., Mclntosh, S., Rohatgi, P., & Griffin, J. (2007). XenSocket: A high-throughput
interdomain transport for virtual machines. In Proceedings of the ACM/IFIP/USENIX 2007
International Conference on Middleware (Middleware), Newport Beach, USA.

http://www.pcisig.com/specifications/iov/single_root
http://kernelnewbies.org/Linuxi_3.2
http://slurm.schedmd.com/SLUG15/SlurmVM.pdf
http://slurm.schedmd.com/SLUG15/SlurmVM.pdf
http://slurm.schedmd.com/SLUG15/shifter.pdf
http://chameleoncloud.org/
https://www.docker.com/
http://singularity.lbl.gov/
http://eucalyptus.com/
http://opennebula.org
https://slurm.schedmd.com/spank.html

140

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

X.Luetal.

Kim, K., Kim, C., Jung, S., Shin, H., & Kim, J. (2008). Inter-domain socket communications
supporting high performance and full binary compatibility on Xen. In Proceedings of the
4th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
(VEE ’08), Seattle, USA.

Wang, J., Wright, K., & Gopalan, K. (2008). XenLoop: A transparent high performance inter-
vm network loopback. In Proceedings of the 17th International Symposium on High Perfor-
mance Distributed Computing (HPDC), Boston, USA.

Huang, W., Koop, M., Gao, Q., & Panda, D. K. (2007). Virtual machine aware communication
libraries for high performance computing. In Proceedings of the 2007 ACM/IEEE Conference
on Supercomputing (SC), Reno, USA.

Xavier, M., Neves, M., Rossi, F., Ferreto, T., Lange, T., & Rose, C. (2013). Performance
evaluation of container-based virtualization for high performance computing environments.
2013 21st Euromicro International Conference on Parallel, Distributed and Network-Based
Processing (PDP) (pp. 233-240). Northern Ireland: Belfast.

Felter, W., Ferreira, A., Rajamony, R., & Rubio, J. (2014). An updated performance comparison
of virtual machines and Linux containers. Technical Report RC25482 (AUS1407-001).

Ruiz, C., Jeanvoine, E., & Nussbaum, L. (2015). Performance evaluation of containers for
HPC. In 10th Workshop on Virtualization in High-Performance Cloud Computing (VHPC),
Vienna, Austria.

Zhou, Y., Subramaniam, B., Keahey, K., & Lange, J. (2015). Comparison of virtualization
and containerization techniques for high performance computing. In Proceedings of the 2015
ACM/IEEE Conference on Supercomputing, Austin, USA.

Estrada, I. (2016). Overview of a virtual cluster using OpenNebula and SLURM. https://portal.
futuresystems.org/sites/default/files/one-slurm.pdf.

Ruivo, T., Altayo, G., Garzoglio, G., Timm, S., Kim, H., Noh, S., et al. (2014). Exploring
InfiniBand hardware virtualization in OpenNebula towards efficient high-performance com-
puting. In Proceedings of 14th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid).

MVAPICH2-Virt Heat-based Complex Appliance. (2016). https://www.chameleoncloud.org/
appliances/28/.

Telfer, S. (2016). The crossroads of cloud and HPC: OpenStack for scientific research. Open-
Stack Foundation.

Guay, W., Reinemo, S., Johnsen, B., Yen, C., Skeie, T., Lysne, O., et al. (2015). Early experi-
ences with live migration of SR-IOV enabled InfiniBand. Journal of Parallel and Distributed
Computing (JPDC).

Xu, X., & Davda, B. (2016). SRVM: Hypervisor support for live migration with passthrough
SR-IOV network devices. In Proceedings of the 12th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE ’16), Atlanta, USA.

Pan, Z., Dong, Y., Chen, Y., Zhang, L., & Zhang, Z. (2012). CompSC: Live migration with
pass-through devices. In Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Virtual
Execution Environments (VEE ’12), London, UK (pp. 109-120).

Zhang, J., Lu, X., & Panda, D. K. (2017). High-performance virtual machine migration frame-
work for MPI applications on SR-IOV enabled InfiniBand clusters. In Proceedings of the 3 1st
IEEE International Parallel and Distributed Processing Symposium (IPDPS ’17), Orlando,
USA.

https://portal.futuresystems.org/sites/default/files/one-slurm.pdf
https://portal.futuresystems.org/sites/default/files/one-slurm.pdf
https://www.chameleoncloud.org/appliances/28/
https://www.chameleoncloud.org/appliances/28/

Resource Procurement, Allocation, Metering,
and Pricing in Cloud Computing

Akshay Narayan, Parvathy S. Pillai, Abhinandan S. Prasad
and Shrisha Rao

1 Introduction

Cloud computing is not only a popular paradigm for services offered over the Internet,
but has also captured the interest of both academia and industry. The ready possibility
of on-demand provisioning of resources is one of the main advantages of cloud
computing for its users. These resources are not only limited to classical ones such
as computing power and storage, but also encompass a wide variety of services like
data analytics, monitoring, etc., that are distributed geographically.

In this chapter, we offer a summarized look at three issues in cloud computing
that are doubtless of great importance and call for innovative approaches, yet have
not received a great deal of attention in the cloud computing literature:

1. How can cloud resources be procured by cloud users, given a multitude of varied
offerings from different cloud vendors, and how should the resources be priced?

2. How can resources be allocated by cloud vendors in preparation for requests from
users?

3. How can cloud services be metered in a time-varying way (rather than at a fixed
rate that takes no account of changing conditions) to bring advantages to both
cloud vendors and cloud users?

A. Narayan - P.S. Pillai

National University of Singapore, Singapore, Singapore
e-mail: anarayan @comp.nus.edu.sg

P.S. Pillai

e-mail: parvathysp@ieee.org

A.S. Prasad
Georg-August-Universitit Gottingen, Gottingen, Germany
e-mail: abhinandansp@ieee.org

S. Rao (X))
International Institute of Information Technology - Bangalore, Bangalore, India
e-mail: shrao@ieee.org

© Springer Nature Singapore Pte Ltd. 2017 141
S. Chaudhary et al. (eds.), Research Advances in Cloud Computing,
DOI 10.1007/978-981-10-5026-8_7

142 A. Narayan et al.

Considering that cloud systems are very large in size (and will probably get only
larger over time), serving very large numbers of users and with huge business values,
these are not trivial concerns. Answers to these questions are not very simple, and
improved answers to them are likely to bring large financial and other benefits to
both users and vendors of cloud systems.

Automated resource procurement and resource allocation can be achieved using
statistical and other machine-learning techniques that are mostly empirical. In this
chapter, we try to address these issues using game theory. As in many other works,
we use game theory for a decision model. Our focus in this chapter is primarily on
[aaS clouds; however, the methods can be adapted to PaaS or SaaS clouds systems
with minimal or no changes.

The structure of this chapter is as follows. We discuss the initial problem of cloud
resource procurement in Sect.2. We present a summary of some recent works [1,
2] that use auctions [3] and mechanism design [4] in the context of cloud resource
procurement. Further, we use a game-theoretic approach to solve the problem of
resource allocation by cloud vendors. We consider servers owned by a vendor as
self-interested agents that need to form coalitions that maximize collective payoffs.
We use the recent concept of the uncertainty principle of game theory [5] to solve
for fast, near-optimal solutions to the allocation problem that do not require the
computationally intensive task of evaluating the payoff matrix [6, 7]. We present our
findings in Sect.4. Finally, for the third problem, it is necessary to note that cloud
computing systems increasingly use huge amounts of electrical power (similar to,
and often more than, many large industrial systems), and that the cost of electricity
used is often the single biggest lifetime cost in a cloud system. With electrical power
suppliers increasingly moving to the concept of smart grids that supply electrical
power at time-varying rates, it follows that cloud vendors may also soon have to
think about using power-aware metering. We present our ideas on smart- and power-
aware metering of cloud services [8, 9] in Sect. 5.

For the sake of completeness, we present simulation results to show the efficacy
of our methods for each of the problems listed in their respective sections.

2 Auction-Based Resource Procurement in Cloud
Computing

Currently, cloud users procure resources that are made available at fixed prices. In
this manner of procurement, which is also called static pricing, the price of the
procured resources does not change either over time or based on other factors. One
also cannot enforce service level agreements (SLAs) in this kind of scenario. Hence,
recent work [1] has proposed mechanisms and algorithms to implement dynamic
pricing in the cloud. Dynamic pricing is very popular in other domains like airlines,
etc. In dynamic pricing, the time-varying price can be determined based on the user
consumption pattern and demand. This type of pricing is beneficial to both cloud

Resource Procurement, Allocation, Metering, and Pricing in Cloud Computing 143

vendors and users. Cloud users can get discounts based on their choices of desirable
consumption patterns, and vendors benefit by better (more even) resource utilization
of their resources.

The uncertainties in price and lack of knowledge about dynamic pricing of cloud
vendors are hurdles for implementing dynamic pricing in the cloud. Auctions are
appropriate in this context. Hence, the procurement mechanisms presented in prior
work [1, 2] are auction-centric. Prasad and Rao [1] design mechanisms named C-
DSIC, C-BIC, and C-OPT. The common thread across the three mechanisms is the
incentive payout to the cloud vendors. Incentives are paid to cloud vendors, and the
amount of the same depends on the mechanism chosen. In C-DISC, truthfulness the
best strategy for a vendor, irrespective of the strategies of other cloud vendors. In
both C-BIC and C-OPT, truthfulness is the best strategy only if other cloud vendors
are truthful.

The mechanisms presented by Prasad and Rao [1] cannot be applied in hybrid
or federated clouds. In a hybrid cloud, the cloud user should be able to procure a
combination of resources from different cloud vendors, so the user has combinatorial
choices. Hence a variant of the CABOB algorithm is used [2] to perform a combi-
natorial auction. Unlike other combinatorial auction algorithms, this algorithm has
linear time complexity and is hence suited to practical environments.

2.1 Mechanism Design

Game theory, which is one of the standard paradigms of multiagent systems, can
be described as a mathematical abstraction of the conflict and cooperation between
intelligent rational agents. Agents have their own preferences, which are kept private
(not shared with other agents). To make a collective decision, it is necessary to
aggregate these preferences. The goal of mechanism design is to elicit these kind of
information so that a global decision can be reached. Mechanism design allows the
designer (called the social planner) to design the rules of the game so that the self-
interested actions of all agents collectively lead to a desired global system objective.
Mechanism design (which thus could be called game design) is used widely in
economics. The formal model of mechanism design [10] is as follows:

1. Consider a scenario with N agents and let i denote the ith agent. These agents
must make a collective choice from the set of actions or strategies, called the
outcome or alternative set denoted by O.

2. Let 6; be the type of agent i which determine the preference over the outcome set
0.

3. Let ®; denote all possible types or preferences of an agent i. We denote type
profile set by ® and ® = ®; x ©, x --- x ©,. We represent type profile by 0
where 0 = (01, 0,, ...,0,).

4. Let ® € A(®) be acommon prior distribution where the agent’s types are drawn.
A(®) is the set of all probability distribution functions over the set ® such that

144 A. Narayan et al.

A(®) ={q:0 — R| Zye(_)q(y) = landg(z) > 0,Vz € ®}. Let ¢ be the cor-
responding probability density function.

5. Since agent i is rational and intelligent, it tries to maximize a Bernoulli utility
function u; : X x ®; — R. The Bernoulli utility is a quantitative classification
of agents’ preferences for outcomes [11] and is denoted by u; (x, 6;) where x € X
and 0; € ©;.

6. We assume that type sets O, ..., ®,, utility functions u; (.) and the probability
density ¢(.) are common knowledge among all agents, but the specific instance
value is private to each agent.

The social planner faces two challenges in such a situation, these being:

1. Preference aggregation: Given a type profile § = (04, ..., 8,), which outcome
o € O should be chosen?
2. Truth elicitation: How to extract the true value of 6; of an agent i ?

The work of the social planner is encapsulated in the “social choice function,”
defined as follows:

Definition 1 A social choice function f : ®; x --- x ®, — O has the property
that for each possible type profile 6, it assigns a collective choice f (6, ..., 6,) € O.

We illustrate the mechanism design problem in the cloud computing scenario,
giving a social choice function that can be used in the cloud scenario by a social
planner.

Consider a set of cloud service providers who are able to provide resources.
Assume that there is a cloud user who wants to procure a resource. We formulate
this scenario as a mechanism design problem as follows:

1. Outcome set O: Let o be the outcome such that
o= (a,...,au, p1,..., pn) Wherea; = lifthe cloudservice provideris selected
and p; is the payment received by the cloud service provider i. The set of feasible
alternativesis O = {(al, Az, ... 0y, P1, P2, ---> P)lai €0, 1, p; € R, Vi Z;’zl
pi <0}

2. Type set ©;: This can be interpreted as the cost incurred by the cloud service
provider to provide the resources. ®; is the possible cost incurred by the cloud
service provider i.

3. Utility function u;(.): Utility of the cloud service provider is the difference
between payment received and resource cost. Informally, utility is profit. The
utility is given by u; (0;, 6;) = u;(ay, az, - .., ay, p1, P25 - -5 Pu, 0;) = 0:a; + p;

4. Social choice function f: in this scenario, it is

F(O) = (@1(0), ax(0), ..., an(0), p1(6), p2(0), ..., pa()),V0 € ©

A fundamental concept in mechanism design is incentive compatibility. Incen-
tives are offered so that agents reveal their true types. Incentive compatibility thus
refers to the offering of appropriate incentive to induce truth revelation.

The two classical variants of incentive compatibility are:

Resource Procurement, Allocation, Metering, and Pricing in Cloud Computing 145

1. Dominant strategy incentive compatibility (DSIC): in this case, truth revelation
is the best strategy for each user, irrespective of other users’ strategies.

2. Bayesian Nash incentive compatibility (BIC): In this case, truth revelation is the
best response for an agent only if other agents are also truthful about their types.

Incentive compatibility can be applied only to the direct mechanisms, because
truthfulness is always with respect to types. We provide definitions of incentive
compatibility for the sake of completeness [10].

Definition 2 A social choice function f:®; x---x ®, — O is said to be
incentive compatible if the Bayesian game induced by the direct revelation mecha-
nism D = ((®;);en, f(+)) has a pure strategy equilibrium s*(.) = (s7(.), ..., 5;(.)
in which sl*(t?,) = 05,‘?’05 (S @i, Vi € N.

The dominant strategy incentive compatibility (DSIC) is defined as follows:

Definition 3 A social choice function f:®; x---x ®, - O is said to be
dominant strategy incentive compatible if the Bayesian game induced by the direct
revelation mechanism D = ((®;);cn, f(.)) has a weak dominant strategy equilib-
rium s*(.) = (s7(.), ..., s;5(.)) in which s7(0;) = 0;,V0; € ©;,Vi € N.

Formally, Bayesian incentive compatibility (BIC) is defined as:

Definition 4 A social choice function f:©®; x---x ®, - O is Bayesian
incentive compatible if the Bayesian game induced by the direct revelation mecha-
nismD = ((®;);en. f(.)) hasaBayesian Nashequilibriums*(.) = (s7(.), ..., 5;(-))
in which sl*(9,) = 9i,\7’9,- e ®;,Vi e N.

2.2 Resource Procurement in Cloud

Resource procurement is a vital and interesting problem in cloud computing. Let us
consider a scenario: a user is interested in virtualized computing resources. There are
many cloud vendors who provide such resources, but at varying prices and quality
of service (QoS) metrics. The user has to mull over each vendor specification and
select the best cloud vendor who satisfies both budget and quality requirements. This
approach is quite complex and challenging for an enterprise [12]. Also, the cloud
vendors update their offerings based on market demand. Hence, in presence of large
numbers of diverse cloud vendors, manual selection is complicated at best.

In fixed pricing, there is no provision for negotiation. Also, consumption patterns
are not considered and accounted for. These issues are addressed in dynamic pric-
ing. Dynamic pricing favors the cloud vendor. During peak-use hours, the resource
utilization is high and the vendor does not desire further load; on the other hand, dur-
ing off-peak hours the load on the infrastructure is lower but the vendor would like
more. If cloud vendors provide some sort of incentives or discounts to cloud users

146 A. Narayan et al.

to modify their consumption patterns, this would lead to higher but more uniform
overall cloud infrastructure utilization.

In cloud computing, there are uncertainties about the resource prices and cloud
vendor. These are obstacles for implementing dynamic pricing in the cloud. Auctions
are appropriate in this scenario [3, 13, 14]. In reverse auctions, in particular, the
customer is an auctioneer and the sellers are bidders. Reverse auctions are very
popular and are known in different names like procurement auction, B2B auctions.
These are widely used to procure resources across prominent industries like software
licensing, health care, manufacturing, etc. Reverse auctions are preferred due to
procurement cost reduction; using such also prevents the unwanted effects of personal
bias and political ties [15].

We need to identify a suitable component where we can automate our resource
procurement solution. In cloud computing, a cloud broker is an intermediary between
cloud vendors and users. Further, it automates most of the tasks like negotiation, etc.
Hence, we can deploy our approach using cloud broker.

There are two ways to procure resources; using

(i) conventional models; and
(ii) economic models.

The fundamental difference between these models lies in their assumption about
the resource providers. In conventional models, the goal is to maximize overall system
usage, while economic models seek to maximize overall utility. In conventional
models, a user pays at an agreed rate for the quantum of service received. Economic
models require a user to pay not by the quantum of service, but on the value derived
thereby [16]. We may therefore accept that, as in other domains, economic models
are more suited to the context of cloud services.

Incentive distribution to bidders to act truthfully is one of the key features of
economic models. In our case, cloud vendors are bidders, and can be expected to
maximize their incentives using strategic behavior, which can include not act truth-
fully.

Narahari et al. [17] propose a theoretical framework of mechanisms based on
dominant strategy and Bayesian incentive compatibility. Mingbiao et al. [18] address
the sharing inefficiency in economic models. Subramoniam et al. [19] suggest the use
of commodity market models in a different domain, viz., for the purpose of resource
allocation in Grid computing. Parsa et al. [20] suggest the use of a double auction
for resource allocation.

Linetal. [21] use dynamic auctions (Vickrey auctions) to perform resource alloca-
tion. They assume as a given that all users are honest and reveal their types truthfully,
which of course is hardly realistic. They also do not discuss issues with the enforce-
ment of truthfulness. Narahari et al. [17] propose mechanisms for procurement of
resources for sweep-type jobs in Grid, which cannot be applied directly to the cloud.
In cloud, resources are not limited to sweep-type jobs.

Consider another scenario: a cloud user may require a combination of resources
which a single vendor may be unable to provide—this issue is not considered in the

Resource Procurement, Allocation, Metering, and Pricing in Cloud Computing 147

classic work [1], which does not address the questions of how a user may require
several resources together (rather than a single one at a time), and how a vendor may
bid with a combination of resources rather than offering a single one.

To address these matters, we have to take multiple resources and their various
combinations into account during the auction. Multiple resource allocation is a com-
binatorial auction problem which has particular relevance in hybrid cloud computing
which is little explored as of now, but is considered to be of importance in the
future [22].

Cloud vendors do not yet offer uniform services (which are needed for such ser-
vices to be interchangeable and not subject to vendor lock-in). Rochwerger et al. [22]
suggest that this will happen, and that the “federated cloud has huge potential.” When
standardized cloud offerings by multiple vendors become a reality, it will certainly
become quite possible to mix and interchangeably use offerings from different cloud
vendors, and to automate the procurement of the same.

3 Cloud Resource Procurement

Cloud vendors presently have a fixed pricing, pay-as-you-go approach for their
resources. (Such pay-as-you-go approaches are also seen elsewhere, e.g., being pop-
ular with calling plans and such offered by telecom providers.) On the flip side, such
an approach does not allow the vendor to influence usage patterns (e.g., to discour-
age peak-time demand and encourage slack-time demand, or the avoidance of steep
peaks and troughs in demand by load leveling). A fixed price gives no incentive to
influence the pattern of consumption by users.

C-DSIC, C-BIC, and C-OPT are proposed [1] for automating resource procure-
ment. C-DSIC is a low-bid Vickrey auction. C-BIC is weaker compared to C-DSIC
but is Bayesian incentive compatible. C-OPT achieves both Bayesian incentive com-
patibility and individual rationality, which the other two mechanisms cannot achieve.
Further, it is immune to both overbidding and underbidding since it reduces the
incentive and chances of winning, respectively. C-OPT can be applied even if cloud
vendors use different distributions for cost and QoS, unlike both C-DSIC and C-BI.
Hence, C-OPT may be preferred over the other two mechanisms.

If multiple resources are requested by the user, and the user may procure different
resources from different cloud vendors, then a combinatorial algorithm [2] is more
appropriate. In hybrid cloud computing, this scenario is valid.

We denote cloud vendors by N = {1,2,...,n}. In this reverse auction, each
cloud vendor submits a bid with cost ¢; and promised QoS parameters. The QoS
parameters vary across both cloud vendors and resources. Also, we cannot interpret
the QoS parameters uniformly. There is no guarantee that a high number indicates
a better quality. There are exceptions like network latency, where smaller numbers
indicate better quality. In multiple criteria decision, QoS parameter comparison is a
well-known problem. In the earlier work [1], Simple Additive Weighting (SAW) [23]

148 A. Narayan et al.

and the Analytic Hierarchy Process (AHP) [24] are used to perform QoS scaling.
The QoS scaling approach is summarized below.

1. The cloud user assign AHP scores to QoS parameters based on his criteria.

2. The QoS parameters can be either positive or negative. Hence, they are scaled
differently.

3. The final score is calculated based the user-given weights for QoS parameters.
These weights are entirely user dependent, and indicate the user’s needs or values.

Letc; > 0, and QoS g; > 0 be the execution cost and QoS of cloud vendori. This
information is private. Let ¢ be the lowest cost valuation and ¢ be the highest cost
valuation. Hence, ¢ < ¢; < c. Similarly, let g be the lowest QoS value and g be the
highest QoS value. Hence, g < ¢; < q. B

Let ©; be the set of all possible true types of the cloud vendor and ®; = [c, €] x
[g,q]. Let® =0 x Oy X --- X O.

" We assume that cost and QoS are correlated, albeit not necessarily perfectly.
Let @ be the joint distribution function of cost and QoS. We assume that the joint
distribution function ® is same Vn cloud vendors, i.e., ®; = &, = --- = ®,,.. Hence,
all cloud vendors are symmetric. This assumption does hold only for C-DSIC and
C-BIC. We assume that a cloud vendor’s aim is to maximize utility. Hence, cloud
vendors are risk neutral, which implies quasilinearity [25, p. 269].

In this mechanism, the true bid of each cloud vendor is represented by b; = (c;, ¢;),
and reported bid is represented by by = (¢, qi). Let b= (by, by, ...,b,) be bid
vector, called the bid profile. Let b_; be the cloud vendor bid vector without i, i.e.,
b_i=Wb1,by,...,bi_1,bit1,...,b,). Alsob = (b_;, b;). The goal of a mechanism
is to design the following functions.

e Allocation function a : ® — {0, 1} specifies the winner.
e Payment function p : ® — R determines the payment to the cloud vendor.

The goal of the cloud user is to minimize the procurement cost. This can be
achieved only if all the cloud vendors quote true costs (bid truthfully). This is also
called truth elicitation. Truth elicitation can be done in two ways:

e Dominant Strategy Incentive Compatibility (DSIC): This corresponds to dominant
strategy equilibrium.

e Bayesian Incentive Compatibility (BIC): This corresponds to Bayesian Nash equi-
librium.

Table 1 summarizes the notations of our model.

3.1 Cloud-Dominant Strategy Incentive Compatible
(C-DSIC) Mechanism

In DSIC, truth revelation is the best response to the agents, irrespective of other
agents’ strategies [10]. Let f(b) = (a(b), p1(b), ..., p,(b)) be the social choice

Resource Procurement, Allocation, Metering, and Pricing in Cloud Computing 149

Table 1 Notation

Symbol Description

n Total number of cloud vendors
N Cloud vendor set, {1, 2, ..., n}
o Set of outcomes

0; Type of i

b; True bid of i

); Reported bid of i

ci True resource cost of i

i Reported resource cost of i

qi True QoS provided by i

qi Reported QoS by i

©; Type set of i

u; i’s utility function

d; i’s joint distribution of cost and QoS
v; i’s valuation

b Bid vector b = (by, by, ..., by)
o Outcome and 0 € O

f(b) Social choice function

a Allocation function

p Payment function

a; Payment received by i

& i’s expected social welfare

T; i’s expected payment

pi i’s offered expected surplus

et i’s expected surplus

function in the C-DSIC mechanism which implements dominant strategy incentive
compatibility. a(l;) is the allocation rule that represents the winner. p; (5) is the
payment received by the cloud vendor i. If p; (b) > 0, then payment is received by
the cloud vendor i, otherwise i pays money to the user.
The allocation rule is given by:
el : c C: Cn
() = [1 if2 =min(, 2, ..., %) 0

0 otherwise

In the above allocation rule, the winner is the cloud vendor whose ratio of cost
over QoS is minimum. The payment function—which is also called the pivot rule or
“Clarke’s mechanism” [17]—is given by (2).

150 A. Narayan et al.

pib) = ai(b)éi + D ¢ja; (b) = > ¢;a;(b) ()
J# J#i

The payment received by cloud vendor i is the sum of quoted cost and the dif-
ference between optimal cost in the absence of cloud vendor i and optimal cost in
presence of cloud vendor i. In this mechanism, only the winner receives payment,
and the price is the second lowest bid.

Algorithm 1 gives pseudocode of C-DISC mechanism.

Algorithm 1: C-DSIC

Input : Reported bids l;l s }32 AAAAA l;,,
Output: Winner and payments for participants (py, pa, ..., Pn)

min < 0o;
winner < 0;
fori < 1tondo
if (=) < min then min < =L,
4qi qi

B W oN =

winner < i,

5

6 end

7 fori < 1tondo

8 // The payment for each cloud vendor

9 // i as per (2)

0 | pi) < ai0)i + 3y éjay (0) = X i éjajb):
11 end

The properties satisfied by C-DSIC are:

e Dominant strategy incentive compatibility: The C-DSIC mechanism is based on
the VCG mechanism, which is DSIC, and hence the C-DSIC mechanism is DSIC.

e Individual rationality: The payments received by the cloud vendors are greater
than or equal to zero. In this mechanism, cloud vendors never pay the user, and
have a non-negative payoff.

e Allocative efficiency: The winner is the cloud vendor with lowest cost over QoS.
Hence, C-DSIC is allocative efficient.

3.2 Cloud-Bayesian Incentive Compatible (C-BIC)
Mechanism

Since VCG mechanism is not budget balanced [10], C-DISC is also not budget
balanced. Non-budget balanced mechanisms require external funding for performing
auction. C-BIC is designed to overcome this limitation.

According to the Gibbard-Satterthwaite impossibility theorem [26], only dictator-
ial social choice functions are individually rational, budgent balanced, and allocative

Resource Procurement, Allocation, Metering, and Pricing in Cloud Computing 151

efficient. Non-dictatorial social choice functions can be designed in two scenarios: we
can restrict to quasilinear utility, or design Bayesian incentive compatibility which is
weaker than VCG. The dAGVA mechanism [27] is Bayesian incentive compatible.
In the JAGVA mechanism, each agent contributes money, and a payment is made to
the agents using the contributed money [25, p. 289].

Let £(b) = (a(b), p1(b), ..., pn(b)) be the social choice function in the C-BIC
mechanism. Let a; (b) be the allocation rule and Di (b) be the payment received by
cloud vendor i. If p; (b) > 0 then payment is received by i, otherwise i pays the
cloud user.

The allocation rule is the same as C-DSIC but the payment function is different
from C-DSIC. The allocation rule is given by the following:

4% — min(&
1 lfé,-_mm(é]’é:"“’é” 3)

a;(b) = [

0 otherwise

The payment rule is based on the JAGVA mechanism. The contributed money of
cloud vendors is used for paying all the cloud vendors. In other words, cloud vendors
pay a participation fee. Let &; be the expected social welfare [25] of agent i and is
calculated using the following:

&by =By 1D cj(ajbi. b))l 4)
i#j

The payment rule [27] is given by

pith) = &)~ (= 3 505)) ©
J#

The cloud vendor i receives payment £ (b;) and each contributes an equal ﬁ of
its share. Hence, cloud vendor i’s net transfer is &; (l;i) — (ﬁ) z#i & (l;,-).

Algorithm 2 gives pseudocode of C-BIC mechanism.

In C-BIC, each cloud vendor pays a participation fee, but only the winner gets
payment. Hence, the procurement cost is less than C-DSIC. However, the other cloud
vendors suffer a loss merely by paying participation fee. Since the allocation rules
of C-DSIC and C-BIC are the same, C-BIC is also allocative efficient. The C-BIC
mechanism cannot guarantee individual rationality. This is an important property—
even though ex ante individual rationality is preserved, interim individual rationality
is not preserved. This implies that the cloud vendors suffer a loss if they withdraw
from the auction after they submit bids.

152 A. Narayan et al.

Algorithm 2: C-BIC

Input : Reported bids by, by, ..., bn
Output: Winner and payments for participants (py, pa, ..., Pn)

1 min < oQ;

2 winner < 0;

3 fori < 1tondo

4 if(‘%")<min then min < fi;
qi qi

5 winner < i,

6 end

7 fori < 1tondo

8 // Pay each cloud vendor i

9 // based on (4) and (5)

w | &b < By [Xigjcj (aj i bp)I;
u | opip) < &by - (anI 2j#i & (’3.0);

12 end

3.3 Cloud-Optimal Mechanism (C-OPT)

The C-DSIC mechanism is not budget balanced. On the other hand, even though
the C-BSIC overcomes this limitation, it is not interim individual rational. Hence,
we propose the C-OPT mechanism to address limitation of both mechanisms. The
design of an optimal auction is not trivial.

Iyengar and Kumar [15] propose an optimal mechanism for procurement auctions
for suppliers who have finite production capacity (capacitated suppliers). Let X; and
T; be the expected allocation and payment, respectively. Iyengar and Kumar [15]
give the following definitions:

Definition 5 The offered expected surplus for a procurement mechanism (a,p) is
defined as p; (¢, ;) = T;(¢i, Gi) — ¢: X (Ci, gi). It is the expected transfer payment
when the vendor i bids (¢;, g;).

Definition 6 The expected surplus of a vendor i when the bid is l;i = (¢;, q;) is
defined as m; (¢i, §;) = T; (¢, §i) — ¢i Xi (&i, §i).

Also,

i (Ciy §i) = mi(Ciy §i) + (¢ — ¢ Xi(Ci, Gi)

In an incentive compatible mechanism, the true surplus ; is equal to offered
surplus.

In simple terms, the expected surplus is the difference between what the cloud
vendor willing to get and what it actually gets. Myerson [11] defines a virtual para-
meter for ranking the buyers, called virtual cost.

F()

Definition 7 The virtual cost is defined as H;(c;, ¢;) = ¢; + yEs)
i

In order to develop an optimal mechanism, we assume the following [15]:

Resource Procurement, Allocation, Metering, and Pricing in Cloud Computing 153

e the joint distribution function ®;(¢;, g;) is completely defined; and
e the virtual cost function H; is non-decreasing in both ¢; and g;.

Let (g, h) be the total expected profit of the user. The goal of an optimal mech-
anism is to maximize w(g, h) = E[R — >"_, h;(b)], subject to

1. individual rationality: the expected interim surplus for each cloud vendor is non-
negative, i.e., m; (b;) > 0; and

2. bayesian incentive compatibility: the truth elicitation should be weakly dominant
strategy for all cloud vendors, ie., E, [hi(b;i,b_;) —cigi(bi,b_;)] >
By [hi(bi. b_i) — cigi(bi, b_)].¥i € N, ¥b;, b; € ©;.

By Myerson [11, 15], a mechanism that satisfies the above constraints and max-
imizes cloud user profit is optimal. Also, Myerson assumes unit demand. In our
model, the cloud user has QoS requirement, and QoS plays important role in the
selection of cloud vendor. This multidimensional attribute of cloud vendors makes
this a non-trivial problem.

The properties of an optimal procurement mechanism [15] with capacitated sup-
pliers are:

1. The expected allocation X, (c;, g;) is non-increasing in the cost parameter c¢;V
suppliers.
2. The offered surplus p; (¢;, g;) is of the form

pi(Ci, qi) = pi(C, q) + f;, Xi(y, 4.

The proofs of the above properties are given by Iyengar and Kumar [15].

The C-OPT mechanism satisfies the above properties [1].

The expected surplus of the winning vendor is called the information rent of the
vendor [28]. Classically, surpluses like supplier surplus and consumer surplus are
examples of information rent.

Lemma 1 The offered surplus p;(¢;, G;) in C-OPT mechanism is of the form
pi(Ci,G) = piC, ¢ + [5 Xi(y,4)

The allocation rule is given by (6).

1 if H; = min(H, H,, ..., H,)
0 otherwise

a;(b) =[6)
By (6), the cloud vendor i whose virtual cost H is minimum is declared the winner.
The payment rule is given by the following.

c

pi6) = cianB) + / Xi(y. di)dy)

Ci

Algorithm 3 gives pseudocode of C-OPT mechanism.

154 A. Narayan et al.

Algorithm 3: C-OPT

Input : Reported bids by, by, ..., bn
Output: Winner and payments for participants (py, pa, ..., Pn)

min < oo;

winner < 0;

for i < 1tondo

Compute H;;

if (H; < min) then min < Hj;

winner < i;

end

fori < 1tondo

// Pay each cloud vendor i
// based on (7)

pi(bi) < ciai ®) + [¢, Xi (v, di)dy

12 end

Theorem 1 The C-OPT mechanism with allocation rule (6) and payment rule (7)
is Bayesian incentive compatible, individually rational and revenue maximizing.

C-OPT is an optimal mechanism and is more generic due to the ability to handle
asymmetric cloud vendors. Also, in realistic scenarios, different cloud vendors may
have different price distributions. C-OPT reduces to C-DSIC under the following
conditions:

e Cloud vendors are symmetric.
e The joint distribution function & is regular.

C-DSIC is susceptible to bidder collusion. On the other hand, non-winners lose
money in C-BIC. C-OPT not only overcomes limitation but also implements strengths
of other mechanisms (budget balance and BIC). Hence, C-OPT is suitable in a larger
set of real world contexts than C-DSIC and C-BIC.

These mechanisms have linear time complexities. Hence, can be applied in real
time.

3.4 Combinatorial Auctions in Cloud

In a federated or hybrid cloud [22], the cloud user has the option of procuring
resources from different cloud vendors. Hence, combinatorial auctions are appropri-
ate [2]. In combinatorial auctions, the winner determination is a non-trivial task [29].
In reality, there are a large number of cloud vendors. Hence, a scalable solution for
performing combinatorial auctions in a cloud is non-trivial.

Bids are normalized to have integer values. In the initial step, the set of resources
is divided such that no bid includes resources from more than one subset. The set
of bids is represented as tree nodes. The tree nodes are labeled as either winning or
losing. The tree is searched using depth-first search, and this is performed on each

Resource Procurement, Allocation, Metering, and Pricing in Cloud Computing 155

subset to speedup search. C A uses an upper threshold on the revenue the unallocated
resources can contribute. If the current solution is not better than the optimal solution,
CA prunes the search path. An LP formulation can be used for estimating the upper
threshold. After estimating the upper threshold, an integer relaxation is applied where
we can either accept the bid completely, or reject the bid completely.

Algorithm 4 gives the detailed pseudocode [2].

This algorithm does not make copies of the LP table, but incrementally adds (or:
deletes) rows from the LP table as bids are removed (or: re-inserted) into G as the
search proceeds down a path (or: backtracks). Hence, it has linear time complexity.
The proof is given by Sandholm and Suri [30]. Therefore, our algorithm can run in
real time.

3.5 Experimental Results

As far we know, there is a lack of tools for automating cloud vendor selection.
Usually, the cloud vendor with low cost is selected. Hence, we performed simulation
with our in-house tool. Our simulation approach is as follows:

1. The resource pricing of cloud vendors is different. We performed distribution
fitting on popular webservice and result revealed that prices are lognormally
distributed.

2. QoS is an emanating concept in cloud. There is yet a lack of standard models about
the QoS and its properties in the context of cloud. Hence, we perform simulations
with different distributions of QoS. We have considered both uniform and normal
distribution.

3. In our simulation, we do not take the cloud resource type (SaaS, IaaS, etc.) into
account, since our aim is to evaluate the proposed mechanism.

4. Currently, there is a lack of any standard toolkit for evaluating mechanisms in
cloud. Hence, we implemented our simulation using Java based on the equations
presented in this work, without compromising on cloud properties.

The results of earlier work [1] (where a graphical representation may also be
seen) are summarized here. Table2 shows the procurement cost to the user in C-
DSIC, C-BIC and C-OPT for a different number of cloud vendors in the scenario 1.
In this scenario, QoS is uniformly distributed. Table 3 shows the procurement cost
in scenario 2 where QoS is normally distributed.

The observations made in respect of auction-based allocation [1, 2] are summa-
rized below:

1. The payment made is inversely proportional to a number of cloud vendors, irre-
spective of the mechanism implemented.
2. The nature of the procurement costs is similar in both scenarios.

156

A. Narayan et al.

Algorithm 4: CA (G, g, min)

R I . I SRR

9
=

48

Input : Bid Graph G, revenue generated from winning bids g, minimum revenue min per C.A

Output: Set of winning bids Fopr_solved

if |E] = "1 then
fopt < max B ;
return fopr ;

end

if |[E| = 0 then
Accept all the remaining bids;
update fop; and return fopr;

end
FindConnectedComponents (G, C) ;
a <« |[Cl;
// € is the number of components
fori < 1toecdo
‘ calculate an upper threshold (UT);;
end
if Zle (UT); < min then
| returnO;
end
Apply Integer Relaxation;
fori < 1toedo
\ calculate lower threshold (LT); ;
end
A<—g+ Zf:] (LT)i — fopt:
if A > 0 then
‘ fopt <« fopt + A;min < min+ A
end
if n < 1 then
Choose next bid By, to branch on ;
fopt_old <« fopts fin < CA(G, g + pg,min — py);
min < min + (fin — fopt_old):
VBjs.t.Bj# Byand S; NS #9,G < GU By;
fopt_ald < fopt: four < CA(G, g, min);
min < min+ (fin — fopt_old):
Return max (fi,, fout);
end
Fupt_solved < 05 Hynsloved < Z?:l WT);;
Lunsioved < Z?:l(LT)i;

for each component ¢; € C do
if Fopti.m/ved + Hynsloved < min then
‘ return 0;
end

’,', < Fopt_solved + (Lunsioved — (LT););
Jopt_old < fopt:

Jopi_i < CA(G;, g +1t],min—1));

min < min + (fopt_otd — fopt);

Hypsioved <= Hunsioved — His
end
return Foptisolved

Fopt_xolved <~ ant_salued + fopt_i; Hynsloved <= Hunsioved — Hi

Resource Procurement, Allocation, Metering, and Pricing in Cloud Computing

157

Algorithm 5: FindConnectedComponents(G, C)

NI R SRS

Input : Bid Graph G

Output: Set of components C = {c1,¢3, ..., cn}

// DFS annotates each vertex with discover and finishing time
DFS (G);

// In undirected graph G, Gl'=¢G

// Consider vertices in decreasing finishing time

DFS(G) ;

Vertices in each tree of the depth-first forest is a separate component ;

Table 2 Procurement costs in scenario 1

Cloud vendors Procurement cost ($)

C-DSIC C-BIC C-OPT
10 289.62 225.12 1005.16
20 243.32 107.02 616.56
30 475.42 67.65 487.03
40 254.71 57.44 272.45
50 165.87 46.97 232.82
100 91.95 26.27 123.71
200 54.79 16.36 54.16
300 28.65 10.29 40.85
400 28.67 7.35 34.19
500 44.16 6.17 30.2

Table 3 Procurement costs in scenario 2

Cloud vendors Procurement cost ($)

C-DSIC C-BIC C-OPT
10 243.32 225.12 1005.17
20 227.96 107.03 616.57
30 227.96 68.86 487.03
40 272.39 52.82 272.45
50 165.87 46.47 232.82
100 57.59 26.16 123.71
200 36.51 16.36 54.16
300 14.23 10.24 40.85
400 28.65 7.3 34.19
500 36.77 4.16 30.12

158 A. Narayan et al.

3. The payment in C-BIC decreases more rapidly compared to other methods with
an increase in the number of cloud vendors, in both the scenarios. As the number
of cloud vendors increases, C-BIC outperforms both C-DSIC and C-OPT.

4. In C-DSIC, the marginal contribution is the difference between the lowest and
second lowest costs. If the marginal contribution is low, then the procurement
cost becomes high. In C-OPT, incentive is calculated as the difference between
quoted cost and highest valuation. Hence, the incentive decreases as the quoted
cost approaches highest cost valuation. Therefore the procurement costin C-DSIC
is greater than C-OPT. This is the case where marginal contribution is less but the
quoted cost nears the highest cost valuation.

5. The C-OPT procurement cost depends on the interval of the cost.

6. In sequential auctions, the cost per resource increases sequentially with the num-
ber of resources to. But that is not the case in combinatorial auctions.

7. The CABOB algorithm is scalable and was tested using various distributions like
random, uniform, decay and CATS (Combinatorial Auction Test Suite) [31].

3.6 Cloud Broker Procurement Module

The cloud broker is an intermediary between cloud user and cloud vendor. The
resource procurement mechanism is presented elsewhere [1, 2].

Consider a use case of cloud application hosting. There are a lot of cloud vendors,
with non-uniform specifications; comparing these specifications manually is very
complex. So it is very challenging for an organization to select an appropriate cloud
vendor. This is especially true in case of a large number of cloud vendors. Hence,
the selection of cloud vendors must be automated. Figure 1 is the activity diagram of
the procurement module of a cloud broker proposed in [1].

The main components of the procurement module are:

User interface: The cloud vendor presents the requirements to the cloud broker.

e Authentication Manager: This authenticates the cloud user using security methods
like Radius, etc.

e Resource requirement manager: This component performs initial screening of the
cloud user requirements. After validation, the requirements are broadcasted to the
cloud vendors.

e Auction Manager: This is the core component of the procurement module to imple-

ment the procurement mechanisms [1, 2]. The winner is determined and the pay-

ment is calculated based on the implemented mechanism. Finally, both the user
and winner are notified.

Resource Procurement, Allocation, Metering, and Pricing in Cloud Computing

Cloud broker procurement Activity /

Cloud user
submits resource

specifications

@uthentlcate Cloud usea

-SLICOGSS]

(Validate requiremenlsa

s

]:Failure]

Broadcast requirements
to cloud vendors

{ Determine winner]

Compute and distribute
payment

®

[Failure]

Fig. 1 Flow of cloud broker procurement

159

160 A. Narayan et al.

4 Cloud Resource Allocation Using Game Theory

Under-utilization of resources in server farms and on the cloud leads to heavy mon-
etary losses. These systems are huge and cost billions, and manage commerce worth
even more. The uncertainty principle of game theory is useful to model coalitions
of resources in such large distributed systems profitably. Coalitions are formed to
satisfy requests that need capabilities than what a single resource host can provide.
We devise a resource allocation mechanism for tasks with unknown arrival patterns.
Coalition formation modeled as a two-player zero-sum game and solving the payoff
matrix using the uncertainty principle of game theory avoids the application of integer
programming which has higher computational complexity. This resource allocation
mechanism, has better performance in our experiments requiring lesser time for task
allocation, reduced wastage of unused resources, and better satisfaction of requests.

Resource allocation [32] in a distributed computing environment such as server
farms and clouds which offer infrastructure as a service (IaaS), aims at mapping the
client resource requirements for processors, memory, storage, etc., with the provider’s
infrastructure, while ensuring minimum wastage and complete task performance.
Service requirements may not always be limited to the capacity of a single machine,
and thus may need multitude of machines to cooperate to provide the needed service.
Coalitions of servers in a server farm, and virtualization of resources on the cloud, are
means to ensure scalable and economic resource allocation and management. As we
speak of server farms and clouds which consist of tens of thousands of machines (or
even more), collating resources to service tasks is a complex optimization problem.

Traditional approaches to solve optimization problems such as using integer
programming have a higher complexity computationally and are untractable if we
increase the number of host machines and (or) task requests [33]. Game-theoretic
approaches simplify optimization problems by modeling the scenario as a game
between two or more players. Solving the game’s payoff matrix provides the respec-
tive strategies to be taken by the players to ensure maximum payoff which translates
to the solution to the optimization problem.

Székely and Rizzo proposed the uncertainty principle of game theory [5] to obtain
near-to-optimal solutions of two-player zero-sum games without actually solving
the payoff matrix. It is possible to model server coalition formation as multiple
two-player zero-sum games, each involving the central authority (to which the task
requests arrive from users) and a particular agent (which possesses the resources) [0,
7, 33] and use the uncertainty principle of game theory to find coalitions providing
benefits in terms of less wastage of resources. In this section the applications of this
theory to two scenarios, in which each agent can participate in a i. single coalition, and
ii. more than one coalition, are described. The two scenarios are applied on a server
farm and the cloud, respectively. Results [7] suggest the efficacy of the approach in
terms of task allocation time, wastage of resources, and request satisfaction.

Resource Procurement, Allocation, Metering, and Pricing in Cloud Computing 161

4.1 Modeling Multiagent Coalition Formation Using Game
Theory

Coalition formation among multiple agents has to occur when a requested task
requires capabilities beyond those of a single agent. Agents have to cooperate and
share resources within their coalition/group, which then is able to address the resource
requirements. A typical multiagent system which we consider for coalition formation
is described below.

Agents, S; form a set of n agents, host the resources. The resource capacity of
an agent is denoted by its capability vector, Bg,. The capability vector defines
the quantity of each resource the agent holds. These resources in a distributed
computing environment could be compute power, memory, storage etc.

e Tasks, 7, form a set of m tasks. Each task has a resource requirement vector,
which we call the necessities vector, Nz,. The quantity of minimum resources
required to complete a task is defined by the necessity vector.

e Coalitions, C;, are formed by agent combination. The resource capability of
a coalition, Dc,, is defined by the combined capability of its member agents,
i.e., D¢, = 2 vy ec, Bs;- If all the member agents are interested and agree to
form it, we say that the coalition becomes feasible.

e Payoff Matrix, A is a table which depicts the payoff which the opponent

player/ agent has to pay to the winner, in case he/she loses. Each task/ request is

associated with a payoff, Pz, whichis proportional to its resource requirements

(Pr, o< Ng,). This payoff is rewarded to the coalition which services the task

T,. Each member agent of the coalition receives a part of Py, depending on

its resource contribution to the coalition ((Ps,, C;, T;) o (Bs,, Pr;)). Higher

an agent’s contribution, higher is its payoff share.

The tasks as mentioned above may require numerous of such resources. Coalitions
of agents could satisfy such requests if their combined capability exceeds the task
requirements (i.e., Ng, T Dc,). If coalitions are formed prior to the task request
arrival, the scalability concerns of a large distributed system can be addressed, while
continuing to serve requests in a timely fashion. In order to accomplish this, we
assume that while the exact task is unknown until it arrives, the set of tasks that
can be possibly allotted to and satisfied by the agents are known. From the task list
available to the agents, they could compute the payoff they could expect for being
part of a coalition. Comparing the expected payoffs across coalitions and the tasks
that they serve, the agents could derive a preference list. A coalition offering higher
payoff to an agent features higher up in its preference list.

This scenario can be viewed as each agent playing a game with task coordinator
(the central authority) for choosing its optimal strategy, i.e., its favored coalition. The
coordinator, in turn, has to find its optimal strategy, i.e., has to ensure that the largest

162 A. Narayan et al.

possible number of requests can be serviced. The game formulation involves two
players (agent and task coordinator), and is a zero-sum game as the payoff gained by
one player is lost by the opponent. Each agent-coordinator combination has a payoff
matrix. The optimal strategies of the players are computed by solving the payoff
matrix. As each agent is selfish, it tries to forms its preferred coalition and makes
the task coordinator pay. Through iterative dominance (removal of the dominated
strategies), a list of favored coalitions can be computed. Though each agent computes
its coalition list, a coalition materializes only after a feasibility check to ensure that
all other members are interested in forming the coalition. We call the coalitions
that have passed the feasibility test but have not yet assigned to service a task as
open coalitions. Once the task arrives, an open coalition may easily be allocated to
service the task, whereby it becomes a servicing coalition.

Since agents do not have prior knowledge of the exact task specifications, and
are restricted to a possible task list, the computation of the preference list is not
straightforward. The task coordinator of the multiagent system would want that
the maximum requests be serviced, in contrast to the agents which would want
merely to be part of such coalitions that maximize their own payoffs. The pure
strategies of the agents correspond to the possible coalitions they can be part of and
that of the coordinator are the tasks that can be serviced. In the absence of exact
task specifications prior to request arrival, agents and the coordinator are ignorant
of each other’s pure strategies. This results in a situation where a mixed strategy
is favorable. Each player uses a mixed strategy. A mixed strategy is a probability
distribution assumed by the player to choose randomly among its available pure
strategies to avoid predictability. However, obtaining optimal mixed strategies for
players is computationally hard and becomes intractable as the number of players
and their strategies increase [5, 33].

4.2 Solving Multiagent Coalition Formation Using the
Uncertainty Principle of Game Theory

Heisenberg’s uncertainty principle [34] is a well-known result in physics. Its analog
in game theory gives a lower bound on the entropy of optimal strategies of zero-sum
games [5, 7]. The randomness of the optimal strategies in zero-sum games is given
in terms of J, the commutator, of maximum and minimum of the payoff matrix A
(whose entries are identified as a,, ;). The min and max operators are nonlinear and
the commutator is the extent of commutativity between them. The commutator is
defined as

0= (min max — max min)aw,z. ®)

Z w w Z

Theorem 2 (Székely and Rizzo [5]) If G(J) denotes the class of two-player, finite,
zero-sum games with commutator coefficient § and h(9) is the entropy of the two-

Resource Procurement, Allocation, Metering, and Pricing in Cloud Computing 163

point distribution (ﬁ, %), then a lower bound for entropies of optimal solutions
(x*, y*) of games in G(0) is given by

min(H (xx), H(y*)) = h(0) €))

Moreover, h(0) is the greatest lower bound. U

‘We apply the uncertainty principle of game theory for zero-sum games to prioritize
coalitions for agents. When (J = 0), a saddle point exists, the optimal strategy for
each player can be obtained via iterative removal of dominated strategies. The optimal
strategy in this case is a pure strategy. When the commutator is positive (6 > 0), a
mixed strategy is optimal, but each player is unsure of the other player’s optimal
mixed strategy. The probability mass when concentrated on fewer mixed strategies
results in a smaller entropy. The easiest mixed strategies to analyze are of two-
point distributions. The minimum entropy 4(§) occurs for the particular two-point
distribution (ﬁl%é) This means that the optimal mixed strategy is least random

when it is supported on two points with probabilities (1%6 and 1%6) [5] exactly.
The uncertainty principle of game theory offers a way to find a near-optimal mixed
strategy without actually solving the payoff matrix. Each player obtains a close to
optimal solution using this approach because it is guaranteed of an expected payoff
above a well-defined lower bound (see Theorem 2).

In each agent-coordinator game, when the value of the commutator is greater than
0, two coalitions having probabilities, 1%6 and ﬁ are added the preference list of an
agent. The game is repeated with the rest of the coalitions in the next iteration to find
the next best coalitions. This process is repeated for adding all the possible coalitions
featuring that agent in the order of preference. We form preference lists for individual
agents, rather than single near-optimal coalitions, because an agent’s most preferred
coalition may not be preferred by the other members. The rationale behind creating a
preference list is to manage with a lookup of the list to check for the feasibility of the
next coalition and to avoid full computation yet again. Ranking coalitions is akin to
the ordering the candidates in the Gale-Shapley algorithm for stable marriage [35].
Due to the non-deterministic nature and type of task requests, we may assume that
saddle points rarely occur without loss of generality with random payoff matrices [5].
Applying the uncertainty principle of game theory results in errors as low as 0.1in
98 percent of the games with random matrices [5].

4.3 Applications

The coalition formation problem is solved using the uncertainty principle of game
theory for resource allocation in server farms [6]. This in turn leads to work for
virtual machine allocation on the cloud [7]. The descriptions of the two problems
(refer Table4) and their solutions are given below.

164

Table 4 Example applications

A. Narayan et al.

Specifications | One fixed size open coalition Multiple flexible size open coalitions
Agents The n servers of the data center act as | The n host machines on the cloud act
the n agents.Each server agent has a as the n agents. Each host machine has
capability in terms of the resources a capability in terms of their number of
they host; their number of processor processor cores, physical memory and
cores, physical memory and storage. storage. The agents could be in any of
The agents could be in any of the four | the four states, i) available (not yet in a
states, i. available (not yet in a coalition) ii) open coalition (not yet
coalition) ii. open coalition (not yet assigned a task) iii) servicing coalition
assigned a task) iii. servicing coalition | (servicing a request) iv) unavailable.
(servicing a request) iv) unavailable The host machines form coalitions to
cater the VM requests
Opponent We assume that the task scheduler of | We assume that the task allocator of the
the data center is the other player in the | cloud is the other player in the game of
game of coalition formation coalition formation for VM allocation
Tasks The m tasks that the data center is The m tasks that the cloud is capable of
capable of handling is specified by the |handling is specified by the number of
quantity of resources they require. A | VMs of a particular configuration that
typical request would look like they require. It is common practice in
R = (cores, memory, storage) clouds that the available VM
describing the number of cores, configurations are previously defined.
quantity of memory and storage The clients may then request for the
required to carry out the task number of VMs of the respective
configurations. A typical request would
look like
R = (noym1, oy y2, - . . N0y Ms)
where the components are the number
of VMs of each available configuration
required to service the request
Coalitions The server agents which may be Coalitions of host machines are formed
incapable of serving a specific request | so that the number of VMs required for
on their own, form coalitions so that a task could be collectively hosted on
their combined capabilities could serve | them. The host machines prefer
the request. The servers would prefer | coalition offering higher payoffs and
to be in coalitions that would give them | that require lesser communication cost,
higher payoffs as they are monitored | i.e, closely placed VMs are better
by agents
Payoff Matrix | Each server agent-task scheduler Each host machine-task allocator

combination forms a payoff matrix.
The strategies for the server agents are
the coalitions and that of the task
scheduler are the tasks. The solution of
the payoff matrix gives the optimal
coalition rewarding the highest payoff
to the agent

combination forms a payoff matrix.
The strategies for each of the players
are the same as the other application. In
payoff calculation, we also consider the
nearness of the machines hosting the
VMs. Higher payoffs are rewarded to
the host machine coalitions that are
closer to each other

Resource Procurement, Allocation, Metering, and Pricing in Cloud Computing 165

One Agent In A Fixed Size Open Coalition

In the problem of resource allocation for requests that come to a server farm, the
coalition formation game happens between the task scheduler at the data center and
the individual servers. It is assumed that each server acts as an agent for playing the
two-player zero-sum game against the task scheduler.

It is assumed that each agent can be part of only a single open coalition and
that each coalition could only be of a fixed size, k. This means that after forming
the preferred coalition which is feasible, the agent is not available to form further
coalitions. Once a coalition is assigned a task to be served, it is dispersed only after
completion of that task.

One Agent In Flexibly Sized Multiple Open Coalitions

In the problem of virtual machine (VM) allocation for VM requests that come to a
cloud, the coalition formation game happens between the task allocator at the cloud,
and each individual host machine. It is assumed that each host machine acts as an
agent for playing the two-player zero-sum game with the task allocator. An example
of this set up is described for the Windows Azure [36] cloud is described in our
paper [7] on resource allocation for the cloud.

The virtual machine allocation proposed using this approach has the benefit of
topology awareness, as closely placed VMs can be preferred for coalitions. This
approach is also demand-aware, in the sense that since we know the configurations
of VMs that can be requested, coalitions to host VMs can be formed even before
the actual request is available. We define a number for each of the host machines
called the maximum number of simultaneous coalitions, defining the upper limit of
the concurrent coalitions that it can be part of. Unlike the other applications, an
agent is still available to form coalitions when it is servicing a request or in an open
coalition, provided the number of coalitions does not exceed the maximum. Also,
the restriction we placed on the number of agents that could be part of a coalition is
lifted. This allows host machines to be in coalitions with varied number of members.
However, in practice, it is always observed that the sizes remain within a specified
bound. This ensures that different coalition sizes are possible, while remaining within
pre-specified limits.

4.4 Algorithms

There are two major steps in the formation of open coalitions [6].

1. Calculate coalition preference: Let 1 denote the number of ready agents. An
agent can choose its coalition partners from (;:11) possibilities to form a coali-
tion of size r. Next, we calculate the expected payoff. The expected payoffs are
arranged in a matrix against the tasks from the opponent. The resulting two-player
zero-sum games are solved using the uncertainty principle of game theory. We
build the preference list that indicates an agent’s favored order to form the coali-
tions. Two high-payoff coalitions with least entropy as specified by Theorem 2

166 A. Narayan et al.

are added to the preference list in each iteration of the game between the agent
and the central authority.

2. Negotiation step: In this step, the agents check if their coalitions are feasible
according to the order in their preference list. All agents of a coalition, C; agree
to be part of it for the coalition to become feasible. If an agent’s preferred coalition
is not agreeable to others in it, the next one from its preference list is tried. C;
becomes an open coalition, on passing the feasibility check. In the server farm
scenario, an agent is removed from the set of available agents on forming an
open coalition. However, in the cloud scenario, after a machine participates in the
maximum permissible number of open coalitions, it ceases to be available and is
cleared from the list of ready machines. Once an agent is removed from the set
of available agents, the other available agents remove those coalitions involving
the not-ready agents.

Once a task is assigned to an open coalition, the agents cannot leave the coalition
until the task completion. Once formed, coalitions remain fixed in size. If none of
the existing open coalitions are capable of serving a task request when it arrives, the
central authority allocates an agent or group of ready agents. It has to ensure that
the necessary requirements of a task are met for this sudden demand. A coalition is
dissolved after task completion, and agents in that coalition update their coalitions
list. All constituent agents become available after the coalition dissolution.

Detailed descriptions of the algorithms, their proofs of correctness, and message
complexity analyses may be found elsewhere [6, 7].

4.5 Open Coalition Formation

The Open Coalition Formation Algorithm (Algorithm 6) computes the set of available
agents, in lines 2 to 4. In line 6, For each available agent, a set of coalitions that are
feasible is computed. Payoff computation for a particular coalition happens in line
9. Based on the payoffs calculated in line 9, each agent computes a preference list of
coalitions in line 10. The negotiation step to check a coalition’s feasibility among the
member agents happens in line 18. Lines 19-27 carry out the coalition formation.
On reaching the maximum list of participatable open coalitions, it is removed in
lines 31-36. If the agent can participate in only one open coalition, its number of
simultaneous coalitions is 1. The preference lists are updated for each agent in lines
37-39. The coalitions involving unavailable agents are removed here.

4.6 Coalition Dissolution

Before dissolving a coalition, the task that it is being serviced by it needs to be com-
pleted (line 2). We need the coalition and its assigned task as inputs to Algorithm 7.
Once the algorithm verifies that the assigned task is complete, the coalition is dis-

Resource Procurement, Allocation, Metering, and Pricing in Cloud Computing

167

Algorithm 6: Open Coalition Formation Algorithm

37

Data: available_agents

Data: total_agents

Result: set_coalitions

begin openCoalitionFormationAlgorithm

end

foreach agent in total_agents do

if agent.agentstatus=available then
\ add(available_agents, agent)

end

end
foreach agent in available_agents do
agent.list_potential_coalitions <— computeCoalitions(agent)

agent.list_preference <— computePrefernceList(agent.payoff_matrix)
end

while available_agents = NULL do

Counter < 0

foreach agent in available_agents do

Counter < Counter+1

agent.bestpossible <— agent.list_preference[1:Counter]

foreach coalition in agent.bestpossible do

if isfeasible(coalition) then

joinCoalition(coalition, agent)
coalition.status < OPEN
if agent.agentstatus=available then

\ changeStatus(agent, open_coalition)
end

add(set_coalitions,coalition)
end

end

end

end

foreach agent in available_agents do

if agent.cur_no_coalitions = agent.max_no_coalitions then
available_agents <— remove(available_agents, agent)
changeStatus(agent, max_coalition)

end

end

foreach agent in available_agents do
\ update(agent.list_preference)
end

end

agent.payoff_matrix < computePayoffMatrix(agent.list_potential_coalitions)

if agent.cur_no_coalitions < agent.max_no_coalitions then

agent.cur_no_coalitions <— agent.cur_no_coalitions + 1

solved and its members become available to participate in other open coalitions. This
is effected by adding the dissolved coalition’s member agents to the set of available
agents (line 4). The capabilities of the agent that were used by the coalition to be
dissolved are released (line 5). If the agent is part of no other current coalition, its
status is updated to be available. Otherwise, the number of current coalitions of the
agent is decremented by 1 (lines 6-12). The coalition is removed from the set of
coalitions (line 14) and is dissolved finally (line 15).

168 A. Narayan et al.

Algorithm 7: Coalition Dissolving Algorithm

Data: set_coalitions
Data: coalition
Data: available_agents
Data: task
1 begin coalitionDissolvingAlgorithm

2 if task.taskstatus=COMPLETE and task.id=coalition.task_id and coalition.ID = task.coalition_id then
3 foreach agent in coalition do

4 add(available_agents, agent)

5 update agent.vector_capability

6 if agent.cur_no_coalitions = 1 then

7 \ changeStatus(agent, available)

8 end

9 else

10 ‘ changeStatus(agent, open_coalition)

1 end

12 agent.cur_no_coalitions <— agent.cur_no_coalitions - 1
13 end

14 remove(set_coalitions,coalition)

15 coalition < NULL

16 end

17 end

4.7 Task Allocation Algorithm

In order to allocate a task to an open coalition, Algorithm 8 requires as input, the
task to be allocated, G ; and the set of coalitions, set_coalitions. We need to check
if the necessities of the task are satisfiable by the of the capability vector of an OPEN
coalition C;. This is done by checking if Ng, T D, (line 3). If there is a match, the
algorithm ensures that the task has not been assigned to any other coalition, before
allocating the task to the matched coalition (lines 5—7). Further, the algorithm updates
the coalition’s status is updated to ENGAGED (line 8) and the capability vectors of
the member agents (lines 9—10). If none of the open coalitions is a match, then the
task allocator is asked to do a forced allocation of the task to a group of available
agents (lines 16—17).

4.8 Experiments

We compare our cloud resource allocation mechanism with existing approaches
such as:

(i) RR-R: Round robin allocation, (RR), across the racks of servers, (R);
(i) RR-S: Round robin allocation, (RR), across the host machines, (S). Eucalyp-
tus [37], (cf. [38]) cloud uses this method as its default policy.
(iii) H-1: Hybrid policy of RR-S and RR-R. It prefers host machines from the same
rack, but limits only to select 20 host machines from the same rack.
(iv) H-2: Similar to H-1; only 10 servers from the same rack may be selected.

Resource Procurement, Allocation, Metering, and Pricing in Cloud Computing 169

Algorithm 8: Task Allocation Algorithm

Data: task
Data: set_coalitions
1 begin taskallocate
2 foreach coalition in coalitions_set do
3 if task.vector_necessity C coalition.vector_capability then
4 if task.taskstatus 2 COMPLETE then
5 if task.coalition_id=NULL and coalition.status=OPEN then
6 coalition.task_id < task.id
7
8
9

task.coalition_id < coalition_id
coalition.coalitionstatus «<— ENGAGED
foreach agent in coalition do

10 ‘ update(host_machine.vector_capability)
1 end

12 end

13 end

14 end

15 end

16 if task.coalition_id=NULL then

17 ‘ forceallocate(task)

18 end

19 end

We assume a virtual topology of 400 machines, with 100 machines of each con-
figuration in our experiments [7]. The host machines with identical configurations
are assumed to be placed adjacently. Their configurations are specified in terms of i.
number of cores (1.,¢s) and ii. hard-disk storage (hd). The following configurations
are considered: (a) ngyres = 1 core, hd = 125 GB disk storage; (b) n¢ores = 2 cores,
hd = 250 GB storage; (C) ncores = 4 cores, hd = 500 GB storage; and (d) n¢pres =
8 cores, hd = 1000 GB storage. The VM configurations are specified in terms of i.
number of cores (7 ymcores) 11. main memory capacity (mm,,,) and iii. hard-disk stor-
age (hd,,,). considered are: (i) Small (nycores = 1 core, mm,,, = 1.75 GB Memory,
hd,,, =0.22 TB Storage); (ii) Medium (72,,cores = 2 cOres, mm,,, = 3.5 GB Memory,
hd,,, = 0.48 TB Storage); (iii) Large (nymcores = 4 cores, mm,,,, = 7 GB Memory,
hd,,, = 0.98 TB Storage); and (iv) Extra Large (nymcores = 8 cores, mm,,, = 14 GB
Memory, hd,,, = 1.99 TB Storage). The four types of task requests considered are
represented as: (10, 0, 0, 0), (10, 10, 0, 0), (10, 10, 10, 0), and (10, 10, 10, 10); the
first number indicates the number of small VMs needed, the second indicates the
number of medium VMs needed, and so on. The three task sets considered are: (a)
Task set 1: 4 task requests—one each of the four types of requests (b) Task set 2:
8 task requests—two each of the four types of requests and (c) Task set 3: 12 task
requests—three instances each of the four types of requests (Figs. 2, 3, 4, 5 and 6).

Results for resource allocation on the cloud [7] suggest that this approach performs
better in terms of the task allocation time, which is the time elapsed between the
time a request is submitted to the cloud service provider, and the time of the resource
allocation (of one or more machines to host the necessary VMs) is made.

170

Fig. 2 Time for task
allocation for the different
strategies

Fig. 3 Core wastage for the
different strategies

Fig. 4 Storage wastage for
the different strategies

4.5

Task Allocation Time (ms)
~

logarithm to the base 10 of cores wasted)

45

35

25

15

05

logarithm to the base 10 of storage wasted

A. Narayan et al.

== Time for Task set 1 (ms)
~{~Time for Task set 2 (ms)

= Time for Task set 3 (ms)

CF RR-R RR-5 H1 H2
Allocation Mechanism

=#=—log(coreswasted) for Task

setl
=~ log(cores wasted) for Task
set2
== log(cores wasted) for Task
set3
CF RR-R RR-5 H1 H2

Allocation Mechanism

—4=—|og(storage wasted) for

Task set1
~—log(storage wasted) for
Task set 2
—de—log(storage wasted) for
Task set3
CF RR-R RR-S H1 H2

Allocation Mechanism

Resource Procurement, Allocation, Metering, and Pricing in Cloud Computing 171

kbg{Communication Cost)
w

2 ——Taskset 1
—=—Taskset 2
1 —=—Taskset 3
0—-
CF RR-R RR-5 H1 H2

Allocation Mechanism

Fig. 5 Communication cost for the different strategies

5 === Unassigned VM1 (Task set 1)
10 ~{= Unassigned VM2 (Task set 1)
5 == Unassigned VM3 (Task set 1)
=== |Jnassigned VM4 (Task set 1)
0 = = =
CF RR-R RR-S H1 H2
60 .
ﬁ == Unassigned VM1 (Task set 2)
-
=
E il 40 == Unassigned VM2 (Task set 2)
]
E) 20 == Unassigned VM3 (Task set 2)
“
zs === Unassigned VM4 (Task set 2)
2 0 ' =
CF RR-R RR-S H1 H2
100

-”—__’ =$= Unassigned VM1 (Task set 3)

50 I J—. ~— Unassigned VM2 (Task set 3)
o
0 . 2 == Unassigned VM3 (Task set 3)
CF RR-R RR- H1 H2 =wi== Unassigned VM4 (Task set 3)
Allocation Mechanism

Fig. 6 Number of unassigned VMs for the different strategies

It also outperforms the other allocation mechanisms as far as the resource wastage
is concerned, i.e., resources (like the number of cores and the amount of storage)
wasted are far less when this approach is used. It provides good results in the exper-
iments for comparing the number of requests satisfied (experiment details, graphs,
and comparison to other approaches are given elsewhere [7]).

172 A. Narayan et al.

5 Smart and Power-Aware Metering: An Opportunity
for Green IT

Cloud computing provides for ubiquitous access to shared computing resources
including processor cores, network, storage, GPUs and application on demand [39].
These resources can be provisioned and managed with reduced user effort. Enterprise
consumers and end users can use compute clouds for their IT needs in lieu of hosting
their own servers, thereby minimizing their in-house capital expenditure (CapEx).
Not only does cloud computing help minimize the CapEx but also it provides enor-
mous opportunity to consolidate resources and maximize utilization.

Development of virtualization as the enabling technology has resulted in cloud
computing gain momentum. At the core of the cloud computing paradigm are virtual
machines (VMs). These virtual machines are deployed on servers hosted in data
centers. Organizations typically provision multiple VM on a single bare metal server
and consolidate workloads using these VMs. Doing so has multiple advantages:

(i) compute resource utilization is maximized;

(>i1) server idle time is reduced;
(iii)) power and space utilization is reduced [40]; and
(iv) cooling requirements are reduced.

These characteristics/advantages of cloud computing provides opportunity for
Green IT.

Adopting cloud platforms in enterprise environments has its own set of challenges.
These include making decisions related to resource provisioning, virtual machine
migration, monitoring, metering, quality of service guarantees, workload placement
and consolidation, etc. Each of these aspects have been in some way addressed by the
research community. A typical cloud service management setup is shown in Fig. 7.
We provide a brief introduction to each of them in the following.

VM provisioning for reduced the power consumption is discussed by Kansal et
al. [41]. Workload placement strategy to achieve optimal energy consumption has
been discussed by Verma et al. [42] and Uddin et al. [43]. Workload consolidation
using statistical analysis has been discussed by Ganesan et al. [44]. Interested readers
can refer to these to get different perspectives of the opportunity cloud computing
provides to power researchers. The above works can be considered as solving the
problem from end user perspective (workload consolidation and placement).

In this section, we concentrate on metering mechanisms for cloud deployments.
This problem can be thought of from the service provider point of view. We like
to make a note here that the resource utilization needs of consumers are dynamic
(time-varying), which poses a challenge for metering resource consumption. This
has an implication on the service provider, in the sense that as demand increases,
the physical compute resources requirements to serve consumers also increase. As
more and more physical servers are commissioned, the power consumptions in data
centers increase.

Resource Procurement, Allocation, Metering, and Pricing in Cloud Computing 173

Cloud Service [Portability /

m t -
‘ SAESMED Interoperability

Business Provisioning / Data Portability

Support Configuration —
Customer Mgmt = Copy Date To-From
g Rapid Provisioning
| g J Rulke Nata

ntract Mgmt
RN Resource Change Service

| ’ Interoperability |
| Inventory Mgmt e) - .
Monitoring &
| = Unified Management
Cloud | Pechutiting | Repotig Interface Cloud

Consumers |

& Billing Brokers
Metering System
Portability

Reporting &

Auditing SLA Management

Pricing &
Rating

il

Fig. 7 Typical steps in cloud service management. Image courtesy [39]

We are thus interested in identifying a metering mechanism which considers
resource utilization and power consumption. To this end, we consider two separate
but related problems here. First, the different metering mechanisms in the market and
their short comings. We then describe a “smart metering” mechanism akin to smart
meters for electricity consumption. Second, given an input of electricity pricing from
power companies, we look at the possibility of pricing cloud services based on this
input.

5.1 Metering Cloud Services

On-demand resource acquisition and time-varying resource consumption are charac-
teristics of cloud resource utilization. This, coupled with multi-tenancy [45], where
multiple clients (or tenants) use resources from the same resource pool, make it
extremely important that the metering mechanism for cloud services should be robust.
Such metering mechanisms must consider resource utilization and appropriately bill
consumers for their respective utilization. In this section, we describe a model for
billing and pricing cloud services or cloud instances based on resource usage.
Prevalent mechanisms for metering and billing cloud services can be categorized
as fixed-cost pay-per-use models, or spot pricing models. The former is based mostly
on service level agreements (SLAs). Consumers are promised predefined service up-
time and availability, and billing is based on a predefined tariff plans [46, 47]. This

174 A. Narayan et al.

is the most common metering mechanism for cloud services used presently. Spot
pricing models, on the other hand, are those in which consumers pay upfront or
bid the highest amount payable for a cloud instance. In this case, consumers can
use their instances as long as the service price remains below the amount they bid.
The instances are shut down when the service price surpasses their bid. Such spot
instances are useful for batch jobs, which are not time-critical and risk tolerant.
Consumers can spawn their batch jobs and bid a sufficiently high amount for the
instance. Once the batch job finishes, the instance can be shut down.

Before dwelling into the details of the usage-based metering mechanism, we
describe a typical cloud setup. A cloud computing platform essentially consists of
the following components,

(i) cloud controller;
(i) nodes; and a
(iii) storage controller.

The cloud controller is responsible for monitoring resource availability, resource
arbitration and deploying cloud instance in the platform. Nodes in the cloud platform
are physical servers on which instances are deployed. Storage controller provides as
the data store for the platform on which virtual machine images and (optionally) local
storage is provided. It is possible to deploy storage controller service on the cloud
controller. A typical cloud setup looks similar to Fig.8. Cloud controller collects
and maintains useful information regarding the resource usage of cloud instances.
Hence, it is appropriate to place the metering module in the cloud controller.

Pricing

We propose pricing the cloud service based on the operational cost at that time
instance. The base cost incurred to host the cloud service include fixed costs such as
hardware, software licenses etc. We denote it by Cp -

The cost of running the service is a function of the load ratio (/) at time ¢. This
is denoted as 3(/, t). Load ratio is defined as the current load against the system
capacity. Using the above, we can derive the price of the cloud service at 7 as

PZZCbase Xﬂ(l,l) (10)
Once the current price is determined as above, consumers are billed based on
their resource utilization. We denote resource utilization at time ¢ by u,. Hence, the

amount billed to the consumer at time 7 is given by P; x u,. For n time intervals, the
bill amount is given by:

B:ZP, X Uy (11)
t=1

Resource Procurement, Allocation, Metering, and Pricing in Cloud Computing 175

Clients

|

Fig. 8 A typical cloud setup

Load Prediction

Service pricing is one of the determining factors for service utilization [48]. To mimic
smart meters in electricity, we provide an indicative price for cloud service based
on the predicted load for the next m time intervals. We use historical monitoring
data and an ARIMA model [49] for this purpose. We use p coefficients estimated
from the past data and p historical data points to obtain one-step-ahead prediction.
Mathematically this is given by

X =ix1+ex o+ L+epx+t—p (12)

where x; are the historical utilization data points, X is the one-step-ahead prediction
and (; are the estimated coefficients. In our implementation, we use past four hours
of data (collected at 15 min intervals) to predict load at the next time instance.
The empirically determined differencing order of eight gives prediction accuracy of
96%. Thus in our implementation ARIMA model reduces to AR(8). We use ARIMA
implementation in the R statistical tool [50] for the prediction.

176 A. Narayan et al.

The predicted load from (12) is used in (11) to get the indicative resource pricing
for the next time instance. This indicative price is made available to consumers to
choose between continuing the service usage or terminating the instance.

Resource Monitoring

Resource monitoring is an essential component of smart metering. We can make use
of data center monitoring frameworks like Nagios' or Hyperic SIGAR? to obtain
resource utilization. We need utilization data for (i) the individual cloud instances,
and (ii) the hosting servers. We store the monitored resource utilization and pre-
dicted price. Resource utilization is then used to bill consumers at the end of the
instance lifetime or at fixed intervals (like monthly bills). Implementation details
and experimental evidence of the hitherto described metering mechanism can be
found in [8].

5.2 Power-Aware Metering

In the previous section, we considered the problem of metering the cloud service
based on resource usage. Maintaining our focus on green IT, we discuss a metering
mechanism that prices cloud services based on the input electricity cost (hence,
making it power-aware) in what follows. From a service provider point of view, the
operational expense (OpEx), majority of which is electricity cost, is much larger than
the CapEx [51-53]. Hence, it is important to consider the input cost of electricity
while pricing cloud services. With the advent and wide spread use of electricity
smart meters, and time-varying electricity costs this problem is of particular interest
in moving toward green IT. Power-aware metering mechanism enables compute
infrastructure and smart grid managers to work together and help enforce policies to
charge consumers based on the power consumed by their instances.

In order to price cloud services based on input electricity cost, we need to calculate
the power consumed by each cloud instance. To this end, we describe a model for
power consumption of cloud instances. Next, we describe a cost model which is
aligned with the dynamic electricity price provided by a smart grid. Using these two,
we generate a price model for cloud service based on the input electricity cost. A
schematic representation of the power-aware cloud metering architecture is as shown
in Fig.9.

Cloud Instance Power Consumption Model
We first introduce power consumption models for servers and then follow up the
discussion with power consumption models for cloud instances. Power models for

servers can be categorized as (i) server component’s power model and (ii) full system
power model.

Uhttp://www.nagios.org/.
Zhttp://www.hyperic.com/products/sigar.

http://www.nagios.org/
http://www.hyperic.com/products/sigar

Resource Procurement, Allocation, Metering, and Pricing in Cloud Computing 177

Cloud
Infrastructure

) Resource
Power Grid ., Utilization
E Data
Sy o - Power Aware Cloud gill
g ,E/’, e Metering *

4 T Electricity

s L ' | Cost From
/J VaY. Polwer

L e Grid

Fig. 9 Power-Aware cloud metering architecture

Researchers have obtained accurate power consumption characterization of CPU
and memory subsystems using component specific power models like [54, 55].
Though accurate, these power models fall short in characterizing full system power
consumption in the sense that, (i) they introduce extreme levels of approximation,
and/or (ii) using different models for different subsystems increases the metering
complexity. Hence we need to look at the system as a whole and determine the
power consumption.

The underlying idea of full system power models is that the total power consump-
tion is a linear sum of individual components in the system, i.e.,

Piotai = Piate +a1Pcpu + @2 Puem + 3 Pip + Q5 Py (13)

where «; is an appropriately selected scaling factor for each component.

Full system power modeling can be achieved by various methods which can be
categorized as (i) experimental analysis and power characterization, and (ii) analyt-
ically determining power consumption.

In the first case, determining power consumption of every component individually
and then obtaining the system level power consumption as a weighted sum of these
components are common [56, 57]. These methods usually need an offline calibration

178 A. Narayan et al.

run before it can be used in enterprise cloud metering and are specific to a particular
class of systems.

Analytic models on the other hand use system power rating and resource utilization
to determine the power consumed. Resource utilization can be determined using
processor performance events and corresponding CPU performance counters [58].
However, in reality, polling for performance counter data frequently may reduce the
system efficiency. In a different approach, the weight factor (o; in (13)) is the ratio
resource utilization i model is described in [59]. The power consumption is hence

_rated capacity
given by,

Ucpu Umem Uio Unet
Ptntal =B + (Ccpu) MC[m + (Cmem) Mmem + (Ci()) Mto + (Cnet) Mnet
1
where B is the idle power consumption by the server, M; is the measure of power
consumption of cpu/memory/io/network subsystem when at full capacity; U is the
utilization and C the capacity. A more detailed description of various power models
can be found in [9].

We use (14) to obtain the cloud instance power consumption. It is to be noted
that thus far it is impossible to obtain VM (or cloud instance) power consumption.
Secondly, research has shown that when there is a one-to-one mapping between a
virtual CPU and a physical CPU via threads, power consumption of VM follows
the hosting hardware’s power consumption [60]. Virtualization technologies such as
kvm [61], which are commonly used in cloud computing, normally spawn VMs as
independent threads on hosting hardware. The instance power model below is based
on these observations.

Consider the clould instance j; let the resource utilization be u; for some resource
i. From (14), we get the cloud instance power consumption model as follows.

Ucpu Umem Ujo Uper
Pj= C Mcpu + C Mpem + C_ M;, + Cout Mo (15)
cpu mem io ne

where M; and C; have the same meaning as in (14). It has been shown that the network
and i/o components consume negligible power [62]. Hence, they can be ignored
in (15). Findings in [62] also show that processor subsystem accounts for 85% and
memory accounts for ~ 10% of the total system power consumption. Hence, we
arrive at the following relation between memory and processor power consumption:
Pyem = 0.11P,,,. Thus, (16) gives the power consumed by cloud instance ;.

pj= (g”) Mepy + (Z’""’) Mypem = 1.11 ((Z—") MW) (16)
cpu mem cpu

We can arrive at the power consumed by the cloud hosting data center as, P.,,q =
B+ j Pj» where B is the idle power consumption of the hosting infrastructure.

Resource Procurement, Allocation, Metering, and Pricing in Cloud Computing 179

Economic Model

We first derive the operating cost as a function of the electricity price (input from
the power grid) and resource utilization. Let & be the electricity cost given by the
power grid, and B denote the base cost incurred, which includes license, hardware
and maintenance costs. The cost of cloud service at time # (C,) is given by (17)

Ct =%+ 5 . Pcloud (17)

When we know the infrastructure capacity, we can divide the base cost of hosting
the service (¥B) among the cloud instances hosted. This forms the fixed price (¢)
consumers pay. A component of the price varies based on the utilization and we
include a balance factor to reduce the separation between resource demand and
availability. The price per cloud instance at time # is given in (18).

. C,

J

where C is the total resource capacity; scale factor, k£ and penalty multiplier, o are
constants that depend on market economics. Equation (18) ensures:

e Service provider is not burdened by various fee like license, maintenance etc., via
the term ¢.

e (C—> ;uj) is high when the utilization is low. Hence the instance price is
reduced, encouraging consumers to avail additional services.

e Conversely, when the resource utilization is high, the balance factor is low.
Hence instance price increases. This discourages consumers from deploying more
instances or requesting additional capacity.

e The cost of electricity is considered (via C;) and customers are charged based on
their resource utilization.

Equation (18) captures the price at any time interval ¢, hence the total bill for
instance j (B) is given by,

B=>p(.0 (19)

Experimental Evidence

We deployed a Eucalyptus® cloud running Ubuntu Linux* similar to the one shown
in Fig.8. Ubuntu server was deployed on the instances. Resource utilization was
monitored using Hyperic SIGAR framework. As a part of the experiment, real time

3hitps://www.eucalyptus.com/.
“https://www.ubuntu.com/cloud.

https://www.eucalyptus.com/
https://www.ubuntu.com/cloud

180 A. Narayan et al.

w
o

Ll
w

—y
v

Electricity Cost ($/MWh)
S

Fig. 10 Variation of electricity cost. Image courtesy [9]

504
—WL1 —WwL2 WL3 —WL4

Utilization

Time of day

Fig. 11 Resource utilization pattern. Image courtesy [9]

electricity cost from PJM Interconnect® was supplied as input to the metering appli-
cation. Variation of the cost of electricity is as shown in Fig. 10.

We deployed four workloads WLI1, WL2, WL3,and WL4 on four cloud
instances. These represent typical workload on the cloud with a good mix of compute
intensive (W L1 and W L3) and moderate (W L2 and W L4) workloads. Workload
characteristics are shown in Fig. 11. Notice that W L1 and W L3 reach peak utilization
frequently.

We deployed the metering mechanism described above and provided as input
the data presented in Figs. 10 and 11. Resource utilization and corresponding cloud
service price were calculated as per Eqgs. (16) and (18). The output (for a subset of
the input data) is observed in Fig. 12. A more detailed description of the experiments
and results can be found in earlier work [9].

Shttps://www.edata.pjm.com/eData/index.html.

https://www.edata.pjm.com/eData/index.html

Resource Procurement, Allocation, Metering, and Pricing in Cloud Computing 181

100
e 2 —
--- Utilization: WL1 — Price: WL1 (Dollars per hour) £
90 0 &
pis
--- Utilization: WL2 ——Price: WL2 (Dollars per hour) o]
80 =
25 o
W
§ 70 k!
= c
N 60 4 20 &
3 =
o 50 £
15
g £
40 1
2 2 H M i
33 " A r‘ [1 4
it n n 1y [n
o 30 e 11 H 1 10 o
P 1 'y 0! I o
Py rak Fat i [[>
v - \
20 = T N\ i F—% f l: - : ‘S
r'.',) Log \\ ,"\ e ;l I‘. _'I ,‘I('\\ /’ H ;’A' MOV |". | 5 ﬁ
0 A AR TSV W AT o7t i) VoA @
! ' v i -y i 2
._‘f.’:/‘_,.-——— b Y ‘_,",’.--1 = ":___ . _‘_,,_‘,ur_‘__ oy
0 0
o O O O 0 0O 0O 0O 0O 0O 0 0O 0 0 0 00 0O 0O 0O 0O 0O
conomomohomononhononaoagnohn
w | OO AN MMM ST S oW W w P~ oo
L B B B R I B B = B o B B B B = o B o B B
Time of day

Fig.12 Service price varies according to resource utilization and electricity cost. Image courtesy [9]

6 Conclusion

Currently, cloud users pay a fixed price for resources or services. This type of pricing
is called fixed pricing. Fixed pricing is very popular with telecom providers as it does
not require any complex models and is easy to implement. On the flip side, it does
not allow for any provision for incentives for users (as might be desirable for load
leveling, better utilization, etc.). Resource procurement, being presently done manu-
ally, is slow, inefficient, and error-prone. It needs to be automated and to incorporate
models that permit dynamic pricing. Resource procurement with dynamic pricing is
not only an important problem in cloud computing but is also an unexplored area.
The models and approaches suggested here thus permit cloud vendors and brokers to
meet an important need, while improving the speed and efficiency of resource pro-
curement. Cloud users will also benefit, as they will be able to procure their requested
combinations of resources at an economical price, compared to procuring the same
sequentially. Thus, our work has value for both the service provider and the cloud
user with a win-win situation for both parties in a system using our approach.
Resource allocation is another problem yet to be fully addressed in cloud systems,
as existing approaches do not do well enough at avoiding under-utilization of the allo-
cated resources. In order to satisfy task requests needing more than a single machine’s
resource capability, multiple machines have to collaborate. Through virtualization,
we propose an approach that configures VMs on the cloud that are actually coali-
tions of the underlying host machines. We present an approach to model coalition
formation among machines on the cloud. In our approach, we solve the optimiza-
tion problem of forming the best coalitions using the uncertainty principle of game

182 A. Narayan et al.

theory. Our mechanism is suitable for the resource allocation of tasks with unknown
arrival patterns. The advantage of our approach is that we avoid the complexities
of integer programming to solve our optimal resource allocation problem, but find
mixed strategies that are close to optimal in most cases. We experimentally verified
our approach and it performed better with lesser task allocation time, lower resource
wastage and higher request satisfaction compared to exisiting allocation strategies
on the cloud.

Finally, we also address the problem of considering electrical power costs in cloud
usage and metering. To this end, we use the input cost of electricity from smart gird,
cloud service utilization, and consumer resource utilization to develop a power-aware
cloud metering mechanism. We show how to use this relation to achieve a dynamic
tariff model for cloud services. This work is relevant particularly in IaaS clouds,
which can operate in the presence of smart grids for electricity distribution, and
new/forthcoming green power technologies.

7 Open Research Problems

The following are some of the important problems we consider as being worthy of
attention.

In Cloud Resource Procurement:

Most works on cloud computing auction make some assumptions about the proba-
bility distributions of user bids, which at best is an oversimplification and at worst
is grossly erroneous. In reality, each user can bid from a different distribution, and
existing mechanisms are not optimal when the distribution used is different from
that which was assumed. It is very important to develop mechanisms which retain
optimality despite the change in probability distribution.

In federated or hybrid cloud computing, service providers will collude among
themselves for providing cloud services and resources. It is extremely important
to devise fair profit sharing mechanisms for service providers. Unfairness not only
affects the profits but also the coalitions of service providers. We believe that these
problems are really important for the successful deployment of cloud services,
besides offering fertile ground for theoretical development.

In Cloud Resource Allocation:

There are other open challenges in the area of optimal cloud resource allocation.
In this chapter, we primarily focused on the IaaS cloud model, but the same can
be extended to incorporate a unifying approach that works for other cloud models
such as PaaS, SaaS and the like. Another direction to extend the work is to include
a mechanism that could predict the kind of task requests based on a history of such
requests. We could involve a more active learning approach, that constantly updates
the allocation strategy while keeping in view the task arrival patterns.

Resource Procurement, Allocation, Metering, and Pricing in Cloud Computing 183

In Cloud Metering and Pricing Based on Power and Usage:

As future work, the power-aware metering mechanism proposed here can be enhanced
to incorporate predictive pricing for cloud services.

On the basis of the mechanisms developed in this work, we can build systems
that achieve power-aware scheduling of cloud instances. This is one of the directly
added advantages of having a power consumption model in place. We can enhance
the proposed cloud pricing mechanisms by incorporating information on incoming
request volume. One of the ways this can be achieved is by modeling user request as a
stochastic process. The current metering mechanism we proposed does not consider
any specific SLA requirements, but is based on current utilization and the electricity
cost. One of the directions to extend this work would, therefore, be to include SLA
requirements and generate pricing based on different service levels desirable for both
providers and consumers.

References

1. Prasad, A. S., & Rao, S. (2014). A mechanism design approach to resource procurement in
cloud computing. IEEE Transactions on Computers, 63(1), 17-30. https://doi.org/10.1109/TC.
2013.106.

2. Prasad, G. V., Prasad, A. S., & Rao, S. (2017). A combinatorial auction mechanism for
multiple resource procurement in cloud computing. IEEE Transactions on Cloud Comput-
ing. https://doi.org/10.1109/TCC.2016.2541150, supersedes https://doi.org/10.1109/10.1109/
ISDA.2012.6416561.

3. S. Parsons, J. A. Rodriguez-Aguilar, & Klein, M. (2011, January). Auctions and bidding:
A guide for computer scientists. ACM Computing Surveys, 43(2). https://doi.org/10.1145/
1883612.1883617.

4. Nisan, N., & Ronen, A. (2001). Algorithmic mechanism design. Games and Economic Behav-
ior, 35(1-2), 166-196.

5. Székely, G., & Rizzo, M. L. (2007). The uncertainty principle of game theory. The American
Mathematical Monthly, 114, 688-702.

6. Pillai, P. S., & Rao, S. (2013). A resource allocation mechanism using coalition formation and
the uncertainty principle of game theory. In 7th annual IEEE international systems conference
(IEEE SysCon 2013), (pp- 178-184). Orlando, FL, April 2013. https://doi.org/10.1109/SysCon.
2013.6549878.

7. Pillai, P. S., & Rao, S. (2016). Resource allocation in cloud computing using the uncertainty
principle of game theory. The IEEE Systems Journal, 10(2), 637-648. https://doi.org/10.1109/
JSYST.2014.2314861.

8. Narayan, A., Rao, S., Ranjan, G., & Dheenadayalan, K. (2012, March). Smart metering of
cloud services. In 6th annual IEEE international systems conference (IEEE SysCon. 2012).
BC, Canada: Vancouver. https://doi.org/10.1109/SysCon.2012.6189462.

9. Narayan, A., & Rao, S. (2014, September). Power-aware cloud metering. /[EEE Transactions
on Services Computing 440—451. https://doi.org/10.1109/TSC.2013.22.

10. Mas-Colell, A., Whinston, M. D., Green, J. R. (1995, June). Microeconomic theory. Oxford
University Press.

11. Myerson, R. B. (1981). Optimal auction design. Mathematics of Operations Research, 6(1),
58-73.

12. Mithani, M. F,, Salsburg, M., & Rao, S. (2010). A decision support system for moving workloads
to public clouds. GSTF International Journal on Computing, 1(1), 150-157. https://doi.org/
10.5176_2010-2283_1.1.25.

https://doi.org/10.1109/TC.2013.106
https://doi.org/10.1109/TC.2013.106
https://doi.org/10.1109/TCC.2016.2541150
https://doi.org/10.1109/10.1109/ISDA.2012.6416561
https://doi.org/10.1109/10.1109/ISDA.2012.6416561
https://doi.org/10.1145/1883612.1883617
https://doi.org/10.1145/1883612.1883617
https://doi.org/10.1109/SysCon.2013.6549878
https://doi.org/10.1109/SysCon.2013.6549878
https://doi.org/10.1109/JSYST.2014.2314861
https://doi.org/10.1109/JSYST.2014.2314861
https://doi.org/10.1109/SysCon.2012.6189462
https://doi.org/10.1109/TSC.2013.22
https://doi.org/10.5176_2010-2283_1.1.25
https://doi.org/10.5176_2010-2283_1.1.25

184 A. Narayan et al.

13. Bichler, M., Kalagnanam, J., Katircioglu, K., King, A. J., Lawrence, R. D., & Lee, H. S.,
et al. (2002). Applications of flexible pricing in business-to-business electronic commerce.
IBM System Journal, 41(2), 287-302.

14. Narahari, Y., Raju, C., Ravikumar, K., & Shah, S. (2005). Dynamic pricing models for electronic
business. Sadhana, 30, 231-256.

15. lyengar, G., & Kumar, A. (2008). Optimal procurement mechanisms for divisible goods with
capacitated suppliers. Review of Economic Design, 12(2), 129—-154.

16. Buyya, R., Abramson, D., Giddy, J., & Stockinger, H. (2002). Economic models for resource
management and scheduling in Grid computing. Concurrency and Computation: Practice and
Experience, 14(13-15), 1507-1542.

17. Narahari, Y., Garg, D., Narayanam, R., & Prakash, H. (2009). Game theoretic problems in
network economics and mechanism design solutions. Springer.

18. Li Mingbiao, L.J., & Shengli, X. (2007). Posted price model based on grs and its optimization
using in grid resource allocation. In International conference on wireless communications,
networking and mobile computing, 2007. WiCom 2007, September 2007 (pp. 3172-3175).

19. Subramoniam, K., Maheswaran, M., & Toulouse, M. (2000). Towards a micro-economic model
for resource allocation in grid computing systems. In Canadian conference on electrical and
computer engineering, 2002. IEEE CCECE 2002 (Vol. 2, 2002, pp. 782-785).

20. Parsa, S., Shokri, A., & Nourossana, S. (2009). A novel market based grid resource allocation
algorithm. In First international conference on networked digital technologies, 2009. NDT *09,
July 2009 (pp. 146-152).

21. Lin, W.-Y,, Lin, G.-Y., & Wei, H.-Y. (2010). Dynamic auction mechanism for cloud resource
allocation. In CCGRID ’10: Proceedings of the 2010 10th IEEE/ACM international conference
on cluster, cloud and grid computing (pp. 591-592). Washington, DC, USA: IEEE Computer
Society.

22. Rochwerger, B., Tordsson, J., Ragusa, C., Breitgand, D., Clayman, S., & Epstein, A., et al.
(2011, March). RESERVOIR—when one cloud is not enough. IEEE Computer.

23. Hwang, C., & Yoon, K. (1981). Multiple attribute decision making: Methods and applications.
Springer.

24. Saaty, T. (1980). The analytic hierarchy process, planning, piority setting, resource allocation.
New York: McGraw-Hill.

25. Shoham, Y., & Leyton-Brown, K. (2008, December). Multiagent systems: Algorithmic, game-
theoretic, and logical foundations. Cambridge University Press.

26. Gibbard, A. (1973). Manipulation of voting schemes: A general result. Econometrica, 41(4),
587-601. https://doi.org/10.2307/1914083.

27. d’Aspremont, C., & Gérard-Varet, L.-A. (1979). Incentives and incomplete information. Jour-
nal of Public Economics, 11(1), 25-45.

28. Katzman, B., Reif, J., & Schwartz, J. A. (2010). The relation between variance and information
rent in auctions. International Journal of Industrial Organization, 28(2), 127-130.

29. Vries, S. D., & Vohra, R. (2000). Combinatorial auctions: A survey, Northwestern University,
Center for Mathematical Studies in Economics and Management Science, Discussion Papers,
2000. http://EconPapers.repec.org/RePEc:nwu:cmsems: 1296

30. Sandholm, T., & Suri, S. (2000). Improved algorithms for optimal winner determination in
combinatorial auctions and generalizations. In Proceedings of the seventeenth national con-
ference on artificial intelligence and twelfth conference on innovative applications of artificial
intelligence (pp. 90-97). AAAI Press.

31. Sandholm, T. (2002). Algorithm for optimal winner determination in combinatorial auctions.
Artificial Intelligence, 135(12), 1-54.

32. Goncalves, G.E., Endo, P. T., & Damasceno, T. (2011). Resource allocation in clouds: Concepts,
tools and research challenges. In 29th Simpdsio Brasileiro de Redes de Computadores.

33. Enumula, P. K. (2008, June). Coalition formation in multi-agent systems with uncertain task
information. Master’s thesis, International Institute of Information Technology—Bangalore.

34. Heisenberg, W. (1927). Uber den anschaulichen Inhalt der quantentheoretischen Kinematik und
Mechanik. Zeitschrift fiir Physik, 43(3—4), 172-198. https://doi.org/10.1007/BF01397280.

https://doi.org/10.2307/1914083
http://EconPapers.repec.org/RePEc:nwu:cmsems:1296
https://doi.org/10.1007/BF01397280

Resource Procurement, Allocation, Metering, and Pricing in Cloud Computing 185

35.

36.
37.

38.

39.

40.

41.

42.

43.

44,

45.

46.
. Rackspace cloud servers: Pricing. Retrieved from http://www.goo.gl/6wMnvg.
48.
49.
50.
. Barroso, L. A. (2005). The price of performance. ACM Queue, 3(7), 48-53.
52.

53.

54.

55.

56.

57.

Gale, D., & Shapley, L. S. (1962). College admissions and the stability of marriage. The
American Mathematical Monthly, 69(1), 9-15.

Windows Azure. Retrieved June, 2013, from http://www.windowsazure.com.

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., & Zagorodnov,
D. (2009). The Eucalyptus open-source cloud-computing system. In Ninth IEEE/ACM inter-
national symposium on cluster computing and the grid (CCGrid 2009) (pp. 124—131). https://
doi.org/10.1109/CCGRID.2009.93.

Ristenpart, T., Tromer, E., Shacham, H., & Savage, S. (2009). Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In Sixteenth ACM conference
on computer and communications security (CCS ’09) (pp. 199-212). https://doi.org/10.1145/
1653662.1653687.

Pritzker, P., & Gallagher, P. (2013, July). NIST cloud computing standards roadmap (pp. S00—
291). NIST Special Publication.

Abood, D., Murdoch, R., N’Diay, S., Albano, D., Kofmehl, A., & Tung, T. (2010). Cloud
computing and sustainability: The environmental benefits of moving to the cloud. Accenture
in Collaboration with WSP Environment and Energy, Technical report. Retrieved from http://
www.goo.gl/4QNigm.

Kansal, A., Zhao, F,, Liu, J., Kothari, N., & Bhattacharya, A.A. (2010). Virtual machine power
metering and provisioning. In Proceedings of the first ACM symposium on cloud computing,
ser. SoCC "10 (pp. 39-50). ACM. https://doi.org/10.1145/1807128.1807136.

Verma, A., Dasgupta, G., Nayak, T. K., De, P., & Kothari, R. (2009). Server workload analy-
sis for power minimization using consolidation. In Proceedings of the 2009 USENIX annual
technical conference, ser. USENIX’09 (p. 28). USENIX Association.

Uddin, M., & Rahman, A. A. (2010). Server consolidation: An approach to make data centers
energy efficient and green. CoRR. arXiv:1010.5037.

Ganesan, R., Sarkar, S., & Narayan, A. (2012). Analysis of SAAS business platform workloads
for sizing and collocation. In 2012 IEEE 5th international conference on cloud computing
(CLOUD) (pp. 868-875). IEEE.

Bezemer, C.-P., Zaidman, A., Platzbeecker, B., Hurkmans, T., & Hart, A. (2010). Enabling
multi-tenancy: An industrial experience report. In 2010 IEEE international conference on
software maintenance (ICSM) pp. 1-8. IEEE.

Amazon EC2 pricing. Retrieved from http://www.goo.gl/ysnlIAf.

CSC Cloud Usage Index (2011, December). CSC, Technical report. Retrieved from http://
www.goo.gl/SAoUqg4.

Box, G. E., Jenkins, G. M., & Reinsel, G. C. (2013). Time series analysis: Forecasting and
control. Wiley.

The R Project for Statistical Computing. Retrieved from http://www.r-project.org/.

Curtis, P. M. (2007). Maintaining mission critical systems in a 24/7 environment. Wiley-IEEE
Press. ISBN: 978-0471683742.

Brill, K. (2008, November). Understanding the true cost of operating a server. Facilities-
net. Retrieved from http://www.facilitiesnet.com/datacenters/article/Understanding- the-True-
Cost-of-Operating-a-Server--10063

Ranganathan, P., Leech, P., Irwin, D., & Chase, J. (2006). Ensemble-level power management
for dense blade servers. SIGARCH Computer Architecture News, 34(2), 66—77. https://doi.org/
10.1145/1150019.1136492.

Deng, Q., Meisner, D., Ramos, L., Wenisch, T. F.,, & Bianchini, R. (2011). Memscale: active
low-power modes for main memory. SIGARCH Computer Architecture News, 39(1), 225-238.
https://doi.org/10.1145/1961295.1950392.

Economou, D., Rivoire, S., & Kozyrakis, C. (2006). Full-system power analysis and modeling
for server environments. In In workshop on modeling benchmarking and simulation (MOBS).
Krishnan, B., Amur, H., Gavrilovska, A., & Schwan, K. (2011). Vm power metering: Feasibility
and challenges. SIGMETRICS Performance Evaluation Review, 38(3), 56—60. https://doi.org/
10.1145/1925019.1925031.

http://www.windowsazure.com
https://doi.org/10.1109/CCGRID.2009.93
https://doi.org/10.1109/CCGRID.2009.93
https://doi.org/10.1145/1653662.1653687
https://doi.org/10.1145/1653662.1653687
http://www.goo.gl/4QNigm
http://www.goo.gl/4QNigm
https://doi.org/10.1145/1807128.1807136
http://arxiv.org/abs/1010.5037
http://www.goo.gl/ysnIAf
http://www.goo.gl/6wMnvg
http://www.goo.gl/SAoUq4
http://www.goo.gl/SAoUq4
http://www.r-project.org/
http://www.facilitiesnet.com/datacenters/article/Understanding-the-True-Cost-of-Operating-a-Server--10063
http://www.facilitiesnet.com/datacenters/article/Understanding-the-True-Cost-of-Operating-a-Server--10063
https://doi.org/10.1145/1150019.1136492
https://doi.org/10.1145/1150019.1136492
https://doi.org/10.1145/1961295.1950392
https://doi.org/10.1145/1925019.1925031
https://doi.org/10.1145/1925019.1925031

186 A. Narayan et al.

58. Bircher, W., & John, L. (2012). Complete system power estimation using processor performance
events. IEEE Transactions on Computers, 61(4), 563-577. https://doi.org/10.1109/TC.2011.
47.

59. Heath, T., Diniz, B., Carrera, E. V., Meira, W., Jr., & Bianchini, R. (2005). Energy conservation
in heterogeneous server clusters. In Proceedings of the tenth ACM SIGPLAN symposium on
principles and practice of parallel programming, ser. PPoPP *05 (pp. 186-195). ACM. https://
doi.org/10.1145/1065944.1065969.

60. Chen, Q., Grosso, P., van der Veldt, K., de Laat, C., Hofman, R., & Bal, H. (2011, December).
Profiling energy consumption of VMS for green cloud computing. In 2011 IEEE Ninth Interna-
tional Conference on Dependable, Autonomic and Secure Computing (DASC) (pp. 768-775).
https://doi.org/10.1109/DASC.2011.131.

61. Kivity, A., Kamay, Y., Laor, D., Lublin, U., & Liguori, A. (2007). KVM: The linux virtual
machine monitor. Technical report. Retrieved from http:/www.goo.gl/P20ueu.

62. McCullough, J. C., Agarwal, Y., Chandrashekar, J., Kuppuswamy, S., Snoeren, A. C., & Gupta,
R. K. (2011). Evaluating the effectiveness of model-based power characterization. In Proceed-
ings of the 2011 USENIX conference on USENIX annual technical conference, ser. USENIX-
ATC’11 (pp. 12-12). USENIX Association.

https://doi.org/10.1109/TC.2011.47
https://doi.org/10.1109/TC.2011.47
https://doi.org/10.1145/1065944.1065969
https://doi.org/10.1145/1065944.1065969
https://doi.org/10.1109/DASC.2011.131
http://www.goo.gl/P20ueu

Dynamic Selection of Virtual Machines for
Application Servers in Cloud Environments

Nikolay Grozev and Rajkumar Buyya

Abstract Autoscaling is a hallmark of cloud computing as it allows flexible
just-in-time allocation and release of computational resources in response to dynamic
and often unpredictable workloads. This is especially important for web applications,
whose workload is time dependent and prone to flash crowds. Most of them follow
the 3-tier architectural pattern, and are divided into presentation, application/domain
and data layers. In this work, we focus on the application layer. Reactive autoscal-
ing policies of the type “Instantiate a new Virtual Machine (VM) when the average
server CPU utilisation reaches X% have been used successfully since the dawn of
cloud computing. But which VM type is the most suitable for the specific applica-
tion at the moment remains an open question. In this work, we propose an approach
for dynamic VM type selection. It uses a combination of online machine learning
techniques, works in real time and adapts to changes in the users’ workload patterns,
application changes as well as middleware upgrades and reconfigurations. We have
developed a prototype, which we tested with the CloudStone benchmark deployed
on AWS EC2. Results show that our method quickly adapts to workload changes
and reduces the total cost compared to the industry standard approach.

1 Introduction

Cloud computing is a disruptive IT model allowing enterprises to focus on their
core business activities. Instead of investing in their own IT infrastructures, they
can now rent ready-to-use preconfigured virtual resources from cloud providers in a
“pay-as-you-go” manner. Organisations relying on fixed size private infrastructures
often realise it can not match their dynamic needs, thus frequently being either

N. Grozev - R. Buyya (X))

Cloud Computing and Distributed Systems (CLOUDS) Laboratory,

School of Computing and Inforamtion Systems, The University of Melbourne,
Melbourne, VIC, Australia

e-mail: rbuyya@unimelb.edu.au

N. Grozev
e-mail: anadjaran @unimelb.edu.au

© Springer Nature Singapore Pte Ltd. 2017 187
S. Chaudhary et al. (eds.), Research Advances in Cloud Computing,
DOI 10.1007/978-981-10-5026-8_8

188 N. Grozev and R. Buyya

under or overutilised. In contrast, in a cloud environment one can automatically
acquire or release resources as they are needed—a distinctive characteristic known
as autoscaling.

This is especially important for large-scale web applications, since the number
of users fluctuates over time and is prone to flash crowds as a result of marketing
campaigns and product releases. Most such applications follow the 3-tier architectural
pattern and are divided in three standard layers/tiers [1, 18, 32]:

e Presentation Layer—the end user interface.

e Business/Domain Layer—implements the business logic. Hosted in one or sev-
eral Application Servers (AS).

e Data Layer—manages the persistent data. Deployed in one or several Database
(DB) servers.

A user interacts with the presentation layer, which redirects the requests to an AS
which in turn can access the data layer. The presentation layer is executed on the
client’s side (e.g. in a browser) and thus scalability is not an issue. Scaling the DB
layer is a notorious challenge, since system architects have to balance between con-
sistency, availability and partition tolerance following the results of the CAP theorem
[5, 6]. This field has already been well explored (Cattel surveys more than 20 related
projects [8]). Furthermore, Google has published about their new database which
scales within and across data centres without violating transaction consistency [13].
Hence data layer scaling is beyond the scope of our work.

In general, autoscaling the Application Servers (AS) is comparatively straight-
forward. In an Infrastructure as a Service (IaaS) cloud environment, the AS VMs
are deployed “behind” a load balancer which redirects the incoming requests among
them. Whenever the servers’ capacity is insufficient, one or several new AS VMs are
provisioned and associated with the load balancer and the DB layer—see Fig. 1.

But what should be the type of the new AS VM ? Most major cloud providers like
Amazon EC2 and Google Compute Engine offer a predefined set of VM types with
different performance capacities and prices. Currently, system engineers “hardcode”
preselected VM types in the autoscaling rules based on their intuition or at best on
historical performance observations. However, user workload characteristics vary
over time leading to constantly evolving AS capacity requirements. For example, the
proportion of browsing, bidding and buying requests in an e-commerce system can
change significantly during a holiday season, which can change the server utilisation
patterns. Middleware and operating system updates and reconfigurations can lead to
changes in the utilisation patterns as well [9]. This can also happen as a result of
releasing new application features or updates.

Moreover, VM performance can vary significantly over time because of other
VMs collocated on the same physical host causing resource contentions [14, 34,
39]. Hence even VM instances of the same type can perform very differently. From
the viewpoint of the cloud’s client, this cannot be predicted.

To illustrate better, let us consider a large-scale web application with hundreds of
dedicated AS VMs. Its engineers can analyse historical performance data to specify
the most appropriate VM type in the autoscaling rules. However, they will have to

Dynamic Selection of Virtual Machines for Application ... 189

Presentation
Layer

{ . Load
‘&’ Balancer

Application Application Application}
Server Server Server i
VM - m1.small VM - m1.small VM -2

Domain Layer

- DB
~ — Server

VM - hs1.8xlarge

AN T—

Fig. 1 A 3-tier application in Cloud. Whenever the autoscaling conditions are activated, a new
application server should be provisioned. In this work, we select the optimal VM type for the
purpose

Data Layer

reconsider their choice every time a new feature or a system upgrade is deployed.
They will also have to constantly monitor for workload pattern changes and to react
by adjusting the austoscaling rules. Given that VM performance capacities also vary
over time, the job of selecting the most suitable VM type becomes practically unman-
ageable. This can result in significant financial losses, because of using suboptimal
VMs.

To address this, the key contributions of our work are (i) a machine learning
approach which continuously learns the application’s resource requirements and (ii)
a dynamic VM type selection (DVTS) algorithm, which selects a VM type for new
AS VMs. Since both workload specifics and VM performance vary over time, we
propose an online approach, which learns the application’s behaviour and the typical
VM performance capacities in real time. It relieves system maintainers from having
to manually reconfigure the autoscaling rules.

The rest of the chapter is organised as follows: In Sect.2 we describe the related
works. Section 3 provides a succinct overview of our approach. Section4 discusses
the machine learning approaches we employ to “learn” the application’s requirements
in real time. Section 5 describes how to select an optimal VM type. Section 6 details
the architecture of our prototype and the benchmark we use for evaluation. Section 7

190 N. Grozev and R. Buyya

describes our experiments and results. Section 8 defines some open research problems
and pathways for future work. Finally, Sect. 9 concludes and summarises this chapter.

2 Related Work

The area of static computing resource management has been well studied in the
context of grids, clouds, and even multi-clouds [41]. However, the field of dynamic
resource management in response to continuously varying workloads, which is espe-
cially important for web facing applications [41], is still in its infancy. Horizontal
autoscaling policies are the predominant approach for dynamic resource manage-
ment, and thus they have gained significant attention in recent years.

Lorido-Botran et al. classify autoscaling policies as reactive and predictive or
proactive [26]. The most widely adopted reactive approaches are based on thresh-
old rules for performance metrics (e.g. CPU and RAM utilisation). For each such
characteristic the system administrator provides a lower and upper threshold values.
Resources are provisioned whenever an upper threshold is exceeded. Similarly, if a
lower threshold is reached resources are released. How much resources are acquired
or released when a threshold is reached is specified in user defined autoscaling
rules. There are different “flavours” of threshold based approaches. For example,
in Amazon Auto Scaling [3] one would typically use the average metrics from the
virtual server farm, while RightScale [33] provides a voting scheme, where thresh-
olds are considered per VM and an autoscaling action is taken if the majority of
the VMs “agree” on it. Combinations and extensions of both of these techniques
have also been proposed [10, 11, 35]. Predictive or proactive approaches try to pre-
dict demand changes in order to allocate or deallocate resources. Multiple methods
using approaches like reinforcement learning [4, 15], queuing theory [2] and Kalman
filters [19] to name a few have been proposed.

Our work is complementary to all these approaches. They indicate at what time
resources should be provisioned, but do not select the resource type. Our approach
selects the best resource (i.e. VM type) once it has been decided that the system
should scale up horizontally.

Fernandez et al. propose a system for autoscaling web applications in clouds [17].
They monitor the performance of different VM types to infer their capacities. Our
approach to this is different, as we inspect the available to each VM CPU capacity and
measure the amount of “stolen” CPU instructions by the hypervisor from within the
VM itself. This allows us to normalise the VMs’ resource capacities to a common
scale, which we use to compare them and for further analysis. Furthermore, their
approach relies on a workload predictor, while ours is usable even in the case of
purely reactive autoscaling.

Singh et al. use k-means clustering to analyse the workload mix (i.e. the different
type of sessions) and then use a queueing model to determine each server’s suit-
ability [36]. However, they do not consider the performance variability of virtual
machines, which we take into account. Also, they do not select the type of resource

Dynamic Selection of Virtual Machines for Application ... 191

(e.g. VM) to provision and assume there is only one type, while this is precisely the
focus of our work.

A part of our work is concerned with automated detection of application behaviour
changes through a Hierarchical Temporal Memory (HTM) model. Similar work has
been carried out by Cherkasova et al. [9], who propose a regression based anomaly
detection approach. However, they analyse only the CPU utilisation. Moreover, they
consider that a set of user transactions’ types is known beforehand. In contrast, our
approach considers RAM as well and does not require application specific informa-
tion like transaction types. Tan et al. propose the PREPARE performance anomaly
detection system [38]. However, their approach can not be used by a cloud client, as
it is built on top of the Xen virtual machine manager to which external clients have
no access.

Another part of our method is concerned with automatic selection of the learning
rate and momentum of an artificial neural network (ANN). There is a significant
amount of literature in this area as surveyed by Moreira and Fiesler [27]. However,
the works they overview are applicable for static data sets and have not been applied
to learning from streaming online data whose patterns can vary over time. Moreover,
they only consider how the intermediate parameters of the backpropagation algorithm
vary and do not use additional domain specific logic. Although our approach is
inspired by the work of Vogl et al. [42] as it modifies the learning rate and momentum
based on the prediction error, we go further and we modify them also based on the
anomaly score as reported by the Hierarchical Temporal Memory (HTM) models.

Application > = Vr'\él (;asri)te(\)City
Server —_ 'ep ry

™, Utilisation i | CPU, RAM . HTM
4 Monitor region

Virtual
Machine

@8 ANN

Application
Server

», Utilisation i | CPU, RAM . HTM
Monitor region

Virtual
Machine

Autoscaler Machine

Fig. 2 System components and their interaction

192 N. Grozev and R. Buyya

3 Method Overview

Figure 2 depicts an overview of our machine learning approach and how the system
components interact. Within each AS VM we install a monitoring program which
periodically records utilisation metrics. These measurements are transferred to an
autoscaling component, which can be hosted either in a cloud VM or on-premises.
It is responsible for (i) monitoring AS VMs’ performance (ii) updating machine
learning models of the application behaviour and (iii) autoscaling.

Within each AS VM the utilisation monitors report statistics about the CPU,
RAM, disk and network card utilisations and the number of currently served users.
These records are transferred every 5 s to the autoscaling component, where they
are normalised, as different VMs have different de facto resource capacities. In the
machine learning approaches we only consider the CPU and RAM utilisations, as
disk and network utilisations of AS VMs are typically small [21, 25].

For each AS VM the autoscaler maintains a separate single-region Hierarchical
Temporal Memory (HTM) model [22], which is overviewed in a later section. In
essence we use HTMs to detect changes in the application behaviour of each AS
VM. We prefer HTM to other regression based anomaly detection approaches, as
it can detect anomalies on a stream of multiple parameters (e.g. CPU and RAM).
Whenever monitoring data is retrieved from an AS VM, the autoscaler trains its
HTM with the received number of users, CPU and RAM utilisations and outputs an
anomaly score defining how “unexpected” the data is.

As a next step we use these utilisation measurements to train a 3-tier artificial
neural network (ANN) about the relationship between the number of served users
and resource consumptions. We choose to use an ANN because of its suitability for
online data streams. Other “sliding window” approaches operate only on a portion
of the data stream. As a system’s utilisation patterns can remain the same for long
time intervals, the window sizes may need to become impractically large or even
be dynamically adjusted. On the contrary, an ANN does not operate on a fixed time
window and is more adept with changes in the incoming data stream, as we will
detail in a later section.

There is only one ANN and training samples from all AS VMs are used to train
it. In essence the ANN represents a continuously updated regression model, which
given a number of users predicts the needed resources to serve them within a sin-
gle VM without causing resource contentions. Thus, we need to filter all training
samples, which were taken during anomalous conditions (e.g. insufficient CPU or
RAM capacity causing intensive context switching or disk swapping respectively).
Such samples are not indicative of the relationship between number of users and
the resource requirements in the absence of resource contentions. Furthermore, we
use the anomaly score of each training sample (extracted from HTM) to determine
the respective learning speed and momentum parameters of the back propagation
algorithm so that the ANN adapts quickly to changes in the utilisation patterns.

Training the ANN and the HTMs happens online from the stream of VM mea-
surements in parallel with the running application. Simultaneously we also maintain

Dynamic Selection of Virtual Machines for Application ... 193

a VM capacity repository of the latest VM capacity measurements. When a new VM
is needed by the autoscaling component, we use this repository to infer the poten-
tial performance capacity of all VM types. At that time the ANN is already trained
adequately and given the predicted performance capacities can be used to infer how
many users each VM type could serve simultaneously. Based on that we select the
VM type, with minimal cost to number of users ratio.

4 Learning Application Behaviour

4.1 Utilisation Monitoring

To measure VM performance utilisation, we use the SAR, mpstat, vmstat and netstat
Linux monitoring tools. We use the mpstat %idle metric to measure the percentage
of time during which the CPU was idle. The %steal metric describes the percentage
of “stolen” CPU cycles by a hypervisor (i.e. the proportion of time the CPU was
not available to the VM) and can be used to evaluate the actual VM CPU capacity.
Similarly, SAR provides the %util and %ifutil metrics as indicative of the disk’s and
network card’s utilisations.

Measuring the RAM utilisation is more complex as operating systems keep in
memory cached copies of recently accessed disk sectors in order to reduce disk
access [21]. Although in general this optimisation is essential for VM performance,
web application servers (AS) are not usually I/O bound, as most of the application
persistence is delegated to the data base layer. Hence, using the vmstar RAM util-
isation metrics can be an overestimation of the actual memory consumption as it
includes rarely accessed disk caches. Thus, we use the “active memory” vmstat met-
ric to measure memory consumption instead. It denotes the amount of recently used
memory, which is unlikely to be claimed for other purposes.

Lastly, we need to evaluate the number of concurrently served users in an AS
VM. This could be extracted from the AS middleware, but that would mean writing
specific code for each type of middleware. Moreover, some proprietary solutions may
not expose this information. Therefore, we use the number of distinct IP addresses
with which the server has an active TCP socket, which can be obtained through the
netstat command. Typically, the AS VM is dedicated to running the AS and does not
have other outgoing connections except for the connection to the persistence layer.
Therefore, the number of addresses with active TCP sockets is a good measure of
the number of currently served users.

194 N. Grozev and R. Buyya

4.2 Normalisation and Capacity Estimation

Before proceeding to train the machine learning approaches, we need to normalise the
measurements which have different “scales”, as the VMs have different RAM sizes
and CPUs with different frequencies. Moreover, the actual CPU capacities within a
single VM vary over time as a result of the dynamic collocation of other VMs on the
same host.

As a first step in normalising the CPU load, we need to evaluate the actual CPU
capacity available to each VM. This can be extracted from the /proc/cpuinfo Linux
kernel file. If the VM has n cores, /proc/cpuinfo will list meta information about the
physical CPU cores serving the VM including their frequencies fry, ... fr,. Thesum
of these frequencies is the maximal processing capacity the VM can get, provided the
hypervisor does not “steal” any processing time. Using the %steal mpstat parameter
we can actually see what percentage of CPU operations have been taken away by
the hypervisor. Subtracting this percentage from the sum of frequencies gives us the
actual VM CPU capacity at the time of measurement. To normalise we further divide
by the maximal CPU core frequency fr,,,, multiplied by the maximal number of
COTeS Myax_cores Of all considered VMs in the cloud provider. This is a measure of
the maximal VM CPU capacity one can obtain from the considered VM types. As
clouds are made of commodity hardware, we will consider f7,,,, = 3.5 GHz. This
ensures that all values are in the range (0, 1], although for some cloud providers all
values may be much lower than 1, depending on the underlying hardware they use.
This is formalised in Eq. 1.

(100 — %steal) >, fr;

i=0

cpuCapacityNorm =
100 nmLUCiCUV&Y frmax

(D

Having computed the VM CPU capacity, we store it into the VM capacity repos-
itory, so we can use it later on to infer the capacities of future VMs. Each repository
record has the following fields:

time—a time stamp of the capacity estimation;

vm type—an identifier of the VM type—e.g. “m1.small”;

vm-id—aunique identifier of the VM instance—e.g. its IP or elastic DNS address;
cpuCapacityNorm—the computed CPU capacity.

If we further subtract the %idle percentage from the capacity we will get the actual
CPU load given in Eq. 2.

(100 — %idle — %steal) > fr;
i=0

LoadN = 2
Cpu od orm 100 nmax_cores frmax ()

Dynamic Selection of Virtual Machines for Application ... 195

Normalising the RAM load and capacity is easier, as they do not fluctuate like
the CPU capacity. We divide the active memory by the maximal amount of memory
RAM,,,, in all considered virtual machine types in the cloud—see Eq. 3.

active,,emory
ramLoadNorm = ——— 3)
RAMI”(IX

Whenever a new AS VM is needed, we have to estimate the CPU and RAM
capacities of all available VM types based on the capacity repository and their per-
formance definitions provided by the provider. The normalised RAM capacity of a
VM type is straightforward to estimate as we just need to divide the capacity in the
provider’s specification by RAM,,,,. To estimate the CPU capacity of a VM type
we use the mean of the last 10 entries’ capacities for this type in the capacity repos-
itory. If there are no entries for this VM type in the repository (i.e. no VM of this
type has been instantiated) we can heuristically extrapolate the CPU capacity from
the capacities of the other VM types. Typically [aaS providers specify an estimation
of each VM type’s CPU capacity—e.g. Google Compute Engine Units (GCEU) in
Google Compute Engine or Elastic Compute Units (ECU) in AWS. Hence given an
unknown VM type vmt we can extrapolate its normalised CPU capacity as:

cpuCapacity(vmt) = 4)

1 z cpuCapacity(vmt;) x cpuSpec(vmt;)
V| cpuSpec(vmt)

vmt; eV

Where V is the set of VM types present in the capacity repository and whose CPU
capacity can be determined from previous measurements, |V| is its cardinality, and
cpuSpec(vmt;) defines the cloud provider’s estimation of a VM type’s capacity—
e.g. number of GCEUs or ECUs.

4.3 Anomaly Detection Through HTM

The Hierarchical Temporal Memory (HTM) model is inspired by the structure and
organisation of the neocortex. It has been developed and commercialised by the
Grok company [20] (formerly Numenta [29]), and follows the concepts from Jeff
Hawkins’ book “On Intelligence” [23]. The model creators build upon the seminal
work of Mountcastle [28] that the neocortex is predominantly uniform in structure and
function even in regions handling different sensory inputs—e.g. visual, auditory, and
touch. The HTM model tries to mimic this structure in a computational model. There
are several differences compared to the biological structure of the neocortex in order
to be computationally viable as described in the implementation white paper [22].
Grok’s implementation is available as an open source project called NuPIC [30]. In
this section, we provide only a brief overview of HTM to introduce the reader to this
concept. The interested reader is referred to the official documentation [22].

196 N. Grozev and R. Buyya

Fig.3 HTM region structure

Temporal
~ Pooling

> Spatial
Pooling

001.. 0010 P

Encoders

=== . - Number of users
= Training - CPU utilisation
j Record - RAM utilisation

Legend

@ Active cell QPredicted cell O Inactive cell

—p» Active connection I Inactive connection

HTMs consist of one or several stacked regions. During inference, input arrives
into the lowest region, whose output serves as input to the successive one and so
forth until the topmost region outputs the final result. The purpose of a region is to
convert noisy input sequences to more stable abstract representations. Conceptually,
the different regions represent different levels of abstraction in the learning process—
i.e. the lowest level recognises low-level patterns, while each higher level layer
recognises more complex ones based on the result of the previous one. In this work,
we use single-region HTMs and we will focus on them in the rest of the section.

A HTM region consists of columns of cells, which are most often arranged in a
three dimensional grid—see Fig. 3. Each cell can be in one of three possible states:
(i) active form feed forward input, (ii) active from lateral input (i.e. predicted), or
(iii) inactive. Conceptually, active cells represent the state of the last input and pre-
dicted cells represent the likely state after future inputs. A HTM region receives as
input a bit sequence. Special encoders are used to convert input objects into bitwise
representations, so that objects which are “close” in the sense of the target domain
have similar bit representations. Upon receiving new binary input the HTM changes
the states of the columns based on several rules summarised below.

As a first step, the HTM has to decide which columns’ cells will be activated for
a given input—an algorithm known as Spatial Pooling. It nullifies most of the 1 bits,

Dynamic Selection of Virtual Machines for Application ... 197

so that only a small percentage (by default 2%) are active. Each column is connected
with a fixed sized (by default 50% of the input length) random subset of input bits
called the potential pool. Each column’s connection to an input bit has a ratio number
in the range [0, 1] associated with it known as the permanence. HTM automatically
adjusts the permanence value of a connection after a new input record arrives, so
that input positions whose value have been 0 or 1 and are members of the potential
pool of a selected column are decreased or increased respectively. Connections with
permanences above a predefined thresholds are considered active. Given an input,
for each column the HTM defines its overlap score as the number of active bits with
active connections. Having computed this for every column, HTM selects a fixed
sized (by default 2%) set of columns with the highest overlap score, so that no two
columns within a predefined radius are active.

As a second step, HTM decides which cells within these columns to activate. This
is called Temporal Pooling. Within each of the selected columns the HTM activates
only the cells which are in predicted state. If there are no cells in predicted state
within a column, then all of its cells are activated, which is also known as bursting.

Next, the HTM makes a prediction of what its future state will be—i.e. which
cells should be in predicted state. The main idea is that when a cell activates it estab-
lishes connections to the cells which were previously active. Each such connection is
assigned a weight number. Over time if the two nodes of a connection become active
in sequence again, this connection is strengthened, i.e. the weight is increased. Oth-
erwise, the connection slowly decays, i.e. the weight is gradually decreased. Once a
cell becomes active, all non-active cells having connections to it with weights above a
certain threshold are assigned the predicted state. This is analogous to how synapses
form and decay between neurons’ dendrites in the neocortex in response to learning
patterns.

The presence of predicted cell columns allows a HTM to predict what will be its
likely state in terms of active cells after the next input. However, it also allows for
the detection of anomalies. For example, if just a few predicted states become active
this is a sign that the current input has not been expected. Thus the anomaly_score
is defined as the proportion of active spatial pooler columns that were incorrectly
predicted and is in the range [0, 1].

In our environment for every 5 s, we feed each HTM with a time stamp, the
number of users and the CPU and RAM utilisations of the respective VM. We use
the standard NuPIC scalar and date encoders to convert the input to binary input. As
a result we get an anomaly score denoting how expected the input is, in the light of
the previously described algorithms.

4.4 ANN Training

Figure4 depicts the topology of the artificial neural network (ANN). It has one
input—the number of users. The hidden layer has 250 neurons with the sigmoid
activation function. The output layer has two output nodes with linear activa-

198 N. Grozev and R. Buyya

tion functions, which predict the normalised CPU and RAM utilisations within
an AS VM.

Once a VM’s measurements are received and normalised and the anomaly score
is computed by the respective HTM region, the ANN can be trained. As discussed,
we need to filter out the VM measurements which are not representative of normal,
contention free application execution, in order to “learn” the “right” relationship
between number of users and resource utilisations. We filter all VM measurements
in which the CPU, RAM, hard disk or network card utilisations are above a certain
threshold (e.g. 70%). Similarly, we filter measurements with negligible load—i.e.
less than 25 users or less than 10% CPU utilisation. We also ignore measurements
from periods during which the number of users has changed significantly—e.g. in
the beginning of the period there were 100 users and at the end there were 200.
Such performance observations are not indicative of an actual relationship between
number of users and resource utilisations. Thus, we ignore measurements for which
the number of users is less than 50% or more than 150% of the average of the previous
3 measured numbers of users from the same VM.

Since we are training the ANN with streaming data, we need to make sure it is not
overfitted to the latest training samples. For example if we have constant workload for
a few hours we will be receiving very similar training samples in the ANN during this
period. Hence the ANN can become overfitted for such samples and lose its fitness
for the previous ones. To avoid this problem, we filter out measurements/training
samples, which are already well predicted. More specifically, if a VM measurement
is already predicted with a root mean square error (RMSE) less than 0.01 it is
filtered out and the ANN is not trained with it. We call this value rmse?”¢ because it
is obtained for each training sample before the ANN is trained with it. It is computed
as per Eq.5, where output; and expected; are the values of the output neurons and
the expected values respectively.

rmse’’® = \/Z(output[— expected;)? 5)

CPU
utilisation
Number
of users RAM
utilisation
Input Layer Hidden Layer Output Layer

Fig. 4 ANN topology

Dynamic Selection of Virtual Machines for Application ... 199

With each measurement, which is not filtered out, we perform one or several itera-
tions/epochs of the backpropagation algorithm with the number of users as input and
the normalised CPU and RAM utilisations as expected output. The backpropagation
algorithm has two important parameters—the learning rate and the momentum. In
essence, the learning rate is a ratio number in the interval (0, 1) which defines the
amount of weight update in the direction of the gradient descent for each training
sample [27]. For each weight update, the momentum term defines what proportion
of the previous weight update should be added to it. It is also a ratio number in the
interval (0, 1). Using a momentum the neural network becomes more resilient to
oscillations in the training data by “damping” the optimisation procedure [27].

For our training environment, we need a low learning rate and a high momentum,
as there are a lot of oscillations in the incoming VM measurements. We select the
learning rate to be [r = 0.001 and the momentum m = 0.9. We call these values the
ideal parameters, as these are the values we would like to use once the ANN is close
to convergence. However, the low learning rate and high momentum result in slow
convergence in the initial stages, meaning that the ANN may not be well trained
before it is used. Furthermore, if the workload pattern changes, the ANN may need a
large number of training samples and thus time until it is tuned appropriately. Hence,
the actual learning rate and momentum must be defined dynamically.

One approach to resolve this is to start with a high learning rate and low momen-
tum and then respectively decrease/increase them to the desired values [27, 42].
This allows the backpropagation algorithm to converge more rapidly during the ini-
tial steps of the training. We define these parameters in the initial stages using the
asymptotic properties of the sigmoid function, given in Eq. 6.

1
s(x) = —— (6)

As we need to start with a high learning rate and then decrease it gradually to /r,
we could define the learning rate /ry, for the k-th training sample as s(—k). However,
the sigmoid function decreases too steeply for negative integer parameters and as a
result the learning rate is higher than [r for just a few training samples. To solve this,
we use the square root of k instead and thus our first approximation of the learning
rate is

lr,El) = max(r, s(—Vk)) @)

As a result, lr,il) gradually decreases as more training samples arrive. Figure 5
depicts how it changes over time.

We also need to ensure that it increases in case unusual training data signalling a
workload change arrives and thus we need to elaborate / r,fl) . For this we keep arecord
of the last 10 samples’ anomaly scores and errors (i.e. rmse?). The higher the latest
anomaly scores, the more “unexpected” the samples are and therefore the learning
rate must be increased. Similarly, the higher the sample’s rmse?”® compared to the
previous errors, the less fit for it the ANN is and thus the learning rate must be

200

Fig.5 The /"
approximation of the
learning rate and the
respective momentum during
the initial ANN training

Value
0.4

0.8

N. Grozev and R. Buyya

— learning rate

- - momentum

stages E -

Training Sample Index

increased as well. Thus, our second elaborated approximation of the learning rate
is:

pre 9
rmse
lr,ﬁz) = lrlgl) max(1, r—m_ske) st(a"k—i)
0

®)

where any and rmse]"* are the anomaly score and the error of the k-th sample and

rmse is the average error of the last 10 samples. Note that we use the sigmoid function
for the anomaly scores in order to diminish the effect of low values.

In some cases, the learning rate can become too big in the initial training iterations,
which will in fact hamper the convergence. To overcome this problem, for each

sample k we run a training iteration with /r*, compute its RMSE rmse}*" and then
we can see

.o . . T
revert the results of this iteration. By comparing rmse; * and rmse.”

if training with this / r,fz) will contribute to the convergence [42]. If not, we use the

ideal parameter /r instead. Thus, we finally define the learning rate parameter lry in
Eq.9:

Q2) . pre post

Iry = Ir,” if rmsey > rmse;)

Ir otherwise

Similarly, we have to gradually increase the momentum as we decrease the learn-

ing rate until the ideal momentum is reached. If a workload change is present we

need to decrease the momentum in order to increase the learning speed. Hence, we

can just use the ratio of the ideal learning rate /r to the current one as shown in Eq. 10.

Ir

W) (10)

my; = min(m,

Figure 5 depicts how the learning rate and momentum change during the initial

training stages, given there are no anomalies, accuracy losses and Vk : rmse; < >

rmsel”" —ie.whenVk : Ir" = Irl’) = Ir;. Figure 7 shows the actual Ir; given real-
istic workload.
Furthermore, to speed up convergence it is beneficial to run multiple epochs

(i.e. repeated training iterations) with the first incoming samples and with samples

=Ir

Dynamic Selection of Virtual Machines for Application ... 201

Algorithm 1: Dynamic VM Type Selection (DVTS)

input : VT, ann, A, minU, maxU

1 bestVmt <— null;
2 bestCost <— 0;

3 forvmt € VT ; /I Inspect all VM types
4 do
5 cpuCapacity <— vmt’s norm. CPU capacity ;
6 ramCapacity <— vmt’s norm. RAM capacity;
7 vmtCost <— vmt’s cost per time unit;
8 userCapacity <— 0;
9 n <— minU,;
10 while True ; // Find how many users it can take
11 do
12 cpu, ram <— predict(ann,n,minU, maxU);
13 if cpu < cpuCapacity and ram < ramCapacity then
14 ‘ userCapacity <— n;
15 else
16 | break;
17 end
18 n<—n+A4;
19 end
/I Approximate the cost for a user per time unit
20 userCost <— %,
// Find the cheapest VM type
21 if userCost < bestCost then
22 bestCost <— userCost;
23 bestVmt <— vmt,
24 end
25 end

26 return bestVmt;

taken after a workload change. The ideal learning rate [r and its approximation [r,iz)

)
already embody this information and we could simply use their ratio. However, llk—r

can easily exceed 300 given /r = 0.001, resulting in over-training with particular
samples. Hence, we take the logarithm of it as in Eq. 11:

r®
e = l+ln(#) (11)

S Virtual Machine Type Selection

When a new VM has to be provisioned the ANN should be already trained so that we
can estimate the relationship between number of users and CPU and RAM require-
ments. The procedure is formalised in Algorithm 1. We loop over all VM types VT

202 N. Grozev and R. Buyya

Algorithm 2: Resource Utilisation Estimation

input : ann,n, minU, maxU

cpu <— 0;
ram <— 0;
if n < maxUsers ; // If within range - use ANN
then
‘ cpu, ram <— ann.run(n);
else
/' If outside range - extrapolate

(= L7 B N) [

=

minRam, minC PU <— ann.run(minU);

8 maxRam, maxCPU <— ann.run(maxU);

(maxCPU—minCPU) .
(maxU—minU) ’

(max Ram—minRam) .
(maxU—minU)

11 cpu <— maxCPU + cpuPerUser(n — maxU)
ram <— maxCPU +ramPerUser(n — maxU)
12 end

13 return cpu, ram;

9 cpuPerUser <—

10 ramPerUser <—

(line 3) and for each one we estimate its normalised CPU and RAM capacity based
on the capacity repository as explained earlier (lines 5-6). The VM cost per time
unit (e.g. hour in AWS or minute in Google Compute Engine) is obtained from the
provider’s specification (line 7).

Next, we approximate the number of users that a VM of this type is expected to
be able to serve (lines 10—18). We iteratively increase n by A starting from minU,
which is the minimal number of users we have encountered while training the neural
network. We use the procedure predict (defined separately in Algorithm 2) to esti-
mate the normalised CPU and RAM demands that each of these values of n would
cause. We do so until the CPU or RAM demands exceed the capacity of the inspected
VM type. Hence, we use the previous value of n as an estimation of the number of
users a VM of that type can accommodate. Finally, we select the VM type with the
lowest cost to number of users ratio (lines 20-23).

Algorithm 2 describes how to predict the normalised utilisations caused by n
concurrent users. If n is less than the maximum number of users maxU we trained
the ANN with, then we can just use the ANN’s prediction (line 5). However, if n
is greater than maxU the ANN may not predict accurately. For example if we have
used a single small VM to train the ANN, and then we try to predict the capacity
of a large VM, n can become much larger than the entries of the training data and
the regression model may be inaccurate. Thus, we extrapolate the CPU and RAM
requirements (lines 7-11) based on the range of values we trained the ANN with and
the performance model we have proposed in a previous work [21].

j=3

Dynamic Selection of Virtual Machines for Application ... 203

777777777777777777 SSH,JavaRMI]
| — 7 Agent
} §/ NFS Storage: \:\\\%GE/" o REEIEE
S ol — i > App: Server VM \\'//i/"/ DB Server VM
I?r|ver SHL = - \.\'??Zb T //,.'\'\/
i N N v N
C"e”‘t . Load Balancer VM \\ m‘ \z{zi‘
; oL~ (B
‘ & media files " media files
I

App. Server VM R Faban

/
/

SSH, Java RMI Agent
NFS Server VM

Fig. 6 CloudStone benchmark’s extended topology

6 Benchmark and Prototype

There are two main approaches for experimental validation of a distributed system’s
performance—through a simulation or a prototype. Discrete event simulators like
CloudSim [7] have been used throughout industry and academia to quickly evaluate
scheduling and provisioning approaches for large- scale cloud infrastructure without
having to pay for expensive test beds. Unfortunately, such simulators work on a
simplified cloud performance model and do not represent realistic VM performance
variability, which is essential for testing our system. Moreover, simulations can be
quite inaccurate when the simulated system serves resource demanding workloads,
as they do not consider aspects like CPU caching, disk data caching in RAM and
garbage collection [21]. Therefore, we test our method through a prototype and a
standard benchmark deployed in a public cloud environment.

We validate our approach with the CloudStone [12, 37] web benchmark deployed
in Amazon AWS. It follows the standard 3-tier architecture. By default CloudStone
is not scalable, meaning that it can only use a single AS. Thus, we had to extend
it to accommodate multiple servers. Our installation scripts and configurations are
available as open-source code. For space considerations, we will not discuss these
technical details and will only provide an overview. The interested readers can refer
to our online documentation and installation instructions. '

The benchmark deployment topology is depicted in Fig. 6. CloudStone uses the
Faban harness to manage the runs and to emulate users. The faban driver, which is
deployed in the client VM communicates with the faban agents deployed in other
VMs to start or stop tests. It also emulates the incoming user requests to the applica-
tion. These requests arrive at a HAProxy load balancer which distributes them across
one or many application servers (AS). CloudStone is based on the Olio application,
which is a PHP social network website deployed in a Nginx server. In the beginning
we start with a single AS “behind” the load balancer. When a new AS VM is pro-

Thttp://nikolaygrozev.wordpress.com/2014/06/02/advanced- automated- cloudstone- setup-in-
ubuntu-vms-part-2/.

http://nikolaygrozev.wordpress.com/2014/06/02/advanced-automated-cloudstone-setup-in-ubuntu-vms-part-2/
http://nikolaygrozev.wordpress.com/2014/06/02/advanced-automated-cloudstone-setup-in-ubuntu-vms-part-2/

204 N. Grozev and R. Buyya

visioned we associate it with the load balancer. We update its weighted round robin
policy, so that incoming request are distributed among the AS VMs proportionally
to their declared CPU capacity (i.e. ECU).

The persistent layer is hosted in a MySql server deployed within a separate DB
VM. CloudStone has two additional components—(i) a geocoding service called
GeoCoder, hosted in an Apache Tomcat server and (ii) a shared file storage hosting
media files. They are both required by all application servers. We have deployed the
geocoding service in the DB VM. The file storage is deployed in a Network File
System (NFS) server on a separate VM with 1TB EBS storage, which is mounted
from each AS VM.

We use “m3.medium” VMs for the client, load balancer and DB server and
“ml.small” for the NFS server. The types of the AS VMs are defined differently
for each experiment. All VMs run 64bit Ubuntu Linux 14.04.

Our prototype of an autoscaling component is hosted on an on-premises physical
machine and implements the previously discussed algorithms and approaches. It uses
the JClouds [24] multi-cloud library to provision resources, and thus can be used in
other clouds as well. We use the NuPIC [30] and FANN [16] libraries to implement
HTM and ANN respectively. We ignore the first 110 anomaly scores reported from
the HTM, as we observed that these results are inaccurate (i.e. always 1 or 0) until
it receives initial training. Whenever a new AS VM is provisioned we initialise it
with a deep copy of the HTM of the first AS VM, which is the most trained one. The
monitoring programs deployed within each VM are implemented as bash scripts,
and are accessed by the autoscaling component through SSH. Our implementation
of Algorithm 2 uses A = 5.

Previously, we discussed that the number of current users could be approximated
by counting the number of distinct IP addresses to which there is an active TCP
session. However, in CloudStone all users are emulated from the same client VM
and thus have the same source IP address. Thus, we use the number of recently
modified web server session files instead.

Our autoscaling component implementation follows the Amazon Auto Scaling [3]
approach and provisions anew AS VM once the average utilisation of the server form
reaches 70% for more than 10 s. Hence, we ensure that in all experiments the AS
VMs are not overloaded. Thus, even if there are SLA violations, they are caused
either by the network or the DB layer, and the AS layer does not contribute to them.
We also implement a cool down period of 10 min.

7 Validation

In our experiments, we consider three VM types: ml.small, ml.medium, and
m3.medium. Table 1 summarises their cost and declared capacities in the Sydney
AWS region which we use.

In all experiments we use the same workload. We start by emulating 30 users
and each 6 min we increase the total number of users with 10 until 400 users are

Dynamic Selection of Virtual Machines for Application ... 205

reached. To achieve this, we run a sequence of CloudStone benchmarks, each having
1 min ramp-up and 5 min steady state execution time. Given CloudStone’s start-up
and shut-down times, this amounts to more than 5 h per experiment. The goal is to
gradually increase the number of users, thus causing the system to scale up multiple
times.

To test our approach in the case of a workload characteristic change we “inject”
such a change 3.5 h after each experiment’s start. To do so we manipulate the utili-
sation monitors to report higher values. More specifically they increase the reported
CPU utilisations with 10% and the reported RAM utilisation with 1 GB plus 2 MB
for every currently served user.

We implement one experiment, which is initialised with a m1.small AS VM and
each new VM’s type is chosen based on our method (DVTS). We also execute 3
baseline experiments, each of which statically selects the same VM type whenever
anew VM is needed, analogously to the standard AWS Auto Scaling rules.

First, we investigate the behaviour of DVTS before the workload change. It con-
tinuously trains one HTM for the first AS VM and the ANN. In the initial stages,
the ANN learning rate and momentum decrease and increase, respectively, to facil-
itate faster training. For example, the learning rate lry (defined in Eq.9) during the
initial stages is depicted in Fig.7. It shows how Ir; drastically reduces as the ANN
improves its accuracy after only a few tens of training samples. Once the AS VM gets
overloaded we select a new VM type. At this point we only have information about
ml.small in the capacity repository and therefore we infer the other CPU capacities
based on Eq.4. Finally using Algorithm 1 we select m3.medium as the type for the
second VM.

After the new VM is instantiated, the autoscaling component starts its monitoring.
It trains the ANN and a new dedicated HTM with its measurements. It also updates
the capacity repository with the CPU capacity of the new VM. Surprisingly, we
observe that on average its CPU capacity is about 35% better than the one of the
ml.small VM, even though according to the specification m3.medium has 3 ECUs
and ml.small has 1. Therefore, the previous extrapolation of m3.medium’s capacity
has been an overestimation. Hence, when a new VM is needed again, the algorithm
selects ml.small again.

3.5 h after the start of the experiment the workload change is injected. This is
reflected in the HTMs’ anomaly scores any and the ANN’s errors. Consequently,
the learning rate lry, the momentum m; and the epochs e also change to speed up
the learning process as per Eqgs.9—11 and as a result the ANN adapts quickly to the

Table 1 AWS VM type definitions

VM type ECU RAM (GB) Cost per hour
m1l.small 1 1.7 $0.058
ml.medium 2 3.75 $0.117
m3.medium 3 3.75 $0.098

206 N. Grozev and R. Buyya

Fig. 7 Learning rate [ry -
during initial stages of S |
training the ANN ° 2
£ .
hd
>
(=
€ 3
T o
o) .
—
o
s | A
g T T T T T T T
0 100 200 300 400 500 600
Training Sample Index
Fig. 8 RMSE-pre in the
presence of a workload 9
change. The 0 index o]
corresponds to the first @
sample after the workload IE. 7]
change 0w 2
o
o
=}

TTT T T T T T T T T T I T T T T T T T T T T T I TITTITTT7T
0 6 12 20 28 36 44 52 60

Training Sample Index After Workload Change

workload change. As discussed, for each sample we compute its error (RMSE-pre)
before updating the ANN. Figure 8 depicts how these errors increase when the change
is injected and decrease afterwards as the ANN adapts timely.

Eventually, the load increases enough so the system needs to scale up again. Due
to the injected change, the workload has become much more memory intensive,
which is reflected in the ANN’s prediction. Hence m1.small can serve just a few
users, given it has only 1.7 GB RAM. At that point the CPU capacity of mI.medium
is inferred from the capacities of mi.small and m3.medium as per Eq. 4, since it has
not been used before. Consequently Algorithm 1 selects ml.medium for the 4th VM
just before the experiment completes.

For each experiment, Fig.9 depicts the timelines of the allocated VMs and the
total experiment costs. For each VM the type and cost are specified to the right.
Our selection policy is listed as DVTS. The baseline policy which statically selects
ml.small allocates 8 new VMs after the workload change as m/.small can serve
just a few users under the new workload. In fact, if there was no cool down period
in the autoscaling, this baseline would have exceeded the AWS limit of allowed
number of VM instances before the end of the experiment. The baselines which
select m1.medium and m3.medium fail to make use of mI.small instances before the
change injection, which offers better performance for money.

Dynamic Selection of Virtual Machines for Application ... 207

DVTS Total Cost:1.129%
[0.348%, m1.small

1

] [0.490%, m3.medium

1 10.174%, m1.small
[|0.117$, m1.medium

AWS-style static (m1.small) Total Cost:1.508%
[

0.348%, m1.small
0.290$, m1.small
0.232%, m1.small
0.174%, m1.small
"1 (0.116%, m1.small
"1 [0.116%, m1.small
"1 |0.116%, m1.small
"1 [0.116$, m1.small
1 [0.116%, m1.small
[|0.058%, m1.small

[|0.058%, m1.small

[|0.058%, m1.small

AWS-style static (m1.medium) Total Cost:1.638$
[]

0.702%, m1.medium
[] 10.585%, m1.medium
[] 10.351%, m1.medium

AWS-style static (m3.medium) Total Cost:1.372$
[]

0.588%, m3.medium
[] 10.490%, m3.medium
[] 10.294%, m3.medium
I I I I I I
Oh 1h 2h 3h 4h 5h

Time After Experiment Start

Fig.9 Timelines and costs of all VMs grouped by experiments. DVTS is our approach. The AWS-
style policies are the baselines, which statically select a predefined VM type

Admittedly, in the beginning DVTS did a misstep with the selection of m3.medium,
because it started with an empty capacity repository and had to populate it and infer
CPU capacities “on the go”. This could have been avoided by prepopulating the
capacity repository with test or historical data. We could expect that such inaccuracies
are avoided at later stages, once more capacity and training data are present. Still,
our approach outperformed all baselines in terms of incurred costs with more than
20% even though its effectiveness was hampered by the lack of contextual data in
the initial stages.

Our experiments tested DVTS and the baselines with a workload, which is lower
than what is observed in some applications. While our tests did not allocate more
than 12 VMs (in the baseline experiment, which statically allocates m.small) many
real-world systems allocate hundreds or even thousands of servers. We argue that in
such cases, DVTS will perform better than demonstrated, as there will be much more
training data and thus the VM types’ capacity estimations will be determined more
accurately and the machine learning approaches will converge faster. As discussed,
that would allow some of the initial missteps of DVTS to be avoided. Moreover, as
the number of AS VMs grows, so does the cost inefficiency caused by the wastage
of allocated resources, which can be reduced by DVTS.

208 N. Grozev and R. Buyya

Finally, the response times in the DVTS experiment and all baseline experiments
were equivalent. All experiments scale up once the AS VMs’ utilisations exceed the
predefined thresholds, and thus never become overloaded enough to cause response
delays. The load balancer is equally utilised in all experiments, as it serves the same
number of users, although it redirects them differently among the AS VMs. Similarly,
the DB layer is equally utilised, as it always serves all users from all AS VMs.

8 Open Research Problems

Our approach can achieve even greater efficiency, if it periodically replaces
the already running VMs with more suitable ones in terms of cost and performance,
once there is a workload change. New load balancing policies, which take into account
the actual VM capacities can also be explored. Another promising avenue is opti-
mising the scaling down mechanisms—i.e. selecting which VMs to terminate when
the load decreases. Our approach, which currently optimises cost, can be extended
to also consider other factors like energy efficiency. This would be important when
executing application servers in private clouds. One can incorporate historical data
about VM types’ resource capacity and workload characteristics in our proposed
algorithms.

To enhance reliability, autoscaling systems in clouds need to consider failures of
services and resources within and across one or more cloud service providers [31]. To
enhance sustainability of clouds, autoscaling systems need to manage multiple types
of resources (i.e. compute, storage, network and cooling systems) within cloud data
centres in a seamless manner to reduce overall energy consumption. Furthermore,
they can also scale across multiple clouds to harness renewable energy-powered
cloud data centres to minimise their carbon footprint on the environment [40].

9 Summary and Conclusions

In this work, we have introduced an approach for VM type selection when autoscal-
ing application servers. It uses a combination of heuristics and machine learning
approaches to “learn” the application’s performance characteristics and to adapt to
workload changes in real time. To validate our work, we have developed a prototype,
extended the CloudStone benchmark and executed experiments in AWS EC2. We
have made improvements to ensure our machine learning techniques train quickly
and are usable in real time. Also, we have introduced heuristics to approximate VM
resource capacities and workload resource requirements even if there is no readily
usable data, thus making our approach useful given only partial knowledge. Results
show that our approach can adapt timely to workload changes and can decrease the
cost compared to typical static selection policies. We identified a number of open
issues that form the basis for future research directions.

Dynamic Selection of Virtual Machines for Application ... 209

Acknowledgements We thank Rodrigo Calheiros, Amir Vahid Dastjerdi, Adel Nadjaran Toosi,
and Simone Romano for their comments on improving this work. We also thank Amazon.com, Inc
for their support through the AWS in Education Research Grant.

References

10.

11.

12.
13.

14.

15.

16.

17.

18.

. Aarsten, A., Brugali, D., & Menga, G. (1996). Patterns for three-tier client/server applications.

In Proceedings of Pattern Languages of Programs (PLoP ’96).

. Ali-Eldin, A., Tordsson, J., & Elmroth, E. (2012). An adaptive hybrid elasticity controller

for cloud infrastructures. In Network Operations and Management Symposium (NOMS), 2012
IEEE (pp. 204-212).

. Amazon. Amazon Auto Scaling, January 14 2016.
. Barrett, E., Howley, E., & Duggan, J. (2013). Applying reinforcement learning towards

automating resource allocation and application scalability in the cloud. Concurrency and Com-
putation: Practice and Experience, 25(12), 1656-1674.

. Brewer, E. A. (2000). Towards Robust Distributed Systems. In Proceedings of the Annual ACM

Symposium on Principles of Distributed Computing, New York (Vol. 19, pp. 7-10). ACM.

. Brewer, E. (2012). CAP twelve years later: How the “rules” have changed. Computer, 45(2),

23.

. Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A. F,, & Buyya, R. (2011). CloudSim:

A toolkit for modeling and simulation of cloud computing environments and evaluation of
resource provisioning algorithms. Software: Practice and Experience, 41(1), 23-50.

. Cattell, R. (2010). Scalable SQL and NoSQL data stores. SIGMOD Record, 39(4), 12-27.
. Cherkasova, L., Ozonat, K., Mi, N., Symons, J., & Smirni, E. (2009). Automated anomaly

detection and performance modeling of enterprise applications. ACM Transactions on Com-
puter Systems, 27(3), 1-32.

Chieu, T. C., Mohindra, A., & Karve, A. A. (2011). Scalability and Performance of Web
Applications in a Compute Cloud. In Proceedings of the IEEE International Conference on
e-Business Engineering (pp. 317-323).

Chieu, T. C., Mohindra, A., Karve, A. A., & Segal, A. (2009). Dynamic Scaling of Web
Applications in a Virtualized Cloud Computing Environment. In Proceedings of the IEEE
International Conference on e-Business Engineering (ICEBE 2009) (pp. 281-286).
CloudSuite. CloudSuite’s CloudStone, January 14 2016.

Corbett, J. C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J. J., et al. (2013). Spanner:
Google’s globally distributed database. ACM Transactions on Computing Systems, 31(3), 8:1-
8:22.

Dejun, J., Pierre, G., & Chi, C.-H. (2009). EC2 performance analysis for resource provi-
sioning of service-oriented applications. In Proceedings of the International Conference on
Service-Oriented Computing (ICSOC 2009), ICSOC/ServiceWave’09 (pp. 197-207). Heidel-
berg: Springer.

Dutreilh, X., Kirgizov, S., Melekhova, O., Malenfant, J., Rivierre, N., & Truck, I. (2011). Using
reinforcement learning for autonomic resource allocation in clouds: Towards a fully automated
workflow. In Proceedings of the 7th International Conference on Autonomic and Autonomous
Systems (ICAS 2011) (pp. 67-74).

FANN. FANN, January 13 2016.

Fernandez, H. et al. (2014). Autoscaling web applications in heterogeneous cloud infrastruc-
tures. In Proceedings of the IEEE International Conference on Cloud Engineering (pp. 195—
204).

Fowler, M. (2003). Patterns of enterprise application architecture. Addison-Wesley Profes-
sional.

210 N. Grozev and R. Buyya

19. Gandhi, A., Dube, P., Karve, A., Kochut, A., & Zhang, L. (2014). Adaptive, model-driven
autoscaling for cloud applications. In 1 /th International Conference on Autonomic Computing,
ICAC ’14 (pp. 57-64).

20. Grok. Grok, January 13 2016.

21. Grozev, N., & Buyya, R. (2013). Performance modelling and simulation of three-tier applica-
tions in cloud and multi-cloud environments. The Computer Journal.

22. Hawkins, J., Ahmad, S., & Dubinsky, D. (2011). Hierarchical temporal memory including
HTM cortical learning algorithm. Technical report, Numenta Inc.

23. Hawkins, J., & Blakeslee, S. (2004). On intelligence. New York: Times Books.

24. JClouds. JClouds, January 14 2016.

25. Lloyd, W., Pallickara, S., David, O., Lyon, J., Arabi, M., & Rojas, K. (2013). Performance impli-
cations of multi-tier application deployments on infrastructure-as-a-service clouds: Towards
performance modeling. Future Generation Computer Systems, 29(5), 1254—-1264.

26. Lorido-Botran, T., Miguel-Alonso, J., & Lozano, J. A. (2012). Auto-scaling techniques for
elastic applications in cloud environments. Technical Report EHU-KAT-1K-09-12, Department
of Computer Architecture and Technology, University of the Basque Country.

27. Moreira, M., & Fiesler, E. (1995). Neural networks with adaptive learning rate and momentum
terms. Technical Report 95-04, IDIAP, Martigny, Switzerland.

28. Mountcastle, V. (1978). An organizing principle for cerebral function: the unit model and the
distributed system. In G. Edelman & V. Mountcastle (Eds.), The mindful brain. Cambridge:
MIT Press.

29. Numenta. Numenta, February 13 2014.

30. Numenta. Numenta Platform for Intelligent Computing (NuPIC), February 13 2014.

31. Qu, C., Calheiros, R. N., & Buyya, R. (2016). A reliable and cost-efficient auto-scaling system
for web applications using heterogeneous spot instances. Journal of Network and Computer
Applications, 65, 167-180.

32. Ramirez, A. O. (2000). Three-tier architecture. Linux Journal, 2000(75) (2000).

33. RightScale. RightScale, January 14 2016.

34. Schad, J., Dittrich, J., & Quiané-Ruiz, J.-A. (2010). Runtime measurements in the cloud:
Observing, analyzing, and reducing variance. The Proceedings of the VLDB Endowment
(PVLDB), 3(1-2), 460—471.

35. Simmons, B., Ghanbari, H., Litoiu, M., & Iszlai, G. (2011). Managing a saas application in
the cloud using paas policy sets and a strategy-tree. In Proceedings of the 7th International
Conference on Network and Services Management, CNSM 11 (pp. 343-347), Laxenburg,
Austria, Austria, 2011. International Federation for Information Processing.

36. Singh, R., Sharma, U., Cecchet, E., & Shenoy, P. (2010). Autonomic mix-aware provisioning
for non-stationary data center workloads. In Proceedings of the 7th International Conference
on Autonomic Computing, ICAC ’10, New York, NY, USA, 2010 (pp. 21-30). ACM.

37. Sobel, W., Subramanyam, S., Sucharitakul, A., Nguyen, J., Wong, H., Klepchukov, A., et al.
(2008). Cloudstone: MultiPlatform, multi-language benchmark and measurement tools for web
2.0. In Proceedings of Cloud Computing and Its Applications (CCA ’08), CCA "08.

38. Tan, Y., Nguyen, H., Shen, Z., Gu, X., Venkatramani, C., & Rajan. D. (2012). Prepare: Predictive
performance anomaly prevention for virtualized cloud systems. In Proceedings of the 32nd
International Conference on Distributed Computing Systems (ICDCS) (pp. 285-294).

39. Tickoo, O., Iyer, R., Illikkal, R., & Newell, D. (2010). Modeling virtual machine performance:
Challenges and approaches. ACM SIGMETRICS Performance Evaluation Review, 37(3), 55—
60.

40. Toosi, A. N., Qu, C., de Assun¢do, M. D., & Buyya, R. (2017). Renewable-aware geograph-
ical load balancing of web applications for sustainable data centers. Journal of Network and
Computer Applications, 83, 155-168.

41. Tordsson, J., Montero, R. S., Moreno-Vozmediano, R., & Llorente, I. M. (2012). Cloud broker-
ing mechanisms for optimized placement of virtual machines across multiple providers. Future
Generation Computer Systems, 28(2), 358-367.

42. Vogl, T. P, Mangis, J. K., Rigler, A. K., Zink, W. T., & Alkon, D. L. (1988). Accelerating the
convergence of the back-propagation method. Biological Cybernetics, 59(4-5), 257-263.

Improving the Energy Efficiency in Cloud
Computing Data Centres Through Resource
Allocation Techniques

Belén Bermejo, Sonja Filiposka, Carlos Juiz, Beatriz Gomez
and Carlos Guerrero

Abstract The growth of power consumption in Cloud Computing systems is one
of the current concerns of systems designers. In previous years, several studies have
been carried out in order to find new techniques to decrease the cloud power con-
sumption. These techniques range from decisions on locations for data centres to
techniques that enable efficient resource management. Resource Allocation, as a
process of Resource Management, assigns available resources throughout the data
centre in an efficient manner, minimizing the power consumption and maximizing
the system performance. The contribution presented in this chapter is an overview
of the Resource Management and Resource Allocation techniques, which contribute
to the reduction of energy consumption without compromising the cloud user and
provider constraints. We will present key concepts regarding energy consumption
optimization in cloud data centres. Moreover, two practical cases are presented to
illustrate the theoretical concepts of Resource Allocation. Finally, we discuss the
open challenges that Resource Management must face in the coming years.

B. Bermejo (X)) - C. Juiz - B. Gémez - C. Guerrero
Computer Science Department, University of the Balearic Islands, Palma, Spain
e-mail: belen.bermejo@uib.es

C. Juiz
e-mail: cjuiz@uib.es

B. Gémez
e-mail: b.gomez@uib.es

C. Guerrero
e-mail: carlos.guerrero@uib.es

S. Filiposka

Faculty of Computer Science and Engineering, University Ss.
Cyril and Methodius, Skopje, Macedonia

e-mail: sonja.filiposka @ finki.ukim.mk

© Springer Nature Singapore Pte Ltd. 2017 211
S. Chaudhary et al. (eds.), Research Advances in Cloud Computing,
DOI 10.1007/978-981-10-5026-8_9

212 B. Bermejo et al.

1 Introduction

Computing has traditionally been based in a local environment using our own com-
puter and other specific hardware to process and store information. However, this
vision is increasingly changing as computing is becoming a global phenomenon,
becoming a set of centralized facilities offered as a utility, similar to water, gas or
telephony. This is possible thanks to the dynamic provisioning concept, which allows
on-demand access to services in a transparent user-friendly way. In such a model,
users fulfil their needs by hiring facilities based on their requirements regardless of
the hosting location [16].

This way of processing information is already supported and boosted by several
computing paradigms, such as Grid Computing and Cloud Computing. Lately, cen-
tralized information processing has proved to be more efficient, on large farms of
computing and storage systems accessible via the Internet [39]. Thus, Information
Technology (IT), in general, becomes a synonym for different resources available
through the Internet provided by cloud providers on a pay-per-use basis according to
the amount of resources utilization [16]. In fact, John McCarthy predicted this idea
in 1961, remarking that “computation may someday be organized as a public utility”
[64].

Since the early days of mainframes in the early 1950s, the evolution of distrib-
uted computing technologies has created favourable conditions for the realization of
Cloud Computing; currently, it embodies aspects of all distributed technologies [16].
Cluster-based technology enables machines connected by a high-bandwidth network
and managed by specific software to be viewed as a single system. Grid Computing
is a dynamic aggregation of geographically dispersed clusters by means of Internet
connections. It proposed a new approach to access through the Internet to a set of
large computational power resources, huge storage facilities and a variety of services.
In contrast, the virtualization technology allows different applications to be allocated
on a single Physical Machine (PM) in logically scheduled Virtual Machines (VMs)
using virtualization functions such as: VM migration, VM creation, VM modifica-
tion and VM destruction. Web 2.0 facilitates the creation of web pages which are
more interactive and flexible, improving the user experience by allowing web-based
access to all functions that traditionally was deployed only in desktop environments.
Service-Oriented Computing (SOC) is the core reference model for cloud systems
[43]. The SOC approach is based on a development pattern of building services as the
man system. It supports the development of brisk, low-cost, flexible, interoperable,
and evolvable applications and systems. The intrinsic design of service computing is
based on a service delivery model, in which users pay providers for using on-demand
computing power [15].

Cloud and Grid Computing have common objectives: reducing the cost of process-
ing the information and power/energy consumption and harnessing the opportunities
that are offered by centralization to improve scalability, reliability, and availability,
among others; all of these are transparent to final users and are managed by a third
party [64]. Cloud Computing is deployed in large data centres hosted by a single orga-

Improving the Energy Efficiency in Cloud Computing Data ... 213

nization, which provide virtually infinite capacity while being tolerant to failures and
always on, delivering more abstract resources and services, which are consumed on
a pay-per-use basis.

The definition of Cloud Computing that has achieved commonly accepted status
was created by NIST [41]: “Cloud Computing is a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of configurable comput-
ing resources (e.g. networks, servers, storage, applications and services) that can
be rapidly provisioned and released with minimal management effort or services
provider interaction”. The management and the maintenance costs are in charged by
cloud providers [64].

The combination of the previously mentioned technologies generates different
deployment models and provides useful information regarding the nature and services
offered by the cloud. One useful classification, given according to the administrative
domain of a Cloud Computing, differentiates four possible types of clouds according
to the deployment model [49]:

e Private cloud: the cloud infrastructure is operated internally by the organization
itself or by a single third party that acts only on behalf of the organization. This
cloud-based in-house solution is usually used by those who store and manipulate
highly confidential information with a critical level of security, privacy and reg-
ulatory concerns. The adoption of private clouds by SMBs (Small and Medium
Business) and enterprises has increased by 14% in recent years.

e Community cloud: an interest-specific community of organizations that share sim-
ilar concerns (as mentioned above) operates over the pool of shared infrastructure.

e Public cloud: a third-party service provider sells cloud services to any consumer
on a subscription basis. The adoption of public clouds has been increased by 1%
in recent years by SMBs and enterprises.

e Hybrid cloud: a composition of public and private cloud resources is used when
the private-only resources are unable to meet the users’ Quality of Service (QoS)
requirements. Although clouds are linked by standardized or proprietary tech-
nology that allows data and application portability, each of them remains as an
individual entity. The adoption of hybrid clouds by SMBs and enterprises has
increased by 13% in recent years.

In [39], these types of clouds are classified as deployment models depending on
their characteristics and user requirements. However, clouds can also be classified
based on its capability to deliver a variety of IT services on demand, thus taking a
user point of view. According to the NIST reference architecture (see Fig. 1), cloud
delivery models and services are presented in a service layer and described by the
Cloud Security Alliance [7] as follows:

e Infrastructure-as-a-Service (I1aaS) delivers infrastructure such as processing, stor-
age, networks, and other resources on demand mostly in the form of virtual inter-
faces. This provides computing on demand in the form of VM instances. In this
model, customers cannot manage the cloud infrastructure although may run soft-
ware in the VMs, for example the AWS (Amazon Web Service).

214 B. Bermejo et al.

Service Consumer

Service Provider

Service Layer =
= W
T & - =
5 2@ Resource abstraction and g | 3c
= o
5 £ G control layer g = ¢
c-?.‘ T 3o] o .® o
o £ % . = E © g"o
= = Physical Resource Layer 3 £ W0
= ey = _ L =
388 laasS c L wo
gL PaaS bt <<

Saas

Fig. 1 Cloud computing reference model based on [41]

e Platform-as-a-Service (PaaS) provides scalable and elastic runtime environments
on demand and hosts the execution of applications. The cloud provider enables
users to use programming languages and tools by controlling their deployed appli-
cations as well as the configurations of hosting environment. The responsibility of
the service provider, among others, is to provide scalability and to manage fault
tolerance, e.g. Google App Engine.

e Software-as-a-Service (SaaS) delivers applications and services on demand. The
applications are accessible from client device interfaces, as simple as a browser.
The user does not manage the platform or the infrastructure as these are the
provider’s responsibility, e.g. Google Drive or Dropbox.

Beloglazov and Buyya [11] defined the main challenges for cloud providers,
namely, performance, availability and dependability. All of these challenges impact
on the design and the operation of cloud services in which energy efficiency is crucial
factor due to the increasing of power consumed by PM. In fact, up to 40% of current
IT budget is directly related to energy cost [49].

Cloud Computing is based on the dynamic provisioning concept, thanks to the
Resource Management process and how it performs in the virtual interface. This
process affects performance, functionality and cost, three criteria for system eval-
uation. An inefficient Resource Management inherently produces a direct negative
effect on performance, cost and ulterior defect on the functionality of the system,
and the power consumption. There are many techniques for performing an efficient
Resource Management process that incorporates energy consumption awareness. The
greatest challenge is achieving the minimum energy consumption without compro-
mising the Service-Level Agreement (SLA) and the Service Level Objective (SLO)
established between the customer and the cloud provider.

The aim of this chapter is to provide an overview of the Cloud Computing concepts
and data centres that support cloud services and to discuss Resource Management

Improving the Energy Efficiency in Cloud Computing Data ... 215

techniques that can be performed in an IaaS environment. Particularly, we focus on
Resource Allocation techniques that aim to reduce the energy consumption, taking
into account the customer and provider constraints.

The remainder of this chapter is organized as follows: in Sect. 1, we introduce key
concepts of Cloud Computing underlying technologies and virtualized data centres.
Additionally, we introduce issues related to the power and energy consumption, as
well as the power proportionality. In Sect.2, we explain the Resource Management
concept, its implementation process and the most important techniques involved. In
Sect. 3, we discuss the details of the Resource Allocation concept being an essential
part of the Resource Management process. Particularly, we focus on Resource Allo-
cation techniques that incorporate energy efficiency. In Sects. 4 and 5, we present the
conclusions and future challenges of Cloud Computing.

1.1 Data Centres in Cloud Computing

Although cloud offers are generally marketed as IaaS, PaaS and SaaS, this chapter
is devoted to the IaaS model. Thus, the focus of this section is on the features that
cloud data centres have in an IaaS environment.

As already discussed, Cloud Computing shares some common characteristics
with Cluster and Grid Computing but differs in that Cloud Computing adds a vir-
tualization layer over the infrastructure, which enables the Resource Management
process [64]. Figure2 shows the conceptual difference between traditional comput-
ing and virtualized environment. In the former, applications interact directly with the
Operating System (OS). In the latter, multiple OS images share the same hardware
resources (CPU, RAM, storage and networking). A virtualization layer, commonly
called hypervisor or Virtual Machine Monitor (VMM), is in charge of managing
these multiple OSs.

In this context, a resource is any physical or logical component with a limited
availability within a computer system. Due to the use of virtualization, it is necessary
to classify the resources (see Fig. 3) that are involved in Resource Management [33]:

Traditional Virtual

App; | |APP, | |APP,y
App; | |AppP, ||APP; oS 0s 0s

0S Host - Virtual Machine

Manager

Physical Layer Physical Layer

Fig. 2 Transition from traditional computing to virtualized computing based on [39]

216 B. Bermejo et al.

Cloud resources

e~

Physical resources Logical resources

' Processor QoS

Between
PMs

— Network < —— Application
Local I/O

C t

—— Storage — Omp(?nen

service

Fig. 3 Cloud resources taxonomy based on [33, 38]

e Physical Resources: these include all the tangible resources that compose a
PM. The typical physical resources are: (a) the PMs, each comprised of one or
more CPUs, memory, network interfaces and local 1/O; virtualization software
is deployed to host a number of VMs; (b) networking resources (i.e. switches)
enabling connections between the PMs via a high-bandwidth network; (c) the
storage resources that usually are, between others types, disks, databases, etc. The
level of data consistency and reliability vary among the types of storage.

e Logical/Virtual Resources: a system abstraction that has temporary control over
the physical resources. They can support development of applications and efficient
communication protocols. The main logical resources are the host OS, component
services such as VMs and VMMs.

From the Cloud Computing reference model point of view (see Fig. 1), there are
three actors interacting with the cloud stack services (see Fig.4) in IaaS [5]: the cloud
provider, the cloud user and the end user. The cloud provider manages the physical
and logical resources of the data centre, providing an abstraction of these resources
to cloud users. Cloud users host applications offered to their end users. Providers’
objectives are in charge of meet the user SLA and get economical profits. They have
to guarantee that the dedicated resources are scaled as the end users’ demand is
increased. The workload processed by these resources is generated by the end users.
Their behaviour influences in the Resource Management process.

Improving the Energy Efficiency in Cloud Computing Data ... 217

(a) (b) (c)
SaaS Saas SaaS
Workload request j Workload request T Workload request T
------- e et SRR
Application Application Fan Application
_______________ _ End User
laas Cloud Provider
Platform i Platform Platform :
_______________ T_ Cloud User
Physical resources Physical resources Physical resources

Fig. 4 Cloud models for provisioning: a IaaS, b PaaS and ¢ SaaS. Own design based on [5]

1.2 Energy, Energy Efficiency and Power-Proportional
Systems

As Cloud Computing adoption has been increasing by 2% per year, the power con-
sumption has also been increasing. Moreover, 26% of enterprises are becoming more
concerned with managing cloud costs that become a big challenge for them. Improve-
ment in power consumption means a significant opportunity for reducing cloud costs,
no matter if it is done by powering down unused workloads or by selecting lower
cost clouds or regions [49].

As [23] indicates, the projected energy consumption grows of data centres is
around 1000 billion kWh by 2020. For example, since 2000 to 2007, it increased
from 70 to 330 billion. This grow is also expected in the resources of the data centres.
The power density of a single rack will be around 30 kW by 2020, in comparison to
the range of 250 W—1.5 kW they were at 2003. Another important factor is that PMs
consume 50% of energy while they are in idle state, moreover if we consider that
their average utilization is around 10-50%. For a 20% of use of the resources, the
power consumption is around 80% of power consumption of the same infrastructure
at 100% of use. Thus, improving the energy efficiency of PM is a key factor for
data centre deployment. Moreover, the distribution of the power consumption in a
data centre is as follows: 10% corresponds to power distribution, 12% corresponds
to air movement, 25% corresponds to the cooling system, 50% corresponds to IT
equipment and the last 3% is related to auxiliary issues [32]. Also, as [32] describe,
the Power Usage Effectiveness (PUE) is a measure of how efficiently a data centre
uses energy in computing tasks. PUE is defined as the ratio between the total amounts
of energy used by a data centre as a whole and the energy delivered to PM. Elements
such as lighting and cooling, fall into the category of facility energy consumption
because they are not considered computing devices. While an ideal PUE has a value
of 1.0, the global average of respondents’ largest data centres is approximately 1.7.!

There are two main metrics related to power consumption in cloud data centres:
Energy Efficiency and Power Proportionality. In [40], the Energy Efficiency is defined

Thttps://www.google.com/about/datacenters/efficiency/internal/.

https://www.google.com/about/datacenters/efficiency/internal/

218 B. Bermejo et al.

Typical operating region

90
80
70

Power
60

Energy Efficiency
50
40
30

20

Server power utilization (% peak)

10

0 10 20 30 40 50 60 70 80 90 100
Utilization (%)

Fig.5 Server power usage as a function of utilization in an energy-proportional system as it appears
in [9, 32]

as a reduction of used energy to develop a service. It is also defined as the ratio of
system’s performance and its power consumption. Therefore, [32] defines the Power
Proportionality as the ideal property of a system that consumes power in proportion
to the amount of work performed. The power proportionality is not a requirement for
a system to be an energy efficiency, however, proportional energy consumption is not
a definitive solution since the workload variation of real systems demands not only
proportional energy but also power proportional, too (see Fig.5). The variation of
power consumption in function of system utilization is represented by dotted line. It
represents how the system when is being completely idle consumes half of the peak
power. The system shows poor power proportionality because the energy efficiency
increases from a very low value as the utilization growths. An ideal proportional
system is also included in Fig. 5, where the energy efficiency keeps a constant level
starting at O when the system is idle.

Thus, it is important to highlight the difference between power and energy. Power
reduction can be achieved by lowering the CPU performance, but if an application
has a longer execution time, it may consume the same or an extra amount of energy.
The reduction of peak power consumption minimizes infrastructure provisioning
costs, but diminished energy consumption cuts the electricity cost [1].

Improving the Energy Efficiency in Cloud Computing Data ... 219

1.3 Energy Efficiency in Cloud Computing Data Centres

Power consumption is limited by high frequencies in computer systems. That involves
the minimization of the power consumption of each computation device of the system.
Power-supply sizing, cooling/heatsink requirements and criteria for device selection
are determined by power consumption calculations. It can also determine the max-
imum reliable operating frequency. The static and dynamic power determine the
power consumption in a CMOS circuit [14].

Current leakage that are present in any active circuit cause static power consump-
tion, independently of clock rates and usages scenarios and are mainly determined
by the type of transistors and process technology. Dynamic power consumption is
created by circuit activity and depends mainly on a specific usage scenario. Static
power management is not the aim of this chapter because this implies the improve-
ment of the low-level system design. The fact that the dynamic power value depends
on the component usage implies that this value can be managed in a cloud data centre
[14].

As Fig.6 shows, the dynamic power can be managed in two layers: hardware
and software. The former includes all techniques related to the low-level design, e.g.
transistors (circuit level), the physical location of the data centre, switching on/off
techniques, Dynamic Voltage and Dynamic Performance Scaling techniques, such as
DVEFS (Dynamic Voltage Frequency Scaling) and DPS (Dynamic Power Switching)
at PM level, and network topology that connect the data centre (network architec-
ture). The latter includes all techniques related to the logical resources (workload,
VM, etc.). The VMM level applies techniques related to the virtual resources, the
VMs, performing any operations on them (consolidation, migration, etc.). The OS
level includes techniques that perform traditional OS operations, such as workload
scheduling and resource sharing (workload management) and network latency and
network protocols (network management).

Table 1 shows some relevant works in the presented areas. For example, [22,
45] illustrated the improvement of energy efficiency in cloud data centres through
low-level techniques, network architecture and network management.

In this chapter, we are particularly interested in the software level, where resource
management techniques and policies can be applied (see Fig.6). Throughout the
chapter, we will show the techniques and the mechanism used to implement resource
management policies. Then, the techniques used to implement the resource schedul-
ing process (as a part of resource management) and the resource allocation (as a part
of resource scheduling) for energy-aware techniques will be discussed (Fig. 7).

220

B. Bermejo et al.

Dynamic Power

Management
Hardware level Software level
Circuit Server Network VMM
: OS level
level level architecture level
Workload Network
Management Management

Fig. 6 Taxonomy of dynamic power management areas in a cloud data centre based on [14]

Table 1 Dynamic power management relevant works by areas

Dynamic power management area Reference
Circuit level [6, 18, 22, 63]
Server level [34]

Network architecture [45]

VMM level [27, 30, 35, 61]
Workload management [4, 18, 48, 60]
Network management [26, 45]

Fig. 7 Resource
management taxonomy
based on [1, 2]

POLICIES
Admission control, Capacity allocation,
Load balancing, Energy consumption
optimization and QoS guarantee

MECHANISMS
Control theory, Machine learning,
Utility-based techniques and Market-
oriented

RESOURCE SCHEDULLING PROCESS
Virtualization-based, energy
conservation-based, SLA-based and
cost-effectiveness-based

Improving the Energy Efficiency in Cloud Computing Data ... 221

2 Resource Management in Cloud Computing

Resource Management is a general process covering different stages ranging from the
request submission to the request execution for different workloads [54]. Resource
Management is used also to meet end users’ requirements in terms of performance
through allocating information technology hardware, namely, network, servers, etc.
Consequently, other resources are indirectly managed, e.g. power consumption. The
Resource Management is a complex problem in cloud environments due to hetero-
geneous nature of PMs and then their scalability problem in data centres. Moreover,
the high variation of unpredicted workload [33] causes new interdependent problems
in managing the cloud resources.

The different ways to solve Resource Management problems are connected with
the cloud models—IaaS, PaaS and SaaS—even though may be delivered in different
ways [39]. Nevertheless, there are common policies that guide the Resource Man-
agement decisions. The mechanisms represent the means to implement the policies,
and these differ between delivery models. Depending on the system objective, the
cloud Resource Management policies can be grouped into five classes: admission
control, capacity allocation, load balancing, energy consumption optimization and
QoS guarantee.

Marinescu [39] explains that the admission control policy should prevent the
cloud system from workload harming higher level control policies. Additionally,
capacity allocation means to assign resources for end users requests, but balancing
the workload, whereas trying to optimize the energy consumption at PMs. Thus, all
these policies are correlated and affected by the cost of providing the services. Load
balancing and energy optimization policy are probably the most difficult to address
in Resource Management. Simultaneously, it is possibly one of the most important
issues for the future of Cloud Computing and the main topic of this chapter.

Regarding the mechanism needed to implement these policies at different layers
of the cloud stack, four different techniques can be employed; first, control theory
that uses the feedback of the system to guarantee system stability and predict future
behaviour; second, machine learning that uses the information of the system perfor-
mance over time to not use a system model; third, utility-based techniques, which
require a performance model of the system and correlation of the user-level perfor-
mance with cost. Thus, all of these techniques need a model of the system. The last,
market-oriented and economic mechanisms use approaches based on Game Theory,
e.g. combinatorial auction for bundles of resources and heuristics. In this last case,
these techniques do not require a model of the system to make a decision.

Moreover, the main objective of the Resource Management process is the efficient
and effective cloud provider resource usage within the constraints of SLA and SLO.
Moreover, each actor has a specific objective in Resource Management. On the one
hand, the cloud provider seeks sticking to the SLA (and SLO) with the cloud user
regarding the provision of virtual interfaces over its physical resources. The provider
also needs to multiplex the end users depending on the SLA. It should offer different
service levels to the end users and may choose to prioritize the use of resources to dif-

222 B. Bermejo et al.

ferent end users. Regarding the Resource Management, the cloud provider objectives
are related to the balanced workload, fault tolerance and usage of physical resources.
The aim is to optimize metrics depending on criteria, e.g. optimize the energy effi-
ciency rather than physical resources utilization, etc. On the other hand, the cloud
user seeks to exploit the elasticity property of cloud environments, making avail-
able additional resources to accommodate new demands or release according to the
requests arrival rate. Moreover, the cloud user may formulate Resource Management
objectives that reflect its approach to resource reservation, aiming to accommodate
demand waves.

The main technologies that are directly or indirectly associated with cloud
Resource Management processes are another important aspect to consider, as detailed
below:

e Infrastructure scaling: hosting services can be offered at a low cost by cloud
providers by concentrating large numbers of connected PMs, i.e. economies of
scale.

e Virtualization: the hosting of multiple VMs into a PM is the most important ben-
efit from the resource management perspective, together with the capability to
configure VMs to utilize different PM resources [11, 17].

e VM migration: VMs allocation in a smaller number of PMs can be performed
dynamically impacting on the energy efficiency of the data centre. This example
of allocation strategy is well known as consolidation.

e Equipment power state adjustment: power management to minimize the energy
consumption have been developed by equipment vendors and processor manufac-
turers, i.e. DVFS Marinescu [39].

The Resource Management in cloud systems consists of three main functions [38,
54]: Resource Provisioning, Resource Scheduling and Resource Monitoring (see
Fig. 6). Taking into account the QoS requirements of end user, it submits its workload
to the cloud provider platform for it execution. Based on QoS requirements and these

constraints, the resources are provisioned as {ry, r, r3, ..., r,} for the end user’s
workloads {wq, wy, ws, ..., w,} with maximum resource utilization and end user
satisfaction.

In the next subsections, different parts of the resource management process are
explained, as well as each subprocess. We will also explain in more detail some
techniques to achieve the objective of each process.

2.1 Resource Provisioning

Manvi and Shyam [38] defined the Resource Provisioning as the distribution of ser-
vices from the cloud provider to end users. To consider this problem, let R={r;, 1 <
k < n} be the collection of resources and n is the total number of resources; and
w = {w;|1 <i < m} as the collection of cloud workloads and mis the total number

Improving the Energy Efficiency in Cloud Computing Data ... 223

of cloud workloads. The set of independent workloads has to be mapped on a set of
dynamic and heterogeneous resources.

The development of an efficient service provisioning policy is among the major
issues in cloud research. The issue here is to provide better QoS in the IaaS model
by provisioning the resources to the end users or applications via load balancing
mechanisms and high availability mechanisms.

The Resource Provisioning process is composed of two functions: Resource Dis-
covery and Resource Selection. The former is the identification of the available
resources. The latter is the selection of the best workload resource, from the avail-
able ones, based on QoS requirements described by the cloud user in the terms of
SLA (Fig.8).

2.2 Resource Monitoring

Cloud resource utilization needs an efficient monitoring process in order to optimize
data centre performance. Hence, cloud providers should control cloud user deviations
from SLA in order to maintain QoS [38].

Resource Monitoring has three functions: Resource Usage, Resource Modelling
and Resource Estimation. The Resource Monitoring system compiles the physical

Resource Discovery
Resource Provisioning Resource Selection
Resource Allocation

Resource Mapping

Resource Management Resource Scheduling

Resource Adaptation

Resource Brokering

Resource Usage
Resource Monitoring
Resource Modelling

Resource Estimation

Fig. 8 Resource management processes, based on [33, 55]

224 B. Bermejo et al.

resource usages by measuring performance through CPU and main memory utiliza-
tion. Resource Modelling is based on the detailed information provided by trans-
mission network elements regarding the resources. Current resources required for an
application needs the computation of the Resource Estimation. In [47], a framework
that illustrates the most important attributes of resources monitoring is provided:
state, transitions, inputs and outputs within a given environment. It also helps in
predicting the resource requirements in subsequent time intervals.

2.3 Resource Scheduling

Resource Scheduling in the cloud environment is always a complex task due to the
geographical distribution of resources having varying load conditions, different user
requirements and price models [37].

Open challenges in Resource Scheduling are still unresolved by traditional algo-
rithms because of the dispersion, heterogeneity and uncertainty of the resources. The
properties of cloud environment need to be considered to make cloud services and
cloud-oriented applications more efficient.

Resource Scheduling is composed of four functions: Resource Allocation,
Resource Mapping, Resource Adaptation and Resource Brokering. Resource Allo-
cation is the distribution of resources economically among cloud users. Resource
Mapping manages the correspondence between resources required by the cloud users
and resources available within the cloud provider. Resource Adaptation is the ability
or capacity of the system to adjust the resources dynamically to fulfil the require-
ments of the cloud user. Finally, Resource Brokering is the negotiation of the amount
of resources through an agent to ensure that the necessary resources are available at
the right time to complete the SLA objectives.

To implement the resource scheduling process, a series of techniques have been
developed. These techniques consider variables related to cloud environments, such
as performance and energy/power consumption, to optimize them. We can classify
them into four types [37]:

1. Scheduling based on virtualization: VM migration is of higher importance in
implementing Resource Management strategies for the optimization performance
metrics, e.g. power consumption, utilization of PMs and QoS. The main challenge
for VM migration is the minimization of service downtime and minimization of
high network utilization [10, 44]. Most of the algorithms are based on linear
programming [24], genetic algorithms [46], and machine learning techniques
bib61.

2. Scheduling based on energy conservation: the current literature is indicative of the
fact that PMs in many data centres usually operate at 30% of their full capacity
[9]. The energy-oriented Resource Allocation policies consider two important
characteristics: QoS expectations and PM power consumption. Most of these
techniques are based on VM migration based on heuristics to consolidate the

Improving the Energy Efficiency in Cloud Computing Data ... 225

maximum of VMs in the minimum of PMs [37]. The optimized metrics are energy
efficiency [2, 11], execution time of a workload [3, 53], the cost of migration, the
SLA violation rate, the PM utilization and the VM migration rate.

3. Scheduling based on SLA: as already discussed, the cloud provider and the cloud
user have to negotiate a SLA, which basically outlines the service requirements
and the certainty of service delivery. Violation of the SLA is a key issue, because
it tends to make cloud users disaffected and eventually their level of satisfaction
declines. Three metrics are optimized though many techniques: SLA violation
rate, the service ranking and the cloud user satisfaction. These techniques [17, 52]
are related to admission control algorithms, a general control-theoretic approach
and the formulation of the resource scheduling programming based on mixed
Integer Linear Programming (ILP).

4. Scheduling based on cost-effectiveness: in cloud environments, cloud providers
want to minimize resource rental costs as they continue to meet workload
demands, while cloud users look forward to the lowest possible prices for the
resources they lease. The variables to optimize are usually the monetary cost,
the PM utilization, the execution time, the SLA violation rate and the energy
efficiency. In order to achieve that, the most used techniques are related to VM
placement and migration [51], the reduction total execution time [50] and the
dynamic resource renting schemes [42].

This chapter is devoted to Resource Allocation techniques because they have a
significant impact in cloud environments, especially in pay-per-use deployments,
where the numbers of resources are charged by cloud providers. The question here is
how to allocate suitable resources to perform a task with minimal time and infrastruc-
ture cost. Suitable resources need to be selected for specific applications in IaaS, and
instances of these resources are allocated to execute the task.

3 Resource Allocation for Energy-Awareness in Cloud
Computing Data Centres

From the Resource Allocation techniques, we are interested in techniques that
improve the energy efficiency taking into account the cloud user and provider con-
straints. Of particular interest are those techniques that are performed in the virtual
interface layer. A vast number of works related to Resource Allocation techniques
have been published in recent years. In Table2, the most relevant techniques to
achieve energy efficiency are shown. All these techniques are performed in the vir-
tual layer.

Through these schemes, there are many implemented techniques that act at the
virtual interface layer based on the VM consolidation and the VM migration. In [27],
several heuristics are described; aiming to evaluate their capabilities, with special
attention paid to balanced resource usage versus total number of used PMs. In their
work, a community-based framework is shown for VM placement indoors a cloud

226 B. Bermejo et al.

Table 2 Resource allocation for energy-aware techniques

Technique Goal Reference

Machine learning Reduce the temperature and minimize the [34]
power consumption

VM migration Minimize the energy cost [30]
Minimize energy consumption [63]

Load prediction Minimize the power consumption [60]

VM clustering Minimize the energy consumption and [61]
maximize the VM allocation quality

Sleep PM, considering VM usage | Reduce the energy consumption of data [22]
centre

data centre. The approach uses complex networks and it is based on the process of
grouping the nodes that are tightly coupled and the mapping of VM communities to
PM communities. The solution is addresses to optimize the energy consumption and
the system performance.

Beloglazov and Buyya [13] proposed an efficient adaptive heuristic for dynamic
allocation of VM in order to minimize the energy consumption while ensuring a
high level of adherence to the SLA. They took into account the current utilization of
resources, and by applying live migration, switching idle nodes to sleep mode, the
energy consumption minimization can be achieved.

The VM allocation process may be divided in two different parts as [12] pro-
posed: first, how to allocate VMs on PM (VM placement) and the VM provisioning
when newer requests are admitted; second, how to optimize current VM allocation.
Additionally, they proposed a general algorithm for VM allocation based on PM
overloading detection and VM migration to available resources in PM. Cao et al.
[19], proposed a VM allocation solution based on forecasting the power demand,
reducing the total processor’s frequency by switching on/off the PM. Moreover,
[48], proposed diverse cloud resource allocation policies: Round Robin, Packing,
Striping, Load Balancing (free CPU ratio), Load Balancing (free CPU count), and
Cost per Core and Watts per Core, real cases. In [56], the energy metric presented
establishes the relationship between the QoS obtained and the power consumed by
the PM in web server clusters.

Furthermore, there are recent studies gather other energy-aware techniques, such
as [58]. These newer strategies include resource requirements prediction and the
Resource Allocation algorithms. In this work, they studied several Resource Allo-
cation techniques used in cloud systems through a comparison between the benefits
and drawbacks of these techniques.

Regarding the VM operations, [29] proposed a technique to minimize the impact
of VM migration due to the cost of this operation in terms of power consumption
and QoS violation during the downtime [59]. In [57], the current approaches with
respect to costs of VM migration were summarized, classified and evaluated.

Improving the Energy Efficiency in Cloud Computing Data ... 227

Of all the presented approaches, the Market-Oriented Resource Allocation and
the dynamic Resource Allocation and consolidation mechanisms are mostly used
to reduce energy consumption in cloud environments, especially in the VM layer.
Moreover, there are architectures for implementing these techniques. Each architec-
ture defines its own entities and Resource Management functions based on three main
blocks: Resource Provisioning, Resource Scheduling and Resource Monitoring. The
interest in managing the virtual interface layer is because 48% of the companies
that manage a virtualized data centre have more than 1000 VMs running in its data
centre [49].

In the next subsections, we will discuss two case studies of architectures to reduce
the power consumption, using intelligent management in the VM layer. For each
architecture, we will explain the objective, the involved entities and their interrela-
tionship, and the Resource Management theory uncovered in the previous sections.

3.1 A case study of an architecture for dynamic Resource
Allocation and Consolidation mechanism

The Green Cloud Architecture [12] aims to lead the design of the next generation
of data centres by designing them as networks of virtual services. Consequently,
users can access and deploy applications on demand from anywhere via the Internet
depending on their QoS requirements.

In this case, the authors propose an efficient heuristic for dynamic adaptation
of VM allocation according to the current utilization of resources applying live
migration by switching idle PM to sleep mode in order to minimize the energy
consumption.

Figure 9 shows the high-level architecture used to support energy-aware service
allocation in green cloud infrastructures. This architecture comprises four entities:

e End users: they submit service requests wherever they are to the cloud provider.

e Green Service Allocator: performs interface functions to communicate the cloud
provider with end users. In order to support the energy-efficient Resource Man-
agement is necessary the interaction of following entities.

— Green Negotiator: mediates the prices and pain (for violations of the SLAs with
the end users and the clouds provider), depending on its QoS and energy saving
requirements.

— Service analyser: determines if the cloud provider can accept the service require-
ments of arequest. The decision is based on the history of the power consumption
and VM Manager information.

— Consumer profiler: collects specific features of end users to prioritize them and
determine the special privileges depending on the agreed SLA.

228

B. Bermejo et al.

Q End Users / Brokers

\

End User Interface

fresn Pricin
Negotiator g Cloud Provider
Consuimex Service Cloud Provider Interface
Profiler Analyzer

Service Scheduler

Virtual Machine
Manager

Virtual Machines

Accounting

Energy
Monitor

Physical Layer

Fig. 9 Green cloud architecture for resource allocation based on [12]

— Pricing: decides is the price of the request to manage the supply and demand

of computing resources and facilitate the priority of services allocation, taking
into account the price.

Energy monitor: gathers data related to the energy consumption from VMs
and PMs. The VM manager uses this data to optimize the Resource Allocation
addresses to maximize the energy efficiency.

Service scheduler: subscribe service requests to VMs and determines corre-
sponding resources for the allocated VMs. The service scheduler has to decide
when VMs will be submitted again with the new features or removed if the
self-scaling functionality has been requested by end user.

VM Manager: monitors the availability and utilization of VMs resources. Its
functions are the provisioning of new VMs, as well as the migration of VMs to
other PMs in order to adapt the placement.

Accounting: monitors the current VMs resources utilization and accounts for
its cost (in terms of power consumption and performance). Historical data of
the resources utilization can be used to improve future Resource Allocation
decisions.

e VMs: providing the flexibility of configuring various portions of resources on the
same PM to different requirements of service requests is possible to VM oper-
ations. These operations are start and stop a VM on a single PM according to
incoming request requirements. Multiple VMs are allowed to used and run appli-
cations from different OS. Consolidation allows reducing the power consumption
of unused resources by switching them off or reconfiguring them to operate at
low-performance levels (e.g. using DVES).

e PMs: hardware infrastructure.

Improving the Energy Efficiency in Cloud Computing Data ... 229

References [30, 31] presented other green-based architectures and frameworks:
the GreenSlot and the Order@Cloud. The former is a scheduler based on parallel
batch job for a virtualized data centre which is powered by a photovoltaic solar
array. The workload balancing is performed trying to minimize energy consump-
tion before the deadline of jobs. The work also contains a comparison with other
convectional scheduler and their proposal. The latter is a flexible and extensible
framework to improve the VM assignments of a cloud environment. The requested
VMs on the cloud are reallocated by multi-objectives-based techniques. These objec-
tives are defined by rules, quantifiers and costs, evolutionary and avid searches. The
Order@Cloud framework is able to guarantees the best set of placements theoreti-
cally.

3.2 A Case Study of Market-Oriented Architecture
Jor Resource Allocation

Cloud providers have to know the requirements and objectives of end users in order
to help their computing operations. Therefore, cloud providers have to consider and
respect the QoS requirements by SLA negotiation. Thus, market-oriented Resource
Management is useful to balance the supply and demand of cloud resources to
share resources but not distinguishing end users by its QoS requirements in order
to achieve equilibrium. The Resource Management process is providing feedback
based on economic-incentives for both end user and cloud user. Also, QoS-based
Resource Allocation techniques end users can obtain some cost reductions from cloud
providers, which could start to a more competitive market with lower costs [17].

In Fig. 10, the high-level architecture for supporting market-Oriented Resource
Allocation in cloud data centres is shown. There are essentially four main entities
(or mechanisms) involved:

e End users/Brokers: end users or brokers submit service requests from anywhere
to the cloud provider for processing.

e SLA Resource Allocator: it is the interface between providers and users/brokers.
The SLA management is based on the following elements:

— Service Request Examiner and Admission Control: this mechanism determines
whether to accept or reject the submitted request, ensuring that PM’s resources
are not overloaded by analyzing the submitted requests. To determine the future
requests, it is needed the information of VM Monitor about resource availability
and workload processing from the Service Request Monitor. Then, it places end
users’ requests to VMs and determines the most suitable resources to allocate
VMs.

— Pricing: the pricing mechanism determines the cost of service requests depend-
ing on peak, pricing rates and resources’ availability. Similar to the previous

230 B. Bermejo et al.

End Users / Brokers

\

Service Request Examiner and
Admission Control

Dispatcher Cloud User

Cloud Provider

Pricing

Virtual Machine
Monitor
Virtual Machine
Manager

Virtual Machines

Accounting

Server Request
Monitor

Physical Layer

Fig. 10 Market-oriented architecture for resource allocation based on [17]

example, pricing can be used as a basis for managing the resources’ supply and
demand and facilitates its resources allocation prioritization effectively.

— Accounting: this mechanism monitors the current resource utilization for each
request. Hence, the final cost can be computed and charged to the end users.
Furthermore, the use of historic usage data can improve the Resource Allocation.

— VM Monitor: the VM Monitor mechanism takes care of the VMs’ availability
and their resource requests.

— Dispatcher: it is in charge of starting the execution of the services once they are
accepted.

— Service Request Monitor: this mechanism monitors the progress of service
requests’ execution.

e VMs: multiple VMs can be dynamically started and stopped on a single PM accord-
ing to incoming requests.

e PM: the data centre comprises many PMs providing resources to meet service
demands.

The commercial offers of the Market-Oriented approach should be able to support
the end user-driven service management based on end user profiles and SLA type.
Additionally, the management of the computational risk (penalties) involved in the
execution of an application with SLA limitations is necessary.

There are many techniques based on the presented architecture, such as the Com-
binatorial Auctions, the Pricing and Allocation Algorithms and the ASCA Combi-
natorial Auction Algorithm [39]. All of these techniques have common entities (see
Fig.9): auctioneers, the banking system, brokers, consumers and providers. In this

Improving the Energy Efficiency in Cloud Computing Data ... 231

example, market participants’ bids are cleared by auctioneers periodically and the
bank industry ensures transaction agreements between end users and cloud providers.
There are brokers acting as intermediaries between end users and cloud brokers, as
in share store market. The end users, brokers and cloud providers have to fulfil with
their requirements and associated compensations through SLAs [17].

Reference [39] defined the combinatorial auction as a technique consisting of
getting a bid on items’ combinations, which are called combinatorial auctions. They
propose a solution for cloud Resource Management that is scalable, and computable.
The Pricing and Allocation Algorithms consist of partitioning the set of users into
winners and losers, which are two disjoint sets. These algorithms have to satisfy some
requirements. They should be computationally tractable as well as scaled in terms
of number of service requests. Also, they have to be objective using a rule together
with be fairing by making sure that the prices are uniform. To claim the uniformity
is necessary to describe the prices of the resource pool at the end of the auction. The
ASCA Combinatorial Auction Algorithm allows users to define a resource vector
with its quantities and how much they want to pay for it. The auctioneer determines
is the existence of an excess demand and, if so, the price of more demanded resources
is hiked and new bids are requested.

Moreover, in the Market-Oriented approach, the Game Theory techniques are
gaining strength. Recent works manage the QoS, the energy consumption and the
cloud security through game theory through Nash equilibrium based algorithms [20].
In [28], the authors proposed a scalable risk assessment model using Game Theory.
In [25], a meta-heuristic approach was also proposed for cloud resource allocation,
based on the bio-inspired coral-reefs optimization paradigm to model cloud elasticity
and on game theory to optimize the resource allocation focussing on the optimization
objectives of the SLA.

Moreover, [8] presented three algorithms to solve the problem of Spot Price Pre-
diction (SPP), against a state-of-the-art Three-Layer Perceptron (TLP) algorithm.
The experimental results demonstrate that the behaviour of Support Vector Poly
Kernel Regression (SMOReg) algorithm was the more suitable for this type of prob-
lems.

4 Conclusions

This chapter summarizes the main concepts of Cloud Computing technology and the
Resource Management and Resource Allocation processes, focusing on the reduction
of the energy consumption of cloud data centres in an IaaS environment.

Due to the increase of IT usage in general and cloud services in particular, the uti-
lization of the resources of the data centres that support these services has increased;
consequently, the energy consumption of these data centres also grows. Thus, many
techniques have been developed with the aim of reducing the energy consumption
without harming QoS and SLA. These techniques range from the improvement of
cooling systems to the management of physical and logical resources of data centres.

232 B. Bermejo et al.

Resource Management is a key factor in improving the efficiency and reducing
the energy consumption of cloud systems. Thanks to the virtualization technology,
the migration of logical resources through a data centre allows for the optimization
of Resource Allocation, taking into account its current and future state. Among
the different Resource Management techniques, in this chapter, we focused on the
Resource Allocation techniques because they are in charge of mapping the logical
resources to the physical ones in an optimal manner.

In particular, in this chapter, Resource Allocation techniques focusing on the
reduction of energy consumption by improving the management of the virtualization
layer have been described. Moreover, we depicted some practical cases of the most
popular architectures based on the dynamic allocation and consolidation and the
Market-Oriented approach.

The future research lines are open to overcoming the proposed challenges that this
research area faces, along with the desire to achieve more efficient cloud systems,
reduce the CO, footprint and use IT in a more sustainable manner.

5 Open Research Problems

Open challenges that are in general and, especially, energy-aware Resource Man-
agement which will be faced in the coming years are introduced in [2, 55].

In the Resource Provisioning area, the main challenges are related to achieving
application hosting on the cloud in an elastic manner without compromising the SLA.
Additionally, it is necessary to develop prediction models to aid proactive scaling
in the cloud so that allocated applications can support the workload variations with
the least impact in performance and availability. Moreover, the design of clustered
applications to support n-tier architecture needs to be considered. Currently, the
prediction models are only used to retract over-provisioned resources, but they also
need to make bottleneck prediction in advance to overcome the VM boot-up latency
problem [38].

In Resource Scheduling, open issues are related with the dispersion, hetero-
geneity and uncertainty of the features of the resources, not solved with traditional
approaches. The development of service cloud-oriented applications in an efficient
manner is also necessary.

Regarding the QoS and SLAs, it is necessary to fulfil the QoS with the resources
provisioned by the provider. Based on these QoS requirements, techniques for SLA
design and violation detection are needed to determine the penalties.

The VM migration is one of the crucial activities to work balancing in virtualiza-
tion, since it allows responsive provisioning in data centres. However, workload peak
detection and agile reaction to workload variation are important parts of the migra-
tion process. VM migration supports PM consolidation methodologies for improving
resource utilization. Thus, VM migration may save data centre energy by consolida-
tion of VM allocated into a reduced number of PMs [55]. To perform a better VM
allocation optimization it is necessary that the VMs being reallocated in function of

Improving the Energy Efficiency in Cloud Computing Data ... 233

the current multiple system resources utilization of. The problem arises when trying
to provide strict SLAs ensuring no performance degradation. The prediction of per-
formance peaks is necessary in order select the candidate VM to be migrated. Fast
and more effective VM placement approaches are needed to prevent degradation of
the performance [17].

As we know, a massive volume of data has been produced and cloud technologies
help to process and store this data volume. Cloud Computing provides end users,
data analysts and data mining programmers the possibility to use data analytics in
different service models. The challenges faced in this area are the data staging, the
distributed storage systems, the data analysis and the data security [21].

Considering power management, the current limitation is that optimization algo-
rithms need to deal with large-scale scenarios where the complexity of the compu-
tation and the machine learning requirements and their speed to find solutions is not
able to quickly respond to changes in the system and in the workload. The research
challenge is effectively combining optimization techniques and ensuring that the
found solution is near the global optimum.

References

1. Akhter, N., & Othman, M. (2002). Energy aware resource allocation of cloud data cen-
ter: Review and open issues. Cluster Computing, 19(3), 1163—1182. https://doi.org/10.1007/
s10586-016-0579-4.

2. Akhter, N., & Othman, M. (2016). Energy aware resource allocation of cloud data cen-
ter: Review and open issues. Cluster Computing, 19(3), 1163—1182. https://doi.org/10.1007/
$10586-016-0579-4.

3. Al-Qawasmeh, A. M., Pasricha, S., Maciejewski, A. A., & Siegel, H. J. (2015). Power and
thermal-aware workload allocation in heterogeneous data centers. IEEE Transactions on Com-
puters, 64(2), 477-491. https://doi.org/10.1109/TC.2013.116.

4. Arjona Aroca, J., et al. (2015). Power-efficient assignment of virtual machines to physi-
cal machines. Future Generation Computer Systems, 54, pp.82-94. https://doi.org/10.1016/
j-future.2015.01.006.

5. Armbrust, M., Fox, A., Griffth, R., Joseph, A. D., Katz, R., Konwinski, A., et al. (2010). A
view of cloud computing. Communications of the ACM, 53(4), 50-58. https://doi.org/10.1145/
1721654.1721672.

6. Arroba, P, etal. (2016). DVFS-Aware consolidation for energy-efficient clouds. Parallel Archi-
tectures and Compilation Techniques - In Conference Proceedings (pp. 494—495) PACT.

7. Archer, J., Boehm, A. (2009). Security guidance for critical areas of focus in cloud computing,
Cloud Security Alliance 2, 1(76). Retrieved from https://downloads.cloudsecurityalliance.org/
initiatives/guidance/csaguide.v3.0.pdf.

8. Arévalos, S., Lopez-Pires, F., & Bardn, B. (2016). A comparative evaluation of algorithms for
auction-based cloud pricing prediction. In /IEEE International Conference on Cloud Engineer-
ing (pp. 99-108).

9. Barroso, L. A., & Hoélzle, U. (2007). The case of energy-proportional computing. Computer,
40(12), 33-37. https://doi.org/10.1109/MC.2007.443.

10. Baruchi, A., Toshimi Midorikawa, E., & Netto, M. A. (2014). Improving virtual machine
live migration via application-level workload analysis. In: 10th International Conference on
Network and Service Management (CNSM) and Workshop. https://doi.org/10.1109/CNSM.
2014.7014153.

https://doi.org/10.1007/s10586-016-0579-4
https://doi.org/10.1007/s10586-016-0579-4
https://doi.org/10.1007/s10586-016-0579-4
https://doi.org/10.1007/s10586-016-0579-4
https://doi.org/10.1109/TC.2013.116
https://doi.org/10.1016/j.future.2015.01.006
https://doi.org/10.1016/j.future.2015.01.006
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1145/1721654.1721672
https://downloads.cloudsecurityalliance.org/initiatives/guidance/csaguide.v3.0.pdf
https://downloads.cloudsecurityalliance.org/initiatives/guidance/csaguide.v3.0.pdf
https://doi.org/10.1109/MC.2007.443
https://doi.org/10.1109/CNSM.2014.7014153
https://doi.org/10.1109/CNSM.2014.7014153

234

11.

12.

13.

14.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

B. Bermejo et al.

Beloglazov, A., & Buyya, R. (2010). Energy efficient resource management in virtualized cloud
data centers. In: Proceedings of the 2010 10th IEEE/ACM International Conference on Clus-
ter, Cloud and Grid Computing CCGRID ’10. Melbourne. https://doi.org/10.1109/CCGRID.
2010.46.

Beloglazov, A., Abawajy, J., & Buyya, R. (2012). Energy-aware resource allocation heuristics
for efficient management of data centers for cloud computing. Future Generation Computer
Systems, 28(5), 755-768. https://doi.org/10.1016/j.future.2011.04.017.

Beloglazov, A., & Buyya, R. (2012). Optimal online deterministic algorithms and adaptive
heuristics for energy and performance efficient dynamic consolidation of virtual machines in
Cloud data centers. Concurrency Computation Practice and Experience, 24(13), 1397-1420.
Beloglazov, A., Buyya, R., Choon Lee, Y., & Zomaya, A. (2011). A taxonomy and sur-
vey of energy-efficient data centers and cloud computing systems. Advances in Computers,
82, pp. 47-111. Retrieved from http://beloglazov.info/papers/2011-advances-in-computers-
taxonomy.pdf.

. Buyya, R., & Sulistio, A. (2008). Service and utility oriented distributed computing systems:

Challenges and opportunities for modeling and simulation communities. In 41st Annual Sim-
ulation Symposium. Retrieved from http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=
4494407.

. Buyya, R., Vecchiola, C., & Selvi, S. T. (2013). Mastering cloud computing: Foundations

and applications programming. Retrieved from http:/store.elsevier.com/Mastering-Cloud-
Computing/Rajkumar-Buyya/isbn-9780124095397/. ISBN:9780124095397

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, 1. (2009). Cloud computing and
emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility.
Future Generation computer systems, 25(6), 599-616. https://doi.org/10.1016/j.future.2008.
12.001.

Calheiros, R.N., & Buyya, R. (2015). Energy-efficient scheduling of urgent bag-of-tasks appli-
cations in clouds through DVFS. In Proceedings of the International Conference on Cloud
Computing Technology and Science, Cloud Com. pp. 342-349.

Cao, J., Wi, Y. and Li, M. (2012). Energy efficient allocation of virtual machines in cloud
computing environments based on demand forecast. In International Conference on Grid and
Pervasive Computing. https://doi.org/10.1007/978-3-642-30767-6_12.

Chen, H., Liu, X., Xu, H., & Wang, C. (2016). Cloud service broker based on dynamic game
theory for bilateral SLA negotiation in cloud environment. International Journal of Grid and
Distributed Computing, 9(9), 251-268. Retrieved from http://www.sersc.org/journals/IJGDC/
vol9_no09/22.pdf.

Chen, H., Chiang, RH.L. & Storey, V.C. (2012). Business intelligence and analytics:
From big data to big impact. MIS Quarterly, 36(4), pp. 1165-1188. Retrieved from
http://dl.acm.org/citation.cfm?id=2481683.

Dabbagh, M., et al. (2015). Energy-efficient resource allocation and provisioning framework for
cloud data centers. IEEE Transactions on Network and Service Management, 12(3), 377-391.
Emerson Network Power. (2014). New strategies for cutting data center energy costs and
boosting capacity. Retrieved from http://www.emersonnetworkpower.com/documentation/en-
us/latest-thinking/edc/documents/white

Ferreto, T. C., Netto, M. A., Calheiros, R. N., & De Rose, C. A. (2011). Server consolidation
with migration control for virtualized data centers. Future Generation Computer Systems,
27(8), 1027-1034.

Ficco, M., Esposito, C., Palmieri, F., & Castiglione, A. (2016). A coral-reefs and Game Theory-
based approach for optimizing elastic cloud resource allocation. Future Generation Computer
Systems. https://doi.org/10.1016/j.future.2016.05.025.

Filiposka, S., Mishev, A., & Juiz, C. (2015). Community-based VM placement framework. The
Journal of Supercomputing, 71(12), 4504-4528. https://doi.org/10.1007/s11227-015-1546-1.
Filiposka, S., Mishev, A., & Juiz, C. (2016). Balancing performances in online VM placement
in ICT Innovations 2015. (pp. 153-162). Springer International Publishing.

https://doi.org/10.1109/CCGRID.2010.46
https://doi.org/10.1109/CCGRID.2010.46
https://doi.org/10.1016/j.future.2011.04.017
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4494407
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4494407
http://store.elsevier.com/Mastering-Cloud-Computing/Rajkumar-Buyya/isbn-9780124095397/
http://store.elsevier.com/Mastering-Cloud-Computing/Rajkumar-Buyya/isbn-9780124095397/
https://doi.org/10.1016/j.future.2008.12.001
https://doi.org/10.1016/j.future.2008.12.001
https://doi.org/10.1007/978-3-642-30767-6_12
http://www.sersc.org/journals/IJGDC/vol9_no9/22.pdf
http://www.sersc.org/journals/IJGDC/vol9_no9/22.pdf
https://doi.org/10.1016/j.future.2016.05.025
https://doi.org/10.1007/s11227-015-1546-1

Improving the Energy Efficiency in Cloud Computing Data ... 235

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Furuncu, E., & Sogukpinar, 1. (2015). Scalable risk assessment method for cloud computing
using game theory (CCRAM). Computer Standards & Interfaces, 38, 44-50. https://doi.org/
10.1016/j.¢51.2014.08.007.

Gerardus, J. (2011). Inter-cloud live migration of virtualization systems. U.S. Patent patent no.
US20120311568 Al. Retrieved from https://www.google.ch/patents/US20120311568.
Geronimo, A., Brundo, R., & Becker, C. (2016). Order@Cloud: AVM organisation frame-
work based on multi-objectives placement ranking. In Network Operations and Management
Symposium NOMS, 2016 IEEE/IFIP. pp. 529-535. IEEE.

Goiri, I, Le, K., Beauchea, R., Nguyen, T., Haque, M., Guitart, J., et al. (2011). GreenSlot:
Scheduling energy consumption in green datacenters. In: 24th ACM/IEEE International Super-
computing Conference for High Performance Computing, Networking, Storage and Analysis
(SC’11). WA, USA: Seattle.

Hoelzle, U., & Barroso, L.A. (2009). The datacenter as a computer: An introduction to
the design of warehouse-scale machines. Retrieved from http://dl.acm.org/citation.cfm?id=
1643608.

Jennings, B., & Stadler, R. (2015). Resource Management in Clouds: Survey and Research
Challenges. Journal of Network and Systems Management, 23(3), 567-619. https://doi.org/10.
1007/s10922-014-9307-7.

Kitada, K., et al. (2016). Dynamic Power simulator utilizing computational fluid dynamics and
machine learning for proposing task allocation in a data center. In pp. 87-94.

Khosravi, A., Garg, S. K., & Buyya, R. (2013). Energy and carbon efficient placement of virtual
machines in distributed cloud data centers. pp. 317-328.

Mcbay, C., Parr, G., & Mcclean, S (2016). Energy saving in data center servers using optimal
scheduling to ensure QoS. In pp. 57-60.

Mangla, N., Singh, M., & Rana, S. K. (2016). Resource scheduling in cloud environment: A
Survey. Advances in Science and Technology Research Journal, 10(30), 38-50. https://doi.org/
10.12913/22998624/62746.

Manvi, S. S., & Shyam, G. K. (2014). Resource management for Infrastructure as a Service
(IaaS) in cloud computing: A survey. Journal of Network and Computer Applications, 41.
https://doi.org/10.1016/j.jnca.2013.10.004.

Marinescu, D. C. (2013) Cloud computing: Theory and practice. Retrieved from http://www.
sciencedirect.com/science/book/9780124046276.

Mastelic, T., & Brandic, 1. (2015). Recent trends in energy-efficient cloud computing. /[EEE
Cloud Computing, 2(1), 40-47.

Mell, P, & Grance, T. (2011). 800-145: The NIST Definition of Cloud Computing. Gaithers-
burg.

Palanisamy, B., Singh, A., & Liu, L. (2015). Cost-effective resource provisioning for mapreduce
in a cloud. IEEE Transaction on Parallel and Distributed Systems, 26(5), 1265-1279.
Papazoglou, M. P,, Traveso, P., Dustdar, S., & Leymann, F. (2007). Service-oriented computing:
State of the art and research challenges. IEEE Computer, 40(11), 38-45. https://doi.org/10.
1109/MC.2007.400.

Park, J. G., Kim, J. M., Choi, H. & Woo, Y. C. (2009). Virtual machine migration in self-
managing virtualized server environments. In/ /th International Conference on Advanced Com-
munication Technology 2009. Retrieved from http://ieeexplore.ieee.org/document/4809490/.
Peng, M. et al. (2015). Energy-efficient resource assignment and power allocation in hetero-
geneous cloud radio access networks. In IEEE Transactions on Vehicular Technology. pp.
5275-5287.

Quang-Hung, N., Nien, P. D., Nam, N. H., Tuong, N. H., & Thoai, N. A. (2013). A genetic
algorithm for power-aware virtual machine allocation in private cloud, In Information and
Communication Technology-EurAsia Conference. Yogyakarta, Indonesia. https://doi.org/10.
10071/978-3-642-36818-9_19.

Rak, M., Venticinque, S., & Mahr, T. (2011). Cloud application monitoring: The mOSAIC
approach. In I Third IEEE International Conference on Cloud Computing Technology and
Science. https://doi.org/10.1109/CloudCom.2011.117.

https://doi.org/10.1016/j.csi.2014.08.007
https://doi.org/10.1016/j.csi.2014.08.007
https://www.google.ch/patents/US20120311568
http://dl.acm.org/citation.cfm?id=1643608
http://dl.acm.org/citation.cfm?id=1643608
https://doi.org/10.1007/s10922-014-9307-7
https://doi.org/10.1007/s10922-014-9307-7
https://doi.org/10.12913/22998624/62746
https://doi.org/10.12913/22998624/62746
https://doi.org/10.1016/j.jnca.2013.10.004
http://www.sciencedirect.com/science/book/9780124046276
http://www.sciencedirect.com/science/book/9780124046276
https://doi.org/10.1109/MC.2007.400
https://doi.org/10.1109/MC.2007.400
http://ieeexplore.ieee.org/document/4809490/
https://doi.org/10.10071/978-3-642-36818-9_19
https://doi.org/10.10071/978-3-642-36818-9_19
https://doi.org/10.1109/CloudCom.2011.117

236

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

B. Bermejo et al.

Raycroft, P., Jansen, R., Jarus, M., & Brenner, P. R. (2014). Performance bounded energy
efficient virtual machine allocation in the global cloud. Sustainable Computing: Informatics
and Systems, 4(1), 1-9. https://doi.org/10.1016/j.suscom.2013.07.001.

RightScale (2016). Cloud Computing Trends: 2016 State of the Cloud Survey.
Retrieved from http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-
trends-2016-state-cloud-survey.

Rodriguez, M. A., & Buyya, R. (2014). Deadline based resource provisioning and scheduling
algorithm for scientific workflows on clouds. In I[EEE Transactions on Cloud Computing, 2(2),
pp- 222-235. Retrieved from http://doi.ieeecomputersociety.org/.

Sahal, R. & Omara, F. A. (2014). Effective virtual machine configuration for cloud environment.
In 9th International Conference on Informatics and Systems. https://doi.org/10.1109/INFOS.
2014.7036720.

Serrano, D., Bouchenak, S., Kouki, Y., de Oliveira, F. A., Ledoux, T., Sopena, J., et al. (2016).
SLA guarantees for cloud services. Future Generation Computer Systems, 54, 233-246. https://
doi.org/10.1016/j.future.2015.03.018.

Sharifil, M., Salimi, H., & Najafzadeh, M. (2011). Power-efficient distributed scheduling of
virtual machines using workload-aware consolidation techniques. The Journal of Supercom-
puting, 61(1), 46-66. https://doi.org/10.1007/s11227-011-0658-5.

Singh, S., & Chana, I. (2016). A survey on resource scheduling in cloud computing: Issues and
challenges. Journal of Grid Computing, 14(2), 217-264. https://doi.org/10.1007/s10723-015-
9359-2.

Singh, S., & Chana, I. (2016). Cloud resource provisioning: survey, status and future research
directions. Knowledge and Information Systems, 49(3), 1005-1069. https://doi.org/10.1007/
s10115-016-0922-3.

Sola-Morena, J. M., Gilly, K., & Juiz, C. (2014). Sustainability in web server systems. Com-
puters in Industry, 65(3), 401-407. https://doi.org/10.1016/j.compind.2013.11.009.

Strunk, A. (2012). Costs of virtual machine live migration: A survey. In IEEE Eighth World
Congress on Services. Retrieved from http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=
6274069.

Vinothina, V., Dean, R. S., & Ganapathi, P. (2014). A survey on resource allocation strategies
in cloud computing. International Journal of Advanced Computer Science and Applica-
tions, 3(6), pp. 97-104. Retrieved from http://thesai.org/Downloads/Volume3No6/Paper%
2016-A%20Survey%?20on%?20Resource%20Allocation%20Strategies%20in%20Cloud %
20Computing.pdf.

Voorsluys, W., Broberg, J., Venugopal, S., & Buyya, R. (2009). Cost of virtual machine live
migration in clouds: A performance evaluation. In /st International Conference on Cloud
Computing. Retrieved from http://dl.acm.org/citation.cfm?id=1695684.

von Kistowski, J., Schreck, M., & Kounev, S., (2016). Predicting power consumption in virtu-
alized environments. In Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics). pp. 79-93.

Wood, T. et al. (2009). Sandpiper: Black-box and gray-box resource management for vir-
tual machines. Computer Networks, 53(17), pp. 2923-2938. https://doi.org/10.1016/j.comnet.
2009.04.014.

Xu, X.,Hu, H., Hu, N., & Ying, W. (2012). Cloud Task and Virtual Machine Allocation Strategy
in Cloud Computing Environment. Network Computing and Information Security (pp. 113—
120). Berlin Heidelberg: Springer.

Xu, M., Dastjerdi, A. V., & Buyya, R. (2016). Energy efficient scheduling of cloud application
components with brownout. CoRR, (August), pp. 1-12.

Zhan, Z.-H., Liu, X.-F,, Gong, Y.-J., Zhang, J., Chung, H. S.-H., & Li, Y. (2015). Cloud
computing resource scheduling and a survey of its evolutionary approaches. ACM Computing
Surveys (CSUR), 47(4). https://doi.org/10.1145/2788397.

https://doi.org/10.1016/j.suscom.2013.07.001
http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2016-state-cloud-survey
http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2016-state-cloud-survey
http://doi.ieeecomputersociety.org/
https://doi.org/10.1109/INFOS.2014.7036720
https://doi.org/10.1109/INFOS.2014.7036720
https://doi.org/10.1016/j.future.2015.03.018
https://doi.org/10.1016/j.future.2015.03.018
https://doi.org/10.1007/s11227-011-0658-5
https://doi.org/10.1007/s10723-015-9359-2
https://doi.org/10.1007/s10723-015-9359-2
https://doi.org/10.1007/s10115-016-0922-3
https://doi.org/10.1007/s10115-016-0922-3
https://doi.org/10.1016/j.compind.2013.11.009
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6274069
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6274069
http://thesai.org/Downloads/Volume3No6/Paper%2016-A%20Survey%20on%20Resource%20Allocation%20Strategies%20in%20Cloud%20Computing.pdf
http://thesai.org/Downloads/Volume3No6/Paper%2016-A%20Survey%20on%20Resource%20Allocation%20Strategies%20in%20Cloud%20Computing.pdf
http://thesai.org/Downloads/Volume3No6/Paper%2016-A%20Survey%20on%20Resource%20Allocation%20Strategies%20in%20Cloud%20Computing.pdf
http://dl.acm.org/citation.cfm?id=1695684
https://doi.org/10.1016/j.comnet.2009.04.014
https://doi.org/10.1016/j.comnet.2009.04.014
https://doi.org/10.1145/2788397

Recent Developments in Resource
Management in Cloud Computing
and Large Computing Clusters

Richard Olaniyan and Muthucumaru Maheswaran

Abstract Cloud computing and large computing clusters consist of a large number
of computing resources of different types ranging from storage, CPU, memory, I/O
to network bandwidth. Cloud computing exposes resources as a single access point
to end users through the use of virtualization technologies. A major issue in cloud
computing is how to properly allocate cloud resources to different users or frame-
works accessing the cloud. There are a lot of complex, diverse, and heterogeneous
workloads that need to coexist in the cloud and large-scale compute clusters, thus
the need for finding efficient means of assigning resources to the different users or
workloads. Millions of jobs need to be scheduled in a small amount of time, so there
is a need for a resource management and scheduling mechanism that can minimize
latency and maximize efficiency. Cloud resource management involves allocating
computing, processing, storage, and networking resources to cloud users, in such a
way that their demands and performance objectives are met. Cloud providers need
to ensure efficient and effective resource provisioning while being constrained by
Service Level Agreements (SLAs). This chapter gives the differences and similarities
between resource management in cloud computing and cluster computing, and pro-
vide detailed information about different types of scheduling approaches and open
research issues.

1 Introduction

Modern data centers and clusters allow multiple workloads and frameworks with
thousands of jobs to run on them which necessitates the need for a mechanism
to manage cloud and cluster-wide resources while ensuring efficient allocation of
resources, minimizing latency, satisfying specific framework constraints and ensur-
ing fairness. Due to an increase in size data centers and clusters (thousands/millions

R. Olaniyan (<) - M. Maheswaran
McGill University, Montreal, QC, Canada
e-mail: richard.olaniyan @mail.mcgill.ca

M. Maheswaran
e-mail: maheswar@cs.mcgill.ca

© Springer Nature Singapore Pte Ltd. 2017 237
S. Chaudhary et al. (eds.), Research Advances in Cloud Computing,
DOI 10.1007/978-981-10-5026-8_10

238 R. Olaniyan and M. Maheswaran

of processing cores), advancement in cloud and cluster computing techniques and
the complexity of modern-day applications and frameworks, there is a need for more
robust resource management frameworks that can handle scheduling a large number
of jobs (both homogeneous and heterogeneous) onto a cloud or large computing
cluster while ensuring that scheduling goals are met.

Cloud resource management involves matching processing, storage, and network-
ing resources to cloud users workloads, in such a way that their demands and perfor-
mance objectives are met [53]. Cloud providers need to ensure efficient and effective
resource provisioning while being constrained by Service Level Agreements (SLAs).
Cloud resource management is motivated by the following factors (i) the need for
a mechanism to handle a non-perfect global state information in the cloud, (ii) the
handling of unexpected activities within the cloud such as failures and attacks, (iii)
the handling of varying and heterogeneous workloads while ensuring scalability, (iv)
the large scale of modern data centers, and (v) the unpredictability of different work-
loads within the cloud. Cloud resource management policies are designed bearing
the following in mind:

e Distributing the workload evenly among the servers within the cloud or cluster
thereby ensuring load balancing.

e Minimizing the cost and energy usage within the cloud.

e Ensuring that the desired Quality of Service (QoS) is achieved.

e Ensuring that workload-specific constraints are satisfied.

Resource management in large computing clusters involves matching the requests
for cluster resources to the corresponding cluster resources in a way that the desired
resource management goals are achieved. Modern data centers and clusters allow
multiple workloads and frameworks with thousands of jobs to run on them. Thus,
there is a need for a mechanism to schedule cluster-wide resources to these differing
frameworks while ensuring efficient allocation of resources, minimizing latency,
satisfying specific framework constraints, and ensuring fairness. Design goals of a
good and efficient resource scheduler are [4, 60]:

1. High cluster utilization: Scheduling decisions must be made in such a way that
the cluster is load balanced. That is, parts of the cluster are not overloaded while
others are underloaded. Jobs must be evenly distributed within the cluster taking
into consideration the runtime of tasks.

2. Low latency: This attribute is particularly important when running jobs that take
a very short amount of time to execute. The scheduler must make scheduling
decisions as fast and efficient as possible. A scheduler must be able to make rapid
scheduling decisions so that it does not become the bottleneck in the scheduling
process.

3. Strict enforcement of scheduling invariants: There are frameworks that have job-
specific constraints such as the kind of processor they can run on (e.g., only
GPUs), minimum memory and storage requirement or data locality.

4. Diverse application framework support: A scheduler must be able to support
multiple heterogeneous frameworks that run within the cluster.

Recent Developments in Resource Management in Cloud ... 239

5. Fairness and fine-grained resource sharing: In a cluster with diverse framework,
the scheduler must ensure that resources are allocated to the different frameworks
in a fair way such that no framework is starved of resources or given a very small
share of the resources. There should be a fair sharing of resources among different
resource users and groups.

6. Fault tolerant: A scheduler must be fault tolerant such that a failure or crash of
some nodes in the system does not lead to a total failure of the scheduling process.

7. Highly scalable: A scheduler must be able to effectively scale up and down
depending on the operating conditions (cluster size and workload size) without
affecting its scheduling efficiency.

This remainder of this book chapter is structured as follows. Section2 provides
a background on resource scheduling, stating the different types of scheduling,
scheduling solutions, scheduling architectures, and also the fairness algorithms used
to achieve fairness in resource scheduling. Section 3 focuses on resource scheduling
frameworks and algorithms that have been proposed for the cloud computing envi-
ronments and large computing clusters. In Sect. 4, research challenges and issues in
resource management and scheduling are discussed. The conclusion of the survey is
presented in Sect. 5.

2 Resource Management and Scheduling

This section presents various categories of resource management and scheduling in
the cloud and in large computing clusters. Different types of scheduling are also
discussed, ranging from batch scheduling, coscheduling, gang scheduling, Directed
Acyclic Graph (DAG) scheduling to fair scheduling. The centralized, distributed and
hybrid (a combination of centralized and distributed) scheduling solutions are also
explained. Scheduling architectures and fairness algorithms are discussed later in
this section.

2.1 Resource Management in Cloud Computing and Large
Computing Clusters

Resource management in the cloud computing environment involves allocating and
scheduling cloud resources to cloud workloads from cloud users. Various policies
that have been proposed and developed for resource management in cloud computing
focus mainly on admission control, energy usage minimization, load balancing across
servers, ensuring QoS agreements are guaranteed, and resource allocation for various
services. Most resource management schemes in the cloud tend to maximize the
utilization of cloud resources (servers) allocated to cloud users workloads, minimize

240 R. Olaniyan and M. Maheswaran

the completion time of such workloads and also minimize the waiting time for jobs
before they are run.

Trade-offs have to be made among parameters governing resource management in
the cloud, these parameters include resource utilization, job makespan, energy con-
sumption, job deadline, job constraints, load balancing, scalability, and cost effective-
ness [41, 60]. All these factors cannot be guaranteed by any cloud resource manager,
but these decisions on which parameters to guarantee are determined by the SLA
between the cloud user and cloud provider. Resource management in large comput-
ing clusters mostly considers all the parameters governing resource management in
the cloud, but are not out to maximize profit, rather they focus on performance and
efficiency.

2.2 Types of Scheduling

Earlier scheduling types include First-In-First-Out(FIFO) [5], Earliest Deadline First
(EDF) [25], Shortest Job First (SJF) [34], and priority scheduling [59]. The different
types of scheduling are given as follows.

Batch Scheduling: In batch scheduling, jobs are not scheduled as single entities,
rather, jobs are combined into batches and scheduled together. It is mostly employed
in clusters that are dedicated for running non-interactive jobs. Batch schedulers are
used in applications to avoid memory swapping and they are characterized by high
utilization and high latency. Jobs are grouped into predetermined batch sizes and
scheduled together [1]. In [40], they identified that large batches are characterized
by high machine utilization, but processing a large batch may lead to a bottleneck as
more important jobs belonging to a different batch or family could be delayed.

Coscheduling: This involves scheduling related processes or tasks to run in par-
allel. There are frameworks consisting of dependent tasks or tasks that need to com-
municate with one other for successful completion, and thus, must be scheduled
together [39]. There are distributed applications that require that subtasks should
be coordinated and synchronized, thereby bringing about the need for a scheduling
mechanism to guarantee this synchronization. Coscheduling solves this problem by
ensuring that communicating subtasks are available for interaction when needed. For
example, consider an application where a running task needs to send a message to
a task that has not been scheduled, the task will keep waiting for a reply that is not
forthcoming, which will cause blocking in the execution of the application.

In coscheduling, all tasks or processes from an intra-task dependent framework
must be scheduled together so that there can be efficient communication among
the tasks. There are two variations of coscheduling namely implicit coscheduling
and explicit coscheduling [48]. In explicit coscheduling, all dependent tasks are
scheduled at the same time, that is, it is either all the tasks are scheduled together or
none of the tasks is scheduled. A global scheduling mechanism is employed in explicit
coscheduling. In implicit coscheduling, there is no strict enforcement of the rule that

Recent Developments in Resource Management in Cloud ... 241

all tasks must be scheduled together, rather, tasks can be scheduled independently
using local scheduling but scheduling decisions are made in cooperation.

Gang Scheduling: It is a stricter form of coscheduling where dependent tasks are
scheduled simultaneously. The tasks are usually from the same job or framework.
Gang scheduling ensures that tasks can communicate with one another at any point in
time and are thus scheduled concurrently. In [24], they examined and identified opti-
mal performance conditions and efficient mean response time of jobs while ensuring
fairness to different categories of gangs (small and large gangs). The main challenge
of gang scheduling is how to achieve high cluster utilization, this is because all the
tasks in a gang have to wait till enough machines are available to run all the tasks
at once. Resource sharing among running tasks also incurs some overhead in gang
scheduling [17]. To solve the inherent problem of the neglect of memory considera-
tions in gang scheduling, a gang scheduling algorithm with memory considerations
was proposed in [3]. They argued that running a subset of jobs and delaying other
jobs and putting them in a queue till memory becomes available. They found that
their system produced better performance than when all jobs are either scheduled
together or not scheduled at all.

A paired gang scheduling algorithm was proposed in [56] where they looked to
solve the basic problem of gang scheduling which is resource idleness that occurs
when all the tasks in a gang cannot be scheduled at once. They matched gangs with
high CPU use with gangs with low CPU use as pairs and schedule them together,
the local scheduler is thus allowed to pick either of the two gangs depending on the
availability of resources thus reducing the probability that the resources will be idle
at any point in time.

DAG Scheduling: Directed Acyclic Graph (DAG) scheduling is used mostly in
cases where there are a number of interacting jobs running in parallel in a dynamic
environment [42]. The interdependence among the interacting jobs is generally mod-
eled as a DAG where the nodes represent the tasks themselves and the directed edges
are used to represent the dependencies as well as communication among tasks. In
DAG scheduling, a task is not scheduled until all its parents have finished executing
and all necessary messages have been sent. It is generally assumed that DAGs have
a single entry (root) node and a single exit (end) node. The scheduling problem in
DAG is how to assign cluster resources such that precedence constraints are met
and ensuring that there is load balancing and the total execution time is minimized
[43]. Most DAG scheduling algorithms try to achieve load balancing and have mini-
mized total runtime depending on the type of job being scheduled and the scheduling
goals. Later research [9] in DAG scheduling looked at ways to also minimize cost of
scheduling DAGs as well as reducing execution time in the cloud. They proposed a
DAG scheduling algorithm that is cost-optimal using the VM cost model.

Fair Scheduling: In fair scheduling, cluster-wide resources are evenly shared
among all jobs or frameworks running in the cluster over time regardless of their
resource demands. For a single running job the entire cluster is used, but when there
are multiple jobs running, the cluster resources are freed up so that other jobs can
get almost the same amount of resources [6]. Jobs are usually organized into pools
by the fair scheduler and it divides the cluster resources among the pools. If two jobs

242 R. Olaniyan and M. Maheswaran

are running together, they each get 50% of the cluster resources, but when two more
jobs are added to the system, the cluster resources are shared evenly (25%) among
the four jobs.

2.3 Resource Scheduling Solutions

Resource scheduling solutions can be divided into the centralized, distributed, and
hybrid (a combination of centralized and distributed) solutions. Each of the solutions
is explained in more details.

Centralized schedulers: In centralized scheduling, all jobs that are to be executed
must pass through a single scheduler (central controller). Centralized schedulers are
always on the critical path of all scheduling decisions and as such they are responsible
for all scheduling activities within the system. Centralized schedulers are built such
that they usually have an accurate view of the cluster state at every point in time
and for this reason they make very good scheduling decisions [12]. Due to this
global cluster view of the centralized scheduling solution, they are more effective
for scheduling jobs that require strict and secure enforcement of constraints and
invariants (memory constraints, I/O constraint, storage constraints among others)
[23]. Centralized schedulers are therefore efficient for scheduling long running and
batch jobs because of their ability to make good scheduling decisions. Wrongly or
inefficiently scheduling a long running job can lead to a very low system performance
as long jobs can easily become bottlenecks in the system, especially in cases where
there are a number of short jobs that need to be scheduled. These short running
jobs can be starved of cluster resources if the long running jobs are not carefully
scheduled. The general architecture of the centralized scheduler is shown in Fig. 1.

A centralized scheduler can be a bottleneck by itself because it has to constantly
update information about the cluster state which can be expensive in cases where the
cluster is of a large size [12]. To make a good scheduling decision, the centralized
scheduler has to scan through the entire cluster to pick the best machine for a particular
task, this can be time-consuming and can prove to be ineffective in situations where

Fig.1 Overview of a MACHINES
centralized scheduler . | / \

@
¢ oe
@

Central

H Scheduler

JOBS TO BE .
SCHEDULED N\ /

Recent Developments in Resource Management in Cloud ... 243

MACHINES

Scheduler Scheduler

Scheduler|

e

Scheduler

Scheduler] Scheduler

uifiilti

JOBS JOBS

Fig. 2 Overview of a fully distributed scheduler

jobs to be run on the cluster are time-sensitive and need to be scheduled as early and
fast as possible.

Distributed schedulers: In distributed scheduling, schedulers are wide spread
over the entire cluster and there is no global view of the entire cluster state. Rather,
scheduling decisions are made locally by the distributed schedulers. Distributed
schedulers achieve high scheduling throughput and low latency for short running
jobs because they only need local information to make scheduling decisions [23, 37].
Distributed schedulers therefore trade good scheduling decisions for high throughput
and scalability. They are inefficient for scheduling long running jobs because of their
poor scheduling decisions which can lead to an overall poor scheduling performance.
Figure 2 shows an overview of the distributed scheduling architecture.

The distributed schedulers schedules jobs to machines that are within their scope
(local to the distributed scheduler) in the cluster of machines or data centers. They
have information about only these machines. A detailed comparison of centralized
and distributed scheduling is presented in Table 1.

Hybrid schedulers: Hybrid scheduling consists of a combination of centralized
and distributed scheduling. It leverages the strengths of both centralized schedulers
and distributed schedulers. Hybrid schedulers are useful when there is a small number
of long running (batch) jobs and a very large number of short running (low-latency)
jobs [12]. The long jobs are scheduled by the centralized scheduler (for good schedul-
ing decisions to avoid head of the line blocking as much as possible). Since long jobs
can tend to be bottlenecks in the system when they are not effectively scheduled, the
centralized scheduler is used because it has a global view of the cluster state and can
make more effective scheduling decisions based on this knowledge. Short jobs, on the
other hand, are scheduled by distributed schedulers (to achieve high system through-
put and scalability) because they make fast scheduling decisions without requiring
all the information about the cluster state, they only need partial information about
their locality. In general, the centralized scheduler helps to make better scheduling

244 R. Olaniyan and M. Maheswaran

Table 1 Comparison of centralized and distributed scheduling [12, 23, 37]
Metric Centralized scheduling Distributed scheduling

Cluster state Have an accurate view of the | Only have an updated local
entire cluster at all times and | state information and have an
thus have an updated cluster | inaccurate global cluster state

state information information
Scheduling decision Make very good scheduling Sometimes make inferior
decisions because they have an | scheduling decisions due to
accurate view of the cluster partial cluster state information
Scheduling latency Relatively high scheduling Low scheduling latency as

latency since the cluster state | jobs/tasks are scheduled
information has to be updated | almost immediately they are
everything a scheduling submitted for execution
decision is to be made

Scalability Not highly scalable especially | Highly scalable for
for heterogeneous workloads. | heterogeneous workloads and
Does not scale well as the scales well for rapidly
number of jobs rapidly increasing number of jobs
increases

Job runtime Very suitable for long running | More suitable for a large
jobs as it makes good and number of short jobs that

optimal scheduling decision require very little start-up time

Job constraints Efficient for ensuring that Not very efficient for jobs with
job-specific constraints are met | specific constraints

Scheduler location Centrally located and is on the | Located locally close to the
critical path of all scheduling | machines running the jobs
decisions made

decisions and to enforce invariants and constraints, while the distributed schedulers
help to improve scalability and reduce latency. Examples of hybrid schedulers are
Hawk [12] and Mercury [23].

2.4 Resource Scheduling Architectures in Cloud Computing
and Large Computing Clusters

The four major classifications of resource scheduling architectures are the mono-
lithic schedulers, the two-level schedulers, the shared-state schedulers, and the fully
distributed schedulers. More detailed information about these architectures are pre-
sented next.

Monolithic schedulers: They consist of a single centralized scheduling algorithm
that schedules all jobs and frameworks within the cluster. The scheduler runs on
a single machine and schedules jobs to other machines. It is difficult to add new
implementations and policies to monolithic schedulers and therefore do not scale up
well especially in heterogeneous environments where there are different frameworks.

Recent Developments in Resource Management in Cloud ... 245

This is because whenever a new framework is added, the entire scheduling policy of
the monolithic scheduler has to be modified. Issues such as head-of-line blocking are
quite common in monolithic schedulers as in centralized schedulers. Jobs waiting to
be scheduled are from different frameworks as depicted by different colors. Examples
of monolithic schedulers are Google’s Borg [52], early Hadoop schedulers, Paragon
scheduler [13] and Quasar scheduler [14].

Two-level schedulers: There is a single and active resource manager which offers
computing and processing resources to independent and parallel application-specific
scheduling frameworks. The process of resource allocation and task placement
are separated in two-level schedulers. Examples include Apache Mesos [20] and
Hadoop-on-Demand. In a system such as Mesos, resource offers are used to imple-
ment the two-level scheduling. The Mesos master offers resources to the different
framework schedulers in the cluster while the framework schedulers decide whether
to accept or reject the offers and also decide what tasks to run on what machine. One
of the major disadvantages of the Mesos two-level scheduling is that the framework
schedulers do not have enough information about the cluster and have to depend on
the Mesos master for necessary information. This makes priority preemption difficult
and makes it hard to detect interference from workloads that are running that might
affect the quality of resources. The application-specific schedulers totally depend
on the information (resource offers) provided by the resource manager and thus are
limited in the decisions they can make.

Shared-state schedulers: These consist of multiple schedulers that have access
to all cluster-wide resources. The shared-state model is a semi-distributed model
that allows the different schedulers to update the “cluster state”. An optimistic con-
currency control is employed to update the shared cluster state, multiple replicas of
the cluster state are updated by application-specific schedulers. These transactional
updates are expected to fail sometimes in shared-state schedulers. Two major draw-
backs of the shared-state architecture are i) that occasionally the system must work
with stale or not yet updated cluster state information and under high load queues
and resource contention, and ii) the shared-state architecture may experience reduced
scheduling performance when the rate of contention by application-specific sched-
ulers for cluster resources is high. Examples of shared-state scheduling architecture
include Apollo [4] and Omega [44].

Fully distributed scheduling architectures: In the fully distributed architecture,
there is no coordination between the schedulers, different schedulers can be used to
serve incoming workloads. Each scheduler uses its own local copy of the “cluster
view or state” which is partial and often outdated to make scheduling decisions. There
is no central controller as in the shared-state schedulers. The distributed scheduling
architecture is based on a “slot” concept where each machine is splitted into a number
of uniform slots and a worker side queue is maintained. There is difficulty in enforcing
constraints and invariants due to the absence of a central controller. They make
rapid decisions with minimal cluster-based information and as such can make bad
scheduling decisions. An example of a distributed scheduler is Sparrow [37].

A detailed comparison of the different scheduling architectures and solutions is
provided in Table 2.

R. Olaniyan and M. Maheswaran

246

Surmnpayosod
pue Surnpayos
ON [enteq SOx SO SOx 3ueg 10§ 10ddng
AJsnes 03 preH paysnes A[o1eIopoA paysnes A[o1eIopo paysnes A[o1eIopoA paysnes Aiseq SJUTENSUOD)
J[qeress A[YSTH J1qeress A[YSTH J[qeress A[YSTH J[qe[eos A[o1BISPOIN J[qe[eos AIoA JON Anqiqereos
Y31y yStH Y3ty QJRIOPOIN QJeIOPOIN uoneZInn I9sn[D
s1o[npayos uoneordde
JI0yS jI0ys pue Suo| JI0yS uo juopuadag Suo Ayniqeyms ypSuaf qof
s1o[npayos uoneorydde
U3y AToA POXIIN Y3ty uo juapuadog 9)BIOPOIN paads Surnpayos
poads 103 Jjo papei], PaXIN onstundQ QJRISPOIN yStH KoeInooe Jurnpayds
[enteq enied eINDOY 9JeINdOY 9)BINOOY | UOTIBWLIOJUT 9)e)S JISn]D)
SI9[NPaYs SI9[NPaYs
panquisip A[ng SIO[NPaYDs PLIQAH | SIONPAYDS d)e)s-pareys SIO[NPAYDS [9AS[-OM], | OTYI[OUOW/PIZITETIUI)) ORI

SYIOMIWEI] PUB SAINIINIYDIE JUINPAYDs 11sn[o d3re[Jo uostredwo) g I[qeL,

Recent Developments in Resource Management in Cloud ... 247

The efficient functioning of a cloud or cluster is largely dependent on the resource
management and scheduling system. Data centers and large computing clusters are
built to support different workload environments (homogeneous or heterogeneous),
and the resource scheduling approach implemented depends on such environment.
Other factors determining the resource scheduling solution and architecture chosen
are the types of job (dependent or independent, long running or short running) that
are expected to be run by the scheduling framework. The presence of constraints
or invariants that need to be satisfied for jobs that will run on the cluster machines
and more generally the desired scheduling goals are determinants factors of the
scheduling approach used.

Centralized schedulers have been found to be more suitable for jobs that are not so
time-sensitive and jobs that require good scheduling decisions. Due to the availability
of the global view of the cluster to centralized schedulers, applications where schedul-
ing accuracy, task dependency, coscheduling and gang scheduling are required tend
to favor the use of the centralized scheduling solution. Centralized schedulers can
sometimes be slow in making scheduling decisions because the global view of the
cluster has to be updated regularly and can lead to the centralized scheduler being the
bottleneck in the scheduling process. Distributed schedulers, on the other hand, are
more suitable for time-sensitive jobs in massive quantity. This is because distributed
schedulers trade-off accuracy for speed since they only need partial local information
about the cluster state. Hybrid schedulers act as a bridge between centralized and
distributed schedulers. They are suitable for cases where there are heterogeneous
workloads running within the cluster with varying job parameters (running time,
constraints, resource requirements, and time-sensitivity).

The monolithic scheduling architecture employs the centralized scheduling solu-
tion. The pros and cons of the monolithic scheduling architecture are similar to those
of centralized scheduling. Two-level scheduling architecture decouples the schedul-
ing process by having a central resource manager offer resources to application
schedulers which they can decide to accept or reject. This scheduling architecture
causes a high between of the application schedulers on the central resource man-
ager since they have very little or no information about the state of the cluster. The
shared-state scheduling architecture uses a free-for-all approach where individual
application schedulers compete for resources. This scheduling architecture is not
suitable for jobs with high dependency and constraints. Fully distributed schedulers
employ the distributed scheduling solution and thus have similar pros and cons.

2.5 Fairness Algorithms

Achieving fairness is one of the scheduling goals of a large computing cluster resource
scheduler. Most scheduling frameworks in large computing clusters employ the use
of fairness algorithms to achieve this goal. In this section, the most common and
frequently used fairness algorithms are presented.

Max-Min Fairness (MMF): MMF [10, 29] is achieved when an increase
or decrease in the cluster resource allocation of any job/framework results in a

248 R. Olaniyan and M. Maheswaran

corresponding decrease or increase in the cluster resource allocation of another
job/framework with an equal or almost equal amount. The basic concepts of MMF
are that (i) resource allocation is dependent on resource demand, that is, resources
are allocated in order of increasing demand, (ii) a job does not get cluster resources
more than what it has demanded for and finally, (iii) jobs that have pending demands
receive an equal share of the remaining cluster resources.

Take for example three frameworks A, B, and C having resource demands 1, 4,
and 3 with the cluster having a total resource capacity of 6. The resources are initially
evenly divided among the frameworks giving them 2 resource capacities each. Since
framework’s A resource demand is 1, there is a leftover of 1 which makes a total of 5
available resource capacity. This is then evenly divided between frameworks B and
C, giving them 2.5 resource capacities each.

Dominant Resource Fairness (DRF): It is a more general case of the max-min
fairness applied to multiple resource types rather than a single resource type. The idea
behind DREF is that resource allocation is dependent on the dominant share of a job or
framework (this is the largest share of any of the resource type that has been given to
a particular job or framework). It is used in heterogeneous environments where there
are multidimensional resources. The key idea in DRF is to maximize the minimum
dominant share across all frameworks within the cluster [54]. The dominant share
of a user is the maximum of all its resource shares and the corresponding resource
is called the dominant resource [18].

For example, take a case where two users A and B are running tasks within a
cluster. Suppose user A is running a memory-intensive task and user B is running a
CPU-intensive task, user A is allocated more memory and less CPU while user B is
assigned more CPU and less memory thus equalizing the memory share of user A
with the CPU share of user B.

3 Resource Scheduling Frameworks and Algorithms

In this section, we present the recent resource scheduling frameworks and algorithms
that have been proposed and developed for cloud computing and large computing
clusters. The first part shows resource scheduling algorithms in the cloud, the second
part gives detailed explanation of the most common large computing cluster schedul-
ing frameworks, while other related scheduling frameworks and algorithms for both
cloud computing and large computing clusters are presented last.

3.1 Resource Scheduling Frameworks and Algorithms
in Cloud Computing

A largely significant amount of algorithms have been proposed for scheduling in
the cloud. Likewise, a lot of reviews and surveys [26, 36, 41, 46, 47, 51, 61] have

Recent Developments in Resource Management in Cloud ... 249

also been conducted to compare and contrast these algorithms. These algorithms
can be classified (but not limited) into the following categories; cost-based [33, 45],
QoS-based [57, 58], Ant Colony Optimization (ACO) based [30], Particle Swarm
Optimization (PSO) based [38], Min-Min algorithm based [8, 32], Genetic Algo-
rithm Based [11, 27], and Round-Robin Based [22]. Next, we present more recent
scheduling algorithms that have been proposed and developed for cloud computing.

A bin-balancing algorithm was proposed in [49], it combines the pros of bin
packing and polygons correlation calculations. The resource scheduling algorithm
was designed mainly to minimize energy usage while putting into consideration
deadlines of jobs and also other factors such as processing element, bandwidth, and
memory usage. A number of assumptions were made in developing the bin-balancing
model, they include: (i) A virtual machine (VM) has a processing element which is
controlled by a single host. (ii) VMs are independent of each other once they are
bound with specific jobs. (iii) All jobs to be scheduled are independent of each other.
(iv) Jobs are allocated to VMs that executes a single job, that is, a VM is occupied by
a single task. (v) Data transmission time and memory usage do not affect the network
bandwidth (assumed to be large enough).

The bin-balancing algorithm checks for jobs that are not currently assigned to
any VM and bounds them with available VMs. The necessary parameters for VMs
and jobs are calculated and the bound VMs are sorted in ascending order of time
allowance (time allowed between a job deadline and VM starting execution time).
A check is also done to decide whether or not a host has enough resources for a
VM. The polygon combination method is used to update hosts by tracking the usage
of resources in the host. If all on hosts are unavailable, an off host is found which
consumes the minimum amount of energy among all off hosts. A VM is assigned
to a host with the minimum processing element usage rate and the VM powers off
when it has executed all allocated jobs, this is done to avoid overloading and under
loading among hosts and also to prevent frequent host switching and VM migration.

A greedy resource scheduler was developed in [16] aimed at minimizing energy
usage of servers in cloud computing data centers. The approach taken in [16] requires
minimizing active servers in use thereby minimizing energy usage. In the proposed
algorithm, servers with the most computational and processing power and capacity
are given priority while allocating jobs. A central scheduling approach is adopted
that sorts servers based on energy usage and allocates jobs to the most efficient server
in terms of energy usage and follows the sorted list thereafter. For the case of a data
center with only one server type, the central scheduler keeps and updates a sorted
list of active and non-overloaded servers according to their energy profiles sorting
them in descending order of their energy efficiency. The server assigns jobs to servers
following this list, once a server is found to be overloaded, task allocation goes to
the next server in the list, and the overloaded server is removed from the list until it
becomes free. This resource scheduling scheme assumes that the energy profiles of
servers are known aforehand.

In [50], a credit-based task scheduling algorithm was proposed considering two
parameters namely: task length and task priority. Thus, two types of credit systems
were considered. In the task length credit system, tasks are sorted in increasing

250 R. Olaniyan and M. Maheswaran

order of execution time, with the shorter tasks at the top of the list and the longer
tasks being put at the bottom of the list. Next, the average task length is calculated
and the absolute difference between all tasks and this average is also calculated.
After the absolute difference is gotten, each task is assigned a credit (divided into
5 categories) based on the where they are in the list. Basically, length credits are
attached to all tasks based on their execution length.

In the task priority credit system, there are as many credits as there are tasks and
task priority are assigned by the user. It is worthy to note that two tasks can have
the same priority number. The system finds the highest priority value and a division
factor based on the number of digits of the value, i.e., (a single digit highest value
has a division factor 10, 100 for two digits, 1000 for the digits and so on). Therefore,
a priority credit is assigned to each task by dividing the priority value of each task
by the division factor. Finally, the total credit for each task is gotten by multiplying
the length credit by the priority credit of each task. The tasks are then sorted based
on their total credit score and scheduled in descending order of total credit score.

More recent resource scheduling algorithms have been proposed by using the
PSO-based approach. In [7], the PSO approach was employed, but the optimized
objectives included deadline and load balancing, rather than only cost and makespan
which are considered in earlier PSO scheduling algorithms. Similarly, a resource
scheduling algorithm for cloud computing was proposed in [2] where they devel-
oped a load balanced mutation model using PSO, taking into account reliability
and availability of cloud resources. Reliability is achieved by taking into account
available resources and rescheduling tasks that failed to execute initially.

An improved ACO based scheduling was proposed in [63], job makespan and
user budget costs are considered as constraints of the optimization problem, while
achieving an optimization boost on cost and performance. The algorithm uses the two
constraints parameters to adjust and modify the scheduling quality on time based on
a feedback approach to achieve an optimal solution. In [31], the proposed algorithm
combined the strong positive feedback and efficiency of ACO and the global search
ability of GA to come up with an optimal scheduling solution as quickly as possible.

3.2 Resource Scheduling Frameworks in Large Computing
Clusters

The most common and recent resource scheduling frameworks for large comput-
ing clusters with heterogeneous workloads are shown next. These frameworks are
designed to handle large amount (in millions) of jobs. Here are the frameworks.
Apache YARN: The Apache YARN (Yet Another Resource Negotiator) [55,
Chap. 4] is used by Hadoop for its cluster resource management. YARN comprises
of two main components namely the resource manager and the node managers. The
resource manager manages resource use and allocation within the cluster and there
is only one resource manager per cluster. Node managers are run on all nodes in

Recent Developments in Resource Management in Cloud ... 251

Submit YARN
application

Resource
Manager

Application
Client

L 4

Start container
and
launch job

Start
container

Node
Manager

Node
Manager

Fig. 3 Work flow of YARN [19]

the cluster and are used to monitor containers. Both the resource manager and node
managers are long running daemons in YARN. The work flow of YARN is shown in
Fig.3.

An application running on YARN contacts the resource manager through the
application client. The resource manager has a global view of all node managers and
thus pools the node managers to find one that can launch the application master in a
container. The application master can then decide to run computations in the container
in which it is running or request more containers from the resource manager.

Three basic schedulers are provided with YARN, they are FIFO, capacity and fair
schedulers. FIFO places applications in a queue as they arrive and are scheduled and
executed in the order of their arrival. Capacity schedulers allow cluster resources
to shared by different entities within the cluster such that each entity is assigned a
particular quantity of the overall cluster resources. Fair schedulers ensure that all
running applications get the same share of cluster resources.

Mesos: Apache Mesos [20] is a resource management platform for sharing clus-
ter resources among different frameworks. Mesos uses resource offers which are a
two-level and distributed scheduling scheme. In the resource offer mechanism, the
amount of resources to offer the different frameworks is decided by Mesos while the
different frameworks choose which of the resources to accept and the corresponding
computations to run on the resources. Mesos provides frameworks within the system
with an interface for gaining access to the resources within the cluster. Frameworks
do not need to specify their respective resource requirements in Mesos, rather it gives
frameworks the ability to reject offers. Constraints and invariants are satisfied using
filters, filters are just a way of optimizing performance, the frameworks still have
control on whether to accept or reject resource offers.

Mesos revokes tasks that are running for too long but offers a grace period to
frameworks to cleanup. The allocation module decides the policy for revoking tasks
and ensures that the guaranteed allocation (the amount of resources a framework
may hold without the risk of losing any jobs or tasks) can be met. There are times
when a framework makes take time to respond to a resource offer, resources offered
by Mesos to frameworks count towards their allocation of cluster resources, this is an

252 R. Olaniyan and M. Maheswaran

incentive mechanism to make frameworks give fast response to resource offers [20].
To achieve fault tolerance, the Mesos master is built to be soft state, the only states of
the master are a list of slaves that are currently active, frameworks within the system
and tasks that are running. This ensures that the internal state of a former master can
be reconstructed by a new master from information extracted from frameworks and
the Mesos slave. Zookeeper [21] is used to handle the master selection, failure and
leader election.

Resources in Mesos are divided into mandatory and preferred. The mandatory
resources are those that must be acquired by a framework before it can run while
preferred resources are those that a framework needs in order to perform better.
Mesos assumes that a framework cannot have its mandatory resources greater than
its guaranteed share of cluster resources. This assumption is necessary for deadlock
prevention. Two allocation modules were implemented in Mesos, the first uses fair
sharing based on max-min fairness and second implements strict priorities (where
tasks are scheduled based on some assigned priority).

Limitations of Mesos are that it will not perform as well as a centralized sched-
uler when there is a high level of interdependency between frameworks. In the
two-level scheduling approach used by Mesos, application schedulers do not have
enough information about the cluster and have to depend on the Mesos master for
all needed information. This makes priority preemption difficult and makes it hard
to detect interference from workloads that are running that might affect the quality
of resources. The application-specific schedulers totally depend on the information
(resource offers) provided by the resource manager and thus are limited in the deci-
sions they can make. Likewise, using resource offers introduces more complexity
into the scheduling process.

Sparrow: Sparrow [37] is a stateless distributed scheduling solution that uses
randomized sampling approach. It is specifically designed and targeted at scheduling
a very large number low latency tasks (short tasks) in a very short time. Sparrow
exploits the power of two choices load balancing technique [35] to task scheduling.
The key concepts in Sparrow include:

e Batch sampling: Rather than using per-task sampling, batch sampling sends probes
for all of a job’s tasks and gets load information, it then places the job?s m tasks
on the worker machines that are least loaded. The number of probes is chosen as
d.m (where d = 2), that is, for 1000 tasks, 2000 machines are probed.

e Late binding: This helps to solve race condition. Probed workers do not reply to
probes immediately, rather they place a reservation for the task in their internal
work queue. A RPC is sent to the scheduler by the worker whenever the reservation
of a task gets to the head of the internal work queue and requests for job associated
with the reservation.

e Proactive Cancelation: Probes that are remaining after the corresponding tasks have
been launched are handled in two ways, first, the scheduler can send a cancelation
RPC to all workers or the scheduler waits for workers to send requests for tasks
and responds with a “no more un-launched task message”.

Recent Developments in Resource Management in Cloud ... 253

e Handling placement constraints: In Sparrow, per-job constraints are not well han-
dled, they are enforced trivially by randomly selecting a subset of workers that
satisfy the stated constraint. Whereas, per-task constraint is handled by per-task
sampling and it is optimized in Sparrow by sharing information across tasks rather
than doing individual task probing.

e Resource allocation policies: Sparrow provides support for two resource allocation
policies namely strict priority and weighted fair sharing.

Identified downsides of the techniques employed by Sparrow are that for late binding,
worker machines are idle during the period when they are sending an RPC to the
scheduler to request for tasks. Proactive cancelation can also lead to extra RPCs being
sent. For example, a case where a worker gets a cancelation RPC after it has initially
sent a request for the task with the reservation. Gang scheduling is not supported by
Sparrow because tasks are queued plenty machines and lack a central controller.

Omega: Omega [44] is a shared-state parallel scheduler architecture that uses a
lock-free and optimistic concurrency control. Omega looks to solve the shortcomings
of monolithic and two-level schedulers. All schedulers are granted access to the
entire cluster, and they compete equally for cluster resources, optimistic control is
used to mitigate the effect of clashes when the cluster state is being updated. All
resource allocation and scheduling decisions take place in schedulers since there
is no centralized control. Each scheduler stores a copy of the cell state (resource
allocations in the cluster) and updates this shared copy of the cell state immediately
a placement decision is made by the scheduler in an atomic commit (all-or-nothing
transaction). This shared cell state update is done whether or not the transaction is
successful.

In order to achieve gang scheduling in Omega, schedulers use an all-or-nothing
transaction, that is, either all tasks are scheduled together or none of them is sched-
uled. The shared-state’s performance is dependent on the number of failed trans-
actions and the cost of the failures. All schedulers must agree upon the permitted
resource allocations and a mechanism for deciding job priority (precedence) while
implementing their own separate policies. Omega’s performance is totally dependent
on the ratio of transaction failure and the cost of those failures. Omega however does
not guarantee fairness in the resource allocation process because of the free-for-all
approach employed [44].

Apollo: Apollo [4] is a distributed and coordinated scheduling framework that
uses the shared-state concept. Independent scheduling decisions are made oppor-
tunistically and are coordinated using a synchronized cluster utilization information.
Schedulers perform weighted decisions while scheduling in order to reduce the exe-
cution time of tasks. Tasks in Apollo are divided into regular tasks and opportunistic
tasks. Low latency is maintained for regular tasks and is scheduled as soon as pos-
sible whereas, opportunistic tasks are used to drive up the utilization of the cluster,
that is, when there are idle cluster resources, opportunistic tasks are scheduled to fill
up the idle resources thus maintaining a high cluster utilization. The architecture of
Apollo is shown in Fig. 4.

254 R. Olaniyan and M. Maheswaran

Job Manager Process Node

Monitor

Resource _’ Server 1
[sobs]

Server 2

Fig. 4 Apollo architecture [4]

The scheduler also called the Job Manager manages the life cycle of each job.
Each cluster has a Resource Monitor and each server has a Process Node. The global
load information of the cluster is supplied by combining the information from the
Resource Monitor and the Process Node. The Process Node is run on each server
and manages the local resources and performs local scheduling. A local queue is
maintained at each Process Node. The Resource monitor pools load information
from the Process Nodes and aggregates it to provide a global cluster view. The
Resource Manager is implemented using Paxos [28] in a master—slave architecture.

Hawk: Hawk [12] is a hybrid scheduler for scheduling heterogeneous (many of
short running jobs and a few long running jobs) workloads. It attempts to strike a
balance between centralized and distributed schedulers. It exploits the scalability and
fast decision-making of distributed schedulers and the efficient scheduling decisions
of centralized schedulers. The centralized scheduler handles scheduling long running
jobs while a distributed approach is employed in scheduling short running jobs. Hawk
dedicates a portion of the cluster resources to serve short running tasks only while
the remaining part of the cluster resources are decided to long running tasks. This is
to ensure that long running jobs do not negatively impact short jobs. An estimated
runtime for all tasks that comprise a job is computed and this value is taken as the
average runtime for all tasks within the job. The average task runtime is compared
against a threshold to differentiate a job as either long or short.

In order to ensure high cluster utilization, randomized task stealing is used to
reduce the delays caused by occasional poor scheduling decisions made by distributed
schedulers due to the limited cluster information they have. Idle servers are allowed
to steal tasks from heavily loaded servers.

Mercury: Mercury [23] is ahybrid resource management framework that supports
both centralized and distributed scheduling. Mercury was implemented as an exten-

Recent Developments in Resource Management in Cloud ... 255

sion of Apache YARN. Mercury comprises of two subsystems, the mercury runtime
that runs on all worker nodes, manages all system-wide interactions, and enforces
each node’s execution policy and the resource management framework which is the
central scheduler in mercury and runs on a single node reserved for the reason, it
consists of distributed schedulers that run on the worker nodes. A loose coordination
of the worker nodes is done by the Mercury Coordinator.

Mercury uses containers for execution. There are two basic types of containers,
the GUARANTEED (containers that incur no queuing delay) and the QUEUEABLE
(containers that allow a task queue). The central scheduler controls the allocation of
the GUARANTEED containers while the distributed controllers handle the allocation
of QUEUEABLE containers [23]. Tasks in Mercury are executed in the order in
which they are submitted to the framework. To mitigate the effect of occasional poor
placement decisions for QUEUEABLE containers by the distributed schedulers, load
shedding is used to dynamically rebalance the queues across machines.

3.3 Other Related Work

Borg [52] is a large cluster management system was developed at Google. Borg
consists of two main components, the Borgmaster which has the main Borgmaster
process and a scheduler and Borglets that run on each cell machine. The Borgmaster
records jobs that are submitted persistently using Paxos and the job’s tasks are added
to the existing queue. The pending queue is asynchronously scanned by the scheduler
in order of task priority (high to low) and uses a round-robin mechanism to ensure fair-
ness and prevent head-of-line blocking. The scheduler assigns tasks to machines that
have enough resources and that can satisfy the job’s constraints. Borg’s scheduling
algorithm is divided into two phases, the feasibility-checking phase and the scoring
phase. During feasibility checking, machines with the right amount of resources and
that can satisfy the constraints posed by tasks are found. Scoring involves determining
the suitability of each feasible machine. Scoring is mostly driven by built-in criteria
and sometimes by user-defined preferences. In order to reduce task start-up latency,
Borg scheduler gives preference to tasks that already have the necessary packages to
run installed on a machine it is to be scheduled.

A fault-tolerant resource management and scheduling framework was developed
in [62] (Fuxi). Fuxi uses a master—slave architecture and has three components: the
FuxiMaster, FuxiAgent, and application masters. The FuxiMaster acts as a bridge
between available resources and resource requests. The FuxiAgent runs on each
cluster machine collection local state information and sending it to the FuxiMas-
ter. The application masters are the different computation frameworks running on
the cluster. Fuxi employs incremental scheduling and incremental communication
to cater for the dynamism (rapidly changing number of tasks) in the cluster and
the massive message communication among components within the system. The
FuxiMaster maintains two data structures which are the available resource pool (free
resources) and the locality tree (queues). The Fuxi framework uses DAG to represent

256 R. Olaniyan and M. Maheswaran

the general user workflow because it is easily configurable. To ensure that the system
is fault-tolerant, two FuxiMaster processes are started and are mutually excluded
using a distributed lock. The system state is separated into soft state (collected from
FuxiAgents) and hard state (retrieved from checkpoints). Fault tolerance is achieved
for FuxiAgent by rebuilding the complete states initially collected by the Fuxi Agent
before it failed.

In [15], Tarcil, a scheduling scheme for optimizing scheduling speed and quality
was proposed. Tarcil adopts a distributed and shared-state architecture where multiple
schedulers compete for shared cluster resources. Tarcil uses sampling-based tech-
niques to provide guarantees on the quality of resources allocated to scheduled jobs,
and uses batch sampling when a job requires multiple cores to run. Tarcil follows two
major steps in processing submitted jobs from different workloads. (i) It checks for
the job’s preferences (resources and interference sensitivity), that is, it gets an esti-
mate of the job’s performance on different resource platforms and also the tolerated
and generated interference of the job in the shared cluster resources. (ii) It decides
whether the scheduler will find resources that meets the quality requirements of the
job and then further determines whether the job should be scheduled immediately
or queued. Tarcil also measures job’s performance while running to ensure that it is
not running below a specified threshold, else, the scheduling decisions are changed
by the scheduler to improve the job’s running performance.

4 Research Challenges and Future Research Directions
in Resource Scheduling in Clouds and Large Clusters

Cloud users are increasing daily, and as such, more applications are been deployed
in the cloud. Finding an efficient way to schedule those differing and heterogeneous
tasks in the cloud while ensuring high performance and efficiency and also guar-
anteeing a good QoS still remains an open research issue. Likewise, managing and
scheduling resources in large computing clusters with heterogeneous workloads is
still a major research topic. Next, we present issues in resource scheduling both in
cloud computing and large computing clusters, and propose possible future research
directions.

1. Trade-offs: There are a number of trade-offs that need to be made in resource
scheduling.In cloud computing, several factors need to be considered (resource
utilization, job makespan, energy consumption, job deadline, job constraints, load
balancing, scalability, and cost-effectiveness) to make good scheduling decisions.
All these constraints cannot be met, thus, a scheduling algorithm for cloud com-
puting must make a trade-off between the aforementioned parameters based on
the goal of the scheduling algorithm. In the case of scheduling in large computing
clusters, one of the trade-offs that needs to be made is between making a good
scheduling decision and reducing latency. Both are goals of a scheduler, but there
has to be a trade-off between them as evident in centralized schedulers and also

Recent Developments in Resource Management in Cloud ... 257

distributed schedulers. Another major trade-off made in resource scheduling is
between providing execution guarantees and maintaining scheduling efficiency,
this is particularly related to hybrid scheduling. Looking at ways to minimize
the impact of these trade-offs while maintaining a high scheduling efficiency and
performance is an open research issue in resource management and scheduling.

2. Enforcing invariants and constraints: Most user tasks that are run in the cloud
have constraint that needs to be satisfied. These constraints (memory, depen-
dency etc.) vary depending on the type of job to be run. This is typically an issue
for most cloud computing resource schedulers as they have to find a balance
between guaranteeing high performance and efficiency while guaranteeing such
constraints. For large computing clusters, resource schedulers have to make guar-
antees to frameworks running within the cluster that their framework-specific,
job-specific, or task-specific constraints and requirements will be met. Most of
the proposed and developed scheduling frameworks do not totally guarantee that
all invariants and constraints will be met while still guaranteeing an overall high
scheduling performance. However, enforcing invariants such as I/O and network
resource constraints in resource management and scheduling are possible research
directions.

3. Global guarantees: Providing and ensuring global guarantees in distributed
schedulers for large computing clusters is a major research issue. Global guaran-
tees such as fairness and starvation avoidance need to be ensured in distributed
scheduling. This is particularly a challenging problem because distributed sched-
ulers do not have a global view of the cluster and as such it is difficult for them
to ensure global guarantees. A possible research direction is to look at ways in
which distributed schedulers can be extended to have a more detailed view of the
cluster in order to ensure global guarantees.

4. Coexistence: In an hybrid system such as Hawk, the centralized component has
no idea of where the short jobs are scheduled and assumes that the centralized
component will not be a bottleneck. Looking at ways of efficiently improving
the coexistence of centralized and distributed scheduling is a possible research
direction.

5. Communication and data dependency: Coscheduling and gang scheduling
involve scheduling a group of tasks when there is a strong data dependency
and high communication between the group of tasks and the tasks need to all be
scheduled together at the same time or none of them is scheduled at all. Most large
cluster and cloud computing scheduling frameworks and algorithms do not con-
sider either coscheduling or gang scheduling. Integrating coscheduling and gang
scheduling into existing cloud computing and large computing cluster resource
management and scheduling frameworks is a research challenge and an area for
further research.

258 R. Olaniyan and M. Maheswaran

5 Conclusion

Resource scheduling is a major part in the operations of cloud computing and large
computing clusters since they receive very large number of jobs. With the increasing
rate in data generated and processed daily, there is a need for better and optimized
scheduling algorithms that will make efficient scheduling decisions. Recent applica-
tions (mobile, web, etc.) are mostly time-sensitive and thus need data processing as
fast as possible and thus scheduling algorithms have to come up with better ways of
ensuring that scheduling goals are achieved.

In this chapter, we discussed the resource management in cloud computing and
large computing clusters. We presented different types of scheduling and the different
scheduling solutions, architectures, and fairness algorithms used to achieve fairness
in large computing clusters. The current and state-of-the-art scheduling frameworks
and algorithms were also presented, explaining their architecture, mode of operation,
technologies, schemes adopted and also their strengths, and weaknesses. Finally, we
identified open issues in scheduling in large clusters and laid out areas of possible
future research in resource management and scheduling.

References

1. Amatriain, X., & Griffiths, D. (2004). Free software in education is it a viable alternative? In
Proceedings of 7th IMAC Conference on Localization and Globalization in Technology Design
Use and Transfer as a Subject of Engineering (Vol. 7(1)).

2. Awad, A., El-Hefnawy, N., & Abdel_kader, H. (2015). Enhanced particle swarm optimization
for task scheduling in cloud computing environments. Procedia Computer Science, 65, 920—
929.

3. Batat, A., & Feitelson, D. G. (2000). Gang scheduling with memory considerations. In Proceed-
ings 14th International Parallel and Distributed Processing Symposium, IPDPS (pp. 109-114).

4. Boutin, E., Ekanayake, J., Lin, W., Shi, B., Zhou, J., Qian, Z., Wu, M., & Zhou, L. (2014).
Apollo: Scalable and coordinated scheduling for cloud-scale computing. In /1th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 14), Broomfield, CO
(pp. 285-300). USENIX Association.

5. Chang, G., & Su, H. (2003). Fifo scheduling time sharing. US Patent App. 10/163,047.

6. Chaskar, H. M., & Madhow, U. (2003). Fair scheduling with tunable latency: A round-robin
approach. IEEE/ACM Transactions on Networking, 11(4), 592-601.

7. Chen, H., & Guo, W. (2015). Real-Time Task Scheduling Algorithm for Cloud Computing Based
on Particle Swarm Optimization (pp. 141-152). Cham: Springer International Publishing.

8. Chen, H., Wang, F., Helian, N., & Akanmu, G. (2013). User-priority guided min-min scheduling
algorithm for load balancing in cloud computing. In 2013 National Conference on Parallel
Computing Technologies (PARCOMPTECH) (pp. 1-8).

9. Convolbo, M. W., & Chou, J. (2016). Cost-aware dag scheduling algorithms for minimizing
execution cost on cloud resources. The Journal of Supercomputing, 72(3), 985-1012.

10. Danna, E., Hassidim, A., Kaplan, H., Kumar, A., Mansour, Y., Raz, D., et al. (2012). Upward
max min fairness. In INFOCOM, 2012 Proceedings IEEE (pp. 837-845).

11. Dasgupta, K., Mandal, B., Dutta, P., Mandal, J. K., & Dam, S. (2013). A genetic algorithm
(ga) based load balancing strategy for cloud computing. Procedia Technology, 10(Complete),
340-347.

Recent Developments in Resource Management in Cloud ... 259

12.

13.

14.

15.

16.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

Delgado, P, Dinu, F., Kermarrec, A.-M., & Zwaenepoel, W. (2015). Hawk: Hybrid datacenter
scheduling. In Proceedings of the 2015 USENIX Annual Technical Conference (pp. 499-510).
Delimitrou, C., & Kozyrakis, C. (2013). Paragon: Qos-aware scheduling for heterogeneous
datacenters. In Proceedings of the Eighteenth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ASPLOS ’13, New York, NY, USA
(pp- 77-88). ACM.

Delimitrou, C., & Kozyrakis, C. (2014). Quasar: Resource-efficient and qos-aware cluster
management. In Proceedings of the 19th International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS ’14, New York, NY, USA (pp.

127-144). ACM.

Delimitrou, C., Sanchez, D., & Kozyrakis, C. (2015). Tarcil: Reconciling scheduling speed
and quality in large shared clusters. In Proceedings of the Sixth ACM Symposium on Cloud
Computing (pp. 97-110).

Dong, Z., Liu, N., & Rojas-Cessa, R. (2015). Greedy scheduling of tasks with time constraints
for energy-efficient cloud-computing data centers. Journal of Cloud Computing: Advances,
Systems and Applications, 4(1), 5.

. Frachtenberg, E., Petrini, F., Coll, S., Feng, W., Modeling, C., & Group, 1. Gang scheduling

with lightweight user-level communication.

. Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S., & Stoica, I. (2011). Dom-

inant resource fairness: Fair allocation of multiple resource types. In Proceedings of the 8th
USENIX Conference on Networked Systems Design and Implementation, NSDI’11, Berkeley,
CA, USA (pp. 323-336). USENIX Association.

. Grandl, R., Ananthanarayanan, G., Kandula, S., Rao, S., & Akella, A. (2014). Multi-resource

packing for cluster schedulers. ACM SIGCOMM Computer Communication Review, 44(4),
455-466.

Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A. D., Katz, R., et al. (2011).
Mesos: A platform for fine-grained resource sharing in the data center. In Proceedings of the 8th
USENIX Conference on Networked Systems Design and Implementation, NSDI’11, Berkeley,
CA, USA (pp. 295-308). USENIX Association.

Hunt, P., Konar, M., Junqueira, F. P., & Reed, B. (2010). Zookeeper: Wait-free coordination for
internet-scale systems. In Proceedings of the 2010 USENIX Conference on USENIX Annual
Technical Conference, USENIXATC’10, Berkeley, CA, USA (pp. 11-11). USENIX Associa-
tion.

Kapgate, D. (2014). Improved round robin algorithm for data center selection in cloud comput-
ing. International Journal of Engineering Sciences and Research Technology, 3(2), 686—691.

Karanasos, K., Rao, S., Curino, C., Douglas, C., Chaliparambil, K., Fumarola, G. M., et al.
(2015). Mercury: Hybrid centralized and distributed scheduling in large shared clusters. In
Usenix-Atc (pp. 485-497).

Karatza, H. D. (2006). Scheduling gangs in a distributed system. International Journal of
Simulation: Systems, Science and Technology, 7(1), 15-22.

Kargahi, M., & Movaghar, A. (2006). A method for performance analysis of earliest-deadline-
first scheduling policy. The Journal of Supercomputing, 37(2), 197-222.

Kaur, R., Kaur, G., & Scholar, R. (2016). A review on efficient hybrid framework for scheduling
in cloud computing. International Journal of Engineering Science and Computing, 6(7), 8698—
8700.

Kaur, R., & Kinger, S. (2014). Article: Enhanced genetic algorithm based task scheduling in
cloud computing. International Journal of Computer Applications, 101(14), 1-6.

Lamport, L., et al. (2001). Paxos made simple. ACM Sigact News, 32(4), 18-25.

Leith, D. J., Cao, Q., & Subramanian, V. G. (2012). Max-min fairness in 802.11 mesh networks.
IEEE/ACM Transactions on Networking, 20(3), 756-769.

Li, K., Xu, G., Zhao, G., Dong, Y., & Wang, D. (2011). Cloud task scheduling based on load
balancing ant colony optimization. In 2011 Sixth Annual ChinaGrid Conference (pp. 3-9).
IEEE.

260 R. Olaniyan and M. Maheswaran

31. Liu,C.Y.,Zou,C. M., & Wu, P. (2014). A task scheduling algorithm based on genetic algorithm
and ant colony optimization in cloud computing. In 2014 13th International Symposium on
Distributed Computing and Applications to Business, Engineering and Science (DCABES) (pp.
68-72).

32. Liu, G.,Li,J., & Xu, J. (2013). An improved min-min algorithm in cloud computing (pp. 47-52).
Berlin: Springer.

33. Liu, K., Jin, H., Chen, J., Liu, X., Yuan, D., & Yang, Y. (2010). A compromised-time-cost
scheduling algorithm in swindew-c for instance-intensive cost-constrained workflows on a
cloud computing platform. International Journal of High Performance Computer Application,
24(4), 445-456.

34. Lupetti, S., & Zagorodnov, D. (2006). Data popularity and shortest-job-first scheduling of
network transfers. In International Conference on Digital Telecommunications (ICDT’06) (pp.
26-26).

35. Mitzenmacher, M. (2001). The power of two choices in randomized load balancing. IEEE
Transactions on Parallel and Distributed Systems, 12(10), 1094—1104.

36. Mohammadi, F., Jamali, S., & Bekravi, M. (2014). Survey on job scheduling algorithms in
cloud computing. International Journal of Emerging Trends & Technology in Computer Science
(IJETTCS), 3(2), 151-154.

37. Ousterhout, K., Wendell, P., Zaharia, M., & Stoica, I. (2013). Sparrow: Distributed, low latency
scheduling. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Prin-
ciples, SOSP ’13, New York, NY, USA (69-84). ACM.

38. Pandey, S., Wu, L., Guru, S. M., & Buyya, R. (2010). A particle swarm optimization-based
heuristic for scheduling workflow applications in cloud computing environments. In 2010 24th
IEEE International Conference on Advanced Information Networking and Applications (pp.
400-407).

39. Petrini, F.,, & Feng, W.-C. (2000). Improved resource utilization with buffered coscheduling.
Journal of Parallel Algorithms and Applications (Special Issue), 16(2-3),

40. Potts, C. N., & Kovalyov, M. Y. (2000). Scheduling with batching: A review. European Journal
of Operational Research, 120(2), 228-249.

41. Ruchita, P., & Moni, C. (2016). Analysis of various task scheduling algorithms in cloud com-
puting. International Research Journal of Engineering and Technology (IRJET), 3(3), 493-496.

42. Saifullah, A., Ferry, D., Li, J., Agrawal, K., Lu, C., & Gill, C. D. (2014). Parallel real-time
scheduling of dags. IEEE Transactions on Parallel and Distributed Systems, 25(12), 3242—
3252.

43. Sakellariou, R., & Zhao, H. (2004). A hybrid heuristic for DAG scheduling on heterogeneous
systems. In Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th Interna-
tional (pp. 111-123).

44. Schwarzkopf, M., & Konwinski, A. (2013). Omega: Flexible, scalable schedulers for large com-
pute clusters. In EuroSys '13 Proceedings of the 8th ACM European Conference on Computer
Systems (pp. 351-364).

45. Selvarani, S., & Sadhasivam, G. S. (2010). Improved cost-based algorithm for task scheduling
in cloud computing. In 2010 IEEE International Conference on Computational Intelligence
and Computing Research (ICCIC) (pp. 1-5).

46. Shimpy, E., & Sidhu, J. (2014). Different scheduling algorithms in different cloud environment.
International Journal of Advanced Research in Computer and Communication Engineering,
3(9), 2278-1021.

47. Singh, S., & Chana, L. (2016). A survey on resource scheduling in cloud computing: Issues and
challenges. Journal of Grid Computing (pp. 1-48).

48. Sobalvarro, P., Pakin, S., Weihl, W. E., & Chien, A. A. (1998). Dynamic coscheduling on
workstation clusters. In Proceedings of the Workshop on Job Scheduling Strategies for Parallel
Processing, IPPS/SPDP ’98, London, UK (pp. 231-256). Springer.

49. Tang,J. M., Luo, L., Wei, K. M., Guo, X., & Ji, X. Y. (2015). A heuristic resource scheduling
algorithm of cloud computing based on polygons correlation calculation. In Proceedings—12th
IEEE International Conference on E-Business Engineering, ICEBE 2015 (pp. 365-370).

Recent Developments in Resource Management in Cloud ... 261

50.
S1.

52.

53.
54.

55.
. Wiseman, Y., & Feitelson, D. G. (2003). Paired gang scheduling. IEEE Transactions on Parallel

57.

58.

59.

60.

61.

62.

63.

Thomas, A., Krishnalal, G., & Jagathy Raj, V. P. (2015). Credit based scheduling algorithm in
cloud computing environment. Procedia Computer Science, 46(Icict 2014), 913-920.

Tilak, S., & Patil, P. D. (2012). A survey of various scheduling algorithms in cloud environment.
International Journal of Engineering Inventions, 1(2), 36-39.

Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., & Wilkes, J. (2015). Large-
scale cluster management at Google with Borg. In Proceedings of the Tenth European Confer-
ence on Computer Systems—EuroSys ’15 (pp. 1-17).

Vignesh, V., Kumarand, S., & Jaisankar, N. (2013). Resource management and scheduling in
cloud environment. International Journal of Scientific and Research Publications, 3(6), 1-6.
Wang, W., Li, B., & Liang, B. (2013). Dominant resource fairness in cloud computing systems
with heterogeneous servers. CoRR. arXiv:abs/1308.0083.

White, T. (2012). Hadoop: The definitive guide. O’Reilly Media, Inc.

and Distributed Systems, 14(6), 581-592.

Wu, X., Deng, M., Zhang, R., Zeng, B., & Zhou, S. (2013). A task scheduling algorithm based
on qos-driven in cloud computing (Vol. 17, pp. 1162-1169).

Xu, M., Cui, L., Wang, H., & Bi, Y. (2009). A multiple qos constrained scheduling strategy of
multiple workflows for cloud computing. In 2009 IEEE International Symposium on Parallel
and Distributed Processing with Applications (pp. 629-634). IEEE.

Yang, X., & Vaidya, N. H. (2002). Priority scheduling in wireless ad hoc networks. In Pro-
ceedings of the 3rd ACM International Symposium on Mobile Ad Hoc Networking & Amp;
Computing, MobiHoc 02, New York, NY, USA (pp. 71-79). ACM.

Zhan, Z.-H., Liu, X.-F., Gong, Y.-J., Zhang, J., Chung, H. S.-H., & Li, Y. (2015a). Cloud
computing resource scheduling and a survey of its evolutionary approaches. ACM Computing
Survey, 47(4), 63:1-63:33.

Zhan, Z.-H., Liu, X.-F.,, Gong, Y.-J., Zhang, J., Chung, H. S.-H., & Li, Y. (2015b). Cloud
computing resource scheduling and a survey of its evolutionary approaches. ACM Computing
Surveys, 47(4), 1-33.

Zhang, Z., Li, C., Tao, Y., Yang, R., Tang, H., & Xu, J. (2014). Fuxi: A fault-tolerant resource
management and job scheduling system at internet scale. Proceedings of VLDB Endowment,
7(13), 1393-1404.

Zuo, L., Shu, L., Dong, S., Zhu, C., & Hara, T. (2015). A multi-objective optimization schedul-
ing method based on the ant colony algorithm in cloud computing. I[EEE Access, 3, 2687-2699.

http://arxiv.org/abs/abs/1308.0083

Resource Allocation for Cloud
Infrastructures: Taxonomies and Research
Challenges

Benjamin Baran and Fabio Lépez-Pires

Abstract Cloud computing datacenters dynamically provide millions of virtual
machines in real-world cloud computing environments. A large number of research
challenges have to be addressed toward an efficient resource management of these
cloud computing infrastructures. In the resource allocation field, Virtual Machine
Placement (VMP) is one of the most studied problems with several possible formu-
lations and a large number of existing optimization criteria, considering solutions
with high economical and ecological impact. Based on systematic reviews of the
VMP literature, a taxonomy of VMP problem environments is presented to under-
stand different possible environments where a VMP problem could be considered,
from both provider and broker perspectives in different deployment architectures.
Additionally, another taxonomy for VMP problems is presented to identify existing
approaches for the formulation and resolution of the VMP as an optimization prob-
lem. Finally a detailed view of the VMP problem is presented, identifying research
opportunities to further advance in cloud computing resource allocation areas.

1 Introduction

Cloud computing datacenters deliver infrastructure (IaaS), platform (PaaS), and soft-
ware (SaaS) as a service, provided to customers in a pay-as-you-go basis [1]. Several
studies in this emergent field already identified a significant number of research chal-
lenges for delivering computational resources as an utility [2]. Achieving an efficient
resource management in cloud computing datacenters could be considered one of
the most relevant challenges, including important topics such as: resource allocation,
resource provisioning, resource mapping, and resource adaptation [3, 4].

B. Baran (X))
National University of Asuncién, San Lorenzo, Paraguay
e-mail: bbaran @pol.una.py

F. Lopez-Pires
Itaipu Technological Park, Hernandarias, Paraguay
e-mail: fabio.lopez @pti.org.py

© Springer Nature Singapore Pte Ltd. 2017 263
S. Chaudhary et al. (eds.), Research Advances in Cloud Computing,
DOI 10.1007/978-981-10-5026-8_11

264 B. Bardn and F. Lopez-Pires

1.1 Background

The present chapter studies the Virtual Machine Placement (VMP), recognized as
one of the most relevant resource allocation problems [5]. At the Infrastructure as
a Service (IaaS) model, provider-oriented VMP problems can be enunciated as the
process of assigning physical machines (PMs) to host requested virtual machines
(VMs) in multi-tenant environments. Several research articles demonstrated that
solving the VMP problem as an optimization problem for efficient allocation of
cloud resources could significantly improve several different objective functions; all
of them with significant impact in several fields [6-8].

Some of the most studied problems for resource allocation in cloud computing
are presented in [3], to propose a conceptual cloud architecture showing interac-
tions between key management issues for predictive elasticity, admission control,
and placement (or scheduling) of VMs. In the architecture presented in [3], the VMP
problem is one of the most relevant ones, considering that it can be formulated con-
sidering different approaches and criteria for optimization. Beloglazov et al. studied
in [9] the problem of dynamic resource allocation in cloud computing infrastruc-
tures, defining four different subproblems: (1) host overload detection, to migrate
VMs from an overloaded PM; (2) host underload detection, to migrate all VMs from
an underloaded PM to change it to sleep mode; (3) VM selection, for migration of
these VMs from an overloaded PM; and (4) selecting a new placement of selected
VMs, optimizing different objective functions.

The specialized VMP literature includes several presented surveys, where most
of the existing works only studied particular issues of the problem, such as: (1)
energy-efficient techniques applied to the resolution of VMP problems [7, 10], (2)
federated-clouds as deployment architectures where the VMP problem is studied
[11], and (3) methods for comparing performance of algorithms for VMP problems
in on-demand cloud computing infrastructures [12].

1.2 Motivation

The abovementioned surveys and research articles focused into very specific issues
related to the VMP problem and do not summarize the literature considering a gen-
eral vision, identifying research opportunities for the VMP problem. Consequently,
Lopez-Pires and Bardn proposed in [5] a general and extensive study of a large part
of the VMP literature including more than 80 studied articles systematically selected
[13], presenting a wide analysis of the existing approaches for the formulation and
resolution of the VMP as an optimization problem. The analysis was summarized
as a novel taxonomy for the classification of the studied articles by the main fol-
lowing criteria: (1) optimization approach, (2) objective function, and (3) solution
technique. Next, the authors extended their previous work in [5] with novel tax-
onomies, to present a detailed view of the existing approaches as well as several

Resource Allocation for Cloud Infrastructures ... 265

possible research opportunities to further advance in this research area. The tax-
onomies presented in [14] could guide interested readers to: (1) understand different
possible environments where a VMP problem could be studied, considering both
provider and broker perspectives in different deployment architectures (see Sect. 2),
(2) identify existing approaches for the formulation and resolution of the VMP as
an optimization problem (see Sect.3), and (3) present a detailed view of the VMP
problem, identifying research opportunities to further advance in cloud computing
resource allocation areas (see Sect.4).

Based on the taxonomies presented in [5, 14], this chapter summarizes relevant
concepts related to the VMP problem, including formal definitions that could help the
research community to avoid terminological ambiguity as well as to follow common
terminology and concepts. The remainder of this chapter is organized in the following
way: Sect.2 presents a VMP problem environment taxonomy for the classification
of related articles by: (1) orientation, (2) deployment architecture, and (3) types of
formulation. Section 3 presents a VMP problem formulation and resolution taxonomy
considering the following criteria: (1) optimization approach, (2) objective function,
and (3) solution technique. Section 4 details identified research opportunities on this
research area, while conclusions are left to Sect. 5.

2 VMP Problem Environment Taxonomy

Different possible VMP environments could be identified by classifying research
works in the VMP literature by: (1) orientation, (2) deployment architecture, and (3)
type of formulation. Depending on the particular environment where a VMP problem
will be studied, several different considerations should be taken into account before
proposing a particular formulation or technique for the resolution of the considered
VMP problem. For a complete understanding of the possible environments where a
VMP problem could be studied, considering both provider and broker orientations
in four different deployment architectures for online and offline formulations, Fig. 1
presents the taxonomy proposed in [14] described in this section, including relevant
references from the studied VMP literature [13].

Two main perspectives could be considered when studying a VMP problem:
provider-oriented or broker-oriented (see Sect. 2.1). In this context, provider-oriented
VMP problems may consider one of the following deployment architectures: single-
cloud, distributed-cloud, or federated-cloud, while broker-oriented VMP problems
may be studied taking into account a multi-cloud deployment architecture (see
Sect.2.2). Provider-oriented and broker-oriented VMP problems could be formu-
lated as offline or online optimization problems (see Sect. 2.3).

The following subsections present a detailed description of the mentioned classi-
fication criteria, including definitions for a complete understanding of the problem.

266 B. Bardn and F. Lopez-Pires

VMP Problem
/ \
Provider-oriented Broker-oriented
/ \

Single-Cloud Distributed-Cloud Federated-Cloud Multi-Cloud

\ /N /N /N
Oﬁ‘lif{ Online Offline Online Offline Online Offline Online

| | | | |
[17] [18] [19] [20] RO [21] [22] RO

Fig. 1 VMP Problem Environment Taxonomy. Relevant references for each environment are
presented. Unexplored environments are considered Research Opportunities (RO)

2.1 Orientation: Provider-Oriented or Broker-Oriented

Definition 1 A provider-oriented VMP problem is the process of selecting which
VMs should be hosted at each PM of a cloud computing infrastructure.

Resource allocation in cloud computing datacenters is a main concern for Cloud
Service Providers (CSPs). According to [5], the VMP problem is mainly formulated
from this perspective. It should be mentioned that in a provider-oriented VMP prob-
lem, a Cloud Service Tenant (CST) cannot decide which PMs will host the requested
VMs. In the specialized literature, this particular problem is also known as Virtual
Machine Allocation (VMA) problem [15].

Definition 2 A broker-oriented VMP problem is the process of selecting which VMs
should be hosted at each Cloud Service Provider of a cloud computing market.

Considering that the number of CSPs has been rapidly increased and nowadays
there are different pricing schemes as well as VM offers, it is difficult for CSTs to
search for a correct option in cloud computing markets and decide which CSP is the
most convenient to host requested VM resources. Consequently, a VMP problem can
also be formulated from a broker perspective, who is responsible of helping CSTs
to find good allocation deals. In the specialized literature, this particular problem is
also known as Cloud Resource Brokerage (CRB) problem [16].

2.2 Deployment Architectures

Different deployment architectures can be considered for VMP problems, depend-
ing on the type of cloud computing infrastructure associated to the problem and the
interconnection mechanism of the datacenters, as well as the considered perspec-
tive (see Sect.2.1). A provider-oriented VMP problem could be studied considering

Resource Allocation for Cloud Infrastructures ... 267

one of the following deployment architectures: single-cloud, distributed-cloud, or
federated-cloud (see Definitions 3-5), while a broker-oriented VMP problem could
be studied in a multi-cloud deployment architecture (see Definition 6).

Definition 3 A provider-oriented VMP problem in a single-cloud deployment archi-
tecture is the process of selecting which VMs should be hosted at each PMs of a
single-cloud computing datacenter.

In scenarios considering a single-cloud computing datacenter, a CSP could for-
mulate a VMP problem subject to commonly studied constraints such as: unique
placement of VMs [17], maximum capacity of resources [18], or Service Level
Agreement (SLA) compliance [6, 19]. According to [5], the single-cloud deploy-
ment architecture is the most studied scenario in the considered VMP literature.

Definition 4 A provider-oriented VMP problem in a distributed-cloud deployment
is the process of selecting which VMs should be hosted at each PMs of more than
one cloud computing datacenter owned by the same Cloud Service Provider.

For CSPs with a global infrastructure (e.g., Amazon Web Services), a single-
cloud deployment architecture could be extended to several geographically distrib-
uted cloud computing datacenters, where the formulation of a VMP problem may
include particular constraints and considerations. CSPs with geo-distributed cloud
computing datacenters may be interested in studying a VMP problem for the pro-
visioning of differentiated services to world-wide CSTs, such as fault-tolerance for
services (placement of VMs in different cloud datacenters) [20] or response time of
services (placement of VMs in datacenters near to customers) [21], increasing the
complexity of the VMP problem formulation.

Definition S A provider-oriented VMP problem in a federated-cloud deployment
architecture is the process of selecting which VMs should be hosted at each PMs
of more than one cloud computing datacenter owned by different Cloud Service
Providers in a cloud computing federation.

In federated clouds, CSPs with idle capacity lease resources to other CSPs in need
of additional resources on workload peaks; consequently, particular considerations
associated to a VMP problem in this deployment architecture have to be studied [11].
For example, trading policies are generally not the same for CSPs that form part of
the same cloud federation, so a VMP problem could be studied for cost-effective
selection of CSPs for workload peaks, just to cite a simple example.

Definition 6 A broker-oriented VMP problem in a multi-cloud deployment is the
process of selecting which VMs should be hosted at each Cloud Service Provider of
a cloud computing market composed by more than one CSP.

Cloud Service Brokers (CSBs) or CSTs can require VMs to be deployed in cloud
computing datacenters owned by different CSPs, according to particular requirements
such as disaster recovery reasons or due to legislation [22], just to cite a few.

268 B. Bardn and F. Lopez-Pires

2.3 Types of Formulation: Offline or Online

VMP problems could be studied considering both offline (static or semi-dynamic) or
online (dynamic) formulations. An online problem formulation is considered when an
algorithm makes decisions on-the-fly without knowing upcoming events (e.g., online
heuristics for dynamic VMP problems) [9]. If an algorithm has complete knowledge
of future events of a problem instance, the formulation is called offline (e.g., Memetic
Algorithms (MAs) for static [17] or semi-dynamic [23] VMP problems). Combining
online and offline formulations is a relevant research topic [24].

A VMP problem could be formulated as an offline problem considering the place-
ment of VMs into PMs (for provider-oriented VMP) or VMs into CSPs (for broker-
oriented VMP) for a static or semi-dynamic virtual service deployment.

Definition 7 An offline formulation of a provider-oriented VMP problem in any pos-
sible deployment architecture could be understood as the process of selecting which
VMs should be hosted at each PMs of the considered cloud computing datacenters
for a given (static or semi-dynamic) virtual service deployment.

For a static provider-oriented VMP problem, an offline formulation does not con-
sider possible relocation of VMs; therefore, there is no need for migration techniques.
It should be noted that this type of offline formulation is mostly appropriate in VMP
for initial placement of VMs or for virtualized datacenters with deployments of VMs
that rarely change its configuration over time.

For a semi-dynamic provider-oriented VMP problem [23], some considerations
of dynamic environments are taken into account (e.g., the set of requested VMs
changes dynamically over time) but there are also limitations of a static alternative
(e.g., there is no short time decision constraints), been mostly appropriate in VMP
with reconfigurations of VMs through migration of VMs between PMs.

Definition 8 An offline formulation of a broker-oriented VMP problem could be
understood as the process of selecting which VMs should be hosted at each CSP of
the considered cloud computing market for a given (static) service deployment.

The broker-oriented VMP problem is mostly formulated as an offline problem,
where possible relocation of VMs between different CSPs are not considered taking
into account cloud computing interoperability issues in actual markets.

A VMP problem could also be formulated as an online problem considering the
placement of VMs into PMs (provider-oriented VMP) or VMs into CSPs (broker-
oriented VMP) for a cloud service deployment with dynamic demand or parameters.

Definition 9 An online formulation of a provider-oriented VMP problem in any pos-
sible deployment architecture could be understood as the process of selecting which
VMs should be hosted at each PMs of a cloud computing infrastructure considering
dynamic demand or resource parameters that change over time.

It should be noted that an online formulation for a provider-oriented VMP problem
could be the most appropriate approach for resource allocation in cloud computing

Resource Allocation for Cloud Infrastructures ... 269

datacenters, considering the dynamic model of cloud computing with on-demand
resource provisioning and dynamic workloads of cloud applications [9].

Ortigoza et al. [25] extended the taxonomy presented in [14], identifying more
detailed VMP environments for online formulations of provider-oriented VMP prob-
lems. In real-world environments, cloud computing providers dynamically receive
requests for the placement of cloud services with different characteristics, according
to different dynamic parameters such as [25]: (1) resource capacities of VMs (asso-
ciated to vertical elasticity) [26], (2) number of VMs of a cloud service (associated to
horizontal elasticity) [27], and (3) utilization of resources of VMs (relevant for over-
booking) [6]. Taking into account the mentioned dynamic parameters, environments
for online formulations of provider-oriented VMP problems could be classified by
one or more of the following classification criteria: (1) service elasticity and (2)
overbooking of physical resources [25].

A cloud service could request additional resources to scale (up/down/out/in) the
application resources to be able to efficiently attend current demand, where cloud
computing providers should model these requirements accordingly. Different VMP
environments could be formulated considering one of the following service elasticity
values: no elasticity, horizontal elasticity, vertical elasticity, or both horizontal and
vertical elasticity [25]. Additionally, resources of VMs are dynamically used, giving
space to re-utilization of idle resources that were already reserved. In this context,
cloud computing environments identified in [25] may also consider one of the fol-
lowing overbooking values: no overbooking, server resources overbooking, network
resources overbooking, or both server and network overbooking.

Definition 10 An online formulation of a broker-oriented VMP problem in any pos-
sible deployment architecture could be understood as the process of selecting which
VMs should be hosted at each CSP of a given cloud computing market considering
dynamic demand or parameters that change over time.

Considering that the number of CSPs has increased rapidly, nowadays
several dynamic parameters could be considered for the broker-oriented VMP prob-
lem such as: dynamic pricing schemes, dynamic VM offers, or dynamic require-
ments. Research on online formulations of the broker-oriented VMP problem should
advance to address existing opportunities in emerging cloud computing markets
[28-30].

2.4 Conceptual Example

This subsection presents a conceptual example in order to better understand VMP
environments above described and its considered terminology (see Fig. 2).
Considering the life-cycle of a cloud infrastructure [3], the first decision that a
CST should perform is to decide which VMs should be hosted at each CSP of a
cloud computing market. In case only one CSP is selected by the CST (e.g., host all

270 B. Bardn and F. Lopez-Pires

VM, VM, VM,

broker-oriented VMP problem - @ -

Map VMs to CSPs D T T AT T T T T T LT

provider-oriented provider-oriented provider-oriented provider-oriented
VMP problem VMP problem VMP problem VMP problem
Map VMs to PMs Map VMs to PMs Map VMs to PMs Map VMs to PMs
single-cloud distributed-cloud federated-cloud
DC, [DG,

| |
pc, — DbC,

Fig. 2 Summary of possible VMP environments presented in this chapter

requested VMs V; in CSP A), a trivial broker-oriented VMP problem is solved. On
the other hand, a multi-cloud deployment architecture could be considered for the
broker-oriented VMP problem if different CSPs are selected (e.g., CSP A and B).

Once each requested VM V; have been assigned to be hosted in a particular CSP,
each CSP have to decide which VMs should be hosted at each available PM, defined
as a provider-oriented VMP problem.

CSPs could own cloud infrastructures with different deployment architectures,
where the most basic one is a single-cloud deployment, as presented in Fig.2 for
CSP A. In single-cloud deployments requested VMs V; could be located on PMs H;
available on cloud datacenter DC. No other available PMs could be considered.

Additionally, a CSP could own a distributed-cloud deployment, considering more
than one cloud computing datacenter, where requested VMs V; could be located on
any PM available on any available cloud computing datacenter (e.g., requested VMs
V; could be located on PMs H; available on DC; to DC4 at CSP B).

Finally, a federated-cloud deployment could be considered to host requested VMs.
In Fig.2, CSPs C and D are members of a cloud federation and; consequently, idle
resources from CSP C (or CSP D) are available for CSP D (or CSP C) in demand
peaks transparently to CSTs.

Resource Allocation for Cloud Infrastructures ... 271

3 VMP Problem Formulation and Resolution Taxonomy

Taking into account each possible environment where a VMP problem can be studied
(see Fig. 1), several different VMP problem formulations could be considered. In this
context, formulations of a VMP problem may be classified by the: (1) optimization
approach, (2) objective function, and (3) solution technique [5].

First, a VMP problem could be formulated considering one of the following
approaches for optimization: (1) mono-objective (MOP), (2) multi-objective solved
as mono-objective (MAM), or (3) pure multi-objective (PMO). Once a particular
approach is selected, formulations may be classified by the considered objective
function(s), for its minimization and/or maximization. These objective functions
could be optimized separately or simultaneously, depending on the selected opti-
mization approach. Finally, a third classification criterion can be defined considering
solution techniques for solving a VMP problem [5] (see Table 1).

For a complete understanding of possible approaches for the formulation and
resolution of a VMP problem, Table 1 presents the taxonomy described in this section,
including example references from the studied VMP literature [13]. The following
subsections present a detailed description of the classification criteria defined above
as well as special considerations for each particular formulation.

Tablel VMP Formulation and Resolution Taxonomy. Example references for each environment
are presented. Unexplored environments are considered Research Opportunities (RO)

Technique Approach | Objective functions
S1(x) fa(x) f3(x) Ja(x) f5(x)

Deterministic MOP [36] [37] [31] [38] [39]
algorithms

MAM [6, 40] [6, 41] RO RO [40, 41]

PMO RO RO RO RO RO
Heuristics MOP [42] [43] [33] [44] [39]

MAM [45, 46] [46, 47] [47, 48] [27, 45] [49, 50]

PMO RO RO RO RO RO
Metaheuristics | MOP [51] RO [52] [53] RO

MAM [54, 55] [54, 56] [55, 57] [56] [55, 571

PMO [18, 58] [18, 59] [18, 59] RO [58]
Approximation | MOP [60] RO RO RO RO
algorithms

MAM [61] RO RO RO RO

PMO RO RO RO RO RO

272 B. Baran and F. Lopez-Pires

3.1 Optimization Approaches

This section presents a classification of optimization approaches identified in research
works studied in [13]. The identified optimization approaches may be classified as:
(1) mono-objective (MOP), (2) multi-objective solved as mono-objective (MAM),
and (3) pure multi-objective (PMO), which are detailed in as follows.

3.1.1 Mono-objective (MOP)

A mono-objective optimization approach (MOP) considers the optimization of one
objective function or the optimization of more than one objective function, one at a
time. Research on the VMP problem has been mainly guided by this MOP approach,
identifying almost 40 different objective functions already proposed considering
this optimization approach [5]. It should be noted that an objective function could
be studied taking into account different approaches for modeling (e.g., economical
revenue maximization could be achieved by minimizing the total economical penal-
ties for SLA violations [31], by minimizing operational costs [19, 32], or even by
maximizing the total profit for leasing resources [33]).

3.1.2 Multi-objective Solved as Mono-objective (MAM)

The optimization of multiple objective functions scalarized into one objective
function is considered in this chapter as a multi-objective problem solved using
a mono-objective approach (MAM). This hybrid approach enables the optimization
of multiple objectives functions with the disadvantage that it requires a complete
knowledge of the decision space of the problem domain in order to effectively com-
bine the objective functions, which in most cases is not possible [34].

In the last years, a growing number of articles have proposed formulations of
the VMP problem with this hybrid optimization approach [13]. Different methods
could be considered for a formulation of a VMP problem with a MAM approach
such as: weighted sum, solving the problem as mono-objective while considering
the other objective functions as constraints or even proposing fuzzy logic to provide
an efficient way for combining conflicting objectives and expert knowledge [13].

3.1.3 Pure Multi-objective (PMO)

Pure Multi-Objective Optimization (PMO) problems may be defined by a set of p
decision variables and g objective functions, as well as r constraints. Both objectives
and constraints are functions of the decision variables. In a PMO problem formula-
tion, the decision vector is represented as x, while the objective vector is represented

Resource Allocation for Cloud Infrastructures ... 273

as y. The decision space is denoted by X and its corresponding objective space is
denoted as Y. A PMO problem formulation may be formalized as [35]:
Optimize:

y=f@) =1/ix), (), ..., fr(x0)] (1
subject to:
e(x) = [e1(x), e2(x), ..., e,(x)] >0)
where:
x =[x, x2,...,x,] € X 3)
y=MDy2 ...yl €Y “)

The set of constrains e(x) > 0 defines the set of feasible solutions X y C X and its
corresponding set of feasible objective vectors Yy C Y. The feasible decision space
X ; is the set of all decision vectors x in the decision space X satisfying constraints
defined in e(x). The feasible objective space Y is the set of the objective vectors y
that represents the image of X ; onto Y. These feasible spaces are defined as follows:

Xr={x|xeXnekx)=>0} 4)

Yp={yly=/f(&) VxeXs} (6)

Comparing solutions for a PMO problem requires the consideration of Pareto
dominance concepts. To compare two feasible solutions u, v € X, if f(u) is better
orequal to f(v) in every objective function and strictly better in at least one objective
function it could be said that u dominates v, denoted as u# > v. If neither u dominates
v, nor v dominates u, # and v are said to be non-comparable, denoted as u ~ v.

A decision vector (or possible solution) x is non-dominated with respecttoaset U,
if there is no solution in U dominating x. The set of all the non-dominated solutions
from X is commonly known as optimal Pareto set P* and its corresponding image
is denoted as P F* [35].

Considering the large number of existing objective functions and possible
approaches for objective function modeling identified in [5], PMO approaches could
result in more realistic formulations of a VMP problem, optimizing several objective
function at a time (e.g., achieve economical revenue maximization by simultaneously
minimizing at least the total economical penalties for SLA violations, minimizing
operational costs, and maximizing the profit for leasing resources). In this context,
PMOs optimizing more than three objective functions are specifically known as
Many-Objective Optimization Problems (MaOPs), as defined in [62].

274 B. Bardn and F. Lopez-Pires

MaOPs differ significantly from PMOs because several issues should be con-
sidered when solving optimization problems with more than three objective func-
tions [63]. In case of Pareto-based algorithms, these issues are intrinsically related
to the fact that as the number of objective functions increases, the proportion of
non-dominated solutions grows, being increasingly difficult to discriminate among
solutions using only the Pareto dominance relation [64]. Additionally, determining
which solution to keep and which to discard in order to converge toward the Pareto
set is still a relevant issue to be addressed [63]. As the number of objective functions
grows, the proportion of non-dominated solutions to the total number of solutions
tends to one [65], making more difficult to solve a MaOP.

3.2 Objective Function Groups

In cloud computing datacenters, several criteria can be considered when selecting a
possible solution for a VMP problem, depending on resource management techniques
and optimization objectives. These criteria can even change from one period of time
to another, which implies a variety of possible formulations of the problem and
different objectives to be optimized. According to [5], the VMP literature mainly
focuses on the optimization of objective functions that specifically concerns CSPs
(provider-oriented VMP). Objective functions may also be studied considering the
requirements of CSTs for allocation of particular services or applications, often
composed by more than one VM (broker-oriented VMP).

It should be mentioned that in [5], nearly 60 different objective functions were
identified for the three optimization approaches presented in Sect.3.1. Considering
the large number of proposed objective functions, identified objective functions with
similar characteristics and goals were classified into five objective function groups
that are presented in the following subsections. Considering that MAM and PMO
optimization approaches may take into account any combination of each objective
function group or even different objective functions from the same objective function
group, a simplified classification is presented in Tables 1 and 2 [14].

3.2.1 fi(x)—Energy Consumption

Energy consumption management is a relevant studied objective in the provider-
oriented VMP literature, with high impact in operational costs and carbon dioxide
emissions for cloud datacenter operations. According to [66], most of the time,
servers operate in a very low energy-efficiency possible region (i.e., between 10 and
50% of resource utilization), even though energy efficiency is a very important issue
to address, considering its economical and ecological impact in modern datacenters.
Energy consumption is the most studied objective function for a VMP problem
including different modeling approaches [5].

Resource Allocation for Cloud Infrastructures ... 275

The most studied alternatives for modeling energy consumption include [5]: con-
solidating VMs on the minimum number of PMs [67] and considering a linear rela-
tionship between power consumption and Central Process Unit (CPU) utilization [7].
Joint optimization of energy consumption and network traffic is also studied very
well in the VMP literature, considering that network communication equipment rep-
resents between 10 and 20% of the total datacenter energy consumption [61].

3.2.2 fr(x)—Network Traffic

Network traffic could also be considered as a relevant objective function for cloud
datacenters supporting provider-oriented VMP decisions, as proposed in [7].

The main approaches for modeling network traffic include the optimization of:
network communication between VMs, overhead of VM live migration, and network
metrics such as: delay, data access and data transfer time, link congestion, network
performance, service response time as well as average latency, and Wide Area Net-
work (WAN) communication when considering distributed-cloud architectures.

Avoiding the placement of VMs with high network communication rate in dif-
ferent PMs when possible is the most studied approach, in order to minimize the
network traffic between VMs. If VMs should not be allocated in the same PM for
fault-tolerance purposes, VMs could be allocated at least in the same rack to avoid
the utilization of core network equipment. Considering this approach, traffic charac-
terization are studied as well as machine learning techniques for clustering VMs with
a similarity based on network behavior. Finally, effectively quantifying network traf-
fic overhead due to VM live migration could also be considered a relevant research
challenge for provider-oriented VMP network traffic optimization [5].

Considering cloud computing environments where VMs are dynamically created
and destroyed, a consolidation process should present high level of flexibility where
traditional routing protocols have limitations to adjust flow paths. In [68], the authors
proposed network traffic load balancing to improve QoS in a VMP context consider-
ing Software Defined Networks (SDN) [69], where flow paths are determined based
on network status metrics such as low delay, low packet loss, or high security, just
to cite a few.

3.2.3 fi(x)—Economical Costs

Economical cost optimization is an important studied issue in both provider-oriented
and broker-oriented VMP literature.

For a provider-oriented VMP, economical costs optimization is a key objective to
be optimized and could be achieved by reducing operational costs. These operational
costs could be mainly related to energy consumption minimization but additional for-
mulations could also be considered, such as thermal dissipation costs [55]. Reducing
penalty costs of SLA violations is another relevant approach in order to maximize
economical revenue of CSPs. Finally, CSPs may maximize its economical revenue

276 B. Bardn and F. Lopez-Pires

by leasing all its available resources or at least the maximum possible [13]. In this
context, VMP could be studied jointly with admission control problems [3] and two
possible scenarios could be identified: (1) if demand for resources exceeds the cur-
rent available resources, overbooking techniques, or cloud federation [3] can help
CSPs support requirements of the CSTs; or, (2) idle resources could be offered in an
auction-based scheme such as Amazon’s Spot Instances [70], where both scenarios
represent open challenges for the VMP problem in cloud computing.

For a broker-oriented VMP, economical costs optimization is a key issue in actual
cloud markets where CSTs try to find CSPs that meet the particular requirements of
a cloud service, preferably with the lowest economical costs for the required cloud
infrastructure. The most studied pricing scheme in the considered VMP literature
is fixed price. However, the recent trend of dynamic pricing of cloud resources
introduces the idea that prices of resources can vary depending on the free capacity
and load of the CSP and a few articles have recently proposed formulations of a VMP
problem considering dynamic prices schemes [71].

324 fy(x)—Performance

Performance optimization is an important studied issue in both provider-oriented and
broker-oriented VMP literature. Performance modeling includes the optimization of:
availability, CPU demand satisfaction, deployment time, QoS, resource interference,
security metrics, Shared Last Level Cache (SLLC) contention, and total job com-
pletion time [13]. Most of these performance metrics may be considered for CSPs
to improve the QoS in a provider-oriented VMP or for CSTs in order to select an
appropriate CSP to host their services in a broker-oriented VMP.

3.2.5 fs(x)—Resource Utilization

Cloud computing datacenters are commonly composed by different types of physical
and virtual resources such as CPU, RAM, storage, network bandwidth, and even
Graphical Process Unit (GPU) in some cases. The main approaches include the
maximization of resource utilization, but performing a balanced utilization of each
resource [13] is also an important issue to consider. Li et al. studied the concept
of elasticity, referring to how well a datacenter may satisfy the input VMs resource
demands under limitations of PMs and network link capacities [26].

Considering the relevance of the efficient utilization of resources, an interest-
ing analysis of the main anomalies and drawbacks in a few existing techniques for
efficient resource utilization is presented in [72], introducing a novel vector-based
technique that addresses the considered anomalies.

Resource Allocation for Cloud Infrastructures ... 277

3.3 Solution Techniques

In the VMP literature considered in [13], different techniques were considered for
solving a VMP problem. The main solution techniques include: (1) deterministic
algorithms (optimal), (2) heuristic algorithms, (3) metaheuristic algorithms, and (4)
approximation algorithms. The four mentioned solution techniques are detailed in
the following subsections.

3.3.1 Deterministic Algorithms (Optimal)

Classical deterministic techniques were considered for a VMP problem, including
Constraint Programming (CP), Linear Programming (LP), Integer Linear Program-
ming (ILP), Mixed Integer Linear Programming (MILP), Pseudo-Boolean Optimiza-
tion (PBO), and Dynamic Programming (DP) [5]. Most of these approaches are
considered for introducing novel mathematical formulations of a VMP problem with
no practical intention, considering that obtaining the optimal solution implies a search
in a universe of N possible solutions [18]:

N=m+1" @)

where:

N Size of the searching universe
n Number of physical machines
m Number of virtual machines.

3.3.2 Heuristics

Considering that VMP is a combinatorial NP-hard problem [40], it is impractica-
ble to optimally solve instances of the problem for large number of PMs and VMs.
Commonly, CSPs are composed by thousands to millions of PMs and VMs, a sce-
nario where optimal solutions with exhaustive search algorithms can result extremely
expensive. Therefore, a trade-off between quality of solutions and computational cost
has to be considered for real-world cloud management systems.

Heuristics have already been extensively studied in the literature for exponential
complexity problems. Several articles proposed heuristic-based solution techniques
for a VMP problem. Most of the studied articles have proposed heuristics based
on well-known algorithms such as: First-Fit, First-Fit Decreasing, Best-Fit, Best-Fit
Decreasing, Worst-Fit, and Heaviest-Fit. Other greedy algorithms were also proposed
in addition to novel heuristics for the resolution of the VMP problem [13].

278 B. Bardn and F. Lopez-Pires
3.3.3 Metaheuristics

As previously mentioned, approximations to optimal solutions are sufficient in most
of cloud infrastructure environments. Metaheuristics are also very useful in order to
obtain good solutions in practical time. Metaheuristics include [5]: Memetic Algo-
rithms (MA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO),
Genetic Algorithm (GA), Neighborhood Search (NS), Cut-and-Search, Simulated
Annealing (SA), and Tabu Search (TS). According to the proposed taxonomy, meta-
heuristics are mainly studied with multi-objective approaches (MAM and PMO) for
solving VMP problems (see Table 1).

3.3.4 Approximation Algorithms

Heuristics and metaheuristics provide good quality solutions, but the quality of the
expected solutions is hardly measurable. In a p-approximation algorithm, the value
of a solution will not be more (or less) than a factor p times the optimal solution.
A small number of articles proposed approximation algorithms for solving a VMP
problem [5]. It is worth noting that for cloud infrastructures, solutions obtained using
heuristics or metaheuristics techniques are sufficiently good for most cases.

4 VMP Taxonomy: Research Opportunities

Based on a universe of 84 studied publications systematically chosen [13], Table 2
summarizes the taxonomies presented in this chapter (see Fig. 1 and Table 1). Con-
sidering that five studied articles [6, 39, 60, 61, 73] proposed two different solution
techniques for the same VMP formulation, presented statistics are based on 89 dif-
ferent VMP formulations (see Table 2).

Taking into account a detailed analysis of the information provided by Table 2,
this section summarizes research opportunities as well as ongoing research work by
the authors in order to further advance in this very active research area. It should be
noted that statistics presented in the following subsections are defined following the
studied VMP literature (of 89 different VMP formulations) and considered only as a
simple reference, given that more articles may be considered in this rapidly growing
research area. Additionally, different systematic reviews of the VMP literature (e.g.,
considering different keywords) or extended systematic reviews (e.g., considering
additional keywords) could result in different numbers.

Considering the diversity of existing environments, formulations and solution
techniques for the VMP problem (see Table?2), it is important to provide a general
vision on the main approaches for the mentioned problem, enabling interested readers
to define specific research alternatives.

Resource Allocation for Cloud Infrastructures ...

279

Table 2 Virtual Machine Placement Taxonomy. Elements of column % represent the percentage
of articles in the studied universe [13]. For simplicity, MAM and PMO consider only the number
of considered objectives in column f(x). See Sect.3.2 for f(x) details

Oriented | Deployment | Formulation Optimization fx) Solution %
architecture approach technique
Provider | Single-cloud | Offline MOP f1(x) Heuristic 3.37
Metaheuristic 2.25
fr(x) Heuristic 2.25
fa(x) Heuristic 1.12
MAM 3 Heuristic 2.25
Metaheuristic 3.37
2 Deterministic 1.12
PMO 3 Metaheuristic 2.25
2 Metaheuristic 1.12
Online MOP f1(x) Deterministic 4.49
Heuristic 6.74
Metaheuristic 1.12
Approximation | 1.12
fr(x) Deterministic 2.25
Heuristic 5.62
f3(x) Deterministic 1.12
Heuristic 5.62
fa(x) Heuristic 7.87
Metaheuristic 1.12
f5(x) Deterministic 1.12
Heuristic 4.49
MAM 3 Heuristic 3.37
Metaheuristic 1.12
2 Deterministic 3.37
Heuristic 16.85
Metaheuristic 1.12
Approximation | 1.12
Distributed- | Offline MOP fa(x) Deterministic 1.12
cloud
Online MOP fr(x) Heuristic 1.12
Deterministic 1.12
f3(x) Heuristic 1.12
f5(x) Heuristic 1.12
MAM 3 Deterministic 1.12
2 Metaheuristic 1.12
Federated- Online MOP f1(x) Heuristic 1.12
cloud
Broker Multi-cloud | Offline MOP f3(x) Deterministic 1.12
Metaheuristic 1.12
Total 100

280 B. Bardn and F. Lopez-Pires

The following subsections describe research opportunities identified in [14] and
presented in this chapter as a main result of the general research vision and the
proposed VMP taxonomies (see Fig. 1 and Tables 1 and 2).

4.1 Unexplored Environments, Formulations, and Solution
Techniques

Considering the studied VMP literature [13], unexplored VMP environments were
identified in [14] and presented in this chapter (see Research Opportunities in Fig. 1).
First, provider-oriented VMP problems in federated-cloud deployments were not
considered with offline formulations. Second, broker-oriented VMP problems in
multi-cloud deployments were not considered with online formulations. No formu-
lation or solution technique was studied for the mentioned VMP environments.

Additionally, unexplored formulations and solutions techniques were also identi-
fiedin [5] (see Research Opportunities in Table 1). For a MOP optimization approach,
f2(x) (network traffic) and f5(x) (resource utilization) were not studied considering
metaheuristics as solution technique. Approximation algorithms were studied as a
solution technique only for f;(x) (energy consumption), representing unexplored
alternatives for the remaining studied objective function groups.

For MAM optimization approach, the resolution of VMP formulations consider-
ing f3(x) (economical revenue) and f4(x) (performance) with deterministic algo-
rithms were not studied. Similar to the MOP approach, approximation algorithms
were studied as a solution technique only for fj(x) (energy consumption), repre-
senting unexplored alternatives for the remaining studied objective functions (see
Research Opportunities in Table 1). For PMO optimization approach, fi(x) (per-
formance) was not studied considering metaheuristics as solution technique, while
neither deterministic algorithms, heuristics nor approximation algorithms studied
PMO formulations of the VMP problem, representing unexplored alternatives.

Taking into account a complete understanding of the VMP problem composed
by VMP environments and VMP formulations as well as solution techniques (see
Table 2), several unexplored VMP problems could also be identified. In this context,
Table 2 could guide interested readers to identify existing research on VMP prob-
lems according to the studied VMP literature [13]. It should be noted that all possible
VMP problems that are not presented in Table 2 could also be considered as aresearch
opportunity. As an example, MAM and PMO optimization approaches are not pre-
sented in Table 2 for the following VMP environments: (1) provider-oriented VMP in
distributed-clouds with offline formulations, (2) provider-oriented VMP in federated
clouds with online formulations, and (3) broker-oriented VMP in multi-clouds with
offline formulations.

Resource Allocation for Cloud Infrastructures ... 281

4.2 Broker-Oriented VMP Considering Online Formulations

According to the proposed VMP Environment Taxonomy (see Fig.1), a broker-
oriented VMP problem could be studied in a multi-cloud deployment architecture
considering offline or online formulations. A broker-oriented VMP problem could
also be studied considering a mono-objective approach (MOP) or multi-objective
approaches (MAM or PMO), optimizing different objective functions (see Table 1).

Considering that only 2.24% of the considered VMP literature studied a broker-
oriented VMP problem as an offline optimization problem (see Table2), on going
research by the authors focus on exploring broker-oriented VMP formulations. In this
context, an extended systematic review of research articles demonstrate that broker-
oriented VMP includes several research opportunities, mainly novel multi-objective
formulations for online broker-oriented VMP problems.

Several dynamic parameters could be studied for online broker-oriented VMP
problems such as: (1) pricing schemes, (2) VM offers, or (3) user requirements,
but a detailed survey on these parameters and formulations is still needed (research
opportunity). It should be noted that the implementation of possible migrations of
VMs across different CSPs is limited by cloud interoperability factors, and it is out
of the scope of the VMP problem.

4.3 Provider-Oriented VMP Considering Online
Formulations

Considering the on-demand model of cloud computing, a provider-oriented VMP
problem should be solved dynamically to efficiently attend typical workload of mod-
ern applications. According to the studied articles, 77.53% considered this particular
type of VMP problem with several different formulations and dynamic parameters.

Ortigoza et al. [25] studied a large part of the online provider-oriented VMP
literature to be able to identify most relevant dynamic parameters that could be
considered for modeling different IaaS environments where CSPs should address
several challenges. In this context, dynamic environments for online formulations
of the provider-oriented VMP problem could be classified by one or more of the
following classification criteria: (1) elasticity and (2) overbooking [25]. Both classi-
fication criteria are mainly related to the identified dynamic parameters, as: resource
capacities of VMs (vertical elasticity), number of VMs of a cloud service (horizontal
elasticity), and utilization of resources of VMs (overbooking).

According to [25], dynamic VMP environments for cloud computing could be for-
mulated considering one of the following elasticity values: no elasticity, horizontal
elasticity, vertical elasticity, or both horizontal and vertical elasticity. Additionally,
identified dynamic VMP environments may also consider one of the following over-
booking values: no overbooking, server resources overbooking, network resources
overbooking, or both server and network overbooking.

282 B. Baran and F. Lopez-Pires

Research opportunities for online formulations of a provider-oriented VMP prob-
lem include detailed studies on complex dynamic environments (e.g., VMP consider-
ing both types of elasticity and both types of overbooking) in order to enable CSPs to
efficiently support modern cloud applications and services. Considering that modern
cloud services are often composed by several inter-related VMs, the authors of this
chapter presented in [25], modeling techniques for these complex cloud services to
consider any type of deployment architecture (i.e., single-cloud, distributed-cloud,
federated-cloud, or multi-cloud).

4.4 Provider-Oriented VMP Considering PMO Optimization

According to the studied articles, only 3.37% considered a PMO approach for an
offline formulation of provider-oriented VMP problems simultaneously optimizing
two or three objective functions. PMO approaches could result in more realistic
formulations of a VMP problem, optimizing more than one objective function at a
time.

Taking into account that existing PMO formulations of a provider-oriented VMP
problem consider at most three objective functions and more than 60 different objec-
tive functions were identified in [5], several formulations could still be considered,
specially for PMO approaches. In this context, it is important to remember that PMOs
optimizing more than three objective functions are known as MaOPs. As described in
Sect. 3.1.3, several issues should be considered when solving optimization problems
with more than three objective functions [63]. Considering the mentioned challenges
for solving MaOPs, Lépez-Pires and Baran have proposed in [17] a general many-
objective optimization framework that is able to consider as many objective functions
as needed when solving an offline VMP problem in a PMO context. In order to con-
verge to a treatable number of non-dominated solutions, the authors proposed the
utilization of interactive lower and upper bounds associated to each objective function
to reduce the number of possible solutions of the Pareto set approximation Py,
following a decision maker needs.

Additionally, online formulations of a provider-oriented VMP considering a
PMO approach should be explored. For this particular type of VMP problem, PMO
approaches should include strategies for an appropriate solution selection from the
Pareto set approximation Pji,py,, composed by non-dominated solutions. In this
context, Thara et al. already proposed a first formulation of a Many-Objective VMP
problem (MaVMP) for semi-dynamic environments, presenting studies on the eval-
uation of several strategies for VMP problems formulated as MaOPs [23].

Resource Allocation for Cloud Infrastructures ... 283

4.5 Provider-Oriented VMP in Distributed and Federated
Clouds

According to the studied articles, only 7.87% proposed a provider-oriented VMP
problem in a distributed-cloud deployment architecture, while only [42] studied the
provider-oriented VMP problem considering a federated-cloud deployment archi-
tecture (see Table 2). Resource allocation in distributed and federated cloud environ-
ments is an active research area [74]. In a provider-oriented VMP context, several
particular constraints and objective functions may still be studied and evaluated in
order to fulfill the requirements of a CSP with geo-distributed cloud computing
datacenters or different CSPs in a cloud federation.

It should be noted that a broker-oriented VMP in a distributed-cloud deployment
architecture may be adapted as a multi-cloud deployment architecture by considering
each datacenter as a different CSP in order to fulfill requirements of high-availability
or legal issues (e.g., Amazon’s us-east-1 or eu-west-1 datacenters).!

For a VMP problem in a distributed or federated-cloud deployment architec-
ture, several research opportunities may be still proposed considering unexplored
objective functions, novel formulations in MOP, MAM or PMO approaches or even
experimental evaluation of different solution techniques.

5 Conclusions and Future Directions

Based on a universe of 84 studied articles with 89 different VMP formulations [13],
this work presented general taxonomies of the VMP problem (see Table 2) consider-
ing possible environments where the VMP problem could be studied (see Research
Opportunities in Fig. 1) as well as different possible formulations and techniques for
the resolution of the VMP problem (see Table 1).

Depending on the particular environment where a VMP problem will be studied,
several different considerations should be taken into account before considering a
particular formulation or technique for a VMP problem resolution. Different possible
environments were identified by classifying research articles in the VMP literature
by: (1) orientation, (2) deployment architecture, and (3) type of formulation.

Provider or broker perspectives could be considered when studying a VMP prob-
lem (see Sect.2.1). For provider-oriented VMP problems, different architectures
could be considered for deployments: single-cloud, distributed-cloud, or federated-
cloud. For broker-oriented VMP problems only multi-cloud architectures could be
considered (see Sect.2.2). Both provider-oriented and a broker-oriented VMP prob-
lems, considering any of the mentioned architectures for deployment, may be for-
mulated as both offline or online optimization problems (see Sect.2.3).

Thttps://aws.amazon.com/about-aws/global-infrastructure.

https://aws.amazon.com/about-aws/global-infrastructure

284 B. Bardn and F. Lopez-Pires

Different formulations of the VMP problem were considered, mainly taking into
account the identified VMP environments (see Fig. 1). In this context, each VMP
problem formulation was characterized considering: (1) optimization approach and
(2) objective functions as well as (3) solution technique. Initially, a VMP problem was
formulated considering any of the following approaches for optimization: (1) mono-
objective (MOP), (2) multi-objective solved as mono-objective (MAM), or (3) pure
multi-objective (PMO). According to the considered optimization approach, VMP
formulations were classified by the studied objective function(s) group(s), taking into
account maximization and minimization scenarios. Depending on the optimization
approach, considered objectives could be optimized simultaneously or not. Finally,
techniques for solving a VMP problem were considered as a third classification
criterion [5].

According to Table 2, the VMP problem have been mostly studied as an online
problem from the provider perspective, considering a single-cloud deployment archi-
tecture, representing 69.66% of the studied articles. For this particular VMP environ-
ment, 42,70% considered a MOP approach. It could be said that online formulations
of provider-oriented VMP problems in single-cloud deployment architecture is a
well-studied problem and existing literature should guide CSPs to solve VMP prob-
lems with these considerations.

Based on the proposed taxonomies, several research opportunities were identi-
fied in the following research directions (see Sect.4): (1) unexplored environments,
formulations and solution techniques, (2) broker-oriented VMP considering
online formulations, (3) provider-oriented VMP considering online formulations,
(4) provider-oriented VMP considering PMO optimization, and (5) provider-oriented
VMP in distributed and federated clouds. It should be mentioned that other relevant
research opportunities could also be identified with the proposed taxonomies.

Focusing on the large number of identified objective functions [5], the following
questions still have no answer considering the studied VMP literature [13]:

1. can CSPs efficiently optimize more than three objective functions for the VMP
problem in a reasonable time?

2. which solution technique is the most appropriate for solving VMP problems
considering PMO approaches for real scenarios?

3. are PMO approaches the best alternative for online formulations or MAM
approaches have the potential of performing even better?

Additionally, the following questions focus on the variety of possible deployment
architectures where the VMP problem could be studied:

1. how can CSPs model, formulate and solve VMP problems in distributed or fed-
erated clouds?

2. which solution technique is the most appropriate for broker-oriented VMP for
large scale customers?

3. which objective functions should a CSP consider in different deployment archi-
tectures?

Resource Allocation for Cloud Infrastructures ... 285

In order to answer the abovementioned relevant questions, research should focus
on unexplored formulations of the VMP problem, developing novel techniques,
and providing methods and accepted benchmarks to compare and evaluate different
approaches. Addressing this unexplored formulations may start applying an extended
review, considering that this work studied a relevant subset of the existing VMP liter-
ature in order to guide interested readers, providing a general vision on this research
area. Additionally, remembering the high complexity of the VMP problem as a
NP-hard combinatorial optimization problem, novel approaches to reduce possible
combinations for placement of VMs should be developed [56].

Studying dynamic schemes for resource pricing in cloud computing in the context
of the VMP problem may also be considered a relevant future direction to further
advance this research area, taking into account open challenges for both CSPs and
CSBs in highly dynamic markets of cloud computing.

It is important to mention that actual cloud markets are mostly composed by
thousands to millions of VMs which are dynamically created and destroyed, so
experimental tests for VMP problem should consider: (1) large number of VMs
and PMs, (2) heterogeneity in PMs and VMs configurations, (3) diverse types and
workload distribution, and (4) trending dynamic parameters. As a general conclusion,
it could be said that different methods and algorithms should be still evaluated before
areal good tool is ready for massive use in commercial cloud computing datacenters.

References

1. Mell, P,, & Grance, T. (2009). The nist definition of cloud computing. National Institute of
Standards and Technology, 53(6), 50.

2. Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, 1. (2009). Cloud computing and
emerging it platforms: Vision, hype, and reality for delivering computing as the 5Sth utility.
Future Generation Computer Systems, 25(6), 599-616.

3. Elmroth, E., Tordsson, J., Herndndez, F., Ali-Eldin, A., Svird, P., Sedaghat, M., et al. (2011).
Self-management challenges for multi-cloud architectures. In Towards a Service-Based Internet
(pp- 38-49). Springer.

4. Manvi, S. S., & Shyam, G. S. (2014). Resource management for infrastructure as a service (iaas)
in cloud computing: A survey. Journal of Network and Computer Applications, 41, 424-440.

5. Lépez-Pires, F., & Baran, B. (2015). A virtual machine placement taxonomy. In Proceedings
of the 2015 IEEE/ACM 15th International Symposium on Cluster, Cloud and Grid Computing.
IEEE Computer Society.

6. Anand, A., Lakshmi, J., & Nandy, S. K. (2013). Virtual machine placement optimization sup-
porting performance SLAs. In 2013 IEEE 5th International Conference on Cloud Computing
Technology and Science (CloudCom) (Vol. 1, pp. 298-305). IEEE.

7. Beloglazov, A., Abawajy, J., & Buyya, R. (2012). Energy-aware resource allocation heuristics
for efficient management of data centers for cloud computing. Future Generation Computer
Systems, 28(5), 7155-768.

8. Buyya, R., Yeo, C. S., & Venugopal, S. (2008). Market-oriented cloud computing: Vision,
hype, and reality for delivering it services as computing utilities. In /0th IEEE International
Conference on High Performance Computing and Communications, 2008. HPCC’08. (pp.
5-13). IEEE.

286 B. Bardn and F. Lopez-Pires

9. Beloglazov, A., & Buyya, R. (2012). Optimal online deterministic algorithms and adaptive
heuristics for energy and performance efficient dynamic consolidation of virtual machines in
cloud data centers. Concurrency and Computation: Practice and Experience, 24(13), 1397—
1420.

10. Salimian, L., & Safi, F. (2013). Survey of energy efficient data centers in cloud computing.
In Proceedings of the 2013 IEEE/ACM 6th International Conference on Utility and Cloud
Computing (pp. 369-374). IEEE Computer Society.

11. Gahlawat, M., & Sharma, P. (2014). Survey of virtual machine placement in federated clouds.
In Advance Computing Conference (IACC), 2014 IEEE International (pp. 735-738). IEEE.

12. Mills, K., Filliben, J., & Dabrowski, C. (2011). Comparing vm-placement algorithms for on-
demand clouds. In 2011 IEEE Third International Conference on Cloud Computing Technology
and Science (CloudCom) (pp. 91-98). IEEE.

13. Lopez-Pires, F., & Baran, B. (2015). Virtual machine placement literature review.
arXiv:abs/1506.01509.

14. Lopez-Pires, F., & Bardn, B. (2016). Cloud computing resource allocation taxonomies. Inter-
national Journal of Cloud Computing.

15. Jansen, R., & Brenner, P. R. (2011). Energy efficient virtual machine allocation in the cloud.
In Green Computing Conference and Workshops (IGCC), 2011 International (pp. 1-8). IEEE.

16. Tordsson, J., Montero, R. S., Moreno-Vozmediano, R., & Llorente, I. M. (2012). Cloud broker-
ing mechanisms for optimized placement of virtual machines across multiple providers. Future
Generation Computer Systems, 28(2), 358-367.

17. Lopez-Pires, F., & Baran, B. (2015). A many-objective optimization framework for virtualized
datacenters. In Proceedings of the 2015 5th International Conference on Cloud Computing and
Service Science (pp. 439-450).

18. Lopez-Pires, F., & Baran, B. (2013). Multi-objective virtual machine placement with service
level agreement: A memetic algorithm approach. In Proceedings of the 2013 IEEE/ACM 6th
International Conference on Utility and Cloud Computing (pp. 203-210). IEEE Computer
Society.

19. Huang,Z., & Tsang, D. H. K. (2012). Sla guaranteed virtual machine consolidation for comput-
ing clouds. In 2012 IEEE International Conference on Communications (ICC) (pp. 1314-1319).
IEEE.

20. Lu, K., Yahyapour, R., Wieder, P., Kotsokalis, C., Yaqub, E., & Jehangiri, A. I. (2013). Qos-
aware vm placement in multi-domain service level agreements scenarios. In 2013 IEEE Sixth
International Conference on Cloud Computing (CLOUD) (pp. 661-668). IEEE.

21. Bouyoucef, K., Limam-Bedhiaf, I., & Cherkaoui, O. (2010). Optimal allocation approach of
virtual servers in cloud computing. In 2010 6th EURO-NF Conference on Next Generation
Internet (NGI) (pp. 1-6). IEEE.

22. Espling, D., Larsson, L., Li, W., Tordsson, J., & Elmroth, E. (2014). Modeling and placement
of cloud services with internal structure. IEEE Transactions on Cloud Computing (Vol. 99, pp.
1-1).

23. Ihara, D., Lépez-Pires, F., & Baran, B. (2015). Many-objective virtual machine placement for
dynamic environments. In Proceedings of the 2015 IEEE/ACM 8th International Conference
on Utility and Cloud Computing. IEEE Computer Society.

24. Loépez-Pires, F., Baran, B., Amarilla, A., Benitez, L., Ferreira, R., & Zalimben, S. (2016).
An experimental comparison of algorithms for virtual machine placement considering many
objectives. In 9th Latin America Networking Conference (LANC) (pp. 75-79).

25. Ortigoza, J., Lpez-Pires, F.,, & Barn, B. (2016). A taxonomy on dynamic environments for
provider-oriented virtual machine placement. In 2016 IEEE International Conference on Cloud
Engineering (IC2E) (pp. 214-215).

26. Li, K., Wu, J., & Blaisse, A. (2013). Elasticity-aware virtual machine placement for cloud
datacenters. In 2013 IEEE 2nd International Conference on Cloud Networking (CloudNet)
(pp- 99-107). IEEE.

27. Wang, W., Chen, H., & Chen, X. (2012). An availability-aware virtual machine placement
approach for dynamic scaling of cloud applications. In 2012 9th International Conference

http://arxiv.org/abs/abs/1506.01509

Resource Allocation for Cloud Infrastructures ... 287

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

on Ubiquitous Intelligence & Computing and 9th International Conference on Autonomic &
Trusted Computing (UIC/ATC) (pp. 509-516). IEEE.

Chamorro, L., Lopez-Pires, F., & Baran, B. (2016). A genetic algorithm for dynamic cloud
application brokerage. IEEE International Conference on Cloud Engineering.

Li, W., Tordsson, J., & Elmroth, E. (2011). Modeling for dynamic cloud scheduling via migra-
tion of virtual machines. In 2011 IEEE Third International Conference on Cloud Computing
Technology and Science (CloudCom) (pp. 163—171). IEEE.

Simarro, J. L. L., Moreno-Vozmediano, R., Montero, R. S., & Llorente, I. M. (2011). Dynamic
placement of virtual machines for cost optimization in multi-cloud environments. In 2011
International Conference on High Performance Computing and Simulation (HPCS) (pp. 1-7).
IEEE.

Dang, H. T., & Hermenier, F. (2013). Higher SLA satisfaction in datacenters with continuous
VM placement constraints. In Proceedings of the 9th Workshop on Hot Topics in Dependable
Systems (p. 1). ACM.

Huang, Z., Tsang, D. H. K., & She, J. (2012). A virtual machine consolidation framework
for mapreduce enabled computing clouds. In Proceedings of the 24th International Teletraffic
Congress, International Teletraffic Congress (p. 26).

Shi, W., & Hong, B. (2011). Towards profitable virtual machine placement in the data center.
In 2011 Fourth IEEE International Conference on Utility and Cloud Computing (UCC) (pp.
138-145). IEEE.

Bardn, B., von Liicken, C., & Sotelo, A. (2005). Multi-objective pump scheduling optimisation
using evolutionary strategies. Advances in Engineering Software, 36(1), 39-47.

Coello, C. A. C., Lamont, G. B., & Van Veldhuizen, D. A. (2007). Evolutionary algorithms for
solving multi-objective problems. Springer.

Goudarzi, H., & Pedram, M. (2012). Energy-efficient virtual machine replication and placement
in a cloud computing system. In 2012 IEEE 5th International Conference on Cloud Computing
(CLOUD) (pp. 750-757). IEEE.

Piao, J. T., & Yan, J. (2010). A network-aware virtual machine placement and migration
approach in cloud computing. In 2010 9th International Conference on Grid and Coopera-
tive Computing (GCC) (pp. 87-92). IEEE.

Bin, E., Biran, O., Boni, O., Hadad, E., Kolodner, E. K., Moatti, Y., & Lorenz, D. H. (2011).
Guaranteeing high availability goals for virtual machine placement. In 2011 31st International
Conference on Distributed Computing Systems (ICDCS) (pp. 700-709). IEEE.

Li, W., Tordsson, J., & Elmroth, E. (2012). Virtual machine placement for predictable and time-
constrained peak loads. In Economics of grids, clouds, systems, and services (pp. 120—134).
Springer.

Sun, M., Gu, W., Zhang, X., Shi, H., & Zhang, W. (2013). A matrix transformation algorithm
for virtual machine placement in cloud. In 2013 12th IEEE International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom) (pp. 1778—1783). IEEE.
Song, F., Huang, D., Zhou, H., Zhang, H., & You, 1. (2014). An optimization-based scheme
for efficient virtual machine placement. International Journal of Parallel Programming, 42(5),
853-872.

Dupont, C., Giuliani, G., Hermenier, F., Schulze, T., & Somov, A. (2012). An energy aware
framework for virtual machine placement in cloud federated data centres. In 2012 Third Interna-
tional Conference on Future Energy Systems: Where Energy, Computing and Communication
Meet (e-Energy) (pp. 1-10). IEEE.

Dias, D. S., & Costa, L. H. M. K. (2012). Online traffic-aware virtual machine placement in
data center networks. In Global Information Infrastructure and Networking Symposium (GIIS),
2012 (pp. 1-8). IEEE.

Gupta, A., Kalé, L. V., Milojicic, D., Faraboschi, P., & Balle, S. M. (2013). Hpc-aware vm place-
ment in infrastructure clouds. In 2013 IEEE International Conference on Cloud Engineering
(IC2E) (pp. 11-20). IEEE.

Sato, K., Samejima, M., & Komoda, N. (2013). Dynamic optimization of virtual machine place-
ment by resource usage prediction. In 2013 11th IEEE International Conference on Industrial
Informatics (INDIN) (pp. 86-91). IEEE.

288 B. Bardn and F. Lopez-Pires

46. Dong, J., Wang, H., Jin, X., Li, Y., Zhang, P., & Cheng, S. (2013). Virtual machine placement
for improving energy efficiency and network performance in laaS cloud. In 2013 IEEE 33rd
International Conference on Distributed Computing Systems Workshops (ICDCSW) (pp. 238—
243). IEEE.

47. Hong, H.-J., Chen, D.-Y., Huang, C.-Y., Chen, K.-T., & Hsu, C.-H. (2013). Qoe-aware virtual
machine placement for cloud games. In 2013 12th Annual Workshop on Network and Systems
Support for Games (NetGames) (pp. 1-2). IEEE.

48. Dalvandi, A., Gurusamy, M., & Chua, K. C. (2013). Time-aware vm-placement and routing with
bandwidth guarantees in green cloud data centers. In 2013 IEEE 5th International Conference
on Cloud Computing Technology and Science (CloudCom) (Vol. 1, pp. 212-217). IEEE.

49. Calcavecchia, N. M., Biran, O., Hadad, E., & Moatti, Y. (2012). Vm placement strategies for
cloud scenarios. In 2012 IEEE 5th International Conference on Cloud Computing (CLOUD)
(pp. 852-859). IEEE.

50. Cao, Z., & Dong, S. (2014). An energy-aware heuristic framework for virtual machine consol-
idation in cloud computing. The Journal of Supercomputing (pp. 1-23).

51. Tang, M., & Pan, S. (2014). A hybrid genetic algorithm for the energy-efficient virtual machine
placement problem in data centers. Neural processing letters (pp. 1-11).

52. Mark, C. C. T., Niyato, D., & Chen-Khong, T. (2011). Evolutionary optimal virtual machine
placement and demand forecaster for cloud computing. In 2011 IEEE International Conference
on Advanced Information Networking and Applications (AINA) (pp. 348-355). IEEE.

53. Tsakalozos, K., Roussopoulos, M., & Delis, A. (2011). Vm placement in non-homogeneous
iaas-clouds. In Service-oriented computing (pp. 172—187). Springer.

54. Chen, K.-Y,, Xu, Y., Xi, K., & Chao, H. J. (2013). Intelligent virtual machine placement for
cost efficiency in geo-distributed cloud systems. In 2013 IEEE International Conference on
Communications (ICC) (pp. 3498-3503). IEEE.

55. Xu, J., & Fortes, J. A. B. (2010). Multi-objective virtual machine placement in virtualized
data center environments. In 2010 IEEE/ACM Int’l Conference on & Int’l Conference on
Cyber, Physical and Social Computing (CPSCom) Green Computing and Communications
(GreenCom) (pp. 179-188). IEEE.

56. Shigeta, S., Yamashima, H., Doi, T., Kawai, T., & Fukui, K. (2013). Design and implementation
of a multi-objective optimization mechanism for virtual machine placement in cloud computing
data center. In Cloud computing (pp. 21-31). Springer.

57. Adamuthe, A. C., Pandharpatte, R. M., & Thampi, G. T. (2013). Multiobjective virtual machine
placement in cloud environment. In 2013 International Conference on Cloud & Ubiquitous
Computing & Emerging Technologies (CUBE) (pp. 8-13). IEEE.

58. Gao, Y., Guan, H., Qi, Z., Hou, Y., & Liu, L. (2013). A multi-objective ant colony system
algorithm for virtual machine placement in cloud computing. Journal of Computer and System
Sciences, 79(8), 1230-1242.

59. Loépez-Pires, F., Melgarejo, E., & Baran, B. (2013). Virtual machine placement. A multi-
objective approach. In Computing Conference (CLEI), 2013 XXXIX Latin American (pp. 1-8).
IEEE.

60. Wu, J.-J., Liu, P., & Yang, J.-S. (2012). Workload characteristics-aware virtual machine con-
solidation algorithms. In Proceedings of the 2012 IEEE 4th International Conference on Cloud
Computing Technology and Science (CloudCom) (pp. 42-49). IEEE Computer Society.

61. Fang, W, Liang, X., Li, S., Chiaraviglio, L., & Xiong, N. (2013). Vmplanner: Optimizing
virtual machine placement and traffic flow routing to reduce network power costs in cloud data
centers. Computer Networks, 57(1), 179-196.

62. Cheng, J., Yen, G. G., & Zhang, G. (2014). A many-objective evolutionary algorithm based
on directional diversity and favorable convergence. In 2014 IEEE International Conference on
Systems, Man and Cybernetics (SMC) (pp. 2415-2420).

63. Farina, M., & Amato, P. (2002). On the optimal solution definition for many-criteria optimiza-
tion problems. In Proceedings of the NAFIPS-FLINT International Conference (pp. 233-238).

64. Deb, K., Sinha, A., & Kukkonen, S. (2006). Multi-objective test problems, linkages, and evo-
lutionary methodologies. In Proceedings of the 8th Annual Conference on Genetic and Evolu-
tionary Computation (pp. 1141-1148). ACM.

Resource Allocation for Cloud Infrastructures ... 289

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

von Liicken, C., Baran, B., & Brizuela, C. (2014). A survey on multi-objective evolutionary
algorithms for many-objective problems. Computational optimization and applications (pp.
1-50).

Barroso, L. A., & Holzle, U. (2007). The case for energy-proportional computing. IEEE Com-
puter, 40(12), 33-37.

Dong, J., Jin, X., Wang, H., Li, Y., Zhang, P., & Cheng, S. (2013). Energy-saving virtual
machine placement in cloud data centers. In 2013 13th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid) (pp. 618-624). IEEE.

Wang, S.-H., Huang, P. P.-W., Wen, C. H.-P., & Wang, L.-C. (2014). Eqvmp: Energy-efficient
and qos-aware virtual machine placement for software defined datacenter networks. In 2014
International Conference on Information Networking (ICOIN) (pp. 220-225). IEEE.
McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., et al.
(2008). Openflow: Enabling innovation in campus networks. ACM SIGCOMM Computer Com-
munication Review, 38(2), 69-74.

Ben-Yehuda, O. A., Ben-Yehuda, M., Schuster, A., & Tsafrir, D. (2013). Deconstructing Ama-
zon EC2 spot instance pricing. ACM Transactions on Economics and Computation, 1(3), 16.
Li, W., Svérd, P., Tordsson, J., & Elmroth, E. (2013). Cost-optimal cloud service placement
under dynamic pricing schemes. In Proceedings of the 2013 IEEE/ACM 6th International
Conference on Utility and Cloud Computing (pp. 187-194). IEEE Computer Society.

Mishra. M., & Sahoo, A. (2011). On theory of v placement: Anomalies in existing method-
ologies and their mitigation using a novel vector based approach. In 2011 IEEE International
Conference on Cloud Computing (CLOUD) (pp. 275-282). IEEE.

Ferreto, T., De Rose, C. A. F,, & Heiss, H.-U. (2011). Maximum migration time guarantees in
dynamic server consolidation for virtualized data centers. In Euro-Par 2011 Parallel Processing
(pp. 443-454). Springer.

Hassan, M. M., Hossain, M. S., Sarkar, A. M. J., & Huh, E.-N. (2014). Cooperative game-based
distributed resource allocation in horizontal dynamic cloud federation platform. Information
Systems Frontiers, 16(4), 523-542.

Many-Objective Optimization for Virtual
Machine Placement in Cloud Computing

Fabio Lépez-Pires and Benjamin Baran

Abstract Resource allocation in cloud computing datacenters presents several
research challenges, where the Virtual Machine Placement (VMP) is one of the
most studied problems with several possible formulations considering a large num-
ber of existing optimization criteria. This chapter presents the main contributions that
studied for the first time Many-Objective VMP (MaVMP) problems for cloud com-
puting environments. In this context, two variants of MaVMP problems were formu-
lated and different algorithms were designed to effectively address existing research
challenges associated to the resolution of Many-Objective Optimization Problems
(MaOPs). Experimental results proved the correctness of the presented algorithms,
its effectiveness in solving particular associated challenges and its capabilities to
solve problem instances with large numbers of physical and virtual machines for: (1)
MaVMP for initial placement of VMs (static) and (2) MaVMP with reconfiguration
of VMs (semi-dynamic). Finally, open research problems for the formulation and
resolution of MaVMP problems for cloud computing (dynamic) are discussed.

1 Introduction

This chapter presents contributions related to the Virtual Machine Placement (VMP)
problem from a Many-Objective Optimization perspective. Provider-oriented VMP
problems can be enunciated as the process of assigning physical machines (PMs)
to host requested virtual machines (VMs) in multi-tenant environments. Depending
on particular requirements of a cloud computing infrastructure, the VMP problem
could be formulated as several different optimization problems, considering several
different objective functions. It is important to notice that these requirements may
change over time and be defined as dynamic resource management policies. These

F. Lépez-Pires (<)

Itaipu Technological Park, Hernandarias, Paraguay
e-mail: fabio.lopez @pti.org.py

B. Baran

National University of Asuncién, San Lorenzo, Paraguay
e-mail: bbaran@pol.una.py

© Springer Nature Singapore Pte Ltd. 2017 291
S. Chaudhary et al. (eds.), Research Advances in Cloud Computing,
DOI 10.1007/978-981-10-5026-8_12

292 F. Lopez-Pires and B. Bardn

particular considerations open different possible environments and formulations for
the VMP problem. As a previous work by the authors, more than 60 different objective
functions were identified in the specialized VMP literature [1, 2].

In real-world cloud computing infrastructures, the resolution of VMP problems
could require the optimization of several objective functions in practical cases. This
particular requirement could be clearly noted taking into account the large number of
already studied objective functions, which could be formulated considering different
possible approaches for modeling each objective function. In this context, Cloud
Service Providers (CSPs) might be faced with the need to simultaneously optimize
several conflicting objective functions when solving VMP problems.

It is important to consider that optimization problems simultaneously optimiz-
ing more than three objective functions are commonly known as Many-Objective
Optimization Problems (MaOPs), as defined in [3]. In this context, there are several
current research challenges for the resolution of MaOPs [4, 5].

Many-Objective Optimization is still considered an unexplored domain in resource
management of cloud computing infrastructures [6], although there are already a few
many-objective formulations proposed for the VMP problem in the specialized lit-
erature [7-9], as presented in this chapter.

The following sections present contributions and research challenges for different
variants of Many-Objective VMP (MaVMP) problems, such as: (1) MaVMP for
initial placement of VMs (static), (2) MaVMP with reconfiguration of VMs (semi-
dynamic) and (3) MaVMP for cloud computing environments (dynamic).

2 Many-Objective VMP for Initial Placement of VMs

Considering that no many-objective formulation for the VMP problem was pre-
sented in the literature [2, 9], basic static environments such as initial placement
of VMs were first studied [8]. This section presents a general many-objective opti-
mization framework which is able to consider as many objective functions as needed
when solving a MaVMP problem for initial placement of VMs (see Sect.2.1). As an
example of utilization of the presented framework, a first formulation of a MaVMP
problem is presented, considering the simultaneous optimization of the following
five objective functions: (1) power consumption, (2) network traffic, (3) economical
revenue, (4) quality of service (QoS) and (5) network load balancing.

In the formulation of the MaVMP for initial placement of VMs to be presented in
Sect. 2.2, a multilevel priority is associated to each VM, representing a Service Level
Agreement (SLA) considered in the placement process, in order to effectively priori-
tize important VMs (e.g., in peaks situations where the total requested VMs resources
are higher than available PMs resources). To solve the formulated MaVMP for ini-
tial placement of VMs, an interactive Memetic Algorithm (MA) was proposed (see
Sect. 2.3) considering particular challenges associated to the resolution of a MaVMP
problem, as the potentially unmanageable number of non-dominated solutions that
compose a Pareto set approximation Piyu-

Many-Objective Optimization for Virtual Machine Placement in Cloud Computing 293

2.1 Many-Objective Optimization Framework

The general many-objective optimization framework for the VMP problem proposed
in [8] considers that as the number of conflicting objectives of a MaVMP problem for-
mulation increases, the total number of non-dominated solutions normally increases
(even exponentially in some cases), being increasingly difficult to discriminate among
solutions using only the dominance relation [4]. For this reason, it is recommended
the utilization of lower and upper bounds associated to each objective function f; (x),
where z € {1, ..., q} (L, < f.(x) < U,), to be able to iteratively reduce the number
of possible non-dominated solutions of Pppyp.

A formulation of a MaVMP for initial placement of VMs, based on many objective
functions and constraints to be detailed in Sect. 2.2, may be written as:

Optimize:

y=f@ =01, L0, 0),....[(0)] typically withg > 3, (1)
where for example:

Jf1(x) = power consumption;

f>(x) = inter-VM network traffic;

f3(x) = economical revenue;

fa(x) = quality of service; 2)
f5(x) = network load balancing;

Jq(x) = any other considered objective function.

subject to constraints as:

e1(x) : unique placement of VMs;
e7(x) : assure provisioning of highest SLA;
e3(x) : processing resource capacity of PMs;
e4(x) : memory resource capacity of PMs;
es(x) : storage resource capacity of PMs;
e6(x) 1 f1(x) € [L1, Upl;
710 : o) € [La, Ul 3)
eg(x) 1 3(x) € [L3, U3];
e9(x) : fa(x) € [La, Usl;
e10(x) : fs(x) € [Ls, Us];

er(x) : any other considered constraint.

294 F. Lopez-Pires and B. Bardn

2.2 Problem Formulation

A few articles have already proposed formulations of a pure multi-objective VMP
problem (MVMP), considering the simultaneous optimization of at most three objec-
tive functions [10, 11]. A previous work of the authors proposed for the first time a
MaVMP formulation [8]. This section presents a formulation of a MaVMP problem
considering the following five objective functions to be simultaneously optimized:
(1) power consumption, (2) network traffic, (3) economical revenue, (4) quality of
service and (5) network load balancing. In the presented MaVMP formulation, a
multilevel priority is associated to each VM considered in the placement process in
order to effectively prioritize VMs. Formally, the presented offline (static) MaVMP
problem for initial placement of VMs can be enunciated as [8]:

Given a set of PMs, H = {H,, H», ..., H,}, a network topology G (as illustrated in
Figure 1) and a set of VMs, V = {Vy, Va, ..., V,u}, it is sought a correct placement of
the set of VMs V into the set of PMs H satisfying the r constraints of the problem and
simultaneously optimizing all q objective functions defined in this formulation (as
energy consumption, network traffic, economical revenue, QoS and load balancing
in the network), in a pure many-objective context.

2.2.1 Input Data

The presented formulation of the MaVMP problem for initial placement of VMs
models a virtualized datacenter infrastructure, composed by PMs, VMs and a network
topology that interconnects PMs.

Active paths of M _l Total traffic per path
ma3 = {ly, Is I, I} E my3 =4 Mbps

mMaa={ly, Is, lg, la} mys=2 Mbps
M3 = {l3, la} m3, =4 Mbps
Is le,
1000 Mbps/ \1000 Mbps

100 Mbp7 \100 Mbps 100 Mbp \100 Mbps
\'E I, I, Vi 3
M M | VM i i

© Vitware, Ing,

H, H,

© Viktweare, Inc. OViveare. Inc.

Fig. 1 Example of placement in a virtualized datacenter infrastructure, composed by PMs, a net-
work topology and VMs

Many-Objective Optimization for Virtual Machine Placement in Cloud Computing 295

The set of PMs is represented as a matrix H € R"*#, Each PM H; is represented by
processing resources of CPU (as ECU),' RAM [GB], storage [GB], and a maximum
power consumption [W] as:

H; = [Hcpu;, Hram;, Hhdd;, pmax;], Vi e {1, ...,n} 4@

where

Hcpu;: Processing resources of H;;

Hram;: RAM memory resources of H;;
Hhdd;: Storage resources of H;;

pmax;: Maximum power consumption of H;;
n: Number of PMs.

It should be mentioned that the proposed notation is general enough to include
additional characteristics associated to each PM such as Graphic Processing Units
(GPUs) or Network Interface Cards (NICs) just to cite a few.

As shown in the example of Fig. 1, a network topology of a virtualized datacenter
is represented as:

G: Network topology;

L: Set of links /, in G. For simplicity, links are assumed as semi-duplex in what
follows;

M: Set of paths for all-to-all PM network interconnections;

K: Capacity set of the communication channels, typically in [Mbps].

The set of VMs requested by customers is represented as a matrix V e R"*3,
Each VM V; requires processing resources of CPU (as ECU) (see Footnote 1), RAM
[GB], and storage [GB], providing an economical revenue R; [$] to the provider.

A SLA is also assigned to each VM to indicate its priority level. Consequently, a
V; is represented as:

Vi = [Vepu;, Vram;, Vhdd;, R;, SLA;], Vj e {1, ..., m} ()

where

Vepu;: Processing requirements of V;

Vram;: Memory requirements of V;;

Vhdd;: Storage requirements of V;;

R;: Economical revenue for locating Vj;

SLA;: Service Level Agreement SLA; of a V;. If the highest priority level is s, then
SLA; € {1,...,s};

m: Number of VMs.

Thitp://aws.amazon.com/ec2/fags.

http://aws.amazon.com/ec2/faqs

296 F. Lopez-Pires and B. Bardn

The traffic between VM is represented as a matrix 7 € R™ ™. Each V; requires
network communication resources [Mbps] to communicate with other VMs. The
network traffic between requested VMs is represented as:

I‘j = [7}1’ 7}23-“1 Y}m]s Vje {191m} (6)

where

Tjy: Average network traffic between V; and Vi [Mbps]. Note that it is considered
that Tjj =0.

Figure 1 presents an example of a virtualized datacenter, composed by 4 PMs (H =
{H\, Hy, H3, H4}) and a network topology considering six physical network links
(L ={l, I, I3, L, Is, Is}). In this example, the set of capacity for each communication
channel is K = {100, 100, 100, 100, 1000, 1000} [Mbps]. Using shortest path, a
path m, between H; and H, uses links {/, l,}, i.e., mi» = {li, [}. Analogously,
myiz = {1, s, lg, 3} and m14 = {11, Is, ls, 14}, as shown in Fig. 1. All four requested
VMs of Fig. 1 are correctly located into one of the available PMs.

2.2.2 Output Data

A possible solution x indicates a complete placement of each VM V; into the necessary
PMs H;, considering the many-objective optimization criteria applied. A placement
(or solution x to the proposed VMP problem) is represented as a matrix P = {P;;}
of dimension (m x n), where Pj; € {0, 1} indicates if V; is located (Pj; = 1) or not
(Pj; = 0) for execution on a PM H; (i.e., Pj; : V; — H;).

2.2.3 Constraint 1: Unique Placement of VMs
A VM V; should be executed on a single PM H; or alternatively, it could be not

located into any PM if the associated SLA is not the highest level of priority s (i.e.,
SLA; < s). This constraint is mathematically formulated as:

D Pi<1 Vjie{l,..m (7)
i=1

where

Pji: Binary variable equals 1 if V; is located on H;; otherwise, it is 0.

Many-Objective Optimization for Virtual Machine Placement in Cloud Computing 297
2.24 Constraint 2: Assure SLA Provisioning

A VM V; with the highest level of SLA (i.e., SLA; = s) must be mandatorily located
to run on a PM H;. Consequently, this constraint is expressed as:

ZPji =1 Vjsuchthat SLA; =5 (8)
i=1

2.2.5 Constraints 3-5: Physical Resources Capacities of PMs

A PM H; must be able to meet the requirements of all VMs V; that are located to
run on H;. In this chapter, it is not considered the overbooking of resources [12].
Consequently, these constraints can be mathematically formulated as:

Z Vepu; x Pj; < Hepu; €))
j=1
z Vram; x P < Hram; (10)
j=1
> Vhdd; x Pj; < Hhdd; (11)

j=1

Vi € {1, ..., n}, i.e., for all physical machine H;.

2.2.6 Adjustable Constraints

The work presented in [8] proposed the utilization of lower and upper bounds asso-
ciated to each objective function to reduce the number of possible solutions of the
Pareto set approximation Py, When needed by a decision-maker. Consequently,
this set of adjustable bounds can be formulated as the following constraints:

L) ell, U], Vzell,...,q} (12)

A VMP problem can be defined as a many-objective optimization problem, when
considering the simultaneous optimization of more than three objective functions.
As a concrete example, this chapter proposes the simultaneous optimization of the
following five objective functions.

298 F. Lopez-Pires and B. Bardn
2.2.7 Objective Function 1: Power Consumption Minimization

Based on [13] formulation, the work presented in [8] also proposes the minimization
of power consumption, represented by the sum of the power consumption of each
PM H;:

filx) = Z((pmax,- — pmin;) x Ucpu; + pmin;) x Y; (13)

i=1
where

fi(x): Total power consumption of the PMs;

pmin;: Minimum power consumption of H;. It should be noted that pmin; ~
pmax; x 0.6 according to [13];

Ucpu;: Utilization ratio of processing resources used by H;;

Y;: Binary variable that equals 1 if H; is turned on; otherwise, it is O.

2.2.8 Objective Function 2: Inter-VM Network Traffic Minimization

Shrivastava et al. proposed in [14] the minimization of network traffic among VMs
by maximizing locality. Based on this approach, the work presented in [8] proposes
Eq. (14) to estimate network traffic represented by the sum of average network traffic
generated by each VM V;, that is located to run on any PM, with other VMs V; that
are located to run on different PMs.

S =D (Ti x Di) (14)

j=1 k=1
where

f(x): Total network traffic among VMs;

Ty: Average network traffic between V; and V; [Mbps]. Note that it is considered
that Tjj =0.

Dji: Binary variable that equals 1 if V; and V; are located in different PMs; other-
wise, it is 0.

The traffic between two VMs V; and V; which are located on the same PM H;
does not contribute to increase the total network traffic given by Eq. (14); therefore,
Djk = OlfP], = Pki =1.

2.2.9 Objective Function 3: Economical Revenue Minimization

Based on [11], the work presented in [8] proposes Eq. (15) for the estimation of the
total economical revenue that a datacenter receives when supporting the requested

Many-Objective Optimization for Virtual Machine Placement in Cloud Computing 299

resources of its customers, represented by the sum of the obtained revenue of each
VM V; that is located for execution on any PM.

m

L&) =D (R x X)) (15)

Jj=1
where

f3(x): Total economical revenue for placing VMs;
X;: Binary variable thatequals 1if V; is located for execution on any PM; otherwise,
itis 0.

2.2.10 Objective Function 4: QoS Maximization

In the work presented in [8], the QoS maximization proposes to locate the maximum
number of VMs with the highest level of priority associated to the SLA. This objective
function is formulated in Eq. (16).

m

fi@) = D (C x SLA; x X)) (16)

Jj=1
where

fa(x): Total QoS figure for a given placement;
C: Constant, large enough to prioritize services with a larger SLA over the ones
with a lower SLA.

2.2.11 Objective Function 5: Network Load Balancing Optimization

The work presented in [8] calculates the total amount of network traffic going through
a semi-duplex link /, as:

n n m m
Ty, = D > Far X | DD Pi X Py x Dy x Ty a7

i=1 i'=1 j=1 j=1
where:

Tl,: Total amount of traffic going through link /, [Mbps];
m;y: Network path between H; and H};
Fgy: Binary variable that equals 1 if [, € m;;; otherwise, it is 0.

300 F. Lopez-Pires and B. Bardn

Inspired in the formulation presented in [15], the work presented in [8] calculates
the Maximum Link Utilization (MLU) as:

Ti,
MLU = max (18)
vi,eL \ Cl,

where:

MLU: Maximum Link Utilization;
Cl,: Channel capacity of link /, [Mbps].

In [8], the load balancing optimization of the network is formulated as the mini-
mization of the MLU, denoted as:

fs(x) =MLU (19)

2.3 Interactive Memetic Algorithm for MaVMP

A Memetic Algorithm (MA) could be understood as an Evolutionary Algorithm
(EA) that in addition to the standard selection, crossover, and mutation operators
of most Genetic Algorithms (GAs) includes a local optimization operator to obtain
good solutions even at early generations of an EA [16]. In the VMP context, it is
valuable to obtain good quality of solutions in short time. Consequently, a MA could
be considered as a promising solution technique for VMP problems.

The work presented in [8] proposes an interactive MA for solving the VMP
problem in a many-objective context, considering the proposed formulation presented
in Sect. 2.2 to simultaneously optimize the five objective functions presented in the
previous section. The proposed algorithm is extensible to consider as many objective
functions as needed while only minor modifications may be needed if the number of
objective functions changes.

It was shown in [5] that many-objective optimization using Multi-Objective Evo-
Iutionary Algorithms (MOEAs) is an active research area, having multiple challenges
that need to be addressed. The interactive MA presented in this section is a viable
way to solve a MaVMP problem, including desirable ranges of values for the objec-
tive functions in order to interactively control the possible huge number of feasible
non-dominated solution. The interactive MA presented in Algorithm 1 is based on
the MA proposed in [11] and works as described next:

At step 1, the algorithm verifies that the problem is solvable (considering only
VMs with SLA; = s) to continue its execution. If the problem could not be solved,
the algorithm returns an appropriate error message. If the problem is solvable, the
algorithm continues with step 2, generating a set of aleatory population Py, whose
candidate solutions are repaired at step 3 to ensure that Py contains feasible solutions
only. Then, the algorithm tries to improve solutions at step 4 using a local search. With
the obtained non-comparable solutions, the first Pareto set approximation Ppey, 1S

Many-Objective Optimization for Virtual Machine Placement in Cloud Computing 301

Algorithm 1: Interactive Memetic Algorithm

Data: datacenter infrastructure (see Section2.2.1)
Result: Pareto set approximation Py,
1 check if the problem has a solution
2 initialize set of solutions Py
3 P, = repair infeasible solutions of P
4 P{ = apply local search to solutions of P,
5 update set of solutions Py, from Pg
6t=0;P = P(/)/
7 while stopping criterion is not met do
8 Q; = selection of solutions from P; U Piuown
9 Q; = crossover and mutation of solutions of Q;
10 7 = repair infeasible solutions of Q;
1 /" = apply local search to solutions of Q;
12 update set of solutions Py, from Q7
13 increment t
14 if interaction is needed then

15 ‘ ask for decision-maker modification of (L, and U,)
16 end

17 P, = non-dominated sorting from P; U Q)"

18 end

19 return Pareto set approximation Piypun

generated at step 5. After initialization at step 6, evolution begins (iterations between
steps 7 and 18). The evolutionary process follows the same behavior: solutions are
selected considering the union of Py, With the evolutionary set of solutions (or
population) also known as P; (step 8), crossover and mutation operators are applied
as usual (step 9), and solutions are eventually repaired, as there may be infeasible
solutions (step 10). Improvements of solutions may be generated at step 11 using
local search in the evolutionary population P, (local optimization operators). At step
12, the Pareto set approximation Py, is updated (if applicable); while at step 13
the generation counter is updated. At step 15, the decision-maker adjusts the lower
and upper bounds if it is necessary, while at step 17 a new evolutionary population
P, is selected. The evolutionary process stops according to defined stopping criterion
(as maximum number of generations), returning at the end the set of found non-
dominated solutions Ppy, at step 19.

2.3.1 Population Initialization

Initially, a set of solutions Py is randomly generated. Each possible solution (or
individual) x is represented as a chromosome C = [Cy, C5, ..., C,] (matrix P in
Sect.2.2.2). The possible values that can take each C; for VMs with the highest
value of SLA; (SLA; = s) are in the range [1, n]. On the other hand, for VMs V;
with SLA; < s, Cy can take values in the range [0, n]. Within these ranges defined
by the SLA; of each V}, the algorithm ensures that all VMs V; with the highest level

302 F. Lopez-Pires and B. Bardn

of priority will be located for execution on a PM H;, while for a VM V; with lower
levels of priority SLA;, there is always a probability larger than O that it may not be
located for execution in any PM.

2.3.2 Infeasible Solution Reparation

With a random generation at the initialization phase (step 2 of Algorithm 1) and/or
solutions generated by genetic operators (step 9 of Algorithm 1), infeasible solutions
may appear, i.e., the resources required by the VMs allocated on particular PMs
could exceed available resources, or at least one objective function may not meet
adjustable constraints.

Repairing infeasible solutions (steps 3 and 10 of Algorithm 1) may be done in
two stages: first, in the feasibility verification process, the population is classified in
two classes: feasible or infeasible (Algorithm 2). Next, in the process of repairing
infeasible solutions (Algorithm 3), the infeasible solutions are repaired in three ways:
(1) migrating some VMs to an available hardware, (2) turning on some PMs and then
migrating VMs to them, or (3) turning off some VMs with SLA; < s.

2.3.3 Local Search

With a population composed by feasible solutions only, a local search is performed
(steps 4 and 11 of Algorithm 1) improving solutions found until then in the evolu-
tionary population. The local search pseudocode is presented in Algorithm 4.

For each individual in the evolutionary population P,, the interactive MA proposed
in [8] attempts to optimize a solution with a local search (step 2 of Algorithm 4).

Algorithm 2: Feasibility Verification

Data: set of solutions P;
Result: set of feasible solutions P;

1 while there are solutions not verified do
2 feasible = true ;i=1
3 while i < n and feasible = true do
4 if solution does not satisfy constraints (3-5) then
5 ‘ feasible = false ; break
6 else
7 ‘ increment i
8 end
9 end
10 if feasible = false then
11 | call Algorithm 3 (repair solution)
12 end

13 end
14 return set of feasible solutions P;

Many-Objective Optimization for Virtual Machine Placement in Cloud Computing 303

Algorithm 3: Infeasible Solutions Reparation

Data: infeasible solution
Result: feasible solution
1 feasible = false ; j=1

2 while j < m and feasible = false do
3 if it is possible then

4 ‘ migrate Vj to H (i’ # i)

5 else
6
7
8
9

if SLA; # s then
| turn off V; on H;

else
‘ replace solution with another solution from Pipun
10 end
11 end
12 end

13 return feasible solution

Algorithm 4: Local Search

Data: set of feasible solutions P,

Result: set of feasible optimized solutions P;’

probability = random number between 0 and 1

while there are solutions not verified do

if probability < 0.5 then
Try to turn off all the possible H; by migrating all the V; assigned to H] with available
resources (i’ # i) and then try to turn on all the possible V; (using SLA; priority order)
assigning them to a H; with available resources

else

6 Try to turn on all the possible V; (using SLA; priority order) assigning them to a H;

with available resources and then try to turn off all the possible H; by migrating all

the V; assigned to H; with available resources (i’ # i)

7 end

8 end

9 return set of feasible optimized solutions P’

B W N -

For this, with probability % the algorithm tries maximizing the number of allocated
VMs with higher level of priority, locating all possible VMs that were not located
so far, increasing f3(x) (total economical revenue) and f; (x) (total quality of service)
(steps 3 to 5 of Algorithm 4). Additionally, also with probability %, the algorithm
tries minimizing the number of PMs turned on, directly reducing f; (x) (total power
consumption) (steps 6 to 8 of Algorithm 4). With the proposed probabilistic local
search method, a balanced exploitation of objective functions (economical revenue,
quality of service and power consumption) is achieved, as experimentally verified
with results presented in next section.

304 F. L6pez-Pires and B. Bardn
2.3.4 Fitness Function

The fitness function considered in the proposed algorithm is the one proposed in
[17]. This fitness defines a non-domination rank in which a value equal to its Pareto
dominance level (1 is the highest level of dominance) is assigned to each individual
of the population. Between two solutions with different non-domination rank, the
individual with lower value (higher level of dominance) is considered better.

To compare solutions with the same non-domination rank, a crowding distance
is used. Basically, a crowding distance finds the Euclidean distance (properly nor-
malized when the objectives have different measure units) between each pair of
solutions, based on the g objectives, in a hyper-dimensional space [17]. The solution
with higher crowding distance is considered better.

2.3.5 Variation Operators

The proposed interactive MA considers a Binary Tournament approach for selecting
individuals for crossover and mutation [18]. The crossover operator used in the
presented work is the single point cross-cut [18]. The selected individuals in the
ascending population are replaced by descendants individuals.

The work presented in [8] uses a mutation method in which each gene is mutated
with a probability %, where m represents the number of VMs. This method offers the
possibility of full uniform gene mutation, with a very low probability (but larger than
zero), which is beneficial to the exploration of the search space, reducing the prob-
ability of stagnation in a local optimum. The population evolution in the proposed
interactive MA is based on the population evolution proposed in [17]. A popula-
tion P,y is formed from the union of the best known population P, and offspring
population Q;, applying non-domination rank and crowding distance.

2.3.6 Many-Objective Considerations

Given that the number of non-dominated solutions may rapidly increase, an inter-
active approach is recommended. That way, a decision-maker can introduce new
constraints or adjust existing ones, while the execution continues learning about the
shape of the Pareto front in the process. For simplicity, the present work considers
lower and upper bounds associated to each objective function in order to help the
decision-maker to reduce interactively the potential huge number of solutions in the
Pareto set approximation Py, While observing the evolution of its corresponding
Pareto front PFj,,y, to the region of his preference.

Many-Objective Optimization for Virtual Machine Placement in Cloud Computing

Table 1 Types of PMs considered in experiments. For notation see Eq. (4)

305

PM type Hcpu [ECU] Hram [GB] Hhdd [GB] pmax [W]
h1.small 4 16 150 440
hl.medium 180 512 10000 1000
hl.large 350 1024 10000 1300

2.4 Experimental Results

This section summarizes experimental results obtained by the proposed algorithm [8]
in carefully designed experiments to validate its effectiveness considering challenges
associated to the resolution of a MaVMP problem previously introduced.

First, Experiment 1 performed a quality evaluation of the solutions obtained by
the proposed algorithm against optimal solutions obtained with an exhaustive search
algorithm in two different scenarios. Next, Experiment 2 performed an evaluation
using lower and upper bounds associated to each objective function f(z) (L, <
f:(x) < U,) to be able to converge to a manageable number of solutions in the Pareto
set approximation. Finally, Experiment 3 evaluates the proposed algorithm solving
instances of the problem with large numbers of PMs and VMs. For simplicity, all
experiments considered a datacenter infrastructure composed by PMs interconnected
in a simple two-tier network topology.

2.4.1 Experimental Environment

Different problem instances were proposed for the above-mentioned experiments
considering both homogeneous and heterogeneous hardware configurations of PMs,
as well as homogeneous and heterogeneous VMs instance types offered by Amazon
Elastic Compute Cloud (EC2).> A detailed description of the hardware configuration
of the PMs and VMs instance types considered for the experiments is presented in
Tables 1 and 2 respectively. Additionally, a general description of the considered
problem instances including its decision space size is presented in Table 3.

The complete set of datacenter infrastructure input files used for the experiments
with the corresponding experimental results are available online.’

Algorithms considered in the experiments were implemented using ANSI C pro-
gramming language (gcc) and the source code is available online®. All the pre-
sented experiments were executed on a CentOS 6.5 Linux Operating System, with
an Intel(R) Xeon(R) CPU E5530 at 2.40 GHz processor and 8 GB of RAM.

Zhttp:/aws.amazon.com/ec2/instance-types.
3https://github.com/flopezpires/iMaVMP.

http://aws.amazon.com/ec2/instance-types
https://github.com/flopezpires/iMaVMP

306 F. Lopez-Pires and B. Bardn

Table 2 Instance types of VMs considered in experiments. For notation see Eq. (5)

Instance type Vepu [ECU] Vram [GB] Vhdd [GB] R [$]
t2.micro 1 1 0 9
t2.small 1 2 0 18
t2.medium 2 4 0 37
m3.medium 1 4 4 50
m3.large 2 8 32 100
m3. x large 4 15 80 201
m3.2 x large 8 30 160 403
c3.large 2 32 75
c3. x large 4 8 80 151
c3.2 x large 8 15 160 302
c3.4 x large 16 30 320 604
c3.8 x large 32 60 640 1209
r3.]large 2 15 32 126
3. x large 4 30 80 252
r3.2 x large 8 61 160 504
3.4 x large 16 122 0 320
13.8 x large 32 244 0 320

Table 3 Problem instances considered in experiments, all with 50% of VMs with SLA s =2

Experiment | Input # PMs # VMs PMs and VMs n+ 1"

1 3 x 5.vmp 3 5 Homogeneous 1024

1 4 x 8.vmp 4 8 Heterogeneous 390625

2 12 x 50.vmp 12 50 Heterogeneous ~5 x 10%
3 100 x 1000.vmp | 100 1000 Heterogeneous | ~2 x 102004

2.4.2 Experiment 1: Quality of Solutions

To compare the results obtained by the proposed interactive MA and to validate its
proper operation, an Exhaustive Search Algorithm (ESA) was also implemented for
finding all (n + 1)™ possible solutions of a given instance of the VMP problem,
when this alternative is computationally possible for the authors. These results were
compared to the results obtained by the proposed interactive MA.

Considering that this particular experiment aims to validate the good level of
exploration in the set of feasible solutions Xy, the local search of the algorithm was
disabled, strengthening its capability of exploration rather than the rapid convergence
to good solutions even in early generations of the population.

Many-Objective Optimization for Virtual Machine Placement in Cloud Computing 307

Table 4 Summary of results obtained by the proposed algorithm in Experiment 1

Input P* size Prrown Size Execution time Execution time
(ESA) (s) (MA) (s)

3 x 5.vmp 51 51 ~1 ~12

4 x 8.vmp 30 30 ~720 ~29

For each problem instance considered in this experiment (see Table 3), one run of
the exhaustive search algorithm was completed, obtaining the optimal Pareto set P*
and its corresponding Pareto front PF™.

Furthermore, 10 runs of the proposed algorithm were completed, after evolving
populations composed by 100 individuals for 100 generations at each run. The results
obtained by the proposed algorithm for each run were combined to obtain the Pareto
set approximation Py, and its corresponding Pareto front PF iy

For both considered problem instances, the proposed algorithm obtained 100% of
the solutions of P* and its corresponding PF*. Additionally, the proposed algorithm
performed well in execution time against the ESA, even obtaining the same optimal
results in less execution time for the 4 x 8.vmp scenario. A summary of the number
of elements in the corresponding Pareto sets obtained and the execution time of both
algorithms is presented in Table4.

2.4.3 Experiment 2: Interactive Bounds

For the problem instance considered in this experiment (12 x 50.vmp), one run of
the proposed algorithm was completed, after evolving populations of 100 individuals
for 300 generations. The number of generations was incremented for this experiment
from 100 to 300, taking into account the large number of possible solutions for the
particular considered problem (see Table 3). An interactive adjustment of the lower
or upper bounds associated to each objective function was performed after every 100
generations in order to converge to a treatable number of solutions. It is important to
remark that the interactive adjustment used in this experiment is only one of several
possible ones. As an example, we may consider: (1) automatically adjusting a % of
the lower bounds associated to maximization objective functions when the Pareto
front has a defined number of elements or (2) manually adjusting upper bounds
associated to minimization objective functions until the Pareto front does not have
more than 20 elements, just to cite a pair of alternatives.

The Pareto front approximation PFy,,,, represents the complete set of Pareto
solutions considering unrestricted bounds (L, = —oo and U, = 00). On the other
hand, Pareto front approximation PF,.4,..q represents the reduced set of Pareto solu-
tions obtained by interactively adjusting bounds L, and U,. In the first 100 gener-
ations, the proposed algorithm obtained 251 solutions with unrestricted bounds. A
decision-maker evaluated the bounds associated to fi(x) (power consumption) and
adjusted the upper bound U, to U; = 9000 [W], selecting only 35 out of the 251 solu-

308 F. Lopez-Pires and B. Bardn

Fig. 2 Summary of results
obtained in Experiment 2
using adjusted lower and
upper bounds

172}
=)
2
5
2
G
o
g
il
g
=3
Z
35 36
—&— unrestricted bounds
—e— adjustable bounds 17
100 200 300

Number of generations

tions (not considering 216 otherwise feasible solutions) for the PFg,ceq as shown
in Fig. 2. After 200 generations, the algorithm obtained a total of 484 solutions with
unrestricted bounds. Considering instead U; = 9000 [W], the algorithm only found
68 solutions. The decision-maker evaluated the bounds associated to f>(x) (network
traffic) and adjusted the upper bound U, to U; = 115 [Mbps], selecting only 36 out
of the 68 solutions (not considering 32 otherwise feasible solutions) for the PF . gyced-
Finally, after 300 generations, the algorithm obtained a total of 965 solutions with
unrestricted bounds. Considering U; = 9000 [W] and U; = 115 [Mbps], the algo-
rithm found 63 solutions. The decision-maker evaluated the bounds associated to
f3(x) (economical revenue) and adjusted the lower bound L3 to L; = 13500 [$],
selecting only 17 out of the 63 solutions (not considering 46 feasible solutions) for
the final PF.guc.q as shown in Fig.2. Clearly, at the end of the iterative process,
the decision-maker found 17 solutions according to his preferences instead of the
unmanageable number of 965 candidate solutions.

2.4.4 Experiment 3: Algorithm Scalability

It should be noted that increasing the number of PMs and VMs in a VMP problem
could result in extremely large decision spaces, considering all (n + 1)™ possible
solutions (see Table 3). Consequently, algorithms designed for the resolution of VMP
problems should be able to effectively solve VMP problem instances composed by
large numbers of VMs and PMs in a reasonable time.

For the problem instance considered in this experiment (100 x 1000.vmp), one
run of the proposed algorithm was completed, after evolving populations composed
by 100, 200, and 300 individuals for 500 generations. For this particular experiment,
the Pareto front approximation PFy,,.,, represents the complete set of Pareto solu-

Many-Objective Optimization for Virtual Machine Placement in Cloud Computing 309

Table 5 Summary of results obtained by the proposed algorithm in Experiment 3

Input # of individuals Prnown Size # of generations
100 x 1000.vmp 100 397 100

100 x 1000.vmp 200 399 100

100 x 1000.vmp 300 509 100

100 x 1000.vmp 100 769 200

100 x 1000.vmp 200 811 200

100 x 1000.vmp 300 1087 200

100 x 1000.vmp 100 1103 300

100 x 1000.vmp 200 1329 300

100 x 1000.vmp 300 1641 300

100 x 1000.vmp 100 1434 400

100 x 1000.vmp 200 1791 400

100 x 1000.vmp 300 2178 400

100 x 1000.vmp 100 1742 500

100 x 1000.vmp 200 2192 500

100 x 1000.vmp 300 2719 500
tions considering unrestricted bounds for eachf; (x) (L, = —ooand U, = oo) in order

to experimentally demonstrate that large instances of the formulated MaVMP prob-
lem could result in unmanageable number of solutions. A summary of the results
obtained by the proposed algorithm is presented in Table5. The obtained results
prove the capabilities of the proposed algorithm to effectively solve instances of
the proposed MaVMP problem with large numbers of PMs and VMs, as consid-
ered in real-world scenarios. Additionally, it could be observed that increasing the
number of individuals on populations or the number of generations, the algorithm
obtained larger numbers of non-dominated solutions with unrestricted bounds. Con-
sidering that the proposed algorithm could find more non-dominated solutions than
the obtained in this particular experiment if more computational resources for cal-
culation are considered (or increasing the number of individuals or the number of
generations), it could be noted the importance of including additional methods to the
Pareto dominance relation (e.g., adjustable bounds) for the selection of a manageable
subset of Py, in MaVMP problems for initial placement of VMs.

3 Many-Objective VMP with Reconfiguration of VMs

Once an initial placement of VMs has been performed (as presented in Sect.?2), a
virtualized datacenter could be reconfigured through live migration in order to main-
tain efficiency in operations, considering that the set of requested VMs changes over
time (i.e., the set V presented in Sect.2.2.1 is a function of time). Studying this

310 F. Lopez-Pires and B. Bardn

particular semi-dynamic formulation of a MaVMP with reconfiguration of VMs rep-
resents a first approximation to dynamic formulations in real-world cloud computing
environments, where several dynamic parameters should also be considered.

According to [2, 9], the optimization of the power consumption is the most studied
objective function in VMP literature [13, 19]. Furthermore, network traffic [20] and
economical revenue [21, 22] are also very much studied as objective functions for the
VMP problem. For a VMP problem formulation with reconfiguration of VMs, two
additional objective functions associated to migration of VMs represent challenges
for CSPs: minimizing the total number of VM migrations [23] as well as the total
network traffic overhead due to VM migrations [24].

Considering the large number of existing objective functions for the VMP problem
identified in [2, 9], Lépez-Pires and Bardn have proposed in [8, 25] a many-objective
optimization framework in order to consider as many objective functions as needed
when solving a MaVMP problem for initial placement of VMs in virtualized data-
centers (see Sect.2). To the best of the authors’ knowledge, there was no published
work presenting a formulation of a MaVMP problem with reconfiguration of VMs.
Consequently, this section extends the formulations presented in Sect. 2 [8, 25] pre-
senting the first MaVMP with reconfiguration of VMs, considering this time the
simultaneous optimization of the following five objective functions: (1) power con-
sumption, (2) inter-VM network traffic, (3) economical revenue, (4) number of VM
migrations, and (5) network traffic overhead for VM migrations [7].

To solve the formulated MaVMP problem, the interactive MA presented in
Sect. 2.3 was extended to consider particular challenges associated to the resolution
of a MaVMP problem with reconfigurations of VMs, as next introduced.

Several challenges need to be addressed for MaVMP formulations with reconfigu-
ration of VMs. In Pareto-based algorithms, the Pareto set approximation can include
a large number of non-dominated solutions. Selecting one of the non-dominated
solutions can be considered a problem for a MaVMP problem. In consequence, the
work presented in [7] evaluates the following five selection strategies: (1) random, (2)
preferred solution, (3) minimum distance to origin, (4) lexicographic order (provider
preference), and (5) lexicographic order (service preference) to identify convenient
strategies for automatic selection of a non-dominated solution.

3.1 Problem Formulation

This chapter presents the formulation of a MaVMP with reconfiguration of VMs [7],
considering this time the simultaneous optimization of the following five objective
functions: (1) power consumption, (2) inter-VM network traffic, (3) economical
revenue, (4) number of VM migrations and (5) network traffic overhead for VM
migrations. Formally, the presented offline (semi-dynamic) MaVMP problem with
reconfiguration of VMs can be enunciated as:

Many-Objective Optimization for Virtual Machine Placement in Cloud Computing 311

Given the available PMs and their specifications, the requested VMs and their speci-
fications, the network traffic between VMs and the current placement of the VM, it is
sought a new placement of the set of VMs in the set of PMs, satisfying the constraints
of the problem while simultaneously optimizing all defined objective functions (as
power consumption, inter-VM network traffic, economical revenue, number of VM
migrations and network traffic overhead for VM migration), in a pure many-objective
context, before selecting a specific solution for a given time instant t.

3.1.1 Input Data

The set of available PMs is represented as a matrix H € R"*4, previously introduced
in Sect.2.2.1 (see Eq. (4)). Accordingly, the set of VMs at instant is now represented
as a matrix V (f) € R™*3:

Vepuy Vrviamy Vhdd, SLA, R,
V() = (20)

chum(,) Vramm(t) Vhddm(f) SLAm(t) Rm(,)

Each V; represents the required processing resources of CPU [ECU], RAM mem-
ory [GB], storage [GB], SLA, and revenue [$]:

Vi = [Vepu;, Vriam;, Vhdd;, SLA;, R;], Vje{l,..., m()} 21

where

Vepuj: Processing requirements of Vj;

Vram;: Memory requirements of V;;

Vhdd;: Storage requirements of V;;

R;: Economical revenue for placing Vj;

SLA;: Service Level Agreement SLA; of a V;, where SLA; € {0, 1, ..., s} being s
the highest priority level;

m(t): Number of VMs at instant t, then m(t) € {1, ..., Muu};

Mpar: Maximum number of VMs.

Once a V; is powered off by the tenant, its resources are released, so the physical
resources can be reused. For simplicity, the index j is not considered to be reused;
therefore, for the work presented in [7] V; is not a function of time.

The traffic between VMs at instant ¢ is represented as a matrix T'(¢) € R™®>xm®).

T,1@) ... Timn@®
T(t) = (22)

T, 10 « -« Tongry,mey (1)

In Eq. (22), Tj (¢) represents the average communication rate in [Mbps], between
VM V; and VM V; at instant . Note that we can consider Tj;(1) = 0.
The placement at instant # is represented as a matrix P(¢) € R™0>";

312 F. Lopez-Pires and B. Bardn

Pii@® ... Pra@
P@) = (23)
Py (@) .. Py n(2)
where:
Pji(t) € {0, 1} indicates if V; is located (Pj; = 1) or not (P;; = 0) for execution
onaPM H, (i.e, P;(t) : V; — H;) atinstant ¢.

3.1.2 Output Data

A solution of the problem at each instant is a new VM placement P(t + 1). In
order to accommodate a new placement, a series of management actions (MAc) (i.e.,
VM migrations, creation or destruction) must be performed. These are presented by
the following output data: (1) the new VM placement and (2) the list of required
management actions.

The new placement at instant (+ 4+ 1) is represented as a matrix P(t + 1) of
dimension m(t + 1) x n:

Pl,l P]yn
PG+ =| (24)
P+, - oo Pmgs)n

where Pj;(t+1) € {0, 1} indicates if V; is located (P;;(t+1) = 1) ornot (P;;(t+1) =
0) for execution on a PM H; atinstant ¢ (i.e., P;(t + 1) : V; — H;).

The set of necessary management actions in order to evolve from P(z) to P(t + 1)
is represented by:

MAci131 = [MAc(V1), . .., MAC(Ving11))] (25)

where MAc(V)) € {0, 1, 2, 3} which represents the management actions that a hyper-
visor must execute in order to accommodate P(f + 1) corresponding to V;.
Values returned by the MAc(V;) function should be interpreted as follows:

MAc(V;) =0: no management action is necessary, i.e., P;;(t + 1) = P;;(1), Vi;

MAc(V;)) =1: anew VM V;isplacedona PM H;,ie., P;(t+1) =1;

MAc(V;) =2: anexisting VM V; is migrated from H; to another H;, i.e., Py (1) = 1
and P;(t + 1) = 1;

MAc(V;) =3: a VM V;isshutdown, i.e., P;(t) = 1 but P;(t + 1) = 0.

3.1.3 Constraint 1: Unique Placement of VMs
A VM V; should be located to run on a single PM H; or alternatively, it could be not

located in any PM if the associated SLA; is not the highest level of priority (in [7]
s = 2). Consequently, this constraint is expressed as:

Many-Objective Optimization for Virtual Machine Placement in Cloud Computing 313

D P <1 Vje{l,..m®), Vi (26)

i=1
where

Pji(t): Binary variable equals 1 if V; is located to run on H; at instant ¢; otherwise,
itis 0.

3.1.4 Constraint 2: Assure SLA Provisioning

A VM V; with the highest level of SLA (s = 2) must necessarily be located to run
on a PM H;. Consequently, this constraint is expressed as:

> Pty =1 YVj suchthat SLA; = s

i=1

27)

Vt where V; should be active.

It should be remarked that different levels of SLA can be considered, as presented
in [8].

3.1.5 Constraints 3-5: Physical Resources Capacities of PMs

A PM H; must have sufficient available resources to meet the requirements of all
VMs V; that are located to run on H; at instant ¢. In the work presented in [7], the
overbooking of resources [26] is not considered; consequently, the set of constraints
can be mathematically formulated as:

m(t)

> Vepu; x Pi(t) < Hepu; (28)
j=1
m(t)
Z Vram; x Pj(t) < Hram; (29)
j=1
m(t)
> Vhdd; x Pji(t) < Hhdd; (30)
j=1

Vi e {1, ..., n}, i.e., for all physical machines H; and V.

314 F. Lopez-Pires and B. Bardn

Next section presents five objective functions that are simultaneously optimized
in the presented MaVMP formulation with reconfiguration of VMs. These objective
functions are mathematically formulated as follows.

3.1.6 Objective Function 1: Power Consumption Minimization

Based on Eq. (13), the power consumption at each discrete time ¢ can be represented
by the sum of the power consumption of each PM H;:

fiGe, 1) =" ((pmax; — pming) x Ucpui(t) + pmin;) x Y;(1) 31)

i=1
where

fi(x,1): Total power consumption of the PMs at each discrete time ¢;
Ucpu;(t): Utilization ratio of processing resources used by H; at instant ¢;
Y;(1): Binary variable equals 1 if H; is turned on; otherwise, it is 0.

3.1.7 Objective Function 2: Inter-VM Network Traffic Minimization

A very much studied approach for inter-VM network traffic minimization is the
placement of VMs with high communication rate in the same PM (or at least in the
same rack) to avoid the utilization of network resources (or at least core network
equipment).

The minimization of network traffic among VMs, by maximizing locality, was
proposed in [14]. Based on Eq. (14), Eq. (32) represents the sum of average network
traffic between VM V; and VM V. when located on different PMs.

m(t) m(t)

G0 =D D (Tit) x Di(0)) (32)

j=1 k=1
where

fr(x,t): Total inter-VM network traffic at each discrete time ¢;
Dj(t): Binary variable that equals 1 if V; and V; are located in different PMs at
instant ¢; otherwise, it is 0.

The traffic between two VMs V; and V; located on the same PM H; does not con-
tribute to increase the total network traffic given by Eq. (32); therefore, Dy (1) = 0
lijl(f) = Pki(t) = 1

Many-Objective Optimization for Virtual Machine Placement in Cloud Computing 315
3.1.8 Objective Function 3: Economical Revenue Maximization

Based on Eq. (15), Eq. (33) is presented to estimate the total economical revenue
that a datacenter receives for meeting the requirements of its customers, represented
by the sum of the economical revenue obtainable by each VM V; that is effectively
located for execution on any PM at instant ¢.

m(t)
A =D (R x X;(1) (33)

j=1
where

f3(x,1): Total economical revenue for placing VMs at each discrete time ¢;
X;(t): Binary variable that equals 1 if V; is located for execution on any PM at
instant ¢; otherwise, it is 0.

3.1.9 Objective Function 4: Number of VM Migrations Minimization

Performance degradation may occur when migrating VMs from one PM to another
[24]. Logically, it is desirable that the number of migrated VMs is kept to a minimum
for better quality of service (QoS). Therefore, Eq. (34) represents the number of VM

migrations at time instant :
m(t)

falx.) =D Z;(0) (34)

Jj=1
where

fa(x,): Number of VM migrations at instant 7;
Z;(t): Binary variable that equals 1 if MA(V;) = 2, i.e., V; is migrated, see (25);
otherwise, it is 0 (V; is not migrated).

3.1.10 Objective Function 5: Network Traffic Overhead for VM
Migrations Minimization

As explained in [24], the overhead of VM migrations on network resources is pro-
portional to the memory size of the migrated VM. In the work presented in [7], (35)
is proposed to minimize the amount of RAM memory that must be copied between

PMs at instant 7.
m(t)

fsx.) =D Vram; x Z(1) (35)

j=1

where

316 F. Lopez-Pires and B. Bardn

fs(x,1): Network traffic overhead for VM migrations at instant #;

It should be mentioned that there are other possible modeling approaches to estimate
the migration overhead, as presented in [27].

Finally, it should be noted that the main difference between the above-described
objective functions for the MaVMP with reconfiguration of VMs (see Egs. (31)—(35))
with the ones previously presented in Sect. 2 for the MaVMP for initial placement of
VMs (see Eqgs. (13)—(18)) is that Egs. (31)—(35) are calculated at each discrete time
t.

3.2 Extended Memetic Algorithm for MaVMP

The work presented in [7] extends the interactive MA proposed in [8, 25] for solving
the MaVMP problem with reconfiguration of VMs, as the one formulated in Sect. 3.1.
The proposed algorithm simultaneously optimizes the five objective functions pre-
sented in the previous sections.

Many-objective optimization using Multi-Objective Evolutionary Algorithms
(MOEAs) is an active research area, with multiple challenges that need to be
addressed regarding scalability analysis, solutions visualization, algorithm design,
and experimental algorithm evaluation as shown in [5]. At each time instant, the set of
feasible placement solutions can be composed by a large number of non-dominated
solutions. Therefore, the algorithm proposed in [7] automatically selects one of the
possible placements after each time instant according to one of the considered selec-
tion strategies (see Sect. 3.3). The proposed algorithm is based on the one proposed
in Sect. 2 [8] and it works as follows (see Algorithm 5):

The algorithm iterates over each set of requested VMs received at each instant 7.
At step 3, the algorithm verifies if the problem has at least one solution to continue
with next steps. If there is no possible solution to the problem, the algorithm returns
an appropriate error message. If the problem has at least one solution, the algorithm
proceeds to step 4 in order to determine the current placement. After the first iteration,
the current placement is the one selected from the previous iteration.

At step 5, a set Py of candidates is randomly generated. These candidates are
repaired at step 6 to ensure that Py contains only feasible solutions. Then, the algo-
rithm tries to improve candidates at step 7 using local search. With the obtained
non-dominated solutions, the first set Py, (Pareto set approximation) is generated
at step 8. After initialization in step 9, evolution begins (between steps 10 and 18).

The evolutionary process basically follows the same behavior: solutions are
selected from the union of Py,,,, with the evolutionary set of solutions (or pop-
ulation) also known as P, (step 11), crossover and mutation operators are applied
as usual (step 12), and eventually solutions are repaired, as there may be infeasible
solutions (step 13). Improvements of solutions of the evolutionary population P,
may be generated at step 14 using local search (local optimization operators).

Many-Objective Optimization for Virtual Machine Placement in Cloud Computing 317

At step 15, the Pareto set approximation Py, is updated (if applicable); while at
step 16 the generation (or iteration) counter is updated. At step 17 a new evolutionary
population P, is selected. The evolutionary process is repeated until the algorithm
meets a stopping criterion (such as a maximum number of generations), returning
one solution Pgejecreq from the set of non-dominated solutions Piyey, in step 20, using
one of the selection strategies presented in Sect. 3.3.

It should be mentioned that the main phases of Algorithm 5 are based on the ones
previously presented in Sect.2 (see Sects.2.3.1-2.3.5 for details).

3.3 Solution Selection Strategies

Several challenges need to be addressed for a MaVMP problem with reconfiguration
of VMs. In Pareto-based algorithms, the Pareto set approximation can include a large
number of non-dominated solutions; therefore, selecting one of the non-dominated
solutions (step 19 of Algorithm 5) can be considered as a new difficulty for MaVMP
problems with reconfiguration of VMs.

The work presented in [7] performed an experimental evaluation of the following
five selection strategies: (1) random, (2) preferred solution, (3) minimum distance

Algorithm 5: Extended Memetic Algorithm
Data: datacenter infrastructure (see Section3.1.1) and solution selection strategy parameter
Result: solution Pg,jecreq for instant ¢

1t=0

2 while there are VM requests to process do

3 check if the problem has a solution

4 P previous = Pselected

5 initialize set of solutions Py

6 | P{ =repair infeasible solutions of Py

7 P{ = apply local sgarch to solutions of P,

8 update set of solutions Ppyoy, from P(’)’

9 u=0;P, = Pg
10 while is not stopping criterion do
11 Q,, = selection of solutions from P, U Piuouwn
12 Q,, = crossover and mutation of solutions of Q,
13 Q. = repair infeasible solutions of Q,
14 0,/ = apply local search to solutions of Q)

: /

15 update set of solutions Py, from Q)
16 increment number of generations u
17 P, = non-dominated sorting from P, U Q.
18 end
19 Pyerectea = selected solution (selection strategy parameter)
20 return Pgejecred
21 increment instant #; reset Pr,own

22 end

318 F. Lopez-Pires and B. Bardn

to origin, (4) lexicographic order (provider preference), and (5) lexicographic order
(service preference), as next explained.

3.3.1 Random (S1)

Considering that the Pareto set approximation is composed by non-dominated solu-
tions, randomly selecting one of the solutions could be an acceptable strategy.

3.3.2 Preferred Solution (S2)

A solution is defined as preferred to another non-comparable solution when it is
better in more objective functions [28]. When several solutions can be considered as
preferred ones (there is a tie), only one of these solutions is randomly selected.

3.3.3 Minimum Distance to Origin (S3)

The solution with the minimum Euclidean distance to the origin is selected, consid-
ering all normalized objective functions in a minimization context. For this purpose,
f3(x, 1) is redefined as the difference between the maximum possible revenue at
instant ¢ and the attainable revenue of each possible solution. When several solutions
have equal Euclidean distance, only one of these solutions is randomly selected.

3.3.4 Lexicographic Order

Each objective function is given in an order of evaluation, similar to the ordering of
letters in a dictionary. The objective functions can be arranged in several ways in order
of priority. The work presented in [7] proposes two different lexicographic orders,
representing the possible preferences associated to providers (provider preference)
and quality of service (service preference). Logically, different orders of priority
criteria may be considered depending on each specific context.

e Provider preference order (5S4): The priority orderis: (1) economical revenue, (2)
power consumption, (3) inter-VM network traffic, (4) number of VM migrations
and (5) network traffic overhead for VM migration.

e Service preference order (S5): The priority order is: (1) number of VM migra-
tions, (2) network traffic overhead for VM, (3) inter-VM network traffic, (4) power
consumption, and (5) economical revenue.

The work presented in [7] evaluates the above-mentioned selection strategies,
where several experiments were performed. The following subsections summarize
the experimental results.

Many-Objective Optimization for Virtual Machine Placement in Cloud Computing 319

Table 6 Hardware configuration of PM types considered in Experiment 4

PM type Hardware configuration Number of PMs
Hcpu Hram Hhdd pmax [W] |10 x 100.vmp |100 x 1000.vmp
[ECU] [GB] [GB]

hl.small 180 512 10,000 1,000 3 30

hl.medium |260 512 10,000 1,350 3 30

hl.large 350 1,024 10,000 1,800 3 30

h2.large 400 1,024 10,000 2,000 1 10

Total PMs 10 100

Table 7 Instance types of VMs considered in experiments. For notation see Eq. (20)

Instance type Vepu [ECU] Vram [GB] Vhdd [GB] R [$]
t2.micro 1 1 0 9
t2.small 1 2 0 18
t2.medium 2 4 0 37
m3.medium 1 4 4 50
m3.large 2 8 32 100
m3. x large 4 15 80 201
m3.2 x large 8 30 160 403
c3.large 2 32 75
c3. x large 4 8 80 151
c3.2 x large 8 15 160 302
c3.4 x large 16 30 320 604
c3.8 x large 32 60 640 1209
r3.large 2 15 32 126
3. x large 4 30 80 252
3.2 x large 8 61 160 504
3.4 x large 16 122 0 320
3.8 x large 32 244 0 320

3.4 Experimental Environment

The Extended Memetic Algorithm presented in Sect. 3.2 was implemented using the
ANSI C programming language (gcc). The source code is available online.*

The experimental scenarios included heterogeneous PMs with hardware config-
urations described in Table 6. Considered VMs were based on real instance types
offered by Amazon Elastic Compute Cloud (EC2) [29] as presented in Table 7.

“https://github.com/dihara/MaVMP.

https://github.com/dihara/MaVMP

320 F. Lopez-Pires and B. Bardn

The experiments were performed considering two different experimental scenar-
ios (a small and a medium sized datacenter infrastructure) simulating a theoretical
day (i.e., 24 h) in a datacenter where VMs requests are received and processed hourly.
In these experiments, the following configurations were considered:

e 10 x 100.vmp: Problem instance with 10 PMs initially running 100 VMs.
e 100 x 1000.vmp: Problem instance with 100 PMs initially running 1,000 VMs.

For simplicity, in what follows, the traffic between VMs was considered as con-
stant, i.e., T;;(t) = T;;. The initial load for Experiment 4 represents 28% of CPU
resources while in Experiment 5, it is 33% of CPU resources (see Table9).

Experiments for each selection strategy were repeated 10 times, given the proba-
bilistic nature of the Extended Memetic Algorithm. Results are analyzed in Sect. 3.5.
The average number of non-dominated solutions found with each selection strategy
is shown in Table 8. It can be seen that in both experiments, a similar average number
of solutions and standard deviation were observed for all strategies.

Table 8 Number of non-dominated solutions per selection strategy

Selection strategy | 10 x 100.vmp 100 x 1000.vmp

Average Standard Dev. Average Standard Dev.
Random 25.2 8.6 36.2 11.3
Preferred solution | 24.0 8.6 37.7 9.2
Distance to origin | 21.4 8.7 30.8 10.1
Provider preference | 20.8 9.9 24.0 8.7
Service preference |34.5 9.5 38.9 9.1

Table 9 Details of Experiment 4

Parameters 10 x 100.vmp 100 x 1000.vmp
#PM 10 100

Available CPU 2,770 27,700

Initial # VM 100 1,000

VMs with SLA 0 26 325

VMs with SLA 1 38 344

VMs with SLA 2 36 331

Initial CPU load 784 (28%) 9,023 (33%)
Initial revenue 33,973 US$ 330,645 US$
Discrete time instants 24 h 24h

Many-Objective Optimization for Virtual Machine Placement in Cloud Computing 321

. Dominance Preference
Selection . .
strategy Objective functions averages (row > column) (row =) column’)
fi(x) fa(x) fi(x) fa(x) fs(x) S1.S2 835485 S1.82 §3 54 §5
10x100.vmp
S1 9,908 19,981 32,623 44 1,526
S2 9,827 19,991 32,623 8 180 o~ o~
S3 9,639 19,228 32,623 6 124 [] — o - .
54 8,543 21,038 32,623 19 520 -
S5 10,395 21,957 32,623 5 150
100x1000.vmp
S1 104,559 371,664 325,217 650 26,886
S2 104,835 373,467 325,217 37 1,204 — —
S3 104,378 370,489 325,217 26 804 [] - | - —
S4 103,175 374,210 325,217 92 3,531 -
S5 104,860 373,230 325,217 20 618 - —

Fig. 3 Selection Strategy Comparison. For selection strategy notation see Sect.3.3

3.5 Experiment 4: Selection Strategy Evaluation

Figure 3 summarizes the results obtained in both experiments. As expected, when the
lexicographic order is used, the most important objective function is the one with the
bestresults, i.e., the §4 strategy (provider preference) obtains the best results in power
consumption f (x, t), with 20% less power consumption than the worst strategy in
the 10 x 100.vmp instance and 2% less power consumption than the worst strategy
in 100 x 1000.vmp. Analogously, when service perspective is prioritized (strategy
S5), the objective functions f;(x, #) and f5(x,) obtain the best results (Table 9).

However, as the focus of the work presented in [7] is the simultaneous optimiza-
tion of all five objective functions with a multi-objective approach, a comparison is
made considering the concept of Pareto dominance. As seen in Fig.3 (dominance
column), the S3 strategy dominates S2 and S1 in both experiments; however, it is
non-comparable with respect to 4 and S5 in both tested problem instances.

Given that S3 cannot be declared as the best strategy considering exclusively
Pareto dominance, a further comparison of selection strategies using the preference
criteria (i.e., larger number of better objective functions) [5] is presented in the
corresponding column of Fig. 3.

It may seem intuitive that the S2 strategy (that uses the preference criterion) should
be the best; however, Table 3 shows that strategy S3 is preferred not only to S2 but
also to S1 and to S4 in both tested problem instances. Additionally, it can be seen
that S3 is preferred to S5 in problem instance 10 x 100.vmp while no strategy is
preferred to S3, indicating that S3 (distance to origin) is the best strategy for solving
the presented MaVMP problem formulation with reconfiguration of VMs.

As aconsequence of the above results, for production cloud datacenters, instead of
calculating all the Pareto set or a Pareto set approximation, the S3 strategy (distance
to origin) could be used to combine all considered objective functions into only

322 F. Lopez-Pires and B. Bardn

one objective function, therefore solving the studied problem considering a Multi-
Objective solved as Mono-Objective (MAM) approach. It is important to mention that
the obtained results are consistent with the selection strategy evaluation presented in
[28] for solution of a traffic engineering problem in computer networks.

4 Open Research Problems: Many-Objective VMP
for Cloud Computing Environments

After demonstrating the viability to formulate and solve MaVMP problems for initial
placement of VMs and MaVMP problems with reconfiguration of VM, this section
presents relevant open research topics for the formulation and resolution of MaVMP
problems for cloud computing environments.

4.1 IaaS Environments for VMP Problems

In real-world environments, IaaS providers dynamically receive requests for the
placement of VM with different characteristics according to different dynamic para-
meters. In this context, preliminary results of the authors identified that the most
relevant dynamic parameters in the VMP literature are [30]: (1) resource capacities
of VMs (associated to vertical elasticity) [31], (2) number of VMs of a cloud ser-
vice (associated to horizontal elasticity) [32] and (3) utilization of resources of VMs
(relevant for overbooking) [20]. Considering the mentioned dynamic parameters,
environments for TaaS formulations of VMP problems could be classified by one or
more of the following classification criteria: (1) service elasticity and (2) overbooking
of physical resources [30].

In order to model these advanced IaaS environments, cloud services (i.e., a set of
interrelated VMs) are considered instead of just VMs. A cloud service may represent
cloud infrastructures for basic services such as Domain Name Service (DNS), web
applications or even elastic applications such as MapReduce programs [30].

To the best of the authors’ knowledge, there is no published work considering all
these fundamental criteria, directly related to the most relevant dynamic parameters
in the specialized literature [30]. CSPs efficiently solving formulations of the VMP
problem in advanced laaS environments considering service elasticity, including both
vertical and horizontal scaling of cloud services, as well as overbooking of physical
resources, including both server (CPU and RAM) and networking resources will
represent a considerable advance on this research area and its cloud datacenters will
be able to scale according to trending types of requirements with sufficient flexibility.
A recommended path for future work is exploring and addressing challenges of par-
ticular environments identified in [30] as research opportunities before considering
this advanced IaaS environment for solving VMP problems.

Many-Objective Optimization for Virtual Machine Placement in Cloud Computing 323

4.2 Uncertainty in VMP for Cloud Computing

Extensive research of uncertainty issues could be found in several fields such as:
computational biology and decision-making in economics, just to cite a few. Par-
ticularly, studies of uncertainty for cloud computing are limited and uncertainty in
resource allocation and service provisioning have not been adequately addressed,
representing research challenges [33].

According to [33], uncertainties in cloud computing could be grouped into: (1)
parametric and (2) system uncertainties. Parametric uncertainties may represent
incomplete knowledge and variation of parameters, as presented in the considered
VMP problem. The analysis of these uncertainties quantifies the effect of random
input parameters on model outputs [33].

Research challenges in the context of VMP problems include designing novel
resource management strategies to handle uncertainty in an effective way, as described
by Tchernykh et al. in [33]. IaaS providers must satisfy requests for virtual resources
in highly dynamic environments. Due to the randomness of customer requests, algo-
rithms for solving VMP problems should be evaluated under uncertainty.

4.3 Two-Phase Optimization Schemes for VMP Problems

The VMP could be formulated as both online and offline optimization problems
[2]. A VMP problem formulation is considered to be online when solution tech-
niques (e.g., heuristics) makes decisions on-the-fly, without knowing upcoming VM
requests [24]. On the other hand, if solution techniques have a complete knowledge
of future VM requests of a problem instance, the VMP problem formulation is con-
sidered to be offline [11]. Considering the on-demand model of cloud computing
with dynamic resource provisioning and dynamic workloads of cloud applications
[34], the resolution of VMP problems should be performed as fast as possible in order
to be able to support these dynamic requirements. In this context, the VMP problem
for TaaS environments was mostly studied in the VMP literature considering online
formulations, taking into consideration that VM requests are unknown a priori [2].

It is important to consider that online decisions made along the operation of a
cloud computing infrastructure negatively affects the quality of obtained solutions of
VMP problems when comparing to offline decisions [35]. Clearly, offline algorithms
present a substantial advantage over online alternatives, when considering the quality
of obtained solutions. This advantage is presented for the following two main reasons:
(1) an offline algorithm has a complete knowledge of future VM requests of a VMP
problem instance (which is impracticable on real-world IaaS environments because
VM requests are uncertain) and (2) it considers migration of VMs between PMs,
reconfiguring the placement when convenient.

To improve the quality of solutions obtained by online algorithms, the VMP prob-
lem could be formulated as a two-phase optimization problem, combining advantages

324 F. Lopez-Pires and B. Bardn

of online and offline formulations for [aaS environments. In this context, VMP prob-
lems could be decomposed into two different subproblems: (1) incremental VMP
(iVMP) and (2) VMP reconfiguration (VMPr) [36]. This two-phase optimization
strategy combines both online (iVMP) and offline (VMPr) algorithms for solving
each considered VMP subproblem.

The iVMP subproblem is considered for attending dynamic arriving requests
where VMs should be created, modified and removed at runtime. Consequently, this
subproblem should be formulated as an online problem and solved as fast as possible,
where existing heuristics could be reasonably appropriate. Additionally, the VMPr
subproblem is considered for improving the quality of solutions obtained by the
1iVMP, reconfiguring a current placement P(#) through migration of VMs between
PMs to an improved placement P’(¢). This VMPr subproblem could be formulated
offline, where alternative solution techniques could result more suitable (e.g., meta-
heuristics).

The considered iVMP + VMPr optimization scheme has been briefly studied in
the specialized literature. Consequently, several challenges for IaaS environments
remain unaddressed or could be improved, considering that only basic methods have
been proposed, specifically for VMPr Triggering and VMPr Recovering methods:

e Research Question 1 (RQ1): when the VMPr problem should be triggered? (VMPr
Triggering method).

e Research Question 2 (RQ2): what should be done with cloud service requests
arriving during the VMPr reconfiguration period? (VMPr Recovering method).

Research should advance by proposing more sophisticated VMPr Triggering
methods, probably considering several different objective functions, as presented
in this chapter for MaVMP problems. Additionally, most of the existing research
works do not consider any VMPr Recovering method, when applicable. Only Cal-
cavecchia et al. studied in [37] a very basic approach, canceling the VMPr whenever
anew request is received. Consequently, the VMPr is only performed in periods with
no requests that could result unrealistic for [aaS providers. Future works could be
focused on proposing novel VMPr Recovering methods.

References

1. Lépez-Pires, F., & Bardn, B. (2015). Virtual machine placement literature review. http://arxiv.
org/abs/1506.01509.

2. Lépez-Pires, F., & Baran, B. (2015). A virtual machine placement taxonomy. In Proceedings
of the 2015 IEEE/ACM 15th International Symposium on Cluster, Cloud and Grid Computing.
IEEE Computer Society.

3. Cheng, J., Yen, G. G., & Zhang, G. (2014, October). A many-objective evolutionary algo-
rithm based on directional diversity and favorable convergence. In 2014 IEEE International
Conference on Systems, Man and Cybernetics (SMC) (pp. 2415-2420).

4. Farina, M., & Amato, P. (2002). On the optimal solution definition for many-criteria optimiza-
tion problems. In Proceedings of the NAFIPS-FLINT International Conference (pp. 233-238).

http://arxiv.org/abs/1506.01509
http://arxiv.org/abs/1506.01509

Many-Objective Optimization for Virtual Machine Placement in Cloud Computing 325

5.

6.

10.

11.

12.

13.

16.

17.

18.

19.

20.

21.

22.

23.

von Liicken, C., Baran, B., & Brizuela, C. (2014). A survey on multi-objective evolutionary
algorithms for many-objective problems. Computational Optimization and Applications, 1-50.
Guzek, M., Bouvry, P., & Talbi, E.-G. (2015). A survey of evolutionary computation for resource
management of processing in cloud computing. Computational Intelligence Magazine, IEEE,
10(2), 53-67.

. Ihara, D., Lépez-Pires, F., & Baran, B. (2015). Many-objective virtual machine placement for

dynamic environments. In Proceedings of the 2015 IEEE/ACM 8th International Conference
on Utility and Cloud Computing. IEEE Computer Society.

. Loépez-Pires, F., & Baran, B. (2015). A many-objective optimization framework for virtualized

datacenters. In Proceedings of the 2015 5th International Conference on Cloud Computing and
Service Science (pp. 439-450).

. Lépez-Pires, F., & Bardn, B. (2017). Cloud computing resource allocation taxonomies. Inter-

national Journal of Cloud Computing (To appear).

Gao, Y., Guan, H., Qi, Z., Hou, Y., & Liu, L. (2013). A multi-objective ant colony system
algorithm for virtual machine placement in cloud computing. Journal of Computer and System
Sciences, 79, 1230-1242.

Lépez-Pires, F., & Baran, B. (2013). Multi-objective virtual machine placement with service
level agreement: A memetic algorithm approach. In Proceedings of the 2013 IEEE/ACM 6th
International Conference on Utility and Cloud Computing (pp. 203-210). IEEE Computer
Society.

Tomas, L., & Tordsson, J. (2013). Improving cloud infrastructure utilization through overbook-
ing. In Proceedings of the 2013 ACM Cloud and Autonomic Computing Conference, CAC’13
(pp. 5:1-5:10). New York, NY, USA.

Beloglazov, A., Abawajy, J., & Buyya, R. (2012). Energy-aware resource allocation heuristics
for efficient management of data centers for cloud computing. Future Generation Computer
Systems, 28(5), 755-768.

. Shrivastava, V., Zerfos, P, Lee, K.-W., Jamjoom, H., Liu, Y.-H., & Banerjee, S. (2011).

Application-aware virtual machine migration in data centers. In INFOCOM, 2011 Proceedings
IEEE (pp. 66-70). IEEE.

. Donoso, Y., Fabregat, R., Solano, F., Marzo, J.-L., & Baran, B. (2005). Generalized multiob-

jective multitree model for dynamic multicast groups. In 2005 IEEE International Conference
on Communications, 2005. ICC 2005 (Vol. 1, pp. 148-152). IEEE.

Béez, M., Zarate, D., & Baran, B. (2007). Adaptive memetic algorithms for multi-objective
optimization. In 2007 XXXIII Latin American Computing Conference (CLEI) (Vol. 2007).
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiob-
jective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2),
182-197.

Coello Coello, C., Lamont, G. B., & Van Veldhuizen, D. A. (2007). Evolutionary algorithms
for solving multi-objective problems. Springer.

Sun, M., Gu, W., Zhang, X., Shi, H., & Zhang, W. (2013). A matrix transformation algorithm
for virtual machine placement in cloud. In 2013 12th IEEE International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom) (pp. 1778—1783). IEEE.
Anand, A., Lakshmi, J., & Nandy, S. K. (2013). Virtual machine placement optimization sup-
porting performance SLAs. In 2013 IEEE 5th International Conference on Cloud Computing
Technology and Science (CloudCom) (Vol. 1, pp. 298-305. IEEE.

Sato, K., Samejima, M., & Komoda, N. (2013). Dynamic optimization of virtual machine place-
ment by resource usage prediction. In 2013 11th IEEE International Conference on Industrial
Informatics (INDIN) (pp. 86-91). IEEE.

Shi, L., Butler, B., Botvich, D., & Jennings, B. (2013). Provisioning of requests for virtual
machine sets with placement constraints in iaas clouds. In 2013 IFIP/IEEE International Sym-
posium on Integrated Network Management (IM 2013) (pp. 499-505). IEEE.

Li, W., Tordsson, J., & Elmroth, E. (2011). Modeling for dynamic cloud scheduling via migra-
tion of virtual machines. In 2011 IEEE Third International Conference on Cloud Computing
Technology and Science (CloudCom) (pp. 163-171). IEEE.

326 F. Lopez-Pires and B. Bardn

24. Beloglazov, A., & Buyya, R. (2012). Optimal online deterministic algorithms and adaptive
heuristics for energy and performance efficient dynamic consolidation of virtual machines in
cloud data centers. Concurrency and Computation: Practice and Experience, 24(13), 1397—
1420.

25. Lépez-Pires, F., & Baran, B. (2017). Many-objective virtual machine placement. Journal of
Grid Computing (In Review).

26. Tomas, L., & Tordsson, J. (2013). Improving cloud infrastructure utilization through over-
booking. In Proceedings of the 2013 ACM Cloud and Autonomic Computing Conference (p.
5).

27. Svird, P., Hudzia, B., Walsh, S., Tordsson, J., & Elmroth, E. (2015). Principles and performance
characteristics of algorithms for live vm migration. ACM SIGOPS Operating Systems Review,
49(1), 142-155.

28. Talavera, F., Crichigno, J., & Baran, B. (2005). Policies for dynamical multiobjective environ-
ment of multicast traffic engineering. In /IEEE ICT.

29. Amazon Web Services (2015, June). Amazon ec2 instances. http://aws.amazon.com/ec2/
instance-types/.

30. Ortigoza, J., Lopez-Pires, F., & Bardn, B. (2016, April). A taxonomy on dynamic environments
for provider-oriented virtual machine placement. In 2016 IEEE International Conference on
Cloud Engineering (IC2E) (pp. 214-215).

31. Li, K., Wu, J., & Blaisse, A. (2013). Elasticity-aware virtual machine placement for cloud
datacenters. In 2013 IEEE 2nd International Conference on Cloud Networking (CloudNet)
(pp- 99-107). IEEE.

32. Wang, W., Chen, H., & Chen, X. (2012). An availability-aware virtual machine placement
approach for dynamic scaling of cloud applications. In 2012 9th International Conference
on Ubiquitous Intelligence & Computing and 9th International Conference on Autonomic &
Trusted Computing (UIC/ATC) (pp. 509-516). IEEE.

33. Tchernykh, A., Schwiegelsohn, U., Alexandrov, V., & Talbi, E.-G. (2015). Towards under-
standing uncertainty in cloud computing resource provisioning. Procedia Computer Science,
51,1772-1781.

34. Mell, P, & Grance, T. (2009). The nist definition of cloud computing. National Institute of
Standards and Technology, 53(6), 50.

35. Lépez-Pires, F., Baran, B., Amarilla, A., Benitez, L., Ferreira, R., & Zalimben, S. (2016).
An experimental comparison of algorithms for virtual machine placement considering many
objectives. In 9th Latin America Networking Conference (LANC) (pp. 75-79).

36. Zheng, Q., Li, R., Li, X., Shah, N., Zhang, J., Tian, F,, et al. (2015). Virtual machine consoli-
dated placement based on multi-objective biogeography-based optimization. Future Genera-
tion Computer Systems.

37. Calcavecchia, N. M., Biran, O., Hadad, E., & Moatti, Y. (2012). Vm placement strategies for
cloud scenarios. In 2012 IEEE 5th International Conference on Cloud Computing (CLOUD)
(pp. 852-859). IEEE.

http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/

Performance Modeling and Optimization
of Live Migration of Virtual Machines
in Cloud Infrastructure

Minal Patel, Sanjay Chaudhary and Sanjay Garg

Abstract The cloud infrastructure is a base layer to support various types of compu-
tational and storage requirements of the users using Internet-based service provision-
ing. Virtualization enables cloud computing to compute different workloads using
cloud service models. The performance of each cloud model depends on how effec-
tively workloads are managed to give optimal performance. The process of workload
management is obtained by migrating virtual machines using the pre-copy algorithm.
In this chapter, we have improved pre-copy algorithm for virtual machine migration
to calculate the optimal total migration time and the downtime using three proposed
models: (i) compression model, (ii) prediction model, and (iii) performance model.
The performance evaluation of different techniques using these three models is dis-
cussed in detail. Finally, we present open research problems in the field of resource
utilization in cloud computing.

1 Introduction

This section presents the basics of cloud computing and virtualization. The tech-
nology of virtualization provides the ability to build a system which runs multiple
operating systems simultaneously on the same physical machine. Due to this inven-
tion, virtualization provides various services that include migration, load balanc-
ing, debugging, and replication [1]. Virtualization is a program running on a virtual

M. Patel (X))

Computer Engineering Department, A.D. Patel Institute of Technology,
Karamsad, Gujarat, India

e-mail: mppatel.adit@gmail.com

S. Chaudhary

School of Engineering and Applied Science, Ahmedabad University,
Ahmedabad, Gujarat, India

e-mail: sanjay.chaudhary @ahduni.edu.in

S. Garg
Institute of Technology, Nirma University, Ahmedabad, Gujarat, India
e-mail: gargsv@gmail.com

© Springer Nature Singapore Pte Ltd. 2017 327
S. Chaudhary et al. (eds.), Research Advances in Cloud Computing,
DOI 10.1007/978-981-10-5026-8_13

328 M. Patel et al.

machine monitor (VMM) or a virtual set of hardware mapped to physical architec-
ture. Virtualization provides a service that can be delivered anywhere and at anytime
in cloud computing. Initially, the cloud was known as a computer network that could
perform computer tasks effectively. The cloud is used to provide basic services for
infrastructure, platform, and software. According to the definition of National Insti-
tute of Standards and Technology (NIST), cloud computing is the collection of three
service models and four deployment models [2]. The cloud computing uses several
utility-based applications such as server consolidation, data center management, high
availability, automatic restart, disaster recovery, fault tolerance, test and development,
etc.

The cloud manages following services as components: storage, communication
and computing. Amazon is a well-known cloud computing company which provides
cloud-based services. For example, Amazon S3 provides services for storage, Ama-
zon EC2 provides communication and Amazon SQS provides network resources
[2]. The main issue of handling virtualized resources is to balance workload in
cloud computing. The computing service of a cloud requires load balancing between
physical systems. The workload of running applications can be automatically bal-
anced by migrating them to virtual machines [3, 4]. Live migration overcomes most
difficulties of process migration used for transfer of ongoing processes. The OS
migration has the following advantages compared to the process migration: (i) no
residual dependencies (ii) automatic restarting mechanism and (iii) the ability to han-
dle authentication issue. In residual dependencies, the host machine has to remain
available to fulfill services of system calls in network-domain while VM migration
process disconnects the host once the migration is completed. In virtualization, the
user is not aware of an online game server or streaming media being migrated. The
VM connects automatically without functioning like process migration to work with
the kernel-state. During VM migration, operating system (OS) level issues for root
access are not affected and the operator is not concerned about what is running on
a virtual machine. The process migration has limitation over live migration to work
with real-world applications of cloud computing [5].

In this chapter, following three models are developed: (i) compression model, (ii)
prediction model and (iii) performance model. These models are evaluated to calcu-
late downtime and total migration time of VM migration. The pre-copy technique
has been selected and the same is modified for each model. The effectiveness of the
above mentioned models is measured based on their ability to compress and predict
dirty pages. Additionally, a dirty page rate model and a skip page rate model are also
developed to improve the performance of VM migration.

1.1 Objectives and Scope

The data-centers in cloud computing provide services of infrastructure layer. The
components of data-centers are mainly categorized into servers and networks, which
are used for computation and storage, respectively. The primary objective of cloud-

Performance Modeling and Optimization of Live Migration ... 329

based infrastructure services is to provide efficient live migration of applications
workload. The optimal computation of workloads depends on VM and its charac-
teristics that can run cloud servers with load balancing, power management, fault
tolerance and server consolidation activities. The migration of virtual machines that
is the essential part of load balancing in the cloud which is focused in this chapter.

There are number of important issues raised for any live migration system: (i)
criteria to select either pre-copy or post-copy technique (ii) selection of effective
cloud platform for live migration (iii) selection of hypervisor under varying work-
loads (iv) issues of dirty rate as well as data rate parameters to manage (a) adaptive
mechanism and (b) nonadaptive mechanism of live migration (v) selection of data
set and dependency of parameters for live migration model.

The migration process has main three parameters to perform optimal migration:
(i) VM size (ii) dirty rate and (iii) data rate (bandwidth). This chapter focuses on
following tasks in order to develop live migration system:

e To Enhance pre-copy algorithm for live migration system to get optimal total
migration time and downtime.

To configure type-2 architecture using Xen and Ubuntu OS on DRBD storage.
To propose combined approach of live migration to improve the performance.
To design prediction model for live migration.

To propose mathematical model to compute performance metrics on real dataset.

The scope of this chapter is addressed with following issues:

e In the proposed live migration system, the pre-copy algorithm [5-8] is chosen for
development of cloud system and it is modified with three proposed models. The
post-copy is not considered due to its limitation and it also gives poor performance
on memory intensive pages.

e This proposed system is configured based on Xen [5, 6, 9] hypervisor and DRBD
protocol. The type-2-based architecture has been configured with Xen on the top
of Ubuntu OS. The experiments are tested on a real data set for both, prediction
model and performance model.

e The system is tested on normal workloads (idle, kernel, and webserver) and com-
plex workloads (RUBIS and OLTP) and finally, the results of proposed framework
are compared to existing framework. Due to complex nature of workloads and
their availability issues, this chapter is tested with chosen five workloads.

2 Migration in Cloud Computing

This section describes the model of live migration. It also presents two techniques:
(1) pre-copy migration and (ii) post-copy migration.

330 M. Patel et al.

2.1 Live Migration

The X86 architecture of Xen hypervisor [10, 11] is divided into rings, each ring has
access to specific layer and privileges. User application has access to lower layer ring
3 and OS system has access to ring 0 which has full privilege to access hardware. The
ring 1 and the ring 2 are not in use, so the application user cannot execute a system
call or instruction which is reserved for OS access while residing over ring 3. Xen has
a Xenmotion tool to migrate a VM. The Xenmotion can be operated on multiple hosts
based on resource pool mechanism. Xen requires to run all hosts with same family
and configuration. Live migration is performed based on two main configuration
requirements: (i) gigabit ethernet and (ii) shared remote storage. The enterprise and
platinum edition of Xenserver provide load balancing feature.

Live migration [12] refers to the process of transferring a running VM from host to
destination. The simple live migration activity is shown in Fig. 1 with shared storage.
A migration is called the seamless live migration, when downtime of a VM during a
live migration is not noticeable. Live migration can be achieved based on pre-copy
and post-copy approaches. The following are live memory migration types [5]: (a)
stop and copy (b) demand migration (c) iterative pre-copy. The pre-copy retains an
up-to-date state of the VM at the source during migration, whereas with post-copy,
the VM’s state is distributed over both source and destination. If the destination fails
during migration, pre-copy can recover the VM, whereas post-copy cannot.

The advantages of live migration are as follows [13]:

e Reduces IT cost and provides flexibility for server consolidation
Reduces downtime and increases reliability

Improves energy efficiency by running less number of servers

Load balancing (utilizing more processing power)

Resource locality and resource sharing

Fault resilience, simplified system administration, and mobile computing

Fig.1 Live VM migration VM Live
Migration
| —
Host A | VM1 VM2 VM3 | Host B
|
Shared

Storage

Performance Modeling and Optimization of Live Migration ... 331

2.2 Pre-copy-Based Migration

The pre-copy technique is used to know running states of: the VM, storage or virtual
disks, as well as existing client connections. In pre-copy model, few disk blocks
are recopied if they are written during migration activity. While the stop-and-copy
condition is raised, the hypervisor starts the final iteration and copies the remaining
memory pages. Three major performance metrics of a live migration are: service
downtime, total migration time, and total pages transferred [5].

Migration process between two hosts has following stages [5]:

Stage 0: Pre-migration stage—in this, destination host is to be preselected where
resources are able to make guaranteed migration.

Stage 1: Reservation—resources are already registered on the destination for start-
ing migration and even if, in case of a failure of VM, the host can be safe.

Stage 2: Iterative pre-copy—all memory pages are copied in the first iteration and
subsequently modified pages are iteratively copied until the last iteration.

Stage 3: Stop-and-copy—makes a copy of fix dirty pages after stopping VM, so
the host is no longer required and the destination machine becomes the
main host.

Stage 4: Activation—the destination host is activated and it executes the post-
migration activities.

Pre-copy algorithm is shown in Fig. 2 as a flowchart, where D represents dirty pages
and W represents skip pages. Further, it presents mathematical model of the pre-copy
algorithm when stop-and-copy condition is trigged.

Iterative process time is represented by the following equation [14]:

Time taken by iteration(i — 1) = pages dirtied in iteration(i — 1) /page dirtyrate
(D

Total migration time is represented by the following equation [14]:
Total migration time = time taken by iterations + service downtime (2)

In Eq. (1), it is assumed that pages are transferred at the maximum capacity. In
nonadaptive migration, the dirty rate is able to take available bandwidth for transfer-
ring pages. The total migration time is shown in Eq. (2).

The working of pre-copy algorithm [5] is as follows:

The pre-copy algorithm is executed with the input of initial memory size and given
transfer rate. Until the stop-and-copy condition is fired, the iterative process executes
for each iteration and it calculates the pre-copy time for each iteration given by Eq. (1).
When the pre-copy-based migration is reached to the stop-and-copy condition, total
migration time is calculated by Eq.(2) and downtime is calculated based on the
response time of last iteration.

332 M. Patel et al.

Fig. 2 Flowchart of 7
Pre-copy algorithm /" Input: M (Memory Size), /
/ R (Transfer Rate) /

Output: / yes

/ / Stop-and-copy ™.
/ Tprecopy, e———

) . condition?
/ Tdown / N

T=(v.-W,)/R
Tprecopy = Tprecopy + T
V.., = Di
i=i+1

Figure 2 discusses stop-and-copy condition which is shown below [15]:

The iterations have the maximum limit of 29.

e Limit on the maximum amount of data to be migrated is in the order of three times
the size of RAM.

e The number of pages dirtied are 50, and it is considered a base threshold value at

the time of current iteration.

The rate of dirtying page of the last iteration is greater than the threshold (in Mbps).

This chapter is contributed on three aspects of live migration system using pre-
copy algorithm. They are: (i) compression model for compressing pages during
migration, (ii) prediction model for predicting dirty pages in advance, and (iii) per-
formance model for analyzing dirty and skip pages during migration.

2.3 Post-copy-Based Migration

Post-copy sends each page exactly once over the network during a migration process.
In contrast, pre-copy transfers the same page multiple times if the page is dirtied
repeatedly at the source during migration.

Performance Modeling and Optimization of Live Migration ... 333

Post-copy [16] includes the transfer of memory data after process state is trans-
ferred to destination. Memory faults in migration process are the demand-page over
the network called self-ballooning and this mechanism is used to manage faults. There
are four variants of post-copy: (i) demand paging, (ii) active push, (iii) pre-paging,
and (iv) dynamic self-ballooning.

e Demand paging: When VM resumes target, page faults can be served over network
for any page access. Network latency can be calculated which makes VM to be
served at maximum cost.

e Active push: The source node can reduce the duration of residual dependencies
to push the VM’s pages when VM executes target. Demand paging handles most
faults that are generated when active push avoids transferring pages in target VM.
Demand paging or active push transfers each page.

e Pre-paging: It is used to hide the latency of page faults. It is used to predict future
working set and loading of pages before accessing them.

e Dynamic self-ballooning: It refers to artificially making the request for memory
within a guest OS and releasing that memory back to the hypervisor. The purpose
of ballooning is used for memory resizing used in VMWare and Xen.

3 Compression Model

This section discusses logical flow of pre-copy algorithm. It also presents the algo-
rithmic issues of live migration that are divided again into three categories. The
evaluation of proposed compression model is briefly discussed at the end.

3.1 Logical Flow of Pre-copy Algorithm for Live Migration

The bitmap structure of Xen is used for iterative process of pre-copy algorithm. The
Xen’s pre-copy algorithm has three types of bitmap: (i) to_send, (ii) to_skip, and (iii)
to_fix [5].

e to_send: This bitmap will send pages in the subsequent round, if pages have already
been re-dirtied since last iteration and those pages are in non-dirty status.

e to_skip: If pages are dirty in current iteration, these pages are to be skipped in the
next iteration.

e to_fix: To_fix bitmap considers those pages that gets modified frequently and they
are sent to stop-and-copy phase during the last round.

Before starting VM migration process between two hosts, DRBD block is created
on both hosts. Each virtual machine is installed on the DRBD resource which resides
on the top of LVM. The logical flow of live migration will start to execute pre-copy

334 M. Patel et al.

after starting DRBD service on both hosts. The detailed steps for the working of
pre-copy in Xen are given below [14, 17]:

Step 1: Initialization of pages

In this step, total number of guest pages and shadow pages are assigned using
bitmap of Xen. The shadow pages are used in Xen for managing virtualization at
the time of running VM to find updated pages. In Xen, guests and Dom0 are able
to map available pages using pfn (physical frame number) and mfn (machine frame
number) frame structures, respectively.

Step 2: Page fault mechanism

When a guest is trying to modify the page table, the page fault occurs. After that,
this information is applied in shadow page table as well as log-dirty bitmap which
is used for page transferring. The Xen uses the shadow page mechanism to transfer
pages for the guest before migration process starts.

Step 3: Check the set bit in dirty bitmap iteratively

In the beginning, all the pages are transferred and are set to write the protected
mode. The process of live migration identifies the set bit in the log-dirty bitmap
for making the arrangement of pages to transfer between the source and the destina-
tion. Iterative process of migration uses two parameters XEN_DOMCTL_SHADOW
_OP_PEEK and XEN_DOMCTL_SHADOW_OP_CLEAN, and the function
xc_shadow_control is used during this process. If to_skip bitmap returns, dirty bitmap
is scanned using PEEK parameter. The PEEK then will copy the dirty bitmap to
to_skip bitmap and will update the WWS accordingly. If to_send bitmap returns,
dirty bitmap is scanned using CLEAN parameter. This parameter will copy dirty
bitmap to to_send and clears internal copy in the current iteration. If to_fix bitmap
returns, the frequently modified pages are collected in WWS.

Step 4: Procedure for last iteration

This step is executed based on violation of condition in any of four parameters: (i)
the number of maximum iteration, (ii) the maximum amount of data to be migrated,
(iii) threshold value for minimum number of pages of last round, and (iv) threshold
value of page dirty rate. All remaining pages are being transferred in the stop-and-
copy phase. At the end, the shadow page table is destroyed and VM migration process
will be terminated. VM can be migrated back to the source whenever the ongoing
activity is completed.

3.2 Algorithmic Issues for Live VM Migration

Three basic types to deal with live migration of VM are: (i) basic techniques of live
migration for reducing dirty pages and the same are also applied for process migra-
tion mechanism, (ii) compression techniques for migration, and (iii) other/advanced
techniques for migration.

Performance Modeling and Optimization of Live Migration ... 335

Live migration techniques can be classified into the following categories:
e Techniques for reducing dirty pages

— Stunning rogue processes & freeing page cache pages [5]
— CPU scheduling techniques [8, 18-20]

e Compression techniques

— MEMCOM-—memory compression-based VM migration [7]
— Delta compression [21]
— Other compression techniques—delta, LZ etc. [22-24]

e Other techniques-based on threshold, page-replacement, and combined algorithms

— LRU-based technique [6, 9]

— Matrix bitmap algorithm [25]

— HCA Hierarchical copy algorithm [26]
— Workload adaptive live migration [27]
— Combined techniques [22, 25, 28, 29]

In [8, 18, 19], improved pre-copy algorithm is able to reduce dirty pages at the
cost of reducing CPU cycles and this is one of the older approaches for live migration.
Compression techniques [7, 21-24] and other general techniques [6, 9, 25-27] have
also their limitation to improve the performance of migration system. The improved
pre-copy algorithms given in [25, 28, 29] are able to produce effective performance
based on the combination of two techniques. Hence, our mechanism has focused
the novel approach in which LRU and compression-based two different methods are
combined.

3.3 Proposed Compression Model: Improved Pre-copy
Algorithm Using Combined Approach

This section discusses the proposed compression model with the help of pseudo-
code. The compression model is combined into two parts: (i) LRU stack distance
algorithm and (ii) delta compression.

In Xen’s pre-copy algorithm, pages are likely to be sent by checking corresponding
bit in the to_skip bitmap. In LRU stack distance algorithm, pages will be sent by
considering two parameters: (i) checking corresponding bit in the to_skip bitmap
and (ii) the distance between LRU stack and the dirty count.

The working of stack distance is based on two steps [14, 17]: (i) calculation of
the reuse distance of VM’s pages and (ii) retrieving the information about updated
pages which have not been sent to the destination system in the current iteration.
The algorithm also continuously checks the status of WWS. The main theme of this
algorithm works to manage more pages in WWS for better prediction of dirty pages
and sends fewer updated pages compared to the pre-copy algorithm during iterative
process.

336 M. Patel et al.

Table 1 Pseudo-code of combined approach
iterm:maximum iteration
p2m_size: size of memory pages or total number of guest pages
i,j, dirtypages_count, lru_update: temporary variables
bitmaps: to_send, to_fix, lru_stack
if(not last iteration)
for(i=0; i < p2m_size; i++)
if(page is not in to_send bitmap)
lru_stack[page] contains dirtypages_count
if(page is in lru_update)
to_send(page) to 1
else
lru_stack[page] contains distance between pages
if(page is to be compressed & page is in cache)
generate delta and update cache
if(page is to be uncompressed & page is in cache)
decode page using delta and save page
if(not first iteration)
for(j=0; j < iterm; j++)
Sfor(i=0; i < p2m_size; i++)
if(distance < dirtypages_count)
lru_update for particular page to 1
lru_stack(page)=0
if(page is to be compressed & page is in cache)
generate delta and update cache
if(page is to be uncompressed & page is in cache)
decode page using delta and save page
if(last iteration)
copy all remaining dirty pages of lru_stack and to_fix to destination

The delta compression [14, 17] is able to give optimal performance for heavy
workload scenario of VM migration. It compresses pages which are strings of 0’s
and 1’s. The compression is performed by XORing with current page to previous page
and differences are being sent to destination. The decompression is performed by
decoding the result between outcome and the content of the page. The pseudo-code
of combined algorithm is given in Table 1.

3.4 Performance Evaluation

The framework is set up with Xen 4.2 on Intel core i3 CPU 550 @ 3.20GHz,
3.19GHz, and 3.80GB of RAM with 100 MBPS Ethernet switch. Host OS and
guest OS are Ubuntu 12.04 LTS [14].

The total migration time and service time are measured for comparative analysis
in our modified pre-copy algorithm. The stop-and-copy phase is used to evaluate
service time and the total migration time. The total migration time is calculated by

Performance Modeling and Optimization of Live Migration ... 337

merging the total time of two phases: (i) pre-migration and (ii) iterative phase. In
Xen, XL migrate command is used for live migration operations.

The compression model is tested on three application scenarios called workloads:
idle system, kernel compile, static web server [14].

1. Idle system: An idle Ubuntu OS without running any applications.

2. Kernel compile: This is considered a balanced workload which is able to test
memory, CPU, and disk performance.

3. Static web server [30-32]: Apache web server is migrated in this workload with
observing the changes of static content at the high rate. A single client is configured
with 100 concurrent connections having a request of a file sized 512 KB.

The performance evaluation for idle system has been tested with 512 MB RAM
and 1 VCPU. The service time and the total migration time have been tested with 1024
MB RAM and 1 VCPU. The evaluation process of service time and total migration
time is discussed below:

Performance Evaluation for Idle System

The evaluation has following points to discuss:

e This experiment calculates the total migration time for an idle system using three
types: (i) non-shared storage, (ii) NFS, and (iii) DRBD.

e The observation shows that DRBD storage is able to give optimal total migration
time so it can work better compared to NFS and without shared storage options.

Performance Evaluation for Service Time and Total Migration Time
The following points are observed for this evaluation:

e When the VM is idle (or none application running), the performance of service
time is approximately same for Xen’s pre-copy and proposed compression model.

e When the VM is having workload, the proposed compression model is able to
perform better for kernel compile and web server workloads.

e The performance of total migration time for idle system and kernel compile work-

load is approximately same for Xen’s pre-copy and proposed compression model.

When the VM is heavily loaded, the proposed compression model is able to perform

better than Xen’s pre-copy for web server workloads.

The combined approach of live VM migration is proposed here and following
points are concluded:

e The proposed compression model is the combined model which merges an LRU
stack distance and delta compression algorithm. The LRU stack distance algorithm
manages frequently updated pages and the delta compression optimizes complex-
ity for compressing updated pages. The overall performance is able to reduce
approximately 10% of total migration time and 19% of downtime using improve
pre-copy method.

e The proposed compression model is tested on three different workloads. The per-
formance evaluation has also been discussed.

338 M. Patel et al.

e In future work, delta compression is able to merge with other live migration tech-
niques to improve pre-copy. Other compression methods can also be applied to
LRU stack distance for combined approach of live migration.

4 Prediction Model

In this section, the overview of time series is discussed. The time series is used to
generate data based on past observations. It also presents the statistical and regression
models for prediction of virtual machine migration. The evaluation of prediction
model is given at the end of this section.

4.1 Introduction

Time series has attracted a research community for several decades due to its dynamic
nature into modeling of data. It collects data based on past observations, which is able
to show the real-world working model of a series [33, 34]. The forecasting analysis
is classified into three ways: short-term, medium-term, and long-term. The short-
term forecasting is limited time period events (weeks or months), medium-term is
represented as the period of one to two years, and long-term forecasting can be taken
for many years. Qualitative prediction techniques are independent and these methods
are analyzed based on experts opinion. On the other side, quantitative forecasting
methods are based on historical data. It can be divided into three models: time-series
models, smoothing models, and regression models.
The activities in the forecasting process are as follows:

Problem definition

Data collection

Data analysis

Model selection and fitting

Model validation

Forecasting model deployment

Monitoring forecasting model performance

General model of time series

A stationary time series is considered as strictly stationary if its properties are not
affected with time. If joint probability distribution of any two observations y; and
Yi+x 18 same then it is called stationary time series. A nonstationary time series is a
series which exhibits a trend and it can be forecasted with proper modeling if the
trend is eliminated. The regression model is the technique to work with nonstationary
series. The general model of time series is written as follows [35]:

Ve =0+ d1x1 + P1xp +---+ & 3

Performance Modeling and Optimization of Live Migration ... 339

where,t =1,2,...,N

Here, x;-based terms are called signal or trend, which is a deterministic function
of time. A residual term &,, also called noise, which follows a probability law. Here,
¢ represents constant term, y, is a time series used to build a forecasting model and
N represents the most recent or last available observation.

Statistical Probability Model Versus Statistical Learning Model [36]

Two types of time-series model are discussed in this section: (i) statistical model
and (ii) machine learning-based regression model. Hidden Markov and ARIMA
models are common statistical models. These models are used to predict the accuracy
of time-series models which are designed based on probability criteria. A hidden
Markov model (HMM) uses a Markov process with unobserved states [37], while
ARIMA model [33, 34] is generated from a modified version of an auto-regressive
moving average (ARMA) model. This model is classified by ARIMA (p, d, q), where
p states the auto-regressive components, d is known for integrated components, and q
states moving average components. The working of ARIMA has accuracy and wide
scope compared to HMM [37].

The learning-based regression model is classified into three categories: (i) linear
discriminant analysis (LDA), (ii) neural networks (NNs), and (iii) support vector
machine (SVM) [35]. LDA is used with classification for the applications of statistics,
pattern recognition, and machine learning domain. NN is another model which works
with classification and regression-based modeling. The third model is based on SVM
which is a known technique for classification, regression, and outlier detection. The
SVM is worked with new features and it has better performance compared to neural
networks and LDA [37].

The ARIMA model and SVR model are discussed in next sections, respectively.

4.2 ARIMA Model

ARIMA model [36] can perform the series with stationary data and also forecast
the training data. ARIMA has three phases [35]: (i) identification phase (ii) estima-
tion and testing phase (iii) forecast phase. In identification phase, stationary series
is identified first. The parameters of time series are estimated using the ARIMA
(p, d, @) in the second phase of the model. Two functions are prepared using p, d, and
q parameters: (i) ACF (Autocorrelation function) and (ii) PACF (Partial autocorre-
lation function).
The basic equations for ARIMA are as follows [35]:

AR(p) : X, = ao+arxi—1 + axx o+ -+ @, + e)

MA(q) : x; —ao = e; +bre, 1 +bre; 2+ -+ byer)

340 M. Patel et al.

Table 2 Algorithm for prediction of dirty pages using ARIMA model
Import following files: (i) forecast library,(ii) tseries library and (iii) real data set (.csv) file
Plot time series
Check the time series whether it is homogenous or not
Get the difference of non-homogenous time series
Apply AR term and MA term given in Eq. (1.4) and Eq. (1.5) respectively to plot ACF and PACF
Examine these plots
Design suitable ARIMA model by calculating AIC values
Forecast time-series for next data

The basic AR term of ARIMA model is given in Egs. (4) and (5) presents com-
putation of MA term.

4.2.1 Forecasting Analysis of ARIMA Model on Real Data Set

The algorithmic process of ARIMA model for forecasting is represented in this
section. We have developed here ARIMA model on real data set of live migration
system. On the other side, ARIMA could be developed for analysis of hypothetical
data but it is not useful for practical purpose. In this chapter, the storage of real data
is used in matrix of 2400 (pages) X 30 (iterations).

The algorithm for dirty pages prediction [36] is given here and it is developed
in R language [34]. The input to the process is the time-series data of dirty pages
and the output is evaluated based on accuracy. The algorithm for prediction of dirty
pages using ARIMA model is given in Table 2.

4.3 SVR Model

This section presents SVM-based SVR model in detail. The SVR model is used
for prediction of dirty pages for live migration of virtual machine. It is used to
evaluate accuracy of real data set [38]. The lacking of ARIMA model is that it works
on universal approximation and so, for complex models, ARIMA model is quite
difficult to design.

4.3.1 Classification and Regression Analysis

The five parameters of SVM are [39, 40]: linearly separable data, linearly non-
separable data, generalized optimal separating hyperplane, generalization in high
dimensional space, and kernel functions. The mathematical model of SVM is based
on f(x) = sign(w” x+b). The function f(x) is divided into two classes: +1 and —1. The
label +1 for all x above the boundary and the label —1 for all x below the boundary.
The support vectors are generated based on keeping maximum boundaries between

Performance Modeling and Optimization of Live Migration ... 341

Table 3 Algorithm for prediction of dirty pages using SVR model

Import following files:(i) e1071 library and (ii) real data set (.csv) file
Find the suitable SVM kernel

Decide the input and output series data

Find the best values of cost, gamma and epsilon using cross-validation
Apply SVM kernel (RBF is chosen here because of its wide scope)
Design suitable regression model of SVM based on above parameters
Forecast time-series for next data

two classes. The SVM is used to work with optimization of data for obtaining global
solution. Here, C(cost) and y parameters are used for cross-validation in kernel
mechanism of SVM. These parameters are able to classify and predict data for SVR
model.

4.3.2 Forecasting Analysis of SVR Model on Real Data Set

The algorithm for dirty pages prediction using SVR model [36] is given here. The
proposed algorithm is developed in R language [34]. The input to the process is
the same discussed in ARIMA model that is time-series data of dirty pages and the
output is evaluated based on accuracy. The algorithm for prediction of dirty pages
using SVR model is given in Table 3.

4.4 Performance Evaluation

The comparison of actual dirty pages and predicted dirty pages is performed for both
models in this section.

Performance Evaluation of ARIMA Model

The performance evaluation of ARIMA model is calculated based on algorithm
given above. ARIMA model can be estimated using p,d, and q parameters of ACF and
PACEF plots. The suitable ARIMA models are estimated and evaluation of accuracy is
compared between them. The improved pre-copy algorithm using ARIMA is able to
predict dirty pages with approximately 91% accuracy. This model has been designed
with taking differences of real data (so the value of d is taken to 1). The p and q
parameters are estimated to 5 and 1, respectively.

Performance Evaluation of SVR Model

The prediction of dirty pages is generated using support vector-based regression
model. The RBF kernel has been applied on regression parameters in the SVR model.
The accuracy of SVR model is approximately 95% which is more than the accuracy of
ARIMA model. The confusion matrix is prepared based on 200 instances of test data
set. This matrix is prepared based on predicted condition for: (i) condition positive

342 M. Patel et al.

and (ii) condition negative. The accurate data was predicted for 190 instances (either
predicted condition positive or negative) and non-predicted instances were 10 (either
predicted condition positive or negative).

The SVR model (95%) is compared with following models for accuracy: (i)
Base Model [41] (81%) (ii) Simulation Model [42] (90%) (iii) Refined Model [41]
(90.50%) (iv) our ARIMA model (91%)

Following points are concluded here:

e The ARIMA-based improved pre-copy algorithm is able to predict dirty pages with
approximately 91% accuracy and the SVR-based improved pre-copy algorithm is
able to predict dirty pages with approximately 95% accuracy on real data set.

e The confusion matrix was prepared based on 200 instances of test data set. This
matrix is able to mitigate false prediction problem of ARIMA model which has
its limitation to generate results based on an approximate model for given data.
The following parameters are taken to find prediction of time-series data: (i) MSE,
RMSE, Box & Jenkins test (for ARIMA model) and (ii) parameters are cost, ¥,
and epsilon values (for SVR model).

e In the future work, optimization of live migration can be extended with other
regression techniques.

S Performance Model: Dirty Page Rate and Skip Page Rate
Models

This section presents the detailed analysis of performance models. It describes first
the performance models of the dirty rate of memory pages using dirty rate model.
This chapter also presents the performance models of skip rate of memory pages
using skip rate model. The evaluation of dirty page rate and skip page rate models
are shown at the end.

5.1 Introduction

Each iteration of pre-copy algorithm has a number of dirty pages during migration. If
the dirty pages are tracked and managed properly then network traffic can be reduced
and system performance can be improved. Whenever a page is being transferred in
live migration, it has the following properties: (i) non-dirty page (ii) dirty page (iii)
skip page. The dirty page rate model is generated by taking the product of iteration
period and the page dirty rate. The page dirty rate is recognized as the number of
pages dirtied in a second [41]. The dirty page rate model is used for identifying pages
which are likely to be dirtied for the number of iterations. The skip page rate model
is a special case of dirty page mechanism. Using this model subsequent iterations
are able to avoid sending of dirty pages to current iteration based on the skip bitmap
of Xen.

Performance Modeling and Optimization of Live Migration ... 343

Dirty bitmap, provided by hypervisors, is used to compute the number of dirty
pages in any iteration. There are a number of dirty models existed for the live migra-
tion system. These models are classified into three categories (i) average dirty page
rate method (ii) exponential dirty page rate method (iii) probability dirty page rate
method. The mathematical model-based performance modeling of dirty page rate
model and skip page rate model are proposed here. The migration log-based dirty
page model and hot pages-based dirty page model have been discussed with the
proposed vMeasure approach. Existing skip page rate models are also discussed.

5.1.1 Migration Log-Based Dirty Page Rate Model

The migration log-based exponential average method [41] works using an exponen-
tial moving average instead of simple average. Parameters for this model are shown
in Table 4. Total pages transferred called network traffic is given by Eq. (6):

Vi = Vi (1= 2" /(1= 1) (©6)

where, A = D/R, the ratio between dirtying rate and transmission rate.
Total migration time is given by Eq. (7) as follows:

Twi = V/R % 1=2"1 /(1 -2 (7)

During the stop-and-copy phase, the time is spent on resuming VM on destination
host compared to downtime. This time is denoted as Tjegume, Which is constant and
set it to 20 ms. The downtime is given by Eq. (8) as follows:

Tiown = Tn + Tresume (8)

The total number of iterations are log,[Vy/ V,,] and it fulfills the inequality V,
< Vi. In [41], the network traffic can be reduced if the smaller size of memory
image and smaller A are maintained. The value of y is evaluated as per y equation
(y = aT; + bD + ¢ where a, b and c are constants). The values of constants are
measured by taking multiple observations of model parameters.

Table 4 Parameters of migration log-based model

Vin Memory size of VM

Vini Network traffic or total number of pages

Tni Total migration time

Taown Downtime

R Transmission rate of memory

D Dirty rate of memory

Vin Threshold value transferred at the last iteration

W Writable working set (set of hot pages which are being written frequently)

344 M. Patel et al.
5.1.2 Hot Pages-Based Dirty Page Rate Model

The two types of hot pages are [43]: (i) Type-1: in this type-1, all pages are migrated
with hot pages (ii) Type-2: when the VM is down, at that time, hot pages are trans-
ferred. The hot pages are based on locality of reference. These pages have higher rate
of dirtying compared to other pages. If number of pages are small they have higher
chances of modification than the others. In [43], the analytic performance model is
presented to perform better network utilization with proposing optimal « value. Hot
pages are the pages which have a higher rate of dirtying than the other pages. The
dirty rate of hot pages model is represented by Eq. (9).

S =8 % A=p + S x p[B<1] €))

where, B: fraction of hot pages

S.: dirtying rate of the non-hot pages and

Sy,: dirtying rate of the hot pages. S, > S,

This model is useful for the follwoing three cases: (i) dirty rate with uniformity,
(ii) hot pages transferring during the pre-copy phase, and (iii) hot pages transferring
during downtime phase. The mechanism of this algorithm is based on a fraction of «
of the pages transferred during migration. This phase will continue until such fraction
of « of the pages completed. If the value of « increases then the downtime will also
increase so the lower « is maintained in this model. This model is able to give more
network utilization during migration process.

5.1.3 Skip Page Rate Models

This section discusses two types of skip page rate models.

Existing skip models are [44]: (i) Hot Skip Model [43] and (ii) Migration Log
Record-based Model [41]

(i) Hot Skip Model

The model is presented by

Wi =M

B represents fraction of VM’s memory pages that is hot and M represents pages
allocated to the VM

W; represents skip pages

(ii) Migration Log Record-based Model

The model is presented by

Wi=vyD;

y and D; is the ratio correlating with the memory dirtying rate and the duration
of each iteration. In this model, three coefficients are learned as per dirty page rate
model [41].

Performance Modeling and Optimization of Live Migration ... 345

5.2 Proposed Dirty Page Rate Model

The proposed model is developed based on two methods: (i) average dirty page rate
method and (ii) exponential dirty page rate method. This model is designed based on
the criteria of checking linearity of dirty pages. If dirty rate is linear then it calculates
the memory pages based on average dirty page rate. If the dirty rate is nonlinear then
it calculates the memory pages with taking maximum size of WWS.

The proposed algorithm works based on either of two cognitions as given below:

o maximum of ((Wit1)max, (Wit1)avg) 1s taken for high dirty rate pages
o minimum of ((Wiy1)max, (Wit1)ave) 1s taken for low dirty rate pages

It has been proved by proposed model that the optimal migration time will be
(W;)max /R (for memory intensive pages) otherwise (W;)avg/R.

5.3 Proposed Skip Page Rate Model

In this section, proposed skip page rate model is discussed. The model is based on
the hypothetical analysis. The size of VM and memory intensive pages are focused
to design this model.

The proposed model works with either of two conditions given below [44]:

e high dirty rate condition (1): W; = (¥ D;)max
e low dirty rate condition (2): W; = (¥ D;)avg

When VM is of larger size with the memory intensive application, it has more pages
which are being skipped in the iterative process. It will consider condition (1) for
evaluation. For the non-memory intensive application, it follows condition (2).

5.4 Performance Evaluation

In this section, proposed dirty page rate model and proposed skip page rate model
are evaluated. These models are compared with existing dirty page models and skip
page models.

5.4.1 Evaluation of Dirty Page Rate Models

The evaluation of dirty page model is based on three different workloads: (i) Kernel,
(i1) RUBIS Database, and (iii) OLTP [38].

Following experiments are performed using different dirty rate models. The analy-
sis of their performance on different workloads are also given as follows:

346 M. Patel et al.

e Number of dirty pages: The hot pages model and modified log model have the
optimal number of dirty pages than migration log model for kernel and OLTP
workloads. The modified migration log has an optimal number of dirty pages than
the other two models for RUBIS database workload.

e Downtime: The modified migration log model has optimal downtime than other
two models for all three workloads.

e Total migration time: The modified migration log model has optimal total migra-
tion time than the other two models for all three workloads.

e R? value of workload: Except kernel workload for log-based model, all three
models outperform optimal R? value for kernel, RUBIS, and OLTP workloads.

5.4.2 Evaluation of Skip Page Rate Models

The experiments are tested based on real data set [38] for the kernel workload.
Following observations are given here as follows:

e The skip model outperforms over both hot pages model and migration log model.
e The R? value of this model is closer to 1 and the accuracy of this model is 91%.

The concluding remarks for the performance models are discussed below:

e Migration log-based dirty model is modified and this proposed model is able to
give optimal total migration time and downtime. The R? value is also observed as
the optimal with proposed dirty model for all workloads.

e The skip model is designed based on memory intensive applications for the eval-
uation of large VMs and it performs better than existing models.

e In future work, dynamic workloads can also be applied to evaluate different dirty
and skip models. The same work can be tested on different hypervisors.

6 Open Research Problems

This section presents different three open research problems given below:

e Energy efficient resource management:
The virtualization is the technology which can improve the efficiency of resources
and so, reduce the consumption of power. It helps to manage resources due to
the abstraction layer between OS and hardware. The following research issues are
highlighted:

— CPU can be turned to low power modes while other devices cannot work with
this facility, so the use of virtualization mechanism (switching idle nodes to low
power modes) can eliminate idle power consumption.

Performance Modeling and Optimization of Live Migration ... 347

— Migrating VMs from under-utilized hosts to minimize active hosts and the same
requires algorithmic process of (i) when to migrate VM (ii) which VMs to
migrate (iii) where to migrate the VMs (iv) when and which physical nodes to
switch on/off.

— Offloading VMs from hosts when those become overloaded to avoid perfor-
mance degradation (violation of quality service SLA).

— Apply DVFS dynamic adjustment of volume and frequency for energy
consumption versus application workload of CPU based on current resource
demand.

e Resource utilization between cloud and mobile:
The servers of public cloud are able to work distributed way in nature. In mobile
cloud computing, efficient migration of VM is crucial requirement to fulfill the
cloud-based mobile augmentation effectively. The issues of resource utilization
related to mobile cloud computing is briefly given below:

— The issue of latency and performance of application when the mobile user moves
very far from the cloud server which has offloaded contents.

— Effect of overhead of data in mobile cloud computing with low cost and low
latency for resource management.

e Internet of Things (IoT) cloud and resource management:

Live migration is very much essential to deal with cloud services effectively. The
IoT-based cloud is the new platform which is used to mange IoT data. IoT cloud
provides more flexibility to business without requiring the need of data analyst.
Provisioning of cloud without IoT is based on device mobility and service require-
ments and IoT-based cloud can provide the way to manage resources that provide
effective load balancing, minimization of infrastructure cost, and on-demand con-
tent delivery. Research issues for [oT cloud-based resource management are given
below:

— Hosting of resources to nearby public cloud is the challenging issue.
— To develop the efficient mechanism in cloud networking (called fog computing)
which can properly distribute data collected from different sensors.

7 Conclusion

In this chapter, we have improved the pre-copy algorithm for live migration sys-
tem. The improved pre-copy algorithm is developed by three models: (i) compres-
sion model, (ii) prediction model, and (iii) performance model. Each model is used
to evaluate downtime and total migration time of different workloads. In the first
model, algorithmic issues for live migration is discussed and the proposed com-
pression model is implemented. It performs migration of different sizes of VM with
three workloads: (i) idle system, (ii) kernel compile, and (iii) static web server. These
workloads are performed with nonadaptive dirty rate and nonadaptive data rate. It

348 M. Patel et al.

is observed that proposed compression model is able to perform better than existing
framework of Xen. It is also observed that the nonadaptive data rate can allow max-
imum bandwidth and minimum dirty rate can allow efficient migration. The other
models of live migration are prediction model and performance model. The predic-
tion model is used to forecast data with time-series analysis. The general model of
time series is discussed in this chapter. The prediction model is evaluated with pro-
posed ARIMA model and proposed SVR model. This model works with adaptive
dirty rate and adaptive data rate to evaluate complex workloads running in a VM.
The performance model is used to find dirty pages using dirty page rate model. It also
works with adaptive dirty rate and adaptive data rate for complex workloads. Two
types of dirty page rate models are: (i) migration log-based dirty page rate model
and (ii) hot pages-based dirty page rate model. These models are compared with
proposed dirty page rate model. The skip page rate model is used to find skip pages
during migration process. The evaluation of dirty page rate model and skip page rate
model is discussed in detail. It is observed that both, prediction model and perfor-
mance model are able to work efficiently than existing framework of Xen. We want
to conclude that three proposed models are able to improve pre-copy and the results
are tested for the same. In the future work, the different combined mechanisms for
compression model are to be developed for live migration. The linear discriminant
analysis (LDA) and neural networks (NNs) can be applied for prediction model. Both
dirty page rate and skip page rate models are to be implemented using probability
method.

References

1. Petrovi, D., & Schiper, A. (2012, March). Implementing virtual machine replication: A case
study using xen and kvm. In 2012 IEEE 26th International Conference on Advanced Informa-
tion Networking and Applications (AINA) (pp. 73-80). IEEE.

2. Buyya, R., Vecchiola, C., & Selvi, S. T. (2013). Mastering cloud computing: foundations and
applications programming. Newnes.

3. Vaquero, L. M., Rodero-Merino, L., Caceres, J., & Lindner, M. (2008). A break in the clouds:
towards a cloud definition. ACM SIGCOMM Computer Communication Review, 39(1), 50-55.

4. Cherkasova, L., Gupta, D., & Vahdat, A. (2007). When virtual is harder than real: Resource
allocation challenges in virtual machine based it environments. Technical Report, Hewlett
Packard Laboratories, HPL-2007-25.

5. Clark, C., Fraser, K., Hand, S., Hansen, J. G., Jul, E., Limpach, C., et al. (2005, May). Live
migration of virtual machines. In Proceedings of the 2nd conference on Symposium on Net-
worked Systems Design & Implementation-Volume 2 (pp. 273-286). USENIX Association.

6. Zaw, E. P., & Thein, N. L. (2012). Improved live VM migration using LRU and Splay tree
algorithm. International Journal of Computer Science and Telecommunications, 3(3), 1-7.

7. Jin, H., Deng, L., Wu, S., Shi, X., & Pan, X. (2009, August). Live virtual machine migration
with adaptive, memory compression. In IEEE International Conference on Cluster Computing
and Workshops, 2009. CLUSTER’09 (pp. 1-10). IEEE.

8. Jin, H., Gao, W., Wu, S., Shi, X., Wu, X., & Zhou, F. (2011). Optimizing the live migration of
virtual machine by CPU scheduling. Journal of Network and Computer Applications, 34(4),
1088-1096.

Performance Modeling and Optimization of Live Migration ... 349

9.

10.
11.

12.
. Ahmad, R. W,, Gani, A, Hamid, S. H. A,, Shiraz, M., Xia, F., & Madani, S. A. (2015). Virtual

14.

15.

16.

17.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Alamdari, J. F., & Zamanifar, K. (2012, December). A reuse distance based precopy approach
to improve live migration of virtual machines. In 2012 2nd IEEE International Conference on
Parallel Distributed and Grid Computing (PDGC) (pp. 551-556). IEEE.

Chisnall, D. (2008). The definitive guide to the xen hypervisor. Pearson Education.

Lee, M., Krishnakumar, A. S., Krishnan, P., Singh, N., & Yajnik, S. (2010, March). Supporting
soft real-time tasks in the xen hypervisor. In ACM Sigplan Notices (Vol. 45, No. 7, pp. 97-108).
ACM.

Goldberg, R. P. (1974). Survey of virtual machine research. Computer, 7(6), 34—45.

machine migration in cloud data centers: a review, taxonomy, and open research issues. The
Journal of Supercomputing, 71(7), 2473-2515.

Patel, M., Chaudhary, S. & Garg, S. (in press). Improved pre-copy algorithm using statistical
prediction and compression model for efficient live memory migration. International Journal
of High Performance Computing and Networking, Inderscience. http://www.inderscience.com/
info/ingeneral/forthcoming.php?jcode=ijhpcn.

Nathan, S., Kulkarni, P., & Bellur, U. (2013, April). Resource availability based performance
benchmarking of virtual machine migrations. In Proceedings of the 4th ACM/SPEC Interna-
tional Conference on Performance Engineering (pp. 387-398). ACM.

Shribman, A., Hudzia, B., & (2012, August). Pre-Copy and post-copy VM live migration for
memory intensive applications. In 2012 Euro-Par Parallel Processing Workshops (pp. 539—
547). Heidelberg: Springer.

Patel, M., & Chaudhary, S. (2014, December). Survey on a combined approach using prediction
and compression to improve pre-copy for efficient live memory migration on Xen. In 2014
International Conference on Parallel, Distributed and Grid Computing (PDGC), (pp. 445—
450). IEEE.

. Liu, Z., Qu, W., Liu, W.,, & Li, K. (2010, December). Xen live migration with slowdown

scheduling algorithm. In 2010 International Conference on Parallel and Distributed Comput-
ing, Applications and Technologies (PDCAT) (pp. 215-221). IEEE.

Liu, W., & Fan, T. (2011, August). Live migration of virtual machine based on recovering
system and CPU scheduling. In Information Technology and Artificial Intelligence Conference
(ITAIC), 2011 6th IEEE Joint International (Vol. 1, pp. 303-307). IEEE.

Stage, A., & Setzer, T. (2009, May). Network-aware migration control and scheduling of dif-
ferentiated virtual machine workloads. In Proceedings of the 2009 ICSE Workshop on Software
Engineering Challenges of Cloud Computing (pp. 9-14). IEEE Computer Society.

Svard, P., Hudzia, B., Tordsson, J., & Elmroth, E. (2011). Evaluation of delta compression
techniques for efficient live migration of large virtual machines. ACM Sigplan Notices, 46(7),
111-120.

Zhang, Z., Xiao, L., Zhu, M., & Ruan, L. (2014). Mvmotion: a metadata based virtual machine
migration in cloud. Cluster Computing, 17(2), 441-452.

Deng, L., Jin, H., Wu, S., Shi, X., & Zhou, J. (2011, December). Fast saving and restoring
virtual machines with page compression. In 2011 International Conference on Cloud and
Service Computing (CSC) (pp. 150-157). IEEE.

Tafa, 1., & Paci, H. (2011, September). The theoretical analysis of adaptive memory com-
pression in Load Balancing page memory with Live-Migration approach. In Network-Based
Information Systems (NBiS), 2011 14th International Conference on (pp. 450-455). IEEE.
Cui, W., & Song, M. (2010, August). Live memory migration with matrix bitmap algorithm.
In 2010 IEEE 2nd Symposium on Web Society (SWS) (pp. 277-281). IEEE.

Liu, Z., Qu, W,, Yan, T., Li, H., & Li, K. (2010, October). Hierarchical copy algorithm for Xen
live migration. In 2010 International Conference on Cyber-Enabled Distributed Computing
and Knowledge Discovery (CyberC) (pp. 361-364). IEEE.

Lu, P, Barbalace, A., Palmieri, R., & Ravindran, B. (2013, August). Adaptive live migration to
improve load balancing in virtual machine environment. In Euro-Par Workshops (pp. 116-125).
Jing, Y. (2012, January). Key technologies and optimization for dynamic migration of virtual
machines in cloud computing. In 2012 Second International Conference on Intelligent System
Design and Engineering Application (ISDEA) (pp. 643—-647). IEEE.

http://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijhpcn
http://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijhpcn

350

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.
39.
40.
41.

42.

43.

44,

M. Patel et al.

Sun, G. F, Gu, J. H,, Hu, J. H,, & Zhao, T. H. (2011). Improvement of live memory migration
mechanism for virtual machine based on pre-copy. Computer Engineering, 37(13).
Voorsluys, W., Broberg, J., Venugopal, S., & Buyya, R. (2009). Cost of virtual machine live
migration in clouds: A performance evaluation. In Cloud Computing (pp. 254-265). Heidel-
berg: Springer.

Mosberger, D., & Jin, T. (1998). Httperfa tool for measuring web server performance. ACM
SIGMETRICS Performance Evaluation Review, 26(3), 31-37.

Hu, Y., Nanda, A., & Yang, Q. (1999, February). Measurement, analysis and performance
improvement of the Apache web server. In Performance, Computing and Communications
Conference, 1999 IEEE International (pp. 261-267). IEEE.

Tabachnick, B. G., & Fidell, L. S. (2013). Time-Series Analysis. Using Multivariate Statistics,
CourseSmart eTextbook (6th ed.). Pearson

Hyndman, R. J., & Khandakar, Y. (2007). Automatic time series for forecasting: the forecast
package for R (No. 6/07). Monash University, Department of Econometrics and Business
Statistics.

Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2015). Introduction to time series analysis
and forecasting. Wiley.

Patel, M., Chaudhary, S., & Garg, S. (2016). Machine learning based statistical prediction
model for improving performance of live virtual machine migration. Journal of Engineering,
2016.

Adhikari, R., & Agrawal, R. K. (2013). An introductory study on time series modeling and
forecasting. arXiv preprint arXiv:1302.6613.

Nathan, S., Bellur, U., & Kulkarni, P. (2015, August). Towards a comprehensive performance
model of virtual machine live migration. In Proceedings of the Sixth ACM Symposium on Cloud
Computing (pp. 288-301). ACM.

Hsu, C. W., Chang, C. C., & Lin, C.J. (2003). A practical guide to support vector classification.
Meyer, D. (2004). Support vector machines: The interface to libsvm in package e1071.

Liu, H,, Jin, H., Xu, C. Z., & Liao, X. (2013). Performance and energy modeling for live
migration of virtual machines. Cluster Computing, 16(2), 249-264.

Akoush, S., Sohan, R., Rice, A., Moore, A. W., & Hopper, A. (2010, August). Predicting
the performance of virtual machine migration. In 2010 IEEE International Symposium on
Modeling, Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS)
(pp. 37-46). IEEE.

Aldhalaan, A., & Menasc, D. A. (2013). Analytic performance modeling and optimization of
live VM migration. In Computer Performance Engineering (pp. 28—42). Heidelberg: Springer.
Patel, M., Chaudhary, S., & Garg, S. (2016, April). Performance modeling of skip models for
VM migration using Xen. In 2016 International Conference on Computing, Communication
and Automation (ICCCA) (pp. 1256-1261). IEEE.

http://arxiv.org/abs/1302.6613

Analysis of Security in Modern Container
Platforms

Samuel Laurén, M. Reza Memarian, Mauro Conti and Ville Leppénen

Abstract Containers have quickly become a popular alternative to more traditional
virtualization methods such as hypervisor-based virtualization. Residing at operating
system level, containers offer a solution that is cheap in terms of resource usage and
flexible in the way it can be applied. The purpose of this chapter is two-fold: first,
we provide a brief overview of available container security solutions and how they
operate, and second, we try to further elaborate and asses the security requirements
for containers as proposed by Reshetova et al. We take a look at the current and
past security threats and Common Vulnerabilities and Exposures (CVE) faced by
container systems and see how attacks that exploit them violate the aforementioned
requirements. Based on our analysis, we contribute by identifying more security
requirements for container systems.

1 Introduction

The benefits of virtualization have long been understood. By loosening the coupling
between operating systems and hardware, virtualization has enabled easier scaling
and management of computational resources, lessened the burden of deployment and
enabled better utilization of hardware resources.

Traditional virtualization methods work by providing guest operating systems
with a complete set of virtualized hardware resources. The virtual machine monitor,
or hypervisor, essentially divides the physical hardware resources into a set of virtual
ones and then allocates them between the guests. This way of doing the virtualization
of hardware level has many benefits, such as making the virtualization transparent to
the guest operating system, and allowing unmodified versions of operating system
to be run on top of the hypervisor.

S. Laurén - M. Reza Memarian (X)) - V. Leppidnen
Department of Information Technology, University of Turku, Turku, Finland
e-mail: mohammad-reza.memarian @utu.fi

M. Conti
Department of Mathematics, University of Padua, Padua, Italy
e-mail: conti@math.unipd.it

© Springer Nature Singapore Pte Ltd. 2017 351
S. Chaudhary et al. (eds.), Research Advances in Cloud Computing,
DOI 10.1007/978-981-10-5026-8_14

352 S. Laurén et al.

The principal task of operating systems is to manage and share resources among
applications. This is done through a set of useful abstractions such as processes, files
and sockets. Collections of these resources form hierarchies and namespaces, such as
process trees or sets of file descriptors. In turn, these collections of resources, along
with the services provided by the operating system, define the operating environment
for programs to run on. Traditionally, every process on a system shared the same
operating environment: each process belonged to the same process hierarchy and
had access to the same set of file systems and networks as every other process. In
other words, there was just a single global namespace for these classes of resources.

Containers generalized this by dividing these previously global resources between
differentisolated entities, essentially creating multiple separate user spaces. This way,
containers provide another form of virtualization by operating at a higher level of
abstraction. Instead of managing virtualized, logical, hardware devices, container
systems divide resource abstractions provided by the operating system. Where in the
traditional hypervisor-based virtualization different guest operating systems share
the same set of hardware, in the container-based approach the sharing is expanded
to include the operating system kernel itself. In other words, all the containers on a
system share the same kernel but are otherwise isolated from each other. In Sect. 2,
we clarify the mentioned isolation.

Extending virtualization into kernel level (from the hardware level) has provided
multiple benefits. The most obvious benefit of container-based systems is their effi-
ciency in comparison to traditional virtualization methods, since the systems only
require kernel to manage additional data structures instead of emulating the behav-
ior of hardware devices. [1] found that the overhead introduced by containers was
almost negligible. This is understandable since launching a container requires little
more than creating a new process.

Another benefit of containers is compatibility. Where a hypervisor is often depen-
dent on certain hardware features, such as Intel VT-x for efficient virtualization [2],
containers have no such requirement and are able to run anywhere the kernel can
run. There are exception to this, since certain security features (such as Seccomp
filtering) are currently supported only on certain architectures [3].

However, the benefits of containers come at a cost. The shared kernel inevitably
expands the attack surface in comparison to hypervisor-based virtualization. A great
care needs to be taken to ensure that a process inside a container cannot affect
other processes running inside different container’s context in unexpected ways.
For containers to be truly isolated, the entirety of the kernel’s user space facing
interface needs to be container aware. This is not a simple feature to retrofit into an
existing operating system. The complexity of the task is manifested by the decade-
long process of incorporating the required changes into the Linux kernel. Aside
from security, another notable drawback is that shared-kernel architecture prevents
running different operating systems on different containers.

In this chapter, we discuss the security properties of containers and help the
readers to understand the benefits and costs associated with them. We base our
analysis on the six requirements presented by [4]. As the presented requirements are
rather abstract, and no grounds for their completeness is given in [4], we look at

Analysis of Security in Modern Container Platforms 353

security threats of containers (classified by [5]) and security incidents (CVEs)
reported on container systems and their underlying OS kernel. As a contribution,
we compare those against the six requirements given in [4] in order to gain infor-
mation on the coverage of the requirements and their possible practical relevance
(concerning the reported incidents). Based on our analysis, we are able to comple-
ment the list of [4] by proposing three more security requirements for container
systems. While container-like virtualization solutions exist for multiple operating
systems, we concentrate only on container systems for Linux.

The rest of this chapter is organized as follows. In Sect.2 we describe the main
security requirements for containers. In Sect. 3, we present preliminary information
about container technology’s structure. In Sect.4, we describe the main container
platforms while, in Sect. 5, we discuss the main security threats to the containers. In
Sect. 6, we analyze the security requirements for container with regard to previously
discovered vulnerabilities. Finally in Sect.7, we draw our conclusions and propose
topics for future research.

2 Security Requirements for Containers

In their seminal work, [4] defined a set of requirements that any container system
has to fulfill in order to be considered secure. The requirements deal with different
types of operating systems’ resources and interaction between different containers
in relation to them. Surprisingly no real justification for the set of six requirements
is given by [4]. Below, we provide a quick summary of the requirements:

R1—Isolation of processes: No process belonging to a container should be able
to directly influence processes belonging to other containers. In other words, the
operating system should only allow processes to access information about other
processes within the boundaries of their own container. This also includes process
control features such as signaling.

R2—Filesystem isolation: A process inside a container should not be able to
(directly) affect filesystems that have not been allocated for it.

R3—Device isolation: Device drivers present a significant interface for potential
attackers to exploit. A container system should adequately protect devices from
containers.

R4—IPC isolation: Operating systems provide applications with various inter-
process communication mechanisms. In a container-enabled system, these prim-
itives should be restricted to operate only within the bounds of a single container.
That is, no cross-container IPC should be allowed.

R5—Network isolation: Containers should not be able to eavesdrop or modify
traffic originating from other containers.

354 S. Laurén et al.

R6—Resource management: A container system should be able to limit the
resources used by containers. That is, it should be able to prevent individual con-
tainers from using up all the resources and, in effect, preventing other containers
from running.

We note that R4 can be seen as a special case of R1.

3 Container Building Blocks

In this section, we take a look at the set of technologies that make containers possible.
The road to containers on Linux has been a long one, supporting containers has
required changes to many core parts of the operating system.

3.1 Namespaces

Namespaces [6] are the fundamental security related kernel feature enabling contain-
ers. In the introduction, we described containers as a way of partitioning operating
system’s resources into multiple isolated entities. Namespaces are the kernel feature
making this possible.

Currently, Linux supports six distinct namespace categories for controlling dif-
ferent classes of resources. A process can move into a new namespace using the
unshare system call [7] or alternatively, it can create a new child process that
belongs to a namespace from the beginning using the c1one system call [8]. Process
can also join to an existing namespace using setns system call [9].

Processes inherit their namespace memberships to their children, that is, if a
process creates a child, the child will share its parent’s namespaces. The six name-
space categories are the following (the actual names can vary):

Process Identifier (PID) PID namespace controls the process ID numbers.
Processes belonging to a different PID namespace can have the same process
ID.

Mount Mount namespace controls the list of mounted filesystems.

User User namespaces control user and group identifiers along with other security-
related information. User namespaces work by mapping IDs between namespaces.
This has been particularly important in terms of container security, since it enables
creation of unprivileged containers that do not have root access outside of their own
namespace. The implications of user namespaces will be more widely discussed
in Sect.3.4.

Network Network namespaces allow different namespaces to have different views
of available network interfaces.

Interprocess Communications (IPC) IPC namespace controls the access of
processes to inter-process communication objects, such as POSIX message queues.

UTS UTS namespace controls processes’ host and domain name.

Analysis of Security in Modern Container Platforms 355

Each actual process belongs to one namespace in each of the six namespace
categories. Thus, because the different resources can be separately controlled, we
can achieve a great deal of flexibility in terms of isolation. This creates a whole
spectrum of different containment solutions from sandboxes [10] targeting individual
applications with limited isolation to full-featured container systems.

By combining these features, an individual process can be effectively isolated
from the rest of the system. In this assessment, we will see how this isolation can
fail and what problems there have been in real-world container implementations.

The six namespace categories are also connected to the six security requirements
R1-R6. Obviously, R1 is strictly related to PID namespace but also to IPC namespace.
R2 is related to Mount and User namespaces whereas R3 is slightly related to User
namespace. R4 is linked to IPC namespace, and RS is mostly related to Network and
UTS namespaces. Requirement R6 is not really covered with namespaces as such
but rather with the control group concept of the Sect.3.2.

3.2 Control Groups

Control groups or cgroups are a feature of the Linux kernel that allows keep-
ing track of groups of processes and assigning resource limits to them. In a way,
they can be viewed as a greatly expanded and robust variant of ulimits, a tradi-
tional resource limiting facility that allowed to control individual processes’ resource
usage. Where ulimit fells short, is the ability to impose control over child processes.
In contrast, cgroups membership is inherited to all the children in the process
hierarchy.

Control groups are structured around multiple controllers. Individual controllers
are responsible for managing certain classes of resources. For example, memory
controller can be used to restrict processes’ memory usage.

Because of their ability to limit resources used by containers, control groups are
a key mechanism for preventing denial-of-service type attacks against containers.

At present, there are two orthogonal implementations of control groups, the orig-
inal and the newer second generation “v2” design [11] that was published in Linux
4.5. In the original design different controllers could be individually mounted while
the second version offers a single unified hierarchy where all the available controllers
are automatically present.

On a practical level, control groups are managed through a special pseudo file
system that is usually mounted in /sys/fs/cgroup. Through the use of this
filesystem, control groups hierarchies can be constructed, controllers assigned to
groups, processes placed inside them. Additionally, control groups can be nested in
a way that each level of nesting can impose further restrictions while inheriting the
limits of its parent.

356 S. Laurén et al.

3.3 Capabilities

Traditionally, UNIX allowed root to have unlimited power over the system.
Capabilities [12] make program privileges more fine-grained by allowing processes
to posses only a subset of the capabilities available to the root. For example, a pro-
gram managing system time could just have cap_sys_time bit set in the binary,
allowing it to modify system time settings. This can be contrasted with the traditional
setuid-based approach where the binary would have gained full root privileges
upon execution, making it a worthwhile target for attacks. Capabilities can be asso-
ciated with threads and files and can be described in terms of bitmaps where each bit
presents a capability. Each thread has four associated capability sets as follows:

Permitted Permitted set represents the full set of capabilities that the thread can
assume during its execution.

Inheritable Inheritable set represents the set of capabilities that child processes
can inherit.

Effective Effective set represents the capabilities that the thread currently has. Ker-
nel uses it to determine whether or not a privileged operation should be allowed.
Thread’s effective capabilities are always bounded by the capabilities in its Per-
mitted set. The Effective set is useful as it provides for capability aware programs
a way to temporarily lower permissions available for them.

Ambient Ambient set is a newer addition to capabilities model. The Ambient set
has been introduced to make it easier to keep capabilities after execve command.
Before the Ambient set was introduced, losing capabilities due to empty file-level
Inheritable set presented a problem.

Aside from threads, program binaries can also have associated capabilities. These
capabilities are stored in files’ extended attributes. Similar to the way thread capa-
bilities work, file-level capabilities are defined in terms of sets as follows:

Permitted In file-level capabilities, Permitted set defines the capabilities that
threads will automatically have upon program execution. This is similar to the
way setuid-binaries work.

Inheritable For binaries, Inheritable set defines the bounding set of capabilities
that the program can acquire through inheritance. When a thread execve’s a
binary, its Effective set of capabilities is AND’ed with its Inheritable set and then
AND’ed with file’s inheritable capabilities.

Effective Aside from the two capability sets introduced above, files also have an
associated effective bit. If the effective bit is set, the program threads will automat-
ically receive all the permissions specified in the Permitted set upon execution.
This allows programs that are unaware of the capability system be confined with it.

Capabilities are important security mechanism for containers since they allow
limiting the program privileges to a minimum. What default capabilities the con-
tainer platforms give out to the containers is one of the differentiating features worth
assessing when comparing security of the systems.

Analysis of Security in Modern Container Platforms 357

3.4 Privileged and Unprivileged Containers

Ever since the dawn of UNIX, one of the things needing careful attention is the question
of root. To be more specific, which components on the system are executing with the
root privileges. Capabilities introduced a finer level of control over the privileges.

User namespaces are a relatively recent and large feature of the Linux kernel.
Because of their significance to the security properties of the system, they are worthy
of a more in-depth look. User namespaces allow mappings between user and group
IDs, allowing uid within a namespace to correspond to a different uid outside. On a
practical level, this mapping is implemented by shifting identifiers by a predetermined
amount. For example, a process can execute with an euid of 0 within a namespace but
have an euid of 10,000 outside of it. This allows processes to have the root privileges
within a container but lack those on a system-wide scale.

Container security can greatly be enhanced by making use of this ability, by allow-
ing containers to execute without root on the host. Privileged containers are those
where the uid 0 within the container maps directly to the host’s root, correspondingly,
unprivileged containers are those where the two differ. Unprivileged containers can
execute as a regular user on the host system and their access can be limited with
traditional methods.

The difficulty of securing privileged containers is widely accepted, for example,
the LXC documentation acknowledges the inherent riskiness of privileged containers
[13]:

As privileged containers are considered unsafe, we typically will not consider new container

escape exploits to be security issues worthy of a CVE and quick fix.

[...]

LXC upstream’s position is that those [privileged] containers aren’t and cannot be root-safe.

3.5 Auxiliary Security Measures

The aforementioned techniques are roughly enough to achieve the baseline level of
functionality required by containers. However, additional techniques can be deployed
for more in-depth security. These additional measures are even more important in
the case of privileged containers to restrict root within the containers.

Seccomp-BPF Filtering Seccomp-BPF is a feature of the Linux kernel, which
enables programs to perform a one-way transition into a more restricted state
where all the system calls performed are passed through a program-defined filter.
By default, Docker uses Seccomp-based system call blacklist with 52 potentially
dangerous system calls [5]. However, it is worth noting that some of those calls
could also be denied by the capabilities used.

Mandatory Access Control Linux security modules (such as SELinux or AppAr-
mor) that offer Mandatory Access Control style permission model are also valu-
able in further restricting containers against escapes.

358 S. Laurén et al.

4 Container Platforms

In this section we provide a brief overview of the dominant container platforms. We
will focus on Docker [14] as we try to understand how modern container platforms
employ the security mechanisms presented in Sect.3. However, we will also look
how other other popular platforms compare to it.

4.1 Docker

Docker is a popular container platform characterized by its encouragement for
ephemeral and immutable single-application containers. Containers should be easy
to create and destroy and all the mutable states should be stored separately from
the container itself. This sets it further apart from more traditional virtual machine
platforms.

From a security perspective, Docker’s emphasis on single-application containers
makes it arguably easier to secure than platforms offering a more traditional virtu-
alization experience. A single application might not require all the privileges of a
full-fledged system, enabling the use of more restrictive configurations, and reducing
the attack surface.

Additionally, in search for even lighter containers, Docker recommends using
smaller base images, which in turn reduces change of failure. Of course, having
security-conscious best practices in place does not guarantee the security of any par-
ticular deployment. However, encouraging secure practices through default settings
could increase the likelihood that containers will be properly configured.

In the previous sections, we highlighted the role of capabilities in securing con-
tainers. Linux supports around forty capabilities and by default Docker grants 14 of
them to containers [15]. These are listed in Table 1. Aside from capabilities, Docker
employs a default seccomp policy with a whitelist of allowed system calls [16].

Docker supports user namespaces, making it possible to map the root inside a
container to an unprivileged user on the host. Unfortunately, this is not used by
default and has to be manually enabled by the user [17].

Architecturally, Docker is composed of multiple components providing services
at different levels of abstraction. From the user’s point of view, the most visible com-
ponent is the client, which can be invoked via the docker command. The client is
used to communicate with the docker daemon. The docker daemon runs in the back-
ground and is responsible for managing containers. Communication between the
client and the daemon happens over a UNIX socket or, alternatively, over TCP. Secur-
ing this communication channel is especially important since the Docker daemon
often has considerable privileges on the host system [17].

The Docker daemon offers support for many high-level operations, such as down-
loading images from online sources. In turn, it outsources the lower level details of
container management to another daemon, containerd, which is responsible for

Analysis of Security in Modern Container Platforms 359

Table 1 Docker’s default capabilities [15]

SETPCAP Remove capabilities or add them from thread’s bounding set
MKNOD Make block or character special files

AUDIT WRITE Write to audit log

CHOWN Modify ownership information

NET_RAW Use “raw” sockets

DAC_OVERRIDE

Bypass permission checks on file access

FOWNER

Bypass checks on certain file operations that require file owner ID
to match the user ID

FSETID Do not clear setuid and setgid flags after modifications
KILL Send signals without regarding permissions

SETGID Allow arbitrary setgid and setgroups operations
SETUID Manipulate process UIDs

NET_BIND_SERVICE Allows binding privileged ports

SYS_CHROOT Change file system root

SETFCAP Set file capabilities

Fig. 1 The runtime
architecture of Docker

docker

v

dockerd

v

containerd

" AR"

runc runc runc runc

executing containers using a container runtime. By default, Docker utilizes the runc
container runtime, which supports running Open Container Initiative compatible
containers [18]. This multi-layered design makes it possible to swap out individual

components (Fig. 1).

Docker makes use of Dockerfiles for specifying steps needed for building a con-
tainer. These build specifications can be derived from other images allowing the
reuse of common base images. For example, a Dockerfile can specify to inherit from
a base image containing a particular Linux distribution. This inheritance can extend
to multiple levels. For example, a Dockerfile for a particular application might inherit
from an image for a particular application platform, which in turn might inherit from

a distribution image.

360 S. Laurén et al.

4.2 Other Container Platforms

Linux Containers (LXC) [19] platform positions itself as a platform for running “sys-
tem containers,” containers which are more close to traditional virtual machines.
From a deployment perspective, this is a major difference between LXC and Docker.
Being oldest of the three covered alternatives, LXC has played a major role in the
evolution of Linux-based containers. In its original formation, Docker used LXC as
the backend.

One can view LXC’s system containers approach to be a potential security issue,
at least compared to single-application containers. Running a full-fledged general
purpose system requires more capabilities than an individual application. From a
security point of view, having more things in a container than is strictly necessary,
increases the possible attack surface for an adversary to exploit. However, from a
deployment point of view, LXC’s system container approach might offer a simple
migration path from the more traditional virtualization solutions.

CoreOS project’s Rkt container system has many similarities with Docker in the
sense that both projects encourage single-application containers [20]. Rkt differen-
tiates itself by having no central daemon process. This makes integrating Rkt with
other process supervisors like systemd supposedly simpler.

5 Container Threats

In their security analysis of Linux containers, [5] classified threats faced by contain-
ers into seven broad categories. There is some overlap between the categories and
exploiting a weakness in one category may very well enable attacker to succeed in
other categories as well. That is, an attack that enables the adversary to move from a
container to the host will also likely enable them to perform cross-container attacks.

Kernel Threats Since the defining features of container-based virtualization are
the facts that container implementations need to trust on the security of underlying
kernel and the different containers share the same underlying operating system
kernel, attacks that exploit weaknesses in the kernel become especially important.
Kernel provides an attacker with a huge potential attack surface and minimizing
and hardening this should be a matter of utmost importance for anyone dealing
with matters regarding container security.

Are these threats covered by security requirements R1-R6? Isolation-related
requirements R1-R5 can be seen to partly cover the threats, especially when
isolation is seen not only between containers but between a container and its
underlying OS kernel. Mostly, the requirement descriptions isolate containers
from each other (R3 is an exception). As the underlying kernel is in so much dif-
ferent role as the other containers, it would seem wise to form subclasses for each
of the requirements R1-R5: e.g., R1.1 Isolation of processes between containers;

Analysis of Security in Modern Container Platforms 361
and R1.2 Isolation of processes between a container and the kernel.

However, the issue of container implementation based on some OS kernel still
needs attention in the form of a security requirement. Although the container
system implementation as such would meet all the security requirements R1-R6,
it will not be enough if the underlying kernel is not trustworthy security-wise. It
could be argued that the underlying kernel is part of the container system, but due
to kernel’s central role and the necessity of trust between underlying OS kernel
and container system, we propose

RO0—Security of underlying kernel: Container system’s underlying OS ker-
nel needs to be technically secure.

Inner-Container Threats Attacks which only allow attacker to compromise an
individual container’s security. Insecure and unpatched applications can allow an
attacker to take control over individual containers. Even when these problems do
not allow the attacker to expand their control to other entities on the system.
These threats are not really covered by security requirements R1-R6. Yet, we do
not consider this as a problem, since these threats can be seen as application-level
security problems and are not related to the container system as such.

Cross-Container Threats Attacks which allow an attacker to affect another con-
tainer’s state from within a container. A care should be taken when considering
how the containers are connected to each other and what services are exposed, as
usual the attack surface should be kept to the minimum.

We consider that the requirements R1-R5 are originally written for these threats
and those are covered well.

Container-to-Host Threats Attacks which allow an attacker to affect the host
system from within a container. In other words, this class of threats includes the
attacks that allow an attacker to escape the container. This could be considered to
be the worst-case scenario since getting to the host system often allows an attacker
to perform additional classes of attacks.

As already discussed in ‘Kernel Threats’ item, it would perhaps be wise to define
a subclass for each of requirement R1-R5 considering these threats.

Container Manager Threats Attacks that target the container manager itself.
Container managers typically require considerable permissions on the host in
order to work. For example, in the context of Docker, it is generally stated that
being able to control the Docker daemon equals having root access to the machine
since the daemon can be used to extensively control the host system.

We consider that this threat is not covered by R1-R6 and neither by RO. Thus, we
propose a new security requirement as follows:

R7—Security of container manager: Container manager as a process needs
to be technically secure.

362 S. Laurén et al.

Denial of Service Threats A care should be taken to limit containers’ resource
usage so that no individual container can negatively affect other containers’ per-
formance by hogging all the resources.

We consider that requirement R6 covers these threats.

Threats introduced by new code Arguably, the container technology is still in
its infancy, at least compared to more traditional and well-understood hypervisor-
based methods. To facilitate containerization, Linux kernel has introduced a num-
ber of major new features, such as user namespaces. As the general security wis-
dom goes, new code has, in general, a higher chance of containing bugs than code
that has been well-tested and used in production for significant periods of time.
As we shall see in Sect.6, this wisdom seems to be empirically correct, since there
has been a number of notable kernel bugs associated with these features.

We consider that this class of threats proposed by [5] is already covered by
RO-R7.

6 Empirical Analysis

In this section, we take a look at some past security issues which have affected
containers. This overview is not supposed to be systematic, that is, we do not try
to cover everything since such endeavor would surely be outside the scope of a
single chapter. Instead, the purpose of this overview is to offer a glimpse of the
security landscape related to containers. Additionally, we try to view the exposed
vulnerabilities through the lens of the requirements presented by [4] and its small
elaboration by us in Sect. 5. What their analysis offers is a clear definition of isolation
requirements. We have classified the attacks based on which of these requirements the
attack allows adversary to violate. When classifying an attack into a single category
is not meaningful, we have noted that in the attack description. In Sect. 6.7, we offer
some discussion based on these findings.

In the following subsections we discuss on analysis of a set of 19 CVE (Com-
mon Vulnerabilities and Exposures) reports given in [§8, 11, 12, 21-39] by MITRE
(cve.mitre.org). The CVE database contains yearly some 10 reports explicitly related
to containers, but due to their diverse nature (so many container systems), we mainly
looked at Docker related issues yet extending the search to kernel issues. The 19
CVEs are claimed representative, yet those are just a tiny set of all CVEs.

6.1 Isolation of Processes

The first and, in some ways, the most fundamental requirement for containers that
any implementation must fulfill, is the ability to partition processes into separate

Analysis of Security in Modern Container Platforms 363

isolated hierarchies. Because PID namespaces are the enabling technology behind this
partitioning, attacks against them have the potential to shake the very foundations of
container security.

In CVE-2009-1338, kernel did not consider PID namespaces when executing KILL
system call, allowing attacker to send arbitrary signals to every process on the system
[21] (violating the requirements RO and R1). This bug represents a typical namespace
related vulnerability: a corner case where the namespace isolation was not properly
enforced.

6.2 Filesystem Isolation

There have been numerous filesystem-related vulnerabilities in the Linux kernel that
have allowed attackers to, among other things, escalate their privileges (CVE-2016-
2853; [39]) or access files from containers in unintended ways. It is worth noting
that many of the filesystem vulnerabilities are specific to some particular filesystem
module.

Layered filesystems, that is filesystems that combine multiple underlying data
sources to a single coherent view, are heavily relied on in many container platforms.
For example, Docker makes use of them to support sharing and extension of system
images. In Docker, the functionality is supported through multiple different backends,
the generally recommended one being overlayfs which has the benefit of being in the
mainline kernel and the older out-of-tree alternative aufs. Both of these filesystems
have faced namespace related security vulnerabilities in the past. In CVE-2016-2853
aufs incorrectly handled mount namespaces leading to a possible privilege escalation
[39] (violating RO and R2). CVE-2016-1576 is a similar bug concerning overlayfs [38]
(violating RO and R2). In a similar vein, CVE-2015-1328 exposed a flaw in overlayfs
that could allow an attacker to escalate their privileges, because of the incorrect
handling of user namespaces in overlayfs [32] (RO, R2). Even though the filesystem
implementation is at fault here, the main result of the bug is not a filesystem isolation
violation but privilege escalation.

Containers should only have access to the files and directories belonging to them.
Unfortunately, there have been multiple vulnerabilities that, if exploited, would vio-
late this requirement, allowing users within a container to traverse and access files
outside of it. In CVE-2014-9717, an attacker was able to access filesystem locations
beneath mount point by exploiting a vulnerability in the way kernel handled mount
options [31] (violates R2). In CVE-2015-4176, a deletion of a file or directory could
lead to unmounting of a filesystem and, subsequently, attacker gaining access to files
beneath the mount point [34] (R2). In a similar vein, CVE-2015-2925 described a
scenario where an attacker could gain access to files outside bind mount by exploit-
ing bugs related to renaming [33] (RO and R2). Aside from accessing unintended
files, vulnerabilities have also enabled attackers to write to filesystems that were
intended to be immutable. CVE-2014-5206 and CVE-2013-1957 dealt with the way
kernel handles read-only mount options in the presence of namespaces [24, 27]
(RO, R2).

364 S. Laurén et al.

6.3 Device Isolation

When it comes to securing devices in containers, control groups’ devices subsystem is
a major mechanism. It offers the ability to restrict access to device nodes by defining
whitelists. We were unable to find CVEs for this category.

6.4 IPC Isolation

One could argue that signals ought to fall into the IPC isolation category, since they
are a primitive inter-process communication mechanism. This would indicate slight
overlap between the IPC and process isolation categories as defined by [4]. If we
decide to include signaling under the definition of IPC, CVE-2009-1338 ([21]; vio-
lates RO and R4) is also applicable here. One argument against including signaling
under the requirement of IPC isolation, is that signaling can be restricted through the
PID namespaces where other IPC mechanisms are governed by the IPC namespace.
The IPC namespace is responsible for controlling System V objects and POSIX
message queues.

6.5 Network Isolation

There have been some vulnerabilities directly related to network namespaces [37]
(CVE-2015-8543), but they have not been about breaking network isolation guaran-
tees. However, in the case of container systems, bad configuration presents a great
risk to network isolation [5].

For example, in the case of Docker, all the containers are by default connected
to the same virtual bridge interface, enabling them to communicate with each other
[40]. If the containers using the bridge do not need the ability to communicate with
each other, this represents an unnecessary capability with no benefits and potential
security implications. If a container were to have a vulnerable service exposed to the
bridge, this could lead to a cross-container attack.

6.6 Resource Management

Denial of service attacks against the kernel are not unheard of, after all, all that an
attacker has to do to prevent a system from function is to make it crash. Such vulner-
ability was covered in CVE-2015-4177, where an attacker could leverage root inside
user namespace to cause collect_mounts to make the system crash [35] (vio-
lates R6). Namespaced root was also utilized in CVE-2015-4178 [36] (R6), where the

Analysis of Security in Modern Container Platforms 365

system could crash after entering an inconsistent state. A more imaginative filesys-
tem related denial of service attack was discovered in CVE-2014-7970 [29] (RO and
R6) pivot_root system call’s implementation did not correctly handle certain
paths passed as an argument, which could lead kernel getting stuck in a loop [24].
In CVE-2014-7975 (RO, R6), an attacker could prevent a system from writing to a
filesystem by remounting it in read-only mode, this was allowed because the kernel
did not require necessary capabilities from the user [30].

Networking related kernel sub-systems have also had their fair share of denial-of-
service inducing vulnerabilities. CVE-2015-8543 (R6) describes a situation enabling
local users to cause system crash by providing a malformed protocol identifier which
caused the kernel to dereference a NULL function pointer [37]. In CVE-2009-1360 (RO,
R6), remote attacker could crash the system by forcing the kernel to dereference a
NULL pointer by utilizing the incorrect handling of IPv6 packets when the networking
namespace support was enabled [22]. CVE-2011-2189 (RO, R6) provided attackers
with a way to corrupt kernel memory and crash the system by rapidly creating and
cleaning up network namespaces [23].

6.7 Discussion and Some Other CVE Cases

The multitude of system calls and features provided by the kernel form an ample
attack surface for potential attackers. Since container isolation is solely dependent
upon the correctness of these interfaces, it has become important understanding how
they have been vulnerable in the past and what kinds of security ramifications they
have had. In the previous subsections, we reviewed relevant vulnerability reports
mainly against R1-R6.

What is missing from the above analysis, however, are vulnerabilities that are not
strictly about violating isolation and resource constraints. While analysis of this kind
of course has its place, it leaves out many possible vectors of attack that a real-world
deployment would have to take into account.

As an example, attacks that fall outside of the definition offered by [4] are attacks
that target the container deployment process and the components responsible for it.
For container deployment to be secure, the authenticity of deployed images should
obviously be verified. In CVE-2014-5277, Docker used insecure HTTP connections as
afallback if the primary HTTPS connection to the container registry failed, this allowed
potential attackers to facilitate downgrade attacks [28]. In a similar vein, CVE-2014-
0048 noted that Docker did some of its download over an insecure connection [25].
We propose one more security requirement:

R8—Security of deployment process: The container deployment process needs
to be secure specifically in terms of integrity and confidentiality.

366 S. Laurén et al.

Table 2 Classification of container related vulnerabilities

RO R1 R2 R3 R4 RS R6 R7 RS
CVE-2009-1338 | X X X
CVE-2009-1360 |X X
CVE-2011-2189 |X X
CVE-2013-1957 |X X
CVE-2014-0048 X
CVE-2014-3499 X
CVE-2014-5206 |X X
CVE-2014-5277 X
CVE-2014-7970 |X X
CVE-2014-7975 |X X
CVE-2014-9717 X
CVE-2015-1328 | X X
CVE-2015-2925 | X X
CVE-2015-4176 X
CVE-2015-4177 X
CVE-2015-4178 X
CVE-2015-8543 X
CVE-2016-1576 |X X
CVE-2016-2853 | X X

Additionally, since the container engine typically wields considerable power in the
host system, a care should be taken that only trusted users have the ability to control
it. For example, in CVE-2014-3499, Docker’s management socket did not have strict
enough permissions specified, leading to possible security privilege escalation [26]
(violates R7).

In Table2, we have summarized the results of our vulnerability classification.
Since containers are mainly an operating-system-level feature, that is, the kernel is
responsible for providing most of the building blocks that enable containers, it is
not surprising that RO is well represented among the analyzed vulnerabilities. The
security of the underlying kernel is paramount to the security of containers.

Arguably, a more informative view of the state of container security can be
achieved through the more specific requirements. The fact that vulnerabilities touch-
ing upon file system isolation (R2) are so common highlights the need for robust and
well-tested implementations in this space. Additionally, one might consider employ-
ing additional security measures such as mandatory access control systems to further
harden file system containment.

Vulnerabilities dealing with resource management (R6) are also numerous in the
data. These problems can potentially enable denial-of-service attacks against con-
tainer systems. As a partial remedy, one might employ orchestration and monitoring

Analysis of Security in Modern Container Platforms 367

services to make sure that the individual containers (and the hosts executing the
containers) are responsive and automate steps to recover from resource exhaustion.
Luckily, stateless containers are well suited for this sort of automated deployments.

7 Conclusions and Future Research

We believe that containers have already claimed their rightful place as a core piece
in infrastructure deployment puzzle. Compared to traditional virtualization meth-
ods, they offer some similar features, mainly, the ability to create logically isolated
environments for applications. Where traditional virtualization methods produced a
jump in deployment flexibility by decoupling environments from hardware, container
systems go even further by making this increasingly cheap in terms of resources.

However, the benefits come at a cost. Where individual physical servers offer better
isolation compared to traditional virtualization methods, traditional virtualization
methods offer arguably better isolation than containers. In this chapter, we have
taken a look at the techniques behind Linux containers and highlighted some of the
security concerns associated with them. We have introduced the core technological
pieces that make containerization possible in Linux and discussed their security
properties.

We presented the general security requirements, proposed by [4], that any con-
tainer system has to uphold. We challenged this requirement list by considering it
against a classification of container system related threats given by [5]. Moreover,
we also analyzed a set of CVE reports to get more understanding on the coverage
of previously proposed security requirements. As a contribution, we were able to
propose three new security requirements for container systems and moreover there
seems to be reported CVEs matching almost all the requirements. Some requirement
(RO, R2, R6) violations would seem to be more common than the others, but our
sample is small and thus such conclusion cannot be drawn.

As far as general security recommendations go, we emphasize the role of unprivi-
leged containers for preventing container-to-host type vulnerabilities. Also, it should
be noted that as far as default configurations go, existing container platforms try to
accommodate a wide variety of use-cases, sometimes at the cost of granting more
privileges to containers than what might be necessary for any specific application.
This is why care should be taken to evaluate the privileges granted to containers.
Good security principles like defence-in-depth should also be followed, this can
mean restricting containers further by deploying mandatory access control policies
on container hosts.

As further research we suggest making a systematic review on kernel and container
related CVEs with respect to the formed requirements RO-R8. Moreover, one should
aim at more precise definition for the requirements. We consider that each of RO-R8
should be elaborated more, especially thinking the container-to-host trust relation
besides the inter-container isolation aspects.

368

S. Laurén et al.

References

10.

11.

12.

13.

14.

16.

17.

19.
20.

21.

22.

23.

24.

25.

26.

. Morabito, R., Kjallman, J., & Komu, M. (2015). Hypervisors vs. lightweight virtualization:

a performance comparison. In 2015 IEEE International Conference on Cloud Engineering
(IC2E) (pp 386-393). IEEE.

. Uhlig, R., Neiger, G., Rodgers, D., Santoni, A., Martins, F., Anderson, A., et al. (2005). Intel

virtualization technology. Computer, 38(5), 48-56.

. Wang, X., Lazar, D., Zeldovich, N., Chlipala, A., & Tatlock, Z. (2014). Jitk: A trustworthy

in-kernel interpreter infrastructure. In /1th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14), USENIX Association, Broomfield, CO (pp. 33—47). Retrieved
from https://www.usenix.org/conference/osdil4/technical-sessions/presentation/wang_xi.

. Reshetova, E., Karhunen, J., Nyman, T., & Asokan, N. (2014). Security of OS-level virtual-

ization technologies. In Secure IT Systems (pp. 77-93). Springer.

. Grattafiori, A. (2016). Understanding and hardening linux containers. NCC Group: Whitepa-

per.

. (2016) namespaces(7)—linux manual page. Retrieved from http://man7.org/linux/man-pages/

man7/namespaces.7.html.

. (2016) unshare(2)—linux manual page. Retrieved from http://man7.org/linux/man-pages/

man2/unshare.2.html.

. (2016) clone(2)—linux manual page. Retrieved from http://man7.org/linux/man-pages/man2/

clone.2.html.

. (2016) setns(2)—linux manual page. Retrieved from http://man7.org/linux/man-pages/man2/

setns.2.html.

Potter, S., & Nieh, J. (2010). Apiary: Easy-to-use desktop application fault containment on
commodity operating systems. In ATC 2010: USENIX Annual Technical Conference.

(2016) cgroups(7)—linux manual page. Retrieved from http://man7.org/linux/man-pages/
man7/cgroups.7.html.

(2016) capabilities(7)—linux manual page. Retrieved from http://man7.org/linux/man-pages/
man7/capabilities.7.html.

(2016b) Linux containers - 1xc - security. Retrieved from https://linuxcontainers.org/Ixc/
security/.

(2016a) Docker—build, ship, and run any app, anywhere. Retrieved from https://www.docker.
com.

. (2016¢) docker/defaults_linux.go at master docker/docker github. Retrieved from https://

github.com/docker/docker/blob/master/oci/defaults_linux.go#L62-L77.

(2016d) Seccomp security profiles for docker-docker. Retrieved from https://docs.docker.com/
engine/security/seccomp/.

(2016b) Docker security. Retrieved from https://docs.docker.com/engine/security/security/.

. (2016) Open container project. Retrieved from https://runc.io.

(2016a) Linux containers. Retrieved from https://linuxcontainers.org.

(2016) rkt, a security-minded, standards-based container engine. Retrieved from https://coreos.
com/rkt/.

(2009a) CVE-2009-1338. Available from MITRE, CVE-ID CVE-2009-1338. Retrieved from
https://cve.mitre.org/cgi-bin/cvename.cgi’name=CVE-2009-1338.

(2009b) CVE-2009-1360. Available from MITRE, CVE-ID CVE-2009-1360. Retrieved from
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1360.

(2011) CVE-2011-2189. Available from MITRE, CVE-ID CVE-2011-2189. Retrieved from
https://cve.mitre.org/cgi-bin/cvename.cgi’name=CVE-2011-2189.

(2013) CVE-2013-1957. Available from MITRE, CVE-ID CVE-2013-1957. Retrieved from
https://cve.mitre.org/cgi-bin/cvename.cgi’name=CVE-2013-1957.

(2014a) CVE-2014-0048. Available from MITRE, CVE-ID CVE-2014-0048. Retrieved from
https://cve.mitre.org/cgi-bin/cvename.cgi’name=CVE-2014-0048.

(2014b) CVE-2014-3499. Available from MITRE, CVE-ID CVE-2014-3499. Retrieved from
https://cve.mitre.org/cgi-bin/cvename.cgi?’name=CVE-2014-3499.

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/wang_xi
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man2/unshare.2.html
http://man7.org/linux/man-pages/man2/unshare.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/setns.2.html
http://man7.org/linux/man-pages/man2/setns.2.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
https://linuxcontainers.org/lxc/security/
https://linuxcontainers.org/lxc/security/
https://www.docker.com
https://www.docker.com
https://github.com/docker/docker/blob/master/oci/defaults_linux.go#L62-L77
https://github.com/docker/docker/blob/master/oci/defaults_linux.go#L62-L77
https://docs.docker.com/engine/security/seccomp/
https://docs.docker.com/engine/security/seccomp/
https://docs.docker.com/engine/security/security/
https://runc.io
https://linuxcontainers.org
https://coreos.com/rkt/
https://coreos.com/rkt/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1338
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1360
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-2189
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1957
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0048
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3499

Analysis of Security in Modern Container Platforms

217.

28.

29.

30.

31

32.

33.

34.

3s.

36.

37.

38.

39.

40.

(2014c) CVE-2014-5206. Available from MITRE, CVE-ID CVE-2014-5206.
https://cve.mitre.org/cgi-bin/cvename.cgi?’name=CVE-2014-5206.
(2014d) CVE-2014-5277. Available from MITRE, CVE-ID CVE-2014-5277.
https://cve.mitre.org/cgi-bin/cvename.cgi?’name=CVE-2014-5277.
(2014e) CVE-2014-7970. Available from MITRE, CVE-ID CVE-2014-7970.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-7970.
(2014f) CVE-2014-7975. Available from MITRE, CVE-ID CVE-2014-7975.
https://cve.mitre.org/cgi-bin/cvename.cgi?’name=CVE-2014-7975.
(2014g) CVE-2014-9717. Available from MITRE, CVE-ID CVE-2014-9717.
https://cve.mitre.org/cgi-bin/cvename.cgi’name=CVE-2014-9717.
(2015a) CVE-2015-1328. Available from MITRE, CVE-ID CVE-2015-1328.
https://cve.mitre.org/cgi-bin/cvename.cgi’name=CVE-2015-1328.
(2015b) CVE-2015-2925. Available from MITRE, CVE-ID CVE-2015-2925.
https://cve.mitre.org/cgi-bin/cvename.cgi?’name=CVE-2015-2925.
(2015c) CVE-2015-4176. Available from MITRE, CVE-ID CVE-2015-4176.
https://cve.mitre.org/cgi-bin/cvename.cgi’name=CVE-2015-4176.
(2015d) CVE-2015-4177. Available from MITRE, CVE-ID CVE-2015-4177.
https://cve.mitre.org/cgi-bin/cvename.cgi’name=CVE-2015-4177.
(2015e) CVE-2015-4178. Available from MITRE, CVE-ID CVE-2015-4178.
https://cve.mitre.org/cgi-bin/cvename.cgi’name=CVE-2015-4178.
(2015f) CVE-2015-8543. Available from MITRE, CVE-ID CVE-2015-8543.
https://cve.mitre.org/cgi-bin/cvename.cgi’name=CVE-2015-8543.
(2016a) CVE-2016-1576. Available from MITRE, CVE-ID CVE-2016-1576.
https://cve.mitre.org/cgi-bin/cvename.cgi’name=CVE-2016-1576.
(2016b) CVE-2016-2853. Available from MITRE, CVE-ID CVE-2016-2853.
https://cve.mitre.org/cgi-bin/cvename.cgi’name=CVE-2016-2853.

369

Retrieved from

Retrieved from

Retrieved from

Retrieved from

Retrieved from

Retrieved from

Retrieved from

Retrieved from

Retrieved from

Retrieved from

Retrieved from

Retrieved from

Retrieved from

(2016e) Understand docker container networks. Retrieved from https://docs.docker.com/v1.

10/engine/userguide/networking/dockernetworks/.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-5206
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-5277
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-7970
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-7975
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-9717
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1328
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2925
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4176
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4177
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4178
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8543
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-1576
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2853
https://docs.docker.com/v1.10/engine/userguide/networking/dockernetworks/
https://docs.docker.com/v1.10/engine/userguide/networking/dockernetworks/

Identifying Evidence for Cloud Forensic
Analysis

Changwei Liu, Anoop Singhal and Duminda Wijesekera

Abstract Cloud computing provides increased flexibility, scalability, failure toler-
ance and reduced cost to customers. However, like any computing infrastructure,
cloud systems are subjected to cyber-attacks. Post-attack investigations of such
attacks present unusual challenges including the dependence of forensically valu-
able data on the deployment model, multiple virtual machines running on a single
physical machine and multi-tenancy of clients. In this chapter, we use our own attack
samples to show that, in the attacked cloud, evidence from three different sources
can be used to reconstruct attack scenarios. They are (1) IDS and application soft-
ware logging, (2) cloud service API calls and (3) system calls from VMs. Based
on our example attack results, we present the potential design and implementation
of a forensic analysis framework for clouds, which includes logging all the activi-
ties from both the application layer and lower layers. We show how a Prolog based
forensic analysis tool can automate the process of correlating evidence from both
the clients and the cloud service provider to reconstruct attack scenarios for cloud
forensic analysis.

1 Introduction

Digital forensics applies scientific techniques to the identification, collection, exam-
ination, and analysis of data while preserving information integrity and maintaining
a strict chain of custody for the data during post-incident examinations [1]. Being a

C. Liu (X)) - D. Wijesekera

Department of Computer Science, George Mason University,
Fairfax, VA 22030, USA

e-mail: cliu6@gmu.edu

D. Wijesekera
e-mail: dwijesek @gmu.edu

A. Singhal - D. Wijesekera

National Institute of Standards and Technology, 100 Bureau Drive,
Gaithersburg, MD 20899, USA

e-mail: anoop.singhal @nist.gov

© Springer Nature Singapore Pte Ltd. 2017 371
S. Chaudhary et al. (eds.), Research Advances in Cloud Computing,
DOI 10.1007/978-981-10-5026-8_15

372 C. Liuetal.

component of digital forensics, network forensics analyzes network traffic in order
to gather information from intrusion detection systems or logs to constitute legal evi-
dence [2]. Considered as an emerging branch of forensics that combines network and
system forensics, cloud forensics addresses post-incident analysis of systems with
the complexities of distributed processing, multi-tenancy, virtualization and mobility
of computations that have challenges in identifying and preserving digital evidence,
including [3]:

1. Dependence of forensically valuable data on the deployment model and methods.

2. Large volume in content and proprietary formats of data logs.

3. The diversity and the number of simultaneously operating virtual machine
instances of a single physical machine isolated by using virtualization and weak
registries used in cloud frameworks. Consequently, extra efforts are needed in seg-
regating resources without breaching user confidentiality and analyzing traces.

4. Instances of servers running on virtual machines in the cloud monitored by hyper-
visors lack of warnings, procedures and tools for forensic investigation.

Although much research is available in digital forensics, methods used in tradi-
tional digital forensics are inadequate for forensic investigation in clouds, as clouds
have not been designed for evidence retention and integrity. Recently, National Insti-
tute of Standards and Technology (NIST) and other researchers have published papers
in cloud governance, security and risk assessment [4], and proposed implementing
forensic-enabled clouds. For example, Dykstra et al. proposed implementing cloud
to collect forensic data from system level that is below the virtual machines [5], and
Zawod et al. provided a complete, trustworthy and forensic-enabled cloud architec-
ture to collect logs for forensic analysis [6]. However, these implementations only
focus on evidence acquaintance on Infrastructure as a Service (IaaS) cloud deploy-
ment model. To the best of our knowledge, reconstructing attack scenarios by using
the evidence collected in a virtualized cloud environment has not been addressed.
In this chapter, using some example attacks in a private cloud, we show what evi-
dence can be used to reconstruct corresponding attack scenarios in the cloud, and
discuss how we may implement and automate the forensic analysis in the cloud
with the objective of saving forensic investigators’ time and effort in cloud forensic
analysis [7].

The rest of the chapter is organized as follows. Section 2 provides background and
related work. Section 3 describes a Prolog based tool used to automate the process
of reconstructing attack scenarios. Section4 shows our experimental attacks in the
cloud, and how we identify the evidence from the cloud to reconstruct attack scenarios
by using the Prolog based tool. Section 5 shows how we use system call sequences to
reconstruct attack steps when other evidence is unavailable. Section 6 describes the
open research problems in cloud forensics. We conclude the chapter by discussing
how we may implement and automate the cloud forensic analysis in Sect. 7.

Identifying Evidence for Cloud Forensic Analysis 373

2 Background and Related Work

We present the background and research related to digital and cloud forensics in this
section.

2.1 Digital Forensics

Digital forensics utilizes scientifically accepted methods to collect, validate and pre-
serve digital evidence derived from digital sources for reconstructing events found to
be criminally motivated or support unauthorized actions that disrupt planned oper-
ations [8]. Digital forensic investigators seek to extract evidence of attacks from
computers and networks by using so-called imaging tools. Typically, imaging tools
extract data from the physical memory or disk sectors of computers to a file, and then
investigators feed the extracted file into tools to perform live or dead forensic analy-
sis [9]. To obtain network evidence, forensic investigators analyze network traffic
and gather information from intrusion detection systems or logs to construct legal
evidence of attacks.

2.2 Cloud Forensics

NIST-defined cloud model uses three service deployment models: Software as a Ser-
vice (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS) [10].
SaaS allows customers to use the provider’s applications running on the cloud
infrastructure. PaaS allows customers to deploy customer-created/acquired appli-
cations on the cloud by using programming languages, libraries, services and tools
supported by the provider. IaaS provides customers with the capability of provision-
ing processing, storage, networks, and other fundamental computing resources, so
that customers can deploy and run arbitrary software including operating systems
and applications on this cloud model [10, 11].

According to Ruan et al., cloud forensics is a subset of network forensics that
follows the main phases of network forensics with techniques tailored to cloud com-
puting environments [3]. For example, data acquisition is different in SaaS and Iaa$S,
because the investigator must solely depend on cloud service providers in SaaS. In
[aaS, investigators can get virtual machine images from customers.

2.3 Related Work

Data acquisition is a main issue confronting cloud forensics because of resource
sharing, geographical distribution, decoupling of cloud-username and physical users,

374 C. Liuetal.

data preservation/integrity, timelines and correlation [12]. Many methods have been
proposed to collect evidence from clouds, including remote data acquisition, live
forensics, analysis on management plane and snapshot images [13].

Forensic tools can be used to retrieve data from the cloud. For example, by using
Guidance EnCase and Access Data FTK, Dykstra et al. successfully retrieved volatile
and nonvolatile data from Amazon EC2 cloud user instance [13, 14]. However,
those tools do not validate data integrity. To obtain evidence with validated integrity,
researchers recommended and developed some toolkits to collect related logs from
cloud infrastructure while preserving their integrity. Assuming the cloud provider
is trustworthy, Dykstra et al. developed the FROST toolkit that can be integrated
to OpenStack [15] to collect logs from the operating system level that supports
the virtual machines [5]. To address the trustworthiness, Zawod et al. designed a
complete, trustworthy and forensic-enabled cloud [6]. Hay et al. proposed live digital
forensic analysis on clouds using virtual introspection to observe the state of a virtual
machine (VM) from either the hypervisor (VMM) or some other VM, and presented a
suite of virtual introspection tools developed for Xen (VIX tools) [16]. Management
plane, also called management console, is the web interface that interfaces with the
cloud infrastructure including cloud provider’s underlying filesystem, hypervisor,
firewalls and VMs. Cloud customers including forensic investigators could download
log files, disk images and packet captures from the management plane for forensic
analysis. However, this solution requires trust in the management plane, which is a
potential vulnerability that does not exist in non-virtualized physical computers [13,
14]. Snapshot technologies enable customers to store a specific state of VM that can
be restored by being loaded to a target VM later for forensic analysis [17]. By using
snapshots, investigators can gain information on the previous running state of a VM
that is supported by hypervisor vendors, including Xen, VMWare, ESX, Hyper-V,
and cloud providers that support snapshot features [13].

Forensic tools like Encase, the Sleuth Kit, Snort, Wireshark can collect digital evi-
dence from computers and networks, which provide important information for foren-
sic analysis. In order to reconstruct potential attack scenarios by using the evidence
obtained from these tools, researchers have proposed aggregating redundant alerts by
similarities and correlating them by using pre-defined attack scenarios to determine
multi-step, multi-stage attacks [18, 19]. Currently, this method is non-automated and
rather ad-hoc. In order to reduce the investigators’ time and effort in reconstructing
attack steps, other researchers proposed using rules to automate the process of cor-
relating evidence by finding the causality between items of evidence [20, 21]. Liu
et al. implemented a Prolog based tool with two databases, including a vulnerability
database and an anti-forensic database, to ascertain the admissibility of evidence
and explain missing evidence that is removed by the attacker [21]. These rule-based
forensic analysis frameworks have been used for network forensics, but not for cloud
forensics.

Identifying Evidence for Cloud Forensic Analysis 375

3 A Prolog-Based Tool for Attack Scenario Reconstruction

In [21, 22], we described an application of MulVAL [23], which uses rules repre-
senting generic attack techniques to ascertain the causality between different items
of evidence collected from an attacked network to reconstruct attack steps. Cre-
ated using expert knowledge, these rules are used as investigators’ hypotheses to
link chains of evidence that are written in the form of Prolog predicates to form
attack steps. This system reconstructs attack scenarios in the form of acyclic graphs,
defined as follows (this definition and the corresponding example are from our pre-
vious work [22]).

Definition 1 (Logical Evidence Graph-LEG) A LEG=(N,, N¢, N, E, L, G) is said
to be a logical evidence graph (LEG), where Ny, N, and N, are three sets of disjoint
nodes in the graph (they are called fact, rule, and consequence fact nodes respec-
tively), E € ((Ny U N;) x N,) U (N, x N.), L is the mapping from a node to its
labels, and GC N, are the observed attack events. Every rule node has a conse-
quence fact node as its single child and one or more fact or consequence fact nodes
from prior attack steps as its parents. Node labels consist of instantiations of rules or
sets of predicates specified as follows:

1. Anodein N is an instantiation of predicates that codify system states including
access privileges, network topology consisting of interconnectivity information, or
known vulnerabilities associated with host computers in the system. We use the
following predicates:

a. “hasAccount(_principal, _host, _account)”, “canAccessFile(_host, _user,
_access, _path)” and etc. to model access privileges.

b. “attackerLocated(_host)”” and “hacl(_src, _dst, _prot, _port)” to model network
topology, namely, the attacker’s location and network reachability information.

c. “vulExists(_host, _vullD, _program)” and “vulProperty(_vullD, _range, _con-
sequence)” to model vulnerabilities exhibited by nodes.

2. A node in N, represents the predicate that codifies the post attack state as
the consequence of an attack step. We use predicates “execCode(_host, _user)” and
“netAccess(_machine, _protocol, _port)” to model the attacker’s capability after an
attack step. Valid instantiations of these predicates after an attack will update valid
instantiations of the predicates listed in (1).

3. Anodein N, consists of a single rule in the form p <— p; A p», - - -, Ap,, Where
p as the child node of N, is an instantiation of predicates from N, , and all p; fori €
{1...n} as the parent nodes of N, are the collection of all predicate instantiations of
Ny from the current step and N, from prior attack steps.

Figurel is an example LEG. The notation of all nodes, which is in the form
of instantiated rules or predicates as defined in Definition 1, is listed in Table 1
(Due to layout issues, the notation is in a separate table). In Fig. 1, fact, rule and
consequence fact nodes are represented as boxes, ellipses, and diamonds respectively.
Consequence fact nodes (Node 1 and 3) codify attack status obtainable from event
logs or other forensic tools recording the post-conditions of attack steps. Fact nodes

376

Table 1 The notation of nodes in Fig. 1

C. Liuetal.

Node Notation Source

1 execCode (workStationl, user) | Evidence obtained from event

log

2 THROUGH 3 (remote exploit | Rule 1 (hypothesis 1)
of a server program)

3 netAccess (workStationl, tcp, | Evidence obtained from event
4040) log

4 THROUGH 8 (direct network | Rule 2 (hypothesis 2)
access)

5 hacl (internet, workStation1, Network setup
tep, 4040)

6 attackerLocated (internet) Evidence obtained from log

7 networkServicelnfo Computer setup
(workStationl, httpd, tcp,

4040, user)

8 vulExists (workStation1, Exploited vulnerability
‘CVE-2009-1918’, httpd, obtained from IDS Alert
remoteExploit, privEscalation)

Fig. 1 An example logical
evidence graph 5 6

o0

Ok

Identifying Evidence for Cloud Forensic Analysis 377

(Nodes 5, 6, 7 and 8) include network topology of a network (Nodes 5 and 6),
computer configuration (Node 7) and the software vulnerability (Node 8) extracted
from a forensic tool by analyzing captured evidence. Rule nodes (Nodes 4 and 2)
represent specific rules that change the attack status based on attack steps.

To illustrate how rules are used to correlate corresponding items of evidence in
this Prolog based tool, we list two rules between Line 9 and Line 17 in Fig. 2, which
correspond to Rule 1 and Rule 2 mentioned in the third column of Table 1. Rules use
the Prolog notation ““: -” to separate the head (consequence) and the body (facts). In
Fig.2, Line 1 to Line 8 identifies fact and consequence predicates of the two rules.
Rule 1 between Line 9 to Line 12 represents an attack step that states: if (1) the
attacker is located in a “Zone” such as “Internet” (Line 10- attackerLocated(Zone)),
and (2) if ahost computer “H” can be accessed from the “Zone” by using “Protocol” at
“Port” (Line 11-hacl(Zone, H, Protocol, Port)), then (3) the host “H” can be accessed
from the “Zone” by using “Protocol” at “Port” (Line 9- netAccess(H, Protocol, Port))
by using (4) “direct network access” (Line 12-the description of the rule). Rule 2
between Line 13 to 17 states: (1) if a host computer “H” has software vulnerability
that can be remotely exploited (Line 14- vulExists(H, _, Software, remoteExploit,
privEscalation)), (2) “H” can be reached by using “Protocol” at “Port” with privilege

//Rule Head—post attack status as derived fact obtained from forensic analysis on evidence
1. Consequence: execCode(_host, _user).

2. Consequence: netAccess(-machine,_protocol,_port).

// Rule body—access priviledge

3. Fact: hacl(_src, _dst, _prot, _port).

//Rule body—software vulnerability obtained from forensic tool
4. Fact: vulExists(_host, _vullD, _program).

5. Fact: vulProperty(_vullD, _range, _consequence).

//Rule body—network topology

6. Fact: hacl(_src, _dst, _prot, _port).

7. Fact: attackerLocated(_host).

//Rule body—computer configuration

8. Fact: hasAccount(_principal, _host, _account).

Rule 1:

9. (netAccess(H, Protocol, Port) :-

10. attackerLocated(Zone),

11. hacl(Zone, H, Protocol, Port)),

12. rule_desc(’direct network access’, 1.0).

Rule 2:

13. (execCode(H, Perm) :-

14. vulExists(H, _, Software, remoteExploit, privEscalation),
15. networkServicelnfo(H, Software, Protocol, Port, Perm),
16. netAccess(H, Protocol, Port)),

17. rule_desc(’remote exploit of a server program’, 1.0).

Fig. 2 The example rules representing attack techniques

378 C. Liuetal.

“Perm” (Line 15- networkServicelnfo(H, Software, Protocol, Port, Perm)), and (3)
the attacker can access “H” by “Protocol” and “Port” (Line 16-netAccess(H, Protocol,
Port)), then the attacker can remotely exploit the host computer “H” and obtain the
privilege “Perm”(Line 13- execCode(H, Perm)) by using “remote exploit of a server
program” technique (Line 17).

Evidence collected from attacks instantiates the corresponding predicates. Items
between lines 1 to 8 in Fig. 2 show an example of such instantiation.

4 Using Alerts and Logs to Reconstruct Attack Scenario

In this section, we describe three experimental attacks we launched on a private cloud
and how we reconstruct the attack scenarios by using the evidence we obtained from
the cloud.

4.1 Experimental Environment Setup

OpenStack is a collection of python-based software projects that manage access
to pooled storage, computing and network resources that reside in one or multi-
ple machines of a cloud. This collection has six core projects: Neutron (Network-
ing), Nova (Compute), Glance (Image Management), Swift (Object Storage), Cinder
(Block Storage) and Keystone (Authorization and Authentication) [15]. OpenStack
can be used to deploy any of the three service models—SaaS, PaaS and IaaS, but is
mostly deployed as laaS.

“DevStack” is a series of extensible scripts that can invoke an OpenStack environ-
ment quickly. By using “DevStack”, we deployed a private IaaS cloud with the version
of “Juno” on an Ubuntu 14.04 Desktop (with IP address 172.16.168.100). Authenti-
cated users can manage OpenStack services by tying IP address 172.16.168.100 on
their browsers to access the cloud’s control dashboard “Horizon” as shown in Fig. 3.

We deployed two VMs (also called running instances), a webserver (named “Web-
Server” associated with the IP address 172.16.168.226) and a fileserver (named “File-
Server” associated with the IP address 172.16.168.229), under the authenticated user
“Admin” in our OpenStack cloud. In the “WebServer”, we deployed an Apache web
server and a MySQL database, allowing users to query their data using the web
server. Authenticated users can access the “FileServer” by remotely using “ssh”. In
order to launch an attack, we also installed Kali (the penetration testing and ethi-
cal hacking Linux distribution tool [24]) in the same network (with the IP address
172.16.168.173).

Identifying Evidence for Cloud Forensic Analysis 379

en e < 0 172.16.168.100 2 (-]

Dykstra and Sherman reported... Isyow.info/jowua/papers jowua-... Instance Overview - OpenSt... Inbow (159) - changwei.coco... T
n openstack [admin ~ & admin + |
Project 5 Project / Compute / Overview
= Overview

Overview

ST Limit Summary

> y !

Images

Instances VCPUs RAM
Access & Security

Used 2 of 10 Used 2 of 20 Used 2.5GB of 50GB
Admin - ' '
Identity -
Developer v Floating IPs Security Groups Volumes

Used 5 of 10 Used 1 0f 10 Used 201 10

[
Volume Storage

Used 10GB of 1000GE

Usage Summary

Fig. 3 OpenStack web user interface—Horizon

4.2 Example Attacks

We launched three attacks, including a SQL injection attack, a DDoS attack and a
DoS attack towards the two VMs in our IaaS cloud.

Our SQL injection attack exploits un-sanitized user inputs (CWE89) in the “Web-
Server”. Our DDoS attack known as “TCP connection flood” used “nping” in Kali to
flood the “FileServer” in order to prevent legitimate requests. While SQL injection
and DDoS attacks can happen to any network including a cloud that has correspond-
ing vulnerabilities, only IaaS privileged users can resize and delete a VM by launch-
ing DoS attacks that exploit the vulnerability “CVE-2015-3241" [25]. According
to [25], the vulnerability “CVE-2015-3241" that is in OpenStack Compute (Nova)
versions 2015.1 through 2015.1.1, 2014.2.3 and earlier allows authenticated users to
cause Denial of Services(DoS) by resizing and then deleting an instance (VM). The
process of resizing and deleting an instance in this way is also called instance migra-
tion. With “CVE-2015-3241”, the migration process does not terminate when an
instance is deleted, so an authenticated user could bypass user quota enforcement to

380 C. Liuetal.

deplete all available disk space by repeatedly performing instance migration. Figure 4
shows the process of our resizing the file server from “ds512M” to “ds1G”, where
we can see the instances’ availability zone was “nova”. We continued to resize and
delete instances until Nova was so depleted that it could not accept any new instance.

4.3 Identifying Evidence to Reconstruct Attack Scenarios

To obtain evidence for forensic analysis, we configured the web server and the SQL
database in “WebServer” to log access and query history. We also installed Snort in
“WebServer” and “FileServer” VMs and deployed Wireshark in the host Ubuntu OS
to monitor the network traffic. Snort captured the SQL injection attack and generated
alerts with appropriate rules. Also, Wireshark captured packets that formed the DDoS
attack. Figure 5 lists some Snort alerts and MySQL query logs of the SQL injection
attack, which shows the attack was done by using “or ‘1’=‘1" " to bypass the SQL
query syntax check. The snapshot of packets captured by Wireshark is listed in Fig. 6,
where we can see Kali Linux at 172.16.168.173 sent out numerous SYN packets
to “FileServer” at 172.16.168.229, and the “FileServer” sent numerous SYN-ACK
packets back to Kali Linux.

Instance Image IP Address Size Ke.y Status Availability
Name Name Pair Zone
100043 MMM
FileServer - Floating IPs: ds1G default Confirm or Revert nova
172.16.168.229 Resize/Migrate
10.0.0.5
- Floating IPs: mi.small default Active nova

172.16.168.226

Fig. 4 Resizing “FileServer”

[**] SQL Injection Attempt --1=1 [**¥]

08/16-14:37:27.818279 172.16.168.173:1715 -> 172.16.168.226:80
TCP TTL:128 TOS:0x0 ID:380 IpLen:20 DgmLen:48 DF

FhkE*ES* Seq: 0xDEDBEABF Ack: 0x0 Win: 0xFFFF TcpLen: 28
TCP Options (4) == MSS: 1460 NOP NOP SackOK

160813 14:37:29 40 Connect
40 QuerySET GLOBAL general_log = 'ON' 40 Queryselect * from profiles where

name="Alice' AND password="alice' or '1'='l"
Gen_log 2: 130813 14:39:56

Fig. 5 The SNORT alert and the MySQL database log

Identifying Evidence for Cloud Forensic Analysis 381

S No. Time Source Destination Protocel Lengtl Info

= 217 16,405625326 172.16.168.173 172,16.168.229 TCP 74 34818 — 80 [SYN] Seq=0 Win=2920.
218 10,405682554 172.16.168.173 172.16.168.229 TCP 74 44208 - 80 [SYN] Seq=0 Win=2920.

6 219 10,405746104 172.16.168.173 172.16.168.229 TCP 74 38032 - 80 [SYN] Seq=0 Win=2920.

- 220 10.408041819 172.16.168.173 172.16.168.229 TCP 74 34348 - 80 [SYN] Seq=0 Win=2920.

221 10,408111539 172.16.168.173 172.16.168.229 TCP 74 38769 — B0 [SYN] Seq=6 Win=2920.
222 10.408205849 172.16. i 172.16.168. TCP 74 36846 — 80 [SYN] Seq=6 win=2920.

Fig. 6 A snippet of packets caught by wireshark

Fig. 7 Prolog predicates for /IThe initial attack status and final attack status
SQL injection and DDoS attackerLocated(internet).
evidence attackGoal(serviceDown(fileServer,user)).

attackGoal(execCode(database,user)).

/[The network topology and computer configuration
/[’ means any port

hacl(internet, webServer, tcp, 80).

hacl(internet, fileServer, tcp, -).
directAccess(webServer,database,modify,user).

/IThe evidence found in webServer

vulExists(webServer, *SQLInjection’, httpd).

vulProperty(’ SQLInjection’, remoteExploit, privEscalation).
networkServicelnfo(webServer , httpd, tcp , 80 , user).

/[The evidence captured by WireShark
vulExists(fileServer, DDoS’, httpd).
vulProperty(’DDoS’, remoteExploit, privEscalation).
networkServicelnfo(fileServer, httpd, tcp, _, user).

We used our Prolog based tool to automate the process of correlating items of
evidence to reconstruct potential attack scenarios. In order to do so, we converted the
available evidence and the cloud configuration to corresponding Prolog predicates,
forming an input file as shown in Fig.7. The reconstructed attack paths are shown
in Fig. 8, with the notation of all nodes listed separately in Table 2. In Fig. 8, the left
path ([7,8] — 6 — [5,9,10] - 4 — [3, 11] — 2 — 1) represents the SQL injec-
tion attack that used the web server vulnerability to maliciously obtain the informa-
tion from the MySQL database, and the right path ([8, 16] — 15 — [14, 17, 18] —
13 — 12) represents the DDoS attack that brought down the “FileServer”.

Snort and Wireshark failed in capturing our DoS attack on the “FileServer” that
exploited the “CVE-2015-3241" vulnerability on OpenStack Nova service. Because
the logs of OpenStack service Application Programming Interface (API) provide
information about user operations on the running instances, we used the OpenStack
service API logs as evidence. Figure9 lists a snippet of Nova API logs that are

382 C. Liuetal.

:)
<>

Fig. 8 Attack path reconstructed for SQL injection and DDoS

related to our instance migration of the DoS attack, where the commands in bold
font show the instance “bd1dac18-1ce2-44b5-93ee-967fec640ff3” representing the
“FileServer” VM (as shown in Table 3, which was obtained by running “nova list” in
the Ubuntu host system) has been resized using commands “mv”’ (move) and “mkdir”
(create new directory) operated by the user “admin”. Combining with the correspond-
ing attack status and the system configuration, we aggregated the related Nova API
calls as evidence and encoded them to the corresponding evidence predicates, which
formed the input file as shown in Fig. 10. By running our Prolog based tool on the
input file, we obtained the attack scenario in the same graphical form as Fig. 1, but
with different notation of all nodes in Table4. The attack scenario shows the attack
path that used the control dashboard “Horizon” exploiting the “CVE-2015-3241”
vulnerability.

Because of the location difference of attackers, Fig. 8 representing the SQL injec-
tion and DDoS attacks and Fig. 1 representing the DoS attack cannot be grouped
together. In addition, in Fig. 1, the attack happened in the cloud compute service
instead of a VM, although the attacker launched the attack from a VM. This is
because all VMs share the same compute service in our cloud.

Identifying Evidence for Cloud Forensic Analysis 383

Table 2 The notation of nodes in Fig. 8

Node Notation

1 execCode (database, user)

2 THROUGH 7 (Attack by compromised computer)

3 execCode (webServer, user)

4 THROUGH 3 (remote exploit of a server program)

5 netAccess (webServer, tcp, 80)

6 THROUGH 9 (direct network access)

7 hacl (internet, webServer, tcp, 80)

8 attackerLocated (internet)

9 networkServicelnfo (webServer, httpd, tcp, 80, user)

10 vulExists (webServer, ‘SQLInjection’, httpd, remoteExploit, privEscalation)
11 directAccess (webServer, database, modify, user)

12 execCode (fileServer, user)

13 THROUGH 3 (remote exploit of a server program)

14 netAccess (fileServer, tcp, _)

15 THROUGH 9 (direct network access)

16 hacl (internet, fileServer, tcp, _)

17 networkServicelnfo (fileServer, httpd, tcp,_, user)

18 vulExists (fileServer, ‘DDoS’, httpd, remoteExploit, privEscalation)

2016-09-18 07:52:00.237 DEBUG oslo_concurrency.processutils [req-f79¢7911-
04ed-4a0c-adbe-0ae0a487c0f7 admin admin] Running cmd (subprocess):
my /opt/stack/data/nova/instances/bd1dac18-1c €2-44b5-93ee-967fec640ff3=
/opt/stack/data/nova/instances/bd1dac18-1ce2-44b5-93ee-967fec640ff3 _resize from
(pid=41737) execute /ust/local/lib/python2.7/dist-packages/oslo_concurrency/processutils.py:344

2016-09-18 07:52:00.253 DEBUG oslo_concurrency.processutils [req-f79¢7911-04ed-4a0c-
adbe-0ae0a487c0f7 admin admin] CMD “mv /opt/stack/data/mova/instances/bdldacl8-
1ce2-44b5-93ee-967fec640ff3 /opt/stack/data/nova/instances/bd1dac18-1ce2-44b5-93ee-
967fec640ff3_resize” returned: 0 in 0.016s from (pid=41737) execute /usr/local/lib/python2.7/dist-
packages/oslo_concurrency/processutils.py:374

2016-09-18 07:52:00.254 DEBUG oslo_concurrency.processutils [req-f79¢7911-
04ed-4a0c-adbe-0ac0a487c0f7 admin admin] Running cmd (subprocess): mkdir p
/opt/stack/data/nova/instances/bd1dac18-1ce2-44b5-93ee-967fec640ff3 from (pid=41737)
execute /usr/local/lib/python2.7/dist-packages/oslo_concurrency/processutils.py:344

2016-09-18 07:52:00.271 DEBUG oslo_concurrency.processutils [req-f79¢7911-04ed-4a0c-adbe-
0ae0a487c0f7 admin admin] CMD “mkdir p /opt/stack/data/nova/instances/bdldac18-
1ce2-44b5-93ee-967fec640ff3” returned: 0 in 0.017s from (pid=41737) execute
/ust/local/lib/python2.7/dist-packages/oslo_concurrency/processutils.py:374

Fig. 9 Nova API Call logs

384

Table 3 The VM instance IDs, names and IPs

C. Liu et al.

ID Name Networks
bdldac18-1ce2-44b5-93ee- FileServer private = 10.0.0.13,
967fec640£f3 172.16.168.229
c01d5e66-c20d-4544-867b- ‘WebServer private = 10.0.0.5,
d3e2b70bfc60 172.16.168.226

//the initial and final attack status

attackerLocated(controlDashboard).
attackGoal(execCode(nova,admin)).

//the fileserver VM could be reached from control dashboard
hacl(controlDashboard, fileServer, http, _).

//the evidence of attack using *'CVE-2015-3241" that uses RESTful service
vulExists(nova, CVE-2015-3241", "REST’).
vulProperty(CVE-2015-3241", remoteExploit, privEscalation).
networkServicelnfo(nova, "REST’, http, _, admin).

Fig. 10 The input file for attack using “CVE-2015-3241”

Table 4 The notation of nodes for DoS attack

Node

Notation

1

execCode (nova, admin)

2 THROUGH 3 (remote exploit of a server
program)

3 netAccess (nova, http, _)

4 THROUGH 9 (direct network access)

5 hacl (controlDashboard, nova, http, _)

6 attackerLocated (controlDashboard)

7 networkServicelnfo (nova, ‘REST”, http, _,
admin)

8 vulExists (nova, ‘CVE-2015-3241", ‘REST’,

remoteExploit, privEscalation)

5 Using System Call Invocations for Evidence Analysis

Because system calls allow user level processes to request kernel level services
including access to storage operations, memory or network access and process man-
agement, system call sequences are often used for intrusion detection and foren-
sic analysis [26]. When evidence or expert knowledge is unavailable to recognize
the interaction between user level processes to kernel level services as a known
attack, forensic investigators analyze the system calls to ascertain program behav-
iors. According to [27], it is rare or unlikely to have an attack path, in which every

Identifying Evidence for Cloud Forensic Analysis 385

attack step is a zero-day attack. As such, we use system calls to reconstruct the
missing attack steps only when other evidence is unavailable.

There are many mechanisms to trace the system calls in a cloud based VM: (1) use
“ptrace” command to set up system call interception and modification by modifying
a software application, (2) use “strace” command to log system calls and signals, (3)
use auditing facilities within the kernel, (4) modify the system call table and write
system call wrappers to log the corresponding system calls, (5) intercept the system
call within the hypervisor [28]. Because OpenStack supports different hypervisors,
including Xen, QEMU, KVM, LXC, Hyper-V and UML, there isn’t a generic solution
to intercept system calls within a hypervisor. Thus, we use methods 2 and 4 to log
relevant system calls.

Now we show how to use system call sequences to reconstruct an attack step by
using an attack example. In this experimental attack launched from our Kali Linux,
we, as the attacker, used ssh to log into “FileServer” by using stolen credentials
from a legitimate user named “coco”. In order to simulate the stealthy attack without
triggering IDS alerts, we assumed that the attacker could use social engineering
attacks, such as shoulder surfing, to obtain the legitimate user’s (username, password)
credentials. The corresponding sshd log from “/var/log/auth.log” in “FileServer” is
listed in Fig. 11, where the user “coco” was listed to log into “FileServer” from
“172.16.168.173” that actually belonged to the attacker, which indicates that the
attacker stole this user’s credentials.

A process is typically composed of many system calls, of which only some of them
are important to ascertain a process’ behavior (we use the ones presented in [27].
These system calls are listed in the second column of Table5). Figure 12 is a snippet
of important system calls captured from the attack of using coco’s stolen credentials
to modify a file in “FileServer” (due to space limitations, we list a part of captured
system calls). By analyzing these system calls, we noticed that the “write/read”
system calls (in bold font) indicated that the attacker used “vi test.txt” (“vi” is a text
editor) command to modify “test.txt” file. In the “write/read” system call, the first
argument is the file descriptor where the process reads or writes, the second argument
represents the content in the buffer, the third argument represents how many bytes
the system call will write/read, and “= 1/ <any number greater than 1> indicates
that the system call executed successfully.

We encoded the program behavior, the attacker’s opening and modifying a legiti-
mate user’s file, to the Prolog Predicate “canAccessFile(fileServer, user, modify,_)”
(This predicate means that the attacker as the user can modify the file located at ““_”

Sep 25 00:15:49 FileServer sshd[829]: Server listening on 0.0.0.0 port 22.

Sep 25 00:15:49 FileServer sshd[829]: Server listening on :: port 22.

Sep 25 00:28:15 FileServer sshd[1162]: Accepted password for coco from 172.16.168.173 port
44842 ssh2

Sep 25 00:28:16 FileServer sshd[1162]: pam_unix(sshd:session): session opened for user coco by
(uid=0)

Fig. 11 The authentication log for sshd

386 C. Liuetal.

Table 5 Important system calls

Tasks System calls

Process modifies file write, pwrite64, rename, mkdir, linkat, link,
symlinkat, symlink, fchmodat, fchmod, chmod,
fchownat, mount

Process uses but does not modify file stat64, Istat6e, fsat64, open, read, pread64,
execve, mmap2, mprotect, linkat, link,
symlinkat, symlink

Process uses and modifies file open, rename, mount, mmap2, mprotect
Process creation or termination vfork, fork, kill
Process creation Clone

write(9, “v’,1) =1

read(11, “v”, 16384) = 1

write(3, “\0\0\0\20\331\255\275\264¢\2173)z2,\32\255n\2007d\366m\21\316\2648\240\207
\31\2117...,36) = 36
read(3,\0\0\0\20\240\253\341\227\321xU\305\347\226\246\361\316\242S =
\30\34107\231\n\343\314\343\307\f\361"..., 16384) = 36

write(9, “i’, 1) =1

read(11, “i”, 16384) = 1

write(3,\0\0\0\20\177\352\313\332\373y,jM\34161\230\215\ 10\220p\252¢\375\365\ 1\f\335
\361\r\273\374\357"...., 36) = 36
read(3,\0\0\0\20\27\3342\201x\300\16\356\346,\0379\32\220{\372)\366\4\v\ 1 =
\347\263\311\250k\353"..., 16384) = 36

write(9, “”, 1) =1

read(11, “”, 16384) = 1
write(3,\0\0\0\2077\321\344\220\313\322\2545\2520\201\225; 6v\ 243\ 205\ 1 Ogs\253\237\325
\375\332v”...,36) =36

read(3, “\0\0\0\20\5\27k;\254\301\24\n\\ZN\267\260\336\3237\323\32\345\20\226 —
\271|[B\21”..., 16384) = 36

write(9, “t”,1) =1

read(11, “t”, 16384) = 1

read(3,\0\0\0\20\325\261\7\254\211(\201\331\272\344[\355\200\ \u4\357G\347\232\276 :
\201\376\342\202\201.”..., 16384) = 36
write(3,\0\0\0\20\320\254\#\312\211.\3022\n\227u\ 161\372\202\347\37\2527\257\220
\210E\343\222\342\24S5”.. ., 36) = 36

write(9, “e”, 1) =1

read(11, “e”, 16384) = 1

write(3, “\0\0\0\20\334n}4\3750\2120\353\375\262\342\316\334w —
F\213\303\277£\312\245\ 16\266\255B]” . .., 36) = 36
read(3, “\0\0\0\20\274\376\7J\214L\3140L\ 1c\22\364 -

QvI\%\21\344J;,h\363\261\36\10" .. ., 16384) = 36
write(9, “\”, 1) = 1
read(11, “st.txt ”, 16384) =7

Fig. 12 Traces of “Read” and “Write” system calls

Identifying Evidence for Cloud Forensic Analysis 387

//The initial attack status

attackerLocated(internet).

// the attacker was able to log into “FileServer” by using stolen credentials
attackGoal(logInService(fileserver, tcp,22)

attackGoal(princinpal Compromised(user))

/MnCompetent user

InCompetent(user).

/[The attack status obtained from analyzing system call sequence
attackGoal(canAccessFile(fileServer,user,modify,_)).

//The user could login fileserver by using ssh protocol
networkServicelnfo(fileServer , sshd, tcp, 22, _).

//the user who has the account on “FileServer” has the privilege to modify a file
localFileProtection(fileServer,user,modify,_).

Fig. 13 Input file for modifying a file with stolen credentials

representing the home directory of the user). With the evidence obtained from the
log shown in Fig. 11 showing that the attacker with stolen credentials (represented
by predicates “attackGoal (princinpal Compromised (user))”, “InCompetent (user)”
and “attackerLocated (internet)”) logged into the “FileServer” by using ssh (repre-
sented by Predicate “attackGoal (logInService (fileserver, tcp,22))””) and the fact user
“coco”, who had an account on “FileServer”, had the privilege to modify files (the
corresponding predicate is “localFileProtection (fileServer, user, modify ,_)”), we
formed the input file as illustrated in Fig. 13 to use our Prolog based tool. The recon-
structed attack path is shown in Fig. 14, and the notation of all nodes is in Table 6.
In Fig. 14, the attack step [3, 4, 7] — 2— 1 has two pre-conditions represented by
Node 4 and Node 7. Node 4 is obtained from the fact that the “FileServer” can be
accessed by using ssh with Protocol tcp from Port 22. Node 7 is obtained from ssh
authentication log in Fig. 11 that indicates the user’s credentials were stolen by the
attacker. Without the evidence obtained from the system call sequence (Node 1), the
attack step [3, 4, 7] — 2— 1 would not have been reconstructed.

Notice the two rule nodes (Node 5 and Node 2) in Fig. 14 do not have any rule
description because of the obvious correlation between Node 6 and Node 4 (if the
network provides the service of using ssh to log into a file server by using tcp at
Port 22, the user including the attacker could log into the file server with stolen
credentials), nodes [3,4,7] and Node 1 (if a user is allowed to have the privilege of
modifying a file in the file server, the attacker with stolen credentials from the user
could access the file and modify it).

388 C. Liuetal.

Fig. 14 The attack step
reconstructed by using 6 9 10

evidence obtained from
system calls

Table 6 The notation of all nodes in Fig. 14

Node Notation

1 canAccessFile (fileserver, user, modify, _)

2 THROUGH 23()

3 localFileProtection (fileserver, user, modify, _)

4 logInService (fileserver, tcp, 22)

5 THROUGH 18 ()

6 networkServicelnfo (fileserver, sshd, tcp, 22,
user)

7 princinpal Compromised (user)

8 THROUGH 16 (password sniffing)

9 inCompetent (user)

10 attacker Located (internet)

Identifying Evidence for Cloud Forensic Analysis 389

6 Open Research Problems

The properties of cloud computing, including multi-tenancy, customers’ lack of con-
trolling their data and high degree of virtualization, bring challenges to cloud foren-
sics. Two major issues are the inaccessibility of forensically valuable data and loss
of governance [13].

Many digital artifacts created for cloud services can be used as evidence for cloud
forensics. These artifacts include cloud service logs, software application logs, data-
base access logs, etc. [13]. However, in a virtualized cloud environment, the physical
inaccessibility to underlying hardware and data being located across multiple loca-
tions makes evidence collection, identification, separation more challenging. Even
though the data location is known, due to multi-tenancy, acquiring the data could
breach other customers’ data confidentiality. In clouds, customers cede service gov-
ernance to the cloud providers, which makes the control of evidence depends on
what cloud service providers are willing to provide to customers. In the three cloud
models—IaaS, PaaS and Saa$S, as the control of functionality and services decreases,
less forensic data is available to cloud customers [13].

Researchers have proposed to use cryptography and store data hashes to resolve
the two major issues [5, 6]. However, in a cloud environment where the hypervisors
that monitor the VMs lack warning, procedures and tools for forensic investigation,
and VMs can dynamically migrate from one location to another, the above research
that only focuses on data is not enough. It is critical to build trustworthy mechanisms
at every architectural layer including the hardware layer and the virtualization plat-
form. Besides, extra effort should be taken to deal with the large volume in content
and proprietary formats of data and segregating resources without breaching user
confidentiality and analyzing traces.

7 Conclusion and Future Work

Cloud computing can increase the flexibility and efficiency of organizations or enter-
prises. However, clouds present significant challenges to forensics, including cus-
tomers’ lack of control of the physical locations of their data, the large volume of
data logs and the prevalence of proprietary formats [3]. To solve the above problems,
we explored what evidence could be useful for cloud forensic analysis.

Our example attacks show evidence from three sources can be used to reconstruct
attack scenarios: (1) IDS and application software logging, (2) cloud service API
calls, and (3) system calls from VMs. To extract evidence from the three sources,
the forensic-enabled cloud needs three extensions, which can (1) retrieve IDS and
software service logging; (2) store and secure OpenStack service API call logs,
firewall logs and snapshots for running instances; (3) obtain system calls when the
evidence from (1) and (2) is missing. We are in the process of implementing forensic-
enabled clouds with the above extensions, resolving the data integrity issue, reducing
the large volume and abstracting the proprietary nature of cloud forensic data.

390 C. Liuetal.

Disclamier

This chapter is subject to the approval from the National Institute of Standards and
Technology, United States.

References

1. Kent, K., Chevalier, S., Grance, T., & Dang, H. (2006). Guide to integrating forensic techniques
into incident response. p. 800 e86. NIST Special Publication.

2. Palmer, G. (2001). A road map for digital forensic research. Report from DFRWS 2001, First
Digital Forensic Research Workshop, Utica, New York, August 7-8, pp. 27-30.

3. Ruan, K., Carthy, J., Kechadi, T. & Crosbie, M. (2011). Cloud forensics. In IFIP International
Conference on Digital Forensics, pp. 35—46. Springer, Heidelberg.

4. Hogan, M., Liu, F,, Sokol, A., & Tong, J. (2011). NIST cloud computing standards roadmap.
NIST Special Publication 35.

5. Dykstra, J., & Sherman, A. (2013). Design and implementation of FROST: Digital forensic
tools for the OpenStack cloud computing platform. Digital Investigation, 10(Supplement),
S87-S95.

6. Zawoad, S., & Hasan, R. (2015). FECloud: A trustworthy forensics-enabled cloud architecture.
In Proceedings 11th International Federation for Information Processing WG 11.9 Interna-
tional Conference Digital Forensics, pp. 271-285.

7. Liu, C., Singhal, A., & Wijesekera, D. (2017). Identifying evidence for implementing a cloud
forensic analysis framework. Orlando, Florida: Accepted by IFIP International Conference
Digital Forensics.

8. Jaquith, A. (2007). Security Metrics: Replacing Fear, Uncertainty, and Doubt. Addison Wesley,
Mar 26, 2007.

9. Liu, C., Singhal, A., & Wijesekera, D. (2012). Mapping evidence graphs to attack graphs.
In 2012 IEEE International Workshop on Information Forensics and Security (WIFS), (pp.
121-126). IEEE.

10. Mell, P, & Grance, T. (2009). NIST definition of cloud computing. National Institute of Stan-
dards and Technology. October 7, 2009.

11. Tribunella, T., & Tribunella, H. (2016). Twenty questions on the sharing economy and mobile
accounting apps. CPA Journal. May 2016; 32. Available from: Associates Programs Source,
Ipswich, MA.

12. Spyridopoulos, T., & Katos, V. (2013). Data Recovery Strategies for Cloud Environments.

13. Pichan, A., Lazarescu, M., & Soh, S. T. (2015). Cloud forensics: technical challenges, solutions
and comparative analysis. Digital Investigation, 13, 38-57.

14. Dykstra, J., & Sherman, A. T. (2012). Acquiring forensic evidence from infrastructure-as-a-
service cloud computing: Exploring and evaluating tools, trust, and techniques. In Proceedings
of the 12th Annual Digital Forensics Research Conference (DFRWS12), Washington, DC, USA,
Digital Investigation, vol. 9, August 2012, pp. 90-98.

15. OpenStack Open Source Cloud Computing Software. Retrieved from https://www.openstack.
org.

16. Hay, B., & Nance, K. (2008). Forensics examination of volatile system data using virtual
introspection. ACM SIGOPS Operating Systems Review, 42(3), 74-82.

17. Birk, D., & Wegener, C. (2011). Technical issues of forensic investigations in cloud computing
environments. In 6th International Workshop on Systematic Approaches to Digital Forensic
Engineering-IEEE/SADFE, pp. 1-10. Oakland, CA. USA.

18. Dain, O., & Cunningham, R. (2001). Building scenarios from a heterogeneous alert stream. In
Proceedings of the 2001 IEEE Workshop on Infor mation Assurance and Security, pp. 231-235,
June 2001.

https://www.openstack.org
https://www.openstack.org

Identifying Evidence for Cloud Forensic Analysis 391

19.

20.

21.

22.

23.

24.

25.
26.

217.

28.
29.

Debar, H., & Wespi, A. (2001). Aggregation and correlation of intrusion detection alerts. In
Recent Advances in Intrusion Detection 2001, LNCS 2212, pp. 85-103.

Wang, W., & Thomas, E. D. (2008). A graph based approach toward network forensics analysis.
ACM Transactions on Information and Systems Security /2 (1).

Liu, C., Singhal, A., & Wijesekera, D. (2015). A Logic Based Network Forensics Model for
Evidence Analysis. In IFIP International Conference on Digital Forensics, Orlando, Florida,
January 24-26 2015.

Liu, C., Singhal, A., & Wijesekera, D. A probabilistic network forensic model for evidence
analysis. In IFIP International Conference on Digital Forensics (pp. 189-210). Springer Inter-
national Publishing.

Ou, X., Govindavajhala, S., & Appel, A. W. (2005). MulVAL: A logic-based network security
analyzer. In USENIX security.

Kali Linux—Penetration Testing and Ethical Hacking Linux Distribution. Retrieved from https://
www.kali.org.

MITRE Common Vulnerabilities and Exposures List. Available from http://cve.mitre.org.
Hofmeyr, S. A., Forrest, S., & Somayaji, A. (1998). Intrusion detection using sequences of
system calls. Journal of computer security, 6(3), 151-180.

Sun, X., Dai, J., Singhal, A., Liu, P. & Yen, J. (2016). Towards probabilistic identification
of zero-day attack paths. In Accepted for IEEE Conference on Communication and Network
Security, Philadelphia, October 17th 19th, 2016.

Beck, F., & Festor, O. (2009). Syscall interception in xen hypervisor. 19.

Zhang, Q., Cheng, L., & Boutaba, R. (2010). Cloud computing: state-of-the-art and research
challenges. Journal of internet services and applications, 1(1), 7-18.

https://www.kali.org
https://www.kali.org
http://cve.mitre.org

An Access Control Framework for Secure
and Interoperable Cloud Computing Applied
to the Healthcare Domain

Mohammed S. Baihan and Steven A. Demurjian

Abstract The healthcare domain is an emergent application for cloud computing,
in which the Meaningful Use Stage 3 guidelines recommend health information
technology (HIT) systems to provide cloud services that enable health-related data
owners to access, modify, and exchange data. This requires mobile and desktop appli-
cations for patients and medical providers to obtain healthcare data from multiple
HITs, which may be operating with different paradigms (e.g., cloud services, pro-
gramming services, web services), use different cloud service providers, and employ
different security/access control techniques. To address these issues, this chapter
introduces and discusses an Access Control Framework for Secure and Interoper-
able Cloud Computing (FSICC) that provides a mechanism for multiple HITs to
register cloud, programming, and web services and security requirements for use by
applications. FSICC supports a global security policy and enforcement mechanism
for cloud services with role-based (RBAC), discretionary (DAC), and mandatory
(MAC) access controls. The Fast Healthcare Interoperability Resources (FHIR) stan-
dard models healthcare data using a set of 93 resources to track a patient’s clinical
findings, problems, etc. For each resource, an FHIR Application Program Interface
(API) is defined to share data in a common format for each HIT that can be accessed
by mobile applications. Thus, there is a need to support with a heterogeneous set of
information sources and differing security protocols (i.e., RBAC, DAC, and MAC).
To demonstrate the realization of FSICC, we apply the framework to the integration of
the Connecticut Concussion Tracker (CT?) mHealth application with the OpenEMR
electronic medical record utilizing FHIR.

M.S. Baihan (&) - S.A. Demurjian

Department of Computer Science & Engineering, University of Connecticut,
371 Fairfield Way, Storrs, CT 06269-4155, USA

e-mail: mohammed.baihan @uconn.edu

S.A. Demurjian
e-mail: steven.demurjian @uconn.edu

© Springer Nature Singapore Pte Ltd. 2017 393
S. Chaudhary et al. (eds.), Research Advances in Cloud Computing,
DOI 10.1007/978-981-10-5026-8_16

394 M.S. Baihan and S.A. Demurjian

1 Introduction

Cloud computing has emerged as a de facto approach throughout society, commer-
cial and government sectors, and research/academic communities. The Gartner group
forecasts cloud computing will represent the majority of IT funding by 2016 [44].
The International Data Corporation [24] reports that organizations and enterprises
around the world spent approximately $70 billion to adopt cloud computing services
in 2015 with the number of cloud-based services expected to triple by 2020. Cloud
computing is provided by major corporations (e.g., Amazon [5], AT&T [6], Dell [11],
etc.). The wide usage of mobile devices means that average users understand the stor-
age and synching of photos, videos, email, contacts, files, etc., in the cloud. Security
breaches have come to the forefront [27] especially in personal cloud storage [52].
Outsourced data and services are located on servers that belong to security domains
which are different from an organization’s security domain, raising numerous secu-
rity and privacy issues [46]. Other efforts have included a survey of the different
data/network security, authentication, authorization, and confidentiality issues that
impact cloud computing [45]; a review of the available cloud computing advances
in concepts, functionalities, unique features, and technologies [51]; and the charac-
terization of cloud computing as the likely dominant technology for computing on
the Internet [40].

One emergent application for cloud computing is health care where in the United
States, the Center of Medicare and Medicaid Services released the Meaningful Use
Stage 3 [23] guidelines that require all health information technology (HIT) systems
to have cloud services to access, modify, and exchange health-related data. HIT sys-
tems include electronic health records (EHR) and personal health records (PHR).
In support of the interoperability and exchange of healthcare data, the international
Health Level 7 (HL7) [19] organization has taken a leadership role for standards to
allow the integration, sharing, and exchange of electronical healthcare data, specifi-
cally HL7 Version 2 [20], HL7 Version 3 [21], the Clinical Document Architecture
(CDA) [16], and HL7 Fast Healthcare Interoperability Resources (HL.7 FHIR) [17].
Fast Healthcare Interoperability Resources (FHIR) provides a RESTful Application
Program Interface (API) to share data in a common format. FHIR conceptualizes and
abstracts information for HL7 into 93 Resources that effectively decompose HL7 into
logical components to track a patient’s clinical findings, problems, allergies, adverse
events, history, suggested physician orders, care planning, etc. The intent is to allow
a unified access to FHIR’s RESTful health-related data sharing APIs so that appli-
cations can be easily built to uniformly utilize multiple HIT systems. Concurrent
with these activities has been an explosion of mobile health (mHealth) applications
for both patients and medical providers [1]. These mHealth applications also require
access to health data via cloud services from multiple HIT systems to ensure that all
of the necessary information is collected for patient care. Each of these HIT systems
may operate with different paradigms (e.g., cloud, API, web services) and employ
different security/access control techniques. Thus, mHealth applications would need
to work with a heterogeneous collection of paradigms and security protocols, with

An Access Control Framework for Secure and Interoperable Cloud ... 395

the strong likelihood that set of information sources may grow or shrink over time.
This makes it problematic to develop mHealth applications that are easily maintained
and evolved.

The main issue for health care is to ensure that the available services of these HIT
systems are carefully authorized to control which mHealth application can utilize
which service at which time; this is specifically what FHIR has been defined to pro-
vide. For example, an HIT system for a pharmacy would have cloud services for the
following: a physician to submit a prescription (Rx) electronically to the pharmacy;
a pharmacist to be able to fill the R and reduce the number of refills; notification via
text/phone to the patient that the Ry is available; the insurance company to access
the information on the Ry for approval and payment; the physician to have the Ry
inserted into his/her EHR; the patient to access medications in the PHR; and so on.
Access control for cloud services of an HIT system can ensure that the mHealth
application and its authorized user are restricted to particular services. The problem
is that there is currently no solution that allows cloud services to be controlled on
this basis, complicated by the fact that cloud services are available from different
cloud suppliers that may not be compatible with one another.

To address the aforementioned issues, this chapter introduces an Access Control
Framework for Secure and Interoperable Cloud Computing (FSICC) applied to the
healthcare domain in Fig. 1 that provides a mechanism for multiple sources (bottom
of Fig. 1) to register their services and security requirements for use by mobile, web,
and desktop applications (top of Fig. 1). More specifically, the framework allows any
system to register its local services (bottom of Fig. 1), which can be cloud, web, or
traditional programmable APIs. Such different services are converted into a unified

Fig. 1 An access control Consumers of Services
framework for secure and
. ble cloud Mobile Web Desktop
lnterope.ra) Application Application Application
computing (FSICC) applied

to the healthcare domain W

[Integration Layer]

(Global Cloud Services)

Secure and Inter
Operable Framework for
RBAC, MAC, and DAC

Register

Cloud Services

API

Web Services

Cloud App Web App

Programming App

Suppliers of Services

396 M.S. Baihan and S.A. Demurjian

set of global cloud RESTful services, using an integration layer as shown in Fig. 1,
which is available for mobile, web, and desktop applications to call. The integration
layer is where technologies exist to facilitate the bidirectional mapping and exchange
of information. Representative technologies to support the implementation of FSICC
would include the aforementioned FHIR standard; the DIRECT project [47] that
allows the sharing of information with best practices that have trust and privacy
considerations; and the HEART WG project [39] that provides privacy and security
specifications for authorization and access to health-related RESTful APIs.

The intent of the Access Control Framework for Secure and Interoperable Cloud
Computing (FSICC) is to provide one-stop shopping to the application side with a
set of global cloud services that transparently connect to the services from multi-
ple diverse sources. In health care, an mHealth application would utilize a set of
global cloud services via the integration layer (e.g., via FHIR, DIRECT, etc.) that
provides a common means to interact with multiple HIT systems and their spe-
cific cloud, API, or web services. The resulting FSICC provides a global policy
authorization and enforcement mechanism for a wide range of sources that collects
cloud services, APIs, and web services from multiple sources to offer one combined
cloud service collection to applications. FSICC should be able to support varied and
multiple access control models such as Role-based Access Control (RBAC) [13],
Discretionary Access Control (DAC) [12], Mandatory Access Control (MAC) [9],
Usage Control (UCON) [42], Attribute-Based Access Control (ABAC) [53], etc.
FSICC is intended to organize the cloud services, APIs, and web services from mul-
tiple suppliers so that they can be globally managed, discovered, and utilized by
different applications. FSICC can be customized to utilize the aforementioned col-
lection of standards and emergent technologies for easing the access of healthcare
data by mHealth applications, specifically, FHIR which conceptualizes and abstracts
information for HL7 into Resources that effectively decompose HL7 into logical
components for information usage and exchange. The twofold focus of this chapter
is to: first, describe in detail the proposed secure interoperable framework for access
control as given in Fig. 1 focusing on its requirements, capabilities, and a detailed
example in health care; and second, apply FSICC to an actual mobile health (mHealth)
application.

To demonstrate the feasibility of our work, the chapter utilizes the Connecticut
Concussion Tracker (CT?) mHealth application that has been developed as a joint
effort between the Departments of Physiology and Neurobiology, and Computer
Science & Engineering at the University of Connecticut, in collaboration with fac-
ulty in the Schools of Nursing and Medicine. CT? was developed in support of a
newly passed law to track concussions for school children (kindergarten through
high school) in Connecticut [43]. The CT?> mHealth application has been linked to
a back-end repository that includes the OpenEMR [37] HIT systems to represent
the clinical repository for students with concussions. To illustrate, Fig. 2 details our
current implementation reported in [7] that contains the integration layer from Fig. 1
expanded to capture the usage of FHIR to allow the CT? mHealth application to
access OpenEMR via FHIR. In Fig. 2, each of the two resources (CT? Database and
OpenEMR,) has an FHIR interface. For OpenEMR, their APIs extract information

An Access Control Framework for Secure and Interoperable Cloud ... 397

Fig. 2 The integration layer

with FHIR for CT?2 gt
cT2 | 5% =
— L . .
mHealth |2 & |« 2
App (2@ o
S
OpenEMR

that is then converted into the aforementioned FHIR resources to be available for use
by the CT? mHealth application. The CT? database also has an FHIR layer that maps
the MySQL database tables into the same set of FHIR resources. The end result is
an easy exchange of information between these three resources without the need to
modify the CT? mHealth application or its RESTful API. This overall process is part
of the proposed secure and interoperable framework and represents the realization
of the integration layer from Fig. | via FHIR and its RESTful APIs to enable the two
HIT systems (CT? Database and OpenEMR) to register their services to allow the
CT? mHealth application to discover and utilize such RESTful API services and to
define their security requirements to restrict the access of CT? mHealth application
to their services.

The remainder of this chapter has six sections. Section 2 presents background on
cloud computing, access control models, and FHIR. Section 3 introduces a health-
care scenario that serves as the generalized example for the FSICC in Fig. 1 with
multiple HIT sources. Section4 is organized in four parts. Part one proposes five
critical requirements for the FSICC: numerous and varied access control models,
different categories of cloud services, control access to cloud services using RBAC,
support delegation of cloud services using DAC, and control access to cloud ser-
vices using MAC. Part two details three capabilities with associated components of
the FSICC: local service registration and mapping to global services; local security
policies registration to yield global security policy; and global registration, authen-
tication, authorization, and service discover for consumers. Part three discusses the
security risks of adopting the FSICC with possible mitigations. Part four reviews
related work in cloud computing as compared to FSICC. Section 5 presents a proof-
of-concept prototype utilizing the CT?> mHealth concussion app and fully illustrates
the development processes of the FSICC utilizing FHIR that reformulates the archi-
tecture given in Fig. 2 using the FSICC as shown in Fig. 1 to illustrate the way that
the FSICC can improve the interconnection of the CT?> mHealth application with
the CT? Database and OpenEMR. Section 6 reviews select open research problems.
Finally, Sect.7 concludes and discusses ongoing work.

398 M.S. Baihan and S.A. Demurjian

2 Background and Motivation

This section provides background on cloud computing, access control models, and
Fast Healthcare Interoperability Resources (FHIR) standard. To begin, the National
Institute of Standards and Technology (NIST) [31] defines “Cloud computing is a
model for enabling convenient, on-demand network access to a shared pool of con-
figurable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management
effort or service provider interaction.” Cloud computing emerged from existing tech-
nologies [54] that are combined in a certain way to provide a new business model.
These technologies include grid computing [14], utility computing [41], autonomic
computing [28], service-oriented architecture [35], and virtualization [8] to name a
few.

Service-oriented architecture (SOA) is a model for designing systems in which the
focus is around offering services for different consumers. SOA implementation, such
as the web services standard, adopts the eXtensible Markup Language (XML) which
enables systems to provide and consume services in a common manner without the
need to use a specific programming language or operating system. This facilitates
services integration. Service suppliers define and publish services for use by con-
sumers. Cloud services are provided and delivered based on the cloud service model
[32] by leveraging concepts from SOA. In cloud computing, there are three main
components: Cloud Service Supplier, Cloud Service Consumer, and Cloud Service
Registry. The Cloud Service Supplier component publishes services to the Cloud
Service Registry. The Cloud Service Consumer component discovers services from
Cloud Service Registry and consumes them. The Cloud Service Registry component
maintains information about available cloud services. Cloud services are the APIs
that define the way that cloud consumers can access and utilize cloud computing
resources such as software. These cloud services can be designed using web services
such as Representational State Transfer (REST), Simple Object Access Protocol
(SOAP), etc. Any API designed based on REST is called a RESTful API which
utilizes Hypertext Transfer Protocol (HTTP) requests to interact with the data of
a resource. RESTful requests are frequently referred to as CRUD to create, read,
update, and delete functions. CRUD operations from an HTTP perspective are typ-
ically defined as GET to retrieve data; PUT or POST to insert data; POST, PUT, or
PATCH to update data; and DELETE to remove data. RESTful APIs have become a
dominant choice for designing and implementing cloud APIs or services.

Access control models have gained wide acceptance in computing as represented
by the three classic approaches: role-based access control (RBAC) [13], discretionary
access control (DAC) [12], and mandatory access control (MAC) [9]. The RBAC
model consists of three main components: elements that describe the different com-
ponents, relations that exist between the various elements, and constraints that can
be defined on the elements. There are five main elements in RBAC: objects that
represent functionality for an application, operations that are defined on objects,
permissions that are the allowed operations on the different objects, roles that rep-

An Access Control Framework for Secure and Interoperable Cloud ... 399

resent a set of responsibilities for a user of the application to capture the defined
permissions, and users assigned a role during a session of an application. RBAC
elements can be organized into relations: a role-user relation to assign users to roles,
a role-permission relation to assign permissions to roles, a role-session relation to
assign sessions to roles, a user-session relation to assign users to sessions, and an
operation-object relation to assign objects to operations. Finally, RBAC supports a
number of constraints that can be defined to restrict a user playing a specific role
with further constraints.

DAC utilizes the concept of delegation to pass privileges among users to dele-
gate both authority and permissions to another user. For example, in health care,
a physician Charles that is leaving the office for the weekend would delegate his
responsibilities (e.g., patients) to the on-call physician Lois that will be covering
any queries from patients. Charles can delegate all of his permissions and also the
ability to further delegate those permissions beyond the original scope. For example,
if the on-call physician Lois has to attend an emergency, she could then employ user-
directed delegation to delegate the permissions passed to her by Charles to another
user Thomas. Administrative-directed delegation has a security officer to control
delegation.

In MAC, sensitivity levels are assigned to subjects (clearance) and objects (clas-
sification) with the permissions for the subject to read and/or write an object depen-
dent on the relationship between clearance (assigned to users) and classifications
(assigned to objects). MAC typically is modeling using four sensitivity levels which
are hierarchically ordered from most to least secure: top secret (TS) < secret (S) <
confidential (C) < unclassified (U); this is referred to as the multilevel security model
(MLS). These terms are defined in the U.S. classification of information systems in
a Presidential Executive Order [34]:

“(1) “Top Secret” shall be applied to information, the unauthorized disclosure
of which reasonably could be expected to cause exceptionally grave damage to the
national security.

(2) “Secret” shall be applied to information, the unauthorized disclosure of which
reasonably could be expected to cause serious damage to the national security.

(3) “Confidential” shall be applied to information, the unauthorized disclosure of
which reasonably could be expected to cause damage to the national security.”

In MAC, the central authority maintains a classification for each resource and
a clearance for each user in the system. Suppose that there is resource R1 with a
confidential classification, resource R2 with a top secret classification, user Ul with
a top secret clearance, and user U2 with a secret clearance. In this setting, Ul can
access R1 and R2, while U2 can only access R1. Traditionally, RBAC, DAC, and
MAC models define permissions over objects and operations of a system. However,
in the case of cloud services, RBAC, DAC, and MAC models need to be modified so
that permissions can be with this change; it is then possible to specify which role can
access which cloud service, define a classification of each cloud service, and delegate
a cloud service from one user to another user. This allows the FSICC to authorize a
mobile, web, and desktop applications, by roles, to access cloud services.

400 M.S. Baihan and S.A. Demurjian

The FHIR standard is primarily structured around the concept of FHIR resources
[17] which are the data elements and associated RESTful application programmer
interfaces (APIs) that can be leveraged for exchanging healthcare information, par-
ticularly between mobile applications and HIT systems. FHIR resources, the main
building block in FHIR, can hold any type of information that FHIR deals with to
be exchanged from one health information technology system to another via REST-
ful API services that utilize with an XML or JSON format. Resources are broadly
classified into Clinical Findings; Patient Problems, Allergies, and Adverse Events;
Patient History; Suggested Physician Orders; and Interdisciplinary Care Planning.
To illustrate, sample FHIR resources from the 93 currently defined are the practi-
tioner resource to track medical providers (physicians, nurses, office staff, etc.); the
Patient resource can track demographic data on patients; the RelatedPerson resource
to track parents/guardians; the FamilyMemberHistory for basic information on a
family medical history; the Condition resource to track the relevant medical condi-
tions; the Observations resource to track symptoms, and other medical observations;
and the Encounter/EpisodeOfCare resources to track the different times that changes
to patient data occur based on a visit (Encounter) or action at the visit (Episodeof-
Care). One popular server is the HAPI FHIR [49] open-source implementation of the
FHIR server in Java. FHIR resources can be utilized by HIT systems and mHealth
applications for different purposes. For example, an mHealth application may use
the Patient resource to store and exchange information about patients back and forth
with different HIT systems. All FHIR resources have five main properties in com-
mon: a unique URL for identification purposes, common metadata, a human readable
section, a number of predefined data elements, and an extension element that enables
a system to add new data elements. FHIR provides three equivalent representation
formats: UML for a diagrammatic representation of the resource, XML that is subset
of the HL7 schema for the resource, and JSON to facilitate a programmatic exchange
via a RESTful API. FHIR supports a number of REST API services to enable a sys-
tem to retrieve and modify data in the resources. The main five services are Create to
add a new instance of a resource, Read to retrieve an existing instance of a resource,
Update to manipulate data in an existing instance of a resource, Delefe to remove
an existing instance of a resource, and Search to retrieve all existing instances of a
resource.

3 A Healthcare Scenario

To assist in the explanation process in Sect.4 of this chapter, a detailed scenario
in health care is provided to support FSICC as given in Fig. 1. To begin, the first
column of Table 1 contains four different HIT systems: a Pharmacy HIT system
(PharmHIT), an Insurance Company HIT system (ICHIT), an electronic health record
(EHR) HIT system (EHRHIT), and a personal health record (PHR) HIT system
(PHRHIT). Briefly, PharmHIT is used by pharmacist at pharmacies for filling and
processing prescriptions (Ry) that have been submitted electronically by medical

An Access Control Framework for Secure and Interoperable Cloud ... 401
Table 1 HIT systems, services, and explanations
HIT(local) | LSid Service name Explanation
PharmHIT | Rxl PUT /PharmHIT/NewRx/Patient/id Submit a
newprescriptioninfo prescription (Rx) to
the pharmacy
Rx2 GET /PharmHIT/AlIRx/Patient/id Retrieve all Rx
prescribed for a
patient
Rx3 GET /PharmHIT/CanRefill/Patient/id Retrieve all Rx
eligible for refill for
a patient
Rx4 PUT /PharmHIT/FillNewRx/Patient/id Fill new Rx
newprescription
Rx5 PUT /PharmHIT/RefillRx/Patient/id Refill existing Rx
existingprescription which reduce refill
number
Rx6 GET /PharmHIT/AllInteractions medicationlist | Check a list of
medications for
interactions
Rx7 GET /PharmHIT/GernicList/Patient/id Find all generics
drugname drug to a brand name
drug
Rx8 PUT /PharmHIT/RequestRefillRx/Patient/id Submit a Rx refill
existingprescription request
ICHIT IC1 PUT /ICHIT/NewRxPaymentApproval/Patient/ | Get payment
id newprescriptioninfo approval for a new
Rx for a patient
| (67] PUT /ICHIT/ExistingRxRefillApproval/Patient/ | Get payment
id existingprescriptioninfo approval for a
patient’s refill on Rx
IC3 PUT /ICHIT/VisitApproval/Patient/id Get payment
typeofvisit approval for a visit
for a patient
IC4 PUT /ICHIT/ScanApproval/Patient/id Get preapproval for a
typeofscan medical scan for a
patient
EHRHIT El public void addRx(patientID, physicianID) Insert a Rx into the
EHR for a patient
E2 public void addVisitSummary(patientID, Insert a new visit
physicianID) summary of for a
patient
E3 public void apprPatientAppoin(patientID, Get approval for a
appointmentID, physicianID) patient appointment
request
E4 public void addAppointment(patientID, Request an

physicianID)

appointment for a
patient

(continued)

402

Table 1 (continued)

M.S. Baihan and S.A. Demurjian

HIT(local) | LSid Service name Explanation
E5 public List<String> getAllAllergies(patientID) | Retrieve the list of all
allergies list for a
patient
E6 public List<Object> getUpcomingAppointment | Retrieve upcoming
(patientID, physicianID) appointments for a
patient
E7 public List<String> Get mental history for
getMentalHistory(patientID) a patient
PHRHIT P1 GET /PHRHIT/AllIMedsandSupplements/ Retrieve a patient’s
Patient/id medications &
supplements
P2 PUT /PHRHIT/NewDemoProfile/Patient/id Create a demographic
newdemoprofileinfo profile for a patient
P3 PUT /PHRHIT/NewEmergencyProfile/Patient/id | Create an emergency
newemergencyprofileinfo profile for a patient
P4 PUT /PHRHIT /NewRx/Patient/id Insert an Rx from
newprescriptioninfo EHR for a patient
P5 PUT /PHRHIT /NewAppt/Patient/id newapptinfo | Insert an upcoming
appointment for a
patient

providers; ICHIT is used by insurance companies to process approvals and payments
for medications and visits to medical providers; EHRHIT is utilized by medical
providers in the treatment of patients; and PHRHIT is used by patients to manage
their own health and fitness data. These systems all interact with one another and are
utilized by different stakeholders (e.g., patients, physicians, pharmacists, insurance
company representatives, etc.). The services of each HIT system are labeled using
unique local service ID (LSid) in column 2 so that they can be referred to in the
scenarios. Each service is presented, in column 3 of Table 1 using four main parts:
a CRUD method such as GET, a base URI such as /PharmHIT, an endpoint such
as /GernicList/Patient/id, and an input variable such as drug name, if there is one.
Finally, column 4 of Table | has a brief description of each service.

PharmHIT cloud services are a physician submitting prescription (Ry) electron-
ically (Rx1), filling a new (Rx4) or refilling (Rx5) a Rx by a pharmacist, checking
for medication interactions (Rx6), a patient submitting a Rx refill request (Rx8),
and retrieving all Rx prescribed for a particular patient (Rx2). ICHIT cloud services
are approving payment for a new Rx (IC1) or refill (IC2), approving payment for a
patient visit (IC3), and approving a medical scan (IC4). EHRHIT Java API methods
are adding a new Rx (E1) or visit (E2) for a patient, dealing with appointments (E3,
E4, and E6), and listing allergies (E5) or mental health history (E7). PHRHIT web
services are retrieving all of a patient’s medications and supplements (P1), entering
information (P2, P3), and inserting a new Rx (P4) or appointment (P5).

These four HIT applications are directly and indirectly accessed by stakeholders.
For example, a physician directly uses the EHRHIT and submits an electronic pre-

An Access Control Framework for Secure and Interoperable Cloud ... 403

scription (R;) via the EHRHIT that in turn accesses the PharmHIT system (and its
services). A pharmacist utilizes a desktop application at the pharmacy that interacts
with appropriate PharmHIT services which in turn utilizes services from ICHIT. A
patient utilizes either an mHealth app that utilizes GET services from PharmHIT
or EHRHIT or a web-based personal health record (e.g., Microsoft HealthVault,
WebMD, etc.) that utilizes the PHRHIT services which in turn may call the EHRHIT
services. For the information given in Table 1, the physician, pharmacist, and patient
have access to different services from the four HITs via their end-user application.
Specifically, the physician utilizes services Rx1, Rx2, Rx3, El, E2, and E3; the
pharmacist utilizes services Rx2, Rx3, Rx4, Rx5, and Rx7; and the patient utilizes
services Rx2, Rx3, Rx8, E4, E5, E6, P1, P2, and P3. These stakeholders via end-
user applications are authorized to different services so as to control access of who
can use which services of different HIT systems. To summarize, Table2 contains
the local security policies for PharmHIT, ICHIT, EHRHIT, and PHRHIT, listing the
roles (pharmacist, physician, and patient) as well as the other HIT systems that utilize
the services. For example, in Table 2a, the PharmHIT services are used by the physi-
cian, pharmacist, and patient as described previously, along with the use of services
by both the PHRHIT (Table2d) and the EHRHIT (Table 2b). Note that the ICHIT
services are only used by the PharmHIT and EHRHIT systems and not by any user
by role directly (see Table2c).

Table 2 Local policies of PharmHIT, EHRHIT, ICHIT, and PHRHIT

(a)

Role PharmHIT services by ID
Physician Rx1, Rx2, Rx3
Pharmacist Rx2, Rx3, Rx4, Rx5, Rx7
Patient Rx2, Rx3, Rx8

PHRHIT system Rx2, Rx3

EHRHIT system Rx6

(b)

Role EHRHIT services by ID
Physician El,E2, E3

Patient E4, E5, E6

EHRHIT system E7

(©

Role ICHIT services by ID
PharmHIT system IC1,IC2

EHRHIT system IC3, IC4

(d)

Role PHRHIT services by ID
Paitent P1, P2, P3

EHRHIT system P1, P4, P5

404 M.S. Baihan and S.A. Demurjian

The secure and interoperable FSICC as given in Fig. 1 allows the four HIT systems
to register their services as defined in Table 1 along with basic access control in terms
of the allowable roles. For simplifying the discussion, we assume that there are three
roles (physician, pharmacist, and patient) that are registered by most of the systems.
In addition, each HIT system registers the services and API calls given in Table 1. The
FSICC combines that information to present a set of global services that unify the
available services as shown in Table 3. A unique global service ID (GSid) is assigned
to each service, as the first column of Table 3 shows, and the third column of Table 3
contains an explanation of the effective or pass-through call that must be made from
the global service to the underlying HIT s local service/API call. Notice that the global
services are now all RESTful—the API calls of EHRHIT have been replaced with
RESTful equivalents. This results in acommon global RESTful interface presented to
the mobile, web, and desktop apps, greatly simplifying the programming complexity
and removing the need for end-user apps to utilize multiple heterogeneous platforms.

Table 3 Global services of the FSICC

GSid Service name LS Call
GS1 PUT /SIF/NewRx/Patient/id newprescriptioninfo Rx1
GS2 GET /SIF/AlIRx/Patient/id Rx2
GS3 GET /SIF/CanRefill/Patient/id Rx3
GS4 PUT /SIF/FillNewRx/Patient/id newprescription Rx4
GS5 PUT /SIF/RefillRx/Patient/id existingprescription Rx5
GS6 GET /SIF/Alllnteractions medicationlist Rx6
GS7 GET /SIF/GernicList/Patient/id drugname Rx7
GS8 PUT /SIF/RequestRefillRx/Patient/id existingprescription Rx8
GS9 PUT /SIF/NewRxPaymentApproval/Patient/id newprescriptioninfo IC1
GS10 | PUT /SIF/ExistingRxRefillApproval/Patient/id existingprescriptioninfo IC2
GS11 | PUT /SIF/VisitApproval/Patient/id typeofvisit IC3
GS12 | PUT /SIF/ScanApproval/Patient/id typeofscan IC4
GS13 | PUT /SIF/AddRx/Patient/id prescriptioninfo El
GS14 | PUT /SIF/AddVisitSummary/Patient/id visitsummaryinfo E2
GS15 | PUT /SIF/ApprPatientAppoin/Patient/id visitsummaryinfo E3
GS16 | PUT /SIF/AddAppointment/Patient/id appointmentinfo E4
GS17 | GET /SIF/AllAllergies/Patient/id E5
GS18 | GET /SIF/UpcomingAppointment/Patient/id upcomingappointmentinfo | E6
GS19 | GET /SIF/MentalHistory/Patient/id E7
GS20 | GET /SIF/AllMedsandSupplements/Patient/id P1
GS21 | PUT /SIF/NewDemoProfile/Patient/id newdemoprofileinfo P2
GS22 | PUT /SIF/NewEmergencyProfile/Patient/id newemergencyprofileinfo P3
GS23 | PUT /SIF/NewRx/Patient/id newprescriptioninfo P4
GS24 | PUT /SIF/NewAppt/Patient/id newapptinfo P5

An Access Control Framework for Secure and Interoperable Cloud ... 405

The end resultis that the applications (mobile, web, desktop) can discover and utilize a
unified set of global cloud services that based on differing security policies (RBAC,
MAC, DAC, etc.) at different times which are made available via a set of global
cloud services that have combined the constituent cloud, API, and web services into
a common global cloud-based API.

4 FSICC Requirements and Capabilities

The Access Control Framework for Secure and Interoperable Cloud Computing,
FSICC, as given in Fig. 1, as applied to the healthcare domain, is an infrastructure for
cloud computing that provides a global policy authorization and enforcement mecha-
nism and is capable of supporting different access control models (e.g., RBAC, DAC,
MAC, UCON, and ABAC). FSICC organizes and globally manages the local cloud
services, APIs, and web services from multiple service suppliers into a set of global
services so that applications can easily discover and utilize them in order to interact
with multiple constituent systems with a common interface. This was illustrated in
Sect. 3, where the local services of the four systems (i.e., PharmHIT, ICHIT, EHRHIT
and PHRHIT) in Table 1 were unified into a set of global services in Table3. The
presentation in the remainder of this section is in four parts. First, Sect.4.1 defines
five critical requirements for FSICC: numerous and varied access control models,
different categories of cloud services, control access to cloud services using RBAC,
support delegation of cloud services using DAC, and control access to cloud services
using MAC. Second, Sect. 4.2 details three capabilities with associated components
of the FSICC: local service registration and mapping to global services, local security
policies registration to yield global security policy, and global registration, authen-
tication, authorization, and service discover for consumers. Third, Sect. 4.3 presents
the security risks of adopting FSICC. Finally, Sect. 4.4 discusses research in cloud
computing as compared with FSICC.

4.1 FSICC Requirements

This section discusses five requirements for FSICC. To accompany this discussion,
there must be a shift in focus on the concept of RBAC, DAC, and MAC permissions
from objects and operations to one that assigns permissions to individual cloud ser-
vices. For RBAC, this corresponds to the global services in Table 3 being assigned
to different users by role. For MAC, global services in Table3 are assigned clas-
sifications (T, S, C, U) with a user having a clearance and performing domination
checks on classification versus clearance for every service invocation. For DAC, this
corresponds to the ability to delegate services from user to user by role and poten-
tially limited by classification/clearance checks if MAC has defined. The remainder
of this section presents and discusses the five requirements: Numerous and Varied

406 M.S. Baihan and S.A. Demurjian

Access Control Models, Different Categories of Cloud Services, Control Access to
Cloud Services Using RBAC, Support Delegation of Cloud Services Using DAC, and
Control Access to Cloud Services Using MAC.

Requirement 1: Numerous and Varied Access Control Models. The first require-
ment acknowledges that the constituent systems (i.e., service suppliers) that wish
to publish access to cloud, API, or web services may have access control and secu-
rity protocols that are varied. Thus, FSICC must be capable of supporting a wide
range of access control models including RBAC [13], DAC [12], MAC [9], UCON
[42], or ABAC [53]. In the scenario of Sect. 3, we assumed that each HIT supported
RBAC as illustrated in Table 2. We can extend this assumption so that the EHRHIT
system also supports DAC to allow permissions (services) to be delegated from a
physician Charles to the on-call physician Lois after hours and weekends. FSICC of
Fig. 1 must integrate these local security policies (as shown for PharmHIT, ICHIT,
EHRHIT, and PHRHIT in Table 2) into a global security policy as shown in Table 4.
Specifically, Table4 defines, for each role (physician, pharmacist, and patient) and
the three HITs (PharmHIT, EHRHIT, and PHRHIT), the global services are from
Table 3 assigned by role. For the model level, this was accomplished as discussed by
mapping permissions to call local services (cloud, web, and API) from Table 2 into
permissions to call global cloud services in Table 3.

Requirement 2: Different Categories of Cloud Services. Services, in general, are
developed and published for different purposes and for different sets of users. This
means services can be categorized as private, partner, community, or public. A private
service is utilized by a developer of services for a supplier to implement core and
sensitive services. For example, applications such as iCloud would have private
services that are utilized by Apple developers in designing other partners, community,
or public services. While there are no private services shown in Table1 for the
healthcare scenario, one could have a private service on EHRHIT that would be
able to mark a portion of the patient record as “invalid”. In health care, and in an
EHR, information in a medical record is never deleted. However, if it is the case that
an incorrect entry is entered for a patient such as the wrong laboratory test result,
then such a result is marked as “invalid” but never deleted. A partner service is
utilized by a partner developer, in which the partner organization has a relationship
with the service supplier, to enhance some core services of the service supplier.

Table 4 Global policy (RBAC) of FSICC

Role FSICC services by GSid

GPhysician GS1, GS2, GS3, GS13, GS14, GS15

GPharmacist GS2, GS3, GS4, GS5, GS7

GPatient GS2, GS3, GS8, GS16, GS17, GS18, GS20, GS21, GS22
GPHRHIT system GS2, GS3

GPharmHIT system GS9, GS10

GEHRHIT system GS6, GS11, GS12, GS19, GS20, GS23, GS24

An Access Control Framework for Secure and Interoperable Cloud ... 407

In Table 1, IC1, IC2, IC3, and IC4 are partner services since they need to interact
with both PharmHIT and EHRHIT in order to be able to successfully approve new
prescriptions and refills, visits, and scans. The partner developer may need to have
access to certain private services in order to use partner services. A community service
is utilized by a general developer to add new functionalities to an application of the
service supplier. In Table 1, all services of PharmHIT other than Rx6 are community
services, as all are services of EHRHIT and PHRHIT. These are the services that are
to be authorized by RBAC by role which is then enforced within the application that
a stakeholder is utilizing. Community services contain sensitive information which
must be controlled by users. A public service is available to any application and is
directly called as a result of a user’s action in an application. In Table I, Rx6 is a
public service that retrieves mediation interactions when given a list of medications;
such a list can be independent of any identification of the patient—hence it is more
public oriented.

Requirement 3: Control Access to Cloud Services Using RBAC. Since services
are published in a cloud environment, the number of consumers of such services
is expected to be high. Thus, global cloud services of all categories, as described
in Requirement 2, need to be controlled based on roles, in which each role can be
assigned on a consumer-by-consumer basis. To support RBAC in FSICC, global
services as defined in Table3 can be assigned by role in the healthcare scenario.
To illustrate, Table4 defines six main global roles: GPhysician (global physician),
GPharmacist (global pharmacist), and GPatient (global patient) would be assigned
to individuals that are utilizing applications, while GPHRHIT (global PHRHIT),
GPharmHIT (global PharmHIT), and GEHRHIT (global EHRHIT) represent the
roles of the systems that may need to utilize services. The GPhysician role is used by a
doctor to access his/her patients’ electric information and to provide better healthcare
services for his/her patients. The GPharmacist role is used by a pharmacist to fill and
refill drugs for patients and to deal with other related tasks. The GPatient role is used
by a patient to access his/her digital information and to request different healthcare
services. The GPHRHIT system role is used by a PHR system to gather a patient’s
related medical information from other systems and call services of other HITs. The
GPharmHIT system role is used by a pharmacy system to gather information related
to patients’ medication bills and call services of other HITs. The GEHRHIT system
role is used by an EHR system to gather medical information of physician’s patients
and to call services of other HITs. The list of global services for each of the six
global roles is given in Table 4. In addition, we are currently working on the ability
to constrain the invocation of a service based on values.

Requirement 4: Support Delegation of Cloud Services Using DAC. Users of appli-
cations, which consume services, may need to collaborate with other users to accom-
plish a better job; and/or to have other users to perform some of their tasks on behalf
of them in case of emergency. To enable this, FSICC supports the ability to delegate
cloud services from one user to another. For example, consider a user Charles with
a GPhysician role is leaving the office for the day or the weekend and is interested
in delegating his/her authority to access the services for his patient to the on-call
physician Lois who will be covering night and weekend inquiries from patients. In

408 M.S. Baihan and S.A. Demurjian

this case, Lois will then be utilizing a mobile application to access patient data that
is available via EHRHIT cloud services. Charles could delegate all or some of his
EHRHIT services to Lois. For example, Charles may delegate GS13 and GS14 that
involve patient data but not delegate GS15 that involves appointments. If the del-
egation for Charles to Lois is during the week (Monday to Thursday), it could go
into effect at 5 pm (close of business) and be revoked at 9 am (start of business). For
weekend calls, the delegation would go from Friday at 5 pm to Monday at 1 am.

Requirement 5: Control Access to Cloud Services Using MAC. Many services may
access very sensitive information, e.g., patient data, that needs to be more strongly
controlled than other parts of the patient data. For example, mental health data is lim-
ited to a psychiatrist or psychologist and not available to a family medical provider.
Mandatory access control (MAC) and its usage of classifications (for services) and
clearances (for users) may be very useful for controlling access to a service and the
data passed by a service. Thus, to further restrict access to cloud services, FSICC
supports MAC in addition to RBAC and DAC. That is, all of the global services as
given in Table 3 may be labeled with classification levels, and all roles and users may
be labeled with clearance levels. Specifically, each of the global cloud services in
FSICC can all be labeled with a classification level (i.e.,Top Secret, Secret, Confi-
dential, or Unclassified) as shown in Table 5. There is a single Top Secret service,
EHRHIT GS19 which involves the very sensitive mental health data on a patient.
All of the services related to prescriptions are Secret including GS1, GS2, and GS4
of PharmHIT; GS13 and GS14 of EHRHIT; and GS23 of PHRHIT. Services with
confidential classifications involve regular patient data that doesn’t rise to the level of
secret including of the allergies (GS3 & GS17), requesting refills (GS8), approving
medications/refills, scans, and visits (GS9-GS12) of ICHIT, etc. Finally, unclassified
services including services for medication interactions (GS6) and generic equiva-
lents (GS7), appointments (GS15, GS16, GS18, & GS24), and emergency contact
(GS22).

4.2 FSICC Capabilities

The set of five requirements in Sect.4.1 leads to the definitions of a set of three
FSICC capabilities for Fig. 1 that brings together all of the concepts and focuses on
the process and components of FSICC. Capability 1, Local Service Registration and
Mapping to Global Services, is for systems to register local services where mapped
to a global set. Capability 2, Local Security Policies Registration to Yield Global
Security Policy, is for systems to register their local security policy to generate a global
security policy. Capability 3, Global registration, authentication, authorization, and
service discover for Consumers, is to support the process of a consumer (mobile, web,
or desktop app) registration to discover and be authenticated and then authorized to
utilize services by role. The remainder of this section discusses these three capabilities
using the healthcare scenario of Sect. 3.

An Access Control Framework for Secure and Interoperable Cloud ... 409

Table 5 Global policy (MAC) of FSICC

GSid Classification | Service name

GS1 Secret PUT/SIF/NewRx/Patient/id newpresb criptioninfo
GS2 Secret GET/SIF/AlIRx/Patient/id

GS3 Confidential GET /SIF/CanRefill/Patient/id

GS4 Secret PUT/SIF/FillNewRx/Patient/id newprescription
GS5 Secret PUT/SIF/RefillRx/Patient/id existingprescription

GS6 Unclassified GET/SIF/Alllnteractions medicationlist

GS7 Unclassified GET/SIF/GenericList/Patient/id drugname

GS8 Confidential PUT/SIF/RequestRefillRx/Patient/id existingprescription

GS9 Confidential PUT/SIF/NewRxPaymentApproval/Patient/id newprescriptioninfo

GS10 Confidential PUT/SIF/ExistingRxRefillApproval/Patient/id
existingprescriptioninfo

GS11 Confidential PUT/SIF/VisitApproval/Patient/id typeofvisit

GS12 Confidential PUT/SIF/ScanApproval/Patient/id typeofscan

GS13 Secret PUT/SIF/AddRx/Patient/id prescriptioninfo

GS14 Secret PUT/SIF/AddVisitSummary/Patient/id visitsummaryinfo
GS15 Unclassified PUT/SIF/ApprPatientAppoin/Patient/id visitsummaryinfo
GS16 Unclassified PUT/SIF/AddAppointment/Patient/id appointmentinfo
GS17 Confidential GET/SIF/AllAllergies/Patient/id

GS18 Unclassified GET/SIF/UpcomingAppointment/Patient/id
upcomingappointmentinfo

GS19 Top Secret GET/SIF/MentalHistory/Patient/id
GS20 Confidential GET/SIF/AllMedsandSupplements/Patient/id
GS21 Confidential PUT/SIF/NewDemoProfile/Patient/id newdemoprofileinfo

GS22 Unclassified PUT/SIF/NewEmergencyProfile/Patient/id
newemergencyprofileinfo

GS23 Secret PUT/SIF/NewRx/Patient/id newprescriptioninfo
GS24 Unclassified PUT/SIF/NewAppt/Patient/id newapptinfo

Capability 1: Local Service Registration and Mapping to Global Services. This
capability enables a service supplier to register its cloud, programming, and/or web
services as indicated by the blue (right) arrows in Fig. 3. Referring to column 3 in
Table 1, PharmHIT registers the cloud services Rx1 to Rx8; ICHIT registers the cloud
services IC1 to IC4; EHRHIT registers the Java API methods E1 to E7; and PHRHIT
registers the web services P1 to P5. For example, PharmHIT registers Rx1 with name
PharmHIT, URI (/PharmHIT/NewRx/Patient/id), PUT CRUD method, and input
variable newprescriptioninfo; ICHIT registers IC1 with name ICHIT, service’s URI
(/ICHIT/NewRxPaymentApproval/Patient/id), PUT CRUD method, and input vari-
able newprescriptioninfo; EHRHIT registers E1 with name EHRHIT, method name
addRx, parameters patientID, physicianID, and a void return type; and, PHRHIT reg-
isters P1 with name PHRHIT, URI (/PHRHIT/AlIMedsandSupplements/Patient/id),

410 M.S. Baihan and S.A. Demurjian

Mobile Web Desktop
Application Application Application

/ | G‘;Zl‘aal Cloi:i Seﬁes | \

Global Authorization
and Authentication

1

| Global Security Policy [

Fig. 3 The components of
FSICC ‘

Generates Converts

Security Policy Registration and

ol

Local Local Local Local Local Local
Security| Cloud Security| API Security | Weh
Policy | Services Policy Policy | Services
Cloud App Programming App Web App

and GET CRUD method. Each registered local service needs to be assigned to one
of the four service categories: private, partner, community, or public.

The end result of the registration is that all of the local cloud services, API
calls, and web services of Table 1 are transitioned to a set of equivalent global ser-
vices in Table3, where each new global service has a unique identifier (column
1), global service name (column 2), and the pass-through call to the correspond-
ing local service (column 3). For each local cloud, API, or web services, a global
cloud service is created with appropriate components that mirror the signature of
the local service named as a new global cloud service. The cloud service Rx1 PUT
PharmHIT/NewRx/Patient/id newprescriptioninfo: is mapped to GS1 as given in
Table 3 where the SIF has replaced PharmHIT and GS1 now calls Rx1. Note that the
existence of Rx1 is no longer visible to the mobile, cloud or web application; this
is true for all of the converted services/API calls. Cloud services of ICHIT are sim-
ilarly created. The Java API method E1 public void addRx(patientID, physicianID)
is mapped to GS13 in Table 3 which now calls E1 of EHRHIT. The web services for
PHRHIT are converted in a similar manner to the cloud services. The end result is
a unified set of global cloud services to be presented to the mobile, web, or desk-

An Access Control Framework for Secure and Interoperable Cloud ... 411

top applications as supported by the Registration and Services Mapping component,
which maintains a mapping list of local to global cloud services.

Capability 2: Local Security Policies Registration to Yield Global Security Policy.
This capability allows HIT systems to register their local security policies (roles and
permissions to APIs) that can then be combined to yield a global security policy. The
local policy registration process of this capability enables a service supplier to specify
the security requirements or policy to access its local services (cloud, web, and APT)
as indicated by the green (left) arrows in Fig. 3. After the service suppliers register
the local services, as given in Table 1, they can then register the local security policies
that are available in their system as given in Table 2. This includes for a particular
HIT system: the defined roles, the permissions that are defined on each local service,
the permissions authorized to each role, the classifications for each role and service,
allowable delegations, etc.

As local security policies are registered over time, a security administrator or
policy officer is responsible to design and evolve an appropriate global security
policy that would encompass all of the local requirements (from all different access
control models) and provide a unified view for the applications. This is represented
as the Security Policy Mapping (box in lower left side of Fig. 3). The security officer
defines a global security policy over global cloud services based on defined local
roles and associated permissions (bottom of Fig. 3) to define a set of global roles and
their permissions. This is accomplished by defining global roles, assigning global
permissions to global cloud services, authorizing global roles to global permissions,
and defining constraints over these assignments. In the healthcare scenario, the global
roles can be defined and evolved over time by considering and unifying all of the
particular roles of the originally registered HIT systems (PharmHIT, ICHIT, EMHIT,
and PHRHIT) and new systems that are added over time. These new global roles are
realized within the Global Security Policy component that also maintains all of the
information related to the global security policy of FSICC in the middle of Fig. 3.

Specifically, for the healthcare scenario, the RBAC permissions as given by the
roles and local API services in Table2 are mapped to a global set of roles and the
global API services in Table 3. For example, for the patient role, the permissions to
the local services Rx2, Rx3, and Rx8 of PharmHIT are mapped into the permissions
to the global cloud services GS2, GS3, and GS8 and the permissions to the local ser-
vices P1, P2, and P3 of PHRHIT are mapped into the permissions to the global cloud
services GS20, GS21, and GS22. Essentially, at a high level the authorized permis-
sions to the local role patient of PharmHIT and the local role patient of PHRHIT are
mapped into a new GPatient (global patient) role. The security officer needs to make
similar mapping and define new global roles (GPharmacist, GPhysician) for the other
local roles and the other systems that are also functioning as roles (GEHRHIT and
GPHRHIT). These processes are supported by the Security Policy Mapping com-
ponent of FSICC as shown in Fig.3. A mapping list of local to global policies is
maintained by the Global Security Policy component of FSICC. This information is
captured in Tables4 and 5.

Capability 3: Global registration, authentication, authorization, and service dis-
cover for Consumers. This capability enables services consumers (mobile, web, or

412 M.S. Baihan and S.A. Demurjian

desktop app) to register themselves, which then allows application users to discover
and be authenticated and then authorized to utilize services by role. The intent is to
provide access for application users to the global roles and the authorized global ser-
vices. All of the activities associated with Capability 3 are supported by the Global
Authorization and Authentication component in the middle of Fig. 3. This component
maintains a list of consumers’ identification information, and a list of consumers and
their authorized roles. Note that we distinguish between consumers that are designing
and deploying new mobile, web, or desktop applications vs. ones that are retrofitting
an existing mobile, web, or desktop application that may have its own access control
(RBAC, DAC, and/or MAC) and cloud/web/programming APIs.

For consumers designing and deploying a new application, we extend the health-
care scenario of Sect.3 with a mobile application for the patient, a web application
for the pharmacy technician, and a desktop EHR application for the physician; all of
these applications have been developed using the global cloud services from Table 3.
To accomplish this development, each application must register with FSICC in order
to gain the relevant global roles to be authorized to each application user. A user
of the mobile application for the patient would be authorized to the GPatient global
role and limited to the services authorized to GPatient as shown in Table4: GS2,
GS3, GS8, GS16, GS17, GS18, GS20, GS21, and GS22. The pharmacy technician
utilizing the web application that allows dispensing medications would be authorized
to the GPharmacist global role and limited to the services authorized to GPharmacist
as shown in Table4: GS2, GS3, GS4, GS5, and GS7. The physician using the EHR
desktop application would be authorized to the GPhysician global role and limited to
the services authorized to GPhysician as shown in Table4: GS1, GS2, GS3, GS13,
GS14, and GS15. For the HIT systems, PHRHIT would have the GPHRHIT global
role with services GS2 and GS3; PharmHIT would have the GPharmHIT global role
with services GS9 and GS10; and EHRHIT would have the GEHRHIT global role
with services GS6, GS11, GS12, GS19, GS20, GS23, and GS24.

Capability 3 is also utilized to allow a consumer of a new application to dis-
cover global cloud services, from Table 3, for example, for the healthcare scenario.
This is accomplished by utilizing a service discovery request to the Global Cloud
Services component. The discovery request returns a list of all available services by
GSid, name, a category, and description. Discovery is supported by the Global Cloud
Services component in Fig. 3 which maintains a list of global cloud services. Upon
successful discovery, the service consumer (application) can then submit a request
to utilize one or more discovered services. The application can send a list of the
global services requested and its identification information to the Global Authoriza-
tion and Authentication component which authenticates the application, authorizes
the appropriate global user role associated with the requested services, and then
forward the service access request along with the application’s global role to the
Global Security Policy component. The Global Policy component then authorizes
the requested global services only if the application’s global role is authorized to
access such a service. As a result of calling a global cloud service, the mapped local
service or API call of a local HIT system is invoked. Note that the local HIT system
allows the call only as long as the application’s global role is mapped to an equivalent

An Access Control Framework for Secure and Interoperable Cloud ... 413

local role that is authorized to access such a local service. For example, suppose that
the web application utilized by the pharmacy technician sends a service discovery
request to the Global Cloud Services component to find a service to return all of
the prescriptions (Rx) for a patient. The discovery sends back the GS2 service from
Table 3: GSid (GS2), name (GET /SIF/AlIRx/Patient/id), category (community), and
description (calls the Rx2 of the PharmHIT system). Based on this, the pharmacy
web application can send a GS2 service access request along with the application
identification information to the Global Authorization and Authentication compo-
nent. This component can then authorize the application to utilize the GPharmacist
role and forward the GS2 service access request along with the GPharmacist role to
the Global Security Policy component. The Global Security Policy component also
authorizes the pharmacy web application to access the GS2 global service, since the
GPharmacist global role can access GS2. Then, the Global Security Policy compo-
nent retrieves the Pharmacist local role, of PharmHIT system, which is mapped to
the GPharmacist global role. As a result of calling the GS2 global service, an access
request to the mapped local service Rx2 along with the Pharmacist local role is sent to
the PharmHIT system. The PharmHIT local system allows the application to access
the local service Rx2 since the Pharmacist local role is authorized to access Rx2.

For consumers retrofitting an existing mobile, web, or desktop application, there
is an extra layer of functionality that must be considered. Suppose that there is
an existing mHealth concussion reporting app that is utilized by parents, coaches,
athletic trainers, and school nurses to report concussions on students in kindergarten
through high school with its own API to access the database of concussion data that
has been collected. The consumer that owns the mHealth concussion reporting app
wants to expand its capabilities in order to gather information on medications (from
PharmHIT) and from the medical provider (from EHRHIT) so that information on
medications and a student’s medical conditions, allergies, etc., are available. Suppose
also that the mHealth concussion reporting app already has defined roles for parents,
coaches, athletic trainers, and school nurses that impact the way that the app works
for different users in terms of the concussion data collected can be entered, viewed,
and/or edited. In order to make use of the global roles and services of FSICC, the
existing mHealth concussion reporting app needs to be able to map its own app roles
to appropriate global roles, and programmatically link its API so that it will be able
to call the appropriate global services of PharmHIT and EHRHIT. In order to support
this programmatic link, the mHealth concussion reporting app may also operate in
the role of a provider per capability 1 to define and register a new set of services
for the mHealth app that link its current API services to the global services. This
requires a similar process as described above to map from the local mHealth roles
to the global roles.

414 M.S. Baihan and S.A. Demurjian

4.3 Security Risks

Global services and APIs, in general, are created and published to make such ser-
vices available and accessible by different types of applications to support soft-
ware reusability. While FSICC does not retain sensitive data that belongs to service
providers such as patient records in the healthcare scenario of Sect.3, the global
services and global policies that FSICC provides functions as a conduit to pass infor-
mation to/from local service providers that have the responsibility for protecting their
own sensitive data. FSICC’s role as a global conduit that allows service consumers
to securely interact with multiple service providers can give rise to a variety of secu-
rity risks such as unauthenticated access to global services, unauthorized access to
global services, malicious input to global services, and confidentiality. These risks
are discussed in this section along with possible countermeasures.

From a security perspective, unauthenticated access to global services must be
meticulously controlled for two main reasons: to limit the services that are accessible
to the intended applications; and to trace actions of applications, and applications
users as the services are utilized, in case of a security breach or attack. From the
service consumer side, each consumer is assigned a unique ID and an associated key
or token, which may access such services, and all interactions of global services by
consumers are logged so that they could be audited in the future. Every time a con-
sumer needs to access a service, the associated credentials must be provided and the
access is logged. In FSICC, we have achieved this capability via the Global registra-
tion, authentication, authorization, and service discover for Consumers capability, as
discussed in Sect.4.2. For example, a mobile application needs to register itself into
FSICC, in which FSICC assigns an ID and a token (i.e., credentials) to the mobile
application, then the mobile application is only allowed to access the global services
of FSICC after providing such credentials.

Authenticating the identity of an application should not allow the application to
access all available global services in FSICC, requiring a monitoring of unauthorized
access to global services by consumers. For example, in Sect. 4.2, a user of a mobile
application for a patient should not be able to access the GS23 global service, which
is designed to be only accessed by an EHR system. To mitigate this issue, security
policies must be enforced to restrict the access to each global service in FSICC by
utilizing access control systems such as RBAC and MAC, in which each consumer
is assigned to a global role, or a global clearance level, that is authorized to a set
of global services. Another approach could develop a disallowed list of services for
each consumer that is prohibited from access. In FSICC, we have partially obtained
such a solution through the Global registration, authentication, authorization, and
service discover for Consumers capability, as discussed in Sect. 4.2. That is, the user
of the mobile application for the patient would be authorized to the GPatient global
role and will be limited to access the services authorized to GPatient global role as
shown in Table 4 in Sect. 4.1. Extending the global policy for RBAC in Table 4 could
in the future include a list of the explicit disallowed services, as they are implicit in
the table (since they are not assigned).

An Access Control Framework for Secure and Interoperable Cloud ... 415

Authorizing an application to a set of global services does not necessarily mean an
application would behave as expected which means that one needs to be concerned
withmalicious input to global services. That is, a consumer invoking a global service
may attempt an SQL injection attack by sending a carefully crafted malicious input
to an authorized global service that will forward such an input to the associated local
service in which the malicious input may force the local service to retrieve/modify any
item in the local database of the local system that was not permitted. For example, in
Sect.4.2, a user of a mobile application for a patient, who is assigned to the GPatient
global role, can send a carefully crafted malicious input to the authorized GS2 global
service, which in turn forward such a malicious input to the associated local service
Rx2 of the local system PharmHIT. In this case, instead of retrieving a list of patient
prescriptions, the Rx2 local service may be forced to submit a new prescription or
to delete other aspects of a patient’s data. To mitigate this issue, each global service
of the FSICC could be designed in the future to intercept all service calls in order to
sanitize as need before passing the call to the associated local service.

The process of calling global and local services involves the transmission of data
initiated by the consumer to/from multiple services providers via a series of invoca-
tions between local and global services; in this situation, confidentiality is paramount.
Data passed between consumer and service providers may contain sensitive data such
as patient personal information. However, this may lead to confidentiality issues,
since an attacker can intercept these calls to access the sensitive data. To reduce the
impact of such an attack, our approach in FSICC is to recommend that the local
service providers encrypt all data sent to/from global services of the FSICC by using
standard encryption algorithms in which consumer applications will decrypt such
data upon its receipt. This is particularly relevant for the healthcare domain, where
organizations predominately encrypt PHI and PII before transmission or exchange.

4.4 Related Work in Cloud Computing

In this section, we present a number of related efforts in cloud computing, from both
academic and industrial communities, that are solving similar problems to FSICC,
comparing and contrasting their work to FSICC. The first effort [10] proposed a
framework named InterCloud for federating cloud services to manage the services
of multiple cloud service providers in which the framework allocates cloud services
to the cloud consumers based on quality of service (QoS) needs of the consumer.
To accomplish this, the Cloud Broker, which is a component of the framework,
determines the most suitable cloud service provider based on the cloud services
preferences through the Cloud Exchange, which is another component of InterCloud.
Our use of global services in FSICC provides a one-stop shopping location for
consumers, but our work utilizes the global roles (and their assigned services by
RBAC and MAC) in order to control which services each consumer is allowed to
perform.

416 M.S. Baihan and S.A. Demurjian

A second effort [33] introduced a framework design for cloud services that support
features including data confidentiality and integrity for cloud service consumers,
enable cloud service providers to publish cloud services that are unified to the cloud
service consumers and manage the published cloud services. Their framework allows
the cloud service providers to receive access requests from the framework without the
knowledge of the actual service consumer requesting such an access, and enforces
access control over the published cloud services. Their approach contrasts with our
approach, particularly for the healthcare domain, where the knowing the identity of
the consumer by the provider is vital to restrict access to protected health information
(PHI).

A third effort in [48] proposed a cloud broker that enables a heterogeneous set of
cloud service providers, in which each provider may require a different infrastructure
to operate, to integrate with the cloud broker. Such a cloud broker is capable of
optimizing placement of virtual infrastructures across variant clouds and hiding the
processes of deploying and managing the cloud services of the cloud providers. The
proposed broker utilizes a scheduling algorithm that manages the processes of cloud
services deployment. Our work on FSICC is similar to their effort, since our global
roles and services effectively hide the location of the local services providers.

The fourth effort [50], the Vordel Cloud Service Broker, supports integrating
local on-site applications with offsite cloud services in a secure manner. Vordel
also provides monitoring, management, and policy enforcement services. Vordel is
located between the cloud service providers and the cloud consumers referred to as
organizations. An organization may utilize Vordel broker to introduce a level of trust
within the cloud application of such an organization. Work on Vordel is similar to
our efforts in FSICC that map local roles/services to global roles/services that offer
RBAC, DAC, and MAC security.

A fifth effort [25], the JamCracker platform, unifies the processes of cloud man-
agement and governance. Specifically, JamCracker provides a number of services
including risk and policy compliance management, operation management, and cre-
ate, deliver, and multi-cloud services management. JamCracker also allows cloud
service providers to unify delivery and management of private and public cloud
application/services and distribute them to cloud service consumers. The work of
JamCraker is similar to our categorization of cloud services as private, partner, com-
munity, or public in Requirement 2 (see Sect.4.1).

A final effort [4] proposed a cloud broker that acts as a component that manages
the use, performance, and delivery of cloud services; and mediates the process of
enabling cloud service consumers to access cloud services of service providers.
This is achieved by the proposed cloud broker utilizing an agent that dynamically
identifies a set of cloud services from various providers based on the service consumer
requirements. The architecture of the cloud broker agent [4] is presented along with
its implementation in [3]. Their management and mediation of cloud services are
similar to our management of global services in FSICC. The major difference of the
aforementioned efforts [3, 4, 10, 25, 33, 48, 50] is that their focus is on solving

An Access Control Framework for Secure and Interoperable Cloud ... 417

portions of the problems that we are attempting to address in FSICC; none of these
efforts provides a comprehensive solution for the problem of securing and integrating
cloud and none-cloud services provided from different service providers.

5 Prototyping the FSICC in FHIR

This section presents a proof-of-concept prototype that demonstrates the usage of
FSICC with the Connecticut Concussion Tracker (CT?) mHealth as the service con-
sumer, the electronic health record OpenEMR [37], and HAPI FHIR [49] as global
services. CT? has been developed as a joint effort between the Departments of Phys-
iology and Neurobiology, and Computer Science & Engineering at the University of
Connecticut, in collaboration with faculty in the Schools of Nursing and Medicine
and allows the user to report and manage the concussion incidents of students from
kindergarten through high school. In the process, we fully illustrate FSICC from
Sect. 4 utilizing FHIR that reformulates the architecture given in Fig. 2 (see also [7])
to align to FSICC in Fig.3 which illustrates the way that FSICC can improve the
interconnection of the CT?> mHealth application with the CT?> Database and Open-
EMR. For supporting FSICC, one of two-third party libraries can be utilized: the
HL7 Application Programming Interface (HAPI) FHIR library developed by the
HAPI community [15], and the FHIR reference implementation [18] which is built
directly from the FHIR specification [26]. The HAPI FHIR library was selected for
the demonstration effort, based on the fact that the HAPI implementation is already
accepted by HL7 that is used by many organizations in the health informatics com-
munity.

To explain the customization of FSICC utilizing HAPI, Fig. 4 updates Fig. 3 so that
CT?, OpenEMR, and HAPI FHIR are represented, which enables the CT? mHealth
application to utilize HAPI FHIR global services to take advantage of the OpenEMR
services without the need to have a direct access to OpenEMR. Note that each of the
OpenEMR system and the CT? mHealth application has HAPI FHIR services in front
of their local services that enable these systems to interact with the HAPI FHIR global
services. In Fig.4, the OpenEMR system starts the process by registering its HAPI
FHIR services and local policy into FSICC using the components from Sect.4.2:
Registration and Services Mapping, and Security Policy Mapping, respectively. After
that, FSICC generates equivalent HAPI FHIR global services along with global
security policy that restricts access to such global services based on the provided
local services and security policy. In fact, CT? mirrors the discussion of the mHealth
concussion reporting app for Capability 3 in Sect.4.3. As a result, as part of the
Security Policy Mapping process, once the global roles are created, they are mapped
to/from the OpenEMR local roles and also the CT?2 local roles. In addition, the CT?
mHealth application will need to develop a set of local CT?> HAPI FHIR services that
link the API of CT? and provide the ability to call the HAPI FHIR global services.

The remainder of this section is organized into three subsections. In Sect. 5.1, we
briefly review the CT?> mHealth application from a user/functionality perspective,

418 M.S. Baihan and S.A. Demurjian

Fig. 4 FSICC from Fig.3 .
customized to CT2, CTSecurity Policy 7% (mHealth)
OpenEMR, and HAPI FHIR \/
CT2 RESTful API
A
+
CT2 HAPI FHIR

r s

v
/ | HAPI FHIR (Global Cloud Services) | \

Global Authorization
and Authentication

Global Security Policy |

Generates Converts

Security Policy

\ Mapping

Registration and

Services Mappiny

4

OpenEMR
HAPI FHIR

§

Local Local
Security Cloud
Policy Services

OpenEMR(Cloud App)

the CT? API as a consumer in FSICC, and the CT? local roles. Note that the CT? app
as defined includes four different roles. In Sect. 5.2, we briefly introduce OpenEMR
as a local provider, the OpenEMR local API, and the OpenEMR local roles. Finally,
in Sect. 5.3, we explore the mapping process that creates the Global roles and Global
API as a bridge to/from the CT? local roles to the OpenEMR local roles.

5.1 The CT? mHealth Application

The CT? mHealth App (both Android and iOS versions) have seven screens: the
‘Home’ screen allows the user to enter a concussion, to retrieve an open case, or to

An Access Control Framework for Secure and Interoperable Cloud ... 419

find a student by name; the ‘List’ screen which contains the list of students the user has
permission to view and, for each student gives him/her the option to add a concussion
or edit an existing one; the ‘Student’ screen allows the user to input the student’s
general information (e.g., name, birthdate, school, and the date of concussion); the
‘Cause’ screen allows the user to specify how and where the concussion occurred;
the ‘Symptoms’ screen allows users to record the symptoms the student had within
48 hours and other pertinent data; the ‘Follow-up’ screen allows users to record
the status of the student over time; and the ‘Return’ screen allows users to specify
when the student can return to various activities at school. There are four types of
users that can interact with the app to report and manage concussion incidents for
students. A School Nurse user has access to all seven screens to manage a student’s
concussion incident from its occurrence to its resolution. An Athletic Trainer (AT)
user has access to home, list, student, cause, and symptoms screens to do a limited
preliminary assessment if a concussion incident occurs at the event. A Coach user
has access to home, list, student, and cause screens to report a concussion incident
at an athletic event with very limited information on the student. A Parent/Guardian
user has access to home, list, student, cause, and symptoms screens to both report a
concussion incident on his/her child while attending the athletic event or to track the
current status of his/her children that have ongoing concussions.

The CT? mHealth application for Android and iOS shares the CT? API in order
to manage its data. The CT? API consists of eight services CT1 to CT8 (note that
CT? API has more than eight services, we selected eight services, however, for the
demonstration purposes) as shown in Table 6. These services are presented using the
same structure that we used to present the local services of HIT systems (see Table 1
in Sect. 3), i.e., column 1 provides a system name, column 2 contains a service 1D,
column 3 has a service name, and column 4 explains a service. Services CT1 and CT2
enable CT? mHealth application to add/modify a status of a concussion of a certain
student, and retrieve information about such a status, respectively. The CT? mHealth
application utilizes services CT3 and CT4 to query the database about a student
information and create/update new student information, respectively. Services CT5
and CT6 provide ways for the CT?> mHealth application to create/update a student
follow-up summary and retrieve information about such a follow-up, respectively.
Finally, by calling services CT7 and CT8 the CT?> mHealth application can query
the database about concussion information of a certain student and add/modify new
concussion information of a certain student, respectively.

As mentioned above, there are four application roles, and for the purposes of the
chapter, we just focus on three of the roles in Table 7: Coach, Nurse, and Parent. The
API service calls listed for each role are the ones authorized to the role which in
turn dictate the behavior of the mHealth application. In Table 7, for all three roles,
all of the GET service calls are listed (CT2, CT3, CT6, CT7), and they all get two
PUT service calls (CT4, CT8); Parent has an additional PUT (CT5) while Nurse has
access to all PUTs.

420 M.S. Baihan and S.A. Demurjian

Table 6 CT? API services

Consumer | Sid Service name Explanation
CT? CTl1 PUT /CT2/concussion/status Add/modity a status of a student
statusINFO
CT2 GET /CT2/concussion/status Query the system for a student
statusID status
CT3 GET /CT2/student studentID Retrieve a student information
CT4 PUT /CT2/students/add Add/modity a student information
studentINFO
CT5 PUT /CT2/followup/add Add/modify a summary of a student
followupINFO follow-up
CT6 GET /CT2/followups followupID | Query the system for a student
follow-up
CT7 GET /CT2/concussion/student Retrieve a student concussion
studentID
CT8 PUT /CT2/concussions/add Add/modify a student concussion
concussionINFO

Table 7 Local roles for CT?

Service Coach Nurse Parent
GET CT2, CT3, CT6, CT7 |CT2,CT3,CT6, CT7 | CT2,CT3, CT6, CT7
PUT CT4, CT8 CT1, CT4, CT5,CT8 |CT4, CTS5, CTS8

5.2 The OpenEMR Local Provider

OpenEMR [37] is an open-source Electronic Health Record (EHR) system and med-
ical practice management application that can be utilized by any health/medical
organization around the world, that is Meaningful Use Stage 2 [22] and is expected
to be a Meaningful Use Stage 3 EHR certified soon [23]. In addition to a web-based
interface, OpenEMR has a RESTful API in PHP from which we have selected eight
PUT and GET services as shown in Table 8. These services are examples of local ser-
vices (Table 1 in Sect. 3) of local HIT systems. The OpenEMR services are presented
with the following: column 1 provides a system name, column 2 contains a service
ID, column 3 breaks down a service name, and column 4 explains a service. Services
EMR1 and EMR?2 enable an external application to add/update a note about a patient
and retrieve information about such a note, respectively. The external application
utilizes services EMR3 and EMR4 to query the database about a patient information
and create/update new patient information, respectively. Services EMR5 and EMR6
provide ways for the external application to create/update a patient follow-up sum-
mary and retrieve information about such a follow-up, respectively. Finally, by calling
services EMR7 and EMRS the external application can query the database about a
condition information of a certain patient and add/modify new condition information

An Access Control Framework for Secure and Interoperable Cloud ... 421

Table 8 The OpenEMR local services

HIT(local) | LSid Service name Explanation
OpenEMR | EMR1 | PUT/OpenEMR/updatepatientnotes | Add/modify a note about a patient
noteINFO

EMR2 | GET /OpenEMR/getnotes noteID | Query the system for a patient note
EMR3 | GET /OpenEMR/getallpatients Retrieve patient information

patientID
EMR4 | PUT /OpenEMR/addpatient Add/modify patient information
patientINFO

EMRS5 | PUT /OpenEMR/addvisit visitID | Add/modify a summary of a patient
visit

EMR6 | GET /OpenEMR/getvisits Query the system for a patient visit
visitINFO

EMR7 | GET /OpenEMR/getlist Retrieve a patient condition
conditionID

EMRS8 | PUT /OpenEMR/addlist Add/modify a patient condition
conditionINFO

Table 9 Local roles for OpenEMR

Service | L_Coach L_Nurse L_Parent
GET EMR2, EMR3, EMR6, EMR2, EMR3, EMR6, EMR2, EMR3, EMR6,
EMR?7 EMR7 EMR7
PUT EMR4, EMR8 EMR1, EMR4, EMRS5, EMR4, EMRS5, EMR8
EMRS8

of a certain patient, respectively. All of the OpenEMR services fall in the commu-
nity category, since these services are designed to be utilized by the OpenEMR’s
stakeholders, as we explained in Sect.4.1.

In this prototype, the OpenEMR system has a local policy that should be enforced
to control access to its local services through RBAC by using three local roles:
L_Coach, L_Nurse, and L_Parent as given in Table 9. This local policy is an example
of local policies (Table?2 in Sect.3) of local HIT systems. In Table9, for all three
roles, all of the GET service calls are listed (EMR2, EMR3, EMR6, EMR7), and
they all get two PUT service calls (EMR4, EMRS8); Parent has an additional PUT
(EMRS,) while Nurse has access to all PUTs.

5.3 Mapping to Global Roles and Global Services

In this section, we mitror the discussion in Sect.4.2 to map the OpenEMR local
services (EMR1 to EMRS8 in Table 8) to corresponding FHIR global services that
external applications, such as CT? mHealth application, may indirectly utilize the

422 M.S. Baihan and S.A. Demurjian

OpenEMR local services. This includes mapping the local security policy of Open-
EMR to the global security policy in order to restrict access to these FHIR global
services. For this demonstration, as previously mentioned, we utilize the HAPI FHIR
library which supports all of the 93 resources, as Java classes, that are suggested by the
FHIR specification including Patient, Encounter, Condition, and Observation. The
HAPI FHIR library also provides an Interceptor feature which is a Java class that
can be used to intercept any request to access a HAPI FHIR resource and allow/deny
request based on any requirement such as security policies.

In order for OpenEMR to registrar its local services (EMR1 to EMR8) in FSICC,
OpenEMR needs to have HAPI FHIR services (as described in Sect. 4), which convert
data to/from HAPI FHIR format into OpenEMR format, in front of OpenEMR local
services to enable the HAPI FHIR global services to access OpenEMR local services
as shown in Table 10. In Table 10, each OpenEMR service EMRI has corresponding
FHIR HAPI service, EMR.FHIRI. Basically, foreach HAPI FHIR global service, e.g.,
SIF.FHIR1, an equivalent OpenEMR HAPI FHIR local service, e.g., EMR.FHIR1,
is created in front of a corresponding OpenEMR local service EMRI1. Specifically,
SIFFHIRI calls EMR.FHIR1 which in turn calls EMR1. These OpenEMR HAPI
FHIR local services are calling the OpenEMR local services from Table 8.

OpenEMR can register the eight HAPI FHIR local services (EMR.FHIR1 to
EMR.FHIRS in Table 10) as indicated by the blue (right) arrow in Fig.4 and
the local security policy (security roles in Table9) as indicated by the orange
(left) arrow in Fig.4, into FSICC through Capabilities 1 and 2, respectively, as
described earlier in Sect.4.2. Using the Local Service Registration and Mapping to
Global Services capability, OpenEMR registers EMR.FHIR 1 with name OpenEMR,
URI (/EMR/Observation), UPDATE CRUD method, and input variable obsINFO.
EMR.FHIR2 to EMR.FHIRS services can be registered in a similar way. These reg-
istered services (Table 10) are transitioned to a set of equivalent HAPI FHIR global
cloud services SIFE.FHIR1 to SIF.FHIRS as shown in Table 11, where each new global
service has a unique identifier (column 1), global service name (column 2), and the
pass-through call to the corresponding local OpenEMR HAPI FHIR service (column
3). These services are examples of global services similar to Table3 in Sect.4.2.

Table 10 OpenEMR services, OpenEMR HAPI FHIR, and HAPI FHIR global services

Call from | Sid Service name Call to GS
EMRI1 EMR.FHIR1 | UPDATE /EMR/Observation obsINFO SIE.FHIR1
EMR2 EMR.FHIR2 | READ /EMR/Observation obsID SIF.FHIR2
EMR3 EMR.FHIR3 | READ /EMR/Patient patientID SIF.FHIR3
EMR4 EMR.FHIR4 | UPDATE /EMR/Patient patientINFO SIE.FHIR4
EMR5 EMR.FHIR5 | UPDATE /EMR/Encounter encID SIF.FHIRS
EMRG6 EMR.FHIR6 | READ /EMR/Encounter encINFO SIF.FHIR6
EMR7 EMR.FHIR7 |READ /EMR/Condition conditionID SIF.FHIR7
EMRS8 EMR.FHIR8 | UPDATE /EMR/Condition conditionINFO SIE.FHIRS

An Access Control Framework for Secure and Interoperable Cloud ... 423

Table 11 OpenEMR local services mapped to global services

GSid Service name LS call

SIF.FHIR1 UPDATE /SIF/S1/Observation obsINFO EMR.FHIR1
SIF.FHIR2 READ /SIF/S1/Observation obsID EMR.FHIR2
SIF.FHIR3 READ /SIF/S1/Patient patientID EMR .FHIR3
SIF.FHIR4 UPDATE /SIF/S1/Patient patientINFO EMR.FHIR4
SIF.FHIRS UPDATE /SIF/S1/Encounter encID EMR.FHIRS
SIF.FHIR6 READ /SIF/S1/Encounter encINFO EMR.FHIR6
SIF.FHIR7 READ /SIF/S1/Condition conditionID EMR.FHIR7
SIF.FHIR8 UPDATE /SIF/S1/Condition conditionINFO EMR.FHIRS

For each local OpenEMR HAPI FHIR service, a global cloud service is created
with appropriate components that mirror the signature of the local OpenEMR HAPI
FHIR service named as a new global cloud service. That is, EMR.FHIR1 UPDATE
EMR/Observation obsINFO becomes SIF.FHIR1 as given in Table 11 where the
SIF/S1 has replaced OpenEMR and SIF.FHIR1 now calls EMR.FHIR1. Note that
the existence of EMR.FHIRI is not visible to the CT?> mHealth application; this is
true for all of the converted OpenEMR HAPI FHIR services calls. All HAPI FHIR
services of OpenEMR are community services.

In the next step of the process, the Local Security Policies Registration to Yield
Global Security Policy capability is utilized in order to allow OpenEMR to regis-
ter its security policy including roles to OpenEMR services as shown in Table9.
Note that each role that authorized to an OpenEMR local service is also authorized
to the corresponding OpenEMR HAPI FHIR local service, for example, the local
role L_Parent is authorized to both EMR1 and EMR FHIR1 local services. Regis-
tering the OpenEMR security policy includes the defined roles (L_Coach, L_Nurse,
and L_Parent), the permissions that are defined on each local service (PUT/GET
methods), and the permissions authorized to each role (PUT/GET methods). After
registering such local security policy, the security officer, who is in charge of main-
taining FSICC, defines a global security policy over global cloud services based
on defined local roles and associated permissions to define a set of global roles
and their permissions (as Table 12 shows). This process includes defining global
roles (G_Coach, G_Nurse, and G_Parent), assigning global permissions to global
cloud services (UPDATE/READ methods), and authorizing global roles to global
permissions (UPDATE/READ methods). This global policy is an example of global
policies (Table4) of FSICC as mentioned in Sect.4 of this chapter. In Table 12,
the G_Coach global role is authorized to call all global services except SIF.FHIR1
and SIF.FHIRS services. Moreover, the G_Parent global role is restricted to only
access SIFEFHIR1, SIF.FHIR2, SIF.FHIR3, SIF.FHIR4, SIF.FHIR6, SIF.FHIR7, and
SIF.FHIRS. Finally, all global services SIF.FHIR1 to SIFFHIRS are authorized to
the G_Nurse global role. Moreover, the security officer will map the global policy
with the OpenEMR local policy. That is, each global role will be mapped to the

424 M.S. Baihan and S.A. Demurjian

Table 12 Global security policy (roles)
Service G_Coach G_Nurse G_Parent

READ SIF.FHIR2, SIE.FHIR3, SIF.FHIR2, SIF.FHIR3, SIF.FHIR2, SIF.FHIR3,
SIF.FHIRG6, SIF.FHIR7 SIF.FHIRG6, SIF.FHIR7 SIF.FHIRG6, SIF.FHIR7

UPDATE | SIF.FHIR4, SIF.FHIRS8 SIF.FHIR1, SIF.FHIR4, SIF.FHIR1, SIF.FHIR4,
SIF.FHIRS, SIF.FHIRS SIF.FHIRS

corresponding OpenEMR local role: L_Coach is mapped to G_Coach, L_Nurse is
mapped to G_Nurse, and L_Parent is mapped to G_Parent. A list of mapped Open-
EMR local roles—FSICC global roles is maintained by the Global Security Policy
component of FSICC.

Once the HAPI FHIR global services and global security policies have been
created (Tables 11 and 12) and mapped to OpenEMR local services and security
policies, they become available for usage by mHealth applications. To accomplish
this, there is a mapping process from the local roles of the CT? mHealth application to
the global roles as given in Table 4, as well as the process that is needed to transition
from the CT? API service calls to FHIR calls. Specifically, the CT? application must
have HAPI FHIR services defined which convert data to/from HAPI FHIR format
into the CT? application format, in front of the CT?> API to enable calls to the HAPI
FHIR global services. In Table 13, each HAPI FHIR global service, e.g., SIF.FHIR1,
is mapped to an equivalent CT?> HAPI FHIR local service, e.g., CT.FHIR, positioned
in front of a corresponding CT? local service CT1. In Table 13, CT1 calls CT.FHIR1
which in turn calls SIEFHIR1. These CT? HAPI FHIR local services are used to
provide a link from the CT? API to the global services. In addition, there is also a
similar mapping process from the Coach, Nurse, and Parent local roles of CT? to
the global roles G_Coach, G_Nurse, and G_Parent, respectively. A list of mapped
CT? local roles—FSICC global roles is maintained by the Global Security Policy
component of FSICC.

Once Table 13 has been defined and the roles have been mapped, the CT?> mHealth
application can use the Global registration, authentication, authorization, and service
discover for Consumers capability, to register itself and its local users into FSICC
in which the FSICC security officer will assign each CT? local user with one global
role based on each user’ local role. That is, G_Coach is assigned to a local user with
a Coach local role, G_Nurse is assigned to a local user with a Nurse local role, and
G_Parent is assigned to a local user with a Parent local role. A list of CT?2 local
users and their assigned global roles is maintained by the Global Security Policy
component of FSICC. Moreover, the CT? application needs to be modified such
that each CT? local service such as CT1 calls a corresponding CT> HAPI FHIR
local service such as CT.FHIR1 which is conFig.d to call the equivalent HAPI FHIR
global service such as SIFFHIR1 (see Table 13). Now, when each CT? local user
requests an access to any global service, FSICC first queries the Global Security
Policy component to retrieve the assigned global role. Then, FSICC will allow the
CT? local user to access the requested global service only if the assigned global role

An Access Control Framework for Secure and Interoperable Cloud ... 425

Table 13 CT? API services, CT?> HAPI FHIR, and HAPI FHIR global services

Call from Sid Service name Call to GS
CT1 CT.FHIR1 UPDATE /CT2/Observation obsINFO SIF.FHIR1
CT2 CT.FHIR2 READ /CT2/Observation obsID SIF.FHIR2
CT3 CT.FHIR3 READ /CT?2/Patient patientID SIF.FHIR3
CT4 CT.FHIR4 UPDATE /CT?2/Patient patientINFO SIF.FHIR4
CT5 CT.FHIRS UPDATE /CT2/Encounter encID SIF.FHIRS
CT6 CT.FHIR6 READ /CT2/Encounter encINFO SIF.FHIR6
CT7 CT.FHIR7 READ /CT2/Condition condition]D SIF.FHIR7
CT8 CT.FHIR8 UPDATE /CT2/Condition conditionINFO SIF.FHIR8

is authorized to the requested global service. That is, a user of the CT? application
who has authorized to the CT? Parent local role, which is mapped to the G_Parent
global role, is allowed to access all HAPI FHIR global services except SIF.FHIRS
in Table 12. Moreover, a user that is authorized the CT?Nurse local role, which is
mapped to the G_Nurse global role, can access all of the HAPI FHIR global services
from SIFE.FHIR1 to SIF.FHIRS in Table 12. Finally, a user who has authorized to the
CT2Coach local role, which is mapped to G_Coach role, cannot access the HAPI
FHIR global services from SIF.FHIR1 to SIF.FHIRS in Table 12.

6 Open Research Problems

This section reviews open research problems related to our work on FSICC. The
discussion is focused on emerging efforts in FHIR, specifically SMART on FHIR,
SMART on FHIR Genomics, and HEART profile for FHIR. The Substitutable Med-
ical Apps and Reusable Technology (SMART) project was initiated by Harvard
Medical School and Boston Children’s Hospital with an aim to enable interoperabil-
ity between medical applications by providing a specification to enable developers
in the health informatics community to create medical applications once and deploy
them across different HIT systems without rewriting the application code for each
HIT system [30]. SMART on FHIR [29] is a recently released version of SMART
that adopts numerous FHIR features, including FHIR data models, data formats, and
APT; authorization using OAuth2 [36]; authentication utilizing OpenID connect [38];
SMART profiles that integrate with FHIR profiles; and EHR user interface integra-
tion. Additionally, the SMART on FHIR reference platform has been implemented
with three main servers: an API server that provides create, read, update, and delete
services for all FHIR resources with an implementation of the FHIR search service; an
authorization server which is a modified implementation of an open-source OAuth2
and OpenlD servers; and an application server that uses an EHR-like framework for
developers to retrieve a list of patient data. By providing this reference platform,

426 M.S. Baihan and S.A. Demurjian

SMART on FHIR is a cloud solution that enables flexibility and innovations, and
enables systems to grow quickly as user needs change.

SMART on FHIR Genomics [2] is a specification that adds genomic capabilities
to FHIR with the intent to integrate genomic and clinical data in the cloud. The work
proposes three new FHIR resource and extension definitions: a Sequence resource for
capturing a patient’s genetic data, a SequencinglLab extension to capture the specific
sequencing technique which is utilized to generate sequences, and a GeneticObserva-
tion extension to associate a phenotype to variant data. SMART on FHIR Genomics
extends the SMART on FHIR platform by adding features that enable developers to
bridge between the genomics and clinical communities via one integrated platform
that operates in the cloud, thereby supporting the combination of genomic informa-
tion and electronic health record clinical data. The end result of such a combination
is the ability to develop new types of medical and healthcare applications in the cloud
that can be utilized for precision and personalized medicine.

The HEART Working Group [39] was formed to develop a unified set of privacy
and security specifications that would be able to control authorization to RESTful
APIs in a cloud computing setting. As part of this effort, a HEART profile is pro-
posed that is capable of interacting with various authentication protocols and tools,
including OAuth 2.0, OpenID Connect, FHIR OAuth 2.0 Scopes, and User-Managed
Access. The addition of the OAuth 2.0 protocol to the FHIR standard to prevent pri-
vacy and security issues that a FHIR implementation may face would be an important
extension to FHIR that further enhances the interoperability of FHIR thereby provid-
ing critical cloud security capabilities. The intent is to allow customized access to a
set of RESTful health-related data sharing (API) that would be capable of controlling
access to different portions of the API on a user/role and/or application basis. This
extends OAuth 2.0 from a typical focus on the access of a client to a system to a more
fine-grained security access to control who can utilize which services of an API. To
achieve this, the HEART profile for FHIR introduces the concept of scopes to restrict
access to different parts of an API. For example, scopes can be utilized to restrict: the
type of resource (e.g., Patient, Observation, etc.) to be protected; the type of access
to a requested resource (e.g., read, create, and delete) which is essentially the CRUD
services that can be invoked; and the exact part of a resource to be accessed (e.g.,
user ID and resource ID). A scope value is a composite text that contains the type
of permission, the type of resource, and the type of access to that resource being
requested. The HEART working group will provide important security capabilities
for cloud computing platforms.

7 Conclusion

In this chapter, we introduced a unifying Access Control Framework for Secure
and Interoperable Cloud Computing, FSICC (see Fig. 1), applied to the healthcare
domain, which provided a mechanism for multiple sources to register their services
and security requirements for use by applications. The presentation included a review

An Access Control Framework for Secure and Interoperable Cloud ... 427

of cloud computing, access control models, and the FHIR standard in Sect. 2 followed
by the introduction of a healthcare scenario to facilitate discussion in the chapter
in Sect. 3. Using this as basis, Sect.4.1 detailed five requirements for the FSICC:
Numerous and Varied Access Control Models, Different Categories of Cloud Ser-
vices, Control Access to Cloud Services Using RBAC, Support Delegation of Cloud
Services Using DAC, and Control Access to Cloud Services Using MAC. Based on
these requirements, three capabilities were presented in Sect.4.2 accompanied by a
detailed view of FSICC’s components (see Fig. 3), namely Local Service Registra-
tion and Mapping to Global Services; Local Security Policies Registration to Yield
Global Security Policy; and Global registration, authentication, authorization, and
service discover for Consumers. Security and risks of adopting FSICC with possi-
ble mitigations were discussed in Sect.4.3. Section4.4 discussed research in cloud
computing as compared with FSICC. In Sect.5, we provided a proof-of-concept
prototype utilizing the CT? mHealth concussion app and fully illustrates the devel-
opment processes of FSICC utilizing FHIR by adapting Figs. 3 and 4. To complete
the presentation, Sect. 6 reviewed open research problems on improved access to data
in EHRs via SMART on FHIR, integration of genomic and clinical data in EHRs
via SMART on FHIR Genomics, and improved security and authorization for cloud
computing to apply to FHIR via the HEEART Working Group. Overall, we believe
that FSICC is an important first step in instituting a higher level of organization of
cloud computing to allow for multiple systems to securely interact with one another
with access control on cloud services.

References

1. Aitken, M. (2013). Patient apps for improved healthcare: From novelty to mainstream.
Retrieved May 9, 2016, from http://www.imshealth.com/en/thought-leadership/ims-institute/
reports/patient-apps-for-improved-healthcare.

2. Alterovitz, G., Warner, J., Zhang, P., Chen, Y., Ullman-Cullere, M., Kreda, D., & Kohane, S.
(2015). SMART on FHIR genomics: Facilitating standardized clinico-genomic apps. Journal
of the American Medical Informatics Association, 1-6.

3. Amato, A., & Venticinque, S. (2013). Multi-objective decision support for brokering of cloud
SLA. In 27th International Conference on Advanced Information Networking and Applications
Workshops (WAINA) (pp. 1241-1246).

4. Amato, A., Di Martino, B., & Venticinque, S. (2012). Evaluation and brokering of service level
agreements for negotiation of cloud infrastructures. In International Conference on Internet
Technology and Secured Transactions (pp. 144—149).

5. Amazon.com. (2016). Cloud products. Retrieved May 24, 2016, from https://aws.amazon.com/
products/?ncl=f_cc.

6. AT&T. (2016). Cloud services. Retrieved May 23, 2016, from http://www.business.att.com/
enterprise/Portfolio/cloud/#tbid=FIPXyoa3SmP.

7. Baihan, M., Rivera Sanchez, Y., Shao, X., Gilman, C., Demurjian, S., & Agresta, T. (2017). A
blueprint for designing and developing an mHealth application for diverse stakeholders utilizing
fast healthcare interoperability resources. In R. Rajkumar (Ed.), Contemporary Applications
of Mobile Computing in Healthcare Settings. IGI Global.

8. Barham, P, Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., et al. (2003). Xen and the art
of virtualization. ACM SIGOPS Operating Systems Review, 37(5), 164-177.

http://www.imshealth.com/en/thought-leadership/ims-institute/reports/patient-apps-for-improved-healthcare
http://www.imshealth.com/en/thought-leadership/ims-institute/reports/patient-apps-for-improved-healthcare
https://aws.amazon.com/products/?nc1=f_cc
https://aws.amazon.com/products/?nc1=f_cc
http://www.business.att.com/enterprise/Portfolio/cloud/#fbid=FlPXyoa3SmP
http://www.business.att.com/enterprise/Portfolio/cloud/#fbid=FlPXyoa3SmP

428 M.S. Baihan and S.A. Demurjian

9. Bell, D., LaPadula, L., Ben-Ari, M., et al. (1988). Secure computer system unified exposition
and multics interpretation. Communications of the ACM, 1, 271-280.

10. Buyya, R., Ranjan, R., & Calheiros, R. (2010). Intercloud: Utility-oriented federation of cloud
computing environments for scaling of application services. In International Conference on
Algorithms and Architectures for Parallel Processing (pp. 13-31).

11. Dell.com. (2016). Cloud computing. Retrieved May 20, 2016, from http://www.dell.com/en-
us/work/learn/dell-cloud-computing.

12. Dittrich, K., Hirtig, M., & Pfefferle, H. (1988). Discretionary access control in structurally
object-oriented database systems. In DBSec (pp. 105-121).

13. Ferraiolo, D., Sandhu, R., Gavrila, S., Kuhn, D., & Chandramouli, R. (2001). Proposed NIST
standard for role-based access control. ACM Transactions on Information and System Security
(TISSEC), 4(3), 224-274.

14. Foster, I. (2002). What is the grid? A three point checklist. Retrieved May 4, 2016, from http://
www.mcs.anl.gov/~itf/ Articles/ WhatIsTheGrid.pdf.

15. HAPI Community. (2016). About HAPI. Retrieved March 23, 2016, from http://hl7api.
sourceforge.net/.

16. Health Level 7. (2016). Clinical document architecture. Retrieved March 15, 2016, from http://
www.hl7.org/implement/standards/product_brief.cfm?product_id=7.

17. Health Level 7. (2016). FHIR overview. Retrieved June 16, 2016, from http://hl7.org/thir/
overview.html.

18. Health Level 7. (2016). Health intersections FHIR server. Retrieved March 8, 2016, from http://
fthir2.healthintersections.com.au/open.

19. Health Level 7. (2016). Health level seven international. Retrieved June 11, 2016, from http://
www.hl7.org/index.cfm?ref=nav.

20. Health Level 7. (2016). HL7 Version 2. Retrieved March 14, 2016, from http://www.hl7.org/
implement/standards/product_brief.cfm?product_id=185.

21. Health Level 7. (2016). HL7 Version 3. Retrieved March 14, 2016, from https://www.hl7.org/
implement/standards/product_brief.cfm?product_id=186.

22. Himss.org. (2012). Meaningful use stage 2 overview. Retrieved April 17, 2016, from https://
www.cms.gov/regulations-and- guidance/legislation/ehrincentiveprograms/downloads/
stage2overview_tipsheet.pdf.

23. Himss.org. (2015). Meaningful use stage 3 final rule. Retrieved May 11, 2016, from http://
www.himss.org/ResourceLibrary/genResourceDetailPDF.aspx ?ItemNumber=44987.

24. Idc.com. (2015). Public cloud computing to reach nearly $70 billion in 2015 worldwide.
Retrieved May 11, 2016, from https://www.idc.com/getdoc.jsp?containerld=prUS25797415.

25. Jamcracker. (2016). Jamcracker platform. Retrieved May 12, 2016, from http://www.
jamcracker.com/.

26. Kasthurirathne, N., Mamlin, B., Kumara, H., Grieve, G., & Biondich, P. (2015). Enabling better
interoperability for healthcare: Lessons in developing a standards based application programing
interface for electronic medical record systems. Journal of Medical Systems, 39(11), 1-8.

27. Kelion, L. (2014). Apple toughens iCloud security after celebrity breach. Retrieved May 17,
2016, from http://www.bbc.com/news/technology-29237469.

28. Kephart, J., & Chess, D. (2003). The vision of autonomic computing. Computer, 36(1), 41-50.

29. Mandel, C., Kreda, A., Mandl, D., Kohane, S., & Ramoni, B. (2016). SMART on FHIR:
A standards-based, interoperable apps platform for electronic health records. Journal of the
American Medical Informatics Association, 23, 899-908.

30. Mandl, D., Mandel, C., Murphy, N., Bernstam, V., Ramoni, L., Kreda, A., & Kohane, S.
(2012). The SMART platform: Early experience enabling substitutable applications for elec-
tronic health records. Journal of the American Medical Informatics Association, 597-603.

31. Mell, P,, & Grance, T. (2011). The NIST definition of cloud computing. Retrieved May 2, 2016,
from http://faculty.winthrop.edu/domanm/csci411/Handouts/NIST.pdf.

32. Microsoft.com. (2016). Service oriented architecture. Retrieved May 7, 2016, from https://
msdn.microsoft.com/en-us/library/bb833022.aspx.

http://www.dell.com/en-us/work/learn/dell-cloud-computing
http://www.dell.com/en-us/work/learn/dell-cloud-computing
http://www.mcs.anl.gov/~itf/Articles/WhatIsTheGrid.pdf
http://www.mcs.anl.gov/~itf/Articles/WhatIsTheGrid.pdf
http://hl7api.sourceforge.net/
http://hl7api.sourceforge.net/
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=7
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=7
http://hl7.org/fhir/overview.html
http://hl7.org/fhir/overview.html
http://fhir2.healthintersections.com.au/open
http://fhir2.healthintersections.com.au/open
http://www.hl7.org/index.cfm?ref=nav
http://www.hl7.org/index.cfm?ref=nav
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=185
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=185
https://www.hl7.org/implement/standards/product_brief.cfm?product_id=186
https://www.hl7.org/implement/standards/product_brief.cfm?product_id=186
https://www.cms.gov/regulations-and-guidance/legislation/ehrincentiveprograms/downloads/stage2overview_tipsheet.pdf
https://www.cms.gov/regulations-and-guidance/legislation/ehrincentiveprograms/downloads/stage2overview_tipsheet.pdf
https://www.cms.gov/regulations-and-guidance/legislation/ehrincentiveprograms/downloads/stage2overview_tipsheet.pdf
http://www.himss.org/ResourceLibrary/genResourceDetailPDF.aspx?ItemNumber=44987
http://www.himss.org/ResourceLibrary/genResourceDetailPDF.aspx?ItemNumber=44987
https://www.idc.com/getdoc.jsp?containerId=prUS25797415
http://www.jamcracker.com/
http://www.jamcracker.com/
http://www.bbc.com/news/technology-29237469
http://faculty.winthrop.edu/domanm/csci411/Handouts/NIST.pdf
https://msdn.microsoft.com/en-us/library/bb833022.aspx
https://msdn.microsoft.com/en-us/library/bb833022.aspx

An Access Control Framework for Secure and Interoperable Cloud ... 429

33.

34.

35.

36.
37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Nair, S., Porwal, S., Dimitrakos, T., Ferrer, A., Tordsson, J., Sharif, T., et al. (2010). Towards
secure cloud bursting, brokerage and aggregation. In IEEE 8th European Conference on Web
services (ECOWS) (pp. 189-196).

National Archives. (2016). Executive orders. Retrieved April 21, 2016, from https://www.
archives.gov/federal-register/codification/executive-order/12356.html.

Newcomer, E., & Lomow, G. (2005). Understanding SOA with Web services. New Jersey:
Addison-Wesley.

OAuth. (2016). About OAuth 2.0. Retrieved March 06, 2016, from https://oauth.net/2/.
OpenEMR. (2016). What is OpenEMR. Retrieved April 12, 2015, from http://www.open-emr.
org/.

OpenID. (2016). About OpenlD connect. Retrieved March 24, 2016, from http://openid.net/
connect/.

OpenID. (2016). What is HEART WG. Retrieved June 7, 2016, from http://openid.net/wg/
heart.

Pallis, G. (2010). Cloud computing: The new frontier of internet computing. /EEE Internet
Computing, 5, 70-73.

Rappa, M. (2004). The utility business model and the future of computing services. IBM Systems
Journal, 43(1), 32-42.

Sandhu, R., & Park, J. (2003). Usage control: A vision for next generation access control.
Computer network security (pp. 17-31). Berlin, Heidelberg: Springer.

Senate and House of Representatives in General. (2014). An act concerning youth athletics and
concussions. Retrieved April 12, 2016, from http://www.cga.ct.gov/2014/act/pa/pdf/2014PA-
00066-ROOHB-05113-PA.pdf.

Shetty, S. (2013). Gartner says cloud computing will become the bulk of new IT spend by 2016.
Retrieved May 10, 2016, from http://www.gartner.com/newsroom/id/2613015.

Subashini, S., & Kavitha, V. (2011). A survey on security issues in service delivery models of
cloud computing. Journal of Network and Computer Applications, 34(1), 1-11.

Takabi, H., Joshi, J., & Ahn, G. (2010). Security and privacy challenges in cloud computing
environments. [EEE Security & Privacy, 6, 24-31.

The Direct Project. (2016). Direct project overview. Retrieved April 18, 2016, from http://
directproject.org/content.php?key=overview.

Tordsson, J., Montero, R., Moreno-Vozmediano, R., & Llorente, I. (2012). Cloud brokering
mechanisms for optimized placement of virtual machines across multiple providers. Future
Generation Computer Systems, 28(2), 358-367.

University Health Network. (2016). HAPI-FHIR. Retrieved May 29, 2016, from http://hapithir.
io.

Vordel. (2016). Vordel products. Retrieved May 12, 2016, from http://www.vordel.com/
solutions/cloud-servicebroker.html.

Wang, L., Von Laszewski, G., Younge, A., He, X., Kunze, M., Tao, J., et al. (2010). Cloud
computing: A perspective study. New Generation Computing, 28(2), 137-146.

Wingfield, E. (2015). Personal cloud will be a $90 billion a year business by 2020.
Retrieved May 12, 2016, from http://www.cloudwedge.com/personal-cloud-will-be-a-90-
billion-a-year-business-by-2020/.

Yuan, E., & Tong, J. (2005). Attributed based access control (ABAC) for web services. In IEEE
International Conference on in Web Services (ICWS’05) (pp. 569-577).

Zhang, Q., Cheng, L., & Boutaba, R. (2010). Cloud computing: State-of-the-art and research
challenges. Journal of Internet Services and Applications, 1(1), 7-18.

https://www.archives.gov/federal-register/codification/executive-order/12356.html
https://www.archives.gov/federal-register/codification/executive-order/12356.html
https://oauth.net/2/
http://www.open-emr.org/
http://www.open-emr.org/
http://openid.net/connect/
http://openid.net/connect/
http://openid.net/wg/heart
http://openid.net/wg/heart
http://www.cga.ct.gov/2014/act/pa/pdf/2014PA-00066-R00HB-05113-PA.pdf
http://www.cga.ct.gov/2014/act/pa/pdf/2014PA-00066-R00HB-05113-PA.pdf
http://www.gartner.com/newsroom/id/2613015
http://directproject.org/content.php?key=overview
http://directproject.org/content.php?key=overview
http://hapifhir.io
http://hapifhir.io
http://www.vordel.com/solutions/cloud-servicebroker.html
http://www.vordel.com/solutions/cloud-servicebroker.html
http://www.cloudwedge.com/personal-cloud-will-be-a-90-billion-a-year-business-by-2020/
http://www.cloudwedge.com/personal-cloud-will-be-a-90-billion-a-year-business-by-2020/

Security and Privacy Issues in Outsourced
Personal Health Record

Naveen Kumar and Anish Mathuria

E-health effectively uses information and communications technology to support
health-related services for its users. The primary objective of an e-health system is to
manage e-health information of individuals and provide them better health services.
In recent time, personal health record evolves as the most accepted patient-centric
model for e-health system. It is a collection of private health-related information of
an individual. A record management system for personal health records is called per-
sonal health record management system (PHRMS). A cloud-based PHRMS allows
a user with limited configured device to store, share, and update her personal health
record in a cloud, and access medical services online anytime and from anywhere.
Although it provides many essential features, security, and privacy of personal health
record are the major concerns for its owner due to the presence of untrusted cloud
service provider. In this chapter, we give a detailed survey on existing PHRMSs with
respect to the security and privacy features they are providing.

1 Introduction

In the present era of the digital world, the information-rich industries are moving
toward digitization process of their vast information so that it will be efficiently
available and communicated over the Internet. Today’s health industry is one of the
information-rich enterprises that require efficient electronic health data communi-

N. Kumar (X))
IIIT Vadodara, Gandhinagar, India
e-mail: naveen_kumar@iiitvadodara.ac.in

A. Mathuria
DA-IICT Gandhinagar, Gandhinagar, India
e-mail: anish_mathuria@daiict.ac.in

© Springer Nature Singapore Pte Ltd. 2017 431
S. Chaudhary et al. (eds.), Research Advances in Cloud Computing,
DOI 10.1007/978-981-10-5026-8_17

432 N. Kumar and A. Mathuria

cation between different departments (such as medical consultation room, medical
laboratories, pharmacy, etc.) working together to provide fast and accurate service
to the patients. In the past, individual’s electronic health information was adopted
as Electronic Health Record (EHR [1]) by different private and public health orga-
nizations. EHR information is expected to be available anywhere and anytime so
that it can be efficiently used when needed by the patient. However, the EHRs are
created and maintained by one or more healthcare providers to facilitate their own
internal operations and are not necessarily accessible to patients. The patient’s EHR
information can be distributed to more than one healthcare provider with different
access policies. The patients have no control over their EHR.

In contrast to the EHR, Personal Health Record (PHR) with a similar set of infor-
mation is patient-centric in nature and are recently gaining more attention. Kaelber et
al. [2] define the PHR as “a set of computer-based tools that allow people to access
and coordinate their lifelong health information and make appropriate parts of it
available to those who need it.” A PHR is access controlled and managed entirely by
an individual. It contains medical prescriptions, progressive notes, lab reports, aller-
gic information, emergency contacts, etc. A PHR helps in managing the health of an
individual in many ways such as viewing their medical history, review prescription
or laboratory test results, and providing accurate medical practices [3].

There are three types of approaches to building PHRs [4]: Standalone systems,
Tethered systems, and Networked systems. In the first type, an individual may create
his/her PHR on standalone systems that do not tie up with any healthcare system.
For example, Google Health [5] and Microsoft’s Health Vault [6]. Tethered systems
are tied into a healthcare system of a particular organization who maintains the data.
For example, My HealtheVet PHR from U.S. Department of Veterans Affairs. A
networked (or untethered) system does not connect to any healthcare system and
all information are entered and controlled by the individual. However, the PHR
information is stored on a website owned by a service provider. Networked PHRs
will allow the transfer of information between multiple systems such as service
providers, insurance agencies, and pharmacies. As information is now integrated with
other electronic health record systems, it provides more benefits than a standalone
system for users [7].

There is three type of e-health record management systems: hospital-centric Elec-
tronic Health Record Management System (EHRMS), Partial patient-centric and
patient-centric PHRMS. EHRMS is maintained by healthcare service providers (for
example, hospitals) that can have undesirable overall access to the patient’s personal
data. Partial patient-centric are smart card-based system where health record is stored
in a card kept with the patient. For processing any information from the card, a card
reader is needed which is kept with the healthcare service providers. This requires
the presence of both the patient (with its secret PIN or password) and the service
provider’s card reader. The Third type PHRMS is solely managed by patient itself and
is ideal for controlling access to patient’s secret health data. Such a system permits
a user to manage her record efficiently and securely.

With the emergence of cloud computing, small-scale health-care organizations get
motivated to outsource their PHRMS service to connect more users globally and give

Security and Privacy Issues in Outsourced Personal Health Record 433

PHR Owner € :
P 5| PHR
Service
Users Provider Cloud data store
Secondary users U] (Healthvault,
(e.g surveyors) WebMD)
LR L] ;

Fig.1 The PHRMS reference model

better health care facilities to the end users. The service provider is now responsible
for providing PHR accessibility to the authorized users from any place and at any
time. We assume that the data availability and scalability are the responsibilities of
cloud service provider and are not in the scope of this chapter. In this chapter, we are
focusing on security and privacy aspects of patient-centric PHRMS for a cloud.

1.1 Reference Model

The data access control policy is solely enforced by the PHR owner itself. A PHR
owner is assumed to be equipped with a personal digital assistant device for storage
and computations. An outline model of the proposed PHRMS is shown in Fig. 1. The
model comprises of three major entities.

1. Users: a user is either primary or secondary. A primary user is actively involved
with a PHR such as creating or maintaining it. A secondary user can only use it.
Examples of primary users are a PHR owner, a doctor, a medical laboratory, an
insurance company, etc., and of secondary users are researchers and surveyors.
A short description of some of these users is as follows.

(a)

(b)
()
(d)
(e)

A PHR owner is a user (or patient) who creates and maintains his PHR in
a cloud in association with the cloud service provider. The patient receives
medical consultation from doctors, request for medical laboratory reports,
gets insurance, etc.

A doctor is responsible for generating medical prescriptions and progressive
notes for a PHR owner whenever asked.

A medical laboratory (or Lab) is responsible for generating patient’s medical
laboratory report whenever asked by a PHR owner.

An insurance company registers and insure a PHR owner whenever it is
requested.

Researchers and surveyors are the secondary users. Such users are the essen-
tial part of the PHRMS who indirectly support the society from their study
and research results.

434 N. Kumar and A. Mathuria

2. PHR service provider (PHRSP): It is the central core of a PHRMS. Their respon-
sibilities are: registering users, maintaining system data including each (regis-
tered) patient’s PHR information, and to fulfill the read and write access requests
from the authorized users. PHRSP stores the system data at the cloud data store,
maintained by the cloud service provider itself. PHRSP is assumed to be honest-
but-curious (also called semi-trusted), i.e., it is curious about knowing the PHR
information but correctly follows the given service level agreement.

1.2 Use Cases

Here, we discuss two use cases that help in understanding the working of a hospital
scenario and related issues.

Case 1: Non-trivial Access to PHR Documents

In general, a doctor can access all historical documents related to her specialty class.
As anon-trivial case, a doctor may require access to one or more specific documents
belongs to other specialty classes. For example, a physician requires access to an
ongoing medication (or prescription) related to an ENT (Ears, Nose, and Throat)
class. In this case, the PHR owner needs to delegate the specific document’s access
to the doctor ensuring that it will not affect the accessibility to rest of the documents
in that specialty class. Another possibility is that the PHR owner will download the
required document and send it to the Doctor through a secure channel.

Case 2: Treatment to Minors

A PHR is required to be created for a minor, immediately after she takes birth.
However, the minor cannot be able to handle her PHR for her initial years. She
will use to go with their parents to the Doctor, for consultation. Therefore, a secure
mechanism is needed to access a minor’s PHR in her initial years and later the PHR
is securely handed over to the candidate. The age of handover of a PHR to its owner
can differ in different states/countries as per their local laws. It is assumed that the
parents securely manage the minor’s PHR until they handed it back to him or her.
After getting custody of the PHR, the owner may need to restrict her parent’s access
to his or her PHR. This may require the owner generates new keys and re-encrypts
all the PHR documents with the new keys. Now, without knowing the new secret
keys the owner’s parents cannot access his or her PHR.

Security and Privacy Issues in Outsourced Personal Health Record 435

Discussion on Hospital Scenario

Consider an example scenario where a patient approaches a specialty department
in a hospital that may have more than one doctor in the panel. At a time, only one
doctor from the panel may present for consultation. To handle such situation, an
extra communication is required prior to the start of consultation process so that the
patient knows which doctor is in the consulting room. The patient may request for a
specific doctor for consultation in the concerned department of the hospital. In this
case, the hospital may return the doctor’s credentials (such as the public key of the
doctor) so that the patient can use it to send consulting information request to that
specific doctor. Also, the hospital may regret the request and send the credentials of
an available doctor in the consulting room.

A hospital generally has junior doctors and nurses associated with each specialty
department. The junior doctor(s) can receive the patient request, assign it a case ID
(internal to the hospital), maintains it and finally uploads it to the server on behalf of
the senior consulting doctor. Since they are doctors, the PHR owner or the consulting
doctor can trust them and may give the access credential to them. However, the PHR
owner may sometimes do not allow his or her PHR data access to the junior doctors.
Therefore, it requires a mechanism in a PHRMS to restrict such unwanted access.

Other important entities in the hospital are the nurses. The nurses may require
writing notes on the current prescription for example patient temperature, weight,
medication with time, etc. It requires that the nurses will be authorized for a limited
access to a patient PHR. For example, any old PHR information will be restricted
from the nurses. However, they can write notes to the current patient’s prescription.

In what follows, Sect. 2 discusses different security and privacy requirements for
a cloud-based PHRMS. Section 3 gives a brief survey of existing mechanisms used
for handling these requirements. Section4 concludes this chapter.

2 Security and Privacy Requirements

Essential security and privacy properties required with a PHR are as follows.

e Confidentiality of patient’s PHR: This ensures that only authorized users can access
to the PHR information. Confidentiality is an obvious security requirement with
sensitive PHR data [8]. It is desired that no unauthorized user can access any PHR
information until authorized by the PHR owner. Usually, a doctor should only need
access to the patient health information specific to the doctor’s medical specialty.
Therefore, the PHR data can be divided according to the doctors’ specialty classes
for access control [9]. To cryptographically handle access control in such clas-
sification, each class of information can be encrypted with distinct keys and the
appropriate keys can be given to the consulting doctor at the time of consultation.

436 N. Kumar and A. Mathuria

e Patient’s control: This ensures that only a patient can authorize an entity to access
her health information. It is desired that a patient can hide certain health informa-
tion from a medical practitioner who has already have access to her PHR.

e Forward secrecy: This ensures that a doctor in the consultation is restricted from
accessing any future PHR document using any of his old access authorization [10].

e Dataintegrity: This ensures that an unauthorized user cannot tamper the outsourced
PHR data. The data storage must be protected from unauthorized tampering. A
doctor may require access to the old PHR documents of his patient in consultation.
However, access to future PHR information by the doctor using old authorization
secrets must be restricted (forward secrecy). This is because the patient may change
her doctor at any time. If forward secrecy is not provided, an unauthorized doctor
can see the patient’s future consultation information, such as to whom she is
consulting and what prescriptions she is getting. A solution to handle this is to
encrypt each new class document with a fresh secret key whenever the patient will
consult a new doctor.

e Authentication: This ensures that an authorized entity such as the PHR owner
can authenticate the sender or creator of the PHR document. This is an impor-
tant property because an authorized entity always interested in knowing the other
communicating party.

e Non-repudiation: This ensures that a PHR document writer (a Doctor or Lab)
cannot deny later that the document was written by them. It may happen that the
doctor or Lab may deny their report in case some misdiagnosis happens. This
property defends the patient as well as the document writer at the time of dispute
between them.

e Data unlinkability: This ensures that no unauthorized user including the PHRSP
can identify a linkage between a PHR owner and her PHR information. In other
words, the information gained from linking different communications of PHR data
should be insufficient to establish a link between the patient and its data [11]. A
stronger property named unobservability ensures that no unauthorized user can
observe a communication between the users over Internet. It is to be noted that
unlinkability does not imply unobservability, whereas the converse is true [12].
This is because using network traffic analysis one can identify who communicates
with whom.

e Secure access right revocation: This ensures that the PHR owner can revoke access
rights for her PHR at any instant of time. This is an important property because
the PHR owner can change her doctor at any point in time. In such case, she may
immediately want to revoke access rights of her old doctor.

e Secure data access by the secondary users: Efficient and secure data access by the
secondary users such as medical researchers and surveyors [13] is another impor-
tant requirement for PHRMS. For example, surveyors studying the malaria cases
in a city must be able to access all the related reports created by the Laboratories
(Labs) present in that city. If the Lab reports are stored in encrypted form, then
providing access to researchers and surveyors requires either giving them the cor-
responding decryption keys or, somebody on PHR owner’s behalf to decrypt the

Security and Privacy Issues in Outsourced Personal Health Record 437

documents and send to them. As researchers or surveyors are not trusted by a PHR
owner, giving them access to Lab reports may leak data confidentiality.

e Emergency access to PHR: In the case of emergency, it is desired that the patient’s
PHR information will be disclosed to the doctor in consultation. The patient is not
necessarily in a position to hand over the access credentials during an emergency.
Thus, we require a break glass mechanism [14] so that the patients’ secret access
credentials will be accessed by the medical service providers to give emergency aid
immediately to the patient. There are two possible measures discussed in the liter-
ature. First, secret PHR credentials will be given to some family member and the
name is disclosed to a central authority. The family member can be approached in
the case of emergency by the central authority. Second, the secret PHR credentials
are deposited to a trusted central office which discloses this information directly
to the hospital in case of emergency.

e Information accountability in PHR sharing: This ensures how PHR information
is reached to a certain PHRMS entity, who was involved in its sharing and trans-
fer. This property is important since most of the privacy threats arise due to the
involvement of insiders of healthcare organization, either accidentally or intention-
ally [15]. This property put accountability on intermediators in case information
privacy is leaked.

3 Survey of Existing PHRMS

Several incidents in the past explain why healthcare users are concerned about the
security and privacy of their personal health information. In a report by Markle
Foundation [16], 91% of people report that they are “very concerned” about the
security and privacy of their personal health information. Patient’s greatest concern
about electronic PHR stored with an untrusted service provider is the potential misuse
of health record data.

In 1996, the Health Insurance Portability and Accountability Act (HIPAA) [17]
outlined legal security and privacy protection for PHR. The HIPAA privacy rule first
time standardized the privacy of PHR held by “covered entities” (i.e., health insurance
agents/employer, and medical service providers engaged in different transactions).
However, it does not sufficiently address all the issues involved, for example, it
does not usually include cloud providers. Primary cloud platform providers for PHR
services are Google (Google Health [5]), Microsoft (Microsoft Health Vault [6]),
and Dossia. Therefore, a user PHR system’s security and privacy currently have no
legal protection.

3.1 Security Mechanisms

As best of our knowledge, initial PHRMS was introduced by Szolovits et al. [18] and
was followed by the PHRMS system named Indivo [19]. In [19], PHR data is stored

438 N. Kumar and A. Mathuria

in encrypted and it uses a trusted Indivo server which can access data encryption
keys and decrypt the data before sending it to the users. Systems like Google Health
[5] and Microsoft Health Vault [6] allows storing individual’s e-health information
on a central server. Data is encrypted at the server and encryption keys are stored
with the service providers. Such systems provide server-side security (such as access
control) and require user’s trust on the system.

Many other proposals [20-25] require dedicated hardware devices such as smart
cards where data will be processed (encrypted or decrypted) only if the patient’s
smart card and the medical reader device are present along with their secrets (such
as secret pin or passwords). Hu et al. [21] propose a hybrid solution uses public
key infrastructure for mutual authentication and data communication, while data
is encrypted with symmetric keys. A medical smart card is given to each patient
to store her public-private key pair with other information. User’s PHR is entirely
stored with service providers. Yu and Chekhanovoskiy [25] proposes symmetric key-
based patient-centric system with the use of smart card device. W B Lee and C D
Lee [23] proposed another solution based on smart card technology. Another work
that uses smart card devices are proposed by Chen et al. [20] and Huang et al. [22]
using Elliptic Curve Cryptography (ECC). Odelu et al. [26] claim that symmetric
key-based schemes are efficiently utilized in medical systems as compared to ECC-
based systems. Also in [26], service provider manages all the keys and is considered
to be trusted. However, it was noticed that since the smart card is read by a dedicated
reader device present with the health providers, they can disclose an individual’s
PHR information for the treatment purposes. Therefore, we believe that use of smart
card devices and dedicated hardware like temper-resistance devices must be carefully
used in such applications. Keoh et al. [27] pointed out related threats such as denial-
of-service, card theft and misuse of break glass when using card-based systems.

Ming Li et al. [9] proposed a framework for PHRMS using attribute-based encryp-
tion (ABE). The framework allows user’s access right revocation. However, the col-
lision of a fixed number of attribute authorities can break the security of the system.
A user needs to manage multiple keys. Narayan et al. [28] proposed another ABE
scheme combine with public key encryption. Due to the use of public keys, decryp-
tion cost of a data file increases. Also, re-encryption of data files are required by the
PHR owner whenever access policies are changed. Lee et al. [24] recently proposed
a PHRMS allowing add or revoke user authorization. However, it is smart card-based
key management solution based on Taiwan’s health care administration infrastruc-
ture. We note that ABE-based schemes require a trusted third party (TTP) to provide
attribute-level access control. The advantage of using ABE is that it allows server-
side encryption, thereby reducing the encryption cost at data owner. However, using
TTP to enforce access control limits the data owner’s control over her data. Also,
these schemes require a significant number of keys with each user, one corresponding
to each attribute of the authorized data files. Benaloh et al. [29] proposed a patient-
centric system using hierarchical identity-based encryption. However, a patient needs
to create, manage a large number of keys and verify healthcare provider’s credentials.

Security and Privacy Issues in Outsourced Personal Health Record 439

Chen et al. [30] scheme for PHR uses a Lagrange interpolation function for access
control. Users are grouped into classes, creates a partially ordered hierarchy. How-
ever, the order of interpolation function depends on a number of data files and classes
in the system. The function is needed to be updated as a data file is added or removed,
or there is a change in the relationship between user classes. Thilakanathan et al. [31]
recently proposed a PHRMS that uses secret sharing. Implementation of secret shar-
ing also requires a TTP for data sharing service and a number of proxy services to
store secret keys and encrypted data pieces. However, such secure proxy services are
difficult to implement on the cloud. Dekker et al. [32] give a framework using audit-
based mechanism for posterior access control where security decisions are taken after
the security lapse happens. Kumar et al. [10] first time introduces the forward secrecy
requirement in PHRMS and implements it using symmetric key cryptography. It will
be beneficial for patient’s data security. They show that the forward secrecy property
can be achieved using one-way hash chains in a PHR.

3.2 Privacy Mechanisms

Privacy is an underlying requirement in a healthcare system. It is the desire of an
individual to control the disclosure of her personal health information. Not all access
users need to know everything about a patient’s PHR. A patient needs to share her
related private PHR information to the physicians to get a better diagnosis. However,
the patient will hesitate to share some of the private information to the physicians like
mental health diagnosis information such as depression or alcoholism, HIV report
[33], psychiatric behavior [8], teenagers [34], battered women [35], that may lead to
her social discrimination [36, 37].

To protect the privacy of PHR documents, we require the property called “unlinka-
bility”. Unlinkability is defined by Pfitzmann and Hansen [12] as “within the system,
the attacker cannot sufficiently distinguish whether given item of interests (e.g., mes-
sages, subjects, ...) are related or not. ” In our PHR system, we require that a PHR
document’s information must be unlinkable with its owner. In follows, we discuss
the existing schemes used for unlinkability in PHR system.

Sweeney [38] proposed a model for protecting privacy called k-anonymity where
the data is released in groups and within a group, a person’s identifier cannot be
distinguished from at least k individuals. Concept is extended in [-diversity [39] and
t-closeness [40] to further reduce identification probability. However, the privacy of
these methods are limited to the value of &, [and ¢ respectively, and therefore they
require trusted servers. Also, anonymity here is irreversible, i.e., one cannot link the
data back to the owner. This makes them suitable for secondary users such as research
and survey purposes only [41]. A healthcare system requires reversible anonymity
so that a medical care provider (or doctor) can link a document with the patient while
viewing her medical history.

440 N. Kumar and A. Mathuria

TP
Document Pseudonymization process
MData g * MData
(i)
PIDinfo. PIDinfo. |P5N PSN
Datasource u Secondary use
Encrypt (one way) [surveyors]

De-pseudonymization process

MData MData
(ii)
PSN PSN | PIDinfo. PIDinfo.
Data source U Primary use
Decrypt [Doctor/patient]

Fig. 2 Pseudonymization and de-pseudonymization process

3.2.1 Pseudonymization-Based Techniques

The known reversible techniques are using pseudonymisation [41] where the identity
of a data file is replaced by an encrypted identifier called pseudonym. Pseudonymiza-
tion process is shown in Fig.2 (i). In the figure, MData represents medical data,
PIDinfo. is patient’s identity information and PSN is pseudonym. Pseudonyms are
generally used as secret links between the users and their PHR documents. A user
capable of decrypting the pseudonym (called de-pseudonymisation) can only able to
find a link between the document and the patient. De-pseudonymization process is
shown in Fig. 2 (ii). Since in PHR systems, the doctor in consultation needs to decrypt
patient’s PHR, the process of de-pseudonymization and pseudonymization must be
separated. This separation commonly implemented using asymmetric keys and the
presence of a TTP for de-pseudonymization process. Thus, do allow a separation but
with a significant computation cost [42]. A detailed study of existing schemes using
pseudonymization is given in [42].

Pseudonymization-based techniques work well as reversible anonymity and for
secondary users but are secure as long as the communication architecture is intact.
An adversary can link a document with its owner while observing the real-time
communication between the entities especially when the same pseudonym is used
more than once [12]. As each PHR document is having a single fixed pseudonym in a
PHR system, the linkability with its owner can be observable. Thus, it requires the use
of distinct pseudonym each time a PHR document is accessed, which is difficult to
achieve in healthcare systems where documents may be stored on third party servers.
Therefore, a secure communication healthcare architecture is needed where data
access patterns are unobservable by an adversary who can sniff the communication
traffic, even when the service provider (or server) is untrusted.

Security and Privacy Issues in Outsourced Personal Health Record 441

l l

Lelsiredrsiraira] ‘! (siCeiCelfslrz]s] |

Inputdata sequence Outputdata sequence
Randomly shuffles the

sequence of input data

Fig. 3 Function of mix node

3.2.2 Use of Mix Node

As network traffic analysis can be used to identify who communicates with whom, the
unlinkability property is not sufficient in the presence of untrusted service provider.
Therefore, the unobservability property is an essential requirement. For unobserv-
ability between the users in communication, [10] uses the concept of mix node [43].
The mix node function is shown in Fig. 3. It randomly shuffles the input sequence of
packets so that no unauthorized user including the cloud service provider can find a
link between input and output packets. Although the process provides unobservabil-
ity between the PHR owner and its PHR data, it adds a delay in data communication.
However, the communication delay will be significantly less than the document gen-
eration time.

Modeling Unobservability Using ProVerif

To model the unobservability property in PHR document publishing protocol, con-
sider two documents R1 and R2 generated by a lab (or a doctor) for two users U 1 and
U2, respectively. The unobservability property is specified in terms of observational
equivalence between two variants of the document publishing protocol. Say, two
variants are observational equivalent if an attacker cannot distinguish between the
two variants by interacting with either of them. The unobservability can be specified
by the following observational equivalence:

X{R1/U1}{R2/U2} ~ X{R1/U2}{R2/U1}

where process X{R1/U1}{R2/U?2} represents that the document R1 is for user
U1 and R2 is for user U2, respectively. Similarly in process X{R2/U1}{R1/ U2},
R2 is for user U1 and R1 is for user U2, respectively. To further simplify the above
equivalence, consider that the first document published is R for the two input requests
from the patients U 1 and U2. The observational equivalence can be now relaxed to
X{R/U1} ~ X{R/U2} where, R € {R1, R2}.

442 N. Kumar and A. Mathuria

We model the four communicating parties Patient, Mix Node, Lab (or Doctor),
and PHRSP as processes written in ProVerif calculus [44] with corresponding
public ids P, Mx, L, and S P, respectively. Mix N ode process work as a mix node.
It randomly chooses a document request out of two input users requests and forwards
it to the receiver (a Lab or a Doctor). The main process shown below defines the
parallel execution of above processes including two patients processes, one for each
Uland U2.Letr1 and r2 are two random numbers used for message synchronization
and, k1 and k2 are two random keys, used by U 1 and U2, respectively. Let, kU1 M
is the session key between U 1 and Mx. Similarly, kU2M is between U2 and Mx,
kMx is between Mx and L, and kLS P is between L and SP. prkL and pbkL are
the private and public keys of L.

(** main process **)

process

new rl:RandNum; new r2:RandNum;

new kMx:Key; new kLSP:Key; new kl:Key;
new k2:Key;

new prkL:prkey; let pbkL=pk (prkL)

in out (c3,pbkL) ;

out (¢3,KkLSP) ;

! ((let U=Ul in let r=rl in let k=kl in
let kUIM = Sessk(Ul) in Patient (kU1M)) |
(let U=U2 in let r=r2 in let k=k2 in
let kU2M = Sessk(U2) in Patient (kU2M)) |
MixNode (Sessk(Ul) , Sessk (U2) , kMx) |

Lab (kMx, KLSP, prkL) |

PHRSP (KLSP))

The main process shown above verifies the equivalence between at least two
runs wherein the first run, Lab handles request from one user and in the second
run, from another user. Equivalence between these two processes implies that an
adversary (including the PHRSP) who can listen from the communicating channel
cannot distinguish whether the published report (R) request comes from user U 1 or
U2.

3.3 Comparison

A comparison of existing PHRMSs is shown in Table 1. The comparison is done on
the basis of following properties: whether the scheme requires any special hardware,
uses symmetric or asymmetric encryption method, whether access right revocation
is addressed, uses hierarchical access control (HAC) or not, and whether forward
secrecy property is addressed. From the comparison table, we can see that a number
of schemes [20-25] are hardware-based. Some of the schemes [22, 24, 28] use

Security and Privacy Issues in Outsourced Personal Health Record 443

Table 1 Coarse level comparison of PHRMS schemes

Scheme Special h/w | Encryption Access right | HAC based | Forward
required revocation secrecy

Huang et al. [22], Yes Symmetric No No No

Chen et al. [20]

Lee et al. [24] Yes Asymmetric Yes No No

Narayan et al. [28] No Asymmetric | Yes No No

Odelu et al. [26], No Symmetric No Yes No

Liu et al. [30]

Lietal. [9] No Symmetric Yes Yes No

Thilakanathan No Symmetric Yes No No

etal. [31]

Kumar et al. [10] No Symmetric Yes No Yes

Table 2 Comparison of anonymity related issues in PHRMS schemes
Method

Secret sharing

Scheme Remark

Thilakanathan et al. [31]

Neubauer et al. [45]

Pseudonymization

Not patient-centric

Benaloh et al. [29]

Searchable encryption

HAC based, required
significant number of keys

Moor et al. [46] Pseudonymization Uses pseudonymization
Aamot et al. [42] Pseudonymization Use asymmetric encryption
Kumar et al. [10] Mix node Introduce communication

delay

asymmetric key cryptosystem. Cheng et al., Li et al., and Odelu et al. [9, 26, 30] use
hierarchical access control. These schemes require a significant amount of system
public storage for storing the key derivation hierarchy and key derivation information.
Also, the key derivation cost for accessing PHR document varies with the height of
the hierarchy. Thilakanathan et al. [31] is secret sharing-based scheme thus require
trusted proxy servers for secret computation. Kumar et al. [10] first time introduce
forward secrecy requirement using symmetric keys. In addition, we have discussed
earlier that [9, 28] require a variable number of secret keys with each system user.
Also, [30] is not scalable with add or delete file operation or change in the relationship
between user classes.

Table2 compares the existing schemes with respect to privacy requirement in
PHRMS. All of them uses a TTP in their implementation. Thilakanathan et al. [31]
uses secret sharing mechanism and requires a TTP for data sharing service. Neubauer
and Heurix [45] is not patient-centric. The solution in [29] needs to create and
manage multiple keys by users and service providers. Pommerening et al. [47] uses
2 TTP’s one for each pseudonymization and de-pseudonymization process. Meyer
et al. [46] uses a separate data provider rather than another TTP to perform the

444 N. Kumar and A. Mathuria

pre-pseudonymization process. Aamot et al. [42] use asymmetric cryptosystem for
pseudonymization method. As compare to pseudonymization-based anonymity, [10]
uses mix node to provide unobservable communication.

4 Conclusions and Open Problems

In this chapter, we give a survey on security and privacy requirements of cloud-based
PHRMS. We conclude that it will be a wise decision to classify PHR data according
to the specialty classes of doctors. This is because a doctor generally interested in
viewing the PHR data belongs to their specialty class only.

As an important privacy requirement, PHR data must be stored anonymously
with its owner. Two recent mechanisms for implementing the anonymous require-
ment in a PHRMS are by using pseudonymization or mix node. However, both of
them have their advantages and disadvantages. Pseudonymization does not provide
unobservability while data communication through an open channel using mix node
adds communication delay to the data access mechanism. Therefore, we believe that
there is a significant scope in this area of research to find an efficient mechanism
that achieves data unobservability. Also, the existing solutions enable the presence
of a trusted third party. It will be a challenge to efficiently achieve unobservability
property in a PHRMS without using any trusted party.

For efficiency and privacy reasons, it is desired that a medical document is out-
sourced by its generator directly to the cloud without communicated it through the
PHR owner. However, since the service provider is untrusted, the PHR owner requires
a posterior mechanism such as “auditing” so that it can verify its outsourced PHR
content and take appropriate action in case any unauthorized update happens to the
outsourced PHR. We realize that this area can be further explored to get an efficient
and secure auditing mechanism by the PHR owner for its outsourced secret content.

PHR information accountability is another important area of research when PHR
data is communicated over the open environment and through untrusted entities such
as cloud service provider. Secure PHR data is traveling through various PHRMS enti-
ties which indirectly handle the data and are not trivially trusted by a PHR owner.
Therefore, making each intermediate communication entity accountable to the sys-
tem is another important requirement in a PHRMS.

Irrespective of huge benefits of using PHRs, the “digital divide™ [48], i.e., the users
with low computer and health literacy [49] are still having problem that affects the
usage of PHRs. The studies in [50-52] report the effect of illiteracy in the expansion
of PHR. Therefore, we believe that even though the PHR has great health benefits,
it will be a challenge to adopt it globally.

Security and Privacy Issues in Outsourced Personal Health Record 445

References

11.

12.

13.

14.

15.

16.
17.

19.

20.

21.

. Gunter, T. D., & Terry, N. P. (2005). The emergence of national electronic health record archi-

tectures in the united states and australia: Models, costs, and questions. Journal of Medical
Internet Research, 7, 1.

Kaelber, D. C., Jha, A. K., Johnston, D., Middleton, B., & Bates, D. W. (2008). A research
agenda for personal health records (phrs). JAMIA, 15(6), 729-736.

Liu, L. S., Shih, P. C., & Hayes, G. R. (2011). Barriers to the adoption and use of personal health
record systems. In Proceedings of the 2011 iConference, iConference "11 (pp. 363-370), New
York, NY, USA, 2011. ACM.

Tang, P. C., & Lansky, D. (2005). The missing link: Bridging the patient?provider health
information gap. Health Aff (Millwood), 24(5), 1290-1295.

Health, G. Retrieved from http://www.healthvault.com/personal/index.html.

Health Vault, M. Retrieved from http://www.google.com/intl/en-US/health/about/index.html.
Tang, P. C., Ash, J. S., Bates, D. W., Overhage, J. M., & Sands, D. Z. (2006). Personal health
records: Definitions, benefits, and strategies for overcoming barriers to adoption. JAMIA, 13(2),
121-126.

Lindenthal, J. J., & Thomas, C. S. (1982). Psychiatrists, the public, and confidentiality. The
Journal of Nervous and Mental Disease, 170(6), 319-23.

Li,M., Yu, S., Lou, W., & Ren, K. (2010). Securing personal health records in cloud computing:
Patient-centric and fine-grained data access control in multi-owner settings. In SecureComm
(pp. 89-106).

Kumar, N., Mathuria, A., & Das, M. L. (2015). Achieving forward secrecy and unlinkability in
cloud-based personal health record system. In 2015 IEEE TrustCom/BigDataSE/ISPA, Helsinki,
Finland, 20-22 Aug. 2015 (Vol. 1, pp. 1249-1254).

Haas, S., Wohlgemuth, S., Echizen, 1., Sonehara, N., & Miiller, G. (2011). Aspects of privacy
for electronic health records. International Journal of Medical Informatics, 80(2), e26—e31.
Pfitzmann, A., & Hansen, M. (2010). A terminology for talking about privacy by data
minimization: Anonymity, unlinkability, undetectability, unobservability, pseudonymity, and
identity management. Retrieved Aug. 2010 from http://dud.inf.tu-dresden.de/literatur/ Anon_
Terminology_v0.34.pdf. v0.34.

Safran, C., Bloomrosen, M., Hammond, W. E., Labkoft, S. E., Markel-Fox, S., Tang, P. C.,
et al. (2007). White paper: Toward a national framework for the secondary use of health data:
An american medical informatics association white paper. JAMIA, 14(1), 1-9.
Break-glass—An approach to granting access to healthcare systems. Joint security
and privacy committee nema/cocir/jira, international medical informatics. Retrieved
from http://www.nema.org/prod/med/security/upload/break-glass_-_emergency_access_to_
healthcare_systems.pdf.

Mashima, D., & Ahamad, M. (2012). Enabling robust information accountability in e-
healthcare systems. In 3rd USENIX Workshop on Health Security and Privacy, HealthSec’12,
Bellevue, WA, USA, 6-7 Aug 2012.

Foundation, M. Connecting for health. The personal health working group final report.

Law, U. P. (1996). Health insurance portability and accountability act of 1996. In 104th
Congress (pp. 104-191).

. Szolovits, P, Doyle, J., Long, W. J., Kohane, 1., & Pauker, S. G. (1994). Guardian angel:

Patient-centered health information systems, Technical report, Cambridge, MA, USA.
Mandl, K. D., Simons, W. W., Crawford, W. C. R., & Abbett, J. M. (2007). Indivo: a personally
controlled health record for health information exchange and communication. BMC Medical
Informatics and Decision Making, 7, 25.

Chen, Y.-Y., Lu, J.-C., & ke Jan, J. (2012). A secure EHR system based on hybrid clouds.
Journal of Medical Systems 36(5), 3375-3384.

Hu, J., Chen, H.-H., & Hou, T.-W. (2010). A hybrid public key infrastructure solution (HPKI)
for HIPAA privacy/security regulations. Computer Standards and Interfaces, 32(5-6), 274—
280.

http://www.healthvault.com/personal/index.html
http://www.google.com/intl/en-US/health/about/index.html
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://www.nema.org/prod/med/security/upload/break-glass_-_emergency_access_to_healthcare_systems.pdf
http://www.nema.org/prod/med/security/upload/break-glass_-_emergency_access_to_healthcare_systems.pdf

446 N. Kumar and A. Mathuria

22. Huang, H.-F.,, & Liu, K.-C. (2011). Efficient key management for preserving HIPAA regula-
tions. Journal of Systems and Software, 84(1), 113—119.

23. Lee, W.-B., & Lee, C.-D. (2008). A cryptographic key management solution for HIPAA pri-
vacy/security regulations. IEEE Transactions on Information Technology in Biomedicine, 12(1),
34-41.

24. Lee, W.-B,, Lee, C.-D., & Ho, K. L.-J. (2014). A HIPAA-compliant key management scheme
with revocation of authorization. Computer Methods and Programs in Biomedicine, 113(3),
809-814.

25. Yu, W. D., & Chekhanovskiy, M. A. (2007). An electronic health record content protection
system using smartcard and PMR. In e-Health Networking: Application and Services (pp.
11-18).

26. Odelu, V., Das, A. K., & Goswami, A. (2013). An effective and secure key-management scheme
for hierarchical access control in e-medicine system. Journal of Medical Systems, 37, 2.

27. Keoh, S. L., Asim, M., Kumar, S. S., & Lenoir, P. (2011). Secure spontaneous emergency
access to personal health record. In 3rd International Workshop on Security and Privacy in
Spontaneous Interaction and Mobile Phone Use.

28. Narayan, S., Gagné, M., & Safavi-Naini, R. (2010). Privacy preserving EHR system using
attribute-based infrastructure. In CCSW (pp. 47-52).

29. Benaloh,J.,Chase, M., Horvitz, E., & Lauter, K. (2009). Patient controlled encryption: Ensuring
privacy of electronic medical records. In CCSW (pp. 103—-114).

30. Liu, C.-H., Chen, T.-S., Chen, T.-L., Chen, C.-S., Bau, J.-G., & Lin, T.-C. (2012). Secure
dynamic access control scheme of PHR in cloud computing. Journal of Medical Systems
36(6), 4005-4020.

31. Thilakanathan, D., Chen, S., Nepal, S., Calvo, R., & Alem, L. (2014). A platform for secure
monitoring and sharing of generic health data in the cloud. Future Generation Computer
Systems, 35, 102—113.

32. Dekker, M. A. C., & Etalle, S. (2007). Audit-based access control for electronic health records.
Electronic Notes in Theoretical Computer Science, 168, 221-236.

33. Beedham, H., & Wilson-Barnett, J. (1995). Hiv and aids care: Consumers’ views on needs and
services. Journal of Advanced Nursing, 22(4), 677-86.

34. Ford, C. A., Millstein, S. G., Halpern-Felsher, B. L., & Irwin Jr, C. E. (1997). Influence of
physician confidentiality assurances on adolescents’ willingness to disclose information and
seek future health care. A randomized controlled trial. JAMA, 278(12), 1029-1034.

35. Rodriguez, M. A,, Craig, A. M., Mooney, D. R., & Bauer, H. M. (1998). Patient attitudes about
mandatory reporting of domestic violence. implications for health care professionals. Western
Journal of Medicine, 169(6), 337-341.

36. Applebaum, P. S. (2002). Privacy in psychiatric treatment: Threats and response. American
Journal of Psychiatry, 159.

37. Bass, A. (1995). Hmo puts confidential records on-line: Critics say computer file-keeping
breaches privacy of mental health patients. Boston Globe.

38. Sweeney, L. (2002). k-anonymity: A model for protecting privacy. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5), 557-570.

39. Machanavajjhala, A., Kifer, D., Gehrke, J., & Venkitasubramaniam, M. (2007). L-diversity:
Privacy beyond k-anonymity. TKDD, 1, 1.

40. Li, N., Li, T., & Venkatasubramanian, S. (2007). t-closeness: Privacy beyond k-anonymity and
I-diversity. In ICDE (pp. 106-115).

41. Heurix, J., Karlinger, M., Schrefl, M., & Neubauer, T. (2011). A hybrid approach integrating
encryption and pseudonymization for protecting electronic health records. In Proceedings of
the Eighth IASTED International Conference on Biomedical Engineering (2011).

42. Aamot, H., Kohl, C. D., Richter, D., & Knaup-Gregori, P. (2013). Pseudonymization of patient
identifiers for translational research. BMC Medical Informatics and Decision Making, 13, 75.

43. Chaum, D. (1981). Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, 24(2), 84-88.

Security and Privacy Issues in Outsourced Personal Health Record 447

44.

45.

46.

47.

48.

49.

50.

51.

52.

Blanchet, B. (2001). An, & efficient cryptographic protocol verifier based on prolog rules.
In 14th IEEE Computer Security Foundations Workshop (CSFW-14) (pp. 82-96), 11-13 June
2001. Cape Breton, Nova Scotia, Canada.

Neubauer, T., & Heurix, J. (2011). A methodology for the pseudonymization of medical data.
International Journal of Medical Informatics, 80(3), 190-204.

Meyer, F. D., Moor, G. D., & Fourquet, R. (2008). Privacy protection through pseudonymisation
in eHealth. Studies in Health Technology and Informatics, 141, 111-118.

Pommerening, K. et al. (2006). Pseudonymization service and data custodians in medical
research networks and biobanks. In GI Jahrestagung (1) (pp. 715-721).

Kim, E., Mayani, A., Modi, S., Kim, Y., & Soh, C. (2005). Evaluation of patient-centered
electronic health record to overcome digital divide. In Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (Vol. 2), pp. 1091-1094.

Archer, N., Fevrier-Thomas, U., Lokker, C., McKibbon, K. A., & Straus, S. E. (2011). Personal
health records: A scoping review. JAMIA, 18(4), 515-522.

Kim, E. H., Stolyar, A., Lober, W. B., Herbaugh, A. L., Shinstrom, S. E., Zierler, B. K., et al.
(2009). Challenges to using an electronic personal health record by a low-income elderly
population. JMIR, 11, 4.

Lober, W. B., Zierler, B., Herbaugh, A., Shinstrom, S. E., Stolyar, A., Kim, E. H., & Kim,
Y. (2006). Barriers to the use of a personal health record by an elderly population. In AMIA
Annual Symposium Proceedings/AMIA Symposium.

Yamin, C. K., Emani, S., Williams, D. H., Lipsitz, S. R., Karson, A. S., Wald, J. S., et al.
(2011). The digital divide in adoption and use of a personal health record. Archives of Internal
Medicine, 171(6), 568-574.

Applications of Trusted Computing
in Cloud Context

Mohammad Reza Memarian, Diogo Fernandes, Pedro Inacio,
Ville Leppéinen and Mauro Conti

Abstract Trusted computing is a technology that enables computer systems to
behave in a given expected way. Achieving that goal happens by arming an iso-
lated piece of hardware with embedded processing, cryptographic capabilities such
as encryption key that is kept safe from software layer attacks. The mentioned mod-
ule is accessible to the rest of the computer system via a well-defined and tested
application programming interface. Trusted computing protects the system against
external attackers and even against the owner of the system. Cloud computing enables
users to have access to vast amounts of computational resources remotely, in a seam-
less and ubiquitous manner. However, in some cloud deployment models, such as
public cloud computing, the users have very little control over how their own data
is remotely handled and are not able to assure that their data is securely processed
and stored. Cloud administrators and other parties can be considered threats in such
cases. Given the ground that cloud has been gaining and the rate at which data is
generated, transmitted, processed, and stored remotely, it is vital to protect it using
means that address the ubiquitous nature of the cloud, including trusted computing.
This chapter investigates applications of trusted computing in cloud computing areas
where security threats exist, namely in live virtual machine migration.

M. Reza Memarian - V. Leppinen (<)
Department of Information Technology, University of Turku, Turku, Finland
e-mail: Ville.Leppanen @utu.fi

M. Reza Memarian
e-mail: mohammad-reza.memarian @utu.fi

D. Fernandes
PepsiCo, Michréw, Poland

P. Inécio
Computer Science, University of Beira Interior, Covilha, Portugal

M. Conti
Department of Mathematics, University of Padua, Padua, Italy
e-mail: conti@math.unipd.it

© Springer Nature Singapore Pte Ltd. 2017 449
S. Chaudhary et al. (eds.), Research Advances in Cloud Computing,
DOI 10.1007/978-981-10-5026-8_18

450 M.R. Memarian et al.

1 Introduction

In computing, the term trust refers to establishing a high degree of confidence in the
behavior of a system, provided that particular inputs are expected to render certain
outputs. Trust is knowledge of the user on the precise functioning of the system. Due
to the diversity of computing systems, this matter can not be addressed in a straight-
forward manner. The state in which a single computing system can be is determined
by running a set of configurations with varying dimensionality that can be reshuf-
fled and recombined in a multitude of ways. That set changes as the system is used
throughout time due to installation, upgrade or removal of software and replace-
ment of hardware. For example, the Linux kernel subsystem implements an Integrity
Measurement Architecture (IMA) that can be explored for integrity attestation pur-
poses [7]. Hence, identifying the entire state set of a system can be an unfeasible
task. Smaller subsets of well-known configurations are more manageable, but that
does not satisfy the diversity of the computing systems. Frequently, trust assurance
is achieved using cryptographic proofs that testify reliability of a system, regardless
of the adjacent conditions and inputs at the cost of some overhead. Other approaches
consist of formally proving that software works according to requirements.

Despite concerns over the security of cloud environments [16], cloud computing
has been developing and maturing. This technology enables the envisioned comput-
ing as a utility, essentially by eliminating the hassle of establishing on-site Infor-
mation Technology (IT) infrastructures. It is capable of allocating, on-demand and
off-site, fine-grained resources with minimal cost, by leveraging economy of scale.
However, outsourcing private data and storage to providers with multi-tenant environ-
ments raises security concerns. Trusted computing is, therefore, an essential com-
ponent to cloud environments that can alleviate some of those security concerns.
Nevertheless, the setup of cloud infrastructures under the service delivery models
translates into an interplay of different hardware, virtualization and software tech-
nologies at multiple layers. That interplay, in turn, creates computing diversity that
poses as a difficulty in achieving trusted remote computing in a holistic manner.

In the light of the benefits of trusted computing to cloud environment, it is impor-
tant to study current applications of one to the other, taking into consideration the
challenges and requirements of cloud computing. This chapter makes that discus-
sion by analyzing the security requirements in terms of trust to cloud services and by
studying the applicability of trusted solutions to such requirements. Therefore, the
contributions of this chapter are twofold. First, cloud computing is described with
a focus on its trust requirements. Second, current applications of trusted computing
are enumerated and weighted according to different criteria within the cloud security
requirements.

Next, Sect.2 gives an introductory overview of the cloud computing deploy-
ment models and subsequently focuses on cloud services and security requirements.
Section 3 describes trusted computing and enumerates applications of that technology
to cloud computing environments. Section4 summarizes the discussion and points
out open issues. Finally, Sect. 5 concludes the chapter.

Applications of Trusted Computing in Cloud Context 451

2 Cloud Computing

Computing in the cloud emerged several years ago as a means to describe com-
puting as a utility off-site. This computing model not only offloads some storage
and computing responsibilities to a cloud provider, but also the burden of manag-
ing IT infrastructures and security duties. For providers, services wrap well-defined
resources from elastic pools that are measured and allocated as needed to users. In
turn, consumers of the services are charged per subscription, which can significantly
decrease costs for all kinds of small to large businesses.

The National Institute of Standards and Technology (NIST) adds the notions
of ubiquitous access, monitored, on-demand, and shift provision of resources with
minimal management burden to the definition of cloud computing [28]. This comput-
ing paradigm consists of three main service delivery models, Software-as-a-Service
(SaaS), Platform-as-a-Service (PaaS), and Infrastructure-as-a-Service (IaaS), that
can be set up in four deployment modes: private, public, community, and hybrid.

2.1 Cloud Services

Initially, cloud services were largely discussed according to three delivery models
(as described in other chapters of this book) that illustrate the different layers of the
cloud stack: TaaS, PaaS, and SaaS. Concerning trust and applications in the cloud
context, the layers SaaS and aaS are the most interesting, as those primarily provide
the end-user applications and raw computing and storage resources, respectively. The
description of services, however, is now often particularized under Anything-as-a-
Service (XaaS), conveying the meaning that cloud services can deliver anything in
the form of services. In fact, new service definitions have been made in an arbitrary
way throughout time, resulting in a lack of a unified XaaS scheme [13], a view that
was foreseen several years ago by Armbrust et al. [3].

The virtualization layer underpinning laaS infrastructures brings many bene-
fits, despite the implied overhead. A Virtual Machine Monitor (VMM) can handle
several Virtual Machines (VMs), each one possibly encapsulating a different Oper-
ating System (OS) (a guest) with distinct settings. Access to the hardware is regu-
lated by the manager according to a scheduling algorithm. This setup has noticeable
advantages in terms of security by design, such as controlled isolation of the envi-
ronment, regardless of vulnerabilities, and close monitoring of resource usage and
communications. With the dependency between guest and native OSs removed, VMs
can be rolled back to previously saved states (i.e., snapshots) or be moved around,
in a process termed migration. This VM independence implies that, within TaaS
infrastructures, data can be in one of three postures at a given time: at transport
(data-in-motion), at rest (data-in-rest), and at runtime (data-in-processing). Migra-
tion of data between VMs or live VM migration is central to achieve energy-efficient
consolidated workloads in clouds by minimizing the number of servers that are
underutilized or idle [11].

452 M.R. Memarian et al.

2.2 Security Issues

Assuring security in all aspects of systems and end-to-end communications consti-
tutes often a burden, because it is not granted by design. Unfortunately, security issues
are likely prone to appear as a consequence. This principle holds true for cloud envi-
ronments, as they are built on top of current networks and web technologies. Apart
from mentioned technologies, virtualization is a vital component of cloud computing
structure. OS-level virtualization provides the building blocks for running multiple
OSs while sharing hardware resources, and effectively enhances isolation by means
of sandboxing. Nonetheless, the virtualization technology may not be completely
free of vulnerabilities, allowing adversaries to escape the controlled environment,
a process known as VM escape. A prime real-world example of VM escape is the
VENOM [9] vulnerability, identified by CVE-2015-3456. This vulnerability allows
an attacker to run any code in the hypervisor process context by exploiting a buffer
overflow in the Floppy Disk Controller (FDC) of the Quick Emulator (QEMU) hyper-
visor used by Xen and Kernel-based Virtual Machine (KVM) platforms.

Migration of VMs can always expose data as it is in motion. In the process
of migration, VMMSs copy memory pages of the VM to be migrated from source
host to destination host seamlessly, while guest VMs are still running. This opens
opportunities for attackers (especially malicious insiders) to access raw memory data
of migrating VM. A myriad of information lies in the memory as everything in the
OS traverses through the Random Access Memory (RAM), including passwords
and cryptographic keys. In 2011, researchers employed simple forensics techniques
to recover sensitive information from Xen VM snapshots, which contain copies of
memory from a certain point in time in [32, 33].

Needless to say that snapshots at rest comprise tempting targets too, in case the
storage media is accessible. Beyond the sensitive data they may hold, a compromised
snapshot or image can be used to spread malware within the cloud environment if
used as a golden image to boot up VMs.

To better arrange the discussion below, the threats and security requirements to
cloud computing are discussed against the three postures the data can have in the
cloud. We assume that the attacker is either an individual inside the infrastructure or
has equivalent access. The threats with regard to data postures are as follows:

e When ar transport, data potentially moves from a given (physical) system to
another. As such, vulnerabilities related with networking technologies also play an
additional role in such a scenario. The potential insecure communication channel
is part of the attack model. If the data is moving between data centers, in an ecosys-
tem known as intercloud, threats such as data leakage or modification are more
prominent. Examples include the modification of VM’s image during migration,
namely to inject malicious software during the procedure. In this case, the data
may be accessed or modified along the path from the source to the destination,
which may render the intrusion or leakage more difficult to detect or account for.

e Within the context of cloud, data at rest may concern files and database instances
of SaaS, PaaS applications or [aaS VM images. Clouds are also commonly used

Applications of Trusted Computing in Cloud Context 453

to store backups of entire remote systems on demand or on a regular basis. If the
data is stored in plaintext, or with insecure schemes (e.g., data may be encrypted
with keys generated in the cloud itself), then it is susceptible to eavesdropping,
data modification or leakage (the attacker may copy the data elsewhere). Eaves-
dropping may lead to compromise of private or confidential data, namely of
industrial secrets, causing monetary harms. Modification of VM images may be
performed with the goal of injecting malware, while eavesdropping has the inten-
tion of accessing confidential data. Modification of data at rest from PaaS or SaaS
applications may be performed to induce a different behavior on the development
environment or applications.

e The cloud is an ecosystem for very diverse runtime environments, and gives rise to
very specific scenarios. In this case, data may leak from one execution environment
to another or be injected between allegedly isolated sandboxes. Specific threats
include cross-VM and container attacks [44], and malicious software installed at
the hypervisor layer reading the contents of the memory from a running VM. Multi-
tenancy is a core technology for the cloud, but brought its new set of security issues,
especially in public clouds [27]. In such multi-tenancy scenario, two customers
may be sharing the same technology, libraries, global variables and storage, which
need to be adequately provisioned. At the runtime posture, threats are mainly
coming from co-resident systems or applications [37].

2.3 Security Requirements

Two of the main security requirements of users in any secure environment are data
confidentiality and integrity. It is vital for users to make sure that those properties of
their data are preserved and guaranteed at any stage of operation. In addition to the
mentioned requirements, trust is another factor which is more desired in the cloud
than in other environments. There should be mechanisms in place to assure users
that the trusted party transports and processes their data securely. In this section, we
discuss security requirements for user data in the cloud with respect to cloud services
mentioned in the previous section.

In most cases, confidentiality is the most important security requirement for user’s
data in cloud computing. It applies to any of the previously identified postures that
data can be in. Privacy is also becoming more important in an age where ubiquity is
increasing. Moreover, integrity of the user data is the other vital security requirement
that shall be preserved in all the mentioned states, along with data authentication
during transmission. At the transport state, adequate controls shall be implemented
in place in order to provide a secure transport channel. Encryption mechanisms
and Message Authentication Codes (MACs) are typically employed to provide a
confidential and authenticated channel between cloud instances. Nonetheless, the
aforementioned security mechanisms have an impact on the performance of the
systems, which may hinder full deployment on every communication. Furthermore,

454 M.R. Memarian et al.

usage of controls such as Network Intrusion Detection System (NIDS) can help to
detect network level attacks and suspicious activities.

In addition to the transport and at rest states, data can be at the processing state.
While users offload their heavy computational activities on cloud resources, they need
trustworthy computational activity by the service provider. Parties with adequate
privileges or via exploitation of vulnerabilities can access, modify or delete other
users data. As such, confidentiality and integrity of data should be preserved at
storage and computation time too [42]. However, the typical ciphers and integrity
mechanisms cannot be used to protect data in the processing state. Data would have
to be loaded in plaintext to the memory [34] to be processed. All the mentioned
concerns arise from the fact that users do not have physical access to their data
and applications. Recent research lines on homomorphic encryption schemes are
motivated by the mentioned scenarios.

As pointed out earlier, main security properties that shall be preserved in any
secure computing environment are confidentiality, integrity, and availability which
are referred to as the CIA triangle. Trusted Computing (TC) can contribute to preser-
vation of confidentiality and integrity of the data while availability is not directly
achieved by implementation of TC. Starting from the described requirements and
postures, it is now possible to investigate how TC can be used to provide assurance
of the properties to the user.

3 Contribution of Trusted Computing to Cloud Security

The trust issue is best put into perspective when considering the evolution of IT
infrastructures throughout time. Amoroso [2] accurately described, a few years ago
in the context of modern enterprise infrastructures, a decisive point in time where the
transition of IT infrastructures to the cloud was accelerating. The early IT model of
the 1990s considered assets to be on-site, enclosed by a well-defined and controlled
perimeter. Evolving business and communication needs, however, required to open
network ports into the environment. Such is the case with Virtual Private Networks
(VPNs), websites and email, all still in use today, and Internet access. Email, for
instance, has been and still is one of the most concerning open channels into the
network as it is heavily explored by attackers to deploy malware. Eventually, this
drop in trust leads to a multitude of network and host-based monitoring and detection
technology.

Fast forward to the current day, with cloud computing booming, the scope of the
trustissue enlarges and worsens, leapfrogging from on-site IT infrastructures into off-
site cloud environments. Trusted computing technology, however, helps alleviating
the problem. The first part of this section describes TC, while the remaining parts
point out deployments of that technology addressing the specific security issues of
cloud environments discussed before.

Applications of Trusted Computing in Cloud Context 455

3.1 Definition of Trusted Computing

TC refers to a set of software-based and hardware-based definitions and technologies
that enable computer systems to behave in a desired and expected way. In the TC
design, systems are less dependent on their owners while, even to some extent,
are protected against them. TC requires a set of public and private key pairs to
be generated and fixed on the hardware at the manufacturing time. The key pair
is referred to as Endorsement Key (EK). Using the hard coded EK, platforms can
authenticate each other and applications running on a platform can assure other
applications on other platforms about their origin platform. TC also enables running
of a particular desired software only and various desired restriction can be imposed
on runtime behavior of applications.

TC is specifically applicable to distributed applications in environments such as
cloud computing. In such environments, applications can make sure that the other
applications or platforms are the correct ones. One of the key concepts in TC design is
remote attestation. Remote attestation enables authorized parties to detect unwanted
changes to the computing system. It is applicable in various areas of computing such
as detection of unwanted change in the licensed software and verifying the platform
that an application is executing on it.

Trusted Platform Module (TPM) is a standard for a piece of hardware (micro-
processor) that acts as an enabler of TC. Using TPM, a user can ensure that the
application is running on the specific hardware and OS. This secure cryptographic
module delivers a hardware-based method to handle authentication of user, data pro-
tection, and network access, and brings out the matter of security from the software
layer only. Hardware-based TPMs are bound to a single standalone device by design.
The origin of trust is therefore limited in scope, which turns out to be unsuitable for
applications where sharing is desired or for cross-device scenarios. An extension of
the version 2.0 of the TPM specification is presented in [8] in order to address multi-
device scenarios. The extension for TPM v2.0 actually trusts and relies on the cloud
to share an additional key, though it does not address any particular cloud security
issue.

3.2 Trusted Cloud Computational Security

One of the critical postures that user data can be at is the processing state (while
using the cloud services). At that state, data require substantial protection in order
to ban privileged insiders to interfere with the user computational processes. The
processing state refers to the execution of internal processes for computing over user
data. It encompasses various types of calculation, simulation, data processing, and
program execution. Hence, clients shall have methods in hand to verify integrity and
confidentiality of their data at computation time on the cloud. That concern enforces
limitations of using cloud for security-critical computations such as confidential
simulations.

456 M.R. Memarian et al.

While the data of a user can be at processing state at any service level, the case of
IaaS is the most relevant for this study. At the TaaS level, users have more control over
the underlying infrastructure of the service, when compared to other service layers.
That enables users to have a more deterministic role in determining the security level
of their service at IaaS level while in other service levels, the providers get that role.
On the other hand, applying trusted computing techniques to the PaaS and SaaS
levels but not to the IaaS level would be unnatural, since trust building is transitive
and one should start it from the lowest levels. Having trusted computational security
for the IaaS level can be seen to implicitly provide it also for the PaaS and SaaS
levels. Hence, it is no surprise that applications of TC are mostly proposed for the
TaaS level. However, some papers propose additional trusted computing solutions for
the PaaS and SaaS layers.

In the following, we survey some works having focus in computational issues of
trusted cloud. Many of these works are actually wide in scope—describing overall
trusted cloud solution with computational capabilities. The papers are summarized
in Table 1.

At the IaaS level, services are provided in the form of VM. Those VMs are started
based on some images. The user can either purchase the image from the image
repository of the service provider or the user can upload an arbitrary image to be
used for the user’s VM. To verify the integrity of the started system, the user shall
make sure that the started VM booted an expected image. Incorporation of TC into
cloud computing platforms is an effort in that regard. Wallom et al. [41] proposed
myTrustedCloud which incorporated TC into the Eucalyptus cloud platform. Trusted
computing enables users of the cloud to be assured about the integrity of the VM
itself and the underlying VMM. Each VM executes the desired applications on top
of a commodity OS. That condition simulates a form of the open-box system. On
the other hand, users can modify the settings of an OS in order to satisfy the secu-
rity requirements of their applications and diminish the unrequited services from a
large OS. That simulates a form of closed-box system. The closed-box setting cre-
ates an execution environment that disables malicious insiders from accidentally or

Table 1 Overview of trusted cloud papers having focus in computational issues

Paper Layer Overview

[41] laaS An outline of trusted cloud for security-critical computation.

[17] laaS Early (2003) constructive work on Terra system for trusted
general-purpose computing

[22] laaS Introduces open source cloud computing framework Eucalyptus.

[40] PaaS Trusted computing based solution for Java environment. The
solution is applicable to cloud context

[6] PaaS/SaaS | Efficient and Secure Educational Platform (ESEP) for cloud
computing based on TPMs

[30] SaaS Provides trusted SLA (service level agreement) monitoring

services as part of a cloud based billing system

Applications of Trusted Computing in Cloud Context 457

intentionally accessing and tampering the user data at processing time [34]. The
requirement for that is to have a VMM that supports trusted computing.

Garfinkel et al. [17] proposed Terra, a Trusted Virtual Machine Monitor (TVMM)
architecture that is able to simultaneously run VMs in both open and closed-box set-
tings. That allows each application to run on a specifically modified version of an OS.
Furthermore, the architecture of Terra allows the TVMM to apply TC requirements
such as remote attestation of the applications for each VM. Hence, it is effective
for implementation of distributed applications in cloud environments. Using trusted
computing, the user can verify the integrity of the VM itself, the Node Controller
(NC) and the Elastic Block Store (EBS). In order to verify integrity of the VM, the
integrity of all three mentioned elements should be verified, which is called iterative
attestation. That verifies the operation of the trustworthy VM on a trusted platform
[22].

As opposed to Terra, which is suitable for operation on a single platform, Trusted
Cloud Computing Platform (TCCP) [34] operates on multiple platforms (data center
wide) enabling VMs to move around and use the live migration feature. As such, the
attestation encompasses the entire service ensuring the customer about the security
of each platform that computation is taking place on. Important components of TCCP
are TVMM and a third-party trusted coordinator. Nodes shall go through a secure
boot process in order to install the TVMM. That trusted coordinator keeps a list of
trusted nodes that the user can have for user’s own VM to securely operate on. To be
trusted a node shall run a TVMM and be in the secure perimeter. One of the important
points here is that the VM’s launch time is a critical moment requiring protection
and other operations such as suspend and resume [34].

While attestation is a useful mechanism for remote verification of trust, it has
two shortcomings. By attestation, some private information of the service provider
such as details about the platform and the internal structure of internal systems can
be uncovered. Potential malicious users can benefit from that information to form
attacks. Secondly, if third parties handle the attestation [22], they become the single
point of failure [41].

Even though cryptography can contribute to preserve confidentiality and integrity
of data at transport and storage states, it is currently ineffective during computa-
tion time [34], as data shall be loaded in plaintext to memory. Fully Homomorphic
Cryptography (FHC) allows a set of limited operations on the encrypted data, but
the performance of FHC is not at a level to be operational in practice. This prob-
lem is more severe in the cloud because it has a multi-tenant environment and the
infrastructure is not under control of the data owner. Cloud employees either acciden-
tal or maliciously might tamper or access data, causing violation of confidentiality
and integrity. At situations where user data is unprotected in the memory for process-
ing, anyone with privileged access level can have access to the data. A preliminary
countermeasure is to limit the physical access to the hardware and servers. However,
limiting the physical access only thwarts a small portion of the attacks as various other
attacks take place with remote access, and existing solutions are not fully effective
in mitigating attacks in that field [32].

458 M.R. Memarian et al.

One can also find PaaS level solutions of trusted computing. One such is trusted
computing implementation for platform-independent Java environment by Toegl
et al. [40]. To be precise, the paper only sees cloud computing as one possible context
for their technical solution, and thus this work is only indirectly cloud related.

SaaS level solutions do also exist. In such cases, the SaaS solution has some spe-
cific data and functionality that is secured with trusted computing techniques. Brohi
et al. [6] describe a secure cloud infrastructure for an Efficient and Secure Educa-
tional Platform (ESEP)—it can be seen either as a SaaS or a PaaS level solution. The
actual solution also contains elements from the [aaS level. A different kind SaaS level
trusted service is provided from the THEMIS system by Park et al. [30]. The THEMIS
system is a billing system implemented for a cloud computing environment, but the
system provides monitoring of service level agreement (SLA) properties by imple-
menting that functionality based on TPM modules. In fact, there are several other
papers that provide similar SLA related functionality based on trusted computing
techniques in cloud computing contexts.

3.3 Trusted Cloud Transport Security

The attestation process can be the target of network layer attacks. Two of the related
attacks in that layer are reply attacks and Man-in-the-Middle (MitM). In order to
prevent reply attacks, a cryptographic nonce, which is generated by the user shall be
used for the attestation session. In order to tackle the MitM, the NC shall make sure
that the VM requesting attestation is running and is connected to that NC itself [41].

At the VM transport time, user data can be the target of leakage and tampering
attempts [34]. In live migration, the states of a VM are transferred between two
nodes, which both need to be trusted.

We have looked at papers focusing on transport security in trusted cloud context.
In the following, we survey some recent such papers and summarize the results
as Table2. Almost all such papers deal with VM migration at IaaS level—such
constructions are also surveyed recently in [1, 25]. This is quite natural, as considering
the SaaS level, the mechanisms to securely transmit SaaS application data from one
(cloud) system to another are already well understood and solved even outside the
cloud context. On the other hand, sharing SaaS level data is an elementary part of

Table 2 Overview of trusted cloud papers having focus in migration issues

Paper Layer Overview

[10] laaS Virtual TPM-based solution for VM migration in private clouds

[4] laaS VM migration solution focusing on developing trust token-based
protocol

[15] TaaS Further developed VM-vTPM solution where the focus is in TLS
channel

[19] PaaS/laaS | Virtual TPM-based solution enabling container migration

[38] IaaS An OpenStack and TPM-based solution for VM migration

Applications of Trusted Computing in Cloud Context 459

the whole idea of cloud computing. Migrating applications from a cloud system to
another neither seems to be a popular topic in the literature. The reason perhaps is
that a cloud application corresponds to a service and instead of moving services from
one place to another, one can replicate the same service in several places (and then
moving corresponds to setting a service up in one place and closing it down in another
place—not necessarily moving any data related to the service). There is however one
seemingly growing exception to this PaaS level activity—the container technology
is gaining more popularity and one can think of moving a container (typically made
just for one application) as a PaaS level migration activity. A virtual TPM-based such
framework is described in [19].

In Danev et al. [10], three security requirements are enumerated for secure migra-
tion of VMs based on Trusted Platform Modules (vTPMs), namely VM-vTPM con-
fidentiality and integrity, initiation authenticity (of the migration requester), and
preservation of the trust chain. The last one is of particular importance when con-
sidering the different elements of the cloud stack and trust transitivity, as well as
the strong association between hardware TPMs and vTPMs. To cope with these
requirements, Danev et al. [10] described a protocol where migration of VM-vTPM
pairs is made possible between attested nodes by introducing an additional key layer
between TPMs and vTPMs, at the cost of some overhead. Moreover, Aslam et al. [4]
add as a requirement that the destination of a migration should be trustworthy too.
To cope with that, and other cloud requirements like scheduling, transparency, and
scalability, a token-based trust scheme is described to attest that the same software
state trusted by the user is found on platforms where the VM are migrated to. This
scheme relies on a TPM-based communication protocol between the source and des-
tination systems, as well as on trust tokens pre-generated by the cloud provider in a
segregated network.

Another constructive solution for VM migration is given by Fan et al. [15]—
their work especially focuses on development of TLS-based migration protocol. VM
migration is studied in several contexts. Syed et al. [38] study the issue in OpenStack
context applying TPM, libvirt, and QEMU.

3.4 Trusted Cloud Storage Security

Cloud storage is used for file, system and image backups. Guaranteeing security
against confidentiality and integrity breaking attempts means usually to encrypt and
authenticate the data. Depending on the usage and type of data, TPM may be used as
a means to derive encryption keys, perform encryption and decryption of data, and
testify the integrity of the data during retrieval.

In the case of remote storage of files and system backups (e.g., Dropbox), data
should already be in an encrypted format when it reaches the cloud, though this does
not always happen nowadays. If special functions over the data, such as search, are
required, TPM may be used to perform them in a safe environment, returning sani-
tized values. In the case of image storage, TPM is particularly useful for attestation
purposes.

460 M.R. Memarian et al.

Table 3 Overview of trusted cloud papers having focus in storage issues

Paper Layer | Overview

[35] laaS Technical solution for server and client side focusing on handling and
sharing of encryption keys

[36] laaS A general encryption and trusted computing based solution for cloud data

[20] SaaS Specific solution for trustworthy flow cytometry data analyses

[5] SaaS Provenance-based trusted solution for access control and provenance
information provision for the users

[39] PaaS Provenance solution for forensics needs based on trusted computing

[43] laaS An OpenStack-based cloud solution for forensics-enabled investigations

[21] laaS A trust-based solution in hybrid cloud setting for geographically fenced data

[31] laaS TGVisor: A storage solution for controlling geolocation of data with trusted

computing and supporting especially mobile clients

[26] laaS SecLoc: A solution for supporting location sensitivity of cloud data storage
with trusted computing

In the following, we review a small set of rather recent works that focus on
providing storage security in the trusted cloud context. Often the papers also deal
with other issues besides the storage security. The papers are summarized in Table 3.

Shin et al. [35] consider the access control mechanism provided for typical cloud
storage to require improvement. They propose a technical solution called DFCloud
for an improved TPM-based solution of managing encryption keys and overall key
sharing between dynamically defined legal users. Special focus is given for mobile
devices as means to access such cloud storage. On the client side, DFCloud is based
on using ARM’s TrustZone technology. From the cloud point of view, the DFCloud
works at TaaS level.

There are several general solutions proposed for securing cloud data using trusted
computing technologies. Singh et al. [36] describe a TPM-based solution, NUYA,
using Kerberos for generally securing data in the cloud context. As opposed to generic
solutions, there exist also some rather specific application related data that are secured
with trusted computing based techniques in the cloud context. Javanmard et al. [20]
give such a solution for the medical field, specifically for flow cytometry analyses to
support disease diagnosis activities. As specific solutions are more like applications,
the TSC (Trustworthy and Scalable Cytometry) solution of [20] can be seen to be
made for the SaaS layer.

Concerning cloud storage, there is occasionally a clear need to be able to track
the usage and origins of data. Provenance on data is information of actions that are
taken on it since the creation of data (including creation). Many cloud systems sup-
port data provenance as a feature, but technical solutions for guaranteeing trusted
provenance-based access and information are also presented in the literature. A sur-
vey of provenance solutions is given in [24]. Bates et al. [5] present a trusted com-
puting based provenance solution for access control but also provide the provenance
data as a SaaS-like service for the user. Progger (Provenance Logger) is another

Applications of Trusted Computing in Cloud Context 461

technical solution by Ko and Will [23] for provenance information but unlike [5]
it is not really based on trusted computing but on a kernel-space solution. In many
works, provenance-based solutions are developed towards auditing and forensics
needs. One such paper is by Taha et al. [39], where that kind of trusted computing
based solution is given. The solution is made for a set of applications and thus it can
be considered as a PaaS/SaaS level solution. Another OpenStack-based solution is
given by Zawoad and Hasan [43]. They describe a construction named FECloud to
support forensics-enabled investigations concerning data provenance. Their solution
is indirectly based on trusted computing.

One rather recent challenge for cloud computing systems has been the (often law-
based) requirement to enforce governmental data privacy regulations and to ensure
that data (and computations on the data) do not cross some specific geographic
boundaries. There are several specific trusted computing based technical solutions
provided for securing location sensitivity of the data in a cloud system. In general, the
idea of such trustworthy geographically fenced hybrid clouds (TGHC) is described
by Jayaram et al. [21]. TGVisor, by Park et al. [31], represents a more detailed
technical IaaS solution for more or less the same problem but also supporting mobile
clients. Another related solution is SecLoc by Li et al. [26]. SecLoc is specifically
made for needs raising from Canadian law—to provide a location-sensitive cloud
storage for example, storing health records.

4 Discussion and Open Challenges

Despite the research advancements in this field, one of the fundamental issues of
trust remains open. That issue is the one revolving around the perception of trust,
specifically what different individuals and groups make of it both in concept and
in relation to technology. This is especially relevant to cloud environments, such
as the project described in [14], which aimed at identifying issues in a pilot High-
Performance Computing Cluster (HPCC) in the cloud for several stakeholders of the
petrochemical industry. Their main finding is the one described as a clash between
organizational behavior, a political cloud so to speak. Moreover, in [29], trust relates
to reputation and not as in mathematical attestations using a hardware module, fur-
ther highlighting the point of awareness. How TPMs and vIPMs come to address
this multi-tenant scenario where users have distinct understanding of the underlying
concepts is still unknown. Nevertheless, it is foreseeable that the technological solu-
tions based on encryption will continue to be developed, not only to cope with the
security, privacy, and trust needs, but also to provide a seamless cloud experience.
Another important challenge in trusted cloud computing is trust transitivity and
zoning. This is well illustrated when considering the complex interaction of trust
from the bare metal to the hypervisor and to the interface, in view of the IaaS hybrid
interplay of multiple software instances and devices, whether virtual or physical.
Here, zoning refers to the secure isolation of trust zones for and between tenants.
This calls for trust assessment models such as the one described in [18], which

462 M.R. Memarian et al.

considers different scenarios with and without TPM availability for the processor
and Basic Input/Output System (BIOS) or hypervisor signing. Furthermore, trust is
an issue of source and destination, such as the works done upon live VM migration.
The transitivity and zoning also encompass all that is in between, so a network
building trust path [12] is needed too for intra-cloud and intercloud migrations.

5 Conclusions

Cloud computing and trusted computing are increasingly the focus on several studies
to address the security issues posed by the former. Virtualization is advantageous
from the computing and cost-efficiency points of view, allowing to create multi-
tenant infrastructures running co-resident operating systems. Pre-packaged software
development environments in the cloud are also useful centralized repositories to
save time when setting up dependencies, libraries, and tools, which allow devising
cloud applications. Nevertheless, a lack of trust in computing, storage, and transport
is evident when considering the offload of IT responsibilities to third-party cloud
providers.

A number of security requirements from the trust standpoint were discussed in
this chapter. These security requirements highlight that cloud environments need
improvement at several levels so that the trust chain of the cloud stack holds through-
out the several heterogeneous cloud systems, such as live VM migration from one
cloud platform to another. Multiple works describe ways to enhance trust attestation
in certain points, but may be limited in scope and do so not without introducing addi-
tional complexity and cryptographic and communication overhead or a third-party
entity. That establishes that realizing fully trusted cloud environments to users is not
yet within grasp. Achieving this ideal setup would require to mimic the same levels
of trust as users have with their own on-site systems.

References

1. Ahmad, R. W., Gani, A., Hamid, S. H. A., Shiraz, M., Xia, F., & Madani, S. A. (2015). Virtual
machine migration in cloud data centers: a review, taxonomy, and open research issues. The
Journal of Supercomputing, 71(7), 2473-2515.

2. Amoroso, E. G. (2013). From the enterprise perimeter to a mobility-enabled secure cloud.
IEEE Secur Privacy, 11(1),23-31.

3. Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., et al. (2010). A
view of cloud computing. Commun ACM, 53(4), 50-58.

4. Aslam, M., Gehrmann, C., & Bjorkman, M. (2012). Security and Trust Preserving VM Migra-
tions in Public Clouds. IEEE 11th International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom) (pp. 869-876).

5. Bates, A., Mood, B., Valafar, M., & Butler, K. (2013). Towards secure provenance-based
access control in cloud environments. In Proceedings of the Third ACM Conference on Data
and Application Security and Privacy (pp. 277-284). ACM.

Applications of Trusted Computing in Cloud Context 463

6.

10.

13.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Brohi, S. N., Bamiah, M. A., Chuprat, S., Ab Manan, J. L. (2012). Towards an efficient and
secure educational platform on cloud infrastructure. In 2012 International Conference on Cloud
Computing Technologies, Applications and Management (ICCCTAM) (pp. 145-150). IEEE.
Cesena, E., Ramunno, G., Sassu, R., Vernizzi, D., & Lioy, A. (2011). On Scalability of remote
attestation. In Proceedings of the 6th ACM Workshop on Scalable Trusted Computing (STC)
(pp- 25-30). New York, NY, USA: ACM

Chen, C., Raj, H., Saroiu, S., & Wolman, A. (2014). cTPM: A cloud tpm for cross-device
trusted applications. In: Proceedings of the 11th USENIX Conference on Networked Systems
Design and Implementation (NSDI), USENIX Association, Berkeley, CA, USA (pp. 187-201).
CrowdStrike. (2015). VENOM Vulnerability. Retrieved May 2016, from http://venom.
crowdstrike.com/.

Danev, B., Masti, R. J., Karame, G. O., & Capkun, S. (2011). Enabling secure VM-vTPM
migration in private clouds. In Proceedings of the 27th Annual Computer Security Applications
Conference (ASAC) (pp. 187-196). New York, NY, USA: ACM

. Dargie, W. (2014). Estimation of the cost of VM migration. In 23rd International Conference

on Computer Communication and Networks (ICCCN) pp. 1-8.

. Divakarla, U., & Chandrasekaran, K. (2016). Trusted path between two entities in Cloud. In

6th International Conference on Cloud System and Big Data Engineering (Confluence) pp.
157-162.

Duan, Y., Fu, G., Zhou, N., Sun, X., Narendra, N. C, & Hu, B. (2015). Everything as a service
(XaaS) on the cloud: origins, current and future trends. In IEEE 8th International Conference
on Cloud Computing pp. 621-628.

Eldred, M., Adams, C., & Good, A. (2014) Trust challenges in a high performance cloud
computing project. In IEEE 6th International Conference on Cloud Computing Technology
and Science (CloudCom) (pp. 1045-1050).

Fan, P, Zhao, B., Shi, Y., Chen, Z., & Ni, M. (2015). An improved vIPM-VM live migration
protocol. Wuhan University Journal of Natural Sciences, 20(6), 512-520.

Fernandes, D. A. B., Soares, L. F. B., Gomes, J. V., Freire, M. M., & Indcio, P. R. M. (2014).
Security Issues in Cloud Environments—A Survey. International Journal of Information Secu-
rity (1JIS): Special Issue Named Security in Cloud Computing, 13(2), 113-170.

Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., & Boneh, D. (2003). Terra: A virtual machine-
based platform for trusted computing. In Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles, SOSP "03 (pp 193-206). ACM.

Gonzales, D., Kaplan, J., Saltzman, E., Winkelman, Z., & Woods, D. (2015). Cloud-trust—A
security assessment model for infrastructure as a service (IaaS) clouds. IEEE Transactions on
Cloud Computing PP(99), 1-14.

Hosseinzadeh, S., Laurén, S., & Leppénen, V. (2016). Security in container-based virtualiza-
tion through vTPM. In Proceedings of the 9th International Conference on Utility and Cloud
Computing pp. 214-219. ACM.

Javanmard, M., Salehi, M. A, & Zonouz, S. (2015). TSC: Trustworthy and scalable cytometry.
In 2015 IEEE 17th International Conference on High Performance Computing and Communi-
cations (HPCC), 2015 IEEE 7th International Symposium on Cyberspace Safety and Security
(CSS), 2015 IEEE 12th International Conferen on Embedded Software and Systems (ICESS)
(pp. 1356-1360). IEEE.

Jayaram, K., Safford, D., Sharma, U., Naik, V., Pendarakis, D., & Tao, S. (2014). Trustworthy
geographically fenced hybrid clouds. In Proceedings of the 15th International Middleware
Conference (pp. 37-48). ACM.

Khan, I., Rehman, H., & Anwar, Z. (2011). Design and deployment of a trusted eucalyptus
cloud. In 2011 IEEE International Conference on Cloud Computing (CLOUD) (pp. 380-387).
IEEE.

Ko, R. K., & Will, M. A. (2014). Progger: An efficient, Tamper-evident Kernel-space logger
for cloud data provenance tracking. In 2074 IEEE 7th International Conference on Cloud
Computing (CLOUD) (pp. 881-889). IEEE.

http://venom.crowdstrike.com/
http://venom.crowdstrike.com/

464

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

M.R. Memarian et al.

Lee, B., Awad, A., & Awad, M. (2015). Towards secure provenance in the cloud: A survey. In
2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing (UCC) (pp.
577-582). IEEE.

Leelipushpam, P. G. J, & Sharmila, J. (2013). Live VM migration techniques in cloud envi-
ronment a survey. In 2013 IEEE Conference on Information & Communication Technologies
(ICT), (pp. 408—413). IEEE.

Li, J., Squicciarini, A., Lin, D., Liang, S., & Jia, C. (2015). SecLoc: Securing location-sensitive
storage in the cloud. In Proceedings of the 20th ACM Symposium on Access Control Models
and Technologies (pp. 51-61). ACM.

Memarian, M. R., Conti, M., & Leppinen, V. (2015). EyeCloud: A Botcloud Detection System.
In 2015 IEEE Trustcom/BigDataSE/ISPA (Vol. 1, pp. 1067-1072).

NIST. (2011). The NIST definition of cloud computing. Retrieved June 2016, from http://
nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800- 145.pdf.

Noor, T. H., Sheng, Q.Z., Yao, L., Dustdar, S., & Ngu, A. H. H. (2016). CloudArmor: Supporting
reputation-based trust management for cloud services. IEEE Transactions on Parallel and
Distributed Systems, 27(2), 367-380.

Park, K. W., Han, J., Chung, J., & Park, K. H. (2013). THEMIS: A Mutually verifiable billing
system for the cloud computing environment. IEEE Transactions on Services Computing, 6(3),
300-313.

Park, S., Yoon, J. N., Kang, C., Kim, K. H., & Han, T. (2015). TGVisor: A tiny hypervisor-
based trusted geolocation framework for mobile cloud clients. In 2015 3rd IEEE International
Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud) (pp. 99—
108). IEEE.

Rocha, F., & Correia, M. (2011). Lucy in the sky without diamonds: Stealing confidential
data in the cloud. In IEEE/IFIP 41st International Conference on Dependable Systems and
Networks Workshops (DSN-W) (pp. 129-134).

Rocha, F., Abreu, S., & Correia, M. (2011). The Final Frontier: Confidentiality and Privacy in
the Cloud. Computer, 44(9), 44-50.

Santos, N., Gummadi, K. P., & Rodrigues, R. (2009). Towards trusted cloud computing. In
Proceedings of the 2009 Conference on Hot Topics in Cloud Computing, USENIX Association,
Berkeley, CA, USA, HotCloud’09.

Shin, J., Kim, Y., Park, W., & Park, C. (2012). DFCloud: A TPM-based secure data access
control method of cloud storage in mobile devices. In 2012 IEEE 4th International Conference
on Cloud Computing Technology and Science (CloudCom) (pp. 551-556). IEEE.

Singh, N. K., Patel, Y. S., Das, U., & Chatterjee, A. (2014). NUYA: An encrypted mechanism
for securing cloud data from data mining attacks. In 2014 International Conference on Data
Mining and Intelligent Computing (ICDMIC) (pp. 1-6). IEEE.

Somani, G., Gaur, M. S., Sanghi, D., & Conti, M. (2016) DDoS attacks in cloud computing:
Collateral damage to non-targets. Computer Networks.

Syed, T. A., Musa, S., Rahman, A., & Jan, S. (2015). Towards secure instance migration in the
cloud. In 2015 International Conference on Cloud Computing (ICCC) (pp. 1-6). IEEE.

Taha, M. M. B., Chaisiri, S., Ko, R. K. (2015). Trusted tamper-evident data provenance. In
2015 IEEE Trustcom/BigDataSE/ISPA (Vol. 1, pp. 646-653). IEEE.

Toegl, R., Winkler, T., Nauman, M., & Hong, T. (2009). Towards platform-independent trusted
computing. In Proceedings Of The 2009 Acm Workshop On Scalable Trusted Computing (pp.
61-66). ACM.

Wallom, D., Turilli, M., Martin, A., Raun, A., Taylor, G., Hargreaves, N., etal. (2011). myTrust-
edCloud: Trusted cloud infrastructure for security-critical computation and data management.
In IEEE Third International Conference on Cloud Computing Technology and Science (Cloud-
Com). (pp. 247-254).

Wei, L., Zhu, H., Cao, Z., Jia, W., & Vasilakos, A. V. (2010). SecCloud: Bridging secure storage
and computation in cloud. In IEEE 30th International Conference on Distributed Computing
Systems Workshops (pp. 52-61).

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf

Applications of Trusted Computing in Cloud Context 465

43.

44,

Zawoad, S., & Hasan, R. (2015) FECloud: A trustworthy forensics-enabled cloud architecture.
In Proceedings of 11th Annual International Federation for Information Processing WG 11.9
International Conference on Digital Forensics (pp. 271-285).

Zhang, R., Su, X., Wang, J., Wang, C., Liu, W., & Lau, R. W. H. (2015). On Mitigating the
Risk of Cross-VM Covert Channels in a Public Cloud. IEEE Transactions on Parallel and
Distributed Systems, 26(8), 2327-2339.

	Foreword
	Preface
	Acknowledgements
	Contents
	About the Editors
	Serverless Computing: Current Trends and Open Problems
	1 Introduction
	1.1 Defining Serverless

	2 Evolution
	3 Architecture
	3.1 Survey of Serverless Platforms
	3.2 Benefits and Drawbacks
	3.3 Current State of Serverless Platforms

	4 Programming Model
	4.1 Ecosystem
	4.2 Tools and Frameworks

	5 Use Cases and Workloads
	5.1 Event Processing
	5.2 API Composition
	5.3 API Aggregation to Reduce API Calls
	5.4 Flow Control for Issue Tracking
	5.5 Discussion

	6 Challenges and Open Problems
	6.1 System-Level Challenges
	6.2 Programming Model and DevOps Challenges
	6.3 Open Research Problems

	7 Conclusions
	References

	Highly Available Clouds: System Modeling, Evaluations, and Open Challenges
	1 Introduction
	2 High Availability Concepts
	2.1 SAF Concepts
	2.2 Reliability Versus Availability
	2.3 MTBF and MTTR
	2.4 Techniques for High Availability Modeling

	3 How Do Clouds Achieve High Availability?
	3.1 Outages Examples
	3.2 Datacenter Overview
	3.3 High Availability Mechanisms
	3.4 Commercial Solutions
	3.5 Infrastructure Standards and Tiers

	4 Modeling High Availability Clouds
	4.1 Overview of High Availability Modeling for Clouds
	4.2 Discussion

	5 Open Research Challenges
	5.1 Cloud Data Center Modeling and Simulation
	5.2 High-Level Metrics

	6 Final Considerations
	References

	Big Data Analytics in Cloud---A Streaming Approach
	1 Introduction
	2 Regression Analysis
	2.1 Example
	2.2 Linear Regression
	2.3 Streaming Linear Regression
	2.4 Architecture

	3 Singular Value Decomposition (SVD)
	3.1 Example
	3.2 Incremental SVD
	3.3 Architecture
	3.4 Efficient Rank-1 Update

	4 Principle Component Analysis (PCA)
	4.1 Example
	4.2 Model
	4.3 Incremental Principle Component Analysis
	4.4 Architecture

	5 Other Algorithms of Interest
	5.1 Online k-Median Clustering
	5.2 Outlier Analysis

	6 Implementing Algorithms on Map Reduce and Hadoop
	7 Open Research Problems
	7.1 Efficient Deployment
	7.2 Efficient Design

	8 Closing Remarks
	References

	A Terminology to Classify Artifacts for Cloud Infrastructure
	1 Introduction
	2 Artifacts Classification Terminology
	2.1 Mechanisms
	2.2 Techniques
	2.3 Algorithms
	2.4 Models
	2.5 Policies
	2.6 Strategies
	2.7 Modules
	2.8 Platform
	2.9 Hybrid Solutions

	3 Open Research Problems
	4 Conclusion
	References

	Virtual Networking with Azure for Hybrid Cloud Computing in Aneka
	1 Introduction
	2 Hybrid Clouds
	3 Connectivity Issue in Adoption of Hybrid Clouds
	4 Virtual Private Networks
	4.1 Microsoft Azure VPNs

	5 Aneka Cloud Application Platform
	5.1 Aneka Architecture
	5.2 Extending Aneka Resource Provisioning with Azure Resource Manager

	6 Configuration of Azure Point-to-Site VPN Connection for Aneka Hybrid Cloud
	7 Case Study: A Hybrid Cloud Using Aneka
	7.1 Related Works
	7.2 Hybrid Cloud Setup
	7.3 BLAST Application
	7.4 Experimental Results

	8 Open Research Problems
	9 Summary and Conclusions
	References

	Building Efficient HPC Cloud with SR-IOV-Enabled InfiniBand: The MVAPICH2 Approach
	1 Introduction
	2 Overview of Virtualization System Software
	2.1 Hypervisor-Based Virtualization
	2.2 Container-Based Virtualization
	2.3 OpenStack and Other Cloud Resource Managers
	2.4 Slurm and SPANK

	3 Overview of High-Performance Interconnects and Communication Mechanisms
	3.1 InfiniBand
	3.2 Overview of High-Performance Communication Mechanisms

	4 Opportunities and Challenges of Building HPC Clouds
	5 The MVAPICH2 Approach to Build HPC Clouds
	6 Designing High-Performance MVAPICH2 on HPC Clouds
	6.1 VM-Aware MVAPICH2 on InfiniBand Clusters
	6.2 Container-Aware MVAPICH2 on InfiniBand Clusters

	7 Integrated Designs with OpenStack and Slurm
	7.1 MVAPICH2 over OpenStack with SR-IOV
	7.2 Extending Slurm for Building Efficient HPC Clouds

	8 The MVAPICH2-Virt Software Distribution and Appliance
	9 Conclusion
	10 Open Research Problems
	References

	Resource Procurement, Allocation, Metering, and Pricing in Cloud Computing
	1 Introduction
	2 Auction-Based Resource Procurement in Cloud Computing
	2.1 Mechanism Design
	2.2 Resource Procurement in Cloud

	3 Cloud Resource Procurement
	3.1 Cloud-Dominant Strategy Incentive Compatible (C-DSIC) Mechanism
	3.2 Cloud-Bayesian Incentive Compatible (C-BIC) Mechanism
	3.3 Cloud-Optimal Mechanism (C-OPT)
	3.4 Combinatorial Auctions in Cloud
	3.5 Experimental Results
	3.6 Cloud Broker Procurement Module

	4 Cloud Resource Allocation Using Game Theory
	4.1 Modeling Multiagent Coalition Formation Using Game Theory
	4.2 Solving Multiagent Coalition Formation Using the Uncertainty Principle of Game Theory
	4.3 Applications
	4.4 Algorithms
	4.5 Open Coalition Formation
	4.6 Coalition Dissolution
	4.7 Task Allocation Algorithm
	4.8 Experiments

	5 Smart and Power-Aware Metering: An Opportunity for Green IT
	5.1 Metering Cloud Services
	5.2 Power-Aware Metering

	6 Conclusion
	7 Open Research Problems
	References

	Dynamic Selection of Virtual Machines for Application Servers in Cloud Environments
	1 Introduction
	2 Related Work
	3 Method Overview
	4 Learning Application Behaviour
	4.1 Utilisation Monitoring
	4.2 Normalisation and Capacity Estimation
	4.3 Anomaly Detection Through HTM
	4.4 ANN Training

	5 Virtual Machine Type Selection
	6 Benchmark and Prototype
	7 Validation
	8 Open Research Problems
	9 Summary and Conclusions
	References

	Improving the Energy Efficiency in Cloud Computing Data Centres Through Resource Allocation Techniques
	1 Introduction
	1.1 Data Centres in Cloud Computing
	1.2 Energy, Energy Efficiency and Power-Proportional Systems
	1.3 Energy Efficiency in Cloud Computing Data Centres

	2 Resource Management in Cloud Computing
	2.1 Resource Provisioning
	2.2 Resource Monitoring
	2.3 Resource Scheduling

	3 Resource Allocation for Energy-Awareness in Cloud Computing Data Centres
	3.1 A case study of an architecture for dynamic Resource Allocation and Consolidation mechanism
	3.2 A Case Study of Market-Oriented Architecture for Resource Allocation

	4 Conclusions
	5 Open Research Problems
	References

	Recent Developments in Resource Management in Cloud Computing and Large Computing Clusters
	1 Introduction
	2 Resource Management and Scheduling
	2.1 Resource Management in Cloud Computing and Large Computing Clusters
	2.2 Types of Scheduling
	2.3 Resource Scheduling Solutions
	2.4 Resource Scheduling Architectures in Cloud Computing and Large Computing Clusters
	2.5 Fairness Algorithms

	3 Resource Scheduling Frameworks and Algorithms
	3.1 Resource Scheduling Frameworks and Algorithms in Cloud Computing
	3.2 Resource Scheduling Frameworks in Large Computing Clusters
	3.3 Other Related Work

	4 Research Challenges and Future Research Directions in Resource Scheduling in Clouds and Large Clusters
	5 Conclusion
	References

	Resource Allocation for Cloud Infrastructures: Taxonomies and Research Challenges
	1 Introduction
	1.1 Background
	1.2 Motivation

	2 VMP Problem Environment Taxonomy
	2.1 Orientation: Provider-Oriented or Broker-Oriented
	2.2 Deployment Architectures
	2.3 Types of Formulation: Offline or Online
	2.4 Conceptual Example

	3 VMP Problem Formulation and Resolution Taxonomy
	3.1 Optimization Approaches
	3.2 Objective Function Groups
	3.3 Solution Techniques

	4 VMP Taxonomy: Research Opportunities
	4.1 Unexplored Environments, Formulations, and Solution Techniques
	4.2 Broker-Oriented VMP Considering Online Formulations
	4.3 Provider-Oriented VMP Considering Online Formulations
	4.4 Provider-Oriented VMP Considering PMO Optimization
	4.5 Provider-Oriented VMP in Distributed and Federated Clouds

	5 Conclusions and Future Directions
	References

	Many-Objective Optimization for Virtual Machine Placement in Cloud Computing
	1 Introduction
	2 Many-Objective VMP for Initial Placement of VMs
	2.1 Many-Objective Optimization Framework
	2.2 Problem Formulation
	2.3 Interactive Memetic Algorithm for MaVMP
	2.4 Experimental Results

	3 Many-Objective VMP with Reconfiguration of VMs
	3.1 Problem Formulation
	3.2 Extended Memetic Algorithm for MaVMP
	3.3 Solution Selection Strategies
	3.4 Experimental Environment
	3.5 Experiment 4: Selection Strategy Evaluation

	4 Open Research Problems: Many-Objective VMP for Cloud Computing Environments
	4.1 IaaS Environments for VMP Problems
	4.2 Uncertainty in VMP for Cloud Computing
	4.3 Two-Phase Optimization Schemes for VMP Problems

	References

	Performance Modeling and Optimization of Live Migration of Virtual Machines in Cloud Infrastructure
	1 Introduction
	1.1 Objectives and Scope

	2 Migration in Cloud Computing
	2.1 Live Migration
	2.2 Pre-copy-Based Migration
	2.3 Post-copy-Based Migration

	3 Compression Model
	3.1 Logical Flow of Pre-copy Algorithm for Live Migration
	3.2 Algorithmic Issues for Live VM Migration
	3.3 Proposed Compression Model: Improved Pre-copy Algorithm Using Combined Approach
	3.4 Performance Evaluation

	4 Prediction Model
	4.1 Introduction
	4.2 ARIMA Model
	4.3 SVR Model
	4.4 Performance Evaluation

	5 Performance Model: Dirty Page Rate and Skip Page Rate Models
	5.1 Introduction
	5.2 Proposed Dirty Page Rate Model
	5.3 Proposed Skip Page Rate Model
	5.4 Performance Evaluation

	6 Open Research Problems
	7 Conclusion
	References

	Analysis of Security in Modern Container Platforms
	1 Introduction
	2 Security Requirements for Containers
	3 Container Building Blocks
	3.1 Namespaces
	3.2 Control Groups
	3.3 Capabilities
	3.4 Privileged and Unprivileged Containers
	3.5 Auxiliary Security Measures

	4 Container Platforms
	4.1 Docker
	4.2 Other Container Platforms

	5 Container Threats
	6 Empirical Analysis
	6.1 Isolation of Processes
	6.2 Filesystem Isolation
	6.3 Device Isolation
	6.4 IPC Isolation
	6.5 Network Isolation
	6.6 Resource Management
	6.7 Discussion and Some Other CVE Cases

	7 Conclusions and Future Research
	References

	Identifying Evidence for Cloud Forensic Analysis
	1 Introduction
	2 Background and Related Work
	2.1 Digital Forensics
	2.2 Cloud Forensics
	2.3 Related Work

	3 A Prolog-Based Tool for Attack Scenario Reconstruction
	4 Using Alerts and Logs to Reconstruct Attack Scenario
	4.1 Experimental Environment Setup
	4.2 Example Attacks
	4.3 Identifying Evidence to Reconstruct Attack Scenarios

	5 Using System Call Invocations for Evidence Analysis
	6 Open Research Problems
	7 Conclusion and Future Work
	References

	An Access Control Framework for Secure and Interoperable Cloud Computing Applied to the Healthcare Domain
	1 Introduction
	2 Background and Motivation
	3 A Healthcare Scenario
	4 FSICC Requirements and Capabilities
	4.1 FSICC Requirements
	4.2 FSICC Capabilities
	4.3 Security Risks
	4.4 Related Work in Cloud Computing

	5 Prototyping the FSICC in FHIR
	5.1 The CT2 mHealth Application
	5.2 The OpenEMR Local Provider
	5.3 Mapping to Global Roles and Global Services

	6 Open Research Problems
	7 Conclusion
	References

	Security and Privacy Issues in Outsourced Personal Health Record
	1 Introduction
	1.1 Reference Model
	1.2 Use Cases

	2 Security and Privacy Requirements
	3 Survey of Existing PHRMS
	3.1 Security Mechanisms
	3.2 Privacy Mechanisms
	3.3 Comparison

	4 Conclusions and Open Problems
	References

	Applications of Trusted Computing in Cloud Context
	1 Introduction
	2 Cloud Computing
	2.1 Cloud Services
	2.2 Security Issues
	2.3 Security Requirements

	3 Contribution of Trusted Computing to Cloud Security
	3.1 Definition of Trusted Computing
	3.2 Trusted Cloud Computational Security
	3.3 Trusted Cloud Transport Security
	3.4 Trusted Cloud Storage Security

	4 Discussion and Open Challenges
	5 Conclusions
	References

