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Chapter 6
The Two Faces of Notch in Solid Cancers

Craig S. Nowell and Freddy Radtke

Abstract Aberrant Notch signalling is associated with a variety of solid tumours. 
Therefore, understanding the role Notch signalling plays during the development 
and progression of cancer is an area of considerable interest, and a deeper knowl-
edge of its influence on cellular processes will potentially lead to improvements in 
both the prevention and treatment of cancer.

Keywords Cancer stem cells • Differentiation • Inflammation • Tumour stroma • 
SCC • ECM

Interestingly, Notch can act as an oncogene or tumour suppressor depending on the 
tissue context (Koch and Radtke 2007) (Fig.  6.1). Thus, some cancers display 
increased Notch signalling activity and are dependent on Notch for growth and 
malignant progression. Conversely, in other cancers, inactivation of Notch signalling 
is essential for carcinogenesis, indicating that Notch can function as an important 
tumour suppressor. In the following sections, the supporting evidence for both onco-
genic and tumour suppressive roles of Notch will be discussed, as will the mecha-
nisms by which Notch signalling influences carcinogenesis.

6.1  Cancers Associated with Active Notch Signalling

Historically, the evidence supporting an oncogenic role for Notch signalling has 
been provided predominantly by the study of the haematological malignancy T-cell 
acute lymphoblastic leukaemia (T-ALL). In this disease, activating mutations in 
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Notch1 are present in 50–60% of cases, and there is considerable functional data 
indicating that Notch plays a crucial role in driving the development and growth of 
T-ALL (Koch and Radtke 2011a, b). However, numerous studies also suggest that 
Notch acts as an oncogene in a variety of solid tumours (Galluzzo and Bocchetta 
2011; Reedijk 2012; Teodorczyk and Schmidt 2014).

For example, increased expression of Notch pathway components has been 
observed in human gliomas, which are a group of primary brain tumours derived 
from the glial tissue of the central nervous system. In these malignancies, 
increased expression of Notch receptors, Notch ligands and downstream targets 
such as Hey- 1, is associated with increasing tumour grade (Somasundaram et al. 
2005; Phillips et  al. 2006; Xu et  al. 2009, 2010; Hulleman et  al. 2009). 
Furthermore, inhibition of Notch1 in glioma cell lines induces cell cycle arrest, 
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Fig. 6.1 Schematic representation of tissues in which Notch signalling is oncogenic and/or tumour 
suppressive. Left side of the panel represents major human tissues in which an oncogenic role for 
Notch has been described, whereas the right side shows tissues where Notch exerts tumour- 
suppressive activities. References related to oncogenic and tumour-suppressive functions in a 
given tissue are indicated
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while constitutive activation of Notch signalling results in increase proliferation 
(Gao et  al. 2007; Kanamori et  al. 2007; Purow et  al. 2005; Zhao et  al. 2010, 
2008). Inhibition of Notch1 or Dll1  in in  vivo models also results in delayed 
tumour growth (Xu et  al. 2010; Purow et  al. 2005), and high expression of 
Hey-1  in human gliomas is associated with a poor prognosis (Hulleman et  al. 
2009; Gaetani et al. 2010).

Notch may also function as an oncogene in medulloblastoma, which is a brain 
tumour derived from neuronal precursor cells in the cerebellar cortex and is distinct 
from the gliomas discussed above. In this example, the expression of Notch2 and 
the target gene Hes-1 is upregulated in medulloblastoma and can promote prolifera-
tion when overexpressed (Xu et al. 2009; Fan et al. 2004).

Increased Notch signalling activity is also linked to the development and pro-
gression of breast cancer. High expression levels of Notch1, Notch3 and Jag1 are 
observed in many cases of breast cancer and are associated with a poor prognosis 
(Sansone et al. 2007; Shipitsin et al. 2007; Reedijk et al. 2005). Consistent with 
this, overexpression of Notch1 and Notch3  in mice promotes mammary tumour 
development (Sansone et  al. 2007; Hu et  al. 2006). Furthermore, loss of numb 
expression, which is a negative regulator of Notch activity, is frequently observed 
in primary human breast cancers (Pece et  al. 2004). Notch signalling can also 
cooperate with other signalling cascades, such as Wnt, to promote the transforma-
tion of human primary mammary epithelial cells (Ayyanan et  al. 2006) further 
supporting the hypothesis that overactive Notch signalling is oncogenic in this 
tissue.

Pancreatic cancer has also been linked to increased Notch signalling. Notch 
target genes are frequently expressed in PDAC cells, suggesting that Notch activ-
ity is associated with development and progression of the disease (Miyamoto et al. 
2003). Perhaps more significantly, several studies demonstrate that inhibition of 
Notch signalling, either by genetic ablation of Notch2 or by administering gamma-
secretase inhibitors, can prevent or reduce PDAC following activation of onco-
genic k-ras (Mazur et al. 2010; Plentz et al. 2009). Notch signalling has also been 
shown to cooperate with Nf-KB during k-ras-driven murine PDAC development 
(Maniati et al. 2011), and pharmacological inhibition of Notch signalling can sen-
sitize PDAC to chemotherapeutic drugs by disrupting the tumour vasculature 
(Cook et al. 2012) In addition, a synergistic role for Notch during k-ras-mediated 
carcinogenesis in the pancreas has been reported (De La et al. 2008). However, in 
direct contrast to these studies, genetic ablation of Notch1 in a mouse model of 
k-ras-induced PDAC resulted in an increase in high-grade PanIN lesions (Hanlon 
et al. 2010) suggesting that Notch1 exerts a tumour suppressive function. In addi-
tion, the genetic status of members of the Notch pathway in pancreatic ductal 
adenocarcinoma (PDAC) remains to be resolved. Thus, further work is needed to 
definitively establish the role of Notch signalling during pancreatic carcinogene-
sis, although at present, the balance of the evidence supports an oncogenic 
function.
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Mouse models also suggest an oncogenic role for Notch signalling in non-small- 
cell lung cancer (Zheng et  al. 2013). In this example, tumour-propagating cells 
express high levels of components of the Notch cascade, and Notch3 appears to be 
essential for their capacity to initiate tumour development. However, it should be 
noted that in small-cell lung cancer, which is a distinct disease, Notch is thought to 
be a tumour suppressor (see below).

6.2  Cancers Associated with Loss of Notch Signalling

The strongest evidence of a tumour-suppressive function for Notch signalling is 
provided by the analysis of squamous cell carcinomas (SCC) that occur in strati-
fied epithelial tissues such as the skin. Initial studies found that genetic ablation of 
Notch1  in the murine epidermis substantially increased the susceptibility to 
chemical- induced carcinogenesis (Nicolas et al. 2003). Subsequently, analysis of 
other SCC types using mouse models also indicated a tumour-suppressive func-
tion for Notch signalling. For example, urothelium-specific deletion of the Notch 
transcriptional effector RBPJk or presenelins, which is essential for Notch recep-
tor activation, results in accelerated development of bladder SCC following chem-
ical carcinogenesis (Maraver et  al. 2015). Furthermore, ablation of Notch 
signalling in this model is strongly associated with the predomination of highly 
invasive SCC.

In the mouse oesophagus, genetic inhibition of Notch signalling in epithelial 
progenitor cells promotes the expansion of preneoplastic clones carrying carcino-
genic mutations, thus establishing a field from which oesophageal SCC can develop 
(Alcolea et al. 2014). This therefore indicates that loss of Notch signalling in the 
oesophagus is likely to be an early event during tumorigenesis, similar to the find-
ings from analysis of cutaneous SCC.

Validation of the results obtained from mouse models has now been made pos-
sible with the advent of next-generation sequencing technology, which has enabled 
the mutational landscape in several types of human SCC to be determined robustly 
from clinical specimens. This has revealed that loss-of-function mutations in Notch 
family members are among the most recurrent mutations in a variety of SCC, 
including head and neck SCC (Agrawal et al. 2011; Stransky et al. 2011), cutane-
ous SCC (Pickering et  al. 2014; South et  al. 2014; Wang et  al. 2011), bladder 
SCC(Rampias et  al. 2014) and oesophageal SCC (Gao et  al. 2014; Song et  al. 
2014). The mutations identified to date are predominantly found in the Notch 
receptors, particularly Notch1, and include missense mutations in critical func-
tional regions, nonsense mutations that result in truncated proteins lacking the 
C-terminal transactivation domain, mutations in splice sites that result in truncation 
or deletion and frameshift insertion/deletions (indel) (Agrawal et al. 2011; Stransky 
et  al. 2011; South et  al. 2014; Gao et  al. 2014). In addition, a clinical trial of 
semagacestat, a γ-secretase inhibitor evaluated for the treatment of Alzheimer’s 
disease, reported an increased risk of skin cancer in patients who received the drug, 
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providing further evidence that Notch signalling performs an antitumour function 
in humans (Extance 2010).

In addition to SCC, there is also evidence that Notch suppresses tumour devel-
opment in other solid malignancies, including small-cell lung cancer (George 
et al. 2015), some types of brain cancer (Giachino et al. 2015) and liver cancer 
(Viatour et al. 2011)

6.3  Mechanisms Underlying Notch-Mediated Oncogenesis or 
Tumour Suppression

6.3.1  Regulation of Stem Cells

The capacity for Notch to operate as an oncogene or tumour suppressor in par-
ticular tissues is in part a consequence of its role in regulating stem and progeni-
tor cells (Koch et  al. 2013; Wilson and Radtke 2006). Advances in our 
understanding of cancer biology in recent years have revealed that aberrations in 
stem and/or progenitor cells are often essential steps during carcinogenesis, and 
considerable evidence supports the so-called ‘cancer stem cell’ hypothesis, which 
posits that the growth of tumours is driven by distinct populations of malignant 
cells that share many traits with normal stem cells, such as self-renewal, drug 
resistance and the capacity to repopulate all cell types within the tumour (Clevers 
2011; Visvader and Lindeman 2012; Visvader 2011). Importantly, Notch signal-
ling plays critical and diverse roles in regulating stem cell function in many tis-
sues, including processes such as self- renewal, proliferation and differentiation 
(Wilson and Radtke 2006). Thus, abnormal Notch signalling activity can have a 
profound effect on stem cell compartments and as a consequence lead to 
carcinogenesis.

Notch-mediated oncogenesis frequently occurs in tissues where Notch functions 
to maintain or expand the stem and/or progenitor cell compartment (Fig. 6.2a). In 
the central nervous system, Notch plays an important role in the maintenance of 
neural stem cells (Yoon and Gaiano 2005). Consistent with this, cancer stem cells 
isolated from brain tumours frequently exhibit high expression of Notch family 
members (Lee et  al. 2006; Fan et  al. 2006; Gunther et  al. 2008). Furthermore, 
in vitro studies indicate that high levels of Notch are associated with the mainte-
nance of an undifferentiated phenotype in neurosphere cultures derived from brain 
tumour cancer stem cells, which also correlates with tumorigenicity and malignant 
traits such as invasiveness (Gunther et al. 2008).

Similar observations have been made with respect to the mammary gland. In this 
example, the propagation of mammosphere cultures, which is derived exclusively 
from mammary stem cells, was found to require Notch signalling activity (Dontu 
et al. 2004) indicating that maintenance of the mammary stem cell compartment is 
indeed Notch dependent. In addition, constitutive activation of Notch in subpopula-
tions of progenitor cells in murine mammary glands resulted in tumour development 
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(Bouras et al. 2008). These examples highlight the link between the oncogenic func-
tion of Notch in specific tissues and its role in stem cell maintenance.

In contrast, in tissues where Notch functions as a tumour suppressor, active 
Notch signalling is strongly associated with cell cycle exit and the promotion of 
differentiation, thus extinguishing stem and/or progenitor cells that acquire onco-
genic mutations (Fig. 6.2b).

The most prominent example of this is the epidermis. In this tissue, Notch activ-
ity is confined to the differentiating cells in the suprabasal layers and is absent in the 
proliferative stem/progenitor cells of the basal layer (Blanpain and Fuchs 2009; 
Nowell and Radtke 2013). Ablation of Notch signalling in the murine epidermis 
results in perturbed differentiation (Yamamoto et al. 2003), while activation induces 
commitment to differentiation (Blanpain et al. 2006). Furthermore, in vitro experi-
ments show that Notch plays a functional role in promoting cell cycle exit and dif-
ferentiation of epidermal stem/progenitor cells (Okuyama et al. 2004; Rangarajan 
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Fig. 6.2 Notch-mediated stem cell regulation and carcinogenesis. (a) Oncogenic Notch signalling 
can occur in tissues in which Notch functions to maintain stem cells and/or prevent their differen-
tiation. In such cases, high Notch activity is normally restricted to the stem cell compartment and 
is down-regulated as cells differentiate (i). Stem cells that acquire potentially oncogenic mutations 
are therefore lost as they down-regulate Notch and initiate terminal differentiation (ii). However, if 
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imposing terminal differentiation of mutant stem cells (iv), thus extinguishing clones that may 
initiate cancer development (v)
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et al. 2001). At a molecular level, several studies indicate that Notch regulates fac-
tors that control the proliferation of epidermal stem/progenitor cells, such as p63 
(Nguyen et al. 2006; Senoo et al. 2007), p21/CDKN1A(Rangarajan et al. 2001) and 
AP-1 (Eferl and Wagner 2003; Guinea-Viniegra et  al. 2012; Murthy et  al. 2012; 
Nowell et al. 2016) while also promoting differentiation via the induction of cas-
cades such as retinoic acid signalling (Collins and Watt 2008). Consistent with the 
tumour suppressor activity of Notch being linked to its pro-differentiation function, 
cutaneous SCC that carry loss-of-function mutations in Notch family members 
express high levels of stem cell-associated factors, such as p63, and exhibit reduced 
expression of gene signatures associated with differentiation (Parsa et  al. 1999; 
Rocco et al. 2006). Notch may perform a similar function in other stratified epithe-
lia. For example, inhibition of Notch signalling in the murine oesophageal epithe-
lium results in the expansion of undifferentiated progenitors, thus increasing the 
pool of cells that have the capacity to form tumours following the acquisition of 
oncogenic mutations (Alcolea et al. 2014).

6.3.2  Regulation of Inflammation

Recent developments in cancer biology have revealed that inflammatory cells per-
form important functions during tumour initiation, development and progression, 
and they thus constitute an important component of the tumour stroma (Grivennikov 
et al. 2010). Intriguingly, several studies have now shown that an important role of 
Notch signalling in stratified epithelial tissues is to attenuate inflammatory responses 
(Nowell et al. 2016; Demehri et al. 2008, 2010). Given that Notch is generally a 
tumour suppressor in stratified epithelia, a key element of the antitumour function 
of Notch may be related to its ability to negatively regulate the inflammatory 
response (Fig. 6.3).

Ablation of Notch signalling in the murine epidermis induces chronic inflamma-
tion, the severity of which is dependent on the degree of Notch signalling impair-
ment. Ablation of Notch1 alone results in significant up-regulation of 
pro-inflammatory cytokine expression, and additional deletion of Notch2 causes a 
much more pronounced inflammatory response resembling atopic dermatitis 
(Demehri et al. 2008, 2010). Intriguingly, the inflammatory response induced fol-
lowing complete inactivation of Notch signalling actually prevents carcinogenesis 
due to the anti-tumorigenic function of T cells present in the inflammatory milieu 
(Demehri et al. 2012; Di Piazza et al. 2012). However, abrogation of T-cell-mediated 
immunity in this setting leads to rapid tumour development that is dependent on 
myeloid inflammatory cells present in the inflamed dermis. These studies demon-
strate that loss of Notch signalling in the epidermis can induce pro- and anti- 
tumorigenic inflammation depending on the degree to which Notch signalling is 
impaired. Further investigations are needed to establish the precise cellular and 
molecular factors that underpin these observations. However, the outgrowth of 
tumours in the Notch-deficient epidermis is dependent on high levels of β-catenin 
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signalling, and pro-tumorigenic myeloid cells that accumulate following ablation of 
Notch signalling express high levels of Wnt ligands (Di Piazza et al. 2012) suggest-
ing that induction of the Wnt/β-catenin cascade by inflammatory cells is an impor-
tant mechanism by which loss of Notch signalling promotes carcinogenesis. Other 
experimental models also support a link between Notch, inflammation and Wnt/β- -
catenin signalling. For example, ablation of Notch1 in the corneal epithelium results 
in severe chronic inflammation on the ocular surface that induces squamous cell 
metaplasia in a β-catenin-dependent manner (Nowell et al. 2016). In this example, 
the induction of β-catenin signalling is due to inflammation-induced ECM deposi-
tion in the corneal stroma, which subsequently induces β-catenin signalling in epi-
thelial cells through mechanotransduction. Although not directly related to 
carcinogenesis, this study highlights how loss of Notch signalling can induce 
 Wnt/β-catenin signalling, which is frequently pro-tumorigenic, via the induction of 
inflammation and stromal remodelling. Thus, in stratified epithelial tissues such as 
the epidermis, negative regulation of inflammation is likely to be a key mechanism 
by which Notch signalling mediates tumour suppression.

In light of the evidence obtained from the study of the epidermis, it will be 
important to address if Notch signalling has a similar influence on inflammation in 
other tissues and whether or not this is relevant with respect to carcinogenesis. 
Furthermore, delineating how Notch signalling controls the inflammatory response 
will potentially identify therapeutic targets that can ameliorate the effects of Notch 
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Fig. 6.3 Notch-mediated regulation of inflammation and carcinogenesis. A key function of Notch 
in many stratified epithelial tissues is to attenuate the inflammatory response and maintain normal 
tissue architecture (i). Thus, upon loss of Notch signalling in epithelia such as the epidermis, a 
chronic inflammatory response can be initiated in the underlying stroma (ii) and (iii). This can sub-
sequently promote tumour development by eliciting a variety of responses in the epithelium (iv)
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loss of function and so can potentially be used as anticancer therapeutic agents. In 
this respect, Notch signalling has been shown to interact with several factors that 
play an important role in regulating the inflammatory response, including 
Nf-KB(Espinosa et al. 2010) and AP-1 (Guinea-Viniegra et al. 2012; Murthy et al. 
2012; Nowell et al. 2016) although detailed mechanisms remain to be resolved.

6.4  Concluding Remarks

It is clear that Notch signalling has an important impact on the development of 
many solid cancers, whether as an oncogene or tumour suppressor. In addition, 
continued advances in our understanding of the role of Notch signalling during 
development, homeostasis and disease have revealed that the mechanisms by which 
Notch influences carcinogenesis are diverse and include cell autonomous and non- 
cell autonomous effects. Therefore, the development of therapeutic strategies that 
aim to manipulate the Notch cascade directly or the downstream consequences it 
elicits will potentially lead to improvements in the prevention and treatment of 
cancer.
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