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Abstract
Microbial community in the rhizosphere produces a variety of hydrolytic 
enzymes that are responsible for the degradation of various components of fun-
gal pathogens. The extracellular hydrolytic enzymes excreted by soil rhizobia 
degrade cell wall components of plant pathogenic microbes. The enzymes of 
these types are able to breakdown glycosidic linkages present in the polysaccha-
ride of the cell wall of phytopathogens. In this regard, plant growth-promoting 
rhizobacteria (PGPR) are known to colonize rhizosphere and enhance plant 
growth through different mechanisms that include (i) plant growth promotion 
and (ii) biological control of plant disease. Plant growth promotion mechanisms 
include mineralization of insoluble substances, production of plant growth hor-
mones, biological nitrogen fixation, and promotion of root growth. Biocontrol 
mechanism involves competition, antibiosis, parasitism, induction of systemic 
acquired resistance (SAR), induction of systemic resistance (ISR), soil suppres-
siveness, and production of various antifungal metabolites; hydrolytic enzymes 
such as chitinase, glucanase, protease, and cellulase; and antibiotics such as 
2,4-diacetyl phloroglucinol (DAPG), amphisin, oomycin A, hydrogen cyanide, 
phenazine, pyoluteorin, pyrrolnitrin, cyclic lipopeptides, oligomycin A, zwitter-
micin A, kanosamine, and xanthobaccin. Production of hydrolytic enzymes by 
PGPR is an important mechanism directed against phytopathogens for sustain-
able plant disease management. These enzymes break down the cell wall of fun-
gal pathogens causing cell death. This review focuses on the different aspects of 
various hydrolytic enzymes produced by rhizoflora and their role in sustainable 
biocontrol of phytopathogens.
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9.1	 �Introduction

Soilborne phytopathogens are responsible for causing infection of roots, stems, 
leaves, and fruits. These phytopathogens occur in a broad spectrum of susceptible 
hosts under favorable environmental conditions. Such diseases are known to cause 
severe economic losses to variety of food crops and are commonly controlled by 
using synthetic fungicides or nonspecific chemical fungicides. These plant diseases 
are known to cause a loss of 30% crop yield posing economic hardship to producers 
(Sayyed et al. 2012; Shaikh and Sayyed 2015). All over the world, population is 
increasing tremendously every day and hence the agricultural practices to increase 
the yield. This need has compelled to use synthetic agrochemicals, but the chemical 
pesticides and fertilizers have caused even more destructive effects to the agricul-
tural field because these chemicals are not eco-friendly. The present need of sustain-
able agricultural practices is focused on the safer alternatives to conventional 
agrochemicals (Pane et al. 2013). The intensive use of fungicides, to control plant 
pathogens and excessive use of chemical fertilizers to increase crop productivity, 
has severally imbalanced the agroecosystem (Logemann and Schell 1993). In this 
regard, PGPR have been seen as a greener approach to control plant pathogens and 
to promote plant growth (Sayyed and Chincholkar 2009; Sayyed et al. 2010, 2013, 
2015; Sayyed and Patel 2011; Shaikh et al. 2014, 2016).

The mechanisms of plant growth promotion by PGPR include production of 
plant growth regulators, asymbiotic N2 fixation, and solubilization of mineral phos-
phates and other nutrients (Sarvanakumar et al. 2007; Sayyed et al. 2007; Sharma 
et al. 2013), while biocontrol involves antagonistic action toward plant pathogens 
by production of siderophores, antibiotics, cyanide, and hydrolytic enzymes (Shaikh 
et al. 2014; Shaikh and Sayyed 2015). Antagonistic or biocontrol activity of PGPR 
is attributed to the production of different types of cell wall-lysing enzymes such as 
chitinase, protease/elastase, cellulase, and β-1,3 glucanase.

9.2	 �Plant Growth-Promoting Rhizobacteria (PGPR)

Rhizospheric bacteria, having plant growth-promoting ability by colonizing the 
plant roots, are known as PGPR (Kloepper and Schroth 1978). PGPR are potentially 
useful in stimulating plant growth and increasing crop yields (Sayyed et al. 2010). 
Thus the rhizosphere of crop plants is a promising source of PGPR (Lucas et al. 
2001 and Barriuso et al. 2005). PGPR can be differentiated into two categories on 
the basis of their relationship with the plants: symbiotic rhizobacteria and free-
living rhizobacteria (Khan 2005; Freitas et al. 2007). Worldwide literature clearly 
states that the use of PGPR in agriculture is increased tremendously, and significant 
increase in growth and yield of agronomically important crops has been obtained 
(Asghar et al. 2002; Vessey 2003; Gray and Smith 2005; Silva et al. 2006; Figueiredo 
et al. 2008; Araujo 2008). The plant growth-promoting ability of some bacteria is 
highly specific to certain plant species, cultivar, and genotype (Bashan 1998; Gupta 
et al. 2000; Lucy et al. 2004). PGPR not only provide essential nutrients for plant 
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growth promotion, but they are also important in biocontrol of pathogen; they 
improve the health of soil in the long term and, hence, are potentially important in 
reducing the use of chemical fertilizers and chemical pesticides (Lugtenberg and 
Kamilova 2009). However, the better understanding of mechanisms of plant growth 
promotion and the biocontrol is vital aspect for the better utilization of PGPR in 
agriculture. The knowledge of structure and diversity of rhizosphere microbial con-
sortium with respect to their complexity; natural selection; interpopulational rela-
tions like symbiosis, parasitism, mutualism, or competence; and succession is 
equally important in this aspect (Barriuso et al. 2008).

9.3	 �Fungal Plant Diseases

The vast range of phytopathogens causes various types of diseases by infecting the 
whole or a specific part of the plants. Their effect ranges from mild symptoms to 
catastrophes in which huge plantations of food crops are destroyed and hence causes 
loss of yield. Catastrophic plant disease exerts the current deficit of food supply in 
which at least 800 million people are not properly fed. The strengths of phytopatho-
gens like their populations are variable in time and space, and genotype increases 
the difficulties to control them (Strange and Scott 2005). The continuous use of 
fungicides has developed the resistance which causes the loss in productivity. The 
biological controls have been found more promising than chemical fertilizers, dis-
cussed in Sect. 9.5.

The worldwide reporting shows that not all but various fungal species are found 
to be pathogenic to the plants and their products. Some of the plants affected by 
phytopathogenic diseases are listed in Table 9.1.

9.4	 �Composition of Fungal Cell Wall

The cell wall of fungal or any pathogen is meant for protection of its internal con-
stituent from various environmental factors. The structure of fungal cell wall is 
unique and is therefore an excellent target for the development of antifungal metab-
olites. The structure and biosynthesis of various antifungal metabolites have been 
reviewed. These studies have clearly demonstrated that fungal cell walls are mainly 
composed of chitin, glucans, mannans, and glycoproteins (Bowman and Free 2006).

The fungal cell walls contain fibrillar materials attached to sugars, proteins, lip-
ids, and a variety of polysaccharides (Fig. 9.1). These fibrillar materials are inert. 
The functional components of cell wall are needed for nutrient transport, extracel-
lular degradation of non-permeable substrates, communication, and modifications 
of cell wall structure.

About, 80% of the cell wall of fungi is made up of polysaccharides. The fibrillar 
structure is built on chitin, chitosan, ß-glucans, and a variety of heteropolysaccha-
rides (Table  9.2). These fibers are encompassed in a complex gel-like matrix. 
Proteins in the form of glycoprotein are present in small amount, i.e., 20%. All 

9  Role of Hydrolytic Enzymes of Rhizoflora in Biocontrol of Fungal Phytopathogens…



186

Table 9.1  List of phytopathogens infecting plants with various diseases

No. Disease
Target plant or plant 
part Phytopathogen References

1 Brown 
patch

Patches of brown and 
yellow color appear 
on the lawn in 
irregular shapes

Rhizoctonia solani Giesler and Yuen 
(1998)

2 Cankers Woody plants Gibberella circinata 
(Fusarium circinatum)

Wingfield et al. 
(2002)

3 Damping 
off

All types of plants Pythium and Fusarium Mao et al. (1997)

4 Powdery 
mildew

Grains, alfalfa, 
onions, cucumbers

Uncinula necator Doster and 
Schnathorst 
(1985)

5 Ergot Rye, barley, wheat, 
and other grasses

Claviceps purpurea Giesbert et al. 
(2008)

6 Root rots All types of plants Phytophthora sp. Thomas et al. 
(2003)

7 Rusts Wheat, oats, barley, 
rye

Puccinia Uchida et al. 
(2006)

8 Scab Wheat, rye, barley, 
potatoes

Fusarium graminearum O’Donnell et al. 
(2000)

9 Seed decay All types of plants Phomopsis Li et al. (2015)
10 Smuts Oats, barley, grasses, 

corn, wheat
Ustilaginomycetes Müller (2015)

11 Soft rots, 
dry rots

Potatoes, onions, 
carrots, fleshy organs, 
etc.

Syncephalastrum 
racemosum, Fusarium sp.

Misra (2016)
Heltoft (2016)

12 Wilts Potatoes, alfalfa, trees Fusarium oxysporum Pietro et al. (2003)

Mannoproteins

Membrane protiens

Chitin

Cell
membrance

-glucansb

Fig. 9.1  Typical structure of fungal cell wall (Adapted from Vega and Kalkuma 2011)

proteins are not generally the structural components. Lipids are present only in 
small amount. Proteins and lipids regulate movement of water and protect the fun-
gal cell from desiccation (Cox and Hooley 2009).
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9.5	 �Biocontrol Through Hydrolytic Enzymes

It has been studied that many rhizobacteria/biocontrol agents (BCAs) synthesize 
extracellular hydrolytic enzymes that are involved in hydrolysis of fungal cell wall 
components such as chitin, proteins, cellulose, hemicellulose, and DNA; these 
hydrolytic enzymes have the potential of inhibiting phytopathogens (Pal and 
Gardener 2006).

9.5.1	 �Hydrolytic Enzymes

The term biocontrol/biological control denotes the direct or indirect manipulation of 
microbes for reducing plant disease (Baker and Cook 1974; Maloy 1993). Among 
the wide genetic biodiversity of prokaryotes, PGPR play crucial role in the biocon-
trol of plant diseases and in improvement of crop productivity through various 
mechanisms (Fernando et  al. 2005). Biotic agents like harmful insects, parasitic 
weeds, and phytopathogens are among the major causes of serious loss and damage 
to agricultural crop and products. This needs to be controlled to sustain the quality 
and quantity of agriculture products. Currently numerous strategies are employed to 
combat this problem (Bargabus et al. 2002; Benhamou 2004; Kloepper et al. 2004, 
Islam et al. 2005; Chisholm et al. 2006; Heydari 2007; Heydari et al. 2007). A natu-
ral, safe, and productive option for the control of these pathogens is the use of 
BCAs. BCAs include the number of microbial genera from rhizosphere including 
PGPR. Consequently, to improve biocontrol strategies by manipulating soil envi-
ronment, the study of mechanism of biocontrol of plants diseases through the inter-
action between BCAs and pathogens is the key to create successful biocontrol 
conditions (Fravel 1998). The biocontrol of plant disease includes the secretion of 
microbial metabolite which controls the diseases by acting on or by inhibiting the 
growth of phytopathogens.

Hydrolytic enzymes (chitinase, glucanase, protease, and cellulase) produced by 
PGPR are responsible for the lysis of phytopathogens through hyperparasitism. The 
antagonistic properties of hydrolytic enzymes against various phytopathogens play 
a major role in biocontrol (Kim et  al. 2003; Shaikh and Sayyed 2015). BCAs 

Table 9.2  Fungal cell wall-forming polymers

No. Classification
Fibrous 
polymers Gel-like polymers

1 Basidiomycota Chitin β-(1-3), 
β-(1-6) glucan

Xylomannoproteins α (1-3) glucan

2 Ascomycota Chitin β-(1-3), 
β-(1-6) glucan

Galactomannoproteins α (1-3) glucan

3 Zygomycota Chitin chitosan Polyglucuronic acid, 
glucuronomannoproteins, polyphosphate

4 Chytridiomycota Chitin glucan Glucan

Adapted from Gooday (1995)
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producing hydrolytic enzymes are used in biocontrol of phytopathogens thereby 
improving plant growth. These attributes make PGPR an effective BCA (Garbeva 
et al. 2004; Ran et al. 2005). The cell wall of most of the phytopathogenic fungi 
(except oomycetes) is made up of chitin (C8 H13O5N)n, which is an unbranched, 
long-chain polymer of glucose derivatives, composed of β-1,4-linked units of the 
amino sugar N-acetyl-D-glucosamine (NAG).

The biocontrol activity of BCAs/PGPR can be achieved through the following 
mechanisms:

	(a)	 Niche competition – this excludes the growth of phytopathogens from soil or 
host tissue.

	(b)	 Mycoparasitism – leading to the lysis of fungal pathogen.
	(c)	 Production of antibiotics  – that interfere with the metabolism of 

phytopathogen.
	(d)	 Production of hydrolytic enzymes – that degrade the cell wall of phytopatho-

gens (Sayyed et al. 2013).

9.5.1.1	 �Cell Wall Lysis
Hydrolytic enzymes are capable of breaking down glycosidic bonds in chitin. Thus, 
they play a vital role in the biological control of many plant diseases by degrading 
the cell walls of phytopathogens.

It affects fungal growth by its lytic action on cell walls, hyphal tips, and germ 
tubes (Kim et al. 2003) and partial swelling in the hyphae and at the hyphal tip lead-
ing to hyphal curling or bursting of the hyphal tip (Fig. 9.2; Someya et al. 2000). 
Among the huge population of hydrolytic enzymes, chitinase, glucanase, protease, 
and cellulase are of major interest due to their ability to degrade and lyse fungal cell 
wall, and thus hydrolytic enzymes are employed in biocontrol of fungal phytopatho-
gens (Mabood et al. 2014). Cell wall-degrading enzymes of rhizobacteria damage 
the structural integrity of the cell wall of phytopathogen (Budi et al. 2000). Felse 
and Panda (1999) reported the control of Sclerotium rolfsii and F. oxysporum 
through the cell wall degradation on beans.

9.5.1.2	 �Mycoparasitism
The other concept regarding the inhibition of phytopathogens is mycoparasitism 
that directly attacks which is defined as a direct attack on a fungal thallus leading to 
its lysis (Chet et al. 1997). According to Barnett and Binder (1973), mycoparasites 
play an important role in biocontrol. Mycoparasitism can be divided into two types: 
necrotrophic and biotrophic. Necrotrophic mycoparasites are those that kill the host 
cells before or just after invasion and use the released nutrients. These mycopara-
sites are more aggressive and destructive than biotrophs. They have a broad host 
range and are relatively unspecialized in their mode of parasitism. The antagonistic 
activity of necrotrophs is due to the production of antibiotics, toxins, or hydrolytic 
enzymes (Manocha and Sahai 1993). In biotrophic parasitism, the development of 
the parasite is favored by a living rather than a dead host structure (Chet et al. 1997). 
Biotrophic mycoparasites have a more restricted host range and in many cases 
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Fig. 9.2  Mechanism of fungal cell wall hydrolysis. (a) Typical structure of fungal cell wall. (b) 
Hydrolytic enzymes (chitinase, glucanase, and protease) acting on chitin, β-glucan, and proteins. 
(c) Fungal cell wall losing integrity after hydrolysis
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produce specialized structures (haustoria) to absorb nutrients from their host 
(Manocha and Sahai 1993). Rhizobacteria capable of producing hydrolytic enzymes 
and inhibiting phytopathogens are listed in Table 9.3.

9.5.2	 �Chitinases in Biocontrol of Phytopathogenic Fungi

Chitinase [EC 3.2.1.14] plays a vital role in the biocontrol of many plant diseases by 
lysing fungal cell wall through degradation of chitin polymer present in the cell 
walls of fungal phytopathogens. The enzyme can either be used directly in the 

Table 9.3  List of microorganisms showing hydrolytic activity

No.
Microbes showing 
hydrolytic activity Hyd. enz. produced

Target 
phytopathogen References

1 S. marcescens Chitinase R. solani and F. 
oxysporum

Someya et al. 
(2000)

2 B. subtilis NPU 
001

Chitinase F. oxysporum Chang et al. 
(2010)

3 S. plymuthica C48 Chitinase Botrytis cinerea Frankowski et al. 
(2001)

4 Paenibacillus sp. 
strain 300 and 
Streptomyces sp. 
strain 385

β -1,3-glucanase F. oxysporum Singh et al. 
(1999)

5 Bacillus subtilis 
YJ1

Cellulase – Li-Jung et al. 
(2010)

6 Cellulomonas sp. 
ASN2

Cellulase – Muhammad 
et al. (2012)

7 Bacillus coagulans Carboxymethyl 
cellulase and 
polygalacturonase

– Odeniyi et al. 
(2009)

8 Bacillus cereus, 
Bacillus subtilis, 
Bacillus 
thuringiensis

Cellulase – Basavaraj et al. 
(2014)

9 P. aeruginosa 
PGPR2

Protease Macrophomina sp., 
Rhizoctonia sp., and 
Fusarium sp.

Illakkiam et al. 
(2013)

10 Bacillus subtilis 
PE-11

Alkaline protease – Adinarayana 
et al. (2003)

11 Paenibacillus and 
Streptomyces

– F. oxysporum Compant et al. 
(2005)

12 B. cepacia – R. solani, P. ultimum, 
and S. rolfsii

13 P. fluorescens 
LRB3W1 and S. 
marcescens B2

– F. oxysporum Someya et al. 
(2007)
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biocontrol on microorganisms or indirectly by using purified proteins or through 
manipulation of genes coding for chitinase (Kim et al. 2003). Chitinases have been 
reported from various microorganisms, such as insects, crustaceans, yeasts, and 
fungi, and also organisms that do not contain chitin, such as bacteria, higher plants, 
and vertebrates (Kramer et al. 1997). Chitinase was isolated, purified, and charac-
terized in 1992 (Cruz et  al. 1992). Chitinase produced by rhizobacteria exhibits 
antagonism in  vitro against fungi (Gay et  al. 1992; Fridlender et  al. 1993). 
Schlumbaum et al. (1986) and Skujins et al. (1965) demonstrated the inhibition of 
fungal growth by chitinases of Streptomycetes. The importance of chitinase activity 
was further demonstrated by the loss of biocontrol efficacy in Serratia marcescens 
chitinase mutants in which the chiA gene had been inactivated (Jones et al. 1986). 
The potential BCAs can be produced by cloning chiA gene into rhizosphere compe-
tent model organisms. Oppenheim and Chet (1992) cloned the chiA gene of S. marc-
escens into E.coli for the control of S. rolfsii and R. solani and found E.coli to be 
better in reducing disease incidence. Likewise the chitinase genes from S. marces-
cens were expressed in Pseudomonas and the plant symbiont Rhizobium meliloti to 
control the pathogens F. oxysporum var. redolens and Gaeumannomyces graminis 
var. tritici (Sundheim 1992). The antifungal activity of the transgenic Rhizobium 
during symbiosis on alfalfa roots was verified by lysis of R. solani hyphal tips 
treated with cell-free nodule extracts (Sitrit et al. 1993).

The fungal spp. Trichoderma and Gliocladium virens have been studied more 
extensively (Cook 1993; Chet et al. 1997). Weindling (1932) reported the potential 
of Trichoderma species as BCAs. The chitinase of T. harzianum was used as a 
means of biocontrol of phytopathogens such as Rhizoctonia solani (Chet and 
Hornby 1990). Several species of Trichoderma have been tested as BCAs; among 
them T. harzianum was found to be more effective and can be used to control the 
number of economically important soilborne phytopathogens (Chet 1987). Using 
genetic modification technology, Lorito (1998) cloned the tobacco and potato with 
gene encoding endochitinase from T. harzianum (P1) and reported the high level 
and broad spectrum of resistance against a number of phytopathogens.

9.5.2.1	 �Mode of Action of Chitinase
Chitinases are chitin-degrading enzymes which play an important role in biological 
control and plant defense mechanisms against phytopathogens. Chitin is the second 
most abundant polymer in nature, an unbranched homopolymer of 1,4-β-linked 
N-acetyl-D-glucosamine (GlcNAc) after cellulose. It is abundant as a structural 
polymer in most fungi and insects, including those that are agricultural pests 
(Havukkala 1991).

On the basis of mode of action, chitinase is divided into three types:

	(A)	 β-1,4-N-acetyl-glucosaminidases (EC 3.2.1.30) split the chitin polymer into 
GlcNAc monomers in an exo-type pattern.

	(B)	 Endochitinases (EC 3.2.1.14) cleave randomly at internal sites over the entire 
length of the chitin microfibril.
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	(C)	 Exochitinases (EC 3.2.1.14) catalyze the progressive release of diacetylchito-
biose in a stepwise manner such that no monosaccharides or oligosaccharides 
are formed (Fig. 9.3) (Harman et al. 1993; Manocha and Sahai 1993).

An extracellular chitinase of Myrothecium verrucaria inhibits germination and 
germ tube elongation of the groundnut rust fungus Puccinia arachidis. Similarly, 
Acremonium obclavatum produces and secretes a chitinase in vitro which inhibits 
germination of uredospores of the peanut rust (Manocha and Balasubramanian 
1994).

9.5.2.2	 �Molecular Characterization of Chitinase
Cruz et al. (1992) reported the purification and characterization of three chitinases 
from T. harzianum; the isozymes’ mol. wt. were 37, 33, and 42 kDa, respectively. 
Only the purified 42 kDa chitinase hydrolyzed B. cinerea purified cell walls in vitro, 
but this effect was heightened in the presence of either of the other two isoenzymes. 
According to Haran et al. (1995), the chitinolytic system of T. harzianum was more 
complex, consisting of six distinct enzymes. The system is apparently composed of 
two ß-(1,4)-N-acetylglucosaminidases of 102 and 73 kDa, respectively, and four 
endochitinases of 52, 42, 33, and 31 kDa, respectively. Among these, the 42 kDa 
endochitinase was found more effective because of its ability to hydrolyze B. cine-
rea cell walls in vitro. The 1,4-β-N-acetyl-glucosaminidases of 72 kDa have been 
purified from T. harzianum strain (Lorito et al. 1994). Haran et al. (1995) reported 
the chitinase isolated from respective T. harzianum had different molecular weights: 
73 kDa heat-stable glucosaminidase (CHIT 73), isolated from T. harzianum strain 
TM, an endochitinase of 52 kDa (CHIT 52), an endochitinase of 42 kDa  
(CHIT 42), the endochitinases produced by the other strains of T. harzianum which 

Fig. 9.3  Chitinolysis of 1,4-β-linked N-acetyl-D-glucosamine (GlcNAc)
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are of 33 kDa (CHIT 33) and 31 kDa (CHIT 31), and two endochitinases, having 
molecular weights of 37 kDa and 33 kDa, which were expressed by T. harzianum 
strain CECT 2413.

9.5.3	 �Proteases in Biocontrol of Phytopathogenic Fungi

Proteases [E.C. 3.4.24] play a significant role in cell wall lysis of phytopathogenic 
fungi, since chitin and/or fibrils of β-glucan are embedded into the protein matrix. 
Thus proteolytic activity is prerequisite to lyse whole fungal cells (Elad and Kapat 
1999). Proteases are wide spread in nature; microbes are the preferred source of 
these enzymes due to their fast growth and easy cultivation and the ease in genetic 
manipulation to get the enzyme with desired properties for specific applications 
(Anwar and Saleemuddin 1998; Beg and Gupta 2003). Bacillus sp. produces extra-
cellular proteases; several Bacillus species like Bacillus cereus, Bacillus stearother-
mophilus, Bacillus mojavensis, Bacillus megaterium, and Bacillus subtilis are 
known to produce protease (Sookkheo et al. 2000; Beg and Gupta 2003; Banik and 
Prakash 2004; Gerze et al. 2005). Bacterial proteases are generally extracellular, 
easily produced in greater amounts, and active under various environmental 
conditions.

Proteases purified from Bacillus have significant activity, stability, broad sub-
strate specificity, short period of fermentation, simple downstream purification, and 
low-cost production process (Maurer 2004; Haddar et al. 2009). Extracellular pro-
teases of Trichoderma sp. also play a significant role in the lysis of cell walls of 
phytopathogenic fungi. Some of the proteases produced by Trichoderma sp. are 
involved in inactivating extracellular enzymes of phytopathogenic fungi (Elad and 
Kapat 1999). The protease enzymes break down major proteins into peptide chains 
and/or their constituent amino acids of phytopathogens and thereby destroy their 
capacity to act on plant cells.

9.5.3.1	 �Mode of Action of Protease
Proteins are degraded by a hydrolysis that involves cutting of one or more peptide 
bonds by addition of water to liberate peptide or amino acids. Enzymes that hydro-
lyze the proteins are called proteases. Each protease recognizes the chemical struc-
tures of certain specific amino acids and then catalyzes the breaking of the peptide 
bond (Fig. 9.4).

9.5.3.2	 �Molecular Characteristics of Protease
The recent studies by Asker et al. (2013) reported the molecular weight of the puri-
fied proteases P1 and P2 as 28 and 25 kDa, respectively. The purified P1 and P2 
were rich in aspartic acid and serine and relatively have higher amounts of alanine, 
leucine, glycine, valine, threonine valine, and glutamic acid. Gessesse et al. (2003) 
purified an alkaline protease of 24 kDa from Bacillus pseudofirmus AL-89. 
Adinarayana et al. (2003) purified an alkaline protease of 15 kDa from B. subtilis 
PE-11. A halotolerant alkaline protease of 28 kDa was purified from Bacillus  
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clausii I-52 using a combination of Diaion HPA75, phenyl-Sepharose, and DEAE-
Sepharose column chromatography (Joo and Chang 2005). Gupta et al. (2005) puri-
fied an alkaline protease from B. pseudofirmus to tenfold purity with an 85% yield 
using a single-step method with a phenyl-Sepharose 6 fast-flow column. The appar-
ent molecular weight of this protease was 29 kDa. Sareen and Mishra (2008) puri-
fied a 55 kDa alkaline protease from Bacillus licheniformis RSP-09-37.

9.5.4	 �Cellulase in Biocontrol of Phytopathogenic Fungi

Cellulases [EC 3.2.1.4] catalyze the hydrolysis of 1,4-β-D-glycosidic linkages in 
cellulose and play a significant role in nature by recycling this polysaccharide. 
Cellulose is a linear polymer of β-D-glucose units linked through 1,4-β-linkages 
with a degree of polymerization ranging from 2,000 to 25,000 (Kuhad et al. 1997). 
Cellulose chains form numerous intra- and intermolecular hydrogen bonds, which 
account for the formation of rigid, insoluble, crystalline microfibrils. Cellulose is 
structurally heterogeneous having both amorphous and crystalline regions. 
Resistance to microbial degradation depends on the degree of crystallinity, and 
highly crystalline regions are more resistant to enzymatic hydrolysis. Cellulases 
belong to a class of enzymes that catalyze the hydrolysis of cellulose and are pro-
duced chiefly by fungi, bacteria, and protozoa as well as other organisms like plants 
and animals. The cellulolytic enzymes are inducible since they can be synthesized 
by microorganisms during their growth on cellulosic materials (Lee and Koo 2001).

9.5.4.1	 �Mode of Action of Cellulase
Complete degradation of cellulose involves a complex interaction between different 
cellulolytic enzymes. It has been widely accepted that three types of enzymes 

Fig. 9.4  Schematic representation of proteolysis (Modified from Donohue and Osna 2003)

H.P. Jadhav et al.



195

including cellulose/endoglucanases [EC 3.2.1.4], exo-cellobiohydrolase/exo-
glucanases [EC 3.2.1.91], and β-glucosidases [EC 3.2.1.21] act synergistically to 
convert cellulose into β-glucose (Lynd et  al. 2002). Cellulases are a mixture of 
endo-1,4-β-glucanase enzymes and exo-1,4-β-glucanase enzymes. Endo-1,4-β-
glucanase cleaves the internal bonds, while exo-1,4-β-glucanase cleaves two to four 
units from the ends of cellulose strands and cellobiase, which cleaves the disaccha-
ride cellobiose into two glucose moieties (Fig. 9.5).

9.5.4.2	 �Molecular Characterization of Cellulase
Hurst et al. (1977) reported the cellulase of molecular weight of 26,000 on the basis 
of amino acid composition and PAGE analysis. Carboxymethyl cellulase produced 
by B. pumilus EB3 was having the range of a molecular weight from 30 to 65 kDa 
(Ariffin et al. 2006). Li-Jung et al. (2010) reported the strain Bacillus subtilis YJ1 
producing cellulase; they purified and characterized cellulase, having a molecular 
mass of 32.5 kDa.

9.5.5	 �Glucanases in Biocontrol of Phytopathogenic Fungi

β-1,3-Glucanases [EC 3.1.1.6] are widely spread in bacteria, fungi, and higher plants 
(Simmons 1994). This enzyme has interesting and important physiological roles and 
practical applications in the degradation of cell wall in fungi, yeasts, and higher 
plants (Pang et al. 2004). These enzymes are classified as either exo- or endo-β-1,3-
glucanases (β-1,3-glucan glucanohydrolase). Fridlender et al. (1993) reported the 
hydrolytic inhibition of Rhizoctonia solani, Sclerotium rolfsii, and Pythium ultimum 
by β-1,3-glucanases of Bacillus cepacia. Singh et al. (1999) reported two strains of 
Paenibacillus and Streptomyces sp. which produce β-1,3-glucanases that inhibited 
the growth of F. oxysporum. Vazquez et  al. (1998) reported the seven β-1,3-
glucanases produced by T. harzianum strain under diverse growth conditions.

9.5.5.1	 �Mode of Action of Glucanase
β-1,3(1,6)-Glucans are major components in cell wall of yeasts and fungi. The cell 
wall polysaccharide glucan is consisted of predominantly β-1,3-linked backbone 
having some branches via β-1,6-linkages, 4,6,8,9. Glucanase causes degradation of 
cell wall and further penetration into the host mycelium (Fridlender et al. 1993). 
These enzymes can hydrolyze the substrate by two possible mechanisms: (a) exo-
1,3-glucanases (EC 3.2.1.58) hydrolyze the substrate by sequentially cleaving glu-
cose residues from the nonreducing end and (b) endo-1,3-glucanases (EC3.2.1.39) 
cleave linkages at random sites along the polysaccharide chain, releasing smaller 
oligosaccharides (Noronha and Ulhoa 1996).

9.5.5.2	 �Molecular Characteristics of Glucanase
Cruz et al. (1992) and Noronha and Ulhoa (1996) have reported two 1,3-glucanases 
having molecular weights of 78 and 36 kDa, respectively, purified from the super-
natants of T. harzianum grown in minimal medium, supplemented with chitin as 
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carbon source. The characterization of these enzymes revealed that they are endo-
1,3-glucanases, as confirmed by the production of oligosaccharides rather than glu-
cose from the laminarin. Noronha and Ulhoa (2000) purified and characterized the 
29 kDa extracellular-1,3-glucanase produced by T. harzianum, grown on chitin-
containing medium. Maria et al. (2003) report the two purified 83.1 kDa extracel-
lular exo-β-1, 3-glucanases produced by T. asperellum.

9.6	 �Conclusion

In concern with the current scenario toward chemical pesticides and fertilizers, and 
their huge consumption, there is a prominence/focus on utilization of microbial 
inoculants and organic inputs for its application in agricultural field. Hence, the 
potential of rhizobacteria in crop protection by producing different defensive anti-
fungal metabolites like antibiotics, hydrolytic enzymes, and other metabolites is 
hoped to provide sustainable and eco-friendly plant disease control. Application of 
these rhizobacteria in agricultural field in the form of formulated product will give 
the greener and eco-friendly approach for the sustainable agriculture to combat the 
fungal diseases. Application of efficient rhizobacterial strain secreting various 
hydrolytic enzymes will help to reduce the liberal use and doses of agrochemicals 
which is the most important prospect in rhizobacterial/PGPR research. Commercial 
production of these organisms will have sustained release of antifungal metabolites 
in the environment, and these metabolites do not develop the resistance to target 
organism as in chemical pesticides.

Application of single or consortium of these organisms has shown the promising 
prospect in the field of biocontrol and plant growth promotion. These microbes can 
successfully utilize their potential for agricultural integrated plant disease manage-
ment (IPDM) strategies. Study of hydrolytic enzymes of rhizobacteria will help in 
manipulating the bacterial community with biological control and plant growth pro-
motion ability in rhizospheric zone of different sites. So these rhizobacteria will be 
the key determinant in plant health and productivity with sustainability.
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