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Abstract. This paper proposes a new approach to localize symbol in
the graphical documents using sparse representations of local descriptors
over learning dictionary. More specifically, a training database, being
local descriptors extracted from documents, is used to build the learned
dictionary. Then, the candidate regions into documents are defined fol-
lowing the similarity property between sparse representations of local
descriptors. A vector model for candidate regions and for a query sym-
bol is constructed based on the sparsity in a visual vocabulary where
the visual words are columns in the learned dictionary. The matching
process is performed by comparing the similarity between vector models.
The first evaluation on SESYD database demonstrates that the proposed
method is promising.

Keywords: Spotting graphical symbols · Sparsity · Learned dictionary ·
Shape context · Interested points

1 Introduction

Among the graphics recognition community, a lot of efforts have been devoted in
the last years to deal with the problem of identifying regions likely to contain a
certain symbol within graphics-rich documents. One of the first approaches was
the retrieval of engineering drawings based on the use of a stochastic models [13].
The main advantage of this method is that it works well even where the query
symbol is embedded in, for example, is connected to other parts in the drawing.
However, this performance is not good for the complex queries having several
elements with spatial relationship between them.

Other techniques [2,3,9,12,17] rely on the structural information inherent in
graphical symbols such as points, lines, junctions, regions etc. In that methods,
graphical entities are encoded as attributed graphs and then the stage of local-
ization symbols in documents is done using subgraph isomorphism algorithms.
In general, the subgraph matching algorithms suffer from a huge computational
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burden, although particular cases of subgraph isomorphism can be solved in
polynomial time [8]. Thus, these approaches are insufficient when working with
the larger collection of data. In [6,23], some indexing strategies are proposed
to reduce the retrieval time and to increase the potential applications of these
approaches.

Some of the methods [17,22] work with low-level pixel features on regions
of interest of the documents. After ad-hoc segmentation, global pixel-based
descriptors of regions [14] are computed and compared with the query symbols.
A distance metric is used to decide the retrieval ranks and to check whether
the retrievals are relevant or not. However, the limitation of these methods is
one-to-one feature matching and they only work for a limited set of symbols.

Like the methods based on low-level pixel features, the methods as in
[18,24] also works with ad-hoc segmentation. However, these methods com-
pute the vectorial signatures instead of pixel feature. The disadvantage of these
method is that they do not work well in the real-world applications since symbols
are effected by noisy images. In addition, the assumptions the symbol always fall
into interest region can compute the vectorial signature inside those regions are
other limitation of these methods.

In this paper we propose a new two-stage method for symbol localization in
graphical documents. In the first stage, the training database, being the local
descriptors computed on interest points of documents, is used to learn the visual
dictionary. In the second stage, we define the similarity property between two
descriptors to localize some candidate regions over documents. In addition, to
keep only the candidate regions where the query symbol actually is, we propose
to use the visual vocabulary to construct the vector model of region. Then, the
regions contains the request symbols over documents are found out by comparing
vector models.

The organize of this paper as follow: Sects. 2 and 3 describe how to calculate
the local descriptor adapted to the graphical document, and how to learn a
visual vocabulary from the training set being the local descriptors. The details
of the symbol localization process is addressed in Sect. 4. The first evaluations
of proposed approach is dedicated in Sect. 5. Finally, we conclude and discuss
the future work in Sect. 6.

2 Local Descriptor for Document

Like the shape context, the shape context of interest points (SCIP) [15] also
presents the relationship between points of object, but instead of the relationship
between contour points, it describes the relationship between the key-points and
the contour points, which not only reduces the size of the descriptor but also
remains the invariance to scaling and rotation thanks to the information about
the dominant orientation of interest points. In addition, the local descriptor
as SCIP and the learned dictionary are used to increase the performance of
recognition system [5].

This paper also focus on the use of sparse representation over learned dictio-
nary for spotting symbols in graphical documents. When working on the whole
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document, the symbols have not been segmented, and using interest points, the
contour points being far from them provide less useful information to discrimi-
nate objects. Therefore, the SCIP cannot be applied at document level. Instead
we define the neighborhood region for each reference interest point as in [4,14].
This region needs to ensure the invariance of SCIP computed inside it, thus it
cannot be fix a prior. This difficulty is overcome by using the scale on which the
interest point detected. More details, with each interest point, the neighborhood
region associated with it is an ellipse that is defined with the centre at this point,
and the semi-major axis, the semi-minor axis are decided depending on the scale
in which this interest point is detected.

This extension of SCIP descriptor for a document level is called ESCIP
descriptor from now on. In fact, ESCIP for the neighborhood region correspond-
ing to one interest point in the document is the SCIPs calculated on this neigh-
borhood region.

3 Visual Vocabulary of ESCIP

Visual vocabulary of ESCIP is the learned dictionary in which visual words are
columns in this dictionary. This section describes how to build the learned dictio-
nary of ESCIP descriptors and illustrates how one signal is presented over this
dictionary. In general, the learned dictionary of ESCIP is the dictionary con-
structed from the training dataset H = {H1, ....,Hn} being the ESCIP descrip-
tors extracted from n documents. By applying one of the learned algorithms, we
learn the dictionary A ∈ R

L×M satisfying that each ESCIP descriptor hj ∈ H
in training dataset has an optimally sparse approximation x̄j in this dictionary
satisfying ‖Ax̄j − hj‖2 ≤ ε or finding:

min
A,xj

∑

j

‖xj‖0 subject to ‖hj − Axj‖2 ≤ ε, for all hj ∈ H (1)

This dictionary can be obtained by the learning process. This process itera-
tively adjusts A via two main stages: sparse coding stage and update dictionary
stage. In the sparse coding stage, all sparse representation xj of hj ∈ H are
found by solving Eq. (2) on the condition that A is fixed.

min
xj

‖xj‖0 subject to ‖Axj − hj‖2 ≤ ε for all hj ∈ H (2)

The Eq. (2) can be solved by the greedy techniques or relaxation one. By com-
paring greedy algorithms, we notice that orthogonal matching pursuit (OMP)
algorithm [16] does not provide a better approximation to the solution, but
its computing cost time is lower. Moreover, the OMP can be used to find the
approximate solutions instead of exact ones by changing its stopping rule as
accumulating nonzero elements in the solution vector until the reconstruction
error is less than ε. Therefore, we decide to use OMP algorithm in this paper.

In the update dictionary stage, an updating rule is applied to optimize the
sparse representation X = {xj} of all hj ∈ H. To the best of our knowledge, there
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Fig. 1. The presentation of ESCIP descriptor as linear combination of columns in the
dictionary A

are 4 well-known learning algorithms named K-SVD [1], MOD [7], ODL [11], and
RLS-DLA [20]. The way of updating the dictionary is different from each learning
algorithm to others. For example, the K-SVD algorithm makes a modification
in the dictionary’s columns; the MOD algorithm makes the mean of the set of
norm residuals as small as possible. In this paper we use K-SVD algorithm as
suggested in [16].

In the K-SVD algorithm, each column aj0 of A is updated sequentially such
that the residual error defined in (3) is minimized, where X and other columns
of A are fixed:

‖H − AX‖2F = ‖(H −
∑

j �=j0

ajx
T
j ) − aj0x

T
j0‖2F (3)

In Eq. (3), the value (H − ∑
j �=j0

ajx
T
j ) is fixed, therefore the minimum error

‖H − AX‖2F depends only on the optimal aj0 and xT
j0

. These optimal solutions
āj0 and x̄T

j0
can be given by calculating SVD (Singular Value Decomposition)

over the error matrix defined only on relevant samples. More details about the
K-SVD algorithm can be found in [1].

The output of K-SVD algorithm is all optimal sparse representation x̄j

of hj ∈ H and the learned dictionary A, it means each local descriptor
hj can be expressed as a sparse linear combination of the columns in A =
{a1, ...., aM} ∈ R

L×M , and therefore the sparse vector x̄j is the new representa-
tion for hj . Figure 1 illustrates the presentation of one local descriptor hj as lin-
ear combination of 8 columns in the dictionary A being a51, a170, a179, a245, a265,
a294, a298, a420.

4 Spotting Symbols in Graphical Documents

4.1 Document Indexing

Generally, the processes of searching and matching local descriptors computed
from interest points usually waste the computing time and the memory. Therefore,
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some techniques are proposed to overcome this difficulty such as clustering similar
descriptors to define visual words being the centroids of clusters. However, the per-
formance of these methods depends directly on the applied clustering algorithm
and the characteristic of data. Very recently, Do et al. [5] proposed an approach
that uses sparse representations of local descriptors. The performance of this app-
roach is good and promising for symbol recognition. However, to apply this method
on document level, beside of finding candidate regions that are considered as the
segment symbols (in Sect. 4.2), we also need an effectual way to index the content
that helps to match candidate regions in each document.

To index the content, an inverted file structure is built based on the learn-
ing dictionary of local descriptors. Particularly, the sparse representation of
each local descriptor over A gives information about columns of learning dic-
tionary A used to describe this. If we consider each column of A as one visual
word then A becomes the visual dictionary and therefore the group of visual
words used to describe this descriptor is known. For example, without loss
of generality, let hs

i being the ESCIP number i-th in the document Ds and
x̄s

i = {αs
1, 0, ..., 0, αs

k, 0, ..., 0, αs
t , 0, ..., 0, αs

l , 0, ..., 0} being the sparse representa-
tion of hs

i over A, then hs
i can be expressed as following:

hs
i = αs

1 × a1 + αs
k × ak + αt

1 × at + αl
1 × al (4)

Therefore, hs
i is assigned to the group of visual words W s

i = {a1, ak, at, al}
and coefficients Δs

i = {αs
1, α

s
k, αs

t , α
s
l }.

Once the document is described by visual words over visual vocabulary A,
we construct an inverted file including two elements: the visual vocabulary and
the occurrences. The visual vocabulary is A, and for each visual word in A we
store: (1) a list of interest points that its corresponding ESCIP has this word in
their sparse representation over dictionary A, (2) the corresponding documents,
(3) the group of visual words as well as the coefficients in the representation of
these ESCIP (see Fig. 2).
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Fig. 2. The inverted file structure
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4.2 Location Symbols in Graphical Documents

This section describes our main contribution that includes two steps. The first
step is to define candidate regions on documents based on the property of interest
points and the similarity in sparse representations of their corresponding local
descriptors. In the second step, each candidate region is transformed to the vector
by using weight visual words.

Interest Regions over Documents. The interest regions are defined from
the interest points of query symbol and the interest points of documents. More
specifically, given q = {xq, yq, δq, θq} and p = {xp, yp, δp, θp} are two interest
points, one from query symbol and one from the document, respectively. The
center coordinates (xr, yr) of the interest region are defined by the affine trans-
form of the coordinates of q:

(
xr

yr

)
=

δp

δq
Gθp−θq

(
xc − xq

yc − yq

)
+

(
xp

yp

)
(5)

where Gθp−θq
is the rotation matrix, (xc, yc) is the centre coordinates of the

query symbol, and the width wr, the height hr and the orientation θr of the
region are given by:

hr = h × δp

δq
; wr = w × δp

δq
; θr = θq − θp (6)

where h and w are the height and the width of the query symbol. Figure 3
presents an example of how to locate an interested region over the document.

For a particular symbol query, the number of the interest points like p, q is
large, therefore the possible regions of interest constructed from two equations

q

(xc, yc)

θq

eq

p

ep

θp

(xr, yr)

θr

Fig. 3. Example about how to locate an interest region in the document (right) being
corresponding to the request symbol (left)
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above are large. To select only those where the query symbol may appear we
introduce the notion of similarity property between pairs of interest points at
level c and we select only those regions satisfying this property. We recall that
Wp is the set of visual words describing the descriptor hp computed on p.

Definition 1 (Similarity Property). Two interest points p and q holds the
similarity property at level c ∈ (0, 1] if the following inequality is satisfied:

c × |Wq| ≤ |Wp ∩ Wq| ≤ |Wq| (7)

Intuitively, we use the similarity property to compare interested points p and
q in terms of the visual words used to describe descriptors hp and hq. In fact,
the value of c ∈ (0, 1] controls the overlapping degree of Wp and Wq. Moreover,
by setting c = 1 we force all the visual words used in the representation of hq

appear in the representation of hp.

Vector Construction for Candidate Region. The similarity property per-
mits us to reject regions of document where we can ensure that the query symbol
is not found with high confidence degree. However, using only this similarity mea-
sure, we will retrieve many false positive instances. Thus, to keep the regions of
interest where the query symbol actually is, we propose to construct the vector
model for each candidate region and then compare it to the vector model of
query symbol.

For each interest point p in R, its descriptor hR
p is the shape context of

interest point calculated in regions R. The optimal sparse representation x̄R
p of

hR
p is the solution of the Eq. (8) where A is learned dictionary build for training

dataset being ESCIP descriptors over graphical documents.

x̄R
p = min

xR
p

‖xR
p ‖0 subject to ‖AxR

p − hR
p ‖2 ≤ ε (8)

The columns of the learned dictionary A play the role of words in a visual
word framework and the coefficients play the role of the degree of confidence
for visual words. With the purpose of keeping information not only on what
visual words in the dictionary are used, but also on the coefficients in the sparse
representation, we use the optimal sparse representation x̄R

p of hR
p as its char-

acteristic vector and compute the tf and idf factors to build the vector model
associated to the candidate region R. On the one hand, we compute the k-th
word frequency tfR

k as:

tfR
k =

∑
p∈I x̄R

p (k)
∑K

j=1

∑
p∈I x̄R

p (j)
(9)

where I is the set of interest points in R.
On the other hand, the idf factor indicates the importance of the word k

for the discrimination between regions. To compute this value, the number of
instances of a word k in the whole document have to be computed. However,
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Fig. 4. Some isolated segmented symbols in the reference database.

because of some candidate regions still are false positive instances, thus comput-
ing this value on all candidate regions will reduce the precision in discriminating
between regions. To overcome this problem, we propose to compute the idf factor
from an alternative dataset composed of samples of segmented symbols. Figure 4
presents some symbols in the reference database including 1859 segmented sym-
bols. More details, idf is calculated as in Algorithm 1:

Algorithm 1. Calculate idf factor
1: For each symbol in a reference database: (1a.) Calculate the ESCIP descriptors

of this symbol
(1b.) Calculate all sparse representations of descriptors over the learning

dictionary A using OMP algorithm
(1c.) The sparse representations give the information of what visual word is

used to describe this symbol
2: Let lk be the number of symbols in which the word k appears and N is the number

of symbols in reference database, then idfk = log( N
1+lk

)

Therefore, the vector model of candidate region R is defined as following:

vR,k = tfR
k × idfk (10)

4.3 Matching Process

For each query symbol, its vector model vq is calculated as the same way we
calculate the vector model of candidate regions R. Next, the vector model of the
query symbol and the vector model of candidate regions, vR is compared using
the cosine distance:

distance(vq, vR) =
〈vq, vR〉

|vq| × |vR| (11)
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Finally, candidate regions with low cosine distance are discarded and the
others are ranked in descend order as being the regions containing the requested
symbol.

5 Experiment

The goal of the experiments carried out in this paper is to evaluate if the perfor-
mance of symbol spotting method will be improved when sparse representations
are used. The preliminary experiment is performed on subset of the SESYD
dataset1 which is a collection of 15 images and 6 different classes as queries are
tested (see Fig. 1). This subset is also used in [4] however in this paper beside of
verifying the precision of proposed method, we will also present the computing
time for spotting symbols.

The training database in the learned dictionary algorithm is local descrip-
tors ESCIP computed on graphical documents. To provide more weight to the
region close to the detected interest points in the direction of the interest point
orientation and to increase in such way the discrimination capacity of the local
descriptor, ESCIP is computed over the ellipse that is defined using information
of orientation and scale of interest point. Particularly, if the scale of the interest
point is σ, then the value of the semi-minor and the semi-major axes are 3

2σ,
3σ (set by the experience), respectively. The visual vocabulary A is built using
the K-SVD algorithm with the number of columns in A to 512, the number of
iterations to 350, and the approximation error to ε = 0.4.

In fact, there are numerous works have been proposed to deal with the prob-
lem of spotting symbols in the graphical documents [10,19,21]. However, to the
best of our knowledge there is no complete evaluation for the existing approaches
on the same database.

Thus, we decide to compare proposed approach to the method of Nguyen
et al. [14] since this method is also based on a local descriptors and use inverted
files for document indexing. The main difference between them are: firstly, in
the proposed approach sparsity technique is used to build a visual vocabulary,
while in [14] a visual vocabulary is the set of centroids of clusters obtained using
k-means algorithm. Secondly, in our approach, we first define candidate regions
based on the number of shared visual words and then we build and comparing

Table 1. The query classes

Class1 Class2 Class3 Class4 Class5 Class6

1 http://mathieu.delalandre.free.fr/projects/sesyd/index.html.

http://mathieu.delalandre.free.fr/projects/sesyd/index.html
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vector models of candidate regions to filter out some false positive instance and
therefore improve the precision rate.

Both methods are compared using the widespread precision and recall mea-
sures for retrieval tasks. The precision measure is the ratio between the num-
ber of relevant retrieved items and the number of retrieved items. On the one
hand, precision rate equals to 1 means that all retrieved examples correspond to
the queried symbol. That is, there is not false positives samples in the retrieved
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Fig. 5. Spotting results for 6 classes of query in the Table 1

Table 2. The computing time (seconds) that corresponds to each query.

Documents Classes

1 2 3 4 5 6

Document 1 8.6534 11.4800 12.8461 2.6261 21.4594 4.9100

Document 2 8.6961 11.3504 12.8563 2.5374 21.3855 4.8034

Document 3 8.6377 11.4096 12.8259 2.6336 20.7571 4.8560

Document 4 8.7181 11.3959 12.8552 2.6078 20.9517 4.7784

Document 5 8.6534 11.4260 12.8515 2.5890 20.7913 4.8589

Document 6 8.7157 11.3998 12.8658 2.6142 20.9933 4.8065

Document 7 8.6566 11.3706 12.8402 2.6295 20.9692 4.8377

Document 8 8.7488 11.4102 12.8510 2.6098 21.0592 4.7998

Document 9 8.6646 11.3915 12.8696 2.6343 20.9809 4.8657

Document 10 8.7111 11.3695 12.8404 2.5645 20.9928 4.8055

Document 11 8.6586 11.4164 12.8500 2.6580 21.0074 4.8675

Document 12 8.7442 11.3737 12.8369 2.6196 21.2620 4.8178

Document 13 8.6554 11.4137 12.8398 2.6101 20.8022 4.8580

Document 14 8.7265 11.3629 12.8730 2.6024 21.0608 4.8028

Document 15 8.6317 11.4065 12.8353 2.6136 20.5692 4.8669

Average 8.6848 11.3984 12.8558 2.610 20.9361 4.8357
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documents and location. Conversely, a lower precision rate, a higher non-relevant
(false positive) items included in the results are. On the other hand, the recall
rate is the number of relevant items in the collection. It measures the effective-
ness of the system in retrieving the relevant items, and it equals 1 in case all the
items considered as retrievals are relevant. Indeed, a low recall rate means that
relevant items have been missed.

In the Fig. 5 we see that precision and recall rates increase in most cases.
Table 2 presents the computing time that corresponds to each query.

6 Conclusion

This paper presents a new approach for symbol spotting systems that uses the
visual dictionary being the dictionary constructed from local descriptors. By
using learning techniques, the obtained visual vocabulary can be adapted better
to the intrinsic properties of the documents datasets. In addition, the proposed
approach improves the computing time in the retrieving process by combining
sparsity with indexing techniques and therefore only regions in which the queried
symbol may appear is considered in the matching phase. First experiments on
a subset of benchmark dataset for a symbol spotting application are promising.
In the future, we would like to examine the robustness and scalability of this
method on other datasets.
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