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Abstract. In this paper we propose a fast method to classify patterns
when using a k-nearest neighbor (kNN) classifier. The kNN classifier is
one of the most popular supervised classification strategies. It is easy to
implement, and easy to use. However, for large training data sets, the
process can be time consuming due to the distance calculation of each
test sample to the training samples. Our goal is to provide a generic
method to use the same classification strategy, but considerably speed
up the distance calculation process. First, the training data is clustered
in an unsupervised manner to find the ideal cluster setup to minimize
the intra-class dispersion, using the so-called “jump” method. Once the
clusters are defined, an iterative method is applied to select some per-
centage of the data closest to the cluster centers and furthest from the
cluster centers, respectively. Beside some interesting property discovered
by altering the different selection criteria, we proved the efficiency of the
method by reducing by up to 71% the classification speed, while keeping
the classification performance in the same range.
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1 Introduction

The k-nearest neighbor classifier (kNN) can be considered as one of pioneers
among the supervised methods — proposed originally by Fix and Hodges [7].
The idea behind the method is rather simple. Considering an annotated data
collection, for an unknown data sample the class label is assigned based on the
majority of its k-nearest neighbors. The so-called nearest neighbor classifier is
a special case of the previously mentioned one for £k = 1. Even though it is a
rather simple method, it has some indisputable advantages such as: simplicity,
effectiveness, intuitivity, non-parametric nature, and high performance for dif-
ferent classification tasks [20]. The proper selection of parameter k responsible
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for the neighborhood size, and the distance function responsible for the quality
of the topological representation can have a significant impact on the underlying
results [11].

Formally, the problem can be stated as follows. Let T' = {t1,t2, -+ ,tm} be
a template or reference set, containing m number of points taking values in
R?, d denotes the dimension of the data. Let Q = {q1,¢2, -+ ,qn} a query set
containing n different points with the same dimension. The k-nearest neighbor
problem consist in searching for each point ¢; € @ in the template set T given
a specific distance metric. The Euclidean distance, Manhattan distance, cosine
similarity measures are commonly used, but other distances measures such as
Hamming, cityblock (sum of absolute differences) can also be considered. The
computational complexity of the method in case of linear search is O(md), which
for large data collections (m), and high dimensional data (d) can be an expensive
operation. Its parameters (neighborhood size, distance function) — though they
are simple, are also the major challenges.

In this paper, we propose a fast k-nearest neighbor classifier by reducing
the number of reference points that need to be considered in the distance com-
putation. The reduction is achieved by clustering the data points first, - using
unsupervised clustering to find a stable cluster setup, followed by selecting the
closest points and the furthest points, respectively. The rest of the paper is
organized as follows. Section 2 briefly reviews different attempts to reduce the
linear search in the k-nearest neighbor method, Sect.3 describes the proposed
reference points reduction strategy, while Sect. 4 describes the different data col-
lections involved in the experiments, as well the results, and some comparisons.
Finally, Sect. 5 draws the conclusions.

2 Related Work

In order to lower the linear search complexity, different solutions have been
proposed. Some methods use graph based methods to approximate the nearest
neighbor [12], while some others sub-sample the reference set to diminish the
number of distance calculation between the reference points and the query point
[2,8,13], and others invoke parallel calculation supported by GPU [9].

Peredes et al. [18] proposed a method to minimize the number of distance
calculations considering a graph, built from the data set. Knowing that the
distance between two elements is the shortest path, they filter out points which
are far away from the query point, hence reducing the search space, and apply
linear search for the remaining points. In the work [17], the authors build a
visibility graph followed by a greedy type search. An extension of their work is
proposed by Hajebi et al. [12], where instead of the a visibility graph, the search
is made on a k-NN graph, which is a directed graph structure. The complexity
of building such a graph is O(md), but more efficient methods were proposed by
several other authors [4,6].

Another type of solution proposed by Indyk and Motwani [13] involves hash
functions, in order to create a hash value for each point. Each hash function
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reduces the dimensionality by projecting the original point into a lower dimen-
sional random space. The projected points are partitioned into bins considering
a uniform grid. To reduce even further the search space, a second hashing is
applied. The query point is matched only with those ones falling in the same
bin, where a classical linear search is applied to distinguish the closest match.

The KD-tree proposed by Friedman et al. [8] and Bentley [2] is based on parti-
tioning the search space by hyperplanes that are perpendicular to the coordinate
axes. The root of the tree is a hyperplane orthogonal to one of the dimensions,
splits the data into two separate half planes. Each half is recursively partitioned
into another two half planes, and so forth. The partitioning stops at log(m), so
at each leaf there will be only one data point. The query point is compared to
the root element, and all the subsequent ones, while traversing the tree to find
the best match. As the leaf points are not always the nearest points, a simple
backtracking is applied to analyze the closest ones. Instead of using backtracking
Hajebi applied best bin first, proposed first by Beis and Lowe [1].

Zhang and Srihari [22] propose for handwritten digits classification a hierar-
chical search using a non-metric measure applied to a binary feature space. In
the training phase, the set is organized in a multi-level tree, while for the test
phase, a hierarchical search is applied based on a subset of templates selected
on the upper levels.

A rather modern and new GPU based solution is proposed by Garcia and
Debreuve [10], where instead of reducing the size of the reference points, or
organizing the points in a tree structure, the authors concentrate more on the
distance calculation part, which can be formulated as a highly parallel process.
Each distance calculation can be done separately as each point is independent.

The proposed method is aligning with the methods proposed in [2,8,13].
Instead of using hash functions, or tree representations, a data sampling has
been proposed, by discarding those samples which based on some distance metric
do not contribute to build reliable cluster representations. For the best cluster
representation a so-called “jump method” has been invoked. For the selected
data points we also apply linear search to find the nearest neighbors.

3 Method

In this section we introduce the proposed method. First, we will briefly describe
the “jump method” [19], followed by the data selection criterion to reduce the
number of reference points.

The original method proposed by Sugar and James [19] provides a systematic
analysis to automatically discover the number of clusters for an unknown data
collection. They propose an efficient, non-parametric solution involving distor-
tion, a quantity that measures the average distance, per dimension, between each
sample of a cluster and its cluster center. The algorithm can be summarized as
follows:

(1) Apply k-means algorithm [14] to the unknown data, and after each iteration
calculate
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di = Sming, o e {= vE ien(@i — i) (@ — ck)}, where x; is the i
sample belonging to the k** cluster, ¢ is the k" cluster center, n is the
number of samples, while d is the dimension of the data.

(2) Pick a suitable transformation power Y > 0. If the clusters are assumed to
be generated by a Gaussian process, the theory suggests Y = %.

(3) Apply the first order forward difference operator to the transformed curve
d,;y in order to get the “jump” statistic Jx = df_(y — d}{l. For practical
reasons dy © = 0 should be defined.

(4) For the K for which the Jx is the largest will provide the optimal number
for the clusters. The number of clusters C' = argmaz g {Ji}.

Once the optimal number of clusters is estimated for the data points, the
data is clustered in exactly C clusters, as per suggested by the algorithm. Due
to the nature of the method, the C number of clusters assures a low intra-class
variability reported to each dimension. In other words, those clusters represent
the most the underlying data. This information is used to select from each clus-
ter a certain number of points. Two selection criteria were considered. For each
cluster, the distance between each sample z; and ¢, k € {1,--- ,C} were calcu-
lated considering Euclidean distance. The different distances were sorted first,
and different percentages considering the closest (min rule) and furthest samples
(maz rule) from the centroids were retained as reference points for the upcom-
ing k-nearest neighbor clustering. Instead of calculating the distances in a brute
force manner, we propose a selection, a subsampling. The min rule selects those
samples closer to the cluster center, therefore the cluster is represented by strong
representatives, while the maz rule selects those candidates which are lying on
the shell of the d dimensional hyper sphere defining the cluster. Those samples
are far from the center, and one might think they can not attract many samples
from the test set, as they themselves could be considered as possible outliers,
but according to Bishop [3], “for points which are uniformly distributed inside a
sphere of d dimension, where d is large, almost all of the points are concentrated
in a thin shell close to the surface”.

The amount of data added by the min/max rule is increased incrementally,
and accuracy performances are calculated. One could argue, that the selection
method should not consider similar percentage of points from each cluster. Large
clusters should get more importance over smaller clusters, but this one is assured
by the percentile based selection. This type of selection is also supported by the
fact that k-means clustering -by its nature-, tries to build uniform and equally
distributed (balanced) clusters, and therefore a heuristic based selection could
underestimate or overestimate the importance of one cluster or another. The
optimal reference set is selected based on the accuracy performance. Speed factor
which is linear in relation to the points selected in the reference set will decrease.

4 Experiments

This section is meant to first present the datasets used, followed by the achieved
results, and a comparison at accuracy level as well as speed with the classical
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k-nearest neighbor utilizing brute force - by comparing each query example with
all the reference samples [9].

4.1 Data Description

MNIST Digits. MNIST [16] is a well-known benchmark dataset! contain-
ing separated Latin digits assigned to 10 different classes. The images coming
mainly from census forms, are size normalized and centered to 28 x 28 gray level
images. The data set contains 60,000 and 10,000 images for training and test,
respectively.

Lampung Characters. The Lampung characters? used in our experiments
were extracted from a multi-writer handwritten collection produced by 82 high
school students from Bandar Lampung, Indonesia. The Lampung texts are cre-
ated as transcriptions of some fairy tales. One exemplary document snippet can
be seen in Fig. 1.

Some 23,447 characters were used as training set, while 7, 853 characters were
considered for test. Altogether 18 different character classes were identified. Each
character is represented by a centered and normalized 32 x 32 gray scale image.
More details about this publicly available data is to be found in [15,21].
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Fig. 1. A Lampung document snippet.

4.2 Results

First, the results achieved by the previously described “jump” method are shown
in Fig. 2. For features we considered the intensity values of the gray scale images.
This choice is motivated by the fact, that the best scores achieved on both data
sets were using intensity values [5,15,16,21]. Our goal is not to find the best
feature describing these digits and characters, but to show that using a common
feature such as the intensity value we can considerably speed-up the recognition
process by avoiding unnecessary distance calculations.

! http://yann.lecun.com/exdb/mnist/.
2 http://patrec.cs.tu-dortmund.de/files /Lampung-Dataset.zip.
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Fig. 2. The results of the “jump” method.

One might observe that the curve proposed by Sugar and James is not as
smooth as discussed in their previous paper [19]. This can be explained by the
fact that the authors analyzed their method only for low dimensional data,
while here the dimensionality is rather high, comprising 784 and 1024 dimen-
sions, respectively. However, in both cases a diminishing tendency is observed,
hence the possibility to select the optimal number of clusters for both collections.
In case of MNIST 76 clusters were found to be optimal, while for the Lampung
collection 186 is the cluster number which indicates an optimal setup. The opti-
mal cluster number assures that those centers are representative enough, and
the surrounding data points should not be split further in smaller clusters.

Once the optimal cluster number is detected using the “jump” method, the
selected cluster arrangement is considered, and for each cluster 5%, 10%, ....,
100% of the data is considered using the min and maz rule for the k-nearest
neighbor scenario (k = 1). While the min rule is responsible to select those
samples close to the centroids, the maz rule selects the samples lying furthest
from the cluster centers. The data points collected using these two methods
are than used to build two different reference data collections, used in a kNN
classification - performing linear search as in case of the classical k-nearest
neighbor. The results can be observed in Fig. 3.

A similar trend can be observed for both collections. The more data is con-
sidered, the more precise the results reported. However, it is really important
to note that, for a small amount of data (up to 40%), the results provided by
the min selection are much better, while for larger data selections comprising
more than 40% for each cluster, the trend changes completely, and those samples
selected by the mazx rule take over by producing far better scores than the other
collection selected by the min rule. The min selection rule provides those samples
closer to the cluster centers, while the maz rule goes for those sample close to
the cluster boundaries. One explanation for this rather interesting finding could
be the fact supported also by Bishop [3], stating that for large collections with
high dimensionality the samples are arranged on a thin shell close to the surface
bounding the cluster in question.
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To compare the performance versus the time necessary to perform the linear
search applicable for k-nearest neighbor, we analyzed the performance charts
depicted in Fig. 3. Selecting for both collections those settings when only 65%
of the data is used in the search - using the max rule, we can state that our
selection can reduce the time performance by 71% for MNIST, and 56% for Lam-
pung, while still performing in the same range. The exact results are reported
in Table 1. The results go up as high as 96.91% when 100% of the data is con-
sidered (classical case), while for the selection proposed by us, the scores are
in the same range, obtaining 96.12% accuracy, but reducing the search time by
71%. Similarly, for the Lampung collection, considering the classical k-nearest
neighbor classifier, the results for the complete set can go up to 83.94%, while
selecting only 65% of the data (using the max rule), there is only a 0.86% drop
in performance, but there is a gain in speed of 56%.
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Fig. 3. The performance improvements using different data selection criteria and dif-
ferent amount of data.

In order to compare the efficiency of our selection method, we conducted a
Monte Carlo simulation by randomly selecting 65% of the data, and observed
for those randomly selected data how the performance measures look like. The
average scores achieved by repeating the experiments 100 times can be seen also
in Table 1. The lower scores indicates that our selection method is better, and
therefore our method is empirically validated.

Table 1. Comparing performance and speed using the complete data collections and
using the selection strategy.

Data Accuracy (100%)

Accuracy (65%) random

Accuracy (65%) max rule

MNIST | 96.91

94.03

96.12

83.94

Lampung

80.24

83.08
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5 Conclusion

In this paper, we proposed a straightforward way to reduce the linear search
applied to k-nearest neighbor by reducing the number of reference points con-
sidering using different benchmark handwritten character collections as test bed.
The method can be considered a data reduction strategy based on optimization.
The data points are first clustered in an optimal number of clusters using the
so-called “jump” method, which is based on the optimization of inter-class vari-
ability. Once the samples are clustered using the optimal number of clusters, we
select the closest and the furthest samples alike, and using a certain percentage
of the data, we build several subsets of the original data, and run the k-nearest
neighbor classifier. Analyzing the performances for the different amounts of data,
we can clearly detect an optimum point in the size of the data for which the scores
are similar as the whole data would be considered, but due to the reduction the
search time is also reduced up to 71%.

Along the speed gain achieved by the data reduction, an interesting fact was
observed when altering the min and max rules. For a smaller amount of data
the min rule selects better candidates. However, when the selected data becomes
larger the samples residing on the boundaries outperform those close to the
center. This supports the idea that for larger data sets with high dimensional
representatives, it is very likely that the data is organized in the outer shell of
the sphere incorporating the data.
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