
Denoising of MRI Images Using Curvelet
Transform

Ranjit Biswas, Debraj Purkayastha and Sudipta Roy

Abstract Most of the medical images are usually affected by different types of
noises during acquisition, storage, and transmission. These images need to be free
from noise for better diagnosis, decision, and results. Thus, denoising technique
plays an important role in medical image analysis. This paper presents a method of
noise removal for brain magnetic resonance imaging (MRI) image using curvelet
transform thresholding technique combined with the Wiener filter and compares the
result with the curvelet and wavelet-based denoising techniques. To assess the
quality of denoised image, the values of peak signal-to-noise ratio (PSNR), mean
square error (MSE), and structural similarity index measure (SSIM) are considered.
The experimental results show that curvelet denoising method depicts better result
than wavelet denoising method, but the combined method of curvelet with Wiener
filtering technique is more effective than the wavelet- and curvelet-based denoising
method in terms of PSNR, MSE, and SSIM.
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1 Introduction

Medical images are having an important role for diagnosis of diseases. These
images are obtained from various methods such as MRI, CT, and X-ray imaging.
Nowadays, these images are captured using digitized systems. During the
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acquisition process, the images may be corrupted by different types of noise and it
is very important to remove the noise to get better interpretation. Removal of noise
from digital images is a big challenge for the researchers. Huang et al. [1] proposed
a type of median filtering technique which is much faster and was implemented in
2D. Later, Ney [2] implemented a technique of dynamic programming for imple-
menting nonlinear smoothing filters, which gives a good result in removing noise
but keeps much more information around the curves by penalizing when there is
large difference in two consecutive samples and rewarding when these are close.
Saluja et al. [3] proposed an adaptive Wiener filter based on wavelet transform to
calculate coefficients of weighted high-pass filtering. Boulfelfel et al. [4] investi-
gated the usage of Wiener filter and PSE filter in CT images and developed a 3D
filter that performs better than 2D filters.

The transform domain filtering contains wavelet transform, ridgelet transform,
and curvelet transform. Lang et al. [5] used wavelet analysis of undecimated
wavelet transform on unidimensional signals to remove noise which was one of the
earlier implementations of wavelet in noise removal. To remove noise and to
compress image, Chang et al. [6] used adaptive wavelet soft threshold using
data-driven method called as Bayes Shrink method for threshold estimation.
Mojsilovic et al. [7] classified the stages of liver disease using wavelet transform.
One of the important thresholding techniques—Visu Shrink developed by Donoho
et al. [8, 9] using wavelet shrinkage. Another technique called SURE (Stein’s
Unbiased Risk Estimator) shrink also developed by Donoho et al. [10], which is
based on SURE estimator developed by Steinin [11]. Stein name it as Unbiased
Risk Estimator. SURE estimator estimates mean of random normal variable which
is independent. Zhang [12] proposed and implemented diffusion in image domain
and also in wavelet domain.

Candes and Donoho [13] showed ridgelet transform of images. Based on rid-
gelets, curvelet transform came into existence. The disadvantage of wavelet
denoising is that it does not perform well while denoising in the curves in an image
and results in loss of details. Starck and Candes in [14] proposed a curvelet
transform based on Candes’s ridgelet technique. This technique can efficiently
represent a curve because it has ability to select and identify curves along with time
and frequency relations. This technique also uses wavelet shrinkage for thresh-
olding. Ulfarsson et al. [15] removed speckle noise efficiently from SAR images
using curvelet domain transform. Liu et al. [16] studied and analysed the curvelet
based on ridgelet. Ali et al. [17] developed a method to fuse CT image and MR
image, and the fusion is done in curvelet domain.

2 Denoising Techniques

There are two fundamental approaches to image denoising, viz. spatial domain
filtering and transform domain filtering methods.
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2.1 Wavelet Transform

Wavelet is very useful for nonlinear representation of signals. Wavelet basically
decomposes the image into its time and frequency relation components. Thus, the
image is transformed into frequencies rather than pixel. In the wavelet domain, the
noisy image is decomposed into four subsamples according to their low (L) and
high (H) frequency bands called LL, LH, HL, and HH. The LL subsample is again
decomposed into four subsamples at level two [3] and so on as per the requirement
of the computation.

2.2 Curvelet Transform

Stark and Candes [14] solved the problem of wavelet transform by proposing
curvelet transform based on ridgelet transform. Ridgelet implementation was done
by converting it into radon transform. In the ridgelet transform, support interval or
the scaling is done by anisotropy scaling relationship, denoted by Eq. (1).

width = length2 ð1Þ

This was done in the first generation of curvelet transform using multiscaling
ridgelet where the curve is divided into blocks and the subblocks are approximated
into a straight line and ridgelet analysis is done upon it. The basic curvelet
decomposition steps are given as follows.

The subband decomposition is done by Eq. (2).

f 7! ðP0f ;D1f ;D2f ; . . .Þ ð2Þ

where P0 are subband filters, and Ds; s� 0, and subbands Dsf contain details about
2�2s wide. The smooth windows are wQðx1; x2Þ which are localized in diadic
squares and which is defined by Eq. (3).

Q ¼ k1=2s; ðk1 þ 1Þ=2s½ � � ½k2=2s; ðk2 þ 1Þ=2s� ð3Þ

Then, the resulting square is renormalized to unit scale, which is represented by
Eq. (4).

gQ ¼ T�1
Q wQDSfð Þ; Q 2 QS ð4Þ

where TQfð Þ x1; x2ð Þ ¼ 2sf ð2sx1 � k1; 2sx2 � k2Þ is a renormalization operator.
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After the renormalization, the ridgelet transform is done by Eq. (5).

al ¼ gQ; pk
� � ð5Þ

3 Thresholding Technique

Thresholding in transform domain is achieved by hard thresholding and soft
thresholding to remove unwanted noise signals. Hard thresholding removes all the
value after a certain limit, and soft thresholding lowers the intensity of noise
towards zero values, which is defined by Eqs. (6) and (7).

yðtÞHard ¼
x tð Þ x tð Þj j � T
0 x tð Þj j\T

�
ð6Þ

yðtÞSoft ¼
sign x tð Þð Þ � x tð Þj j � Tð Þ x tð Þj j � T
0 xðtÞj j\T

�
ð7Þ

where T is threshold value, and x and y are input and output coefficients in the
respective transform domain.

The threshold value in wavelet domain is calculated by Donoho et al. [10], using
Visu Shrink method. Visu Shrink is based on universal thresholding as explained in
the following Eq. (8).

Tw ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðNÞ

p
ð8Þ

where T is the threshold value, N is the size of image, and @ is the noise variance.
The threshold value in curvelet transform is calculated by value of 3*sigma and

4*sigma [18] used for the coarse-scale and fine-scale elements (9).

Tc ¼ 3 � sigmaþ sigma � ðs ¼¼ lengthðCÞÞ ð9Þ

where C is the size of decomposed images, and s = 2 to length of C.

4 Proposed Technique

A new technique is proposed here using curvelet transform thresholding technique
combined with the Wiener filter. The curvelet transform helps to overcome the
problem of wavelet transform, and noise is removed using it first, and then, the
Wiener filter is used to remove the residual noise.
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5 Parameter Estimations

To evaluate the performance of the techniques, we have considered the values of
peak signal-to-noise ratio (PSNR), mean square error (MSE), and structural simi-
larity index measure (SSIM), which are defined by Eqs. (10), (11), and (12).

PSNR ¼ 10 � log10
MAX2

I

MSE

� �
ð10Þ

MSE ¼ 1
mn

Xm�1

i¼0

Xn�1

j¼0

½f ði; jÞ � gði; jÞ�2 ð11Þ

where mn is size of image, MAXI is maximum probable pixel value of the image, f
(i, j) is the noisy image, and g(i, j) is denoised image.

SSIM x; yð Þ ¼ ð2lxly þC1Þð2rxy þC2Þ
ðl2x þ l2y þC1Þðr2x þ r2y þC2Þ ð12Þ

where lx; ly are local means, rx; ry are standard deviations, and rxy is
cross-covariance for images x, y.

6 Experimentation

In this work, the proposed technique along with other existing techniques is
experimented on MRI images of brain. The experiments are performed using
MATLAB on MRI images of size 256 � 256 following the wrapping technique on
curvelet software package. White Gaussian noise is added in MRI images with
different sigma, i.e., r = 10, 20, 30, 40, 50, 60, 70. Then, the various types of
denoising techniques were implemented, viz. Wiener filter, wavelet thresholding,
curvelet thresholding, and curvelet thresholding, with Wiener filter.

7 Results and Discussion

After applying different denoising methods to noisy MRI brain image, results were
compared visually and using quality metrics values of PSNR, MSE, and SSIM. The
experimental results show that the proposed combined method of curvelet with
Wiener filter-based image denoising is performed more effectively compared to
other methods. Tables 1, 2 and 3 show the PSNR, MSE, and SSIM values obtained
by each method for MRI brain image with different sigma, i.e., r = 10, 20, 30, 40,
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Table 1 Comparison of PSNR values for brain MRI image

Sigma r Wiener Wavelet hard Wavelet soft Curvelet hard Curvelet soft Combined

10 31.452 29.198 28.154 30.351 28.153 42.179

20 26.611 23.952 23.529 24.336 23.011 43.364

30 23.708 20.875 20.686 20.932 20.050 44.630

40 23.708 18.743 18.660 18.608 17.978 45.943

50 19.849 17.064 17.037 16.829 16.400 47.543

60 18.456 15.729 15.718 15.462 15.133 48.500

70 17.297 14.590 14.583 14.318 14.057 50.421

Table 2 Comparison of MSE values for brain MRI image

Sigma r Wiener Wavelet hard Wavelet soft Curvelet hard Curvelet
soft

Combined

10 46.550 78.219 99.460 59.973 99.496 3.937

20 141.890 261.756 288.531 239.570 325.069 2.997

30 276.860 531.575 555.183 524.607 642.812 2.239

40 276.860 868.621 885.359 895.977 1035.770 1.655

50 673.310 1278.371 1286.375 1349.516 1489.665 1.145

60 927.760 1738.323 1742.991 1848.875 1994.280 0.918

70 1211.600 2260.087 2263.393 2405.855 2554.956 0.590

Table 3 Comparison of SSIM values for brain MRI image

Sigma r Wiener Wavelet hard Wavelet soft Curvelet hard Curvelet soft Combined

10 0.729 0.672 0.657 0.688 0.634 0.988

20 0.556 0.409 0.400 0.401 0.345 0.989

30 0.503 0.281 0.276 0.253 0.204 0.990

40 0.503 0.216 0.213 0.170 0.131 0.991

50 0.471 0.177 0.176 0.119 0.088 0.994

60 0.471 0.149 0.148 0.087 0.062 0.995

70 0.470 0.131 0.131 0.064 0.045 0.996

Fig. 1 PSNR values of MRI brain image
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Fig. 2 MSE values of MRI brain image

Fig. 3 SSIM values of MRI brain image

Fig. 4 Experimental results of MRI brain image denoising (where r = 40)
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50, 60, 70. The noise level of the image gradually comes down for the high PSNR
value and the low MSE value. We have analysed that the combined method of
curvelet with Weiner filter gives the higher PSNR and SSIM value and lower MSE
value compared to other techniques. These are represented graphically in Figs. 1, 2,
and 3, whereas in Fig. 4, the noisy image and resulting images of different methods
corrupted by Gaussian noise with r = 40 are shown. The visual quality of the
image also becomes better in this combined curvelet with Wiener filter technique.

8 Conclusion

In this paper,we have studiedwavelet, curvelet, and proposedfilteringmethod and their
effect in terms of the considered assessment parameters. The experimental results show
that curvelet based approach performs better than the wavelet-based method. It also
clearly indicates that curvelet with Wiener filter method outperforms compared to the
other denoising methods, i.e., Wiener, wavelet, and curvelet. Also, the combined
method does a very good job even when the noise is high as revealed from the exper-
imental results. The curvelet denoising method removes the noise mostly lying in low
frequency subbands, but some of the white Gaussian noise is spread in high frequency
subbands also. So Weiner filter combined with curvelet transform is used here to
remove that residual noise to some extent and the results were satisfactory.
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