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Abstract Fractional-order controllers (FOC) can be more adequate to control
systems with complex dynamics than integer-order controllers; however, how to
obtain FOC is still being explored vigorously. This paper deals with a tuning
approach for FOC with primary requirements of simplicity in technique and
robustness. A simple analytical method to tune fractional-order proportional-
integral (FOPI) controller for known system transfer functions is proposed. Study
shows the simplicity and efficiency of the presented design method over some
previously published approaches.
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1 Introduction

There are many techniques for PID tuning, classical rules, optimization programs,
model-based tuning, and many other tested in industry so far [1]. Even though the
PID is simple, many challenge to tune the controller parameters practically.
Recently, real-order PID controller design shows considerable interest in academic
research and industry [2–8]. This is mainly due to the fact that real-order transfer for
controller can better represent the various systems of engineering and sciences [1].
In general, real-order transfer function considered for PID is called the
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fractional-order PID (FOPID) controller. Moreover, it is evident from significant
research that FOC have additional merits of handling complex system dynamics
compared to conventional PID. After inducing the concept of FOPID controller in
[1], a stabilization problem of fractional systems using FOPID controllers was also
studied by Hamamci [9]. Especially, due to the computational tool such as
FOMCON toolbox [10] available, design verification of real-order transfer function
is possible in Simulink study. Literature study shows that number of design
approaches have been reported to suggest good FOPID parameter values. Some
methods were applied successfully in many practical non-integer examples such as
control of hard disk drive servo systems, control of power electronic converters,
velocity control of a servo system, control of composite hydraulic cylinders, and
control of head flow. All previous techniques experience certain limitations, such as
to solve simultaneously two or more nonlinear algebraic relations to calculate the
unknown parameters of FOPID. However, in this way, there is a possibility to place
the non-optimum solution if pitiable guess of initial values is used.

In this work, an effort is made to develop explicit tuning method for FOPI
controller considering the real-order dead time systems. In this way, the proposed
method can be applied to integer and fractional systems also. The objective is to
derive simple and fast tuning formula that industry can adopt easily for various PID
tune-controlled systems. The main objective is to design parameters of FOPI such
that it optimizes load disturbance rejection. The exact formula is derived with
required constraint imposed on the Nyquist curve. The loop transfer function of
closed-loop must, therefore, satisfy robustness index.

2 A Real-Order (Fractional) Transfer Function

A general transfer function of any real order can be written in the s-domain as
follows,

GðsÞ ¼ bmsbm þ bm�1sbm�1 þ � � � þ b0sb0

ansan þ an�1san�1 þ � � � þ a0sa0
e�hs ð1Þ

where ai 2 N for i ¼ 0; . . .; n, bj 2 N for j ¼ 0; . . .;m, ak 2 Rþ for k ¼ 0; . . .; n,
bl 2 Rþ for l ¼ 0; . . .;m and h represents the constant time delay. Due to the real
number order, the transfer function is also called “fractional-order.” It includes, in
particular, traditional integer-order time delay systems.
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3 FOPI Controller

It is well-known that PI controller is most simple and widely tested relatively in
industry [1, 11]. There are many refined control techniques such as model pre-
dictive control and Smith predictor and are developed on PI. In this paper, the FOPI
is considered as fractional-order controller and can be represented as C(s) to show
the proposed controller synthesis effectively.

C ¼ Kp þ Ki

sk

� �
ð2Þ

where Kp, Ki and k are the positive real tuning parameters. The real number k
represents the fractional-order.

3.1 Design and Tuning

Any control design wants to realize decent load disturbance rejection and also to
robust from parameter variations. We desire to have tuning rules of controller be
simple and still result in good closed-loop behavior. Based on robustness specifi-
cations, such as gain margin, phase margin, and maximum sensitivity, many
classical PI/PID tuning methods were developed and also quite well adopted in the
practice [1]. Generally it is possible to change the system characteristics of
G jxð Þs¼jx in (1) such that the overall closed-loop system performs fine. How can
we say the system’s performance is up to the satisfaction? When the effect of load
disturbances will be less and it must be stable always whenever moderate changes
in system parameters. In general, it is desired to choose C(s) tuning parameters so
the system under controlled is not disturbed with variations in system dynamics.
A study tells that this requirement can be obtained via sensitivity specification.
A sensitivity problem for same purpose was discussed in [11]. According to defined
specification for sensitivity, the system remains stable to variations in system
dynamics if the robustness is specified by:

1
Mr

¼ max
0�x\1

Re GLð Þj j ð3Þ

where, GLðsÞ ¼ GðsÞCðsÞ. Figure 1 shows the geometrical illustration of the above
specification. A range of Mr gives the constraint of the distance between the
imaginary axis and the Nyquist curve of GL(jx), and it is measured from the
left-half of the complex plane. Moreover, a specification in (3) turns out to be
sufficient condition for designing a controller.
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By analyzing the loop transfer function in complex frequency domain and sub-
stituting s ¼ jx and jk ¼ ej

kp
2 ¼ cos kp2 þ j sin kp

2

� �
;GLðjxÞ ¼ GðjxÞCðjxÞ, equation

becomes

GLðjxÞ ¼ Kp þKix
�k cos

kp
2

� jKix
�k sin

kp
2

� �
AðxÞþ jBðxÞð Þ ð4Þ

where, AðxÞ ¼ Re½GðjxÞ� and BðxÞ ¼ Im½G jxð Þ�.
Let’s define,

f ðKp;Ki; k;xÞ ¼ Re½GLðjxÞ� ¼ AðxÞ Kp þKix
�k cos

kp
2

� �
þBðxÞKix

�k sin
kp
2

ð5Þ

In this design, the criteria is imposed to have a line parallel to the imaginary axis
along with the Nyquist curve of GLðjxÞ (see Fig. 1) and a distance between them
must be constant say, 1=Mr and also halts on the left-half of the s-plane. To
accomplish this constraint, following two expressions are obtained,

f ðKp;Ki; k;xÞ ¼ � 1
Mr

ð6Þ

@f
@x

ðKp;Ki; k;xÞ ¼ 0 ð7Þ
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Fig. 1 Geometrical
illustration of Eq. (3)

462 U. Mehta et al.



By substituting (5) into above equations, respectively, we get

AðxÞ Kp þKix�k cos kp2
� �þBðxÞKix�k sin kp

2 ¼ � 1
Mr

ð8Þ

A0ðxÞKp þA0ðxÞKix�k cos kp2 þ � � �
� � �AðxÞKið�kx�k�1Þ cos kp2 þBðxÞKið�kx�k�1Þ sin kp

2 þ � � �
� � �B0ðxÞKix�k sin kp

2 ¼ 0
ð9Þ

Here, @A=@x and @B=@x are denoted by A0ðxÞ and B0ðxÞ in the rest of the
paper. Now, for given x and k, both Kp and Ki can be estimated from two
expressions (8) and (9). Hence, the complete region of the parameters can also be
generated for 0\x\1 and 0\k\2. Obviously, any arbitrary set (Kp, Ki, k) will
satisfy the condition in (6) and also follows the relation

@f
@k

ðKp;Ki; k;xÞ ¼ 0: ð10Þ

By stating that each set is not unique to a given value ofMr. The task is remained
to find the optimal set (Kp, Ki, k) while it satisfies the Mr constraint. In addition, the
value ofMr can be set up as suitable trade-offs between performance and robustness
in any given dynamic models.

In order to estimate the optimal set of (Kp, Ki, k) and given Mr, we need to know
the optimal point of frequency x. For this, the well-known integrated error criterion
can be used, defined by

IE ¼
Z1
0

eðtÞdt ð11Þ

Here, the unit step input gives the error e(t). In [1], it shows that the value of IE is
directly related to the controller parameters, i.e., IE = 1/Ki. Thus, the controller
parameters can be calculated bymaximizingKi (to reduce the error quickly) subject to
requirements (6) and (7). So, the expressions (8) and (9) define subtlyKi as a function
ofKp and k. One can write the derivative function to findmaximum of this function as

df ¼ @f
@Kp

dKp þ @f
@Ki

dKi þ @f
@k

dkþ @f
@x

dx ð12Þ

It is obvious that Ki is maximum to have the condition satisfies dKi = 0. Same
way for Kp, one can formulate the relationship as

@f
@Kp

ðKp;Ki; k;xÞ ¼ 0: ð13Þ
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Use of (7) in (13), results

AðxÞ ¼ 0: ð14Þ

It means that f is a maximum at particular frequency when the real part of system
transfer function is zero. We define this frequency point as the local extremum
point, x ¼ x90. Substituting (14) into (8)–(10), we obtain the following three
expressions,

Kp¼ 1
MrA0ðx90Þ

B0ðx90Þ
Bðx90Þ �

k
x90

þ A0ðx90Þ
Bðx90Þ

cos kp2
sin kp

2

" #
ð15Þ

Ki¼ � xk
90

MrBðx90Þ sin kp
2

ð16Þ

x90¼ 2k
p
tan

kp
2

ð17Þ

Two expressions (15) and (16) are explicit formulas. Additionally, it is desirable
to relate third controller parameter k in terms of measured system frequency x90.
The aim is to derive an explicit formula to tuning rule. By analyzing the Eq. (17)
for various values of k, k 2 ð0; 2Þ, following interpolating equation fits the data well

k ¼ xe�x90 þ y; where ðx; yÞ ¼ ð�0:18; 1:10Þ if x90\1

¼ ð�0:28; 0:98Þ if x90 � 1
ð18Þ
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Fig. 2 Measured x90 of
GðjxÞ from Nyquist plot
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The above expression calculates tuning parameter k. Practically, x90 is
obtained from the Nyquist plot of the frequency response of G(jx), i.e.,
GðjxÞjx¼x90

¼ �jBðx90Þ, as shown in Fig. 2.

3.2 Choice of Mr

The choice of Mr provides us desirable property of closed-loop system to be
insensitive with parameter variations. The controller parameters will vary
depending on the changes of Mr, but the system will always remain stable. To
understand this point further, let us take the fractional-order system with transfer
function,

G1ðsÞ ¼ e�s

s0:5 þ 1
: ð19Þ

For this transfer function, x90 is calculated as 1.1624 from the frequency
response of G1ðjxÞ. Tuning rule is evaluated for robustness range, 1.4 < Mr < 3.2
for G1, and responses are shown in Figs. 3 and 4. It was observed that responses
obtained with Mr � 2.0 proved little or no overshoot, whereas output with
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Mr ¼ 1:5 observed oscillatory with a larger overshoot but faster. This indicates that
Mr value can be useful to tune parameter values. Note that Mr value is also to be
decided based on the stability margin. A large value of Mr indicates that the
stability margin of the control system is high. Obviously, it is desirable in system
control at the time to design any controller values.

4 Example

A higher order FO system proposed by Bettayeba and Mansouric [7] and
Das et al.’s [8] has the transfer function

G2ðsÞ ¼ 4:47
s2:47 þ 5:23s1:02 þ 4:47

e�0:12s ð20Þ

The fractional-order controller obtained by Bettayeba and Mansouric [7] was

CðsÞ ¼ s0:02

1þ 8:22s0:11
9:62 1þ 1

1:17s1:02
þ 0:19s1:45

� �
ð21Þ

For the same transfer function model, Das et al.’s [8] method gave the FOPID
controller as

CðsÞ ¼ 0:84þ 1:23
s1:002

þ 0:27s0:93
� �

ð22Þ

Letting tuning parameter Mr ¼ 2:5, the FOPI controller designed by the pro-
posed method is

CðsÞ ¼ 0:4311þ 0:9923
s0:9298

� �
ð23Þ
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Fig. 5 Outputs for G2 by 1
proposed method, 2 by
Battayeba’s method [7], and 3
by Das’s method [8]
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for the system frequency x90 ¼ 1:7191. For comparison with other methods,
responses to a unity setpoint change and disturbance of +0.2 at t = 20 s are given in
Figs. 5 and 6, respectively. It is observed that G2 controlled by the proposed
controller could obtain smaller control effort with small overshoot and settling time.
The total variation in control input was measured as 2.12 for [8] and 2.21 for [7];
while that for the proposed method was measured only 1.87. The merit of the
proposed method is visible since it gives the desired properties with less control
input effort. Moreover, the percentage overshoot was measured 2.82 and 5.89 for
[7] and [8], respectively.

5 Conclusion

This paper presents a general FOPI design method for any order transfer function
with various dynamics, including with and without time delays, low and high real
orders. The method uses the integrated error criterion with a desired robustness
specification and solves for the FOPI controller parameters in the frequency
domain. Explicit tuning rules succeed for various real-order systems with a single
robustness parameter to be selected by the user. This investigation helps to explore
online automatic tuning procedure for fractional controller which is very attractive
in a practical point of view.
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