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Abstract Electroencephalogram (EEG) is the most convenient method for
recording the electrical activities of the brain, for Brain Computer Interface
(BCI) applications. This EEG data is notoriously noisy. A variety of frequency
estimation techniques are used in feature extraction. This is possible due to the
presence of information of interest in frequency bands which are well defined. The
application of EMD (Empirical Mode Decomposition) on the recorded EEG waves
of subjects’, renders time-frequency data depicting instantaneous frequencies. EMD
is chosen to obtain Hilbert–Huang Transform (HHT) of the data which is chosen
over Fourier Transform (FT) owing to the nonstationarity, closely spaced frequency
bands of interest and low SNR of the recorded data. HHT of the data can be used to
obtain a feature or signature, which can be used as a command signal for various
BCI applications.
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1 Introduction

The cornerstone of BCI is the exclusive use of brain activity in computer-aided
control. Neuroprosthetics and bioengineering are the major fields of BCI applica-
tions. EEG for brain activity recording is used widely due to its noninvasive nature,
affordability and operation in real-time [1]. Motor imagery BCI being the imagi-
nation of motor action without actual physical movement, has clear practical sig-
nificance [2]. This requires extended training periods, is challenging to analyse and
has limited BCI channel capacity.

EEG research carried over more than seven decades has resulted in the intro-
duction of an abundant class of quantitative feature extraction from EEG signals.
Similar to any other signal, an elaborate mathematical model of the EEG signal is
very promising [3]. Physiological findings and mathematical models correlating the
EEG to electrical activities of a single nerve cell remain challenging and no
mathematical model of EEG has yet achieved the aforementioned goal of modelling
the wide varieties and dynamics of EEG. Autoregressive modelling of tiny EEG
segments is successful to a certain extent [4]. The nonstationarity of EEG waves
leads to the fact that mathematical models using static stationary equations are not
suitable. Hence dynamic mathematical models have to be developed leading to
increased complexity in the models.

1.1 Nonstationarity in EEG Waves

Transient events manifest themselves as the nonstationarity phenomenon of the
EEG waves, such as alteration of homogeneous segments with dissimilar statistical
features, spikes, sharp waves and spike-wave discharges. Visual inspection is
sufficient for the identification of the transient behaviour owing to its specific
patterns, but the identification of relatively homogeneous intervals requires theo-
retical basis [5].

The EEG data is converted to digital form to carry out the computer-aided
analysis. The most of the prominent EEG components are present in the frequency
range of 1 Hz to 30 Hz, hence the digitising rate is the range of 60 Hz–150 Hz [5].
Intervals which are less than 0.5–1 s need not be checked for stationarity if about,
50–100 samples are required for statistical characterization.

1.2 EEG Waves Features

The high frequency waves in the EEG data have been digitally removed by passing
them through a Backman filter, low-pass filter with −67 dB at a 32 Hz cut-off.
Later this filtered data is sampled at the rate of 64 Hz for feature extraction.
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Time, frequency and statistical tools are the approaches considered for extracting
EEG waves features. From the sampled data 24 EEG signals are extracted, each
with a window of 4 s. With this data the features listed in Table 1, can be extracted.

Fourier transform has been applied with a Hanning window on the EEG data to
calculate the rest of the features. The following features comprising of the EEG
waves spectral amplitudes are obtained. Using the same Fourier analysis, the rel-
ative spectral amplitudes of EEG, the mean frequencies, sum of squared amplitudes
are thus obtained.

1.3 EEG Waves Feature Selection

Three standards are used to resolve the EEG features corresponding to behavioural
alertness level. First, the EEG features having higher average rank across eight

Table 1 Features of EEG waves

Parameter for extraction Features Symbols/Band

Time domain extraction Statistical mean X

Sum of absolute amplitudes |X|

Sum of squared amplitudes X2

Standard deviation Xcr

3rd moment of mean amplitude m3

4th moment about the mean
amplitude

m4

Skewness coefficient g1
Kurtosis coefficient g2

Frequency domain spectral amplitude |A| 0–32 Hz

|b| 13–32 Hz

|a| 8–13 Hz

|h| 4–8 Hz

|d| 0–4 Hz

Frequency domain relative spectral
amplitude

Alpha band a%

Alpha band a%

Beta band b %

Theta band h %

Delta band d%

Mean of frequency bands Entire EEG spectrum FM
Alpha band Fa
Beta band Fb
Theta band Fh
Delta band Fd

Statistical analysis of frequency
spectrum

Squared amplitudes A2

Standard deviation FSD

Signal Processing of Motor Imagery EEG Waves … 199



procedures of data processing are mainly selected. The level of alertness is pri-
marily manifested as the features with higher average rank numbers. Second, the
EEG features with higher individual inconsistency are not selected as they have
constrained use to the estimation of the level of alertness among subjects. The
individual inconsistency is estimated using a measure called as Reliability Index
(RI), which is given in Eq. 1.

RI ¼ N� Pj j= Nþ Pð Þ ð1Þ

where N/P is the corresponding addition of the ranks of negative/positive correla-
tion coefficients across eight processing procedures or across different subjects. RI
has a value in the range of 0–1. Features having higher RI values have lesser
individual inconsistency with respect to the level of alertness. In the last standard,
the interrelationships of EEG features are analysed to determine the redundancy of
the EEG features in estimation of alertness. The addition of the ranks of
negative/positive calculated in the previous standard is used here. Larger inter-
correlation is obtained for higher values of overall sum of ranks. Finally, the EEG
features having low individual inconsistency, lesser inter-correlation, larger corre-
lation with alertness level are selected as consistent and effective factors for esti-
mation of alertness level [5].

2 Experimentation

The proposed work is to find out the differences between the brain signals of
different individuals, and to understand what makes them unique. The experimental
setup for recording of EEG waves is as shown in Fig. 1. This uniqueness can be
used as a password to a website/security system making it more robust [6].

So far, through the literature survey, the various methods currently existing for
sensing EEG signals have been understood. In particular, techniques to record
signals which are produced for a particular action. A protocol to capture brain
signals has been developed, which:

Fig. 1 Recording EEG waves of the subjects using enobio kit
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1. Motor Imagery: The thought for the muscular movement is aided by a visual
stimulus.

2. SSVEP: A protocol which uses images, which are flashed at the rate of 1 Hz,
and provides visual stimulus to the subject.

The signals were captured using a device called Enobio. Enobio is a wireless
technology which comes in three versions, 8, 16 and 32 channel electrode systems,
used for collecting EEG signals. For the data collection, eightchannel electrode
system was used. The complete device specification of the device is depicted in
Table 2. The placement of electrodes on the subject is as shown in Fig. 2. In the
Fig. 2, Green Dots indicate the placed EEG electrodes. Then, these signals were
processed to retrieve information and points of interest. After filtering the signals,
features must be extracted from them, and finally classified.

The placement of the electrodes mainly depends on the type of signal being
analysed. The occipital lobe is responsible for the decoding of visual stimuli. Steady
State Visual Evoked Potential (SSVEP) are usually recorded from occipital scalp
for this reason. The channels which were used to collect VEP are Fp1, Fp2, O1, O2,
Oz, T3 and T4 taking P3 as reference electrode. For Motor Imagery protocol, T3
and T4 are replaced by C3 and C4. The experimentation details are as shown in
Table 3.

Table 2 Specifications of the
enobio device

Parameter Value

Total number of channels 8

Number of EEG records 18277

Number of packets lost 0

EEG sampling rate 500 samples/s

EEG units nV

Fig. 2 Placement of the
electrodes
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2.1 Time Domain EEG Waves of the Subjects

The EEG waves are recorded in time domain as shown in Fig. 3. The time domain
EEG waves are stored in easy files. These files are processed using EEGLAB
toolbox in MATLAB [7].

2.2 Power Spectral Density

The time domain signals are first filtered to remove various noises such as power
line 50 Hz noise. Later EEGLAB provides tools to eliminate the mechanical dis-
turbances from the eye movement and the blink rate. This processed time domain
signal is then converted to its PSD format as depicted in Fig. 4.

Table 3 Experimentation
details

Parameter Value

Number of subjects 8

Age 20–30

Number of trails on each subject 50

Duration of the protocol 30 s

Fig. 3 Time domain representation of the EEG waves of a subject

202 A. Sreekumar et al.



3 EEG Signal Processing

EEG Signal processing techniques comprise of time domain analysis, for digital
filtering and independent component analysis [8], frequency domain analysis, for
analyzing the spectrum, and time-frequency domain analysis.

3.1 Fourier Analysis for EEG Waves

EEG data is nonstationary, nonlinear and aperiodic by nature and Fourier Analysis
(FA) works best with stationary, linear and periodic signals. The local nonlinearity
of the data results in considerable spreading with the application of Fourier analysis,
as the basis functions of Fourier analysis are global. The dispersion is even higher
for data which significantly digress from the sinusoidal form. Thus the use of
Fourier analysis is not preferable for EEG.

3.2 Time-Frequency Domain Analysis for EEG Signals

The progression of a signal in frequency as well as time domain is described by the
time–frequency domain analysis. There are linear and nonlinear methods to carry
out this analysis. The linear methods being Short-time Fourier transform (STFT)
and Wavelet transform. The lone nonlinear method available is the Hilbert–Huang
Transform (HHT).

The nonlinear nature of EEG waves makes HHT, the logical choice.

Fig. 4 PSD of the EEG
waves of a subject
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3.3 Hilbert Huang Transform

The instantaneous frequency data is obtained by the decomposition of the signals into
Intrinsic Mode Functions (IMF) along with a general tendency of the signal and the
HHT is way to do this. HHT is very suitable for data which is nonlinear and non-
stationary [9]. Unlike Fourier Transform (FT), HHT is not a theoretical tool, but it is
like an empirical or algorithmic approach that is very data-driven. Hilbert spectral
analysis after the EMD (Empirical Mode Decomposition) are the two parts of HHT.

EMD is very efficient due to its adaptive nature. EMD is applicable to nonlinear
and nonstationary processes as the method is based on local behaviour of data in the
form of time series. Intrinsic Mode Functions (IMF) are the result of EMD which
help in representing the data in time–frequency domain.

3.4 Empirical Mode Decomposition

The Hilbert spectral analysis is applied to IMF which is obtained by applying EMD
to the data set.

IMF is more general as it not a simple harmonic function as in FT, but is a
simple oscillatory mode. In FT the simple harmonic components have fixed fre-
quency and amplitude, whereas in HHT the IMF has adaptive amplitude frequency
which is dependent on local characteristics of the data [10].

Sifting is the process used to obtain the IMF. The process is carried as follows:

1. The cubic spline line connecting all the localmaxima forms the upper envelope [7].
2. Lower envelope is formed by applying step 1 to the local minima [7].

All the data is sandwiched between the upper and lower envelopes. Their
average is a1. The first component c1 is obtained by subtracting a1 from the data:

Ideally, c1 must obey the constraints imposed on IMF. This is taken care by the
method used to construct c1 in the preceding step making it symmetric about 0 with
maxima > 0 and minima < 0. After the initial round of sifting, a trough may
become a local minimum.

The extrema obtained in the new rounds help in revealing the correct modes,
which vanished in the prior rounds of examination. In the next rounds of sifting the
component c1 is treated as data [10].

XðtÞ � a1 ¼ c1 ð2Þ

With n times of recursive sifting, c1 converts to an IMF, that is

c1 � a11 ¼ c11 ð3Þ
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Then, the component c1n is chosen as the 1st IMF component of the data set:

c1ðn�1Þ � a1n ¼ c1n ð4Þ

c1 ¼ c1n ð5Þ

The above algorithm results in the decomposed EEG data providing the
instantaneous frequency of the subject. This information can be utilised for various
applications. Table 4 shows the comparison between Fast Fourier Transform
(FFT) and Hilbert–Huang Transform (HHT). The results section deals with the
consequences of these differences between the methods, on the suitability of the
method to be chosen for data obtained from a particular protocol.

4 Results

The simulation results in this section are obtained using EEGLAB plugin [6] for
MATLAB v15a. This section will summarise the results obtained for the two
protocols, SSVEP and Motor Imagery. In the SSVEP protocol the images are
flashed at a regular rate of 1 Hz. The FFT of a percentage of the data collected with
SSVEP protocol for a particular subject is shown in Fig. 5. The two parts of Fig. 5
are the Event-Related Spectral Decomposition (ESRP) in dB and Inter-Trial
Coherence (ITC) phase in rad. The Event-Related Potential (ERP) is also plotted.
The events here refer to the flashing of images on the screen. The plots in Fig. 5
reveals that FFT is suitable for analysing the data obtained through SSVEP protocol
as a regular pattern is observed in the FFT as well as the ERP’s.

Figure 6 shows the FFT of the data obtained through motor imagery protocol.
There is no regular pattern in ESRP, ITC phase or ERP’s. This is because the data
obtained through motor imagery is aperiodic data. Therefore, HHT is suitable. This
is justified in Figs. 7 and 8. The Channel 12 corresponds to C3 and channel 13
corresponds to C4 in 10-20 International electrode placement system. These are the

Table 4 Comparison between Fourier transform and Hilbert–Huang transform

Transform FT HHT using EMD

Operation Convolution: uncertainty
and global

Differentiation: certainty and
local

Representation Energy vs frequency Energy vs time and frequency

Linearity condition for the
data

Linear Nonlinear

Stationarity condition for
the data

Applicable for stationary
data

Applicable for even non
stationary data

Extraction of features Not possible Possible

Core concept Derived from theory Developed as an empirical
method
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two channels in central lobe where the activity increases during motor imagery.
Figures 7 and 8 correspond to the HHT of the data collected using motor imagery
protocol. The motor imagery action performed in this case is the subject thinking

Fig. 5 FFT of steady state visual evoked potential data

Fig. 6 FFT of motor imagery EEG waves data
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about moving right hand. The activity spectrum clearly shows the Event Related
Synchronisation (ERS) of C3 in Fig. 7 and Event-Related Desynchronisation
(ERD) of C4.

Fig. 7 Event related synchronisation (ERS) of C3

Fig. 8 Event related desynchronisation of C4
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5 Conclusion

Development of any BCI application requires the features of EEG waves of the
subject. The various EEG features have been enlisted in the proposed research work
with their significance. The EEG data for the subjects have been extracted from the
proposed protocol and the Enobio electrodes have been used to record the EEG
waves of the subject. Later it has been proved that Fourier analysis is not entirely
sufficient for the EEG waves feature extraction as the data is non-stationary, non-
linear, and not periodic. Hilbert–Huang Transform is applied to the data to obtain
the time–frequency joint and to extract the features. From the results it is evident
that, for protocols such as motor imagery, HHT is the best suited protocol for
feature extraction owing to its application on aperiodic data. FFT serves to give
satisfactory results when applied to protocols like SSVEP owing to the periodic
data generated by these protocols.

HHT of the data is obtained using Empirical Mode Decomposition algorithm
which is a pragmatic approach to analyse non-stationary data sets, such as EEG
waves data. EMD uses a heuristic approach for signal decomposition, which
reduces the signal for a given locality with no restriction on conditions such as,
sparseness, independence or orthogonality.

6 Future Work

The algorithm and the protocol used have been experimented with an 8-channel
EEG electrode system to analyse motor imagery EEG waves, as compared to the 59
channel EEG electrode system used in [1]. Thus the proposed system is more
economical and effective. The EEG waves corpus developed can be utilised for
various embedded system applications such as, for human identification/security
[8], controlling robots, etc. Motor imagery EEG waves processing can also be used
to develop prosthetic arms/legs for physically challenged people. With the increase
in number of EEG electrodes, the entire brain of a patient can be mapped, which
would result in faster and efficient diagnosis.

Specifically, by improving the protocol and the correct placement of electrodes,
diseases such as Alzheimer’s disease, Dementia, Parkinson Diseases and many
more can be diagnosed at their early stages. Also, diseases such as anaemia can also
be detected using EEG waves by correlating it with the ECG waves. Since Brain
waves control all the organs and systems of the human body, comprehending them
can result in understanding the human body itself. Therefore, with a better
understanding of the human body, the lives of the people can be enriched.
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