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Abstract System Health Management (SHM) is a key technology for detecting,
diagnosing, predicting, and mitigating the adverse events during the operation of
safety-critical systems. Safety critical systems, specifically Unmanned Aerial
Vehicles (UAV) are an important part of today’s era whether it is in civilian,
commercial, defense, or in military domain. Proper functioning of these sensor
systems is very crucial as their faults can result in serious consequences, but they
often fail in spite of extensive verification and validation efforts, which raise safety
concerns. This paper discusses functional mode analysis of speed and direction
sensor to perform SHM using Causal Bayesian Networks (CBN) that can tackle
problems associated with system bugs and failures. Sensor parameters from UAV
system in real-time is learned, modeled, and analyzed in using Bayesian network.
The simulation output graphically shows the influence analysis of sensor parame-
ters on the overall health of the UAV system as a case study. The network per-
formance along with a comparison of actual and predicted values is displayed in the
simulation section.
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1 Introduction

Safety critical systems are those systems whose failure can cause serious threat to
life and property. Unmanned aerial vehicle (UAV) is an important category of
safety critical systems and is commonly known as drone or an aircraft without a
human pilot. The flight of UAV may be controlled autonomously by onboard
computers or by the remote control of a pilot on the ground or in another vehicle.
A flight control system that makes the UAV fly or run automatically is called
autopilot, have a lot of functions such as guidance, control, and navigation. It act as
brain of UAV, this subsystem controls UAV by generating control signals on the
basis of desired target information and waypoints. Nowadays space activities
including UAVs are characterized by increased constraints in terms of onboard
computing power and functional complexity combined with reduction of costs and
schedule. This scenario necessarily originates impacts on the onboard software with
particular emphasis to the interfaces between onboard software and system/mission
level requirements.

System Health Management is an important factor in system level requirement.
Health management is performed on the running safety critical systems with the
goal to perform diagnosis and prognosis and hence isolates the faults close to their
source so that a fault in a sub-system does not lead to a general failure of the global
system [1]. A SHM system continuously monitors the behavior of the software and
the interfacing hardware or sensor components. Using an abstract model of the
software, the SHM can detect unexpected behavior, reason about its root cause, and
trigger failure repair or mitigation actions. Only recently, health management
systems that monitor software have been developed. The goal of SHM system is to
correctly diagnose off-nominal situations with special consideration to sensors that
are incorporated in the UAV system. If any of the sensors cause failures in the
active stage due to faults, it will affect the functionality of UAV. So every sensor is
required to be monitored for its proper functionality which is an important SHM
application [2].

Prominent SHM techniques are using Kalman filters, Bayesian Hidden Markov
Model approach [3], Artificial Neural Networks (ANN), Causal Bayesian
Networks, etc. [4]. Of these, Bayesian Networks can be built from human
knowledge, i.e., from theory, or they can be machine-learned from data [5] and
holds good for aircraft guidance, navigation, and control [6]. Also, Causal Bayesian
Networks can be modeled with their node-arrow structure and due to their graphical
structure, machine-learned Bayesian networks are visually interpretable, therefore
promoting human learning and theory building.

The paper is organized as follows: Sect. 2 describes the Background work
behind the project, Sect. 3 explains the Proposed Approach, Sect. 4 describes the
implementation of the system, Sect. 5 shows the Simulation results and finally
Sect. 6 gives the scope and conclusion for the proposed system.
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2 Background Work

Various SHM techniques exist including Kalman filters, ANN, Causal Bayesian
networks etc. Causal Bayesian networks (CBNs) represent multivariate probability
distributions and are used for reasoning and learning under uncertainty [7-9]. They
are often used to model systems of probabilistic nature [4]. Random variables are
represented as nodes in a directed acyclic graph model, while conditional depen-
dencies between variables are represented as graph edges. A key point is that a
CBN, whose graph structure often reflects a domain’s causal structure, is a compact
representation of a joint probability table.

Many CBN tools exist at present like BayesNet toolbox, Hugin [10], GeNIe and
SMILE [11], Netica [12], UnBBayes, OpenMarkov, Direct Graphical Models, etc.
But the recent advancement among CBN tools is BayesialLab 5.4.3 (released in
2015) which is being used in this system. BayesialLab is a powerful desktop
application (Windows/Mac/Unix) with a sophisticated graphical user interface,
which provides users a comprehensive “laboratory” environment for machine
learning, knowledge modeling, diagnosis, analysis, simulation, and optimization.
BayesialLab leverages the inherently graphical structure of Bayesian networks for
exploring and explaining complex problems.

3 Proposed Approach

Functional Mode Analysis or System Health Management (SHM) of UAV sensors
using Bayesian Networks has been proposed in this paper. This section consists of
the block diagram for the proposed system and the description for the concepts of
Knowledge modeling and Machine learning performed using CBN in Bayesialab.

Probabilistic models based on directed acyclic graphs (DAG) have a long and
rich tradition and their variants have appeared in many fields. Within statistics, such
models are known as directed graphical models; within cognitive science and
artificial intelligence, such models are known as Bayesian networks. The name
honors the Rev. Thomas Bayes, whose rule for updating probabilities in the light of
new evidence is the foundation of the approach. It addresses both the case of
discrete probability distributions of data and the more complicated case of con-
tinuous probability distributions. In the discrete case, Bayes’ theorem relates the
conditional and marginal probabilities of events A and B, provided that the prob-
ability of B not equal zero:

P(B/A)

P(A/B) = P(A) % P(B)

(1)

The fact that the significant parameters that influence the sensors in a UAV
autopilot also influence the proper functioning of these sensors and ultimately
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Fig. 1 Implementation of the system

determine the overall health of the UAV system is being exploited. Proposed
approach consists of UAV sensor parameters and their derived functional mode
causalities, corresponding conditional probability tables (derived from expert
knowledge), and the hence derived Causal Bayesian Network. The Bayesian fault
diagnosis is then performed on this network by providing evidences and compu-
tation of different fault probabilities. Thus, the system can be checked for its dif-
ferent functional modes, i.e., healthy, partially healthy, and unhealthy (Fig. 1).
The implementation of the system mainly constitutes two sections:

3.1 Knowledge Modeling and Evidential Reasoning

Reasoning in complex environments creates cognitive challenges for humans.
Subject matter experts often express or model their causal understanding of a
domain in the form of diagrams, in which arrows indicate causal directions. This
visual representation of causes and effects (known as Knowledge Modeling) has a
direct analog in the network graph, in BayesialLab. The model can then be analyzed
by acquiring proper evidences and then executing them. The steps in knowledge
modeling can be briefed as below in the flow chart.

In Knowledge Modeling, the complex information is often simplified to form
causal relationships between different variables involved in it. In BayesialLab, the
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probabilistic relationships between variables in conditional probability tables
(CPT) have to be described, which means that no functional forms are utilized.

First stage nodes represent the parameters, second stage nodes represent the
healthy and unhealthy mode of the sensors, and third stage nodes represent the
overall functional modes of the system. Arrows specify the conditional dependency
between the nodes. Necessary knowledge is assigned as Conditional Probability
Tables to the nodes of the system. Switching on to the Validation mode helps users
to check the functionality modes of the system by giving suitable hard and soft
evidences.

3.2 Machine Learning

The earlier work gives a concept that can be helpful for many research works but it
does not facilitate real-time processing of input data from the parameters of interest
to determine the functionality modes of the sensors and thus the system. Human
expert knowledge is useful for identifying causal relations, but proves to be inef-
ficient in real time. Most of the research works face the challenge of handling with
the real-time data acquired from on board during active run of the system. Machine
Learning comes into play at this instinct where real-time processing is a must.

Machine Learning is implied in this system to learn and then establish the
predictive importance of a range of variables with regard to a target variable. The
domain is the UAV Autopilot system and we wish to examine the relationships
between sensor parameters and the overall functionality of the system. The
real-time data from the UAV sensors is acquired as input to the Bayesian Networks
as excel spread-sheets (or Comma Delimited file). The highly optimized learning
algorithms that can quickly uncover structures in datasets are considered in
BayesialLab for the process of testing and learning. Naive Bayes algorithm which is
a Supervised Learning approach, a causal dependency is formed between the
“Class” node and the other nodes. It was found to be more useful for the sensor data
because the target variable which is the functionality mode of the sensor will always
have a causal dependency on every parameter that defines the sensor. The rela-
tionship between the Target node and other nodes is viewed by highlighting the
Mutual Information between them which reflects the predictive importance of the
parameters on the target node.

Machine learning has many benefits over knowledge modeling, of which the
most important one is real-time processing capability. Also in machine learning, a
detailed analysis and comparison of different parameters on the target node can be
obtained which is absent in Knowledge modeling. It also helps in interpretation of
real-time data in different perspectives: Target Interpretation tree, Adaptive
Questionnaire, Mapping, etc.
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4 Implementation

Implementation of the proposed system is shown in this section. It describes the
procedures for knowledge modeling in BayesialLab and designing of test data for
machine learning. Also selection of different functional modes based on whether the
parameters are in the proper nominal range or not is also explained here in this
section.

4.1 Knowledge Modeling and Evidential Reasoning

The proposed work relies on considering the Speed and Direction Sensor and its
different parameters. The parameters of interest and their nominal ranges of oper-
ation are Output Ambient Temperature (—40-150 °C), Output Current (30—
85 mA), Magnetic Offset (—60-60), Output Frequency (0-40 kHz), Output Air Gap
(0.75-3 mm), and Duty Cycle Variation (40-60%). Each of these parameters
individually contributes to the health of the sensor and thus the overall health of the
system. The effect of variation of these parameters from their nominal values in
health of the sensor is described as: Healthy—if all sensors are healthy or O
unhealthy sensors; partially healthy—if 1-3 sensors are unhealthy; Unhealthy—if
4-6 sensors are unhealthy.

Now, similar to the Speed and Direction sensor, 5 other sensors were also
identified which are gyro sensor, accelerometer, angle of attack, altimeter, and
differential pressure sensor. The overall functionality mode of the system (whether
Healthy, Partially Healthy or Unhealthy) is determined by the functional mode
analysis of each sensors. Figure 2 shows the overall modeled CBN for the proposed
system.

PART AL TIEART:

Fig. 2 Knowledge modeling
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4.2 Machine Learning

On a top-level, real-time data from software and hardware sensors is learned and
then presented as the nodes of the Bayesian network, which in turn performs its
reasoning (i.e., updating the internal health nodes) and returns information about the
health of the software. Machine learning of sensor data is explained below. Prior to
that, designing of test data is to be discussed.

One-fifth (20%) of the data are chosen as test data from which the software
learns the system. There are six parameters considered for the sensor.

Hence, 2° = 64 combinations of data is used as Test set and thus, 64 * 5 = 320
data combination is included in the database as input to the CBN and remaining
data is said to be Learning Set.

The data set input is shown in Fig. 3. The dataset is then Machine-Learned after
certain pre-processing steps like Discretization, Normalization, etc. The Learning
algorithm applied is Naive Bayes algorithm that best suits such applications where
there is a single target that depends on several sub-factors. Figure 4 shows the
machine learned CBN for the overall system as per Naive Bayes algorithm.

The obtained outputs and differences are shown in the next section. In
Knowledge Modeling, only just reasoning is possible, whereas in Machine learning,
detailed analysis of data is possible which comes under three categories:

4.2.1 Performance Analysis

The relationship between the Target node and other nodes is viewed by highlighting
the Mutual Information between them which reflects the predictive importance of
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Fig. 3 Data set input for machine learning
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Fig. 4 Machine learned
Causal Bayesian Network
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the parameters on the target node. The network performance is analyzed to know
how the Naive Bayes learning algorithm predict the states of the Class variable,
Healthy or Unhealthy. Network performance on the target is shown in the
Simulation Results.

To mitigate any sampling artifacts that may occur in such a one-off Test Set, we
can systematically learn networks on a sequence of different subsets and then
aggregate the test results. For this, we perform K-Folds Cross Validation (to iter-
atively select K different Learning Sets and Test Sets and then, learn the networks
and test their performance) and is also shown in Simulation Results. Next step is
Structural coefficient (“significance threshold” for network learning) Analysis. This
analysis shows Structure/Target Precision Ratio which is a very helpful measure for
making trade-offs between predictive performance versus network complexity.

4.2.2 Model Inference

The main objective of the proposed system is to derive a correlation between
different parameters of the network and the target. Target Correlation, is obtained
by sorting the parameters based on their Mutual Information with the target node
“Class.”

4.2.3 Interactive Inference

Interactive Inference is a special feature that helps the user to review the individual
predictions made based on the model. The user can give evidences to check for the
different functionality modes that hold for the system. Adaptive Questionnaire is an
important category of Interactive inference where only individual cases are under
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review. End user can check any number of evidences and the probability distri-
bution of the target node gets updated as a result. Not only the target node, but also
all other nodes get updated upon setting evidence, reflecting the omnidirectional
nature of inference within a Bayesian network. The process of updating can be
continued until an acceptable level of certainty regarding the diagnosis is achieved.
Target Interpretation Tree is the next significant inference, and is explicitly
shown in the form of a static graphical tree. The Target Interpretation Tree is
induced once from all cases and then prescribes in which sequence evidence is be
sought for gaining the maximum amount of information towards a diagnosis.
Mapping is another inference category where the size of the nodes is proportional to
the Mutual Information with the Target Node given the current set of evidence.

5 Simulation and Results

This section lists the obtained simulations and results. Simulated results for ma-
chine learning are classified under 3: (i) Performance Analysis; (ii) Model
Inference; and (iii) Interactive Inference which are also described below.

5.1 Knowledge Modeling and Evidential Reasoning

In Knowledge modeling, the information about the health of the system is extracted
from the posterior distribution, specifically from health nodes. The simulated out-
puts are briefed below in Fig. 5.

Figure 5 shows 3 sections: (i) the probabilistic distribution of each parameter of
Speed and Direction sensor. Initially, all probabilities are normalized which shows
an effect on healthy and unhealthy nodes of the sensor. (ii) Shows the effect of hard
evidences on the healthy and unhealthy nodes of the sensor. (iii) Shows the effect of
soft evidences on the healthy and unhealthy nodes of the sensor.

Fig. 5 Simulated output for evidential reasoning in BayesiaLab
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5.2 Machine Learning

In machine learning, all sensor data, which are usually time series, must undergo a
pre-processing step, where certain (scalar) features are extracted. These values are
then discretized into symbolic states or normalized numeric values before presented
to the Causal Bayesian model. The optimization criteria in BayesiaLab’s learning
algorithms are based on information theory based on which desired simulated
results are obtained.

Figure 6 shows the Mutual Information between the parameters of the sensor
and the target “CLASS”, which shows the healthy and unhealthy modes of the
Sensor.

Figure 7a shows the overall performance can, which is expressed as the Total
Precision, and is computed as total number of correct predictions (true posi-
tives + true negatives) divided by the total number of cases in the Test Set, i.e.,
17 + 41) + 64 = 90.625%.

Figure 7b shows that with different samples of data considered, the system
proves good as it shows a total precision of (81 + 204) / 320 = 89.06%.

Figure 8 shows different parameters of the sensor that are sorted in the
decreasing order of correlation with the target. The correlation is calculated based
on the Mutual Information between different parameters and the target node. It is
clear from the figure that OP_I has more correlation with the target followed
OP_FREQ and so on. It is also verified that slight variations in the parameter
probabilities induce effective variations in the target node too.

Fig. 6 Machine learning
technique to obtain mutual
information between CLASS
variable and different
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Figure 9 shows the Adaptive Questionnaire section in which a third person can
provide his/her evidences which are known to him/her. He/she need not know the
system design. With the known evidences, even if only individual cases are under
review, the system provides proper diagnostic support.

Figure 10 shows the Target Interpretation Tree which is induced from the cases
shown in the monitor:

AMB_TEMP = p{ <=156.5:28.95%; >156.5:71.05%};
OP_I = <=79.4;

MAG_OFF = > 79.9;

OP_FREQ = p{ <=43.45:54.39%; >43.45:45.61%);
AIR_GAP = > 3.48;

The tree picturizes the effect of these evidences on the parameter DUTY_CYC
and how its information is to be sought for gaining the maximum amount of
information towards a diagnosis.

Figure 11 shows the mapping of target node with respect to other parameter
nodes by applying Node analysis. The size of the nodes is determined by their
Mutual Information with the Target node.

These simulation results under machine learning show the effect of the real time
individual parameter values on the health of the Speed and Direction sensor. The
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different outputs give the correlation of these parameters on the functional mode of
the sensor and this correlation is being calculated using the concept of Mutual
information in Bayesian Networks. The system also facilitates in interaction
between an end user and the system through its features like Target Interpretation
tree and Adaptive Questionnaire.
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6 Conclusion & Future Work

System Health Management of safety critical systems is an important concept and is
put to extensive research works for the past years. Irrespective of their complexity,
many Fault Detection and Recovery techniques were tried out on UAVs. SHM is a
key technology for detecting, diagnosing, predicting, and mitigating the adverse
events during the operation of safety-critical software systems. Since size and
complexity of software for even tiny autonomous systems increase dramatically, we
think that powerful on board means for real-time fault detection and diagnosis can
provide a crucial additional layer of reliable functioning. Causal Bayesian
Networks, because of their numerous advantages prove to be useful in the area of
SHM.

The concept of Functional Mode Analysis for SHM to be implemented using
Causal Bayesian Networks has been discussed here. Knowledge Modeling and
Machine Learning were tried out and irrespective of the various advantages mod-
eling offered, machine learning was found to be more useful for practical real-time
applications as they learned the system behavior on their own and facilitated for
further analysis purposes.

The research work can be extended to robustly handle unexpected and
un-modeled failures that can cause threat to both life and property. It can also be
extended to artificially model Bayesian models when specific anomalies are found
in the system.
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