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Abstract. Cellular automata (CA) is universally known as very good
pseudorandom sequence generator. It has wide applications in several
fields like VLSI design, error-correcting codes, test pattern generation,
cryptography etc. Most of these applications use 3-neighborhood one
dimensional CA. Cellular automata have been chosen as a better crypto-
primitives for providing very good pseudorandom sequences and their
high diffusion property. The randomness and diffusion properties can be
increased with the increase of the size of neighborhood radius of the CA
cell. In this work, we study a class of 5-neighborhood null boundary linear
CA. We present an algorithm for synthesizing 5-neighborhood linear CA
from its characteristic polynomial by assuming that some of the CA sub-
polynomials are available.

Keywords: Cellular automata · 5-neighborhood linear rules · CA syn-
thesis algorithm

1 Introduction

Cellular Automata (CA) have long been of interest to researchers for their theo-
retical properties and practical applications. It was initiated in the early 1950’s
by John von Neumann [12] and Stan Ulam as a general framework for modeling
complex structures capable of self-reproduction and self-repair. In 1986, Wol-
fram first applied CA in pseudorandom number generation [15]. CA has made
understanding of many occurrences in nature easier. The simple and regular
structure of CA has attracted researchers and practitioners of different fields.
In the last two decades, one-dimensional (1-D) CA based Pseudorandom Num-
ber Generators (PRNGs) have been extensively studied [2,5,10,11]. Though the
recent interest is more focused on two-dimensional (2-D) CA PRNGs [9,13] since
it seems that their randomness is much better than that of 1- D CA PRNGs, but
considering the design complexity and computation efficiency, it is quite difficult
to conclude which one is better. Compared to 2-D CA PRNGs, 1-D CA PRNGs
are easier to be implemented in a large scale [3,8,14]. Random bit generators
play an important role in different computer simulation methods such as Monte
Carlo techniques, Browmian dynamics, stochastic optimization, computer-based
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gaming, test pattern generation for VSLI circuit test, error-correcting codes,
image processing, neural networks and cryptography etc. Most of these works
are devoted to the study of cellular automata as pseudorandom bit generators. A
central problem in any stream cipher scheme is to generate long, unpredictable
random key sequences and Cellular Automata resolves this problem.

In most of all these applications, 1-D elementary cellular automata (i.e. three-
neighborhood CA) are used. There are also some applications [6,9,13] of five or
more neighborhood 2-D CA but that need more hardware complexity. In [7], it
has been shown a 4-neighborhood nonlinear 1-D CA as a better cryptographic
primitive. The randomness and diffusion properties of the CA can be developed
with the increase of the size of neighborhood radius of the CA cell. More diffusion
property of CA can make fast initialization of a stream cipher. In this paper,
we study 5-neighborhood linear 1-D CA for providing very good pseudorandom
sequences and high diffusion. We present an algorithm for synthesizing the CA.

This paper is organized as follows. Following the introduction, the basics
of CA are presented in Sect. 2. In Sect. 3, we present 5-neighborhood Linear
Hybrid Cellular Automata with the CA transition matrix and the characteristic
polynomial. A recurrence relation is introduced for determining the characteristic
polynomial and a CA synthesis algorithm is presented. We also present the
randomness and diffusion properties of 5-neighborhood CA rule vectors and the
comparison of their properties with 3/4 neighborhood CA. Finally, the paper is
concluded in Sect. 4.

2 Basics of Linear Cellular Automata

Cellular Automata are studied as mathematical model for self organizing sta-
tistical systems [12]. CA can be one-dimensional or multi-dimensional. One-
dimensional CA random number generators have been extensively studied in
the past [4,11,15]. In one-dimensional CA, they can be considered as an array
of cells where each cell is a one bit memory element. The neighbor set N(i) is
defined as the set of cells on which the state transition function of the i-th cell
is dependent on each iteration. In three-neighborhood CA, each cell evolves in
every time step based on some combinatorial logic on the cell itself and its two
nearest neighbors. More formally, for a three-neighborhood CA, the neighbor set
of i-th cell is defined as N(i) = {si−1, si, si+1}. The state transition function of
is i-th cell of 3-neighborhood CA is as follows:

st+1
i = fi(sti−1, s

t
i, s

t
i+1)

where, sti denotes the current state of the i-th cell at time step t and st+1
i

denotes the next state of the i-th cell at time step t+1 and fi denotes some
combinatorial logic for i-th cell. The set of all feedback functions is considered
as ruleset for the CA. Since, a three-neighborhood CA having two states (0 or
1) in each cell, can have 23 = 8 possible binary states, there are total 22

3
=

256 possible boolean functions, called rules. Each rule can be represented as
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an decimal integer from 0 to 255. If the combinatorial logic for the rules have
only Boolean XOR operation, then it is called linear or additive rule. Some of
the three-neighborhood additive CA rules are 0, 60, 90, 102, 150 etc. Moreover,
if the combinatorial logic contains AND/OR operations, then it is called non-
linear rule. An n cell CA with cells {s1, s2, · · · , sn} is called null boundary CA
if sn+1 = 0 and s0 = 0. Similarly for a periodic boundary CA sn+1 = s1. A
CA is called uniform, if all its cells follow the same rule. Otherwise, it is called
non-uniform or hybrid CA. If all the ruleset of a hybrid CA are linear, then we
call the CA a linear one. However, out of all possible Boolean functions, called
rules, only two are of prime interest i.e. Rule 90 and 150 (ascertained from the
decimal value of their position in the truth table). The state of the i-th cell at
time instant t can be expressed as:

st+1
i = sti−1 ⊕ di.s

t
i ⊕ sti+1, di =

{
0, if di →Rule 90
1, if di →Rule 150

Thus, an LHCA can be completely specified by a combination of Rule 90 and
150, denoted as an n-tuple [d1, d2, · · · , dn]. An example of a 5-cell CA L can be
found in Fig. 1, specified by the rule vector [1, 1, 1, 1, 0]. Further details of CA
can be found in [4].

Fig. 1. 3-neighborhood null boundary LHCA L with rule vector [1, 1, 1, 1, 0]

3 5-Neighborhood Linear Cellular Automata

In the previous section, we have studied 1D elementary CA (i.e. 3-neighborhood
CA) [4,11]. In this section, we consider a 5-neighborhood null boundary n-cell
Linear Hybrid CA (LHCA) denoted by {s1, s2, · · · , sn}, where the state of a
cell at a given instant is updated based upon its five neighboring cells including
itself and because of null boundary s−1 = s0 = 0, sn+1 = sn+2 = 0. More
formally, for a five-neighborhood CA, the neighbor set of i-th cell is defined as
N(i) = {si−2, si−1, si, si+1, si+2}. The state transition function of is i-th cell of
5-neighborhood CA is as follows:

st+1
i = fi(sti−2, s

t
i−1, s

t
i, s

t
i+1, s

t
i+2)
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Table 1. Linear rules of 5-neighborhood LHCA

Rules State transition function of ith cell

Rule0 st+1
i = sti−2 ⊕ sti+2

Rule1 st+1
i = sti−2 ⊕ sti+1 ⊕ sti+2

Rule2 st+1
i = sti−2 ⊕ sti ⊕ sti+2

Rule3 st+1
i = sti−2 ⊕ sti ⊕ sti+1 ⊕ sti+2

Rule4 st+1
i = sti−2 ⊕ sti−1 ⊕ sti+2

Rule5 st+1
i = sti−2 ⊕ sti−1 ⊕ sti+1 ⊕ sti+2

Rule6 st+1
i = sti−2 ⊕ sti−1 ⊕ sti ⊕ sti+2

Rule7 st+1
i = sti−2 ⊕ sti−1 ⊕ sti ⊕ sti+1 ⊕ sti+2

where, sti denotes the current state of the i-th cell at time step t and st+1
i denotes

the next state of the i-th cell at time step t+1 and fi denotes some combinatorial
logic for i-th cell. Since, a 5-neighborhood CA having two states (0 or 1) in each
cell, can have 25 = 32 possible binary states, there are total 22

5
= 232 possible

boolean functions. Out of all possible Boolean functions, called rules, there are
total 25 = 32 possible linear rules. Based on neighborhood radius exactly 5, there
are only 23 = 8 liner rules shown in Table 1.

Table 2. Counting rule vectors of max. period 5-bit 5-neighborhood CA

Rule1 2
Rule2 0 2
Rule3 2 6 2
Rule4 2 2 2 4
Rule5 6 2 4 5 2
Rule6 2 4 2 2 6 5
Rule7 4 5 6 2 5 8 2

Rule0 Rule1 Rule2 Rule3 Rule4 Rule5 Rule6

For all possible pair of these 8 linear rules, maximum period 5-neighborhood
CA rule vectors can be obtained. Table 2 shows the number of rule vectors
obtained for maximum period 5-bit 5-neighborhood CA against each pair of
the linear rules shown in Table 1. From Table 2, we see that only the pair of rule
combinations, (Rule5, Rule7), provides largest number of rule vectors (i.e. 8).
Therefore, we consider these two linear rules (i.e. Rule5, Rule7), denoted as R0

and R1, respectively, to design 5-neighborhood LHCA. These two linear rules
can again be specified as follows:

R0 : st+1
i = sti−2 ⊕ sti−1 ⊕ sti+1 ⊕ sti+2

R1 : st+1
i = sti−2 ⊕ sti−1 ⊕ sti ⊕ sti+1 ⊕ sti+2
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where, sti is the current state and st+1
i is the next state of the i-th cell of the

CA. Thus, the state transition function of i-th cell of the CA can be expressed
as:

st+1
i = sti−2 ⊕ sti−1 ⊕ di.s

t
i ⊕ sti+1 ⊕ sti+2, di =

{
0, if ith cell follows rule R0

1, if ith cell follows rule R1

Thus, a five-neighborhood n-cell LHCA L denoted by {s1, s2, · · · , sn}, can be
completely specified by a combination of these two rules R0 and R1, denoted
as an n-tuple [d1, d2, · · · , dn], called the rule vector of the CA. An example of a
5-cell null boundary 5-neighborhood CA can be found in Fig. 2, specified by the
rule vector [1, 1, 1, 0, 0].

Fig. 2. 5-neighborhood null boundary LHCA L with rule vector [1, 1, 1, 0, 0]

A five-neighborhood n-cell LHCA L can be characterised by an n×n matrix,
called characteristic matrix. The characteristic matrix A for the n-cell CA rule
vector [d1, d2, · · · , dn] is as follows:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 1 1 0 0 · · · · · · · · · · · · 0 0
1 d2 1 1 0 · · · · · · · · · · · · · · · 0

1 1 d3 1 1 · · · · · · · · · · · · · · · ...

0 1 1 d4 1 · · · · · · · · · · · · · · · ...
...

...
...

...
...

...
...

...
...

...
...

... · · · · · · · · · · · · · · · 1 dn−3 1 1 0

... · · · · · · · · · · · · · · · 1 1 dn−2 1 1
0 · · · · · · · · · · · · · · · 0 1 1 dn−1 1
0 0 · · · · · · · · · · · · 0 0 1 1 dn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The state of a CA at time step t is an n-tuple formed from the states of the
individual cells. The CA state is expressed in matrix form as follows

St = [st1, · · · , stn]
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The next state of the CA is denoted as

St+1 = [st+1
1 , · · · , st+1

n ]

The next-state of the CA, St+1, is computed as

(St+1)T = A · (St)T

or, St+1 = ((St+1)T )T

where, A is the CA transition matrix and (St)T = [st1, · · · , stn]T (the superscript
T represents the transpose of the vector) and the product is a matrix-vector
multiplication over GF(2). It has been shown that A · (St)T is indeed the next
state of the CA. Therefore, the next state of the ith cell is computed as the
product of the ith row of A and (St)T as follows:

st+1
i = [0, · · · , 0, 1, 1, di, 1, 1, 0, · · · , 0]

·[st1, · · · , sti−2, s
t
i−1, s

t
i, s

t
i+1, s

t
i+2 · · · , stn]T

= sti−2 + sti−1 + di · sti + sti+1 + sti+2

The characteristic polynomial Δn of the n-cell CA is defined by

Δn = |xI − A|

where, x is an indeterminate, I is the identity matrix of order n, and A is the
CA transition matrix. The matrix xI − A is called the characteristic matrix of
the CA. The characteristic polynomial is a degree n polynomial in x.

The following example clearly illustrates how the characteristic polynomial
of a 5-neighborhood linear CA can be computed using the characteristic matrix
of the CA.

Example 1: Let us consider a 5-cell null boundary 5-neighborhood linear CA
with the rule vector [1, 1, 1, 0, 0]. We have [d1, d2, d3, d4, d5] = [1, 1, 1, 0, 0]. The
transition matrix A is as follows:

A =

⎡
⎢⎢⎢⎢⎣

d1 1 1 0 0
1 d2 1 1 0
1 1 d3 1 1
0 1 1 d4 1
0 0 1 1 d5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 1 1 0 0
1 1 1 1 0
1 1 1 1 1
0 1 1 0 1
0 0 1 1 0

⎤
⎥⎥⎥⎥⎦

The corresponding characteristic matrix is as follows:

xI − A =

⎡
⎢⎢⎢⎢⎣

x + d1 1 1 0 0
1 x + d2 1 1 0
1 1 x + d3 1 1
0 1 1 x + d4 1
0 0 1 1 x + d5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

x + 1 1 1 0 0
1 x + 1 1 1 0
1 1 x + 1 1 1
0 1 1 x 1
0 0 1 1 x

⎤
⎥⎥⎥⎥⎦
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where, x is an indeterminate, I is the identity matrix with dimension 5, and A
is the CA transition matrix shown above. The characteristic polynomial Δ5 of
the 5-cell CA is defined as follows:

Δ5 = |xI − A|

Δ5 =

∣∣∣∣∣∣∣∣∣∣

x + 1 1 1 0 0
1 x + 1 1 1 0
1 1 x + 1 1 1
0 1 1 x 1
0 0 1 1 x

∣∣∣∣∣∣∣∣∣∣
= x5 + x4 + x2 + x + 1

Theorem 1. Let Δn be the characteristic polynomial of a n-cell null bound-
ary 5-neighborhood Linear CA with rule vector [d1, d2, · · · , dn]. Δn satisfies the
following recurrence relation:

Δ−3 = 0, Δ−2 = 0, Δ−1 = 0, Δ0 = 1
Δn = (x + dn)Δn−1 + Δn−2 + (x + dn−1)Δn−3 + Δn−4, n > 0 (1)

Proof: Consider the transition matrix A for the n-cell null boundary 5-
neighborhood Linear CA with rule vector [d1, d2, · · · , dn]

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 1 1 0 0 · · · · · · · · · · · · 0 0
1 d2 1 1 0 · · · · · · · · · · · · · · · 0

1 1 d3 1 1 · · · · · · · · · · · · · · · ...

0 1 1 d4 1 · · · · · · · · · · · · · · · ...
...

...
...

...
...

...
...

...
...

...
...

... · · · · · · · · · · · · · · · 1 dn−3 1 1 0

... · · · · · · · · · · · · · · · 1 1 dn−2 1 1
0 · · · · · · · · · · · · · · · 0 1 1 dn−1 1
0 0 · · · · · · · · · · · · 0 0 1 1 dn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The characteristic polynomial Δn of the CA is defined by

Δn = |xI − A|

Δn =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

x + d1 1 1 0 0 · · · · · · · · · · · · 0 0
1 x + d2 1 1 0 · · · · · · · · · · · · · · · 0

1 1 x + d3 1 1 · · · · · · · · · · · · · · ·
...

0 1 1 x + d4 1 · · · · · · · · · · · · · · ·
...

...
...

...
...

...
...

...
...

...
...

...
... · · · · · · · · · · · · · · · 1 x + dn−3 1 1 0
... · · · · · · · · · · · · · · · 1 1 x + dn−2 1 1
0 · · · · · · · · · · · · · · · 0 1 1 x + dn−1 1
0 0 · · · · · · · · · · · · 0 0 1 1 x + dn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
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By expanding the determinant shown above with respect to the last row, we can
compute Δn as follows: Δn = (x + dn) ∗ Δn−1 + 1 ∗ B + 1 ∗ C, where B and C
with dimension (n − 1) × (n − 1) are as follows:

B =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x + d1 1 1 0 0 · · · · · · · · · · · · 0
1 x + d2 1 1 0 · · · · · · · · · · · · 0

1 1 x + d3 1 1 · · · · · · · · · · · · ...

0 1 1 x + d4 1 · · · · · · · · · · · · ...
...

...
...

...
...

...
...

...
...

...
... · · · · · · · · · · · · · · · 1 x + dn−3 1 0
... · · · · · · · · · · · · · · · 1 1 x + dn−2 1
0 · · · · · · · · · · · · · · · 0 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and

C =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x + d1 1 1 0 0 · · · · · · · · · 0 0
1 x + d2 1 1 0 · · · · · · · · · · · · 0

1 1 x + d3 1 1 · · · · · · · · · · · · ...

0 1 1 x + d4 1 · · · · · · · · · · · · ...
...

...
...

...
...

...
...

...
...

...
... · · · · · · · · · · · · · · · 1 x + dn−3 1 0
... · · · · · · · · · · · · 1 1 1 1
0 · · · · · · · · · · · · · · · 0 1 x + dn−1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
By expanding the determinant B with respect to the last column, we can compute
B as follows: B = Δn−2 + D, where D with dimension (n − 2) × (n − 2) is as
follows:

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x + d1 1 1 0 0 · · · · · · · · · 0
1 x + d2 1 1 0 · · · · · · · · · · · ·
1 1 x + d3 1 1 · · · · · · · · · · · ·
0 1 1 x + d4 1 · · · · · · · · · · · ·
...

...
...

...
...

...
...

...
...

... · · · · · · · · · · · · · · · 1 x + dn−3 1
0 · · · · · · · · · · · · · · · 0 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
By expanding the determinant C with respect to the last column, we can compute
C as follows: C = E + F , where E and F with dimension (n − 2) × (n − 2) are
as follows:
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E =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x + d1 1 1 0 0 · · · · · · · · · 0
1 x + d2 1 1 0 · · · · · · · · · · · ·
1 1 x + d3 1 1 · · · · · · · · · · · ·
0 1 1 x + d4 1 · · · · · · · · · · · ·
...

...
...

...
...

...
...

...
...

... · · · · · · · · · · · · · · · 1 x + dn−3 1
0 · · · · · · · · · · · · · · · 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and

F =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x + d1 1 1 0 0 · · · · · · · · · 0
1 x + d2 1 1 0 · · · · · · · · · · · ·
1 1 x + d3 1 1 · · · · · · · · · · · ·
0 1 1 x + d4 1 · · · · · · · · · · · ·
...

...
...

...
...

...
...

...
...

... · · · · · · · · · · · · · · · 1 x + dn−3 1
0 · · · · · · · · · · · · · · · 0 1 x + dn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
By expanding the determinant F with respect to the last column, we can compute
F as follows:

F = (x + dn−1) ∗ Δn−3 + Δn−4

Note that the determinant E can be easily found by changing rows into columns
and columns into rows of the determinant D, therefore, D and E determines the
same polynomial and so, D+E determines zero in GF(2). Finally, we have

Δn = (x + dn) ∗ Δn−1 + 1 ∗ B + 1 ∗ C

= (x + dn) ∗ Δn−1 + (Δn−2 + D) + (E + F )
= (x + dn) ∗ Δn−1 + Δn−2 + F

= (x + dn) ∗ Δn−1 + Δn−2 + (x + dn−1) ∗ Δn−3 + Δn−4

Theorem 1 provides an efficient algorithm to compute the Characteristic poly-
nomial of a CA. Initially, Δ−3, Δ−2, Δ−1 are all set to zero and Δ0 is set to
one. Equation (1) is applied to obtain Δ1. It is then reapplied to calculate Δ2

from Δ−2 to Δ1, Continuing, the polynomials Δ3,Δ4, · · · ,Δn are computed.
The following example clearly illustrates how the characteristic polynomial

of a 5-neighborhood linear CA can be computed using the recurrence relation
shown above. Table 3 shows characteristic polynomials of a 5-cell null boundary
5-neighborhood linear CA.

Example 2: Let us consider a 5-cell null boundary 5-neighborhood linear CA
with the rule vector [1, 1, 1, 0, 0]. We have, [d1, d2, d3, d4, d5] = [1, 1, 1, 0, 0]
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Δ−3 = 0, Δ−2 = 0, Δ−1 = 0, Δ0 = 1
Δ1 = (x + d1)Δ0 + Δ−1 + (x + d0)Δ−2 + Δ−3

= (x + 1).1 + 0 + 0 + 0 = x + 1
Δ2 = (x + d2)Δ1 + Δ0 + (x + d1)Δ−1 + Δ−2

= (x + 1)(x + 1) + 1 + 0 + 0 = x2

Δ3 = (x + d3)Δ2 + Δ1 + (x + d2)Δ0 + Δ−1

= (x + 1)x2 + (x + 1) + (x + 1) + 0
= x3 + x2

Δ4 = (x + d4)Δ3 + Δ2 + (x + d3)Δ1 + Δ0

= (x + 0)(x3 + x2) + x2 + (x + 1)(x + 1) + 1
= x4 + x3 + x2 + x2 + 1 + 1
= x4 + x3

Δ5 = (x + d5)Δ4 + Δ3 + (x + d4)Δ2 + Δ1

= (x + 0)(x4 + x3) + (x3 + x2) + (x + 0)(x2) + (x + 1)
= x5 + x4 + x3 + x2 + x3 + x + 1
= x5 + x4 + x2 + x + 1

3.1 Synthesis of 5-Neighborhood Linear CA

In this section, we present an algorithm Algorithm 1 for synthesizing 5-
neighborhood CA from its characteristic polynomial.

Algorithm 1. Synthesis Algotithm
Input: The characteristic polynomial of an n-cell CA, Δn

Output: 5-neighborhood rule vector [d1, d2, · · · , dn]
Suppose, Δn−1, Δn−2 and Δn−3 are known and Δ−3 = Δ−2 = Δ−1 = 0, Δ0 = 1.
Here, all operations are done in GF (2).

1. Consider Δn = (x + dn)Δn−1 + Δn−2 + (x + dn−1)Δn−3 + Δn−4

2. Compute x + dn using Division Algorithm
3. For k=n downto 3
4. Consider Δk = (x + dk)Δk−1 + Δk−2 + (x + dk−1)Δk−3 + Δk−4

5. Compute x + dk−1 and Δk−4 using Division Algorithm
End for

6. Consider Δ1 = (x + d1)Δ0

7. Compute x + d1

8. Return [d1, d2, · · · , dn]

Explanation: Suppose, Δn−1, Δn−2 and Δn−3 are known. Here, all operations
are done in GF (2). We consider the recurrence relation:

Δn = (x + dn)Δn−1 + Δn−2 + (x + dn−1)Δn−3 + Δn−4
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Table 3. Characteristic polynomials of null boundary 5-neighborhood LHCA

Sl No. Rule vector Characteristic polynomial Primitive polynomial

1 00000 x5 + x3 + x NO

2 00001 x5 + x4 + x3 + x2 + x NO

3 00010 x5 + x4 + x3 + x + 1 YES

4 00011 x5 + x2 + 1 YES

5 00100 x5 + x4 + x3 + x2 + x + 1 NO

6 00101 x5 + x + 1 NO

7 00110 x5 + x2 NO

8 00111 x5 + x4 + x2 + x + 1 YES

9 01000 x5 + x4 + x3 + x + 1 YES

10 01001 x5 + x2 + x + 1 NO

11 01010 x5 + x NO

12 01011 x5 + x4 + 1 NO

13 01100 x5 + x2 NO

14 01101 x5 + x4 + x2 NO

15 01110 x5 + x4 + x + 1 NO

16 01111 x5 + x3 + x + 1 NO

17 10000 x5 + x4 + x3 + x2 + x NO

18 10001 x5 NO

19 10010 x5 + x2 + x + 1 NO

20 10011 x5 + x4 + x2 + x NO

21 10100 x5 + x + 1 NO

22 10101 x5 + x4 NO

23 10110 x5 + x4 + x2 NO

24 10111 x5 + x3 + x2 + x + 1 YES

25 11000 x5 + x2 + 1 YES

26 11001 x5 + x4 + x2 + x NO

27 11010 x5 + x4 + 1 NO

28 11011 x5 + x3 + x NO

29 11100 x5 + x4 + x2 + x + 1 YES

30 11101 x5 + x3 + x2 + x + 1 YES

31 11110 x5 + x3 + x + 1 NO

32 11111 x5 + x4 + x3 + x2 + x + 1 NO

0-Rule R0; 1-Rule R1

Now, we follow the Table 4. In the step 1, Δn and Δn−1 are known. By the
polynomial division algorithm, considering Δn as dividend and Δn−1 as divisor,
the degree 1 quotient polynomial (x + dn) is uniquely determined and easily
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calculated; since, the remainder polynomial in the relation (i.e. Δn−2 + (x +
dn−1)Δn−3+Δn−4) is of degree less than n−1. In the step 2, Δn, Δn−1, Δn−2 and
Δn−3 are known. In the above relation, the polynomial Δn+(x+dn)Δn−1+Δn−2

is of degree n − 2. Now, if the polynomial division algorithm is again applied
considering Δn + (x + dn)Δn−1 + Δn−2 as dividend and Δn−3 as divisor then,
it will calculate (x + dn−1) as quotient and Δn−4 as remainder from the above
relation. In the step 3, we consider the relation:

Δn−1 = (x + dn−1)Δn−2 + Δn−3 + (x + dn−2)Δn−4 + Δn−5

Now, Δn−1, Δn−2, Δn−3 and Δn−4 are known and (x+dn−1) is also known as it
is computed in the previous step. If we apply the division algorithm considering
Δn−1+(x+dn−1)Δn−2+Δn−3 as dividend and Δn−4 as divisor, it can calculate
(x + dn−2) as quotient and Δn−5 as remainder from the above relation. In this
way, if we proceed for n steps, then we get the sequence of degree 1 quotient
polynomials as follows:

[(x + dn), (x + dn−1), (x + dn−2), · · · , (x + d2), (x + d1)]

where dk(1 ≤ k ≤ n) is either 0 or 1. By taking the constant terms of these
quotient polynomials and reversing, we get the rule vector [d1, d2, · · · , dn] for a
5-neighborhood LHCA with the characteristic polynomial Δn. The total number
of polynomial divisions performed is O(n), where, n is degree of the character-
istic polynomial Δn of n-bit CA. Each polynomial division needs O(n2) time.
Therefore, the required time complexity for this algorithm is O(n3).

3.2 Randomness of 5-Neighborhood Linear CA Rule Vectors

A statistical test suite is developed by National Institute of Standards and Tech-
nology (NIST) that is known as NIST-statistical test suite [1]. The NIST Test
Suite is a statistical package consisting of 15 tests that were developed to test the
randomness of (arbitrarily long) binary sequences produced by either hardware
or software based cryptographic random or pseudorandom number generators.
To test the randomness of 5-neighborhood linear CA rule vectors, we consider a
24-bit 5-neighborhood maximum period LHCA with rule vector

[1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1]

where di = 0 in the rulevector [d0, · · · , d23] represents that ith cell of the CA
follows rule R0 and di = 1 in the rulevector [d0, · · · , d23] represents that ith cell
of the CA follows rule R1. 100 bit-streams with each stream of 1,00,000 bits
are generated from the middle cell (12thcell) of this 24-bit LHCA and stored
in a data file, and then the data file is fed to NIST test suite. The generated
bit-streams show high randomness property as depicted in Table 5.

3.3 Diffusion Property of 5-Neighborhood Linear CA Rule Vectors

To test the diffusion property of 5-neighborhood linear CA rule vectors, we
consider a 24-bit 5-neighborhood maximum period LHCA [s0, · · · , s23] with the
same rule vector
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Table 4. Synthesis of 5-neighborhood linear CA

Step Known Known poly, Relation Evaluated Evaluated

quotient subpoly used quotient sub-poly

1 — Δn, Δn−1 Δn = (x + dn)Δn−1 + Δn−2

+(x + dn−1)Δn−3 + Δn−4

x + dn —

2 x + dn Δn, Δn−1,
Δn−2, Δn−3

Δn = (x + dn)Δn−1 + Δn−2

+(x + dn−1)Δn−3 + Δn−4

x + dn−1 Δn−4

3 x + dn−1 Δn−1, Δn−2,
Δn−3, Δn−4

Δn−1 = (x + dn−1)Δn−2 + Δn−3

+(x + dn−2)Δn−4 + Δn−5

x + dn−2 Δn−5

4 x + dn−2 Δn−2, Δn−3,
Δn−4, Δn−5

Δn−2 = (x + dn−2)Δn−3 + Δn−4

+(x + dn−3)Δn−5 + Δn−6

x + dn−3 Δn−6

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

n-3 x + d5 Δ5, Δ4,
Δ3, Δ2

Δ5 = (x + d5)Δ4 + Δ3

+(x + d4)Δ2 + Δ1

x + d4 Δ1

n-2 x + d4 Δ4, Δ3, Δ2,
Δ1, Δ0

Δ4 = (x + d4)Δ3 + Δ2

+(x + d3)Δ1 + Δ0

x + d3 —

n-1 x + d3 Δ3, Δ2, Δ1,
Δ0, Δ−1

Δ3 = (x + d3)Δ2 + Δ1

+(x + d2)Δ0 + Δ−1

x + d2 —

n — Δ1, Δ0 Δ1 = (x + d1)Δ0 x + d1 —

Table 5. Results of NIST-statistical test suite

Sl. No Test name P-value Status

1 Frequency test 0.883171 Pass

2 BlockFrequency (block len.=128) 0.851383 Pass

3 Cumulative sums 0.574903 Pass

4 Runs 0.383827 Pass

5 Longest run 0.867692 Pass

6 FFT 0.401199 Pass

7 Non-OverlappingTemplate (block len.=9) 0.474986 Pass

8 OverlappingTemplate (block len.=9) 0.066882 Pass

9 ApproximateEntropy (block len.=10) 0.798139 Pass

10 Random excursions test 0.350485 Pass

11 Random excursions variant Test 0.534146 Pass

[1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1]

as considered in the previous section, and some CA initial values and we notice
the status of the CA cells in some clock cycles. The result of the CA states for
some clock cycles is depicted in Table 6. The result shows that the diffusion rate
of CA cell contents is 2 times faster than 3-neighborhood CA. For the sake of
simplicity, the rule value of the CA is given in hexadecimal notation i.e. a CA
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rule value 0xA5 denotes the rule vector [1, 0, 1, 0, 0, 1, 0, 1] and a CA initial value
0xA5 denotes the CA value [10100101].

Table 6. Diffusion of 5-neighborhood LHCA rule vector

CA initial (in Hex) Remarks

Average case 000800 12th cell bit is diffused to MSB/LSB in 6/7
clock cycles, respectively.

001000 11th cell bit is diffused to MSB/LSB in 11/6
clock cycles, respectively.

Worst case 800000 0th cell bit is diffused to LSB in 16 clock
cycles

000001 23rd cell bit is diffused to MSB in 16 clock
cycles

Table 7. Comparison of 5-neighborhood linear CA with 3/4 neighborhood CA

Properties 3-neighborhood
LHCA

4-neighborhood LHCA 5-neighborhood
LHCA

State transition
function of ith

cell

ast+1
i =

fi(s
t
i−1, s

t
i, s

t
i+1)

st+1
i = fi(s

t
i−1, s

t
i, s

t
i+1, s

t
i+2)

or
st+1
i = fi(s

t
i−2, s

t
i−1, s

t
i, s

t
i+1)

st+1
i =

fi(s
t
i−2, s

t
i−1,

sti, s
t
i+1, s

t
i+2)

# of linear rules
(neighborhood
radius at most r,
r=3,4,5)

23 = 8 24 = 16, 24 = 16 25 = 32

# of linear rules
(neighborhood
radius exactly r,
r=3,4,5)

21 = 2 22 = 4, 22 = 4 23 = 8

Rules
combinations
(with largest no.
of max period
CA rule vectors)

< Rule 90, Rule
150 >

< st+1
i = sti−1 ⊕ sti+1 ⊕ sti+2,

st+1
i = sti−1⊕sti⊕sti+1⊕sti+2 >

or
< st+1

i = sti−2 ⊕ sti−1 ⊕ sti+1,
st+1
i = sti−2⊕sti−1⊕sti⊕sti+1 >

< R0, R1 >b

Diffusion rate of
n-bit CA
(Average case)

At least n/2
clock cycles

At least n/4 clock cycles At least n/4
clock cycles

Diffusion rate of
n-bit CA (Worst
case)

At most (n − 1)
clock cycles

At most (n − 1) clock cycles At most 3n/4
clock cycles

a st+1
i denotes the state of the i-th cell at time step t+1

b Rules R0, R1 are defined in Sect. 3.
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3.4 Comparison of Properties of 5-Neighborhood Linear CA
with 3/4 Neighborhood Linear CA

In this section, we study the comparison of properties of 5-neighborhood linear
CA with 3/4 neighborhood linear CA, shown in Table 7. Delay will obviously
increase for 5-neighborhood CA with respect to 3-neighborhood CA. On the
other hand, one clock cycle period is at least the time period required for one
time CA evolving and the average diffusion rate for 5-neighborhood CA is 2
times faster than 3-neighborhood CA. Therefore, because of high diffusion rate,
5-neighborhood CA is also suitable for high speed application.

4 Conclusion

In this paper, we have studied 5-neighborhood null boundary linear CA with
two linear rules. The characteristic polynomial has been realized from 5-
neighborhood rule vector of the CA. We have presented an algorithm for syn-
thesizing the 5-neighborhood CA from its characteristic polynomial by assum-
ing some CA sub-polynomials. We have shown the randomness and diffusion
properties of the 5-neighborhood CA rule vectors and the comparison of their
properties with 3/4 neighborhood CA. At present, we are working on how the
CA can be synthesized from its characteristic polynomial without the knowledge
of CA sub-polynomials.
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