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Message from the General Chairs

As we all are aware, Mathematics has always been a discipline of interest not only to
theoreticians but also to all practitioners irrespective of their specific profession. Be it
science, technology, economics, commerce or even sociology, new Mathematical
principles and models have been emerging and helping in new research and in drawing
inferences from practical data as well as through logic. The past few decades have seen
an enormous growth in the applications of mathematics in different areas that are
multidisciplinary in nature. Cryptography, security, and signal processing are such
areas that are being focused on recently due to the need of securing communication
while connecting with others. With emerging computing facilities and speeds, a phe-
nomenal growth has occurred in problem solving area. Earlier, some observations were
made and conjectures were drawn which remained conjectures until somebody either
could prove it theoretically or find counter examples. Today, however, we can write
algorithms and use computers for long calculations, verifications, or generation of huge
amount of data. With available computing capabilities, we can find factors of very large
integers in the size of hundreds of digits; we can find inverses of very large matrices
and solve a large set of linear equations etc. Thus Mathematics and computation have
become more integrated areas of research today and it was decided to organize an event
where researchers can share ideas and deliberate on new challenging problems.

Apart from many other interdisciplinary areas of research, cryptography and security
have emerged as one of the most important areas of research with discrete mathematics
as a base. Several research groups are actively pursuing research on different aspects of
cryptology not only in terms of new crypto-primitives and algorithms but also
numerous concepts related to authentication, integrity and security proofs/protocols are
being developed, often with open and competitive evaluation mechanisms to evolve
standards.

As conferences, seminars, and workshops are the platforms for sharing knowledge
and new research results giving us a chance to get new innovative ideas for future
needs as the threats and computational capabilities of adversaries are ever increasing, it
was thought appropriate to organize a conference focused on Mathematics and com-
putations covering theoretical as well as practical aspects of research, with cryptog-
raphy and security being one of these.

Eminent personalities working in Mathematical and computer science and related
areas were invited to deliver invited talks and tutorials. The talks covered a wide
spectrum, namely, number theoretic concepts, cryptography, algebraic concepts such as
quasi groups and applications etc. The conference was spread over five days (January
17–21, 2017) with the first two days dedicated to tutorials. The main conference was
planned with special talks by experts and paper presentations in each session.



I hope that the conference met the aspirations of the participants and its objective of
sharing ideas and current research and identifying new targets/problems. We are
confident that the young researchers and students found new directions to pursue in
their future research.

We express our heartfelt thanks to the National Board for Higher Mathematics
(NBHM), the Indian Space Research Organisation (ISRO), the Science and Engineering
Research Board (Department of Science and Technology), the Council of Scientific and
Industrial Research (CSIR), Defense Research and Development Organization (DRDO),
the International Society for Analysis, Its Applications and Computation (ISAAC), the
Indian National Science Academy (INSA), Haldia Institute of Technology (Haldia,
India), and the University of Central Florida (USA).

We are also very much thankful to our fellow organizing chair, Prof. Debasis Giri,
who is the founder of the International Conference on Mathematics and Computing
(ICMC), for his effort to make the event a grand success. We extend our sincere thanks
to all speakers, participants, referees, and organizers for their support.

March 2017 P.K. Saxena
P.D. Srivastava
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Message from the Program Chairs

It was a great pleasure for us to organize the third International Conference on
Mathematics and Computing held during January 17–21, 2017, at the Haldia Institute
of Technology, Purba Medinipur, West Bengal, India. Our main goal was to provide an
opportunity to the participants to learn about contemporary research in cryptography,
security, mathematics, and computing and exchange ideas among themselves and with
experts present in the conference as tutorial presenters and the plenary as well as
invited speakers. With this aim in mind we carefully selected the invited speakers and
the speakers for the tutorials. It is our sincere hope that the conference helped the
participants in their research and training by opening new avenues for those who are
either starting their research or are looking to extend their area of research to a different
field in cryptography, security, mathematics, and computing.

During January 17–18, 2017, there were five tutorial talks by Prof. Dipanwita Roy
Chowdhury (IIT, Kharagpur), Prof. Abhijit Das (IIT, Kharagpur), Dr. Avishek Adhikari
(Calcutta University), Dr. Manish Kumar (Birla Institute of Technology and Science,
Pilani), and Sweta Mishra (Indian Institute of Technology, Delhi).

The conference began after a formal opening ceremony on January 19. The program
offered one 75-minute keynote talk by Prof. Mohammed S. Obaidat (Fordham
University, USA) and 11 invited one-hour talks by Prof. Sudip Misra (IIT Kharagpur,
India), Prof. Subhamoy Maitra (Indian Statistical Institute, Kolkata, India), Prof.
Heinrich Begehr (Free University of Berlin, Germany), Prof. Ram N. Mohapatra
(University of Central Florida, USA), Prof. S. Ponnusamy (Indian Statistical Institute,
Chennai Centre, India), Prof. Maria A. Navascues (Universidad de Zaragoza, Spain),
Prof. Margareta Heilmann (University of Wuppertal, Germany), Prof. Rifat Colak (Firat
University, Turkey), Prof. Elena Berdysheva (Justus-Liebig-Universität, Giessen,
Germany), Prof. W.M. Shah (Institute for Research in Mathematical Sciences, Srinagar,
Kashmir, India), and Dr. Manish Kumar (Birla Institute of Technology & Science,
Pilani, India). Our speakers/contributors were from Germany, Spain, Turkey,
Bangladesh, India, Russia, and USA.

After an initial call for papers, 129 papers were submitted for presentation at the
conference. All submitted papers were sent to external reviewers and after refereeing,
35 papers were recommended for publication in the conference proceedings published
by Springer in their Communications in Computer and Information Science (CCIS)
series.



We are grateful to the speakers, participants, reviewers, organizers, sponsors, and
funding agencies for their support and help, without which it would have been
impossible to organize the conference, the workshops, and the tutorials. We owe our
gratitude to the volunteers who worked behind the scenes tirelessly taking care of the
details to make this conference a success.

March 2017 Debasis Giri
Ram N. Mohapatra

Heinrich Begehr
Mohammad S. Obaidat
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Preface

The Third International Conference on Mathematics and Computing (ICMC 2017) was
held at the Haldia Institute of Technology, Haldia, during January 17–21, 2017. Haldia
is a city and a municipality in Purba Medinipur in the Indian state of West Bengal, and
Haldia Institute of Technology is a premier institution training engineers and computer
scientists for the past several years. It has gained its reputation through its institutional
dedication to teaching and research.

In response to the call for papers for ICMC 2017, 129 papers were submitted for
presentation and inclusion in the proceedings of the conference. The papers were
evaluated and ranked on the basis of their significance, novelty, and technical quality
by at least two reviewers per paper. After a careful blind refereeing process, 35 papers
were selected for inclusion in the conference proceedings. The papers cover current
research in cryptography, security, abstract algebra, functional analysis, fluid dynamics,
fuzzy modeling and optimization etc. ICMC 2017 had eminent personalities both from
India and abroad (USA, Germany, Spain, China, and Turkey), who delivered invited
addresses and tutorial talks. The speakers from India are recognized leaders in gov-
ernment, industry, and academic institutions such as the Indian Statistical Institute
Kolkata, Indian Statistical Institute Chennai, IIT Kharagpur, Jammu and Kashmir
Institute of Mathematical Sciences, Srinagar, Kashmir, Calcutta University, Birla
Institute of Technology and Science, Pilani, and Indian Institute of Technology Delhi,
etc. All of them are involved in research dealing with the current issues of interest
related to the theme of the conference. The conference offered five tutorial talks by
Prof. Dipanwita Roy Chowdhury (IIT, Kharagpur), Prof. Abhijit Das (IIT, Kharagpur),
Dr. Avishek Adhikari (Calcutta University), Dr. Manish Kumar (Birla Institute of
Technology and Science, Pilani), and Sweta Mishra (Indian Institute of Technology,
Delhi). In addition to these the program included one keynote talk by Prof.
Mohammed S. Obaidat (Fordham University, USA) and 11 invited talks by Prof. Sudip
Misra (IIT Kharagpur, India), Prof. Subhamoy Maitra (Indian Statistical Institute,
Kolkata, India), Prof. Heinrich Begehr (Free University of Berlin, Germany), Prof.
Ram N. Mohapatra (University of Central Florida, USA), Prof. S. Ponnusamy (Indian
Statistical Institute, Chennai Centre, India), Prof. Maria A. Navascues (Universidad de
Zaragoza, Spain), Prof. Margareta Heilmann (University of Wuppertal, Germany),
Prof. Rifat Colak (Firat University, Turkey), Prof. Elena Berdysheva (Justus-
Liebig-Universität, Giessen, German), Prof. W.M. Shah (Institute for Research in
Mathematical Sciences, Srinagar, Kashmir, India), and Dr. Manish Kumar (Birla
Institute of Technology and Science, Pilani, India).

A conference of this kind would not be possible to organize without the full support
from different people across different committees. All logistics and general organiza-
tional aspects were looked after by the Organizing Committee members, who spent
their time and energy in making the conference a reality. We also thank all the
Technical Program Committee members and external reviewers for thoroughly



reviewing the papers submitted for the conference and sending their constructive
suggestions within the deadlines. Our hearty thanks to Springer for agreeing to publish
the proceedings in its Communications in Computer and Information Science (CCIS)
series.

We are indebted to the National Board for Higher Mathematics (NBHM), the Indian
Space Research Organisation (ISRO), the Science and Engineering Research Board
(Department of Science and Technology), the Council of Scientific and Industrial
Research (CSIR), the Defense Research and Development Organization (DRDO), the
International Society for Analysis, Its Applications and Computation (ISAAC), the
Indian National Science Academy (INSA), Haldia Institute of Technology (Haldia,
India), and the University of Central Florida (USA) for sponsoring the event. Their
support has significantly helped raise the profile of the conference.

Last but not the least, our sincere thanks go to all authors who submitted papers to
ICMC 2017 and to all speakers and participants. We sincerely hope that the readers will
find the proceedings stimulating and inspiring.

March 2017 Debasis Giri
Ram N. Mohapatra

Heinrich Begehr
Mohammad S. Obaidat
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Abstract. In the present day, applications of cloud computing is grow-
ing exponentially and clients are inclined to use the cloud server to store
sensitive data, which is indexed by important or related keyword(s) avail-
able in the data. Once the data is stored, the client supplies some key-
words to the cloud server and requests the corresponding data. If the
data is stored in plaintext form, data privacy will be violated. Thus
the client encrypts the data along with the realted keywords, and then
stores the ciphertext in the cloud server. Encryption of data maintains
the confidentiality, but this makes keyword search difficult. To solve this
issue, designated server based public key encryption with keyword search
(dPEKS) scheme is used. In dPEKS scheme, to get the encrypted data,
the client computes a trapdoor related to a relevant keyword, and sends
it to the cloud server, which then gives the ciphertext to the client pro-
vided that the trapdoor is verified. Hence, the client gets the data from
the ciphertext. However, an adversary will not get any information on
the data or the keywords. A certificateless dPEKS (CL-dPEKS) scheme
is proposed in this paper. It provides indistinguishability to the cipher-
text and trapdoor, and resilience to off-line keyword guessing attack.
The Computational Diffie-Hellman (CDH) problem and Bilinear Diffie-
Hellman (BDH) problem keep the proposed scheme secure.

Keywords: CL-PKC · dPEKS · Bilinear pairing · Cloud server ·
Keyword guessing attack

1 Introduction

In 2004, Boneh et al. [1] introduced the notion of public key encryption with
keyword search (PEKS) scheme, which is used for secure email access from a
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email server containing a list of relevant keywords. A PEKS scheme can be
used in an e-mail system as follows. A sender C selects an email data m ∈
{0, 1}� and a list of keywords {w1, w2, · · · , wn}, which are contained in m ∈
{0, 1}�. C then employs the public key of the receiver R to generate a PEKS
ciphertext {U, V, z1, z2, · · · , zn} by encrypting m ∈ {0, 1}� and {w1, w2, · · · , wn}.
Following this, C delivers {U, V, z1, z2, · · · , zn} to the local email server S of R
(the receiver). To get the encrypted email from S, R selects a keyword wj and
computes its corresponding trapdoor Zj by using his/her private key. Then Zj is
sent to his/her S (the server) to check whether {U, V, z1, z2, · · · , zn} contains wj ,
which is concealed in Zj . S then prepares a ciphertext Cm using his/her private
key provided that Zj is verified. Then S sends {Cm, U, V } to R, and he/she
recovers the corresponding m ∈ {0, 1}� using his/her own private key. Note
that, S and an outsider A do not learn any information about the encrypted
email and keywords.

In recent years, the popularity of sharing data on a public cloud has increased.
The client-server storage service in the public cloud allow clients to store impor-
tant data in the cloud server at cheap rates. However, the sharing of data must
be done securely since data privacy is a major concern in today’s world. Gen-
erally, a client encrypts the data and then uploads the ciphertext to the cloud
server. The encrypted data uploaded by the client to a pubic cloud server, is
indexed by one or more keyword(s), which are elements of the uploaded data.
But searching for a keyword in an encrypted data is difficult and complex. For
this purpose, PEKS scheme is popularly used in the cloud computing environ-
ment for secure data storage and access. Here, we aim to design a secure data
storage and access mechanism in cloud environments. The proposed data stor-
age and access mechanism is explained as follows. A client C encrypts data
m ∈ {0, 1}� and a list of relevant keywords {w1, w2, · · · , wn}, which are compo-
nents of m ∈ {0, 1}�, by using the public key of the cloud server S to generate
a PEKS ciphertext {U, V, z1, z2, · · · , zn}. Then, C stores {U, V, z1, z2, · · · , zn} to
S. To get m ∈ {0, 1}� containing a particular wj , C computes a trapdoor Zj of
wj using his/her private key, and then sends it to S. Following this, S prepares
a ciphertext Cm using his/her private key provided that Zj is correct. Then
S sends {Cm, U, V } to C if Zj is verified. Now, C extracts m ∈ {0, 1}� from
{Cm, U, V } using his/her private key.

PEKS scheme proposed in [1] is useful for both email and client-server stor-
age systems. However, the scheme in [1] is bound to use a secure channel between
client/receiver and email server/cloud server [2]. To eliminate this requirement,
Baek et al. [2] put forwarded the concept of designated server based PEKS
(dPEKS) scheme. In dPEKS scheme, only the designated server is allowed to
verify whether a keyword of the trapdoor is identical to any of the keywords
associated with the data. Unfortunately, Rhee et al. [3] argued that the secu-
rity model proposed in [2] provides limited capabilities to the adversary and the
proposed dPEKS scheme is insecure. In this scheme, an attacker can perform
off-line keyword guessing attack to guess the keyword from a given trapdoor.
Accordingly, Rhee et al. revised the security model proposed in [2] and proposed
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the concept of trapdoor indistinguishability. They also put forwarded a secure
dPEKS scheme and analyze its security using the refined security model. Accord-
ing to the analysis made in [3], a dPEKS is secure against off-line keyword
guessing attack if the scheme provides trapdoor indistinguishability property.
Unfortunately, Hu et al. [4,5] found that the dPEKS scheme proposed in [3]
is vulnerable to the off-line keyword guessing attack, which is performed by a
malicious server. Then they proposed two improved dPEKS schemes in [4,5].
Unfortunately, Ni et al. [6] found that the schemes in [4,5] are vulnerable to
the off-line keyword guessing attack performed by a malicious server and chosen
keyword attack.

All the schemes proposed in [1–6] are designed using certificate based public
key cryptography (CA-PKC). In these schemes, the certificate of the public key
must be verified before using it to get assured that the public key actually belongs
to the correct party. In CA-PKC, public key infrastructure (PKI) is required to
mange the complex public key certificate management process to authenticate
the public key, which decreases the applicability in real environments. To defeat
these troubles, Shamir [7] introduces the idea of identity-based cryptography
(IBC), which eliminates the use of public key certificate as needed in CA-PKC.
In IBC, client’s public key is calculated from the publicly known identity of the
client, such as email identity, passport number, social security number, etc. and
a trusted third party, called private key generator (PKG) is responsible to gen-
erate the corresponding private key of the client by binding client’s identity and
PKG’s private key. Bones and Franklin [8] designed map-to-point hash function
to proposed a practical identity-based encryption (IBE) scheme using elliptic
curve [9,10] and bilinear pairing. Based on this IBE scheme, in 2013, Wu et al.
[11] proposed a dPEKS scheme, called dIBEKS. However, Wu et al.’s dIBEKS
scheme has a limitation due to the existing problem of IBC, called private key
escrow problem. Certificateless public key cryptography (CL-PKC) is introduced
in [12] by incorporating the merits of IBC and CA-PKC. Note that, CL-PKC
abolishes the troubles of IBC and CA-PKC. In CL-PKC, the full private key of
a client has two values, one is selected by the client himself/herself and the other
is the identity-based private key, which is computed by the PKG. This ensures
that the client does not have to put complete trust on PKG.

In 2014, Yanguo et al. [13] proposed a dPEKS scheme using CL-PKC, called
CL-dPEKS. This scheme used the elliptic curve and bilinear pairing [8]. This
scheme is proven to be probably secure in the random oracle model. However,
the computation costs of the scheme is high. Thus, we propose a new CL-dPEKS
scheme. The proposed CL-dPEKS scheme is robust and computation cost effi-
cient than the scheme proposed in [13]. Our scheme also provides the indistin-
guishability to the ciphertext and trapdoor, and resilience to off-line keyword
guessing attack. The proposed CL-dPEKS scheme is secure based on CDH and
BDH problems.

This paper is arranged as follows. In Sect. 2, we discuss the preliminaries,
which are necessary to understand our CL-dPEKS scheme. In Sect. 3, we provide
a framework of CL-dPEKS scheme. Section 4 describes a concrete CL-dPEKS
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scheme. Section 5 is devoted to the security analysis of our CL-dPEKS scheme.
Section 6 is addresses the performance comparison of our scheme with other
related scheme. We conclude the paper with some remarks in Sect. 7.

2 Preliminaries

2.1 Bilinear Pairing

Let p be a large prime number of length k bits, and Fp be the finite field over p.
We define E(Fp) : v2 = u3+xu+y (mod p), where (4x3+27y2) �= 0(mod p) over
Fp be the elliptic curve, where x, y ∈ Fp. Let O denote the “point at infinity”
[9,10]. Assume that P is the generator of the group G1 = E(Fp) ∪ {O} of order
p, where P �= O. Here G1 must be additive cyclic group of elliptic curve points.
Assume that G2 is a multiplicative cyclic group of order p. A bilinear pairing
e : G1 × G1 → G2 is a mapping, which satisfies the following properties [8]:

– Bilinearity: For any P,Q ∈ G1 and a, b ∈ Z∗
p , e(aP, bQ) = e(P,Q)ab must

hold.
– Non-degeneracy: If P is a generator of G1, e(P, P ) is generator of G2.
– Computability: An efficient polynomial time algorithm C must exist for the

calculation of e(P,Q), for all P,Q ∈ G1.

A bilinear map e is called an admissible bilinear map if it satisfies above
properties. The map e will be derived either from the modified Weil pairing or
Tate pairing over Fp [8].

2.2 Bilinear Diffie-Hellman Parameter Generator (BDH-PG)

A BDH-PG X is a polynomial time bounded algorithm, which takes the secu-
rity parameter 1k as input and it then outputs a uniformly random tuple
(p, e,G1, G2, P ) of bilinear parameters.

2.3 Computational Diffie-Hellman (CDH) Problem

Given a random tuple (P, aP, bP ) ∈ G1 for any a, b ∈R Z∗
p and P ∈ G1, C cannot

calculate abP with in polynomial time.

2.4 Bilinear Diffie-Hellman (BDH) Problem

Given a random tuple (P, aP, bP, cP ), for any a, b, c ∈ Z∗
p and P ∈ G1, C cannot

calculate e(P, P )abc with in polynomial time.
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2.5 System Model

In cloud environments, a dPEKS scheme offers a secure client-server storage sys-
tem. Our CL-dPEKS scheme is proposed to fulfill this objective. The proposed
client-server storage system in public cloud environments is described briefly in
Fig. 1. In our CL-dPEKS scheme, three entities are involved: (i) a private key
generator (PKG), (ii) a cloud server S, which is identified by the identity IDS ,
and (iii) a client C, which is identified by the identity IDC . The PKG provides
identity-based partial private key for C and S. C stores his/her important data
in an encrypted form to S after encrypting the data with the public keys of C
and S. The whole scenario can be described as follows. Assume that C wishes
to upload a data m ∈ {0, 1}�, which contains n keywords {w1, w1, · · · , wn}.
Then C encrypts m ∈ {0, 1}� as {U, V } and {w1, w1, · · · , wn} as {z1, z1, · · · , zn}
using the full public keys pkC of C and pkS of S, respectively. Finally, C uploads
{U, V, z1, z1, · · · , zn} to the S using a public channel. Later on, if C wants to
retrieve m ∈ {0, 1}� from S, then C prepares a trapdoor Zj on a keyword wj using
his/her full private key skC and sends it to S over a public channel. To search the
encrypted m ∈ {0, 1}� on the storage, S will prepare a ciphertext Cm using his/her
full private key skS provided that the trapdoor Zj is correct. Then S will sends
{Cm, U, V } to C over a public channel. Note that a third party including S will
not learn the data m ∈ {0, 1}� using any of the public information. After receiving
{Cm, U, V } from S, C recovers m ∈ {0, 1}� from it using his/her full private key
skC . List of notation used in this paper is listed in Table 1.

3 Framework of a CL-dPEKS Scheme

A CL-dPEKS scheme includes the following algorithms.

1. CL-dPEKS-Setup: The PKG executes this deterministic algorithm. As
input, it takes 1k and it generates a public parameter set Γ and a master
secret key msk of PKG.

2. CL-dPEKS-Gen-Secret-Key: An entity IDi (i = C,S) executes this
probabilistic polynomial time (PPT) algorithm. As input, it takes Γ and it
outputs a secret key xi and a public key Pi for IDi.

3. CL-dPEKS-Gen-Partial-Private-Key-Extract: The PKG executes
this PPT algorithm to generate an identity-based partial private key for
IDi (i = C,S). As inputs, it takes Γ, msk of PKG, and an identity IDi, Pi

of IDi, and then it returns an identity-based partial private key di and a
public information Ti for IDi.

4. CL-dPEKS-Set-Private-Key: The entity IDi (i = C,S) keeps ski =
(di, xi), as his/her full private key.

5. CL-dPEKS-Set-Public-Key: The entity IDi (i = C,S) keeps pki =
(Ti, Pi), as his/her full public key.

6. CL-dPEKS-Encrypt: The client C performs the execution of this PPT
algorithm, which takes the full public key pkC of C, full public key pkS of S,
a data m ∈ {0, 1}�, a list of relevant keywords {w1, w2, · · · , wn} as inputs,
and then it outputs a ciphertext {U, V, z1, z2, · · · , zn}.
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Fig. 1. Proposed client-server storage system in public cloud environments.

7. CL-dPEKS-Gen-Trapdoor: The client C executes this PPT algorithm,
which takes the full private key skC of C, a keyword wj as inputs and then
it outputs a trapdoor Zj .

8. CL-dPEKS-Test-Trapdoor: The cloud server S executes this determin-
istic algorithm. As inputs, it takes a trapdoor Zj , a ciphertext {U , V ,
z1, z2, · · · , zn}, full private key skS = (dS , xS) of S and full public key
pkC = (TC , PC) of C. It outputs True if Zj is correct, i.e., wj is matched
with any of {w1, w2, · · · , wn}, else outputs False.
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Table 1. List of notations used in the proposed protocol.

Notation Description

p A large prime number of k-bit

Fp A finite field of order p

E(Fp) A set of elliptic curve points

Zp Zp = {0, 1, · · · , p − 1}
Z∗

p Z∗
p = Zp\{0}

x ∈R A An element x is randomly selected from the set A

G1 Additive cyclic group of order p

G2 Multiplicative cyclic group of order p

P Generator of G1, P �= O
PKG Private key generator

s Master key of PKG

e An admissible bilinear map, e : G1 × G1 → G2

P0 Public key of PKG, P0 = sP

C A client

S A cloud server

IDi Identity of the entity i, i = C, S

di Partial private key of IDi, i = C, S

xi Secret value of IDi, i = C, S

ski Full private key of IDi, i = C, S

pki Full Public key of IDi, i = C, S

m The data, where m ∈ {0, 1}�

wi i-th keyword, i = 1, 2 · · · , n
Zj Trapdoor of the keyword wj

h(·) One-way general hash function

H(·) Map-to-point hash function

⊕ Bitwise exclusive-or operation

9. CL-dPEKS-Decrypt-Ciphertext: The cloud server S executes this
deterministic algorithm. As input, it takes a trapdoor Zj and the full private
key skS of S. If the output of CL-dPEKS-Test-Trapdoor algorithm is
True, then S computes a ciphertext Cm and returns {Cm, U, V } to C.

10. CL-dPEKS-Data-Recovery: The client C executes this deterministic
algorithm. As inputs, it takes {Cm, U, V } and the full private key pkC of C
and outputs the original data m ∈ {0, 1}�.
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4 Proposed CL-dPEKS Scheme

Our CL-dPEKS scheme includes the following polynomial time bounded algo-
rithms: (i) CL-dPEKS-Setup, (ii) CL-dPEKS-Gen-Secret-Key, (iii) CL-dPEKS-
Gen-Partial-Private-Key, (iv) CL-dPEKS-Set-Private-Key, (v) CL-dPEKS-Set-
Public-Key, (vi) CL-dPEKS-Encrypt, (vii) CL-dPEKS-Gen-Trapdoor, (viii)
CL-dPEKS-Test-Trapdoor, (ix) CL-dPEKS-Decrypt-Ciphertext and (x) CL-
dPEKS-Data-Recovery.

1. CL-dPEKS-Setup: PKG takes the 1k as inputs and then does as follows.
(a) Choose a large prime number p of size k bits.
(b) Choose a tuple {Fp, E(Fp), G1, G2, e, P}.
(c) Select s ∈ Z∗

p as the master key. The public key will be calculated as
P0 = sP .

(d) Select the map-to-point hash function H(·) : {0, 1}∗ → G1 [8], and a
general one-way hash function h(·) : {0, 1}∗ → {0, 1}�, where � depends
on the specific hash function. For example, if h(·) is considered as SHA-
512, then � = 512 bits.

(e) Publish Γ = {Fp, E(Fp), G1, G2, e, P, P0,H(·), h(·)}.
2. CL-dPEKS-Gen-Secret-key: The entity i (i = C,S) with identity IDi

selects xi ∈R Zp as his/her secret key and then calculates the corresponding
public key as Pi = xiP .

3. CL-dPEKS-Gen-Partial-Private-Key-Extract: The entity IDi (i =
C,S) delivers {IDi, Pi} to the PKG over a private channel. Then PKG does
as follows:

(a) Choose ti ∈R Z∗
p and calculates Ti = tiP .

(b) Calculate li = h(IDi, Ti, Pi) and di = (ti + sli) mod p.
Now PKG sends the tuple (di, Ti) to IDi through a secure channel. Here
the partial private key of IDi is di and Qi = diP will serve as the partial
public key of IDi. The private key di is considered legitimate if diP =
Ti + h(IDi, Ti, Pi)P0 = Qi holds. Since we have,

Qi = Ti + h(IDi, Ti, Pi)P0

= tiP + liP0

= tiP + lisP

= (ti + sli)P
= diP

4. CL-dPEKS-Set-Private-Key: The entity IDi (i = C,S) considers ski =
(di, xi) as full private key.

5. CL-dPEKS-Set-Public-Key: The entity IDi (i = C,S) considers pki =
(Pi, Ti) as full public key.

6. CL-dPEKS-Encrypt: Given an identity IDC of C, an identity IDS of S,
full public key pkC = (TC , PC) of C, full public key pkS = (PS , TS) of S,
and a list of keywords {w1, w2, · · · , wn}, C runs this algorithm to generate
a ciphertext {U, V, z1, z2, · · · , zn} as follows
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(a) Select r ∈R Z∗
p and calculate U = rP .

(b) Select m ∈ {0, 1}� and calculate V = m ⊕ h[e(rP0, PC + PS + TC + TS +
(lC + lS)P0)], where lC = h(IDC , TC , PC) and lS = h(IDS , TS , PS).

(c) Calculate zi = r[H(wi) + PS + TS + lSP0], for i = 1, 2, · · · , n.
C sends {U, V, z1, z2, · · · , zn} to S over a public channel.

7. CL-dPEKS-Gen-Trapdoor: Given the identity IDC of C, full private key
skC = (dC , xC) of C, and a keyword wj , C runs this algorithm to generate a
trapdoor Zj = (xC +dC)H(wj). C then sends Zj to S over a public channel.

8. CL-dPEKS-Test-Trapdoor: Given a tuple {U, V, z1, z2, · · · , zn}, full pri-
vate key skS = (dS , xS) of S, full public key pkC = (TC , PC) of C, and
a trapdoor Zj , then S runs this algorithm to check whether e(Zj + (xS +
dS)(PC + TC + lCP0), U) = e(zi, PC + TC + lCP0), for i = 1, 2, · · · , n. If
the justification of one of the equations is correct, S returns True, it means
that the keyword wj of included in Zj is identical to one of the keywords
{w1, w2, · · · , wn}. Otherwise, S returns False and terminates the process.
Suppose that, j = i for some i, then we have

e(Zj + (xS + dS)(PC + TC + lCP0), U)
= e((xC + dC)H(wj) + (xS + dS)(xC + dC)P, rP )
= e((xC + dC)H(wj), rP )e((xS + dS)(xC + dC)P, rP )
= e(rH(wj), (xC + dC)P )e(r(xS + dS)P, (xC + dC)P )
= e(rH(wj) + r(xS + dS)P, (xC + dC)P )
= e(r[H(wj) + (xS + dS)P ], (xC + dC)P )
= e(r[H(wj) + PS + TS + lSP0], PC + TC + lCP0)
= e(zj , PC + TC + lCP0)

9. CL-dPEKS-Decrypt-Ciphertext: If the algorithm CL-dPEKS-Test-
Trapdoor outputs True for Zj , then S run this algorithm and computes
Cm = e(U, (xS + dS)P ). Now, S returns {Cm, U, V } to C over a public
channel.

10. CL-dPEKS-Data-Recovery: After receiving {Cm, U, V } from S, C
recover the original data m ∈ {0, 1}� by executing V ⊕ h[e(U, (xC +
dC)P0)Cm]. Since, we have

V ⊕ h[e(U, (xC + dC)P0)Cm]
= V ⊕ h[e(rP, (xC + dC)P0)e(U, (xS + dS)P )]
= V ⊕ h[e(rP0, (xC + dC)P )e(U, (xS + dS)P )]
= V ⊕ h[e(rP0, (xC + dC)P )e(rP0, (xS + dS)P )]
= V ⊕ h[e(rP0, (xC + dC)P + (xS + dS)P )]
= V ⊕ h[e(rP0, xCP + dCP + xSP + dSP )]
= m ⊕ h[e(rP0, PC + PS + TC + TS + (lC + lS)P0)]

⊕h[e(rP0, PC + TC + lCP0 + PS + TS + lSP0)]
= m

The proposed CL-dPEKS scheme is further described in the Fig. 2.
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Client C Public Channel Cloud Server S

CL-dPEKS-Encrypt

Choose a data m ∈ {0, 1}�

Choose {w1, w2, · · · , wn}
Choose r ∈R Z∗

p

Compute
U = rP
V = m ⊕ h[e(rP0, PC + PS + TC

+TS + (lC + lS)P0)]
zi = r[H(wi) + PS + TS + lSP0],
for i = 1, 2, · · · , n

〈U, V, z1, z2, · · · , zn〉−−−−−−−−−−−−−−−→
Store 〈U, V, z1, z2, · · · , zn〉

CL-dPEKS-Gen-Trapdoor

Choose a keyword wj

Compute Zj = (xC + dC)H(wj)
〈Zj〉−−−−−−−−−−−−−−−→

CL-dPEKS-Test-Trapdoor

Check if
e(Zj + (xS + dS)(PC + TC + lCP0), U) =?
e(zi, PC + TC + lCP0), for i = 1, 2, · · · , n
CL-dPEKS-Decrypt-Ciphertext

If CL-dPEKS-Test-Trapdoor outputs
“True” for Zj , compute Cm = e(U, (xS + dS)P )

〈Cm, U, V 〉←−−−−−−−−−−−−−−−−−
CL-dPEKS-Data-Recovery

V ⊕ h[e(U, (xC + dC)P0)Cm] = m

Fig. 2. Proposed CL-dPEKS scheme

5 Security Analysis

The following adversaries are considered for CL-PKC system [12].

1. Type I adversary AI : The master key msk = s of the PKG cannot be
accessed by AI , but may get the public keys PC and PS of C and S, and
can replace these public keys with the new public keys P ′

C and P ′
S chosen by

him/her.
2. Type II adversary AII : The master key msk = s of PKG can be accessed

by AII . But, AII is not permitted to change the public keys PC and PS of C
and S.

A CL-dPEKS scheme must provide the following security requirements.

– Ciphertext Indistinguishability: In our CL-dPEKS scheme, C encrypts a
data m ∈ {0, 1}� and a list of keywords {w1, w2, · · · , wn} using CL-dPEKS-
Encrypt algorithm, and the ciphertext {U, V, z1, z2, · · · , zn} is delivered to S
over a public channel, where U = rP , V = m ⊕ h[e(rP0, PC + PS + TC + TS +
(lC + lS)P0)] and zi = r[H(wi) + PS + TS + lSP0], for i = 1, 2, · · · , n. Assume
that an adversary A ∈ {AI ,AII} captures the ciphertext. Note that r is a
random bit string, unknown to A and it will change despite the same data
and list of keywords getting encrypted every time. The probability of guessing
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r is 1
2k

, where length of r is k bits. However, A may try to compute H(wi) from
zi, but since r is unknown, A is unable to compute any of {w1, w2, · · · , wn}
even if he/she knows the public keys pkC and pkS . Furthermore, V is still
protected under the BDH problem. Accordingly, A can not compute r from
U = rP , since it is protected under the CDH problem. Therefore, under the
CDH and the BDH problems, our CL-dPEKS scheme provides the ciphertext
indistinguishability.

– Trapdoor Indistinguishability: In our CL-dPEKS scheme, C sends a trap-
door Zj of the keyword wj to S over a public channel to get the encrypted
data. For wj , C computes Zj = (xC +dC)H(wj) using the CL-dPEKS-Gen-
Trapdoor algorithm and then sends it to S over a public channel. Assume
that A ∈ {AI ,AII} captures Zj . AI can calculate dC , but cannot compute
xC . Therefore, AI cannot compute H(wj) from Zj within polynomial time
due to CDH problem. Accordingly, our CL-dPEKS scheme provides trapdoor
indistinguishability.

– Off-line Keyword Guessing Attack: From the security requirements of
trapdoor indistinguishability and ciphertext indistinguishability, A ∈ {AI ,
AII} can not derive the hashed keywords H(wi) and H(wj) from zi, and
Zj , respectively. Therefore, according to analysis provided in [3], we conclude
that our CL-dPEKS scheme is not susceptible to the off-line keyword guessing
attack.

6 Performance Evaluation

Here, we have included a computation cost comparison of our CL-dPEKS scheme
with the scheme proposed by Yanguo et al. [13]. We define TM , TH and TP as
the computation costs of elliptic curve scalar point multiplication, map-to-point
hashing operation, and bilinear pairing operation, respectively. According to
the result obtained in [14], we know that TM ≈ 29Tm, TP ≈ 87Tm and TH ≈
29Tm, where Tm is the time needed for the execution of a modular multiplication

Table 2. Computation cost comparison

Phase Yanguo et al. [13] Proposed

CL-dPEKS-Encrypt 3nTM + (n+ 2)TH + (3n+
4)TP

(n + 3)TM + TP

CL-dPEKS-Gen-Trapdoor 4TM + TH TM

CL-dPEKS-Test-Trapdoor 2nTP 3nTM + 2nTP

CL-dPEKS-Decrypt-Ciphertext Not proposed TM + TP

CL-dPEKS-Data-Recovery Not proposed TM + TP

Overall computation cost (3n + 4)TM + (n + 3)TH +
(5n+4)TP ≈ 551(n+1)Tm

(4n + 6)TM + (2n +
3)TP ≈ 290(n + 2)Tm
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operation. The computation cost comparison is given in Table 2. The overall
computation cost of our CL-dPEKS scheme is lower compared to the scheme
proposed in [13].

7 Conclusion

A new CL-dPEKS scheme is proposed in this paper for secure client-server stor-
age service in public cloud environments. A client of our scheme is allowed to
deliver a trapdoor to the cloud server over a public channel. The proposed
CL-dPEKS scheme is compared with the scheme proposed in [13] and found
that our scheme is more computation-cost-effective. We also found out that our
CL-dPEKS scheme offers ciphertext indistinguishability and trapdoor indistin-
guishability, and resists off-line keyword guessing attack.
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Abstract. Ciphertext Policy Attribute-based Encryption(CP-ABE) is
a public key primitive in which a user is able to decrypt a ciphertext if
the attributes associated with secret key and the access policy connected
with ciphertext matches. Although CP-ABE provides both confidential-
ity and fine-grained access control to the data stored in public cloud,
anonymous CP-ABE adds interesting feature of sender and/or receiver
anonymity. In this paper, we discuss a recent work on anonymous CP-ABE
[1], which aims to provide secure and efficient data retrieval anonymously.
We show that the scheme has major security weakness and does not ensure
anonymity feature, which is the main claim of the scheme. We then present
an improved scheme for mitigating the weaknesses of the scheme. The
improved scheme retains the security claims of the original scheme [1]
without adding any computation and communication overhead.

Keywords: Attribute based encryption · Anonymity · Confidentiality ·
Access structure

1 Introduction

Cloud computing is a comprehensive model, which provides on-demand comput-
ing resources such as storage, network, applications and services. Many enter-
prizes and individuals outsource their data to the cloud storage servers in order
to reduce the cost for resource management. While making this flexibility to
manage data in third party server, the security and privacy of data are major
concerns. The outsourced data may contain sensitive information, such as Elec-
tronic Health Records(EHRs), financial details, personal photos etc. Therefore,
data must be protected in the cloud storage server, so that unauthorized data
access and data privacy protection need to be handled appropriately based on
application requirement. There have been several approaches to securing data
in cloud server. However, data encryption is a widely used primitive for secur-
ing data from authorized users. Before storing the data in cloud server, the
data owner can encrypt the data so that the cloud server cannot learn anything
from the stored data. Once the encrypted data are stored in the cloud server,
two requirements become apparent for user convenience - Access control and
c© Springer Nature Singapore Pte Ltd. 2017
D. Giri et al. (Eds.): ICMC 2017, CCIS 655, pp. 16–25, 2017.
DOI: 10.1007/978-981-10-4642-1 2
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Search over encrypted data. To provide a solution for secure and fine-grained data
access, Sahai and Waters introduced the concept of attribute-based encryption
(ABE) [2]. Ciphertext-Policy ABE(CP-ABE) [3] enables data encryption as per
the access policy, where the access policy describes the combination of required
attributes. User’s secret key contains the attribute values which the user pos-
sesses. If the user’s key matches with the access policy then he can decrypt the
documents.

Although ABE scheme supports fine-grained access control [4], it discloses
sender and/or receiver identity by which an adversary can guess the meaning
or purpose of the message by seeing the attributes. Therefore, protecting sender
and/or receiver identity while using ABE has been found a challenging research
problem. In order to address this problem, anonymous ABE (AABE) schemes
have been proposed in literature [5–9]. In anonymous CP-ABE, access policy is
concealed inside the ciphertext components. A user tries to decrypt a cipher-
text using the secret key made up with his attributes. If his attributes fulfills
the access policy, then the decryption operation is successful. If the attributes
included in the secret key do not match with the access policy, then the user
can neither decrypt the ciphertext nor he can uncover the access policy hidden
inside the ciphertext.

In 2013, Koo et al. [1] have proposed a searchable anonymous ABE scheme,
where search on encrypted data is done on data owner’s identity and data
retriever’s attributes. The scheme claimed that a user in the system can search on
encrypted data stored in cloud with preserving sender and receiver anonymity.
In this paper, we show that Koo et al.’s scheme fails to achieve the receiver
anonymity [10]. We then propose an improved scheme, which mitigates the secu-
rity flaw and retains the claimed security strength without adding any overhead.

The remaining of the paper is organized as follows. In Sect. 2, we give some
preliminaries. In Sect. 3, we discuss Koo et al ’s scheme. In Sect. 4, we show the
security weaknesses of Koo et al.’s scheme. In Sect. 5, we present an improved
scheme and provide its analysis in Sect. 6. We conclude the paper in Sect. 7.

2 Preliminaries

2.1 Bilinear Mapping

Let G1 and G2 be two multiplicative cyclic groups of prime order p. Let g be a
generator of G1 and e be a bilinear map, e : G0 × G0 → G1. The bilinear map e
has the following properties:

– Bilinearity: For all u,v ∈ G0 and a, b ∈ Z∗
p , we have e(ua, vb) = e(u, v)ab.

– Non-degeneracy: e(g, g) �= 1.
– Efficiency: The function e is efficiently computable.

We say that G0 is a bilinear group if the group operation in G0 and the bilinear
map e: G0 × G0 → G1 are both efficiently computable.
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2.2 Access Tree

Access structure is represented in form of an access tree T . Each non-leaf node
of the tree behaves as a threshold gate. It is defined as a tuple of its children and
a threshold value. Let numx denotes the number of children of a node x and kx

represents the threshold value of the node x, then 0 < kx ≤ numx. For an OR
gate kx = 1, and for an AND gate, kx = numx. Each leaf node x represents an
attribute and threshold value kx = 1. Each child of a parent will have unique
index number from set [1,num] in an ordered fashion. To assist in traversing the
access trees in cryptographic operations, following functions are being used.

– parent(x) = parent of the node x in the tree.
– att(x) = attribute associated with the leaf node x.
– index(x) = index number of node x as a child of its parent node. The value

will be between 1 to num.

The encryption algorithm first chooses a polynomial qx for each node x (includ-
ing the leaves) in the tree T . The polynomial is chosen in a top-to-bottom
fashion, initiating from the root node R. For each node x in the tree, the degree
dx of the polynomial qx = kx − 1, that is dx is one less than the threshold
value kx of that node. For the root node R, the algorithm selects a random
s ∈ Zp and sets qR(0) = s. Then, it picks dR number of random points to define
the polynomial qR. For every other node x of access tree, it computes qx(0) =
qparent(x)(index(x)) and selects dx number of random points randomly to define
a polynomial qx.

3 Koo et al.’s Scheme

Koo et al. [1] proposed a scheme for secure and efficient data retrieval using
anonymous attribute based encryption. The scheme works with the four entities
as follows.

– Trusted Authority (TA), who generates user specific secret keys.
– Cloud service provider(CSP) is a semi-trusted entity where the users stored

their data in encrypted form.
– Data owner/encryptor, who encrypts and stores the data in CSP.
– Data retriever/receiver, who issues queries to the CSP to access encrypted

data from the cloud storage and retrieves the data only if his attributes sat-
isfies the access policy specified by the data owner.

The scheme consists of five phases - System Setup, Key Generation, Encryption,
Data Access and Decryption.

3.1 System Setup

The TA performs the setup. It chooses a bilinear group G of prime order p with
generator g. It picks two random exponents α, β from Zp and also selects a
cryptographic hash function H: {0,1}∗ → G. TA computes the public parameter
PK and master secret MK for the system as: PK = 〈G, g, ω = e(g, g)α, h = gβ〉,
MK = 〈gα, β〉.
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3.2 Key Generation

Each data owner gets a secret key AO from TA in which data owner identity is
hidden. Each receiver gets a secret key SK from TA for decryption operation.

– For the data owner having identity ID0, TA computes and returns him the
anonymous key, AO = H(ID0)β .

– The TA chooses a random r ∈ Zp for each individual user ui in the system
and rj ∈ Zp for each attribute λj ∈ Λi. Here Λi is the set of attributes that
belongs to user ui. The private key SK is computed as

SK = 〈D = g
(α+r)

β , {Dj = grH(λj)rj ,

D′
j = grj ,D′′

j = H(λj)β}λj∈Λi
〉

3.3 Encryption

Before uploading data content to cloud storage, the data owner having the iden-
tity IDO computes his pseudonym as PO = H(IDO)t. Here t is the random value
selected by the data owner from Zp. The data owner publicizes his pseudonym.
To encrypt data M , the data owner runs Encrypt algorithm, as explained below.
The encryption algorithm inputs the public parameter PK, its pseudonym PO, a
message M to be encrypted under the access tree T , and outputs the ciphertext
CT0. After that, the attribute scrambling procedure, AttrScm, is applied to
the ciphertext CT0 for generating new ciphertext CT to be located in the cloud
storage.

Data Encryption(Encrypt). This algorithm chooses a polynomial qx for each
node x (including the leaves) in a top-down manner, starting from the root node
R in the tree T . For each node x in the tree, set the degree dx of the polynomial
qx as kx − 1. The algorithm chooses a random s ∈ Zp and sets one point for
polynomial qR as (0, s). Rest of the dR points are chosen randomly to completely
define the polynomial qR. For every other node x, the algorithm fixes qx(0) =
qparent(x)(index(x)) and selects dx number of random points to completely define
a polynomial qx. Let Y be the set of leaf nodes in T . The ciphertext is built upon
the basis of the access tree T as CT ′ = (T , C̃ = Mωs, C = hs, C ′′ = PO, {Cy =
gqy(0), C ′

y = H(attry)qy(0)}y∈Y ).

Attribute Scrambling(AttrScm). In this phase the data owner garbles each
attribute value included in T and obtains a new access tree T ′ by running
AttrScm(CT0,AO,S). S is the set of attributes which are included in the access
policy of CT0. S = {λi, · · · , λk|1 ≤ i ≤ k ≤ |L|}. For each attribute included in
S, the data owner computes

KO,S = {e(At
O,H(λj))}λj∈S

= {e(H(IDO)βt,H(λj))}λj∈S

= {e(H(IDO),H(λj))βt}λj∈S
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and replaces the value of λx of every leaf node x related to attrx in T with the
value of scmattx

∈ KO,S . This results in the access tree T ′. The output of this
algorithm is CT = 〈T ′, C̃, C,C ′′, {Cy, C ′

y}y∈Y 〉
At the end of this phase, the data owner uploads the CT on the cloud storage.

3.4 Data Access

This phase facilitates the retrieval of encrypted data from CSP.

– Data query. In the initial phase, a retriever can first gets a pseudonym list
of data owners either from the CSP or directly from the data owners. Once
the retriever determines to retrieve the data with C ′′ = PO from the cloud
storage, it can generate cryptographic index terms for the attributes included
in his secret key SK as follows.

KO,Λi
= {e(D′′

j , C ′′)}j∈Λi

= {e(H(IDO)t,H(λj)β)}j∈Λi

= {e(H(IDO),H(λj))βt}j∈Λi

After that, the retriever submits his data request query in the form of a subset
of these scrambled index information KO,Λ′

i
⊆ KO,Λi

to the CSP.
– Data Retrieval. After receiving search query in form of scrambled index

terms KO,Λ′
i
, the CSP searches in his database if the requested item is present

in the storage and if it is present then whether it is satisfied by the requested
index attributes. This is done by the algorithm C(T , KO,Λ′

i
). The algorithm

returns true or false.
Let Tx be a subtree of T with root node x and X ′ = {x′ ∈ Yx and parent(x′)

= x}. C(T ,KO,Λ′
i
) is computed recursively as follows. If x is a leaf node,

C(Tx,KO,Λ′
i
) returns true if and only if attrx ∈ KO,Λ′

i
. If x is a non-leaf node

in T , C(T ,KO,Λ′
i
) returns true if and only if at least kx children return true.

For each ciphertext CTi, where 0 ≤ i ≤ m, the CSP simply follows the access
tree T i and determines whether C(T i,KO,Λ′

i
) returns true or not. The CSP

sends the ciphertexts to the retriever for which the algorithm C(T i,KO,Λ′
i
)

returns true.

3.5 Decryption

When a retriever receives the requested content from CSP in encrypted form,
then he applies the decryption algorithm DecryptNode on that encrypted content
to obtain the plaintext.
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DecryptNode(CT, SK, S). For a leaf node x in access tree the algorithm
computes as follows: If i (= attrx) ∈ S then

DecryptNode(CT, SK, S) =
e(Di, Cx)
e(D′

i, C
′
x)

=
e(gr · H(i)ri , gqx(0))

e(gri ,H(i)qx(0))

= e(g, g)rqx(0)

= Fx

If x is a nonleaf node then the algorithm proceeds as follows : {∀z ∈ children
of x}, it invokes the DecryptNode(CT, SK, z ) and stores the output as Fz.
Let Sx is the arbitrary kx sized set of child nodes z such that Fz �= ⊥, then next
step is computed as

Fx =
∏

z∈Sx

F
Δi,s′x(0)
z

=
∏

(e(g, g)rqz(0))
Δi,s′x(0)

=
∏

(e(g, g)rqparent(z)(index(z)))Δi,s′x(0)

=
∏

(e(g, g)rqz(i))
Δi,s′x(0)

= e(g, g)rqz(0)

(Here, Δ is Lagrange coefficient).
The decryption result becomes FR = e(g, g)rqR(0) = e(g, g)rs.
From this, the algorithm can decrypt the ciphertext and restore the original

data content M by computing

C̃

e(C,D)/FR
=

Mωs

e(hs, g(α+r)/β)/e(g, g)rs

=
Me(g, g)αs

e(gβs, g(α+r)/β)/e(g, g)rs

= M

4 Weaknesses in Koo et al.’s scheme

In the scheme [1], the attributes in the access policy are scrambled with
a pseudonym computed by the data owner. The pseudonym hides the data
owner(encryptor)’s identity. To fetch the documents from CSP the receiver
requires the pseudonym. The receiver gets the pseudonym in either of these
two ways:
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1. a pseudonym directly from data owner.
2. a list of pseudonyms from the CSP.

If the receiver gets a pseudonym directly from the data owner then the receiver
is knowing the data owner. The receiver scrambles his attributes using the
pseudonym and retrieves the documents from the cloud as described in the
Retrieve procedure. This compromises the anonymity of the sender. If the
receiver gets a list of pseudonyms from the CSP, then following two cases arise.

(i) The receiver does not know which pseudonym refers to which data owner.
Therefore, sender and receiver anonymity is preserved. However, concealing
the sender identity from the receiver leads an attack as described later in
this section.

(ii) It creates an operational overhead for the receiver when he gets a list of
pseudonyms from the CSP and the receiver does not know which pseudonym
refers to which data owner. The receiver can scramble his attributes either
with all pseudonyms one-by-one and send them to the CSP or the receiver
can select a subset of pseudonyms, scramble his attributes with each of the
pseudonym from subset one-by-one and send the queries to the CSP.

The scheme requires every user to get an anonymous encryption key AO from
trusted authority. Then the user is able to encrypt and upload the documents
on CSP. However, we show that a user who knows the public parameters can
generate a pseudonym, encrypt a message and upload the document on CSP.
A user who has the knowledge of the public parameters PK = (G, g, h = gβ ,
ω = e(g, g)α) chooses a random element t ∈ Zp, generates his pseudonym gt and
publishes it. The user scrambles the attributes included in T as e(h,H(λj)t)
= e(g,H(λj))tβ ∀ λj ∈ T . Now, this ciphertext can be uploaded to the CSP.
Next, we show that the CSP can break the receiver anonymity, if he has the
knowledge of the public parameter and attributes in the system. The CSP per-
forms following steps to identify the attributes of a receiver who has submitted
a search query to CSP.

CSP generates a fake pseudonym say PO = gt for 1 ≤ i ≤ n, where t is chosen
randomly from Zp. Using this fake pseudonym, CSP computes and prepares a
list of scrambled attributes for each of the attribute in the system as follows.
{e(h,H(λj))t}λj∈L = {e(g,H(λj))βt}λj∈L for 1 ≤ i ≤ n.

This list of values he stores in a set T ′. When a data retriever U wants a list
of pseudonyms from the CSP, then the CSP submits this list of pseudonyms
in which the fake pseudonym generated by the CSP is also included. The
data retriever U will not be able to detect if there is any fake pseudonym,
as all pseudonyms are random values. Let us denote the list as L. The U
chooses a subset L′ of L, where L′ ⊆ L. Then U scrambles his attributes
using each of the pseudonym present in the L′ as KOl,Λi

= {e(POl,D′′)}j∈Λi

= {e(gtl ,H(λj)β)}j∈Λi
= {e(g,H(λj))βtl}j∈Λi

using each pseudonym POl = gtl

present in the set L′. U then submits these different sets of scrambled attributes
〈KOl,Λi

for each POl ∈ L′〉 to the CSP. The CSP needs to compare each set
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KOl,Λi
with the set of pre-computed values T ′ that he has. Whenever he finds

KOl,Λi
⊆ T ′, then CSP identifies which attributes the U possesses. Once the CSP

identifies the attributes of U , then by comparing the remaining sets of scrambled
attributes KOl,Λi

with the stored access policies of other encrypted documents,
the CSP can either uncover the hidden access policies of other encrypted docu-
ments. Therefore, the receiver anonymity of a ciphertext is revealed.

5 Improved Scheme

The security flaws in scheme [1] occur because of the use of pseudonym. We
propose an improvement without using pseudonym, which retains the security
claims of the scheme without increasing any overhead. The improved scheme has
the following phases.

5.1 System Setup

The System setup phase is same as described in Sect. 3.1.

5.2 Key Generation

The Key Generation phase remains same as explained in Sect. 3.2. In addition
to the Key Generation algorithm, the trusted authority publicizes a list of IDs
and the mapping of IDs with the data owners owing that ID. We note that the
secret parameter β scrambles the attributes in access policy, so the mapping of
IDs with the data owners do not reveal any information about the sender and
receiver of the encrypted documents stored in CSP.

5.3 Encryption

The data owner encrypts data M as per the access policy T by running the
Encrypt algorithm as mentioned in Sect. 3.3. After that, the attribute scram-
bling algorithm, AttrScm, is applied to the ciphertext CT0 for generating the
ciphertext CT to be located in the cloud storage. We propose a modification in
the AttrScm algorithm by removing the use of random value t. The data owner
can use his secret encryption key for attribute scrambling as described below. S
is the set of attributes to be included in access tree. For each attribute from set
S = {λi, · · · , λk | 1 ≤ i ≤ k ≤ |L|}, the data owner calculates

KO,S = {e(AO,H(λj))}λj∈S

= {e(H(IDO)β ,H(λj))}λj∈S

= {e(H(IDO),H(λj))β}λj∈S

and assigns scmattx
∈ KO,S to leaf node x in T instead of λx corresponding to

attrx. This results in the access tree T ′. The new encrypted content CT to be
stored is made as CT = (T ′, C̃, C, C ′′,{Cy, C ′

y}y∈Y ). After this phase, the data
owner uploads CT to the storage managed by the CSP.
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5.4 Data Access

Data query (Query). In this phase there is no need for a retriever to acquire a
pseudonym of any data owner. When the retriever determines to retrieve a data
with identity IDO from the CSP then the retriever generates cryptographic index
terms for corresponding attributes as

KO,Λi
= {e(D′′

j ,H(IDO))}j∈Λi

= {e(H(IDO),H(λj)β)}j∈Λi

= {e(H(IDO),H(λj))β}j∈Λi

After that, the retriever submits the data request query in form of KO,Λ′
i

⊆
KO,Λi

to the CSP.

Data Retrieval (Retrieve). It is same as described in Sect. 3.4.

5.5 Decrypt

The decrypt operation is same as explained in Sect. 3.5.

6 Analysis

Theorem 1. The improved scheme provides sender and receiver anonymity.

Proof. We prove that the CSP or any other unintended receiver can not learn
the sender or receiver identity. To break the sender and receiver anonymity
the adversary needs to find out the value of sender’s ID IDO and λj from the
scrambled attribute value {e(H(IDO),H(λj)β)}j∈Λi

. For each of the attribute
λj in the system and senders’ identities IDO,i, the following computed results
are stored in CSP.

{{e(H(IDO,i),H(λj))}j∈Λi
}1≤i≤n.

Here, n is the number of users in the system and it is assumed that every user
possesses a unique identity and a set of attributes. To compare the scrambled
attributes stored along with the ciphertext the adversary needs to get the value
of β, where β is the master key of the system which the adversary can not
get. The use of β prevents any unintended retriever to generate the scrambled
attributes index terms for which he has not got the private key. The complexity
of getting the value of β from the public parameter h = gβ is equivalent to
that of solving the discrete logarithm problem, which is an intractable problem.
Therefore, the adversary can not learn the sender or receiver identity from the
hidden access policy or from the search query because of scrambled attributes.��

In addition to the security strengths of the improved scheme, the scheme
reduces the communication and computation overheads, as the receiver neither
requires a pseudonym from data owner or from CSP nor uses it in attributes
scrambling procedure.
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7 Conclusion

Anonymous attributes based schemes provide interesting features such as sender
and/or receiver anonymity, privacy-preserved data access and unlinkability. We
discussed a recently proposed anonymous CP-ABE scheme, which claims secure
and efficient data retrieval with sender and receiver anonymity. We showed that
the scheme suffers from security weaknesses, lacks sender and receiver anonymity.
We proposed an improved scheme by removing the use of pseudonym that mit-
igates the weaknesses of the scheme and retains the claimed security features
intact without adding any communication and computation overhead.
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Abstract. Several password authentication schemes utilizing smart
cards have been proposed in the literature. Recently Kumar et al. pro-
posed a new authentication scheme to access remote server over insecure
channels. They also claimed that their scheme is able to resist various
attacks. However, in this paper we demonstrate that Kumar et al. scheme
is still vulnerable to various malicious attacks and is aslo unable to pro-
vide several essential security properties.
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1 Introduction

Several authentication scheme have been proposed for remote user authentica-
tion in the traditional client-server scenario. Lamport [1] was the first to propose
remote authentication using one-way hash function. However, Lamport’s scheme
was found to be vulnerable to stolen verifier attack. Later several authentication
schemes were proposed [2–15]. Regrettably, many of these schemes [16–18] are
often found to be vulnerable. Karupiah and Saravanan [19] analyzed the scheme
in [20] and showed that it is vulnerable to several attacks. They then proposed
a new scheme. Wang et al. in [21] proved that the schemes in [18,22] are vul-
nerable to several malicious attacks. They then presented an enhanced scheme
c© Springer Nature Singapore Pte Ltd. 2017
D. Giri et al. (Eds.): ICMC 2017, CCIS 655, pp. 26–33, 2017.
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to mitigate the vulnerabilities of [18,22]. Wang et al. [23] analyzed Yang et al.
[24] and Hsieh-Leu [16] schemes and found that their schemes were susceptible
to smart card loss attack. Wang et al. [23] then, proposed an efficient scheme
to overcome Yang et al. [24] and Hsieh-Leu [16] schemes vulnerabilities. Ruhul
et al. [7] illustrated the weaknesses of the scheme in [21] and also proposed an
improved scheme.

Kumar et al. [25], in 2016, for mobile networking scenario proposed a scheme
and claimed that their scheme could resist several attacks and provide various
security properties. However, after careful analysis we discerned that Kumar
et al. scheme is vulnerable to various attacks such as replay attack, offline pass-
word guessing attack, Denial of Service (DoS) attack and session key disclosure
attack. Moreover, the scheme was unable to provide essential security properties
such as forward secrecy and user anonymity.

Roadmap of the paper: The rest of the paper is organised as follows. Section 2
provides a brief overview of Kumar et al. scheme. In Sect. 3 we cryptanalyze
Kumar et al. scheme. In Sect. 4, we make the conclusion.

2 Overview of the Scheme in [25]

This section briefs the scheme in [25]. It is divided into five parts. These parts are
explained extensively as follows. The nomenclature of this paper is summarized
in Table 1.

2.1 Nomenclature

Table 1. Nomenclature

Notations Descriptions

Pwi User password

Idi User identity

S Server

UT User table

xs Master key of S

rs Random nonce of S

ri Random nonce of user

⊕ Bitwise XOR operation

h(·) Hash function

|| Concatanation
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2.2 Registration Phase

The steps for the registration phase are mentioned below.

1. User selects an identity Idi and submits {Idi, MNUM} with ci to S, where
ci is an individual credential data and MNUM is the legal mobile number
of the user.

2. When S receives {Idi, MNUM}, it computes REGi = h(Idi||xs) and sends
it to MNUM securely. Then, S keeps an user table (as shown in Table 2)
which is comprising elements {Idi, MNUM} and ci.

3. When the user receives REGi, he computes ai = h(Idi||Pwi||REGi), bi =
REGi ⊕ Pwi). Then, he stores {Idi, ai, bi} into smart card and sends {Idi,
bi, CUNi} to S, where CUNi is the unique number of the smart card.

4. S receives {Idi, bi, CUNi}, then checks Idi ∈ UT or not. If the condition
holds, S inserts {CUNi, bi} into UT .

Table 2. User table of the server S

User ID Variable MNUM CUN Credential

Id1 b1 9894567 CUN1 c1

Id2 b2 9904558 CUN2 c2

Id3 b3 9704956 CUN3 c3

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
Idn bn 9774511 CUNn cn

2.3 Login and Authentication Phase

The detailed steps of this phase are as follows

1. At card reader machine, user inserts the card and keys Pwi. After
receiving the password, the reader calculates REG∗

i = bi ⊕ Pwi, a∗
i =

h(Idi||Pwi||REG∗
i ) and verifies a∗

i
?= ai. If not, the login process is ended.

Else, the user has entered the correct password. Then, reader generates a
nonce ri and finds ci = h(Idi||ri||Pwi) and di = ri ⊕ Pwi. The reader then
transmits {Idi, ci, di} to the server.

2. When S receives {Idi, ci, di}, it checks Idi ∈ UT or not. If not, session
is ended. Else, S sends a OTP (one-time password) to MNUM of the User.
After the user receives the OTP, he sends it to S. Then, S checks the OTP ver-
ification. If the verification is not true, the session is ended. Else, it computes
REG∗

i = h(Idi||xs), Pw∗
i = bi ⊕REG∗

i , r
∗
i = di ⊕ Pwi, c∗

i = h(Idi||r∗
i ||Pw∗

i )
and verifies c∗

i
?= ci. If not, the session is ended.

3. S now generates a nonce rs and finds gi = r∗
i ⊕ rs, fi = h(Idi||r∗

i ||rs||REG∗
i ).

It then sends {fi, gi} to the user.
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4. After receiving {fi, gi}, the user derives r∗
s = gi⊕ri, f∗

i = h(Idi||ri||r∗
s ||REGi)

and verifies whether f∗
i

?= fi. If the verification fails, it ends the session.
Otherwise, both compute the session key SK = h(Idi||REGi||ri||rs) and
start the secure session.

2.4 Password Update Phase

The steps for the password change process are mentioned below.

1. At card reader machine, user inserts the card and keys Pwi. After receiving
Pwi, the reader finds REGi = bi ⊕Pwi, a∗

i = h(Idi||Pwi||REG∗
i ) and checks

whether a∗
i

?= ai. If true, the user is prompted to enter the new password
Pwnew

i to the user.
2. After receiving Pwnew

i , the reader computes bnewi = REGi⊕Pwnew
i ), anewi =

h(Idi||Pwnew
i ||REGi) and substitutes bi, ai with bnewi , anewi in the smart card.

Hence, the password has been updated successfully.

2.5 Forgot Password Recover Phase

The steps for recovering the user’s password are as follows.

1. User submits {Idi, MNUM} to S.
2. When receiving {Idi, MNUM}, S verifies Idi ∈ UT and MNUM ∈ UT or

not. If true, S finds REGi = h(Idi||xs) and Pwi = bi ⊕ REGi. Otherwise,
the request is terminated.

3. S then sends Pwi to the user’s MNUM securely.

2.6 Smart Card Revocation Phase

The steps to acquire a new smart card without re-registration are as follows.

1. The user submits {Idi, MNUM} and his personal credentials to the server.
2. After receiving {Idi, MNUM}, S verifies the validity of the user on the basis

of the personal credentials and {Idi, MNUM}. If the check holds, S computes
REGi = h(Idi||xs) and transmits it to MNUM of the user securely.

3. After receiving REGi, the user computes anewi = h(Idi||Pwnew
i ||REGi) and

bnewi = REGi ⊕ Pwnew
i ).

4. The user then acquires a new smart card containing {Idi, anewi , bnewi }. The
user then sends {Idi, bnewi , CUNi} to the server.

5. After receiving {Idi, bnewi , CUNi}, S checks whether the Idi exists in the
user table. If it does, S further enters bnewi and CUNi} into the table.
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3 Cryptanalysis of the Scheme in [25]

This section proves that the scheme in [25] is susceptible to various types of
attacks. We establish the following two assumptions. Note that the assumptions
are relatively reasonable and have also been used in recent related works [26–31].

1. Adversary has absolute control on the insecure public medium. Therefore,
he can modify, inject, delete and block messages transmitted over the public
channel [32].

2. The secret stored data may be extricated by the adversary from the
lost/stolen smart card via side channel attacks [33–35].

Thus the adversary can extricate the security credentials {Idi, ai, bi} from the
lost/stolen smart card. He can also trap the messages such as m1={Idi, ci, di}
and m2={fi, gi} between S and user.

3.1 Lack of user anonymity

In scheme [25], the Idi is sent as a palindrome in m1={Idi, ci, di} to S. Therefore,
an adversary can identify a particular user and track his login history. Hence,
the scheme of Kumar et al. is not confering the user anonymity feature.

3.2 Incorrect Password Change Process

In scheme [25], the credentials associated with Pwi kept in the smart card are bi
and ai. After a successful password update, the smart card is updated with the
parameters bnewi and anewi . However, recall that the parameter bi is also stored
in the User table at the server side. Moreover, there is no updation message
sent to the remote server. Therefore, the user is denied services permanently
if he tries to login after a successful password change process. Hence, we show
that Kumar et al’s incorrect password change phase culminates into a Denial of
Service (DoS) attack.

3.3 Susceptible to Off-Line Password Guessing Attack

We assume that the login request message m1={Idi, ci, di} is intercepted by the
adversary during any login and authentication session. The, the user’s password
can be acquired as follows.

1. Adversary guesses the password Pwa.
2. Computes r

′
i = di ⊕ Pwa

3. Computes c
′
i = h(Idi||r′

i||Pwa)
4. Verify ci

?= c
′
i. If verification does not hold, reiterate steps 1–4 till the correct

password is found.

If ci
?= c

′
i is true, then this implies that Pwi = Pwa and hence, the adversary

has successfully obtained the user’s password. Thus, we prove that the scheme
in [25] is susceptible to offline password guessing attack.
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3.4 Disclosure of Session Key

As discussed in Sect. 3.3, the adversary can discover the random number ri and
password Pwi of user. Furthermore, he has {Idi, ai, bi} in accordance with our
assumption 2. Thus, he can derive REGi = bi ⊕ Pwi = REGi ⊕ Pwi ⊕ Pwi

where bi = REGi ⊕ Pwi. Moreover, he has trapped the message m2={fi, gi}
and therefore further derives rs = gi ⊕ri where gi = ri ⊕rs. Thus, the adversary
can deduce SK = h(Idi||REGi||ri||rs).

3.5 Absence of Perfect Forward Secrecy

As discussed in Sect. 3.4, the session key is disclosed for ith session. Note that
Pwi, Idi as well as REGi are static parameters for all the sessions. We assume
that the attacker has intercepted the messages {Idi, ci+1, di+1} as well as {fi+1,
gi+1} for the i + 1th session. He then computes the user’s random number ri+1

(random value of i+1th session) as discussed in Sect. 3.3. He further derives the
server’s random number rs for the i+1th session as discussed in Sect. 3.4. Hence,
the attacker deduces SK = h(Idi||REGi||ri+1||rs) for the i+ 1th session. Thus,
the scheme in [25] does not confer the property of forward secrecy.

3.6 Replay Attack

It is clear that there is no mechanism for the remote server to verify the fresh-
ness of data in the user’s login request message m1={Idi, ci, di}. Hence, any
previously legitimate login request can be replayed by the attacker to get login
as a valid user, and remote server cannot detect this malicious behavior and will
respond to user (actually Attacker) as usual. Therefore, the scheme of Kumar
et al. is susceptible to replay attack.

4 Conclusion

In this paper we analyzed the scheme coined by Kumar et al. scheme for remote
login and pointed out that Kumar et al. scheme is susceptible to several malicious
attacks like offline password guessing attack, Denial of Service (DoS) attack and
replay attack. Furthermore, our analysis revealed that Kumar et al. scheme
is unable to provide crucial security features such as perfect forward secrecy
and user anonymity. Moreover, their password change process was found to be
inefficient and thus Kumar et al. scheme is unsuitable for practical applications.
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Abstract. The recent advancement in smart phones and its widespread
popularity switches the users of traditional computing to mobile comput-
ing. In addition, to facilitate users, hand held devices such as a mobile
phone application for the payment method should be accepted for practi-
cal implementation. Recently, Yang et al. proposed an electronic payment
protocol using payment gateway and claims that this scheme is suitable
for cloud computing, where payment gateway is placed in the cloud area
and all the communication between user, merchant, bank is performed
via the payment gateway. However, it is known that cloud server is not
considered as completely secured entity. Hence, by putting payment gate-
way on cloud server the author is endangering the security of system as
a consequence it is not suitable for cloud environment. In this paper, we
propose an efficient electronic payment protocol for mobile environment
where mobile users can directly communicate with the merchant. It has
been shown that our protocol has better security performance in terms
of different attacks.

Keywords: e-payment · Mobile commerce · Security · Symmetric key

1 Introduction

With the rapid development of online shopping, the demand of secure payment
system is imperative and increased with time. In electronic transaction appli-
cation, people mainly use mobile device to deal with the transaction due to
user friendly services. One of the objectives of electronic payment transactions
is to provide security to the customer during the process of the transaction as
it is performed over a public channel. In order to protect the data from a mali-
cious action, that may cause loss and theft of the customers money. An efficient
electronic payment protocol is proposed. The use of online payment systems
was mainly among banking institutions. During the same time, credit cards and
ATM’s were first introduced to customers. The exponential growth of the Inter-
net has helped the development of online payment systems and has changed
the way consumers do business. The electronic payment system is considered
as an integral part of any E-commerce system and categorized as Business-
to-Business (B2B), Business-to-Consumer (B2C), Consumer-to-Business (C2B),
and Consumer-to-Consumer (C2C) transaction.
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1.1 Study and Review on Existing Research

For the protection of online payment transactions, there are different type of
electronic payment systems have been suggested by researchers and scientist
in [1–3,13]. In 2001, Chari et al. [4] shows that mobile communication is differ-
ent from electronic communication as the underlying technologies are different.
Therefore, the idea of security in mobile commerce should be different from that
of the electronic commerce. However, there are some of well-known existing pro-
tocols for secure electronic payment exists such as secure electronic transaction
(SET ) [5], Internet Key Protocol (iKP ) [6] and these protocol are success-
fully implemented over Internet. However, Kungpisdan et al. [7] justified that
SET and iKP payment protocols are not suitable for mobile communication pay-
ment transaction and only be suitable for electronic communication for payment
transaction. Then, Tellez et al. in [8] also supports in [7] that existing SET and
iKP payment protocols are inapplicable for mobile payment transaction in wire-
less network due to their heavy computational and communication operations
and proposed an improved protocol. Then, Kungpisdan et al. [9] proposed an
enhanced version of [7]. In 2008 Fun et al. [10] discusses a new protocol for per-
sonal mobile payment, which is based on a client centric model using symmetric
key [10] and also claims that the protocol achieves privacy protection for the
pair of communication entity. Isaac et al. [11] proposes a secure payment trans-
action protocol using payment gateway, where the client and merchant always
communicate via a payment gateway in order to exchange message. Later on,
Yang et al. in [12] shows that Isaac et al.’s in [11] scheme does not provides
non-repudiation and suffers from the key management problem. Hence, Yang
et al. [12] proposed a new mobile payment protocol and claimed that it is suit-
able for cloud computing environment.

1.2 Organization of the Paper

Section 2 gives the preliminary for the protocol, which also includes review of
Yang et al. protocol and its weaknesses. Section 3 presents the proposed protocol
for e-payment system. The security and performance evaluation of our protocol
are given in Sect. 4. Finally, we conclude the paper in Sect. 5.

2 Preliminary

This section explains some of the concepts used in order to understand our
protocol.

2.1 RSA Digital Signature

1. Key Generation: Randomly select two prime numbers p, q and compute
n = p ∗ q, φ(n) = (p − 1) × (q − 1).
Choose e such that gcd(φ(n), e)= 1.
Compute d = e−1mod(φ(n))
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2. Signature: Compute Sig = Mdmod n
Send Sig,M

3. Verification: M ′ = Sigemod n
check M = M ′; if correct accept; otherwise reject

2.2 Roles

The proposed scheme, consists of five entities: Client (C), Merchant (M), Pay-
ment Gateway (PG), Issuer (I) and Acquirer (A). They are introduced as follows.

– Merchant: A person or company, who is selling its goods.
– Client: A person or organization using the services of merchant.
– Payment gateway: Use in the payment transaction between the bank and

merchant/client.
– Issuer: The client’s bank.
– Acquirer: The merchant’s bank.

Table 1. List of the symbols used in Yang et al.’s scheme

Notation Meaning

NIDC The temporary identity of the client

IDi The identity of the participant i

TInfo The transaction information includes time, date, and the serial number

Price The amount of the payment

m The payment information computed by m = 〈NIDC , T Info, Price〉
SRequest The signature request

TSi The timestamp generated by the participant i

IssuerID The identity of the issuer

AcquirerID The identity of the acquirer

Stt The state of a transaction

KSA−B The session key shared between A and B

2.3 Review of Yang et al. e-payment System [12]

We briefly review Yang et al.’s e-payment protocol, where all the transactions
are performed via payment gateway. The detail of the scheme is described below.
The list of notations used in this paper is given in Table 1.

Step 1 C → PG: NIDC , A
PG → M: NIDC , A
M → PG: TInfo
PG → C: TInfo
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Step 2 C→PG:SRequest = (h(TInfo), IDC , NIDC , h(m), P rice, TSC)KSC−I

PG → I: SRequest
I → PG: (S)KSC−I

Decrypt [SRequest]; check TSC

S = h(m)dmod n
PG → C: (S)KSC−I

Step 3 C → PG: (S,m, h(TInfo), TSC , IssureID)KSC−PG

Decrypt and get (S,m, h(TInfo), TSC , IssureID)
PG → M: (S,m, h(TInfo), TSC , IssuerID)KSM−PG

Step 4 M → PG: (S,m, h(TInfo), IDM , TSM , IssuerID, AcquirerID)KSM−PG

Step 5 PG → I: (S,NIDC , IDM , h(TInfo), P rice,AcquirerID) using private
network
PG → A: (h(TInfo), P rice, IDM , IssuerID)

Step 6 I → PG: PResponse, h(TInfo)
A → PG: Stt, h(TInfo)

Step 7 PG → C: PResponse, h(TInfo)
PG → M: Stt, h(TInfo)

2.4 Weakness of Yang et al.

We found that Yang et al.’s scheme is not suitable for cloud computing, as it
was claimed by Yang that her scheme provides anonymity for cloud client. The
details are discussed below.

– It is assumed that the Payment Gateway is in the area of cloud and due to
this the protocol can be implemented in cloud environment.

– The payment gateway plays very important role as all the entities commu-
nicate through the payment gateway for payment related request. Moreover,
the client cannot communicate directly with the merchant to process the
Payment request.

– In short, the security of Yang et al.’s scheme directly depends on the security
of Payment Gateway.

However, it is known that the cloud servers are not considered as secure [14,15].
So, by putting the Payment gateway in cloud the security of transaction is
becoming more dangerous.

3 Proposed Protocol for e-payment System

In this section, a new payment scheme is proposed for online transaction sys-
tem. The proposed scheme consists of two phases, namely the set up phase
and transaction phase. The detailed descriptions of each phase are given below.
Table 2 introduces the notations used in our protocol.
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Table 2. List of the symbols used

Notation Meaning

NIDC The temporary identity of the client

IDi The identity of the i’th participant

IDP The identity of the product

TID The transaction information includes transaction time, date, and the
serial number

PI The payment information computed by PI = h(TID ‖ Price ‖ h(OI))

OI The order information computed by OI = h(IDP ‖ h(Price) ‖ TID)

Ti The timestamp generated by i

h() One-way hash function

Stt The state of a transaction

KAB Secret key between A and B

V S The value- subtraction

PResponse The product response

PRequest The product request

V CRequest The value claim request

V CResponse The value claim response

3.1 Proposed Architecture and Discussion

In Fig. 1, we have provided the architecture of e-payment, which consists of five
entities, namely Client (C), Merchant (M), Payment Gateway (PG), Acquirer
(A) and Issuer (I). The client requests for the product by looking on the mer-
chant’s web site. Additionally, the merchant provides product detail, including
serial number, price, date, time to client. Now, the mobile client asks for the
product request including the value need to be subtracted by bank and for-
wards it to merchant, where M keeps the product request and forwards the
value claim request to payment gateway. The gateway performs some verifica-
tion steps and forwards value substraction request to issuer. At the same time,
Payment Gateway forwards some encrypted message to Acquirer. On receiving
the value substraction request, issuer verifies it and sends value substraction
respond to payment gateway and acknowledgement for payment gateway to A.
Then, A forwards it to payment gateway. The payment gateway computes value
claimed response and forwards it to M, where merchant verifies it and generates
product response which is acceptable after verification.
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Fig. 1. Proposed model of e-payment mechanism

3.2 Setup Phase

In Setup phase, each entity the client, merchant, issuer, acquirer registers with
the payment gateway to establish their secret key with gateway KCP , KMP ,
KIP , KAP respectively. Secret key is required to perform secure communication.
In addition, the client and merchant also establish a secret key KCM between
them self.

The issuer as well as client use RSA signature to perform digital signature
on the document using the private key. Note that the public key pair has been
certified by a certificate authority.

3.3 Transaction Phase

Client starts the transaction by sending its temporary identity to the merchant.
In the whole transaction process, the client can directly communicate with mer-
chant while for communication with bank, the merchant as well as the client
required the payment gateway to make the communication more simple. Detail
description of the protocol is given below, where the symbol A → B : C means
a message C is sent to B by A. The detail, description is shown in Fig. 2.

Step 1 C → M: NIDC

M → C: {IDP , T ID, Price}KCM

Step 2 C → M: PRequest = {TID,NIDC , OI, TC2, V S}KCM

V S = {Sig, PI, IDC , Tc1}KCP

MD = h(PI), Sig = MDdmod n



40 P. Mohit et al.

Fig. 2. The steps of the proposed protocol

Step 3 M → PG: V CRequest = {V S, IDM , P rice, T ID, TM}KMP

Decrypt PRequest; Check |TM − TC2| ≤ ΔT

Step 4 PG → I: V SRequest = {PI, Sig, Price, IDC , IDA}KIP

Decrypt V CRequest; Check |TPG − TM | ≤ ΔT
Decrypt V S; Check |TPG − TC2| ≤ ΔT and h(PI) =?sigemod n
PG → A: {IDM , IDA, P rice}KPA

Step 5 I → A: Acknowledgement
Decrypt (V SRequest); Check Sigemod n =?h(PI)
Check IDC in its database and find MN of client
I → C: OTP Request
C → I: OTP Response
A → PG: Acknowledgement

Step 6 I → PG: V SResponse = {stt, h(price), SigI}
AD = h(IDC ‖ MN)
MD1 = h(AD); SigI = MDd

1mod n

Step 7 PG → M: V CRespond = {stt, h(OI), SigI}
Check h(OI) =? Stored h(OI)
M → C: PRespond = SigI
verify SigeImod n =?h(h(IDC ‖ MN))



Design of Secure and Efficient Electronic Payment System for Mobile Users 41

4 Security Analysis

This section discusses various types of attacks to analyze the security of the
proposed protocol. The detail is described below

1. Confidentiality: In this scheme we always encrypt data before transferring
it to the other communicating party. If adversary A interrupts between com-
munication. A get the encrypted message which can not be decrypted without
the key. Hence, confidentiality is always achieved.

2. Non-repudiation: The Issuer uses the client’s signature to ensure that the
legal person send the request to deduct the money from its account. The client
also can verify the issuer signature. If there are some problems, the client as
well as the issuer can not deny from the fact the signature is performed by
them. Thus, non-repudiation is achieved.

3. Replay attack: We use timestamps, which is checked by the receiv-
ing party if the time stamps is not legal and not showing the valid
time interval. For example, when the merchant receives PRequest =
{TID,NIDC , OI, TC2, V S}KCM

. The merchant first decrypt it and check
|TM − TC2| ≤ ΔT i.e. if it is larger than mention time, then the merchant
will discover that message will send by attacker A. Therefore, the protocol
can defend against replay attack.

4. Insider attack: As the communicated message are encrypted by the ses-
sion key between sending and receiving party. So, only the two can see the
message. For instance, let us consider that if merchant want to know the orig-
inal identity of client IDC , contain in the message V S, it is impossible for
merchant as it is encrypted by client-issuer key.

5. Anonymity: The client identity IDC is always kept secret during the com-
munication and client use temporary identity NIDC which is session depen-
dent for communication. Thus, it prevents client’s Anonymity.

6. Impersonation attack: If attacker A, interrupts the message of the client
and trying to be like client by modifying its message PRequest which con-
tain V S where further contain Sig signature of the client. Which cannot be
performed by A. Thus, the protocol protects impersonation attack.

4.1 Performance Analysis

This section gives the computation cost comparison of our scheme with related
scheme used in online transactions [11,12] as shown in Table 4. It is found that
our scheme has less computation cost, then [11] but more the [12]. Moreover,
Yang et al. uses private channel in order to communicate with bank. We do
not consider concatenation, hash operation, as its computation is very less than
symmetric encryption/decryption. The notation TS refers to symmetric encryp-
tion/decryption (Table 3).
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Table 3. Security comparison of proposed scheme with related schemes

Schemes Isaac et al. [11] Yang et al. [12] Our protocol

Provide confidentiality Yes Yes Yes

Provide integrity Yes Yes Yes

Provide non-repudiation No Yes Yes

Resist anonymity No Yes Yes

Resist replay attack Yes Yes Yes

Resist insider attack Yes Yes Yes

Resist impersonation attack No No Yes

Table 4. Computation cost comparison of the proposed scheme with related schemes

Schemes Isaac et al. [11] Yang et al. [12] Our protocol

Client 4 TS 3 TS 2 TS

Merchant 5 TS 2 TS 2 TS

Gateway 3 TS 2 TS 4 TS

5 Conclusion

This paper presents a new method for electronic payment system, which is
the improvement of Yang et al. e-payment system. Our protocol withstands
the security weaknesses found in Yang et al.’s scheme. In our implementa-
tion, the payment gateway acts as a proxy to communicate between bank and
client/merchant. The security analysis shows that the proposed scheme can resist
against various type of attacks.
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Abstract. Security of data is considered to be one of the most important
concerns in today’s world. Data is vulnerable to various types of intrusion
attacks that may reduce the utility of any network or systems. Constantly
changing and the complicated nature of intrusion activities on computer net-
works cannot be dealt with IDSs that are currently operational. Identifying and
preventing such attacks is one of the most challenging tasks. Deep Learning is
one of the most effective machine learning techniques which is getting popular
recently. This paper checks the potential capability of Deep Neural Network as a
classifier for the different types of intrusion attacks. A comparative study has
also been carried out with Support Vector Machine (SVM). The experimental
results show that the accuracy of intrusion detection using Deep Neural Network
is satisfactory.

Keywords: Security � Intrusions � Deep Neural Network � Support Vector
Machine

1 Introduction

Intrusion Detection System [1, 2] is a type of security management system for com-
puters and networks. It gathers and analyzes information from various areas within a
computer or a network to identify possible security breaches, which include both
intrusions (attacks from outside the organization) and misuse (attacks from within the
organization). ID uses vulnerability assessment, developed to assess the security of a
computer system or network. Data is considered to be the most important aspect of any
organization. If the organization’s data is secure, only then it can successfully carry out
its operations. However, data have always been under a constant threat from external
attacks. The hackers and crackers come up with new ways every day to destroy or steal
the data that every organization holds so precious. In this paper, we have analyzed a
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dataset containing information about the various attacks that have been carried out by
the hackers and based on the parameters, an attempt to predict the kind of attack that
will be used by the hacker, is carried out. The data set has been obtained from UCI
machine learning repository. The data set is related to intrusion detection system
(IDS) and in this work, a Deep learning [3] approach based on neural network has been
adopted to predict different types of IDS attacks.

An Intrusion Detection System, popularly known as IDS, is a software that mon-
itors the network for malicious activities or violations of policies regarding cybercrime
and produces a report to the management system. IDS is related to network security just
like a firewall, it differs from a firewall in the manner of looking for intrusions. The
firewall looks at the outward intrusions in order to prevent them and limits the access
between networks to prevent intrusion. On the other hand, IDS evaluates an intrusion
that has already taken place and then sends an alarm signal. A lot of predictions has
been accomplished using machine learning [4, 5, 12, 13, 15]. Also, several intrusion
detection systems were proposed by several authors using roughest theory and other
methods [7]. In this paper, we have used a multilayer feed forward network to represent
a deep learning concept for IDS. The feed forward network includes input layers, about
400 hidden layer neurons and output neurons. The activation functions used are rec-
tifier activation function and softmax activation function.

Deep learning has been used in this paper. It is a branch of machine learning that
attempts to model higher level abstractions in data by using model architectures with
non-linear transformations [6]. It is chosen since it focuses on computational models
for information representation. It is implemented in such a way that it is able to display
classification invariance with respect to a wide range of transformations and distortions.
It enables us to train a network having a large set of observations and excerpt signals
from this network. The deep learning algorithms use simple features in the lower layers
and more complex features in the higher layers. Here, each hidden layer has statistical
knowledge about the lower layers while higher layer representations are more complex.
The network is trained using greedy layer-wise training which involves the training of
the hidden layers one at a time in a bottom-up fashion. Deep learning has a myriad of
applications. It is used in the medical field where robotics surgery is becoming a
common trend, which relies extensively on tactile equipment. Deep learning is utilized
for developing the robotic equipment. This may enable the doctors to move to a
precision of a millimeter. Also, we can see the application of deep learning in the field
of automotive in terms of self-driving cars, which apply the concepts of deep learning
to emulate the senses of sight and hearing. It is also used in military forces in a country
where a large number of military drones utilize the concept of deep learning to follow a
moving target. Much research is required in this field as it is not yet fully functional.
Currently, Google Brain is a technology used by Google that uses neural networks to
recognize high level inputs only from watching unlabeled images from YouTube.

IDS set has been used in the Support Vector Machine (SVM) as well and the result
is juxtaposed with the one obtained by using the Neural Network. The results obtained
from the Support Vector Machine are complimentary to the ones obtained by using
Neural Networks. Thus, it confirms that the results obtained are satisfactory.
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2 Deep Neural Network

The neural network used is a multilayer feed forward neural network. In this network,
the information moves in only one direction, forward, from the input nodes, through
the hidden nodes (if any) and to the output nodes [8]. There are no cycles or loops in
the network. Each neuron in one layer has direct connections to the neurons in the
subsequent layers. It contains an input layer, a number of hidden layers and an output
layer. The back propagation method is used for learning the weights of the network.
The input layer has an identity function as its activation function. The output layer and
the hidden layers may have rectifier or softmax activation function. Also, a multilayer
neuron does not have a linear activation function in all its neurons. Some of its neurons
might have a nonlinear activation function (Fig. 1).

Feed forward neural network is popular due to 2 factors:

(i) It has the ability to give very closely related approximations for complex multi-
variate nonlinear function directly from input values.

(ii) It has a strong modelling capability for a large class of natural and artificial
phenomena.

However, in most of the practical scenarios, all parameters of a feed forward
network need to be adjusted in a backward way which leads to creation of depen-
dencies among various neurons in various layers.

Mean squared error (MSE) measures the average of the squares of the “errors”, that
is, the difference between the estimator and what is being estimated [9].

The mean square error is calculated in the following way:

MSE ¼ RSS=N

where MSE � Mean Squared Error

RSS � Residual Sum of Squares

N � Population Size

Fig. 1. Feed forward neural network [18]
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RSS is also known as Sum of Squared Residuals (SSR) and Sum of Squared Error
(SSE). It is given by [9, 10],

RSS ¼
X

yi � f xið Þð Þ2 ð1Þ

So, MSE is given by,

1
N

X
yi � f xið Þð Þ2 ð2Þ

The value of R2 denotes how close the obtained result is to the expected regression
line. R2 can have a value within the range [0,1]. The higher value of R2, the more
accurate the obtained result is. It can be computed in the following way:

R2 ¼ SSR=SST where;

SST ¼
X

yi � f yið Þð Þ2 ð3Þ

SSR ¼
X

byl � yð Þ2 ð4Þ

In some of the research experiments, another class of neural network is used which
is known as deep belief network and is composed of Restricted Boltzmann Machines
(RBMs) and uses a greedy layer by layer learning algorithm. However, the type of
architecture used in this paper has a better approach since it provides discriminating
powers for pattern classification by characterizing the posterior distributions of classes
conditioned on the data. The following table contains definitions of the terms used here
(Table 1).

3 Experimental Results and Outcome

The data set used in the experiment is the KDD Cup 1999 dataset which is a collection
of simulated raw TCP dump data over an epoch of 9 weeks on a LAN. The training
data has about 5 million connection records from seven weeks of network traffic and
two weeks of testing data yielded around 2 million connection records. The training
data have 22 of the total 29 attacks present in the test data. The known attack types are
present in the training set while the novel attacks are additional attacks that are present
in the test data set and not in the training data set. The attack types are grouped into 4
categories:

• DOS – Denial of Service (DoS) attack – e.g. syn flooding
• Probing – Surveillance and other probing – e.g. port scanning
• U2R – Unauthorized access to the root user privileges. e.g. Buffer overflow attacks
• R2L – Unauthorized access from a remote machine, e.g. password guessing.
• The training set has about 494,021 records from which 97,277 are normal, 391,458
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are DOS attacks, 4107 are Probe, 1126 are R2L and 52 are U2R connections. Each
connection has about 41 attributes describing different features of connection and a
label assigned to each either as an attack type or normal. This data set was used
originally in The Third International Knowledge Discovery and Data Mining Tools
Competition, which was held in conjunction with KDD-99 The Fifth International
Conference on Knowledge Discovery and Data Mining. This database contains a
standard set of data to be audited, which includes a wide variety of intrusions
simulated in a military network environment.

3.1 Simulation Results

The data set that was used had response values in column 42 with losses being set as
Cross Entropy in order to get classification model (Table 2). The input data set has
been divided into two parts - training frame and validation frame. 75% of the data set
has been assigned as the training frame and 25% of the data set has been assigned as
the validation frame. Upon running the algorithm, a scoring history in the form a graph
was obtained as shown below. The graph produced is between training and validation
frame as x axis and epochs as the y axis. It depicts the similarity between the training
and validation frame and that the model that has been created is correct (Fig. 2).

Table 1. Basics terminology [11, 16, 17]

Terminology Meaning

Deep Learning It is a class of machine learning techniques, based on a set of
algorithms that use multiple layers with complex structures
composed of non-linear transformations to model high level data

Deep Belief Networks It is a probabilistic generative model composed of multiple layers of
stochastic, hidden variables. The top two layers have undirected,
symmetric connections. The lower layers have direct connections
from above and as such receive top-down

Boltzmann Machine It is a network of neuron like units that are symmetrically connected.
They are concerned with making stochastic decisions about whether
to be on or off

Restricted Boltzmann
Machine

It consists of a layer of visible units and a layer of hidden units with
no visible-visible and hidden-hidden connections

Deep Boltzmann
Machine

It is a special kind of BM where hidden neurons are arranged in a
deep layered manner. There exist no visible-visible or
hidden-hidden connections within the same layer. This involves a
connection between only the adjacent layers

Deep Neural Network It is a multilayer network with many hidden layers. The weights in
these networks are fully connected and pre-trained

Deep Auto Encoder It is a special kind of deep neural network where the output target is
the input itself. Deep Belief Networks or distorted training data are
used to train the network

Distributed
Representation

It is the representation of the data in such a way that it appears to be
generated by interaction of various hidden factors. They form a basis
for deep learning
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3.1.1 Experimental Outcome of Deep Neural Network
The activation functions used are rectifier activation function and softmax activation
function (Table 3).

Table 2. Model parameters

Parameter Value Description

Response
column

C42 Response column

Hidden 200,200 Hidden layer sizes (e.g. 100,100)
Seed 7069314529076090000 Seed for random numbers (affects sampling) - Note:

only reproducible when running single threaded
Loss Cross Entropy Loss Function

Fig. 2. Training and validation error of deep learning neural network

Table 3. Status of neurons

A B C D E F G H I J K L

1 119 Input 0 0 - - - - - - -
2 200 Rectifier 0 0 0.6364 0.4589 0 0.0015 0.1133 0.4745 0.1081
3 200 Rectifier 0 0 0.6957 0.4432 0 0.0028 0.0984 0.9853 0.0676
4 23 Softmax 0 0 0.9427 0.2252 0 0.3050 0.4532 −0.2707 0.0619

A – Layer, B – Union, C – Type, D – L1, E – L2, F – Mean Rate, G – rate_RMS, H
– Momentum, I – Mean Weight, J – Weight RMS, K – Mean Bias, L – Bias RMS.

A Deep Learning Based Artificial Neural Network Approach for Intrusion Detection 49



The rectifier is an activation function defined as,

f xð Þ ¼ max 0; xð Þ ð5Þ

Where x is the input.
It can also be expanded to include Gaussian noise given as,

f xð Þ ¼ max 0; xþN 0;r xð Þð Þð Þ ð6Þ

Softmax function is a generalization of logistic function that squashes a
M-dimensional vector z of arbitrary real values to a M dimensional vector r(z) of real
values in the range (0,1) that add up to 1. The function is given by,

P y ¼ jjxð Þ ¼ ex
Twj

P
exTwk

ð7Þ

3.1.2 Output - Training Metrics
This includes the output obtained from the training set. The following training metrics
depict the efficacy of the implementation (Table 4).

The Mean Square Error is approximately 0.09%. The value of R2 is 0.999944
which means that it is more than 99% similar to the expected result. Log loss function
maps the variables to the real numbers which represent the cost associated. Hit Ratio is
the number of times a correct prediction was made over total predictions. Top 10 hit
ratios are used for the prediction and that has been given in the following Table 5.

3.1.3 Output - Validation Metrics
Output Validation metrics depict the output of the testing set. The following output
metrics help in determining the efficacy of the model (Table 6).

Here as well, the MSE value is 0.09%. The R2 value is more than 99%, which
means the predicted value is 99% correct. The hit ratio is given in the following
Table 7.

Table 4. Output training metrics

Parameters Values

Description Metrics reported on temporary training frame with 9910 samples
Model_category Multinomial
Scoring Time 1442054607700
MSE 0.000961
R2 0.999944
Logloss 0.012146
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4 Comparison with Support Vector Machine (SVM)

Support vector machines are supervised learning models that are used in machine
learning that utilize learning algorithms to analyze and recognize patterns for classi-
fication [14]. It’s training algorithm creates a model that assigns new examples into one
category or the other and thus is a non-probabilistic binary linear classifier. It is a
representation in terms of points in space such that there exists a clear gap in between
various kinds of points grouped together. New data are predicted and classified based
on how much it is closer to one particular group than the other.

Table 5. Hit ratio for training set

K (Number of hits) Hit ratio

1 0.9989
2 1.0
3 1.0
4 1.0
5 1.0
6 1.0
7 1.0
8 1.0
9 1.0
10 1.0

Table 6. Output validation metrics

Name of the parameter Outcomes

Description Metrics reported on full validation frame
Model_category Mutinomial
MSE 0.000970
R2 0.999944
Logos 0.011482

Table 7. Hit ratio for validation metrics

K Hit ratio

1 0.9989
2 0.9997
3 0.9998
4 0.9998
5 0.9999
6 0.9999
7 0.9999
8 0.9999
9 0.9999
10 0.9999
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4.1 Simulation Results for SVM

SV type: C-svc (classification)
Parameter: cost C = 5, Gaussian Radial Basis kernel function.
Hyperparameter: sigma = 0.05
Number of Support Vectors: 16860
Objective Function Value:
−2.0098 −11.4563 −31.787 −98.428 −50.5466 −1.999 −22.3287 −1.999 −1.7028
−1.8817 −1.9603 −1.9239 −1 −1.8357 −1 −8.426 −10.269 −9.3452 −1.7028
−7.5755 −1.7028 −24.0647 −19.539 −1.8817 −13.127 −1.8817 −33.4674
−1.9603 −18.2219 −1.9603 −1.924 −15.5029 −1.924 −1.8357 −1 −1.8357
Training error: 0.15365
Cross validation error: 0.00435

As we can see, the cross validation error is very low. Hence the model is accurate.
Comparison between the neural network and SVM can be tabulated as follows

(Table 8):

5 Conclusion

In this work, the training and validation models have a very high R2 value. This high
value has indicated that the adopted model is highly accurate. Application of the deep
learning algorithm to the Intrusion detection System has enabled us to produce a
detailed confusion matrix for the training set, as well as for the validation set. The result
is supported along with a precise MSE graph. With the loss being set as Cross Entropy,
we get a classification model that can be used to detect future intrusion attacks. The
results obtained by Deep Neural Network are compared with the results obtained by
Support Vector Machine.
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Abstract. The immunity of Boolean functions against fast algebraic
attacks is an important cryptographic property. When deciding the opti-
mal immunity of an n-variable Boolean function against fast algebraic
attacks, one may need to compute the ranks of a series of matrices of
size
∑n

i=d+1

(
n
i

)×∑e
i=0

(
n
i

)
over binary field F2 for each positive integer

e less than �n
2
� and corresponding d. In this paper, for an n-variable bal-

anced Boolean function, exploiting the combinatorial properties of the
binomial coefficients, when n is odd, we show that the optimal immunity
is only determined by the ranks of those matrices such that

∑e
i=0

(
n
i

)
is

even. When n is even but not the power of 2, we show that the optimal
immunity is only determined by the ranks of those matrices such that∑e

i=0

(
n
i

)
is even or such that both

∑e
i=0

(
n
i

)
and
∑e+1

i=0

(
n
i

)
are odd.
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1 Introduction

Boolean functions play a vital role in coding theory and in symmetric cryptogra-
phy [8]. Various criteria related to cryptographically desirable Boolean functions
have been proposed.

Boolean functions used in stream ciphers, especially in the filer and combina-
tion generators of stream ciphers based on linear feedback shift registers, should
have large algebraic immunity, in order to help resist algebraic attacks [3,6,14].
Moreover, Boolean functions should also have the resistance against a variant
of the algebraic attack, called the fast algebraic attack (FAA) [1,5,7]. To a cer-
tain degree the algebraic immunity can be covered by the immunity of Boolean
functions against fast algebraic attacks (FAA’s). Algebraic immunity, as well as
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the immunity against FAA’s, has been considered as a important cryptographic
property for Boolean functions used in stream ciphers [10,11,15,16,19].

Studies show that a good immunity for an n-variable function f against
FAA’s is that deg(fg) > d for any nonzero n-variable Boolean function g of
algebraic degree at most e, where 1 ≤ e < �n

2 � and d is as large as possible but
less than n− e, such as d = n− e−1, d = n− e−2 or d = n− e−3 [2,10,13,15].
In particular, if deg(fg) ≥ n−e for any nonzero n-variable Boolean function g of
degree at most e and any positive integer e < �n/2�, then we say that Boolean
function f has the optimal immunity against fast algebraic attacks.

When considering the immunity of n-variable Boolean function f against
FAA’s, we may need to determine whether deg(fg) > d for any nonzero n-
variable Boolean function g of degree at most e. Clearly, if it is true for each integer
e = 1, 2, · · · , �n

2 � − 1 and d = n − e − 1, then f has the optimal immunity. This
problem is then converted into determining the ranks of a series of matrices of size

n∑

i=d+1

(
n

i

)
×

e∑

i=0

(
n

i

)

over F2, denoted by W (f ; e, d), for each integer positive e less than �n
2 � and

corresponding d. More precisely, deg(fg) > d for a given nonzero n-variable
Boolean function g of degree at most e if and only if W (f ; e, d) has full column
rank [10,12].

A class of n-variable balanced Boolean functions [4], called Carlet-Feng func-
tions, denoted by φCF , was proved to satisfy deg(φCF · g) ≥ n − e − 1 and
even satisfy deg(φCF · g) ≥ n − e when n = 2s + 1 with positive integer s, for
any nonzero n-variable Boolean function g of degree at most e and any posi-
tive integer e < �n/2� [12]. Another class of even n-variable balanced Boolean
functions [17], called Tang-Carlet functions, denoted by τCF , may also have good
immunity, i.e., it was proved that deg(τCF ·g) ≥ n−e−2 for all possible functions
g and integers e [13].

In this paper, we further discuss the generic method of deciding the immunity
of Boolean functions against FAA’s by observing the combinatorial properties
of W (f ; e, d) matrix. For an n-variable balanced Boolean function f , when n is
odd, we show that the optimal immunity can be determined only by the ranks
of those W (f ; e, d) matrices such that

∑e
i=0

(
n
i

)
is even; when n is even but not

the power of 2, we show that the optimal immunity can be determined only by
the ranks of those W (f ; e, d) matrices such that

∑e
i=0

(
n
i

)
is even or such that

both
∑e

i=0

(
n
i

)
and

∑e+1
i=0

(
n
i

)
are odd. This result may help us better study the

optimal immunity of balanced Boolean functions against FAA’s, and shorten the
actual time of deciding the optimal immunity of a Boolean function, because the
number of matrices, whose ranks that we need to compute, may be smaller.

2 Preliminaries

Let n be a positive integer. An n-variable Boolean function f is viewed as a
mapping from vector space F

n
2 to binary field F2 and has a unique n-variable

polynomial representation over
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F2[x1, x2, · · · , xn]/(x2
1 − x1, x

2
2 − x2, · · · , x2

n − xn),

called the algebraic normal form (ANF) of f ,

f(x1, x2, · · · , xn) = a0 +
∑

1≤i≤n

aixi +
∑

1≤i<j≤n

aijxixj + · · · + a12···nx1x2 · · · xn,

where a0, ai, aij , . . . , a12···n belong to F2. For simplicity, an n-variable Boolean
function f(x) sometimes is written as f(x) =

∑
c∈F

n
2

fcx
c, where

xc = xc1
1 xc2

2 · · · xcn
n

and fc ∈ F2. We denote by Bn the set of all the n-variable Boolean functions.
For f ∈ Bn, the set of x = (x1, x2, · · · , xn) ∈ F

n
2 for which f(x) = 1 is

called the support of the function, denoted by supp(f). The Hamming weight of
f is the cardinality of supp(f), denoted by wt(f). Boolean function f is called
balanced if wt(f) = 2n−1. The algebraic degree of Boolean function f , denoted
by deg(f), is the degree of its ANF. It is well-known that the algebraic degree
of a balanced n-variable Boolean function is less than n, i.e., the coefficient of
term x1x2 · · · x2 in its ANF must be zero.

A Boolean function g ∈ Bn is called an annihilator of f ∈ Bn if fg = 0. The
lowest algebraic degree of all the nonzero annihilators of f and 1 + f is called
algebraic immunity of f or 1 + f , denoted by AIn(f), and it has been proved
that AIn(f) ≤ �n

2 � for a given f ∈ Bn. A Boolean function f ∈ Bn has the
maximum algebraic immunity if AIn(f) = �n

2 �.
Definition 1. An n-variable Boolean function f has the optimal immunity
against FAA’s if deg(fg) ≥ n − e for any nonzero n-variable Boolean function
g of degree at most e and for any positive integer e < �n/2�.

It is not hard to see that n-variable Boolean functions with the optimal
immunity against FAA’s have the maximum algebraic immunity. Also, Boolean
functions with the optimal immunity against FAA’s were said to be perfect
algebraic immune functions in [12].

When studying the immunity of Boolean Functions against FAA’s, the fol-
lowing two sets of vectors and a matrix over F2 are useful.

For x = (x1, x2, · · · , xn) ∈ F
n
2 , let wt2(x) be the number of its nonzero

coordinates. Denote We by the set {x ∈ F
n
2 |wt2(x) ≤ e} in lexicographic order

and Wd by the set {x ∈ F
n
2 |wt2(x) ≥ d+1} in reverse lexicographic order where

1 ≤ e < �n
2 � and d < n. As a matter of fact, the orderings of We and Wd do not

essentially affect the deciding results on the immunity of Boolean functions, but
good orderings may be good for observing and computing [9].

Let x̄ = (x1 +1, x2 +1, · · · , xn +1). It is clear that if x is the i-th element in
We and x̄ ∈ Wd then x̄ is the i the element in Wd. In particular, 1n = (11 · · · 1)
and 0n = (00 · · · 0) are the first elements in Wd and We respectively.

For y, z ∈ F
n
2 , let z ⊂ y be an abbreviation for supp(z) ⊂ supp(y), where

supp(x) = {i |xi = 1}; and let y ∩ z = (y1 ∧ z1, y2 ∧ z2, · · · , yn ∧ zn), where ∧ is
the bit AND operation.
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Denote W (f ; e, d) by a matrix over F2 related to function f ∈ Bn, which has
been mentioned in Sect. 1. It is a

n∑

i=d+1

(
n

i

)
×

e∑

i=0

(
n

i

)

matrix with ij-th element equal to

wij = wyz = fy∩z̄,

where y is the i-th element in Wd and z is j-th element in We. It was shown that
one can determine the (optimal) immunity against FAA’s through computing the
rank of matrix W (f ; e, d).

Theorem 1 ([10,12]). Let f ∈ Bn. There exists no non-zero function g of
degree at most e such that the product fg has degree at most d, i.e., deg(fg) ≥
d + 1, if and only if W (f ; e, d) has full column rank.

According to Theorem 1, if W (f ; e, n − e − 1) has full column rank then
deg(fg) ≥ n − e for any nonzero n-variable Boolean function g of degree at
most e. Then from Theorem 1 we have a sufficient condition such that an n-
variable Boolean function having the optimal immunity against FAA’s.

Corollary 1. An n-variable Boolean function has the optimal immunity against
fast algebraic attacks if W (f ; e, n − e − 1) has full column rank for each integer
e = 1, 2, · · · , �n

2 � − 1.

3 Deciding the Immunity of Balanced Boolean Functions
in Odd Variables Against Fast Algebraic Attacks

Balanced Boolean functions are more interesting for cryptography. From this
section, we focus on the optimal immunity of n-variable balanced Boolean func-
tions against FAA’s.

It is clear that W (f ; e, n − e − 1) is a symmetric matrix of size
∑e

i=0

(
n
i

) ×∑e
i=0

(
n
i

)
. For simplicity, we denote W (f ; e, n − e − 1) by W (f ; e). Then the

immunity of function f against FAA’s is related to the problem whether matrix
W (f ; e) has nonzero determinant over F2. It was also noted that W (f ; e) has an
interesting property about its determinant.

Lemma 1 ([12]). If w11 =
∑e

i=0

(
n
i

)
+ 1 mod 2 then det(W (f ; e)) = 0, and if

w11 =
∑e

i=0

(
n
i

)
mod 2 then

det(W (f ; e)) = det(W (f ; e)(1,1)),

where W (f ; e)(1,1) is the matrix that results from W (f ; e) by removing the first
row and the first column. In particular, when w11 = 0, det(W (f ; e)) = 1 only if∑e

i=0

(
n
i

)
is even.
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For balanced Boolean functions, entry w11(= f1n
) in Lemma 1 is always

zero. Then it was further proved in [12] that an n-variable balanced Boolean
function has the optimal immunity against FAA’s only if n = 2s+1 with positive
integer s. More precisely, it was proved that

∑e
i=0

(
n
i

)
are all even for each integer

e = 1, 2, · · · , �n
2 � − 1 only if n = 2s + 1 with positive integer s. This means that

det(W (f ; e)) = 0 and deg(fg) ≥ n − e may never hold for some n and e. For
example, if n = 7 and e = 2, then

∑e
i=0

(
n
i

)
= 29 is odd, and det(W (f ; e)) = 0.

In this case, we can only determine whether deg(fg) ≥ n− e− 1. That is to say,
it may be the best case for an n-variable balanced function f against FAA’s that
deg(fg) ≥ n − e when

∑e
i=0

(
n
i

)
is even and deg(fg) ≥ n − e − 1 when

∑e
i=0

(
n
i

)

is odd. The Carlet-Feng functions [4], denoted by φCF , was proved to satisfy
deg(φCF · g) ≥ n − e when

∑e
i=0

(
n
i

)
is even and deg(φCF · g) ≥ n − e − 1 when∑e

i=0

(
n
i

)
is odd, for any nonzero n-variable Boolean function g of degree at most

e and any positive integer e < �n/2� [12]. We say that balanced functions like
the Carlet-Feng functions have the optimal immunity against FAA’s.

Definition 2. Let f be an n-variable balanced Boolean function. The function
f has the optimal immunity against fast algebraic immunity if deg(fg) ≥ n − e
when

∑e
i=0

(
n
i

)
is even and deg(fg) ≥ n − e − 1 when

∑e
i=0

(
n
i

)
is odd for any

nonzero n-variable Boolean function g of degree at most e and for any positive
integer e < �n/2�.

According to Theorem 1 again, if W (f ; e, n − e − 2) has full column rank then
deg(fg) ≥ n−e−1 for any nonzero n-variable Boolean function g with deg(g) ≤ e.
This implies that one can determine the optimal immunity by computing the rank
of W (f ; e, n − e − 1) = W (f ; e) or W (f ; e, n − e − 2) for all the possible e. The
following corollary provides a generic method of deciding the optimal immunity of
balanced Boolean functions against FAA’s.

Corollary 2. An n-variable balanced Boolean function has the optimal immu-
nity against fast algebraic attacks if the following two conditions hold for each
positive integer e less than n

2 :

1. det(W (f ; e)) = 1 when
∑e

i=0

(
n
i

)
is even;

2. W (f ; e, n − e − 2) has full column rank when
∑e

i=0

(
n
i

)
is odd.

For balanced Boolean functions in odd number of variables, we give a sim-
plified sufficient condition, compared to Corollary 2, such that they have the
optimal immunity against FAA’s. More precisely, we prove that the optimal
immunity is determined only by the determinant (rank) of W (f ; e) over F2 such
that

∑e
i=0

(
n
i

)
is even. This observation is mainly based on the following combi-

natoric property.

Lemma 2. Let n be odd and e be integers with 1 < e < n. If
∑e

i=0

(
n
i

)
is odd,

then both e and
∑e+1

i=0

(
n
i

)
are even. Moreover,

∑n−1
2

i=0

(
n
i

)
is even.
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Proof. Note that

e∑

i=0

(
n

i

)
=

e∑

i=1

(
n − 1

i

)
+

e∑

i=1

(
n − 1
i − 1

)
+

(
n

0

)
≡

(
n − 1

e

)
mod 2.

According to Lucas’ theorem about the binomial coefficient, for positive integers
n and e, the congruence relation holds

(
n

e

)
≡

s−1∏

k=0

(
nk

ek

)
mod 2,

where n =
∑s−1

k=0 nk2k and e =
∑s−1

k=0 ek2k are the binary expansions of n and e

respectively. Since n is odd it follows that n − 1 =
∑s−1

k=1 nk2k. We have
(

n − 1
e

)
≡

(
ns−1

es−1

)(
ns−2

es−2

)
· · ·

(
n1

e1

)(
0
e0

)
mod 2,

where ns−1, · · · , n1 are not all zero. If e > 1 and
(
n−1
e

)
is odd then e0 = 0, which

means that e is even. Then we have

e+1∑

i=0

(
n

i

)
≡

(
n − 1
e + 1

)
≡

(
ns−1

es−1

)(
ns−2

es−2

)
· · ·

(
n1

e1

)(
0
1

)
≡ 0 mod 2,

i.e.,
∑e+1

i=0

(
n
i

)
is even. Moreover, we also have

n−1
2∑

i=0

(
n

i

)
≡

(
n − 1
n−1
2

)
≡

(
ns−1

0

)(
ns−2

ns−1

)
· · ·

(
n2

n3

)(
n1

n2

)(
0
n1

)
≡ 0 mod 2,

This implies that
(n−1

n−1
2

)
must be even, otherwise n1 = n2 = · · · = ns−1 = 0,

which is a contradiction. This completes the proof. �

Theorem 2. Let n be odd and e be integers with 1 ≤ e < �n
2 �. Let f be an n-

variable balanced Boolean function. If det(W (f ; e)) = 1 for each integer e such
that

∑e
i=0

(
n
i

)
is even, then f has the optimal immunity against fast algebraic

attacks.

Proof. Function f satisfies the first condition in Corollary 2. When
∑e

i=0

(
n
i

)
is

odd we need to check the rank of W (f ; e, n − e − 2), which is a

n∑

i=n−e−1

(
n

i

)
×

e∑

i=0

(
n

i

)

matrix. But this happens only when 2 ≤ e ≤ �n
2 � − 2 because

∑1
i=0

(
n
i

)
and

∑n−1
2

i=0

(
n
i

)
are always even by Lemma 2. Note that

∑n
i=n−e−1

(
n
i

)
=

∑e+1
i=0

(
n
i

)
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and then matrix W (f ; e, n − e − 2) consists of the first
∑e

i=0

(
n
i

)
columns of

W (f ; e + 1, n − e − 2), which is a square matrix of size

e+1∑

i=0

(
n

i

)
×

e+1∑

i=0

(
n

i

)
.

According to Lemma 2, if
∑e

i=0

(
n
i

)
is odd then

∑e+1
i=0

(
n
i

)
must be even. We have

det(W (f ; e + 1, n − e − 2)) = det(W (f ; e + 1)) = 1, hence W (f ; e, n − e − 2)
has full column rank for integer e such that

∑e
i=0

(
n
i

)
is odd. This means that

f also satisfies the second condition in Corollary 2. Finally, for the maximum
e = �n

2 � − 1 = n−1
2 we have W (f ; e) has full rank because

∑n−1
2

i=0

(
n
i

)
must be

even according to Lemma 2. Therefore, f has the optimal immunity. �

As an example of using Theorem 2, when n = 13 we have the sequence
(
∑1

i=0

(
13
i

)
, · · · ,

∑6
i=0

(
13
i

)
) = (14, 92, 378, 1093, 2380, 4096). By the method from

Corollary 2, we may need to compute the determinants of 5 square matrices, and
the rank of one matrix of size 2380 × 1093. It accounts for the vast majority of
the total computational cost to compute the determinants of the square matrix
of order 4096. However, using the method from Theorem 2, we do not need
to compute the rank of the matrix of size 2380 × 1093 anymore, though the
computational complexity is unchanged.

We randomly choose 100 balanced Boolean functions in 13 variables and
determine if each of them has the optimal immunity by the method from Corol-
lary 2 and by the method from Theorem 2 respectively. We implement the test
by using g++ compiler and Number Theory Library (NTL, a C++ library for
doing number theory) on a laptop computer (Intel Core i7-6820hq at 2.7 Ghz,
8 GB RAM, Ubuntu 16.04). The results show that the time of deciding the opti-
mal immunity of a balanced Boolean function in 13 variables can fall by 23% on
average.

Similarly, when n = 15 we have the sequence (
∑1

i=0

(
15
i

)
, · · · ,

∑7
i=0

(
15
i

)
) =

(16, 121, 576, 1941, 4994, 9949, 16384). Using the method from Theorem 2, we do
not need to compute the rank of the matrix of size 16384 × 9949. We randomly
choose 100 balanced Boolean functions in 15 variables for the test. The results
show that the the time can fall by nearly 35% on average.

There is a special case of Theorem 2 when n = 2s +1 with positive s. In this
case,

∑e
i=0

(
n
i

)
is even for each integer e less than n/2. The theorem still holds,

but it is the same as Corollary 2.

4 Deciding the Immunity of Balanced Boolean Functions
in Even Variables Against Fast Algebraic Attacks

In this section, for balanced Boolean functions in even number of variables,
similarly, we give a reduced sufficient condition, compared to Corollary 2, such
that they have the optimal immunity against FAA’s.
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Lemma 3. Let m > 1 be odd. If n = 2t · m with positive integer t, then∑n/2−1
i=0

(
n
i

)
must be even.

Proof. As in the proof of Lemma 2. we have
∑n/2−1

i=0

(
n
i

) ≡ (
n−1

n/2−1

)
mod 2. Since

n = 2t · m with odd m > 1 and positive t it follows that

n − 1 =
s−1∑

k=1

mk2t+k + (2t − 1) and n/2 − 1 =
s−1∑

k=1

mk2t+k−1 + (2t−1 − 1),

where m =
∑s−1

k=0 mk2k is the binary expansions of m. According to Lucas’
theorem about the binomial coefficient, we have
(

n − 1
n/2 − 1

)
≡

(
ms−1

0

)(
ms−2

ms−1

)
· · ·

(
m2

m3

)(
m1

m2

)(
0

m1

)(
1
0

)(
1
1

)
· · ·

(
1
1

)

︸ ︷︷ ︸
t

mod2.

In particular, when t = 1 we have
(

n − 1
n/2 − 1

)
=

(
n − 1
m − 1

)
≡

(
ms−1

0

)(
ms−2

ms−1

)
· · ·

(
m2

m3

)(
m1

m2

)(
0

m1

)(
1
0

)
mod 2.

This implies that
(

n−1
n/2−1

)
must be even, otherwise m1 = m2 = · · · = ms−1 = 0,

which is a contradiction. This completes the proof. �

Theorem 3. Let n be even but not the power of 2 and e be integers with 1 ≤ e <
�n
2 �. Let f be an n-variable balanced Boolean function. If W (f ; e) has full rank

over F2 for each integer e such that
∑e

i=0

(
n
i

)
is even, and W (f ; e, n− e−2) has

full column rank over F2 for each integer e such that both
∑e

i=0

(
n
i

)
and

∑e+1
i=0

(
n
i

)

are odd, then f has the optimal immunity against fast algebraic attacks.

Proof. For each integer e from 1 to n/2 − 1, if
∑e

i=0

(
n
i

)
is even, then W (f ; e)

have full rank. This means that f satisfies the first condition of Corollary 2. If∑e
i=0

(
n
i

)
is odd but

∑e+1
i=0

(
n
i

)
is even, then W (f ; e + 1) has full rank. Note that

W (f ; e, n−e−2) consists of the first
∑e

i=0

(
n
i

)
columns of W (f ; e+1, n−e−2) =

W (f ; e+1). It follows that W (f ; e, n−e−2) has full column rank. This means that
f satisfies the second condition of Corollary 2. If both

∑e
i=0

(
n
i

)
and

∑e+1
i=0

(
n
i

)
are

odd, then we have W (f ; e, n−e−2) has full column rank, which directly satisfies
the second condition of Corollary 2. Finally, for the maximum e = n/2 − 1 we
have W (f ;n/2−1) has full rank because

∑n/2−1
i=0

(
n
i

)
must be even according to

Lemma 3. This means that f satisfies the first condition of Corollary 2 for the
maximum e = n/2 − 1. This complete the proof. �

As an example of using Theorem 3, when n = 14 we have the sequence
(
∑1

i=0

(
14
i

)
, · · · ,

∑6
i=0

(
14
i

)
) = (15, 106, 470, 1471, 3473, 6476). Using the method

from Theorem 3, we do not need to compute the rank of the matrix of size 6476×
3473. The experiment shows that the time of deciding the optimal immunity of
a balanced Boolean function in 14 variables can fall by 38% on average.
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The conditions given by Theorem 3 can be further reduced for an n-variable
Boolean function f and n = 2m with odd m > 1, if we only want to decide
whether deg(fg) ≥ n − e − 2 for any nonzero n-variable Boolean function g of
degree at most e and for any positive integer e < n/2. In this case, f can be also
considered as a boolean function with almost optimal immunity against FAA’s.
As mentioned in Sect. 1, Tang-Carlet functions, denoted by τCF , were proved to
satisfy deg(τCF · g) ≥ n − e − 2 for any nonzero n-variable Boolean function g
of degree at most e and for any positive integer e < n/2 [13].

Lemma 4. Let n = 2m with odd m > 1. If both
∑e

i=0

(
n
i

)
and

∑e+1
i=0

(
n
i

)
are

odd, then
∑e+2

i=0

(
n
i

)
must be even.

Proof. As in the proof of Lemma 2, we have
∑e

i=0

(
n
i

) ≡ (
n−1
e

)
mod 2. Since m is

odd it follows that n − 1 = 2m − 1 = 1 +
∑s−1

k=1 mk2k+1, where m =
∑s−1

k=0 mk2k

is the binary expansion of m. According to Lucas’ theorem about the binomial
coefficient, for positive integers m and e, we have

(
n − 1

e

)
≡

(
ms−1

0

)(
ms−2

es−1

)
· · ·

(
m2

e3

)(
m1

e2

)(
0
e1

)(
1
e0

)
mod 2,

where e =
∑s−1

k=0 ek2k is the binary expansion of e and ms−1, · · · ,m1 are not all
zero. If e > 1 and

(
n−1
e

)
is odd then e1 = 0, which also means that

e ≡ 0 mod 4 or e ≡ 1 mod 4.

This implies that
∑e+2

i=0

(
n
i

)
must be even if both

∑e
i=0

(
n
i

)
and

∑e+1
i=0

(
n
i

)
are

odd. �

Corollary 3. Let n = 2m with odd m > 1 and e be integers with 1 ≤ e ≤ m−1.
Let f be an n-variable balanced Boolean function. If W (f ; e) has full rank for
each integer e such that

∑e
i=0

(
n
i

)
is even, then deg(fg) ≥ n − e − 2 for any

nonzero n-variable Boolean function g of degree at most e and for any positive
integer e < n/2.

Proof. If
∑e

i=0

(
n
i

)
is even or

∑e
i=0

(
n
i

)
is odd but

∑e+1
i=0

(
n
i

)
is even, as in the

proof of Theorem 3, we have deg(fg) ≥ n − e or deg(fg) ≥ n − e − 1 respec-
tively for any nonzero n-variable Boolean function g of degree at most e. If both∑e

i=0

(
n
i

)
and

∑e+1
i=0

(
n
i

)
are odd, then we have

∑e+2
i=0

(
n
i

)
is even by Lemma 4 and

then W (f ; e+2, n−e−3) = W (f ; e+2) has full rank. Note that W (f ; e, n−e−3)
consists of the first

∑e
i=0

(
n
i

)
columns of W (f ; e+2, n−e−3). Therefore, in this

case, W (f ; e, n−e−3) has full column rank. This means that deg(fg) ≥ n−e−2
for any nonzero n-variable Boolean function g of degree at most e. �

When n = 2s with positive s, i.e., when n is the power of 2, Theorem 3 is no
longer applicable. In this case, it is not hard to see that

∑e
i=0

(
n
i

)
is odd for each

integer e less than n/2. Therefore, we may need to compute the rank of matrix
W (f ; e, n − e − 2) for each integer e less than n/2 according to Corollary 2.
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5 Conclusion

In this paper, we further discuss the sufficient conditions of deciding the opti-
mal immunity of balanced Boolean functions against FAA’s. By exploiting the
combinatorial properties of W (f ; e, d) matrix, we give two reduced conditions
such that balanced Boolean functions have the optimal immunity against FAA’s.
This result may help us better study the immunity of Boolean functions against
FAA’s, and decrease the actual time of deciding the optimal immunity of bal-
anced Boolean functions against FAA’s.
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Abstract. Cellular automata (CA) is universally known as very good
pseudorandom sequence generator. It has wide applications in several
fields like VLSI design, error-correcting codes, test pattern generation,
cryptography etc. Most of these applications use 3-neighborhood one
dimensional CA. Cellular automata have been chosen as a better crypto-
primitives for providing very good pseudorandom sequences and their
high diffusion property. The randomness and diffusion properties can be
increased with the increase of the size of neighborhood radius of the CA
cell. In this work, we study a class of 5-neighborhood null boundary linear
CA. We present an algorithm for synthesizing 5-neighborhood linear CA
from its characteristic polynomial by assuming that some of the CA sub-
polynomials are available.

Keywords: Cellular automata · 5-neighborhood linear rules · CA syn-
thesis algorithm

1 Introduction

Cellular Automata (CA) have long been of interest to researchers for their theo-
retical properties and practical applications. It was initiated in the early 1950’s
by John von Neumann [12] and Stan Ulam as a general framework for modeling
complex structures capable of self-reproduction and self-repair. In 1986, Wol-
fram first applied CA in pseudorandom number generation [15]. CA has made
understanding of many occurrences in nature easier. The simple and regular
structure of CA has attracted researchers and practitioners of different fields.
In the last two decades, one-dimensional (1-D) CA based Pseudorandom Num-
ber Generators (PRNGs) have been extensively studied [2,5,10,11]. Though the
recent interest is more focused on two-dimensional (2-D) CA PRNGs [9,13] since
it seems that their randomness is much better than that of 1- D CA PRNGs, but
considering the design complexity and computation efficiency, it is quite difficult
to conclude which one is better. Compared to 2-D CA PRNGs, 1-D CA PRNGs
are easier to be implemented in a large scale [3,8,14]. Random bit generators
play an important role in different computer simulation methods such as Monte
Carlo techniques, Browmian dynamics, stochastic optimization, computer-based
c© Springer Nature Singapore Pte Ltd. 2017
D. Giri et al. (Eds.): ICMC 2017, CCIS 655, pp. 68–83, 2017.
DOI: 10.1007/978-981-10-4642-1 7
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gaming, test pattern generation for VSLI circuit test, error-correcting codes,
image processing, neural networks and cryptography etc. Most of these works
are devoted to the study of cellular automata as pseudorandom bit generators. A
central problem in any stream cipher scheme is to generate long, unpredictable
random key sequences and Cellular Automata resolves this problem.

In most of all these applications, 1-D elementary cellular automata (i.e. three-
neighborhood CA) are used. There are also some applications [6,9,13] of five or
more neighborhood 2-D CA but that need more hardware complexity. In [7], it
has been shown a 4-neighborhood nonlinear 1-D CA as a better cryptographic
primitive. The randomness and diffusion properties of the CA can be developed
with the increase of the size of neighborhood radius of the CA cell. More diffusion
property of CA can make fast initialization of a stream cipher. In this paper,
we study 5-neighborhood linear 1-D CA for providing very good pseudorandom
sequences and high diffusion. We present an algorithm for synthesizing the CA.

This paper is organized as follows. Following the introduction, the basics
of CA are presented in Sect. 2. In Sect. 3, we present 5-neighborhood Linear
Hybrid Cellular Automata with the CA transition matrix and the characteristic
polynomial. A recurrence relation is introduced for determining the characteristic
polynomial and a CA synthesis algorithm is presented. We also present the
randomness and diffusion properties of 5-neighborhood CA rule vectors and the
comparison of their properties with 3/4 neighborhood CA. Finally, the paper is
concluded in Sect. 4.

2 Basics of Linear Cellular Automata

Cellular Automata are studied as mathematical model for self organizing sta-
tistical systems [12]. CA can be one-dimensional or multi-dimensional. One-
dimensional CA random number generators have been extensively studied in
the past [4,11,15]. In one-dimensional CA, they can be considered as an array
of cells where each cell is a one bit memory element. The neighbor set N(i) is
defined as the set of cells on which the state transition function of the i-th cell
is dependent on each iteration. In three-neighborhood CA, each cell evolves in
every time step based on some combinatorial logic on the cell itself and its two
nearest neighbors. More formally, for a three-neighborhood CA, the neighbor set
of i-th cell is defined as N(i) = {si−1, si, si+1}. The state transition function of
is i-th cell of 3-neighborhood CA is as follows:

st+1
i = fi(sti−1, s

t
i, s

t
i+1)

where, sti denotes the current state of the i-th cell at time step t and st+1
i

denotes the next state of the i-th cell at time step t+1 and fi denotes some
combinatorial logic for i-th cell. The set of all feedback functions is considered
as ruleset for the CA. Since, a three-neighborhood CA having two states (0 or
1) in each cell, can have 23 = 8 possible binary states, there are total 22

3
=

256 possible boolean functions, called rules. Each rule can be represented as
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an decimal integer from 0 to 255. If the combinatorial logic for the rules have
only Boolean XOR operation, then it is called linear or additive rule. Some of
the three-neighborhood additive CA rules are 0, 60, 90, 102, 150 etc. Moreover,
if the combinatorial logic contains AND/OR operations, then it is called non-
linear rule. An n cell CA with cells {s1, s2, · · · , sn} is called null boundary CA
if sn+1 = 0 and s0 = 0. Similarly for a periodic boundary CA sn+1 = s1. A
CA is called uniform, if all its cells follow the same rule. Otherwise, it is called
non-uniform or hybrid CA. If all the ruleset of a hybrid CA are linear, then we
call the CA a linear one. However, out of all possible Boolean functions, called
rules, only two are of prime interest i.e. Rule 90 and 150 (ascertained from the
decimal value of their position in the truth table). The state of the i-th cell at
time instant t can be expressed as:

st+1
i = sti−1 ⊕ di.s

t
i ⊕ sti+1, di =

{
0, if di →Rule 90
1, if di →Rule 150

Thus, an LHCA can be completely specified by a combination of Rule 90 and
150, denoted as an n-tuple [d1, d2, · · · , dn]. An example of a 5-cell CA L can be
found in Fig. 1, specified by the rule vector [1, 1, 1, 1, 0]. Further details of CA
can be found in [4].

Fig. 1. 3-neighborhood null boundary LHCA L with rule vector [1, 1, 1, 1, 0]

3 5-Neighborhood Linear Cellular Automata

In the previous section, we have studied 1D elementary CA (i.e. 3-neighborhood
CA) [4,11]. In this section, we consider a 5-neighborhood null boundary n-cell
Linear Hybrid CA (LHCA) denoted by {s1, s2, · · · , sn}, where the state of a
cell at a given instant is updated based upon its five neighboring cells including
itself and because of null boundary s−1 = s0 = 0, sn+1 = sn+2 = 0. More
formally, for a five-neighborhood CA, the neighbor set of i-th cell is defined as
N(i) = {si−2, si−1, si, si+1, si+2}. The state transition function of is i-th cell of
5-neighborhood CA is as follows:

st+1
i = fi(sti−2, s

t
i−1, s

t
i, s

t
i+1, s

t
i+2)
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Table 1. Linear rules of 5-neighborhood LHCA

Rules State transition function of ith cell

Rule0 st+1
i = sti−2 ⊕ sti+2

Rule1 st+1
i = sti−2 ⊕ sti+1 ⊕ sti+2

Rule2 st+1
i = sti−2 ⊕ sti ⊕ sti+2

Rule3 st+1
i = sti−2 ⊕ sti ⊕ sti+1 ⊕ sti+2

Rule4 st+1
i = sti−2 ⊕ sti−1 ⊕ sti+2

Rule5 st+1
i = sti−2 ⊕ sti−1 ⊕ sti+1 ⊕ sti+2

Rule6 st+1
i = sti−2 ⊕ sti−1 ⊕ sti ⊕ sti+2

Rule7 st+1
i = sti−2 ⊕ sti−1 ⊕ sti ⊕ sti+1 ⊕ sti+2

where, sti denotes the current state of the i-th cell at time step t and st+1
i denotes

the next state of the i-th cell at time step t+1 and fi denotes some combinatorial
logic for i-th cell. Since, a 5-neighborhood CA having two states (0 or 1) in each
cell, can have 25 = 32 possible binary states, there are total 22

5
= 232 possible

boolean functions. Out of all possible Boolean functions, called rules, there are
total 25 = 32 possible linear rules. Based on neighborhood radius exactly 5, there
are only 23 = 8 liner rules shown in Table 1.

Table 2. Counting rule vectors of max. period 5-bit 5-neighborhood CA

Rule1 2
Rule2 0 2
Rule3 2 6 2
Rule4 2 2 2 4
Rule5 6 2 4 5 2
Rule6 2 4 2 2 6 5
Rule7 4 5 6 2 5 8 2

Rule0 Rule1 Rule2 Rule3 Rule4 Rule5 Rule6

For all possible pair of these 8 linear rules, maximum period 5-neighborhood
CA rule vectors can be obtained. Table 2 shows the number of rule vectors
obtained for maximum period 5-bit 5-neighborhood CA against each pair of
the linear rules shown in Table 1. From Table 2, we see that only the pair of rule
combinations, (Rule5, Rule7), provides largest number of rule vectors (i.e. 8).
Therefore, we consider these two linear rules (i.e. Rule5, Rule7), denoted as R0

and R1, respectively, to design 5-neighborhood LHCA. These two linear rules
can again be specified as follows:

R0 : st+1
i = sti−2 ⊕ sti−1 ⊕ sti+1 ⊕ sti+2

R1 : st+1
i = sti−2 ⊕ sti−1 ⊕ sti ⊕ sti+1 ⊕ sti+2
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where, sti is the current state and st+1
i is the next state of the i-th cell of the

CA. Thus, the state transition function of i-th cell of the CA can be expressed
as:

st+1
i = sti−2 ⊕ sti−1 ⊕ di.s

t
i ⊕ sti+1 ⊕ sti+2, di =

{
0, if ith cell follows rule R0

1, if ith cell follows rule R1

Thus, a five-neighborhood n-cell LHCA L denoted by {s1, s2, · · · , sn}, can be
completely specified by a combination of these two rules R0 and R1, denoted
as an n-tuple [d1, d2, · · · , dn], called the rule vector of the CA. An example of a
5-cell null boundary 5-neighborhood CA can be found in Fig. 2, specified by the
rule vector [1, 1, 1, 0, 0].

Fig. 2. 5-neighborhood null boundary LHCA L with rule vector [1, 1, 1, 0, 0]

A five-neighborhood n-cell LHCA L can be characterised by an n×n matrix,
called characteristic matrix. The characteristic matrix A for the n-cell CA rule
vector [d1, d2, · · · , dn] is as follows:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 1 1 0 0 · · · · · · · · · · · · 0 0
1 d2 1 1 0 · · · · · · · · · · · · · · · 0

1 1 d3 1 1 · · · · · · · · · · · · · · · ...

0 1 1 d4 1 · · · · · · · · · · · · · · · ...
...

...
...

...
...

...
...

...
...

...
...

... · · · · · · · · · · · · · · · 1 dn−3 1 1 0

... · · · · · · · · · · · · · · · 1 1 dn−2 1 1
0 · · · · · · · · · · · · · · · 0 1 1 dn−1 1
0 0 · · · · · · · · · · · · 0 0 1 1 dn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The state of a CA at time step t is an n-tuple formed from the states of the
individual cells. The CA state is expressed in matrix form as follows

St = [st1, · · · , stn]
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The next state of the CA is denoted as

St+1 = [st+1
1 , · · · , st+1

n ]

The next-state of the CA, St+1, is computed as

(St+1)T = A · (St)T

or, St+1 = ((St+1)T )T

where, A is the CA transition matrix and (St)T = [st1, · · · , stn]T (the superscript
T represents the transpose of the vector) and the product is a matrix-vector
multiplication over GF(2). It has been shown that A · (St)T is indeed the next
state of the CA. Therefore, the next state of the ith cell is computed as the
product of the ith row of A and (St)T as follows:

st+1
i = [0, · · · , 0, 1, 1, di, 1, 1, 0, · · · , 0]

·[st1, · · · , sti−2, s
t
i−1, s

t
i, s

t
i+1, s

t
i+2 · · · , stn]T

= sti−2 + sti−1 + di · sti + sti+1 + sti+2

The characteristic polynomial Δn of the n-cell CA is defined by

Δn = |xI − A|

where, x is an indeterminate, I is the identity matrix of order n, and A is the
CA transition matrix. The matrix xI − A is called the characteristic matrix of
the CA. The characteristic polynomial is a degree n polynomial in x.

The following example clearly illustrates how the characteristic polynomial
of a 5-neighborhood linear CA can be computed using the characteristic matrix
of the CA.

Example 1: Let us consider a 5-cell null boundary 5-neighborhood linear CA
with the rule vector [1, 1, 1, 0, 0]. We have [d1, d2, d3, d4, d5] = [1, 1, 1, 0, 0]. The
transition matrix A is as follows:

A =

⎡
⎢⎢⎢⎢⎣

d1 1 1 0 0
1 d2 1 1 0
1 1 d3 1 1
0 1 1 d4 1
0 0 1 1 d5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 1 1 0 0
1 1 1 1 0
1 1 1 1 1
0 1 1 0 1
0 0 1 1 0

⎤
⎥⎥⎥⎥⎦

The corresponding characteristic matrix is as follows:

xI − A =

⎡
⎢⎢⎢⎢⎣

x + d1 1 1 0 0
1 x + d2 1 1 0
1 1 x + d3 1 1
0 1 1 x + d4 1
0 0 1 1 x + d5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

x + 1 1 1 0 0
1 x + 1 1 1 0
1 1 x + 1 1 1
0 1 1 x 1
0 0 1 1 x

⎤
⎥⎥⎥⎥⎦
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where, x is an indeterminate, I is the identity matrix with dimension 5, and A
is the CA transition matrix shown above. The characteristic polynomial Δ5 of
the 5-cell CA is defined as follows:

Δ5 = |xI − A|

Δ5 =

∣∣∣∣∣∣∣∣∣∣

x + 1 1 1 0 0
1 x + 1 1 1 0
1 1 x + 1 1 1
0 1 1 x 1
0 0 1 1 x

∣∣∣∣∣∣∣∣∣∣
= x5 + x4 + x2 + x + 1

Theorem 1. Let Δn be the characteristic polynomial of a n-cell null bound-
ary 5-neighborhood Linear CA with rule vector [d1, d2, · · · , dn]. Δn satisfies the
following recurrence relation:

Δ−3 = 0, Δ−2 = 0, Δ−1 = 0, Δ0 = 1
Δn = (x + dn)Δn−1 + Δn−2 + (x + dn−1)Δn−3 + Δn−4, n > 0 (1)

Proof: Consider the transition matrix A for the n-cell null boundary 5-
neighborhood Linear CA with rule vector [d1, d2, · · · , dn]

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 1 1 0 0 · · · · · · · · · · · · 0 0
1 d2 1 1 0 · · · · · · · · · · · · · · · 0

1 1 d3 1 1 · · · · · · · · · · · · · · · ...

0 1 1 d4 1 · · · · · · · · · · · · · · · ...
...

...
...

...
...

...
...

...
...

...
...

... · · · · · · · · · · · · · · · 1 dn−3 1 1 0

... · · · · · · · · · · · · · · · 1 1 dn−2 1 1
0 · · · · · · · · · · · · · · · 0 1 1 dn−1 1
0 0 · · · · · · · · · · · · 0 0 1 1 dn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The characteristic polynomial Δn of the CA is defined by

Δn = |xI − A|

Δn =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

x + d1 1 1 0 0 · · · · · · · · · · · · 0 0
1 x + d2 1 1 0 · · · · · · · · · · · · · · · 0

1 1 x + d3 1 1 · · · · · · · · · · · · · · ·
...

0 1 1 x + d4 1 · · · · · · · · · · · · · · ·
...

...
...

...
...

...
...

...
...

...
...

...
... · · · · · · · · · · · · · · · 1 x + dn−3 1 1 0
... · · · · · · · · · · · · · · · 1 1 x + dn−2 1 1
0 · · · · · · · · · · · · · · · 0 1 1 x + dn−1 1
0 0 · · · · · · · · · · · · 0 0 1 1 x + dn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
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By expanding the determinant shown above with respect to the last row, we can
compute Δn as follows: Δn = (x + dn) ∗ Δn−1 + 1 ∗ B + 1 ∗ C, where B and C
with dimension (n − 1) × (n − 1) are as follows:

B =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x + d1 1 1 0 0 · · · · · · · · · · · · 0
1 x + d2 1 1 0 · · · · · · · · · · · · 0

1 1 x + d3 1 1 · · · · · · · · · · · · ...

0 1 1 x + d4 1 · · · · · · · · · · · · ...
...

...
...

...
...

...
...

...
...

...
... · · · · · · · · · · · · · · · 1 x + dn−3 1 0
... · · · · · · · · · · · · · · · 1 1 x + dn−2 1
0 · · · · · · · · · · · · · · · 0 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and

C =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x + d1 1 1 0 0 · · · · · · · · · 0 0
1 x + d2 1 1 0 · · · · · · · · · · · · 0

1 1 x + d3 1 1 · · · · · · · · · · · · ...

0 1 1 x + d4 1 · · · · · · · · · · · · ...
...

...
...

...
...

...
...

...
...

...
... · · · · · · · · · · · · · · · 1 x + dn−3 1 0
... · · · · · · · · · · · · 1 1 1 1
0 · · · · · · · · · · · · · · · 0 1 x + dn−1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
By expanding the determinant B with respect to the last column, we can compute
B as follows: B = Δn−2 + D, where D with dimension (n − 2) × (n − 2) is as
follows:

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x + d1 1 1 0 0 · · · · · · · · · 0
1 x + d2 1 1 0 · · · · · · · · · · · ·
1 1 x + d3 1 1 · · · · · · · · · · · ·
0 1 1 x + d4 1 · · · · · · · · · · · ·
...

...
...

...
...

...
...

...
...

... · · · · · · · · · · · · · · · 1 x + dn−3 1
0 · · · · · · · · · · · · · · · 0 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
By expanding the determinant C with respect to the last column, we can compute
C as follows: C = E + F , where E and F with dimension (n − 2) × (n − 2) are
as follows:
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E =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x + d1 1 1 0 0 · · · · · · · · · 0
1 x + d2 1 1 0 · · · · · · · · · · · ·
1 1 x + d3 1 1 · · · · · · · · · · · ·
0 1 1 x + d4 1 · · · · · · · · · · · ·
...

...
...

...
...

...
...

...
...

... · · · · · · · · · · · · · · · 1 x + dn−3 1
0 · · · · · · · · · · · · · · · 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and

F =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x + d1 1 1 0 0 · · · · · · · · · 0
1 x + d2 1 1 0 · · · · · · · · · · · ·
1 1 x + d3 1 1 · · · · · · · · · · · ·
0 1 1 x + d4 1 · · · · · · · · · · · ·
...

...
...

...
...

...
...

...
...

... · · · · · · · · · · · · · · · 1 x + dn−3 1
0 · · · · · · · · · · · · · · · 0 1 x + dn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
By expanding the determinant F with respect to the last column, we can compute
F as follows:

F = (x + dn−1) ∗ Δn−3 + Δn−4

Note that the determinant E can be easily found by changing rows into columns
and columns into rows of the determinant D, therefore, D and E determines the
same polynomial and so, D+E determines zero in GF(2). Finally, we have

Δn = (x + dn) ∗ Δn−1 + 1 ∗ B + 1 ∗ C

= (x + dn) ∗ Δn−1 + (Δn−2 + D) + (E + F )
= (x + dn) ∗ Δn−1 + Δn−2 + F

= (x + dn) ∗ Δn−1 + Δn−2 + (x + dn−1) ∗ Δn−3 + Δn−4

Theorem 1 provides an efficient algorithm to compute the Characteristic poly-
nomial of a CA. Initially, Δ−3, Δ−2, Δ−1 are all set to zero and Δ0 is set to
one. Equation (1) is applied to obtain Δ1. It is then reapplied to calculate Δ2

from Δ−2 to Δ1, Continuing, the polynomials Δ3,Δ4, · · · ,Δn are computed.
The following example clearly illustrates how the characteristic polynomial

of a 5-neighborhood linear CA can be computed using the recurrence relation
shown above. Table 3 shows characteristic polynomials of a 5-cell null boundary
5-neighborhood linear CA.

Example 2: Let us consider a 5-cell null boundary 5-neighborhood linear CA
with the rule vector [1, 1, 1, 0, 0]. We have, [d1, d2, d3, d4, d5] = [1, 1, 1, 0, 0]
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Δ−3 = 0, Δ−2 = 0, Δ−1 = 0, Δ0 = 1
Δ1 = (x + d1)Δ0 + Δ−1 + (x + d0)Δ−2 + Δ−3

= (x + 1).1 + 0 + 0 + 0 = x + 1
Δ2 = (x + d2)Δ1 + Δ0 + (x + d1)Δ−1 + Δ−2

= (x + 1)(x + 1) + 1 + 0 + 0 = x2

Δ3 = (x + d3)Δ2 + Δ1 + (x + d2)Δ0 + Δ−1

= (x + 1)x2 + (x + 1) + (x + 1) + 0
= x3 + x2

Δ4 = (x + d4)Δ3 + Δ2 + (x + d3)Δ1 + Δ0

= (x + 0)(x3 + x2) + x2 + (x + 1)(x + 1) + 1
= x4 + x3 + x2 + x2 + 1 + 1
= x4 + x3

Δ5 = (x + d5)Δ4 + Δ3 + (x + d4)Δ2 + Δ1

= (x + 0)(x4 + x3) + (x3 + x2) + (x + 0)(x2) + (x + 1)
= x5 + x4 + x3 + x2 + x3 + x + 1
= x5 + x4 + x2 + x + 1

3.1 Synthesis of 5-Neighborhood Linear CA

In this section, we present an algorithm Algorithm 1 for synthesizing 5-
neighborhood CA from its characteristic polynomial.

Algorithm 1. Synthesis Algotithm
Input: The characteristic polynomial of an n-cell CA, Δn

Output: 5-neighborhood rule vector [d1, d2, · · · , dn]
Suppose, Δn−1, Δn−2 and Δn−3 are known and Δ−3 = Δ−2 = Δ−1 = 0, Δ0 = 1.
Here, all operations are done in GF (2).

1. Consider Δn = (x + dn)Δn−1 + Δn−2 + (x + dn−1)Δn−3 + Δn−4

2. Compute x + dn using Division Algorithm
3. For k=n downto 3
4. Consider Δk = (x + dk)Δk−1 + Δk−2 + (x + dk−1)Δk−3 + Δk−4

5. Compute x + dk−1 and Δk−4 using Division Algorithm
End for

6. Consider Δ1 = (x + d1)Δ0

7. Compute x + d1

8. Return [d1, d2, · · · , dn]

Explanation: Suppose, Δn−1, Δn−2 and Δn−3 are known. Here, all operations
are done in GF (2). We consider the recurrence relation:

Δn = (x + dn)Δn−1 + Δn−2 + (x + dn−1)Δn−3 + Δn−4
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Table 3. Characteristic polynomials of null boundary 5-neighborhood LHCA

Sl No. Rule vector Characteristic polynomial Primitive polynomial

1 00000 x5 + x3 + x NO

2 00001 x5 + x4 + x3 + x2 + x NO

3 00010 x5 + x4 + x3 + x + 1 YES

4 00011 x5 + x2 + 1 YES

5 00100 x5 + x4 + x3 + x2 + x + 1 NO

6 00101 x5 + x + 1 NO

7 00110 x5 + x2 NO

8 00111 x5 + x4 + x2 + x + 1 YES

9 01000 x5 + x4 + x3 + x + 1 YES

10 01001 x5 + x2 + x + 1 NO

11 01010 x5 + x NO

12 01011 x5 + x4 + 1 NO

13 01100 x5 + x2 NO

14 01101 x5 + x4 + x2 NO

15 01110 x5 + x4 + x + 1 NO

16 01111 x5 + x3 + x + 1 NO

17 10000 x5 + x4 + x3 + x2 + x NO

18 10001 x5 NO

19 10010 x5 + x2 + x + 1 NO

20 10011 x5 + x4 + x2 + x NO

21 10100 x5 + x + 1 NO

22 10101 x5 + x4 NO

23 10110 x5 + x4 + x2 NO

24 10111 x5 + x3 + x2 + x + 1 YES

25 11000 x5 + x2 + 1 YES

26 11001 x5 + x4 + x2 + x NO

27 11010 x5 + x4 + 1 NO

28 11011 x5 + x3 + x NO

29 11100 x5 + x4 + x2 + x + 1 YES

30 11101 x5 + x3 + x2 + x + 1 YES

31 11110 x5 + x3 + x + 1 NO

32 11111 x5 + x4 + x3 + x2 + x + 1 NO

0-Rule R0; 1-Rule R1

Now, we follow the Table 4. In the step 1, Δn and Δn−1 are known. By the
polynomial division algorithm, considering Δn as dividend and Δn−1 as divisor,
the degree 1 quotient polynomial (x + dn) is uniquely determined and easily
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calculated; since, the remainder polynomial in the relation (i.e. Δn−2 + (x +
dn−1)Δn−3+Δn−4) is of degree less than n−1. In the step 2, Δn, Δn−1, Δn−2 and
Δn−3 are known. In the above relation, the polynomial Δn+(x+dn)Δn−1+Δn−2

is of degree n − 2. Now, if the polynomial division algorithm is again applied
considering Δn + (x + dn)Δn−1 + Δn−2 as dividend and Δn−3 as divisor then,
it will calculate (x + dn−1) as quotient and Δn−4 as remainder from the above
relation. In the step 3, we consider the relation:

Δn−1 = (x + dn−1)Δn−2 + Δn−3 + (x + dn−2)Δn−4 + Δn−5

Now, Δn−1, Δn−2, Δn−3 and Δn−4 are known and (x+dn−1) is also known as it
is computed in the previous step. If we apply the division algorithm considering
Δn−1+(x+dn−1)Δn−2+Δn−3 as dividend and Δn−4 as divisor, it can calculate
(x + dn−2) as quotient and Δn−5 as remainder from the above relation. In this
way, if we proceed for n steps, then we get the sequence of degree 1 quotient
polynomials as follows:

[(x + dn), (x + dn−1), (x + dn−2), · · · , (x + d2), (x + d1)]

where dk(1 ≤ k ≤ n) is either 0 or 1. By taking the constant terms of these
quotient polynomials and reversing, we get the rule vector [d1, d2, · · · , dn] for a
5-neighborhood LHCA with the characteristic polynomial Δn. The total number
of polynomial divisions performed is O(n), where, n is degree of the character-
istic polynomial Δn of n-bit CA. Each polynomial division needs O(n2) time.
Therefore, the required time complexity for this algorithm is O(n3).

3.2 Randomness of 5-Neighborhood Linear CA Rule Vectors

A statistical test suite is developed by National Institute of Standards and Tech-
nology (NIST) that is known as NIST-statistical test suite [1]. The NIST Test
Suite is a statistical package consisting of 15 tests that were developed to test the
randomness of (arbitrarily long) binary sequences produced by either hardware
or software based cryptographic random or pseudorandom number generators.
To test the randomness of 5-neighborhood linear CA rule vectors, we consider a
24-bit 5-neighborhood maximum period LHCA with rule vector

[1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1]

where di = 0 in the rulevector [d0, · · · , d23] represents that ith cell of the CA
follows rule R0 and di = 1 in the rulevector [d0, · · · , d23] represents that ith cell
of the CA follows rule R1. 100 bit-streams with each stream of 1,00,000 bits
are generated from the middle cell (12thcell) of this 24-bit LHCA and stored
in a data file, and then the data file is fed to NIST test suite. The generated
bit-streams show high randomness property as depicted in Table 5.

3.3 Diffusion Property of 5-Neighborhood Linear CA Rule Vectors

To test the diffusion property of 5-neighborhood linear CA rule vectors, we
consider a 24-bit 5-neighborhood maximum period LHCA [s0, · · · , s23] with the
same rule vector



80 S. Maiti and D. Roy Chowdhury

Table 4. Synthesis of 5-neighborhood linear CA

Step Known Known poly, Relation Evaluated Evaluated

quotient subpoly used quotient sub-poly

1 — Δn, Δn−1 Δn = (x + dn)Δn−1 + Δn−2

+(x + dn−1)Δn−3 + Δn−4

x + dn —

2 x + dn Δn, Δn−1,
Δn−2, Δn−3

Δn = (x + dn)Δn−1 + Δn−2

+(x + dn−1)Δn−3 + Δn−4

x + dn−1 Δn−4

3 x + dn−1 Δn−1, Δn−2,
Δn−3, Δn−4

Δn−1 = (x + dn−1)Δn−2 + Δn−3

+(x + dn−2)Δn−4 + Δn−5

x + dn−2 Δn−5

4 x + dn−2 Δn−2, Δn−3,
Δn−4, Δn−5

Δn−2 = (x + dn−2)Δn−3 + Δn−4

+(x + dn−3)Δn−5 + Δn−6

x + dn−3 Δn−6

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

n-3 x + d5 Δ5, Δ4,
Δ3, Δ2

Δ5 = (x + d5)Δ4 + Δ3

+(x + d4)Δ2 + Δ1

x + d4 Δ1

n-2 x + d4 Δ4, Δ3, Δ2,
Δ1, Δ0

Δ4 = (x + d4)Δ3 + Δ2

+(x + d3)Δ1 + Δ0

x + d3 —

n-1 x + d3 Δ3, Δ2, Δ1,
Δ0, Δ−1

Δ3 = (x + d3)Δ2 + Δ1

+(x + d2)Δ0 + Δ−1

x + d2 —

n — Δ1, Δ0 Δ1 = (x + d1)Δ0 x + d1 —

Table 5. Results of NIST-statistical test suite

Sl. No Test name P-value Status

1 Frequency test 0.883171 Pass

2 BlockFrequency (block len.=128) 0.851383 Pass

3 Cumulative sums 0.574903 Pass

4 Runs 0.383827 Pass

5 Longest run 0.867692 Pass

6 FFT 0.401199 Pass

7 Non-OverlappingTemplate (block len.=9) 0.474986 Pass

8 OverlappingTemplate (block len.=9) 0.066882 Pass

9 ApproximateEntropy (block len.=10) 0.798139 Pass

10 Random excursions test 0.350485 Pass

11 Random excursions variant Test 0.534146 Pass

[1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1]

as considered in the previous section, and some CA initial values and we notice
the status of the CA cells in some clock cycles. The result of the CA states for
some clock cycles is depicted in Table 6. The result shows that the diffusion rate
of CA cell contents is 2 times faster than 3-neighborhood CA. For the sake of
simplicity, the rule value of the CA is given in hexadecimal notation i.e. a CA
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rule value 0xA5 denotes the rule vector [1, 0, 1, 0, 0, 1, 0, 1] and a CA initial value
0xA5 denotes the CA value [10100101].

Table 6. Diffusion of 5-neighborhood LHCA rule vector

CA initial (in Hex) Remarks

Average case 000800 12th cell bit is diffused to MSB/LSB in 6/7
clock cycles, respectively.

001000 11th cell bit is diffused to MSB/LSB in 11/6
clock cycles, respectively.

Worst case 800000 0th cell bit is diffused to LSB in 16 clock
cycles

000001 23rd cell bit is diffused to MSB in 16 clock
cycles

Table 7. Comparison of 5-neighborhood linear CA with 3/4 neighborhood CA

Properties 3-neighborhood
LHCA

4-neighborhood LHCA 5-neighborhood
LHCA

State transition
function of ith

cell

ast+1
i =

fi(s
t
i−1, s

t
i, s

t
i+1)

st+1
i = fi(s

t
i−1, s

t
i, s

t
i+1, s

t
i+2)

or
st+1
i = fi(s

t
i−2, s

t
i−1, s

t
i, s

t
i+1)

st+1
i =

fi(s
t
i−2, s

t
i−1,

sti, s
t
i+1, s

t
i+2)

# of linear rules
(neighborhood
radius at most r,
r=3,4,5)

23 = 8 24 = 16, 24 = 16 25 = 32

# of linear rules
(neighborhood
radius exactly r,
r=3,4,5)

21 = 2 22 = 4, 22 = 4 23 = 8

Rules
combinations
(with largest no.
of max period
CA rule vectors)

< Rule 90, Rule
150 >

< st+1
i = sti−1 ⊕ sti+1 ⊕ sti+2,

st+1
i = sti−1⊕sti⊕sti+1⊕sti+2 >

or
< st+1

i = sti−2 ⊕ sti−1 ⊕ sti+1,
st+1
i = sti−2⊕sti−1⊕sti⊕sti+1 >

< R0, R1 >b

Diffusion rate of
n-bit CA
(Average case)

At least n/2
clock cycles

At least n/4 clock cycles At least n/4
clock cycles

Diffusion rate of
n-bit CA (Worst
case)

At most (n − 1)
clock cycles

At most (n − 1) clock cycles At most 3n/4
clock cycles

a st+1
i denotes the state of the i-th cell at time step t+1

b Rules R0, R1 are defined in Sect. 3.
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3.4 Comparison of Properties of 5-Neighborhood Linear CA
with 3/4 Neighborhood Linear CA

In this section, we study the comparison of properties of 5-neighborhood linear
CA with 3/4 neighborhood linear CA, shown in Table 7. Delay will obviously
increase for 5-neighborhood CA with respect to 3-neighborhood CA. On the
other hand, one clock cycle period is at least the time period required for one
time CA evolving and the average diffusion rate for 5-neighborhood CA is 2
times faster than 3-neighborhood CA. Therefore, because of high diffusion rate,
5-neighborhood CA is also suitable for high speed application.

4 Conclusion

In this paper, we have studied 5-neighborhood null boundary linear CA with
two linear rules. The characteristic polynomial has been realized from 5-
neighborhood rule vector of the CA. We have presented an algorithm for syn-
thesizing the 5-neighborhood CA from its characteristic polynomial by assum-
ing some CA sub-polynomials. We have shown the randomness and diffusion
properties of the 5-neighborhood CA rule vectors and the comparison of their
properties with 3/4 neighborhood CA. At present, we are working on how the
CA can be synthesized from its characteristic polynomial without the knowledge
of CA sub-polynomials.
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Abstract. Many mathematical, engineering and cryptographic appli-
cations require the solution of sparse linear equations over large order
finite fields. The Gaussian elimination is a standard algorithm used for
the above. However, its use remains limited because of its implementa-
tion difficulty for large matrices. For large and sparse linear systems the
iterative Lanczos and Wiedemann are the most efficient techniques. How-
ever, the computation intensive matrix vector multiplications in these
algorithms make them unsuitable for large systems, increasing the com-
putation time due to constant accesses to the RAM and hard disk for
fetching and storing data. In this paper we present a cache optimized
implementation of the Lanczos and Wiedemann algorithm that can be
used for very large matrices even when there is not sufficient cache to
store all the non zero matrix elements. Our algorithm makes optimal
use of the cache, decreases the number of memory accesses and there-
fore reduces the time taken for the algorithms to provide a solution.
The results show an improvement of 16% in Lanczos and 13% in Wiede-
mann in the execution time, with number of equations as 105 and same
numbers of variables over the field of order 529 bits.

Keywords: Sparse matrices · Finite field · Cache · Lanczos algorithm ·
Wiedemann algorithm

1 Introduction

Public key cryptosystems like the RSA and the Diffie Hellman key exchange rely
on the integer factorization and the discrete logarithmic problem (Odlyzko 1984).
Factorizing integers and computing the discrete transform are difficult tasks and
often involve the solution to a system of large and sparse linear equations over
finite fields GF(p). For small systems the Gaussian elimination works perfectly.
However as the size and sparsity increases the Gaussian elimination becomes inef-
ficient because of its fill-in problem. The Gaussian elimination can turn a sparse
system to a dense one, to find a solution. The iterative methods that use succes-
sive approximation to obtain accurate solutions, like Lanczos algorithm (Lanczos
1952) and Wiedemann algorithm (Wiedemann 1986) work well for such systems.
c© Springer Nature Singapore Pte Ltd. 2017
D. Giri et al. (Eds.): ICMC 2017, CCIS 655, pp. 84–95, 2017.
DOI: 10.1007/978-981-10-4642-1 8
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But the problem with these algorithms is the computation intensive matrix-vector
multiplications. This component increases the timing results of the program for
large sparse systems where the data required for computation may be so large
that it cannot fit into the cache. The access to the data would require constant
calls to the hard disk and the ROM, increasing the time required for finding the
solution. In this paper, we give a cache optimized implementation of the Lanc-
zos and Wiedemann Algorithm for improvement in performance by the reduc-
tion in memory accesses, specifically for systems with low memory. Researchers
have developed techniques for the cache efficient programs to solve compute inten-
sive problems by optimally utilizing cache. The Cache efficient matrix transposi-
tion suggested in (Chatterjee & Sen 2000) studies the contributions of the data
cache, the translation look aside buffer, register tiling, and the array layout func-
tion to the overall running time of the algorithms. Peter D. Sulatycke and Kanad
Ghose suggested multithreaded fast multiplication of sparse matrices (Sulatycke
& Ghose 1998). An efficient implementation of IIR and FIR filters by fitting the
filter parameters in processor’s cache (Ilmonen & Lokki 2006). This addresses the
problem of a slower algorithm due to the inability of fitting the whole data into
cache. The algorithm in (Zoican 2007) works by rearranging the filter equations to
achieve a better cache hit rate. The convolution problem is broken down into a sum
of sub-convolutions and several elements are computed together to achieve cache
optimization. The efficient binary-mesh partitioning algorithm (Tchiboukdjian,
Danjean, & Raffin 2010), and multiple string matching (Tan, Liu, & Liu 2008)
aims to obtain efficient cache utilization for automata based algorithms by reduc-
ing the space requirements and by improving the cache locality for table-lookup-
based algorithms. For solving dense system parallel solution for solving linear
equations using Newton’s iterative method (Pan & Reif 1989) was developed
by choosing initial approximate inverse of the matrix. Preconditioned iterative
method (Reif 1998) to find the approximate solution of sparse linear systems of
equations was developed in which the condition number was obtained using alge-
braic and combinatorial methods. To solve matrix equations of the form A1 ×
B1 = F1 and A2 × B2 = F2, iterative approach (Ding, Liu, & Ding 2010) was
designed by Ding et al. using iterative approach. They did not give any idea to
select step size.

This paper is described in six sections. Section 2 provides an overview of
the iterative Lanczos and Wiedemann algorithm. Section 3 gives an introduction
to the CRS form for the storage of sparse matrices. Section 4 describes Cache
optimized solution for sparse linear system over large order finite field. Section 5
describes the results obtained and Sect. 6 concludes.

2 Lanczos and Wiedemann Algorithms

Lanczos (Lanczos 1952) and Wiedemann (Wiedemann 1986) algorithms are the
most common algorithms for finding the solution of linear system of equations
over finite field. These algorithms use an iterative approach to obtain their solu-
tions. In this section we discuss these two algorithms.
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2.1 Lanczos Algorithm

Lanczos algorithm (Lanczos 1952) was invented for solving linear systems over
real number field. LaMacchia and Odlyzko (LaMacchia & Odlyzko 1990) modi-
fied for solving linear system over finite field.

Let the system of linear equations is given by

Ax = w (1)

where A is an n*n square symmetric matrix and x and w are n*1 column
matrices, over the finite field F.

The algorithm is given as follows-
Let the initial vector

w0 = w. (2)

Calculate
v1 = Aw0 (3)

and

w1 = v − (v1, v1)
(v0, v1)

w0 (4)

For further values of i i.e. for i >= 1 define,

vi + 1 = Awi, (5)

wi+1 = vi+1 − (vi+1, vi+1)
(wi, vi+1)

wi − (vi+1, vi)
(wi−1, vi)

wi−1 (6)

and

Hi =
(wi, w)

(wi, vi+1)
(7)

And the algorithm terminates when the condition (wk, Awk) = 0 is satisfied
because this gives a vector orthogonal to a set of n orthogonal vectors is a space
of dimension of n. This happens for some (k <= n). The solution is given by

x =
j−1∑

i=0

(Hiwi) (8)

However, in general the matrices to be solved are asymmetric and hence, the
Lanczos needs to be modified to work for such matrices. Consider an asymmetric
m × n (m ≥ n) matrix B such that the system is given by

Bx=w’ (9)

A symmetric matrix A can then be formed as

A = BTD2B (10)
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and
w = BTD2w (11)

where D is a diagonal matrix of the order m × m whose elements belong to
F\{0}.

A solution to Ax=b will then be a solution to (9).
However we do not need to calculate the matrix A to compute wi. The vector

matrix multiplication Awi can be computed as

BTD2(BXwi) (12)

Let the number of non zeros be given as nonz. Let the cost of addition and
multiplication be s1 and s2. The cost of computing (8) can then be given as
2 ∗ nonz ∗ s1 + n ∗ s2. Also each inner product costs about n ∗ s1 + n ∗ s2. The
total cost of each iteration is then given by

Ti(n) = 2 ∗ nonz × s1 + 4 ∗ n ∗ s1 + 5 ∗ n ∗ s2 (13)

And the total cost for the running of the algorithm is then given by n∗Ti(n)
for n iterations.

2.2 Wiedemann Algorithm

Wiedemann Algorithm (Wiedemann 1986) doesn’t require the matrix A to be
symmetric or positive-definite. Let µA(x) be the minimal polynomial of the
matrix A. Wiedemann starts by probabilistically determining µA(x). Let

µA(x) = xd − Cd−1x
d−1 − . . . C1x − C0 (14)

where
d = deg(µA(x)) <= n (15)

Since
µA(A) = 0, (16)

from the Cayley Hamilton Algorithm, we have

Akv − Cd−1A
k−1v − . . . C0A

k−dv = 0 (17)

Let vk be the element of Akv at some particular position. The sequence vk
for k >= 0, satisfies the recurrence relation

vk = Cd−1vk−1 + . . . + C1v1 + C0v0 (18)

For all k >= d. The minimal polynomial C(x) with degree d′ <= d can be
calculated using the Berlekamp Massey Algorithm (Berlekamp 2015).

Put k = d and v = b in (17) to get

A(Ad−1b − Cd−1A
d−2b − c1Ab = c0b (19)
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If C0 �= 0, it becomes:

x = (C0)−1(Ad−1b − Cd−1A
d−2b − . . . C1Ab (20)

which is a solution to Ax = b.
The time consuming task in both Lanczos and Wiedemann is the computa-

tion of the matrix vector products Aib for i = 0, 1, 2...., which requires O(n2).

A. The calculation of matrix-vector multiplications will be needed to compute
and check for the correct minimum polynomial in Wiedemann and for the
computation of vi+1 values in Lanczos. This step involves the costliest matrix-
vector multiplication. Also, in Wiedemann, the range of the loop variable i
is twice the dimension of matrix A.

B. The calculation of the solution vector also, involves the computation intensive
matrix-vector multiplication in addition to scalar-vector and vector-vector
multiplication, vector addition and subtraction. This step, in comparison to
the first, is less costlier as the range of the loop variable i is equal to the
dimension of matrix A (viz. i = 0, 1, . . . , n − 1) that is half of the range
in the first step, for Wiedemann, though it is as costly as the first step
considering a single iteration.

To improve the execution time of these algorithms we need to pay attention
to optimally utilize cache so that the same element should not be fetched again
and again memory.

3 Representation of Matrices

In RSA cryptanalysis and for finding the discrete log over a field of high order,
the number of equations to be solved reaches the order of 105 or more. Also,
the coefficient matrix A will have a majority of its elements as zero. To store
such sparse matrices various methods are available, like the Compressed Col-
umn Storage Format (CCS) and Compressed Row Storage Format (CRS) (Bai,
Demmel, Dongarra, Ruhe, & Vorst 2000), Jagged Diagonal Format (Saad 1989),
Compressed Diagonal Storage Format (Bai et al. 2000) and linked list represen-
tation (Horowitz & Sahni 1983) are some methods used for the purpose. The
CRS and CCS are the most efficient storage schemes due to their low memory
requirements. The CRS maintains three arrays namely the value array, the col-
umn index and the row pointer. The value array stores the non- zero elements of
the sparse matrix. The column index stores the column number corresponding
to the non-zero elements stored in the value array and the row pointer array
stores the beginning of each row. We used this scheme to store the sparse matrix
for implementation. CRS for a matrix A method is described in Fig. 1.

Compressed Column Storage Format (CCS) is very similar to CRS. The only
difference is, while storing in this format we are moving across a column first,
storing the row number in the second array and the cumulative number of ele-
ments in a column in the final array.
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A =

1 0 0 3
2 0 7 0
0 0 0 1
5 0 0 0

V alue =
[
1 3 2 7 1 5

]

Col Index =
[
0 3 0 2 3 0

]

Row ptr = 0 2 4 5

Fig. 1. Representation of matrix A in CRS form.

For an m ×n matrix, the CRS representation requires a total of 2×nonz +
m instead of an initial m ×n space for the storage of the matrix, where nonz is
the number of non zeros in the matrix A and m is the number of rows in the
matrix.

In a similar way compressed column storage (CCS) can also be as shown in
Fig. 2.

V alue = 1 3 2 7 1 5

Row Index = 0 0 1 1 2 3

Col ptr = 0 2 4 5

Fig. 2. Representation of matrix A in CCS form.

4 Cache Optimized Solution for Sparse Linear System

Both Lanczos and Wiedemann algorithm include the compute intensive matrix-
vector multiplication that makes a significant contribution to the running time
of the algorithms. We have developed an algorithm for matrix vector multiplica-
tion with CRS representation by optimally utilizing the cache. Our algorithm for
matrix-vector multiplication reduces the time taken by this matrix-vector mul-
tiplication, by making effective use of the available cache. Even though the CRS
representation reduces the space required for the storage, the number of non- zeros
themselves can increase to a limit where their storage may cause difficulty and
insufficient memory, when the field order is large say 512 bits. The standard imple-
mentation of Lanczos and Wiedemann algorithm require that all the three arrays
value, column index and row pointer. Since the cache cannot accommodate the
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entire data due to insufficient space, the matrix vector multiplication works by
making accesses to RAM or hard disk (if RAM is also not sufficient to store these
arrays). The same set of data may be accessed and brought back to the cache for
computation more than once. This increases the running time of the algorithms.

In our implementation, we retrieve an optimum number of non-zero values that
can be completely accommodated in the cache, utilizing the complete capacity
of cache, instead of retrieving the complete value and column index arrays. The
required data is moved into the cache and processing is done on the retrieved data.
This ensures that the computations are done within the cache. After the data in
cache is processed, a new block of data is moved into the cache. The same set of
non-zero values is not retrieved again. This method reduces the number of mem-
ory accesses for file read and write, reducing the time required to read files. Our
results show a significant increase in the efficiency by the implementation of the
above method. The program could also show an increase in the running time if the
number of elements retrieved at a time are less than what the cache can be made
to accommodate, thus increasing the number of avoidable cache accesses. Thus
the method relies on a proper sensing of the available cache. The cache memory
can be thought of as a buffer between the CPU registers of limited memory but
high speed, and a comparatively slower but bigger main system memory (RAM).
The similar operating speed of the Cache and the CPU prevents the CPU from
waiting for the data. The configuration of the cache is such, that when data is to
be read from RAM, the system first checks for the presence of data in the cache.
If data is found in the cache, it is retrieved quickly to be used by the CPU.

If the data however, is not cached, the data is read from the RAM and
transferred to the CPU. It is also cached for future references. If the CPU needs
the same bit of data (a value from the same address), it will automatically look
in cache first, which is much faster than RAM. The importance of the above
mechanism also comes from the fact that all of this is done transparently with
respect to the CPU so that the only difference is in the amount of time taken
for the data to be retrieved. Transfer rate is not the only problem. Latency also
reduces the CPU performance.

The other important reasons for the effectiveness of the cache are attributed
to the exhibition of two forms of locality.

A. Spatial locality:- data within a block are likely to be fetched together.
B. Temporal locality:- data that has been recently used is likely to be used again

in a short period of time.

The above suggest that benefits can be gained by implementing quickly acces-
sible memory (temporal) and storing relevant information in small blocks (spatial)
as efficiently as possible. When the dataset is large, it cannot fit into the small
cache and needs to be stored in RAM/hard disk. Conclusively, we need to access
RAM/hard disk for retrieving and storing the resultant and newly generated data.
The access pattern to RAM/hard disk should be such as to minimize the number
of accesses. Also, it would be preferable to store maximum amount of data in the
cache to reduce the access time. However, since all of the data cannot be accom-
modated in the cache, we have retrieved only a small amount of data equal to the
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available capacity of cache. Also, since data is stored sequentially i.e. in order of
being retrieved, we benefit greatly from the spatial and temporal locality of cache.

Other improvements in the implementation were done as follows:-

A. For the generation of Aiv iteratively for i = 0, 1, . . . , 2n − 1, we compute Aiv
in the ith iteration by multiplying the matrix A and vector Ai−1v (which
has already been computed in the previous iteration). We maintain a single
vector that stores only the previously computed vector Ai−1v. However, the
rest of the previously computed Ai−1v are stored in a file.

B. Only the matrix B was stored in CRS format. Matrix Bt is not stored explic-
itly. The same data used to store B is used for the computations with Bt.
Corresponding adjustments are made in the program to use the data for Bt.
As said before, the same data is not retrieved again. All the required compu-
tations using a set of data are done at once when the data is bought to the
cache from the hard disk. This reduces the number of calls to the hard disk.

4.1 Our Algorithm

Let S be the size of available cache, total nonzeros be the total number of non
zeros in the matrix A. For every batch of non zeros to be processed, we need
the entire row pointer vector, and non zero values from the value array and
their corresponding column indices from the column array. Say, N non zeros
are retrieved from the value array during one batch computation, then the N
corresponding column indices also need to be brought into the cache. Hence, the
total number of values bought to the cache are 2 × N + rows, which is equal to
the total number of non-zeros that can be accommodated in the cache, rem be
the remaining number of non zeros left to be brought to the cache and undergo
computation. col array stores the column index, val array stores the non zero
values and row array store the number of non zeros in a row, rows is the number
of rows, the array C stores the result of matrix-vector multiplication.

Algorithm:-
int rem = total nonzeros, R = row[0], r = 1,loop = 0;
int val[N], col[N], row[rows], x[rows] ;
while (rem > 0)

if (rem >= N)
Retrieve next N values of val array and col array
y = N;
loop++;
rem = rem − N ;

else if (rem < N)
Retrieve next rem values of val array and col array
y = rem;
loop++;
rem = rem-N;

for i =1 to N
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Calculate the row j and col k of val[loop × N + i].
Multiply the element with x[j] i.e. C[j][k] = val[k] ∗ x[j].

end

5 Experimental Results

The implementation was done on a 64-bit Intel core i3-2348M processor on
Ubuntu 14.04 LTS operating system and a RAM of 3.6 GB. For arithmetic

Table 1. Improvement in execution time by optimally utilizing cache

Equations(Matrix Size) Field Size
(in bits)

Sparsity % Improvement
in Lanczos

% Improvement
in Wiedemann

103 × 103 131 1% 7.82 5.2

103 × 103 131 2% 8.40 5.74

103 × 103 131 3% 8.70 5.83

103 × 103 263 1% 8.20 5.21

103 × 103 263 2% 8.90 5.68

103 × 103 263 3% 9.20 6.01

103 × 103 529 1% 10.35 6.11

103 × 103 529 2% 10.83 6.26

103 × 103 529 3% 11.4 6.83

104 × 104 131 1% 12.85 8.03

104 × 104 131 2% 13.02 9.06

104 × 104 131 3% 13.46 9.26

104 × 104 263 1% 12.87 8.67

104 × 104 263 2% 13.5 9.00

104 × 104 263 3% 14.22 9.58

104 × 104 529 1% 13.62 10.35

104 × 104 529 2% 13.98 10.48

104 × 104 529 3% 14.60 11.01

105 × 105 131 1% 15.00 11.13

105 × 105 131 2% 15.3 11.52

105 × 105 131 3% 15.72 11.74

105 × 105 263 1% 15.63 11.48

105 × 105 263 2% 15.98 12.05

105 × 105 263 3% 16.11 12.86

105 × 105 529 1% 15.656 13.01

105 × 105 529 2% 16.321 13.67

105 × 105 529 3% 16.50 13.93
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with large integers we used the GNU/MP library (Granlund 1991). The imple-
mentation was done in C language and compiled using GCC. Table 1 shows the
results obtained from the implementation of Lanczos, Cache optimized Lanczos,
Wiedemann and Cache optimized Wiedemann for solving n × n linear sparse
system over finite field of size 131, 263 and 529 bits with n = 103, 104 and 105.

The results are plotted and shown in the Figs. 3, 4, 5, 6, 7 and 8. The
results show improvement in the timing of cache optimized Lanczos compared
to the standard Lanczos and of Cache Optimized Wiedemann in comparison to
Wiedemann. For the field of order 529 bits, the improvement in execution time
is 16% in Lanczos and 13% in Wiedemann, with number of equations as 105.
In general, an increase in the field size and the sparsity lead to a proportionate
increase in the time taken for the algorithm to give a solution.

Fig. 3. Timing results of Lanczos and
cache optimized Lanczos, (variation
with number of equations), with spar-
sity 1% and field order 529 bits

Fig. 4. Timing results of Wiedemann
and cache optimized Wiedemann (vari-
ation with number of equations) with
sparsity 1% and field order 529 bits

Fig. 5. Timing results of Lanczos and
cache optimized Lanczos (variation
with field order) with sparsity 1% and
number of equations 105

Fig. 6. Timing results of Wiedemann
and cache optimized Wiedemann (vari-
ation with field order) with sparsity 1%
and number of equations 105
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Fig. 7. Timing results of Lanczos and
cache optimized Lanczos (variation
with sparsity) with field order 529 bits
and number of equations 105

Fig. 8. Timing results of Wiedemann
and cache optimized Wiedemann (vari-
ation with sparsity) with field order 529
bits and number of equations 105

6 Conclusion

In this paper, we have considered a cache optimized implementation of the Lanc-
zos and Wiedemann algorithms with CRS implementation. Our program senses
the cache to retrieve an optimal amount of data that can completely occupy the
cache. The data retrieved is required only once. The processing is done with data
available in the cache. Once, the required processing has been done, the data is
removed from the cache and the next block of data is brought to the cache for
further computations. The results show an improvement in execution time 16%
in Lanczos and 13% in Wiedemann, with 105 number of equations over a field
of order 529 bits.

References

Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H.: Templates for the
Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia
(2000)

Berlekamp, E.R.: Algebraic Coding Theory. World Scientific, Singapore (2015).
(Revised ed.)

Chatterjee, S., Sen, S.: Cache-efficient matrix transposition. In: Paper Presented at the
IEEE Sixth International Symposium on High-Performance Computer Architecture
(HPCA-6) (2000)

Ding, J., Liu, Y., Ding, F.: Iterative solutions to matrix equations of the form Ai×Bi=
Fi. Comput. Math. Appl. 59(11), 3500–3507 (2010)

Granlund, T.: GMP, the GNU multiple precision arithmetic library (1991). Accessed
http://gmplib.org/

Horowitz, E., Sahni, S.: Fundamentals of Data Structures. Pitman, London (1983). vol.
04; QA76. D35, H6

Ilmonen, T., Lokki, T.: Extreme filters-cache-efficient implementation of long IIR and
FIR filters. IEEE Sig. Process. Lett. 13(7), 401–404 (2006)

http://gmplib.org/


Cache Optimized Solution for Sparse Linear System 95

LaMacchia, B.A., Odlyzko, A.M.: Solving large sparse linear systems over finite fields.
In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 109–
133. Springer, Heidelberg (1991). doi:10.1007/3-540-38424-3 8

Lanczos, C.: Solution of systems of linear equations by minimized iterations. J. Res.
Natl Bur. Stan. 49(1) (1952)

Odlyzko, A.M.: Discrete logarithms in finite fields and their cryptographic significance.
In: Beth, T., Cot, N., Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209,
pp. 224–314. Springer, Heidelberg (1985). doi:10.1007/3-540-39757-4 20

Pan, V., Reif, J.: Fast and efficient parallel solution of dense linear systems. Comput.
Math. Appl. 17(11), 1481–1491 (1989)

Reif, J.H.: Efficient approximate solution of sparse linear systems. Comput. Math.
Appl. 36(9), 37–58 (1998)

Saad, Y.: Krylov subspace methods on supercomputers. SIAM J. Sci. Stat. Comput.
10(6), 1200–1232 (1989)

Sulatycke, P.D., Ghose, K.: Caching-efficient multithreaded fast multiplication of
sparse matrices. In: Paper Presented at the Parallel Processing Symposium 1998,
IPPS/SPDP 1998 (1998)

Tan, J., Liu, Y., Liu, P.: Accelerating multiple string matching by using cache-efficient
strategy. In: Paper Presented at the the Ninth International Conference on Web-Age
Information Management 2008, WAIM 2008. IEEE(2008)

Tchiboukdjian, M., Danjean, V., Raffin, B.: Binary mesh partitioning for cache-efficient
visualization. IEEE Trans. Vis. Comput. Graph. 16(5), 815–828 (2010)

Wiedemann, D.H.: Solving sparse linear equations over finite fields. IEEE Trans. Inf.
Theory 32(1), 54–62 (1986)

Zoican, S.: Cache-efficient implementation of FIR filters using the Blackfin microcom-
puter. In: Paper Presented at the IEEE 8th International Conference on Telecom-
munications in Modern Satellite, Cable and Broadcasting Services 2007 (TELSIKS
2007) (2007)

http://dx.doi.org/10.1007/3-540-38424-3_8
http://dx.doi.org/10.1007/3-540-39757-4_20


Connected Fair Domination in Graphs

Angsuman Das1(B) and Wyatt J. Desormeaux2

1 Department of Mathematics, St. Xavier’s College, Kolkata, India
angsumandas@sxccal.edu

2 Department of Mathematics, University of Johannesburg,
Auckland Park, South Africa
wjdesormeaux@gmail.com

Abstract. In this paper, we introduce the notion of connected fair dom-
ination in graphs. A connected fair dominating set in a graph G (or
CFD-set) is a dominating set S such that 〈S〉 is connected in G and all
vertices not in S are dominated by the same number of vertices from S,
i.e., every two vertices not in S has the same number of neighbours in
S. The connected fair domination number of G (cfd(G)) is the minimum
cardinality of a CFD-set in G. Apart from finding cfd(G) for some stan-
dard graphs G, we proved various bounds on cfd(G) in terms of order
and some other graph parameters of G.

Keywords: Fair domination · Connected domination · Diagonal ramsey
numbers

1 Introduction

The theory of domination in graphs has been an active area of research from
the time of its inception. Two domination books [3,4] provide a comprehensive
report of the vastness of research in the area of domination in graphs and its
relation to other graph parameters. The notion of connected domination intro-
duced in [5] gained a lot of attention due to its application in connectivity of
networks, virtual backbone etc. In a simply modelled telecommunications net-
work, the model consists of a central core of nodes and endnodes. The endnodes
are client locations and the core nodes are interconnected and have switching
ability. Naturally the core nodes are costly and one would want to minimize
the number of core nodes while still maintaining their interconnectedness for
example see [6]. This is ideally modelled by finding the connected domination
number of the graph modelling your network and locating your core nodes at
the vertices that form a minimum connected dominating set. The trouble is, you
also must maintain fairness. In order to keep clients from feeling that they are
not getting their fair share of resources, and that everyone has “equal” access to
the network, it would be ideal for each endnode (client location) to have access
(be adjacent) to the same number of core nodes. It is with this additional con-
straint on the connected domination number in mind, that we initiate in this
paper the study of connected fair domination in graphs, which is an extension
c© Springer Nature Singapore Pte Ltd. 2017
D. Giri et al. (Eds.): ICMC 2017, CCIS 655, pp. 96–102, 2017.
DOI: 10.1007/978-981-10-4642-1 9
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of fair domination introduced by Caro et.al. in [1] and in [2]. For notation and
graph theory terminology, we in general follow [3,7].

Let G = (V,E) be a simple connected undirected n vertex graph and γc be
its connected domination number. A set S ⊂ V is said to be a connected k-fair
dominating set, in short kCFD-set, if

1. S dominates G,
2. 〈S〉 is connected and
3. ∀v ∈ V \ S, |N(v) ∩ S| = k.

Clearly for a connected graph G, V itself is a kCFD-set. The connected k-fair
domination number of G, denoted by cfdk(G), is the minimum cardinality of a
kCFD-set in G. A kCFD-set of cardinality cfdk(G) is called a cfdk(G)-set.

A connected fair dominating set, abbreviated as CFD-set, in G is a kCFD-
set for some integer k ≥ 1. The connected fair domination number, denoted
by cfd(G), of a graph G is the minimum cardinality of a CFD-set in G, i.e.,
cfd(G) = min{cfdk(G)}, where the minimum is taken over all integers k where
1 ≤ k ≤ n − 1. A CFD-set of G of cardinality cfd(G) is called a cfd(G)-set.

We start with some observations and inequalities involving cfd(G) for some
standard graphs.

Observations

1. cfd(G) ≤ n where n is the number of vertices in G.
2. γc(G) ≤ cfd(G) where γc(G) is the connected domination number of G.
3. fd(G) ≤ cfd(G), where fd(G) is the fair domination number of G. (See [1], for

definition of fd(G)).
4. cfd(Pn) = cfd(Cn) = n − 2, where Pn and Cn denote path and cycle on n

vertices respectively.
5. cfd(Kn) = 1 and cfd(Km,n) = 2, where Kn and Km,n denote the complete

graph and complete bipartite graph.

2 Bounds on cfd(G) in Terms of Order of G

Theorem 1. For any connected graph G with n vertices, cfd(G) ≤ n − 1.

Proof: If n = 2, then G = K2 and hence cfd(G) ≤ 1. Let n ≥ 3. Then γc(G) ≤
n − 2. Let D be a γc-set of G and |D| ≤ n − 2. We choose u ∈ V \ D and set
C = V \ {u}. Clearly, C dominates G (as D ⊂ C) and 3rd condition also holds
for C. Only thing remains to be shown is that 〈C〉 is connected. Let a, b ∈ C. Since
a and b are either in D or adjacent to some vertices in D and 〈D〉 is connected,
there exists a path from joining a and b in 〈C〉 and hence 〈C〉 is connected. Thus,
C is a CFD-set in G with n − 1 vertices and thereby proving cfd(G) ≤ n − 1. 
�
Remark 1. The bound in Theorem 1 is tight. Consider the graphs in Fig. 1. They
have cfd(G) = 4 and 5 respectively. It is easy to check that there does not exist
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any fair connected dominating set of size 3 or less for the first one (in left). For
the other one (in right), we present a formal proof.

Consider the graph G on 6 vertices given in Fig. 1 (right). We prove that
cfd(G) = 5. If possible, let cfd(G) ≤ 4. Observe that a is a pendant vertex and b
is a support vertex in G. Thus any one of them should be in any dominating set
of G. As we are looking for connected dominating sets (CDS), b should be there.
Now b dominates all the vertices in G except e. Thus to dominate e, either d or
f should be in the CDS along with b.

Case 1: If b, d ∈ CDS, to maintain connectedness of CDS, atleast one of c or f
should be in CDS.

Case 1a: If b, c, d ∈ CDS, then a, e, f are atleast dominated 1, 1, 3 times respec-
tively. So {b, c, d} is not a CFD-set in G. Now if we include exactly one vertex
in CDS other than a, then a will be dominated once by CDS and the last
vertex will be dominated atleast twice. Thus only way to keep a outside CDS
is to take all other vertices in CDS. That gives a CFD-set of size 5. On the
other hand if we include a in CDS, i.e., a, b, c, d ∈ CDS, f is dominated thrice
and e is dominated only once. Thus, we need to include either e or f in CDS,
thereby making it a CFD-set of size 5.

Case 1b: If b, d, f ∈ CDS, then {b, d, f} is not a CFD-set in G as e is dominated
twice and a is dominated once. Similar to that in Case 1a, only way to keep
a outside CDS is to take all other vertices in CDS. That gives a CFD-set of
size 5. On the other hand if we include a in CDS, i.e., a, b, d, f ∈ CDS, c
is dominated thrice and e is dominated twice. Thus, the only option is to
include either of c or e in CDS, thereby making it a CFD-set of size 5.

Case 2: If b, f ∈ CDS, as already d is dominated twice and a can be dominated
at most once, we need to either include all the vertices except a in CDS or
we need to include a in CDS. As in the first case, we get a CFD-set of size 5,
we include a in CDS, i.e., a, b, f ∈ CDS. Now, c, d are dominated twice and
e is dominated once. So, we need to include more vertices in CDS.

Case 2a: a, b, c, f ∈ CDS. In this case d is dominated twice and e is dominated
once. Thus we need to include one more vertex making it a CFD-set of size 5.

Case 2b: a, b, d, f ∈ CDS. In this case c is dominated thrice and e is dominated
twice. Thus we need to include one more vertex making it a CFD-set of size 5.

Case 2c: a, b, e, f ∈ CDS. In this case c is dominated twice and d is dominated
thrice. Thus we need to include one more vertex making it a CFD-set of size 5.

Thus, combining all cases, we get cfd(G) = 5 and thereby proving the result. 
�

Remark 2. The gap cfd(G) − γc(G) can be arbitrarily large. Consider the fol-
lowing graph from [1]. For n ≥ 3, define a graph on 2n vertices as follows:
V (G) = X ∪ Y where X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}. Edges are
defined as follows: xi ∼ yj if and only if i ≥ j. For i, j > 1, xi ∼ xj .

Clearly, {xn, y1} is a connected dominating set and γc(G) = 2. It was proved
in [1] that fd(G) = 2n − 2. Since cfd(G) ≥ fd(G), we have cfd(G) − γc(G) ≥
2n− 2− 2 = 2n− 4. Thus, as n increases, cfd(G)− γc(G) increases arbitrarily. 
�
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Fig. 1. Sharpness of upper bound

Theorem 2. Let T be a tree with n ≥ 3 vertices out of which l are pendant
vertices. Then cfd(T ) = n − l.

Proof: Let T be a tree with n vertices out of which l are pendant vertices.
Then the set N of non-pendant vertices of T is a CFD-set of size n − l. Thus,
cfd(T ) ≤ n − l.

If possible, let cfd(T ) < n − l and let S be a cfd(T )-set. Then S does not
contain atleast one non-pendant vertex, say u, and deg(u) ≥ 2. Let v, w be two
neighbours of u. If both v, w ∈ S, then S is not a CDS as there is no path
joining v and w in 〈S〉 (only path joining v and w in G is v ∼ u ∼ w). If both
v, w �∈ S, then S contains a neighbour of u, other than v and w, say x, which
dominates u. Again there exists some neighbour of v, say y (other than u), in S
which dominates v. Now 〈S〉 being connected, there should be a path between
x and y. As T is a tree, there exists a unique path in T , namely x ∼ u ∼ v ∼ y
joining x and y. Since u, v �∈ S, this path does not exist in 〈S〉, thereby making it
disconnected. Thus, the only possibility left is when u has exactly two neighbours
v, w, i.e., deg(u) = 2 and exactly one of them is in S. Let v ∈ S and w �∈ S. Since,
w �∈ S, there exists a neighbour of w, say z (other than u), in S which dominates
w. Now 〈S〉 being connected, there should be a path between v and z. As T is
a tree, there exists a unique path in T , namely v ∼ u ∼ w ∼ z joining v and z.
Since u,w �∈ S, this path does not exist in 〈S〉, thereby making it disconnected.

Thus, combining all the cases, it follows that all non-pendant vertices of T
must be in S, i.e., cfd(T ) ≥ n − l and hence cfd(T ) = n − l. 
�
Corollary 1. Let T be a tree with n ≥ 3 vertices. Then cfd(T ) = γc(T ). 
�
Corollary 2. For any connected graph G with n vertices out of which l are
pendant vertices, cfd(G) ≤ n − l. 
�
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Theorem 3. For a connected regular graph G on n ≥ 3 vertices, cfd(G) ≤ n−2.

Proof: Let G be a connected r-regular graph. Let D be the minimum connected
dominating set of G. Then |D| ≤ n−2. Choose u, v ∈ V \D and set S = V \{u, v}.
As D ⊂ S, S dominates G. Let a, b ∈ S. Since a and b are either in D or adjacent
to some vertices in D and 〈D〉 is connected, there exists a path from joining a
and b in 〈S〉 and hence 〈S〉 is connected. Now, two cases may arise:

Case 1: u ∼ v in G. As G is r-regular, both u and v are adjacent to exactly r−1
vertices in S. Note that as n ≥ 3, r ≥ 2.

Case 1: u �∼ v in G. Similarly, in this case, both u and v are adjacent to exactly
r vertices in S.
Thus, S is a CFD-set in G with n − 2 vertices and thereby proving cfd(G) ≤
n − 2. 
�

Theorem 4. Let G be a graph on n vertices with diameter 2, maximum degree
Δ and minimum degree δ. If Δ + δ < n − 1, then cfd(G) ≤ n − 2.

Proof: Let v be a vertex of degree δ. As diam(G) = 2, 〈N [v]〉 is a connected
dominating set of G. Consider the n−δ−1 vertices in V \N [v]. They have degrees
lying between 1 and Δ. If n − δ − 1 > Δ i.e., Δ + δ < n − 1, by Pigeon-hole
Principle, there exists at least two vertices u1, u2 ∈ V \ N [v] with same degree
k where 1 ≤ k ≤ Δ. Let C = V \ {u1, u2}. As C ⊃ N [v], C dominates G.

For two vertices u′, u′′ ∈ C, either they are adjacent, or they are adjacent
to same vertex in N [v] or they are connected by a path u′, v1, v, v2, u

′′ where
v1, v2 ∈ N [v]. Thus 〈C〉 is connected.

Now, if u1 ∼ u2 in G, then both u1 and u2 are adjacent to k − 1 vertices in
C. If u1 �∼ u2 in G, then both are adjacent to k vertices in C. In any case, C is
a connected fair dominating set in G. Thus cfd(G) ≤ n − 2. 
�
Theorem 5. Let G be a 3-connected graph on n vertices. Then cfd(G) ≤ n − 2.

Proof: Since G is 3-connected, we have δ ≥ 3. Now, there exists at least two
vertices u, v in G such that deg(u) = deg(v) = k where 3 ≤ k ≤ n − 1. Let
C = V \ {u, v}. Since G is 3-connected, 〈C〉 is connected. Now, according as u
and v are adjacent or non-adjacent in G, then u and v are adjacent to k − 1
or k vertices in C. Thus C is a connected fair dominating set in G and hence
cfd(G) ≤ n − 2. 
�
Theorem 6. Let G be a regular connected graph on n vertices with connected
domination number γc. Moreover, let k be the highest positive integer such
that n − γc ≥ R(k, k) where R(k, k) is the diagonal Ramsey number. Then
cfd(G) ≤ n − k.

Proof: Let C be a γc-set of an r-regular graph G. Then |V \ C| = n − γc. Thus
〈V \ C〉 contains an independent set of size k or a clique of size k.
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Case 1: Let D ⊆ V \C be an independent set of size k in 〈V \C〉. Consider V \D.
We have |V \ D| = n − k. Since C ⊂ V \ D, V \ D is a connected dominating
set in G (using arguments similar to that used in proof of Theorem 1). Since
〈D〉 is an edgeless graph in V \ C, vertices in D are adjacent to exactly r
vertices in V \ D. Thus V \ D is a CFD-set in G and hence cfd(G) ≤ n − k.

Case 2: Let D ⊆ V \C be a clique of size k in 〈V \C〉. Similar to that of Case 1,
V \ D is a connected dominating set of size n − k in G. Since 〈D〉 is a clique
in V \ C, vertices in D are adjacent to exactly r − k + 1 vertices in V \ D.
Thus V \ D is a CFD-set in G and hence cfd(G) ≤ n − k. 
�

Theorem 7. For a connected graph G with n vertices and m edges,

n

Δ(G) + 1
≤ cfd(G) ≤ m − 1.

Proof: The lower bound follows from that fact that γc(G) ≥ n
Δ(G)+1 and

γc(G) ≤ cfd(G). For the upper bound, first note that for a connected graph
m ≥ n − 1.

If m = n − 1 in a connected graph G, then G is a tree and in that case
cfd(G) = n − l = m + 1 − l, where l is the number of pendant vertices. Now as
a tree contain atleast 2 pendant vertices, cfd(G) ≤ m − 1.

If m ≥ n, then cfd(G) ≤ n − 1 ≤ m − 1. 
�

3 Bounds on cfd(G) in terms of other graph parameters

An outer-connected out-regular set, abbreviated as OCOR-set is a subset Q of
vertices in V such that 〈V \Q〉 is connected and |N(u)∩ (V \Q)| = |N(v)∩ (V \
Q)| > 0 for all u, v ∈ Q.

Let G be a connected graph and C be a γc-set of G. Then |C| ≤ n − 2.
Choose u ∈ V \ C and set Q = {u}. Following the line of proof of Theorem 1, it
can be shown that Q is an OCOR-set of G. Hence, every connected graph has a
non-empty OCOR-set. The outer-connected out-regular number of a connected
graph G, denoted by ξocor(G) is the maximum cardinality of an OCOR-set in G.
An OCOR-set of size ξocor(G) is called a ξocor(G)-set of G. It trivially follows
that ξocor(G) ≥ 1 for any connected graph G.

Theorem 8. For every connected graph G on n vertices, cfd(G)+ξocor(G) = n.

Proof: Let D be a cfd(G)-set. Then, by Theorem 1, |D| ≤ n−1. Let Q = V \D.
Then Q is an OCOR-set in G and hence ξocor(G) ≥ |Q| = n − cfd(G), i.e.,
cfd(G) + ξocor(G) ≥ n.

On the other hand, let Q be an ξocor(G)-set. Then |Q| ≥ 1. Let D = V \ Q.
Then D is a CFD-set in G and hence cfd(G) ≤ |D| = n − ξocor(G), i.e., cfd(G) +
ξocor(G) ≤ n. Thus we have the desired result. 
�
Theorem 9. If G is a connected graph such that G is connected and G has an
efficient dominating set, then cfd(G) = fd(G) = γ(G).
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Proof: Let S be an efficient dominating set of G of size γe(G). Then |S| ≥ 2,
because |S| = 1 implies that G has a universal vertex v (i.e., adjacent to all other
vertices), which in turn implies that v is an isolated vertex in G contradicting
that G is connected. Thus S dominates G, S is an independent set in G and
every vertex in V (G) \ S is adjacent to exactly one vertex of S in G.

Hence, in G, every vertex in V (G) \ S is adjacent to exactly |S| − 1 vertices
of S and thus S is also a dominating set of G. Moreover, as S is an independent
set in G, 〈S〉 is a complete subgraph in G and hence connected in G. Thus, S is
a connected (|S| − 1)-fair dominating set in G and hence cfd(G) ≤ γe(G).

Now, we note that for any graph G′ with an efficient dominating set, we have
γe(G′) = γ(G′). Thus, we have

γe(G) = γ(G) = fd(G) (by Observation 2 in [1])
= fd(G) (by Theorem 4(a) in [1])
≤ cfd(G) (by Observation 3 in this paper)

Hence, we conclude that cfd(G) = fd(G) = γ(G). 
�

4 Concluding Remarks

In this paper, we introduce the notion of connected fair domination number
cfd(G) of a connected graph G and proved various bounds on cfd(G) in terms of
the number of vertices and some other graph parameters. However, relationship
of cfd(G) with respect to other graph parameters, still remain unexplored and
can be an interesting topic for further investigation.

Acknowledgement. The research is partially funded by NBHM Research Project
Grant, (Sanction No. 2/48(10)/2013/ NBHM(R.P.)/R&D II/695), Government of
India.

References

1. Caro, Y., Hansberg, A., Henning, M.: Fair domination in graphs. Discrete Math.
312, 2905–2914 (2012)

2. Hansberg, A.: Reviewing some results on fair domination in graphs. Electron. Notes
Discrete Math. 43, 367–373 (2013)

3. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in
Graphs. Marcel Dekker Inc., New York (1998)

4. Haynes, T.W., Hedetniemi, S.T., Slater, P.J. (eds.): Domination in Graphs:
Advanced Topics. Marcel Dekker Inc., New York (1998)

5. Sampathkumar, E., Walikar, H.B.: The connected domination number of a graph.
J. Math. Phy. Sci. 13(6), 607–613 (1979)

6. Swamy, C., Kumar, A.: Primal-dual algorithms for connected facility location prob-
lems. Algorithmica 40(4), 245–269 (2004)

7. West, D.B.: Introduction to Graph Theory. Prentice Hall, Upper Saddle River (2001)



Coordinating Particle Swarm Optimization,
Ant Colony Optimization and K-Opt Algorithm

for Traveling Salesman Problem

Indadul Khan1(B), Manas Kumar Maiti2, and Manoranjan Maiti3

1 Department of Computer Science, Chandrakon Vidyasagar Mahavidyalaya,
Paschim-Medinipur 721201, West Bengal, India

indadulkhan@gmail.com
2 Department of Mathematics, Mahishadal Raj College, Mahishadal,

Purba-Medinipur 721628, West Bengal, India
manasmaiti@yahoo.co.in

3 Department of Applied Mathematics with Oceanology
and Computer Programming, Vidyasagar University,

Paschim-Medinipur, West Bengal, India

Abstract. In this paper combining the features of swap sequence and
swap operation based Particle Swarm Optimization (PSO), Ant Colony
Optimization (ACO) and K-Opt operation a hybrid algorithm is pro-
posed to solve well known Traveling Salesman Problem (TSP). Inter-
change of two cities of a path of a TSP is known as swap operation and a
sequence of such operations is called swap sequence. Using swap opera-
tion and swap sequence PSO operations are redefined to solve TSP. Here
ACO is used a small number of iterations to generate initial swarm of
PSO. Then PSO operations are made on this swarm a sufficient num-
ber of times to find optimal path. During PSO iterations if a particle
does not change its position for a predefined number of iterations then
K-Opt operation is made on it a finite number of times to improve its
position. The algorithm is tested with bench mark test problems from
TSPLIB and it is observed that algorithm is more efficient with respect
to accuracy as well as execution time to solve standard TSPs (Symmetric
as well as Asymmetric) compared to existing algorithms. Details of the
proposed algorithm along with swap operation, swap sequence and K-opt
operation for the algorithm are elaborately discussed for the readers.

Keywords: Traveling salesmen problem · Ant colony optimization ·
Particle swarm optimization · Swap sequence · Swap operation · K-Opt

1 Introduction

The Traveling Salesmen Problem(TSP) is one of the standard combinatorial
discrete optimization problem. The problem consists of a set of n vertices
(node/cities) where distance between any two vertices is known. A salesman
starts from a vertex, visits all the vertices exactly once and returned to the
c© Springer Nature Singapore Pte Ltd. 2017
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starting vertex in such a way that the total distance traveled is a minimum. So
the goal of the problem is to find a shortest possible tour through the set of
vertices in such a way that each vertex is visited exactly once except for the
starting vertex. It is also well-known NP-hard problem, can’t be solved exactly
in polynomial time [25,27]. Generally there are two approaches to solve a TSP
exact methods and heuristic methods. The exact methods are required huge time
for larger n, thus heuristic methods are typically used to solve a TSP. The exact
methods include cutting plane [32], LP relaxation [6], branch and bound [39],
branch and cut [36], etc. Only small size TSPs can be solved by exact methods in
a reasonable time. On the other hand, several problems have been solved using
heuristic or soft computing based techniques such as Ant Colony Optimization
[9], local search [18], hybrid algorithm [12] and genetic algorithm [34]. In a TSP,
when distance between vertices (node/cities) xi and xj is equal to the distance
between vertex xj and xi then the problem is called Symmetric Traveling Sales-
men Problem (STSP). Changdar et al. [4] solved a multi-objective solid TSP
under fuzziness. In TSP with precedence constraint [33] there exists an order in
which the vertices are to be visited. On the other hand, if the distance between
vertices (node/city) xi and xj is not equal to the distance between vertices
(node/cite) xj and xi, then the problem is called Asymmetric Traveling Sales-
men problem (ATSP). Majumder and Bhunia [28] solved a ATSP with imprecise
travel times using a genetic algorithm. In the TSP with time windows [12], each
vertex is visited within a specified time window. In double TSP [38], the targets
can be reached by two sales persons operating in parallel. Combing features of
PSO, ACO and 3-Opt a hybrid algorithm PSO-ACO-3-Opt is presented by Mahi
et al. [30] to solve TSP. Shi et al. [41] presented a PSO based algorithm for TSP.
Geng et al. [13] proposed an effective local search algorithm based on Simulated
Annealing (SA) and greedy search technique to solve the TSP. Jolai & Ghanbari
[20] presented an improved Artificial Neural Network (ANN) approach for TSP.
Dorigo et al. [9] proposed an Ant System to solve TSP. Dorigo & Gambardella [8]
described an artificial ant colony (ACO) capable of solving the TSP. Karaboga
& Gorkemli [21] proposed a new Artificial Bee Colony (ABC) algorithm called
Combinatorial ABC for TSP. Bontoux & Feillet [3] proposed a hybrid algorithm
to solve TSP. Beam-ACO algorithm [24] which is a hybrid method combining
ACO with beam search was used to solve TSP. Gunduz et al. [16] presented a
new heuristic method based on swarm intelligence algorithms for solving TSP.
Tsai et al. [42] presented a meta-heuristic approach called ACOMAC algorithm
for solving TSP.

From the above discussion it can be concluded that heuristic approaches are
more powerful to solve TSP in a feasible time period. Since 1995, PSO has been
proven to succeed in continuous optimization problems and much work has been
done effectively in this area. But it can be used to solve TSP also. Using the
concept of swap operator and swap sequence and redefining some operators of
PSO on the basis of them, Wang et al. [41] proposed a special PSO to solve
TSP. Akhand et al. [1] improved this algorithm to find solution of TSP and
named it velocity tentative PSO. On the other hand ACO is a well established
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technique to solve TSP [8,24,29]. Both the algorithms PSO and ACO sometimes
converge to local optimal path(tour). K-Opt is a technique which can be apply on
a tour(path) to overcome this convergence. In fact local search with K-exchange
neighborhoods, K-Opt, is the most widely used heuristic method for the TSP.
It works like as a mutation function. K-Opt is a tour improvement algorithm,
where in each step K links of the current tour are replaced by K links in such a
way that a shorter tour is achieved [17].

In this paper, combining the features of swap sequence and swap operation
based PSO [44], ACO and K-Opt operation a hybrid algorithm is proposed to
solved STSP as well as ATSP. In proposed method ACO is used a small number
of iterations to generate initial solution set(swarm) of PSO. PSO operations are
made on this swarm to find optimal path of a TSP. During PSO iterations if a
particle does not change its position for a predefined number of iterations then
K-Opt operation is made on it a finite number of times to improve its position.
Here actually 3-Opt operation is used for this purpose and it is found that it
acts better than 2-Opt operation for large size TSPs. The proposed algorithm
is tested with bench mark test problems from TSPLIB and it is observed that
algorithm is more efficient with respect to accuracy as well as execution time to
solve standard TSPs (STSP as well as ATSP) compared to existing algorithms.

The rest of the paper is organized as follows: in Sect. 2, mathematical for-
mulation of the problem is presented. In Sect. 3, some features of swap sequence
based PSO (SSPSO) is discussed. Features of ACO are discussed in Sect. 4.
K-Opt (Local Search) algorithm is presented in Sect. 5. Proposed algorithm is
presented in Sect. 6. Experimental results are discussed in Sect. 7. A brief con-
clusion is drawn on Sect. 8.

2 Model Formulation

A TSP can be represented by a graph G = (V,E), where V = 1, 2, ...N is the set
of vertices or nodes and E is the set of edges. Here each node represents a city
and each edge represents path between two cities. Each edge associated with a
distance which represents the distance between the cities associated with it. A
salesman travels distances to visiting N number of cities (or nodes) cyclically.
In one tour he visits each city exactly once, and finishes up where he started
with a minimum travel distance. Let djk be the distance between j-th city and
k-th city. Then the model is mathematically formulated as [6], Determine xjk,
j = 1, 2, ...N , k = 1, 2, ...N , to

Minimize Z =
N∑

j=1

N∑

k=1

xjkdjk

subject to
N∑

j=1

xjk = 1, for k = 1, 2, ..., N

N∑

k=1

xjk = 1, for j = 1, 2, ..., N

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(1)

where xjk = 1 if the salesman travels from city-j to city-k, otherwise xjk = 0.
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Let (x1, x2..., xN , x1) be a complete tour of a salesman, where xj ∈
{1, 2, ..., N} for j = 1, 2, ..., N and all xj ’s are distinct, i.e., (x1, x2..., xN , x1)
is the sequence of cities in which the salesman travels the cities. Then the above
model reduces to [23],

Determine a complete tour (x1, x2, ..........xN , x1)

to minimize Z =
N−1∑

j=1

dxjxj+1 + dxN x1

⎫
⎬

⎭
(2)

3 Swap Sequence Based Particle Swarm Optimization
(SSPSO) for TSP

PSOs are exhaustive search algorithms based on the emergent motion of a flock of
birds searching for food [10,22] and has been extensively used/modified to solve
complex decision making problems in different field of science and technology
([2,11,14,15]). A PSO normally starts with a set of potential solutions (called
swarm) of the decision making problem under consideration. Individual solutions
are called particles and food is analogous to optimal solution. In simple terms
the particles are flown through a multi-dimensional search space, where the
position of each particle is adjusted according to its own experience and that of its
neighbors. Each particle i has a position vector (Xi(t)), a velocity vector (Vi(t)),
the position at which the best fitness (Xpbesti(t)) encountered by the particle
so far, and the best position of all particles (Xgbest(t)) in current generation t.
In generation (t + 1), the position and velocity of the particle are changed to
Xi(t + 1) and Vi(t + 1) using following rules:

Vi(t + 1) = wVi(t) + c1r1(Xpbesti(t) − Xi(t)) + c2r2(Xgbest(t) − Xi(t)) (3)
Xi(t + 1) = Xi(t) + Vi(t + 1) (4)

The parameters c1 and c2 are set to constant values, which are normally taken
as 2, r1 and r2 are two random values, uniformly distributed in [0, 1], w(0 <
w < 1) is inertia weight which controls the influence of previous velocity on the
new velocity. It is mainly used to solve continuous optimization problems. It
is also used to solve TSPs where swap sequence and swap operations are used
to find velocity of a particle and its updating ([26,43,44]). A PSO that uses
swap sequence and swap operation is called SSPSO. As discussed in Sect. 2, in a
TSP a potential solution is represented by a sequence of nodes. In SSPSO, swap
operations on different nodes are used to update a solution. A swap sequence
represents a sequence of swap operations used to transform a solution to another
solution. Basic operations of SSPSO are briefly presented below:

Swap Operator
Consider a normal solution sequence of TSP with n nodes, X = (x1, x2, ...xn,
x1), where xi ∈ {1, 2, ...n} and each xi are distinct. Here swap operator,
SO(i, j) is defined as exchange of node xi and node xj in solution sequence
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X. Then we define X ′ = X + SO(i, j) as a new sequence on operating opera-
tor SO(i, j) on X. So the plus sign ‘+’, above has its new meaning. It can be
given a concrete example: suppose there is a TSP problem with six nodes, and
X = (x1, x2, x3, x4, x5, x6) = (1, 3, 5, 2, 4, 6) be a sequence. The swap operator is
SO(2, 4), then X ′ = X + SO(2, 4) = (1, 3, 5, 2, 4, 6) + SO(2, 4) = (1, 2, 5, 3, 4, 6),
i.e., nodes of position 2 and position 4 are exchanged.

Swap Sequence
A swap sequence SS is made up of one or more swap operators. Let
SS = (SO1, SO2, ..., SOn), where SO1, SO2, ..., SOn are swap operators. swap
sequence acting on a solution means all the swap operators of the swap sequence
act on the solution in order. This can be described by the following formula:

X ′ = X + SS = X + (SO1, SO2, ..., SOn) = (((X + SO1) + SO2)... + SOn)

Different swap sequences acting on the same solution may produce the same
new solution. All these swap sequences are named the equivalent set of swap
sequences. In the equivalent set, the sequence which has the least number of
swap operators is called Basic Swap Sequence of the set or Basic Swap Sequence
(BSS) in short.

Several swap sequences can be merged into a new swap sequence. Here the
operator ⊕ is defined as merging two swap sequences into a new swap sequence.
Suppose there is two swap sequences, SS1 and SS2 act on one solution X in
order, namely SS1 first, SS2 second and a new solution X ′ is obtained. Let
there is another swap sequence SS′ acting on the same solution X and get the
solution X ′, then SS′ is called merging of SS1 and SS2 and it is represented as:

SS′ = SS1 ⊕ SS2

Here, SS′ and SS1 ⊕ SS2 are in the same equivalent set.

The Construction of Basic Swap Sequence
Suppose there is two solutions, A and B, and our task is to construct a Basic
Swap Sequence SS which can act on B to get solution A. We define SS =
A − B (Here the sign − also has its new meaning). We can swap the nodes in
B according to A from left to right to get SS. So there must be an equation
A = B + SS. For example, consider two solutions:

A = (1, 2, 3, 4, 5), B = (2, 3, 1, 5, 4)

Here A(1) = B(3) = 1. So the first swap operator is SO(1, 3). Let B1 = B +
SO(1, 3) then we get the following result:

B1 : (1, 3, 2, 5, 4)

Again A(2) = B1(3) = 2, so the second operator is SO(2, 3) and B2 = B1 +
SO(2, 3). The third operator is SO(4, 5), and B3 = B2 + SO(4, 5). Finally we
get the Basic swap sequence SS = A − B = (SO(1, 3), SO(2, 3), SO(4, 5)).
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The Transformation of the Particle Updating Formulas
For solving TSP formulas (3) and (4) of PSO have to transformed using swap
sequences and swap operations as follows:

Vi(t + 1) = Vi(t) ⊕ r1 � (Xpbesti(t) − Xi(t)) ⊕ r2 � (Xgbest(t) − Xi(t)) (5)
Xi(t + 1) = Xi(t) + Vi(t + 1) (6)

Here r1, r2 are random numbers between 0 and 1. Velocity Vi(t) represent a swap
sequence. r1 � (Xpbesti(t)−Xi(t)) means all swap operators in BSS (Xpbesti(t)−
Xi(t)) should be maintained with the probability of r1, i.e., each swap operator
in BSS (Xpbesti(t) − Xi(t)) should be selected with probability r1. The same
meaning is for the expression r2 � (Xgbest(t) − Xi(t)). From here it is seen that
the bigger the value of r1 the greater the influence of Xpbesti(t) is, for more
swap operators in (Xpbest(t) − Xi(t)) will be maintained, it is also the same as
r2 � (Xgbest(t) − Xi(t)).

4 Ant Colony Optimization (ACO)

The ACO algorithm was developed by Dorigo et al. [7] as inspired by actual
ant colony behaviors to solve TSP. Ant algorithm are multi-agent system in
which the behavior for each single agent, called artificial ant or ant, is inspired
by the behavior of real ants. As discussed earlier a TSP consists of a set of N
vertices (node/cites) where distance between two vertices is known. The goal
of the problem is to find a shortest possible tour(path) from starting node s to
destination node D. In ACO, a special variable τij , called artificial pheromone
trail, which associated with any two vertices i and j is defined. The ant used this
pheromone in a stochastic way to decide which node to move to next. At the
beginning of the search process a constant amount of pheromone are assigned
to all the edges. When ants visit each node for creating a possible tour(path),
the pheromone would be updated by ants. Maximum pheromone is available on
the path through which maximum ants travel. An ant k is currently located at
node i, selects the next node j, based on the following transition probability:

P k
ij(t) =

⎧
⎪⎨

⎪⎩

τα
ij(t)η

β
ij(t)

∑

u∈Nk
i

τα
iu(t)η

β
iu(t)

if j ∈ Nk
i (t)

0 if j /∈ Nk
i (t).

(7)

where τij represents the pheromone value and ηij represents the heuristic value
of the move from node i to j at time step t. Nk

i (t) represent the set of nodes
which are not yet visited by ant k (when it is at node i). α and β are positive
real parameters whose values determine the relative importance of pheromone
versus heuristic information. ηij is calculated by following equation,

ηij =
1

dij
(8)
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where dij is the distance (cost) between the node i and j. During visit of nodes
by the ants small amount of pheromone would be evaporated from each edge
and some pheromone are deposited on the edges through which the ants move.
For each edge(i, j), evaporation takes place using the following rule:

τij(t) ←− (1 − ρ)τij(t) (9)

with ρ ∈ [0, 1]. ρ is the constant, that specifies the rate at which pheromone
evaporate. The more evaporate pheromone, the more random the search, that is
ρ = 1, the search is completely random. After completion of a tour(path) from s
to D by each ant, the pheromone on each edge(i, j) is updated (due to deposit
of pheromone) as

τij(t + 1) = τij(t) +
nk∑

k=1

�τk
ij(t) (10)

where �τk
ij(t) is the amount of pheromone deposited by ant k on edge(i, j) and

k at time step t and here �τk
ij(t) is taken as

�τk
ij(t) =

{ 1
f(Xk)

if k-th ant passes through edge (i,j)
0 otherwise

(11)

5 K-Opt Operation

K-Opt is a local search algorithm based on exchange of K parts (sub-tours) and
their reverses (reverse sub-tours) of a tour(path) of a TSP to find a better tour.
It has been proven to be very successful for TSPs and similar problems. While
breaking (removes) K edges in a tour, there are (K −1)!2K−1 ways to reconnect
it (including the initial tour) to form a valid tour [40]. Each new combination
gives a new tour. Among these tours one may be better than the original tour
and can be taken as an improvement. In the case of 2-Opt algorithm removes
two edge form the tour, and reconnects the all combination of sub-tours and
their reverses (Fig. 1). Continue this process until no 2-Opt improvements can
be found. Similarly in the case of 3-Opt, breaking 3 edges in a tour there are
total 8 cases of reconnection (Fig. 2). If a tour is 3-optimal it is also 2-optimal
[40]. Continue break (remove) edges form tour i.e. K = 1, 2, 3..., n and get new
algorithm, like 2-Opt, 3-Opt, 4-Opt and so on. But increase of K increases time
complexity. Due to this, here 3-Opt operation is used and it is found that it acts
better than 2-Opt operation for large size TSPs.
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Fig. 1. All combinations of sub toures for k = 2

Fig. 2. All combinations of sub toures for k = 3

6 Proposed Algorithm

A Hybrid Algorithm Based on ACO, PSO and K-Opt Algorithm for
Solving TSP
It is assumed that problem involves n nodes, dij represent distance between
node i and node j. In the algorithm a one dimensional array of size n, Xk(t)
is used to represent k-th solution in iteration t, i.e., path of k-th ant, which
is again k-th particle of the swarm. N is node set and t is iteration counter.
nk is swarm size. Maxit1, Maxit2, Maxit3 represent number of iterations of
ACO part, PSO part and K-Opt part of the algorithm respectively. f(Xk(t))
represent total length of the path Xk(t). Other notations in the algorithm are
same as previously discussed.

// ACO Operations

1. Start Algorithm
2. Set values of Maxit1, Maxit2, Maxit3, α, β, ρ. Set t = 0.
3. Set τij(t) = ηij(t)= 1

(dij)r , for i = 1, 2, ..., n; j = 1, 2, ..., n, where r is
positive real number.

4. repeat
for k = 1 to nk, do

i=a random node from the node set N = {1, 2, ..., n}.
l = 1
Xk(t)[l] = i //Construct a path Xk(t).
Nk

i = N − {i}
repeat
Select next node j from Nk

i based on the transition
probability defined in Eq. (7).

l = l + 1
Xk(t)[l] = j
i = j
Nk

i = Nk
i − {i}

until Nk
i = ∅ //∅ is null set
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Calculate the path length f(Xk(t))
end for

for i = 1 to n step 1 do
for j = 1 to n step 1 do

//Pheromone evaporation.
Reduce the pheromone, τij(t) using Eq. (9)

end for
end for
for i = 1 to n do

for j = 1 to n do
τij(t + 1) = τij(t)
Update τij(t + 1) using Eq. (10).

end for
end for
t = t + 1
Until (t > Maxit1)

//PSO Operations
5. for k = 1 to n do

Xk(0) = Xk(t − 1)
Xpbestk(0) = Xk(0)
Vk(0)=SO(i, j) where i, j are randomly generated from the

set N and
i �= j

end for
6. t=1
7. Xgbest= solution having minimum path length from the solution

set {X1(0),X2(0), ...Xnk
(0)}

8. repeat
for k = 1 to nk, do

Determine Vk(t) using Eq. (5)
Determine Xk(t) using Eq. (6)
If f(Xpbestk(t − 1)) > f(Xk(t))
Xpbestk(t) = Xk(t)

else
Xpbestk(t) = Xpbestk(t − 1)

end if
If f(Xgbest) > f(Xk(t))

Xgbest = Xk(t)
end if
If (Xgbest = Xk(t)) holds for a predefined consecutive number

of iterations then apply
K-Opt operation on Xk(t) to improve its position (Sect. 6.1)

end for
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9. t = t + 1.
Until (t > Maxit2)

10. Output Xgbest

11. End of Algorithm.

6.1 K-Opt Operation on a Complete Tour Xk(t)

Detailed algorithm of k-opt operation for K = 3 is presented below. In the
algorithm a one dimensional array of size n, Xtemk

(t), is used to represented
temporary k-th solution in iteration t, i.e., k-th particle of the swarm. Xki(t)
and Xr

ki(t), i = 1, 2, 3 are one dimensional arrays used to represent sub-tour and
revers sub-tour of the original tour Xk(t).

for i=1 to Maxit3 do

Remove 3 edges(randomly selected) from tour Xk(t), it makes 3
sub-tours Xki(t), i = 1, 2, 3.
Reverses of the contains of these sub-tours are called
revers sub-tours, represented
by Xr

ki(t), i = 1, 2, 3, i.e., Xr
k1(t)= revers sub-tour(Xk1(t)), Xr

k2(t)=
revers sub-tour(Xk2(t)), Xr

k3(t)= revers sub-tour(Xk3(t)).
Now combing the sub-tours {Xk1(t), Xk2(t), Xk3(t)}, {Xr

k1(t),
Xr

k2(t), Xr
k3(t)} new tours can be formed in following 8

combinations:
i {Xk1(t),Xk2(t),Xk3(t)}

ii {Xk1(t),Xr
k2(t),Xk3(t)}

iii {Xk1(t),Xk2(t),Xr
k3(t)}

iv {Xk1(t),Xr
k3(t),X

r
k2(t)}

v {Xk1(t),Xk3(t),Xr
k2(t)}

vi {Xk1(t),Xr
k3(t),Xk2(t)}

vii {Xk1(t),Xr
k2(t),X

r
k3(t)}

viii {Xk1(t),Xr
k3(t),Xk2(t)}

for each combination do
Create a complete tour from the combination and let it be

Xtemk
(t)

if f(Xtemk
(t) < f(Xk(t))

Xk(t) = Xtemk
(t)

end if
end for

end for

7 Experimental Results

All computational experiments are conducted with Dev C++ 5.8.3, core i3 CPU
@ 2.10 GHz, Windows 8.1 Operating System and 4 GB RAM. Performance of the
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proposed algorithm is tested using different size standard TSPs from TSPLIB.
From each problem algorithm is tested by running the program 20 times for
different seeds of random number generator and the best solution obtained, the
average value of the solutions, Standard deviation (SD) value and percentage
of relative error (Error(%)) according to optimal solution are calculated. The
percentage of relative Error(%) is calculated using the following equation.

Error(%) =
average solution − optimal solution

optimal solution
× 100 (12)

The results obtained by proposed algorithm for seventeen different test problems
from TSPLIB are presented in Table 1.

In Table 1 results of STSPs and ATSPs are displayed separately. In the Table
Best column represent the best solution obtained by proposed method and
optimal solution are taken from TSPLIB. The problems whose optimal solutions
(according to TSPLIB) are obtained by proposed approach are presented in bold
face. It is found from the Table 1 that the algorithm produces optimal solution
for most of the problems taken for the test and for others it gives solutions very
near to optimal solutions. For problems like, rat99, eli101, kroA200, fiv56, the
algorithm does not provide optimal solution but other parameters like average,

Table 1. The Result obtained by the proposed algorithm for STSP and ATSP

Problem Optimal Best Worst Average SD Error(%) Time(S)

STSP gr17 2085 2085 2085 2085.00 0.00 00.00 1.56

bays29 2020 2020 2024 2020.05 0.89 00.01 10.05

swiss42 1273 1273 1273 21273.00 0.00 00.00 7.46

eli51 426 426 427 426.29 0.46 0.07 19.91

berlin52 7542 7542 7555 7543.29 3.90 0.01 20.28

st70 675 675 681 676.00 1.73 0.14 100

eli76 538 538 541 538.15 0.65 0.02 150

rat99 1211 1212 1216 1213.90 0.99 00.07 200

kroA100 21282 21282 21406 21319.00 47.79 00.17 305.01

kroC100 20749 20749 20992 20862.25 45.15 00.18 350.01

eli101 629 630 637 631.20 1.50 0.34 200.90

lin105 14379 14379 14385 14379.29 1.30 00.00 320.10

pr124 59030 59030 59320 59118.64 98.30 00.15 305.00

pr152 73682 73682 73705 73691.64 28.26 0.12 1031.32

kroA200 29368 29402 30016 29640.00 145.0 0.46 350.12

ATSP br17 39 39 bf39 39.00 0.00 00.00 1.13

ftv33 1286 1286 1286 1286.00 0.00 00.00 5.56

ry48 14422 14422 14642 14452.79 64.79 0.21 15.12

ftv56 1608 1629 1689 1642.19 18.87 0.810 25.12
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Table 2. Compare results using 2-Opt and 3-Opt in test problems

Problem Optimal ACO+PSO+2-Opt ACO+PSO+3-Opt

STSP gr17 2085 2085 2085

bays29 2020 2028 2020

swiss42 1273 1284 1273

eli51 426 447 426

berlin52 7542 7800 7542

st70 675 699 675

eli76 538 550 538

rat99 1211 1270 1212

kroA100 21282 21910 21282

kroC100 20749 20892 20749

eli101 629 795 630

lin105 14379 15500 14379

pr124 59030 62040 59030

pr152 73682 73910 73682

kroA200 29368 30290 29402

ATSP br17 39 39 39

ftv33 1286 1340 1286

ry48 14422 14020 14422

ftv56 1608 1648 1629

Sd, Error(%) and Time(s) are better compare to [30]. Small values of SD and
Error(%) of the solutions of the problems ensure that obtained solutions of the
problems are very close to optimal solutions.

Table 2 represent results obtained by proposed method due to different test
problems using 2-Opt and 3-Opt operations in the algorithm. In the case of small
size problems like gr17 and br17 both the approaches provide same solution as
optimal solution. But for large size problems 2-Opt and 3-Opt produces different
solutions. Problems for which optimal solutions are obtained by the algorithms
are presented in bold face in the Table 2. In some problems like rat99, eli101,
kroA200, fiv56, using 3-Opt, the algorithm does not provide optimal solution
but it produces better solutions than that obtained by the algorithm using
2-Opt. It is also clear from Table 2 that for all the problems algorithm with
3-Opt provide better result than that using 2-Opt. So in proposed algorithm
3-Opt operation is used.

Table 3 represents the effect of swarm size in the algorithm for different test
problems. Swarm sizes like 10, 20, 30 and number of city(node) of the test
problems are used for the test. In the case of small size problem like gr17 bays29,
swiss42 for STSPs and br17 for ASTSPs the algorithm gives same solution as
optimal solution for different swarm size. For problems like eli51, berlin52, st70,



Coordinating PSO, ACO and K-Opt for TSP 115

Table 3. The Result obtained by the proposed method for various number of ants

Problem Optimal Swarm
size= 10

Swarm
size= 20

Swarm
size= 30

Swarm
size=Problem size

STSP gr17 2085 2085 2085

bays29 2020 2020 2020 2020

swiss42 1273 1273 1273 1273 1273

eli51 426 426 428 429 427

berlin52 7542 7542 7590 7610 7610

st70 675 675 680 689 702

eli76 538 538 545 552 570

rat99 1211 1212 1222 1230 1249

kroA100 21282 21282 21492 21572 21825

kroC100 20749 20749 20790 20785 20892

eli101 629 630 680 720 790

lin105 14379 14379 14420 14510 14705

pr124 59030 59030 60120 60350 60480

pr152 73682 73682 73710 73699 73750

kroA200 29368 29402 29803 29901 30230

ATSP br17 39 39 39

ftv33 1286 1286 1294 1315 1301

ry48 14422 14424 14460 14510 14510

ftv56 1608 1629 1642 1672 1690

eli76, rat99, kroA100, lin105, pr124, kroA200, ftv33, ry48, ftv56 the algorithm
provide better solution for swarm size 10. So in the proposed algorithm swarm
size is taken as 10.

Table 4 represents a comparison of all computational results of the proposed
algorithm with other existing algorithms in the literature. From Table 4, it is
clear that proposed approach is better compared to other existing approaches
in the literature both with respect to accuracy and computational time. For
the test problems like eli51, st70, eli76, rat99, eli101, kroA200 the algorithm
produces better values of Avg, SD, Error compared to other algorithm. For
the test problem kroA100, proposed method provide optimal solution but other
parameters like Avg, SD, Error are not better compared to WFA with 3-Opt
(Othman et al., 2013). In some test problems the proposed method does not
provide optimal solution but the solution are very near to optimal solution,
due to minimum standard deviation (SD) compared to other algorithms in the
literature.
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Table 4. Comparison of results obtained by proposed approach with other method in
literature

Method Problem eli5 berlin52 st70 eil76 rat99 kroA100 eil101 lin105 kroA200

Optimal 426 7542 675 538 1211 21282 629 14379 29368

Best 426 7542 675 538 1212 21282 630 14379 29402

RABNET-

TSP

(2006] [37]

Avg 438.70 8073.97 - 556.10 - 21868.47 654.83 14702.17 30257.53

SD 3.52 270.14 - 8.03 - 245.76 6.57 328.37 342.98

Error(%) 2.98 7.05 - 3.36 - 2.76 4.11 2.25 3.03

Modified

RABNET

-TSP

(2009) [31]

Avg 437.47 7932.50 - 556.33 - 21522.73 648.64 14400.7 30190.27

SD 4.20 277.25 - 5.30 - 93.34 3.85 44.03 273.38

Error(%) 2.69 5.18 - 3.41 - 1.13 3.12 0.15 2.80

SA ACO PSO

(2012) [5]

Avg 427.27 7542.00 - 540.20 - 21370.30 635.23 14406.37 29738

SD 0.45 0.00 - 2.94 - 123.36 3.59 37.28 356.07

Error(%) 0.30 0.00 - 0.41 - 0.41 0.99 0.19 1.26

WFA with

2-opt

(2013) [35]

Avg 426.65 7542.00 - 541.22 - 21282.00 639.87 143790.00 29654.03

SD 0.66 0.00 - 0.66 - 0.00 2.88 0.00 151.42

Error(%) 0.15 0.00 - 0.60 - 0.00 1.73 0.00 0.97

WFA with

3-opt

(2013) [35]

Avg 426.60 7542 - 539.44 - 21282.80 633.50 14459.40 29646.50

SD 0.52 0.00 - 1.51 - 0.00 3.47 1.38 110.91

Error(%) 0.14 0.00 - 0.27 - 0.00 0.72 0.56 0.95

HACO

(2012) [19]

Avg 431.20 7560.54 - - 1241.33 - - - -

SD 2.00 67.48 - - 9.60 - - - -

Error(%) 1.22 0.23 - - 1.42 - - - -

PSO-ACO-

3Opt

(2015) [30]

Avg 426.45 7543.20 678.20 538.30 1227.40 21445.10 623.70 14379.15 29646.05

SD 0.61 2.37 1.47 0.47 1.98 78.24 2.12 0.48 114.71

Error(%) 0.11 0.02 0.47 0.06 0.28 0.77 0.59 0.00 0.95

Proposed

Method

Avg. 426.29 7543.29 676.00 538.15 1213.90 21319.50 31.20 14379.29 29642.00

SD 0.46 3.90 1.73 0.65 0.99 47.79 1.50 1.30 165

Error(%) 0.07 0.01 0.14 0.00 0.07 0.17 0.34 0.00 0.46

8 Conclusion

Here for the first time combining the features of swap sequence and swap opera-
tion based PSO, ACO and K-Opt operation a new hybrid algorithm is presented
to solve STSP as well as ATSP. Here ACO is used a small number of iterations
to generate initial swarm of PSO. Then PSO operations are made on this swarm
a sufficient number of times to find optimal path. During PSO iterations if a
particle does not change its position for a predefined number of iterations then
K-Opt operation (for K = 3) is made on it a finite number of times to improve its
position. The performance of the proposed algorithm is tested using different size
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standard TSPs from TSPLIB. In most of the TSPs considered for test the pro-
posed algorithm provide optimal solution. In some test problems the proposed
algorithm does not provide optimal solutions but the solutions are very close to
optimal solutions. The performance of proposed method is better if and only if
small numbers of ants (10 in proposed method) used in ACO. All experimen-
tal results imply that proposed approach is better compared to other existing
approaches in the literature both with respect to accuracy and computational
time. The algorithm can be used to solve TSPs in fuzzy environment, rough
environment, rough-fuzzy environment and etc. Proposed algorithm can be used
to solved solid TSP and vehicle routing problem and router (networking) related
problem with minor modification.
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Abstract. Many symmetric key encryption schemes have been designed
to ensure the confidentiality of data only. Data integrity plays an impor-
tant role of security in various encryption scheme. Assuming this fact,
many researchers have focused their research to design Authenticated
Encryption (AE) schemes that provide both confidentiality and authen-
ticity. FASER is one of them which was submitted in CAESAR competi-
tion and withdrawn in later due to an attack reported in the paper [6]. It
has two parent ciphers namely FASER128 and FASER256. Cryptanaly-
sis of FASER128 was studied by the authors in [6,7] and mentioned some
serious flaws in the design of the crypto algorithm. Due to these flaws,
both the parent ciphers of the FASER have been withdrawn. In this
paper, we study the cryptanalysis of FASER128 by key recovery attack
and discuss some weaknesses. We have also suggested some modifications
of cryptoalgorithm to avoid the key recovery attack.

Keywords: Stream cipher · Key recovery attack · Authenticated
encryption

1 Introduction

The CAESAR (Competition for Authenticated Encryption: Security, Applica-
bility, and Robustness) competition was started in 2014 and its aim is to find
Authenticated encryption schemes that (1) offer advantages over AES-GCM and
(2) are suitable for widespread adoption. The notion of Authenticated encryption
was first coined by the seminal work by Bellare and Namprempre [3] in 2000,
Bellare, Kohno T. and Namprempre [4] in 2002 and then further extended by
several authors. Authenticated encryption schemes are key-based cryptographic
schemes comprising of both an encryption and an authentication that provides
confidentiality and authenticity. Confidentiality assures that adversary cannot
gain much information from ciphertext corresponding to plaintext while authen-
ticity ensures that ciphertext has not been altered which was delivered by authen-
tic sender to receiver. Since the security of authenticated ciphers depends on both
encryption and authentication, therefore the designer’s should have to take more
precautions to design encryption as well as authentication schemes because due
to this an attacker has more choices to execute the attack either in any one of
c© Springer Nature Singapore Pte Ltd. 2017
D. Giri et al. (Eds.): ICMC 2017, CCIS 655, pp. 120–131, 2017.
DOI: 10.1007/978-981-10-4642-1 11
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the encryption or the authentication or both of them simultaneously and also
has more chances to get the information such as authentication tag and so on.
Thus, it is more tedious job to design a good authenticated encryption scheme.
FASER [5] is an Authenticated encryption schemes that consists of two parent
ciphers: FASER128 and FASER256. The nomenclature represents the maximum
secret key length that can be used in each cipher. The two parent ciphers of
FASER, FASER128 and FASER256, had been submitted to CAESAR competi-
tion but due to key recovery attack proposed in [6], it was later withdrawn from
CAESAR competition.

FASER128 and FASER256 both are comprise of two identical state registers,
one for encryption E and one for authentication A followed by three components
FSR, MIX, MAJ. They have also consist of three processes that is initialization,
update, finalization. In this paper, we studied an attack of encryption portion
only therefore the details about an authentication portion is not included. The
recommended key parameter set for FASER128 includes 16 byte key(secret), 8
byte secret message number, 8 byte public message number, and 8 byte tag.
The paper is organised as follows: Sect. 2 deals the structure and function of
FASER128. In Sect. 3, we discuss key recovery attack on FASER128 and describe
a method to recover full key of the crypto algorithm. Section 4 deals some obser-
vations about the weaknesses of FASER128 and find some suitable situations
experimentally to avoid this attack and finally, we conclude with conclusion.

2 Description of FASER128

This section deals the details of structure of FASER128.

2.1 Components of FASER 128

State Register

FASER128 has two identical state registers, one is used for encryption and other
is used for authentication, denoted by E and A respectively. Both the state reg-
isters are identical in size, that is, 256. It is represented as E = (E3, E2, E1, E0)
and A = (A3, A2, A1, A0) where each Ei or Ai is 64 bits in size.

FSR E

FSR (Feedback Shift Register)is used for updation of state register of FASER128.
The FSR is made up of 8 sub-FSRs, where 2 sub-FSR is comprised of one LFSR
(Linear Feedback Shift Register) and one NLFSR (Nonlinear Feedback Shift
Register). These two sub-FSRs are operate on 64-bits in size and coprime to
each other. They are also updated independently in different region of state.
The FSR X is defined as follows:
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FSR17(X) : y ← x16 ⊕ x15 ⊕ x14 · x13 (x16, . . . , x1, x0) ← (x15, . . . , x0, y)
FSR23(X) : y ← x22 ⊕ x21 ⊕ x12 · x11 (x22, . . . , x1, x0) ← (x21, . . . , x0, y)
FSR29(X) : y ← x28 ⊕ x27 ⊕ x19 · x12 (x28, . . . , x1, x0) ← (x27, . . . , x0, y)
FSR31(X) : y ← x30 ⊕ x11 ⊕ x21 · x13 (x30, . . . , x1, x0) ← (x29, . . . , x0, y)
FSR33(X) : y ← x32 ⊕ x19 (x32, . . . , x1, x0) ← (x31, . . . , x0, y)
FSR35(X) : y ← x34 ⊕ x32 (x34, . . . , x1, x0) ← (x33, . . . , x0, y)
FSR41(X) : y ← x40 ⊕ x37 (x40, . . . , x1, x0) ← (x39, . . . , x0, y)
FSR47(X) : y ← x46 ⊕ x41 (x46, . . . , x1, x0) ← (x45, . . . , x0, y)

The feedback update of the FSR E can be described as

FeedFSR(X) = (FSR3(X3), FSR2(X2), FSR1(X1), FSR0(X0)) (1)

where

FSR0(X0) = FSR33(H33(X0)) ‖ FSR31(L31(X0)),
FSR1(X1) = FSR35(H35(X1)) ‖ FSR29(L29(X1)),
FSR2(X2) = FSR41(H41(X2)) ‖ FSR23(L23(X2)),
FSR3(X3) = FSR47(H47(X3)) ‖ FSR17(L17(X3)),

Hi(X) and Li(X) represent the i-th most significant (High) bits of 64-bit X
and i-th least significant (Low) bits of 64-bit X respectively, and ‖ denotes
concatenation. In one update of the FSR E, the FSR is clocked 8 times, that is,

FSR(X) = (FeedFSR)8

where the FSR is clocked at once then each subFSR is being clocked indepen-
dently. Consequently, all 64-bits are updated in each state register of the FSR E.

Fig. 1. FASER block diagram



FASER128: Cryptanalysis and Its Countermeasure 123

Mix function

The Mix function combines the initial states from the sub-FSRs. The purpose of
Mix function is to defuse the information across the state register and provide
good diffusion property. The input is the entire state (X3,X2,X1,X0) and the
output gives three 64-bit words such that

Y0 = (X0 ≪ 3) ⊕ (X1 ≪ 12) ⊕ (X2 ≪ 43) ⊕ (X3 ≪ 27)
Y1 = (X0 ≪ 22) ⊕ (X1 ≪ 54) ⊕ (X2 ≪ 5) ⊕ (X3 ≪ 30)
Y2 = (X0 ≪ 50) ⊕ (X1 ≪ 35) ⊕ (X2 ≪ 14) ⊕ (X3 ≪ 60)

(2)

where “≪” denotes the bitwise rotation to the left (Fig. 1).

MAJ function

The MAJ function operates on 64-bit words which is the bitwise majority func-
tion say MAJ. The output of Mix function is used as an input of Majority
function. The output of MAJ function is defined as follows:

Z = (Y0 ∧ Y1) ∨ (Y0 ∧ Y2) ∨ (Y1 ∧ Y2), (3)

where ∧ and ∨ means the bitwise multiplication and bitwise Xor respectively.

2.2 Processes of FASER128

FASER128 executes the following processes: initialization, update and finaliza-
tion which are elucidated as follows:

Initialization

The purpose of initialization is to initialize the two state registers E and A
using the secret key K and the public message number PMN or whole secret
key. First, the inputs are directly fed into the register, least significant byte first.
The remaining bytes are filled with a constant, 0x5a...5a to identify the key for
the encryption. The register contents are then diffused so that the inputs (K
and PMN) affect the entire state as follows. Here TWEAK is defined as below:
TWEAK(X):(x63, x62, . . . , x2, x1, x0) ← (1, x62, . . . , x2, 0, 1).

Update

In each clock, the encryption of FASER128 is a synchronous stream cipher that
produces a ciphertext of 64-bit word at each clock and an authentication function
that accumulate the ciphertext. The FSR update function is an identical to the
encryption function and the authentication function where they differ only at the
initialization process. When FASER128 is clocked at once, each FSR is clocked
8 times.
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Algorithm 1. Initialization (E, K, PMN)
Input: 1. E = 0x5A ‖ . . . ‖ 0x5A ‖ PMN ‖ K,
Output: E = FSR(E)

2. For i = 1 to 8
3. E = FSR(E),
4. (Y2, Y1, Y0) = MIX(E)
5. E = (E3, E2 ⊕ Y2, E1 ⊕ Y1, E0 ⊕ Y0)
6. E = (E2, E1, E0, E3)
7. end for
8. TWEAK(E)
9. For i = 1 to 8
10. E = FSR(E),

Here, we only focus on procedure for update of encryption and so we omit
procedure for update of authentication. The following describes one update of
FASER128 to process one 64-bit plaintext word Pi. FASER128 continues to clock
until all the inputs have been processed. The pseudo-code for the procedure
update is

Algorithm 2. Update(E,Pi)
E = FSR(E)
(Y2, Y1, Y0) = MIX(E)
Z = MAJ(Y2, Y1, Y0)
Ci = Pi ⊕ Z.

Finalization

This process generates the tag based on the contents of the authenticated reg-
ister. The update of the authenticated register is almost similar to the update
function. We have also ignored detail of this process due to irrelevance for this
attack.

3 Key Recovery Attack

In this section, we give details about the key recovery attack discussed in [7].
This attack can be divided into two phases: phase I deals the recovery the initial
state of the register E of the FSR E, and phase II deals the recovery of the full
secret key K by reverting the procedure of initialization of Algorithm1.
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3.1 Phase I: Find Linear Relations

This phase is devoted to find some linear relations based on the following exper-
iments. For a 64-bit word variable X, we denote by Xt[i] the i-th bit of the
value of X at time t ≥ 0, where 0 ≤ i ≤ 63. The main idea behind the key
recovery attack is to find experimentally the certain linear relationship between
the output key bits Zt[i] and Zt+1[i + 8mod 64] for some i to generate some
linear equations among the state of the register E, and then recover the state of
the FSR E by solving these linear equations. For example, set i = 54. We have

Zt[54] = Y t
0 [54]Y t

1 [54] ⊕ Y t
1 [54]Y t

2 [54] ⊕ Y t
2 [54]Y t

0 [54]

Y t
0 [54] = Xt

0[51] ⊕ Xt
1[42] ⊕ Xt

2[11] ⊕ Xt
3[27]

Y t
1 [54] = Xt

0[32] ⊕ Xt
1[0] ⊕ Xt

2[49] ⊕ Xt
3[24]

Y t
2 [54] = Xt

0[4] ⊕ Xt
1[19] ⊕ Xt

2[40] ⊕ Xt
3[58]

(4)

and

Zt+1[62] = Y t+1
0 [62]Y t+1

1 [62] ⊕ Y t+1
1 [62]Y t+1

2 [62] ⊕ Y t+1
2 [62]Y t+1

0 [62]

Y t+1
0 [62] = Xt+1

0 [59] ⊕ Xt+1
1 [50] ⊕ Xt+1

2 [19] ⊕ Xt+1
3 [35]

Y t+1
1 [62] = Xt+1

0 [40] ⊕ Xt+1
1 [8] ⊕ Xt+1

2 [57] ⊕ Xt+1
3 [32]

Y t+1
2 [62] = Xt+1

0 [12] ⊕ Xt+1
1 [27] ⊕ Xt+1

2 [48] ⊕ Xt+1
3 [2].

(5)

To find linear equations, we observe every ith bit of Y t
0 [i], Y t

1 [i], Y t
2 [i] and

Y t+1
0 [i+8], Y t+1

1 [i+8], Y t+1
2 [i+8] of 64-bit registers and compare each component

Xt
k[i] with Xt+1

k [i+ 8] for k = 0, 1, 2, 3 and check whether they are equal or not.
The purpose that these bits belong to either in LFSR or NLFSR of the compo-
nents of FSR Xk. Example, for i = 54, Xt

0[p] = Xt+1
0 [p+8] for p = 51, 42, 11, 27.

Similarly, some other relations can also be obtain as follows.

Xt
0[p] = Xt+1

0 [p + 8] for p = 51, 32, 4

Xt
1[p] = Xt+1

1 [p + 8] for p = 42, 0, 19

Xt
2[p] = Xt+1

2 [p + 8] for p = 11, 49, 40

Xt
3[p] = Xt+1

3 [p + 8] for p = 27, 24

(6)

Using (2), (4) and (5), we get

Y t+1
0 [62] = Y t

0 [54]
Y t+1
1 [62] = Y t

1 [54]
Y t+1
2 [62] = Y t

2 [54] ⊕ Xt
3[58] ⊕ Xt+1

3 [2].

Now, we have

Zt[54] ⊕ Zt+1[62] = (Y
t+1)
0 [62]Y t+1

1 [62] ⊕ Y t+1
1 [62]Y t+1

2 [62] ⊕ Y t+1
2 [62]Y t+1

0 [62])

⊕(Y
t+1)
0 [62]Y t+1

1 [62] ⊕ Y t+1
1 [62](Y t

2 [54] ⊕ Xt
3[58]

⊕Xt+1
3 [2]) ⊕ (Y t

2 [54] ⊕ Xt
3[58] ⊕ Xt+1

3 [2])Y t+1
0 [62]).
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which gives

Zt[54] ⊕ Zt+1[62] = (Xt
3[58] ⊕ Xt+1

3 [2])(Y t
0 [54] ⊕ Y t+1

1 [62]). (7)

In particular, if Zt[54] ⊕ Zt+1[62] = 1, then we have

Xt
3[58] ⊕ Xt+1

3 [2] = 1 (8)
Y t
0 [54] ⊕ Y t+1

1 [62] = 1. (9)

The above equation also holds for i = 55. Indeed, we have Zt[55] ⊕ Zt+1[63] =
(Xt

3[59] ⊕ Xt+1
3 [3])(Y t

0 [55] ⊕ Y t+1
1 [63]). Thus, when Zt[55] ⊕ Zt+1[63] = 1, we

also have

Xt
3[59] ⊕ Xt+1

3 [3] = 1 (10)
Y t
0 [55] ⊕ Y t+1

1 [63] = 1. (11)

Recovering the initial states of X3

Equations (8) and (10) involve the expression of X3 only for the different initial
states. Thus, to recover the initial states of X3 we have to solve the expression
about 64 nonlinear equations. For this purpose, we collect 64 nonlinear equations
which satisfies key bits of Zt[54]⊕Zt+1[62] = 1 or Zt[55]⊕Zt+1[63] = 1 for each
possible time t + j(j ≥ 0). Now, X3 is comprise of 47-bit state of linear sub-
FSR and 17-bit state of non-linear sub-FSR, therefore we get linear equations
that involve 47-bit state variables H47(Xt

3) of the linear sub-FSR and 17-bit
state variables L17(Xt

3) of the nonlinear sub-FSR of X3. Assuming the 17-bit of
L17(Xt

3) at time t are known, then 64 nonlinear equations are reduced to linear
equations on 47 variables H47(Xt

3) of the linear sub-FSR of X3. Further we check
whether 64∗64 matrix is consistent or not. If not then we look for another guess.
Thus we can recover 47 variable of H47(Xt

3) out of 64 equations. The rest of the
equations are used to check the correctness of recovered Xt

3. Finally, Xt
3 can

be determined uniquely. In order to collect 64 linear equations in the form of
Eq. (8), we require less than 400 64-bit words. We find one equation for each
possible state j on average. After collecting these equations we have to guess 217

possible states L17(Xt
3) of the nonlinear sub-FSR of X3 to find unique solution.

Finally, we solve a linear system of 47 bit variables H47(Xt
3) for each possible

states of L17(Xt
3). Thus we can recover initial states of the feedback of the linear

sub-FSR of X3 in a simple manner.

Recovering the initial states of X2

Set i = 3. We find from (6),

Y t+1
0 [11] = Y t

0 [3]

Y t+1
1 [11] = Y t

1 [3] ⊕ Xt
2[62] ⊕ Xt+1

2 [6]

Y t+1
2 [11] = Y t

2 [3].

(12)



FASER128: Cryptanalysis and Its Countermeasure 127

From the computation of Zt[3] and Zt+1[11], we get Zt[3]⊕Zt+1[11] = (Xt
2[62]⊕

Xt+1
2 [6]).(Y t

0 [3] ⊕ Y t
2 [3]). If Zt[3] ⊕ Zt+1[11] = 1, then we have

Xt
2[62] ⊕ Xt+1

2 [6] = 1 (13)
Y t
0 [3] ⊕ Y t

2 [3] = 1. (14)

Clearly, the Eq. (13) involves the state variables of X2 only. Similarly, to
recover Xt

3, we first collect 64 linear equations by those key bits satisfying
Zt+j [3] ⊕ Zt+j+1[11] = 1, for j ≥ 0. For this purpose, we have to guess 23-
bit state variable L23(Xt

2) of the non-linear sub-FSR of X2 and solve 41 out of
64 linear equations of 41-bit state variables H41(Xt

2) of the linear sub-FSR of
X2. This process is repeated for each possible j on average until we get the solu-
tions. The rest of the linear equations are used to check the correctness. Finally
Xt

2 can be determined uniquely. In this case we have to guess 223 possible states
L23(Xt

2) of the nonlinear sub-FSR of X3.

Recovering the initial states of X1

Set i = 37. Similar to previous sections, we observe that

Zt[37] + Zt+1[45] = (Y t
1 [37] + Y t+1

2 [45])(Xt
1[25] + Xt+1

1 [33]

+ Xt
2[58] + Xt+1

2 [2] + Xt
3[10] + Xt+1

3 [18]).

If Zt[37] + Zt+1[45] = 1, then

Y t
1 [37] + Y t+1

2 [45] = 1 (15)
Xt

1[25] + Xt+1
1 [33] + Xt

2[58] + Xt+1
2 [2] + Xt

3[10] + Xt+1
3 [18] = 1. (16)

The above relation also holds for i = 38, that is,

Zt[38] + Zt+1[46] = (Y t
1 [38] + Y t+1

2 [46])(Xt
1[26] + Xt+1

1 [34]

+ Xt
2[59] + Xt+1

2 [3] + Xt
3[11] + Xt+1

3 [19])

If Zt[38] + Zt+1[46] = 1, then

Y t
1 [38] + Y t+1

2 [46] = 1 (17)
Xt

1[26] + Xt+1
1 [34] + Xt

2[59] + Xt+1
2 [3] + Xt

3[11] + Xt+1
3 [19] = 1. (18)

Since Xt
3 and Xt

2 are known by previous sections, therefore we easily find the
linear equations that involves the initial state of X1 only. Once enough linear
equations are collected, we guess the state L29(Xt

1) of the nonlinear sub-FSR of
X1 directly and solve with 35 linear equations out of 64 linear equations of the
state variables H35(Xt

1) of the linear sub-FSR of X1 and the rest of the equa-
tions is used to check the correctness of Xt

1. Finally, we get the unique solution
of Xt

1. In this case we have to guess 229 possible states L29(Xt
1) of the nonlinear

sub-FSR of X1.
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Recovering the initial states of X0

Set i = 50. We observe that

Zt[50] + Zt+1[58] = (Y t
0 [50] + Y t+1

2 [58])(Xt
0[28] + Xt+1

0 [36] + Xt
1[60] + Xt+1

1 [4])

As similar process to previous section, we observe that if Zt[50] +Zt+1[58] = 1,
then Y t[0][50] + Y t+1

2 [58] = 1 and Xt
0[28] + Xt+1

0 [36] + Xt
1[60] + Xt+1

1 [4] = 1.
Also, it also holds for i = 59, that is,

Zt[51] + Zt+1[59] = (Y t
0 [51] + Y t+1

2 [59])(Xt
0[29] +Xt+1

0 [37] +Xt
1[61] +Xt+1

1 [5]).

We also observe that

Zt[56] + Zt+1[0] = (Y t
0 [56] + Y t+1

1 [0])(Xt
1[21] + Xt+1

1 [29] + Xt
3[60] + Xt+1

3 [4])
Zt[57] + Zt+1[1] = (Y t

0 [57] + Y t+1
1 [1])(Xt

1[22] + Xt+1
1 [30] + Xt

3[61] + Xt+1
3 [5])

Now, Xt
3,X

t
2 and Xt

1 are known by previous sections, therefore knowing these
values, we easily find the equations in terms of initial state of Xt

0 only and recover
the initial states of Xt

0 using above equations. In this case, we guess the state
L31(Xt

0) of the nonlinear sub-FSR of X0 directly and solve the 33 linear equations
of the state variables H33(Xt

0) of the linear sub-FSR of X0 and the rest of the
equations are used to check the correctness of Xt

0.

3.2 Phase II: Recovering the Key K

This section deals to recover the key K from the state register E of the FSR E.
If the process of initialization is known then one can easily recover the state E,
since FSRE is invertible. At initialization process, the three values of TWEAK
is not known, therefore we easily get the intermediate state (that is, TWEAK)
of initialization process of Algorithm1 in 23 possible values of E denoted by
E1, E2, . . . , E8 because TWEAK is not a permutation. For each possible value
Ei(1 ≤ i ≤ 8), we invert steps from 7 to 2 in turn. It is experimentally observed
that the rank of the matrix of the linear transformation determined by steps 4
and 5 at initialization process is 189, therefore we have to fix three (that is, 23)
arbitrary value of matrix to recover the state. Since steps 2–7 loop eight times,
so we can get totally 28 possible values to reach step 2 for each Ei, denoted by
Ei,j , where 1 ≤ j ≤ 28. Finally, we verify whether the prefix of each possible
Ei,j (totally 211 possible values) is equal to 0x5a5a . . . 5a or not. If some Ei,j

gives the correct solution, then one candidate K is written down. Here it should
be emphasized that all candidates K are valid and they are equivalent to each
other.

4 Flaws in Design and Methods to Avoid the Attack

We have already seen that FASER128 is a weak cryptosystem and weaknesses are
found mainly in Mix and MAJ functions. The authors reported in the paper [7]
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that the rank of matrix used at initialization process of Algorithm1 was 191
while by simulating the program, it is found that it was 189. Therefore, some
complexity increases to revert the initialization process. Second observation is
that this particular attack is possible if the output sequence Zt[i] ⊕ Zt+1[i +
8mod 64] is not balanced for each i where 1 ≤ i ≤ 64. The balancedness of these
output sequences was not mentioned by the authors [7]. Another observation
is that the mixing of key stream between LFSR and NLFSR of subFSR is not
proper therefore the output sequences mentioned above is not balanced. We also
observe that these equations are possible because of the poor choice of rotation
parameters present in Mix function and if the output sequence Zt[i] ⊕ Zt+1[i +
8mod 64] is not balanced then it is always possible to get linear equations in
terms of linear sub-FSR and output sequences. Therefore we conclude that the
attack is possible if one can easily deduce linear equations corresponding to
LFSR. Based on these observations, we have done a lot of experiments to avoid
this type of attack and improve key stream cipher with the same speed and the
same security elucidated as follows:

4.1 Fixing the Rotation Parameters in Mix Function

We have analysed the strength of output key stream sequences by changing
the various rotation parameters present in the Mix function. If we denote these
rotation parameters present in Mix variable is as [tij ] matrix where i, 0 ≤ i ≤ 3
denote the corresponding to rotation parameter of Yj variables, where 0 ≤ j ≤ 2,
given in Mix function. If we set {t00 = 16, t10 = 30, t20 = 39, t30 = 7; t01 = 36,
t11 = 54, t21 = 52, t31 = 28; t02 = 22, t12 = 37, t22 = 46, t32 = 61}. In this
case one cannot find linear equation for any i corresponding to the condition
Zt[i] ⊕ Zt+1[i + 8mod 64] = 1. Therefore one cannot mount the key recovery
attack on the stream cipher in real time.

4.2 Changing the Set of the Rotation Parameters in Mix Function

By changing the several rotation parameters in Mix function it has been found
that if we fix MSB (most significant bits) of first four subFSR in Eq. (2), then
the following rotation parameters present in Mix function gives better results
of balancedness and consequently, we get better diffusion property and so one
cannot mount the key recovery attack on FASER128. The set of 16 rotation
parameters in Mix function are given as follows:

4.3 Changing the Clock Zt[i + 16 mod 64]

It is observed that by changing the clock of update function Zt[i + 16mod 64]
in place of Zt[i + 8mod 64], the output sequences Zt[i] ⊕ Zt+1[i + 8mod 64] for
each i are almost balanced at the following rotation parameters {20 47 39 16;
37 26 52v 32; 21 7 25 0} and one cannot find linear equation in this case. The
time complexity to mount the attack in this case is much high. Therefore, the
key recovery attack is not possible in this scenario.
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Set/tij t00 t10 t20 t30 t01 t11 t21 t31 t02 t12 t22 t32

1 30 22 46 18 5 21 19 57 15 63 53 25

2 29 20 19 37 50 45 4 60 26 41 12 2

3 48 24 37 12 41 11 45 2 54 4 27 44

4 3 20 4 59 56 6 42 1 31 38 53 46

5 24 18 40 15 10 51 7 0 36 60 49 41

6 13 11 3 57 34 21 62 55 51 30 15 25

7 24 2 51 41 8 12 60 28 15 56 36 49

8 36 46 27 17 44 60 59 51 57 33 12 24

9 37 47 18 27 51 61 9 41 57 4 55 46

10 38 62 55 18 27 51 23 53 33 11 25 26

11 56 37 44 11 63 52 14 22 48 6 59 47

12 52 3 37 58 49 48 10 26 9 54 4 45

13 34 28 20 48 13 37 2 56 21 42 38 12

14 37 18 52 44 51 28 11 7 31 14 0 40

15 30 5 16 46 53 44 20 28 36 23 11 59

16 42 15 4 34 54 36 38 63 28 57 49 44

5 Security Analysis

Based on change of rotation parameters and apply other parameters mentioned
in previous section, we analysed the following security issue in the cryptoalgo-
rithm of FASER128.

5.1 Avalanche Effect

For a good cryptoalgorithm, output key sequences should satisfy good avalanche
criteria, that is, change in single input key bits gives almost 50% change in
corresponding output key stream. For this purpose, we have changed every single
bit of 256 initial bits of FSR E and check the avalanche criterion of whole output
key stream. It has been found that significant change exists in output key stream.
This ensures that the output sequence satisfies avalanche criterion.

5.2 Algebraic Attacks

For FASER128, the number of variables in the output keystream from the linear
subFSRs and nonlinear subFSRs is v = 256 + 64n where n is number of rounds
and the number of equations is e = 128n, discussed in [5]. Hence algebraic attack
is not applicable in this case.

Side channel attacks and other security issues are same as discussed in [5].
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6 Conclusion

In this paper, we have discussed cryptanalysis of FASER128 by method of key
recovery attack [7] which require only a few key words, that is, about less than
400 words and recovered all possible keys K in real time with single PC. So,
FASER128 is a very insecure cryptosystem. It is observed that some sets of
rotation parameters present in Mix function mentioned in Sect. 4 gives significant
improvements to avoid this particular type of attack. By changing the clock of
update functions also gives better improvement to avoid this attack with the
same security and the same speed mentioned in [5].
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Abstract. The system identification is a broad area of research in var-
ious fields of engineering. Among them, our concern is to identify the
aircraft dynamics by means of the measured motion and control vari-
ables using a new approach which is based on the support vector machine
(SVM) regression. Due to the computational complexity of SVM, it is
suggested to adopt the advanced version of SVM i.e. least square support
vector machine (LSSVM) to be used for system identification. LSSVM
regression is a network-based approach which requires a user defined
kernel function and a set of input-output data for its training before
the prediction phase like a neural-network (NN) based procedure. In
this paper, LSSVM regression has been used to identify the non-linear
dynamics of aircraft using real flight data.

Keywords: System identification · LSSVM regression · Kernel function

1 Introduction

System Identification (SI) is basically concerned with the mathematical mod-
elling which is obtained from the available measured input and output data
of the system [1]. It is like solving an inverse problem from the given data
implicitly [2]. There are three quantities involved in the process of identify-
ing the system which are the inputs, mathematical functions representing the
dynamical system, and the outputs. SI attempts only to find the mathematical
functions [3,4].

The mathematical functions can be represented in the form of differential
equations which are simply formulated based on the process of physics leading
to Newtonian mechanics. This type of modelling is said to be phenomenological
models which, requires a high level of information a prior, leads to a complex
model [3]. So, a different type of model is required which can approximate the
observed behaviour for specific input without any intention of knowing the inter-
nal dynamics of system. It is said to be a behavioural model which is easy to
derive and establish an overall cause-effect relationship.

Another way of classifying the system identification process is to divide mod-
elling based on parametric and non-parametric approaches. The parametric app-
roach involves a well-known established structure based on physical processes just
c© Springer Nature Singapore Pte Ltd. 2017
D. Giri et al. (Eds.): ICMC 2017, CCIS 655, pp. 132–140, 2017.
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like phenomenological model either in the linear or non-linear form. One way of
structured modelling is based on state-space which can be represented in the form
of linear or non-linear, continuous or discontinuous, time-invariant or time-variant,
and deterministic or stochastic [5]. Anotherway is based on transfer functionwhich
is applicable only to represent linear system. The non-parametric approach is an
alternative non-hectic strategy using some kind of a mathematical function repre-
senting an input-output relationship. Such models have been developed using arti-
ficial neural network (ANN) [6]. ANN is a multi-layer feed forward neural network
with a number of neurons in each layer. The first layer of the network is input layer,
then intermediate as hidden layer and finally output layer. Each neuron except the
input layer gets the signals from the previous layer neurons multiplied with some
weights and it processes the signal through the transfer function such as sigmoid,
log sigmoid etc. For training of ANN, either supervised learning or unsupervised
learning is preferred. Through supervised learning methodologies, ANN is trained
for network weights so that it becomes an approximate representation of input-
output relationship [7,8]. Many aerospace researchers have used ANN as a func-
tion estimator for identifying the aircraft dynamics nonlinearly [9–12]. They have
used various types of neural network architecture for further investigation such as
for aircraft parameters estimation.

Some of the drawbacks have been identified with neural network such as lesser
generalization capability of the network and more iteration required for training.
Such limitations occurred due to the concept of empirical risk minimization
(ERM) principal employed by the ANN. These limitations have been overcome
by using one of the statistical strategies using structural risk minimization (SRM)
principle such as support vector machine (SVM) [13]. SVMs have been widely
used in the field of classification, pattern recognition, and function estimation.
It has been used for non-linear mapping from input space to output space which
takes out the problem to a quadratic programming and hence the solution is
found to be global minimum. The solution of the quadratic programming makes
it computationally hard. So, a modified version of SVM, known as least square
support vector machine (LSSVM), has been used for non-linear mapping which
is computationally faster than SVM [14,15].

In this paper, LSSVM regression method is presented to address the problem
of the identifying the aircraft’s dynamics by means of using the real flight data.
Section 2 represents the basic prerequisites used for system identification in the
process of data gathering and its compatibility. Section 3 represents the basic
mathematical formulation of LSSVM regression for non-linear mapping from
input space to output space, and the input-output details for non-linear mod-
elling. Section 4 represents the results obtained during the training and predict-
ing phase. Section 5 represents the concluding remarks on the LSSVM regression
method used for modelling of aircraft’s dynamics.

2 Prerequisites for System Identification/Modelling

The process of the system identification is fully dependent on available input-
output data, so the preliminary step is the real flight data gathering and the
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second step is the data compatibility check to verify and improve the quality of
data from biases, scale factors, and time lags etc. [3].

2.1 Data Gathering

Data gathering is a process of recording inputs and outputs while performing a
certain type of experiment which is basically to excite the mode of the aircraft.
As it is a data acquisition process to record the aircraft motion variables and
control surface deflections, but it is fully dependent on the quality of sensors
in terms of accuracy and noise, sampling rate, signal conditioners, and data
recording equipment.

The first step in data gathering process is to define the type of experiment
such as excitation mode of short-period, phugoid, pushover-pullup, level-turn,
thrust variation, bank-to-bank roll, Dutch roll manoeuvre, and steady heading
steady sideslip. To excite each of the above manoeuvres, a corresponding exci-
tation input is given to either of the control surfaces such as elevator, aileron,
rudder, and/or the throttle setting. These excitation inputs are as: (i) step,
(ii) doublet, (iii) 3-2-1-1 signal, (iv) modified 3-2-1-1 signal.

The second step is to take care with the instrumentation and measurement
unit for signal processing and data recording to fulfil the following criteria [3]:

– Lower sampling rate satisfying Nyquist frequency criteria.
– Anti-aliasing filter introducing the same time delay in the signals.
– Recording of raw data for further processing such as differentiation, integra-

tion, or filtering of the data.
– Highly critical measurements like translational accelerations, angular rates,

and control surface deflections must be sampled at higher and uniform rates
while slowly varying parameters like altitude at slower rate.

– All data channels must be synchronized with time.
– The signal-to-noise ratio of 10:1 is desirable.
– All sensors must be calibrated in laboratory with high accuracy.
– Data reduction must be avoided at the time of recording.

2.2 Data Compatibility Check

Data compatibility check is another important step after the data gathering
process which checks and improves the quality of the recorded data in terms of
scale factor, zero shift biases, and time lags. It uses well defined kinematic equa-
tions of aircraft motion to reconstruct the flight path with the same trim condi-
tions as used in while doing the flight test. Thus, a mismatch in the measured
and flight path reconstructed is used to determine the systematic instrument
errors such as scale factors, zero shifts, and time delays using the conventional
output error method [3].

A real flight data has been generated using a research aircraft “HANSA” at
IIT Kanpur, India [10,11]. The short period mode of the longitudinal dynamics
has been excited using the control surface – elevator from the steady state trim
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Fig. 1. Measured flight data

condition. For system identification purpose, we have chosen the longitudinal
measured data of aircraft such as angle-of-attack (α), pitch angle (θ), pitch rate
(q), velocity of the aircraft (V ), the linear accelerations along the body axes
(ax & az), and the control surface deflection (δe). The generated flight data is
shown in the Fig. 1.

3 Least Square Support Vector Machine Regression
Based Modelling

This section is divided into a number of sections to ease the understanding of
the modelling process step-by-step.

3.1 Mathematical Formulation of LSSVM Regression

Least Square support vector machine (LSSVM), is based on one of the statis-
tical learning principles, and employs the structural risk minimization (SRM)
principle which has been found to be superior to empirical risk minimization
(ERM) principle used in fuzzy logic (FL) and neural network (NN) [14,15]. The
theoretical relationship between the input space and output space is given by a
function which is as follows:

y = f(x) = wT φ(x) + b; x ∈ Rp , y ∈ R (1)
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Where, φ(x) – a non-linear transformational matrix between the input space
and the output space, x– p dimensional input vector, w – weighting vector, and
b – bias.

For non-linear modelling, a finite number of sample data is obtained from
measurement {(xi, yi) , i = 1, 2, 3, ..., n}. It is desired that all of the data can
be fitted by the functional relationship in the Eq. (1) with ε precision which
arises two inequality conditions as follows:

{
yi − wT φ(xi) − b ≤ ε
wT φ(xi) + b − yi ≤ ε

, i = 1, 2, 3, ..., n (2)

By introducing a slack variable (ξ), the optimization goal using the SRM
principle is given as follows:

{
min
w, b, ξ

J = 1
2 ‖w‖2 + c

∑n
i=1 ξ2i

Sub. to yi = wT φ(xi) + b + ξi

, i = 1, 2, 3, ..., n (3)

Where, c is a predefined constant that is to minimize the cost function J . Its
value determines the training error and the regression function flatness.

One can use the Lagrange function approach to solve the above cost function
subjected to the equality constraints. Thus, the Lagrange function is given as
follows:

L =
1
2

‖w‖2 + c
n∑

i=1

ξ2i −
n∑

i=1

ai (wT φ(xi) + b + ξi − yi ) (4)

The following equations are obtained from Karush-Kuhn-Tucker’s condition:
⎧⎪⎪⎨
⎪⎪⎩

w =
∑n

i=1 aiφ(xi)∑n
i=1 ai = 0
ai = c ξi

wT φ(xi) + b + ξi − yi = 0, i = 1, 2...n

(5)

After eliminating w and ξi from the above equations, one can get the following
linear system: [

0 1T
n

1n Ω + c−1In

] [
b
a

]
=

[
0
y

]
(6)

Where, y = [y1, y2, ..., yn]T ; 1n = [1, 1, ..., 1]T ; a = [a1, a2, ..., an]T ;

Ωi,j = K(xi, xj) i, j = 1, 2, ..., n.

Now, the Eq. (6) can be easily solved by using least-square method for the
parameters “a” and “b”. Therefore, LSSVM regression based model is given as
follows:

y = f(x) =
n∑

i=1

aiK(x, xi) + b (7)
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Fig. 2. Structure of LSSVM regression

In LSSVM regression methodology, a non-linear relationship requires only
to solve the linear Eq. (6) with known kernel function, K and c. In Fig. 2, the
network architecture of LSSVM regression is shown.

Some of the typical choices of kernel function are given below:

1. Linear Kernel Function: K (x, xi) = xT
i x

2. Multi-Layer Perceptron Kernel Function: K (x, xi) = tanh(γxT
i x + r)

3. Polynomial Kernel Function: K (x, xi) = (γxT
i x + r)d, γ > 0

4. Radial Basis Kernel Function: K (x, xi) = exp
(
−γ ‖x − xi‖2

)
, γ > 0

Where,γ is the kernel width. Thus, the training of LSSVM requires γ and c
parameters to be well chosen so that the root-mean-square error (RMSE) can be
minimized to its lowest value. In our case, radial basis kernel function has been
used.

3.2 Input-Output Details for Modelling

Figure 2 shows the architecture of LSSVM regression for a multi-input single-
output (MISO) system whereas our objective is to extend the concept of MISO
system into multi-input multi-output (MIMO) system. The MIMO system archi-
tecture of LSSVM regression has been implemented using MATLAB in which
ithsample of the input vector is given as follows:

xi = [α(i), θ(i), q(i), V (i), CD(i), CL(i), Cm(i)]T (8)

Where, α - angle of attack, θ - pitch angle, q - pitch rate, V - velocity of
the aircraft, and CD, CL and Cm are the coefficients of drag, lift and pitching
moment respectively, which are represented here for longitudinal dynamics of
the aircraft in a simplified form, and they are given as follows [11]:

CD(i) = −CX(i) cos(α(i)) − CZ(i) sin(α(i)) (9)
CL(i) = CX(i) sin(α(i)) − CZ(i) cos(α(i)) (10)
Cm(i) = [Iy q̇(i) − FengZenCG]/(q̄(i)Sc̄) (11)
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Where, the body forces coefficients (CX and CZ) are given as follows:

CX(i) = maCG
X /q̄S (12)

CZ(i) = maCG
Z /q̄S (13)

In the Eqs. (9–13), the terms used are as follows: aCG
X and aCG

Z - the linear
body accelerations at centre of gravity (CG) of the aircraft along x and z axis,
respectively, Feng - total thrust, ZenCG - the vertical distance between CG and
the engine, Iy - the moment of inertia of the aircraft along the y-axis, q̄ - the
dynamic pressure of the ambient, S - reference area, and c̄- aerodynamic chord
length.

For the training of MIMO system based LSSVM regression, the target vector
has been considered at (i+1)th instant which is given as follows:

Z(i+1) = [α(i+1), θ(i+1), q(i+1), V (i+1), aCG
X (i+1), aCG

Z (i+1)]T (14)

4 Results and Discussion

As the LSSVM regression mathematical formulation has been given in the Sect. 3
for multi-input single-output (MISO) case, while the nonlinear mapping has been
done using MATLAB code for multi-input multi-output (MIMO) case which is
the extension of the MISO case. The radial basis kernel function has been chosen
for LSSVM regression model. The values of “c” and “γ” have been determined

Fig. 3. Prediction case 1
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Table 1. RMSE of different outputs

Output α θ q V aX aZ

RMSE 0.0010 0.0011 0.0030 0.0790 0.0254 0.1357

by trial and error method which ensures least value of the root-mean-square
error (RMSE) at the output. First “γ” has been selected based on normalization
of the norm of the input vectors and then “c” value has been varied from “1”
to some finite value, say 10. Finally, γ = 1 and c = 2, have been chosen for our
purpose. Table 1 shows the root- mean-square error of the outputs.

It is found that as the c value changes from the lower to a higher value,
robustness is improved but it leads to over fitting which defines that any small
change in the input value will not have any effect on the response. Once the
modelling part is over, two sets of the data are used to predict from the trained
model: one has the whole input data set having 349 samples while the other
has a part of the whole input data set having 101 samples from 2–4 second
interval of time. Figure 3 shows the first type of prediction case, in which there
is a comparison between the predicted values from the trained model and the
measured values of the output used at the time of training, while Fig. 4 shows
the second type of prediction case. Both the results have shown a quite good
matching with the measured outputs.

Fig. 4. Prediction case 2
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5 Conclusion

In this paper, a new method has been proposed for identifying the dynamics
of the aircraft using LSSVM regression method. It uses the non-linear mapping
characteristics of LSSVM to establish a relationship between the chosen input
and output variables which is fully dependent on the design parameters of the
method. Such type of modelling concept can be used for any non-linear system
where dynamic equations of motions are complex or completely unknown but
input-output variables are measurable. Here, we have approached to model the
short period dynamics of aircraft at a well defined operating condition which can
be used in the design of control system of the aircraft. One can further extend
the concept of the modelling for a global model which describes for the whole
flight envelope.

References

1. Zadeh, L.A.: From circuit theory to system theory. Proc. IRE 50, 856–865 (1962)
2. Hamel, P.G., Jategaonkar, R.V.: The evolution of flight vehicle system identifica-

tion. AGARD, DLR Germany, 8–10 May 1995
3. Jategaonkar, R.V.: Flight Vehicle System Identification: A Time Domain Method-

ology. AIAA Progress in Aeronautics and Astronautics, vol. 216. AIAA, Weinheim
(2006)

4. Klein, V., Morelli, E.: Aircraft System Identification: Theory and Practice. AIAA
Education Series Inc., Reston (2006)

5. Goman, M., Khrabrov, A.: State-space representation of aerodynamic characteris-
tics of an aircraft at high angles of attack. J. Aircr. 31(5), 1109–1115 (1994)

6. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are uni-
versal approximators. Neural Netw. 2, 359–366 (1989)

7. Hassoun, M.H.: Fundamental of Artificial Neural Networks. The MIT Press, Cam-
bridge (1995)

8. Haykins, S.: Neural Networks: A Comprehensive Foundation. McMaster University,
Macmillan College Publishing Company, New York (1994)

9. Raisinghani, S.C., Ghosh, A.K., Kalra, P.K.: Two new techniques for parameter
estimation using neural networks. Aeronaut. J. 102(1011), 25–29 (1998). UK

10. Singh, S., Ghosh, A.K.: Estimation of lateral-directional parameters using neural
networks based modified delta method. Aeronaut. J. 111(1124), 659–667 (2007).
UK

11. Peyada, N.K., Ghosh, A.K.: Aircraft parameter estimation using new filtering
technique based on neural network and Gauss-Newton method. Aeronaut. J.
113(1142), 243–252 (2009)

12. Kumar, R., Ghosh, A.K.: Nonlinear longitudinal aerodynamic modeling using
neural Gauss-Newton method. J. Aircr. 48(5), 1809–1812 (2011). AIAA, USA

13. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Berlin (1995)
14. Suykens, J.A.K., Gestel, T.V., Brabanter, J.D., Moor, B.D., Vandewalle, J.: Least

Squares Support Vector Machines. World Scientific Publishing Co., Singapore
(2002)

15. Wang, Q., Qian, W., He, K.: Unsteady aerodynamic modelling at high angles of
attack using support vector machines. Chin. J. Aeronaut. 28(3), 659–668 (2015)



Accommodative FAS-FMG Multilevel
Based Meshfree Augmented RBF-FD
Method for Navier-Stokes Equations

in Spherical Geometry

Nikunja Bihari Barik(B) and T.V.S. Sekhar

Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha, India
{nbb10,sekhartvs}@iitbbs.ac.in

http://www.iitbbs.ac.in/

Abstract. The efficiency of any numerical scheme measures on the
accuracy of the scheme and its computational time. An efficient mesh-
free augmented local radial basis function (RBF-FD) method has been
developed for steady incompressible Navier-Stokes equations in spheri-
cal geometry with unbounded domain which is based on accommodative
FAS-FMG multigrid method. The axi-symmetric spherical polar Navier-
Stokes equations are solved without using transformation. The non-linear
convective terms are handled efficiently by considering upwind type of
RBF nodes. The developed scheme saves around 34% of the CPU time
than the usual RBF-FD method.

Keywords: Radial basis function · Accommodative FAS-FMG mul-
tilevel method · Meshless method · Unbounded flows · Navier-Stokes
equations

1 Introduction

The increasing use of computational fluid dynamics (CFD) for engineering design
and analysis demands highly efficient solution methods. The discretization of
numerical methods for solving elliptic Navier-Stokes(N-S) equations generally
results in solving a system of algebraic equations. If the number of unknowns
are large, solving by a direct method, such as Gaussian elimination, can be ineffi-
cient. Therefore, iterative methods like point Gauss-Seidel and line Gauss-Seidel
are used to solve the huge linearized system of equations. For better convergence
of the iterative methods, a good initial solution is essential. It was also found
that Gauss-Seidel iterative method is effective for the first few iterations and
then the error elimination process becomes slow. Based on this fact, a fast finite
difference numerical method has been developed by Hyman [1] to solve elliptic
partial differential equations with Dirichlet boundary conditions. His method
is based on a local mesh refinement technique which provides a better initial
guess for the iterative algorithms. The solution is achieved quickly and the CPU
c© Springer Nature Singapore Pte Ltd. 2017
D. Giri et al. (Eds.): ICMC 2017, CCIS 655, pp. 141–151, 2017.
DOI: 10.1007/978-981-10-4642-1 13
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time is minimized. Over the past few decades, finite difference based multigrid
methods have been developed to solve the system of equations so as to improve
the convergence rate of iterative methods and hence their efficiency. Ghia et al.
[2] developed accommodative version of the Full Approximation Scheme-Full
MultiGrid (FAS-FMG) procedure of Brandt [3] and applied this to Navier-Stokes
equations. It is well known that RBF based methods suffer from high compu-
tational cost compared to conventional mesh based methods. The calculation of
RBF weights corresponding to the neighboring particles of a data point, requires
expansive square root and matrix inversion processes. Moreover, the calculation
of derivative approximation at a given order of accuracy usually requires more
number of neighboring particles (or nodes) for meshfree methods in an irregular
grid than for finite difference method (FDM) on a cartesian grid. As a result,
the bandwidth of matrices representing the governing algebraic equations greatly
expands in case of meshfree methods [4,5]. Therefore, the iteration process gets
slowed down due to the relatively dense matrix equations and the computational
efficiency is reduced. At the same time, meshfree methods have the advantage
of handling complex geometries efficiently. However, generation of an efficient
mesh, which could ensure accurate results, is generally a tedious and time con-
suming task in the cartesian grid. To make the numerical scheme efficient Ding
et al. [4] combined the conventional FD scheme with meshfree least square based
finite differences (MLSFD). In a similar manner Javed et al. [5] used a hybrid
scheme which combines RBF-FD with conventional FD schemes. The aim of
the paper is to develop an efficient RBF-FD method to reduce the overall CPU
time for solving Navier-Stokes equations in spherical geometry without using
any transformation.

2 Augmented RBF-FD Formulation for Curvilinear
Coordinates

The RBF based local method (RBF-FD) which has been proposed by Shu et al.
[6], Tolstykh et al. [7], Cecil et al. [8], Wright and Fornberg [9] is spectrally
accurate for a sparse matrix, better conditioned linear system and more flexi-
bility for nonlinearities. Wright and Fornberg [9] described the derivative of a
function at a given point depending on the neighborhood points like in finite
difference method. That is the derivative of a function at a particular point is
approximated by the linear combination of surrounding points. Chandini and
Sanyasiraju (2006) applied this method for solving non-linear convection diffu-
sion equation [10].

2.1 Augmented Radial Basis Function

Given a set of n distinct data points (rj , θj) and corresponding data values
fj , j = 1, 2, . . . , n, the augmented RBF interpolant for axi-symmetric spherical
polar coordinates is given by
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s(r, θ) =
n∑

j=1

λjφj +
m∑

k=1

αkpk(r, θ) (1)

where φj =
√

1 + ε2{(r cos θ − (r cos θ)j)2 + (r sin θ − (r sin θ)j)2}, {pk(r, θ)}m
k=1

is a basis for Πm(Rd) (space of all d-variate polynomial with degree less than m)
and s(rj , θj) = fj . For solving the linear system m extra conditions are required.
The extra conditions are chosen by taking the expansion coefficient vector λ ∈ R

n

orthogonal to Πm(Rd).
i.e.

n∑

j=1

λjpk(rj , θj) = 0, k = 1, 2, . . . ,M (2)

To determine the expansion coefficient λj and αk we solve the following sym-
metric linear system: (

A p
pT 0

)(
λ
α

)
=

(
f
0

)
(3)

where A is the coefficient matrix with entries

aij =
√

1 + ε2{((r cos θ)i − (r cos θ)j)2 + ((r sin θ)i − (r sin θ)j)2},

j = 1, 2, . . . , n, i = 1, 2, . . . , n and p is the n×M matrix with elements pk(rj , θj)
for j = 1, 2, . . . , n and k = 1, 2, . . . ,M . We use Lagrange form of RBF interpolant
to derive RBF-FD formulae. The interpolant is given by

s(r, θ) =
n∑

j=1

ψj(r, θ)u(rj , θj) (4)

where ψj(r, θ) satisfies the cardinal conditions

ψj(rk, θk) = δjk =

{
1, if j = k

0, if j �= k
k = 1, 2, . . . , n. (5)

Closed form representation for ψj(r, θ) can be obtained by considering that
the right hand side vector of (3) stems from each ψj ’s. Then by Cramer’s rule
on (3) to (4) gives

ψj(r, θ) =
det(Aj(r, θ))

det(A)
(6)

where Aj(r, θ) is same as matrix A, except that the jth row is replaced by the
vector

B(r, θ) = [φ1φ2 . . . φn|p1(r, θ)p2(r, θ) . . . pm(r, θ)] (7)

where φj are defined as above and pj(r, θ) ∈ Πm(Rd)
To approximate derivative of a function at a given point the derivation from

(4) to (7) can be used. The linear differential operator of a function u at a given
point (ri, θi) is l(u(ri, θi)) and can be calculated using values of the function at
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neighborhood points of (ri, θi) (say ni nodes (r1, θ1), (r2, θ2), . . . , (rni
, θni

)).
Then

l(u(ri, θi)) ≈
ni∑

j=1

ciju(rj , θj). (8)

By applying Lagrange RBF interpolation (4)

l(u(ri, θi)) ≈ l(s(ri, θi)) =
ni∑

j=1

l(ψj(ri, θi)u(rj , θj)). (9)

From (8) and (9)
cij = l(ψj(ri, θi)), j = 1, 2, . . . , ni.

The weights are computed by solving the linear system:
(

A p
pT 0

)

i

(
C
μ

)

i

=
(

(l(B(r, θ)))T

0

)

i

where A is the part of coefficient matrix of Eq. (3), B(r, θ) is the row vector in
(7) and μ is a vector related to α in (1) and C = [c1, c2, . . . , cni

]
′
. By using the

values of C in (8) we will get an equation on u(rj , θj), j = 1, 2, . . . , ni. These ni

points are some points from u(ri, θi), which are nearer to the ith internal point.

Clearly Eq. (2) gives
ni∑

j=1

cij = 0, i is the internal points. i.e. sum of expansion

coefficient is 0, like the traditional finite difference method.

2.2 Navier-Stokes Equations in Spherical Geometry

The flow of steady incompressible viscous flow past a sphere with uniform free-
stream velocity U∞ (from left to right) is considered for this study. The governing
N-S equations expressed in stream function ψ and vorticity ω formulation in axi-
symmetric spherical polar coordinates are

∂2ψ

∂r2
+

1
r2

∂2ψ

∂θ2
− cot θ

r2
∂ψ

∂θ
= −rω sin θ (10)

and

∂2ω

∂r2
+

2

r

∂ω

∂r
+

1

r2
∂2ω

∂θ2
+

cot θ

r2
∂ω

∂θ
− ω

r2 sin2 θ
=

Re

2

(
qr

∂ω

∂r
+ ω

∂qr

∂r
+

qrω

r
+

qθ

r

∂ω

∂θ
+

ω

r

∂qθ

∂θ

)
.

(11)

Here Re is the Reynolds number defined as Re = 2U∞a/ν, where a is radius
of the sphere and ν is kinematic coefficient of viscosity. qr and qθ are the non-
dimensional radial and transverse velocity components defined as

qr =
1

r2 sin θ

∂ψ

∂θ
, qθ =

−1
r sin θ

∂ψ

∂r
(12)
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which are obtained by dividing the corresponding dimensional components by
the stream velocity U∞. They are chosen in such a way that the equation of
continuity in spherical polar coordinates is satisfied.

The boundary conditions to be satisfied are:

– On the surface of the sphere (r = 1): ψ = ∂ψ
∂r = 0, ω = − 1

sin θ
∂2ψ
∂r2

– At large distances from the sphere (r → ∞): ψ → r2

2 sin2 θ, ω → 0
– Along the axis of symmetry (θ = 0 and θ = π): ψ = 0, ω = 0

The surface vorticity is calculated by using the procedure given in [11]

ω1,j = − 3ψ2,j

Δr2sinθj
− ω2,j

2

where Δr is the distance between the given boundary point (i.e. (1, j) points)
and nearest neighborhood point (i.e. (2, j) points).

The first and second order derivatives of ψ, ω with respect to r and θ are
calculated at ith point using Eqs. (4) to (8) as follows:

∂ψ

∂r
|ψ=ψi

≈
ni∑

j=1

ar
ijψ(rj , θj),

∂ψ

∂θ
|ψ=ψi

≈
ni∑

j=1

aθ
ijψ(rj , θj),

∂ω

∂r
|ω=ωi

≈
ni∑

j=1

br
ijω(rj , θj),

∂ω

∂θ
|ω=ωi

≈
ni∑

j=1

bθ
ijω(rj , θj),

∂2ψ

∂r2
|ψ=ψi

≈
ni∑

j=1

arr
ij ψ(rj , θj),

∂2ψ

∂θ2
|ψ=ψi

≈
ni∑

j=1

aθθ
ij ψ(rj , θj),

∂2ω

∂r2
|ω=ωi

≈
ni∑

j=1

brr
ij ω(rj , θj),

∂2ω

∂θ2
|ω=ωi

≈
ni∑

j=1

bθθ
ij ω(rj , θj),

where ar
ij , aθ

ij , arr
ij , aθθ

ij , br
ij , brr

ij , bθ
ij , bθθ

ij , are similar to cij in the Eq. (8).
We first solve the governing Eq. (10) for ψ by taking ω value from the previous

iteration. Then we solve Eq. (11) for ω. Thus the non-linear terms like qr
∂ω
∂r in

the Eq. (11) are locally linearized with known values of ψ.
The Eq. (10) is discretized at ith internal point as follows:

ni∑

j=1

(arr
ij +

1
r2i

aθθ
ij − cot θi

r2i
aθ

ij)ψ(rj , θj) = riωi sin θi.

As ψi is known now, we calculate

qr =
1

r2i sin θi
(
∂ψ

∂θ
)ψ=ψi

=
1

r2i sin θi

ni∑

j=1

aθ
ijψ(rj , θj) = gi(say).

Similarly calculate

(
∂qr

∂r
)ψ=ψi

= di, (qθ)ψ=ψi
=

−1
ri sin θi

(
∂ψ

∂r
)ψ=ψi

= ei and (
∂qθ

∂θ
)ψ=ψi

= fi.
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Now Eq. (11) is discretized at ith internal point as follows:

∑ni

j=1
(brr

ij +
2
ri

br
ij +

1
r2i

bθθ
ij +

cot θi

r2i
bθ
ij − 1

r2i sin2 θi

)ω(rj , θj) =

Re

2

∑ni

j=1
(gib

r
ij + di +

gi

ri
+

ei

ri
bθ
ij +

fi

ri
)ω(rj , θj).

We finally get the following linear systems of equations for ψ and ω

Dψ = F1 (13)

and
Eω = F2 (14)

where D = [D1D2 . . . DN ]
′

and each Di(i = 1, 2, . . . , N) is a row vector for ith
internal point and F1 is the column matrix. Similarly E and F2.

The system of linear Eqs. (13) and (14) so obtained is first solved for ψ at all
internal nodes and then ω at all internal nodes using the Gauss-Seidel iterative
method. This completes one iteration. The iterations are continued until the
Root Mean Square(RMS) error of the dynamic residuals is less than 10−6.

Upwind model supporting nodes: Upwind model supporting nodes is
applied for convective terms to achieve the results at higher far fields and for
high Reynolds numbers. All the other derivatives are approximated by central
model supporting nodes. For convective terms, one nearest neighborhood point
depending on the flow direction (radial or transverse) is chosen as supporting
node. The choice of the node in the flow direction is explained below and shown
in the Fig. 1 (bottom):

– qr < 0, ∂ω
∂r is approximated by using a forward point of reference point in

radial direction.
– qr > 0, ∂ω

∂r is approximated by using a backward point of reference point in
radial direction.

– qθ < 0, ∂ω
∂θ is approximated by using a forward point of reference point in

angular direction.

Fig. 1. Choice of local supporting nodes: (a) central model (top) and (b) upwind model
(bottom)
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– qθ > 0, ∂ω
∂θ is approximated by using a backward point of reference point in

angular direction.

The convective terms in Eq. (11) are discretized by choosing the upwind type
of nodes as described above. The modified discretization of the Eq. (11) at ith
internal point is given below.

∑ni

j=1
(brr

ij +
2
ri

br
ij +

1
r2i

bθθ
ij +

cot θi

r2i
bθ
ij − 1

r2i sin2 θi

)ω(rj , θj) =

Re

2
(
∑mi

j=1
gib

r
ij +

∑ni

j=1
di +

∑ni

j=1

gi

ri
+

∑mi

j=1

ei

ri
bθ
ij +

∑ni

j=1

fi

ri
)ω(rj , θj)

where mi are supporting nodes considered for the convection terms.

2.3 Accommodative FAS-FMG Multilevel Algorithm

Ghia et al. [2] developed accommodative version of the Full Approximation
Scheme-Full MultiGrid (FAS-FMG) procedure of Brandt [3] and applied in finite
difference method to Navier-Stokes equations. Here we consider various sets of
levels for a fixed domain such that there is no pre specified connection between
any two sets. This can be from a coarser level to a finer level i.e. with additional
nodes than the previous set and finally the finest with some more additional
nodes than the finer one, etc. i.e. L1, L2, . . . , Lm are the set of levels with increas-
ing number of nodes in the same domain. Prolongation (P i

i−1) is a operator which
transfers a coarse level to a finer level solution. First we solved system of linear
equations obtained in Eqs. (13) and (14) by using iterative scheme Gauss-Seidel
in the coarsest level (L1) until get convergent solutions i.e. D1ψ1 = F 1

1 and
E1ω1 = F 1

2 . Then prolongate the known convergent solutions to next finer level
by prolongation operator and interpolate the rest points by RBF-FD method.
Repeat the procedure until get the convergent solution at finest level (Lm). The
procedure as summarize as below:

1. Solve the algebraic system of linear equations Dψ = F1 and Eω = F2,
obtained by discretizing the governing equations using RBF-FD method, in
the coarsest set of nodes (L1) until convergence using iterative technique such
as Gauss-Seidel.

2. Prolongate the coarsest set solution to the next finer set i.e. ψ̂2 = P (ψ1) and
ω̂2 = P (ω1).

3. The solution at additional points can be obtained by RBF-FD interpolation.
Using this as starting solution, achieve convergent solution in the finer set i.e.
D2ψ2 = F 2

1 and E2ω2 = F 2
2 .

4. Repeat the above procedure for the next finer set and so on until the finest
set and achieve convergent solution in the finest set.

3 Results and Discussion

The upwind model RBF-FD is used for the parameters in the range Re = 10 −
200 for various shape parameters and different far fields. The choice of shape
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Table 1. Choice of ε for Re = 100 (upwind model) with different sets of nodes and its
order of accuracy

Epsilon 65× 65 76× 76 97× 97 113× 113 129× 129 141× 141 151× 151 Order

0.9 0.441081 0.463888 0.495871 0.509397 0.517249 0.520756 0.522337 O(h2.2)

1.0 0.467295 0.488748 0.518180 0.530440 0.537066 0.539834 0.541309 O(h3)

1.1 0.491931 0.512595 0.540030 0.550902 0.557199 0.558764 0.559075 O(h2)

parameter ε is also tested in comparison with finite difference model. The results
are obtained from different scattered points such as 652, 762, 972, 1132, 1292, 1412

and 1512 and presented in the Table 1 for different ε. To check the order of
accuracy of the results in the absence of exact solution, the divided differences
of the drag coefficient values d(CD)/dh for Re = 100 with various step sizes h of
the data in Table 1 are plotted for ε = 0.9, 1.0 and 1.1. The decay of d(CD)/dh
as function of h is presented on a log-log scale in the Fig. 2. Here, the value of
‘h’ in x-axis is taken as the average of step sizes of the grids corresponding to
the divided differences. The slopes of the curves are parallel to the dotted lines
of O(h2.2), O(h3), O(h2) respectively for ε = 0.9, 1.0 and 1.1. This shows that
d(CD)/dh → 0 at the rate of O(h2.2), O(h3) and O(h2) respectively. Hence the
order of accuracy are respectively 3.2, 4 and 3. We choose ε = 1.0 for Re = 100.

The results for Re = 100 are tested with different far fields 30, 40 and 50
times the radius of the sphere to fix the artificial unbounded domain. For each far
field, the shape parameter ε is chosen as explained above and the drag coefficient
values are presented in the Table 2. From the table, we can observe that the far
field of 40 times the radius of sphere is sufficient to get satisfactory results as
the values are almost same with the other far fields of 30 and 50. The drag
coefficient values which are obtained in a similar fashion for Re = 10 − 200 are
tabulated in the Table 3 along with other literature values [12–18]. The drag
coefficient values agree with literature values. The last column of the Table 3
shows the relative percentage error with respect to fourth order accurate based
finite difference scheme [12]. The streamlines and vorticity lines are plotted for
Re = 100 in Fig. 3 whose separation length and separation angle are found to be
3.68 and 58◦.8′ respectively. It is also found that the flow got separated initially
at Re = 20. To the best of our knowledge, most of the numerical results available
in the literature with regard to the model problem considered here are at the
most second order accurate. The recent results presented for this problem in
the reference [12] are fourth order accurate due to HOCS discretization. The

Table 2. Choice of far-field for Re = 100 and its order of accuracy

Far-field Epsilon 65 × 65 76 × 76 97 × 97 113 × 113 129 × 129 141 × 141 151 × 151 Order

30 1.3 0.499162 0.516811 0.534433 0.540208 0.541791 0.541744 0.541015 O(h2)

40 1.0 0.467295 0.488748 0.518180 0.530440 0.537066 0.539834 0.541309 O(h3)

50 0.8 0.425276 0.452838 0.495113 0.514586 0.527217 0.533476 0.535483 O(h1.5)
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Table 3. Comparison of drag coefficient results with other literature values for
different Re

Re Clair et al. Dennis and Fornberg Juncu and Feng and Atefi Sekhar and RBF- Relative

[14] (1970) Walker [13] [15] Mihail [16] Michaelides et al. [18] Raju [12] FD percentage

(1971) (1988) (1990) [17] (2000) (2007) (2012) error w.r.t. [12]

10 2.14 2.21 − − − − 2.13 2.23 4.69

20 1.36 1.36 − − 1.34 − 1.34 1.38 2.98

40 0.93 0.90 − − 0.88 − 0.89 0.88 1.12

100 0.55 − 0.54 0.53 0.55 0.55 0.54 0.54 0.00

200 − − 0.38 − − − 0.38 0.35 7.89

Fig. 2. Calculation of order of accuracy for Re = 100 with ε = 0.9, 1.0 and 1.1

Fig. 3. Streamlines lines (top) and vorticity lines (bottom) for Re = 100
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Table 4. Effect of efficient model that combined with RBF-FD in N-S equations for
Re = 40

No. of steps Finest nodes Coarsest nodes CPU time (mins) %

1 129 × 129 129 × 129 13.17 −
2 129 × 129 65 × 65 8.72 33.79

3 129 × 129 33 × 33 8.64 34.4

present results with RBF-FD are also fourth order accurate and exhibits all the
flow characteristics that match with experimental, theoretical and numerical
results. This ensures that the RBF-FD scheme captures all flow characteristics
particularly in unbounded flows, and the results are higher order accurate.

By applying the proposed efficient scheme the CPU times for Re = 40 with
ε = 0.55 obtained for three sets of nodes are presented in Table 4. From the
table it is clear that single set (1292) number of nodes takes 13.17 min but if we
apply two levels (i.e. 652 and 1292) the same solution is coming with 8.72 min
computation time. Similarly for three levels (332, 652 and 1292) take 8.64 min
thereby saving almost 34% of the CPU time when compared to the usual RBF-
FD method with finest set of nodes while achieving the same level of accuracy.

4 Conclusions

An accommodative FAS-FMG multilevel augmented RBF-FD method is devel-
oped and implemented to incompressible spherical polar Navier-Stokes equa-
tions. The accommodative FAS-FMG multigrid analogy with local refinement is
adopted to achieve the efficiency. The developed scheme saves almost 34% of the
CPU time when compared to CPU time of the solution obtained from the finest
set of nodes solely while achieving the same level of accuracy.
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Abstract. In this paper, the concept of Bessel sequence and frame are
introduced in semi-inner product spaces. Some properties of the Bessel
sequences and frame are investigated in smooth uniformly convex Banach
spaces. One characterization of the space of all Bessel sequences has been
pointed out. Examples of frames are constructed in the real sequence
spaces lp, 1 < p < ∞.
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1 Introduction and Preliminaries

With a view to establishing Hilbert space type arguments in Banach spaces,
Lumer [19] constructed, a type of inner product called semi-inner product
denoted by [.,.] with a more general axiom system. The corresponding space
with this semi-inner product is called a semi-inner product space. Using the
semi-inner product a norm can be defined by ‖x‖ = [x, x]

1
2 . Lumer [19] showed

that there are normed linear spaces, where the semi-inner product can be defined
in many different ways. Subsequently, Giles [15] showed that in a fairly large class
of Banach spaces it is possible to construct a semi-inner product with many of
the desirable attributes of an inner product. He has shown that if X is a smooth
uniformly convex Banach space, then it is possible to define a unique semi-inner
product. Semi-inner product spaces have been studied by Lumer [19], Giles [15],
Koehler [17] and Nanda [20].

Frame theory became popular only after 1990’s. Now a days Frame the-
ory, Wavelet analysis are rich areas of research due to their applications in sig-
nal processing, inverse-scattering problem, noise analysis and many other fields.
Frame is an extension of the concept of a basis where this spanning set makes use of
c© Springer Nature Singapore Pte Ltd. 2017
D. Giri et al. (Eds.): ICMC 2017, CCIS 655, pp. 155–169, 2017.
DOI: 10.1007/978-981-10-4642-1 14
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its redundancy in applications. A great deal of work in frame theory has been done
by Christensen [8–11]; Casazza and Christensen [5,6] and Favier and Zalik [13].

The main goal of this paper is to introduce the concept of Bessel sequence
and frame in semi-inner product spaces. We first quote the following definitions:

Semi-inner product space [19]: Let X be a vector space over the field F of
real or complex numbers. A functional [., .] : X × X → F is called a semi-inner
product (s.i.p in short) if it satisfies the following:

1. [x + y, z] = [x, z] + [y, z], ∀x, y, z ∈ X;
2. [λx, y] = λ[x, y], ∀λ ∈ F and x, y ∈ X;
3. [x, x] > 0, for x �= 0;
4. |[x, y]|2 � [x, x][y, y]. The pair (X, [., .]) is called a semi-inner product space.

Uniformly convex Banach space: A complete normed space X is uniformly
convex if given ε > 0, there exists δ(ε) > 0 such that, for x, y ∈ X with ‖x‖ =
‖y‖ = 1 it holds that ‖x+y‖

2 ≤ 1 − δ(ε) when ‖x − y‖ > ε.

Smooth Banach space: A Banach space X is said to be smooth if for any
linearly independent elements x and y in X, the function ψ(t) = ‖x + ty‖ is
differentiable for all values of t.

Uniformly convex smooth Banach space: A Banach space which is uni-
formly convex and smooth is called a uniformly convex smooth Banach space.

Giles [15] has proved that if the underlying space is a uniformly convex
smooth Banach space then it is possible to define a semi-inner product, uniquely.
Also the unique semi-inner product has the following nice properties:

(i) [x, λy] = λ[x, y] for all scalars λ.
(ii) [x, y] = 0 if and only if y is orthogonal to x, that is if and only if ‖y‖ ≤

‖y + λx‖, for all scalars λ.
(iii) Generalized Riesz representation theorem:- If f is a continuous linear func-

tional on X then there is a unique vector y ∈ X such that f(x) = [x, y], for
all x ∈ X.

(iv) The semi-inner product is continuous.

Example 1.1. The sequence space lp, p > 1 and the functions space Lp, p >
1 are uniformly convex smooth Banach spaces. So one can define semi-inner
product on these spaces, uniquely. Giles [15] has shown that the functions space
Lp, p > 1 is a semi-inner product space with the semi-inner product defined by

[x, y] =
1

‖y‖p−2
p

∫
X

x|y|p−1sgn(y)dμ, ∀ x, y ∈ LP (X,μ).

Similarly the real sequence space lp, p > 1 is a semi-inner product space with
the semi-inner product defined by

[x, y] =
1

‖y‖p−2
p

∑
i

|y(i)|p−2y(i)x(i), ∀ x = {x(i)}, y = {y(i)} ∈ lp.
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Bessel sequence and frame in Hilbert space are defined as follows:

Bessel sequence: A set of elements {fi}∞
1 in a Hilbert space H is called a

Bessel sequence if there exists a constant B > 0 such that∑∞
i=1 |〈f, fi〉|2 ≤ B ‖ f ‖2, for all f ∈ H, where 〈., .〉 is an inner product

in H.

Frame: A family of elements {fi}i∈I ⊆ H is called a frame for the Hilbert
space H if there exist constants A,B > 0 such that

A ‖ f ‖2≤ ∑
i∈I |〈f, fi〉|2 ≤ B ‖ f ‖2, for all f ∈ H.

Frames in Lp spaces and other Banach function spaces are effective tools for mod-
eling a variety of natural signals and images. They are also used in the numerical
computation of integral and differential equations. There is plethora of literature
available for frames in Banach spaces also. For classical frame theory in Banach
spaces one may refer to Christensen and Heil [12], Grochenig [16]. Frames for shift
invariant subspaces of Lp space are studied by Aldroubi et al. [1] in 2001. Casazza
et al. [7] in 2005, characterized Banach frames in separable Banach spaces, and
related them to series expansion in Banach spaces. M. Fornasier [14] studied the
Banach frames and atomic decomposition characterization ofα-modulation spaces
in 2007. (p,Y )-Bessel operator sequences, (p,Y )-operator frames, and (p,Y )-Riesz
bases for a Banach space X, are introduced and discussed by Cao et al. [3] in 2008.
Liu [18] studied Schauder frames in Banach spaces in 2010. Schauder frame is a
concept which is a natural generalization of frames in Hilbert spaces and Schauder
bases in Banach spaces. Carando et al. [4] in 2011, discussed the reconstruction for-
mula of Banach frames for the functions space Lp, (1 ≤ p < ∞) and Lorentz space
Lp,q, (1 ≤ p, q < ∞) with respect to a solid sequence space.

The frames in Banach spaces using semi-inner product was defined by H. Zhang
and J. Zhang [22] in 2011.They generalized the classical theory on frames andRiesz
bases under this new perspective. They also established the Shannon sampling the-
orem in Banach spaces using semi-inner product structure.

In our work the concept of Bessel sequence and frame are introduced in some
semi-inner product spaces, which are uniformly convex smooth Banach spaces
with homogeneity property. Properties of these Bessel sequence and frame have
been studied.

2 Bessel Sequence

We define Bessel sequence on a uniformly convex smooth Banach space consisting
of norm ‖.‖p, 1 < p < ∞. We consider our Banach space as a semi-inner prod-
uct space and use the semi-inner product to define Bessel sequence in this class of
Banach spaces. For the rest of the paper we assume that X is a real uniformly con-
vex smooth Banach space with norm ‖.‖p and semi-inner product [., .]. We denote
semi-inner product on the real sequence space lq by [., .]q and ‖.‖q.
Definition 2.1. A set of elements y = {yi}∞

i=1 ⊆ X is called a Bessel sequence
if there exists a constant B > 0 such that
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∞∑
i=1

|[yi, x]|q ≤ B(‖x‖p)q, ∀x ∈ X,

where 1 < p, q < ∞ and 1
p + 1

q = 1. The number B is called Bessel bound.

We now prove some preliminary results for the existence of Bessel sequence
in a uniformly convex smooth Banach space.

Lemma 2.1. Let X be a real smooth uniformly convex Banach space with ‖.‖p .
For some sequence y = {yi}∞

i=1 ⊆ X and some element x ∈ X, suppose that the

series
∞∑
i=1

ciyi
|[yi, x]|q−2

‖{[yi, x]}‖q−2
is convergent for all c = {ci}∞

i=1 ∈ lq. Also assume

that
{

ci
|[yi, x]|q−2

‖{[yi, x]}‖q−2

}∞

i=1
∈ lq. Then the mapping T : lq → X, defined by

T (c) =
∞∑
i=1

ciyi
|[yi, x]|q−2

‖{[yi, x]}‖q−2

is a bounded linear operator. The generalized adjoint operator of T is T † : X →
lq given by T †x = {[yi, x]}∞

i=1.

Proof. Consider the sequence of bounded linear operators Tn : lq → X defined
by

Tn(c) =
n∑

i=1

ciyi
|[yi, x]|q−2

‖{[yi, x]}‖q−2
.

One can easily see that Tn → T pointwise. Hence T is bounded. Also T is linear.
For x ∈ X and c = {ci}∞

i=1 ∈ lq,

[T (c), x] = [
∞∑
i=1

ciyi
|[yi, x]|q−2

‖{[yi, x]}‖q−2
, x]

=
∞∑
i=1

ci
|[yi, x]|q−2

‖{[yi, x]}‖q−2
[yi, x]

= [{ci}∞
i=1, {[yi, x]}∞

i=1]q
⇒ T †x = {[yi, x]}∞

i=1.

Remark 2.1. Since T : lq → X is a bounded linear operator, then T † : X → lq

is bounded on X and it holds that ‖T †(x)‖q ≤ ‖T‖‖x‖p, for all x ∈ X (see Pap
and Pavlovic [21]). Hence

(‖{[yi, x]}‖q)q ≤ ‖T‖q(‖x‖p)q

⇒
∞∑
i=1

|[yi, x]|q ≤ ‖T‖q(‖x‖p)q.

Hence the Bessel sequence on the semi-inner product space X is well defined.
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We now obtain the following results for Bessel sequences.

Theorem 1. Let y = {yi}∞
i=1 be a sequence in X. Assume that{

ci
|[yi, x]|q−2

‖{[yi, x]}‖q−2

}∞

i=1
∈ lq. Then the sequence y is a Bessel sequence if and only

if T : {ci}∞
i=1 →

∞∑
i=1

ciyi
|[yi, x]|q−2

‖{[yi, x]}‖q−2
is a well defined and bounded operator

from lq into X.

Proof. Firstly, suppose that y = {yi}∞
i=1 is a Bessel sequence with bound B.

Let c = {ci}∞
i=1 ∈ lq. We have to show that T{ci}∞

i=1 is well defined, that is
∞∑
i=1

ciyi
|[yi, x]|q−2

‖{[yi, x]}‖q−2
is convergent.

Let n,m ∈ N and n > m. Then

∥∥∥
n∑

i=1

ciyi
|[yi, x]|q−2

‖{[yi, x]}‖q−2
−

m∑
i=1

ciyi
|[yi, x]|q−2

‖{[yi, x]}‖q−2

∥∥∥

=
∥∥∥

n∑
i=m+1

ciyi
|[yi, x]|q−2

‖{[yi, x]}‖q−2

∥∥∥

= sup
‖z‖=1

∣∣∣[
n∑

i=m+1

ciyi
|[yi, x]|q−2

‖{[yi, x]}‖q−2
, z

]∣∣∣

≤ sup
‖z‖=1

n∑
i=m+1

|ci| |[yi, x]|q−2

‖{[yi, x]}‖q−2
|[yi, z]|

≤
( n∑

i=m+1

(|ci| |[yi, x]|q−2

‖{[yi, x]}‖q−2

)q) 1
q

sup
‖z‖=1

(
n∑

i=m+1

|[yi, z]|p) 1
p

≤
( n∑

i=m+1

(|ci| |[yi, x]|q−2

‖{[yi, x]}‖q−2

)q) 1
q

sup
‖z‖=1

B
1
p ‖z‖

=
( n∑

i=m+1

(|ci| |[yi, x]|q−2

‖{[yi, x]}‖q−2

)q) 1
q

B
1
p .

The right hand side goes to 0 as n,m → ∞, since
{

ci
|[yi, x]|q−2

‖{[yi, x]}‖q−2

}∞

i=1
∈

lq and
n∑

i=1

|ci| |[yi, x]|q−2

‖{[yi, x]}‖q−2
, for n ∈ N, is a Cauchy sequence. Therefore

{ n∑
i=1

ciyi
|[yi, x]|q−2

‖{[yi, x]}‖q−2

}
, n ∈ N, is a Cauchy sequence in X and is convergent

since X is complete.
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n∑
i=1

ciyi
|[yi, x]|q−2

‖{[yi, x]}‖q−2
→

∞∑
i=1

ciyi
|[yi, x]|q−2

‖{[yi, x]}‖q−2
as n → ∞.

This implies that T{ci}∞
i=1 is well defined and T is bounded.

Conversely, suppose that T is well defined and ‖T‖ ≤ C, where C is any
positive constant.

We have (‖T †(x)‖q)q ≤ ‖T‖q(‖x‖p)q, for all x ∈ X, where 1
p + 1

q = 1 (see
Pap and Pavlovic [21]).

⇒ ∑∞
i=1 |[yi, x]|q ≤ Cq(‖x‖p)q, for all x ∈ X and thus {fi}∞

i=1 is a Bessel
sequence.

We now prove a stability result for Bessel sequences.

Theorem 2. Let y = {yi}∞
i=1 be a Bessel sequence in a uniformly convex smooth

Banach space X. Suppose that the operator T : lq → X, defined by T{ci}∞
i=1 =

∞∑
i=1

ciyi
|[yi, x]|q−2

‖{[yi, x]}‖q−2
, satisfies ‖T‖ ≤ M , where M is a positive real constant.

Let g = {gi}∞
i=1 be another sequence in X, and assume that there exist constants

λ, μ ≥ 0 such that

∥∥ n∑
i=1

ciyi
|[yi, x]|q−2

‖{[yi, x]}‖q−2
−

n∑
i=1

cigi
|[gi, w]|q−2

‖{[gi, w]}‖q−2

∥∥

≤ λ
∥∥ n∑

i=1

ciyi
|[yi, x]|q−2

‖{[yi, x]}‖q−2

∥∥ + μ(
n∑

i=1

|ci|q) 1
q ,∀ scalars {cn}, n ∈ N. (1)

Then {gi}∞
i=1 is a Bessel sequence with bound [(1 + λ)M + μ]K , where K =

K(p, q).

Proof. Since y = {yi}∞
i=1 is a Bessel sequence, the operator

T : lq → X defined by T{ci}∞
i=1 =

∞∑
i=1

ciyi
|[yi, x]|q−2

‖{[yi, x]}‖q−2
is well defined, bounded

operator and ‖T‖ ≤ M . From inequality (1), we have

∥
∥

n∑

i=1

cigi
|[gi, w]|q−2

‖{[gi, w]}‖q−2

∥
∥− ∥∥

n∑

i=1

ciyi
|[yi, x]|q−2

‖{[yi, x]}‖q−2

∥
∥

≤ ∥∥
n∑

i=1

ciyi
|[yi, x]|q−2

‖{[yi, x]}‖q−2
−

n∑

i=1

cigi
|[gi, w]|q−2

‖{[gi, w]}‖q−2

∥
∥

≤ λ
∥
∥

n∑

i=1

ciyi
|[yi, x]|q−2

‖{[yi, x]}‖q−2

∥
∥+ μ(

n∑

i=1

|ci|q)
1
q .

⇒ ∥∥
n∑

i=1

cigi
|[gi, w]|q−2

‖{[gi, w]}‖q−2

∥
∥

≤ (1 + λ)
∥
∥

n∑

i=1

ciyi
|[yi, x]|q−2

‖{[yi, x]}‖q−2

∥
∥+ μ(

n∑

i=1

|ci|q)
1
q . (2)
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The above inequality holds for all scalar sequences c = {cn}, n ∈ N.
Now define a bounded linear operator U : lq → X by U(c) =

∞∑
i=1

cigi
|[gi, w]|q−2

‖{[gi, w]}‖q−2
.

Clearly U is linear. Now from (2), as n → ∞
‖U(c)‖ ≤ (1 + λ)‖T (c)‖ + μ‖c‖

≤ (1 + λ)‖T‖‖c‖ + μ‖c‖
≤ [(1 + λ)M + μ]‖c‖, ∀ c = {ci}∞

i=1 ∈ lq.

Hence U is a well defined operator from lq into X and ‖U‖ ≤ (1 + λ)M + μ.
Now from Theorem 1, it is concluded that g = {gi}∞

i=1 is a Bessel sequence with
Bessel bound [(1 + λ)M + μ]q.

Next we prove that the set of all Bessel sequences in a uniformly convex
smooth Banach space is a linear space.

Theorem 3. Let X be a uniformly convex smooth Banach space and BX be
the set of all Bessel sequences in X. Then BX is a linear space.

Proof. Let y = {yk}∞
k=1 and z = {zk}∞

k=1 be two Bessel sequences with bounds
B1 and B2, respectively. We show that the set αy +βz = {αyk +βzk}∞

k=1 where
α, β ∈ C, is also a Bessel sequence.

(
∞∑
k=1

|[αyk + βzk, x]|q) 1
q = (

∞∑
k=1

|α[yk, x] + β[zk, x]|q) 1
q

≤ (
∞∑
k=1

|α|q|[yk, x]q|) 1
q + (

∞∑
k=1

|β|q|[zk, x]q|) 1
q

= |α|(
∞∑
k=1

|[yk, x]q|) 1
q + |β|(

∞∑
k=1

|[zk, x]q|) 1
q

≤ |α|(B1(‖x‖p)q) 1
q + |β|(B2(‖x‖p)q) 1

q

= (|α|B
1
q

1 + |β|B
1
q

2 )(‖x‖p).

⇒ ∑∞
k=1 |[αyk + βzk, x]|q ≤ (|α|B

1
q

1 + |β|B
1
q

2 )q(‖x‖p)q.
Hence αy + βz is also a Bessel sequence with bound (|α|B

1
q

1 + |β|B
1
q

2 )q, and
consequently, BX is a linear space.

Our next four theorems will show that the set of all Bessel sequences BX

in a uniformly convex smooth Banach space X is a Banach space and it is a
BK-space as well as an AK-space (for definitions of BK-space and AK-property
see Boos [2], Chap. 7).

Theorem 4. BX is a normed linear space with the norm ‖y‖BX
=

sup
‖x‖p≤1

(
∞∑
k=1

|[yk, x]|q) 1
q , for y = {yk}∞

k=1 ∈ BX and x ∈ X.
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Proof. Clearly ‖.‖BX
: BX → R. Now let y = {yi}∞

i=1 and z = {zi}∞
i=1 be in BX .

(i) ‖y‖BX
= sup

‖x‖p≤1

(
∞∑
k=1

|[yk, x]|q) 1
q ≥ 0

(ii) ‖αy‖BX
= sup

‖x‖p≤1

(
∞∑
k=1

|[αyk, x]|q) 1
q

= sup
‖x‖p≤1

(
∞∑
k=1

|α|q|[yk, x]|q) 1
q

= sup
‖x‖p≤1

|α|(
∞∑
k=1

|[yk, x]|q) 1
q = |α|‖y‖BX

.

(iii) ‖y + z‖BX = sup
‖x‖p≤1

(
∞∑

k=1

|[yk + zk, x]|q) 1
q

≤ sup
‖x‖p≤1

(

∞∑

k=1

{|[yk, x] + [zk, x]|}q)
1
q

≤ sup
‖x‖p≤1

{(
∞∑

k=1

|[yk, x]|q) 1
q + (

∞∑

k=1

|[zk, x]|q) 1
q }

≤ sup
‖x‖p≤1

(
∞∑

k=1

|[yk, x]|q) 1
q + sup

‖x‖p≤1

(
∞∑

k=1

|[zk, x]|q) 1
q = ‖y‖BX + ‖z‖BX .

(iv) Also ‖y‖BX
= sup

‖x‖p≤1

(
∞∑
k=1

|[yk, x]|q) 1
q = 0 if and only if y =

{yk}∞
k=1 = 0.

Hence BX is a normed linear space.

Theorem 5. The set of all Bessel sequences BX in a uniformly convex smooth
Banach space X is a Banach space.

Proof. Theorem 4 shows that BX is a normed linear space with respect to the

norm ‖y‖BX
= sup

‖x‖p≤1

(
∞∑
k=1

|[yk, x]|q) 1
q , for y = {yk}∞

k=1 ∈ BX and x ∈ X. We

prove that BX is complete in the above norm.
Let {yn} be a Cauchy sequence in BX , where yn = {ynk

} and x ∈ X. For
n,m ∈ N, n > m, ‖yn − ym‖BX

→ 0 as n,m → ∞. This implies that
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sup
‖x‖p≤1

(
∞∑
k=1

|[ynk
− ymk

, x]|q) 1
q → 0 as n,m → ∞.

⇒ sup
‖x‖p≤1

∞∑
k=1

|[ynk
− ymk

, x]|q → 0 as n,m → ∞.

⇒
∞∑
k=1

|[ynk
, x] − [ymk

, x]|q → 0 as n,m → ∞.

⇒ |[ynk
, x] − [ymk

, x]| → 0 as n,m → ∞.

Hence, we see that {[ynk
, x]} is a Cauchy sequence in C. C is complete. Hence

{[ynk
, x]} → [yk, x] ∈ C, where yk = lim

n→∞ ynk
.

Now for y = {yk}∞
k=1, we have

‖yn − y‖BX
= sup

‖x‖p≤1

(
∞∑
k=1

|[ynk
− yk, x]|q) 1

q

= sup
‖x‖p≤1

(
∞∑
k=1

|[ynk
, x] − [yk, x]|q) 1

q .

The right hand side of the above equation goes to 0 as n → ∞ because [ynk
, x] →

[yk, x] as n → ∞.
Next we show that y ∈ BX . That is to show that

∑∞
k=1 |[yk, x]|q ≤

B(‖x‖p)q, ∀x ∈ X. Let Bn be the corresponding Bessel bounds for the
Bessel sequences yn. Also let B = sup

n
Bn < ∞. Now

∞∑
k=1

|[yk, x]|q =
∞∑
k=1

| lim
n→∞[ynk

, x]|q

=
∞∑
k=1

lim
n→∞ |[ynk

, x]|q

= lim
n→∞

∞∑
k=1

|[ynk
, x]|q

≤ B(‖x‖p)q, ∀x ∈ X.

This shows that y ∈ BX and hence BX is a Banach space.

Next, we show that BX has two important properties as a sequence space. We
require the following definitions for that purpose.

BK-space: A coordinate space Y is called a BK-space if it is a Banach space
and the linear functionals defined by fi(y) = yi, for each i ∈ I are continuous,
where I is the index set and y = {yi}i∈I ∈ Y .

AK-space: Let Y be a BK-space and y = {yi}i∈I be a sequence in Y . Let
y[n] = (y1, y2, ..., yn, 0, 0, ..) be the nth section of the vector y. Then Y is called
an AK-space if lim

n→∞ ‖y[n] − y‖Y = 0, for all y ∈ Y .
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For more on FK, BK and AK spaces, please see [2, Chap. 7]. Our next two
results show that BX is a BK-space with AK-property.

Theorem 6. BX is a BK-space.

Proof. Let {yn} be a sequence in BX and yn → y ∈ BX as n → ∞.

⇒ ‖yn − y‖BX
→ 0 as n → ∞

⇒ sup
‖x‖p≤1

(
∞∑
k=1

|[ynk
− yk, x]|q) 1

q → 0 as n → ∞

⇒ (
∞∑
k=1

|[ynk
− yk, x]|q) 1

q → 0 as n → ∞

⇒ |[ynk
− yk, x]| → 0 as n → ∞ and ∀x ∈ X with ‖x‖p ≤ 1

⇒ ynk
→ yk as n → ∞.

This implies that BX is a BK-space.

Theorem 7. BX is an AK-space.

Proof. Let y = (y1, y2, y3, .....) ∈ BX . Assume that z = (y1, y2, ..., yn, 0, 0, ...).
We can see that z is also in BX . Now for x ∈ X, we have

‖y − z‖BX
= sup

‖x‖p≤1

(
∞∑

i=n+1

|[yi, x]|q) 1
q . (3)

Since the series
∞∑
i=1

|[yi, x]|q is convergent, the remainder term
∞∑

i=n+1

|[yi, x]|q →

0 as n → ∞. Therefore the right hand side of (3) goes to 0 as n → ∞. Conseq-
uently ‖y − z‖BX

→ 0 as n → ∞. This proves that BX is an AK-space.

We have shown that the collection of all Bessel sequences form a BK-space with
AK-property, it is possible to infer many of the benefits of being such a space
(see [2]). It is natural to ask if we can obtain the topological and Köthe-Toeplitz
duals of this sequence space. We do not have any answers at this point of time.

3 Frame

Definition 3.1. A sequence of elements {fi}∞
i=1 in X is called a frame if there

exist positive constants A and B such that

A(‖x‖p)q ≤
∞∑
i=1

|[yi, x]|q ≤ B(‖x‖p)q, ∀x ∈ X,

where 1 < p, q < ∞ and 1
p + 1

q = 1. A and B are called lower and upper frame
bound respectively.
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If A = B then the frame is called a tight frame and if A = B = 1 then the frame
is called a Parseval frame. A frame is called a normalized frame if each frame
element has unit norm.

Since a frame y = {yi}∞
i=1 is a Bessel sequence, the operator T : lq → X

defined by

T (c) =
∞∑
i=1

ciyi
|[yi, x]|q−2

‖{[yi, x]}‖q−2

is bounded and linear. Because of Lemma 2.1, the generalized adjoint operator
of T is T † : X → lq, defined by T †x = {[yi, x]}∞

i=1.

Remark 3.1. Taking the composition of the two operators T and T † defined
in Lemma 2.1, we get a new operator S, which is called as frame operator. The
frame operator S : X → X is defined as

S(x) = TT †(x) =
∞∑
i=1

|[yi, x]|q−2

‖{[yi, x]}‖q−2
[yi, x]yi.

If X is a real semi-inner product space, then one can easily calculate that

[Sx, x]
q
2 =

∞∑
i=1

|[yi, x]|q.

Now we have

‖Sx‖ = ‖TT †x‖ ≤ ‖T‖‖T †x‖
≤ ‖T‖‖T‖‖x‖ = ‖T‖2‖x‖.

Hence S is bounded.

Therefore the frame operator S is a positive and bounded operator. One
can easily see that S is a nonlinear operator. Hence we can not use the usual
methods of Hilbert space frame theory to obtain the inverse frame operator and
the reconstruction formula.

Orthogonal set: A vector x is said to be orthogonal to a vector y in a Banach
space Y in the sense of semi-inner product, if [x, y]Y = 0, where [., .]Y is semi-
inner product in Y . If each vector is orthogonal to all other vectors in Y in the
sense of semi-inner product then Y is said to be an orthogonal set.

We now prove the following results for frames in X.

Theorem 8. Let {yi}∞
i=1 be a parseval frame in a uniformly convex smooth

Banach space X. Suppose that ‖yi‖p = 1, for all i. Then {yi}∞
i=1 is an orthonor-

mal set in the sense of semi-inner product.
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Proof. Given ‖yi‖p = 1 for all i. It is to prove that [yi, yj ] = δij , where δij = 1
if i = j and 0 otherwise.

Choose some yk arbitrarily. Now

(‖yk‖p)q =
∞∑
i=1

|[yi, yk]|q = (‖yk‖p)2q +
∑
i�=k

|[yi, yk]|q

⇒ 1 = 1 +
∑

i�=k |[yi, yk]|q
⇒ ∑

i�=k |[yi, yk]|q = 0
⇒ [yi, yk] = δik.

Continuous semi-inner product: A semi-inner product is said to be a con-
tinuous semi-inner product if it is continuous in the second argument. Note that,
a semi-inner product is automatically continuous in the first argument because
of the linearity property in the first argument.

In the following theorem we assume that X is a real uniformly convex smooth
Banach space with a continuous semi-inner product.

Theorem 9. Let y = {yi}∞
i=1 be a sequence of elements in X. Suppose that

there exist constants A,B > 0 such that A(‖x‖p)q ≤ ∑∞
i=1 |[yi, x]|q ≤ B(‖x‖p)q

for all x in a dense subset V of X. Then y = {yi}∞
i=1 is a frame for X, with B

and A as upper and lower frame bounds, respectively.

Proof. To prove this theorem it is enough to show that

A(‖x‖p)q ≤
∞∑
i=1

|[yi, x]|q ≤ B(‖x‖p)q for all x ∈ X. (4)

First we prove the right hand side of the inequality (4).

Suppose to the contrary, there exists some x0 ∈ X such that
∞∑
i=1

|[yi, x0]|q >

B(‖x0‖p)q. Since V is dense in X, we can find a sequence {x0,j}∞
j=1 ⊆ V such

that x0,j → x0, as j → ∞. We can find a finite set F ⊆ I (index set) such that∑
i∈F |[yi, x0]|q > B(‖x0‖p)q.
Since x0,j → x0, as j → ∞, it follows that for very large j,

∑
i∈F

|[yi, x0,j ]|q > B(‖x0,j‖p)q.

This contradicts the fact that x0,j ∈ V . Hence
∞∑
i=1

|[yi, x]|q ≤ B(‖x‖p)q for all

x ∈ X.
Next we prove the left hand side of the inequality (4). Consider x ∈ X and

take {xj} ⊆ V with xj → x as j → ∞.
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Since X is a continuous real semi-inner product space, we have

[yi, xj ] → [yi, x] for xj → x as j → ∞.

Hence
∞∑
i=1

|[yi, xj ]|q →
∞∑
i=1

|[yi, x]|q for xj → x as j → ∞.

But A(‖xj‖p)q ≤
∞∑
i=1

|[yi, xj ]|q for all j.

This implies that A(‖x‖p)q ≤
∞∑
i=1

|[yi, x]|q as j → ∞.

Thus {yi}∞
i=1 is a frame for X with B and A as upper and lower frame

bounds, respectively.

Example 3.1. Consider the real sequence space lp, 1 < p < ∞. Consider the
set {ei}∞

i=1, where ei = (0, 0, ..., 1, 0, 0..), where 1 is at the ith coordinate and 0
at the other coordinates.

The semi-inner product of type (p) in lp is defined as

[x, y] =
1

(‖y‖p)p−2

∞∑
i=1

|yi|p−2yixi, ∀x = {xi}∞
i=1 and y = {yi}∞

i=1.

We compute that [ei, x] = [(0, 0, .., 1, 0, 0, ..), (x1, x2, .., xi, ...)] =
1

(‖x‖p)p−2

|xi|p−2xi and |[ei, x]|q =
1

(‖x‖p)q(p−2)
|xi|q(p−1). Therefore

∞∑
i=1

|[ei, x]|q =
∞∑
i=1

1
(‖x‖p)q(p−2)

|xi|q(p−1)

=
1

(‖x‖p)q(p−2)

∞∑
i=1

|xi|p, as
1
p

+
1
q

= 1

= (‖x‖p)q, as
1
p

+
1
q

= 1.

Hence the set {ei}∞
i=1 is a Parseval frame for lp. We can also establish the recon-

struction formula in this case. The set of elements {ei}∞
i=1 is a Parseval frame if

and only if x =
∞∑
i=1

|[ei, x]|q−2

‖{[ei, x]}‖q−2
[ei, x]ei, for all x ∈ X. We see that

∞∑

i=1

|[ei, x]|q−2

‖{[ei, x]}‖q−2
[ei, x]ei =

1

(‖x‖p)q−2

∞∑

i=1

1

(‖x‖p)(p−2)(q−2)+p−2
|xi|(p−1)(q−2)|xi|p−2

xiei

=
∞∑

i=1

|xi|(p−1)(q−2)+(p−2)
xiei

=

∞∑

i=1

xiei = x.
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Hence {ei}∞
i=1 is a Parseval frame.

One can also verify that the following sets (i), (ii) and (iii) are frames for the
real sequence space lp, 1 < p < ∞.

(i) {e1, 0, e2, 0, e3, 0, ....} is a Parseval frame.
(ii) {e1, e1, e2, e2, ......} is a tight frame with bound 2.
(iii) { e1√

2
, e1√

2
, e2√

2
, e2√

2
, ....} is a tight frame with bound 2

(
√
2)

p
p−1

.

(iv) {e1, e2, e2, e3, e3, e3, ......} is not a frame.
(v) {e1,

e2√
2
, e2√

2
, e3√

3
, e3√

3
, e3√

3
, ......} is not a frame unless p = 2.

4 Conclusion

Since the sequence spaces lp, p > 1 and the function spaces Lp, p > 1 are uni-
formly convex smooth Banach spaces, the development of frame theory on these
spaces using semi-inner product will lead to another new area of applied func-
tional analysis. The frame operator which has been defined is in general nonlin-
ear, its invertibility is an immediate open problem. The study of its invertibility
and applications is a subject of future research of the authors.

Acknowledgements. The authors are thankful to the referees for their valuable sug-
gestions which improved the presentation of the paper.
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Abstract. In this paper we consider criss-cross method for finding solu-
tion of a linear complementarity problem. The criss-cross method is a
pivoting procedure. We show that the criss-cross method is able to com-
pute solution of a linear complementarity problem in finite steps in case
of some new matrix classes. We present a numerical illustration to show
a comparison between criss-cross method and Lemke’s algorithm with
respect to number of iterations before finding a solution. Finally we raise
an open problem in the context of criss-cross method.

Keywords: Criss-cross method · Complementarity problem · Lemke’s
algorithm · Positive subdefinite matrix · Generalized positive subdefinite
matrix · Fully copositive matrix

1 Introduction

The criss-cross method is known to be finite for linear complementarity prob-
lem with positive semidefinite bisymmetric matrices and P-matrices and also for
oriented matroid programming problems. We say that the criss-cross method
possesses finiteness if it finds a solution or detects infeasibility in a finite number
of steps. Zionts [20] proposed the criss-cross method for solving linear program-
ming in 1969. Bland introduced smallest subscript rule for the simplex method.
Using the concept of Bland [1], Chang [2], Terlaky [11] and Wang [18] inde-
pendently proposed finite criss-cross method. It was observed that the proposed
method works remarkably similar as the smallest subscript pivot of Bland [1] for
the simplex. Recently, Fukuda, Luthi and Namiki [8] introduced a class of non-
simplex pivot method which belongs to the finite criss-cross method of Chang,
Terlaky and Wang. Compared to simplex method, criss-cross method is a pivot-
ing procedure without ensuring feasibility. Hertog et al. [10] studied criss-cross
method in the context of linear complementarity problem. Lemkes algorithm is a

c© Springer Nature Singapore Pte Ltd. 2017
D. Giri et al. (Eds.): ICMC 2017, CCIS 655, pp. 170–180, 2017.
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well-known to find solution of a linear complementarity problem. It is true that
both simplex and Lemke’s algorithms are similar type of pivoting procedure.
The limitations of Lemke’s algorithm is either unable to solve several instances
of linear complementarity problem or takes many iterations before to arrive at
the desired solution.

The linear complementarity problem is defined as follows. Given A ∈ Rn×n

and a vector q ∈ Rn, the linear complementarity problem LCP(q,A) is the
problem of finding a solution v ∈ Rn and u ∈ Rn to the following system of
linear equations and inequalities:

v − Au = q, v ≥ 0, u ≥ 0 (1)

vt u = 0 (2)

It is well studied in the literature on mathematical programming and a num-
ber of applications are reported in operations research, multiple objective pro-
gramming problem, mathematical economics, geometry and engineering. Some
new applications of the linear complementarity problem have been reported in
the area of stochastic games. This sort of applications and the potential for
future applications have motivated the study of the LCP, especially the study
of the algorithms for the LCP and the study of matrix classes. In fact, much
of linear complementarity theory and algorithms are based on the assumption
that the matrix A belongs to a particular class of matrices. The early motivation
for studying the linear complementarity problem was that the KKT optimality
conditions for linear and quadratic programs reduce to an LCP. The algorithm
presented by Lemke and Howson to compute an equilibrium pair of strategies to
a bimatrix game, later extended by Lemke (known as Lemke’s algorithm) to solve
an LCP(q,A), contributed significantly to the development of the linear comple-
mentarity theory. In fact, the study of the LCP really came into prominence only
when Lemke and Howson and Lemke showed that the problem of computing a
Nash equilibrium point of a bimatrix game can be posed as an LCP. However,
Lemke’s algorithm does not solve every instance of the linear complementar-
ity problem, and in some instances of the problem may terminate inconclusively
without either computing a solution to it or showing that no solution to it exists.
Extending the applicability of Lemke’s algorithm to more matrix classes have
been considered. For recent books on the linear complementarity problem and
its applications see Cottle, Pang and Stone [5] and Murty [15].

The principal pivot transform (PPT) of LCP(q,A) with respect to α
(obtained by pivoting on Aαα) is given by LCP(q′,M) where M is the PPT
of A with q′

α = −A−1
ααqα and q′

ᾱ = qᾱ − AᾱαA−1
ααqα. This problem is known

as linear complementarity problem or LCP(q,A). We define F (q,A) = {u ∈
Rn

+ : q + Au ≥ 0} and S(q,A) = {u ∈ F (q,A) : ut(q + Au) = 0}. LCP(q,A) has
a various application in the context of mathematical programming.

In this paper we consider finiteness of criss-cross method with respect to
some new matrix classes to find solution of a linear complementarity problem.
We consider the matrix classes which rely essentially on sign properties and
examine the solution of linear complementarity problem. The purpose of this
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paper is to characterize the new matrix classes in the context of finiteness of
criss-cross method.

The paper is organized as follows. Section 2 contains some notations, defi-
nitions and a few well-known results used in the next sections. In Sect. 3 the
criss-cross method and necessary properties to execute criss-cross method are
discussed. Section 4 presents the characterization of the sign properties of matri-
ces in connection with the criss-cross method. A numerical example for finding
solution of an LCP(q,A) to demonstrate the effectiveness and efficiencies of criss-
cross method compared with Lemke’s algorithm is presented. We show that the
applicability of criss-cross method can be enlarge which is illustrated with the
help of an example. This issue is addressed as an open problem.

2 Preliminaries

We consider matrices and vectors with real entries. Any vector u ∈ Rn is a
column vector, ut denotes the transpose of u. For any matrix A ∈ Rn×n, At

denotes its transpose. A vector u ∈ Rn is said to be unisigned if either u ∈ Rn
+

or −u ∈ Rn
+, where Rn

+ and Rn
++ denote the nonnegative and positive orthant

in Rn respectively.
The principal pivot transform (PPT) is a fundamental concept for developing

many theories and algorithms in optimization theory and plays an important role
in the study of matrix classes. The principal pivot transform of A, a real n × n
matrix, with respect to α ⊆ {1, 2, . . . , n} is defined as the matrix given by

M =
[

Mαα Mαᾱ

Mᾱα Mᾱᾱ

]

where,
Mαα = (Aαα)−1, Mαᾱ =−(Aαα)−1Aαᾱ, Mᾱα = Aᾱα(Aαα)−1, Mᾱᾱ = Aᾱᾱ −
Aᾱα(Aαα)−1Aαᾱ.

Note that PPT is only defined with respect to those α for which detAαα �= 0.
When α = ∅, by convention detAαα = 1 and M = A.

Lemke’s algorithm is a pivotal kind of technique to compute LCP(q,A).

Step 1: Decrease u0 so that one of the variables vi, 1 ≤ i ≤ n, say vr is reduced
to zero. We now have a basic feasible solution with u0 in place of vr and with
exactly one pair of complementary variables (vr, ur) being non-basic.

Step 2: At each iteration, the complement of the variable which has been
removed in the previous iteration is to be increased. In the second iteration,
for instance, ur will be increased.

Step 3: If the variable selected at step 2 to enter the basis can be arbitrarily
increased, then the procedure terminates in a secondary ray. If a new basic
feasible solution is obtained with u0 = 0, we have solved (1) and (2). If in
the new basic feasible solution u0 > 0, we have obtained a new basic pair of
complementary variables (vs, us). We repeat step 2.
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Lemke’s algorithm consists of the repeated applications of steps 2 and 3. If
non-degeneracy is assumed, the procedure terminates either in a secondary ray
or in a solution to (1) and (2). Ramamurthy [17] showed that Lemke’s algorithm
for the linear complementarity problem can be used to check whether a given
Z-matrix is a P0-matrix and it can also be used to analyze the structure of finite
Markov chains.

Several matrix classes are defined in the context of LCP(q,A). A matrix is
said to be in Q if for every q ∈ Rn, S(q,A) �= ∅. Q0 consists the matrices for
which S(q,A) �= ∅ whenever F (q,A) �= ∅. A matrix is said to be R0 if LCP(0, A)
has unique solution. A matrix A is said to be positive semidefinite (PSD) if
utAu ≥ 0 for all u ∈ Rn and A is positive definite (PD) if utAu > 0 for all
0 �= u ∈ Rn. A matrix A is said to be column sufficient matrix if for all u ∈ Rn,
ui(Au)i ≤ 0 for all i implies ui(Au)i = 0 for all i. A is said to be row sufficient
if At is column sufficient. A is sufficient if A is both row and column sufficient.
A ∈ Rn×n is said to be fully copositive matrix (Cf

0 ) if every PPT of A is a
copositive matrix. A ∈ Rn×n is said to be pseudomonotone matrix if for all
u, v ≥ 0, (v − u)tAu ≥ 0 =⇒ (v − u)tAv ≥ 0.

Martos [12] proposed positive subdefinite (PSBD) matrices to address
pseudo-convex functions. The nonsymmetric PSBD matrices was studied to con-
nect generalized monotonicity and the linear complementarity problem. Later
Crouzeix and Komlósi [6] enlarged PSBD class by introducing the class of
GPSBD matrices. This class was studied in the context of the processability
of linear complementarity problem by Lemke’s algorithm. A matrix A is said to
be PSBD matrix if for all u ∈ Rn, utAu < 0 implies Atu is unisigned.

A matrix A ∈ Rn×n is called GPSBD [6], [16] if ∃ ei ≥ 0 and fi ≥ 0 with
ei + fi = 1, i = 1, 2, . . . , n such that

∀ u ∈ Rn, utAu < 0 ⇒
{

either − eiui + fi(Atu)i ≥ 0 for all i,
or − eiui + fi(Atu)i ≤ 0 for all i.

(3)

when ei = 0 for all i, then A is PSBD. A is called merely generalized positive
subdefinite (MGPSBD) matrix when A is GPSBD but not PSBD matrix.

We state some results which will be required in the next section.

Theorem 2.1 [7]. Suppose A ∈ Rn is PSBD and rank(A) ≥ 2. Then At is
PSBD at least one of the following conditions holds:

(i) A is PSD,
(ii) (A + At) ≥ 0,
(iii) A is C�

0 .

Theorem 2.2 [7]. A matrix A ∈ Rn is pseudomonotone if and only A is PSBD
and copositive with the additional condition that in case A = abt, bi = 0 implies
ai = 0.

Theorem 2.3 [9]. If A is pseudomonotone, then A is a row sufficient matrix.

Proposition 1 [3]. Every principal submatrix of a (column, row) sufficient
matrix is (column, row) sufficient.
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Proposition 2 [3]. Both column and row sufficient matrices have nonnegative
principal submatrices, and hence nonnegative diagonal elements.

Proposition 3 [3].

(i) Let A be row sufficient with aii = 0 for some i. If aij �= 0 for some j, then
aji �= 0, and in this case aijaji < 0.

(ii) Let A be column sufficient with aii = 0 for some i. If aji �= 0 for some j,
then aij �= 0, and in this case ajiaij < 0.

(iii) Let A be sufficient with aii = 0 for some i. Then aij �= 0 for some j, if and
only if aji �= 0, and in this case aijaji < 0.

In case if a diagonal element of A say aii for some i is zero. Then there is a
consequence of the above theorem

(i) For row sufficient matrices: If aji ≥ 0 for all j, then aij ≤ 0 for all j. If
aji ≤ 0 for all j, then aij ≥ 0 for all j.

(ii) For column sufficient matrices: If aij ≥ 0 for all j, then aji ≤ 0 for all j.
If aij ≤ 0 for all j, then aji ≥ 0 for all j.

(iii) For sufficient matrices: aij ≤ 0 for all j, if and only if aji ≥ 0 for all j.
Also aij ≥ 0 for all j, if and only if aji ≤ 0 for all j.

Theorem 2.4 [3]. Any principal pivotal transform of a (column, row) sufficient
matrix is (column, row) sufficient.

Theorem 2.5 [4]. A 2×2 matrix A is sufficient if and only if for every principal
pivotal transform Ā of A

1. aii ≥ 0 and
2. for i = 1, 2 if aii = 0, then either aij = aji = 0 or aij aji < 0 for i �= j.

Theorem 2.6 [4]. A matrix A is sufficient if and only if every principal pivotal
transform A of A is sufficient of order 2.

Theorem 2.7 [14]. If A ∈ R2×2 ∩ Cf
0 ∩ Q0, then A is PSD matrix.

Theorem 2.8 [19]. Let A be an n × n (n ≥ 2) pseudomonotone matrix. Then
under each of the following conditions, A is column sufficient.

(i) A is copositive plus.
(ii) A ∈ R0.

Theorem 2.9 [10]. Let LCP (q,A) be given, where A is a sufficient matrix, q
is an arbitrary vector. Then LCP (q,A) can be processed by criss-cross method
in a finite number of steps.
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3 Criss-Cross Method

Let (u, v) be the solution of a given LCP(q,A). Suppose the initial basis matrix
is G, and the initial tableau is [−A,G, q]. A tableau is said to be complementary
if u and v satisfy the complementarity condition i.e. utv = 0. Let −A denote the
non-basic part of any complementarity tableau. Non-basic part of any comple-
mentary tableau is a principal pivotal transform of the matrix −A. Criss-Cross
method will STOP if it finds a solution or detects infeasibility, while EXIT
indicates that the method fails to execute the problem. The criss-cross method
is as follows:

Step 1: Let the starting basis be defined by v, and let v = q, u = 0 be the
initial solution. The initial tableau is given by [−A,G, q].

Step 2: Let k := min {i : vi < 0 or ui < 0}. If there is no such k, then STOP;
a feasible complementary solution has been found. Suppose there exists a k
such that vk < 0, then we have to make pivot so that vk leaves the basis.

Step 3: If −akk < 0, then make a diagonal pivot and repeat the procedure that
is vk leaves and uk enters the basis. If −akk > 0, then EXIT. If −akk = 0,
go to Step 4.

Step 4: Here akk = 0 is the case. Choose r := min {j : −akj < 0}.
– If there is an r and arkakr < 0, then make an exchange pivot on (r, k)
and repeat the procedure. Exchange pivot means vk, ur leave from the
basis and uk, vr enter into the basis.

– Otherwise either LCP(q,A) is infeasible or criss-cross method is unable
to process the solution.

Hertog et al. [10] showed that if a matrix is sufficient matrix then criss-cross
method will process LCP(q,A) in a finite number of steps. We discuss the neces-
sary and sufficient conditions which ensure not to encounter EXIT by criss-cross
method. The method operates on diagonal and exchange pivots only, so com-
plementarity in each step is preserved. The criss-cross method STOP implies
either LCP(q,A) has a solution or it is infeasible.

4 Finiteness of Criss-Cross Method

Hertog et al. [10,11] define three properties so that criss cross method can process
in finite number of steps. F denotes the class of matrices such that for each
A ∈ F and for each vector q ∈ Rn the problem LCP(q,A) is processed by the
criss-cross method in a finite number of steps. Also suppose that F is closed
with respect to principal pivot transformation, and complete with respect to
principal submatrices of every matrix A ∈ F. Orthogonality property ensures
the finiteness of the method. Orthogonality property says that any row vector of
a tableau is orthogonal to column vector of its dual tableau. Firstly we rewrite
the first two properties.
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Property 1. If A ∈ F, the diagonal elements of any principal pivotal transform
of −A are nonpositive.

Property 2. lf −akk = 0 for some k, then −akj < 0 if and only if −ajk > 0 for
any j.

The first property says about the diagonal pivot whereas second property guar-
antees the exchange pivot. Both Properties 1 and 2 ensure the complementary
and feasibility conditions. We now consider the third property which says finite-
ness of criss-cross method. Suppose there are two tableau defined based on sign
properties and these types are exclusive for LCP(q,A) if at most one of them
may exist for the problem.

Property 3. For a given LCP(q,A) we define following cases for which the pairs
of cases PQ,RS, PR, and QS are exclusive for any index 1 ≤ k ≤ n :
P: We have a complementary tableau with vi ≥ 0, ui ≥ 0 for i < k, and
vk = 0, uk < 0.
Q: We have a complementary tableau with vi ≥ 0, ui ≥ 0 for i < k, and
vk < 0, uk = 0.
R: We have a complementary tableau with us < 0 for some s < k, and asi ≥ 0
for i < k, ass = 0, and ask < 0; and symmetrically ais ≤ 0 for i < k, and
aks > 0.
S: We have a complementary tableau with vs < 0 for some s < k, and asi ≥ 0 for
i < k, ass = 0, and ask < 0; and symmetrically ais ≤ 0 for i < k, and aks > 0.

To prove the finiteness of the method the only restrictive requirement in the
property that P and Q tableau are exclusive. On the other hand remaining pairs
follow from orthogonality property as shown in [11]. We now prove the following
results.

Theorem 4.1. Suppose A ∈ MGPSBD ∩C0 with 0 < fi < 1 ∀ i. Then criss-
cross method processes LCP(q,A).

Proof. Let I1 = {i : ui > 0} and I2 = {i : ui < 0}. We consider the following
three cases (C1, C2, C3).

C1: I2 = ∅. Then

utAu = utAtu =
∑

i

(u)i(Atu)i ≤ 0.

Since A ∈ C0, [(u)i(Atu)i] = 0, ∀ i.

C2: I1 = ∅. Then

(−u)tAt(−u) = utAtu =
∑

i

(u)i(Atu)i ≤ 0.

Since A ∈ C0, [(u)i(Atu)i] = 0, ∀ i.

C3: Suppose ∃ u such that (u)i(Atu)i ≤ 0 for i = 1, 2, . . . , n and (u)k(Atu)k < 0
for at least one k ∈ {1, 2, . . . , n}. Let I1 �= ∅ and I2 �= ∅. Then
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utAtu =
∑

i

[ui(Atu)i] < 0.

This implies
−eiui + fi(Atu)i ≥ 0, ∀ i or

−eiui + fi(Atu)i ≤ 0, ∀ i.

Let us consider −eiui + fi(Atu)i ≥ 0, ∀ i. Then for all i ∈ I1, −eiu
2
i +

fiui(At(u)i ≥ 0. This implies [ui(Atu)i] ≥ ei

fi
u2

i > 0, ∀ i ∈ I1. so,∑
i∈I1

[ui(Atu)i] > 0. Since ui(Atu)i ≤ 0 for i = 1, . . . , n. Therefore, [ui(Atu)i] =

0, ∀ i.
So to show the above result it is enough to show that A satisfies the above

mentioned two properties. Here Property 1 follows from the Proposition 2. Prop-
erty 2 follows from Proposition 3. �
Remark 1. From the above result LCP(q,A) is processable by criss-cross
method in general. If A, At ∈ MGPSBD ∩ C0 with 0 < fi < 1 for all i then
LCP(q,A) is processable by criss-cross method in a finite number of steps.

Our next theorem states that under some condition if A belongs to PSBD
matrix class, then the criss-cross method will process LCP(q,A) in a finite num-
ber of steps.

Theorem 4.2. Suppose A is a PSBD matrix with rank(A) ≥ 2. Then under
each of the following conditions criss-cross method processes LCP(q,A) in a
finite number of steps.

(i) A is C0,
(ii) A is R0.

Proof. As A is PSBD ∩ C0, At is a PSBD ∩ C0 with rank(At) ≥ 2. Now A
and At is pseudomonotone matrix by Theorem 2.1 as shown in [7]. Again any
pseudomonotone matrices are row sufficient by Theorem 2.3 as shown in [9], so
A and At are row sufficient. So A is sufficient.
To prove (ii) we proceed as follows: Here A is PSBD, so A is pseudomonotone.
Hence A is row sufficient. Again as A is R0 and by Theorem 2.8 as shown in
[19] A is column sufficient, hence A is sufficient. So criss-cross method processes
LCP(q,A) in a finite number of steps by Theorem 2.9 as shown in [10]. �
Theorem 4.3. Let A ∈ Cf

0 ∩ Q0. Then criss-cross method processes LCP(q,A)
in a finite number of steps.

Proof. As A ∈ Cf
0 ∩ Q0, A and all its PPTs are completely Q0. So here all

2 × 2 submatrices of A or its principal pivotal transform are in Cf
0 ∩ Q0. So all

2 × 2 submatrices of A are PSD matrix by Theorem 2.7 as shown in [14]. As
all PSD matrices are sufficient, so here all 2 × 2 submatrices of A are sufficient
also. So A or every matrix obtained by means of a principal pivotal transform
is sufficient of order 2. By Theorem 2.5 as shown in [4] A is sufficient. So criss-
cross method processes LCP(q,A) in a finite number of steps by Theorem 2.9 as
shown in [10]. �



178 A.K. Das et al.

Theorem 4.4. Let A,At ∈ Rn×n ∩Cf
0 with positive diagonals. Then criss-cross

method processes LCP(q,A) in a finite number of steps.

Proof. Since A,At ∈ Rn×n ∩ Cf
0 with positive diagonals, A,At are column

sufficient [see Theorem 3.4 in [13]]. Hence A is sufficient and Hence by Theorem
2.9 as shown in [10] criss-cross method processes LCP(q,A) in a finite number
of steps. �

We make use of the following example to demonstrate the applicability of
criss-cross method and a comparison with Lemke’s algorithm.

Example 1. We consider an LCP(q,A) for which A =
[

0 4
−1 0

]
and q =

[−1
2

]
.

Note that that A ∈ PSBD ∩ C0 with full rank. Hence from the above theorem A is
sufficient matrix. Now we apply criss-cross method to solve the above LCP(q,A)
(Table 1).
In the first iteration, w1 and w2 are in the basis. Since diagonal pivot is not
applicable, we apply exchange pivot according to the method and obtain the
solutions of the given LCP(q,A). Here u = [2, 1/4]t and v = [0, 0]t.

Now we apply Lemke’s algorithm to solve the same LCP(q,A) (Table 2).
The Lemke’s algorithm requires four iterations to solve LCP(q,A) whereas

criss-cross method requires two iterations.

Table 1. Solution using criss-cross method considering Property 2

v1 v2 u1 u2 q

v1 1 0 0 -4© −1

v2 0 1 1© 0 2

u2 −1/4 0 0 1 1/4

u1 0 1 1 0 2

Table 2. Solution using Lemke’s algorithm

v1 v2 u1 u2 u0 q

v1 1 0 0 −4 −1 −1

v2 0 1 1 0 −1 2

u0 −1 0 0 4 1 1

v2 −1 1 1 4 0 3

u0 −1 0 0 4 1 1

u1 −1 1 1 4 0 3

u2 −1/4 0 0 1 1/4 1/4

u1 0 1 1 0 −1 2
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4.1 An Open Problem

Let us consider an LCP(q,A) for which A =
[
0 2
1 0

]
and q =

[−1
−2

]
. Since a11 =

a22 = 0, we apply exchange pivot without considering Property 2 (Table 3).

Table 3. Solution using criss-cross method without considering Property 2

v1 v2 u1 u2 q

v1 1 0 0 -2© −1

v2 0 1 -1© 0 −2

u2 −1/2 0 0 1 1/2

u1 0 −1 1 0 2

The solution for LCP(q,A) is u = [2, 1/2]t and v = [0, 0]t. Note that A is
neither GPSBD nor sufficient matrix. However we obtain the solution of this
problem by applying criss-cross method. Hence we raise the following questions.
Is it possible to apply the criss-cross method to find solutions of an LCP(q,A),
where A does not belong to GPSBD or sufficient matrix?
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6. Crouzeix, J.P., Komlósi, S.: The linear complementarity problem and the class of
generalized positive subdefinite matrices. In: Giannessi, F., Pardalos, P., Rapcsák,
T. (eds.) Optimization Theory, pp. 45–63. Springer, New York (2001)

7. Crouzeix, J.P., Hassouni, A., Lahlou, A., Schaible, S.: Positive subdefinite matrices,
generalized monotonicity, and linear complementarity problems. SIAM J. Matrix
Anal. Appl. 22(1), 66–85 (2000)
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Abstract. In this article, we model an “Imprecise Constrained Cover-
ing Solid Travelling Salesman Problem with Credibility” (ICCSTSPC),
a generalization of Covering Salesman Problem (CSP), in fuzzy environ-
ment. A salesman begins from an initial node, visits a subset of nodes
exactly once using any one of appropriate vehicles available at each step,
so that unvisited nodes are within a predetermined distance from the vis-
ited nodes, and returns to the initial node within a restricted time. Here
the travelling costs and travelling times between any two nodes and the
covering distance all are considered as fuzzy. Thus the problem reduces
to find the optimal tour for a set of nodes with the proper conveyances
so that total travelling cost is minimum within a restricted time. The
ICCSTSPC is reduced to a set of Imprecise Constrained Covering Solid
Travelling Salesman Problems by solving Unicost Set Cover Problem
(USCP) using Random Insertion-Deletion (RID). These reduced Con-
strained Solid Travelling Salesman Problems (CSTSPs) are solved by
an Improved Genetic Algorithm (IGA), which consists of probabilistic
selection, order crossover, proposed generation dependent inverse muta-
tion. A random mutation for vehicles is proposed to get a better cost at
each generation of IGA by choosing an alternative vehicle for each node.
Hence the ICCSTSPC is solved by a random insertion-deletion (RID) for
covering set and IGA, i.e., RID-IGA. To justify the performance of the
RID-IGA, some test problems are solved. The model is illustrated with
some randomly generated crisp and fuzzy data.

Keywords: Solid TSP · Covering Salesman Problem · Improved GA

1 Introduction

Travelling Salesman Problem (TSP), which is one of the most well known NP-
complete problems, was first formulated in 1930. Many researchers have been
c© Springer Nature Singapore Pte Ltd. 2017
D. Giri et al. (Eds.): ICMC 2017, CCIS 655, pp. 181–195, 2017.
DOI: 10.1007/978-981-10-4642-1 16
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developed some generalizations of TSPs, e.g., TSP with precedence constraints
[13], stochastic TSP [1], symmetric TSP [12], asymmetric TSP [11] etc.

In 1989, Current and Schilling [3] first introduced the model of Covering
Salesman Problem (CSP), which is a generalization of TSP. In CSP, a salesmen
selects a subset of nodes from the total node set, starts from an initial node, visits
all nodes of the subset exactly once, such that all other nodes be covered within
a predetermined distance from the visited nodes, and at the end, comes back
to the initial node. Current et al. developed a simple heuristic method to solve
CSP consisting of two parts, first is the unicost set covering problem (USCP) to
find minimum number of nodes to cover all other nodes, and the next step is to
solve TSPs for different USCP solutions (if exist) to get the path with minimum
cost. Later, Golden et al. [6] developed two local search (LS) algorithms LS1 and
LS2. Salari et al. [14] developed an integer programming based LS for CSP and
after that, a hybrid algorithm consisting of ant colony optimization (ACO) and
dynamic programming technique for CSP was introduced by Salari et al. [15].

Genetic Algorithm (GA) is a nature inspired soft computing technique. Dif-
ferent types of GAs have been developed in last few decades, e.g., Adaptive
GA [17], Hybrid GA [18], NSGA-II etc. [5], Fuzzy age based GA [10] etc. were
developed for several research areas.

Solid travelling salesman problem (STSP) is an extension of TSP, where the
salesman can avail any one kind of appropriate vehicle at each node. Considering
different types of vehicles and risks, Changdar et al. [2] developed the model of
STSP in crisp and fuzzy environments. Later, Maity et al. [10] extended the
same problem to bi-random and random-fuzzy environments. Both Changdar
et al. and Maity et al. solved their problems using their own modified GAs.

Imprecise Constrained Covering Solid Travelling Salesman Problem with
Credibility (ICCSTSPC) can be defined as a generalized CSP, in which the
travel costs, travel times and covering distance are taken as fuzzy, also, there
are several types of conveyances at each node for travel. None has investigated
this type of realistic CSP yet. Given a set of nodes N . A salesman begins from
any one node and visits a subset of nodes N ′ ⊂ N , each node exactly once, by
choosing a suitable vehicle available at each node, such that all nodes out of the
tour are covered within a predetermined distance from the visited nodes, and at
the end, returns to the initial node within a restricted time.

We solve the above mentioned ICCSTSPC in two steps, first we find the
minimal covering sets with least nodes by solving USCP within a time bound
(we take 60 s). We propose RID to solve USCP, which inserts nodes randomly
(each node at most once), the insertion process stops when the feasibility of
set cover is satisfied and we get a set cover. The obtained set cover is then gone
through the deletion process which checks each nodes of the cover whether it can
be deleted or not without violating the set cover feasibility. If such nodes exist,
those are deleted to obtain a minimal set cover. This process may generates a
few solutions having different number of nodes in the given runtime bound, but
only the solutions with minimum number of nodes are selected for the next step,
i.e., obtaining optimal paths for each of those solutions by solving CSTSPs.
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For CSTSPs, we modify an improved GA (IGA), which consists of probabilis-
tic selection, order crossover, generation dependent inverse mutation and random
mutation for vehicles (at each node) are introduced. So the model ICCSTSPC is
solved by a combined RID-IGA method, which is applied on randomly generated
100×100 distance matrix (crisp), and 100×100×3 cost and time matrices (fuzzy)
respectively are used for illustration of the model. The distance matrix is used
to solve the USCP and other two for solving constrained STSP (CSTSP). To
justify the performance of IGA, it is tested with some TSP benchmark problems
and CSPs of Salari et al.’s [15].

2 Mathematical Preliminaries

2.1 Fuzzy Credibility Approach

Let (a, b, c) be a TFN, then the credibility measures [9] for the events ξ ≤ r and
ξ ≥ r are given by:

Cr(ξ ≤ r) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if r < a;
r−a

2(b−a) , if a ≤ r ≤ b;
1
2 ( r−b

c−b + 1), if b ≤ r ≤ c;
1, if r > c.

(1)

Cr(ξ ≥ r) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if r > c;
c−r

2(c−b) , if b ≤ r ≤ c;
1
2 ( b−r

b−a + 1), if a ≤ r ≤ b;
1, if r < a.

(2)

The following lemmas can be easily proven from the above Eqs. (1) and (2):

Lemma 2.1.a: If ξ = (a, b, c) be a fuzzy variable with a < b < c, then for a
predetermined β, 0 < β ≤ 1, Cr(ξ ≤ r) ≥ β is equivalent to
(i) (1 − 2β)a + 2βb ≤ r, when β ≤ 0.5;
(ii) 2(1 − β)b + (2β − 1)c ≤ r, when β > 0.5;

Lemma 2.1.b: If ξ = (a, b, c) be a fuzzy variable with a < b < c, then for a
predetermined β, 0 < β ≤ 1, Cr(ξ ≥ r) ≥ β is equivalent to
(i) 2βb + (1 − 2β)c ≥ r, when β ≤ 0.5;
(ii) 2(1 − β)a + (2β − 1)b ≥ r, when β > 0.5

3 Mathematical Formulations

3.1 Covering Salesman Problem

For a complete graph G = (N,A), minimize the total tour cost when a salesman
starts from an initial node of a subset N ′ ⊂ N of nodes, visits each node exactly
once and comes back to the initial node, so that the unvisited nodes be within a
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predetermined distance from at least one of the visited nodes. The mathematical
formulation of this problem may be stated as:

Minimize Z =
|N |∑

i=1

|N |∑

j=1

cijxij (3)

Subject to:
|N |∑

i=1

∑

j∈Dl

xij ≥ 1,∀ l ∈ N (4)

|N |∑

i=1

xik =
|N |∑

j=1

xkj = 0 or 1,∀ k ∈ N (5)

xij ∈ {0, 1} (6)
∑

i∈S

∑

j∈S

xij ≤ |S| − 1, ∀ S ⊂ N ′ ⊂ N, 2 ≤ |S| ≤ |N ′| − 2 (7)

where, N ′ is the set of visiting nodes, cij is the cost from the node i to the
node j,

xij =

{
1,∃ an edge between i and j,

0, otherwise;

Dl = {j : dlj ≤ Δj}, dij = shortest distance between i and j, Δj = maximum
covering distance at node j.

Equation (3) minimizes the total travelling cost. (4) implies that all nodes of
the graph are either visited or covered by the visited nodes. Equation (5) points
that each vertex has same indegree and outdegree. (6) represents the binary
nature of the decision variable xij and (7) is the subtour elimination constraint.

The above Eqs. (3)–(7) can be rewritten as follows:
Let N = {x1, x2, x3, . . . , x|N |} be the set of nodes. Determine a complete tour
(xα1 , xα2 , xα3 , . . . , xαm

, xα1), m ≤ |N | to

minimize
m−1∑

i=1

c(xαi
xαi+1) + c(xαm

xα1); (8)

such that, xj ∈ B̄(xαi
,Δαi

), ∀ xj ∈ N and for some i; (9)

where αi ∈ {1, 2, 3, . . . , |N |} and αi �= αj for i �= j, c(i, j) = cij , B̄(a, r) means
closed disc with center a and radius r, Δj = maximum covering distance at
node j.

3.2 Model-1: Constrained Covering Solid Travelling Salesman
Problem (CCSTSP)

In the above mentioned CSP, let N = {x1, x2, x3, . . . , x|N |} be the set of nodes
and V = {v1, v2, v3, . . . , vp} be the set of vehicles. Determine a complete tour
(xα1 , xα2 , xα3 , . . . , xαm

, xα1), m ≤ |N | to
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minimize
m−1∑

i=1

c(xαi
xαi+1 , v

′
αi

) + c(xαm
xα1 , v

′
αm

); (10)

such that,
m−1∑

i=1

t(xαi
xαi+1 , v

′
αi

) + t(xαm
xα1 , v

′
αm

) ≤ tmax; (11)

xj ∈ B̄(xαi
,Δαi

), ∀ xj ∈ N and for some i. (12)

where αi ∈ {1, 2, 3, . . . , |N |} and αi �= αj for i �= j, v′
αi

∈ V, ∀ αi ∈
{1, 2, 3, . . . , |N |}, c(i, j, k) = cijk, t(i, j, k) = tijk, tmax being the maximum
allowed total time for the tour, B̄(a, r) means closed disc with center a and
radius r, Δj = maximum covering distance at node j.

3.3 Model-2: Imprecise Constrained Covering Solid Travelling
Salesman Problem with Credibility (ICCSTSPC)

If, in the above CCSTSP, we consider the covering distance, vehicle costs as fuzzy,
also, add a time constraint, where both the time from each node to another node
and the maximum total allowed time for a complete tour are also taken as fuzzy,
the above model is transformed in credibility approach as: Determine a complete
tour
(xα1 , xα2 , xα3 , . . . , xαm

, xα1), m ≤ |N |
to minimize F
subject to

Cr(
m−1∑

i=1

c(xαi
xαi+1 , v

′
αi

) + c(xαm
xα1 , v

′
αm

) ≤ F ) ≥ β (13)

Cr(
m−1∑

i=1

t(xαi
xαi+1 , v

′
αi

) + t(xαm
xα1 , v

′
αm

) ≤ tmax) ≥ γ (14)

Cr(Δ̃αi
≥ d(xj , xαi

)) ≥ η, ∀ xj ∈ N and for some i. (15)

where β, γ and η are the confidence levels for travelling cost, travelling time and
covering distance respectively.

Using Lemmas 2.1.a and 2.1.b and subtraction formula for fuzzy numbers the
above Eqs. (16), (17) and (18) can be rewritten as: Determine a complete tour
(xα1 , xα2 , xα3 , . . . , xαm

, xα1), m ≤ |N | to
minimize F
subject to

{
(1 − 2β)C1 + 2βC2 ≤ F, when β ≤ 0.5;
2(1 − β)C2 + (2β − 1)C3 ≤ F, when β > 0.5.

(16)

{
(1 − 2γ)(T1 − tmax3) + 2γ(T2 − tmax2) ≤ 0, when γ ≤ 0.5;
2(1 − γ)(T2 − tmax2) + (2γ − 1)(T3 − tmax1) ≤ 0, when γ > 0.5.

(17)
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⎧
⎪⎨

⎪⎩

2η(Δαi
)2 + (1 − 2η)(Δαi

)3 ≥ d(xj , xαi
), when η ≤ 0.5;

(2η − 1)(Δαi
)1 + 2(1 − η)(Δαi

)2 ≥ d(xj , xαi
), when η > 0.5,

∀ xj ∈ N and for some i,

(18)
where, the costs, times and the maximum allowable time are taken in the form
(c1, c2, c3) and (t1, t2, t3) and (tmax1 , tmax2 , tmax3) respectively. d(xi, xj) is the
shortest distance between the nodes xi and xj . The covering distance at the
node xαi

is considered as TFN: ((Δαi
)1, (Δαi

)2, (Δαi
)3),

Ck =
m−1∑

i=1

(c(xi, xi+1, vi))k + (c(xm, x1, vm))k,

Tk =
m−1∑

i=1

(t(xi, xi+1, vi))k + (t(xm, x1, vm))k, k = 1, 2, 3.

4 Solution Procedure

4.1 RID for USCP

RID for USCP
1. S ← φ //S being the null set
2. N = {1, 2, . . . , n} //N being the full set of nodes
3. i ← 1
4. while i < total no. of nodes do

a ∈ N − S
S ← S ∪ a
i ← i + 1 if feasibility of SCP is satisfied then

break;
end
t ← i

end

5. i ← 1
6. while i < t − 1 do

if S − {i} is not a set cover then
break;

else
S ← S − {i};

end
end

7. repeat the process to search for another solution
8. Mark the solutions with minimum nodes as optimal solutions
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4.2 Improved Genetic Algorithm (IGA) for CSTSP

To solve the reduced CSTSPs for the marked USCP solutions, we modify an
Improved GA (IGA) which includes Probabilistic Selection [10], Order crossover,
generation dependent Inverse mutation and random mutation (at each node) for
the vehicles.

Initialization: In GA for CSTSPs, a chromosome is formed by arranging all
the nodes on the tour in any order without any repetition. Let n represent
the number of nodes and m represent the number of chromosomes, and V =
{v1, v2, . . . , vp} be the total set of different conveyances. Then each chromosome
Xi, (i = 1, 2, . . . ,m) and corresponding vehicle set can be represented as Xi =
(xi1, xi2, . . . , xin) and V ′

i = (v′
i1, v

′
i2, . . . , v

′
in) respectively.

Algorithm for initialization
Data: Number of chromosomes m, number of nodes n
Result: A set of m chromosomes each having n different nodes
while i=1 to m do

while j=1 to n do
label: t = rand[1, n]
for k=1 to j-1 do

if t=xik then
goto label;

end
xij = t temp = rand[1, p], v′

ij = vtemp

end
end

end

The algorithms of conventional Probabilistic selection, Order crossover, pro-
posed generation dependent inverse mutation and random mutation for vehicles
are given below:
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Algorithm for probabilistic selection
Data: pop-size(m), population set, probability of selection(ps),

max-gen(g)
Result: mating pool

for i=1 to g do
for j=1 to m do

1. a=rand[0,1]
2. T0=rand[10,100]
3. b=rand[0,1]
4. k=1+100×(i/g)
5. T=T0(1 − b)k

6. pb=exp (fmin − f(Xj))/T
7. if a < pb then

select jth chromosome
end
else if a < ps then

select the current chromosome
end
else

select the chromosome with the value fmin

end
end

end

Algorithm for order Crossover:
Data: number of nodes N , parent1, parent2
Result: offspring1, offspring2
1. r1=rand[1,N], r2=rand[1,N] such that 1 ≤ r1 ≤ r2 ≤ N
2. for i=r1 to r2 do

offspring1[i] = parent2[i]
end
3. temp = r2 + 1
4. for i = r2 + 1 to N and i=1 to r1 − 1 do

if parent1[i] /∈ offspring1 then
offspring1[temp] = parent1[i]
temp ← temp + 1
if temp=N+1 then

temp ← 0
end

end
end
5. s1 = rand[1, N ], s2 = rand[1, N ] such that 1 ≤ s1 ≤ s2 ≤ N
6. for i = s1 to s2 do

offspring2[i] = parent1[i]
end
7. temp = s2 + 1
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8. for i = s2 + 1 to N and i=1 to s1 − 1 do
if parent2[i] /∈ offspring2 then

offspring2[temp] = parent2[i]
temp ← temp + 1
if temp = N + 1 then

temp ← 0
end

end
end

Algorithm for inverse Mutation
Data: number of nodes n, chromosome
Result: mutated chromosome
1. generate r1=rand[1,n] and r2=rand[1,n] such that r1 < r2
2. for i=r1 to r2/2 do

node[i] ← node[r2 − i + r1]
end

Random mutation for vehicles
Data: number of nodes n, chromosome, number of vehicles p, cost matrix
Result: chromosome with mutated vehicles
for i = 1 to n do

temp = rand[1, p],
if cost(xi, xi+1, vtemp) ≤ cost(xi, xi+1, v

′
i) then

replace v′
i by vtemp

end
end
Combining all the above algorithms, the whole IGA can be presented as

follows:
Procedure IGA for CSTSP
Data: Maximum number of generation (maxgen), pop-size, number of

nodes, cost matrix [cijk]n×n×p, time matrix [tijk]n×n×p, tmax, ps,
pc

Result: Minimum tour cost
1. Initialization of chromosomes
2. Set gen ← 1, glob-best = loc-best = MAX-INT
3. Selection procedure
4. for i=1 to pop-size do

if rand[0, 1] < pc then
ith is selected for crossover

end
end
5. procedure crossover among the mating pools
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6. for i = 1 to pop-size do
pm=1 − 0.75√

gen

if rand[0, 1] < pm then
select ith chromosome for mutation and mutation for vehicles

end
end
7. Procedure mutation and mutation for vehicles
8. for i = 1 to pop-size do

if cost[i] < loc-best then
loc-best = cost[i];
mem = i;

end
end
9. gen ← gen + 1
10. if loc-best < glob-best and time[mem] < tmax then

glob-best ← loc-best
end
11. if gen < maxgen then

goto step 3
else

goto step 12
end
12. end

4.3 RID-IGA Algorithm for CCSTSPs

Ultimately, the algorithm of RID-IGA used for the solution of the proposed
CCSTSPs is as follows:

Algorithm of RID-IGA for CCSTSP
Data: number of nodes n, distance matrix [dij ]n×n, cost matrix

[cijk]n×n×p, time matrix [tijk]n×n×p, tmax, covering distance
matrix [Δi]1×n

Result: complete tour with minimum cost such that visited nodes cover
all unvisited nodes

1. solve the USCP for [Δi]1×n using [Δi]1×n

2. for i= 1 to total no. of USCP solutions do
mincost ← CSTSP [USCP [i]]
if mincost > CSTSP [USCP [i + 1]] then

mincost ← CSTSP [USCP [i + 1]]
end

end
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5 Numerical Experiments

5.1 Verification with Earlier Results

To test the performance of the IGA implemented in C++ code, we consider
some test problems from TSBLIB and compared with best known results of
those in Table 1. Salari et al. [15] used the some TSP benchmark problems and
solved using a hybrid algorithm consisting of Dynamic Programming and Ant
Colony Optimization (ACO). Results of some of these problems are obtained by
RID-IGA algorithm and are compared in Table 2.

Table 1. Algorithm tested with benchmark problems [16]:

Problem Best known result IGA result Generation

gr17 2085 2085 169

fri26 937 937 246

bayg29 1610 1610 358

bays29 2020 2020 327

dantzig42 699 699 478

eil51 426 426 542

eil76 538 538 728

kroA100 21282 21638 1041

5.2 Proposed Experiment

For computational results of the proposed CCSTSP, we generate a 100 × 100
distance matrix with lower bound 20 and upper bound 90 and a 100 × 100 × 3
costs with lower bound 35 and upper bound 180 and time matrices with lower
bound 60 and upper bound 360 such that the vehicles with higher cost assume
lesser time. The third dimension of the matrices imply the number of available
vehicles at each node. For ICCSTSPC, distance, cost and time matrices are
formed in fuzzy environment (TFN) with the same lower and upper bounds.
At first, the USCP was solved taking the covering distance as 30 distance units
for CCSTSP and (26,30,33) in case of ICCSTSPC for each node within a time
bound 60 s. In the second step, CSTSP was solved for all obtained USCP solution
in that time bound by IGA. The paths with minimum costs among all USCP
results are considered as the near optimal solutions of the CCSTSP problem,
some of which (5 best solutions without time constraint and 5 solutions with
time constraints) are given in Table 3. In Table 4, the experimental results of
ICCSTSPC are presented for different confidence levels, where both cases—
without and with time constraints are considered, η, β and γ being the confidence
levels of covering distance, travelling costs and travelling times respectively.
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Table 2. Comparison with Salari et al.’s [15] results:

Problem No. of nearest nodes Salari’s method IGA result

eil51 7 164 158

9 159 157

11 147 149

berlin52 7 3887 3891

9 3430 3362

11 3262 2832

st70 7 288 292

9 259 241

11 247 233

eil76 7 207 184

9 186 173

11 170 161

pr76 7 50275 51277

9 45348 42916

11 43028 42607

rat99 7 486 453

9 455 441

11 444 423

kroA100 7 9674 10558

9 9159 8860

11 8901 9316

Table 3. Near optimal solutions of CCSTSP:

Optimized covering path (nodes/vehicles) Cost tmax

62/0 90/1 66/1 14/2 18/0 84/2 48/2 50/0 71/1 34/2 87/0 67/1 537.6

52/0 22/2 2/1 50/1 11/0 15/1 47/1 7/0 80/2 61/1 34/0 6/1 585.7

47/2 4/1 32/0 31/2 93/1 49/2 53/1 35/1 44/2 9/2 66/2 65/2 629.4

44/0 1/0 66/2 74/0 48/2 30/1 93/1 49/2 76/0 40/0 29/2 19/1 630.25

74/2 57/2 47/1 95/0 49/0 10/0 11/2 89/2 35/2 56/2 80/2 5/2 642.4

87/1 62/0 90/2 71/1 50/2 67/2 66/1 14/2 18/1 48/1 34/1 84/0 554.45 1200

90/1 66/2 67/2 87/2 62/2 84/1 18/1 14/2 48/1 50/0 71/1 34/0 567.4 1190

34/1 71/1 50/2 62/2 67/2 66/1 14/0 87/1 48/0 84/2 18/1 90/1 569.6 1180

67/2 66/1 14/0 18/1 90/1 62/2 50/0 84/0 34/1 71/0 48/0 87/1 575 1175

84/2 18/1 14/2 66/2 34/0 71/1 50/0 48/2 87/2 67/0 62/0 90/1 587.25 1170
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6 Discussion

From Table 1, we observe that proposed IGA algorithm gives the best known
results for the first seven TSP problems. For the last problem kroA100, with
order size 100, the proposed algorithm results slightly higher value than the best
known one within maximum number of generation 1200.

Table 2 presents the comparisons between RID-IGA and Salari et al.’s [15]
hybrid ACO-Dynamic programming algorithm for some CSP problems, which
are originated from TSP benchmark problems. Here, the distance and the cost
matrices are the same as there is no choice of vehicles. In most of the cases, we
get better results by the proposed RID-IGA.

In Table 3, five best near optimal paths without time constraints and five
best paths imposing the time constraints of the proposed CCSTSP are given.
As the maximum allowable time decreases the resulting optimal cost becomes
higher, which is as per our expectation.

Finally, in Table 4, where the results of the proposed ICCSTSPC are discussed
briefly, it can be observed that the number of nodes increase with the increment
of the η, which is the confidence level of covering distance. We also notice that for
each fixed value of η, as the value β (confidence level of travelling costs) varies,
we get a path with minimum value at β = 0.6. Some results with different values
of γ’s (confidence level of traveling time) are shown in the same table.

7 Conclusion

In the present article, a fuzzy set based Imprecise Constrained Covering Solid
Travelling Salesman Problem with Credibility along with a Combined method
RID-IGA has been discussed. This problem can be well applicable for the most
useful real-world problems like Rural Health Care Delivery Systems, Courier
Logistics, big merchant houses, government officials and other similar prob-
lems. In these types of problems, it is not always possible to attend all the
cities/villages of the network in consideration, but a few places are selected for
the tour so that people from the adjoining areas within an approximate range r,
i.e., within a range (r1 − δ1, r1, r1 + δ2), can avail the facilities. This uncertainty
on covering distance has not been investigated by other researchers on covering
salesman problem.

Also, there may be more than one vehicles at each node, from which, any
one type of suitable one can be chosen by the salesperson. The travelling costs
of the vehicles depend upon several factors like availability, sudden increment of
fuel price etc. and similarly the travel time also may vary due to bad condition
of road or vehicle, experience of driver etc., so the imprecise travelling costs and
times are taken as fuzzy numbers.

The proposed model can further be extended by imposing some restrictions
like mandatory inclusion or exclusion of some particular nodes, or inducing time
windows on some nodes etc. Also, the proposed algorithm can be further devel-
oped by improving selection, crossover and mutation techniques of IGA.
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Abstract. In this paper some Newton like methods for unconstrained
optimization problem are restructured using q-calculus (quantum calcu-
lus). Two schemes are proposed, (1) q-Newton line search scheme, (2)
a variant of q-Newton line search scheme. Global convergence of these
schemes are discussed and numerical illustrations are provided.

Keywords: q-derivative · Newton like method · Unconstrained opti-
mization

1 Introduction

q-calculus (quantum calculus) has been one of the research interests in the field of
Mathematics and Physics for last few decades. q-analogue of ordinary derivative,
first introduced by F.H. Jackson, has its wide applications in several areas like,
operator Theory [2], q-Taylor formula and its remainder [10,11], mean value the-
orems of q-calculus [16], fractional integral and derivatives [14], integral inequali-
ties [7]. Some recent developments using q-derivatives can be found in variational
calculus [3], transform calculus [1], sampling theory [12], q-version of Bochner
Theorem [9], and so on. Soterroni et al. [17] first studied the use of q-derivative in
the area of unconstrained optimization, which is the q-variant of steepest descent
method. However, further significant works on q-calculus in other areas of numer-
ical optimization viz. Newton, Quasi Newton, Conjugate gradient methods and
their variations are yet to study.

In this paper a new variation of Newton like method for unconstrained opti-
mization problem is developed using q-calculus. This concept is based on q-
Newton Kantorvich scheme [15]. In this paper, initially, q-derivative of gradient
of the given function is used to propose a local convergent scheme and then
this idea is extended by associating a line search technique to justify its global
convergence property. Next, a sequence {qn} is introduced in the scheme instead
of considering a fixed positive number q, whose limiting case is the q-version of
practical line search Newton scheme. Quadratic convergence of the first scheme
is proved without using the second order sufficient optimality condition. First
order differentiability is sufficient to prove the global convergence of the pro-
posed schemes. The second scheme, being a q-analogue of line search Newton
method, requires weaker conditions than the classical one.
c© Springer Nature Singapore Pte Ltd. 2017
D. Giri et al. (Eds.): ICMC 2017, CCIS 655, pp. 196–208, 2017.
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In Sect. 2, some notations and definitions from q-calculus and other prerequi-
sites are provided, which are used in sequel throughout the paper. q-Newton line
search method is introduced and its convergence analysis is provided in Sect. 3.
A variant of q-Newton line search method is developed further and numerical
illustrations are described in Sect. 4. Finally, concluding remarks are provided in
Sect. 5.

2 Prerequisites

2.1 Notations and Definitions on Quantum Calculus

For a function f : R → R, the q-derivative (q �= 1) of f ( denoted by Dq,xf ), is
defined as

Dq,xf(x) =

{
f(x)−f(qx)

(1−q)x , x �= 0

f ′(x), x = 0

Suppose f : Rn → R, whose partial derivatives exist. For x ∈ R
n, consider an

operator εq,i on f as

(εq,if)(x) = f(x1, x2, . . . , xi−1, qxi, xi+1, . . . , xn).

The q-partial derivative (q �= 1) of f at x with respect to xi, denoted by Dq,xi
f , is

Dq,xi
f(x) =

{
f(x)−(εq,if)(x)

(1−q)xi
, xi �= 0

∂f
∂xi

, xi = 0

Denote g(x) = ∇f(x) =
[
g1(x), g2(x), . . . , gn(x)

]T , gi = ∂f
∂xi

. The Jacobi matrix
of q-partial derivative of g(x), denoted by Dqg(x) becomes

Dqg(x) =

⎛
⎜⎜⎝

Dq,x1g1(x) Dq,x2g1(x) . . . Dq,xn
g1(x)

Dq,x1g2(x) Dq,x2g2(x) . . . Dq,xn
g2(x)

. . . . . . . . . . . .
Dq,x1gn(x) Dq,x2gn(x) . . . Dq,xn

gn(x)

⎞
⎟⎟⎠

n×n

. (1)

In short we write,

Dqg(x) = [Dq,xj
gi(x)]n×n, i, j = 1(1)n.

2.2 Symmetric Indefinite Factorization

A real symmetric matrix A can be expressed as PAPT = LBLT , where L is a
lower triangular matrix, P is a permutation matrix and B is a block diagonal
matrix which allows at most 2 × 2 blocks. This requires a pivot block initially.
There are several pivoting strategies available in the literature (see Bunch, Kauf-
man and Parlett [4], Golub and Van Loan [8], and also by Duff and Reid [5],
Fourer and Mehrotra [6]) to take care the sparsity of the matrix. The symmet-
ric indefinite factorization allows to determine the inertia of B and inertia of
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B remains equal to inertia of A. An indefinite factorization can be modified to
ensure that the modified factors are the factors of a positive definite matrix. This
idea is briefed in the following algorithm (See [13]). For this purpose MATLAB
in-built command ldl() is used in this paper since it is less expensive.

Algorithm 1. Modifying Symmetric Indefinite Matrix to Positive
Definite [13]

Step 1: Compute the factorization PAPT = LBLT .
Step 2: Perform the spectral decomposition of B as B = QΛQT , where Q
is the matrix whose columns consist of eigen vectors and Λ is the diagonal
matrix whose diagonal elements are respective eigen values B.
Step 3: Construct a modification matrix F such that LBLT is
sufficiently positive definite as follows.
Suppose λi are the eigen values of B. Choose parameter δ > 0 and define
F as F = Qdiag(τi)QT , where

τi =

{
0, if λi ≥ δ

δ − λi, if λi < δ

Step 4: A matrix E has to be added to A to make it positive definite.
P (A + E)PT = L(B + F )LT provides E = PT LFLT P . So
λmin(A + E) ≈ δ.
Output: Ā � A + E is the positive definite matrix.

2.3 Zoutendjik Theorem

Consider kth iteration of an optimization algorithm in the form x(k+1) = x(k) +
αkpk, where pk is a descent direction and αk satisfies Wolfe condition. Suppose
f is bounded below in R

n and that f is continuously differentiable in an open
set containing the level set L = {x : f(x) ≤ f(x0)}, where x0 is the starting
point of the iteration.

Assume also that ∇f is Lipschitz continuous on L . That is, there exists a
constant L > 0 such that

‖∇f(x) − ∇f(x̃)‖ < L‖x − x̃‖ ∀x, x̃ ∈ L ,

then ∑
k≥0

cos2 θk‖∇f (k)‖2 < ∞,

where θk is the angle between pk and ∇f (k), ∇f (k) = ∇f(x(k)).
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3 Proposing q-Newton Line Search Scheme
for Unconstrained Optimization Problem

Consider a general unconstrained optimization problem

(P ) minx∈Rnf(x),

where f ∈ C 1 and second order partial derivatives of f exist on xi = 0. q-Taylor
expansion [15] of ∇f(x) at the local minimum point x∗ of (P ) is

[∇f(x∗)
]
i
≈ [∇fi(x(k))

]
i
+

[ n∑
j=1

Dq,xj
∇fi(x(k))(x∗

j − x
(k)
j )

]
i

(i = 1, 2, . . . , n).

In matrix form, this can be expressed as

∇f(x∗) ≈ ∇f(x(k)) + Dq∇f(x(k))(x∗ − x(k)).

Assuming that the optimal solution is attained at (k + 1)th iteration, i.e.
∇f(x∗) = 0 and x∗ = x(k+1), a modified Newton scheme may be considered as

x(k+1) = x(k) − [Dq∇f(x(k))]−1∇f(x(k)), (2)

where Dq∇f(x(k)) can be derived as in Subsect. 2.1. The matrix Dqf(x) is not
necessarily symmetric. For example, consider a function f(x, y) = xy2+x4. Then
∇f(x, y) = [y2 + 4x3, 2xy]T and

Dq∇f(x) =
(

4x2(1 + q + q2) y(1 + q)
2y 2x

)
,

which is not symmetric for all q. We may consider the symmetric counterpart D̄q

of Dq as D̄q = 1
2 (Dq +DT

q ). In addition to this Dq∇f(x) may not be positive def-
inite for some q. Positive definiteness of Dq∇f will be discussed in next section.
Here we assume the symmetric counterpart D̄q∇f and the positive definiteness
of D̄q∇f in a local neighborhood of x∗.

The modified iteration scheme (2) may be expressed as

x(k+1) = x(k) − [D̄q∇f(x(k))]−1∇f(x(k)). (3)

Theorem 1. Suppose q-partial derivatives of ∇f with respect to xj (j =
1, 2, . . . , n) exist in a ball N(x∗, R) for some R > 0 and x∗ be the local opti-
mum solution to the problem (P). Moreover, D̄q∇f is positive definite at x∗ and
following two assumptions hold for some M > 0 and β > 0.

A1. ‖∇f(x) − ∇f(y) − D̄q∇f(y)(x − y)‖ ≤ M‖x − y‖2,
A2. ‖D̄q∇f(x(k))−1‖ ≤ β.

Then the sequence {x(k)} described in (3) converges to the solution x∗ quadrat-
ically and ‖∇f(x)‖ vanishes quadratically in the vicinity of x∗.
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Proof. Consider a point x(k+1) = x(k)+pk in the vicinity of x∗ along the direction
pk ∈ R

n. Then

x(k+1) − x∗ = x(k) − x∗ − D̄q∇f(x(k))−1∇f(x(k))

= D̄q∇f(x(k))−1[D̄q∇f(x(k))(x(k) − x∗) − ∇f(x(k))].

‖x(k+1) − x∗‖ ≤ ‖D̄q∇f(x(k))−1‖ ‖D̄q∇f(x(k))(x(k) − x∗) − ∇f(x(k))‖
= ‖D̄q∇f(x(k))−1‖ ‖∇f(x∗) − ∇f(x(k)) − D̄q∇f(x(k))(x∗ − x(k))‖
≤ β.M.‖x∗ − x(k)‖2 (by assumptions)

Above inequality guarantees the quadratic convergence of the scheme. Since
D̄q∇f is positive definite at x∗, so there exists some R′ > 0 such that D̄q∇f is
positive definite in the neighborhood N1(x∗, R

′
). If the above process is repeated,

we get

‖x(k+1) − x∗‖ ≤ (βM)2
k−1‖x∗ − x(0)‖2k .

So the initial point x(0) may be chosen in such a way that x(0) ∈
N2(x∗,min

(
R,R

′
, 1
2βM )

)
to achieve quadratic order convergence.

From (3), D̄q∇f(x(k))(x(k+1) − x(k)) = −∇f(x(k)). Hence,

‖∇f(x(k+1))‖ = ‖∇f(x(k+1)) − ∇f(x(k)) − D̄q∇f(x(k))pk‖
≤ M.‖x(k+1) − x(k)‖2
= M.‖D̄q∇f(x(k))−1∇f(x(k))‖2
≤ M.‖D̄q∇f(x(k))−1‖ ‖∇f(x(k))‖2
= M.β.‖∇f(x(k))‖2.

This proves that the gradient norm vanishes quadratically in the vicinity of x∗.

Note: One may note that this local scheme does not demand the existence of
second order partial derivatives of f except at the points on xi = 0. In the follow-
ing optimization problem Newton scheme can not be applied, but the proposed
scheme can be applied efficiently.

Example 1. Consider min(x,y)∈R2f1(x, y), where

f1(x, y) =

{
(x − 1)3 sin 1

x−1 + (x − 1)2 + x(y − 1)4, if x �= 1
(y − 1)4, if x = 1

f1(x, y) attains the minimum at (1, 1) (see Fig. 1). Since ∂2f1
∂x2 does not exist at

(1, 1), f1 is not twice differentiable. So second order sufficient conditions can
not be applied to justify the existence of the minimum point as in the case of
higher order numerical optimization methods. Hence, Newton method can not
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be applied. But, the proposed scheme can be applied as described below. Here,
for q �= 1,

D̄q∇f1(1, 1) =

[
3(q − 1) sin 1

q−1
(q−1)3

2
(q−1)3

2 4(q − 1)2

]
.

Let I = {q ∈ R | 3(q − 1) sin 1
q−1 > 0, 12 sin 1

q−1 > (q−1)3

4 }. If we choose
q ∈ (0, 1) ∩ (1 + 1

2kπ , 1 + 1
(2k+1)π ) for k ∈ Z, then D̄qf1(1, 1) is positive definite.

On Matlab R-2013b platform, with several initial points, tolerance limit of the
gradient norm as 10−5, the proposed scheme (3) reaches to the solution (1,1).
Results are summarized in Table 1 for several q, (q = 0.85, 0.87, 0.89, 0.93, 0.95)
with same set of different initial guesses and a pictorial illustration is provided
in Figs. 1 and 2.

Note: Scheme (3) has following assumptions, which may be burden to the deci-
sion maker and hence the scheme should be further modified.

– The initial points are selected in the vicinity of the solution. Hence this scheme
is further extended to a global convergent scheme in Subsect. 3.1, which is free
from the choice of initial point.

– Selection of q is difficult. To avoid this, the global convergent scheme in Sub-
sect. 3.1 is further modified in Sect. 4, where any sequence {qk} with some mild
property is chosen instead of fixed q.

3.1 Global Convergence Property of the Proposed Scheme

The iterative scheme (3) has local convergence property. To achieve global con-
vergence of the proposed scheme under some mild conditions, a line search may
be associated with every iterating point, starting with any initial point. In the

Fig. 1. Surface plot of f1(x, y)

0.7 0.8 0.9 1 1.1
0.9

0.92

0.94

0.96

0.98

1

Fig. 2. Iteration points for f1(x, y)
with initial guess (.77, .91)
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Table 1. q-Newton iteration scheme (3) for f1(x, y)

q Initial guess Number of iterations Final gradient norm

.85 (.82,.85) 92 9.9104e – 06

(.72, .95) 77 9.8387e – 06

(.77, .91) 88 9.8560e – 06

(.97,.81) 94 9.8291e – 06

(1.1,.9) 90 9.9379e – 06

.87 (.82,.85) 74 9.8573e – 06

(.72, .95) 24 9.9638e – 06

(.77, .91) 46 9.7381e – 06

(.97,.81) 33 9.7424e – 06

(1.1,.9) 31 9.5994e – 06

.89 (.82,.85) 58 9.7938e – 06

(.72, .95) 47 9.9908e – 06

(.77, .91) 53 9.8469e – 06

(.97,.81) 59 9.9094e – 06

(1.1,.9) 56 9.9792e – 06

.93 (.82,.85) 94 9.8214e – 06

(.72, .95) 24 9.9638e – 06

(.77, .91) 46 9.7381e – 06

(.97,.81) 33 9.7424e – 06

(1.1,.9) 31 9.5994e – 06

.95 (.82,.85) 35 5.2470e – 06

(.72, .95) 17 9.2732e – 06

(.77, .91) 19 9.7412e – 06

(.97,.81) 23 9.9306e – 06

(1.1,.9) 21 9.7126e – 06

local scheme, described in Sect. 3, D̄∇f is a symmetric matrix but not necessar-
ily a positive definite matrix. For global convergence one needs to have a positive
definite matrix. Consider the following q-Newton line search scheme as

x(k+1) = x(k) − αk(T (k)
q )−1∇f(x(k)), (4)

where T
(k)
q is a positive definite approximation of the matrix D̄q∇f(x(k)) and

αk is the step length at x(k). D̄q∇f(x(k)) is the symmetric counterpart of
Dq∇f(x(k)).

Dq∇f as well as D̄q∇f may not be positive definite at x(k). We need the
matrix T

(k)
q to be positive definite, which may be achieved using symmetric

indefinite factorization, described in Subsect. 2.2. D̄q∇f(x(k)) can be modified
to T

(k)
q as

T (k)
q = D̄q∇f(x(k)) + E(k),
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where E(k) is the matrix, which is added to D̄q∇f(x(k)) to force T
(k)
q to be

positive definite.

Lemma 1. Let κ(T (k)
q ) denotes the condition number of T

(k)
q . If there exists

some C > 0 such that κ(T (k)
q ) < C for every k, then under all the standard

assumption of Zoutendjik Theorem, ‖∇f(xk)‖ → 0 as k → 0.

Proof. Let the eigenvalues of T
(k)
q be 0 < λ

(k)
1 ≤ λ

(k)
2 ≤ . . . ≤ λ

(k)
n . Since λ

(k)
1 is

the smallest eigenvalue of T
(k)
q , for any u ∈ R

n,

uT T (k)
q u ≥ λ

(k)
1 ‖u‖2.

Let θk be the angle between pk and ∇f (k), where pk = −(T (k)
q )−1∇f (k). Hence,

cos θk = − ∇f (k)T pk

‖∇f (k)T ‖‖pk‖ =
pT

k T
(k)
q pk

‖∇f (k)T ‖‖pk‖ ≥ λ
(k)
1

‖pk‖
‖∇f (k)‖ . (5)

Again ‖∇f (k)‖ = ‖T
(k)
q pk‖ ≤ ‖T (k)

q ‖ ‖pk‖ = λ
(k)
n ‖pk‖. Using this in (5), we have

cos θk = − ∇f (k)T pk

‖∇fk(T )‖ ‖pk‖ ≥ λ
(k)
1

λ
(k)
n

=
1

‖T
(k)
q ‖‖T (k)−1

q ‖
≥ 1

C
.

Hence, under the assumption of Zoutendjik condition (that is, cos2 θk‖∇f (k)‖2 →
0), i.e. limk→∞ ‖∇f (k)‖ = 0.

Lemma 1 justifies that q-Newton line search scheme (4) converges to a critical
point. It is more likely that as the functional value reduces at every iteration,
the scheme converges to a local minimum. However, the convergence rate of the
scheme can be justified when x(k) approaches to the solution as k → ∞. In the
vicinity of the solution, αk may be chosen as unit length. Moreover, in the vicin-
ity of the solution, D̄q∇f(x(k)) being positive definite, so, for sufficiently large
k, T

(k)
q = D̄q∇f(x(k)). Above discussion may be summarized as the following

Algorithm.

Algorithm 2. q-Newton Scheme with Line Search for Unconstrained Opti-
mization

Choose starting point x(0), tolerance limit ε, k = 0, fix q > 0;
for k = 0, 1, 2 . . .

Compute D̄q∇f(x(k));
Compute T

(k)
q = D̄q∇f(x(k)) + Ek by Algorithm 1;

x(k+1) = x(k) − αk(T (k)
q )−1∇f(x(k)), αk is computed by

Armijo-Backtracking inexact line search;
if ‖∇f(x(k+1))‖ < ε

Stop;
else

k = k + 1;
end;

end;
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The line search scheme (4) is an extension to global convergent version of the
local convergent scheme (3). In Example 1, initial points were chosen very close
to the solution. Here, for the same objective function, one may choose the initial
point not necessarily in the vicinity of the solution and can apply Algorithm2. At

the initial point (1.6, 4) for q = 0.95, D̄q∇f1 =
(

11.2535 835.3760
835.3760 161.5360

)
, which is

not positive definite. For this initial point and backtracking factor 0.7 in Armijo-
backtracking inexact line search with terminating condition ‖∇f1‖ < 10−5, 35
iterations are required to reach at the solution. The result is summarized in
Table 2. One may observe that

– D̄q∇f is not necessarily positive definite up to 23rd iteration.
– after 23rd iteration D̄q∇f(x(k)) is positive definite which indicates that the

iterating points are entering in the neighborhood of the minimum point (1,1)
after 23rd iteration.

– the matrix Ek corresponding to the positive definite D̄q∇f(x(k)) is a null
matrix.

Note : Both the iterating schemes (3) and (4) do not require the second order
partial derivatives of f over the whole domain. If we further consider f ∈ C 2

only in the vicinity of the solution, not necessarily in the whole domain of f ,
then scheme (3) behaves almost like practical Newton method. This is justified
in next section for which a sequence {qk} is associated to the scheme instead of
a fixed q at each iteration. We say this new scheme as variant of q-Newton line
search scheme.

Table 2. q-Newton iteration line search scheme (Algorithm 2) for f1(x, y)

k x(k) f(x(k)) D̄q∇f(x(k)) Ek

0

(
1.6

4

)
130.1750

(
11.2535 835.3760

835.3760 161.5360

) (
409.8776 −374.6643

−374.6643 342.4763

)

1

(
5.2976

0.6200

)
36.8833

(
112.2638 −0.1573

−0.1573 9.9466

) (
0 0

0 0

)

. . . . . . . . . . . . . . .

23

(
1.1828

0.9797

)
.0290

(
−3.6318 −.0002

−.0002 .0314

) (
3.6318 .0002

.0002 0

)

24

(
0.9192

0.9797

)
.0064

(
4.1832 −.0002

−.0002 0.0244

) (
0 0

0 0

)

. . . . . . . . . . . . . . .

34

(
1.0000

0.9877

)
2.2845e – 08

(
1.7265 −0.0001

−0.0001 .0189

) (
0 0

0 0

)

35

(
1.0000

0.9881

)
2.0017e – 08

(
1.7287 −0.0001

−0.0001 .0185

) (
0 0

0 0

)
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4 A Variant of q-Newton Line Search Method

In general the Newton direction (pN
k ) at x(k) satisfies ∇2f(x(k))pN

k = −∇f(x(k)).
Since the Hessian matrix ∇2f may not be positive definite at the points, away
from the solution of (P), so pN

k may not be a descent direction. There are several
approaches to make the Hessian positive definite. q-analogue of this practical
Newton scheme is developed here.

– f ∈ C 1 and ∇f is Lipschitz continuous.
– f ∈ C 2 in the vicinity of the solution.

Lemma 2. Let {qk} be a real sequence defined by qk+1 = 1 − qk
(k+1)2 , with 0 <

q0 < 1, a fixed number, then qk converges to 1 as k → ∞.

The matrix D̄qk∇f(x(k)) is computed at the iterating point x(k), If

– D̄
(k)
qk ∇f(x(k)) is modified as T

(k)
qk = D̄

(k)
qk ∇f(x(k)) + Ek for some matrix Ek

such that T
(k)
qk becomes positive definite, and

– Ek is computed using symmetric indefinite factorization as described in Sub-
sect. 2.2,

then the modified direction is the solution of the system T
(k)
qk pk = −∇f(x(k))

and the corresponding scheme can be expressed as

x(k+1) = x(k) − αk(T (k)
qk

)−1∇f(x(k)). (6)

This scheme differs from the scheme (4) in the sense that it uses the sequence
{qk} instead of a fixed q. Following algorithm explores this concept.

Algorithm 3. Variant of q-Newton line search method

Choose starting point x(0), tolerance limit ε, k = 0, fix q0 ∈ (0, 1);
for k = 0, 1, 2, . . .

Compute D̄q∇f(x(k));
Compute T

(k)
qk = D̄

(k)
qk ∇f(x(k)) + Ek by Algorithm 1;

x(k+1) = x(k) − αk(T (k)
qk )−1∇f(x(k)), αk is computed by

Armijo-Backtracking inexact line search;
if ‖∇f(x(k+1))‖ < ε

Stop;
else

qk+1 = 1 − qk
(k+1)2 ;

k = k + 1;
end;

end;



206 S.K. Chakraborty and G. Panda

4.1 Convergence Analysis

Convergence proof of Algorithm 3 is similar to that of Algorithm 2 under Zou-
tendzik condition with the assumption of bounded condition number of the
matrix T

(k)
qk . Assuming the sequence x(k) converges to x∗, we discuss the follow-

ing convergence result. The (i, j)th entry of Dqk∇f is Dqk,xj

∂f
∂xi

. In the vicinity
of x∗,

lim
k→∞

D̄qk∇f = lim
qk→1

D̄qk→1∇f = ∇2f.

Hence, for a local minimum point x∗, D̄qk∇f(x) is positive definite for sufficiently
large k and x ∈ Nbd(x∗). So in limiting case the variant of q-Newton line search
scheme reduces to Newton algorithm.

4.2 Numerical Example for Global Convergent Schemes

Consider the following optimization problem min(x,y)∈R2f2(x, y), where

f2(x, y) =

{
100(y − x2)2 + (1 − x)2 + c, x ≥ c,
x
c (1 − x)2 + 100(y − x2)2 − (1−c)2

c (x − c) + c, x < c
(7)

f2 ∈ C
1 and second order partial derivative of f2 with respect to x does not exist

at x = −1.2, y ∈ R and c = −1.2. So in general f2 /∈ C
2. However, f2 ∈ C

2 in the
vicinity of the minimum point (1, 1). So, for some initial points (viz. (−1.2, 1)),
the practical Newton line search can not be applied where as, q-Newton line
search (Algorithm 2) and variant of q-Newton line search (Algorithm 3) can be
applied. For Algorithm2, q is fixed, say q = 0.999 and for Algorithm3, a sequence
qk is considered, qk = 1− qk−1

k2 with q0 = 0.95. Both the Algorithms are executed
with same initial point (x(0), y(0)) = (−1.2, 1), terminating condition ‖∇f2‖ <
10−5. Backtracking factor and Armijo parameter are chosen to be 0.7 and 10−4

respectively. Solution of (7) is attained in 35 iterations in case of Algorithm2 and
34 iterations in case of Algorithm 3. These are pictorially illustrated in Figs. 3
and 4.

Fig. 3. Algorithm 2 for f2(x, y) with initial guess (−1.2, 1)
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Fig. 4. Algorithm 3 for f2(x, y) with initial guess (−1.2, 1)

5 Conclusion

In this paper quantum calculus is used to develop Newton like schemes for uncon-
strained optimization problems, for which existence of second order partial deriv-
atives at every point is not required. Further a variant of this line search scheme
is proposed which behaves like practical Newton line search method in limiting
case. The global convergence of both schemes have been discussed with numer-
ical examples. The authors hope that this concept may be further modified for
other numerical optimization schemes.
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Abstract. In this paper, we introduce a new generalized mixed expo-
nential type vector variational-like inequality problems (GMEVVLIP)
and α-relaxed exponentially (p, η)-monotone mapping. We prove the
existence results of (GMEVVLIP) by utilizing the KKM technique
and Nadlar’s results with α-relaxed exponentially (p, η)-monotone map-
ping in Euclidian spaces. The present work extends some corresponding
results of (GMEVVLIP) [1].
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1 Introduction

Due to the wide range of applicability of vector variational inequality problem,
it has been generalized in many directions and established the existence results
under various conditions (see [2–6]). Exponential type vector variational-like
inequality problems was introduced by [7,8] with exponential type invexities.
In this paper, we have define a very new vector variational inequality prob-
lem namely generalized mixed exponential type vector variational-like inequality
problems which involved an exponential type function.

In the study of vector variational inequality problem the generalized
monotonicity assumption of the operator plays a very important role. Wu and
Huang [9] defined the concepts of relaxed η-α pseudomonotone mappings to
study vector variational-like inequality problem in Banach spaces. Ceng and
Yao [10] considered generalized variational-like inequalities with generalized α-
monotone multifunctions. In 2009, Usman and Khan [1] discussed the solvability
of the generalized mixed vector variational-like inequality problem with relaxed
η − α-P-monotone mappings. Very recently, Plubtieng and Thammathiwat [11]
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considered new generalized mixed vector variational-like inequalities and studied
the existence of solution of the same problem with C-monotonicity assumption.
In this paper we introduced a very new generalized monotone mapping called
α-relaxed exponentially (p, η)-monotone mappings.

Inspired and motivated by [1,7,8,11], we introduce a more general prob-
lem generalized mixed exponential type vector variational-like inequality prob-
lems in R

n. We introduce a new generalized mixed exponential type vector
variational-like inequality problems (GMEVVLIP) and α-relaxed exponentially
(p, η)-monotone mapping. We prove the existence results of (GMEVVLIP) by
utilizing the KKM technique and Nadlar’s results with α-relaxed exponentially
(p, η)-monotone mapping in R

n. The results presented here, are extension and
improvement of some previous results in the literature.

2 Preliminaries

Let Y = R
n be a Euclidian space and C be a nonempty subset of Y . C is called

a cone if λC ⊂ C, for any λ ≥ 0. Further, the cone C is called convex cone if
C + C ⊂ C. C is pointed cone if C is cone and C ∩ (−C) = {0}. C is said to
be proper cone, if C �= Y . Now, consider C ⊆ Y is a pointed closed convex cone
with intC �= ∅ with apex is at origin, where intC is the set of interior points of
C. Then, C induced a vector ordering in Y as follows:

(i) x ≤C y ⇔ y − x ∈ C;
(ii) x �C y ⇔ y − x /∈ C;
(iii) x ≤intC⇔ y − x ∈ intC;
(iv) x �intC y ⇔ y − x /∈ intC.

By (Y,C), we denote an ordered space with the ordering of Y defined by set
C. It is obvious that the ordering relation “≤C” defined above, is a partial order.
The following properties are elementary:

(i) x �C y ⇔ x + z �C y + z, for any x, y, z ∈ Y ;
(ii) x �C y ⇔ λx �C λy, for any λ ≥ 0.

Let K ⊆ X be nonempty closed convex subset of a Euclidian space X = R
m

and (Y,C) be an ordered space induced by the closed convex pointed cone C
whose apex at origin with intC �= ∅. The following definitions and lemmas will
be useful in the sequel.

Lemma 2.1 ([10]). Let (Y,C) be an ordered space induced by the pointed closed
convex cone C with intC �= ∅. Then for any x, y, z ∈ Y , the following relation-
ships hold:

z �intC x ≥C y ⇒ z �intC y;
z �intC x ≤C y ⇒ z �intC y.

Definition 2.1. f : X → Y is C-convex on X if f(tx + (1 − t)y) ≤C tf(x) +
(1 − t)f(y), for all x, y ∈ X, t ∈ [0, 1].
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Definition 2.2. A mapping f : K → Y is said to be completely continuous if
for any sequence {xn} ∈ K, xn ⇀ x0 ∈ K weakly, then f(xn) → f(x0).

Definition 2.3. Let f : K → 2X be a set-valued mapping. Then f is said to
be KKM mapping if for any {y1, y2, . . . , yn} of K we have co{y1, y2, . . . , yn} ⊂
n⋃

i=1

f(yi), where co{y1, y2, . . . , yn} denotes the convex hull of y1, y2, . . . , yn.

Lemma 2.2 ([12]). Let M be a nonempty subset of a Hausdorff topological
vector space X and let f : M → 2X be a KKM mapping. If f(y) is closed in X

for all y ∈ M and compact for some y ∈ M , then
⋂

y∈M

f(y) �= ∅.

Lemma 2.3 ([13]). Let E be a normed vector space and H be a Hausdorff met-
ric on the collection CB(E) of all closed and bounded subsets of E, induced by
a metric d in terms of d(x, y) = ‖x − y‖ which is defined by

H(A,B) = max
(

sup
x∈A

inf
y∈B

‖x − y‖, sup
y∈B

inf
x∈A

‖x − y‖
)

,

for A, B ∈ CB(E). If A and B are any two members in CB(E), then for each
ε > 0 and each x ∈ A, there exists y ∈ B such that

‖x − y‖ ≤ (1 + ε)H(A,B).

In particular, if A and B are compact subset in E, then for each x ∈ A, there
exists y ∈ B such that

‖x − y‖ ≤ H(A,B).

Definition 2.4. Let η : X × X → X be a bi-mapping and A : K → L(X,Y )
be a single-valued mapping, where L(X,Y ) be space of all continuous linear
mappings from X to Y . Suppose T : K → 2L(X,Y ) be the nonempty compact
set-valued mapping, then

(i) A is said to be η-hemicontinuous if lim
t→0+

〈A(x + t(y − x)), η(y, x)〉 =

〈Ax, η(y, x)〉, for each x, y ∈ K.
(ii) T is said to be H-hemicontinuous, if for any given x, y ∈ K, the mapping

t → H(T (x + t(y − x)), Tx) is continuous at 0+, where H is the Hausdorff
matric defined on CB(L(X,Y )).

Definition 2.5. A mapping f : X → X is said to be affine if for any xi ∈ K
and λi ≥ 0, (1 ≤ i ≤ n), with

∑n
i=1 λi = 1, we have

f

(
n∑

i=1

λixi

)
=

n∑

i=1

λif(xi).
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Definition 2.6. Let X be a Euclidian space. A function f : X → R is lower
semicontinuous at x0 ∈ X if

f(x0) ≤ lim inf
n

f(xn)

for any sequence {xn} ∈ X such that xn converges to x0.

Definition 2.7. Let X be a Euclidian space. A function f : X → R is weakly
upper semicontinuous at x0 ∈ X if

f(x0) ≥ lim sup
n

f(xn)

for any sequence {xn} ∈ X such that xn converges to x0 weakly.

Lemma 2.4 (Brouwer’s fixed point theorem [14]). Let S be a nonempty, com-
pact and convex subset of a finite-dimensional space and T : S → S be a
continuous mapping. Then there exists a x ∈ S such that T (x) = x.

3 (GMEVVLIP) with α-relaxed Exponentially
(p, η)-monotone

Let K ⊆ X be nonempty closed convex subset of a Euclidian space X and
(Y,C) be an ordered Euclidian space induced by the closed convex pointed cone
C whose apex at origin with intC �= ∅. Let p ∈ R be a nonzero real number,
η : K×K → X and f : K×K → Y be two bi-mappings, A : L(X,Y ) → L(X,Y )
be a mapping, where L(X,Y ) be space of all continuous linear mappings from
X to Y , and T : K → 2L(X,Y ) be a vector set-valued mapping. Then The
generalized mixed exponential type vector variational-like inequality problems
(GMEVVLIP) is to find u ∈ K and x ∈ T (u), such that

〈
Ax,

1
p
(epη(v,u) − 1)

〉
+ f(u, v) �intC 0, ∀v ∈ K. (3.1)

(GMEVVLIP) has wide range of application to vector optimization problems
and vector variational inequalities problems.

Definition 3.1. The mapping T : K → L(X,Y ) is said to be α-relaxed expo-
nentially (p, η)-monotone if for every pair of points u, v ∈ K, we have

〈
Tu − Tv,

1
p
(epη(u,v) − 1)

〉
≥C α(u − v), (3.2)

where α : X → Y with α(tx) = tqα(x) for all t > 0 and x ∈ X, where q > 1, a
real number.
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Definition 3.2. Let A : L(X,Y ) → L(X,Y ). A multivalued mapping T :
K → 2L(X,Y ) with compact valued is said to be α-relaxed exponentially (p, η)-
monotone with respect to A if for each pair of points u, v ∈ K, we have

〈
Ax − Ay,

1
p
(epη(u,v) − 1)

〉
≥C α(u − v), ∀x ∈ T (u), y ∈ T (v). (3.3)

where α : X → Y with α(tx) = tqα(x) for all t > 0 and x ∈ X, where q > 1, a
real number.

Remark 3.1

(i) If α ≡ 0 then Definition 3.1 is called exponentially (p, η)-monotone, i.e. for
each pair of points u, v ∈ K, we have

〈
Tu − Tv,

1
p
(epη(u,v) − 1)

〉
≥C 0.

(ii) If α ≡ 0 then Definition 3.2 is called exponentially (p, η)-monotone with
respect to A, i.e. for each pair of points u, v ∈ K, we have

〈
Ax − Ay,

1
p
(epη(u,v) − 1)

〉
≥C 0, ∀x ∈ T (u), y ∈ T (v).

So every exponentially (p, η)-monotone mapping is α-relaxed exponentially
(p, η)-monotone map with α ≡ 0.

Theorem 3.1. Let K be a nonempty bounded closed convex subset of a real
Euclidian space X and (Y,C) is an ordered Euclidian space induced by the
pointed closed convex cone C whose apex is at origin with intC �= ∅. Suppose
η : K × K → X be affine in the first argument with η(x, x) = 0,∀x ∈ K. Let
f : K × K → Y be a C-convex in the second argument with the condition
f(x, x) = 0,∀x ∈ K. Let A : L(X,Y ) → L(X,Y ) be a continuous mapping
and T : K → 2L(X,Y ) be a nonempty compact valued mapping, which is H-
hemicontinuous and α-relaxed exponentially (p, η)-monotone with respect to A.
Then the following two statements (a) and (b) are equivalent:

(a) there exists u ∈ K and x ∈ T (u) such that
〈

Ax,
1
p
(epη(v,u) − 1)

〉
+ f(u, v) �intC 0, ∀v ∈ K.

(b) there exists u ∈ K such that
〈

Ay,
1
p
(epη(v,u) − 1)

〉
+ f(u, v) �intC α(v − u), ∀v ∈ K, y ∈ T (v).
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Proof. Let the statement (a) is true, i.e. there exist u ∈ K and x ∈ T (u) such
that

〈
Ax,

1
p
(epη(v,u) − 1)

〉
+ f(u, v) �intC 0, ∀v ∈ K. (3.4)

Since T is α-relaxed exponentially (p, η)-monotone with respect to A, we have
〈

Ay − Ax,
1
p
(epη(v,u) − 1)

〉
+ f(u, v) ≥C α(v − u)

+ f(u, v), ∀v ∈ K, y ∈ T (v)

⇒
〈

Ay,
1
p
(epη(v,u) − 1)

〉
+ f(u, v) ≥C

〈
Ax,

1
p
(epη(v,u) − 1)

〉

+ α(v − u) + f(u, v), ∀v ∈ K, y ∈ T (v)

⇒
〈

Ay,
1
p
(epη(v,u) − 1)

〉
+ f(u, v) − α(v − u) ≥C

〈
Ax,

1
p
(epη(v,u) − 1)

〉

+ f(u, v), ∀v ∈ K, y ∈ T (v). (3.5)

From (3.4), (3.5) and Lemma 2.1, we get
〈

Ay,
1
p
(epη(v,u) − 1)

〉
+ f(u, v) �intC α(v − u), ∀v ∈ K, y ∈ T (v).

Conversely, suppose that the statement (b) is true, i.e. there exists u ∈ K
such that

〈
Ay,

1
p
(epη(v,u) − 1)

〉
+ f(u, v) �intC α(v − u), ∀v ∈ K, y ∈ T (v). (3.6)

Let v ∈ K be any point. Letting vt = tv + (1 − t)u, t ∈ (0, 1], as K is convex,
vt ∈ K. Let yt ∈ T (vt), we have from (3.6),

〈
Ayt,

1
p
(epη(vt,u) − 1)

〉
+ f(u, v) �intC α(vt − u) = tqα(v − u). (3.7)

〈
Ayt,

1
p
(epη(vt,u) − 1)

〉
+ f(u, vt)

=
〈

Ayt,
1
p
(epη(tv+(1−t)u,u) − 1)

〉
+ f(u, tv + (1 − t)u)

=
〈

Ayt,
1
p
(eptη(v,u)+(1−t)pη(u,u) − 1)

〉
+ f(u, tv + (1 − t)u)

≤C

〈
Ayt,

1
p
(t(epη(v,u) − 1) + (1 − t)(epη(u,u) − 1))

〉
+ tf(u, v)

= t{
〈

Ayt,
1
p
(epη(v,u) − 1)

〉
+ tf(u, v)} (3.8)
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By (3.7), (3.8) and Lemma 2.1, we get
〈

Ayt,
1
p
(epη(v,u) − 1)

〉
+ f(u, v) �intC tq−1α(v − u). (3.9)

Since T (vt) and T (u) are compact, by lemma, for each fixed yt ∈ T (vt), there
exists xt ∈ T (u) such that

‖yt − xt‖ ≤ H(T (vt), T (u)). (3.10)

Since T (u) is compact, without loss off generality, we may assume that

xt → x ∈ T (u) as t → 0+.

Also T is H-hemicontinuous, thus it follows that

H(T (vt), T (u)) → 0 as t → 0+.

Now by (3.10) we have

‖yt − x‖ ≤ ‖yt − xt‖ + ‖xt − x‖
≤ H(T (vt), T (u)) + ‖xt − x‖ → 0 as t → 0+. (3.11)

Since A is continuous, letting t → 0+, we have

‖
〈

Ayt,
1
p
(epη(v,u) − 1)

〉
− tq−1α(v − u) −

〈
Ax,

1
p
(epη(v,u) − 1)

〉
‖

≤ ‖
〈

Ayt − Ax,
1
p
(epη(v,u) − 1)

〉
‖‖tq−1α(v − u)‖

≤ ‖Ayt − Ax‖‖1
p
(epη(v,u) − 1)‖ + tq−1‖α(v − u)‖

→ 0 as t → 0+. (3.12)

From (3.7), we have
〈

Ayt,
1
p
(epη(v,u) − 1)

〉
+ f(u, v) − tp−1α(v − u ∈ V/(−intC)

Since V/(−intC) is closed, therefore from (3.12) we have
〈

Ax,
1
p
(epη(v,u) − 1)

〉
+ f(u, v) ∈ V/(−intC)

⇒
〈

Ax,
1
p
(epη(v,u) − 1)

〉
+ f(u, v) �intC 0, ∀v ∈ K.

Which completes the proof. ��
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Theorem 3.2. Let K be a nonempty bounded closed convex subset of a Euclid-
ian space X and (Y,C) is an ordered Euclidian space induced by the proper
pointed closed convex cone C whose apex is at origin with intC �= ∅. Suppose
η : K × K → X be affine in the first argument with η(x, x) = 0,∀x ∈ K. Let
f : K × K → Y be completely continuous in the first argument and affine in
the second argument with the condition f(x, x) = 0,∀x ∈ K. Let α : X → Y
is weakly lower semicontinuous. Let A : L(X,Y ) → L(X,Y ) be a continuous
mapping and T : K → 2L(X,Y ) be a nonempty compact valued mapping, which
is H-hemicontinuous and α-relaxed exponentially (p, η)-monotone with respect
to A. Then (GMEVVLIP) is solvable, i.e. there exist u ∈ K and x ∈ T (u) such
that 〈

Ax,
1
p
(epη(v,u) − 1)

〉
+ f(u, v) �intC 0, ∀v ∈ K.

Proof. Consider the set valued mapping F : K → 2X such that

F (v) = {u ∈ K :

〈
Ax,

1

p
(epη(v,u) − 1)

〉
+f(u, v) �intC 0, for some x ∈ T (u)}, ∀v∈K.

First we claim that F is a KKM mapping.
If F is not a KKM mapping, then there exists {u1, u2, . . . , um} ⊂ K such

that co{u1, u2, . . . , um} �

m⋃

i=1

F (ui), that means there exists at least a u ∈

co{u1, u2, . . . , um}, u =
m∑

i=1

tiui, where ti ≥ 0, i = 1, 2, . . . ,m,
m∑

i=1

ti = 1, but

u /∈
m⋃

i=1

F (ui).

From the construction of F , for any x ∈ T (u) we have
〈

Ax,
1
p
(epη(ui,u) − 1)

〉
+ f(u, ui) ≤intC 0; !fori = 1, 2, . . . ,m. (3.13)

From (3.13), and since η is affine in the first argument, it follows that

0 =
〈

Ax,
1
p
(epη(u,u) − 1)

〉
+ f(u, u)

=

〈
Ax,

1
p
(e

pη(

m∑

i=1

tiui, u)
− 1)

〉
+ f(u,

m∑

i=1

tiui)

=

〈
Ax,

1
p
(e

m∑

i=1

tipη(ui, u)
− 1)

〉
+

m∑

i=1

tif(u, ui)

≤C

〈
Ax,

1
p

m∑

i=1

ti(epη(ui,u) − 1)

〉
+

m∑

i=1

tif(u, ui)
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=
m∑

i=1

ti

{〈
Ax,

1
p
(epη(ui,u) − 1)

〉
+ f(u, ui)

}

≤intC 0,

which implies that 0 ∈ intC, this contradicts the fact that C is proper. Hence
F is a KKM mapping.

Define another set valued mapping G : K → 2X such that

G(v) = {u ∈ K :

〈
Ay,

1

p
(epη(v,u) − 1)

〉
+ f(u, v) �intC α(v −u), ∀ y ∈ T (v)}, ∀v ∈ K.

Now we will prove that F (v) ⊂ G(v), ∀v ∈ K.
Let u ∈ F (v), there exists some x ∈ T (u) such that

〈
Ax,

1
p
(epη(v,u) − 1)

〉
+ f(u, v) �intC 0. (3.14)

Since T is α-relaxed exponentially (p, η)-monotone with respect to A, therefore
∀v ∈ K, y ∈ T (v), we have

〈
Ax,

1

p
(e

pη(v,u) − 1)

〉
+ f(u, v) ≤C

〈
Ay,

1

p
(e

pη(v,u) − 1)

〉
+ f(u, v) − α(v − u). (3.15)

From (3.14), (3.15) and Lemma 2.1, we have
〈

Ay,
1
p
(epη(v,u) − 1)

〉
+ f(u, v) �intC α(v − u), ∀v ∈ K, y ∈ T (v).

Therefore u ∈ G(v), i.e. F (v) ⊂ G(v), ∀v ∈ K.

This implies that G is also a KKM mapping.

We claim that for each v ∈ K, G(v) ⊂ K is closed in the weak topology of X.

Let us suppose, u ∈ G(v)
w

the weak closure of G(v). Since X is reflexive,
there is sequence {un} in G(v) such that {un} converges weakly to u ∈ K. Then
for each y ∈ T (v), we have

〈
Ay,

1
p
(epη(v,un) − 1)

〉
+ f(un, v) �intC α(v − un)

⇒
〈

Ay,
1
p
(epη(v,un) − 1)

〉
+ f(un, v) − α(v − un) ∈ Y/−intC.

Since, Ay and f are completely continuous and Y/−intC is closed, α is
weakly lower semicontinuous, therefore the sequence {

〈
Ay, 1

p (epη(v,un) − 1)
〉

+

f(un, v)−α(v −un)} converges to
〈
Ay, 1

p (epη(v,u) − 1)
〉

+f(u, v)−α(v −u) and
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〈
Ay, 1

p (epη(v,u) − 1)
〉

+ f(u, v) − α(v − u) ∈ Y/−intC therefore
〈

Ay,
1
p
(epη(v,u) − 1)

〉
+ f(u, v) �intC α(v − u).

Hence u ∈ G(v). This proves that G(v) is weakly closed for all v ∈ K. Fur-
thermore, X is reflexive and K ⊂ X is nonempty, bounded, closed and convex;
therefore, K is weakly compact subset of X and so G(v) is also weakly compact.
Therefore from Lemma 2.2 and Theorem 3.1, it follows that

⋂

v∈K

G(v) �= ∅.

So there exists u ∈ K, such that
〈

Ay,
1
p
(epη(v,u) − 1)

〉
+ f(u, v) �intC α(v − u), ∀ v ∈ K, y ∈ T (v).

Hence Theorem 3.1, we can conclude that there exist u ∈ K and x ∈ T (u)
such that 〈

Ax,
1
p
(epη(v,u) − 1)

〉
+ f(u, v) �intC 0, ∀ v ∈ K.

i.e. (GMEVVLIP) is solvable. ��
Theorem 3.3. Let K be a nonempty closed convex subset of a Euclidian space
X with 0 ∈ K and (Y,C) is an ordered Euclidian space induced by the proper
pointed closed convex cone C whose apex is at origin with intC �= ∅. Suppose
η : K × K → X be affine in the first argument with η(x, x) = 0,∀x ∈ K. Let
f : K × K → Y be completely continuous in the first argument and affine in
the second argument with the condition f(x, x) = 0,∀x ∈ K. Let α : X → Y
is weakly lower semicontinuous. Let A : L(X,Y ) → Lc(X,Y ) be a continuous
mapping, where Lc(X,Y ) is the space of all completely continuous linear map
from X to Y . and T : K → 2L(X,Y ) be a nonempty compact valued mapping,
which is H-hemicontinuous and α-relaxed exponentially (p, η)-monotone with
respect to A. If there exists one r > 0 such that

〈
Ay,

1
p
(epη(0,v) − 1)

〉
+ f(v, 0) �intC 0, ∀ v ∈ K, y ∈ T (v) with ‖v‖ = r,(3.16)

then (GMEVVLIP) is solvable, i.e. there exist u ∈ K and x ∈ T (u) such that
〈

Ax,
1
p
(epη(v,u) − 1)

〉
+ f(u, v) �intC 0, ∀v ∈ K.

Proof. For r > 0, assume Kr = {u ∈ X : ‖u‖ ≤ r}.
By Theorem 3.2, we know that (GMEVVLIP) is solvable over Kr, i.e. there
exists ur ∈ K ∩ Kr and xr ∈ T (ur) such that

〈
Axr,

1
p
(epη(v,ur) − 1)

〉
+ f(ur, v) �intC 0, ∀v ∈ K ∩ Kr. (3.17)
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Putting v = 0 in (3.17),
〈

Axr,
1
p
(epη(0,ur) − 1)

〉
+ f(ur, 0) �intC 0. (3.18)

If ‖ur‖ = r for all r, then it contradicts (3.16). Hence r > ‖ur‖.
For any z ∈ K, let us choose t ∈ (0, 1) small enough such that (1 − t)ur + tz ∈
K ∩ Kr. Putting v = (1 − t)ur + tz in (3.17), we get

〈
Axr,

1
p
(epη((1−t)ur+tz,ur) − 1)

〉
+ f(ur, (1 − t)ur + tz) �intC 0. (3.19)

Since η is affine in the first variable, we have
〈

Axr,
1
p
(epη((1−t)ur+tz,ur) − 1)

〉
+ f(ur, (1 − t)ur + tz)

=
〈

Axr,
1
p
(e(1−t)pη(ur,ur)+tpη(z,ur) − 1)

〉
+ tf(ur, z)

≤C

〈
Axr, (1 − t)

1
p
(epη(ur,ur) − 1) + t

1
p
(epη(z,ur) − 1)

〉
+ tf(ur, z)

= t{
〈

Axr,
1
p
(epη(z,ur) − 1)

〉
+ f(ur, z)}. (3.20)

Hence from (3.19), (3.20) and Lemma 2.1, we get
〈

Axr,
1
p
(epη(z,ur) − 1)

〉
+ f(ur, z) �intC 0, ∀z ∈ K.

Therefore, (GMEVVLIP) is solvable. This completes the proof. ��
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Abstract. We consider a class of systems of nonlinear ordinary differen-
tial equations with parameters. In particular, systems of such type arise
when modeling the multistage synthesis of a substance. We study prop-
erties of solutions to the systems and propose a method for approximate
solving the systems in the case of very large coefficients. We establish
approximation estimates and show that the convergence rate depends on
the parameters characterizing the nonlinearity of the systems. Moreover,
the larger the coefficients of the systems, the more exact the approxi-
mate solutions. Thereby this method allows us to avoid difficulties aris-
ing inevitably when solving systems of nonlinear differential equations
with very large coefficients.

Keywords: Systems of ordinary differential equations · Cauchy prob-
lem · Large coefficients · Estimates for solutions · Limit theorems

1 Introduction

Consider the following system of ordinary differential equations
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx1

dt
= g(t, xn) − n − 1

τ
x1, t > 0,

dxj

dt
=

n − 1
τ

(xj−1 − xj), j = 2, . . . , n − 1,

dxn

dt
=

n − 1
τ

xn−1 − θxn.

(1)

This system arises when modeling the multistage synthesis of a substance. The
dimension n of the system is defined by the number of stages, the first equation
describes the initiation law, the last equation does the utilization law, θ ≥ 0, τ
is the duration of the process, xj(t, τ) is the substance concentration at the jth
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stage, xn(t, τ) is the concentration of the final product. Therefore, xn(t, τ) is of
interest from the practical viewpoint.

It should be noted that systems of the form (1) are often termed the ‘Good-
win’ model [1]. Ordinary differential equations of such kind and more compli-
cated equations arise when modeling gene networks (for example, see [2], the
reviews [3,4] and the bibliography therein).

If n is very large (for instance, the process consists of a great number of
the stages) then finding of the last component xn(t, τ) of the solution to (1) is
a very complicated problem. A rigorous mathematical solution to this problem
was given by G.V. Demidenko (see [5, Theorems 1–4]). We formulate this result
below.

Suppose that the function g(t, v) ∈ C(R+
2 ) is bounded and satisfies the

Lipschitz condition with respect to v. Increase the dimension of (1) unboundedly
and consider the Cauchy problem for each system with the zero initial conditions

xj |t=0 = 0, j = 1, . . . , n. (2)

Taking only the last component of the solution to each of these Cauchy problems,
we obtain the sequence of the functions {xn(t, τ)}.

Theorem 1 (G.V. Demidenko). The sequence {xn(t, τ)} converges uniformly
on every segment [0, T ], T > τ :

xn(t, τ) → y(t, τ), n → ∞.

The limit function y(t, τ) is a solution to the initial value problem for the delay
equation

{
d

dt
y(t, τ) = −θy(t, τ) + g(t − τ, y(t − τ, τ)), t > τ,

y(t, τ) ≡ 0, 0 ≤ t ≤ τ ;
(3)

moreover,

max
t∈[0,T ]

|xn(t, τ) − y(t, τ)| ≤ c

n1/4
, n > n0.

By Theorem 1, we need not solve the Cauchy problem (1), (2) for the system
of large dimension with large coefficients in order to compute approximately
xn(t, τ) for n � 1. It is sufficient to solve only the initial value problem (3)
for one delay differential equation. This result gives us an effective method for
approximate finding xn(t, τ) for n � 1 by using the delay equation; moreover,
the estimate established in Theorem 1 characterizes the approximation order.

Theorem 1 has become a basis for deriving similar statements for various
systems of nonlinear ordinary differential equations of large dimension (see, for
example, [6–12]). In particular, a perturbation of (1) was investigated in [11].
Some examples of the Cauchy problems for (1) with nonzero initial conditions
were considered in [7]. On the basis of the results, a new method for approxi-
mation of solutions to initial value problems for the mentioned delay differential
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equation with arbitrary initial conditions was proposed in [10]. Three different
classes of systems of large dimension were studied in [6,9], [8] and [12] respec-
tively. In the mentioned works G.V. Demidenko proposed a series of methods
for proving limit theorems which establish interconnections between solutions
to classes of systems of nonlinear ordinary differential equations of large dimen-
sion and generalized solutions to delay differential equations. The readers can be
familiarized with some of these methods in the papers [12,13]. Using the meth-
ods, classes of essentially nonlinear systems of large dimension (every equation in
the systems is nonlinear) were studied in [14–16]. It should be noted that there
is a number of works devoted to the study of approximation of solutions to delay
differential equations by means of solutions to systems of ordinary differential
equations of large dimension (see, for instance, [17–22]). In particular, [17,18]
are the first works in this direction. A brief survey of the literature and the
use of the semigroup theory for approximation are given in [19]. Approximation
schemes and their development are discussed in [20–22].

If τ 	 1 (for example, the synthesis process is very rapid) then the coeffi-
cients of (1) is very large as well. In [23,24] we studied the behavior of xn(t, τ)
in dependence on τ for every fixed n. In particular, the following result was
obtained.

Theorem 2. The sequence {xn(t, τ)} converges uniformly on every segment
[0, T ]:

xn(t, τ) → z(t), τ → 0.

The limit function z(t) is a solution to the Cauchy problem
{

d

dt
z = −θz + g(t, z), t > 0,

z(0) = 0;
(4)

moreover,

max
t∈[0,T ]

|xn(t, τ) − z(t)| ≤ c τ, τ 	 1, (5)

where c > 0 depends on θ, G, L, T , n.

This result gives us an effective method for approximate calculating xn(t, τ).
Indeed, we may solve the Cauchy problem (4) for one ordinary differential equa-
tion instead of the Cauchy problem (1), (2). Then, by the obtained convergence,
we have z(t) ≈ xn(t, τ) for τ 	 1. Since τ is the duration of the synthesis process,
then we can find approximately the concentration xn(t, τ) of the final product
in the case of very rapid passages from one stage to the other.

More detailed modeling processes of the substance synthesis leads to systems
of essentially nonlinear differential equations in comparison with (1). As a rule,
so-called Hill’s type functions are used (for example, see [4]). Our aim is to study
one class of systems of such kind described in the next section.
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2 Main Results

In the present paper we consider the Cauchy problem for the class of systems of
nonlinear ordinary differential equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx̂1

dt
= g(t, x̂n) − n − 1

τ

x̂1

1 + ρ1x̂
γ1
1

, t > 0,

dx̂j

dt
=

n − 1
τ

(
x̂j−1

1 + ρj−1x̂
γj−1
j−1

− x̂j

1 + ρj x̂
γj

j

)

, j = 2, . . . , n − 1,

dx̂n

dt
=

n − 1
τ

x̂n−1

1 + ρn−1x̂
γn−1
n−1

− θx̂n,

x̂j |t=0 = 0, j = 1, . . . , n,

(6)

where

θ ≥ 0, τ > 0, 0 ≤ ρk ≤ ρ, 0 < γ ≤ γk, k = 1, . . . , n − 1.

This system arises when modeling the multistage synthesis of a substance as well.
Obviously, this system for ρ = 0 coincides with (1). As was shown in [14,16], the
last component x̂n(t, τ) of the solution to (6) for n � 1 is approximated by the
solution to the initial value problem (3). Analogous results for a more general
class of systems of nonlinear differential equations including the systems of (6)
were obtained in [15] for ρk = ρ, γk = γ.

We study properties of the components x̂j(t, τ) of the solution to the Cauchy
problem (6) as functions of t and τ 	 1, when n is fixed. Assume that the
function g(t, v) ∈ C(R2) is nonnegative and bounded 0 ≤ g(t, v) ≤ G and
satisfies the Lipschitz condition

|g(t, v1) − g(t, v2)| ≤ L|v1 − v2|, v1, v2 ∈ R.

Note that the Cauchy problem (6) is uniquely solvable under these conditions;
moreover, the components of the solutions are nonnegative (see the detailed
proof in [14–16]).

The following result holds.

Theorem 3. The sequence {x̂n(t, τ)} consisting of the last components of the
solutions to the Cauchy problems of the from (6) converges uniformly on every
segment [0, T ]:

x̂n(t, τ) → z(t), τ → 0. (7)

The limit function z(t) is the solution to the Cauchy problem (4).

Proof. Denote u(t, τ) = x̂(t, τ) − x(t, τ), where x(t, τ) is the solution to the
Cauchy problem (1), (2) and x̂(t, τ) is the solution to the Cauchy problem (6).
It is not hard to verify that the vector function u(t, τ) satisfies the following
system of differential equations

du

dt
= Au + G1(t) + G2(t),
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where A coincides with the matrix of (1)

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−n − 1
τ

0 · · · · · · 0
n − 1

τ
−n − 1

τ

. . . . . .
...

0
. . . . . . . . .

...
...

. . . . . . −n − 1
τ

0

0 · · · 0
n − 1

τ
−θ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

G1(t) =

⎛

⎜
⎜
⎜
⎝

g(t, x̂n(t, τ)) − g(t, xn(t, τ))
0
...
0

⎞

⎟
⎟
⎟
⎠

,

G2(t) =
n − 1

τ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρ1
(
x̂1(t, τ)

)1+γ1

1 + ρ1
(
x̂1(t, τ)

)γ1

ρ2
(
x̂2(t, τ)

)1+γ2

1 + ρ2
(
x̂2(t, τ)

)γ2 − ρ1
(
x̂1(t, τ)

)1+γ1

1 + ρ1
(
x̂1(t, τ)

)γ1

...
ρn−1

(
x̂n−1(t, τ)

)1+γn−1

1 + ρn−1

(
x̂n−1(t, τ)

)γn−1 − ρn−2

(
x̂n−2(t, τ)

)1+γn−2

1 + ρn−2

(
x̂n−2(t, τ)

)γn−2

− ρn−1

(
x̂n−1(t, τ)

)1+γn−1

1 + ρn−1

(
x̂n−1(t, τ)

)γn−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Taking into account that u(0, τ) = 0, we obtain

u(t, τ) =

t∫

0

e(t−s)A(G1(s) + G2(s))ds.

Remind the representation for the matrix exponent [25]

etA = ϕ1(t)I + ϕ2(t)(A − λ1I) + ϕ3(t)(A − λ1I)(A − λ2I) + . . .

+ϕn(t)(A − λ1I) . . . (A − λn−1I),

where I is the unit matrix, λk are the eigenvalues of A,

ϕ1(t) = eλ1t, ϕk(t) =

t∫

0

eλk(t−s)ϕk−1(s) ds, k = 2, . . . , n.

Obviously, in our case

λ1 = −θ, λk = −n − 1
τ

, k = 2, . . . , n.
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Consequently,

ϕ1(t) = e−θt, ϕk(t) =
e−θt

ωk−1

⎛

⎝1 − e−ωt
k−2∑

j=0

(ωt)j

j!

⎞

⎠ , k = 2, . . . , n,

where ω =
n − 1

τ
− θ.

Hence, the last component un(t, τ) of u(t, τ) has the form

un(t, τ) =

t∫

0

ψn(t − s)(g(s, x̂n(s, τ)) − g(s, xn(s, τ)))ds

+

t∫

0

n∑

j=1

ψn−j+1(t − s)G2j(s)ds

= J1(t, τ) + J2(t, τ), (8)

where

ψk(t) =
(

n − 1
τ

)k−1

ϕk(t), k = 1, . . . , n,

the functions G2j(t) are the components of the vector function G2(t).
Consider the first function J1(t, τ). Obviously, if τ < τ1 = n−1

θ then ψk(t)
satisfy the estimates

0 ≤ ψk(t) ≤ e−θt

(
1 − θτ

n−1

)k−1
, k = 1, . . . , n, t ≥ 0.

Consequently, by the Lipschitz condition for g(t, v), we have

|J1(t, τ)| ≤
t∫

0

ψn(t − s)|g(s, x̂n(s, τ)) − g(s, xn(s, τ))|ds

≤ L
(
1 − θτ

n−1

)n−1

t∫

0

|un(s, τ)|ds. (9)

Consider the second function J2(t, τ). Taking into account the explicit form
of G2j(t), we can rewrite J2(t, τ) as follows

J2(t, τ) =
n − 1

τ

t∫

0

n−1∑

j=1

(
ψn−j+1(t − s) − ψn−j(t − s)

) ρj

(
x̂j(s, τ)

)1+γj

1 + ρj

(
x̂j(s, τ)

)γj
ds.

To estimate J2(t, τ) we use the next lemmas.
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Lemma 1. There exists τ0 > 0 such that the components of the solution to the
Cauchy problem (6) satisfy the estimates

0 ≤ x̂j(t, τ) ≤ τG(1 + ρj)
n − 1

, j = 1, . . . , n − 1, t ∈ [0, T ], 0 < τ < τ0. (10)

Proof. This lemma can be proved in a similar way as in [14,16].

Lemma 2. The following estimates hold

t∫

0

|ψk(t − s) − ψk−1(t − s)| ds ≤ τ

n − 1
2

(
1 − θτ

n−1

)k−1
,

k = 2, . . . , n, τ < τ1 =
n − 1

θ
, t ≥ 0.

Proof. Let k = 2. Then,

|ψ2(t) − ψ1(t)| =
∣
∣
∣
∣
n − 1

τ
ϕ2(t) − ϕ1(t)

∣
∣
∣
∣ =

∣
∣
∣
∣
n − 1

τ

e−θt

ω

(
1 − e−ωt

) − e−θt

∣
∣
∣
∣

=

∣
∣
∣
∣
∣

(
1

1 − θτ
n−1

− 1

)

e−θt
(
1 − e−ωt

) − e−(θ+ω)t

∣
∣
∣
∣
∣

≤ τ

n − 1
θe−θt

(
1 − θτ

n−1

) + e− n−1
τ t.

Hence,

t∫

0

|ψ2(t − s) − ψ1(t − s)| ds ≤ τ

n − 1
1 − e−θt

(
1 − θτ

n−1

) +
τ

n − 1

(
1 − e− n−1

τ t
)

≤ τ

n − 1
2

(
1 − θτ

n−1

) .

Let k > 2. By definition,

|ψk(t) − ψk−1(t)| =

∣
∣
∣
∣
∣

(
n − 1

τ

)k−1

ϕk(t) −
(

n − 1
τ

)k−2

ϕk−1(t)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

(
n − 1

τ

)k−1
e−θt

ωk−1

⎛

⎝1 − e−ωt
k−2∑

j=0

(ωt)j

j!

⎞

⎠

−
(

n − 1
τ

)k−2
e−θt

ωk−2

⎛

⎝1 − e−ωt
k−3∑

j=0

(ωt)j

j!

⎞

⎠

∣
∣
∣
∣
∣
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=

∣
∣
∣
∣
∣

(
n − 1

τ

)k−1
e−θt

ωk−1

⎛

⎝1 − e−ωt
k−2∑

j=0

(ωt)j

j!

⎞

⎠

−
(

n − 1
τ

)k−2
e−θt

ωk−2

⎛

⎝1 − e−ωt
k−2∑

j=0

(ωt)j

j!

⎞

⎠

−
(

n − 1
τ

)k−2
e−(θ+ω)t

ωk−2

(ωt)k−2

(k − 2)!

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

τ

n − 1
θe−θt

(
1 − θτ

n−1

)k−1

⎛

⎝1 − e−ωt
k−2∑

j=0

(ωt)j

j!

⎞

⎠

−
(

n − 1
τ

)k−2
tk−2

(k − 2)!
e− n−1

τ t

∣
∣
∣
∣
∣

≤ τ

n − 1
θe−θt

(
1 − θτ

n−1

)k−1
+

(
n − 1

τ

)k−2
tk−2

(k − 2)!
e− n−1

τ t.

Consequently,

t∫

0

|ψk(t − s) − ψk−1(t − s)| ds ≤ τ

n − 1
1 − e−θt

(
1 − θτ

n−1

)k−1

+

t∫

0

(
n − 1

τ

)k−2 (t − s)k−2

(k − 2)!
e− n−1

τ (t−s) ds

=
τ

n − 1
1 − e−θt

(
1 − θτ

n−1

)k−1
+

τ

n − 1

⎛

⎝1 − e− n−1
τ t

k−2∑

j=0

(
n−1

τ t
)j

j!

⎞

⎠

≤ τ

n − 1
2

(
1 − θτ

n−1

)k−1
.

The lemma is proved.

Using Lemma 1, for τ < τ0, we have

ρj

(
x̂j(s, τ)

)1+γj

1 + ρj

(
x̂j(s, τ)

)γj
≤ ρj

(
τG(1 + ρj)

n − 1

)1+γj

, j = 1, . . . , n − 1, t ∈ [0, T ].

Taking into account the conditions

0 ≤ ρk ≤ ρ, 0 < γ ≤ γk, k = 1, . . . , n − 1,
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we obtain

ρj

(
τG(1 + ρj)

n − 1

)1+γj

≤ ρ

(
τG(1 + ρ)

n − 1

)1+γ

, j = 1, . . . , n − 1,

for τ < τ2 = n−1
G(1+ρ) .

Hence, by Lemma 2, for τ ≤ τ∗ < min{τ0, τ1, τ2}, we obtain

|J2(t, τ)| ≤ ρ

(
τG(1 + ρ)

n − 1

)1+γ n−1∑

j=1

2
(
1 − θτ∗

n−1

)j

= 2ρ

(
τG(1 + ρ)

n − 1

)1+γ

⎛

⎜
⎝

1
(
1 − θτ∗

n−1

)n−1 − 1

⎞

⎟
⎠

n − 1
θτ∗

. (11)

By (9) and (11), for τ ≤ τ∗, from (8) we have

|un(t, τ)| ≤ M

t∫

0

|un(s, τ)| ds + Kρ(1 + ρ)1+γτ1+γ ,

where

M =
L

(
1 − θτ∗

n−1

)n−1 , K = 2
(

G

n − 1

)1+γ

⎛

⎜
⎝

1
(
1 − θτ∗

n−1

)n−1 − 1

⎞

⎟
⎠

n − 1
θτ∗

.

Applying Gronwall’s inequality (for example, see [26]), we obtain

|un(t, τ)| ≤ KeMtρ(1 + ρ)1+γτ1+γ .

Hence, the following estimate holds

|x̂n(t, τ) − xn(t, τ)| ≤ KeMT ρ(1 + ρ)1+γτ1+γ (12)

on every segment [0, T ].
In view of Theorem 2 the sequence {xn(t, τ)} converges uniformly to the

solution z(t) to the Cauchy problem (4) on every segment [0, T ]; moreover, (5)
holds. Then, from (12) we have the uniform convergence

x̂n(t, τ) → z(t), τ → 0, t ∈ [0, T ].

Theorem 3 is proved.

Corollary 1. The following estimate holds

max
t∈[0,T ]

|x̂n(t, τ) − z(t)| ≤ c1τ + c2τ
1+γ , τ 	 1,

where c1 > 0 depends on θ, G, L, T , n, and c2 > 0 depends on θ, G, L, T , n,
ρ, γ.
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Proof. Corollary 1 follows immediately from (5) and (12).

It follows from Theorem 3 that it is sufficient to solve the Cauchy problem
(4) for one ordinary differential equation in order to find approximately the last
component x̂n(t, τ) of the solution to (6) for τ 	 1. This result gives us an
effective method for approximate calculating x̂n(t, τ). Moreover, the less τ , the
more exact the method.

3 Conclusion

We considered the class of the systems of nonlinear ordinary differential equa-
tions with parameters. In particular, systems of such type arise when modeling
the multistage synthesis of a substance. We studied properties of the solutions
to the systems and proposed a method for approximate solving the systems in
the case of very large coefficients. We established the approximation estimates
and showed that the convergence rate depends on the parameters characteriz-
ing the nonlinearity of the systems. Moreover, the larger the coefficients of the
systems, the more exact the approximate solutions. Owing to these causes, this
method allows us to avoid difficulties arising inevitably when solving systems of
nonlinear differential equations with very large coefficients. As an application,
the proposed method can be used for approximate finding the concentration of
the final product of the multistage synthesis in the case of very rapid passages
from one stage to the other.
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A Davidon-Fletcher-Powell Type Quasi-Newton
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Abstract. In this article, a Davidon-Fletcher-Powell type quasi-Newton
method is proposed to capture nondominated solutions of fuzzy opti-
mization problems. The functions that we attempt to optimize here are
multivariable fuzzy-number-valued functions. The decision variables are
considered to be crisp. Towards developing the quasi-Newton method,
the notion of generalized Hukuhara difference between fuzzy numbers,
and hence generalized Hukuhara differentiability for multi-variable fuzzy-
number-valued functions are used. In order to generate the iterative
points, the proposed technique produces a sequence of positive definite
inverse Hessian approximations. The convergence result and an algorithm
of the developed method are also included. It is found that the sequence
in the proposed method has superlinear convergence rate. To illustrate
the developed technique, a numerical example is exhibited.

Keywords: Quasi-Newton method · Generalized-Hukuhara differentia-
bility · Fuzzy optimization · Nondominated solution

1 Introduction

In order to deal with imprecise nature of the objective and constraint functions
in a decision-making problem, fuzzy optimization problems are widely studied
since the seminal work by Bellman and Zadeh [6], in 1970. The research article by
Cadenas and Verdegay [7], the monograph by S�loẃınski [29], and the references
therein are rich stream of this topic. Very recently, in a survey article, Luhand-
jula [26] reported the milestones and perspective of the theories and applica-
tions of fuzzy optimization. The survey books by Lai and Hwang [20,21] and by
Lodwick and Kacprzyk [22] explored a perceptive overview on the development
of fuzzy optimization problems. Recently, Ghosh and Chakraborty published a
fuzzy geometrical view [9,14,15] on fuzzy optimization problems [16–19].

In order to solve an unconstrained fuzzy optimization problem, recently,
Pirzada and Pathak [23] and Chalco-Cano et al. [8] developed a Newton method.
Much similar to fuzzy optimization, Ghosh [12] derived a Newton method [11]
and a quasi-Newton method [13] for interval optimization problems.

c© Springer Nature Singapore Pte Ltd. 2017
D. Giri et al. (Eds.): ICMC 2017, CCIS 655, pp. 232–245, 2017.
DOI: 10.1007/978-981-10-4642-1 20
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The real life optimization models often need to optimize a fuzzy function
over a real data set. Mathematically, the problem is the following:

min
x∈Rn

˜f(x),

where ˜f is a fuzzy-number-valued function. There is plethora of studies and
numerical algorithms [1,28] to effectively tackle unconstrained conventional opti-
mization problems. However, the way to apply those methods to solve fuzzy
optimization problems is not apparent. In this article, we develop a Davidon-
Fletcher-Powell type quasi-Newton method for an unconstrained fuzzy optimiza-
tion problem.

In order to capture the optimum candidates [4,28] for a smooth optimization
problem, it is natural to use the notion of differentiability. However, to find
the optimal points of a fuzzy optimization problem, in addition to the idea on
differentiability of the fuzzy function, identification of an appropriate ordering
of fuzzy numbers is of utmost importance. Because, unlike the real number set,
the set of all fuzzy numbers is not linearly ordered [16].

Towards developing the notion of differentiability of fuzzy functions, Dubois
and Prade [10] used the extension principle, and also exhibited that a fuzzy
extension of the conventional definition of differentiation requires further enquiry.
Recently, the idea of Hukuhara differentiability (H-differentiability) [3,24]
received substantial attention in fuzzy optimization theory. The concept of
H-fuzzy-differentiation is rigorously discussed in [2]. Stefanini [30] proposed
generalizations of H-differentiability (gH-differentiability) and its application
in fuzzy differential equations. Bede and Stefanini [5] gave a generalized H-
differentiability of fuzzy-valued functions. Chalco-Cano et al. [8] reported that
gH-derivative is the most general concept for differentiability of fuzzy functions.
Thus, in this paper, we employ the gH-derivative and its calculus [8,33] to derive
the quasi-Newton method for fuzzy optimization problems.

There have been extensive literature on ordering of fuzzy numbers includ-
ing the research articles [25,27,31]. References of [32] reports main stream on
ordering of fuzzy numbers. In this paper, we use the fuzzy-max ordering of fuzzy
numbers of Ramı́k and Rimanek [27]. There are two reasons behind this choice.
First, it is a partial ordering in the space of fuzzy numbers [23]. Second, it has
insightful association [33] with the optimality notion on fuzzy optimization.

The rest of the article is organized in the following sequence. In Sect. 2, the
notations and terminologies are given which are used throughout the paper. In
Sect. 3, we derive a quasi-Newton method. Convergence analysis of the proposed
method is presented in Sect. 4. Section 5 includes an illustrative numerical exam-
ple. Finally, we give a brief conclusions and scopes for future research in Sect. 6.

2 Preliminaries

We use upper and lower case letters with a tildebar ( ˜A, ˜B, ˜C, . . . and ã,˜b, c̃, . . . )
to denote fuzzy subsets of R. The membership function of a fuzzy set ˜A of R is
represented by μ(x| ˜A), for x in R, with μ(R) ⊆ [0, 1].
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2.1 Fuzzy Numbers

Definition 1 (α-cut of a fuzzy set [16]). The α-cut of a fuzzy set ˜A of R is
denoted by ˜A(α) and is defined by:

˜A(α) =

{

{x : μ(x| ˜A) ≥ α} if 0 < α ≤ 1
closure{x : μ(x| ˜A) > 0} if α = 0.

Definition 2 (Fuzzy number [16]). A fuzzy set ˜N of R is called a fuzzy number
if its membership function μ has the following properties:

(i) μ(x| ˜N) is upper semi-continuous,
(ii) μ(x| ˜N) = 0 outside some interval [a, d], and
(iii) there exist real numbers b and c satisfying a ≤ b ≤ c ≤ d such that μ(x| ˜N)

is increasing on [a, b] and decreasing on [c, d], and μ(x| ˜N) = 1 for each x
in [b, c].

In particular, if b = c, and the parts of the membership functions μ(x| ˜N) in
[a, b] and [c, d] are linear, the fuzzy number is called a triangular fuzzy number,
denoted by (a/c/d). We denote the set of all fuzzy numbers on R by F(R).

Since μ(x|ã) is upper semi-continuous for a fuzzy number ã the α-cut of ã,
ã(α) is a closed and bounded interval of R for all α in [0, 1]. We write

ã(α) =
[

ãL
α, ãU

α

]

.

Let ⊕ and � denote the extended addition and multiplication. According to
the well-known extension principle, the membership function of ã⊗˜b (⊗ = ⊕ or �)
is defined by

μ(z|ã ⊗˜b) = sup
x×y=z

min
{

μ(x|ã), μ(y|˜b)
}

.

For any ã and ˜b in F(R), the α-cut (for any α in [0, 1]) of their addition and
scalar multiplication can be obtained by:

(

ã ⊕˜b
)

(α) =
[

ãL
α +˜bL

α, ãU
α +˜bU

α

]

and

(

λ � ã
)

(α) =

{

[

λãL
α, λãU

α

]

if λ ≥ 0,
[

λãU
α , λãL

α

]

if λ < 0.

Definition 3 (Generalized Hukuhara difference [30]). Let ã and ˜b be two fuzzy
numbers. If there exists a fuzzy number c̃ such that c̃ ⊕ ˜b = ã or ˜b = ã � c̃, then
c̃ is said to be generalized Hukuhara difference (gH-difference) between ã and ˜b.
Hukuhara difference between ã and ˜b is denoted by ã �gH

˜b.

In terms of α-cut, for all α ∈ [0, 1], we have
(

ã �gH
˜b
)

(α) =
[

min
{

ãL
α −˜bL

α, ãU
α −˜bU

α

}

, max
{

ãL
α −˜bL

α, ãU
α −˜bU

α

}]

.
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2.2 Fuzzy Functions

Let ˜f : R
n → F(R) be a fuzzy function. For each x in R

n, we present the α-cuts
of ˜f(x) by

˜f(x)(α) =
[

˜fL
α (x), ˜fU

α (x)
]

for all α ∈ [0, 1].

The functions ˜fL
α and ˜fU

α are, evidently, two real-valued functions on R
n and

are called the lower and upper functions, respectively.
With the help of gH-difference between two fuzzy numbers, gH-

differentiability of a fuzzy function is defined as follows.

Definition 4 (gH-differentiability of fuzzy functions [8]). Let ˜f : R
n → F(R)

be a fuzzy function and x0 =
(

x0
1, x

0
2, · · · , x0

n

)

be an element of R
n. For each

i = 1, 2, · · · , n, we define a fuzzy function ˜hi : R → F(R) as follows

˜hi(xi) = ˜f
(

x0
1, · · · , x0

i−1, xi, x
0
i+1, · · · , x0

n

)

.

We say hi is gH-differentiable if the following limit exists

lim
ti→0

˜hi(x0
i + ti) �gH

˜hi(x0
i )

ti
.

If ˜hi is gH-differentiable, then we say that ˜f has the i-th partial gH-derivative
at x0 and is denoted by ∂ ˜f

∂xi
(x0).

The function ˜f is said to be gH-differentiable at x0 ∈ R
n if all the partial gH-

derivatives ∂ ˜f
∂x1

(x0), ∂ ˜f
∂x2

(x0), · · · , ∂ ˜f
∂xn

(x0) exist on some neighborhood of x0 and
are continuous at x0.

Proposition 1 (See [8]). If a fuzzy function ˜f : R
n → F(R) is gH-differentiable

at x0 ∈ R
n, then for each α ∈ [0, 1], the real-valued function ˜fL

α + ˜fU
α is differ-

entiable at x0. Moreover,

∂ ˜fL
α

∂xi
(x0) +

∂ ˜fU
α

∂xi
(x0) =

∂( ˜fL
α + ˜fU

α )
∂xi

(x0).

Definition 5 (gH-gradient [8]). The gH-gradient of a fuzzy function ˜f : R
n →

F(R) at a point x0 ∈ R
n is defined by

(

∂ ˜f(x0)
∂x1

,
∂ ˜f(x0)

∂x2
, · · · ,

∂ ˜f(x0)
∂xn

)t

.

We denote this gH-gradient by ∇ ˜f(x0).

We define an m-times continuously gH-differentiable fuzzy function ˜f as a func-
tion whose all the partial gH-derivatives of order m exist and are continuous.
Then, we have the following immediate result.
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Proposition 2 (See [8]). Let ˜f be a fuzzy function. Let at x0 ∈ R
n, the function

˜f be m-times gH-differentiable. Then, the real-valued function ˜fL
α + ˜fU

α is m-
times differentiable at x0.

Definition 6 (gH-Hessian [8]). Let the fuzzy function ˜f be twice gH-
differentiable at x0. Then, for each i, the function ∂ ˜f

∂xi
is gH-differentiable at

x0. The second order partial gH-derivative can be calculated through ∂2
˜f

∂xi∂xj
.

The gH-Hessian of ˜f at x0 can be captured by the square matrix

∇2
˜f(x0) =

[

∂2
˜f

∂xi∂xj
(x0)

]

n×n

.

2.3 Optimality Concept

Definition 7 (Dominance relation between fuzzy numbers [23]). Let ã and ˜b be
two fuzzy numbers. For any α ∈ [0, 1], let ãα =

[

ãL
α, ãU

α

]

and ˜bα =
[

˜bL
α,˜bU

α

]

. We

say ã dominates ˜b if ãL
α ≤ ˜bL

α and ãU
α ≤ ˜bU

α for all α ∈ [0, 1]. If ã dominates ˜b,
then we write ã � ˜b. The fuzzy number ˜b is said to be strictly dominated by ã,
if ã � ˜b and there exists β ∈ [0, 1] such that ãL

β < ˜bL
β or ãU

β < ˜bU
β . If ã strictly

dominates ˜b, then we write ã ≺ ˜b.

Definition 8 (Non-dominated solution [23]). Let ˜f : R
n → F(R) be a fuzzy

function and we intend to find a solution of ‘min
x∈Rn

˜f(x)’. A point x̄ ∈ R
n is

said to be a locally non-dominated solution if for any ε > 0, there exists no
x ∈ Nε(x̄) such that ˜f(x) � ˜f(x̄), where Nε(x̄) denotes ε-neighborhood of x̄. A
local non-dominated solution is called a local solution of ‘min

x∈Rn

˜f(x)’.

For local non-dominated solution, the following result is proved in [8].

Proposition 3 (See [8]). Let ˜f : R
n → F(R) be a fuzzy function. If x∗ is a

local minimizer of the real-valued function ˜fL
α + ˜fU

α for all α ∈ [0, 1], then x∗ is
a locally non-dominated solution of ‘min

x∈Rn

˜f(x)’.

3 Quasi-Newton Method

In this section, we consider to solve the following unconstrained Fuzzy Optimiza-
tion Problem:

(FOP ) min
x∈Rn

˜f(x),

where ˜f : R
n → F(R) is a multi-variable fuzzy-number-valued function. On

finding nondominated solution of the problem, we note that the existing Newton
method (see [8,23]) requires computation of the inverse of the concerned Hessian.
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However, computation of the inverse of Hessian is cost effective. Thus in this arti-
cle, we intend to develop a quasi-Newton method to sidestep the computational
cost of the existing Newton method. Towards this end, for the considered FOP
we assume that at each of the following generated sequential points xk, the func-
tion ˜f , its gH-gradient and gH-Hessian are well-defined. Therefore, according
to Propositions 1 and 2, we can calculate ˜fL

α (xk), ˜fU
α (xk), ∇ ˜fL

α (xk), ∇ ˜fU
α (xk),

∇2
˜fL
α (xk) and ∇2

˜fU
α (xk) for all α ∈ [0, 1], for all k = 0, 1, 2, · · · . Hence, we can

have a quadratic approximations of the lower and the upper functions ˜fL
α and

˜fU
α at each xk.

Let the quadratic approximation models of the functions ˜fL
α and ˜fU

α at xk+1 be

hL
α(x) = ˜fL

α (xk+1) + ∇ ˜fL
α (xk+1)

t(x − xk+1) + 1
2
(x − xk+1)

t ∇2
˜fL
α (xk+1) (x − xk+1)

and

hU
α (x) = ˜fU

α (xk+1) + ∇ ˜fU
α (xk+1)

t(x − xk+1) + 1
2
(x − xk+1)

t ∇2
˜fU
α (xk+1) (x − xk+1),

which satisfy the interpolating conditions

hL
α(xk+1) = ˜fL

α (xk+1), hU
α (xk+1) = ˜fU

α (xk+1), ∇hL
α(xk+1) = ∇ ˜fL

α (xk+1), and

∇hU
α (xk+1) = ∇ ˜fU

α (xk+1).

The derivatives of hL
α and hU

α yield

∇hL
α(x) = ∇ ˜fL

α (xk+1) + ∇2
˜fL
α (xk+1) (x − xk+1)

and ∇hU
α (x) = ∇ ˜fU

α (xk+1) + ∇2
˜fU
α (xk+1) (x − xk+1). (1)

In the next, the Newton method (see [8,23]) attempts to find x in terms of
xk+1 as follows

x = xk+1 − [∇2φ(xk+1)
]−1 ∇φ(xk+1),

where φ(x) =
∫ 1

0

(

˜fL
α (x) + ˜fU

α (x)
)

dα. However, due to inherent computational

difficulty to find [∇2φ(xk+1)]−1, it is often suggested to consider an appropriate
approximation. Let Ak+1 be an approximation of [∇2φ(xk+1)]−1. Then from
(1) setting x = xk, δk = xk+1 − xk, βL

αk = ∇ ˜fL
α (xk+1) − ∇ ˜fL

α (xk) and βU
αk =

∇ ˜fU
α (xk+1) − ∇ ˜fU

α (xk), we obtain

βL
αk = ∇2

˜fL
α (xk+1)δk and βU

αk = ∇2
˜fU
α (xk+1)δk

=⇒ βL
αk + βU

αk =
(

∇2
˜fL
α (xk+1) + ∇2

˜fU
α (xk+1)

)

δk for all α ∈ [0, 1]

=⇒
∫ 1

0

(

βL
αk + βU

αk

)

dα =
(∫ 1

0

∇2
(

˜fL
α + ˜fU

α

)

(xk+1)dα

)

δk

=⇒
∫ 1

0

(∇φα(xk+1) − ∇φα(xk)) dα =
(∫ 1

0

∇2φα(xk+1)dα

)

δk,
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where φα(x) = ˜fL
α (x) + ˜fU

α (x)

=⇒ ∇φ(xk+1) − ∇φ(xk) = ∇2φ(xk+1)δk, where φ(x) =
∫ 1

0

φα(x)dα

=⇒ Ak+1Φk = δk, where Φk = ∇φ(xk+1) − ∇φ(xk).

According to Proposition 3, to obtain nondominated solutions of (FOP), we
need to have solutions of the equation ∇( ˜fL

α + ˜fU
α )(x) = 0. In order to capture

solutions of this equation, much similar to the Newton method [23], the above
procedure clearly suggests to consider the following generating sequence

δk = xk+1 − xk = Ak+1Φk

=⇒ xk+1 = xk + Ak+1Φk.

If Ak is an appropriate approximation of the inverse Hessian matrix
[∇2φ(xk+1)

]−1 and ∇( ˜fL
α + ˜fU

α )(xk+1) ≈ 0, then the equation xk+1 = xk +
Ak+1Φk reduces to

xk+1 = xk − [∇2φ(xk+1)
]−1 ∇φ(xk),

which is the generating equation of the Newton method [23] and hence obviously
will converge to the minimizer of ˜fL

α + ˜fU
α .

As we observe, the key point of the above method is to appropriately generate
Ak’s. Due to the inherent computational difficulty to find the inverse of the
Hessian ∇2φ(xk+1) we consider an approximation that should satisfy

Ak+1Φk = δk. (2)

In this article we attempt to introduce a simple rank-two update of the sequence
{Ak} that satisfy the above quasi-Newton Eq. (2).

Let Ak be the approximation of the k-th iteration. We attempt to update Ak

into Ak+1 by adding two symmetric matrices, each of rank one as follows:

Ak+1 = Ak + pkvkvt
k + qkwkwt

k

where uk and vk are two vectors in R
n, and pk and qk are two scalars which are

to be determined by the quasi-Newton Eq. (2). Therefore, we now have

AkΦk + pkvkvt
kΦk + qkwkwt

kΦk = δk. (3)

Evidently, vk and wk are not uniquely determined, but their obvious choices are
vk = δk and wk = AkΦk. Putting this values in (3), we obtain

pk =
1

vt
kΦk

=
1

δt
kΦk

and qk = − 1
wt

kΦk
= − 1

Φt
kAkΦk

.

Therefore,

Ak+1 = Ak +
δkδt

k

δt
kΦk

− AkΦkΦt
kAk

Φt
kAkΦk

. (4)
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We consider this equation to generate the sequence of above mentioned inverse
Hessian approximation.

Therefore, accumulating all, we follow the following sequential way (Algo-
rithm1) to obtain an efficient solution of the considered (FOP) minx∈Rn ˜f(x).

Algorithm 1. Quasi-Newton Method with Rank-two Modification to Solve FOP
Require: Given ˜f , the objective function

x0, the initial point
ε, a termination scalar
A0, a symmetric positive definite matrix

1: Compute ˜fL
α , ˜fU

α and φ(x) =
∫ 1

0
( ˜fL

α (x) + ˜fU
α (x))dα

2: Set k = 0
3: If ‖∇φ(xk)‖ < ε, then Stop
4: Compute the search direction dk = −Ak∇φ(xk)
5: Compute the step length αk := argminα≥0 φ(xk + αdk)
6: Evaluate

δk = αkdk,

xk+1 = xk + δk,

Φk = ∇φ(xk+1) − ∇φ(xk), and

Ak+1 = Ak +
δkδt

k

δt
kΦk

− AkΦkΦt
kAk

Φt
kAkΦk

.

7: Set k = k + 1 and go to Step 3.

4 Convergence Analysis

In this section, the convergence analysis of the proposed quasi-Newton method
is performed. In the following theorem, it is found that the proposed method
has superlinear convergence rate.

Theorem 1 (Superlinear convergence rate). Let ˜f : R
n → F(R) be thrice con-

tinuously gH-differentiable on R
n and x̄ be a point such that

(i) x̄ is a local minimizer of ˜fL
α and ˜fU

α ,
(ii)

∫ 1

0
∇2

˜fL
α (x)dα and

∫ 1

0
∇2

˜fU
α (x)dα are symmetric positive definite, and

(iii)
∫ 1

0
∇2

˜fL
α (x)dα and

∫ 1

0
∇2

˜fU
α (x)dα are Lipschitzian with constants γL and

γU , respectively.

Then the iteration sequence {xk} in Algorithm1 converges to x̄ superlinearly if
and only if

lim
k→∞

∥

∥

[

A−1
k+1 − ∇2φ(x̄)

]

δk

∥

∥

‖δk‖ = 0,

where φ(x) =
∫ 1

0

(

˜fL
α (x) + ˜fU

α (x)
)

dα.
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Proof. According to the hypothesis (i), at x̄ we have

∇φ(x̄) =
∫ 1

0

(

∇ ˜fL
α (x̄) + ∇ ˜fU

α (x̄)
)

dα = 0

From hypothesis (ii), the Hessian matrix

∇2φ(x̄) =
∫ 1

0

∇2
˜fL
α (x̄)dα +

∫ 1

0

∇2
˜fU
α (x̄)dα

is positive definite and a symmetric matrix. With the help of hypothesis (iii),
the function

∇2φ(x) =
∫ 1

0

∇2
˜fL
α (x)dα +

∫ 1

0

∇2
˜fU
α (x)dα

is found to be Lipschitzian at x̄ with constant γL + γU . Mathematically, there
exists a neighborhood Nε(x̄) where

∥

∥∇2φ(x) − ∇2φ(x̄)
∥

∥ ≤ (γL + γU )‖x − x̄‖ ∀ x ∈ Nε(x̄).

Towards proving the result, the following equivalence will be proved:

lim
k→∞

∥

∥

[

A−1
k+1 − ∇2φ(x̄)

]

δk

∥

∥

‖δk‖ = 0

⇐⇒ lim
k→∞

‖Φk+1‖
‖δk‖ = 0

⇐⇒ lim
k→∞

‖xk+1 − x̄‖
‖xk − x̄‖ = 0.

With the help of quasi-Newton Eq. (1), we have
[

A−1
k+1 − ∇2φ(x̄)

]

[xk+1 − xk]

= − Φk − ∇2φ(x̄)(xk+1 − xk)

=
(

Φk+1 − Φk − ∇2φ(x̄)(xk+1 − xk)
) − Φk+1.

Therefore,

‖Φk+1‖
‖δk‖ ≤ 1

‖δk‖
[∥

∥

(

A−1
k+1 − ∇2φ(x̄)

)

δk

∥

∥ +
∥

∥Φk+1 − Φk − ∇2φ(x̄)δk

∥

∥

]

.

It is evident to note that
∥

∥Φk+1 − Φk − ∇2φ(x̄)δk

∥

∥

=
∥

∥

∥

∥

(∫ 1

0

∇2
(

˜fL
α + ˜fU

α

)

(xk+1 + t(xk+1 − xk))dt

)

δk − ∇2φ(x̄)δk

∥

∥

∥

∥

=
∥

∥

∥

∥

(∫ 1

0

(∇2φ(xk+1 + tδk) − ∇2φ(x̄)
)

dt

)

δk

∥

∥

∥

∥

≤ (γL + γU ) (‖xk+1 − x̄‖ + ‖xk − x̄‖) .
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Since ∇2φ(x̄) is positive definite, we have ξ > 0 and m ∈ N such that

‖Φk+1‖ = ‖Φk+1 − ∇φ(x̄)‖ ≥ ξ‖xk+1 − x̄‖ for all k ≥ m.

Hence, we now have

‖Φk+1‖
‖δk‖ ≥ ξ‖xk+1 − x̄‖

‖xk+1 − x̄‖ + ‖xk − x̄‖ = ξ
ck

1 + ck
,

where ck = ‖xk+1−x̄‖
‖xk−x̄‖ . This inequality gives

lim
k→∞

ck

1 + ck
= 0

=⇒ lim
k→∞

ck = 0

=⇒ lim
k→∞

‖xk+1 − x̄‖
‖xk − x̄‖ = 0.

This completes the proof of superlinear convergence of the sequence {xk} in
Algorithm 1.

Conversely, since {xk} converges superlinearly to x̄ and ∇φ(x̄) = 0, we must
have β > 0 and p ∈ N such that

‖Φk+1‖ ≤ β‖xk+1 − x̄‖ for all k ≥ p.

Again due to superlinear convergence of {xk}, we have

0 = lim
k→∞

‖xk+1 − x̄‖
‖xk − x̄‖ ≥ lim

k→∞
‖Φk+1‖

β‖xk − x̄‖ = lim
k→∞

1
β

‖Φk+1‖
‖xk+1 − xk‖

‖xk+1 − xk‖
‖xk − x̄‖ .

Since limk→∞
‖xk+1−xk‖

‖xk−x̄‖ = 1, this inequality implies limk→∞
‖Φk‖

‖xk+1−xk‖ = 0.
Hence, the result follows.

5 Illustrative Example

In this section, an illustrative example is presented to explore the computational
procedure of Algorithm 1.

Example 1. Consider the following quadratic fuzzy optimization problem:

min
(x1,x2)∈R2

(

1
2

/

1
/

3
2

)

x2
1 ⊕ (

0
/

1
2

/

1
)

x2
2 ⊕ (

1
2

/

1
/

3
2

)

x1x2 ⊕ (

0
/

1
2

/

1
)

x1 � (

0
/

1
2

/

1
)

x2.

Let us consider the initial approximation to the minimizer as x0 =
(

x0
1, x

0
2

)

=
(0, 0). With the help of fuzzy arithmetic, the lower and the upper function can
be obtained as

˜fL
α (x1, x2) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1+α
2

x2
1 + α

2
x2
2 + 1+α

2
x1x2 + α

2
x1 − (1 − α

2
)x2 if x1 ≥ 0, x2 ≥ 0

1+α
2

x2
1 + α

2
x2
2 + 3−α

2
x1x2 + α

2
x1 − α

2
x2 if x1 ≥ 0, x2 ≤ 0

1+α
2

x2
1 + α

2
x2
2 + 3−α

2
x1x2 + (1 − α

2
)x1 − (1 − α

2
)x2 if x1 ≤ 0, x2 ≥ 0

1+α
2

x2
1 + α

2
x2
2 + 1+α

2
x1x2 + (1 − α

2
)x1 − α

2
x2 if x1 ≤ 0, x2 ≥ 0



242 D. Ghosh

and

˜f
U
α (x1, x2) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

3−α
2 x2

1 + (1 − α
2 )x2

2 + 3−α
2 x1x2 + (1 − α

2 )x1 − α
2 x2 if x1 ≥ 0, x2 ≥ 0

3−α
2 x2

1 + (1 − α
2 )x2

2 + 1+α
2 x1x2 + (1 − α

2 )x1 − (1 − α
2 )x2 if x1 ≥ 0, x2 ≤ 0

3−α
2 x2

1 + (1 − α
2 )x2

2 + 1+α
2 x1x2 + α

2 x1 − α
2 x2 if x1 ≤ 0, x2 ≥ 0

3−α
2 x2

1 + (1 − α
2 )x2

2 + 3−α
2 x1x2 + α

2 x1 − (1 − α
2 )x2 if x1 ≤ 0, x2 ≥ 0.

Therefore,

φ(x1, x2) =
∫ 1

0

(

˜fL
α (x1, x2) + ˜fU

α (x1, x2)
)

dα = 2x2
1 + x2

2 + 2x1x2 + x1 − x2.

Here

∇φ(x1, x2) =
[

4x1 + 2x2 + 1
2x1 + 2x2 − 1

]

.

Considering the initial matrix A0 = I2, we calculate the sequence {xk},
xk =

(

xk
1 , x

k
2

)

, through the following equations:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dk = − Ak

[

4xk
1 + 2xk

2 + 1
2xk

1 + 2xk
2 − 1

]

αk = argminα≥0 φ(xk + αdk)
δk = αkdk

xk+1 = xk + δk

Φk = ∇φ(xk+1) − ∇φ(xk) =

[

4(xk+1
1 − xk

1) + 2(xk+1
2 − xk

1)
2(xk+1

1 − xk
1) + 2(xk+1

2 − xk
1

]

, and

Ak+1 = Ak + δkδt
k

δt
kΦk

− AkΦkΦt
kAk

Φt
kAkΦk

.

The initial iteration (k = 0)
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x0 = (0, 0)

A0 =

[

1 0
0 1

]

‖∇φ(x0)‖ = ‖(1,−1)t‖ =
√

2 �= 0

d0 = −
[

−1
1

]

α0 = 1
x1 = (−1, 1)
δ1 = (−1, 1)
Φ1 = (−2, 0)

A1 =

[

1
2 − 1

2

− 1
2

3
2

]

.
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The second iteration (k = 1)
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x1 = (−1, 1)
d1 = (0, 1)
α1 = 1

2

x2 = (−1, 3
2 )

∇φ(x2) =

[

0
0

]

.

Hence x̄ = (−1, 3
2 ) is a nondominated solution of the considered problem. It is

important to note that the method converged at the second iteration since the
objective function is a quadratic fuzzy function.

6 Conclusion

In this paper, a quasi-Newton method with rank-two modification has been
derived to find a non-dominated solution of an unconstrained fuzzy optimiza-
tion problem. In the optimality concept, the fuzzy-max ordering of a pair of
fuzzy numbers has been used. The gH-differentiability of fuzzy functions have
been employed to find the non-dominated solution point. An algorithmic imple-
mentation and the convergence analysis of the proposed technique has also been
presented. The technique is found to have superlinear convergence rate. A numer-
ical example has been explored to illustrate the proposed technique.

It is to note that unlike Newton method for fuzzy optimization problems
[8,23], the proposed method is derived without using the inverse of the concerned
Hessian matrix. Instead, a sequence of positive definite inverse Hessian approx-
imation {Ak} is used which satisfies the quasi-Newton equation Ak+1Φk = δk.
Thus the derived method sidestepped the inherent computational difficulty to
compute inverse of the concerned Hessian matrix. In this way the proposed
method is made more efficient than the existing Newton method [8,23].

The method can be easily observed as much similar to the classical DFP
method [28] for conventional optimization problem. In the analogous way of
the presented technique, it can be further extended to a BFGS-like method
[23] for fuzzy optimization. Instead of the rank-two modification in the approx-
imation of the inverse of the Hessian matrix, a rank-one modification can also
be done. It is also to be observed that in Algorithm 1, we make use the exact
line search technique along the descent direction dk = −Ak∇φ(xk). However, an
inexact line search technique [28] could have also been used. A future research on
this rank-one modification and inexact line search technique for fuzzy optimiza-
tion problem can be performed and implemented on Newton and quasi-Newton
method.
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Abstract. This paper deals with a delayed modified Holling-Tanner
predator-prey model with refuge. The proposed model highlights the
impact of delay and refuge on the dynamics of the system wherein analy-
sis of the model in terms of local stability is performed. Both theoretical
and experimental works point out that delay and refuge play an impor-
tant role in the stability of the model and also it has been observed that
due to delay, bifurcation occurred which results in considering delay as a
bifurcation parameter. For some specific values of delay, Hopf bifurcation
is investigated for the proposed model and direction of Hopf bifurcation
with the stability of bifurcated periodic solutions by using normal form
theory and central manifold reduction is also included in the domain of
this study. At the end, few numerical simulations based on hypotheti-
cal set of parameters for the support of theoretical formulation are also
carried out.

Keywords: Predator-prey model · Time delay · Hopf bifurcation ·
Stability · Periodic solution

1 Introduction

Prey-predator dynamics is gaining popularity among applied mathematicians
and ecologists. Many mathematical models for the dynamics of prey preda-
tor relation have been proposed. To describe dynamics more appropriately the
researchers introduced delay and many delayed models are also available in recent
literature.

The Leslie predator prey model with Holling type II functional response takes
the form; {

dx
dt = rx(1 − x

k ) − mx
A+xy,

dy
dt = y[s(1 − h y

x )],
(1)

where x and y are prey and predator densities. For more detail of model (1), we
refer the study of Leslie and Gower [1]. Model (1) is further modified by Lu and
Liu [2], their model takes the following form;
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{
dx
dt = rx(1 − x

k ) − αxy
a+bx+cy y,

dy
dt = y[s(1 − h y(t−τ)

x(t−τ) )],
(2)

where x and y are again prey and predator densities. The term αxy
a+bx+cy is called

Beddington-DeAngelis functional response. In non-dimensioning form, the model
(2) by defining t̃ = rt, x̃ = x(t)

k , ỹ = αy(t)
rk and dropping the tildes, is written as,{

dx
dt = x(1 − x) − xy

a1+bx+c1y ,
dy
dt = y[(δ − β y(t−τ)

x(t−τ) )],
(3)

where δ = s
r , β = sh

α , a1 = a
k , c1 = cr

α , τ̃ = rτ . Permanence of (3) has been
studied in paper [2]. They [2] also studied the local and global stability of the
equilibrium. Model (3) is further studied by J.F. Zhang [3] and the stability of
positive equilibrium and Hopf bifurcation are done. In [3], investigation of the
direction of Hopf bifurcation and stability of bifurcated periodic solutions were
observed.

In this study, we have reconsidered the model (3) for further modification.
The main contribution of this study is to incorporate prey refuge in the model
(3). Our model becomes;{

dx
dt = x(1 − x) − (1−m)xy

a1+bx+c1y ,
dy
dt = y[(δ − β y(t−τ)

x(t−τ) + (1 − m)x)],
(4)

where x and y are prey and predator densities respectively. Here the constant m
denotes the prey refuge. It means (1−m)x is the amount available for predation
to predator. The range for the parameter is fixed as 0 < m < 1. To understand
the feasibility of refuge, we take the case of a forest which is considered as an
ecosystem where deer and lion are the prey and predator species respectively,
but if deer has a habitat of particular kind where lions cannot enter and with
such habitat complexity, lions cannot predate deers and eventually it gives birth
to the term prey refuge. Initial data for (4) is considered as x(0) > 0, y(0) > 0.
Rest of the parameters a1, b, c1, δ, β are positive constants and are similar to (3).
Primarily, the effect of refuge (here m) on the model (3) is studied in this paper.

In recent studies, properties of periodic solutions (Hopf bifurcation) is
observed [3,4]. In this paper, stability of positive equilibrium is studied and
also the process of Hopf bifurcation has been focussed(in brief).

Rest of the paper is structured as follows. In Sect. 2, stability of positive
equilibrium and the existence of Hopf bifurcation is studied and in Sect. 3, the
direction of Hopf bifurcation with the stability of bifurcated periodic solutions
is observed. Numerical simulations have been performed in Sect. 4 along with a
brief discussion in Sect. 5 which concludes the paper.

2 Stability of Positive Equilibrium and Hopf Bifurcation

It is easy to calculate that the system (4) has unique positive equilibrium say
E∗(x∗, y∗) where x∗ is a root of the equation Ax3 + Bx2 + Cx + D = 0, where
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A = −c1(1−m)
β , B = c1(1−m)−bβ−c1δ−(1−m)+m(1−m)

β , C = bβ−a1β−δ+mδ+c1δ
β ,

D = a1, and

y∗ =
δx∗ + (1 − m)x∗2

β

The first attempt is to investigate the dynamics of the model without delay. The
Jacobian matrix has the form,

J =
(

α11 α12

α21 α22

)
,

where, α11 = 1 − 2x∗ − (1−m)y∗(a1+c1y∗)
(a1+bx∗+c1y∗)2 , α12 = −x∗(1−m)(a1+bx∗)

(a1+bx∗+c1y∗)2 , α21 = βy∗2

x∗2 +

(1 − m)y∗, α22 = δ − 2βy∗

β + (1 − m)x∗ and the characteristic equation is given
by λ2 − (Tr.J)λ + (Det.J) = 0 or λ2 − (α11 + α22)λ + (α11α22 − α12α21) = 0,
Using Routh-Hurwitz criteria for determining the stability of the system under
consideration. We have,

Det.J =
((1− 2x∗)(a1 + bx∗ + c1y∗)2 − y∗(1− m)(a1 + c1y∗))(δx∗ + (1− m)x∗2 − 2βy∗)

x∗(a1 + bx∗ + c1y∗)2

For Det.J > 0, either ((1−2x∗)(a1+bx∗ +c1y
∗)2−y∗(1−m)(a1+c1y

∗)) > 0
and (δx∗ + (1 − m)x∗2 − 2βy∗) > 0 or ((1 − 2x∗)(a1 + bx∗ + c1y

∗)2 − y∗(1 −
m)(a1 + c1y

∗)) < 0 and (δx∗ + (1 − m)x∗2 − 2βy∗) < 0.
Also condition α11 + α22 < 0 is required for the asymptotically stability of

the model without delay. Hence, we can state the following theorem.

Theorem 1. Equilibrium E∗(x∗, y∗) of system (4) is locally asymptotically sta-
ble if the following conditions are satisfied:
H(1) α11α22 − α12α21 > 0
H(2) α11 + α22 < 0

Now we investigate condition(s) for hopf bifurcation. The procedure is quite
similar to J.F. Zhang [3]. The linearised version of the model is written as,{

u′
1 = α11u1(t) + α12u2t,

u′
2 = α21u1(t − τ) + α22u2(t − τ).

(5)

The characteristic equation can be written as

λ2 − (α11)λ + (−α22λ + α11α22 − α12α21) exp−λτ = 0 (6)

Now putting λ = iω in Eq. 6, we get,

−ω2 + (α11α22 − α12α21) cos ωτ − α22ω sin ωτ + i − α22ω cos ωτ

− (α11α22 − α12α21) sin ωτ − α11ω = 0 + 0i

Separating the real and imaginary parts, we get

− ω2 + (α11α22 − α12α21) cos ωτ − α22ω sin ωτ = 0 (7)
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− α22ω cos ωτ − (α11α22 − α12α21) sin ωτ − α11ω = 0 (8)

On squaring and adding Eqs. 7 and 8, we get

ω4 + (α2
11 − α2

22)ω
2 − (α11α22 − α12α21)2 = 0, (9)

If we put z = ω2, we get,

z2 + (α2
11 − α2

22)z − (α11α22 − α12α21)2 = 0, (10)

which is a quadratic equation, hence the roots are z =
−(α2

11−α2
22)±

√
(α2

11−α2
22)

2+4(α11α22−α12α21)2

2 . Taking only the positive root, we get,

z = −(α2
11−α2

22)+
√

(α2
11−α2

22)
2+4(α11α22−α12α21)2

2 .
Therefore,

ω = ±
√

−(α2
11 − α2

22) ±
√

(α2
11 − α2

22)2 + 4(α11α22 − α12α21)2

2
. (11)

Again, taking only the positive roots and denoting the positive root by ωpos., we
get

ωpos =

√
−(α2

11 − α2
22) ±

√
(α2

11 − α2
22)2 + 4(α11α22 − α12α21)2

2
.

Now solving Eqs. 7 and 8, we get the values of τ say critical value(s) of the
form

τj =
1

ωpos
cos−1

ω2
pos(α11α22 − α12α21) − α11α22ωpos

(α11α22 − α12α21)2 + α2
22ω

2
pos

+
2πj

ωpos
, where j = 0, 1, 2....

We denote one of the set of critical value of τ as τcr and hence, we have τcr =
1

ωpos
cos−1 ω2

pos(α11α22−α12α21)−α11α22ωpos

(α11α22−α12α21)2+α2
22ω2

pos
. Now we can state the following lemma

by above discussion and also by Rouche’s theorem, similar to J.F. Zhang [3].

Lemma 1. Assume that the positive equilibrium point of the system of system
(4) without delay is locally asymptotically stable. Then at

τj =
1

ωpos
cos−1

ω2
pos(α11α22 − α12α21) − α11α22ωpos

(α11α22 − α12α21)2 + α2
22ω

2
pos

+
2πj

ωpos
, (j = 0, 1, 2...),

system (9) has a pair of conjugate purely imaginary roots ±iωpos, where ωpos =√
−(α2

11−α2
22)±

√
(α2

11−α2
22)

2+4(α11α22−α12α21)2

2 . Furthermore, we have the following
results

(i) If τ ∈ [0, τcr), then all roots of the system (4) have negative real parts.
(ii) If τ = τcr, system (4) has a pair of conjugate purely imaginary roots ±ωpos,

and all other roots have negative real parts.
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Let λ = v(τ) + iω(τ) be the root of the characteristic Eq. (6) with the con-
dition that when τ = τcr, {

v(τcr) = 0,
ω(τcr) = ωpos.

Now, differentiating (6) and on further simplification, we get,

(dλ

dτ

)−1

=
(2λ − α11 − α22e

−λτ )
(α11α22 − α12α21 − α22λ)

− τ

λ
.

Therefore,

[Re
(dλ

dτ

)−1
]iωpos =

ω2
pos

(α2
22ω4

pos + (α11α22 − α12α21)2ω2
pos)

√
(α2

11 − α2
22)

2 + 4(α11α22 − α12α21)2

now (α2
22ω

4
pos +(α11α22 −α12α21)2ω2

pos) > 0 thus, we have [Re
(

dλ
dτ

−1
)
]iωpos

> 0,
therefore the transversality condition is proved. Now we can state the bifurcation
theorem for the proposed system (4);

Theorem 2. Suppose the condition of Theorem1 holds.

(i) If τ ∈ [0, τcr), the positive equilibrium E∗(x∗, y∗) of system (4) is asymp-
totically stable.

(ii) If τ > τcr, the positive equilibrium E∗(x∗, y∗) of system (4) is unstable.
(iii) System (4) observe Hopf bifurcation at the positive equilibrium E∗(x∗, y∗)

when τ = τj, where,

τj =
1

ωpos
cos−1

ω2
pos(α11α22 − α12α21) − α11α22ωpos

(α11α22 − α12α21)2 + α2
22ω

2
pos

+
2πj

ωpos
, j = 0, 1, 2....

3 Direction of Hopf Bifurcation

In this section, we shall study the direction of Hopf bifurcation and stability
of bifurcated periodic solutions by the application of normal form theory and
central manifold reduction technique introduced originally long back by Hassard
et al. [5]. Such theories have been studied in recent literature. We have seen in
Theorem 2 that system (4) undergoes Hopf bifurcation for some specified values
of τ , these values are denoted by τj . As a matter of generalization, we denote
any one such value by τ . Thus, at τ , the characteristic Eq. (6) will have a pair
of imaginary roots ±iωpos. By the procedure explained in Hassard et al. [5], we
proceed further. For the reduction of system (4) a system of functional differential
equation is used. Furthermore, we denote delay τ as τ = τ + μ, where μ is an
element of the set of real numbers. Further μ = 0 is the value of Hopf bifurcation
of system (4). We rescale the time by → t

τ . System (4) takes the following form,

u′(t) = Lμu(t) + F (ut, μ), (12)
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in the Banach space C([−1, 0],R2), where u =
(

u1

u2

)
∈ C and Lμ : C → R,

F : R×C → R has been obtained in J.F. Zhang [3]. We can proceed exactly in a
similar manner as in [3] and can obtain the following values (with usual symbols
as obtained in [3]):

C1(0) =
i

2ωposτ

(
g20g11 − 2| g11 |2 − | g02 |2

3

)
+

g21
2

,

μ2 =
Re{C1(0)}
Re{λ′(τ)} and β2 = 2Re{C1(0)}.

Now we can state the following theorem:

Theorem 3.

(i) μ2 determines the directions of Hopf bifurcation. If μ2 > 0(<0), the Hopf
bifurcation is supercritical(subcritical);

(ii) β2 determines the stability of bifurcated periodic solutions. If β2 > 0(<0), the
bifurcated periodic solutions are stable (unstable).

4 Numerical Simulations

We have studied the effect of delay and refuge on the modified Holling-Tanner
predator-prey model and it is to be remarked that the real parameters are not
available. So, theoretical formulations have been verified by taking hypothetical
set of parameters as in [3]. However, assumed parameters can demonstrate the
theoretical formulation. We consider the following numerical example:{

dx
dt = x(1 − x) − 0.4xy

0.01+3x+y ,
dy
dt = y

[
3.5 − 2 y(t−τ)

x(t−τ) + 0.4x
]
.

(13)

Clearly (1−m) = 0.4 and after calculating, it is observed that system (13) has
a positive equilibrium E∗(1.62, 0.844). By Lemma 1, we calculate ωpos = 3.8246
and τcr = 0.38. It is also note that α11 + α22 < 0 hence E∗(1.62, 0.844) of
the system (13) is locally stable in absence of delay term τ . By Theorem 2, it
may be concluded that E∗(1.62, 0.844) is asymptotically stable if τ ∈ [0, 0.38)
and unstable if τ > 0.38. In this case, Hopf bifurcation occurs at τ = 0.38.
Solution curves of (13) for τ = τcr = 0.38, 0.43(>τcr) and 0.21(<τcr) respectively
are given in Figs. 1, 2 and 3. It is observed that the graphs so developed are
consistent with the theoretical formulation. System undergoes Hopf bifurcation
for a specific value of delay at the positive equilibrium which suggests that delay
plays a major role. Also, effect of refuge is studied which shows that it has an
important role and system changes when its effect is more (Fig. 4).
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Fig. 1. Solution curves of System (4) with (1 − m) = 0.4 and τ = 0.38 computed over
the interval [0,100]
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Fig. 2. Solution curves of System (4) with (1 − m) = 0.4 and τ = 0.43 > τcr = 0.38
computed over the interval [0,100]
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Fig. 3. Solution curves of System (4) with (1 − m) = 0.4 and τ = 0.21 < τcr = 0.38
computed over the interval [0,100]
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Fig. 4. Solution curves of System (4) with two different values of (1−m) i.e. (1−m) =
0.7 and (1 − m) = 0.9 with τ = 0.38 computed over the interval [0,100]

5 Discussion

In this study, we reviewed a delayed prey-predator model with modified Holling-
Tanner functional response. As a matter of fact, model (3) can be interpreted
as a particular case of our proposed model and in model (4), mainly the role of
refuge is studied. Limitations of this study are non availability of real parameters.
Although numerical example (13), so considered is consistent with our theoretical
formulation. Furthermore, for the different values of m(refuge), system has been
analysed.
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Abstract. Recently a lower order implicit method has been presented
for solving singular initial value problem. In this article a higher order
implicit method has been developed to solve first or higher order prob-
lems having an initial singular point. This method is more suitable than
second, third and two-stage fourth order implicit Runge-Kutta methods
for first order problems. The method also provides significantly better
results than the existing lower order implicit method for second order
problems.
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1 Introduction

In the recent years, the studies of singular initial value problems have attracted
the attention of many mathematicians and physicists. Many problems in ecology,
mathematical physics and astrophysics can be modeled by second order singular
initial value problems. Sometimes, first order singular initial value problems are
also used e.g., a leading-edge model in the computation of the run-out length
of dry-flowing avalanches. Some well known problems such as Lane–Emden type
and Emden-Fowler type differential equations are expressed by second order
singular initial value problems. These equations have been used to explain vari-
ous phenomena such as the theory of stellar structure, the thermal behavior of
a spherical cloud of gas, isothermal gas spheres and the theory of thermionic
currents [1–3].

Some analytical techniques were presented to solve Lane-Emden equations.
Most of them were developed based on power series or perturbation tech-
niques. Wazwaz [4–7] has presented series and exact solution to Lane-Emden
c© Springer Nature Singapore Pte Ltd. 2017
D. Giri et al. (Eds.): ICMC 2017, CCIS 655, pp. 255–264, 2017.
DOI: 10.1007/978-981-10-4642-1 22
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and Emden-Fowler type problems based on Adomain decomposition and mod-
ified Adomain decomposition methods. Hasan and Zhu [8,9] have solved such
a singular initial value problem by the Taylor series and modified Adomain
decomposition methods. Gupta and Sharma [10] have also used the Taylor series
method to solve Lane–Emden and Emden–Eowler equations. Demir and Sungu
[11] have presented approximate and analytic solutions of Emden-Fowler equa-
tion and Mukherjee et al. [12] the Lane–Emden equation by the same method
i.e., differential transform method. However the determination of solutions by
these methods is laborious.

A few classical numerical methods have been used for numerical solution of
first and second order singular initial value problem. Koch et al. [13,14] applied
implicit Euler method (backward) to evaluate the approximate solutions of first
order and second order singular initial value problem and finally used an acceler-
ation technique known as the Iterated Defect Correction (IDeC) to improve the
approximations. Benko et al. [15] evaluated the approximate solution of the sec-
ond order singular initial value problems by implicit Euler method. The second
order implicit Runge-Kutta (RK2) and third order implicit Runge-Kutta (RK3)
methods are higher order solvers than the implicit Euler method for solving
singular initial value problems. Lakestani and Saray [16] solved Emden-Fowler
type equations numerically using Legendre scaling functions. This method con-
sists of expanding the required approximate solution as the elements of Legendre
scaling functions. Using the operational matrix of integration, the problem will
be reduced to a set of algebraic equations. But utilization of this method is
cumbersome.

Recently, Hasan et al. [17–19] derived a lower order implicit method for solv-
ing first and second order singular initial value problems, which give more accu-
rate solution than the implicit Euler method as well as second order implicit
Runge-Kutta (RK2) methods for singular initial value problems. In this article,
a higher order implicit formula is presented for solving first order singular initial
value problems. The method is extended for second order singular initial value
problems. For second order problems the method provides significantly better
results than the existing lower order method.

2 Derivation of the Present Method

First we derive the present method for solving first order singular initial value
problems and then the method is extended for second order singular initial value
problems.

2.1 For First Order Singular Initial Value Problems

Earlier Huq et al. [20] derived a formula for evaluating definite integral having
an initial singular point at x = x0 in the form as

∫ x0+3h

x0

f(x) dx =
3h

4
[3 f(x0 + h) + f(x0 + 3h)] (1)
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Based on formula (1), Hasan et al. [18] derived an implicit method for solving
first order singular initial value problems

y′(x) = f(x, y), y(x0) = y0 (2)

having the initial singular point at x = x0 in the form as

yi+1 = yi +
h

4
[3f(xi + h/3, (yi + (yi+1 − yi)/3)) + f(xi+1, yi+1)] (3)

where, xi+1 = xi + h; i = 0, 1, 2, ...

Recently, Hasan et al. [21] derived a higher order integral formula for solving
singular integral having an initial singular point at x = x0 in the form as

∫ x0+6h

x0

f(x) dx =
3h

5
[4 f(x0 + h) + 5 f(x0 + 4h) + f(x0 + 6h)] (4)

Based on formula (4), a higher order implicit method has been proposed for
solving first order singular initial value problems given in Eq. (2) having the
initial singular point at x = x0 in the form as

yi+1 = yi +
h

10
[4f(xi + h/6, (yi + (yi+1 − yi)/6))

+5f(xi + 4h/6, (yi + 4(yi+1 − yi)/6)) + f(xi+1, yi+1)] (5)

where, xi+1 = xi + h; i = 0, 1, 2, ...

It is obvious that Eq. (5) is an algebraic equation of unknown yi+1 and can be
solve by Newton-Raphson method [22].

2.2 For Second Order Singular Initial Value Problems

Let us consider a second order singular initial value problem of the form [5]

y′′ +
2
x

y′ + f(x, y) = g(x), 0 < x ≤ 1, y(0) = A, y′(0) = B (6)

where A and B are constants, f(x, y) is a continuous real valued function and
g(x) ∈ C [0, 1]. Now Eq. (6) can be transformed into two first order initial value
problems, one is non-singular and other is singular as

y′ = z = f1(x, y) (7)

z′ = − 2
x

z − f( x, y) + g(x) = f2(x, y, z) (8)

where y(0) = A, z(0) = B, and y = y, y′ = z.
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According to the present method (i.e. Eq. (5)) the approximate solutions of the
Eqs. (7) and (8) are

yi+1 = yi +
h

10
[4 (zi + (zi+1 − zi)/6) + 5 (zi + 4(zi+1 − zi)/6) + zi+1) ] (9)

zi+1 = zi +
h

10

[
4
{

− 2
(x0 + h/6)

(zi + (zi+1 − zi)/6) (9a)

− f(x0 + h/6, (yi + (yi+1 − yi)/6)) + g(x0 + h/6)
}

+ 5
{

− 2
(x0 + 4h/6)

(zi + 4(zi+1 − zi)/6)

− f(x0 + 4h/6, (yi + 4(yi+1 − yi)/6)) + g(x0 + 4h/6)
}

+
(

− 2
(x0 + h)

zi+1 − f(x0 + h, yi+1) + g(x0 + h)
)]

; i = 0, 1, 2, ...

It is obvious that Eqs. (9) and (9a) is a system of equations for two unknown
yi+1 and zi+1 and can be solved by Newton-Raphson method [22].

To compare the present method to other classical methods such as the second,
the third and two-stage fourth order implicit Runge-Kutta (RK2, RK3 and RK4)
[23] methods are given in Eqs. (10), (11) and (12) respectively.

yi+1 = yi + k; i = 0, 1, 2, ... (10)

where, k = h f(xi + h/2, yi + k/2)

yi+1 = yi + (3 k1 + k2)/4 (11)

where, k1 = h f(xi + h/3, yi + k1/3)

and k2 = h f(xi + h, yi + k1)

yi+1 = yi + (k1 + k2)/2 (12)

where, k1 = h f(xi + (1/2 − √
3/6)h, yi + k1/4 + (1/4 − √

3/6) k2)

and k2 = h f(xi + (1/2 +
√

3/6)h, yi + (1/4 +
√

3/6) k1 + k2/4)

3 Convergence and Stability of the Present Method

The convergence order of the present method (i.e., Eq. (5) is O(h4) i.e., the trun-
cation error is O(h5). The truncation error of the fourth order implicit Runge-
Kutta (RK4) and the third order implicit Runge-Kutta (RK3) methods are
O(h5)and O(h4) respectively.
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Fig. 1. Stability region of the present method.

To test the stability, consider a scalar test equation

y′ = λ y, λ ∈ C, Re(λ) < 0 (13)

Appling (5) to the test equation with y′ = λ y and z = λ h yields

yi+1 = R(z) yi (14)

where, R(z) = (1+z/2)/(1−z/2) is the stability function of the present method.

For λ < 0, then |R(z)| < 1 for any h > 0. Since z is imaginary, the present
method is absolutely stable in the entire negative half of the complex z plane.
The region of absolute stability is the set of all complex z where |R(z)| ≤ 1. A
numerical method is said to be A-stable if its stability region contains C , the
non-positive half-plane {z = λ h ∈ C : Re(z) < 0}. So the present method is
A-stable. The stability region of the present method is given in Fig. 1.

4 Examples

The method is illustrated by following singular initial value problems.

Example 1. Consider a first order initial value problem in the form as [18]

y′(x) = q
yr

xp
, 0 < x ≤ 1, y(0) = 1, 0 < p < 1, −1 ≤ q < 0 (15)

The exact solution of Eq. (15) is obtained as

y =
(

x1−pq(−1+r)+(−1+p)
(−1+p)

) 1
1−r

, r �= 1

= e
qx1−p

1−p , r = 1
(16)

The absolute error of the solution of the Eq. (15) obtained by the present (i.e.,
Eq. (5)), Hasan (i.e., Eq. (3)), the second order implicit Runge-Kutta (RK2)
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Fig. 2. The absolute error of the Eq. (15) by different method for p = 1/2, q = −1, r =
1 with h = 0.01.

Fig. 3. The absolute error of the Eq. (15) by different method for p = 1/2, q = −1, r =
2 with h = 0.01.

(i.e., Eq. (10)), the third order implicit Runge-Kutta (RK3) (i.e., Eq. (11)) and
the two-stage fourth order implicit Runge-Kutta (RK4) (i.e., Eq. (12)) methods
and are plotted in Figs. 2 and 3 for p = 1/2, q = −1, r = 1 and p = 1/2, q =
−1, r = 2 respectively.

Example 2. Consider a second order linear, non-homogeneous Lane-Emden
equation [9]

y′′ +
2
x

y′ + y = 6 + 12x + x2 + x3; 0 < x ≤ 1, y(0) = 0, y′(0) = 0 (17)

with the exact solution y = x2 + x3. The absolute error obtained by RK2 (i.e.,
Eq. (10)), Hasan (i.e., Eq. (3)) and present (i.e., Eq. (5)) methods are plotted in
Fig. 4.
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Fig. 4. The absolute error of the Eq. (17) by RK2 and the Hasan methods in (a) the
Hasan and the present methods in (b) with h = 0.01.

Example 3. Consider a second order linear, non-homogeneous Emden-Fowler
equation [16].

y′′+
8
x

y′+xy = x5−x4+44x2−30x; 0 < x ≤ 1, y(0) = 0, y′(0) = 0, (18)

with the exact solution y = x4 − x3. The absolute error obtained by RK2 (i.e.,
Eq. (10)), Hasan (i.e., Eq. (3)) and present (i.e., Eq. (5)) methods are plotted in
Fig. 5.

Example 4. Consider a second order nonlinear, homogeneous Lane-Emden
equation [15]

y′′ +
2
x

y′ + y1.5 = 0; 0 < x ≤ 1, y(0) = 1, y′(0) = 0, (19)

with the approximate exact solution y = exp(−x2/6). The results of the error
obtained by RK2 (i.e., Eq. (10)), Hasan (i.e., Eq. (3)) and present (i.e., Eq. (5))
methods are plotted in Fig. 6.

Fig. 5. The absolute error of the Eq. (18) by RK2 and the Hasan methods in (a) the
Hasan and the present methods in (b) with h = 0.01.
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Fig. 6. The absolute error of the Eq. (19) by RK2, the Hasan and the present methods
with h = 0.01.

5 Results and Discussion

A higher order implicit method has been presented to solve first and second
order singular initial value problems. To illustrate the method, the approximate
solutions of some first and second order linear and non-linear equations have been
compared with their exact solutions. For first order problems, the approximate
solution of Eq. (15) has been obtained by the present formula Eq. (5) and the
error has been presented in Figs. 2 and 3 together with corresponding errors of
RK2, RK3, RK4 and Hasan methods. Figures 2 and 3 show that the error of
the present method is smaller than those obtained by Hasan method, RK2, RK3
and RK4 methods.

Then a second order linear non-homogeneous Eq. (17) has been considered.
In this case the error has been presented in Fig. 4 together with corresponding
errors of RK2 and Hasan methods. This figure indicates that the present method
also provides better results than those obtained by RK2 and Hasan methods.

Next, a linear non-homogeneous Eq. (18) has been considered and the errors
eventually found through the above three methods have been shown in Fig. 5. It
is obvious from the Fig. 5 that the error by the present method is smaller than
those obtained by Hasan method and RK2 method. But the errors of the second
order implicit Runge-Kutta method increases rapidly after a short interval.

Finally, a non-linear homogeneous Eq. (19) has been considered and the errors
of the above three methods are presented in Fig. 6. It indicates that the error of
the present method is very close to that obtained by Hasan method as well as
second order implicit Runge-Kutta method.

Based on these above observations, it is concluded that the present method
(i.e., the formula Eq. (5)) is more suitable than some existing classical methods
for solving some singular initial value problems.
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Abstract. This paper addresses a method to obtain rational cubic frac-
tal functions, which generate surfaces that lie above a plane via blending
functions. In particular, the constrained bivariate interpolation discussed
herein includes a method to construct fractal interpolation surfaces that
preserve positivity inherent in a prescribed data set. The scaling fac-
tors and shape parameters involved in fractal boundary curves are con-
strained suitably such that these fractal boundary curves are above the
plane whenever the given interpolation data along the grid lines are above
the plane. Our rational cubic spline FIS is above the plane whenever the
corresponding fractal boundary curves are above the plane. We illustrate
our interpolation scheme with some numerical examples.

Keywords: Iterated function system · Fractal interpolation functions ·
Bicubic partially blended fractal surface · Convergence · Constrained
interpolation · Positivity
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1 Introduction

In 1986, Barnsley [1] first put forward the concept of fractal interpolation func-
tion (FIF) by utilizing iterated function system (IFS) to handle highly irregular
data in nature and scientific phenomena. A FIF is the fixed point of the Read-
Bajraktarević operator defined on a suitable function space. By imposing appro-
priate conditions on the scaling factors, Barnsley and Harrington [2] observed
that if the underlying problem is of differentiable type, then the elements of the
IFS may be suitably chosen so that the corresponding FIF is smooth. Smooth
FIFs can be used to generalize classical interpolation and approximation tech-
niques. Fractal splines with general boundary conditions have studied recently
[6,8,24]. Since then, many researchers have contributed to the theory of frac-
tal functions by constructing various type of FIFs and hidden variable FIFs
[11,12,20,25,35].

Shape control, shape design and shape preservation [17,26–30] are important
areas for the graphical presentation of data. In computer graphics there is often

c© Springer Nature Singapore Pte Ltd. 2017
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DOI: 10.1007/978-981-10-4642-1 23
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the need to construct a curve/surface from an experimental data whose form can
be interactively adjusted by means of suitable parameters and which preserves
salient geometric properties such positivity, monotonicity, and convexity inherent
in the data. Including aforementioned FIFs, all existing polynomial FIFs are not
ideal for shape preservation. Owing to this reason, our group has introduced the
shape preserving rational spline FIF in the literature [9,32,33] because rational
spline FIFs has an upper hand over polynomial spline FIFs as it can carry more
degrees of freedom in its description. This freedom can be utilized for various
purposes and objectives to be achieved in diverse real-life problems arising in
different disciplines.

Fractal interpolation surface (FIS) provides a new methodology for data fit-
ting, which not only opens up a new research field for the theory of recursive func-
tions but also provides a powerful tool for computer graphics and widely used in
modeling natural surfaces such as terrains, metals, planets, rocks and so on. A pre-
vue of the existing theory on fractal surfaces is provided next. Massopust [22] was
the first to put forward the construction of the fractal surfaces via IFS and later
it is followed in earnest by researchers [4,23]. In reference [18], a construction of
self-affine FIS with a triangular domain for arbitrary interpolation points is con-
structed and in mean time, a more general construction of hidden variable fractal
interpolation surfaces, which carry additional free parameters is constructed in
[19]. Xie and Sun [34] proposed a mathematical model of the bivariate FISs on
the rectangular grid with arbitrary contraction factors and without any condi-
tions on boundary points but these bivariate FIS is not a graph of a continuous
function. The aforementioned result is improved and corrected in [14] by taking
collinear boundary. In order to ensure the continuity of the surface, all of them
assume that the interpolation nodes on the boundary are collinear. Construction
of fractal interpolation surfaces for arbitrary data on a rectangular grid is given in
[21] but the vertical scaling factors used in the IFS must all be equal in this case.
By using function vertical scaling factors, a method of construction for the frac-
tal interpolation surfaces on a rectangular domain with arbitrary interpolation
nodes is proposed by Feng et al. [16]. Recently, Songil [31] generalized the con-
struction of fractal surfaces in the paper [14,16]. These surfaces are self-similar,
self-affine or more generally self-referential. To approximate self-affine and non-
self-affine surfaces simultaneously, Chand and Kapoor [5] broached the notion of
coalescence hidden variable fractal interpolation surface and extended to smooth
fractal surfaces in [7]. The methods, which define surfaces via blending function
schemes [15] by utilizing curves that are already available and they obtained wide
attention in the literature as well as in the design environment, especially when
the constructed surface is desired to preserve important geometrical properties
like positivity, monotony and convexity. Note that all these FISs do not follow
shape preserving aspects of prescribed surface data. Recently, the concept of pos-
itivity preserving fractal surface is introduced by Chand and coworkers in [10].
This paper has been devoted to the visualization of surface data arranged on a
rectangular grid in the form of blending rational cubic spline FISs.

The remainder of this paper is organized as follows. In Sect. 2, we recall the
basics of IFS theory and its connection with fractal interpolation. In Sect. 3, we
construct the rational cubic spline FIFs (fractal boundary curves) in x and y
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directions, and by using these fractal boundary curves and blending functions,
we form a blending rational cubic spline FIS. The sufficient conditions of the
scaling factors and shape parameters so that the desired surface remains above
a specified plane is addressed in Sect. 4. The developed rational cubic spline FIS
is illustrated through suitably chosen numerical examples in Sect. 5.

2 Basic Facts

In this section we introduce the basic objects that we will work with in this
paper. We also state the intermediate proposition corresponding to the main
steps of our argument. For a more extensive treatment, the reader may consult
[1,2,15].

2.1 IFS for Fractal Functions

For r ∈ N, let Nr denote the subset {1, 2, . . . , r} of N. Let a set of data
points D = {(xi, yi) ∈ R

2 : i ∈ Nm} satisfying x1 < x2 < · · · < xm,
m > 2, be given. Set I = [x1, xm], Ii = [xi, xi+1] for i ∈ Nm−1. Sup-
pose contractive homeomorphisms Li : I → Ii, i ∈ Nm−1, are given by
Li(x) = aix + bi = xi+1−xi

xm−x1
x + xmxi−x1xi+1

xm−x1
, and let m − 1 continuous map-

pings Fi, i ∈ Nm−1, are defined by Fi(x, y) = αiy + ri(x), |αi| ≤ k < 1, sat-
isfying the join-up conditions Fi(x1, y1) = yi, Fi(xm, ym) = yi+1, i ∈ Nm−1,
and ri : I → R are suitable continuous functions, generally polynomials. Define
wi : X → Ii × R ⊆ X, wi(x, y) =

(
Li(x), Fi(x, y)

) ∀ i ∈ Nm−1. It is known [1]
that there exists a metric on R

2, equivalent to the Euclidean metric, with respect
to which wi, i ∈ Nm−1, are contractions. The collection I = {X;wi : i ∈ Nm−1}
is called an IFS.Associated with the IFS I , there is a set valued Hutchinson map

W : H(X) → H(X) defined by W (B) =
m−1∪
i=1

wi(B) for B ∈ H(X), where H(X)

is the set of all nonempty compact subsets of X endowed with the Hausdorff
metric hd. The Hausdorff metric hd completes H(X). Further, W is a contrac-
tion map on the complete metric space (H(X), hd). By the Banach Fixed Point
Theorem, there exists a unique set G ∈ H(X) such that W (G) = G. This set
G is called the attractor or deterministic fractal corresponding to the IFS I .
According to [1], the IFS I has a unique attractor G which is the graph of a
continuous function g : I → R, g(xi) = yi, i ∈ Nm. The function g is called a
FIF or a self-referential function generated by the IFS I , and it takes the form
g(Li(x)) = αig(x) + ri(x), x ∈ [x1, xm]. Barnsley and Harrington [2] introduced
a FIF with C r-continuity and this result was extended to C 1-rational spline
fractal functions [9] in the following proposition:

Proposition 1. Let {(xi, yi) : i ∈ Nm} be given interpolation data with strictly
increasing abscissae and di(i ∈ Nm) be the derivative values at the knots. Con-
sider the IFS I , with ri(x) = pi(x)

qi(x)
, pi(x) and qi(x) �= 0 are cubic polynomials
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∀x ∈ [x1, xm], and |αi| < ai, i ∈ Nm−1. Let Fi,1(x, y) = αiy+r
(1)
i (x)

ai
, where r

(1)
i (x)

represents the derivative of ri(x) with respect to x. If for i ∈ Nm−1,

Fi(x1, y1) = yi, Fi(xm, ym) = yi+1, Fi,1(x1, d1) = di, Fi,1(xm, dm) = di+1,(1)

then the attractor of the IFS I is the graph of a Hermite rational cubic spline
FIF.

This completes our preparations for the current study, and we are now ready
for our main section.

3 Bicubic Partially Blended Rational Fractal
Interpolation

We wish to a construct a C 1-continuous bivariate function Φ : R → R such that
Φ(xi, yj) = zi,j , ∂Φ

∂x (xi, yj) = zx
i,j , and ∂Φ

∂y (xi, yj) = zy
i,j for i ∈ Nm, j ∈ Nn. This

is achieved by blending the univariate rational cubic FIFs using the partially
bicubic Coons technique [3]. Thus with the obvious reasons, the bivariate func-
tion Φ is termed a bicubic partially blended rational fractal interpolation surface
(FIS). For the construction of the rational cubic spline FIS, first we develop the
fractal boundary curves from a given set of surface data by taking ri(x) as a ratio-
nal function with a cubic polynomial in numerator and preassigned quadratic
polynomial with two shape parameters in denominator as follows:

3.1 Construction of Rational Cubic Spline FIFs (Fractal Boundary
Curves)

Let Δ = {(xi, yj , zi,j) : i ∈ Nm, j ∈ Nn} be a set of bivariate interpolation
data, where x1 < x2 < · · · < xm and y1 < y2 < · · · < yn and denote hi =
xi+1 −xi, h∗

j = yj+1 −yj , i ∈ Nm−1, j ∈ Nn−1. Set Ki,j = Ii ×Jj = [xi, xi+1]×
[yj , yj+1]; i ∈ Nm−1, j ∈ Nn−1 be the generic subrectangular region and take
K = I × J = [x1, xm] × [y1, yn]. Let zx

i,j and zy
i,j are the x-partial and y-partial

derivatives of the original function at the point (xi, yj). Consider a surface data
set {(xi, yj , zi,j , z

x
i,j , z

y
i,j) : i ∈ Nm, j ∈ Nn} placed on the rectangular grid K.

It is plain to see that univariate data set obtained by taking sections of K with
the line y = yj (along the j-th grid line parallel to x-axis), j ∈ Nn, namely
Rj = {(xi, yj , zi,j , z

x
i,j) : i ∈ Nm}. Let Li : I → Ii, be affine maps Li(x) =

aix + bi satisfying Li(x1) = xi, Li(xm) = xi+1. By considering Proposition 1
with interpolation data Rj and shape parameters ui,j > 0, vi,j > 0 for i ∈ Nm−1,
we construct rational cubic spline FIF (fractal boundary curve):

ψ(x, yj) = αi,jψ
(
Li

−1(x), yj

)
+

Pi,j(θ)
Qi,j(θ)

, (2)
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where in

Pi,j(θ) = ui,j(zi,j − αi,jz1,j)(1 − θ)3 + {(ui,j + 2)zi,j + ui,jhiz
x
i,j − αi,j [(ui,j + 2)z1,j+

ui,j(xm − x1)z
x
1,j ]}(1 − θ)2θ + ((vi,j + 2)zi+1,j − vi,jhiz

x
i+1,j−

αi,j [(vi,j + 2)zm,j − vi,j(xm − x1)z
x
m,j ](1 − θ)θ2 + vi,j(zi+1,j − αi,jzm,j)θ

3,

Qi,j(θ) = ui,j(1 − θ2) + 2θ(1 − θ) + vi,jθ
2, θ =

Li
−1(x) − x1

xm − x1
=

x − xi

hi
, x ∈ Ii.

Similarly, for each i ∈ Nm, let us consider the univariate data set by tak-
ing sections of K with the line x = xi (along the i-th grid line parallel to
y-axis), namely Ri = {(xi, yj , zi,j , z

y
i,j) : j ∈ Nn}. Consider the affine maps

L∗
j : [y1, yn] → [yj , yj+1] defined by L∗

j (y) = cjy + dj satisfying L∗
j (y1) = yj

and L∗
j (yn) = yj+1, j ∈ Nn. For a fixed i ∈ Nm, let α∗

i,j be the scaling factors
along the vertical grid line x = xi such that |α∗

i,j | < cj < 1 and let the shape
parameters be selected so as to satisfy u∗

i,j > 0 and v∗
i,j > 0 for all j ∈ Nn−1.

Again, following Proposition 1 with interpolation data Ri, we construct rational
cubic spline FIF (fractal boundary curve):

ψ∗(xi, y) = α∗
i,jψ

∗(xi, L
∗
j
−1(y)

)
+

P ∗
i,j(φ)

Q∗
i,j(φ)

, (3)

where

P ∗
i,j(φ) = u∗

i,j(zi,j − α∗
i,jzi,1)(1 − φ)3 + {(u∗

i,j + 2)zi,j + u∗
i,jh

∗
j zyi,j − α∗

i,j [(u
∗
i,j + 2)zi,1+

u∗
i,j(yn − y1)z

y
i,1]}(1 − φ)2φ + ((v∗

i,j + 2)zi,j+1 − v∗
i,jh

∗
j zyi,j+1−

α∗
i,j [(v

∗
i,j + 2)zi,n − v∗

i,j(yn − y1)z
y
i,n])(1 − φ)φ2 + v∗

i,j(zi,j+1 − α∗
i,jzi,n)φ

3,

Q∗
i,j(φ) = u∗

i,j(1 − φ2) + 2φ(1 − φ) + v∗
i,jφ

2, φ =
L∗
j

−1(y) − y1

yn − y1
=

y − yj

h∗
j

, y ∈ Jj .

3.2 Formation of Blending Rational Cubic Spline FIS

In this section, we blend these univariate FIFs given in (2)–(3) using well-known
bicubic partially blended Coons patch to obtain the desired surface. Consider
the network of FIFs ψ(x, yj), ψ(x, yj+1), ψ∗(xi, y), and ψ∗(xi+1, y) for i ∈
Nm−1, j ∈ Nn−1. Consider the cubic Hermite functions bi

0,3(x) = (1−θ)2(1+2θ),
bi
3,3(x) = θ2(3 − 2θ), bj

0,3(y) = (1 − φ)2(1 + 2φ), and bj
3,3(y) = φ2(3 − 2φ).

These functions are called the blending functions, because their effect is to blend
together four separate boundary curves to provide a single well-defined surface.
On each individual patch Ki,j = Ii × Jj , i ∈ Nm−1, j ∈ Nn−1, we define a
blending rational cubic spline FIS.

Φ(x, y) = − [−1 bi
0,3(x) bi

3,3(x)
]
⎡

⎣
0 ψ(x, yj) ψ(x, yj+1)

ψ∗(xi, y) zi,j zi,j+1

ψ∗(xi+1, y) zi+1,j zi+1,j+1

⎤

⎦

⎡

⎣
−1

bj
0,3(y)

bj
3,3(y)

⎤

⎦ (4)
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The rational cubic spline FIS Φ can be written in the equivalent form to under-
stand the geometry of Coons construction as follows:

Φ(x, y) =
[
bi
0,3(x) bi

3,3(x)
]
[

ψ∗(xi, y)
ψ∗(xi+1, y)

]
+

[
bj
0,3(y) bj

3,3(y)
] [

ψ(x, yj)
ψ(x, yj+1)

]

− [
bi
0,3(x) bi

3,3(x)
]
[

zi,j zi,j+1

zi+1,j zi+1,j+1

][
bj
0,3(y)

bj
3,3(y)

]

,

:= Φ1(x, y) + Φ2(x, y) − Φ3(x, y).

(5)

From (4), it is easy to verify that Φ(xi, yj) = zi,j , Φ(xi+1, yj) =
zi+1,j , Φ(xi, yj+1) = zi,j+1, Φ(xi+1, yj+1) = zi+1,j+1. Thus Φ interpolates the
given data at grid points. The following theorem is a direct consequence of the
properties of the univariate FIFs forming the boundaries of Φ and the blending
functions. The proof is patterned after [10].

Theorem 1. The rational cubic spline FIS Φ (cf. (4)) satisfies the interpolation
conditions Φ(xi, yj) = zi,j, ∂Φ

∂x (xi, yj) = zx
i,j and ∂Φ

∂y (xi, yj) = zy
i,j, for i ∈ Nm,

j ∈ Nn, and Φ ∈ C 1(K).

Remark 1. When α =[0](m−1)×n and α∗ =[0]m×(n−1), one can get the classical
rational cubic surface interpolant as

C(x, y) = bj0,3(y)ψ(x, yj) + bj3,3(y)ψ(x, yj+1) + bi0,3(x)ψ
∗(xi, y) + bi3,3(x)ψ

∗(xi+1, y)

− bi0,3(x)b
j
0,3(y)zi,j − bi0,3(x)b

j
3,3(y)zi,j+1 − bi3,3(x)b

j
0,3(y)zi+1,j − bi3,3(x)×

bj3,3(y)zi+1,j+1,

where ψ(x, yj), j ∈ Nn and ψ∗(xi, y), i ∈ Nm are the classical rational cubic
interpolants obtained by Sarfraz et al. [28] for the data sets Rj , j ∈ Nn and
Ri, i ∈ Nm respectively.

4 Bicubic Partially Blended Rational FIS Above
a Prescribe Plane

In this section we constrain the parameters so that the corresponding rational
cubic spline FIS Φ (cf. (4)) would be utilized to achieve the interpolating surface
when data are under consideration over an arbitrary plane.

Theorem 2. Let {xi, yj, zi,j : i ∈ Nm, j ∈ Nn} be an interpolation data set. For
each j ∈ Nn, the univariate FIF ψ(x, yj) lies above the line t = c[1 − x

a − yj

b ]
if the scaling factors and the shape parameters are selected so as to satisfy the
following conditions

(1) The scaling factor such that 0 ≤ αi,j < min{ai,
zi,j−ti,j
z1,j−t1,j

,
zi+1,j−ti+1,j

zm,j−tm,j
},

(2) The shape parameters ui,j > 0 and vi,j > 0 satisfy:
(i) ui,j [(zi,j −αi,jz1,j)+(hiz

x
i,j −ti+1,j −αi,j(xm−x1)zx

1,j +αi,jtm,j)]+2[zi,j −
ti,j − αi,jz1,j + αi,jt1,j ] ≥ 0,
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(ii) vi,j [(zi+1,j − αi,jzm,j) + {hiz
x
i+1,j − ti,j − αi,j(xm − x1)zx

m,j + αi,jti,j}] +
2[zi+1,j − ti+1,j − αi,jzm,j + αi,jtm,j ] ≥ 0.

Proof. Let {xi, yj , zi,j : i ∈ Nm, j ∈ Nn} be an interpolation data set lying above
the plane t = c[1− x

a − y
b ], i,e. zi,j > ti,j = c[1− x

a − y
b ] for all i ∈ Nm, j ∈ Nn. We

wish to find conditions on the parameters of rational cubic spline FIS so that it
lies above the aforementioned plane, that is Φ(x, y) > t(x, y) for all (x, y) ∈ K.
We recall that the surface generated by the rational cubic spline FIS ψ lies above
the plane if the network of boundary curves ψ(x, yj) ∀ j ∈ Nn and ψ∗(xi, y) ∀
i ∈ Nm lie above the plane [13]. Since, Φ(xi, yj) = zi,j > t(xi, yj) for all i ∈
Nm, j ∈ Nn, the proof of ψ(τ, yj) > t(τ, yj) for all τ ∈ I is equivalent to find the
conditions for which ψ(x, yj) > t(x, yj), x ∈ I implies ψ(Li(x), yj) > t(Li(x), yj)
for x ∈ I. Assume ψ(x, yj) > t(x, yj). We need to prove that

αi,jψ
(
x, yj

)
+

Pi,j(θ)
Qi,j(θ)

> c[1 − aix + bi

a
− yj

b
], (6)

Since Qi,j(θ) > 0, in view of assumptions ψ(x, yj) > t(x, yj) and αi,j ≥ 0 for all
i ∈ Nm, j ∈ Nn, we deduce that the following condition confirm (6).

αi,jc[1 − x

a
− yj

b
]Qi,j(θ) + Pi,j(θ) − {c[(1 − yj

b
) − aix + bi

a
]}Qi,j(θ) > 0. (7)

Performing some algebraic calculations by substituting x = xi + θhi and
Qi,j(θ) = ui,j(1 − θ)3 + (ui,j + 2)θ(1 − θ)2 + (vi,j + 2)θ2(1 − θ) + vi,jθ

3 (using
the degree elevated form of Qi,j), and using the expression from (2) for Pi,j(θ),
we see that (7) may be reformulated as follows:

Ui,1(1 − θ)3 + Ui,2θ(1 − θ)2 + Ui,3θ
2(1 − θ) + Ui,4θ

3 > 0, θ ∈ [0, 1], (8)

where
Ui,1 = ui,j [zi,j − ti,j − αi,j(z1,j − t1,j)],
Ui,2 = ui,j [(3zi,j−2ti,j)−ti+1,j+hiz

x
i,j−αi,j{(3z1,j−2t1,j)+(xm−x1)zx

1,j−tm,j}],
Ui,3 = vi,j [(3zi+1,j−2ti+1,j)−ti,j−hiz

x
i+1,j−αi,j{(3zm,j−2tm,j)−(xm−x1)zx

m,j−
t1,j}],
Ui,4 = vi,j [zi+1,j − ti+1,j − αi,j(zm,j − tm,j)].

With the substitution θ = ν
ν+1 , (8) is equivalent to

Ui,4ν
3 + Ui,3ν

2 + Ui,2ν + Ui,1 > 0 ∀ ν > 0. (9)

We know that [26], a cubic polynomial ρ(ξ) = aξ3 + bξ2 + cξ + d ≥ 0 for all
ξ ≥ 0, if and only if (a, b, c, d) ∈ W1 ∪ W2, where

W1 = {(a, b, c, d) : a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0},

W2 = {(a, b, c, d) : a ≥ 0, d ≥ 0, 4ac3 + 4db3 + 27a2d2 − 18abcd − b2c2 ≥ 0}.

As the condition involved in W2 is computationally cumbersome, to obtain a
set of sufficient condition for the positivity of (9), we use comparatively efficient
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and reasonably acceptable choice of parameters determined by W1. Thus the
polynomial in (9) is positive if Ui,1 > 0, Ui,2 > 0, Ui,3 > 0 and Ui,4 > 0 are
satisfied. It is straight forward to see that Ui,1 > 0 is satisfied if αi,j <

zi,j−ti,j
z1,j−t1,j

and Ui,4 > 0 if αi,j <
zi+1,j−ti+1,j

zm,j−tm,j
, since the shape parameters ui,j > 0, vi,j > 0

for i ∈ Nm−1. It can be seen that the additional conditions on ui,j , vi,j prescribed
in the theorem ensure the positivity of Ui,2 > 0 and Ui,3 > 0. This completes
the proof.

With the similar rendition of arguments as above, we can prove the following
theorem.

Theorem 3. Let {xi, yj, zi,j : i ∈ Nm, j ∈ Nn} be an interpolation data set. For
each i ∈ Nm, the univariate FIF ψ∗(xi, y) lies above the line t = − c

by + c(1− xi

a )
if the scaling factors and the shape parameters are selected as follows

(1) The scaling factors such that 0 ≤ α∗
i,j < min{cj ,

zi,j−ti,j
zi,1−ti,1

,
zi,j+1−ti,j+1

zi,n−ti,n
},

(2) The shape parameters u∗
i,j > 0 and v∗

i,j > 0 satisfy
(i) u∗

i,j [(zi,j −α∗
i,jzi,1)+(h∗

jz
y
i,j − ti,j+1−α∗

i,j(yn −y1)z
y
i,1)+α∗

i,jti,n]+2[zi,j −
ti,j − α∗

i,jzi,1 + α∗
i,jti,1] ≥ 0,

(ii) v∗
i,j [(zi,j+1 − α∗

i,jzi,n) + {h∗
jz

y
i,j+1 − ti,j − α∗

i,j(yn − y1)z
y
i,n + α∗

i,jti,1}] +
2[zi,j+1 − ti,j+1 − α∗

i,jzi,n + α∗
i,jti,n] ≥ 0.

Theorem 4. Let {xi, yj, zi,j : i ∈ Nm, j ∈ Nn} be an interpolation data set
that lies above the plane t = c[1 − x

a − y
b ] i.e. zi,j > ti,j for all i ∈ Nm, j ∈ Nn.

Then the rational cubic spline FIS Φ (cf. (4)) lies above the plane provided
the horizontal scaling parameters αi,j for i ∈ Nm−1, j ∈ Nn and the vertical
scaling parameters α∗

i,j for i ∈ Nm, j ∈ Nn−1, the horizontal shape parameters
ui,j, vi,j for i ∈ Nm−1, j ∈ Nn and the vertical shape parameters u∗

i,j, v∗
i,j for

i ∈ Nm, j ∈ Nn−1 satisfy the hypotheses of Theorems 2–3.

Remark 2. When α =[0](m−1)×n and α∗ =[0]m×(n−1), we recover the conditions
for which the traditional nonrecursive bicubic partially blended rational function
C is above a prescribed plane. The foregoing theorem includes, in particular,
the conditions under which rational cubic spline FIS Φ preserves the positivity
property inherent in a given bivariate data set.

5 Numerical Examples

For the illustration of the developed scheme for constrained interpolation prob-
lem, consider the surface interpolation data (Table 1) with 16 points taken at
random. Let us note that in Table 1, the 1st, 2nd, and 3rd components of (., ., .)
represent the function value, the first order partial derivatives in x-direction and
y-direction at (xi, yj) respectively, where i, j ∈ {1, 2, 3, 4}. Note that the data
set reported in Table 1 lies above the plane t = 1 − x

8 − y
8 . Surface patch val-

ues are given in Table 2. Utilizing the prescription given in Theorem4, we have
calculated the restrictions on the scaling and shape parameters to obtain the
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rational cubic spline FIS which lies above the plane. The details of the scaling
and shape parameters used in the construction of Fig. 1a–h are given in Tables 3–
4. For arbitrary choice of the matrices of the scaling and shape parameters (see
Tables 3–4), a unconstrained rational cubic spline FIS is generated in Fig. 1a.
It may be observed that some portion of the surface lies below the plane. This
illustrates the importance of the Theorem 4. Choosing the scaling and the shape
parameters according to Theorem 4 (see Tables 3–4), rational cubic spline FISs
that lie above the plane are generated in Fig. 1b–h. Now we take Fig. 1b as
reference fractal surface to illustrates the effects of changes in matrices of the
scaling and shape parameters in the rational cubic spline FISs. We can notice
the effects in the rational cubic spline FIS due to changes in the scaling factors

Table 1. Interpolation data for constrained rational cubic FISs.

↓ x/y → 1 2 5 8

1 (2.6301, 0.6447,
−2.7380)

(1.6255, −0.5959,
−2.9587)

(2.9835, 0.0216,
3.1202)

(2.0531, 2.5992,
−3.2192)

4 (2.6668, −0.78,
−1.2807)

(1.5811, 0.7209,
−1.3839)

(3.0486, −0.0262,
1.4594)

(2.0432, −3.1445,
−1.5058)

6 (1.6574, 1.1458,
0.1425)

(2.8023, −1.0589,
0.1540)

(1.2548, 0.0384,
−0.1624)

(2.3150,
4.6191,0.1676)

8 (2.7101, −0.1736,
−1.3830)

(1.5288, 0.1605,
−1.4945)

(3.2155, −0.0058,
1.5761)

(2.0315, −0.7,
−1.6261)

Table 2. Surface patch above the plane t = 1− x
8
− y

8
.

0.75 0.375 0.125 −0.125

0.625 0.25 0 −0.25

0.25 −0.125 −0.375 −0.625

−0.125 −0.5 −0.75 −1

Table 3. Scaling matrices in the construction of the blending rational cubic FISs in
Fig. 1.

Scaling matrices in x-direction Figs Scaling matrices in y-direction Figs

α = 0.143* [1]3×4 Fig. 1a α∗ = 0.25* [1]4×3 Fig. 1a

α =

⎡
⎢⎢⎣
0.0029 0.0029 0.0029 0.0029

0.2886 0.2886 0.2805 0.2886

0.2886 0.2886 0.2886 0.2886

⎤
⎥⎥⎦ Fig. 1b–f α∗ =

⎡
⎢⎢⎢⎢⎣

0.1986 0.0557 0.0557

0.1986 0.0557 0.0557

0.1986 0.0557 0.0557

0.1986 0.0557 .0557

⎤
⎥⎥⎥⎥⎦

Fig. 1b–c, e–f

α =

⎡
⎢⎢⎣
0.1429 0.1429 0.1429 0.1429

0.4286 0.4286 0.4205 0.4286

0.4286 0.4286 0.4286 0.4286

⎤
⎥⎥⎦ Fig. 1c,e α∗ =

⎡
⎢⎢⎢⎢⎣

0.4286 0.2857 0.2857

0.4286 0.2857 0.2857

0.4286 0.2857 0.2857

0.4286 0.2857 0.2857

⎤
⎥⎥⎥⎥⎦

Fig. 1d–e

α = [0]3×4 Fig. 1f α∗ = [0]4×3 Fig. 1f
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(c) Effects of     in x-direction with 
      respect to Fig.1b.

(d) Effects of      in y-direction with 
      respect to Fig.1b.

(f) Effects of change in u with 
      respect to Fig.1b.

(g) Effects of change in v with 
      respect to Fig.1b.

(e) Effects of      and      with 
      respect to Fig.1b.

Fig. 1. Rational cubic FISs with constrained interpolation.
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Table 4. shape parameter matrices in the construction of the blending rational cubic
FISs in Fig. 1.

Matrices of shape parameters in

x-direction

Figs Matrices of shape parameters in

y-direction

Figs

u = [1]3×4 Fig. 1a,h u∗ = 200*[1]4×3 Fig. 1a,h

v = [1]3×4 Fig. 1a,h v∗ = [1]4×3 Fig. 1a,h

u =

⎡
⎢⎣

0.001 0.001 0.001 0.001

15.0375 0.001 0.001 0.001

0.001 0.001 0.001 0.001

⎤
⎥⎦ Fig. 1b,d,g u∗ =

⎡
⎢⎢⎢⎢⎣

6.0763 2.1270 0.001

0.001 0.001 0.001

0.001 0.001 0.001

0.001 0.001 0.001

⎤
⎥⎥⎥⎥⎦

Fig. 1b–c,g

v = 0.001* [1]3×4 Fig. 1b–c,f v∗ =

⎡
⎢⎢⎢⎢⎣

1.03386 0.001 5.5899

4.9374 0.001 0.001

0.001 0.001 0.001

0.001 0.001 0.001

⎤
⎥⎥⎥⎥⎦

Fig. 1b–c,f

u =

⎡
⎢⎣

0.001 0.001 0.001 0.001

2.7445 0.001 0.001 0.3758

0.001 0.001 0.001 0.001

⎤
⎥⎦ Fig. 1c,e u∗ = 0.0001*[1]4×3 Fig. (1)d-e

v = 0.001*[1]3×4 Fig. 1d,g v∗ = 0.0001* [1]4×3 Fig. 1d–e

u =

⎡
⎢⎣

0.1 0.1 0.1 0.1

15.1365 0.1 0.1 0.1

0.1 0.1 0.1 0.1

⎤
⎥⎦ Fig. 1f u∗ =

⎡
⎢⎢⎢⎢⎣

7.0753 3.1260 1

1 1 1

1 1 1

1 1 1

⎤
⎥⎥⎥⎥⎦

Fig. 1f

v= [1]3×4 Fig. 1g v∗ =

⎡
⎢⎢⎢⎢⎣

2.0328 1 6.5889

5.9364 1 1

1 1 1

1 1 1

⎤
⎥⎥⎥⎥⎦

Fig. 1g

and/or shape parameters in Fig. 1c–h. The constrained traditional nonrecursive
bicubic partially blended rational function C, which is above a prescribed plane,
generated in Fig. 1h. Note that, in particular, all these fractal surfaces preserve
the positivity property of prescribed data.

6 Conclusion

In the current article, we have introduced the rational cubic spline FIS for the
data arranged on the rectangular grid. We have applied the well-known par-
tially bicubic Coons technique to construct a surface whose boundaries consist
of the rational cubic FIFs because it provides an elegant method of construct-
ing shape preserving surfaces. Restrictions on the scaling and shape parameters
for the rational cubic spline FIS are deduced so that it lies above a prescribed
plane. In particular, we also obtain the positivity of the rational cubic spline
FIS. Our scheme offers a large flexibility for simulation or modeling of objects
with smooth geometric shapes because the shapes of rational cubic spline FIS
can be adjusted by using different choices of the scaling factors and the shape
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parameters. The proposed scheme may have wide applications in smooth surface
modeling in computer graphics, in non-linear sciences, data visualization prob-
lems, and engineering design. When scaling matrices (in both the directions) are
taken to be zero, the developed rational cubic spline FIS reduces to the existing
traditional nonrecursive bicubic partially blended rational function. It would be
interesting to study other important shape properties such as the monotonicity
and convexity of the rational cubic spline FIS, which may appear elsewhere.
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Abstract. A numerical investigation is made into the characteristics
of the electrokinetic flow and its effect in the vicinity of a surface cor-
rugated microchannel. A transformation have been used to transform
the present physical domain to rectangular computational domain in
order to simplify the application of boundary conditions on the chan-
nel walls. The characteristics for the electrokinetic flow are obtained by
numerically solving the Laplace equation for the distribution of external
electric potential; the Poisson equation for the distribution of induced
electric potential; the Nernst-Planck equation for the distribution of ions
and the Navier-Stokes equations for fluid flow simultaneously. These non-
linear coupled set of governing equations are solved numerically by con-
trol volume method over staggered system. Our results show that the
form of the vortical flow, which develops in the vicinity of the chan-
nel wall depends on the surface roughness and thickness of the Debye
layer along the homogeneous channel wall. The occurrence of electrical
neutrality of fluid outside the Debye layer and recirculating vortex near
channel wall suggests that the fluid flow is influenced by the induced
electric field and vice-versa.

Keywords: Surface modulation · Electroosmotic flow · Electric double
layer · Nernst-Planck equations

1 Introduction

The burgeoning field of microfluidics continues to expand its impact on society,
finding extensive uses in areas ranging from the research laboratory to the health
care industry. The micro/nano fluidic systems have a wide range of biological
and chemical applications such as, drug delivery and control, rapid molecular
analysis, sensing, separation and mixing, DNA manipulation and sequencing
among many other applications. Most solid surfaces acquire a certain amount of
electrostatic charges when they are in contact with aqueous solution. The surface
charge influences the distribution of the ions within the liquid near the wall
surface. As a result, positive counterions in solution have a greater affinity for the
c© Springer Nature Singapore Pte Ltd. 2017
D. Giri et al. (Eds.): ICMC 2017, CCIS 655, pp. 278–289, 2017.
DOI: 10.1007/978-981-10-4642-1 24
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surface, resulting in a gradient of positive ions whose concentration eventually
drops to that of the bulk solution at some distance away from the wall. The
negatively charged surface and the immobile positive ions adjacent to it form
the Stern layer and a diffuse layer consists of a region of mobile ions. These
two distinct regions form the well-known electrical double layer (EDL). The
thickness of the EDL can be characterized by the Debye length, which is in the
order of nanometers. Electroosmotic flow (EOF) is the bulk liquid motion that
results when an externally applied electric field interacts with the net surplus
of charged ions in the diffused part of an EDL (2006). When EOF is modeled
in thin EDL approximation using a simple slip velocity condition known as the
Helmholtz-Smoluchowski velocity (1994).

Owing to its importance, several authors investigated the various aspects
of EOF in micro and nanochannels both theoretically and experimentally. In
the literature, a great deal of information has been generated on EOF. Conlisk
and MeFerran (2002) described a mathematical model and numerical solution
for EOF due to the applied electric field in a rectangular microchannel with
overlapping EDL. The EOF in micro- and nanofluidics have been studied by
Wang et al. (2006) using a lattice Poisson-Boltzmann method. Erickson and
Li (2003) proposed an analytical solution using Greens function for alternating
current EOF through a rectangular microchannel for the case of a sinusoidal
applied electric field. A mathematical model have been proposed by Qu and
Li (2000) to determine electrical potential distributions and ionic concentration
distributions in overlapped EDL fields between two flat plates. It may be noted
that the Debye-Huckel approximation is valid only for low surface potentials
(<25 mV) (Conlisk (2005)). Bera and Bhattacharyya (2013) compared the EOF
between the linear model based on equilibrium Poisson-Boltzmann equations
and non-linear model based on the Poisson-Nernst-Plank equations for ions. The
magnitude and direction of EOF strongly depends on the magnitude and polarity
of the surface charged density of the wall. This non-uniform surface potential
results in difference in electrokinetic force and develops the micro-vortices which
is very important to increase mixing performance of solutes, separation of ions
etc. The analysis of EOF with step change in zeta-potential is studied by Fu et al.
(2003). Luo (2006) investigated the two-dimensional time-dependent EOF driven
by an AC electric field in micro channel with patchwise surface heterogeneities
in different forms. An analytic solution for two-dimensional EOF was proposed
by Horiuchi et al. (2007) in the vicinity of a step change in zeta-potential in a
rectangular microchannel.

Generally, microchannel surfaces exhibit certain degrees of roughness gener-
ated by the manufacturing techniques or adhesion of biological particles from
the liquids. The surface roughness of the order of few angstroms can also have
a big significant factor on flow pattern. The geometric modulation of the chan-
nel wall is also created to increase the interfacial area. The surface modulation,
roughness and potential heterogeneity have a great impact on flow as it disturb
electro-neutrality behavior and the equilibrium EDL structure. Formation of
vortices near abrupt nanochannel was numerically investigated by Ramirez and
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Conlisk (2006). Chang and Yang (2004) studied the electrokinetically driven flow
mixing with different patterned rectangular blocks in microchannel. A numerical
model was developed by Hu et al. (2010) to simulate electroosmotic transport
in microchannel with rectangular prism rough elements on the surfaces of wall.
Alexander et al. (2010) studied the EOf in wavy channels by expanding the
solution into a double series in terms of the dimensionless amplitudes and zeta-
potential for a binary dilute electrolyte. The flow around a flow-disturbing rib
located inside a rectangular microchannel was studied by Stogiannis et al. (2014)
in experimentally and numerically.

One important aspect of the presence study is to consider the non-linear
effects due to the present of surface modulation of the physical domain. The effect
of fluid convection on ionic species distribution plays an important role in the
current study. Most of the existing studies are based on the Stokes equations for
the hydrodynamic flow field without considering the inertia effects. In addition
the concentration distribution are based on equilibrium Boltzman distribution.
The present model deals with by considering inertia effects of the full set of the
Navier-Stoke equations with bodyforce terms for fluid transport. To capture the
effects of convection, diffusion and electric migration of ions, the Nernst-Plank
equation is considered for the ionic species distribution. There are two type of
electric field present in the scenario, one is applied electric field which generated
by introducing electrodes in the far upstream and downstream of the channel
and another is induced electric field which developed due to the redistribution of
ions near the wall. The Laplace equation for applied electric field and the Poisson
equation for induced electric field will be considered in our proposed study. It
may be noted that the governing equation for fluid flow, ionic concentration and
potential distribution are coupled and non-linear in nature. Our aim is to solve
these coupled equations using finite volume method in a staggered grid system
using several upwind schemes. The influence of several important factors such as
ionic concentration and surface roughness of the channel wall, on electrokinetic
ion and fluid transport have been investigated thoroughly in the present study.

2 Mathematical Model

We considered a long rectangular channel of height 2h filled with an incom-
pressible Newtonian electrolyte of uniform permittivity εe and viscosity μ.
A schematic view of the physical domain being considered in Fig. 1(a). Because
of the symmetric nature of present problem, we computed the lower half of
the channel within a cycle (Fig. 1b). The external applied electric field E0 is
generated by the electrodes placed at the inlet and the outlet of the channel.
The distribution of external potential ψ∗ is governed by the following Laplace
equation

∇2ψ∗ = 0 (1)

The walls are electrically insulated i.e., ∇ψ∗.n= 0, where n is the unit out-
ward normal and far upstream and downstream, ψ∗ approaches a linear function
of x i.e., ψ∗ = −E0x

∗.
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Fig. 1. (a) Schematic diagram of the surface corrugated microchannel in two cycle of
wave length and (b) grid distribution of the present computational domain with wave
amplitudes α1 = 0.2 and α2 = 0.08 in one cycle of wave length.

The electric field E∗ (= E∗
x,E∗

y) is determined by the superposition of the
external electric field along with the induced electric field developed due to the
redistribution of ions. The total electric potential Φ∗ can be written as Φ∗ =
ψ∗(x, y) + φ∗(x, y), where φ∗ is the induced electric potential. The dimensional
variables are denoted by an asterisk (∗). The charge density ρ∗

e is related to the
electric field as

∇ · (εeE∗) = −εe∇2Φ∗ = ρ∗
e =

∑

i

zien
∗
i (2)

Here, zi and n∗
i are respectively, the valance and ionic concentration of the

i type ion, e is the elementary electric charge and εe = ε0εr, where ε0 is the
electric permittivity of vacuum and εr, the dielectric constant of the solution.

The transport equation of the ionic species i is governed by the Nernst-Planck
equation as

∂n∗
i

∂t∗
+ ∇ · N∗

i = 0 (3)

where N∗
i (= −Di∇n∗

i + n∗
i ωiziFE∗ + n∗

iq
∗) is the net flux of ionic species.

Di and ωi (= Di/RT ) are respectively, the diffusivity and mobility of i type
species. Here, R is the gas constant and F is the Faraday’s constant.

The equations for the transport of electrolyte are governed by the Navier-
Stokes equations for a constant property of Newtonian fluid with an electric
body force term as described by Bhattacharyya and Bera (2013)

∇ · q∗ = 0 (4)

ρ

(
∂q∗

∂t∗
+ (q∗ · ∇)q∗

)
= −∇p∗ + μ∇2q∗ + ρ∗

eE (5)

where q∗(= u∗, v∗) is the velocity field of the fluid with u∗ and v∗ are the
velocity components in the x and y directions, respectively. Here, ρ and μ are
density and viscosity of the liquid respectively.
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We scaled electric potential Φ∗ by φ0 (= kBT/e) and ionic concentration n∗
i

by the bulk ionic concentration n0, cartesian coordinates (x∗, y∗) by half cannel
height h, the velocity field q∗ (= u∗, v∗) by the Helmholtz-Smoluchowski velocity
UHS = εeE0φ0/μ, pressure p∗ is scaled by μUHS/h and time t∗ by h/UHS .
Here, kB is the Boltzmann constant and T is the absolute temperature of the
solution. We consider a symmetric electrolyte of valance zi = ±1. We denoted
the non-dimensional concentration of cation by g and anion by f . The parameter
κ = [(2e2n0)/(εekBT )]1/2 is reciprocal of the characteristic EDL thickness (λ)
and κh = h/λ.

2.1 Transformation of Basic Equations

A suitable transformation is used to map the present physical domain into a
rectangle domain. We have used the following coordinate transformation.

Y =
y

y0(x)
(6)

The walls of the channel are defined by a function y0(x) and is defined by

y0(x) = ±0.5 ± [α1 sin(2πx) + α2 sin(4πx)]

where α1 and α2 are the amplitudes of the two superimposed sinusoidal functions
with wave crest and wave trough at x = −0.17 and x = 0.17 respectively.

The non-dimensional equations for applied electric potential (ψ), induced
potential (φ), ionic species concentration (g, f) and flow field (u, v) in a Cartesian
coordinate with origin at the midpoint of wavy centra are given by

∂2ψ

∂x2
+ Y

[
2
y2
0

(
∂y0
∂x

)2

− 1
y2
0

∂2y0
∂x2

]
∂ψ

∂Y
− 2Y

y0

∂y0
∂x

∂2ψ

∂x∂Y

+

[
Y 2

y2
0

(
∂y0
∂x

)2

+
1
y2
0

]
∂2ψ

∂Y 2
= 0 (7)

∂2φ

∂x2
+ Y

[
2
y2
0

(
∂y0
∂x

)2

− 1
y2
0

∂2y0
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]
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(
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∂Y 2
= − (κh)2

2
(g − f) (8)
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]
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+

[
∂g
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Y 2
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The Reynolds number based on UHS is defined as Re = UHSh/ν, Schmidt
number Sc = ν/Di, Peclet number Pe = Re · Sc and ν = μ/ρ, where μ is the
viscosity of the electrolyte. Along the solid walls of the channel, we assumed a
no-slip condition and ion impermeability i.e.,

u = v = 0; φ = ζ; Ni · n = 0 (14)
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where n is the unit outward normal vector. The boundary wall bears a
constant uniform surface potential ζ-potential. The flow under consideration
is assumed to be axisymmetric with respect to the y-axis of symmetry. We have
used the periodic boundary condition for variables at the upstream and down-
stream of the channel.

3 Numerical Methods

We solved the coupled set of governing non-linear equations (Eqs. 7–13) for
fluid flow and ionic species concentration through a finite volume method on
a staggered grid system in the transform domain. In the staggered grid sys-
tem, the scalar quantities are evaluated at each cell center and the velocity
components are evaluated at the midpoint of the cell sides to which they are
normal. The discretized form of the governing equations are obtained by inte-
grating the governing equations over each control volumes. Different control
volumes are used to integrate different equations. We have used the second-
order upwind-biased scheme, Quadratic Upwind Interpolation Convective Kine-
matics (QUICK) Leonard (1979), to discretize the convective and electromigra-
tion terms in both concentration and the Navier Stokes equations. The QUICK
scheme uses a quadratic interpolation/ extrapolation between three nodal val-
ues to estimate the variables at the interface of the control volume. The upwind
scheme imparts stability to the numerical solution in the region where a steep
gradient in variables occur. An implicit first-order scheme is used for discretis-
ing the time derivative terms. The resulting discretized equations are solved
iteratively through the pressure correction based iterative algorithm SIMPLE
Fletcher (1991). The iteration starts by assuming the induced electric potential
φ at every cell center. A multigrid technique may be adopted for computing ellip-
tic type PDEs. We considered a non-uniform grid spacing along y-direction and
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Fig. 2. Comparison of our computed solution with Mirbozorgi et al.(2006) and the
effects of grid size for fully developed EOF in a plane microchannel (i.e.,y0(x) = 1),
when channel half-height h is 10 μm, κh = 21.74, ζ =−25 mV and Re = 0.02. (a) Veloc-
ity; (b) ionic concentrations.
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uniform grids along the other axis (Fig. 2 and δt was taken as 0.001. To check
the effects of grid spacing, computations have been performed for three different
meshes with Grid 1: 200 × 240, Grid 2: 400× 240 and Grid 3: 400× 500 for EOF
in a plane microchannel for y0(x) = 1, and compared with the results due to
the Mirbozorgi et al. (2006). In Grid 1 and Grid 2, we considered a non-uniform
grid size where δy is assumed to vary between 0.005 to 0.01 with δx is either
0.02 (for Grid 1) or δx = 0.01 (for Grid 2). In Grid 3, we considered δx = 0.01
and 0.0025 ≤ δy ≤ 0.005. Figure 2(a) and (b) suggests that the results obtained
by Grid 2 and Grid 3 agree fairly well with each other and these results are in
close agreement with the result due to Mirbozorgi et al. (2006). Thus, we find
that Grid 2 is optimal.

4 Results and Discussions

We have considered the half-height of the channel h = 10 μm, viscosity μ = 0.001
Kg/m s, density ρ = 1000 Kg/m3, Faraday constant F = 96, 500 C/mol and gas
constant R = 8.315 J/mol K at temperature T = 300 K and the thermal voltage
φ0 = 0.0256 mV. The number Λ = E0h/φ0 measures the strength of the external
electric field in non-dimensional form. The external electric field is assumed to
be 104 V/m, thus the non-dimensional parameter Λ = 4.0 when h = 10 μm.
The Reynolds number based on the Helmholtz-Smoluchowski velocity UHS(=
1.788 × 10−3 m/s) is Re = 1.78 × 10−3 when ζ = −1. We considered diffusion
coefficient of ions are same as D+ = D− = 1.3×10−10 m2/s and Schmidt number,
Sc = 7692.31 and the Peclet number Pe = 13.69. The form of the applied electric
fields (ψ) are presented in Fig. 3(b–c) for different value of surface roughness
parameter α1, α2 and compared with plane channel in Fig. 3(a).

We present the streamline patterns for various values of Debye layer thickness
i.e., κh = 5, 15, 60 when h = 10μm in Fig. 4(a–c) for α1 = 0.2 and α2 = 0.08.
The surface potential for upper and lower wall of the channel is considered same
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Fig. 3. Distribution of applied electric field in the surface corrugated microchannel
(a) y0(x) = 1.0 (plane channel), (b)α1 = 0.1, α2 = 0.04 and (c)α1 = 0.2, α2 = 0.08
when h = 10 μm, and E0 = 104 V/m.
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as ζ = −1.0. The recirculation zone appears for lower values of κh and disappear
with the increase of κh. The induced pressure gradient develops due to geometric
modulation and create the vortical flow in the wave crest region for low ionic
concentration i.e., small κh. Vortical flow also depends on the Debye length when
Debye layer thickness is in the order of the channel height. The streamlines of the
liquid flow near the wall surface are distorted and a micro-vortex is generated
because of the surface modulation for thin EDL.
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Fig. 4. Streamline profiles of EOF for different ionic concentration in the surface cor-
rugated microchannel when h = 10 μm, α1 = 0.2, α2 = 0.08, ζ = −1.0 and E0 = 104

V/m. (a) κh = 5; (b) κh = 15; and (c) κh = 60.

The u-velocity profiles are shown in Figs. 5(a–c) for different values of ionic
concentration κh = 5, 15, 60 when the surface potential is same all over the wall
and is ζ = −1.0. The profiles do not resemble the classical plug-like profile for
surface corrugated wall. For high ionic concentration, u -velocity is increase. An
induced pressure field develops as the fluid flow rate becomes non-uniform due
to the modulated surface wall. However, the flow field becomes uni-directional
as it move away from the surface wall. The EOF velocity increases at a faster
rate with the increase of ionic concentration for fixed channel half-height h.

Figures 6(a–c) show the distribution of induced potential (φ) for different
ionic concentration near the surface corrugated microchannel. The uniform sur-
face potential ζ is applied in the wall and its value is −1 i.e., −25 mV. For low
ionic concentration core region is not electro neutral. The non-uniformity of the
net charge density results in nonuniform EOF velocity, which creates a pres-
sure gradient along the primary flow direction and an induced pressure gradient
develops due to the momentum loss.

The distribution of concentration profiles for cation (g) and anion (f) are
shown in Fig. 7(a) for the wave crest point x = −0.17 and (b) the wave trough
point at x = 0.17 for different values of κh (= 5, 15, 60). The distribution of ions
show that the charge density is non-zero near the corrugated wall. A non-zero
charge density in the bulk region implies that the electric body force outside the
Debye layer has an impact in driving the fluid motion. We find from Figs. 7(a)
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Fig. 5. Distribution of u-velocity (u) of EOF for different ionic concentration in the
surface corrugated microchannel when h = 10 μm, α1 = 0.2, α2 = 0.08, ζ = −1.0 and
E0 = 104 V/m. (a) κh = 5; (b) κh = 15; and (c) κh = 60.

Fig. 6. Distribution of induced potential (φ) of EOF for different ionic concentration
in the surface corrugated microchannel when h = 10 μm, α1 = 0.2, α2 = 0.08, ζ = −1.0
and E0 = 104 V/m. (a) κh = 5; (b) κh = 15; and (c) κh = 60.
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Fig. 7. Distribution of cation (g) and anion (f) for different ionic concentration in the
surface corrugated microchannel when h = 10 μm, α1 = 0.2, α2 = 0.08, ζ = −1.0
and E0 = 104 V/m. (a) wave crest x = −0.17; and (b) wave trough x = 0.17. Arrow
indicates the increasing direction of κh (= 5, 15, 60). Solid and dotted lines represent
the distribution of cation (g) and anion (f) respectively.
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and (b) that even for high κh, the net charge density (g−f) is nonzero outside the
EDL. As the electric body force on fluid flow is nonzero, it makes the governing
equations for fluid flow and ion transport coupled. Besides, for lower values of
κh (i.e., thick EDL), the bulk fluid is not electrically neutral and thus, the ions
do not follow the Boltzmann distribution.

5 Conclusions

A numerical investigation is performed on the electroosmotic flow and its effects
in the vicinity of a surface modulated microchannel. The physical modulated
domain is transformed into a rectangular computational domain in order to
simplify the application of boundary conditions on the channel walls. The char-
acteristics for the electrokinetic flow are obtained by numerically solving the
Laplace equation for the distribution of external electric potential; the Poisson
equation for the distribution of induced electric potential; the Nernst-Planck
equation for the distribution of ions and the Navier-Stokes equations for fluid
flow simultaneously. These non-linear coupled set of governing equations are
solved numerically by control volume method over staggered system. The recir-
culating vortex, which appears near the surface wall disappear and the average
electroosmotic velocity increases with the increase of the electrolyte concentra-
tion. The vortical flow develops near the corrugated wall and depends on the
surface roughness and Debye layer thickness. The flow field close to the wall is
two dimensional. However, the streamlines shows a parallel flow faraway from
the channel wall. The net charged density is not zero outside the Debye layer for
surface corrugated microchannel.
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Abstract. Explicit harmonic Robin functions are given for the exterior
of an ellipse and for a ring domain bounded by two confocal ellipses of
the complex plane. The related Robin problems for the Poisson equation
are explicitly solved. As the Robin functions interpolate the Green and
Neumann functions the Dirichlet and Neumann problems are by the way
treated.
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1 Introduction

Although reflections are possible on ellipses on the plane the parqueting reflection
principle does not provide harmonic Green and Neumann functions because the
resulting functions fail to be meromorphic. Here the conformal invariance of the
fundamental solutions to the Laplace operator, see e.g. [16], is used to construct
Robin functions for the exterior of an ellipse and for a doubly connected domain
bounded by two confocal ellipses.

To explain the parqueting-reflection principle the basic case of the unit disc
D = {|z| < 1} is considered. A point z ∈ D is reflected at the boundary ∂D =
{|z| = 1} onto 1

z . This reflection provides a covering of the complex plane C =
D ∪ C \ D. Choosing the elementary rational function

P1(z, ζ) =
1 − zζ

ζ − z

with a simple pole at z and a simple zero at 1
z provides the harmonic Green

function for D in the form G1(z, ζ) = log |P1(z, ζ)|2. The harmonic Neumann
function for D is N1(z, ζ) = − log |(ζ − z)(1 − zζ)|2. For convenience here twice
the respective fundamental solutions are used indicated by the subscript 1, [3,4].

This principle is helpful to attain these fundamental solutions for a variety
of plane domains bounded by arcs of circles and lines, see e.g. [1,5,12,17–19].
c© Springer Nature Singapore Pte Ltd. 2017
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But there are plane domains for which the parqueting-reflection principle applies,
not providing Green or Neumann functions. An example for such a domain is
the one bounded by the ellipse [6]

x2

a2
+

y2

b2
= 1 with 0 < a, b,

in complex form given as

|Az − Bz|2 = 1, where A + B =
1
b
, B − A =

1
a
.

The reflection of a point z, |Az − Bz|2 < 1, inside the ellipse at the ellipse
is zr, defined by zzr = z21 , where z1 = z

|Az−Bz| is the intersection of the ray
from 0 towards z and the ellipse. Obviously, 1 < |Azr − Bzr|2. This provides a

parqueting of C, see [9]. But ˜G1(z, ζ) = log
∣

∣

∣

ζ−zr

ζ−z

∣

∣

∣

2

with zr = z
|Az−Bz|2 fails to

be harmonic in the variable z. In order to obtain the harmonic Green and the
harmonic Neumann function for the exterior domain of the ellipse the conformal
map onto the unit disc is used, see [20], exercise 264(2), p. 37 and p. 297.

Using a conformal map from a ring domain bounded by two confocal ellipses
onto a concentric ring domain and using the Green and Neumann functions
for the latter ring [17–19], these functions can be obtained for the elliptic ring
domain.

Instead, the conformal invariance is used for a (modified) harmonic Robin
function to create a (modified) Robin function for the elliptic ring. The modi-
fication is required for doubly connected domains in order to achieve a Robin
function interpolating the Green and Neumann functions. The modification con-
sists in replacing the outward normal derivative on the inner boundary part by
the inner normal derivative, i.e. just by changing the sign in the boundary behav-
ior of the Robin function at one boundary part, see [17]. For particular choices of
the parameters involved the Green and some Neumann functions are included.
The Robin function serves to obtain a representation formula for proper func-
tions leading to explicit solutions to related Robin boundary value problems and
if required to solvabilty conditions for the Poisson equation. Particularly the
Dirichlet and Neumann problems are treated. For results on the Robin problem
for certain first and second order equations see e.g. [2,6–8,10,11,13–15].

2 Robin Function for the Exterior of an Ellipse

An ellipse is the zero set of the function

E(z) =
x2

a2
+

y2

b2
− 1, a, b ∈ R,

of two real variables x, y. Assuming a > b > 0, a2 − b2 = 1 and introducing

r = a+ b,
1

r
= a− b, i.e. 2a = r +

1

r
, 2b = r − 1

r
, 2(a2 + b2) = r2 +

1

r2
, a2 − b2 = 1
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and the complex variables

z = x + iy, z = x − iy, i.e. 2x = z + z, 2iy = z − z

this function is expressible as

E =
(z + z)2

(r + 1
r )2

− (z − z)2

(r − 1
r )2

− 1.

According to [20], exercise 264(2), the function

ω = ω(z) =
1
r
(z ±

√

z2 − 1),
√

1 = +1,

maps the exterior Ee of the ellipse E = 0, i.e. the set 0 < E onto a disc or the
complement of a disc, dependent on the branch of the square root and the size
of r. In more detail the next lemma holds.

Lemma 1. For 1 < r the function ω maps the outside of the ellipse E onto the
disc |ω| < 1

r2 or onto 1 < |ω|. If r < 1 then the image of Ee = {0 < E} is either
the unit disc |ω| < 1 or the set 1

r2 < |ω|.
Proof. Independently of the choice of the branch of the square root the inverse
mapping to ω is

z =
1
2
(

rω +
1
rω

)

.

The choice of the square root branch and the size of the parameter r influence
the chape of the image set. The function

ω1(z) =
1
r
(z −

√

z2 − 1),

maps Ee onto a bounded domain because

lim
z→∞ rω1(z) = lim

z→∞ z
[

1 −
√

1 − 1
z2

]

= 0,

while

ω2(z) =
1
r
(z +

√

z2 − 1)

maps Ee onto an unbounded domain as obviously

lim
z→∞ rω2(z) = ∞.

Inserting the inverse map the ellipse equation E = 0 can be rewritten as
E = 0,

E =
(ω + ω)2

4

(r + 1
r|ω|2

r + 1
r

)2

− (ω − ω)2

4

(r − 1
r|ω|2

r − 1
r

)2

− 1

= u2
(

1 +
1

|ω|2 − 1

r2 + 1
)2 + v2

(

1 −
1

|ω|2 − 1

r2 − 1
)2 − 1

=
(1 − |ω|2)(1 − r4|ω|2)

(a2 + b2)|ω|4
( u2

4a2
+

v2

4b2
)

,



296 H. Begehr

where ω = u + iv.
For 0 < E obviously 0 < (1 − |ω|2)(1 − r4|ω|2).

Case (i) 1 < r. Then 1 − r4|ω|2 < 1 − |ω|2. If 0 < 1 − r4|ω|2 then |ω| < 1
r2 . But

when 1
r2 < |ω| < 1 then 1 − r4|ω|2 < 0 < 1 − |ω|2, i.e. E < 0.

If 1−|ω|2 < 0 then 0 < E, while for 1
r2 < |ω| < 1 the inequalities 1−r4|ω|2 <

0 < 1−|ω|2 and thus E < 0 hold. Hence, either ω maps E onto |ω| < 1
r2 or onto

1 < |ω|.
Case (ii) r < 1. Then 1 − |ω|2 < 1 − r4|ω|2. If 0 < 1 − |ω|2 then 0 < E. But
when 1 < |ω| < 1

r2 then 1 − |ω|2 < 0 < 1 − r4|ω|2, i.e. E < 0.
If however, 1 − r4|ω|2 < 0 this means 1

r2 < |ω|. But for 1 < |ω| < 1
r2 the

relations 1 − |ω|2 < 0 < 1 − r4|ω|2 imply as above E < 0. Thus ω maps E either
onto |ω| < 1 or onto 1

r2 < |ω|. ��

The tangent to E at the point z = x + iy is determined by y′ = − x
a2

b2

y

with y′ = dy
dx . The outward normal vector at z0 = x0 + iy0 ∈ E is described by

y − y0 = y0
x0

a2

b2 (x − x0). Thus the outward normal direction on the boundary of

the outer domain 0 < E of the ellipse E at z ∈ E is (ν1, ν2) = − (xb2,ya2)√
x2b4+y2a4

. The

complex form ν = ν1 + iν2 is used to describe the outward normal unit vector
on E.

Assumption. The function ω maps the ellipse E onto the unit circle ∂D.
Because of

2(xb2 + iya2) = (a2 + b2)z + (b2 − a2)z = rω − ω

r

then

ν = − rω − ω
r

|rω − ω
r | .

Later on

|(rω − ω

r

)|2 = 2(a2 + b2) − ω2 − ω2

will be used.
The outward normal derivative ∂ν = ν∂z + ν∂z applied to real functions is

just

∂ν = 2Re(ν∂z) = 2Re(νω′∂ω).

Observing here |ω| = 1 from

√

z2 − 1 = z − rω = −1
2
(

rω − ω

r

)



Fundamental Solutions to the Laplacian in Plane Domains 297

follows

ω′ = ω′(z) = − ω(z)√
z2 − 1

=
ω

1
2

(

rω − ω
r

) ,

so that

∂ν = −2Re
(

ν
ω

1
2

(

rω − ω
r

)∂ω

)

.

For the ellipse E the arc length element ds is calculated as

ds2 =
x2b4 + y2a4

y2a4
dx2 =

a2(ω − ω)2 − b2(ω + ω)2

a2(ω − ω)2
dx2,

where from dω
ω = −dω

ω (for any circle with the origin as center), the relation

2dx = dz + dz = a(ω − ω)
dω

ω
= −2av

dω

iω
, ω = u + iv,

and hence

ds2 = [a2(ω − ω)2 − b2(ω + ω)2]
1
4
(dω

ω

)2 = [ω2 + ω2 − 2(a2 + b2)]
1
4
(dω

ω

)2

follow.
Taking

ds =
1
2

√

ω2 + ω2 − 2(a2 + b2)
dω

ω
=

i

2
|rω − ω

r
|dω

ω
,

one has for real functions

∂νds = 2Re(ω∂ω)
dω

iω
.

Remarks. If the image of the ellipse is the outside of the unit disc rather than
the disc itself then because of rω = z +

√
z2 − 1 there is a change of sign for ds.

For the case of mappings of E onto the circle |ω| = 1
r2 similarly

∂νds = 2Re(ω∂ω)
dω

iω
.

As the Green function as well for the unit disc D as for its complement C\D is

Ĝ1(z, ζ) = log
∣

∣

1 − zζ

ζ − z

∣

∣

2
,

see e.g. [3,4], by the conformal invariance, see e.g. [16], the Green function for
the outside of E is

G1(z, ζ) = log
∣

∣

1 − ω(z)ω(ζ)
ω(ζ) − ω(z)

∣

∣

2
.
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The Neumann function is

N1(z, ζ) = − log |(ω(ζ) − ω(z))(1 − ω(z)ω(ζ))|2.

The Poisson kernel g1(z, ζ) = − 1
2∂νz

G1(z, ζ) is expressed as

g1(z, ζ)dsz = −
[ ω(ζ)
ω(ζ) − ω(z)

+
ω(ζ)

ω(ζ) − ω(z)
− 1

]dω(z)
iω(z)

= −
[ ω(ζ)
ω(ζ) − ω(z)

+
ω(ζ)

ω(ζ) − ω(z)
− 1

]

σ(z)dsz,

while

∂νz
N1(z, ζ)dsz = 2Re

[ ω(ζ)
ω(ζ) − ω(z)

− ω(ζ)
ω(ζ) − ω(z)

− 1
]dω

iω

= −2
dω(z)
iω(z)

= −2σ(z)dsz, σ(z) =
−2

∣

∣rω(z) − ω(ζ)
r

∣

∣

.

From the Robin function for D or for C \ D

R̂1;α,β(z, ζ) = log
∣

∣

1 − zζ

ζ − z

∣

∣

2 + 2β
∞
∑

k=1

2Re(zζ)k

α + kβ
, α, β ∈ R, 0 < α2 + β2,−α

β
/∈ N

see [11], the Robin function for the outside of the ellipse E is

R1;α,β(z, ζ) = G1(z, ζ) + 2β
∞
∑

k=1

2Re(ω(z)ω(ζ))k

α + kβ
.

Obviously R1;α,0 = G1 and because of

4Re
∞
∑

k=1

(ω(z)ω(ζ))k

k
= −2 log |1 − ω(z)ω(ζ)|2

the relation R1;0,β = N1 holds. Hence the Robin function provides an interpola-
tion of the Green and the Neumann function. For its boundary behavior

∂νz
R1;α,β(z, ζ) = − 4

|rω1 − ω1
r |Re

[ ω1(ζ)
ω1(ζ) − ω1(z)

− ω1(z)ω1(ζ)
1 − ω1(z)ω1(ζ)

− 1

+ 2β
∞
∑

k=1

k

α + kβ
(ω1(z)ω1(ζ))k

]
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implies

αR1;α,β(z, ζ) − β

2
|rω1 − ω1

r
|∂νz

R1;α,β(z, ζ)

= αG1(z, ζ) + 4β
∞
∑

k=1

α

α + kβ
Re(ω1(z)ω1(ζ))k

+ 2Reβ
[ ω1(ζ)
ω1(ζ) − ω1(z)

− ω1(z)ω1(ζ)
1 − ω1(z)ω1(ζ)

− 1 + 2β

∞
∑

k=1

k

α + kβ
(ω1(z)ω1(ζ))k

]

.

Here ω1 is used as D is assumed to be the target the outside of E is mapped to.
Thus for z ∈ E

αR1;α,β(z, ζ) − β

2
|rω1 − ω1

r
|∂νz

R1;α,β(z, ζ)

= −2βRe
[

2
ω1(z)ω1(ζ)

1 − ω1(z)ω1(ζ)
+ 1 − 2

∞
∑

k=1

(ω1(z)ω1(ζ))k
]

= −2β.

Therefore with σ(z) = −2
∣

∣rω(z)− ω(z)
r

∣

∣

on E

[

αR1;α,β(z, ζ) − β

2
|rω1 − ω1

r
|∂νz

R1;α,β(z, ζ)
]dω

iω

=
[

ασ(z)R1;α,β(z, ζ) + β∂νz
R1;α,β(z, ζ)

]

dsz = −2βσ(z)dsz.

For ζ ∈ E, i.e. |ω1(ζ)| = 1, the relation

αR1;α,β(z, ζ) − β

2
|rω1 − ω1

r
|∂νz

R1;α,β(z, ζ)

= 2Reβ
[ ω1(ζ)
ω1(ζ) − ω1(z)

+
ω1(z)ω1(ζ)

1 − ω1(z)ω1(ζ)
− 1

]

= 2β
[ ω1(ζ)
ω1(ζ) − ω1(z)

+
ω1(ζ)

ω1(ζ) − ω1(z)
− 2

]

holds.

Theorem 1. The Robin function R1;α,β is satisfying for any ζ ∈ Ee

• R1;α,β( · , ζ) is harmonic in Ee \{ζ} and continuously differentiable in Ee \{ζ},
• h(z, ζ) = R1;α,β(z, ζ) + log |ζ − z|2 is harmonic for z ∈ Ee,
• ασ(z)R1;α,β(z, ζ) + β∂νz

R1;α,β(z, ζ) = −2βσ(z) for z ∈ E, where the density

function σ(z) = −2
∣

∣rω(z)− ω(z)
r

∣

∣

on E has finite mass
∫

E

σ(z)dsz = 2π,



300 H. Begehr

• β

∫

E

σ(z)R1;α,β(z, ζ)dsz = 0 (normalization condition).

It has the further property

• R1;α,β(z, ζ) = R1;α,β(ζ, z), z, ζ ∈ D, z �= ζ (symmetry).

As a fundamental solution to the Poisson equation the Robin function pro-
vides a basic representation formula. For the unit disc D it can be found in [11].

Theorem. Any function w ∈ C2(D;C) ∩ C1(D;C) can be represented as

w(ω1) = − 1
4π

∫

∂D

{w(ω)∂νω
R̂1;α,β(ω1, ω) − ∂νw(ω)R̂1;α,β(ω1, ω)}dsω

− 1
π

∫

D

∂ω∂ωw(ω)R̂1;α,β(ω1, ω)dudv, ω = u + iv, ω1 ∈ D,

where R̂1;α,β denotes the Robin function for D.
This representation will be transformed by introducing rω1 = rω1(z) = z −√

z2 − 1, rω = rω(ζ) = ζ −
√

ζ2 − 1. From

∂νω
= 2Re ω∂ω = 2Re

ω

ω′ ∂ζ = Re
(

rω − ω

r

)

∂ζ ,

dsω =
dω

iω
= − 2

|rω − ω
r |dsζ

follows

∂νω
dsω = −2Re

rω − ω
r

|rω − ω
r |∂ζdsζ = ∂νζ

dsζ .

Also

∂ω∂ω =
1

|ω′|2 ∂ζ∂ζ , dudv = |ω′|2dξdη.

Hence,

w(ω1(z)) = − 1
4π

∫

E

{w(ω(ζ))∂νζ
R̂1;α,β(ω1(z), ω(ζ))

− ∂νζ
w(ω(ζ))R̂1;α,β(ω1(z), ω(ζ))}dsζ

− 1
π

∫

Ee

∂ζ∂ζw(ω(ζ))R̂1;α,β(ω1(z), ω(ζ))dξdη, z ∈ Ee.

Therefore the following result is established.



Fundamental Solutions to the Laplacian in Plane Domains 301

Theorem 2. Any function w ∈ C2(Ee;C) ∩ C1(E ∪ Ee;C) properly decaying
at ∞ can be represented as

w(z) = − 1
4π

∫

E

{w(ζ)∂νζ
R1;α,β(ζ, z) − ∂νζ

w(ζ)R1;α,β(ζ, z)}dsζ

− 1
π

∫

Ee

∂ζ∂ζw(ζ)R1;α,β(z, ζ)dξdη, ζ = ξ + iη.

Applying the boundary property of the Robin function two further representa-
tion formulas follow, proper for solving a certain Robin boundary value problem
for the Poisson equation in Ee.

Corollary 1. Any function w ∈ C2(Ee;C) ∩ C1(E ∪ Ee;C) properly decaying
at ∞ can be represented as

w(z) = − 1
4πα

∫

E

[ασ(ζ)w(ζ) + β∂νw(ζ)]
1

σ(ζ)
∂νζ

R1;α,β(z, ζ)dsζ

− β

2πα

∫

E

∂νw(ζ)dsζ

− 1
π

∫

Ee

∂ζ∂ζw(ζ)R1;α,β(z, ζ)dξdη, for α �= 0,

w(z) =
1

4πβ

∫

E

[ασ(ζ)w(ζ) + β∂νw(ζ)]R1;α,β(z, ζ)dsζ +
1
2π

∫

E

σ(ζ)w(ζ)dsζ

− 1
π

∫

Ee

∂ζ∂ζw(ζ)R1;α,β(z, ζ)dξdη, for β �= 0.

Robin Problem. Find a solution to the Poisson equation

wzz = f in Ee, f ∈ Lp,2(Ee;C), 2 < p,

satisfying

ασw + β∂νw = γ on E, α, β ∈ R, 0 < α2 + β2, σ as in Theorem 1, γ ∈ C(E;C).

For the definition of the Lp,2-spaces see e.g. [3]. In analogy to the case of the
unit disc, [11], the Robin problem can be solved via the next results.

Theorem 3. For f ∈ Lp,2(Ee;C), 2 < p, γ ∈ C(E;C), the Robin problem

∂z∂z w = f in Ee, ασw + β∂νw = γ on E,
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(i) for β �= 0 is solvable if and only if

1
2π

∫

E

γ(ζ)dsζ +
α

2π

∫

E

σ(ζ)w(ζ)dsζ =
2β

π

∫

Ee

f(ζ)dξdη,

the solution being then

w(z) =
1

4πβ

∫

E

γ(ζ)R1;α,β(z, ζ)dsζ +
1
2π

∫

E

σ(ζ)w(ζ)dsζ

− 1
π

∫

Ee

f(ζ)R1;α,β(z, ζ)dξdη,

(ii) for α �= 0 is solvable if and only if

β

2π

∫

E

∂νw(ζ)dsζ =
2β

π

∫

Ee

f(ζ)dξdη,

the solution then being

w(z) = − 1
4πα

∫

E

γ(ζ)
σ(ζ)

∂νζ
R1;α,β(ζ, z)dsζ − β

2πα

∫

E

∂νw(ζ)dsζ

− 1
π

∫

Ee

f(ζ)R1;α,β(ζ, z)dξdη.

Remark. If α = 0 then γ = β∂νw and the solvability condition is the known
one for the Neumann problem, see e.g. [4]. In case of β = 0 there is no solvability
condition!

The proof for Theorem3 follows by direct verification on basis of the Poisson
kernel for the unit disc.

3 Robin Function for a Ring Domain Between Two
Confocal ellipses

The two confocal ellipses

x2

a2
+

y2

b2
= 1,

x2

a2 + k2
+

y2

b2 + k2
= 1 with 0 < a, b, k ∈ R

bound a doubly connected domain

D =
{ x2

a2 + k2
+

y2

b2 + k2
− 1 < 0 <

x2

a2
+

y2

b2
− 1

}

.

According to [20], exercise 265, p. 37 and p. 297 the function

ω̃(z) = A(z +
√

z2 − (a2 − b2)), A ∈ C arbitrary,
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maps D onto the concentric circular ring

{r = a + b < |ω̃| <
√

a2 + k2 +
√

b2 + k2 = ρ}.

For simplicity here A = 1 is chosen, a2 − b2 = 1 assumed, and ω̃(z) = ρ ω(z)
introduced. Then ω maps D onto the ring

R =
{ r

ρ
< |ω| < 1

}

.

The modulus of these two doubly connected domains is

μ =
ρ

r
=

a − b√
a2 + k2 − √

b2 + k2
.

Demanding

r = a + b,
1
r

= a − b; ρ =
√

a2 + k2 +
√

b2 + k2,
1
ρ

=
√

a2 + k2 −
√

b2 + k2

implies

2a = r +
1
r
, 2b = r − 1

r
; 2

√

a2 + k2 = ρ +
1
ρ
, 2

√

b2 + k2 = ρ − 1
ρ
; a2 − b2 = 1.

The inverse mapping of ρω(z) = z+
√

z2 − 1 is z = 1
2

(

ρω+ 1
ρω

)

, mapping |ω| = r
ρ

and |ω| = 1 onto the ellipses

Ei =
x2

a2
+

y2

b2
− 1 =

(

ρ + 1
ρ|ω|2

)2

(

r + 1
r

)2 +

(

ρ − 1
ρ|ω|2

)2

(

r − 1
r

)2 − 1

=
(1 − r2ρ2|ω|2)(r2 − ρ2|ω|2)

4r2ρ2|ω|4
(u2

a2
+

v2

b2
)

= 0

and

Ee =
x2

a2 + k2
+

y2

b2 + k2
− 1 =

(

ρ + 1
ρ|ω|2

)2

(

ρ + 1
ρ

)2 +

(

ρ − 1
ρ|ω|2

)2

(

ρ − 1
ρ

)2 − 1

=
(1 − |ω|2)(r2 − |ω|4)

4ρ4|ω|4
( u2

a2 + k2
+

v2

b2 + k2

)

= 0,

w = u + iv, respectively.
As in Sect. 2 the conformal invariance of the fundamental solutions to the

Laplace operator is applied. The harmonic Robin function of the concentric ring
R, for α

β not an integer, is see [11,17,18],

R̂1;α,β(z, ζ) = Ĝ1(z, ζ) + 2β
∞
∑

κ=−∞,κ�=0

(zζ)κ + (zζ)κ

(α + κβ)
(

1−(

r
ρ

)2κ)
,
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where

Ĝ1(z, ζ) =
log |z|2 log |ζ|2
log r2 − log ρ2

+ log
∣

∣

∣

1 − zζ

ζ − z

∞
∏

κ=1

zζ − (

r
ρ

)2κ

z − (

r
ρ

)2κ
ζ

1 − (

r
ρ

)2κ
zζ

ζ − (

r
ρ

)2κ
z

∣

∣

∣

2

is the Green function. Hence, for D the Green function is with τ = r
ρ

G1(z, ζ) =
log |ω(z)|2 log |ω(ζ)|2

log τ2

+ log
∣

∣

∣

1 − ω(z)ω(ζ)
ω(ζ) − ω(z)

∞
∏

κ=1

ω(z)ω(ζ) − τ2κ

ω(z) − τ2κω(ζ)
1 − τ2κω(z)ω(ζ)
ω(ζ) − τ2κω(z)

∣

∣

∣

2

and the Robin function

R1;α,β(z, ζ) = G1(z, ζ) + 2β
∞
∑

κ=−∞,κ�=0

(ω(z)ω(ζ))κ + (ω(z)ω(ζ))κ

(α + κβ)(1 − τ2κ)
.

In order to keep the interpolation property of the Robin function between Green
and Neumann functions the latter has to be defined as

N1(z, ζ) =
log |ω(z)|2 log |ω(ζ)|2

log τ2
− log

∣

∣(ω(ζ) − ω(z))(1 − ω(z)ω(ζ))

×
∞
∏

κ=1

(ω(z)−τ2κω(ζ))(ω(ζ)−τ2κω(z))(ω(z)ω(ζ)−τ2κ)(1−τ2κω(z)ω(ζ))
|ω(z)ω(ζ)|2

∣

∣

∣

2

.

To investigate their boundary properties on ∂D = Ei ∪ Ea, 1 < r is assumed
and r < ρ observed.

For z ∈ Ei, i.e. for |ω(z)| = τ,

G1(z, ζ) = log |ω(ζ)|2 + log
∣

∣

∣

ω(z) − τ2ω(ζ)
(ω(ζ) − ω(z))ω(z)

∣

∣

∣

2

+ log
∞
∏

κ=1

∣

∣

∣

τ2κω(z) − τ2ω(ζ)
τ2κω(z) − τ2

ω(ζ)

τ2κω(z) − 1

ω(ζ)

τ2κω(z) − ω(ζ)

∣

∣

∣

2

= log |ω(ζ)|2 + log
∣

∣

∣

ω(z) − τ2ω(ζ)
(ω(ζ) − ω(z))ω(z)

∣

∣

∣

2

+ lim
n→∞ log

n
∏

κ=1

∣

∣

∣

τ2(κ−1)ω(z) − ω(ζ)
τ2κω(z) − ω(ζ)

τ2(κ+1)ω(ζ) − ω(z)
τ2κω(ζ) − ω(z)

∣

∣

∣

2

= 0.

Similarly, for z ∈ Ee, i.e. for |ω(z)| = 1,

G1(z, ζ) = log
∞
∏

κ=1

∣

∣

∣

τ2κ − ω(z)ω(ζ)
τ2κ − ω(z)ω(ζ)

τ2κ − 1

ω(z)ω(ζ)

τ2κ − 1

ω(z)ω(ζ)

∣

∣

∣

2

= 0.
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The outward normal direction is

νz = −
ρω − 1

ρω

|ρω − 1
ρω | on Ei, νz =

ρω − 1
ρω

|ρω − 1
ρω | on Ee.

The arc length element ds = dsz satisfies

ds2 =
[

τ2
(ω2

τ2
+

τ2

ω2

)

− τ2
(

r2 +
1
r2

)

] (dω)2

4ω2
= −∣

∣ρω − 1
ρω

∣

∣

2 (dω)2

4ω2
on Ei,

ds2 =
[

ω2 +
1
ω2

− (

ρ2 +
1
ρ2

)] (dω)2

4ω2
= −∣

∣ρω − 1
ρω

∣

∣

2 (dω)2

4ω2
on Ee,

so that

ds = i
∣

∣ρω − 1
ρω

∣

∣

dω

2ω
on Ei, ds = −i

∣

∣ρω − 1
ρω

∣

∣

dω

2ω
on Ee

are chosen. The normal derivative on ∂D applied to real-valued functions
appears as

∂νz
= 2Re νz

2ω

ρω − 1
ρω

∂ω.

Thus

∂νz
dsz = 2Re ω∂ω

dω

iω
on ∂D, ω = ω(z).

Introducing σ = σ(z) = 2
∣

∣ρω(z)− 1
ρω(z)

∣

∣

thus for real functions

∂νz
= −2σRe ω∂ω on Ei, ∂νz

= 2σRe ω∂ω on Ee.

For further calculating the boundary behavior of the Robin function some rela-
tions are needed following from simple reformulations.

Lemma 2. For |τ | < 1 and bounded ω

∞
∑

κ=−∞,κ�=0

(ω(z)ω(ζ))κ

1 − τ2κ
=

ω(z)ω(ζ)
1 − ω(z)ω(ζ)

+
∞
∑

κ=1

[ 1
1 − ω(z)ω(ζ)τ2κ

− ω(z)ω(ζ)
ω(z)ω(ζ) − τ2κ

]

,

and
∞
∑

κ=−∞,κ�=0

κ(ω(z)ω(ζ))κ

1 − τ2κ
=

ω(z)ω(ζ)
(1 − ω(z)ω(ζ))2

+
∞
∑

κ=1

[ ω(z)ω(ζ)τ2κ

(1 − ω(z)ω(ζ)τ2κ)2
+

ω(z)ω(ζ)τ2κ

(ω(z)ω(ζ) − τ2κ)2

]

hold.
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From

ω∂ωG1(z, ζ) =
log |ω(ζ)|2

log τ2
+

ω(z)
ω(ζ) − ω(z)

− ω(z)ω(ζ)
1 − ω(z)ω(ζ)

+
∞
∑

κ=1

[ ω(z)ω(ζ)
ω(z)ω(ζ) − τ2κ

− τ2κω(z)ω(ζ)
1 − τ2κω(z)ω(ζ)

+
τ2κω(z)

ω(ζ) − τ2κω(z)
− ω(z)

ω(z) − τ2κω(ζ)

]

and

ω∂ω(R1;α,β(z, ζ) − G1(z, ζ)) = 2β
∞
∑

κ=−∞,κ�=0

κ

α + κβ

(ω(z)ω(ζ))κ

1 − τ2κ
,

using the first relation in Lemma 2, it follows for |ω(z)| = 1, |ω(ζ)| < 1, i.e. on
Ee, ζ /∈ Ee, that

(α + 2βReω(z)∂ω(z))R1;α,β(z, ζ) = 2β
[ log |ω(ζ)|2

log τ2
− 1

]

and for |ω(z)| = τ, τ < |ω(ζ)|, i.e. on Ei, ζ /∈ Ei that

(α + 2βReω(z)∂ω(z))R1;α,β(z, ζ) = 2β
log |ω(ζ)|2

log τ2
.

For ζ ∈ Ee, i.e. for |ω(ζ)| = 1 on Ee

(α + 2βRe ω(z)∂ω(z))R1;α,β(z, ζ) = 2β
[ ω(ζ)
ω(ζ) − ω(z)

+
ω(ζ)

ω(ζ) − ω(z)
− 2

]

,

while for ζ ∈ Ei, i.e. for |ω(ζ)| = τ , on Ei

(α + 2βRe ω(z)∂ω(z))R1;α,β(z, ζ) = 2β
[ ω(ζ)
ω(ζ) − ω(z)

+
ω(ζ)

ω(ζ) − ω(z)

]

.

Theorem 4. The Robin function R1;α,β for the elliptic ring D satisfies for any
ζ ∈ D

• R1;α,β( · , ζ) is harmonic in D \ {ζ} and continuously differentiable in D \ {ζ},
• h(z, ζ) = R1;α,β(z, ζ) + log |ζ − z|2 is harmonic for z ∈ D,

• αR1;α,β(z, ζ)+ β
σ (1−2 log |ω(z)|2

log τ2 )∂νz
R1;α,β(z, ζ) = 2β

[ log |ω(z)|2
log τ2 + log |ω(ζ)|2

log τ2 −1
]

for z ∈ Ei ∪ Ee, where the density function σ given by 2
σ(z) =

∣

∣ρω(z) − 1
ρω(z)

∣

∣

on Ei ∪ Ee has finite mass
∫

∂D

σ(z)dsz = 4π,

• β

∫

E

σ(z)R1;α,β(z, ζ)dsz = 0 (normalization condition).

It has the further property
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• R1;α,β(z, ζ) = R1;α,β(ζ, z), z, ζ ∈ D, z �= ζ (symmetry).

Remarks. The operator in the boundary condition can be rewritten as

α +
β

σ
(1 − 2

log |ω(z)|2
log τ2

)∂νz
= α + 2βRe(ω(z)∂ω(z)).

The factor 1 − 2 log |ω(z)|2
log τ2 becomes 1 on Ee and −1 on Ei. The normalization

condition is evident as the Robin function on the boundary is just

2β

∞
∑

κ=−∞,κ�=0

(ω(z)ω(ζ))κ + (ω(z)ω(ζ))κ

(α + κβ)(1 − τ2κ)
.

Integrating this sum multiplied with dω
iω along |ω| = τ and |ω| = 1 does not

contribute nonzero terms as the sum has no (κ = 0)-term.

Theorem 5. Any function w ∈ C2(D;C) ∩ C1(D;C) can be represented as

w(z) = − 1
4π

∫

∂D

{w(ζ)∂νζ
R1;α,β(ζ, z) − ∂νζ

w(ζ)R1;α,β(ζ, z)}dsζ

− 1
π

∫

D

∂ζ∂ζw(ζ)R1;α,β(z, ζ)dξdη.

A proof for regular domains is given e.g. in [11]. Applying the boundary condition
of the Robin function leads to some representation formulas proper for treating
a related modified Robin boundary value problem.

Corollary 2. Any function w ∈ C2(D;C) ∩ C1(D;C) can be represented as

w(z) = − 1
4πiα

∫

∂D

[αw(ζ) + β(ω(ζ)∂ω(ζ) + ω(ζ)∂
ω(ζ)

)w(ζ)]

× 2Re(ω(ζ)∂ω(ζ)R1;α,β(z, ζ))
dω(ζ)
ω(ζ)

+
β

2πiα

∫

∂D

(ω(ζ)∂ω(ζ) + ω(ζ)∂
ω(ζ)

)w(ζ)
dω(ζ)
ω(ζ)

log |ω(z)|2
log τ2

− β

2πiα

∫

Ee

(ω(ζ)∂ω(ζ) + ω(ζ)∂
ω(ζ)

)w(ζ)
dω(ζ)
ω(ζ)

− 1
π

∫

D

∂ζ∂ζw(ζ)R1;α,β(z, ζ)dξdη, for α �= 0,

w(z) =
1

4πiβ

∫

∂D

[αw(ζ) + β(ω(ζ)∂ω(ζ) + ω(ζ)∂
ω(ζ)

)w(ζ)]R1;α,β(z, ζ)
dω(ζ)
ω(ζ)
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− 1
2πi

∫

∂D

w(ζ)
dω(ζ)
ω(ζ)

log |ω(z)|2
log τ2

+
1

2πi

∫

Ee

w(ζ)
dω(ζ)
ω(ζ)

− 1
π

∫

D

∂ζ∂ζw(ζ)R1;α,β(z, ζ)dξdη, if β �= 0.

Robin Problem. Find a solution to the Poisson equation

wzz = f in D, f ∈ Lp(D;C), 2 < p,

satisfying for z ∈ ∂D

αw(z) + β(ω(z)∂ω(z) + ω(z)∂
ω(z)

)w(z) = γ(z), γ ∈ C(∂D;C).

Theorem 6. For f ∈ Lp(D;C), 2 < p, γ ∈ C(∂D;C), the Robin problem

wzz = f in D, αw + β(ω∂ω + ω∂ω)w = γ on ∂D,

(i) for β �= 0 is solvable if and only if

1
2πi

∫

Ee

γ(ζ)
dω(ζ)
ω(ζ)

+
β

log τ

1
2πi

∫

∂D

w(ζ)
dω(ζ)
ω(ζ)

− α

2πi

∫

Ee

w(ζ)
dω(ζ)
ω(ζ)

= −2β

π

∫

D

f(ζ)
[ log |ω(ζ)|2

log τ2
− 1

]

dξdη

and

1
2πi

∫

∂D

γ(ζ)
dω(ζ)
ω(ζ)

− α

2πi

∫

∂D

w(ζ)
dω(ζ)
ω(ζ)

=
2β

π

∫

D

f(ζ)dξdη,

the solution being then

w(z) =
1

4πiβ

∫

∂D

γ(ζ)R1;α,β(z, ζ)
dω(ζ)
ω(ζ)

− 1
2πi

∫

∂D

w(ζ)
dω(ζ)
ω(ζ)

log |ω(z)|2
log τ2

+
1

2πi

∫

Ee

w(ζ)
dω(ζ)
ω(ζ)

− 1
π

∫

D

f(ζ)R1;α,β(z, ζ)dξdη,

(ii) for α �= 0 is solvable if and only if

β

log τ

[ 1
4πiα

∫

∂D

γ(ζ)
dω(ζ)
ω(ζ)

− β

2πiα

∫

∂D

(ω(ζ)∂ω(ζ) + ω(ζ)∂
ω(ζ)

)w(ζ)
dω(ζ)
ω(ζ)

]

+
β

2πi

∫

Ee

(ω(ζ)∂ω(ζ) + ω(ζ)∂
ω(ζ)

)w(ζ)
dω(ζ)
ω(ζ)

= −2β

π

∫

D

f(ζ)
[ log |ω(ζ)|2

log τ2
− 1

]

dξdη
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and

β

2πi

∫

∂D

(ω(ζ)∂ω(ζ) + ω(ζ)∂
ω(ζ)

)w(ζ)
dω(ζ)
ω(ζ)

=
2β

π

∫

D

f(ζ)dξdη,

the solution then being

w(z) = − 1
4πiα

∫

∂D

γ(ζ)2Re(ω(ζ)∂ω(ζ))R1;α,β(ζ, z)
dω(ζ)
ω(ζ)

+
log |ω(z)|2

log τ2

β

2πiα

∫

∂D

(ω(ζ)∂ω(ζ) + ω(ζ)∂
ω(ζ)

)w(ζ)
dω(ζ)
ω(ζ)

− β

2πiα

∫

Ee

(ω(ζ)∂ω(ζ) + ω(ζ)∂
ω(ζ)

)w(ζ)
dω(ζ)
ω(ζ)

− 1
π

∫

D

f(ζ)R1;α,β(ζ, z)dξdη.

Remarks. The proof follows from the formulas given in Corollary 2. In partic-
ular for the case α �= 0 it is based on the second part of Lemma 2 and

2Re(ω(ζ)∂ω(ζ))R1;α,β(z, ζ) = 2Re
[ log |ω(z)|2

log τ2
− ω(ζ)

ω(ζ) − ω(z)
− ω(z)ω(ζ)

1 − ω(z)ω(ζ)

+
∞
∑

κ=1

[ τ2κ

ω(z)ω(ζ)−τ2κ
− τ2κω(z)ω(ζ)

1 − τ2κω(z)ω(ζ)
+

τ2κω(ζ)
ω(z) − τ2κω(ζ)

− τ2κω(z)
ω(ζ) − τ2κω(z)

]

]

and also

(α + 2βRe(ω(z)∂ω(z)))2Re(ω(ζ)∂ω(ζ))R1;α,β(z, ζ)

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−2α
[ ω(ζ)
ω(ζ) − ω(z)

+
ω(ζ)

ω(ζ) − ω(z)
− 1

]

+
β

log τ
, if z, ζ ∈ Ee, or z, ζ ∈ Ei,

β

log τ
, if z ∈ Ei, ζ ∈ Ee,

or z ∈ Ee, ζ ∈ Ei.

For β = 0 there appears no solvability condition for the Dirichlet problem in the
ring domain D! The first listed solvability condition for the case β �= 0 can be
also written as

1
2πi

∫

Ei

γ(ζ)
dω(ζ)
ω(ζ)

+
β

log τ

1
2πi

∫

∂D

w(ζ)
dω(ζ)
ω(ζ)

− α

2πi

∫

Ei

w(ζ)
dω(ζ)
ω(ζ)

= −2β

π

∫

D

f(ζ)
log |ω(ζ)|2

log τ2
dξdη.
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If α = 0 then β disappears from the conditions as β then appears to be a factor
of γ, and the conditions are those for the Neumann problem.

The first solvability condition for the case α �= 0 can be replaced by

β

log τ

[ 1
4πiα

∫

∂D

γ(ζ)
dω(ζ)
ω(ζ)

− β

2πiα

∫

∂D

(ω(ζ)∂ω(ζ) + ω(ζ)∂
ω(ζ)

)w(ζ)
dω(ζ)
ω(ζ)

]

+
β

2πi

∫

Ei

(ω(ζ)∂ω(ζ) + ω(ζ)∂
ω(ζ)

)w(ζ)
dω(ζ)
ω(ζ)

= −2β

π

∫

D

f(ζ)
log |ω(ζ)|2

log τ2
dξdη.

4 Concluding Remarks

The formulation of proper Robin boundary conditions for the Poisson equation
is not at all obvious as it seems when looking at the condition for the disc D. A
linear combination of Dirichlet and Neumann data is not adequate in general.
Some density function σ has to be involved as a function of z ∈ ∂D and the
constant β has to be modified in the sense that it is a function of z ∈ ∂D and
ζ ∈ D but constant in z ∈ ∂D, where the constant may vary on different parts of
the boundary ∂D. Having altered the Neumann condition properly then a linear
combination of the Dirichlet data with this modified Neumann condition seems
to be the right formulation for the Robin condition. In the presently discussed
case of the elliptic ring the Neumann condition becomes

(

1 − 2
log |ω(z)|2

log τ2

)

∂νz
N1(z, ζ) = 2σ(z)

( log |ω(z)|2
log τ2

+
log |ω(ζ)|2

log τ2
− 1

)

.

In particular

(

1 − 2
log |ω(z)|2

log τ2

)

=
{−1, if z ∈ Ei,

1, if z ∈ Ee,

and

( log |ω(z)|2
log τ2

+
log |ω(ζ)|2

log τ2
− 1

)

=

{

log |w(ζ)|2
log τ2 , if z ∈ Ei,

log |w(ζ)|2
log τ2 − 1, if z ∈ Ee.

Moreover, in the general case the real constants α, β have to be replaced by
real-valued functions.
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Abstract. In this paper we consider a link between Bernstein-
Durrmeyer operators and Kantorovich operators depending on a para-
meter ρ. We prove a nice representation by using the classical Bernstein
polynomials and generalize the results for k-th order Kantorovich
modifications.

Keywords: Linking operators · Bernstein-Durrmeyer operators ·
Kantorovich operators · k-th order Kantorovich modifications

1 Introduction

In [8] Păltănea introduced a class of operators Bn,ρ depending on a nonneg-
ative real parameter ρ which constitute a nontrivial link between the genuine
Bernstein-Durrmeyer operators and the classical Bernstein operators.

For j ∈ N0, 0 ≤ j ≤ n, the Bernstein basis functions are given by

pn,j(x) =
(

n

j

)
xj(1 − x)n−j , 0 ≤ j ≤ n, x ∈ [0, 1].

Moreover, for 1 ≤ j ≤ n − 1,

μn,j,ρ(t) =
tjρ−1(1 − t)(n−j)ρ−1

B(jρ, (n − j)ρ)

with Euler’s Beta function B(x, y) =
∫ 1

0

tx−1(1− t)y−1dt =
Γ (x)Γ (y)
Γ (x + y)

, x, y > 0.

Let f ∈ L1[0, 1] with finite limits at the endpoints of the interval [0, 1], i.e.,
f(0) := limx→0+ f(x) and f(1) := limx→1− f(x). For n ∈ N, n ≥ 2, ρ ∈ R+,
Păltănea [8, Definition 2.1] defined the operators Bn,ρ by

Bn,ρ(f ;x) = pn,0(x)f(0) + pn,n(x)f(1)

+
n−1∑
j=1

pn,j(x)
∫ 1

0

μn,j,ρ(t)f(t)dt.

c© Springer Nature Singapore Pte Ltd. 2017
D. Giri et al. (Eds.): ICMC 2017, CCIS 655, pp. 312–320, 2017.
DOI: 10.1007/978-981-10-4642-1 26
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In [3, Theorem 2.3] Gonska and Păltănea proved the convergence of the
operators Bn,ρ to the classical Bernstein operator Bn,∞, i.e., they proved that
for every f ∈ C[0, 1]

lim
ρ→∞ Bn,ρf = Bn,∞f uniformly on [0, 1].

In [2] Gonska and the authors of this paper investigated the k-th order Kan-
torovich modification of the Bernstein operators and in [5] the authors considered
the kth order Kantorovich modification of the operators Bn,ρ, namely,

B(k)
n,ρ = Dk ◦ Bn,ρ ◦ Ik, k ∈ N0, ρ ∈ R+ ∪ {∞},

where Dk denotes the k-th order ordinary differential operator and

Ikf = f, if k = 0, and Ik(f, x) =
∫ x

0

(x − t)k−1

(k − 1)!
f(t)dt, if k ∈ N.

These operators play an important role in the investigation of simultaneous
approximation.

From [5] (see the consideration of the special case ρ → ∞ after Remark 2
there) we know that for each polynomial q

lim
ρ→∞ B(k)

n,ρq = B(k)
n,∞q uniformly on [0, 1].

Let ε > 0 be arbitrary. As the space of polynomials P is dense in Lp[0, 1], ‖ · ‖p,
1 ≤ p < ∞ and C[0, 1], ‖ · ‖∞, p = ∞, we can choose a polynomial q, such that
‖f − q‖p < ε. Then

‖(B(k)
n,ρ − B(k)

n,∞)f‖p ≤ ‖B(k)
n,ρ(f − q)‖p + ‖B(k)

n,∞(f − q)‖p + ‖(B(k)
n,ρ − B(k)

n,∞)q‖p.

As the operators B
(k)
n,ρ and B

(k)
n,∞ are bounded (see [5, Corollary 1] and [2, (3)]

for the images of e0 = 1) we immediately get

lim
ρ→∞ ‖(B(k)

n,ρ − B(k)
n,∞)f‖p = 0 (1)

for each f ∈ Lp[0, 1], ‖ · ‖p, 1 ≤ p < ∞ and C[0, 1], ‖ · ‖∞, p = ∞.
For ρ = 1 and ρ = ∞ nice explicit representations are known, i.e.,

B
(k)
n,1(f ;x) =

n!(n − 1)!
(n − k)!(n + k − 2)!

n−k∑
j=0

pn−k,j(x)
∫ 1

0

pn+k−2,j+k−1(t)f(t)dt

B(k)
n,∞(f ;x) =

n!
(n − k)!

n−k∑
j=0

pn−k,j(x)Δk
1
n
Ik

(
f ;

j

n

)
,

where the forward difference of order k with step h for a function g is given by
Δk

hg(x) =
∑k

i=0

(
k
i

)
(−1)k−ig(x + ih). By using Peano’s representation theorem

for divided differences (see, e.g., [9, p. 137]) this can also be written as

B(k)
n,∞(f ;x) =

n!
(n − k)!

n−k∑
j=0

pn−k,j(x)
1

nk−1

∫ 1

0

Nk,j(t)f(t)dt, (2)
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where Nk,j denotes the B-spline of order k to the equidistant knots j
n , . . . j+k

n ,
defined by

N1,j(t) =
{

1, j
n ≤ t < j+1

n ,
0, otherwise,

Nk,j(t) =
n

k − 1

{(
t − j

n

)
Nk−1,j(t) +

(
j + k

n
− t

)
Nk−1,j+1(t)

}
.

Our goal is to find useful representations also for ρ 
= 1,∞ for the general
case k ∈ N.

First we treat the case k = 1. In other words we prove an explicit repre-
sentation for a non-trivial link between Bernstein-Durrmeyer and Kantorovich
operators.

The idea is as follows. Consider

n

n−1∑
j=0

pn−1,j(x)
∫ 1

0

Kn,j,ρ(t)f(t)dt

and determine a nice and easy to handle function Kn,j,ρ(t) in such a way that

Kn,j,1(t) = pn−1,j(t) and lim
ρ→∞ Kn,j,ρ(t) =

{
1, t ∈ (

j
n , j+1

n

)
,

0, t ∈ [0, 1]\ (
j
n , j+1

n

)
.

Throughout this paper we will use the following well-known formulas for the
Bernstein basis functions.

p′
n,j(x) = n [pn−1,j−1(x) − pn−1,j(x)] , (3)

xp′
n−1,j−1(x) = (j − 1)pn−1,j−1(x) − jpn−1,j(x). (4)

2 A First Attempt

We start with the definition of B
(1)
n,ρ = D ◦ Bn,ρ ◦ I and define

ωn,j,ρ(t) =

⎧⎪⎨
⎪⎩

∫ 1

t
μn,1,ρ(u)du, j = 0,∫ t

0
(μn,j,ρ(u) − μn,j+1,ρ(u)) du, 1 ≤ j ≤ n − 2,∫ t

0
μn,n−1,ρ(u)du, j = n − 1.

(5)

Thus

ω′
n,j,ρ(t) =

⎧⎨
⎩

−μn,1,ρ(t), j = 0,
μn,j,ρ(t) − μn,j+1,ρ(t), 1 ≤ j ≤ n − 2,
μn,n−1,ρ(t), j = n − 1.

Note that

ωn,j,ρ(0) = 0, 1 ≤ j ≤ n − 1 and ωn,j,ρ(1) = 0, 0 ≤ j ≤ n − 2. (6)
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By applying (3), an appropriate index transform and the definition of ωn,j,ρ we
derive

B(1)
n,ρ(f ;x) = p′

n,n(x)I(f ; 1) +
n−1∑
j=1

p′
n,j(x)

∫ 1

0

μn,j,ρ(t)I(f ; t)dt

= npn−1,n−1(x)I(f ; 1) + n

n−1∑
j=1

pn−1,j−1(x)
∫ 1

0

μn,j,ρ(t)I(f ; t)dt

−n

n−1∑
j=1

pn−1,j(x)
∫ 1

0

μn,j,ρ(t)I(f ; t)dt

= npn−1,0(x)
∫ 1

0

μn,1,ρ(t)I(f ; t)dt

+npn−1,n−1(x)
∫ 1

0

μn,n−1,ρ(t) [I(f ; 1) − I(f ; t)] dt

+n

n−2∑
j=1

pn−1,j(x)
∫ 1

0

[μn,j+1,ρ(t) − μn,j,ρ(t)] I(f ; t)dt

= −npn−1,n−1(x)
∫ 1

0

ω′
n,n−1,ρ(t) [I(f ; t) − I(f ; 1)] dt

−n

n−2∑
j=0

pn−1,j(x)
∫ 1

0

ω′
n,j,ρ(t)I(f ; t)dt.

Integration by parts and observing (6) leads to

B(1)
n,ρ(f ;x) = n

n−1∑
j=0

pn−1,j(x)
∫ 1

0

ωn,j,ρ(t)f(t)dt.

In our opinion this is not a nice representation and obviously this is not easy to
handle.

3 A Second Approach

From now on we only consider ρ ∈ N. We construct a function Kn,j,ρ(t) in such
a way that

Kn,j,1(t) = pn−1,j(t) and lim
ρ→∞ Kn,j,ρ(t) =

{
1, t ∈ (

j
n , j+1

n

)
,

0, t ∈ [0, 1]\ [
j
n , j+1

n

]
,

and define an operator Hn,ρ by

Hn,ρ(f ;x) = n

n−1∑
j=0

pn−1,j(x)
∫ 1

0

Kn,j,ρ(t)f(t)dt.
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To do so, we consider the characteristic functions χ[ j
n , j+1

n ](t) and for 0 ≤ j ≤
n − 1 the ρ points

ti =
i

nρ − 1
, i = jρ, jρ + 1, . . . , (j + 1)ρ − 1.

Then

ti ∈
⎧⎨
⎩

(
j
n , j+1

n

)
, n ≥ 3, 1 ≤ j ≤ n − 2,[

0, 1
n

)
, n ≥ 2, j = 0,(

n−1
n , 1

]
, n ≥ 2, j = n − 1.

Applying the Bernstein operator Bnρ−1 to the functions χ[ j
n , j+1

n ] leads to

Bnρ−1,∞(χ[ j
n , j+1

n ]; t) =
nρ−1∑
i=0

pnρ−1,i(t)χ[ j
n , j+1

n ]

(
i

nρ − 1

)

=
(j+1)ρ−1∑

i=jρ

pnρ−1,i(t)

=
ρ−1∑
i=0

pnρ−1,i+jρ(t).

For ρ = 1 we have Bn−1,∞(χ[ j
n , j+1

n ]; t) = pn−1,j(t). Using a result for the appli-
cation of Bernstein operators to discontinuous functions (see [6, (5.1) Theorem],
[7, Theorem 1.9.1]) we derive

lim
ρ→∞ Bnρ−1,∞(χ[ j

n , j+1
n ]; t) =

⎧⎨
⎩

1, j
n < t < j+1

n ,
1
2 , t = j

n , j+1
n ,

0, otherwise.

This is exactly what we need.
Thus we define the linking operator Hn,ρ by

Hn,ρ(f ;x) = n
n−1∑
j=0

pn−1,j(x)
∫ 1

0

Bnρ−1,∞(χ[ j
n , j+1

n ]; t)f(t)dt

= n

n−1∑
j=0

pn−1,j(x)
∫ 1

0

{
ρ−1∑
i=0

pnρ−1,i+jρ(t)

}
f(t)dt.

It is easy to see that the operators are positive linear contractions for each
f ∈ Lp[0, 1], 1 ≤ p < ∞, C[0, 1], p = ∞.

4 Relation Between Hn,ρ and B(1)
n,ρ

From Sects. 2 and 3 a natural question arises how the operators Hn,ρ and B
(1)
n,ρ are

related. Indeed we will prove that they coincide for each f ∈ Lp[0, 1], 1 ≤ p < ∞
and C[0, 1], respectively. First we treat the monomials eν(x) = xν , ν ∈ N0.
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Theorem 1. For each monomial eν , ν ∈ N0, we have

Hn,ρ(eν ;x) = B(1)
n,ρ(eν ;x).

Proof. By the definition of the operators B
(1)
n,ρ, using a representation for the

images of monomials for Bn,ρ which can be found, e.g., in [5, Proof of Theorem 1],
applying (4) and an appropriate index transform we derive

B(1)
n,ρ(eν ;x) =

d

dx
(Bn,ρ(I1eν ;x))

=
1

ν + 1
d

dx
(Bn,ρ(eν+1;x))

=
nρ

ν + 1
· (nρ − 1)!
(nρ + ν)!

· d

dx

⎧⎨
⎩x

n∑
j=1

pn−1,j−1(x) · (jρ + ν)!
(jρ)!

⎫⎬
⎭

=
nρ

ν + 1
· (nρ − 1)!
(nρ + ν)!

⎧⎨
⎩

n∑
j=1

pn−1,j−1(x) · (jρ + ν)!
(jρ)!

+
n∑

j=1

xp′
n−1,j−1(x) · (jρ + ν)!

(jρ)!

⎫⎬
⎭

=
nρ

ν + 1
· (nρ − 1)!
(nρ + ν)!

n−1∑
j=0

pn−1,j(x)

×
{

(j + 1) · ((j + 1)ρ + ν)!
((j + 1)ρ)!

− j · (jρ + ν)!
(jρ)!

}
.

As ∫ 1

0

pnρ−1,i+jρ(t)tνdt =
(nρ − 1)!
(nρ + ν)!

· (i + jρ + ν)!
(i + jρ)!

we have

Hn,ρ(eν ;x) = n · (nρ − 1)!
(nρ + ν)!

n−1∑
j=0

pn−1,j(x)
ρ−1∑
i=0

(i + jρ + ν)!
(i + jρ)!

.

Thus it remains to prove that

ρ

ν + 1

{
(j + 1) · ((j + 1)ρ + ν)!

((j + 1)ρ)!
− j · (jρ + ν)!

(jρ)!

}
=

ρ−1∑
i=0

(i + jρ + ν)!
(i + jρ)!

,

which is equivalent to
(

ρ + jρ + ν

ν + 1

)
−

(
jρ + ν

ν + 1

)
=

ρ−1∑
i=0

(
i + jρ + ν

ν

)
.

The last equality is a combinatorial identity which can be found, e.g., in
[4, (1.48)].
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The equality of the two linking operators now follows as a corollary.

Corollary 1. Let f ∈ Lp[0, 1], 1 ≤ p < ∞ or f ∈ C[0, 1], p = ∞. Then

Hn,ρf = B(1)
n,ρf.

Proof. Let ε > 0 be arbitrary. As the space of polynomials P is dense in Lp[0, 1],
‖ · ‖p, 1 ≤ p < ∞ and C[0, 1], ‖ · ‖∞, p = ∞, we can choose a polynomial q, such
that ‖f − q‖p < ε. Thus with Theorem 1 and as the operators are contractions
we derive

‖(Hn,ρ − B(1)
n,ρ)f‖p ≤ ‖Hn,ρ(f − q)‖p + ‖B(1)

n,ρ)(q − f)‖p

≤ 2ε.

From the discussions in Sects. 2 and 3 we now get an identity for the functions
ωn,j,ρ defined in (5) in terms of a sum of Bernstein basis functions.

Corollary 2. For each 0 ≤ j ≤ n − 1 we have

ωn,j,ρ =
ρ−1∑
i=0

pnρ−1,i+jρ

on [0, 1].

5 Representation for the k-th Order Kantorovich
Modification

In this section we generalize the representation of the operators to k ∈ N.

Theorem 2. Let n, k ∈ N, n−k ≥ 1, ρ ∈ N and f ∈ L1[0, 1]. Then we have the
representation

B(k)
n,ρ(f ;x) =

n!(nρ − 1)!
(n − k)!(nρ + k − 2)!

n−k∑
j=0

pn−k,j(x)

×
∫ 1

0

ρ−1∑
i1=0

· · ·
ρ−1∑
ik=0

pnρ+k−2,jρ+i1+···+ik+k−1(t)f(t)dt.

Proof. We prove the theorem by induction.
For k = 1 see Corollary 1.
k ⇒ k + 1: From the definition of the operators B

(k+1)
n,ρ we get

B(k+1)
n,ρ (f ;x) = D1 ◦ B(k)

n,ρ ◦ I1(f ;x)

=
n!(nρ − 1)!

(n − k)!(nρ + k − 2)!

n−k∑
j=0

p′
n−k,j(x)

×
∫ 1

0

ρ−1∑
i1=0

· · ·
ρ−1∑
ik=0

pnρ+k−2,jρ+i1+···+ik+k−1(t)I1(f ; t)dt.
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By using (3) and an appropriate index transform we derive

B(k+1)
n,ρ (f ;x) =

n!(nρ − 1)!
(n − k − 1)!(nρ + k − 2)!

n−(k+1)∑
j=0

pn−(k+1),j(x) (7)

×
∫ 1

0

ρ−1∑
i1=0

· · ·
ρ−1∑
ik=0

[
pnρ+k−2,(j+1)ρ+i1+···+ik+k−1(t)

−pnρ+k−2,jρ+i1+···+ik+k−1(t)] I1(f ; t)dt.

Now we rewrite the difference of the basis functions in the integral and use
again (3), i.e.,

pnρ+k−2,(j+1)ρ+i1+···+ik+k−1(t) − pnρ+k−2,jρ+i1+···+ik+k−1(t)

=
ρ−1∑

ik+1=0

[
pnρ+k−2,jρ+i1+···+ik+1+k(t) − pnρ+k−2,jρ+i1+···+ik+1+k−1(t)

]

= − 1
nρ + k − 1

ρ−1∑
ik+1=0

p′
nρ+k−1,jρ+i1+···+ik+1+k(t).

Together with (7) and integration by parts this leads to

B(k+1)
n,ρ (f ;x) =

n!(nρ − 1)!
(n − k − 1)!(nρ + k − 1)!

n−(k+1)∑
j=0

pn−(k+1),j(x)

×
∫ 1

0

ρ−1∑
i1=0

· · ·
ρ−1∑
ik=0

ρ−1∑
ik+1=0

−p′
nρ+k−1,jρ+i1+···+ik+1+k(t)I1(f ; t)dt

=
n!(nρ − 1)!

(n − k − 1)!(nρ + k − 1)!

n−(k+1)∑
j=0

pn−(k+1),j(x)

×
∫ 1

0

ρ−1∑
i1=0

· · ·
ρ−1∑

ik+1=0

pnρ+k−1,jρ+i1+···+ik+1+k(t)f(t)dt.

Remark 1. From (1) we know that for f ∈ C[0, 1]

lim
ρ→∞ B(k)

n,ρf = B(k)
n,∞f (8)

uniformly on [0, 1]. Now Theorem 2, (2) and (8) imply

lim
ρ→∞

(nρ − 1)!
(nρ + k − 2)!

ρ−1∑
i1=0

· · ·
ρ−1∑
ik=0

pnρ+k−2,jρ+i1+···+ik+k−1(t) =
1

nk−1
Nk,j(t),

which can be written also as

lim
ρ→∞

1
ρk−1

ρ−1∑
i1=0

· · ·
ρ−1∑
ik=0

pnρ+k−2,jρ+i1+···+ik+k−1(t) = Nk,j(t).
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6 Convexity of the Linking Operators

In [3, Theorem 4.1] Gonska and Păltănea considered convexity properties of the
operators Bn,ρ and proved that (Bn,ρf)(r) ≥ 0 for each function f ∈ Cr[0, 1],
0 ≤ r ≤ n, such that f (r) ≥ 0. By using the same method this can be generalized
to B

(k)
n,ρ (see [1, Theorem 4]). With the representation in Theorem 2 the convexity

properties for B
(k)
n,ρ now follow as a corollary.

Corollary 3. Let f ∈ Cl[0, 1] with f (l)(x) ≥ 0, l ∈ N0, for all x ∈ [0, 1]. Then

Dl
(
B(k)

n,ρ(f ;x)
)

≥ 0

for each k ∈ N, x ∈ [0, 1].

Proof.

Dl
(
B(k)

n,ρ(f ;x)
)

= Dl ◦ B(k)
n,ρ ◦ Ilf

(l)

= B(k+l)
n,ρ f (l) ≥ 0,

as f (l) ≥ 0.

7 Concluding Remarks

Similar constructions can be also done for the linking operators acting on the
non-compact interval [0,∞), e.g., the link between the Durrmeyer type operators
and Kantorovich modifications of the Szász-Mirakjan operators. This will be
treated in a forthcoming paper.
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Abstract. The construction of fractal versions of classical functions as
polynomials, trigonometric maps, etc. by means of a particular Iterated
Function System of the plane is tackled. The closeness between the classi-
cal function and its fractal analogue provides good properties of approx-
imation and interpolation to the latter. This type of methodology opens
the use of non-smooth and fractal functions in approximation. The pro-
cedure involves the definition of an operator mapping standard functions
into their dual fractals. The transformation is linear and bounded and
some bounds of its norm are established. Through this operator we define
families of fractal functions that generalize the classical Schauder systems
of Banach spaces and the orthonormal bases of Hilbert spaces. With an
appropriate election of the coefficients of Iterated Function System we
define sets of fractal maps that span the most important spaces of func-
tions as C[a, b] or Lp[a, b].

Keywords: Fractal interpolation functions · Bases of functional spaces ·
Approximation · Interpolation · Fractals
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1 Introduction

The functional space C[a, b], composed of continuous functions defined on a com-
pact interval, and endowed with the supremum norm, is one of the most popular
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infinite dimensional Banach spaces. This set is used in almost all the fields of
mathematics and broad areas of physics. Let us recall, for instance, that some
of its bases facilitate the construction of random motions [2].

In many problems of applied mathematics, one needs to approximate contin-
uous functions. A feasible way of doing this is the use of spanning systems. The
natural generalization of a basis of a finite-dimensional space is a Schauder sys-
tem. A sequence (xm) of a Banach space X is a Schauder basis if every element
x of X is expressed univocally as x =

∑
cmxm, where cm are scalar magnitudes.

Every m-th sum of the series is an approximate value of x which may be more
treatable than x.

It was early proved that C[a, b] owns a basis. The first system of this type was
studied by G. Faber [4] and J. Schauder [12]. It comprises polygonal functions
associated to a sequence that is everywhere dense in the interval. If a = 0, and
b = 1, the sequence consists sometimes of dyadic rational points, first appeared
in the work of Faber. Later on, the existence of bases was extended to Lebesgue
spaces of p-integrable maps Lp where p ≥ 1 (see for instance [5]). However this
is not true for general Banach spaces, as proved by Enflo [3].

Among all the spanning systems, the interpolating families possess even more
interesting properties. A basis is of this kind if the m-th approximation Smx
agrees with x at some points t1, t2, . . . , tm. For instance, the Faber-Schauder
basis is interpolatory.

Our study on fractal functions have prompted us to define mappings that
are close to the classical but, at the same time, own a self-similar structure
in their traces (graphs). Through these new elements, the fields of interpo-
lation and approximation may be expanded. Our late concern is the con-
struction of bases of functional spaces, composed of fractal functions. In the
references [9,10], we defined interpolatory bases of affine fractal functions for
C[a, b]. The mappings involved are perturbations of those belonging to the Faber-
Schauder family. Every map xm(t) is associated to a scale vector αm (see next
Section for its definition). The sequence αm must tend to zero as m tends to
infinity. In this instance we define a fractal basis for the same space with respect
to a constant scale vector α, independent of the function. The approach can be
extended to Lebesgue spaces Lp[a, b], for 1 ≤ p < ∞.

2 Fractal Functions Associated with Classical Continuous
Maps

In this Section we describe the construction of a fractal interpolation function
close to any continuous mapping f : [a, b] → R (see Figs. 1 and 2).

Let t0 < t1 < ... < tN be real numbers, N > 1, and I = [t0, tN ] = [a, b] the
smallest closed interval that contains them. Let a set of data points (xn)N

n=0 be
given. Set In = [tn−1, tn] and let Ln : I → In, n ∈ {1, 2, ..., N} be contractive
homeomorphisms such that:

Ln(t0) = tn−1, Ln(tN ) = tn (1)



Construction of Fractal Bases for Spaces of Functions 323

|Ln(c1) − Ln(c2)| ≤ l |c1 − c2| ∀ c1, c2 ∈ I (2)

for some l ∈ [0, 1).
Let H = I×R and N continuous mappings, Fn : H → R, be given satisfying:

Fn(t0, x0) = xn−1, Fn(tN , xN ) = xn, n = 1, 2, ..., N (3)

|Fn(t, x) − Fn(t, y)| ≤ r|x − y|, t ∈ I, x, y ∈ R, 0 ≤ r < 1. (4)

Now define functions wn(t, x) = (Ln(t), Fn(t, x)), ∀n = 1, 2, ..., N . The next and
other related results can be read in [1].

Theorem 1. The Iterated Function System (IFS) {H, wn : n = 1, 2, ..., N}
defined above admits a unique attractor G. G is the graph of a continuous func-
tion g : I → R which obeys g(tn) = xn for n = 0, 1, 2, ..., N .

The previous function is called a Fractal Interpolation Function (FIF) cor-
responding to {(Ln(t), Fn(t, x))}N

n=1. The mapping g satisfies the functional
Eq. [1]:

g(t) = Fn(L−1
n (t), g ◦ L−1

n (t)), n = 1, 2, ..., N, t ∈ In = [tn−1, tn]. (5)

The most widely studied fractal interpolation functions so far are defined by the
IFS

{
Ln(t) = ant + bn

Fn(t, x) = αnx + qn(t) (6)

where −1 < αn < 1, n = 1, 2, ..., N . αn is called a vertical scaling factor of the
transformation wn. It follows from (1) that

an =
tn − tn−1

tN − t0
bn =

tN tn−1 − t0tn
tN − t0

. (7)

Let f ∈ C(I) be a continuous function. We consider the case

qn(t) = f ◦ Ln(t) − αnb(t), (8)

where b is continuous and such that b(t0) = x0, b(tN ) = xN . The set of data
is here {(tn, f(tn)) : n = 0, 1, . . . , N}. Using this IFS one can define fractal
analogues of any continuous function [7]. In particular, we consider in this paper
the case

b = Lf (9)

where L is an operator of C(I) linear and bounded with respect to the uniform
norm:

‖f‖∞ = sup{|f(x)| : x ∈ I}.
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Fig. 1. Fractal function associated to a polygonal with vertices (0, 3.3), (0.1, 2.9), (0.2,
3.5), (0.3, 3.6), (0.4, 3.3), (0.5, 3.8), (0.6, 3.9), (0.7, 4), (0.8, 4.2), (0.9, 4.6), (1, 5).

Definition 1. Let fα be the continuous function defined by the IFS (6), (7),
(8) and (9). fα is the α-fractal function associated with f with respect to L and
the partition Δ.

fα satisfies the fixed point Eq. (5):

fα(t) = f(t) + αn(fα − Lf) ◦ L−1
n (t), (10)

for t ∈ In. From here on we will use the following notation:

|α|∞ = max{|αn| : n = 1, 2, . . . , N}

and assume that |α|∞ < 1.
Figure 1 represents an affine fractal function (associated with a polygonal f)

with the following parameters: a uniform partition of the interval I = [0, 1] of
10 subintervals (xn) = (3.3, 2.9, 3.5, 3.6, 3.3, 3.8, 3.9, 4, 4.2, 4.6, 5); the operator
Lf(t) = r(t), where r(t) is the line passing through the extreme data (t0, f(t0)),
(tN , f(tN )) and α = (−0.3, 0.4, 0.2, 0.3,−0.1, 0.3,−0.3, 0.4, 0.3,−0.3).

The following inequalities can be deduced easily from the fixed point Eq. (10):

‖fα − f‖∞ ≤ |α|∞‖fα − Lf‖∞, (11)

‖fα − f‖∞ ≤ |α|∞
1 − |α|∞ ‖f − Lf‖∞ (12)

for all f ∈ C(I).
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Let us define the α-fractal operator with respect to Δ and L as:

Fα : C(I) → C(I)
f ↪→ fα

and let us denote as ‖Fα‖, ‖L‖ the operator norms with respect to the uniform
metric in C(I). The properties of Fα are summarized in the next Theorem [7].

Theorem 2. If L is linear and bounded with respect to the uniform metric:

(a) Fα: C(I) → C(I) is linear and injective.
(b) If α = 0, Fα = I, where I is the identity operator.
(c) The operator Fα is bounded and the following inequalities hold:

‖Fα‖ ≤ 1 +
|α|∞

1 − |α|∞ ‖I − L‖ (13)

‖I − Fα‖ ≤ |α|∞
1 − |α|∞ ‖I − L‖. (14)

(d) If α 
= 0, the fixed points of Fα agree with the fixed points of L.
(e) If α 
= 0, Fα = I if and only if L = I.
(f) If 1 belongs to the point spectrum of L (L has non-null fixed points) then

1 ≤ ‖Fα‖.

The following result can be found in [7].

Proposition 1. If |α|∞ < ‖L‖−1 then Fα has closed range.

Another important property, is the following chain of inequalities:

1 − |α|∞‖L‖
1 + |α|∞ ‖f‖∞ ≤ ‖Fα(f)‖∞ ≤ 1 + |α|∞‖L‖

1 − |α|∞ ‖f‖∞. (15)

3 Fractal Bases of Continuous and Integrable Functions

Our objective is now the construction of fractal bases for spaces of functions.
We recall the following definitions.

Definition 2. A sequence (xm)∞
m=0 of a Banach space X is a Schauder basis if

∀x ∈ X there exists a unique representation of x as

x =
∞∑

m=0

cmxm,

where (cm)∞
m=0 is a sequence of scalars.
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Examples: The space C(I) possesses a basis of polynomials. Another impor-
tant basis is composed of polygonal (triangular) functions attached to a dense
sequence of points of the interval (Faber-Schauder system).

A Schauder basis is the natural generalization of a basis of a finite-
dimensional vector space. It enables the identification of an element with a
sequence of scalars:

x ≈ (cm)∞
m=0 ⇔ x =

∞∑

m=0

cmxm.

cm is the m-th “coordinate” of x with respect to the basis (xm)∞
m=0.

Definition 3. A sequence (xm)∞
m=0 of a Banach space is a Schauder sequence

if it is a Schauder basis for [xm]∞m=0 = span(xm)∞
m=0.

Remark: The set span(xm)∞
m=0 is the family of finite linear combinations of

the elements xm and [xm]∞m=0 is the topological closure of span(xm)∞
m=0.

3.1 Space of Continuous Functions on a Compact Interval C(I)
In this Subsection we define a fractal basis for the space C(I).

Theorem 3. If (fm)∞
m=0 is a Schauder basis of C(I) and |α|∞ < ‖L‖−1, then

(Fα(fm))∞
m=0 is a Schauder sequence.

Proof. Let the range of Fα be denoted by rg(Fα). With the hypothesis on
the scale vector rg(Fα) is closed (Proposition 1) and it is easy to check that
[Fα(fm)]∞m=0 agrees with it. Fα is a topological isomorphism onto rg(Fα)
and this transformation preserves the bases. Consequently (Fα(fm))∞

m=0 is a
Schauder basis of [Fα(fm)]∞m=0 = rg(Fα).

Consequences: If (fm)∞
m=0 is a Schauder basis of C(I) and |α|∞ < ‖L‖−1 then,

the fact that Fα(fm) is a basis implies that

– The fractal system is finitely linearly independent.
– It is complete sequence.
– The series

∑∞
m=0 cmFα(fm) converges if and only if

∑∞
m=0 cmfm is convergent

(due to the isomorphism between [fm]∞m=0 and [fα
m]∞m=0).

Lemma 1. [6] If L is a bounded and linear operator from a Banach space into
itself such that ‖I − L‖ < 1, then L−1 exists and is bounded.

Theorem 4. If (fm) is a Schauder basis of C(I) and |α|∞ < (1 + ‖I − L‖)−1,
then (Fα(fm)) is a Schauder basis of C(I).

Proof. The hypothesis on the scale vector implies that (14)

‖I − Fα‖ ≤ |α|∞
1 − |α|∞ ‖I − L‖ < 1.

Fα has a bounded inverse, according to the previous Lemma and the result is
deduced.
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Definition 4. A basis (xm) of a Banach space is bounded if

0 < inf ‖xm‖ ≤ sup ‖xm‖ < ∞.

The inequalities (15) imply that the fractal basis will be bounded if the original
is. In particular, the affine basis associated to the classical polygonal basis of
C(I) is bounded as

1 − |α|∞‖L‖
1 + |α|∞ ≤ ‖Fα(fm)‖∞ ≤ 1 + |α|∞‖L‖

1 − |α|∞ , (16)

since ‖fm‖ = 1 for any m.
These results prove that the sequence (fα

m)∞
m=0 of fractal functions associated

to a basis is another basis if the scale vector is suitable chosen.

3.2 Space of p-integrable Functions Lp(I)

In this Subsection we extend the concept of α-fractal function to the space Lp(I),
for 1 ≤ p < ∞ and define fractal bases for this set.

Let us consider now the norm in C(I):

‖f‖Lp =

(∫ b

a

|f |pdt

)1/p

< ∞,

and assume that L is bounded with respect to ‖ · ‖p. The properties of ‖Fα‖p

(norm associated) are very similar to those described in Theorem 2 [7]. In par-
ticular, the following bounds hold:

‖Fα‖p ≤ 1 +
|α|∞

1 − |α|∞ ‖I − L‖p (17)

‖I − Fα‖p ≤ |α|∞
1 − |α|∞ ‖I − L‖p. (18)

The following results generalize the concept of α-fractal function: any f ∈
Lp(I) will be associated with a function f

α ∈ Lp(I), for 1 ≤ p < ∞.
Figure 2 represents the fractal function associated with the Legendre poly-

nomial of degree 3 with the following parameters: a uniform partition of the
interval I = [−1, 1] of 10 subintervals, the operator Lf(t) = f(t)v(t), where
v(t) = cos(2πt) and αn = 0.3 for all n = 1, 2, . . . 10.

Lemma 2. (Linear and Bounded Operator Theorem) [6] If an operator S : X →
Y is linear and bounded, Y is Banach and X is dense in X ′, then S can be
extended to X ′ preserving the norm of S.

Remark 1. The extension S : X ′ → Y is defined in the following way:
If x′ ∈ X ′, due to the density of X in X ′, there exists a sequence (xm) ⊂ X

such that lim xm = x′. The image S(x′) is then defined as S(x′) = lim S(xm).
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Since C(I) is dense in Lp(I) for p ∈ [1,+∞) with respect to the p-metric [11],
one can use the previous Lemma to extend the operators Fα and L to Lp(I)
preserving the norm. Thus if Fα

: Lp(I) → Lp(I) and L : Lp(I) → Lp(I) are
the corresponding extensions:

‖Fα‖p = ‖Fα‖p

and

‖L‖p = ‖L‖p.

As a consequence, bearing in mind (17):

‖Fα‖p = ‖Fα‖p ≤ 1 +
|α|∞

1 − |α|∞ ‖I − L‖p (19)

By construction f
α

= Fα
(f) is the limit of a sequence of continuous α-fractal

functions (Sα
m) ⊂ C(I) :

f
α

= lim Sα
m = lim Fα(Sm).

The function f
α

will be the α-fractal function of f ∈ Lp(I). The properties
of Fα and L are extended to F

α
and L [7]. For instance, for any f ∈ Lp(I),

p ∈ [1,+∞),

‖Fα
(f) − f‖Lp ≤ |α|∞‖Fα

(f) − Lf‖Lp , (20)

‖Fα
(f) − f‖Lp ≤ |α|∞

1 − |α|∞ ‖f − Lf‖Lp . (21)

If |α|∞ < ‖L‖−1
p then Fα

is injective and its range is closed. Using arguments
similar to those exposed in the previous Subsection, one has the following results.

Fig. 2. Fractal function (fα) associated with the third Legendre polynomial (f).
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Theorem 5. If (fm)∞
m=0 is a Schauder basis of Lp(I) (1 ≤ p < ∞) and |α|∞ <

‖L‖−1
p , then (Fα

(fm))∞
m=0 is a Schauder sequence.

Theorem 6. If (fm)∞
m=0 is a Schauder basis of Lp(I) (1 ≤ p < ∞) and |α|∞ <

(1 + ‖I − L‖p)−1, then (Fα
(fm))∞

m=0 is a Schauder basis of Lp(I).

The case p = 2 owns some peculiarities due to the inner product operation,
with the consequent structure of Hilbert space. The following results can be
found in [8], Subsect. 2.3. Let (pm)∞

m=0 be an orthonormal basis of L2(I) (for
instance, the system of Legendre polynomials) and (pα

m)∞
m=0 the image sequence:

(pα
m)∞

m=0 = (Fα
(pm))∞

m=0.

Definition 5. A sequence (xm) ⊆ H, where H is a Hilbert space, is a Bessel
sequence if there exists a constant B > 0 such that for all x ∈ H

∞∑

m=0

| < x, xm > |2 ≤ B‖x‖2.

Proposition 2. For any scale vector α such that |α|∞ < 1, if (pm)∞
m=0 is an

orthonormal basis, (pα
m)∞

m=0 is a Bessel sequence.

Consequence: If (cm)∞
m=0 ∈ l2 the series

∞∑

m=0

cmpα
m

is unconditionally convergent due to the fact that
∑

cmpm is unconditional (all
the orthonormal bases are unconditional).

Definition 6. A sequence (xm)∞
m=0 ⊆ H, where H is a Hilbert space, is a Riesz

basis if it is equivalent to an orthonormal basis (ym)∞
m=0 of H, that is to say, there

exists an operator T linear, bijective and bicontinuous (topological isomorphism)
such that Txm = ym.

Definition 7. A sequence (xm)∞
m=0 ⊆ H, where H is a Hilbert space, is a Riesz

sequence if there exist k1, k2 > 0 such that for any (cm) ∈ l2

k1

∞∑

m=0

|cm|2 ≤ ‖
∞∑

m=0

cmxm‖2 ≤ k2

∞∑

m=0

|cm|2. (22)

Proposition 3. If |α|∞ < ‖L‖−1
2 , (pα

m)∞
m=0 is a Riesz sequence.

And finally,

Theorem 7. If |α|∞ < (1+‖I−L‖2)−1 then (pα
m)∞

m=0 is a Riesz basis of L2(I).
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Abstract. In this paper some necessary and sufficient conditions for
boundedness of an infinite matrix as a linear operator between two
weighted c0 spaces are established. Some relationship between the matrix
and the weight vectors of domain and range spaces are also obtained.

Keywords: Infinite matrix · Weighted sequence space · Matrix norm ·
c0 space

1 Introduction

Infinite matrices play an important role in difference equations, integral equa-
tions, infinite systems of linear algebraic or differential equations, the theory of
summability of sequences and series. For detail study about infinite matrix we
refer the book of Cooke [4] and for a brief review we refer to Shivakumar and
Sivakumar [6].

An infinite matrix defines a linear operator on a sequence space but for a
given any infinite matrix, it is not always easy to find whether it arises from
a bounded operator or not. Many authors have obtained the spectrum of some
operators on the c0 space using the conditions of boundedness of an infinite
matrix on c0 [1–3,5]. So it is interesting to know the conditions under which an
infinite matrix behaves as a bounded linear operator on sequence spaces such
as weighted c0 space. The conditions for boundedness of an infinite matrix on
weighted l1 space are obtained by Joseph J. Williams and Qiang Ye [7]. In this
paper we find the condition under which an infinite matrix map is bounded
between two weighted c0 spaces with two different weights. Further for a given
infinite matrix and a weight vector of domain, we have obtained the condition
on the weight vector of range space such that the matrix is bounded. Also some
necessary and sufficient conditions under which an infinite matrix is bounded
for the weighted c0 space having same weight are investigated.

2 Preliminaries and Notations

All infinite sequences and matrices throughout the paper are assumed to be
indexed by N. c0 = {(xk) : lim

k→∞
xk = 0}, space of all null sequences of real

c© Springer Nature Singapore Pte Ltd. 2017
D. Giri et al. (Eds.): ICMC 2017, CCIS 655, pp. 331–338, 2017.
DOI: 10.1007/978-981-10-4642-1 28
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or complex numbers. We denote an infinite matrix A as A = (ank), n, k =
1, 2, 3, · · · , an infinite sequence x = (xj), j = 1, 2, 3, · · · as a column vector and

the multiplication Ax is defined as (Ax)i =
∞∑

j=1

aijxj for each i ∈ N, where

the series converges for each i ∈ N. Throughout this paper, |A| denotes the
matrix of absolute values of A, that is |A| = (|ank|). Inequalities on two real
vectors or matrices are defined by component-wise, that is x ≤ y means xj ≤ yj
for all j ∈ N. If E and F are any two Banach spaces, B(E,F ) denotes the
set of all bounded linear operators from E into F and the (operator) norm of
T ∈ B(E,F ) is given by ‖T‖ = sup{‖Tx‖F : ‖x‖E ≤ 1, x ∈ E}. For E = F,
B(E,F ) is denoted by B(E). Now we procure a lemma about the boundedness
of an infinite matrix from c0 to itself.

Lemma 1 [5]. The matrix A = (ank) gives rise to a bounded linear operator

T ∈ B(c0) from c0 to itself if and only if, sup
n∈N

∞∑

k=1

|ank| < ∞ and the columns

are in c0 which means, lim
n→∞ ank = 0 for each k ∈ N. The operator norms of A

is given by ‖A‖ = sup
n∈N

∞∑

k=1

|ank|.

3 Results

Before going to the results, first we define the weighted c0 space.

Definition 1. Let r = (rk) be an infinite positive real sequence, then the
weighted c0 space is defined as c0(r) = {(xk) : lim

k→∞
rkxk = 0} and ‖x‖r =

sup
k

|xk|rk.

Remark 1. ‖x‖r defines a norm on c0(r) and (c0(r), ‖x‖r) is a Banach space
under this norm. It is easy to verify that if D(r) is the diagonal matrix with ith
diagonal entry ri then, D(r) is an isometric isomorphism from c0(r) to c0 since
x = (xk) ∈ c0(r) then, D(r)x = (xkrk) ∈ c0, and ‖x‖r = ‖D(r)x‖.

Lemma 2. For every infinite sequence y = (yk) there exists some weight vector
r = (rk) such that y ∈ c0(r).

Proof. Given y = (yk), we define r = (rk) by

rk =

{
1
k

(
1

|yk|
)

, yk �= 0
1, yk = 0

Clearly, (yk) ∈ c0(r) and ‖y‖r = sup
k

|rkyk| = sup
k

1
k = 1.

Theorem 1. For two weight vectors r = (rn) and s = (sn) and an infi-
nite matrix A = (ank), the matrix A ∈ B(c0(r), c0(s)) if and only if,

sup
n∈N

sn
∞∑

k=1

|ank

rk
| < ∞ and lim

n→∞ skank = 0 ∀ k ∈ N and ‖A‖r,s = sup
n∈N

sn
∞∑

k=1

|ank

rk
|.
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Proof. Let D(r) be the diagonal matrix with ith diagonal entry ri then Dr is an
isometric isomorphism from c0(r) to c0. Now we define T = DsAD−1

r .
Then A ∈ B(c0(r), c0(s)) if and only if, T ∈ B(c0, c0).

That is, if and only if, sup
n∈N

sn
∞∑

k=1

|ank

rk
| < ∞ and lim

n→∞
snank

rk
= 0 ∀ k ∈ N.

⇐⇒ sup
n∈N

sn
∞∑

k=1

|ank

rk
| < ∞ and lim

n→∞ snank = 0 ∀ k ∈ N.

and ‖A‖r,s = sup
n∈N

sn
∞∑

k=1

|ank

rk
|.

In Theorem 1 the vectors r and s are given. In next lemma we consider the case
where the weight vector r of domain and the matrix A are given and we obtain
condition under which the existence of the weight vector s is guaranteed such
that A ∈ B(c0(r), c0(s)).

Lemma 3. Given an infinite matrix A = (ank) and a weight vector r = (rn),
then the matrix A ∈ B(c0(r), c0(s)) for some weight vector s = sn if and only if,
∞∑

k=1

|ank

rk
| < ∞ for all n.

Proof. First suppose that such a s = (sn), sn > 0 exist. Then by Theorem 1,

‖A‖r,s = sup
n∈N

sn
∞∑

k=1

|ank

rk
| < ∞ and lim

n→∞ snank = 0 ∀ k ∈ N. Now for arbitrary

n ∈ N, ‖A‖r,s = sup
n∈N

sn
∞∑

k=1

∣
∣
∣ank

rk

∣
∣
∣ ≥ sn

∞∑

k=1

∣
∣
∣ank

rk

∣
∣
∣. Thus

∞∑

k=1

∣
∣
∣ank

rk

∣
∣
∣ ≤ ‖A‖r,s

sn
<

∞ ∀ n ∈ N.

Conversely, suppose that
∞∑

k=1

|ank

rk
| < ∞ ∀ n is true. Now define s = (sn) as

sn =

⎧
⎪⎪⎨

⎪⎪⎩

1
n

⎛

⎝ 1
∑

k

∣
∣
∣ ank

rk

∣
∣
∣

⎞

⎠ , if ank �= 0 for at least one k

1, if ank = 0 for all k.

Then sup
n∈N

∞∑

k=1

∣
∣
∣ snank

rk

∣
∣
∣ = supn

1
n = 1 < ∞ and lim

n→∞

∣
∣
∣ snank

rk

∣
∣
∣ = 0 i.e., lim

n→∞ snank =

0 ∀ k ∈ N.
Now by Theorem 1 ∃ s = (sn) s.t. A ∈ B(c0(r), c0(r)).

4 Necessary Condition for A to Be in B(c0(r))

In this section we obtain some necessary conditions under the assumption r = s
so that A ∈ B(c0(r)). First we give an example for which A /∈ B(c0) but A ∈
B(c0(r)) for some r = (rn). For a matrix A ∈ B(c0(r)) we denote its norm by
‖ A ‖r=‖ A ‖r,r .
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Example 1. Define A = (ank) by

ank =

⎧
⎨

⎩

k if n = 1
1
n4 if k = 1
0 if n, k ≥ 2

Now
∞∑

k=1

|a1k| = ∞, thus A /∈ B(c0) from Lemma 1. Now define r = (rk) such

that rk = k3 and
∣
∣
∣
∣
rnank

rk

∣
∣
∣
∣ =

⎧
⎨

⎩

1
k2 if n = 1
1
n if k = 1
0 if n, k ≥ 2

Therefore ‖ A ‖r= sup
n∈N

∞∑

k=1

∣
∣
∣
∣
rnank

rk

∣
∣
∣
∣ = sup

{ ∞∑

k=1

1
k2 , 1

2 , 1
3 , · · ·

}

< ∞, also

lim
n→∞ ankrn = 0,∀k. Hence A ∈ B(c0(r)) by Theorem 1.

Here we discuss about the necessary condition for A ∈ B(c0(r)).

Theorem 2. If the infinite matrix A = (ank) ∈ B(c0(r)) and suppose that

m =‖ A ‖r= sup
n∈N

∞∑

k=1

∣
∣
∣
∣
rnank

rk

∣
∣
∣
∣ then,

1. sup
k∈N

sup
n∈N

|aknank| ≤ m2 < ∞.

2. lim
n→∞ ankakn = 0, ∀k.

Proof. (1) We have m = sup
n∈N

∞∑

k=1

∣
∣
∣
∣
rnank

rk

∣
∣
∣
∣ ≥ sup

n∈N

∣
∣
∣
∣
rnank

rk

∣
∣
∣
∣ ∀k. Interchanging n and

k we have, sup
k∈N

∣
∣
∣
∣
rkakn

rn

∣
∣
∣
∣ ≤ m ∀n. Therefore

∣
∣
∣
∣
rkakn

rn

∣
∣
∣
∣ ≤ m ∀n, k.

Now, |aknank| =
∣
∣
∣
∣
rkakn

rn

∣
∣
∣
∣

∣
∣
∣
∣
rnank

rk

∣
∣
∣
∣ ≤ m

∣
∣
∣
∣
rnank

rk

∣
∣
∣
∣ . Therefore, sup

n∈N

|aknank| ≤

m sup
n∈N

∣
∣
∣
∣
rnank

rk

∣
∣
∣
∣ ≤ m2 ∀k. Hence sup

k∈N

sup
n∈N

|aknank| ≤ m2.

(2) Also |aknank| =
∣
∣
∣
∣
rkakn

rn

∣
∣
∣
∣

∣
∣
∣
∣
rnank

rk

∣
∣
∣
∣ ≤ m

∣
∣
∣
∣
rnank

rk

∣
∣
∣
∣ ∀k.

Now by Theorem 1 lim
n→∞ rnank = 0 ∀k, therefore by Sandwich Theorem

lim
n→∞ |ankakn| = 0, ∀k

i.e. lim
n→∞ ankakn = 0, ∀k.

Now we give two examples for the statements (1) and (2) of Theorem 2 respec-
tively.

Example 2. Define A = (ank) by

ank =

⎧
⎨

⎩

n
k if n < k
0 if n = k
n if n > k
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Then

ankakn =

⎧
⎨

⎩

n if n < k
0 if n = k
k if n > k

Therefore sup
k

sup
n

|ankakn| = ∞. So by Theorem 2 there does not exist any

weight vector r = (rn) such that A ∈ B(c0(r)).

Example 3. Define A = (ank) by

ank =

⎧
⎨

⎩

1
k if n < k
0 if n = k
n if n > k

Then ankakn = 1 ∀k �= n. So by Theorem 2 there does not exist any weight
vector r = (rn) such that A ∈ B(c0(r)).

5 Sufficient Condition for A to Be in B(c0(r))

Here we discuss about the sufficient condition for A to be in B(c0(r)). Before
going to the main results we give a Corollary to Theorem 1.

Corollary 1. Given a weight vector r = (rn) and an infinite matrix A = (ank),
then A ∈ B(c0(r)) if and only if, |A|r′ ≤ αr′ for some α with 0 ≤ α < ∞, and
lim
n→∞ rnank = 0 where r′ =

(
1
r1

, 1
r2

, 1
r3

, · · ·
)

.

Proof. We know A ∈ B(c0(r)) if and only if, ∃ α ∈ [0,∞) such that

sup
n

∞∑

k=1

∣
∣
∣
∣
rnank

rk

∣
∣
∣
∣ = α < ∞ and lim

n→∞ rnank = 0,

if and only if,
∞∑

k=1

∣
∣
∣
∣
rnank

rk

∣
∣
∣
∣ ≤ α ∀n, and lim

n→∞ rnank = 0,

if and only if,
∞∑

k=1

∣
∣
∣
∣
ank

rk

∣
∣
∣
∣ ≤ α

rn
∀n, and lim

n→∞ rnank = 0,

if and only if, |A|r′ ≤ αr′ and lim
n→∞ rnank = 0.

Now we state a basic result about the inverse of lower triangular matrices.

Lemma 4. Let L = (lij) be a lower triangular matrix (i.e., lij = 0 if i < j)
with lii > 0, ∀i ∈ N and lij ≤ 0 for j < i. Then there exists an unique lower
triangular matrix X ≥ 0 such that LX = XL = I.

Proof. The proof runs parallel with lines used in [7, Lemma 4].

Lemma 5. Let L = (lij) where lij ≥ 0 ∀i, j such that lij = 0 if i ≤ j. Let
eT1 = (1, 0, 0, · · · ) and rT = (r1, r2, · · · ) such that r = (I − L)−1e1, then r1 = 1
and

rn =
n−1∑

i=1

∑

1<k1<k2<···<ki−1<n

lk11lk2k1 · · · lnki−1 , ∀n ≥ 2. (1)
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Proof. r = (I −L)−1e1 =⇒ (I −L)r = (I −L)((I −L)−1e1), hence (I −L)r = e1
i.e., ⎛

⎜
⎜
⎜
⎝

1 0 0 0 · · ·
−l21 1 0 0 · · ·
−l31 −l32 1 0 · · ·

...
...

...
...

. . .

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

r1
r2
r3
...

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

1
0
0
...

⎞

⎟
⎟
⎟
⎠

(2)

Equating first two entries we have r1 = 1 and −l21r1 + r2 = 0 ⇒ r2 = l21, so our
result is verified for n = 2. Now we are going to prove the result on applying the
principle of first induction.

Take any n ∈ N with n ≥ 2 and assume result holds for n = 2, 3, · · · N then
equating (N + 1)st entries on each side of (2) we get,

−(lN+1,1r1 + lN+1,2r2 + lN+1,3r3 + · · · lN+1,NrN ) + rN+1 = 0

⇒ rN+1 = r1lN+1,1 +
N∑

k=2

lN+1,krk.

Now substitute rj from (1) on the right side of the above equation and also using
r1 = 1 we have,

rN+1 =lN+1,1 +
N∑

k=2

⎡

⎣
k−1∑

i=1

∑

1<k1<k2<···<ki−1<k

lk11lk2k1 · · · lnki−1

⎤

⎦ lN+1,k

=lN+1,1 +
N−1∑

i=1

⎡

⎣
N∑

k=i+1

∑

1<k1<k2<···<ki−1<k

lk11lk2k1 · · · lnki−1 lN+1,k

⎤

⎦ .

In the first summation on replace i by i − 1, we have

rN+1 = lN+1,1 +
N∑

i=2

⎡

⎣
N∑

k=i

∑

1<k1<k2<···<ki−2<k

lk11lk2k1 · · · lnki−1 lN+1,k

⎤

⎦ .

Now we replace k with ki − 1 and we can write as,

rN+1 =lN+1,1 +
N∑

i=2

⎡

⎣
∑

1<k1<k2<···<ki−1<N+1

lk11lk2k1 · · · lnki−1

⎤

⎦ lN+1,k

=
N−1∑

i=1

⎡

⎣
∑

1<k1<k2<···<ki−1<N+1

lk11lk2k1 · · · lnki−1 lN+1,k

⎤

⎦ .

Hence by principle of induction we get the expression (1) holds for all n ≥ 2.

Remark 2. For i = 1 the sum
∑

1<k1<k2<···<ki−1<n

lk11lk2k1 · · · lnki−1 in Eq. (1)

does not make sense, but we consider the sum as ln1, because lk11lk2k1 · · · lnki−1

is a product of i factors.
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Theorem 3. Let A = (ank) be an infinite matrix and let L be the strictly lower
triangular part of |A| such that |A| = L + U . Let r′ = (I − L)−1e1 and assume
the following,

(i) ∀n ∈ N and n ≥ 2, ∃k ∈ N, n > k such that ank �= 0
(ii) Ur′ exists and ∃α ∈ [0,∞) such that Ur′ ≤ αr′

(iii) lim
n→∞ rnank = 0 ∀k

Then r > 0, A is bounded on c0(r) and ‖A‖r ≤ α + 1.

Proof. From Assumption (i) it follows that ∃ at least one term in the expression
(1) which is positive. Thus each component of the column vector (I − L)−1e1 is
non-zero and positive. So r′ = (I−L)−1e1 is well defined where r′ =

(
1
r1

, 1
r2

, · · ·
)

and r′ > 0 =⇒ r > 0. Also since r′ > 0 and all terms of U are non-negative,
so Ur′ ≥ 0. Now we have r′ = (I − L)−1e1 i.e. (I − L)r′ = e1 thus r′ =
Lr′ + e1 which yields Lr′ ≤ Lr′ + e1 = r′.

Next |A|r′ = (L + U)r′ = Lr′ + Ur′ ≤ r′ + αr′ = (α + 1)r′. Hence |A|r′ ≤
(α + 1)r′ and from assumption (iii) lim

n→∞ rnank = 0 ∀k.

Hence by Corollary 1 A ∈ B(c0(r)) and ‖A‖r ≤ α + 1.

Example 4. Let A = (ank) where

ank =
{ 1

2k−2(k−n+1)2
if n < k

1 if n ≥ k

Each columns of A are not in c0, so A /∈ B(c0) by Lemma 1. Using the notations
of Theorem 3 we have, r

′
= (I − L)−1e1 = (1, 1, 2, 4, 8, 16, · · · )T . Also

U =

⎛

⎜
⎜
⎜
⎜
⎝

1 1
22

1
2.32

1
4.42

1
8.52 · · ·

0 1 1
2.22

1
4.32

1
8.42 · · ·

0 0 1 1
4.22

1
8.32 · · ·

...
...

...
...

...
. . .

⎞

⎟
⎟
⎟
⎟
⎠

.

Then Ur
′

= (1 + c, 1 + c, 2 + c, 4 + c, 8 + c, · · · )T , where c =
∞∑

k=2

1
k2 , c > 0.

Now if we choose α such that α ≥ (1 + c), then (1 + c) ≤ 1.α, (2 + c) ≤
2.(1 + c) ≤ 2α, (4 + c) ≤ 4.(1 + c) ≤ 4α, and so on. So Ur′ exists and Ur′ ≤ αr′

for α ≥ (1 + c). Again r =
(
1, 1, 1

2 , 1
4 , 1

8 , · · · )T and it can be easily check that
lim
n→∞ rnank = 0 ∀k. So all the three conditions of Theorem 3 are satisfied. So

we can say that A is bounded on c0(r) and ‖A‖r ≤ α + 1.

Theorem 4. Let A = (ank) be an infinite matrix and define L,U, e1, r, r
′ are

defined by previous theorem and assume the following,

(i) ∀n ∈ N and n ≥ 2, ∃k ∈ N, n > k such that ank �= 0
(ii) Ur′ exists and [Ur′]k ≤ [LUr′]k k ∈ N, k ≥ 2
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(iii) lim
n→∞ rnank = 0 ∀k

Then r > 0, A is bounded on c0(r) and ‖A‖r ≤ [Ur′]1 + 1.

Proof. It is easy to verify that any matrix can be multiplied by a lower triangular
matrix in left side, since the entries of the product are finite sum. Therefore
assumption (ii) implies that LUr′ exists. From Theorem 3 it follows that r′ >
0 =⇒ r > 0. Let α = [Ur′]1, then 0 ≤ α < ∞. Now [(I − L)Ur′]1 = [Ur′ −
LUr′]1 = [Ur′]1 = α,. Also assumption (ii) implies [(I − L)Ur′]k ≤ 0 ∀k ≥ 2.
Therefore we have (I − L)Ur′ ≤ αe1. Now multiplying both sides by (I − L)−1

from left we have, (I−L)−1[(I−L)Ur′] ≤ α[(I−L)−1e1] = αr′, hence Ur′ ≤ αr′.
Now by applying Theorem 3 A is bounded on c0(r), and ‖A‖r ≤ α + 1 =
[Ur′]1 + 1.
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Abstract. The paper is devoted to the theory of quasielliptic operators.
We consider scalar and homogeneous quasielliptic operators L(Dx) with
lower terms in the whole space R

n. Our aim is to study mapping proper-
ties of these operators in weighted Sobolev spaces. We introduce a special
scale of weighted Sobolev spaces W l

p,q,σ(Rn). These spaces coincide with
known spaces of Sobolev type for some parameters l, q, σ. We investigate
mapping properties of the operators L(Dx) in the spaces W l

p,q,σ(Rn). We
indicate conditions for unique solvability of quasielliptic equations and
systems in these spaces, obtain estimates for solutions and formulate an
isomorphism theorem for quasielliptic operators. To prove our results we
construct special regularizers for quasielliptic operators.

Keywords: Quasielliptic operators · Weighted Sobolev spaces ·
Isomorphism

1 Introduction

In the paper a class of quasielliptic operators L(Dx) is considered in the whole
space R

n. This class belongs to the classes of quasielliptic operators introduced
by S.M. Nikol’skii [1] and L.R. Volevich [2]. Our aim is to study mapping prop-
erties of the operators L(Dx) in special weighted Sobolev spaces W l

p,q,σ(Rn) and
to establish isomorphism theorems.

The first isomorphism theorems for scalar elliptic operators were proved
by L.A. Bagirov and V.A. Kondratiev [3], M. Cantor [4,5], R.C. McOwen
[6,7]. Isomorphism theorems for matrix homogeneous elliptic operators were
proved by Y. Choquet-Bruhat and D. Christodoulou [8], R.B. Lockhart and
R.C. McOwen [9].

As a rule, isomorphism theorems for elliptic operators are not trivial. For
example, consider the elliptic operator

� − εI : W 2
p (Rn) −→ Lp(Rn), 1 < p < ∞,

G. Demidenko—The work is supported in part by the Program of the Presidium of
the Russian Academy of Sciences (project no. 0314-2015-0011).
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where � is the Laplace operator. If ε > 0 then the mapping is an isomorphism.
However, the mapping

� : W 2
p (Rn) −→ Lp(Rn)

is not an isomorphism. Taking into account results of L.D. Kudryavtsev [10],
L.A. Bagirov and V.A. Kondratyev [3], L. Nirenberg and H.F. Walker [11],
M. Cantor [4,5], it is necessary to use weighted Sobolev spaces for proving iso-
morphism theorems for the Laplace operator. The first isomorphism theorems
for the Laplace operator were proved by M. Cantor [4] and R.C. McOwen [6].
They used special weighted Sobolev spaces.

It should be noted that isomorphism theorems for matrix elliptic operators
can be more complicated. For example, consider the Stokes operator

⎛
⎜⎜⎝

−� 0 0 Dx1

0 −� 0 Dx2

0 0 −� Dx3

Dx1 Dx2 Dx3 0

⎞
⎟⎟⎠ , x ∈ R

3.

This operator is elliptic in the Douglis–Nirenberg sense. One can prove an
isomorphism theorem for the Stokes operator (see [12]). However, it is necessary
to use a product of special weighted Sobolev spaces with different components
of smoothness vectors and different weights.

The first isomorphism theorems for matrix homogeneous quasielliptic oper-
ators were proved by G.V. Demidenko [13,14]. The investigations [13,14] were
continued by G.N. Hile [15]. In the present paper we consider a more general
class of quasielliptic operators L(Dx) in R

n.

2 Quasielliptic Operators

First we consider the following scalar differential operator

L(Dx) =
∑

β

aβDβ
x ,

where the coefficients aβ are constants. Suppose that its symbol L(iξ), ξ ∈ R
n,

satisfies the following conditions.

Condition 1. The symbol L(iξ) is homogeneous with respect to a vector α =
(α1, . . . , αn), 1/αj ∈ N, j = 1, . . . , n; i.e.,

L(cαiξ) = cL(iξ), c > 0.

Condition 2. The equality

L(iξ) = 0, ξ ∈ R
n,

holds if and only if ξ = 0.
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Definition 1. The differential operator L(Dx) is called quasielliptic, if its sym-
bol satisfies Conditions 1, 2.

This class of operators belongs to the class of differential operators introduced
by S.M. Nikol’skii [1].

Quasielliptic operators L(Dx) whose symbols L(iξ) are homogeneous with
respect to a vector α are usually called quasielliptic operators without lower
terms. Such operators can be written in the form

L(Dx) =
∑

βα=1

aβDβ
x . (1)

Examples of such operators are elliptic operators, 2b-parabolic operators without
lower terms, etc.

Note that the symbol of the quasielliptic operator (1) satisfies the following
estimate

c1〈ξ〉 ≤ |L(iξ)| ≤ c2〈ξ〉, 〈ξ〉2 =
n∑

j=1

ξ
2/αj

j , ξ ∈ R
n,

where c1, c2 > 0 are constants.
We now consider the differential operators

L(Dx) = L(Dx) +
∑

βα<1

aβDβ
x , (2)

where L(Dx) is the quasielliptic operator (1). We will call operators of the
form (2) quasielliptic operators with lower terms. Denote the differential operator
corresponding to the lower terms by

L′(Dx) =
∑

βα<1

aβDβ
x .

Condition 3. Suppose that the symbol of the differential operator (2) satisfies
the estimate

c3 (〈ξ〉 + 〈ξ〉q) ≤ |L(iξ) + L′(iξ)| ≤ c4 (〈ξ〉 + 〈ξ〉q) , ξ ∈ R
n, (3)

where 0 ≤ q < 1, c3, c4 > 0 are constants.

Example 1. Consider the differential operator

L(Dx) = �m + ε(−1)m−k�k, m > k, ε > 0. (4)

We have

L(Dx) = �m, L′(Dx) = ε(−1)m−k�k, α1 = . . . = αn = 1/(2m).

Obviously, Conditions 1–3 are fulfilled for q = k/m.
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We now consider the matrix differential operator

L(Dx) =
∑

βα=1

AβDβ
x , (5)

where the coefficients Aβ are constant (m × m)-matrices with real or complex
entries. Suppose that its symbol L(iξ) satisfies the following condition.

Condition 4. The equality

det L(iξ) = 0, ξ ∈ R
n,

holds if and only if ξ = 0.

Definition 2. The matrix differential operator (5) is called homogeneous quasi-
elliptic operator if its symbol satisfies Condition 4.

This class of operators belongs to the class of differential operators intro-
duced by L.R. Volevich [2]. Examples of such operators are homogeneous elliptic
operators, 2b-parabolic operators without lower terms, parabolic operators with
‘opposite times directions’, etc.

We now consider matrix differential operators of the form

L(Dx) = L(Dx) +
∑

βα<1

A′
βDβ

x , (6)

where L(Dx) is the matrix quasielliptic operator of the form (5), the coefficients
A′

β are constant (m × m)-matrices.
We will call operators of the form (6) homogeneous quasielliptic operator with

lower terms. Suppose that its symbol L(iξ) satisfies the following condition.

Condition 5. Suppose that the symbol of the differential operator (6) satisfies
the estimate

c5 (〈ξ〉 + 〈ξ〉q)m ≤ |det L(iξ)| ≤ c6 (〈ξ〉 + 〈ξ〉q)m
, ξ ∈ R

n, (7)

where 0 ≤ q < 1, c5, c6 > 0 are constants.

Example 2. Consider the parabolic operator with ‘opposite times directions’

L(Dx) =

⎛
⎝

Dxn
− �′ α

β Dxn
+ �′

⎞
⎠ ,

where �′ is the Laplace operator in R
n−1 and αβ > 0. Obviously,

L(Dx) =

⎛
⎝

Dxn
− �′ 0

0 Dxn
+ �′

⎞
⎠ +

⎛
⎝

0 α

β 0

⎞
⎠ .

Consequently, Conditions 4, 5 are fulfilled for

m = 2, α =
(

1
2
, . . . ,

1
2
, 1

)
, q = 0.
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Isomorphism theorems for quasielliptic operators of the forms (1), (5) without
lower terms were proved in [13–15]. In our paper we study mapping properties of
quasielliptic operators of the forms (2), (6). Particularly, we formulate isomor-
phism theorems for these operators.

3 Weighted Sobolev Spaces

We introduce the weighted Sobolev spaces W l
p,q,σ(Rn). Using these spaces, one

can solve the problem on isomorphism for quasielliptic operators L(Dx) of the
form (2) or (6).

Definition 3. Let l = (1/α1, . . . , 1/αn), 1/αj ∈ N, j = 1, . . . , n, 1 < p < ∞,
0 ≤ q ≤ 1, σ ≥ 0. Denote by W l

p,q,σ(Rn) the weighted Sobolev space of functions
u ∈ Lloc(Rn) having the weak derivatives Dν

xu, να ≤ 1, such that

Dν
xu ∈ Lp(Rn) for q ≤ να ≤ 1,

‖(1 + 〈x〉)−σ(q−να)Dν
xu(x), Lp(Rn)‖ < ∞ for 0 ≤ να < q.

Here 〈x〉2 =
n∑

j=1

x
2/αj

j .

Introduce the norm

‖u, W l
p,q,σ(Rn)‖ =

∑
q≤να≤1

‖Dν
xu(x), Lp(Rn)‖

+
∑

0≤να<q

‖(1 + 〈x〉)−σ(q−να)Dν
xu(x), Lp(Rn)‖. (8)

The weighted Sobolev spaces W l
p,q,σ(Rn) coincide with well-known spaces for

some parameters l, q, σ. We consider several examples.

Example 3. Obviously, the space W l
p,q,0(R

n) = W l
p,0,σ(Rn) is the Sobolev space

W l
p(R

n).

Example 4. The space W l
p,1,σ(Rn) coincides with the space W l

p,σ(Rn) introduced
in [16]. Indeed, by definition [16],

‖u, W l
p,σ(Rn)‖ =

∑
0≤να≤1

‖(1 + 〈x〉)−σ(1−να)Dν
xu(x), Lp(Rn)‖.

Example 5. In the isotropic case 1/α1 = . . . = 1/αn = l the norm (8) for
q = σ = 1 is equivalent to the norm

∑

0≤|β|≤l

‖(1 + |x|)−(l−|β|)Dβ
xu(x), Lp(Rn)‖. (9)
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Then, from the work [10] of L.D. Kudryavtsev it follows that the space
W l

p,1,1(R
n) for p > n coincides with the Sobolev space

W l
p,�(Rn), � = {x ∈ R

n : |xj | < 1, j = 1, . . . , n},

where

‖u, W l
p,�(Rn)‖ =

∫

�

|u(x)|dx +
∑

|β|=l

‖Dβ
xu(x), Lp(Rn)‖.

Example 6. Consider the Nirenberg–Walker–Cantor space Mp
�,k(Rn) [4,11]

whose norm is defined as

‖u, Mp
�,k(Rn)‖ =

∑
|β|≤�

‖(1 + |x|)k+|β|Dβ
xu(x), Lp(Rn)‖.

Clearly, by (9) the space W l
p,1,1(R

n) coincides with the space Mp

l,−l
(Rn) in the

isotropic case 1/α1 = . . . = 1/αn = l for q = σ = 1, p > 1.

Definition 4. Denote by
◦

W l
p,q,σ(Rn) the completion of C∞

0 (Rn) with respect to
the norm (8).

From Definitions 3 and 4 it follows that the space
◦

W l
p,q,σ(Rn) is embedded

in the space W l
p,q,σ(Rn). One can show that the strict embedding holds

◦
W

l
p,q,σ(Rn) ⊂ W l

p,q,σ(Rn)

for sufficiently large σ > 1.
In the next theorem we indicate the condition when these spaces coincide.

Note that theorems of such type are very important in the theory of differential
operators.

Theorem 1. If 0 ≤ σ ≤ 1 then
◦

W l
p,q,σ(Rn) = W l

p,q,σ(Rn).

Definition 5. Denote by

Lp,γ(Rn), 1 < p < ∞, γ ∈ R,

the space of integrable functions with the norm

‖u, Lp,γ(Rn)‖ = ‖(1 + 〈x〉)−γu(x), Lp(Rn)‖.

Thereafter we will say that a vector-function

U(x) = (u1(x), . . . , um(x))T , m ≥ 1
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belongs to the weighted Sobolev space W l
p,q,σ(Rn), if every its component uj

belongs to W l
p,q,σ(Rn). By definition,

‖U, W l
p,q,σ(Rn)‖ =

m∑
j=1

‖uj , W l
p,q,σ(Rn)‖.

Analogously, a vector-function

F (x) = (f1(x), . . . , fm(x))T , m ≥ 1

belongs to the weighted space Lp,γ(Rn), if every its component fj belongs to
Lp,γ(Rn) and

‖F, Lp,γ(Rn)‖ =
m∑

j=1

‖fj , Lp,γ(Rn)‖.

4 Mapping Properties of the Operators (2), (6)

Consider the quasielliptic operator L(Dx) defined by (2) or (6). Introduce the

notation |α| =
n∑

j=1

αj .

The following theorems hold.

Theorem 2. Let β = (β1, . . . , βn), 1 ≥ βα ≥ q. Then the following estimate is
satisfied for every U ∈ C∞

0 (Rn)

‖Dβ
xU(x), Lp(Rn)‖ ≤ cβ‖L(Dx)U(x), Lp(Rn)‖,

where the constant cβ > 0 does not depend on U.

Theorem 3. Let β = (β1, . . . , βn), q > βα ≥ 0 and

|α|
p

> σ(q − βα) > q − βα − |α|
p′ , 1 ≥ σ ≥ 0,

1
p

+
1
p′ = 1.

Then the following estimate is satisfied for every U ∈ C∞
0 (Rn)

‖〈x〉−σ(q−βα)Dβ
xU(x), Lp(Rn)‖ ≤ c‖〈x〉(1−σ)(q−βα)L(Dx)U(x), Lp(Rn)‖,

where the constant cβ > 0 does not depend on U.

Theorem 4. Let

|α| > q, |α|/p > σq > |α|/p − (|α| − q).

Then for every F ∈ Lp,(σ−1)q(Rn) there exists a unique U ∈ W l
p,q,σ(Rn) such

that

L(Dx)U(x) = F (x), x ∈ R
n.

Moreover, the estimate holds

‖U, W l
p,q,σ(Rn)‖ ≤ c‖F, Lp,(σ−1)q(Rn)‖

with a constant c > 0 independent of F.
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Theorem 5. Let |α|/p > q. Then the mapping

L(Dx) : W l
p,q,1(R

n) −→ Lp(Rn), 1 < p < ∞
is an isomorphism.

Remark 1. Theorems 4, 5 are analogs of some theorems in [13–15] for quasiel-
liptic operators without lower terms.

We illustrate Theorem 5 by using the differential operator (4):

L(Dx) = �m + ε(−1)m−k�k, m ≥ k, ε > 0.

Taking into account Example 1, we have

α1 = . . . = αn = 1/(2m), q = k/m.

Consequently, by Theorem 5 the mapping

L(Dx) : W l
p,q,1(R

n) −→ Lp(Rn), l = (2m, . . . , 2m), (10)

is an isomorphism for p ∈ (1, n
2k ), n > 2k.

Consider the critical cases in (4): k = 0 and k = m.
In the first case k = 0 we have �0 = I, q = 0 and W l

p,0,1(R
n) = W l

p(R
n).

Then (10) is rewritten in the form

�m + ε(−1)mI : W l
p(R

n) −→ Lp(Rn).

Therefore the isomorphism theorem gives the classical result.
In the second case k = m, we have q = 1 and W l

p,1,1(R
n) = W l

p,1(R
n). Then

(10) is rewritten in the form

(1 + ε)�m : W l
p,1(R

n) −→ Lp(Rn).

The isomorphism theorem for p ∈ (
1, n

2m

)
, n > 2m follows from [7].

5 Elements of Used Technique

To prove of the above results we use a technique of integral representations
for regularizers of differential operators. Our technique is based on the special
representation by S.V. Uspenskii [17] for integrable functions:

ϕ(x) = lim
h→0

(2π)−n

h−1∫

h

v−|α|−1

∫

Rn

∫

Rn

exp
(

i
x − y

vα
ξ

)
G(ξ)ϕ(y)dξdydv, (11)

where

G(ξ) = 2M〈ξ〉2M exp(−〈ξ〉2M ), 〈ξ〉2 =
n∑

i=1

ξ
2/αi

i , M, 1/αi ∈ N.
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Applying the integral representation (10), we construct the following integral
operators

Pj,hF (x) = (2π)−n

h−1∫

h

v−|α|
∫

Rn

∫

Rn

exp
(

i
x − y

vα
ξ

)

×G(ξ)

(
m∑

k=1

lj,k(iξ)Fk(y)

)
dξdydv, j = 1, . . . , m, h > 0,

where lj,k(iξ) are entries of the inverse matrix (L(iξ))−1. In the case of m = 1
we write (L(iξ))−1F (y) instead of the sum

m∑
k=1

lj,k(iξ)Fk(y).

In the present paper we use the operators Pj,h for h � 1 in order to construct
regularizers of the quasielliptic operators (2), (6). Using these regularizers, we
indicate the conditions for unique solvability of the quasielliptic equations and
systems in the weighted Sobolev spaces, obtain the estimates for the solutions
and formulate the isomorphism theorem for the quasielliptic operators.
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Abstract. In this paper, we introduce new notion, namely, Iλ− dou-
ble statistical convergence in topological groups. We mainly investigate
some inclusion relations between I−double statistical and Iλ− double
statistical convergence.
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1 Introduction

Looking through historically to statistical convergence of sequences, we recall
that the concept of statistically convergence of sequences was first introduced
by Fast [10] as an extension of the usual concept of sequential limits and also
independently by Buck [2]. Schoenberg [33] gave some basic properties of the sta-
tistical convergence and also studied the concept as a summability method. Over
the years and under different names statistical convergence has been discussed
in the theory of Fourier analysis, ergodic theory and number theory. Later on it
was further investigated from the sequence space point of view and linked with
summability theory by Fridy [11], Šalát [23] and many others. In recent years,
generalization of statistical convergence have appeared in the study of strong
integral summability. Moreover statistical convergence is closely related to the
concept of convergence in probability. Most of the existing works on statistical
convergence have been restricted to real or complex sequences except the works
of Kolk [13], Maddox [17] and Cakalli [3]. Mursaleen [19]introduced λ-statistical
convergence as a generalization of statistical convergence.

In [13], Kolk extended the statistical convergence to normed spaces and also
Maddox [17] extended it to locally convex Hausdorff topological linear spaces
giving a representation of the statistical convergence in terms of strongly sum-
mability by using a modulus function and Cakalli [3] extended this notion to
topological Hausdorff groups. Di Maio and Kočinac [18] introduced the concept
of statistical convergence in topological spaces and statistical Cauchy condi-
tion in uniform spaces and established the topological nature of this conver-
gence. Later on Hazarika and Savaş [12] introduced λ−statistical convergence
c© Springer Nature Singapore Pte Ltd. 2017
D. Giri et al. (Eds.): ICMC 2017, CCIS 655, pp. 349–357, 2017.
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of double sequences in n-normed spaces and also Savaş and Mohiuddine [32]
introduced and studied the concepts of double λ-statistically convergent and
double λ−statistically Cauchy sequences in probabilistic normed space. Cakalli
and Savaş [4] studied the statistical convergence of double sequences to topo-
logical groups. Quite recently Savas [25] studied Iλ−statistical convergence for
sequences in topological groups where more references on this important sum-
mability method can be found. In many branches of science and engineering
we often come across double sequences, i.e. sequences of matrices and certainly
there are situations where either the idea of ordinary convergence does not work
or the underlying space does not serve our purpose. Therefore to deal with such
situations we have to introduce some new type of measures which can provide a
better tool and suitable frame work.

The (relatively more general) concept of I−convergence was introduced by
Kostyrko et al. [14] in a metric space. Later on it was further studied by Dems
[9] and Das et al. [6]. More investigations in this direction and more applications
of ideals can be found in [1,5,7,8,15,16,22,26–30].

In [6], we used ideals to introduce the concepts of I−statistical convergence
and I−lacunary statistical convergence which naturally extend the notions of the
above mentioned convergence. The concept of statistical convergence depends on
the density of subsets of the set N of natural numbers. If K ⊂ N, then K(m,n)
denotes the cardinality of the set K∩[m,n]. The upper and lower natural density
of the subset K is defined by

d(K) = lim
n→∞ sup

K(1, n)
n

and d(K) = lim
n→∞ inf

K(1, n)
n

If d(K) = d(K) then we say that the natural density of K exists and it is denoted
simply by d(K). Clearly d(K) = lim

n→∞
K(1,n)

n .

A sequence (xk) of real numbers is said to be statistically convergent to L if
for arbitrary ε > 0, the set K(ε) = {k ∈ K : |xk − L| ≥ ε} has natural density
zero. Throughout the paper, N will denote the set of all natural numbers. By X,
we will denote an abelian topological Hausdorff group, written additively, which
satisfies the first axiom of countability. A sequence x = (xk) in X is called to be
statistically convergent to an element L of X if for each neighbourhood U of 0,

lim
n→∞

1
n

|{k ≤ n : xk − L /∈ U}| = 0

where the vertical bars indicate the number of elements in the enclosed set,
(see, [3]). The set of all statistically convergent sequences in X is denoted by
st(X).

2 Preliminaries

We now recall some notations and basic definitions used in this paper.

Definition 1. A family I ⊂ 2N is said to be an ideal of N if the following
conditions hold:



Iλ-double Statistical Convergence 351

(a) A,B ∈ I implies A ∪ B ∈ I,
(b) A ∈ I, B ⊂ A implies B ∈ I,

Definition 2. A non-empty family F ⊂ 2N is said to be a filter of N if the
following conditions hold:

(a) ∅ /∈ F
(b) A,B ∈ F implies A ∩ B ∈ F
(c) A ∈ F , A ⊂ B implies B ∈ F.

If I is a proper ideal of N(i.e.,N /∈ I), then the family of sets F (I) = {M ⊂ N :
∃A ∈ I : M = N\A} is a filter of N. It is called the filter associated with the
ideal.

Definition 3. A proper ideal I is said to be admissible if {n} ∈ I for each
n ∈ N.

Definition 4 (See, [14]). Let I ⊂ 2N be a proper admissible ideal in N. Then,
the sequence (xk) of elements of real numbers is said to be I-convergent to L if
for each ε > 0 the set A(ε) = {k ∈ N : |xk − L| ≥ ε} ∈ I.

Let K ⊆ N×N be a two dimensional set of natural numbers and let Km,n be
the numbers of (i, j) in K such that i ≤ n and j ≤ m. Then the lower asymptotic
density of K is defined as

P − lim
m,n

inf
Km,n

mn
= δ2(K).

In the case when the sequence
(

Km,n

mn

)∞,∞

m,n=1,1
has a limit then we say that K

has a natural density and is defined as

P − lim
m,n

Km,n

mn
= δ2(K).

For example, let K = {(i2, j2) : i, j ∈ N}, where N is the set of natural numbers.
Then

δ2(K) = P − lim
m,n

Km,n

mn
≤ P − lim

m,n

√
m

√
n

mn
= 0

(i.e. the set K has double natural density zero).
Recently the studies of double sequences has a rapid growth. The concept of

double statistical convergence, for complex case, was introduced by Mursaleen
and Edely [20], while the idea of statistical convergence of single sequences was
first studied by Fast [10]. Savaş and Patterson (see, [24]) introduced and studied
lacunary statistical convergence for double sequences and they also presented
some inclusion theorems. Also recently, in [31] lacunary statistical convergence
for double sequences in topological groups is studied. Mursaleen and Edely [20]
has given main definition as follows:
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Definition 5 ([20]). A double sequences x = (xkl) is said to be P -statistically
convergent to L provided that for each ε > 0

P − lim
m,n

1
mn

{number of (k, l) : k < m and l < n, |xkl − L| ≥ ε} = 0.

In this case we write st2−limk,l xk,l = L and we denote the set of all statistical
convergent double sequences by st2.

It is clear that a convergent double sequence is also st2−convergent but the
converse is not true, in general. Also note that st2− convergent need not be
bounded. For example, the sequence x = (xk,l) defined by,

(xk,l) =
{

kl; if k and l are square
1; otherwise

is st2−convergent. Nevertheless it neither convergent nor bounded. It should be
noted that in [20], the authors proved the following theorem:

Theorem 1. The following statements are equivalent:

(a) x is statistically convergent to L;
(b) x is statistically Cauchy;
(c) there exists a subsequence y of x such that limklykl = L.

By the convergence of a double sequence we mean the convergence in Pring-
sheims sense ([21]). A double sequence x = (xkl) of real numbers is said to be
convergent in the Pringsheim’s sense or P−convergent if for each ε > 0 there
exists N ∈ N such that |xkl − L| < ε whenever k, l ≥ N and L is called Pring-
sheim limit (denoted by P − limx = L).

In a topological group X, the above definitions become as in the following:
a double sequence x = (xkl) of points in X is said to be convergent to a point
to a point L in X in the Pringsheims sense if for every neighbourhood U of 0
there exists N ∈ N such that xkl − L ∈ U whenever k, l ≥ N . L is called the
Pringsheim limit of x.

Now let I be a nontrivial admissible ideal in N × N. A double sequence
x = (xkl) of real number is said to be convergent to the number L with respect
to the ideal I, if for each ε > 0

A(ε) = {(k, l) ∈ N × N : |xkl − L| ≥ ε} ∈ I.

In this case we write I − limk,lxkl = L
We now define the concept of double λ-density:
Let λ = (λm) and μ = (μn) be two non-decreasing sequences of positive real

numbers each of which tends to ∞ as m and n approach ∞, respectively. Also
let λm+1 ≤ λm + 1, λ1 = 0 and μn+1 ≤ μn + 1, μ1 = 0. The collection of such
sequence (λ, μ) will be denoted by Δ.
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Let K ⊆ N × N. The number

δλ (K) = lim
mn

1
λmn

|{k ∈ In, l ∈ Jm : (k, l) ∈ K}| ,

where Im = [m − λm + 1,m] and Jn = [n − μn + 1, n] and λmn = λmμn, is said
to be the λ -density of K, provided the limit exists.

Throughout this paper we shall denote (k ∈ Im, l ∈ Jn) by (k, l) ∈ Imn.

A nontrivial ideal I2 of N×N is called strongly admissible if i ×N and N× i
belong to I2 for each i ∈ N. It is evident that a strongly admissible ideal is
admissible also. In this paper, we extend a few results known in the literature
from ordinary (single) sequences to double sequences in topological groups and
give some important inclusion theorems.

3 Main Result

Throughout I2 will stand for a proper strongly admissible ideal in N × N.
We now introduce our main definitions.

Definition 6. A double sequence x = (xkl) of points in a topological group X,
is said to be I2- double statistically convergent to L or S(I2)−convergent to L,
if for each neighbourhood U of 0 and δ > 0

{(m,n) ∈ N × N :
1

mn
|{k ≤ m and l ≤ m : xkl − L /∈ U}| ≥ δ} ∈ I2.

In this case we write xkl → L(S(I2)). The set of all I2 - double statistically
convergent sequences will be denoted by simply S(I2)(X).

Remark 1. For I2 = I2fin = {A ⊂ N × N, A is a finite}, S(I2)−convergence
coincides with double statistical convergence in a topological group X which
was studied by Cakalli and Savaş [3].

Definition 7. A sequence x = (xkl) of points in a topological group X, is said
to be Iλ

2 − double statistically convergent to L or S(Iλ
2 )−convergent to L if for

each neighbourhood U and any δ > 0
{

(m,n) ∈ N × N :
1

λmn
|{(k, l) ∈ Imn : xkl − L /∈ U}| ≥ δ

}
∈ I2.

In this case, we write

Sλ(I2) − lim
k,l→∞

xkl = L or xkl → L(Sλ(I2))

and define

Sλ(I2)(X) = {x = (xkl) : for some L, Sλ(I2) − lim
k,l→∞

xkl = L



354 E. Savaş

Remark 2. For I2 = I2fin = {A ⊂ N × N, A is finite}, Iλ
2 − double statistical

convergence becomes λ− double statistical convergence in topological groups and
for λmn = mn, Iλ

2 − double statistical convergence becomes double statistical
convergence in topological groups.

It is obvious that every Iλ
2 − double statistically convergent sequence has only

one limit, that is, if a double sequence is Iλ
2 − statistically convergent to L1 and

L2 then L1 = L2.
We now prove the following theorems.

Theorem 2.

S(I2)(X) ⊂ Sλ(I2)(X) if lim
n→∞ inf

λmn

mn
> 0.

Proof. Let us take any neighbourhood U of 0. Then

1
mn

|{k ≤ m, l ≤ n : xkl − L /∈ U}| ≥ 1
mn

|{(k, l) ∈ Imn : xkl − L /∈ U}|

=
λmn

mn

1
λmn

|{(k, l) ∈ Imn : xkl − L /∈ U}| .

If lim
mn→∞ inf λmn

mn = a then from definition
{
(m,n) ∈ N × N : λmn

mn < a
2

}
is finite.

For δ > 0, and any neighbourhood U of 0,
{

(m,n) ∈ N × N :
1

λmn
|{(k, l) ∈ Imn : xkl − L /∈ U}| ≥ δ

}

⊂
{

(k, l) ∈ Imn :
1

mn
|{k ≤ m, l ≤ n : xkl − L /∈ U}| ≥ a

2
δ

}
∪

{
(m,n) ∈ N × N :

λmn

mn
<

a

2

}
.

The set on the right hand side belongs to I2 and this completes the proof.

Theorem 3. Let λ = (λmn) and μ = (μmn) be two sequences in Δ such that
λmn ≤ μmn for all (m,n) ∈ N × N,

(i) If

lim
mn→∞ inf

λmn

μmn
> 0 (1)

then Sμ (I2) (X) ⊆ Sλ (I2) (X) .

(ii) If

lim
mn→∞

λmn

μmn
= 1 (2)

then Sλ (I2) (X) ⊆ Sμ (I2) (X) .
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Proof. (i) Suppose that λmn ≤ μmn for all (m,n) ∈ N×N and let (1) be satisfied.
For neighbourhood U of 0, we have

{(k, l) ∈ Jmn : xkl − L /∈ U} ⊇ {(k, l) ∈ Imn : xkl − L /∈ U} .

Therefore we can write

1
μmn

|{(k, l) ∈ Jmn : xkl − L /∈ U}| ≥ λmn

μmn

1
λmn

|{(k, l) ∈ Imn : xkl − L /∈ U}|

and so for all (m,n) ∈ N × N we have,
{

(m,n) ∈ N × N :
1

λmn
|{(k, l) ∈ Imn : xkl − L /∈ U}| ≥ δ

}

⊆
{

(m,n) ∈ N × N :
1

μmn
|{(k, l) ∈ Jmn : xkl − L /∈ U}| ≥ δ

λmn

μmn

}
∈ I2.

Hence Sμ (I2) (X) ⊆ Sλ (I2) (X) .
(ii) Let x = (xkl) ∈ Sλ (I2) (X) and let (2) be satisfied. Since Imn ⊂ Jmn,

for neighbourhood U of 0, we may write

1
μmn

|{(k, l) ∈ Jmn : xkl − L /∈ U}|

=
1

μmn
|{m − μm + 1 < k ≤ m − λn, n − μn + 1 < k ≤ n − λn : xkl − L /∈ U}|

+
1

μmn
|{(k, l) ∈ Imn : xkl − L /∈ U}|

≤ μmn − λmn

μmn
+

1
λmn

|{(k, l) ∈ Imn : xkl − L /∈ U}|

≤
(

μmn − λmn

λmn

)
+

1
λmn

|{(k, l) ∈ Imn : xkl − L /∈ U}|

=
(

μmn

λmn
− 1

)
+

1
λmn

|{(k, l) ∈ Imn : xkl − L /∈ U}|

for all (m,n) ∈ N × N. Hence for δ > 0 we have
{

(m,n) ∈ N × N :
1

μmn
|{(k, l) ∈ Jmn : xkl − L /∈ U}| ≥ δ

}

⊆
{

(m,n) ∈ N × N :
1

λmn
|{(k, l) ∈ Imn : xkl − L /∈ U}| ≥ δ

}
∈ I.

This implies that Sλ (I2) (X) ⊆ Sμ (I2) (X) .

Finally we prove the following theorem.

Theorem 4. If λ ∈ Δ be such that lim
m,n

μmn

λmn
= 1, then Sλ (I2) (X) ⊂ S (I2) (X) .
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Proof. Let δ > 0 be given. Since lim
mn

μmn

λmn
= 1, we can choose (m0, n0) ∈ N ×

N such that
∣∣∣μmn

λmn
− 1

∣∣∣ < δ
2 , for all m ≥ m0 and n ≥ n0. Let us take any

neighbourhood U of 0. Now observe that,

1

mn
|{k ≤ m, l ≤ n : xkl − L /∈ U}| = 1

mn
|{k ≤ m − λm, l ≤ n − λn : xkl − L /∈ U}|

+
1

mn
|{(k, l) ∈ Imn : xkl − L /∈ U}|

≤ mn − λmn

mn
+

1

mn
|{(k, l) ∈ Imn : xkl − L /∈ U}|

=
δ

2
+

1

mn
|{(k, l) ∈ Imn : xkl − L /∈ U}|

for all m > m0 and n > n0. Hence for δ > 0 and any neighbourhood U of 0,
{

(m,n) ∈ N × N :
1

mn
|{k ≤ m, l ≤ n : xkl − L /∈ U}| ≥ δ

}

⊂
{

(m,n) ∈ N × N :
1

λmn
|{(k, l) ∈ Imn : xkl − L /∈ U}| ≥ δ

2

}
∪ A

where A is the union of the first m0 rows and the first n0 columns of the double
sequence

{
λmn

mn

}
. If Sλ (I2) − lim x = L then the set on the right hand side

belongs to I2 and so the set on the left hand side also belongs to I2. This shows
that x = (xkl) is I2−double statistically convergent to L.

Remark 3. We do not know whether the condition in Theorem3 is necessary
and so we leave it as an open problem.
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32. Savaş, E., Mohiuddine, S.: λ-statistically convergent double sequences in proba-
bilistic normed spaces. Math. Slovaca 62(1), 99–108 (2012)

33. Schoenberg, I.J.: The integrability methods. Amer. Math. Monthly 66, 361–375
(1959)



Superconvergence Results for Volterra-Urysohn
Integral Equations of Second Kind

Moumita Mandal(B) and Gnaneshwar Nelakanti

Department of Mathematics, Indian Institute of Technology,
Kharagpur 721 302, India

abmoumita001@gmail.com, gnanesh@maths.iitkgp.ernet.in

Abstract. In this paper, we consider the Galerkin method to approxi-
mate the solution of Volterra-Urysohn integral equations of second kind
with a smooth kernel, using piecewise polynomial bases. We show that
the exact solution is approximated with the order of convergence O(hr)
for the Galerkin method, whereas the iterated Galerkin solutions con-
verge with the order O(h2r) in uniform norm, where h is the norm of
the partition and r is the smoothness of the kernel. For improving the
accuracy of the approximate solution of the integral equation, the multi-
Galerkin method is also discussed here and we prove that the exact solu-
tion is approximated with the order of convergence O(h3r) in uniform
norm for iterated multi-Galerkin method. Numerical examples are given
to illustrate the theoretical results.

Keywords: Volterra-Urysohn integral equations · Smooth kernels ·
Galerkin method · Multi-Galerkin method · Piecewise polynomials ·
Superconvergence rates

1 Introduction

We consider the second kind Volterra-Urysohn integral equation of the form

x(t) −
∫ t

0

k(t, s, x(s)) ds = f(t), 0 ≤ t ≤ 1, (1.1)

where the kernel k(., ., x(.)) and f are given smooth functions, x is the unknown
function to be determined. Various projection methods such as Galerkin,
collocation, Petrov-Galerkin and Nyström methods are available in litera-
ture for finding numerical solutions of nonlinear integral equations (see [2–4],
[5,7,9,13,15,16,18,20–22]). In [9], a simple algorithm was given for obtaining
starting value for the numerical solution of the Volterra-Urysohn integral equa-
tions. In [2], Blom and Brummer discussed the collocation and iterated collo-
cation methods for Urysohn type second kind Volterra integral equations and
proved that the order of convergence of iterated collocation method is twice that
of the collocation method at the knots. In [22], an interpolation post-processing

c© Springer Nature Singapore Pte Ltd. 2017
D. Giri et al. (Eds.): ICMC 2017, CCIS 655, pp. 358–379, 2017.
DOI: 10.1007/978-981-10-4642-1 31
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technique was proposed in the piecewise polynomial space of degree not exceed-
ing (r−1) and obtained global superconvergence of O(h2r) for Volterra-Urysohn
integral equations. In [20], Wan et al. discussed spectral Galerkin method for
second-kind Volterra-Urysohn integral equations and showed that the errors of
the spectral approximations decay exponentially, provided that the kernel func-
tion and the source function are sufficiently smooth. In [7], using the Picard
iteration method and treating the involved integration by numerical quadrature
formulas, a numerical scheme was given for the second kind Volterra-Urysohn
integral equations. For enlarging the convergence region of the Picard iteration
method, multistage algorithm was also proposed.

In this paper, we apply Galerkin method to solve Volterra-Urysohn integral
equations (1.1) with a smooth kernel using piecewise polynomial basis func-
tions. We will show that the exact solution is approximated with the order of
convergence O(hr) in Galerkin method, whereas the iterated Galerkin solutions
converge with the orders O(h2r) in uniform norm, where h is the norm of the
partition and r is the smoothness of the kernel.

For improving the accuracy of approximate solution of the integral equa-
tion, multi-projection method was proposed to solve the linear Fredholm inte-
gral equations of second kind (see. [8,12,14]) and in [10,11], this method was
extented to solve the non-linear Fredholm integral equations. Here we also dis-
cuss the multi-projection method for Volterra-Urysohn integral equations (1.1)
to improve the order of convergence. If the projection operator is an orthogonal
projection operator then the corresponding multi-projection and iterated multi-
projection methods are called multi-Galerkin (M-Galerkin) and iterated multi-
Galerkin (iterated M-Galerkin) methods. We will prove that iterated multi-
Galerkin solutions converge to the exact solution with the order of convergence
O(h3r) in uniform norm. Thus the iterated multi-Galerkin method improves over
the iterated Galerkin method.

We organize this paper as follows. In Sect. 2, we apply the Galerkin method
to solve the Eq. (1.1) and discuss the convergence results. In Sect. 3, we consider
the multi-Galerkin method and its iterated version to obtain superconvergence
results. In Sect. 4, numerical results are given to illustrate the theoretical results.
Throughout this paper, we assume that c is a generic constant.

2 Galerkin Method: Volterra-Urysohn Integral Equations
with a Smooth Kernel

Let X = L2[0, 1]. Consider the following Volterra integral equation of second
kind

x(t) −
∫ t

0

k(t, s, x(s)) ds = f(t), t ∈ [0, 1], (2.1)

where the kernel k(., ., x(.)) and f are given smooth functions, x is the unknown
function to be determined. Consider a transformation s(., .) : ([0, 1] × [0, 1]) →
[0, 1], by taking s = tτ , (t, τ) ∈ ([0, 1] × [0, 1]), then Volterra integral equation
(2.1) becomes
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x(t) −
∫ 1

0

�(t, s(t, τ), x(s(t, τ))) dτ = f(t), t ∈ [0, 1], (2.2)

where �(t, s(t, τ), x(s(t, τ))) = tk(t, s(t, τ), x(s(t, τ))).
Define

K(x)(t) =
∫ 1

0

�(t, s(t, τ), x(s(t, τ))) dτ, x ∈ X.

Then the above Eq. (2.2) can be written as

x − K(x) = f. (2.3)

The Fréchet derivative K′(x) is defined by

(K′
(x)y)(t) =

∫ 1

0

∂

∂x
�(t, s(t, τ), x(s(t, τ)))y(s(t, τ)) dτ =

∫ 1

0
�u(t, s(t, τ), x(s(t, τ)))y(s(t, τ)) dτ, y ∈ X,

where �u(t, s(t, τ), x(s(t, τ))) = ∂
∂x�(t, s(t, τ), x(s(t, τ))).

Let Cr[0, 1] denote the space of r-times continuously differentiable functions
and for any u ∈ Cr[0, 1], denote

‖u‖r,∞ = max{‖u(j)‖∞ : 0 ≤ j ≤ r},

where u(j) denotes the j-th derivative of u.
Throughout the paper, the following assumptions are made on f, �(., ., .) and

�u(., ., .) :

(i) f ∈ X.
(ii) �u(t, s(t, τ), x(s(t, τ))) ∈ C([0, 1]× [0, 1]×R) ⊆ L2([0, 1]× [0, 1]×R), M =

‖�u‖L2 =
[∫ 1

0
|�u(t, s(t, τ), x(s(t, τ)))|2

] 1
2

< ∞.

(iii) �u(t, s(t, τ), x(s(t, τ))) ∈ Cr([0, 1] × [0, 1] × R), r ≥ 1.
(iv) The kernel �(t, s(t, τ), x(s(t, τ))) and �u(t, s(t, τ), x(s(t, τ))), satisfies Lip-

schitz conditions in the third variable x, i.e., for any x1, x2 ∈ R, ∃ c1, c2 > 0
such that

|�(t, s(t, τ), x1(s(t, τ))) − �(t, s(t, τ), x2(s(t, τ)))| ≤ c1|x1(s(t, τ)) − x2(s(t, τ))|,

|�u(t, s(t, τ), x1(s(t, τ))) − �u(t, s(t, τ), x2(s(t, τ)))| ≤ c2|x1(s(t, τ)) − x2(s(t, τ))|.

Next, we define the operator T on X by

T u := f + K(u), u ∈ X,

then the Eq. (2.3) can be written as

x = T x. (2.4)

Note that if c1 < 1, then using assumption (iv), it follows that the Eq. (2.4), has
unique solution, say x0 ∈ X.

In the following theorem, we show that K′(x0) is a compact operator on X.
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Theorem 1. Let x0 ∈ X and the kernel �u(., ., .) ∈ C([0, 1] × [0, 1] × R) ⊆
L2([0, 1] × [0, 1] ×R). Then the linear operator K′(x0) : X → C[0, 1] is a compact
operator.

Proof. Let S = {K′(x0)y : y ∈ B ⊆ L2}, where B denotes the closed unit ball in
L2. In order to to prove that K′(x0) is a compact operator, it is enough to prove
that S is uniformly bounded and equicontinuous.
For any x0, y ∈ X, we have

|K′(x0)y(t)| =
∣∣∣∣
∫ 1

0

�u(t, s(t, τ), x0(s(t, τ)))y(s(t, τ)) dτ

∣∣∣∣

≤
[∫ 1

0

|�u(t, s(t, τ), x0(s(t, τ)))|2dτ

] 1
2

[∫ 1

0

|y(s(t, τ))|2dτ

] 1
2

≤ M‖y‖L2 ≤ M.

This implies ‖K′(x0)y‖∞ = sup
t∈[0,1]

|(K′(x0))y(t)| ≤ M < ∞.

Hence

‖K′(x0)‖∞ ≤ M < ∞, (2.5)

i.e., the set S is uniformly bounded.
Let ε > 0 be given. Since y ∈ X and C[0, 1] is dense in L2[0, 1], it

follows (see [17], p.71) that there exists g ∈ C[0, 1] ⊆ L2[0, 1] such that
‖y(.) − g(.)‖L2 < ε

3 . We can also find δ > 0 such that ‖g(s(t, .)) −
g(s(t′, .))‖L2 ≤ ‖g(s(t, .)) − g(s(t′, .))‖∞ < ε

3 , for all t, t′ ∈ [0, 1], satis-
fying |t − t′| < δ. Since �u(., ., .) ∈ C([0, 1] × [0, 1] × R) ⊆ L2([0, 1] ×
[0, 1] × R), we have ‖�u(t, s(t, τ), x(s(t, τ))) − �u(t′, s(t′, τ), x(s(t′, τ)))‖L2 ≤
‖�u(t, s(t, τ), x(s(t, τ))) − �u(t′, s(t′, τ), x(s(t′, τ)))‖∞ → 0 uniformly as t → t′.
Using this with the boundedness of ‖�‖L2 , for any t, t′ ∈ [0, 1], we have

|K′(x0)y(t) − K′(x0)y(t′)|

=
∣∣∣∣
∫ 1

0

[�u(t, s(t, τ), x0(s(t, τ)))y(s(t, τ))

− �u(t′, s(t′, τ), x0(s(t′, τ)))y(s(t′, τ))] dτ |

≤
∣∣∣∣
∫ 1

0

[�u(t, s(t, τ), x0(s(t, τ))) − �u(t′, s(t′, τ), x0(s(t′, τ)))]y(s(t, τ)) dτ

∣∣∣∣
+

∣∣∣∣
∫ 1

0

�u(t′, s(t′, τ), x0(s(t′, τ)))[y(s(t, τ)) − y(s(t′, τ))] dτ

∣∣∣∣
≤ ‖�u(t, s(t, τ), x0(s(t, τ))) − �u(t′, s(t′, τ), x0(s(t′, τ)))‖L2‖y‖L2

+‖�u‖L2‖y(s(t, τ)) − y(s(t′, τ))‖L2

≤ ‖�u(t, s(t, τ), x0(s(t, τ))) − �u(t′, s(t′, τ), x0(s(t′, τ)))‖L2

+M‖y(s(t, τ)) − y(s(t′, τ))‖L2 . (2.6)
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Now we consider

‖y(s(t, τ)) − y(s(t′, τ))‖L2

= ‖y(s(t, τ)) − g(s(t, τ))+g(s(t, τ)) − g(s(t′, τ)) + g(s(t′, τ)) − y(s(t′, τ))‖L2

≤ ‖y(s(t, τ)) − g(s(t, τ))‖L2 + ‖g(s(t, τ)) − g(s(t′, τ))‖L2

+‖g(s(t′, τ)) − y(s(t′, τ))‖L2

<
ε

3
+

ε

3
+

ε

3
= ε, (2.7)

for all t, t′ ∈ [0, 1], satisfying |t − t′| < δ.
Hence combining the estimates (2.6) and (2.7), we get

|K′(x0)y(t) − K′(x0)y(t′)| → 0, as t → t′.

Hence by Arzela-Ascoli theorem, S is a relatively compact set, i.e., K′(x) is a
compact operator. 
�

Next, we apply Galerkin method to solve the Eq. (2.3). For this, we con-
sider Πn : 0 = t0 < t1 < ... < tn = 1, a partition of [0, 1] and let
hi = {ti − ti−1 : 1 ≤ i ≤ n}, h = max hi denotes the norm of the partition.
We assume that h → 0, as n → ∞. Here we let the approximating subspaces
Xn = Sν

r,n(Πn), the space of all piecewise polynomials of order r (i.e., of degree
≤ r − 1) with breakpoints at t1, · · · , tn−1 and with ν (−1 ≤ ν ≤ r − 2) con-
tinuous derivatives. Here ν = 0 corresponds to the case of continuous piecewise
polynomials. If ν = −1, there is no continuity requirements at the break points,
in such case un ∈ Xn is arbitrarily taken to be left continuous at t1, . . . , tn and
right continuous at t0.

Orthogonal projection operator: Let the operator Pn : L2[0, 1] → Xn be the
orthogonal projection operator defined by

〈Pnu, v〉 = 〈u, v〉, v ∈ Xn, u ∈ X, (2.8)

where 〈u, v〉 =
∫ 1

0
u(t)v(t)dt.

We first quote the following lemma from Chatelin [6].

Lemma 1. Let Pn : X → Xn be the orthogonal projection operator defined by
(2.8). Then there hold

i) Pn is uniformly bounded in uniform norm, i.e., ∃ a constant p independent
of n such that

‖Pn‖∞ ≤ p < ∞. (2.9)

ii)
‖Pnu − u‖∞ → 0, as n → ∞, u ∈ X. (2.10)

iii) In particular if u ∈ Cr[0, 1], then

‖(I − Pn)u‖∞ ≤ chr‖u‖r,∞, (2.11)

where c is a constant independent of n.



Superconvergence Results for Volterra-Urysohn Integral Equations 363

The Galerkin method for solving (2.3) is seeking an approximation xn ∈ Xn such
that

xn − PnK(xn) = Pnf. (2.12)

Let Tn be the operator defined by

Tn(u) := PnK(u) + Pnf. (2.13)

Then the Eq. (2.12) can be written as

xn = Tnxn. (2.14)

In order to obtain more accurate approximation solution for (2.3), we further
consider the iterated approximate solution as

x̃n = f + K(xn). (2.15)

Using Pnx̃n = xn, the Eq. (2.15) can be written as

x̃n − K(Pnx̃n) = f. (2.16)

Taking T̃n(u) := K(Pnu)+f, u ∈ X, the Eq. (2.16) can be written as x̃n = T̃nx̃n.

Now we discuss the existence and uniqueness of the approximate and iterated
approximate solutions. Let BL(X) denote the space of all bounded linear oper-
ator on X and we recall the definition of ν-convergence and a theorem from [1],
which are useful in proving existence and convergence of approximated solutions.

Definition 1. (ν-convergence) Let T ∈ BL(X) and {Tn} be a sequence in
BL(X), then {Tn} is said to be ν convergent to T if ‖Tn‖ ≤ C, ‖(Tn −T )T ‖ → 0
and ‖(Tn − T )Tn‖ → 0, as n → ∞.

Theorem 2. Let X be a Banach space and T , Tn ∈ BL(X). If Tn is norm
convergent or ν-convergent to T and (I −T )−1 exists and is bounded on X, then
for sufficiently large n, (I − Tn)−1 exists and is uniformly bounded on X.

We quote the following theorem from [19], which gives us the condition under
which the solvability of one equation leads to the solvability of another equation.

Theorem 3 [19]. Let F̂ and F̃ be continuous operators over an open set Ω in
a Banach space X. Let the equation x = F̃x has an isolated solution x̃0 ∈ Ω and
let the following conditions be satisfied.

(a) The operator F̂ is Fréchet differentiable in some neighborhood of the point
x̃0, while the linear operator I − F̂ ′(x̃o) is continuously invertible.

(b) Suppose that for some δ > 0 and 0 < q < 1, the following inequalities
are valid (the number δ is assumed to be sufficiently small so that the sphere
‖x − x̃0‖ ≤ δ is contained within Ω)
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sup
‖x−x̃0‖≤δ

‖(I − F̂ ′(x̃o))−1(F̂ ′(x) − F̂ ′(x̃o)‖ ≤ q, (2.17)

α = ‖(I − F̂ ′(x̃o))−1(F̂(x̃o) − F̃(x̃o)‖ ≤ δ(1 − q). (2.18)

Then the equation x = F̂x has a unique solution x̂0 in the sphere ‖x − x̃0‖ ≤ δ.
Moreover, the inequality

α

1 + q
≤ ‖x̂0 − x̃0‖ ≤ α

1 − q
(2.19)

is valid.

Now we discuss the existence and convergence rates of the approximate solu-
tion xn to x0. To do this, we first prove the following lemmas.

Lemma 2. For any x, y ∈ X, the following hold

‖K(x) − K(y)‖∞ ≤ c1‖x − y‖∞,

‖K′(x) − K′(y)‖∞ ≤ c2‖x − y‖∞.

Proof. Using Lipschitz’s continuity of �(., ., .), for any x, y, z ∈ X, we have

‖(K(x) − K(y))z‖∞ = sup
t∈[0,1]

|(K(x) − K(y))z(t)|

= sup
t∈[0,1]

∣∣∣∣
∫ 1

0
[�(t, s(t, τ), x(s(t, τ))) − �(t, s(t, τ), y(s(t, τ)))]z(s(t, τ)) dτ

∣∣∣∣
≤ ‖�(t, s(t, τ), x(s(t, τ))) − �(t, s(t, τ), y(s(t, τ)))‖L2‖z‖L2

≤ c1‖x − y‖L2‖z‖L2

≤ c1‖x − y‖∞‖z‖∞.

This implies

‖K(x) − K(y)‖∞ ≤ c1‖x − y‖∞.

On similar lines, using Lipschitz’s continuity of �u(., ., .), we obtain

‖K′(x) − K′(y)‖∞‖ ≤ c2‖x − y‖∞. (2.20)

Hence the proof follows. 
�

Lemma 3. Let T ′(x0) and T̃ ′
n(x0) be the Fréchet derivatives of T (x) and T̃n(x),

respectively at x0. Then

‖(I − Pn)T̃ ′
n(x0)‖∞ → 0, n → ∞,

‖(I − Pn)T ′(x0)‖∞ → 0, n → ∞.

Proof. We have T ′(x0) = K′(x0) and since from Theorem 1, K′(x0) is compact,
hence we have

‖(I − Pn)T ′(x0)‖∞ = ‖(I − Pn)K′(x0)‖∞ → 0, as n → ∞. (2.21)
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Using estimate (2.9), we have

‖(I − Pn)T̃ ′
n(x0)‖∞ = ‖(I − Pn)K′

(Pnx0)Pn‖∞

= ‖(I − Pn)[K′
(Pnx0)Pn − K′

(x0)Pn + K′
(x0)Pn]‖∞

≤ ‖(I − Pn)[K′
(Pnx0) − K′

(x0)]Pn‖∞ + ‖(I − Pn)K′
(x0)Pn‖∞

≤ (1 + ‖Pn‖∞)‖K′
(Pnx0) − K′

(x0)‖∞‖Pn‖∞ + ‖(I − Pn)K′
(x0)‖∞‖Pn‖∞

≤ p{c‖K′
(Pnx0) − K′

(x0)‖∞ + ‖(I − Pn)K′
(x0)‖∞}. (2.22)

From estimate (2.10) and Lemma 2, the first term of estimate (2.22) becomes

‖K′(Pnx0) − K′(x0)‖∞ ≤ c2‖(I − Pn)x0‖∞ → 0, as n → ∞. (2.23)

Hence using estimates (2.21), (2.22) and (2.23), we get

‖(I − Pn)T̃ ′
n(x0)‖∞ → 0, n → ∞.

This complete the proof. 
�

Theorem 4. Let x0 ∈ Cr[0, 1], r ≥ 1, be an isolated solution of the Eq. (2.3).
Assume that 1 is not an eigenvalue of the linear operator K′(x0). Let Pn : X →
Xn be the orthogonal projection operator defined by (2.8). Then the Eq. (2.12)
has a unique solution xn ∈ B(x0, δ) = {x : ‖x − x0‖∞ < δ} for some δ > 0 and
for sufficiently large n. Moreover, there exists a constant 0 < q < 1, independent
of n such that

αn

1 + q
≤ ‖xn − x0‖∞ ≤ αn

1 − q
,

where αn = ‖(I − T ′
n(x0))−1(Tn(x0) − T (x0))‖∞. Further, we obtain

‖xn − x0‖∞ = O(hr).

Proof. Using Lemma 3, we have

‖T ′
n(x0) − T ′

(x0)‖∞ = ‖PnK′
(x0) − K′

(x0)‖∞ = ‖(I − Pn)K′
(x0)‖∞ = ‖(I − Pn)T ′

(x0)‖∞
→ 0 as n → ∞.

Since 1 is not an eigenvalue of T ′(x0), i.e., (I − T ′(x0)) is invertible on X, then
by applying Theorem 2, we have (I −T ′

n(x0))−1 exists and is uniformly bounded
on X, for some sufficiently large n, i.e., there exists a constant A1 > 0 such that
‖(I − T ′

n(x0))−1‖∞ ≤ A1 < ∞.
Now from Lemma 2, we have for any x ∈ B(x0, δ),

‖T ′
n(x0) − T ′

n(x)‖∞ = ‖PnK′(x0) − PnK′(x)‖∞

≤ ‖Pn‖∞‖K′(x0) − K′(x)‖∞

≤ pc2‖x0 − x‖∞ ≤ c2pδ. (2.24)
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Hence, we have

sup
‖x−x0‖≤δ

‖(I − T ′
n(x0))−1(T ′

n(x0) − T ′
n(x))‖∞ ≤ A1pc2δ ≤ q(say).

Here we choose δ such that 0 < q < 1. This proves the Eq. (2.17) of Theorem 3.
Using estimate (2.10), we have

αn = ‖(I − T ′
n(x0))−1(Tn(x0) − T (x0))‖∞

≤ A1‖Tn(x0) − T (x0)‖∞

≤ A1‖Pn(f + Kx0) − (f + Kx0)‖∞

≤ A1‖(I − Pn)(f + Kx0)‖∞

≤ A1‖(I − Pn)x0‖∞

→ 0, as n → ∞. (2.25)

By choosing n large enough such that αn ≤ δ(1 − q), the Eq. (2.19) of Theo-
rem 3 is satisfied, i.e.,

αn

1 + q
≤ ‖xn − x0‖∞ ≤ αn

1 − q
.

Hence using estimate (2.11), it follows that

‖xn − x0‖∞ ≤ αn

1 − q
≤ 1

1 − q
A1‖Tn(x0) − T (x0)‖∞ ≤ cA1‖(I − Pn)x0‖∞ = O(hr).

This completes the proof. 
�

Next we discuss the existence and convergence of the iterated approximate
solutions x̃n to x0.

Theorem 5. T̃ ′
n(x0) is ν-convergent to T ′(x0) in uniform norm.

Proof. We have

T̃ ′
n(x0) = K′(Pnx0)Pn = K′(Pnx0)Pn − K′(x0)Pn + K′(x0)Pn. (2.26)

This implies

‖T̃ ′
n(x0)‖∞ = ‖K′

(Pnx0)Pn‖∞ ≤ ‖K′
(Pnx0)Pn − K′

(x0)Pn‖∞ + ‖K′
(x0)‖∞‖Pn‖∞.(2.27)

Hence using estimates (2.5), (2.23) and (2.27), we have

‖T̃ ′
n(x0)‖∞ ≤ c2p‖(I − Pn)x0‖∞ + pM < ∞, (2.28)

i.e., ‖T̃ ′
n(x0)‖∞ is uniformly bounded.
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Next consider

‖[T̃ ′
n(x0) − T ′

(x0)]T̃ ′
n(x0)‖∞ = ‖[K′

(Pnx0)Pn − K′
(x0)]T̃ ′

n(x0)‖∞

≤ ‖[K′
(Pnx0) − K′

(x0)]PnT̃ ′
n(x0)‖∞ + ‖[K′

(x0)(I − Pn)T̃ ′
n(x0)‖∞

≤ ‖Pn‖∞‖T̃ ′
n(x0)‖∞‖K′

(Pnx0) − K′
(x0)‖∞

+ ‖K′
(x0)‖∞‖(I − Pn)T̃ ′

n(x0)‖∞. (2.29)

Hence using Lemma 2, Lemma 3, estimates (2.5), (2.9), (2.10) and the uniform
boundedness of ‖T̃ ′

n(x0)‖∞, we obtain

‖[T̃ ′
n(x0) − T ′

(x0)]T̃ ′
n(x0)‖∞ ≤ pc2‖T̃ ′

n(x0)‖∞‖(I − Pn)x0‖∞ + M‖(I − Pn)T̃ ′
n(x0)‖∞.

→ 0, as n → ∞.

Following similar steps we can establish that

‖(T̃ ′
n(x0) − T ′(x0))T ′(x0)‖∞ → 0, as n → ∞.

This shows that T̃ ′
n(x0) is ν-convergent to T ′(x0) in uniform norm.

Hence the proof. 
�

We formulate the following result from Theorems 2 and 5.

Theorem 6. Let x0 ∈ X be an isolated solution of the Eq. (2.3). Assume that 1
is not an eigenvalue of the linear operator K′(x0). Then for sufficiently large n,
the operator (I − T̃ ′

n(x0)) is invertible on X and there exists a constant L > 0
independent of n such that ‖(I − T̃ ′

n(x0))−1‖∞ ≤ L < ∞.

Theorem 7. Let x0 ∈ X be an isolated solution of the Eq. (2.3). Assume that
1 is not an eigenvalue of the linear operator K′(x0). Let Pn : X → Xn be the
orthogonal projection operator defined by (2.8). Then the Eq. (2.16) has a unique
solution x̃n ∈ B(x0, δ) = {x : ‖x−x0‖∞ < δ} for some δ > 0 and for sufficiently
large n. Moreover, there exists a constant 0 < q < 1, independent of n such that

βn

1 + q
≤ ‖x̃n − x0‖∞ ≤ βn

1 − q
,

where βn = ‖(I − T̃ ′
n(x0))−1(T̃n(x0) − T (x0))‖∞.

Proof. By Theorem 6, we have ‖(I − T̃ ′
n(x0))−1‖∞ ≤ L < ∞.

Now using estimate (2.9), Lemma 2, for any x ∈ B(x0, δ), we have

‖T̃ ′
n(x) − T̃ ′

n(x0)‖∞ = ‖K′
(Pnx)Pn − K′

(Pnx0)Pn‖∞ = ‖K′
(Pnx) − K′

(Pnx0)‖∞‖Pn‖∞
≤ c2p‖Pn(x − x0)‖∞

≤ p
2
c2‖x − x0‖∞

≤ p
2
c2δ. (2.30)
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Thus we have

sup
‖x−x0‖≤δ

‖(I − T̃ ′
n(x0))−1(T̃ ′

n(x) − T̃ ′
n(x0))‖∞ ≤ Lp2c2δ ≤ q(say).

Here we choose δ such that 0 < q < 1. This proves the Eq. (2.17) of Theorem 3.
Now using the estimate (2.10) and Lemma 2, we have

‖T̃n(x0) − T (x0)‖∞ ≤ ‖K(Pnx0) − K(x0)‖∞ ≤ c1‖(I − Pn)x0‖∞ → 0, as n → ∞.(2.31)

Hence

βn = ‖(I − T̃ ′
n(x0))

−1
(T̃n(x0) − T (x0))‖∞ ≤ L‖T̃n(x0) − T (x0)‖∞ → 0, as n → ∞.(2.32)

By choosing n large enough such that βn ≤ δ(1−q), the Eq. (2.19) of Theorem 3
is satisfied. Hence by applying Theorem 3, we obtain

βn

1 + q
≤ ‖x̃n − x0‖∞ ≤ βn

1 − q
,

where βn = ‖(I − T̃ ′
n(x0))−1(T̃n(x0) − T (x0))‖∞.

This completes the proof. 
�

Next we discuss the convergence result for the iterated approximate solution
x̃n of Galerkin method, defined by the Eq. (2.16).

Theorem 8. Let x0 ∈ Cr[0, 1], r ≥ 1, be an isolated solution of the Eq. (2.3) and
�u(., ., .) ∈ Cr([0, 1] × [0, 1] × R). Let x̃n be the iterated Galerkin approximation
of x0. Then the following holds

‖x̃n − x0‖∞ = O(h2r).

Proof. From Theorem 7, it follows that

βn

1 + q
≤ ‖x̃n − x0‖∞ ≤ βn

1 − q
,

where βn = ‖(I − T̃ ′
n(x0))−1(T̃n(x0) − T (x0))‖∞.

Hence using Theorem 6, we get

‖x̃n − x0‖∞ ≤ βn

1 − q
≤ 1

1 − q
‖(I − T̃ ′

n(x0))−1(T̃n(x0) − T (x0))‖∞

≤ c‖(I − T̃ ′
n(x0))−1‖∞‖T̃n(x0) − T (x0)‖∞

≤ cL‖K(Pnx0) − K(x0)‖∞. (2.33)
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Using mean-value theorem, we have

|[K(Pnx0) − K(x0)](t)|

=

∣∣∣∣
∫ 1

0
[�(t, s(t, τ), Pnx0(s(t, τ))) − �(t, s(t, τ), x0(s(t, τ)))] dτ

∣∣∣∣
=

∣∣∣∣
∫ 1

0
�u(t, s(t, τ), x0(s(t, τ)) + θ1(Pnx0 − x0)(s(t, τ)))(Pnx0 − x0)(s(t, τ)) dτ

∣∣∣∣
=

∣∣∣∣
∫ 1

0
g(t, s(t, τ), x0(s(t, τ)), Pnx0(s(t, τ)), θ1)(Pnx0 − x0)(s(t, τ)) dτ

∣∣∣∣
=

∣∣∣∣
∫ 1

0
[g(t, s(t, τ), x0(s(t, τ)), Pnx0(s(t, τ)), θ1) − gt(s(t, τ)) + gt(s(t, τ))](Pnx0 − x0)(s(t, τ)) dτ

∣∣∣∣
≤
∣∣∣∣
∫ 1

0
[g(t, s(t, τ), x0(s(t, τ)), Pnx0(s(t, τ)), θ1) − gt(s(t, τ))](Pnx0 − x0)(s(t, τ)) dτ

∣∣∣∣
+

∣∣∣∣
∫ 1

0
gt(s(t, τ))(Pnx0 − x0)(s(t, τ)) dτ

∣∣∣∣ , (2.34)

where 0 ≤ θ1 ≤ 1 and g(t, s(t, τ), x0(s(t, τ)), x(s(t, τ)), θ1) = �u(t, s(t, τ),
x0(s(t, τ)) + θ1(x − x0)(s(t, τ))) and gt(s(t, τ)) = �u(t, s(t, τ), x0(s(t, τ))).

For the first term of the above estimate (2.34), we have

∣∣∣∣
∫ 1

0
[g(t, s(t, τ), x0(s(t, τ)), Pnx0(s(t, τ)), θ1) − gt(s(t, τ))](Pnx0 − x0)(s(t, τ)) dτ

∣∣∣∣

=
∣∣∣∣
∫ 1

0
[�u(t, s(t, τ), x0(s(t, τ)) + θ1(Pnx0 − x0)(s(t, τ)))−�u(t, s(t, τ), x0(s(t, τ)))](Pnx0 − x0)(s(t, τ)) dτ

∣∣∣∣

≤ c2

∫ 1

0
|(Pnx0 − x0)(s(t, τ))|2 dτ

≤ c2‖Pnx0 − x0‖2
∞ = O(h

2r). (2.35)

Using the orthogonality of the projection operator Pn and estimate (2.11), for
the second term of (2.34), we obtain

∣
∣
∣
∣

∫ 1

0

gt(s(t, τ))(Pnx0 − x0)(s(t, τ)) dτ

∣
∣
∣
∣
= |〈gt(s(t, .)), (I − Pn)x0(s(t, .))〉|

= |〈(I − Pn)gt(s(t, .)), (I − Pn)x0(s(t, .))〉|
≤ ‖(I − Pn)gt‖∞‖(I − Pn)x0‖∞

≤ ch2r‖g
(r)
t ‖∞‖x

(r)
0 ‖∞. (2.36)

Thus using estimates (2.34), (2.35), (2.36), we get

‖K(Pnx0) − K(x0)‖∞ = O(h2r). (2.37)

Hence from estimates (2.33) and (2.37), it follows that

‖x̃n − x0‖∞ = O(h2r). (2.38)

This completes the proof. 
�

In the following section we discuss the multi-Galerkin method to improve the
above convergence rates further.
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3 Superconvergence Results by Multi-Gallerkin Method

In this section, we apply the multi-Galerkin method (M-Gallerkin method) (see
[8,10,11]) for solving the Eq. (2.1) and obtain the superconvergence results. To
do this, we define the multi-projection operator KM

n (see [8,10,11]) by

KM
n (x) := PnK(x) + K(Pnx) − PnK(Pnx). (3.1)

The M-Galerkin method for Eq. (2.3) is seeking an approximate solution xM
n ∈ X

such that
xM

n − KM
n (xM

n ) = f. (3.2)

Let T M
n (u) = KM

n (u) + f, u ∈ X, then the Eq. (3.2) can be written as

xM
n = T M

n (xM
n ). (3.3)

In order to obtain more accurate approximate solution, we define

x̃M
n = K(xM

n ) + f. (3.4)

This is called the iterated M-Galerkin solution.
The Fréchet derivative of Tn

M (x) at x0 is a linear operator and is given by

Tn
M ′

(x0) = Kn
M ′

(x0) = PnK′(x0) + K′(Pnx0)Pn − PnK′(Pnx0)Pn

= PnK′(x0) + (I − Pn)K′(Pnx0)Pn.

Now we discuss the existence and convergence rates of the approximate solution
xM

n to x0. To do this, we first prove the following lemma.

Lemma 4. For any x, y ∈ X, the following holds

‖KM
n

′
(x) − KM

n

′
(y)‖∞ ≤ (pc2 + cc2p

2)‖x − y‖∞,

where c is a constant independent of n.

Proof. Using the estimate (2.9) and Lemma 2, we have

‖KM
n

′
(x) − KM

n

′
(y)‖∞ = ‖PnK′

(x) + (I − Pn)K′
(Pnx)Pn − PnK′

(y) − (I − Pn)K′
(Pny)Pn‖∞

≤ ‖Pn‖∞‖K′
(x) − K′

(y)‖∞ + (1 + ‖Pn‖∞)‖[K′
(Pnx) − K′

(Pny)]Pn‖∞
≤ pc2‖x − y‖∞ + cc2‖Pn(x − y)‖∞‖Pn‖∞

≤ (pc2 + cc2p
2
)‖x − y‖∞.

This completes the proof. 
�

Theorem 9. Let x0 ∈ X be an isolated solution of the Eq. (2.3). Assume that 1
is not an eigenvalue of the linear operator K′(x0). Then for sufficiently large n,
the operator (I −Tn

M ′
(x0)) is invertible on X and there exists a constant L1 > 0

independent of n such that ‖(I − Tn
M ′

(x0))−1‖∞ ≤ L1 < ∞.
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Proof. Consider

‖Tn
M ′

(x0) − T ′(x0)‖∞ = ‖PnK′(x0) − (I − Pn)K′(Pnx0)Pn − K′(x0)‖∞
≤ ‖(I − Pn)K′(Pnx0)Pn‖∞ + ‖(I − Pn)K′(x0)‖∞. (3.5)

Note that T̃ ′
n(x0) = K′(Pnx0)Pn, hence from Lemma 3, we have

‖(I − Pn)K′(Pnx0)Pn‖∞ = ‖(I − Pn)T̃ ′
n(x0)‖∞ → 0, as n → ∞,

and

‖(I − Pn)K′(x0)‖∞ = ‖(I − Pn)T ′(x0)‖∞ → 0, as n → ∞.

This implies

‖Tn
M ′

(x0) − T ′(x0)‖∞ → 0, as n → ∞. (3.6)

We assume that 1 is not an eigenvalue of T ′(x0), i.e., (I − T ′(x0))is invertible
on X. Then by applying Theorem 2, we have (I − Tn

M ′
(x0))−1 exists and is

uniformly bounded on X, for some sufficiently large n, i.e., there exists a constant
L1 > 0 such that ‖(I − Tn

M ′
(x0))−1‖∞ ≤ L1 < ∞. This completes the proof.
�

Theorem 10. Let x0 ∈ Cr[0, 1], r ≥ 1, be an isolated solution of the Eq. (2.3)
and �u(., ., .) ∈ Cr([0, 1] × [0, 1] × R). Assume that 1 is not an eigenvalue of the
linear operator K′(x0). Let Pn : X → Xn be the orthogonal projection operator
defined by (2.8). Then the Eq. (3.2) has a unique solution xM

n ∈ B(x0, δ) = {x :
‖x − x0‖∞ < δ} for some δ > 0 and for sufficiently large n. Moreover, there
exists a constant 0 < q < 1, independent of n such that

αn

1 + q
≤ ‖xM

n − x0‖∞ ≤ αn

1 − q
,

where αn = ‖(I − Tn
M ′

(x0))−1(Tn
M (x0) − T (x0))‖∞. Further, we obtain

‖xM
n − x0‖∞ = O(h2r).

Proof. Using Theorem 9, it follows that there exists some L1 > 0 such that
‖(I − Tn

M ′
(x0))−1‖∞ ≤ L1 < ∞.

Now using Lemma 4, we have for any x ∈ B(x0, δ),

‖Tn
M ′

(x0) − Tn
M ′

(x)‖∞ = ‖KM
n

′
(x0) − KM

n

′
(x)‖∞

≤ (pc2 + cc2p
2)‖x0 − x‖∞

≤ (pc2 + cc2p
2)δ.
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Thus we have

sup
‖x−x0‖≤δ

‖(I − Tn
M ′

(x0))
−1(Tn

M ′
(x0) − Tn

M ′
(x))‖∞ ≤ L1(pc2 + cc2p

2)δ ≤ q(say).

Here we choose δ such that 0 < q < 1. This proves the Eq. (2.17) of Theorem 3.
Hence applying Lemma 2, and estimate (2.10), we have

αn = ‖(I − Tn
M ′

(x0))−1(Tn
M (x0) − T (x0))‖∞

≤ L1‖Tn
M (x0) − T (x0))‖∞

≤ L1‖(I − Pn)(K(Pnx0) − K(x0))‖∞

≤ L1(1 + ‖Pn‖∞)‖K(Pnx0) − K(x0)‖∞

≤ cc1L1‖(Pn − I)x0‖∞

→ 0 as n → ∞. (3.7)

By choosing n large enough such that αn ≤ δ(1−q), the Eq. (2.19) of Theorem 3
is satisfied, i.e.,

αn

1 + q
≤ ‖xM

n − x0‖∞ ≤ αn

1 − q
.

Hence from estimate (2.37), it follows that

‖x
M
n − x0‖∞ ≤

αn

1 − q
≤

1

1 − q
L1‖Tn

M
(x0) − T (x0))‖∞ ≤ cL1‖K(Pnx0) − K(x0)‖∞ = O(h

2r
).

This completes the proof. 
�

Remark 1. Note that from Theorems 8 and 10, it follows that both the iter-
ated Galerkin solution x̃n and M-Galerkin solution xM

n have the same order of
convergence O(h2r). However using Theorem 10, below we prove that the iter-
ated M-Galerkin solution improves over both iterated Galerkin and M-Galerkin
solutions.

Next we discuss the superconvergence results for the iterated approximate
solution x̃M

n of M-Galerkin method, defined by Eq. (3.4). To do this, we first
proof the following lemma.

Lemma 5. Let x0 ∈ X be an isolated solution of the Eq. (2.1) and let Pn : X →
Xn be the orthogonal projection operator defined by (2.8). Let x̃M

n be the iterated
approximation of x0. Then there holds

‖x̃M
n − x0‖∞ ≤ C1‖xM

n − x0‖
2

∞ + (1 + M1p)‖K′(x0)(I − Pn)(K(Pnx0) − K(x0))‖∞,

where C1 = (c2 + M1M2).
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Proof. Applying Theorem 9, we have

‖(I − KM
n

′
(x0))−1‖∞ = ‖(I − T M

n

′
(x0))−1‖∞ ≤ L1 < ∞. (3.8)

It follows from the estimate (2.5) that

‖K′(x0)‖∞ ≤ M.

Hence we obtain

‖K′(x0)(I − KM
n

′
(x0))−1‖∞ ≤ ML1 ≤ M1 < ∞. (3.9)

Now from the Eqs. (2.3) and (3.4), Lemma 2 and using the mean-value theorem,
we have

‖x̃M
n − x0‖∞ = ‖K(xM

n ) − K(x0)‖∞
= ‖K′(x0 + θ2(x

M
n − x0))(x

M
n − x0)‖∞

= ‖{[K′(x0 + θ2(x
M
n − x0)) − K′(x0)] + K′(x0)}(xM

n − x0)‖∞
≤ ‖[K′(x0 + θ2(x

M
n − x0)) − K′(x0)](x

M
n − x0)‖∞ + ‖K′(x0)(x

M
n − x0)‖∞

≤ c2‖xM
n − x0‖

2

∞ + ‖K′(x0)(x
M
n − x0)‖∞, (3.10)

where 0 < θ2 < 1.
For the second term of the estimate (3.10), we consider

x
M
n − x0 = KM

n (x
M
n ) − K(x0)

= KM
n (x

M
n ) − KM

n (x0) − KM
n

′
(x0)(x

M
n − x0) + KM

n

′
(x0)(x

M
n − x0) + KM

n (x0) − K(x0).

This implies

(I − KM
n

′
(x0))(x

M
n − x0) = KM

n (x
M
n ) − KM

n (x0) − KM
n

′
(x0)(x

M
n − x0) + KM

n (x0) − K(x0).

Using mean-value theorem, we have

(x
M
n − x0)

= (I − KM
n

′
(x0))

−1
[
KM

n (x
M
n ) − KM

n (x0) − KM
n

′
(x0)(x

M
n − x0) + (KM

n )(x0) − K(x0)
]

= (I − KM
n

′
(x0))

−1
[
KM

n

′
(x0 + θ3(x

M
n − x0)) − KM

n

′
(x0)

]
(x

M
n − x0)

+ (I − KM
n

′
(x0))

−1
[
KM

n (x0) − K(x0)
]

, (3.11)

where 0 < θ3 < 1.
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Applying K′(x0) on both side and using the estimate (3.9), we obtain

‖K′
(x0)(x

M
n − x0)‖∞

≤ ‖K′
(x0)(I − KM

n

′
(x0))

−1‖∞‖[KM
n

′
(x0 + θ3(x

M
n − x0)) − KM

n

′
(x0)](x

M
n − x0)‖∞

+ ‖K′
(x0)(I − KM

n

′
(x0))

−1
[KM

n (x0) − K(x0)]‖∞

≤ M1‖KM
n

′
(x0 + θ3(x

M
n − x0)) − KM

n

′
(x0)‖∞‖x

M
n − x0‖∞

+ ‖K′
(x0)(I − KM

n

′
(x0))

−1
[KM

n (x0) − K(x0)]‖∞. (3.12)

Using the identity (I −KM
n

′(x0))−1 = I +(I −KM
n

′(x0))−1KM
n

′(x0), and the
estimate (3.9), the second term of the estimate (3.12) becomes

‖K′(x0)(I − KM
n

′
(x0))

−1[KM
n (x0) − K(x0)]‖∞

= ‖K′(x0){I + (I − KM
n

′
(x0))

−1KM
n

′
(x0)}[KM

n (x0) − K(x0)]‖∞
≤ ‖K′(x0)[KM

n (x0) − K(x0)]‖∞

+ ‖K′(x0)(I − KM
n

′
(x0))

−1KM
n

′
(x0)[KM

n (x0) − K(x0)]‖∞

≤ ‖K′(x0)[KM
n (x0) − K(x0)]‖∞ + M1‖KM

n

′
(x0)[KM

n (x0) − K(x0)]‖∞.(3.13)

From the estimates (3.12) and (3.13), we get

‖K′(x0)(x
M
n − x0)‖∞ ≤ M1‖KM

n
′
(x0 + θ3(x

M
n − x0)) − KM

n
′
(x0)‖∞‖x

M
n − x0‖∞

+ ‖K′(x0)[KM
n (x0) − K(x0)]‖∞ + M1‖KM

n
′
(x0)[KM

n (x0) − K(x0)]‖∞.(3.14)

Note that
KM

n (x0) − K(x0) = (I − Pn)(K(Pnx0) − K(x0)),

and

KM
n

′
(x0)[KM

n (x0) − K(x0)] = PnK′(x0)(I − Pn)(K(Pnx0) − K(x0)).

Combining this with estimate (3.14), Lemma 4, we get

‖K′(x0)(x
M
n − x0)‖∞

≤ M1(pc2 + cc2p
2)‖xM

n − x0‖
2

∞ + ‖K′(x0)(I − Pn)(K(Pnx0) − K(x0))‖∞
+ M1‖PnK′(x0)(I − Pn)(K(Pnx0) − K(x0))‖∞

≤ M1M2‖xM
n − x0‖

2

∞ + ‖K′(x0)(I − Pn)(K(Pnx0) − K(x0))‖∞
+ M1‖Pn‖∞‖K′(x0)(I − Pn)(K(Pnx0) − K(x0))‖∞, (3.15)

where M2 = (pc2 + cc2p
2) < ∞.

Now combining this with the estimate (3.10), we obtain

‖x̃
M
n − x0‖∞ ≤ C1‖x

M
n − x0‖2

∞ + (1 + M1p)‖K′
(x0)(I − Pn)(K(Pnx0) − K(x0))‖∞,

where C1 = (c2 + M1M2). This completes the proof. 
�
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Theorem 11. Let Pn : X → Xn be the orthogonal projection operator defined
by (2.8) and x0 ∈ Cr[0, 1], r ≥ 1, be an isolated solution of the Eq. (2.1). Assume
�u(., ., .) ∈ Cr([0, 1]×[0, 1]×R)). Let x̃M

n be the iterated M-Galerkin approximation
of x0. Then the following holds

‖x̃M
n − x0‖∞ = O(h3r).

Proof. From Lemma 5, we obtain

‖x̃
M
n − x0‖∞ ≤ C1‖x

M
n − x0‖2

∞ + (1 + M1p)‖K′
(x0)(I − Pn)(K(Pnx0) − K(x0))‖∞.(3.16)

Consider

‖K′
(x0)(I − Pn)(K(Pnx0) − K(x0))‖∞ = ‖K′

(x0)(I − Pn)‖∞‖K(Pnx0) − K(x0)‖∞.(3.17)

Using orthogonality of Pn and the estimate (2.11), we have

|K′(x0)(I − Pn)y(t)| =
∣∣∣∣
∫ 1

0

�u(t, s(t, τ)), x0(s(t, τ)))(I − Pn)y(s(t, τ)) dτ

∣∣∣∣
≤ |< (I − Pn)�u(t, ., x0(.)), (I − Pn)y(.) >|
≤ ‖(I − Pn)�u‖∞‖(I − Pn)y‖∞

≤ chr‖�(r)u ‖∞‖y‖∞.

This implies

‖K′(x0)(I − Pn)‖∞ ≤ chr‖�(r)u ‖∞. (3.18)

Again using estimate (2.37), we have

‖K(Pnx0) − K(x0)‖∞ = O(h2r). (3.19)

Combining the estimates (3.16), (3.17), (3.18), (3.19) and Theorem 10, we
have

‖x̃M
n − x0‖∞ = O(hmin{4r,3r}) = O(h3r). (3.20)

This completes the proof. 
�

Remark 2. From Theorems 4, 8 and 11, we see that the order of convergence
of the iterated M-Galerkin method improves over the Galerkin method and
iterated-Galerkin methods.
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4 Numerical Results

In this section, we present the numerical results. For that we take the piece-
wise polynomials as the basis functions for the subspace Xn. We present the
errors of the approximate and iterated approximate solutions of Galerkin and M-
Galerkin methods in uniform norm. We denote the Galerkin, iterated Galerkin,
multi-Galerkin and iterated multi-Galerkin solutions by xn, x̃n, xM

n and x̃M
n ,

respectively. Also we denote ‖x − xn‖∞ = O(hα), ‖x − x̃n‖∞ = O(ha),
‖x − xM

n ‖∞ = O(hγ), ‖x − x̃M
n ‖∞ = O(hc). The numerical algorithm was com-

puted on a PC with Intel Pentium 3.20GHz CPU, 4.00GB RAM by using Matlab.
Consider the uniform partition of [0, 1]:

0 = t0 < t1 < t2 < ... < tn = 1,

where ti = i
n , i = 0, 1, 2, ..., n.

We choose the approximating subspaces as the space of piecewise constant func-
tions (r = 1), which has dimension n. Then for r = 1, the expected orders of
convergence are α = 1, γ = 2, a = 2 and c = 3. In Tables 1 and 3, we present
the errors in Galerkin and iterated Galerkin method. The errors and convergence
rate in multi-Galerkin and iterated multi-Galerkin methods are given in Tables 2
and 4.

Example 1. Consider the following Volterra integral equation of second kind

x(t) = f(t) +
∫ t

0

k(t, s, x(s)) ds, t ∈ [0, 1],

with the kernel function k(t, s, x(s)) = (t + s)[x(s)]3 and the function f(t) =
−(15/56)t8 + (13/14)t7 − (11/10)t6 + (9/20)t5 + t2 − t and the exact solution is
given by x(t) = t2 − t.

Table 1. Galerkin and iterated Galerkin methods

n ‖x − xn‖∞ α ‖x − x̃n‖∞ a

2 1.661527988904 ×10−1 - 4.645082264 ×10−3

4 1.037479005790 ×10−1 0.67 1.014390206×10−3 2.19

8 5.687881933033 ×10−2 0.86 2.736000385×10−4 1.89

16 2.953533302197×10−2 0.94 6.843872691×10−5 1.99

32 1.488690530289 ×10−2 0.98 1.979056670×10−5 1.79

64 7.318546260251 ×10−3 1.02 5.566386247×10−6 1.83

128 3.473331427325 ×10−3 1.07 1.522815353×10−6 1.87
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Table 2. M-Galerkin and iterated M-Galerkin methods

n ‖x − xM
n ‖∞ γ ‖x − x̃M

n ‖∞ c

2 2.139257640477×10−3 - 3.195587502679×10−4 -

4 5.094845289810×10−4 2.07 3.027253073465×10−5 3.48

8 1.172053429381×10−4 2.12 4.112276815779×10−6 2.88

16 2.971036713855×10−5 1.98 5.104839056138×10−7 3.01

32 7.376285660495×10−6 2.01 6.078829573469×10−8 3.07

64 1.790360597207×10−6 2.06 7.138998341086×10−9 3.09

Example 2. Consider the following Volterra integral equation of second kind

x(t) = f(t) +
∫ t

0

k(t, s, x(s)) ds, t ∈ [0, 1],

with the kernel function k(t, s, x(s)) = −s[x(s)]3, f(t) = t + t5

5 ; and its exact
solution is given by x(t) = t.

Table 3. Galerkin and iterated Galerkin methods

n ‖x − xn‖∞ α ‖x − x̃n‖∞ a

2 2.547849617844 ×10−1 - 4.28181707196×10−2 -

4 1.2711877422622×10−1 1.00 1.15157330589 ×10−2 1.89

8 6.286526902122×10−2 1.01 2.76579432147×10−3 2.05

16 3.105266662831×10−2 1.01 8.28309267856 ×10−4 1.73

32 1.529607511876×10−2 1.02 2.42217386433×10−4 1.77

64 7.469603314291×10−3 1.03 6.62642400773×10−4 1.87

128 3.591926730840×10−3 1.05 1.60017591998×10−5 2.05

From Tables 1 and 3, we see that the iterated approximate solutions give
better convergence rates than the approximate solutions in Galerkin method.

Table 4. M-Galerkin and iterated M-Galerkin methods

n ‖x − xM
n ‖∞ γ ‖x − x̃M

n ‖∞ c

2 3.083864718 ×10−2 - 1.287065314 ×10−2 -

4 6.007095391 ×10−3 2.36 2.507089260×10−3 3.17

8 1.491400338×10−3 2.01 3.177608653×10−4 2.98

16 3.806844574×10−4 1.97 4.468744470×10−5 2.83

32 9.256865522×10−5 2.04 5.863644532×10−6 2.93

64 2.235385674×10−5 2.05 7.483565210×10−7 2.97
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From Tables 2 and 4, we also see that the iterated multi-Galerkin method gives
better convergence rates than Galerkin method and iterated Galerkin method,
while the size of the system of nonlinear equations that must be solved, remains
the same as in Galerkin method.
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Abstract. Let M be a 2-torsion free prime Γ -ring with Z(M) as the
center of M . In this paper, we prove the following: (i) If U is a Lie
ideal of M and if d �= 0 is a derivation of M such that d2(U) = 0,
then U ⊆ Z(M); (ii) if U �⊂ Z(M) is a Lie ideal of M and d �= 0 is a
derivation of M , then Z(d(U)) ⊆ Z(M); (iii) If U �⊂ Z(M) is a Lie ideal
of M and if d is a derivation of M such that d3 �= 0, then d(U)∗, the
subring generated by d(U) contains a non-zero ideal of M . Finally, we
prove that if U �⊂ Z(M) is a Lie ideal of M and d1 and d2 are derivations
of M such that d1d2(U) = 0, then d1 = 0 or d2 = 0.

Keywords: Γ -ring · Prime Γ -ring · Derivation · Γ -Lie ideal

1 Introduction and Preliminaries

The notion of Γ -ring was first introduced by Nobusawa [14] as a generalization
of a ring theory and afterwards, it was generalized by Barnes [2] in a broad
sense. In this article, we consider M as a Γ -ring in the sense of Barnes [2] and
we shall denote Z(M) to be the center of M . If A is a subset of M , then we
define Z(A) = {x ∈ M [x, a]α = 0, for all a ∈ A,α ∈ Γ} which is known as the
center of A with respect to M , where [a, b]α = aαb − bαa and this is known as
the commutator of a and b with respect to α ∈ Γ . An ideal P of a Γ -ring M is
said to be prime if for any ideals A and B of M , AΓB ⊆ P implies A ⊆ P or
B ⊆ P . A Γ -ring M is said to be prime if the zero ideal is prime.

Theorem 1 [15]. If M is a Γ -ring, the following conditions are equivalent:

(1) M is a prime Γ -ring.
(2) If a, b ∈ M and aΓMΓb = 〈0〉, then a = 0 or b = 0.
(3) If 〈a〉 and 〈b〉 are principal ideals of M such that 〈a〉Γ 〈b〉 = 〈0〉, then a = 0

or b = 0.
(4) If A and B are right ideals of M such that AΓB = 〈0〉, then A = 〈0〉 or

B = 〈0〉.
(5) If A and B are left ideals of M such that AΓB = 〈0〉, then A = 〈0〉 or

B = 〈0〉.

c© Springer Nature Singapore Pte Ltd. 2017
D. Giri et al. (Eds.): ICMC 2017, CCIS 655, pp. 380–390, 2017.
DOI: 10.1007/978-981-10-4642-1 32
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An additive subgroup U of M is said to be a Lie ideal of M if [u,m]α ∈ U , for
all u ∈ U , m ∈ M and α ∈ Γ . It is clear that every ideal of a Γ -ring M is a
Lie ideal of M but the converse is in general not true. Let M be a Γ -ring. An
additive mapping d : M → M is called a derivation if d(xαy) = d(x)αy+xαd(y)
holds for all x, y ∈ M and α ∈ Γ , and d is called a Jordan derivation if d(xαx) =
d(x)αx + xαd(x) holds for all x, y ∈ M and α ∈ Γ . The concept of derivation
and Jordan derivation of Γ -rings were first introduced by Sapanci and Nakajima
in [18]. Many significant results in classical ring theory have been developed
by Herstein [8–10]. Some of these results were generalized in Γ -rings by Paul
and Uddin [16,17], also see [4,5]. In [17], an example of a Lie ideal of a Γ -ring
is given. Many mathematicians worked on derivations on Lie ideals of classical
rings theories. In [13], Kamander gave some basic commutator identities. Two
of these are given as

[xβy, z]α = [x, z]αβy + xβ[y, z]α + x[β, α]zy,
[x, yβz]α = yβ[x, z]α + [x, y]αβz + y[β, α]xz,

for all x, y, z ∈ M and α, β ∈ Γ . Throughout our paper, we consider the following
condition

xαyβz = xβyαz. (1)

By this condition the above two identities reduce to which extensively used in
our paper. Using the assumption the basic commutator identities reduce to

[xβy, z]α = [x, z]αβy + xβ[y, z]α,
[x, yβz]α = yβ[x, z]α + [x, y]αβz,

for all x, y, z ∈ M and α, β ∈ Γ . In [3], Bergen et al. developed a number of
significant results in classical rings by means of derivations and Lie ideals. As
the examples, we cited the names Herstein [11], Aydin [1], Soyturk [19], Ferrero
and Haetinger [6]. In the present paper, we generalize the results of [3] in Γ -rings.

2 Derivations on Lie Ideals of Γ -Rings

First we need some lemmas to prove our results.

Lemma 1 [7]. If U �⊆ Z(M) be a Lie ideal of a 2-torsion free prime Γ -ring
M which satisfies the condition (1) and let a, b ∈ M and α, β ∈ Γ such that
aαUβb = 0. Then, a = 0 or b = 0.

Lemma 2. Let U �⊆ Z(M) be a Lie ideal of a 2-torsion free prime Γ -ring M .
Then, Z(U) = Z(M).

Proof. We have Z(U) is both a subring and a Lie ideal of M and Z(U) cannot be
a non-zero ideal of M . From Lemma 6 of [7], Z(U) ⊆ Z(M). Since Z(M) ⊆ Z(U),
it follows that Z(U) = Z(M).
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Lemma 3. Let U be a Lie ideal of a 2-torsion free prime Γ -ring M which
satisfies the condition (1) and let a ∈ M . If a ∈ Z([U,U ]Γ ), then a ∈ Z(M).
That is Z([U,U ]Γ ) = Z(U).

Proof. If [U,U ]Γ �⊆ Z(M), then by Lemma 2, a ∈ Z(M). Hence, Z([U,U ]Γ ) =
Z(M) = Z(U). That is Z([U,U ]Γ ) = Z(U). On the other hand, if [U,U ]Γ ⊆
Z(M) and u ∈ U , m ∈ M and α ∈ Γ , then we have a = [u, [u,m]α]α ∈ Z(M).
Then, aβu = [u, [u, uβm]α]α ∈ Z(M) by using the condition (1) for β ∈ Γ . If
a �= 0 we obtain u ∈ Z(M), which gives a = 0. Thus, [u, [u,m]α]α = 0 for all
m ∈ M and α ∈ Γ . But, by Sub-lemma 3.8 of [7], u ∈ Z(M). It follows that
U ⊆ Z(M). Therefore, a ∈ Z(U). It follows that Z([U,U ]Γ ) = Z(U).

Lemma 4. Let U be a Lie ideal of a 2-torsion free prime Γ -ring M which
satisfies the condition (1). Let u ∈ U and d : M → M be a derivation such that
[u, d(x)]α = 0, for all x ∈ M and α ∈ Γ . Then, u ∈ Z(U).

Proof. Let d(m) = [u, x]α, for all x ∈ M and α ∈ Γ . By using the condition (1),
we have seen that d is a derivation on M . Also, we have d2(x) = 0, for all x ∈ M .
Since d is a derivation on M , we have 0 = d2(xαy) = 2d(x)αd(y). Since M is
2-torsion free, d(x)αd(y) = 0. Replacing y by mβy, we obtain d(x)αmβd(y) = 0,
for all x, y,m ∈ M and α, β ∈ Gamma. Since M is prime, d(x) = 0 or d(y) = 0. If
d(x) = 0, then [u, x]α = 0, for all x ∈ M and α ∈ Γ . This shows that u ∈ Z(M).
If d(y) = 0, then we get [u, y]α = 0, for all y ∈ M and α ∈ Γ , and again we get
u ∈ Z(M).

Lemma 5. Let U be a Lie ideal of a 2-torsion free prime Γ -ring M which
satisfies the condition (1). If d �= 0 is a derivation of M such that d(U) = 0,
then U ⊆ Z(M).

Proof. Let u ∈ U , m ∈ M and α ∈ Γ . Then, [u,m]α ∈ U . Since d(U) = 0, we
have, d([u,m]α) = 0. But [u, d(m)]α = d([u,m]α) = 0. That is [u, d(m)]α = 0,
for all u ∈ U , m ∈ M and α ∈ Γ . By Lemma 4, we have u ∈ Z(M), for all
u ∈ M . Hence, U ⊆ Z(M).

Lemma 6. Let U be a Lie ideal of a 2-torsion free prime Γ -ring M which
satisfies the condition (1) and let d �= 0 be a derivation of M such that d(U) ⊆
Z(M). Then, U ⊆ Z(M).

Proof. If U �⊆ Z(M), by Lemma 3, V = [U,U ]Γ ⊆ Z(M). But, if u, v ∈ U
and α ∈ Γ , then d(uαv − vαu) = (d(u)αv − vαd(u)) + (uαd(v) − d(v)αu) = 0,
since d(u), d(v) ∈ Z(M). Thus, d(V ) = 0, but by Lemma 5, V ⊆ Z(M), a
contradiction.

Some other properties of d(U) are given below.

Lemma 7. Let U �⊆ Z(M) be a Lie ideal of a 2-torsion free prime Γ -ring
M which satisfies the condition (1) and let d �= 0 be a derivation of M . If
aαd(U) = 0 (or d(U)αa = 0) for all m ∈ M and α ∈ Γ , then a = 0.
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Proof. Let u ∈ U , x ∈ M and β, γ ∈ Γ , then by using the condition (1), we have
(uβx − xβu)γu ∈ U . Using condition (1), we get (xβu − xβu)γu = uβ(xγu) −
(xγu)βu ∈ U . Thus, aαd((uβx − xβu)γu) = 0, that is aα(d(uβx − xβu))γu +
aα(uβx − xβu)γd(u) = 0. Since uβx − xβu ∈ U , so aαd((uβx − xβu)γu) = 0,
that is aαd(uβx − xβu)γu = 0. Since uβx − xβu ∈ U , so

aαd(uβx − xβu)γu = 0. (2)

So, the above relation reduces to aα(uβx−xβu)γd(u) = 0, for all u ∈ U , x ∈ M
and α, β, γ ∈ Γ . Let x = d(v)δy, where v ∈ U , y ∈ M and δ ∈ Γ . Then,

aαx = aαd(u)δy = aαd(v)δy = 0. (3)

Therefore, by replacing x by d(v)δy in (2), we have

aα(uβd(v)δy − d(v)δyβu)γd(u) = 0,

aαuβd(v)δyγd(u) − aαd(v)δyβuγd(u) = 0. (4)

Using (3), (4) reduces to aαuβd(v)δyγd(u) = 0. This gives aαuβd(U)δM
γd(u) = 0. Since d(U) �= 0 and M is prime, then by Lemma 1, we have a = 0.

Now, we prove our main results.

Theorem 2. Let U �⊆ Z(M) be a Lie ideal of a 2-torsion free prime Γ -ring M
which satisfies the condition (1) and let d �= 0 be a derivation of M such that
d2(U) = 0, then U ⊆ Z(M).

Proof. First we assume that U �⊆ Z(M), by Lemma 3, V = [U,U ]Γ �⊆ Z(M). So,
for the proof of theorem, it is sufficient to show that V ⊆ Z(M). By Lemma 1
of [16], [I,M ]Γ ⊆ U where I is an ideal of M such that [I,M ]Γ �⊆ Z(M).
Let x ∈ [I,M ]Γ ⊆ U ∩ I and u ∈ V . Then, w = d(u) ∈ d([U,U ]Γ ) ⊆ U , so
d(w) = d2(u) = 0, by hypothesis. If y ∈ M then, since mβw ∈ I, [mβw, y]α ∈
[I,M ]Γ ⊆ U . Hence,

0 = d2([mβw, y]α) = d2(mβ[w, y]α + [m, y]αβw)
= d2(m)β[w, y]α + 2d(m)βd([w, y]α) + 2mβd2([w, y]α)

+d2([m, y]αβw + 2d([m, y]αβd(w + 2[m, y]αβd2(w),

by using the condition (1). Using d(w) = d2([m, y]α) = d2(m) = d2[w, y]α. = 0,
in the above relation, we obtain 2d(m)βd([w, y]α) = 0. Since M is 2-torsion
free, d(m)βd([w, y]α) = 0. This gives that d([I,M ]Γ )Γd([d(V ),M ]Γ ) = 0. But
[I,M ]Γ is a Lie ideal of M such that [I,M ]Γ �⊆ Z(M). So, by Lemma 7,
d([d(V ),M ]Γ ) = 0. Hence, if u ∈ V , x ∈ M and α ∈ Γ , 0 = d([d(u), x]α) = 0.
Therefore,

0 = d(d(u)αx − xαd(u))
= d2(u)αx + d(u)αd(x) − d(x)αd(u) − xαd2(u)
= d(u)αd(x) − d(x)αd(u)
= [d(u), d(x)]α.
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Therefore, d(V ) ∈ Z(d(M)). By Lemma 4, d(V ) ⊆ Z(M), hence by Lemma 6,
V ⊆ Z(M). This completes the proof.

The special cases, when U = M or U is an ideal of M , in this situation, d = 0
if d2(U) = 0, are immediate consequences of Theorem 2. Let a ∈ M be fixed
element. If d(x) = [a, x]α for all x M, then by using the condition (1), we have
seen that d is the inner derivation of M. If d2(U) = 0, that is, [a, [a, U ]Γ ] = 0, we
conclude from the theorem that if U Z(M), then [a, U ]Γ = 0 and so a ∈ Z(M)
by Lemma 4. Since the ideals (and so, the prime ideals) of M are invariant with
respect to inner derivations, so we obtain the following corollary.

Corollary 1. Let U be a Lie ideal of a 2-torsion free semiprime Γ -ring M which
satisfies the condition (1). If [a, [a, U ]Γ ] = 0, for some a ∈ M and α ∈ Γ , then
[a, U ]Γ = 0.

Theorem 3. If U �⊆ Z(M) be a Lie ideal of a 2-torsion free prime Γ -ring M
which satisfies the condition (1) and let d �= 0 be a derivation of M . Then,
Z(d(U)) = Z(M).

Proof. Let a ∈ Z(d(U)), and assume that a �∈ Z(M). Since U �⊆ Z(M), V =
[U,U ]Γ �⊆ Z(M)) by Lemma 3. Moreover, d(V ) ⊆ U . Thus, [a, d2(u)] = 0, for
all u ∈ V and α ∈ Γ . But we have [a, d(u)]α = 0. Applying d to this, we get
d([a, d(u)]α = 0. That is

0 = d(aαd(u) − d(u)αa)
= d(a)αd(u) + aαd2(u) − d2(u)αa − d(u)αd(a)
= [d(a), d(u)]α + [a, d2(u)]α.

Since [a, d2(u)]α = 0, we obtain [d(a), d(u)]α = 0. Therefore, a ∈ Z(d(V )) and
d(a) ∈ Z(d(V )). But d(aαu − uαa) = d(a)αu + aαd(u) − d(u)αauαd(a) =
[d(a), u]α + [a, d(u)]α. Since [a, d(u)]α = 0, d([a, u]α) = [d(a), u]α ∈ d(V ). Hence,
[d(a), [d(a), V ]α]α = 0. By Theorem 2, we obtain that [d(u), V ]α = 0, and
since V �⊆ Z(M), by Lemma 2, d(a) ∈ Z(M). By the similar manner, since
aαa ∈ Z(d(U)), 2aαd(u) = d(aαa) ∈ Z(M), for, a ∈ Z(M) and d(a) ∈ Z(M),
the fact that aαd(a) ∈ Z(M) forces d(a) = 0. Therefore, d(a) = 0 for all
a ∈ Z(d(U)) which is not in Z(M). If d(b) �= 0 for some b ∈ Z(d(U)), then by
the above, b ∈ Z(M). Furthermore, if a ∈ Z(d(U)), a �∈ Z(M), then d(a) = 0,
hence d(a + b) = d(a) + d(b) = d(b) �= 0. Consequently, a + b ∈ Z(M), together
with b ∈ Z(M) we have a ∈ Z(M), a contradiction. Hence, if we assume that
Z(d(U)) �⊆ Z(M), then it is forced to d(a) = 0, for all a ∈ Z(d(U)).

Let K = {x ∈ M | d(x) = 0}. Then, we have Z(d(U)) ⊆ K. Moreover, if
a ∈ Z(d(U)) and u U, then d([a, u]α) = [a, d(u)]α = 0 since d(a) = 0. Thus,
[a, U ]Γ ⊆ K. Now, since U �⊆ Z(M), by Lemma 1 of [16], [I,M ]Γ ⊆ U where
I is an ideal of M such that [I,M ]Γ �⊆ Z(M). If m ∈ [I,M ]Γ ⊆ U ∩ I, then
mαa ∈ I, for α ∈ Γ , hence, for u ∈ U , and β ∈ Γ , [mαa, u]β ∈ U . By the
condition (1), we have, is [m,u]βαa + mα[a, u]β ∈ U . Therefore,

a ∈ Z(d([m,u]βαa + mα[a, u]β)) = Z(d([m,u]β)αa + d(m)α[a, u]β),
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since d(a) = d([a, u]β) = 0, because a, [a, u]β ∈ K. Since a ∈ Z(d([m,u]β))
and a ∈ Z(d(m)), we get d(m)α[a, [a, u]β ]β = 0 for all m ∈ [I,M ]Γ , u ∈ L
and α, β ∈ Γ . Thus, by the proof of the last part of the Theorem1, we have
[a, [a, U ]Γ ]Γ = 0. Therefore, by Theorem 2 (or Corollary 1), we get a ∈ Z(M),
since U �⊆ Z(M). The proof of the Theorem is completed.

3 Subring Generated by d(U)

For the development of this section, we need a significant result due to Herstein,
Theorem 1 [12]. This result can be developed in Γ -rings as follows.

Theorem 4. Let M be any Γ -ring, d be a derivation of M such that d3 �= 0.
Then, Q, the subring generated by all d(m), where m ∈ M , contains a non-zero
ideal of M .

Proof. Since d3 �= 0 and d(M) ⊆ Q, d2(Q) ⊆ d3(M) �= 0. Take q ∈ Q such that
d2(q) �= 0. For all m ∈ M and α ∈ Γ , we have d(mαq) = d(m)αq +mαd(q) ∈ Q.
Since both q and d(m) are in Q, mαd(q) ∈ Q. This gives that MΓd(q) ⊆ Q.
Similarly, d(q)ΓM ⊆ Q.

If r, s ∈ M and α, β ∈ Γ , then

d(rαd(q)βs) = d(r)αd(q)βs + rαd2(q)βs + rαd(q)βd(s) ∈ Q.

But d(q)βs ∈ Q and rαd(q) ∈ Q, we have rαd2(q)βs ∈ Q, for all r, s ∈ M
and α, β ∈ Γ . From the above, MΓd2(q) ⊆ Q, d2(q)ΓM ⊆ Q, we conclude
that the ideal of M generated by d2(q) �= 0 must be in Q. If d3 = 0 the result
need not be true. Let M be a prime Γ -ring having nilpotent elements, and let
0 �= a ∈ M be such that aαa = 0, for all α ∈ Γ . Let d : M → M be defined
by d(x) = [a, x]α. Then, d is aviation of M if M satisfies the condition (1).
Since aαa = 0, B = aΓM + MΓQ is a subring of M and contains d(M). Also,
d3 = 0 and d2 �= 0, if charM �= 2. But B contains no nonzero ideals of M , for
aΓBΓa = 0.

By the Theorem 4, we have seen that for any Γ -ring M , d(M)∗ contains a
nonzero ideal of M when M is a prime Γ -ring and d3 �= 0. Let U ⊆ Z(M) be a
Lie ideal of a Γ -ring M . We denote d(U)∗ to be the subring generated by d(U),
where d �= 0 is a derivation of M . For the rest of our articles, we assume that
U ⊆ Z(M) is a 2-torsion free prime Γ -ring M which satisfies the condition (1)
and let d �= 0 be a derivation of M .

We shall arrange the frequent use of the Lie ideals K = [U,U ]Γ and W =
[K,K]Γ which are closely related to U . Our main result in this section will follow
as a consequence of several lemmas.

Lemma 8. If d3 �= 0 and if d(K)∗ contains a non-zero left ideal I of M and a
non-zero right ideal J of M , then d(U)∗ contains a non-zero ideal of M .
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Proof. Since K = [U,U ]Γ and d(K) ⊆ U we have seen that d(d(K)∗) ⊆ d(U)∗.
Let a ∈ I ⊆ d(K)∗ and x ∈ M . Then, d(xαa) ∈ d(I) ⊆ d(d(K)∗) ⊆ d(U)∗

for every α ∈ |Gamma. So, d(x)αa + xαd(a) ∈ d(U)∗, for all α ∈ Γ . Since
d(x)αa is in I, and so, in d(K)∗ ⊆ d(U)∗, we have xαd(a) ∈ d(U)∗. Thus,
MΓd(I) ⊆ d(U)∗. Similarly, d(J)ΓM ⊆ d(U)∗. If a ∈ I, u ∈ K and α ∈ Γ ,
then d([u, a]α) ∈ d(K)∗, so [d(u), a]α + [u, d(a)]α ∈ d(K)∗. But d(u)αa ∈ I ⊆
d(K)∗, uαd(a) ∈ d(U)∗, by the above, and aαd(u) ∈ IΓd(K) ⊆ d(K)∗. So,
d(I)ΓK ⊆ d(U)∗. Similarly, KΓd(J) ⊆ d(U)∗. Let P = IΓKΓJ . Then, P is
an ideal of M and, by Lemma 1, P �= 0. Also, we have d(P ) = d(IΓKΓJ) ⊆
d(I)ΓKΓJ + IΓd(K)ΓJ + IΓKΓd(J) ⊆ d(U)∗, since d(I)ΓK, KΓd(J), I and
J are all in d(U)∗. Thus, d(P )∗ ⊆ d(U)∗. But, if d3 �= 0, P is an ideal of the
prime Γ -ring M , d(I)∗ contains a non-zero ideal of M . Therefore, d(U)∗ contains
a non-zero ideal of M .

Lemma 9. Let P �= 0 be an ideal of M . If d(U)∗ does not contain both a non-
zero left-ideal and a non-zero right-ideal of M and if [c, P ]Γ ⊆ d(U)∗. Then,
c ∈ Z(M).

Proof. Let s ∈ d(U), p ∈ P and α, β ∈ Γ . Then, [c, sβk]α = [c, s]αβk + sβ[c, k]β .
We have [c, sβp]α ∈ d(U)∗, for all α, β ∈ Γ . Because s ∈ d(U), [c, p]β ∈ d(U)
we get sβ[c, k]α ∈ d(U)∗. Hence, [c, s]αβp ∈ d(U)∗, that is, the right ideal of M ,
[c, d(U)]Γ ΓP ⊆ d(U)∗. Similarly PΓ [c, d(U)]Gamma ⊆ d(U)∗ is a left-ideal of M
lying in d(U)∗. By the hypothesis one of PΓ [c, d(U)]Γ = 0 or [c, d(U)]Γ ΓP = 0.
Hence, [c, d(U)]Γ = 0, by the primeness of M . Therefore, we conclude that
c ∈ Z(M), by Theorem 3.

Now we shall prove a highly special and somewhat messy.

Lemma 10. If d2(UΓU) = 0, then d3(W ) = 0.

Proof. Since U �⊆ Z(M), by Lemma 10 none of U,K = [U,U ]Γ , W = [K,K]Γ is
in Z(M). Also, d(K) ⊆ U , d(W ) ⊆ K, d2(W ) ⊆ U . If u ∈ U , k ∈ K, r ∈ W and
α, β ∈ Γ , then for any t ∈ U , we have

d2(u)αd2(d(k)βd2(r)γt − d2(r)γtβd(v)) = 0. (5)

After calculation and making use of d(k) ∈ U , d2(r) ∈ U and d2(UΓU) = 0 and
the condition (1), (2) reduces to

d2(u)αd(k)β(d4(r)γt + 2d3(r)γd(t)) = 0. (6)

Now, we choose t ∈ d(K) ⊆ U in the relation (6), we get from (6)

d2(u)αd(k)βd4(r)γd(k) = 0,

since d3(r)γd(t) = 0 for such t. By Lemma 4, we have seen that

d2(u)αd(k)βd4(r) = 0.
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Using this relation in (6), we have

d2(u)αd(k)βd3(r)γd(u) = 0, (7)

for all u ∈ U , k ∈ K, r ∈ W and α, β, γ ∈ Γ . Therefore, by Lemma 4, we get

d2(u)αd(k)βd3(r) = 0, (8)

for all u ∈ U , k ∈ K, r ∈ W and α, β, γ ∈ Γ . Similarly, reversing sides, we get

d3(r)αd(k)βd2(u) = 0, (9)

for all u ∈ U , k ∈ K, r ∈ W and α, β, γ ∈ Γ . Now, consider d2(d(t))αd2(kβd(r)−
d(r)βk) = 0 where t, r ∈ W , k ∈ K and α, β ∈ Γ . Expanding this and making
use of (8) we have that d3(t)αkβd3(r) = 0 for all for all k ∈ K, t, r ∈ W and
α, β, γ ∈ Γ . Thus, d3(W )ΓKΓd3(W ) = 0. By Lemma 4 we obtain d3(W ) = 0,
as claimed.

Lemma 11. If d3(U) = 0, then d3 = 0.

Proof. Let u ∈ U , m ∈ M and α ∈ Gamma. Then,

0 = d3([u,m]α) = 3[d2(u), d(m)]α + 3[d(u), d2(m)]α + [u, d3(m)]α. (10)

In this replace u by d2(w) where w ∈ W , to obtain

[d2(w), d3(m)] = 0, (11)

for all w ∈ W , m ∈ M and α ∈ Gamma We now replace u by d(w), m by
d(m), where w ∈ W , in (10). By using (11), we get [d(w), d4(m)]α = 0, for all
w ∈ W , m ∈ M and α ∈ Γ . Since W �⊆ Z(M), by Theorem 3 we get that
d4(M) ⊆ Z(M). Since d4(m) ⊆ Z(M) for all m ∈ M . If u ∈ U , m ∈ M and
α ∈ Γ , then

0 = d4([u,m]α) = 6[d2(u), d2(m)]α + 4[d(u), d3(m)]α.

But we also have that

0 = d3([u, d(m)]α) = 3[d2(u), d2(m)]α + 3[d(u), d3(m)]α.

Playing these last two relations off against each other leads us to 2[d(u), d3(r)]α =
0, and so [d(u), d3(r)]α = 0, for all u ∈ U , r ∈ M and α ∈ Γ . By Theorem 3,
d3(M) ⊆ Z(M). Thus, if r ∈ M , u ∈ U and α ∈ Γ , then d3(rαd2(u)) =
d3(r)αd2(u) ∈ Z(M). However, d3(M) ⊆ Z(M), so since d3(M)Γd2(U) ⊆ Z(M)
if d3(M) �= 0, we are forced to d2(U) ⊆ Z(M). Now, suppose that d3(M) �= 0,
as we have seen, we must have d2(U) ⊆ Z(M). If r ∈ M , u ∈ U and α ∈ Γ ,
then d4(rαd(u)) = d4(r)αd(u)+4d3(r)αd2(u) ∈ Z(M), and since d3(r) ∈ Z(M),
d2(u) ∈ Z(M), we see that d4(r)αd(u) ∈ Z(M), that is, d4(M)Γd(U) ⊆ Z(M).
By Lemma 8 we know that d(L) �⊆ Z(M), by the above we know that d4(M) ⊆
Z(M), these, combined with d4(M)Γd(U) ⊆ Z(M) force d4(M) = 0. Again,
if r ∈ M , u ∈ U and α ∈ Γ , then 0 = d4(rαd(u)) = 4d3(r)αd2(u), so that
d3(M)Γd2(U) = 0. But d2(U) �= 0 ⊆ Z(M) (by Theorem 2) so we conclude that
d3(M) = 0. This completes the proof.
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Now, we have come to a positive to prove our main results.

Theorem 5. If U �⊆ Z(M) is a Lie ideal of M and d is a derivation of M such
that d3 �= 0, then d(U)∗ contains a non-zero ideal of M .

Proof. If K = [U,U ]Γ and W = [K,K]Γ , in view of Lemma 8 it is sufficient
to show that d(K)∗ contains a non-zero left, and a non-zero right ideal of M .
We assume that this situation is not true. Then, we have to show that this
leads to d2([W,W ]Γ Γ [W,W ]Γ ) = 0, by Lemmas 10 and 11 we shall arrive the
contradiction d3 = 0.

Let a ∈ d(W ), where w ∈ [W,W ]Γ . Then, for all x ∈ M and α, β ∈ Γ ,
aα(aβx − xβa) = aα(aβx) − (aαx)βa ∈ W , using condition (1)

d(aβ(aαx − xαa)) = d(a)β(aαx − xαa) + aβd(aαx − xαa) ∈ d(W ).

But a ∈ d(W ) ⊆ d(K) and d(aαx − xαa) ∈ d(V ), whence we get

d(a)β(aαx − xαa) ∈ d(U)∗, (12)

for all a ∈ d([W,W ]Γ ) and x ∈ M . On the other hand, if u ∈ V , then d([a, u]α) =
[d(a), u]α + [a, d(u)]αd(V ), and since a ∈ d(W ) ⊆ d(V ) we have that [a, d(u)]α ∈
d(V )∗. Hence,

[d(a), V ]α ∈ d(U)∗, (13)

for all a ∈ d([W,W ]Γ ). We also have d(a)βd(aαr − rαa) = d(a)β[d(a), r]α +
d(a)β[a, d(r)]α ∈ d(U)∗, by (13), d(a)β[a, d(r)]α ∈ d(U)∗. The net result of the
above becomes

d(a)β[d(a), r]α ∈ d(U)∗, (14)

for all a ∈ d([W,W ]Γ ), r ∈ M and α, β ∈ Γ . We linearize (14) on a to get

s = d(a)β[d(b), r]α + d(b)β[d(a), r]α ∈ d(U)∗, (15)

for all a, b ∈ d([W,W ]Γ ), r ∈ M and α, β ∈ Γ . If t = [d(a)βd(b), r]α =
d(a)β[d(b), r]α + [d(a), r]αβd(b), then

s − t = d(b)β[d(a), r]α − [d(a), r]αβd(b) ∈ d(U)∗,

by (13). Thus, we conclude that t ∈ d(U)∗ that is, [d(a)βd(b),M ]α ⊆ d(U)∗.
Because d(U)∗ does not contain both a non-zero left-ideal and a non-zero
right-ideal of M , by Lemma 9, we have that d(a)βd(b) ∈ Z(M), for all
a, b ∈ d([W,W ]Γ ). Let a = d(a)βd(b), by (12), d(b)β(bαx − xαb) ∈ d(U)∗ and
since d(a) ∈ d(V ), we get that aβ(bαx−xαb) = d(a)δd(b)β(bαx−xαb) ∈ d(U)∗.
Because a ∈ Z(M) this says that [b, I]α ∈ d(U)∗, where I = aΓM is an
ideal of M . By our hypothesis on d(U)∗, if I 0, we would conclude by Lemma
1 that b ∈ Z(M) for all b ∈ d([W,W ]Γ ), by Lemma 6 we would be led to
[W,W ]Γ ⊆ Z(M), and so U ⊆ Z(M), a contradiction. Thus, I = aΓM = 0,
hence a = 0. In other words, d(a)Γd(b) = 0, for all a, b ∈ d([W,W ]Γ ), that is,
d([W,W ]Γ )Γd([W,W ]Γ ) = 0. By Lemmas 10 and 11 we reach the contradiction
that d3 = 0.
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We develop a result which simultaneously implies those of Theorems 2 and 3
and come to the end of paper.

Theorem 6. Let U �⊆ Z(M) be a Lie ideal of M . Suppose that d1 and d2 are
derivations of M such that d1d2(U) = 0. Then, either d1 = 0 or d2 = 0.

Proof. Suppose that d1 �= 0 and d2 �= 0. Let K = [U,U ]Γ . Then, for all k ∈ K,
d1(k) ∈ U , hence d1d2([u, d1(k)]α) = 0, for all u ∈ U and α ∈ Γ . Thus,
d1([d2(u), d2(k)]α + [u, d22(k)]α) = 0, which gives us, since d1d2(U) = 0 and d1
is a derivation of M , that [d1(u), d22(k)]α = 0, for all u ∈ U , k ∈ K and α ∈ Γ .
Thus, d22(k) ∈ Z(d2(U)), by Theorem 3. If k ∈ K, r ∈ M and α ∈ Γ , then
0 = d1(d2([d2(k), r]α)) = d1([d2(k), d1(r)]α) since d21(k) ∈ Z(M). Thus, expand-
ing, we get [d2d1(k), d1(r)]α + [d1(k), d2d1(r)]α = 0 and so [d1(k), d2d1(r)]α = 0,
for all k ∈ K, r ∈ M and α ∈ Γ , that is [d1(K), d2d1(M)]α = 0. Since
d �= 0, by Theorem 3, d2d1(M) ⊆ Z(M). Now, for all k ∈ K, u ∈ U and
α ∈ Γ , we have d2d1(d1(v)αu) = d2(d21(v)αu + d1(k)αd1(u)) = d21(k)αd2(u),
since d2d

2
1(k) = d2d1(d1(k)) = 0, because d1(k) ∈ U , and d2(d1(k)d1(u)) = 0.

Therefore, d21(K)αd2(U) ⊆ Z(M). But, since U �⊆ Z(M), d2(U) �⊆ Z(M) by
Lemma 6, in consequence, d21(K) = 0, since we know that d21(K) ⊆ Z(M)
and d21(K)αd2(U) ⊆ Z(M). Since K �⊆ Z(M) and d21(K) = 0, by Theorem 2
we obtain d1 = 0. To see that Theorem 6 implies Theorem 2, we may choose
d1 = d2 = d. As for Theorem 3, if d2 �= 0, d1 is a derivation of M and if
a ∈ Z(d2(U)), let d1 be defined by d1(x) = [a, x]α, for α ∈ Γ , then by the condi-
tion (1) d1 is a derivation of M . We see that d1d2(U) = 0. Hence, by Theorem 6
since d1 = 0, d2 �= 0. Therefore, [a, x]α = 0, for all x ∈ M and α ∈ Γ , that is,
a ∈ Z(M).
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Abstract. In this paper, we introduce and study λd−statistical con-
vergence, λd−statistical boundedness and strong (V, λ)d −summability
of sequences in metric spaces. Furthermore we establish some rela-
tions between the sets of λd-statistically convergent sequences, between
the sets of λd-statistically bounded sequences, between the sets
of λd−statistical convergent sequences and the sets of strongly
(V, λ)d −summable sequences for various sequences λ = (λn) in Λ.
Furthermore we establish some inclusion relations between the sets of
strongly (V, λ)d −summable sequences for various sequences λ = (λn) in
set Λ∗.

Keywords: λ−density · Statistical convergence · λ−statistical conver-
gence · Strong summability

1 Introduction and Preliminaries

The notion of statistical convergence of a sequence (of real or complex numbers)
was defined by Fast [5] and Steinhaus [15] independently in 1951. After then this
subject have been studied by various mathematicians (see [2,4,6,7,11–14]).

A sequence x = (xk) of real (or complex) numbers is said to be statistically
convergent to a number L if for every ε > 0

lim
n→∞

1
n

|{k ≤ n : |xk − L| ≥ ε}| = 0.

Let λ = (λn) be a non-decreasing sequence of positive real numbers tending to
∞ such that

λn+1 ≤ λn + 1, λ1 = 1.

The set of all such sequences will be denoted by Λ.
Let K ⊂ N, λ = (λn) ∈ Λ, and define λ−density of K as

δλ (K) = lim
n→∞

1
λn

|{k ∈ In : k ∈ K}|
c© Springer Nature Singapore Pte Ltd. 2017
D. Giri et al. (Eds.): ICMC 2017, CCIS 655, pp. 391–403, 2017.
DOI: 10.1007/978-981-10-4642-1 33
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where In = [n − λn + 1, n] and |.| denotes the number of elements of the involved
set. λ−density δλ (K) reduces to the natural density δ (K) in case λn = n [3].

The generalized de la Vallée-Poussin mean is defined by

tn (x) =
1
λn

∑

k∈In

xk.

A sequence x = (xk) is said to be (V, λ)-summable to a number L (see [10]) if

tn (x) → L as n → ∞.

If λn = n for each n ∈ N, then (V, λ)-summability reduces to (C, 1)-
summability. We write

[C, 1] =
{

x = (xk) : lim
n→∞

1
n

n∑

k=1

|xk − L| = 0 for some L

}

,

[V, λ] =

{

x = (xk) : lim
n→∞

1
λn

∑

k∈In

|xk − L| = 0 for some L

}

for the sets of sequences x = (xk) which are strongly Cesàro summable and
strongly (V, λ)−summable, respectively.

The λ−statistical convergence was introduced by Mursaleen in [11] as follows
for number sequences.

Let λ = (λn) ∈ Λ. A sequence x = (xk) is said to be λ−statistically convergent
or Sλ-convergent to L if for every ε > 0

lim
n→∞

1
λn

|{k ∈ In : |xk − L| ≥ ε}| = 0,

where In = [n − λn + 1, n]. In this case we write Sλ − limx = L or xk → L(Sλ),
and Sλ = {x = (xk) : Sλ − limx = L for some number L}.

In this study, we determine the relations between the sets Sλd and Sμd,
Sμd and BSλd, BSμd and BSλd, the sets Sλd and [V, μ]d for various sequences
λ, μ in the class Λ. Furthermore we determine the relations between the sets
[V, λ]d and [V, μ]d for various sequences λ, μ in the class Λ∗.

Throughout the paper c (X) and l∞ (X) will denote the sets of convergent and
bounded sequences in metric space (X, d), respectively and by the statement “for
all n ∈ Nn◦” we mean “for all n ∈ N except finite numbers of positive integers”
where Nn◦ = {n◦, n◦ + 1, n◦ + 2, ...} for some n◦ ∈ N = {1, 2, 3, ...}.

2 λd−Statistical Convergence and λd−statistical
Boundedness in Metric Spaces

λ−statistical convergence of number sequences was introduced and studied by
Mursaleen [11]. In this section we define and study λd−statistical convergence
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and λd−statistical boundedness of a sequence in a metric space and give the
relations between the sets of λd−statistical convergent sequences and the sets of
λd−statistical bounded sequences for various sequences λ = (λn) in Λ.

Definition 2.1. Let (X, d) be a metric space and let λ = (λn) ∈ Λ be given. A
sequence x = (xk) in metric space (X, d) is called λd−statistically convergent to
a point xo ∈ X if for every ε > 0,

lim
n→∞

1
λn

|{k ∈ In : xk /∈ Bε (xo)}| = 0,

where In = [n − λn + 1, n] and Bε (xo) = {x ∈ X : d (x, xo) < ε} is the open ball
of radius ε and center xo. The class of λd−statistically convergent sequences in
the metric space (X, d) will be denoted by Sλd. If a sequence x = (xk) in metric
space (X, d) is λd−statistically convergent to the point xo ∈ X then we write
xk → xo [Sλd] .

In case λn = n, Sλd reduces to the class Sd which is the set of those sequences
such that for every ε > 0

lim
n→∞

1
n

|{k ≤ n : xk /∈ Bε (xo)}| = 0

for some xo ∈ X [9].

Theorem 2.2. Let (X, d) be a metric space, λ = (λn) and μ = (μn) be two
sequences in Λ such that λn ≤ μn for all n ∈ Nno

. Then in metric space X
(i) Every μd−statistically convergent sequence is λd−statistically convergent,

that is Sμd ⊆ Sλd if

lim
n→∞ inf

λn

μn
> 0. (1)

(ii) Every λd−statistically convergent sequence is μd−statistically conver-
gent, that is Sλd ⊆ Sμd if

lim
n→∞

λn

μn
= 1. (2)

In the following proof we will use the techniques given in [2].

Proof. (i) Suppose that λn ≤ μn for all n ∈ Nn◦ and let (1) be satisfied. Then
In ⊂ Jn and so that for every ε > 0 we may write

|{k ∈ Jn : xk /∈ Bε (xo)}| ≥ |{k ∈ In : xk /∈ Bε (xo)}|

and therefore we have

1
μn

|{k ∈ Jn : xk /∈ Bε (xo)}| ≥ λn

μn

1
λn

|{k ∈ In : xk /∈ Bε (xo)}|
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for all n ∈ Nn◦ , where Jn = [n − μn + 1, n]. Now taking the limit as n → ∞ in
the last inequality and using (1) we get xk → xo [Sμd] =⇒ xk → xo [Sλd] so that
Sμd ⊆ Sλd.

(ii) Let (xk) ∈ Sλd and (2) be satisfied. Since In ⊂ Jn, for every ε > 0 we
may write

1
μn

|{k ∈ Jn : xk /∈ Bε (xo)}| = 1
μn

|{n − μn + 1 ≤ k ≤ n − λn : xk /∈ Bε (xo)}|

+
1
μn

|{k ∈ In : xk /∈ Bε (xo)}|

≤ μn − λn

μn
+

1
λn

|{k ∈ In : xk /∈ Bε (xo)}|

≤
(

1 − λn

μn

)

+
1
λn

|{k ∈ In : xk /∈ Bε (xo)}|

for all n ∈ Nn◦ .
Since lim

n

λn

μn
= 1 by (2) the first term and since x = (xk) ∈ Sλd the second

term of right hand side of above inequality tend to 0 as n → ∞. This implies that
1

μn
|{k ∈ Jn : xk /∈ Bε (xo)}| → 0 as n → ∞ and so that xk → xo [Sλd] =⇒ xk →

xo [Sμd]. Therefore Sλd ⊆ Sμd.

From Theorem2.2 we have the following result.

Corollary 2.3. Let (X, d) be a metric space, λ = (λn) and μ = (μn) be two
sequences in Λ such that λn ≤ μn for all n ∈ Nno

. If (2) holds then Sλd = Sμd.
If we take μ = (μn) = (n) in Corollary 2.3 we have the following result.

Corollary 2.4. Let (X, d) be a metric space and λ = (λn) ∈ Λ. If lim
n→∞

λn

n = 1
then Sλd = Sd.

Definition 2.5. Let (X, d) be a metric space and let λ = (λn) ∈ Λ be given.
A sequence x = (xk) in metric space (X, d) is called λd−statistically bounded if
there exist a point x ∈ X and a real number M > 0 such that

lim
n→∞

1
λn

|{k ∈ In : d (xk, x) ≥ M}| = 0.

The set of λd−statistically bounded sequences in the metric space (X, d) will
be denoted by BSλd.

In case (λn) = (n) , λd−statistical boundedness reduces to statistical bound-
edness and the set of statistically bounded sequences will be denoted by BSd [8].

Theorem 2.6. Any bounded sequence in a metric space (X, d) is
λd−statistically bounded for each λ ∈ Λ.
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Proof. Assume that x = (xk) is a bounded sequence in a metric space (X, d)
and let λ ∈ Λ be any element. Since the sequence (xk) is bounded then there
exist a real number M > 0 and a point x ∈ X such that d (xk, x) < M for every
k ∈ N = {1, 2, 3, ...} . Then

{k ≤ n : d (xk, x) ≥ M} = ∅ (3)

and since the inclusion

{k ∈ In : d (xk, x) ≥ M} ⊂ {k ≤ n : d (xk, x) ≥ M}

holds we have {k ∈ In : d (xk, x) ≥ M} = ∅ for each n ∈ N. Also we have

lim
n→∞ |{k ≤ n : d (xk, x) ≥ M}| = |{k ∈ N : d (xk, x) ≥ M}| = 0

by (3). Now easily we have

lim
n→∞

1
λn

|{k ∈ In : d (xk, x) ≥ M}| = 0

since λn → ∞ as n → ∞. Therefore the sequence (xk) is λd−statistically
bounded. This completes the proof.

Remark 2.7. The invers of Theorem 2.6 may not be true. For this let us con-
sider the following example:

Example: Let us take X = R with usual metric. Then the sequence (xk)
defined by

xk =

⎧
⎨

⎩

k, k = m2

(−1)k , k �= m2

is not bounded. But since the inequality

1
λn

|{k ∈ In : |xk| ≥ M}| ≤
√

n − √
n − λn

λn

=
λn

λn

(√
n +

√
n − λn

)

=
1√

n +
√

n − λn

≤ 1√
n

is satisfied and the right side of this last inequality tends to 0 as n → ∞, we
obtain that the sequence (xk) is λd−statistically bounded.

Theorem 2.8. Let (X, d) be a metric space and λ = (λn) , μ = (μn) ∈ Λ be
two sequences such that λn ≤ μn for all n ∈ Nno

.
(i) Suppose that the inequality (1) is satisfied. Then if a sequence x = (xk)

in X is μd−statistically convergent, then it is λd− statistically bounded that is
Sμd ⊆ BSλd.
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(ii) Suppose that the equality (2) is satisfied. Then if a sequence x = (xk)
in X is λd−statistically bounded then it is μd− statistically bounded that is
BSλd ⊆ BSμd.

Proof. (i) Suppose that λn ≤ μn for all n ∈ Nno
and let (1) be satisfied. Assume

that x = (xk) is μd-statistically convergent to xo ∈ X. Then In ⊂ Jn and so
that for ε > 0 and a large M > 0 we may write

{k ∈ In : d (xk, xo) ≥ M} ⊂ {k ∈ Jn : xk /∈ Bε (xo)} .

From this inclusion we obtain the inequality

|{k ∈ Jn : xk /∈ Bε (xo)}| ≥ |{k ∈ In : d (xk, xo) ≥ M}|
and therefore we have

1
μn

|{k ∈ Jn : xk /∈ Bε (xo)}| ≥ λn

μn

1
λn

|{k ∈ In : d (xk, xo) ≥ M}|

for all n ∈ Nno
, where Jn = [n − μn + 1, n] . Now taking the limit as n → ∞ in

the last inequality and using (1) we get x = (xk) ∈ BSλd so that Sμd ⊆ BSλd.

(ii) Let (xk) ∈ BSλd and (2) be satisfied. Since In ⊂ Jn, for a large number
M > 0 we may write

1

μn
|{k ∈ Jn : d (xk, xo) ≥ M}| = 1

μn
|{n − μn + 1 ≤ k ≤ n − λn : d (xk, xo) ≥ M}|

+
1

μn
|{k ∈ In : d (xk, xo) ≥ M}|

≤ μn − λn

μn
+

1

λn
|{k ∈ In : d (xk, xo) ≥ M}|

≤
(
1 − λn

μn

)
+

1

λn
|{k ∈ In : d (xk, xo) ≥ M}|

for all n ∈ Nno
. Since lim

n

λn

μn
= 1 by (2) the first term and since x = (xk) ∈ BSλd

the second term of the right hand side of above inequality tend to 0 as n → ∞.
This implies that

lim
n→∞

1
μn

|{k ∈ Jn : d (xk, xo) ≥ M}| = 0

and so that the sequence (xk) is μd−statistically bounded, that is (xk) ∈ BSμd.
Therefore since (xk) ∈ BSλd is an arbitrary element ve have BSλd ⊆ BSμd and
this completes the proof.

Theorem 2.9. Let (X, d) be a metric space and λ = (λn) ∈ Λ be given. Then
every λd−statistically convergent sequence in X is λd−statistically bounded,
that is Sλd ⊆ BSλd.

Taking (μn) = (λn) the proof follows from Theorem 2.8 (i).
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Corollary 2.10. Let (X, d) be a metric space and λ = (λn) ∈ Λ be given.
(i) Every statistically convergent sequence is λd−statistically bounded, that

is Sd ⊆ BSλd if

lim inf
n→∞

λn

n
> 0. (4)

(ii) Every λd−statistically bounded sequence is statistically bounded, that
is BSλd ⊆ BSd if

lim
n→∞

λn

n
= 1. (5)

Taking (μn) = (n) the proof follows from Theorem 2.8 (i) and (ii) respec-
tively.

Remark 2.11. The invers of (i) in Theorem 2.8 may not be true. For example
if we take X = R with the usual metric, the sequence (xk) defined by

xk =

⎧
⎨

⎩

0, k = 2m + 1

1, k = 2m

is not μd−statistically convergent but it is λd−statistically bounded for any
λ, μ ∈ Λ. Note that in this example we do not need the restriction λn ≤ μn for
all n ∈ Nno

.

3 Strong (V, λ)d−summability in Metric Spaces

p−strong summability in metric spaces was studied by Bilalov and Nazarova [1].
In this section we introduce and study strong (V, λ)d − summability and give the
relations between the sets of strongly (V, λ)d − summable sequences for various
sequences λ = (λn) in Λ∗ in a metric space (X, d) , where

Λ∗ = {λ = (λn) : 0 < λn ≤ λn+1, for every n and λn → ∞ (n → ∞)} .

Note that in order to obtain the class Λ∗ we remove the conditions λn+1 ≤ λn+1
and λ1 = 1 on the class Λ. It is clear that Λ ⊂ Λ∗ and the inclusion is strict. For
example λ = (λn) =

(
n2

) ∈ Λ∗ − Λ.
In this chapter, we use the class Λ∗ instead of Λ.

Definition 3.1. Let (X, d) be a metric space and λ = (λn) ∈ Λ∗. A sequence
x = (xk) ⊂ X is said to be strongly (V, λ)d −summable to xo ∈ X if

lim
n→∞

1
λn

∑

k∈In

d (xk, xo) = 0.
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We write

[V, λ]d =

{

x = (xk) : lim
n→∞

1
λn

∑

k∈In

d (xk, xo) = 0 for some xo ∈ X

}

for the set of the sequences which are strongly (V, λ)d −summable in metric space
X with the metric d. If a sequence x = (xk) in metric space (X, d) is strongly
(V, λ)d −summable to the point xo ∈ X then we write xk → xo [V, λ]d .

Strong (V, λ)d −summability reduces to strong (C, 1)d -summability in case
λn = n [1].

Theorem 3.2. Let (X, d) be a metric space and λ = (λn) , μ = (μn) ∈ Λ∗ and
suppose that λn ≤ μn for all n ∈ Nn◦ .

(i) If (1) holds then a strongly (V, μ)d −summable sequence in the metric
space X is also strongly (V, λ)d −summable, that is [V, μ]d ⊆ [V, λ]d,

(ii) Suppose (2) holds. If x = (xk) ⊂ X is bounded and xk → xo [V, λ]d then
xk → xo [V, μ]d.

Proof. (i) Let (X, d) be a metric space and suppose that λn ≤ μn for all
n ∈ Nn◦ . Then In ⊆ Jn and so that we may write

1
μn

∑

k∈Jn

d (xk, xo) ≥ 1
μn

∑

k∈In

d (xk, xo)

for all n ∈ Nn◦ and hence we may write the inequality

1
μn

∑

k∈Jn

d (xk, xo) ≥ λn

μn

1
λn

∑

k∈In

d (xk, xo) .

Then taking limit as n → ∞ in the last inequality and using (1) we obtain
xk → xo [V, μ]d =⇒ xk → xo [V, λ]d. Since x = (xk) ∈ [V, μ]d is an arbitrary
sequence we obtain that [V, μ]d ⊆ [V, λ]d.

(ii) Let the sequence x = (xk) ⊂ X be bounded and xk → xo [V, λ]d. Suppose
(2) holds. Since the sequence x = (xk) is bounded then there exists some open
ball Br (x′) such that xk ∈ Br (x′) for all k ∈ N, r > 0 and x′ ∈ X. Hence we
may write

d (xk, x◦) ≤ d (xk, x′) + d (x′, x◦) < r + d (x′, x◦) = M.

Now since λn ≤ μn and so that 1
μn

≤ 1
λn

, and In ⊂ Jn for all n ∈ Nn◦ , we may
write
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1
μn

∑

k∈Jn

d (xk, x◦) =
1
μn

∑

k∈Jn−In

d (xk, x◦) +
1
μn

∑

k∈In

d (xk, x◦)

≤ μn − λn

μn
M +

1
μn

∑

k∈In

d (xk, x◦)

≤
(

1 − λn

μn

)

M +
1
λn

∑

k∈In

d (xk, x◦)

for every n ∈ Nn◦ . Since lim
n

λn

μn
= 1 by (2) the first term and since xk → x◦

[V, λ]d the second term of rigt hand side of above inequality tend to 0 as n → ∞.
Hence we get xk → x◦ [V, λ]d =⇒ xk → x◦ [V, μ]d.

If we take discrete metric instead of any metric in Theorem 3.2 we have the
following result.

Corollary 3.3. Let (X, d) be a metric space with discrete metric, λ = (λn) and
μ = (μn) be two sequences in Λ∗ such that λn ≤ μn for all n ∈ Nno

. If (2) holds
then [V, λ]d = [V, μ]d.

Proof. If (2) holds then lim
n→∞

λn

μn
= 1 > 0 so that (1) holds, too. Then from

Theorem3.2 (i) we have [V, μ]d ⊆ [V, λ]d. Since any sequence in discrete met-
ric space is bounded then any sequence in [V, λ]d is bounded and using (2)
from Theorem 3.2 (ii) we get [V, λ]d ⊆ [V, μ]d. Both inclusions give the equality
[V, λ]d = [V, μ]d.

4 Relations Between λd−statistical Convergence
and Strong (V, λ)d−summability in Metric Spaces

In this section we give the relations between the sets of λd−statistically conver-
gent sequences and the sets of strongly (V, λ)d −summable sequences for various
sequences λ = (λn) belong to Λ in metric spaces.

Theorem 4.1. Let (X, d) be a metric space and λ = (λn) ∈ Λ. Then
(i) xk → xo [V, λ]d =⇒ xk → xo [Sλd] .
(ii) If (xk) is bounded and xk → xo [Sλd] then xk → xo [V, λ]d.

Proof. (i) Let ε > 0 and xk → xo [V, λ]d. We may write
∑

k∈In

d (xk, xo) ≥
∑

k∈In
d(xk,xo)≥ε

d (xk, xo) ≥ ε. |{k ∈ In : xk /∈ Bε (xo)}|

and so that
1
λn

∑

k∈In

d (xk, xo) ≥ 1
λn

∑

k∈In
d(xk,xo)≥ε

d (xk, xo) ≥ 1
λn

|{k ∈ In : xk /∈ Bε (xo)}| .ε.

Hence we obtain that xk → xo [Sλd] whenever xk → xo [V, λ]d.
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(ii) Let (xk) be a bounded sequence and xk → xo [Sλd] in metric space (X, d).
Then there is an open ball Br (x′) ⊂ X such that xk ∈ Br (x′) for every k ∈ N

since (xk) is bounded, where r > 0 and x′ ∈ X.
Now we may write

d (xk, xo) ≤ d (xk, x′) + d (x′, xo) < r + d (x′, xo) = M

and since xk → xo [Sλd] for every ε > 0 we have

lim
n→∞

1
λn

|{k ∈ In : xk /∈ Bε (xo)}| = 0.

Thus we obtain

1
λn

∑

k∈In

d (xk, xo) =
1
λn

∑

k∈In
d(xk,x◦)≥ε

d (xk, xo) +
1
λn

∑

k∈In
d(xk,xo)<ε

d (xk, xo)

<
M

λn
|{k ∈ In : xk /∈ Bε (xo)}| + ε.

This means that xk → xo [V, λ]d.

Theorem 4.2. Let (X, d) be a metric space and λ = (λn) , μ = (μn) ∈ Λ such
that λn ≤ μn for all n ∈ Nn◦ .

(i) If (1) holds then

xk → x◦ [V, μ]d =⇒ xk → x◦ [Sλd]

and the inclusion [V, μ]d ⊂ Sλd is strict for some λ, μ ∈ Λ,
(ii) If (xk) is bounded and xk → x◦ [Sλd] then xk → x◦ [V, μ]d, whenever (2)

holds.

Proof. (i) Let ε > 0 be given and let xk → x◦ [V, μ]d. Then for every ε > 0 we
may write

∑
k∈Jn

d (xk, x◦) ≥
∑
k∈In

d (xk, x◦) ≥ ∑
k∈In

d(xk,x◦)≥ε

d (xk, x◦) ≥ ε. |{k ∈ In : d (xk, x◦) ≥ ε}|

and so that

1
μn

∑

k∈Jn

d (xk, x◦) ≥ λn

μn

1
λn

|{k ∈ In : d (xk, x◦) ≥ ε}| .ε

for all n ∈ Nn◦ . Then taking limit as n → ∞ in the last inequality and using (1)
we obtain that xk → x◦ [V, μ]d =⇒ xk → x◦ [Sλd]. Since x = (xk) ∈ [V, μ]d is an
arbitrary sequence we obtain [V, μ]d ⊆ Sλd.



λd-Statistical Convergence 401

To show that the inclusion [V, μ]d ⊂ Sλd is strict for some λ, μ ∈ Λ we
take X = R, d (x, y) = |x − y| and λn = n+1

2 , μn = n for all n ∈ N. Then
lim
n

λn

μn
= 1

2 > 0 and hence [V, μ]d ⊆ Sλd.

Define x = (xk) as

xk =

⎧
⎨

⎩

1
k , k �= m3

k, k = m3
.

Let ε > 0 be given. Then there exists k◦ ∈ N such that |xk| < ε for all k > k◦
and k �= m3. Now since

1
λn

|{k ∈ In : |xk| ≥ ε}| ≤ 1
λn

(

k◦ + 3
√

n − 3

√
n − 1
2

)

=
2

n + 1

(

k◦ + 3
√

n − 3

√
n − 1
2

)

→ 0

as n → ∞ we have xk → 0 [Sλ] (R). On the other hand we know that the equality

1 + 23 + 33 + 43 + ... + n3 =
n2 (n + 1)2

4

is satisfied for every n ∈ N. Considering this equality, since 3
√

n < [ 3
√

n] + 1 and
so that 1

n > 1

([ 3√n]+1)3
we have

1
μn

∑

k∈Jn

|xk| = 1
n

n∑

k=1

xk =
1
n

n∑

k=1
k=m3

xk +
1
n

n∑

k=1
k �=m3

xk >
1
n

n∑

k=1
k=m3

xk =
1
n

n∑

k=1
k=m3

k

=
1
n

(
1 + 23 + 33 + 43 + ... +

[
3
√

n
]3

)

=
[ 3
√

n]2 ([ 3
√

n] + 1)2

4n
>

[ 3
√

n]2 ([ 3
√

n] − 1)2

4 ([ 3
√

n] + 1)3
→ ∞ (n → ∞) .

Therefore x = (xk) /∈ [V, μ] (R). Thus the inclusion [V, μ]d ⊂ Sλd is strict.

(ii) Suppose that xk → x◦ [Sλd] and x = (xk) is bounded. Then there exist
a number r > 0 and x′ ∈ X such that xk ∈ Br (x′) for all k ∈ N. Hence we may
write

d (xk, x◦) ≤ d (xk, x′) + d (x′, x◦) < r + d (x′, x◦) = M.
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Also since 1
μn

≤ 1
λn

then for every ε > 0 we may write

1
μn

∑

k∈Jn

d (xk, x◦) =
1
μn

∑

k∈Jn−In

d (xk, x◦) +
1
μn

∑

k∈In

d (xk, x◦)

≤ μn − λn

μn
M +

1
μn

∑

k∈In

d (xk, x◦)

≤
(

1 − λn

μn

)

M +
1
λn

∑

k∈In

d (xk, x◦) .

(ii) Suppose that xk → x◦ [Sλd] and x = (xk) is bounded. Then there exist
a number r > 0 and x′ ∈ X such that xk ∈ Br (x′) for all k ∈ N. Hence we may
write

d (xk, x◦) ≤ d (xk, x′) + d (x′, x◦) < r + d (x′, x◦) = M.

Also since 1
μn

≤ 1
λn

then for every ε > 0 we may write

1
μn

∑

k∈Jn

d (xk, x◦) ≤
(

1 − λn

μn

)

M +
1
λn

∑

k∈In
d(xk,x◦)≥ε

d (xk, x◦)

+
1
λn

∑

k∈In
d(xk,x◦)<ε

d (xk, x◦)

≤
(

1 − λn

μn

)

M +
M

λn
|{k ∈ In : d (xk, x◦) ≥ ε}| + ε

for all n ∈ Nn◦ . Using (2) we obtain that xk → x◦ [V, μ]d whenever xk → x◦ [Sλd].

Corollary 4.3. If lim
n→∞ inf λn

μn
> 0 then Sμd ∩ [V, μ]d ⊂ Sλd.

If we take μn = n for all n in Theorem4.2 then we have the following results.
Because lim

n→∞
λn

μn
= 1 implies that lim

n→∞ inf λn

μn
= 1 > 0, that is (2) =⇒ (1).

Corollary 4.4. If lim
n→∞

λn

n = 1 then

(i) If (xk) is bounded and xk → x◦ [Sλd] then xk → x◦ [C, 1] (Xd),
(ii) If xk → x◦ [C, 1] (Xd) then xk → x◦ [Sλd].

Remark 4.5. Let (X, d) be a metric space, λ = (λn) ∈ Λ∗ and 0 < p < ∞.
Define

[V, λ]dp =

{

x = (xk) : lim
n→∞

1
λn

∑

k∈In

[d (xk, x◦)]
p = 0 for some xo ∈ X

}

.

Then Theorem 4.2 is satisfied for [V, λ]dp and [V, μ]dp, if we take [V, λ]dp instead
of [V, λ]d and [V, μ]dp instead of [V, μ]d.



λd-Statistical Convergence 403

5 Conclusion

We have introduced and studied λd−statistical convergence, λd−statistical
boundedness and strong (V, λ)d −summability for a sequence in a metric space
(X, d). Furthermore we have established some inclusion relations between the
sets Sλd and Sμd, between the sets BSλd and BSμd, between the sets [V, λ]d and
[V, μ]d and between the sets Sλd and [V, μ]d under some conditions for λ, μ ∈ Λ
in a metric space (X, d).
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Abstract. The objective of this paper is to introduce the notion of a
permuting skew tri-derivation on prime and semiprime Γ -rings. We prove
that under certain conditions a prime Γ -ring is to be commutative by
means of a nonzero permuting skew tri-derivation.

Keywords: Prime Γ -ring · Semiprime Γ -ring · Permuting skew tri-
derivation · Centralizing mapping · Commuting mapping

1 Introduction

Nobuswa [10] was first introduced the concept of a Γ -ring as a generalization of
a ring and then Barnes [4] has generalized the notion of a Γ -ring in the sense
of Nobuswa. The study of a Γ -ring is of great interest of modern algebraists,
especially for extending the significant results in classical ring theory to the
topics in Γ -rings theory. In [1–3,9,11,12,14,15], permuting tri derivations in
prime and semiprime Γ -rings have been studied by Ozden, Ozturk and Jun,
Ozturk, Jun and Kim [13] studied orthogonal traces on semiprime Γ -rings and
they obtained some conditions in order that the traces must be orthogonal.
Afterwards, Dey and Paul [7] worked on the trace of a permuting tri-additive
mappings in Left s-unital Γ -rings and proved the commuting conditions of a Γ -
ring. In [5], Dey and Paul and Rakhimov proved the significant results related to
permuting Tri-derivations of Γ -rings. Dey and Paul [6] studied and investigated
some results concerning a permuting tri-derivation on a non-commutative 3-
torsion free semiprime Γ -ring. They obtained some characterizations of these
Γ -rings with the help of permuting Tri-derivations. The notion of symmetric
skew 3-derivation of classical rings has been introduced by Fosner in [8] and he
obtained commutativity conditions on prime and semiprime rings with a non-
zero symmetric skew 3-derivations.

By the motivation of the works of Fosner [8], we introduce the concept of
permuting skew tri-derivation on Γ -rings. In this paper, we develop the com-
mutativity conditions on prime and semiprime Γ -rings by using the notion of a
non-zero permuting skew tri-derivation.
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DOI: 10.1007/978-981-10-4642-1 34



On Γ -rings with Permuting Skew Tri-derivations 405

2 Preliminaries

Let M and Γ be additive abelian groups. If there exists an additive map-
ping M × Γ × M → M with (a, α, y) �→ xαy, which satisfies the condition
(xαy)βz = xα(yβz) for all x, y, z ∈ M and α, β ∈ Γ , then M is called a Γ -
ring in the sense of Barnes [4]. Throughout this paper M denotes a Γ -ring with
center Z(M). For any x, y ∈ M and α ∈ Γ , the symbol [x, y]α will denote the
commutator xαy − yαx. A Γ -ring M is called commutative if [x, y]α = 0 for all
x, y ∈ M and α ∈ Γ . We know that

[xβy, z]α = [x, z]αβy + xβ[y, z]α + x[β, α]zy,
[x, yβz]α = yβ[x, z]α + [x, y]αβz + y[β, α]xz.

We take an assumption
xβzαy = xαzβy, (1)

for all x, y, z ∈ M and α, β ∈ Γ .
Using the assumption the basic commutator identities reduce to

[xβy, z]α = [x, z]αβy + xβ[y, z]α,
[x, yβz]α = yβ[x, z]α + [x, y]αβz.

Recall that M is prime if xΓMΓy = {0} implies that x = 0 or y = 0 and M is
semiprime if xΓMΓx = {0} implies that x = 0. Let ≥2 be an integer. A Γ -ring
M is said to be n-torsion free if for x ∈ M , nx = 0 implies x = 0. An additive
map d : M → M is called a derivation of M if d(xαy) = d(x)αy + xαd(y) for
all x, y ∈ M and α ∈ Γ , and it is called a skew derivation of M associated
with the automorphism σ if d(xαy) = d(x)αy + σ(x)αd(y) for all x, y ∈ M and
α ∈ Γ . Of course, skew derivations are one of the natural generalizations of usual
derivations (σ = 1M , where 1M denotes the identity map on M). A map f : M →
M is said to be centralizing on M if [f(x), x]α ∈ Z(M) for all x ∈ M and α ∈ Γ .
In a special case, when [f(x), x]α = 0 holds for all x ∈ M and α ∈ Γ , a map f is
said to be commuting on M . By a bi-derivation we mean a bi-additive map D :
M ×M → M (i.e., D is additive in both arguments), which satisfies the relations
D(xαy, z) = D(x, z)αy + xαD(y, z) and D(x, yβz) = D(x, y)βz + yβD(x, z) for
all x, y ∈ M and α, β ∈ Γ . Let D be symmetric, that is D(x, y) = D(y, x) for
the x, y ∈ M . The map d : M → M defined by d(x) = D(x, x) for all x ∈ M is
called the trace of D. A map D : M ×M ×M → M will be said to be permuting
if the equation D(x, y, z) = D(x, z, y) = D(z, x, y) = D(y, z, x) = D(z, y, x) for
all x, y, z ∈ M . A map d : M → M defined by d(x) = D(x, x, x) for all x ∈ M ,
where D : M × M × M → M is a permuting map, is called the trace of D. It is
obvious that, in case when D : M × M × M → M is a permuting map which is
also tri-additive (i.e., additive in each argument), the trace d of D satisfies the
relation d(x+ y) = d(x)+ d(y)+ 3D(x, x, y)+ 3D(x, y, y) for all x, y ∈ M . Since
we have D(0, y, z) = D(0 + 0, y, z) = D(0, y, z) + D(0, y, z) for all y, z ∈ M , we
obtain D(0, y, z) = 0 for all y, z ∈ M . Hence, we get D(0, y, z) = D(xx, y, z) =
D(x, y, z) + D(x, y, z) = 0 and so we see that D(x, y, z) = D(x, y, z) for all



406 K.K. Dey et al.

x, y, z ∈ M . This tells us that d is an odd function. A tri-additive map D :
M × M × M → M will be called a tri-derivation if the relations D(xαw, y, z) =
D(x, y, z)αw + xαD(w, y, z), D(x, yαw, z) = D(x, y, z)αw + yαD(x,w, z) and
D(x, y, zαw) = D(x, y, z)αw + zαD(x, y, w) are fulfilled for all x, y, z, w ∈ M
and α ∈ Γ . If D is permuting, then the above three relations are equivalent to
each other.

A tri-additive map D : M × M × M → M is a skew tri-derivation associated
with the automorphism σ if

(1) for all y, z ∈ M , the map x �→ D(x, y, z) is a skew derivation of M associated
with the automorphism σ,

(2) for all x, z ∈ M , the map y �→ D(x, y, z) is a skew derivation of M associated
with the automorphism σ,

(3) for all x, y ∈ M , the map z �→ D(x, y, z) is a skew derivation of M associated
with the automorphism σ.

More precisely, for all x, y, z, u, v, w ∈ M and α ∈ Γ , we have

D(xαu, y, z) = D(x, y, z)αu + σ(x)αD(u, y, z),
D(x, yαv, z) = D(x, y, z)αv + σ(y)αD(x, v, z),
D(x, y, zαw) = D(x, y, z)αw + σ(z)αD(x, y, w).

Of course, if D is symmetric, then the above three relations are equivalent to
each other.

3 Skew Tri-derivations on Γ -rings

For proving our main results, we begin with the following lemma.

Lemma 1. Let M be a prime Γ -ring satisfying the condition (1) and let x, y ∈
M . If xβ[u, y]α = 0 for all u ∈ M and α, β ∈ Γ , then either x = 0 or y ∈ Z(M).

Proof. We have 0 = xβ[uγv, y]α = xβuγ[v, y]α + xβ[u, y]αγv = xβuγ[v, y]α
for all u, v ∈ M and α, β, γ ∈ Γ . Thus, xΓMΓ [v, y]α = 0 for all v ∈ M and
α ∈ Γ . By the primeness of M , we obtain that either x = 0 or [v, y]α = 0 for
all x, y, v ∈ M and α ∈ Γ . For the latter case, y ∈ Z(M). Hence, we find that
either x = 0 or y ∈ Z(M).

Theorem 1. Let M be a 3!-torsion free prime Γ -ring satisfying the condition
(1). Let I �= 0 be an ideal of M , σ be an automorphism of M , and D : M ×M ×
M → M be a permuting skew tri-derivation having trace d associated with the
automorphism σ. Assume that

[d(x), (x)]α = 0, (2)

for all x ∈ I and α ∈ Γ . Then, D = 0.
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Proof. Putting x + y instead of x in (2), we obtain 0 = [d(x + y), (x + y)]α = 0
for all x ∈ I and α ∈ Γ . This implies that

0 = [d(x) + d(y) + 3D(x, y, y) + 3D(y, x, x), σ(x) + σ(y)]α
= [d(x), σ(x)]α + [d(y), σ(x)]α + 3[D(x, y, y), σ(x)]α
+3[D(y, x, x), σ(x)]α + [d(x), σ(y)]α + [d(y), σ(y)]α
+3[D(x, y, y), σ(y)]α + 3[D(y, x, x), σ(y)]α

= [d(x), σ(y)]α + [d(y), σ(x)]α + 3[D(x, y, y), σ(x)]α
+3[D(y, x, x), σ(x)]α + 3[D(x, y, y), σ(y)]α + 3[D(y, x, x), σ(y)]α,

(3)

for all x, y ∈ I and α in Γ . Putting −x instead of x in (3) and we obtain

0 = −[d(x), σ(y)]α − [d(y), σ(x)]α + 3[D(x, y, y), σ(x)]α
− 3[D(y, x, x), σ(x)]α − 3[D(x, y, y), σ(y)]α + 3[D(y, x, x), σ(y)]α,

(4)

for all x, y ∈ I and α ∈ Γ . Comparing (3) and (4) and using 3!-torsion freeness,
we obtain

[D(x, y, y), (x)]α + [D(y, x, x), σ(y)]α = 0, (5)

for all x, y ∈ I and α ∈ Γ . Replacing x by x + y in (5), we find that

[D(x + y, y, y), (x + y)]α + [D(y, x + y, x + y), σ(y)]α = 0,

for all x, y ∈ I and α ∈ Γ . This yields that

0 = [D(x, y, y), σ(x)]α + [D(y, y, y), σ(x)]α + [D(x, y, y), σ(y)]α
+ [D(y, x, x), σ(y)]α + [D(y, y, y), σ(x)]α + [D(x, y, y), σ(y)]α,

for all x, y ∈ I and α ∈ Γ . This gives that

0 = [d(y), σ(x)]α + [d(y), σ(y)]α + ([D(x, y, y), σ(x)]α + [D(y, x, x), σ(y)]α)
+ [D(x, y, y), σ(y)]α + [D(x, y, y), σ(y)]α + [D(x, y, y), σ(y)]α,

for all x, y ∈ I and α ∈ Γ . In view (2) and (5), the above expression becomes

[d(y), σ(x)]α + 3[D(x, y, y), σ(y)]α = 0, (6)

for all x, y ∈ I and α ∈ Γ . Replacing yβx by x in (6), we get

0 = [d(y), (yβx)]α + 3[D(yβx, y, y), σ(y)]α
= σ(y)[d(y), σ(x)]α + 3[d(y) + σ(y)D(x, y, y), σ(y)]α
= σ(y)[d(y), σ(x)]α + 3[D(x, y, y), σ(y)]α + 3d(y)[x, σ(y)]α.

By using (6) and the 3-torsion freeness of M , we obtain d(y)[x, σ(y)]α = 0,
for all x, y ∈ I and α ∈ Γ . In view of Lemma 1, it follows that d(y) = 0 or
[x, σ(y)]α = 0. If [x, σ(y)]α �= 0, then y ∈ I \ Z(M). Hence, we have d(y) = 0,
for all y ∈ I \ Z(M). Moreover, we will show that this is true for all y ∈ I.
So, let x ∈ I ∩ Z(M) and y ∈ I \ Z(M). Then, clearly we have seen that
x + y, x,−y ∈ I \ Z(M). Then, we obtain

0 = d(x + y) = d(x) + d(y) + 3D(x, y, y) + 3D(y, x, x)
= d(x) + 3D(x, y, y) + 3D(y, x, x). (7)
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On the other hand,

0 = d(x − y) = d(x) − d(y) + 3D(x, y, y) − 3D(y, x, x)
= d(x) + 3D(x, y, y) − 3D(y, x, x). (8)

Comparing (7) and (8), using 2-torsion freeness of M , we have

d(x) + 3D(x, y, y) = 0. (9)

Writing y + y instead of y in (9), we have

0 = d(x) + 3D(x, y + y, y + y)
= d(x) + 3D(x, y, y) + 3D(x, y, y) + 3D(x, y, y) + 3D(x, y, y).

In view of (9) and the 3!-torsion freeness of M we arrive at D(x, y, y) = 0. So,
(9) reduces to d(x) = 0 for all x ∈ I. Now, suppose that x, y ∈ I. Then,

0 = d(x + y) = d(x) + d(y) + 3D(x, y, y) + 3D(y, x, x)
= 3D(x, y, y) + 3D(y, x, x).

Therefore, by using 3-torsion freeness of M , we obtain

D(x, y, y) + D(y, x, x) = 0. (10)

Replacing y by y + z in (10), we obtain D(x, y + z, y + z) + D(y + z, x, x) = 0.
This implies that

D(x, y, y) + D(y, x, x) + D(x, y, z) + D(x, z, y) + D(x, z, z) + D(z, x, x) = 0,
D(x, y, y) + D(y, x, x) + D(x, z, z) + D(z, x, x) + D(x, y, z) + D(x, y, z) = 0.

By using (10) and using the 2-torsion freeness of M , we arrive at

D(x, y, z) = 0, (11)

for all x, y, z ∈ I. Now, we have to prove that the relation (11) holds for all
x, y, z ∈ M . Let x, y, z ∈ I and a ∈ M . Then, aαx ∈ I, for all α ∈ Γ . Now, from
(11), we have

0 = D(aαx, y, z) = D(a, y, z)αx + σ(a)αD(x, y, z) = D(a, y, z)αx.

Thus, we have D(a, y, z)ΓI = 0 and, since M is prime and I �= 0, it follows that
D(a, y, z) = 0. Replacing y by bβy, where b ∈ M and β ∈ Γ , we get

0 = D(a, bβy, z) = D(a, b, z)βy + σ(b)βD(a, y, z) = D(a, b, z)βy.

It follows that D(a, b, z)ΓI = 0 and since M is prime, we have D(a, b, z) = 0.
Finally, writing cδz instead of z, where z ∈ M and δ ∈ Γ , we get

0 = D(a, b, cδz) = D(a, b, c)δz + σ(c)δD(a, b, z) = D(a, b, c)δz.

Hence, D(a, b, c)ΓI = 0 and again, using the primeness of M , it follows that
D(a, b, c) = 0 for all a, b, c ∈ M . This completes the proof.
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Theorem 2. Let M be a 3-torsion free semiprime Γ -ring satisfying the con-
dition (1), I �= 0 be an ideal of M , σ be an automorphism of M and D :
M × M × M → M be a permuting skew tri-derivation having the trace d associ-
ated with the automorphism σ. Assume that the trace function d is commuting
on I and [d(x), σ(x)]α ∈ Z(M) for all x ∈ I and α ∈ Γ . Then, [d(x), σ(x)]α = 0
for all x ∈ I and α ∈ Γ .

Proof. By hypothesis, we have

[d(x), σ(x)]α ∈ Z(M), (12)

for all x ∈ I and α ∈ Γ . Linearizing (12), we find

[d(x), σ(y)]α + [d(y), σ(x)]α + 3[D(x, y, y), σ(x)]α + 3[D(y, x, x), σ(x)]α
+3[D(x, y, y), σ(y)]α + 3[D(y, x, x), σ(y)]α ∈ Z(M),

for all x, y ∈ I and α ∈ Γ . Replacing x by −x in the above relation and comparing
the above relation with the obtained relation, we have

[D(x, y, y), σ(x)]α + [D(y, x, x), σ(y)]α ∈ Z(M), (13)

for all x, y ∈ I and α ∈ Γ . Replacing x by x+ y in the above equation we obtain

[d(y), σ(x)]α + 3[D(x, y, y), σ(y)]α ∈ Z(M), (14)

for all x, y ∈ I and α ∈ Γ . Replacing yβx by x in (14), we have

[d(y), σ(yβx)]α + 3[D(yβx, y, y), σ(y)]α
= [d(y), σ(y)]αβσ(x) + σ(y)β[d(y), σ(x)]α + 3[d(y)βx + σ(y)βD(x, y, y), σ(y)]α
= σ(y)β([d(y), σ(x)]α + 3[D(x, y, y), σ(y)]α) + (σ(x) + 3x)β[d(y), σ(y)]α
+3d(y)β[x, σ(y)]α ∈ Z(M).

Hence,

0 = [σ(y)β([d(y), σ(x)]α + 3[D(x, y, y), σ(y)]α), σ(y)]α
+ [(σ(x) + 3x)β[d(y), σ(y)]α + 3d(y)β[x, σ(y)]α, σ(y)]α

= [(σ(x) + 6x), σ(y)]αβ[d(y), σ(y)]α + 3d(y)β[[x, σ(y)]α, σ(y)]α,

for all x, y ∈ I and α ∈ Γ . Writing d(y)β[d(y), σ(y)]α for x, we obtain

0 = [σ(d(y)β[d(y), σ(y)]α) + 6d(y)β[d(y), σ(y)]α, σ(y)]αβ[d(y), σ(y)]α
+3d(y)β[[d(y)β[d(y), σ(y)]α, σ(y)]α, σ(y)]α

= [σ(d(y)β[d(y), σ(y)]α), σ(y)]αβ[d(y), σ(y)]α
+6[d(y), σ(y)]αβ[d(y), σ(y)]αβ[d(y), σ(y)]α

= [σ(d(y)), σ(y)]αβσ([d(y), σ(y)]α)β[d(y), σ(y)]α
+6[d(y), σ(y)]αβ[d(y), σ(y)]αβ[d(y), σ(y)]α.

Since d is commuting on I, we obtain
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2[d(y), σ(y)]αβ[d(y), σ(y)]αβ[d(y), σ(y)]α = 0,

for all y ∈ I and α, β ∈ Γ . It follows that

(Mδ[d(y), σ(y)]αβ[d(y), σ(y)]α)ΓMΓ (2[d(y), σ(y)]αβ[d(y), σ(y)]α) = 0

and since M is semiprime and by using the condition (1) and since d(y), σ(y) ∈
Z(M), we have

2[d(y), σ(y)]αβ[d(y), σ(y)]α = 0, (15)

for all y ∈ I and α, β ∈ Γ . On the other hand, taking x = yβy in (7), we get

[d(y), (yβy)]α + 3[D(yβy, y, y), σ(y)]α
= 2σ(y)β[d(y), σ(y)]α + 3[d(y)βy + σ(y)βd(y), σ(y)]α
= 5σ(y)β[d(y), σ(y)]α + 3yβ[d(y), σ(y)]α + 3d(y)β[y, σ(y)]α ∈ Z(M).

Therefore,

0 = [d(y), 5σ(y)β[d(y), σ(y)]α + 3yβ[d(y), σ(y)]α + 3d(y)β[y, σ(y)]α]α
= 5[d(y), σ(y)]αβ[d(y), σ(y)]α + 3[d(y), y]αβ[d(y), σ(y)]α

+3d(y)β[d(y), [y, σ(y)]α]α
= 5[d(y), σ(y)]αβ[d(y), σ(y)]α + 3[d(y), y]αβ[d(y), σ(y)]α

+3d(y)β[[d(y), y]α, σ(y)]α.

Since d is commuting on I, we get

5[d(y), σ(y)]αβ[d(y), σ(y)]α = 0, (16)

for all y ∈ I and α, β ∈ Γ . Comparing (15) and (16), we find that

3[d(y), σ(y)]αβ[d(y), σ(y)]αβ[d(y), σ(y)]α = 0,

for all y ∈ I and α, β ∈ Γ . Since M is 3-torsion free, we obtain

[d(y), σ(y)]αβ[d(y), σ(y)]α = 0,

for all y ∈ I and α, β ∈ Γ . Since [d(y), σ(y)]α ∈ Z(M) and M is semiprime, we
have [d(y), σ(y)]α = 0, for all for all y ∈ M and α ∈ Γ . because the center of a
semiprime Γ -ring contain no non-zero nilpotent element.

Corollary 1. Let M be a 3!-torsion free prime Γ -ring satisfying the condition
(1), I �= 0 be an ideal of M and σ be an automorphism of M . Assume that there
exists a nonzero permuting skew tri-derivation D : M × M × M → M having
the trace d associated with the automorphism σ such that the trace function d is
commuting on I and [d(x), σ(x)]α ∈ Z(M) holds true for all x ∈ I and α ∈ Γ .
Then, M is commutative.

Proof. Assume that M is not commutative. Then, in view of Theorem 2,

[d(x), σ(x)]α = 0

for all x ∈ I and α ∈ Γ . Therefore, by Theorem 1, we obtain D = 0, a contra-
diction.
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Abstract. A new approach to the Mickens extended iteration method has been
presented to obtain approximate analytic solutions for nonlinear oscillatory
differential equation. To illustrate the accuracy of the approximate solution of
the inverse nonlinear oscillator “€xþ x�1 ¼ 0”, we have used the Fourier series
and utilized indispensable truncated terms in each iterative step. In this article
the solution gives more accurate result significantly than other existing methods
and shows a good agreement with its exact solution. The percentage of error
between exact frequency and our third approximate frequency is very low. We
have compared all the results to exact results and other existing results and the
method is convergent as well as consistent. Finally, an example is given to show
the effectiveness of the approximate solution.

Keywords: Extended iterative method � Inverse truly nonlinear oscillator �
Analytical solution

AMS Subject Classification: 34A34 � 34B99

1 Introduction

Most phenomena in our world are essentially nonlinear and are described by nonlinear
equations. A vast of scientific knowledge has developed over a long period of time and
devoted to a description of natural phenomena. Practically, most of the differential
equations involving physical phenomena are nonlinear. These equations have also
demonstrated their usefulness in ecology, business cycle and biology. Therefore the
solution of such problems lies essentially in solving the corresponding differential
equations. In many cases it is possible to replace such a nonlinear equation by a related
linear equation, which approximates the actual problem closely enough to give useful
results. The method of small oscillations is a well-known example of the linearization
of problems which is essentially nonlinear. However, such a “linearization” is not
always feasible or possible; and when it is not, the original nonlinear equation itself
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must be considered. Many methods exist for constructing analytical approximations to
the solution of the oscillatory system, viz. perturbation method [1, 2], standard and
modified Linstedt-Poincare [3, 4], power series approach and homotopy analysis
method [5, 6], harmonic balance method [7–9], iteration method [10–21] etc.

Perturbation method is mainly used for the small nonlinear problems. The modified
Lindstedt-Poincare method, power series approach and homotopy analysis method
have been presented for obtaining approximate periods with large amplitude of
oscillations. But they are applicable only to nonlinear equations with odd nonlinearity.
The mathematical foundations of harmonic balancing have been investigated by several
individuals. The harmonic balance method which is originated by Mickens [7] and
farther work has been done by Wu et al. [8], Hosen [9] and so on for solving the strong
nonlinear problems. It corresponds to a truncated Fourier series and allows for the
systematic determination of the coefficients to the various harmonics and the angular
frequency.

Now-a-day’s iteration method is used widely by Mickens [10], Lim and Wu [11],
Hu [12], Chen and Liu [14], Alquran [16], Turkyilmazoglu [17], Haque [19–21] etc.
and it is valid for small together with large amplitude of oscillation to attain the
approximate frequency and the harmonious periodic solution of such nonlinear prob-
lems. Mickens [10] provided a general basis for iteration methods as they are currently
used in the calculation of approximations to the periodic solutions of nonlinear
oscillatory differential equations. A generalization of this work was then given by Lim
and Wu [11] and this was followed by an additional extension in Mickens. Actually
iteration method is a technique for calculating approximations to the periodic solutions
of TNL oscillator which is patented by R.E. Mickens in [10].

The main purpose of this article is to develop a modification of the extended
iteration technique for the determination of approximate solution and angular frequency
of inverse truly nonlinear oscillator. We compare the result to existing results obtained
by various researchers and it is mentioned that our solution measure similar and
sometimes is with better results than other existing procedures.

2 The Method

An Extended Iterative method will be used to obtain analytical solution of the inverse
truly nonlinear oscillator. The procedure may be briefly described as follows.

A nonlinear oscillator will be modeled by

€xþ f ð€x; _x; xÞ ¼ 0; xð0Þ ¼ A; _xð0Þ ¼ 0 ð1Þ

where over dots denote differentiation with respect to time, t.
We choose the natural frequency X of this system. Then adding X2x to both sides

of Eq. (1), we obtain

€xþX2x ¼ X2x� f ð€x; _x; xÞ � Gð€x; _x; xÞ:
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The iteration scheme of above equation is as follows

€xkþ 1 þX2
kxkþ 1 ¼ Gð€xk; _xk; xkÞ; k ¼ 0; 1; 2; � � � : ð2Þ

The extended iteration scheme is

€xkþ 1 þX2
k xkþ 1 ¼ Gðxk�1; _xk�1;€xk�1ÞþGxðxk�1; _xk�1;€xk�1Þðxk � xk�1Þ

þ G _xðxk�1; _xk�1;€xk�1Þð _xk � _xk�1ÞþG€xðxk�1; _xk�1;€xk�1Þ ð€xk � €xk�1Þ
ð3Þ

where Gx ¼ @ G
@ x ; G _x ¼ @ G

@ _x ; G€x ¼ @ G
@ €x :

And xkþ 1 satisfies the conditions

xkþ 1ð0Þ ¼ A; _xkþ 1ð0Þ ¼ 0: ð4Þ

The starting function are taken to be [11]

x�1ðtÞ ¼ x0ðtÞ ¼ A cosðX0tÞ: ð5Þ

The right hand side of Eq. (3) is essentially the first term in a Taylor series
expansion of the function Gðxk; _xk;€xkÞ at the point ðxk�1; _xk�1;€xk�1Þ [22].

The above procedure gives the sequence of solutions x1ðtÞ; x2ðtÞ; x3ðtÞ; � � �. The
method can be proceed to any order of approximation; but due to growing algebraic
complexity the solution is confined to a lower order usually the second [10].

Example 1. Let us consider the inverse truly nonlinear oscillator

€xþ x�1 ¼ 0: ð6Þ

Adding X2x on both sides of Eq. (6), we get

€xþX2x ¼ X2x� x�1 ¼ Gðx; X2Þ; ð7Þ

where Gðx; X2Þ ¼ X2x� x�1; Gxðx; X2Þ ¼ X2 þ x�2:

According to Eq. (3), the extended iteration scheme of Eq. (7) is

€xkþ 1 þX2
kxkþ 1 ¼ ðX2

kx0 � x�1
0 Þþ ðX2

k þ x�2
0 Þðxk � x0Þ: ð8Þ

The first approximation x1ðtÞ and the frequency X0 will be obtained by putting k ¼ 0 in
Eq. (8) and using Eq. (5) we get

€x1 þX2
0x1 ¼ðX2

0x0 � x�1
0 Þþ ðX2

0 þ x�2
0 Þðx0 � x0Þ

¼X2
0x0 � x�1

0 ;
ð9Þ

where x0ðtÞ ¼ A cosðX0tÞ ¼ A cos h:
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Now substituting x0 ðtÞ and expanding the right- hand side in a Fourier cosine series,
then Eq. (9) reduces to

€x1 þX2
0x1 ¼ X2

0A cos h� ð2 cos h=A� 2 cos 3h=Aþ 2 cos 5h=AÞ
¼ ðX2

0A� 2=AÞ cos hþ 2 cos 3h=A� 2 cos 5h=A:
ð10Þ

To avoid secular terms in the solution, we have to remove cos h from the right hand
side of Eq. (10). Thus we have

X0 ¼
ffiffiffi

2
p

A
¼ 1:41421

A
: ð11Þ

This is the first approximate frequency of the oscillator. Note thatXexactðAÞ ¼ 1:253314
A :

After simplification the Eq. (10) reduces to

€x1 þX2
0x1 ¼ 2 cos 3h=A� 2 cos 5h=A: ð12Þ

Then solving Eq. (12) and satisfying the initial condition x1ð0Þ ¼ A; we obtain

x1ðtÞ ¼ Að1:083333 cos h� 0:125 cos 3hÞ: ð13Þ

This is the first approximate solution of the oscillator. Proceeding to the second level
of iteration, x2ðtÞ satisfies the equation

€x2 þX2
1x2 ¼ ðX2

1x0 � x�1
0 Þþ ðX2

1 þ x�2
0 Þðx1 � x0Þ

¼ X2
1x1 � 2x�1

0 þ x�2
0 x1;

ð14Þ

where x0ðtÞ ¼ A cos h and x1ðtÞ ¼ Að1:083333 cos h� 0:125 cos 3hÞ:
Now substituting x0ðtÞ and x1ðtÞ and expanding the right- hand side in a Fourier

cosine series then Eq. (14) reduces to

€x2 þX2
1x2 ¼ X2

1Að1:083333 cos h� 0:125 cos 3hÞ � ð1:58333 cos h=A� 1:083333 cos 3h=AÞ
¼ ð1:083333X2

1A� 1:58333=AÞ cos h� ð0:125X2
1A� 1:083333=AÞ cos 3h:

ð15Þ

To avoid secular terms in the solution, we have to remove cos h from the right hand
side of Eq. (15). Thus we have

X1 ¼ 1:20894
A

: ð16Þ

This is the second approximate frequency of the oscillator. After simplification the
Eq. (15) reduces to
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€x2 þX2
1x2 ¼ 0:900641 cos 3h=A: ð17Þ

Then solving Eq. (17) and satisfying the initial condition x2ð0Þ ¼ A; we obtain

x2ðtÞ ¼ Að1:077029 cos h� 0:077029 cos 3hÞ: ð18Þ

This is the second approximate solution of the oscillator. Proceeding to the third
level of iteration, x3ðtÞ satisfies the equation

€x3 þX2
2x3 ¼ ðX2

2x2 � x�1
0 Þþ ðX2

2 þ x�2
0 Þðx2 � x0Þ

¼ X2
2x2 � 2x�1

0 þ x�2
0 x2;

ð19Þ

where x0ðtÞ ¼ A cos h and x2ðtÞ ¼ Að1:077029 cos h� 0:077029 cos 3hÞ:
Now substituting x0ðtÞ and x2ðtÞ and expanding the right- hand side in a Fourier

cosine series, then Eq. (19) reduces to

€x3 þX2
2x3 ¼ X2

2Að1:077029 cos h� 0:077029 cos 3hÞ � ð1:691886 cos h=A� 1:383772 cos 3h=AÞ
¼ ð1:077029X2

2A� 1:691886=AÞ cos h� ð0:077029X2
2A� 1:383772=AÞ cos 3h:

ð20Þ

To avoid secular terms in the solution, we have to remove cos h from the right hand
side of Eq. (20). So we have

X2 ¼ 1:25335
A

: ð21Þ

Thus X0, X1 and X2 can be obtained by Eqs. (11), (16) and (21) respectively, which
represent the approximation of frequencies of oscillator (6).

3 Results and Discussions

An iterative approach is presented to obtain approximate solution of the ‘inverse truly
nonlinear oscillator’. The present technique is very simple for solving algebraic
equations analytically and the approach is different from the existing other approach for
taking truncated Fourier series. Here we have calculated the first, second and third
approximate frequencies X0; X1 and X2 respectively. All the results are given in the
following Table 1. To compare the approximate frequencies we have also given the
existing results determined by Mickens iteration method [15] and Mickens Harmonic
Balance method [13], Haque’s iteration method [18]. To show the accuracy, we have
calculated the percentage errors (denoted by Error(%)) by the definitions

Error ¼ Xe � Xk

Xe

�
�
�
�

�
�
�
�� 100% where Xk; k ¼ 0; 1; 2; � � �
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represents the approximate frequencies obtained by the present method and Xe rep-
resents the corresponding exact frequency of the oscillator (Table 1).

4 Convergence and Consistency Analysis

We know that the basic idea of iteration methods is to construct a sequence of solutions
xk (as well as frequencies Xk) that have the property of convergence

xe ¼ lim
k ! 1 xk Or; Xe ¼ lim

k ! 1Xk

Here xe is the exact solution of the given nonlinear oscillator. In the present method,
it has been shown that the solution yield the less error in each iterative step compared to
the previous iterative step and finally X2 � Xej j ¼ 0:253350� 0:253314j j\e, where e
is a small positive number and A is chosen to be unity. From this, it is clear that the
adopted method is convergent.

An iterative method of the form represented by Eq. (3) with initial guesses given in
Eq. (5) is said to be consistent if

lim
k ! 1 xk � xej j ¼ 0 or;

lim
k ! 1 Xk � Xej j ¼ 0

In the present analysis we see that

lim
k ! 1 Xk � Xej j ¼ 0; as X2 � Xej j ¼ 0:

Table 1. Comparison of the approximate frequencies with exact frequency Xe of €xþ x�1 ¼ 0.

Exact frequency Xe
1:253314

A

Amplitude A First approximate
frequencies, X0

Second approximate
frequencies, X1

Third approximate
frequencies, X2

Error (%) Error (%) Error (%)

Mickens direct
iteration method [15]

1:155
A

1:018
A

—

7.9 18.1
Mickens extended
iteration method [15]

1:155
A

1:189699
A

—

7.9 5.1
Mickens HB Method
[13]

1:414
A

1:273
A

1:2731
A

12.84 1.6 1.58
Haque’s iteration
Method [18]

1:414
A

1:208
A

1:265
A

12.84 3.63 0.92
Adopted method 1:41421

A
1:20894

A
1:25335

A

12.84 3.54 0.0029
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Thus the consistency of the method is achieved.

Example 2. Let us consider the nonlinear cubic oscillator

€xþ x3 ¼ 0: ð22Þ

Adding X2x on both sides of Eq. (22), we get

€xþ X2 x ¼ X2 x� x3 ¼ G ðx; X2Þ; ð23Þ

where G ðx; X2Þ ¼ X2 x� x3,Gxðx; X2Þ ¼ X2 � 3x2.

The extended iterative scheme of Eq. (23) is

€xkþ 1 þX2
k xkþ 1 ¼ ðX2

k x0 � x30Þþ ðX2
k � 3x20Þ ðxk � x0Þ: ð24Þ

The first approximation x1ðtÞ and the frequency X0 will be obtained by putting
k ¼ 0 in Eq. (24), we get

€x1 þX2
0 x1 ¼ ðX2

0 x0 � x30Þþ ðX2
0 � 3x20Þ ðx0 � x0Þ

¼ X2
0 x0 � x30;

ð25Þ

where x0 ðtÞ ¼ A cos ðX0 tÞ ¼ A cos h.

Now substituting x0 ðtÞ and expanding the right- hand side in a Fourier cosine series,
then Eq. (25) reduces to

€x1 þX2
0 x1 ¼ X2

0 A cos h� ð0:75A3 cos h þ 0:25A3 cos 3hÞ
¼ ðX2

0 A� 0:75A3Þ cos h� 0:25A3 cos 3h:
ð26Þ

To avoid secular terms in the solution, we have to remove cos h from the right hand
side of Eq. (26). Thus we have

X0 ¼ 0:866025A: ð27Þ

This is the first approximate frequency of the oscillator. Note that
XexactðAÞ ¼ 0:847213A. After simplification the Eq. (26) reduces to

€x1 þX2
0 x1 ¼ �0:25A3 cos 3h: ð28Þ

Then solving Eq. (28) and satisfying the initial condition x1ð0Þ ¼ A, we obtain

x1ðtÞ ¼ Að0:958333 cos hþ 0:041667 cos 3hÞ: ð29Þ

This is the first approximate solution of the oscillator. Proceeding to the second level
of iteration, x2ðtÞ satisfies the equation
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€x2 þX2
1x2 ¼ ðX2

1x0 � x30Þþ ðX2
1 � 3x20Þðx1 � x0Þ

¼ X2
1x1 þ 2x30 � 3x20x1;

ð30Þ

where x0 ðtÞ ¼ A cos ðX0 tÞ ¼ A cos h and x1ðtÞ ¼ Að0:958333 cos hþ 0:041667
cos 3hÞ.

Now substituting x0ðtÞ and x1ðtÞ and expanding the right- hand side in a Fourier
cosine series, then Eq. (30) reduces to

€x2 þX2
1 x2 ¼ X2

1A ð 0:958333 cos hþ 0:041667 cos 3h Þ
� ð 0:687500A3coshþ 0:281250A3 cos 3h Þ

¼ ð 0:958333X2
1A� 0:687500A3Þ cos h

� ð 0:041667X2
1A� 0:281250A3Þ cos 3h:

ð31Þ

To avoid secular terms in the solution, we have to remove cos h from the right hand
side of Eq. (31). Thus we have

X1 ¼ 0:846990A: ð32Þ

This is the second approximate frequency of the oscillator. After simplification the
Eq. (31) reduces to

€x2 þX2
1x2 ¼ �0:251359A3 cos 3h: ð33Þ

Then solving Eq. (33) and satisfying the initial condition x2ð0Þ ¼ A, we obtain

x2ðtÞ ¼ Að0:956203 cos hþ 0:0437974 cos 3hÞ: ð34Þ

This is the second approximate solution of the oscillator.

5 Results and Discussions

An iterative approach is presented to obtain approximate solution of the ‘cubic truly
nonlinear oscillator’. The present technique is very simple for solving algebraic equa-
tions analytically and the approach is different from the existing other approach for
taking truncated Fourier series. Here we have calculated the first and second approxi-
mate frequencies. All the results are given in the following Table 2. To compare the
approximate frequencies we have also given the existing results determined by Mickens
Parameter Expansion [15], Mickens Harmonic Balance Method [15] and Mickens
Iterative Method [15] (Table 2).
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6 Conclusion

In this article, we have established a simple but effective modification of the extended
iteration method to investigate nonlinear differential equations. In most of the cases, the
results are improved by the modification of the method. The modified extended iter-
ation method has been applied to both cubic and singular oscillator. In both cases, the
modified extended iteration procedure gives more accurate results than the results
obtained by the existing iteration scheme and is valid for large region. The percentage
error between the exact frequency and the approximate frequency obtained in this study
is very small. Since, in science and engineering there are many types of oscillator and
the developed scheme is applied on cubic and singular oscillators, the next research
may be: whether this modification is useful to other kinds of oscillator or it needs
further modification.
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