- -
.

"

DebaSJS G|r| -
“Ram N, Mohapatra
Heguda gehr

/M?)hammadS Oba|dat (Eds) ~

Communications in Computer and Information Science 655

\

Third International Conference, ICMC 2017
Haldia, India, January 17-21, 2017
Proceedings

@ Springer



Communications
in Computer and Information Science

Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Dominik Slezak, and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil
Phoebe Chen
La Trobe University, Melbourne, Australia
Xiaoyong Du
Renmin University of China, Beijing, China
Joaquim Filipe
Polytechnic Institute of Setubal, Setubal, Portugal
Orhun Kara

655

TUBITAK BILGEM and Middle East Technical University, Ankara, Turkey

Igor Kotenko

St. Petersburg Institute for Informatics and Automation of the Russian

Academy of Sciences, St. Petersburg, Russia
Ting Liu

Harbin Institute of Technology (HIT), Harbin, China
Krishna M. Sivalingam

Indian Institute of Technology Madras, Chennai, India
Takashi Washio

Osaka University, Osaka, Japan



More information about this series at http://www.springer.com/series/7899


http://www.springer.com/series/7899

Debasis Giri - Ram N. Mohapatra
Heinrich Begehr - Mohammad S. Obaidat (Eds.)

Mathematics
and Computing

Third International Conference, ICMC 2017
Haldia, India, January 17-21, 2017
Proceedings

@ Springer



Editors

Debasis Giri Heinrich Begehr
Haldia Institute of Technology Freie Universitdt Berlin
Haldia Berlin

India Germany

Ram N. Mohapatra Mohammad S. Obaidat
University of Central Florida Fordham University
Orlando, FL. Bronx, NY

USA USA

ISSN 1865-0929 ISSN 1865-0937  (electronic)
Communications in Computer and Information Science

ISBN 978-981-10-4641-4 ISBN 978-981-10-4642-1 (eBook)

DOI 10.1007/978-981-10-4642-1

Library of Congress Control Number: 2017937713

© Springer Nature Singapore Pte Ltd. 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore



Message from the General Chairs

As we all are aware, Mathematics has always been a discipline of interest not only to
theoreticians but also to all practitioners irrespective of their specific profession. Be it
science, technology, economics, commerce or even sociology, new Mathematical
principles and models have been emerging and helping in new research and in drawing
inferences from practical data as well as through logic. The past few decades have seen
an enormous growth in the applications of mathematics in different areas that are
multidisciplinary in nature. Cryptography, security, and signal processing are such
areas that are being focused on recently due to the need of securing communication
while connecting with others. With emerging computing facilities and speeds, a phe-
nomenal growth has occurred in problem solving area. Earlier, some observations were
made and conjectures were drawn which remained conjectures until somebody either
could prove it theoretically or find counter examples. Today, however, we can write
algorithms and use computers for long calculations, verifications, or generation of huge
amount of data. With available computing capabilities, we can find factors of very large
integers in the size of hundreds of digits; we can find inverses of very large matrices
and solve a large set of linear equations etc. Thus Mathematics and computation have
become more integrated areas of research today and it was decided to organize an event
where researchers can share ideas and deliberate on new challenging problems.

Apart from many other interdisciplinary areas of research, cryptography and security
have emerged as one of the most important areas of research with discrete mathematics
as a base. Several research groups are actively pursuing research on different aspects of
cryptology not only in terms of new crypto-primitives and algorithms but also
numerous concepts related to authentication, integrity and security proofs/protocols are
being developed, often with open and competitive evaluation mechanisms to evolve
standards.

As conferences, seminars, and workshops are the platforms for sharing knowledge
and new research results giving us a chance to get new innovative ideas for future
needs as the threats and computational capabilities of adversaries are ever increasing, it
was thought appropriate to organize a conference focused on Mathematics and com-
putations covering theoretical as well as practical aspects of research, with cryptog-
raphy and security being one of these.

Eminent personalities working in Mathematical and computer science and related
areas were invited to deliver invited talks and tutorials. The talks covered a wide
spectrum, namely, number theoretic concepts, cryptography, algebraic concepts such as
quasi groups and applications etc. The conference was spread over five days (January
17-21, 2017) with the first two days dedicated to tutorials. The main conference was
planned with special talks by experts and paper presentations in each session.



VI Message from the General Chairs

I hope that the conference met the aspirations of the participants and its objective of
sharing ideas and current research and identifying new targets/problems. We are
confident that the young researchers and students found new directions to pursue in
their future research.

We express our heartfelt thanks to the National Board for Higher Mathematics
(NBHM), the Indian Space Research Organisation (ISRO), the Science and Engineering
Research Board (Department of Science and Technology), the Council of Scientific and
Industrial Research (CSIR), Defense Research and Development Organization (DRDO),
the International Society for Analysis, Its Applications and Computation (ISAAC), the
Indian National Science Academy (INSA), Haldia Institute of Technology (Haldia,
India), and the University of Central Florida (USA).

We are also very much thankful to our fellow organizing chair, Prof. Debasis Giri,
who is the founder of the International Conference on Mathematics and Computing
(ICMCO), for his effort to make the event a grand success. We extend our sincere thanks
to all speakers, participants, referees, and organizers for their support.

March 2017 P.K. Saxena
P.D. Srivastava



Message from the Program Chairs

It was a great pleasure for us to organize the third International Conference on
Mathematics and Computing held during January 17-21, 2017, at the Haldia Institute
of Technology, Purba Medinipur, West Bengal, India. Our main goal was to provide an
opportunity to the participants to learn about contemporary research in cryptography,
security, mathematics, and computing and exchange ideas among themselves and with
experts present in the conference as tutorial presenters and the plenary as well as
invited speakers. With this aim in mind we carefully selected the invited speakers and
the speakers for the tutorials. It is our sincere hope that the conference helped the
participants in their research and training by opening new avenues for those who are
either starting their research or are looking to extend their area of research to a different
field in cryptography, security, mathematics, and computing.

During January 17-18, 2017, there were five tutorial talks by Prof. Dipanwita Roy
Chowdhury (IIT, Kharagpur), Prof. Abhijit Das (II'T, Kharagpur), Dr. Avishek Adhikari
(Calcutta University), Dr. Manish Kumar (Birla Institute of Technology and Science,
Pilani), and Sweta Mishra (Indian Institute of Technology, Delhi).

The conference began after a formal opening ceremony on January 19. The program
offered one 75-minute keynote talk by Prof. Mohammed S. Obaidat (Fordham
University, USA) and 11 invited one-hour talks by Prof. Sudip Misra (IIT Kharagpur,
India), Prof. Subhamoy Maitra (Indian Statistical Institute, Kolkata, India), Prof.
Heinrich Begehr (Free University of Berlin, Germany), Prof. Ram N. Mohapatra
(University of Central Florida, USA), Prof. S. Ponnusamy (Indian Statistical Institute,
Chennai Centre, India), Prof. Maria A. Navascues (Universidad de Zaragoza, Spain),
Prof. Margareta Heilmann (University of Wuppertal, Germany), Prof. Rifat Colak (Firat
University, Turkey), Prof. Elena Berdysheva (Justus-Liebig-Universitit, Giessen,
Germany), Prof. W.M. Shah (Institute for Research in Mathematical Sciences, Srinagar,
Kashmir, India), and Dr. Manish Kumar (Birla Institute of Technology & Science,
Pilani, India). Our speakers/contributors were from Germany, Spain, Turkey,
Bangladesh, India, Russia, and USA.

After an initial call for papers, 129 papers were submitted for presentation at the
conference. All submitted papers were sent to external reviewers and after refereeing,
35 papers were recommended for publication in the conference proceedings published
by Springer in their Communications in Computer and Information Science (CCIS)
series.



VIII Message from the Program Chairs

We are grateful to the speakers, participants, reviewers, organizers, sponsors, and
funding agencies for their support and help, without which it would have been
impossible to organize the conference, the workshops, and the tutorials. We owe our
gratitude to the volunteers who worked behind the scenes tirelessly taking care of the
details to make this conference a success.

March 2017 Debasis Giri
Ram N. Mohapatra

Heinrich Begehr

Mohammad S. Obaidat



Preface

The Third International Conference on Mathematics and Computing (ICMC 2017) was
held at the Haldia Institute of Technology, Haldia, during January 17-21, 2017. Haldia
is a city and a municipality in Purba Medinipur in the Indian state of West Bengal, and
Haldia Institute of Technology is a premier institution training engineers and computer
scientists for the past several years. It has gained its reputation through its institutional
dedication to teaching and research.

In response to the call for papers for ICMC 2017, 129 papers were submitted for
presentation and inclusion in the proceedings of the conference. The papers were
evaluated and ranked on the basis of their significance, novelty, and technical quality
by at least two reviewers per paper. After a careful blind refereeing process, 35 papers
were selected for inclusion in the conference proceedings. The papers cover current
research in cryptography, security, abstract algebra, functional analysis, fluid dynamics,
fuzzy modeling and optimization etc. ICMC 2017 had eminent personalities both from
India and abroad (USA, Germany, Spain, China, and Turkey), who delivered invited
addresses and tutorial talks. The speakers from India are recognized leaders in gov-
ernment, industry, and academic institutions such as the Indian Statistical Institute
Kolkata, Indian Statistical Institute Chennai, IIT Kharagpur, Jammu and Kashmir
Institute of Mathematical Sciences, Srinagar, Kashmir, Calcutta University, Birla
Institute of Technology and Science, Pilani, and Indian Institute of Technology Delhi,
etc. All of them are involved in research dealing with the current issues of interest
related to the theme of the conference. The conference offered five tutorial talks by
Prof. Dipanwita Roy Chowdhury (IIT, Kharagpur), Prof. Abhijit Das (IIT, Kharagpur),
Dr. Avishek Adhikari (Calcutta University), Dr. Manish Kumar (Birla Institute of
Technology and Science, Pilani), and Sweta Mishra (Indian Institute of Technology,
Delhi). In addition to these the program included one keynote talk by Prof.
Mohammed S. Obaidat (Fordham University, USA) and 11 invited talks by Prof. Sudip
Misra (IIT Kharagpur, India), Prof. Subhamoy Maitra (Indian Statistical Institute,
Kolkata, India), Prof. Heinrich Begehr (Free University of Berlin, Germany), Prof.
Ram N. Mohapatra (University of Central Florida, USA), Prof. S. Ponnusamy (Indian
Statistical Institute, Chennai Centre, India), Prof. Maria A. Navascues (Universidad de
Zaragoza, Spain), Prof. Margareta Heilmann (University of Wuppertal, Germany),
Prof. Rifat Colak (Firat University, Turkey), Prof. Elena Berdysheva (Justus-
Liebig-Universitit, Giessen, German), Prof. W.M. Shah (Institute for Research in
Mathematical Sciences, Srinagar, Kashmir, India), and Dr. Manish Kumar (Birla
Institute of Technology and Science, Pilani, India).

A conference of this kind would not be possible to organize without the full support
from different people across different committees. All logistics and general organiza-
tional aspects were looked after by the Organizing Committee members, who spent
their time and energy in making the conference a reality. We also thank all the
Technical Program Committee members and external reviewers for thoroughly



X Preface

reviewing the papers submitted for the conference and sending their constructive
suggestions within the deadlines. Our hearty thanks to Springer for agreeing to publish
the proceedings in its Communications in Computer and Information Science (CCIS)
series.

We are indebted to the National Board for Higher Mathematics (NBHM)), the Indian
Space Research Organisation (ISRO), the Science and Engineering Research Board
(Department of Science and Technology), the Council of Scientific and Industrial
Research (CSIR), the Defense Research and Development Organization (DRDO), the
International Society for Analysis, Its Applications and Computation (ISAAC), the
Indian National Science Academy (INSA), Haldia Institute of Technology (Haldia,
India), and the University of Central Florida (USA) for sponsoring the event. Their
support has significantly helped raise the profile of the conference.

Last but not the least, our sincere thanks go to all authors who submitted papers to
ICMC 2017 and to all speakers and participants. We sincerely hope that the readers will
find the proceedings stimulating and inspiring.

March 2017 Debasis Giri
Ram N. Mohapatra

Heinrich Begehr

Mohammad S. Obaidat
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Abstract. In the present day, applications of cloud computing is grow-
ing exponentially and clients are inclined to use the cloud server to store
sensitive data, which is indexed by important or related keyword(s) avail-
able in the data. Once the data is stored, the client supplies some key-
words to the cloud server and requests the corresponding data. If the
data is stored in plaintext form, data privacy will be violated. Thus
the client encrypts the data along with the realted keywords, and then
stores the ciphertext in the cloud server. Encryption of data maintains
the confidentiality, but this makes keyword search difficult. To solve this
issue, designated server based public key encryption with keyword search
(dPEKS) scheme is used. In dPEKS scheme, to get the encrypted data,
the client computes a trapdoor related to a relevant keyword, and sends
it to the cloud server, which then gives the ciphertext to the client pro-
vided that the trapdoor is verified. Hence, the client gets the data from
the ciphertext. However, an adversary will not get any information on
the data or the keywords. A certificateless dPEKS (CL-dPEKS) scheme
is proposed in this paper. It provides indistinguishability to the cipher-
text and trapdoor, and resilience to off-line keyword guessing attack.
The Computational Diffie-Hellman (CDH) problem and Bilinear Diffie-
Hellman (BDH) problem keep the proposed scheme secure.

Keywords: CL-PKC - dPEKS - Bilinear pairing - Cloud server -
Keyword guessing attack

1 Introduction

In 2004, Boneh et al. [1] introduced the notion of public key encryption with
keyword search (PEKS) scheme, which is used for secure email access from a
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email server containing a list of relevant keywords. A PEKS scheme can be
used in an e-mail system as follows. A sender C selects an email data m €
{0,1}* and a list of keywords {wy,ws,-- ,w,}, which are contained in m €
{0,1}¢. C then employs the public key of the receiver R to generate a PEKS
ciphertext {U,V, 21, 22, - - , 2, } by encrypting m € {0,1}¢ and {wy, w2, -+ ,wy,}.
Following this, C delivers {U,V, z1, 22, -+ , zn} to the local email server S of R
(the receiver). To get the encrypted email from S, R selects a keyword w; and
computes its corresponding trapdoor Z; by using his/her private key. Then Z; is
sent to his/her S (the server) to check whether {U,V, 21, 29, - - - , 2z, } contains wj,
which is concealed in Z;. S then prepares a ciphertext C,, using his/her private
key provided that Z; is verified. Then S sends {C,,,U,V} to R, and he/she
recovers the corresponding m € {0,1}¢ using his/her own private key. Note
that, S and an outsider 4 do not learn any information about the encrypted
email and keywords.

In recent years, the popularity of sharing data on a public cloud has increased.
The client-server storage service in the public cloud allow clients to store impor-
tant data in the cloud server at cheap rates. However, the sharing of data must
be done securely since data privacy is a major concern in today’s world. Gen-
erally, a client encrypts the data and then uploads the ciphertext to the cloud
server. The encrypted data uploaded by the client to a pubic cloud server, is
indexed by one or more keyword(s), which are elements of the uploaded data.
But searching for a keyword in an encrypted data is difficult and complex. For
this purpose, PEKS scheme is popularly used in the cloud computing environ-
ment for secure data storage and access. Here, we aim to design a secure data
storage and access mechanism in cloud environments. The proposed data stor-
age and access mechanism is explained as follows. A client C encrypts data
m € {0,1}* and a list of relevant keywords {wy, ws,--- ,w,}, which are compo-
nents of m € {0,1}¢, by using the public key of the cloud server S to generate
a PEKS ciphertext {U,V, 21,29, -+ , zn}. Then, C stores {U,V, 21,22, -+ , 2z} to
S. To get m € {0,1} containing a particular wj, C' computes a trapdoor Z; of
w; using his/her private key, and then sends it to S. Following this, S prepares
a ciphertext C,, using his/her private key provided that Z; is correct. Then
S sends {C,,,U,V} to C if Z; is verified. Now, C extracts m € {0,1}¢ from
{C, U, V} using his/her private key.

PEKS scheme proposed in [1] is useful for both email and client-server stor-
age systems. However, the scheme in [1] is bound to use a secure channel between
client/receiver and email server/cloud server [2]. To eliminate this requirement,
Baek et al. [2] put forwarded the concept of designated server based PEKS
(dPEKS) scheme. In dPEKS scheme, only the designated server is allowed to
verify whether a keyword of the trapdoor is identical to any of the keywords
associated with the data. Unfortunately, Rhee et al. [3] argued that the secu-
rity model proposed in [2] provides limited capabilities to the adversary and the
proposed dPEKS scheme is insecure. In this scheme, an attacker can perform
off-line keyword guessing attack to guess the keyword from a given trapdoor.
Accordingly, Rhee et al. revised the security model proposed in [2] and proposed
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the concept of trapdoor indistinguishability. They also put forwarded a secure
dPEKS scheme and analyze its security using the refined security model. Accord-
ing to the analysis made in [3], a dPEKS is secure against off-line keyword
guessing attack if the scheme provides trapdoor indistinguishability property.
Unfortunately, Hu et al. [4,5] found that the dPEKS scheme proposed in [3]
is vulnerable to the off-line keyword guessing attack, which is performed by a
malicious server. Then they proposed two improved dPEKS schemes in [4,5].
Unfortunately, Ni et al. [6] found that the schemes in [4,5] are vulnerable to
the off-line keyword guessing attack performed by a malicious server and chosen
keyword attack.

All the schemes proposed in [1-6] are designed using certificate based public
key cryptography (CA-PKC). In these schemes, the certificate of the public key
must be verified before using it to get assured that the public key actually belongs
to the correct party. In CA-PKC, public key infrastructure (PKI) is required to
mange the complex public key certificate management process to authenticate
the public key, which decreases the applicability in real environments. To defeat
these troubles, Shamir [7] introduces the idea of identity-based cryptography
(IBC), which eliminates the use of public key certificate as needed in CA-PKC.
In IBC, client’s public key is calculated from the publicly known identity of the
client, such as email identity, passport number, social security number, etc. and
a trusted third party, called private key generator (PKG) is responsible to gen-
erate the corresponding private key of the client by binding client’s identity and
PKG’s private key. Bones and Franklin [8] designed map-to-point hash function
to proposed a practical identity-based encryption (IBE) scheme using elliptic
curve [9,10] and bilinear pairing. Based on this IBE scheme, in 2013, Wu et al.
[11] proposed a dPEKS scheme, called dIBEKS. However, Wu et al.’s dIBEKS
scheme has a limitation due to the existing problem of IBC, called private key
escrow problem. Certificateless public key cryptography (CL-PKC) is introduced
in [12] by incorporating the merits of IBC and CA-PKC. Note that, CL-PKC
abolishes the troubles of IBC and CA-PKC. In CL-PKC, the full private key of
a client has two values, one is selected by the client himself/herself and the other
is the identity-based private key, which is computed by the PKG. This ensures
that the client does not have to put complete trust on PKG.

In 2014, Yanguo et al. [13] proposed a dPEKS scheme using CL-PKC, called
CL-dPEKS. This scheme used the elliptic curve and bilinear pairing [8]. This
scheme is proven to be probably secure in the random oracle model. However,
the computation costs of the scheme is high. Thus, we propose a new CL-dPEKS
scheme. The proposed CL-dPEKS scheme is robust and computation cost effi-
cient than the scheme proposed in [13]. Our scheme also provides the indistin-
guishability to the ciphertext and trapdoor, and resilience to off-line keyword
guessing attack. The proposed CL-dPEKS scheme is secure based on CDH and
BDH problems.

This paper is arranged as follows. In Sect. 2, we discuss the preliminaries,
which are necessary to understand our CL-dPEKS scheme. In Sect. 3, we provide
a framework of CL-dPEKS scheme. Section4 describes a concrete CL-dPEKS
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scheme. Section 5 is devoted to the security analysis of our CL-dPEKS scheme.
Section 6 is addresses the performance comparison of our scheme with other
related scheme. We conclude the paper with some remarks in Sect. 7.

2 Preliminaries

2.1 Bilinear Pairing

Let p be a large prime number of length £ bits, and F}, be the finite field over p.
We define E(F}) : v2 = v+ zu+y (mod p), where (423 +27y?) # 0(mod p) over
F), be the elliptic curve, where z,y € F,. Let O denote the “point at infinity”
[9,10]. Assume that P is the generator of the group G1 = E(F,) U {O} of order
p, where P # O. Here G; must be additive cyclic group of elliptic curve points.
Assume that G5 is a multiplicative cyclic group of order p. A bilinear pairing
e : G1 x G1 — G5 is a mapping, which satisfies the following properties [8]:

— Bilinearity: For any P,Q € G1 and a,b € Z, e(aP,bQ) = e(P, Q) must
hold.

— Non-degeneracy: If P is a generator of Gy, e(P, P) is generator of Gs.

Computability: An efficient polynomial time algorithm C must exist for the

calculation of e(P,Q), for all P,Q € G;.

A bilinear map e is called an admissible bilinear map if it satisfies above
properties. The map e will be derived either from the modified Weil pairing or
Tate pairing over F, [8].

2.2 Bilinear Diffie-Hellman Parameter Generator (BDH-PG)

A BDH-PG X is a polynomial time bounded algorithm, which takes the secu-
rity parameter 1¥ as input and it then outputs a uniformly random tuple
(p,e,G1, Ga, P) of bilinear parameters.

2.3 Computational Diffie-Hellman (CDH) Problem

Given a random tuple (P, aP,bP) € G for any a,b €g Z, and P € G, C cannot
calculate abP with in polynomial time.
2.4 Bilinear Diffie-Hellman (BDH) Problem

Given a random tuple (P, aP,bP, cP), for any a,b,c € Z; and P € G, C cannot
calculate e(P, P)%*¢ with in polynomial time.
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2.5 System Model

In cloud environments, a dPEKS scheme offers a secure client-server storage sys-
tem. Our CL-dPEKS scheme is proposed to fulfill this objective. The proposed
client-server storage system in public cloud environments is described briefly in
Fig. 1. In our CL-dPEKS scheme, three entities are involved: (i) a private key
generator (PKG), (ii) a cloud server S, which is identified by the identity IDg,
and (iii) a client C, which is identified by the identity ID¢. The PKG provides
identity-based partial private key for C' and S. C stores his/her important data
in an encrypted form to S after encrypting the data with the public keys of C
and S. The whole scenario can be described as follows. Assume that C' wishes
to upload a data m € {0,1}*, which contains n keywords {w,wy,--- ,w,}.
Then C encrypts m € {0,1} as {U,V} and {wy,wy, - ,wn} as {z1,21, -+ , 20}
using the full public keys pk¢c of C' and pkg of S, respectively. Finally, C' uploads
{U,V,z1,21, -+ ,2zn} to the S using a public channel. Later on, if C' wants to
retrieve m € {0, 1}¢ from S, then C prepares a trapdoor Z; on a keyword w; using
his/her full private key ske and sends it to S over a public channel. To search the
encrypted m € {0, 1} on the storage, S will prepare a ciphertext C,, using his/her
full private key skg provided that the trapdoor Z; is correct. Then S will sends
{Cn,U,V} to C over a public channel. Note that a third party including S will
not learn the data m € {0, 1} using any of the public information. After receiving
{Cyn, U, V} from S, C recovers m € {0, 1}* from it using his/her full private key
skc. List of notation used in this paper is listed in Table 1.

3 Framework of a CL-dPEKS Scheme

A CL-dPEKS scheme includes the following algorithms.

1. CL-dPEKS-Setup: The PKG executes this deterministic algorithm. As
input, it takes 1* and it generates a public parameter set I' and a master
secret key msk of PKG.

2. CL-dPEKS-Gen-Secret-Key: An entity ID; (i = C,S) executes this
probabilistic polynomial time (PPT) algorithm. As input, it takes T and it
outputs a secret key x; and a public key P; for ID;.

3. CL-dPEKS-Gen-Partial-Private-Key-Extract: The PKG executes
this PPT algorithm to generate an identity-based partial private key for
ID; (i =C,S). As inputs, it takes T', msk of PKG, and an identity ID;, P;
of ID;, and then it returns an identity-based partial private key d; and a
public information T; for ID;.

4. CL-dPEKS-Set-Private-Key: The entity ID; (i = C,S) keeps sk; =
(di,x;), as his/her full private key.

5. CL-dPEKS-Set-Public-Key: The entity ID; (i = C,S) keeps pk; =
(T;, P;), as his/her full public key.

6. CL-dPEKS-Encrypt: The client C performs the execution of this PPT
algorithm, which takes the full public key pk¢ of C, full public key pkg of S,
a data m € {0,1}", a list of relevant keywords {w;,ws,- -+ ,w,} as inputs,
and then it outputs a ciphertext {U,V, 21,22, , 2 }.
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Fig. 1. Proposed client-server storage system in public cloud environments.

. CL-dPEKS-Gen-Trapdoor: The client C executes this PPT algorithm,
which takes the full private key skc of C, a keyword w; as inputs and then
it outputs a trapdoor Z;.

. CL-dPEKS-Test-Trapdoor: The cloud server S executes this determin-
istic algorithm. As inputs, it takes a trapdoor Z;, a ciphertext {U, V,
21, Z2, -+, Zn}, full private key sks = (dg,xs) of S and full public key
pkc = (Tc, Po) of C. It outputs True if Z; is correct, i.e., w; is matched
with any of {wy,ws, - ,wy,}, else outputs False.
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Table 1. List of notations used in the proposed protocol.

Notation | Description

P A large prime number of k-bit

F, A finite field of order p

E(Fp) A set of elliptic curve points

Zp Zp ={0,1,--- ,p—1}

z; | z=2,\{0)

r €r A | An element x is randomly selected from the set A
G1 Additive cyclic group of order p

G2 Multiplicative cyclic group of order p
P Generator of G1, P # O

PKG Private key generator

S Master key of PKG

e An admissible bilinear map, e : G1 X G1 — G2
Py Public key of PKG, Py = sP

C A client

S A cloud server

1D, Identity of the entity ¢, i = C, S

d; Partial private key of ID;, i = C, S
T; Secret value of ID;, 1 =C,S

sk; Full private key of ID;, i =C,S

pk; Full Public key of ID;, i =C,S

m The data, where m € {0,1}*

w; i-th keyword, i =1,2--- ,n

Zj Trapdoor of the keyword w;

h(-) One-way general hash function

H() Map-to-point hash function

® Bitwise exclusive-or operation

CL-dPEKS-Decrypt-Ciphertext: The cloud server S executes this
deterministic algorithm. As input, it takes a trapdoor Z; and the full private
key skg of S. If the output of CL-dPEKS-Test-Trapdoor algorithm is
True, then S computes a ciphertext C,, and returns {C,,,U,V} to C.
CL-dPEKS-Data-Recovery: The client C executes this deterministic
algorithm. As inputs, it takes {C,,, U, V'} and the full private key pkc of C
and outputs the original data m € {0, 1}*.
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4 Proposed CL-dPEKS Scheme

Our CL-dPEKS scheme includes the following polynomial time bounded algo-
rithms: (i) CL-dPEKS-Setup, (ii) CL-dPEKS-Gen-Secret-Key, (iii) CL-dPEKS-
Gen-Partial-Private-Key, (iv) CL-dPEKS-Set-Private-Key, (v) CL-dPEKS-Set-
Public-Key, (vi) CL-dPEKS-Encrypt, (vii) CL-dPEKS-Gen-Trapdoor, (viii)
CL-dPEKS-Test-Trapdoor, (ix) CL-dPEKS-Decrypt-Ciphertext and (x) CL-
dPEKS-Data-Recovery.

1. CL-dPEKS-Setup: PKG takes the 1* as inputs and then does as follows.

(a) Choose a large prime number p of size k bits.

(b) Choose a tuple {F},, E(F},),G1,Ga,e, P}.

(c) Select s € Z; as the master key. The public key will be calculated as
Po = sP.

(d) Select the map-to-point hash function H(-) : {0,1}* — G; [8], and a
general one-way hash function h(-) : {0,1}* — {0,1}", where ¢ depends
on the specific hash function. For example, if h(-) is considered as SHA-
512, then ¢ = 512 bits.

(e) Publish I' = {F,, E(F}),G1,G2,¢e,P, Py, H(-), h()}.

2. CL-dPEKS-Gen-Secret-key: The entity i (i = C,.S) with identity ID;
selects z; Er Z,, as his /her secret key and then calculates the corresponding
public key as P; = z; P.

3. CL-dPEKS-Gen-Partial-Private-Key-Extract: The entity ID; (i =
C, S) delivers {ID;, P;} to the PKG over a private channel. Then PKG does
as follows:

(a) Choose t; € Z, and calculates T; = t; P.

(b) Calculate l; = h(ID;,T;, P;) and d; = (¢; + sl;) mod p.

Now PKG sends the tuple (d;,T;) to ID; through a secure channel. Here
the partial private key of ID; is d; and Q; = d; P will serve as the partial
public key of ID;. The private key d; is considered legitimate if d;P =
Ti + h(IDZ, Ti, Pz)PO = QZ holds. Since we have,

Qi =T; + h(ID;,T;, Py) Py
=t;P+ 1P
=t; P+ 1;sP
= (t; +sl;)P
=d;P

4. CL-dPEKS-Set-Private-Key: The entity ID; (i = C,S) considers sk; =
(di,x;) as full private key.

5. CL-dPEKS-Set-Public-Key: The entity ID; (i = C,S) considers pk; =
(P;,T;) as full public key.

6. CL-dPEKS-Encrypt: Given an identity I D¢ of C, an identity I Dg of S,
full public key pkc = (T¢, Po) of C, full public key pks = (Ps,Ts) of S,
and a list of keywords {wy,ws, -+ ,w,}, C runs this algorithm to generate
a ciphertext {U,V, z1, 29, , 2, } as follows
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(a) Select r €r Z, and calculate U = rP.

(b) Select m € {0, 1} and calculate V = m @ hle(rPy, Pc + Ps + Tc + Ts +
(lc + ls)P())], where l¢c = h(IDc,Tc,Pc) and lg = h(IDs,Ts,Ps).

(c) Calculate z; = r[H(w;) + Ps +Ts + lsP), for i =1,2,--- ,n
C sends {U,V, 21,29, ,2zn} to S over a public channel.

7. CL-dPEKS-Gen-Trapdoor: Given the identity I D¢ of C, full private key

10.

skc = (de, xc) of C, and a keyword w;, C' runs this algorithm to generate a
trapdoor Z; = (z¢+dc)H (w;). C then sends Z; to S over a public channel.
CL-dPEKS-Test-Trapdoor: Given a tuple {U,V, z1, 29, - - , 2, }, full pri-
vate key sks = (dg,zg) of S, full public key pkc = (T¢, Po) of C, and
a trapdoor Z;, then S runs this algorithm to check whether e(Z; + (g +
ds)(PC +Tc + lcpo)7 U) = e(zi,Pc + T + lcpo), fori =1,2,--- ,n. If
the justification of one of the equations is correct, S returns True, it means
that the keyword w; of included in Z; is identical to one of the keywords
{wy,ws, -+ ,w,}. Otherwise, S returns False and terminates the process.
Suppose that, j = i for some 4, then we have
e(Z + (IS + ds)(PC +Tc + lcpo), U)
= e((zc +dc)H(wj) + (zs + ds)(zc + dc) P, rP)
= e((zc +dc)H(wj), rP)e((zs + ds)(zc + do)P,rP)
= e(rH(w;), (z¢ +dc)P)e(r(zs + ds) P, (x¢ +dco)P)
= e(
(
= ¢(

rH(wJ) Jr’l”(:ES +ds) (Ic erc)P)

|
o

[H(w;) + (zs + ds)P], (zc + dc)P)
[ (wj) + Ps +Tg + lsPo] Po+Te +1lcP)

(Zj, PC + TC + lCPO)
CL-dPEKS-Decrypt-Ciphertext: If the algorithm CL-dPEKS-Test-
Trapdoor outputs True for Z;, then S run this algorithm and computes
Cm = e(U,(zs + ds)P). Now, S returns {C,,,U,V} to C over a public
channel.
CL-dPEKS-Data-Recovery: After receiving {C,,,U,V} from S, C
recover the original data m € {0,1}¢ by executing V @ hle(U, (zc +
de)Po)Chy,). Since, we have
(xc + dc)Po)Cm]
e(rP, (xc +de)Po)e(U, (zs + dg)P)]

[e(U.

[e( (

=V @& hle(rPo, (xc + do)P)e(U, (xg + dg)P
[e( Je(

[e(

[e(

e(r

)]
e(rPo, (xc +dc)P)e(rPy, (zs + ds)P)]
=V @ hle(rPy, (x¢c +dc)P + (zs + dg)P)]
e(rPy,zcP + dcP + xgP + dsP)]
=m® hle(rPy, Po + Ps +Tc + Ts + (I + 1s) )]

@hle(rPy, Pc + Tc + 1o Py + Ps + Ts + ls Py)]
=m

The proposed CL-dPEKS scheme is further described in the Fig. 2.
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Client C Public Channel Cloud Server S
CL-dPEKS-Encrypt
Choose a data m € {0,1}"
Choose {w1,wa, -+ ,w,}
Choose 1 €r Z,,
Compute
U=rP
V =m& hle(rPo, Pc + Ps + Tc

+Ts + (lc + 1s) Po)]

z; = r[H(wi) + Ps +Ts + lspo],
fori=1,2,---,n

(U, V, 21,22, ,Zn)
A A2 T g
Store (U, V, 21,22, , 2n)
CL-dPEKS-Gen-Trapdoor

Choose a keyword w;
Compute Z; = (zc + do)H(w;)

CL-dPEKS-Test-Trapdoor

Check if

e(Z; + (zs +ds)(Pc +Tc +1cPo),U) =7

e(zi, Pc +Tc +1cP), fori=1,2,--- ,n
CL-dPEKS-Decrypt-Ciphertext

If CL-dPEKS-Test-Trapdoor outputs
“True” for Z;, compute Cy, = e(U, (zs + ds)P)

(C, U, V)
CL-dPEKS-Data-Recovery
V @ hle(U, (xc +dc)Po)Cm] = m

Fig. 2. Proposed CL-dPEKS scheme

5 Security Analysis

The following adversaries are considered for CL-PKC system [12].

1. Type I adversary A;: The master key msk = s of the PKG cannot be
accessed by Ay, but may get the public keys Po and Pg of C' and S, and
can replace these public keys with the new public keys Pf, and P chosen by
him /her.

2. Type II adversary Aj;: The master key msk = s of PKG can be accessed
by Ajr. But, Ajs is not permitted to change the public keys Pz and Pg of C
and S.

A CL-dPEKS scheme must provide the following security requirements.

— Ciphertext Indistinguishability: In our CL-dPEKS scheme, C encrypts a
data m € {0,1}* and a list of keywords {wy,ws, -+ ,w,} using CL-dPEKS-
Encrypt algorithm, and the ciphertext {U,V, z1, 22, -+ , 2, } is delivered to S
over a public channel, where U = rP, V = m® hle(rPy, Po + Ps + Tc + Ts +
(lc +1s)Py)] and z; = r[H(w;) + Ps + Ts + s P], for i = 1,2,--- ,n. Assume
that an adversary A € {Ar, Arr} captures the ciphertext. Note that r is a
random bit string, unknown to A and it will change despite the same data
and list of keywords getting encrypted every time. The probability of guessing
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ris 2%, where length of r is k bits. However, A may try to compute H (w;) from

z;, but since r is unknown, A is unable to compute any of {wq,ws, - ,wy}
even if he/she knows the public keys pkc and pkg. Furthermore, V is still
protected under the BDH problem. Accordingly, A can not compute r from
U = rP, since it is protected under the CDH problem. Therefore, under the
CDH and the BDH problems, our CL-dPEKS scheme provides the ciphertext
indistinguishability.

— Trapdoor Indistinguishability: In our CL-dPEKS scheme, C' sends a trap-
door Z; of the keyword w; to S over a public channel to get the encrypted
data. For w;, C computes Z; = (z¢+dc)H(w;) using the CL-dPEKS-Gen-
Trapdoor algorithm and then sends it to S over a public channel. Assume
that A € {Ar, A;r} captures Z;. A; can calculate de, but cannot compute
z¢. Therefore, A; cannot compute H(w;) from Z; within polynomial time
due to CDH problem. Accordingly, our CL-dPEKS scheme provides trapdoor
indistinguishability.

— Off-line Keyword Guessing Attack: From the security requirements of
trapdoor indistinguishability and ciphertext indistinguishability, A € {Aj,
A;jr} can not derive the hashed keywords H(w;) and H(w;) from z;, and
Zj;, respectively. Therefore, according to analysis provided in [3], we conclude
that our CL-dPEKS scheme is not susceptible to the off-line keyword guessing
attack.

6 Performance Evaluation

Here, we have included a computation cost comparison of our CL-dPEKS scheme
with the scheme proposed by Yanguo et al. [13]. We define Tis, T and Tp as
the computation costs of elliptic curve scalar point multiplication, map-to-point
hashing operation, and bilinear pairing operation, respectively. According to
the result obtained in [14], we know that Ty =~ 29T,,, Tp =~ 87T, and Ty =~
29T, , where T, is the time needed for the execution of a modular multiplication

Table 2. Computation cost comparison

Phase Yanguo et al. [13] Proposed

CL-dPEKS-Encrypt 3Ty +(n+2)Tae+Bn+ | (n+3)Tu +Tp
4)Tp

CL-dPEKS-Gen-Trapdoor ATy + T T

CL-dPEKS-Test-Trapdoor 2nTp 3nTy + 2nTp

CL-dPEKS-Decrypt-Ciphertext | Not proposed Tv +Tp

CL-dPEKS-Data-Recovery Not proposed T +1Tp

Overall computation cost Bn+4)Tv+ n+3)Tu+ | (An+6)Th + (2n+
(5bn+4)Tp = 551(n+1)Tm | 3)Tp = 290(n + 2)T),
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operation. The computation cost comparison is given in Table2. The overall
computation cost of our CL-dPEKS scheme is lower compared to the scheme
proposed in [13].

7 Conclusion

A new CL-dPEKS scheme is proposed in this paper for secure client-server stor-
age service in public cloud environments. A client of our scheme is allowed to
deliver a trapdoor to the cloud server over a public channel. The proposed
CL-dPEKS scheme is compared with the scheme proposed in [13] and found
that our scheme is more computation-cost-effective. We also found out that our
CL-dPEKS scheme offers ciphertext indistinguishability and trapdoor indistin-
guishability, and resists off-line keyword guessing attack.
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Abstract. Ciphertext Policy Attribute-based Encryption(CP-ABE) is
a public key primitive in which a user is able to decrypt a ciphertext if
the attributes associated with secret key and the access policy connected
with ciphertext matches. Although CP-ABE provides both confidential-
ity and fine-grained access control to the data stored in public cloud,
anonymous CP-ABE adds interesting feature of sender and/or receiver
anonymity. In this paper, we discuss a recent work on anonymous CP-ABE
[1], which aims to provide secure and efficient data retrieval anonymously.
We show that the scheme has major security weakness and does not ensure
anonymity feature, which is the main claim of the scheme. We then present
an improved scheme for mitigating the weaknesses of the scheme. The
improved scheme retains the security claims of the original scheme [1]
without adding any computation and communication overhead.

Keywords: Attribute based encryption - Anonymity - Confidentiality -
Access structure

1 Introduction

Cloud computing is a comprehensive model, which provides on-demand comput-
ing resources such as storage, network, applications and services. Many enter-
prizes and individuals outsource their data to the cloud storage servers in order
to reduce the cost for resource management. While making this flexibility to
manage data in third party server, the security and privacy of data are major
concerns. The outsourced data may contain sensitive information, such as Elec-
tronic Health Records(EHRs), financial details, personal photos etc. Therefore,
data must be protected in the cloud storage server, so that unauthorized data
access and data privacy protection need to be handled appropriately based on
application requirement. There have been several approaches to securing data
in cloud server. However, data encryption is a widely used primitive for secur-
ing data from authorized users. Before storing the data in cloud server, the
data owner can encrypt the data so that the cloud server cannot learn anything
from the stored data. Once the encrypted data are stored in the cloud server,
two requirements become apparent for user convenience - Access control and
© Springer Nature Singapore Pte Ltd. 2017

D. Giri et al. (Eds.): ICMC 2017, CCIS 655, pp. 16-25, 2017.
DOT: 10.1007/978-981-10-4642-1_2
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Search over encrypted data. To provide a solution for secure and fine-grained data
access, Sahai and Waters introduced the concept of attribute-based encryption
(ABE) [2]. Ciphertext-Policy ABE(CP-ABE) [3] enables data encryption as per
the access policy, where the access policy describes the combination of required
attributes. User’s secret key contains the attribute values which the user pos-
sesses. If the user’s key matches with the access policy then he can decrypt the
documents.

Although ABE scheme supports fine-grained access control [4], it discloses
sender and/or receiver identity by which an adversary can guess the meaning
or purpose of the message by seeing the attributes. Therefore, protecting sender
and/or receiver identity while using ABE has been found a challenging research
problem. In order to address this problem, anonymous ABE (AABE) schemes
have been proposed in literature [5-9]. In anonymous CP-ABE, access policy is
concealed inside the ciphertext components. A user tries to decrypt a cipher-
text using the secret key made up with his attributes. If his attributes fulfills
the access policy, then the decryption operation is successful. If the attributes
included in the secret key do not match with the access policy, then the user
can neither decrypt the ciphertext nor he can uncover the access policy hidden
inside the ciphertext.

In 2013, Koo et al. [1] have proposed a searchable anonymous ABE scheme,
where search on encrypted data is done on data owner’s identity and data
retriever’s attributes. The scheme claimed that a user in the system can search on
encrypted data stored in cloud with preserving sender and receiver anonymity.
In this paper, we show that Koo et al.’s scheme fails to achieve the receiver
anonymity [10]. We then propose an improved scheme, which mitigates the secu-
rity flaw and retains the claimed security strength without adding any overhead.

The remaining of the paper is organized as follows. In Sect. 2, we give some
preliminaries. In Sect. 3, we discuss Koo et al’s scheme. In Sect. 4, we show the
security weaknesses of Koo et al.’s scheme. In Sect. 5, we present an improved
scheme and provide its analysis in Sect. 6. We conclude the paper in Sect. 7.

2 Preliminaries

2.1 Bilinear Mapping

Let G; and G2 be two multiplicative cyclic groups of prime order p. Let g be a
generator of G; and e be a bilinear map, e : Gg X Gg — G7. The bilinear map e
has the following properties:

~ Bilinearity: For all u,v € Go and a, b € Z}, we have e(u®,v") = e(u,v)*.

— Non-degeneracy: e(g, g) # 1.
— Efficiency: The function e is efficiently computable.

We say that G is a bilinear group if the group operation in Gy and the bilinear
map e: Gg X Gy — G4 are both efficiently computable.
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2.2 Access Tree

Access structure is represented in form of an access tree T'. Each non-leaf node
of the tree behaves as a threshold gate. It is defined as a tuple of its children and
a threshold value. Let num, denotes the number of children of a node x and k,
represents the threshold value of the node z, then 0 < k, < num,. For an OR
gate k, = 1, and for an AND gate, k, = num,. Each leaf node x represents an
attribute and threshold value k, = 1. Each child of a parent will have unique
index number from set [1,num] in an ordered fashion. To assist in traversing the
access trees in cryptographic operations, following functions are being used.

— parent(x) = parent of the node z in the tree.

— att(z) = attribute associated with the leaf node z.

— index(z) = index number of node z as a child of its parent node. The value
will be between 1 to num.

The encryption algorithm first chooses a polynomial ¢, for each node z (includ-
ing the leaves) in the tree 7. The polynomial is chosen in a top-to-bottom
fashion, initiating from the root node R. For each node z in the tree, the degree
d, of the polynomial ¢, = k, — 1, that is d, is one less than the threshold
value k, of that node. For the root node R, the algorithm selects a random
s € Z, and sets gr(0) = s. Then, it picks dr number of random points to define
the polynomial gr. For every other node = of access tree, it computes ¢, (0) =
gparent () (index(x)) and selects d, number of random points randomly to define
a polynomial q,.

3 Koo et al.’s Scheme

Koo et al. [1] proposed a scheme for secure and efficient data retrieval using
anonymous attribute based encryption. The scheme works with the four entities
as follows.

Trusted Authority (TA), who generates user specific secret keys.

— Cloud service provider(CSP) is a semi-trusted entity where the users stored
their data in encrypted form.

— Data owner/encryptor, who encrypts and stores the data in CSP.

— Data retriever/receiver, who issues queries to the CSP to access encrypted

data from the cloud storage and retrieves the data only if his attributes sat-

isfies the access policy specified by the data owner.

The scheme consists of five phases - System Setup, Key Generation, Encryption,
Data Access and Decryption.

3.1 System Setup

The TA performs the setup. It chooses a bilinear group G of prime order p with
generator g. It picks two random exponents «, 8 from Z, and also selects a
cryptographic hash function H: {0,1}* — G. TA computes the public parameter
PK and master secret M K for the system as: PK = (G, g, w = e(g,9)%, h = ¢°),
MK = (g%, f3).
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3.2 Key Generation

Each data owner gets a secret key Ap from TA in which data owner identity is
hidden. Each receiver gets a secret key SK from TA for decryption operation.

— For the data owner having identity I Dy, TA computes and returns him the
anonymous key, Ao = H(IDy)P.

— The TA chooses a random r € Z, for each individual user u; in the system
and r; € Z, for each attribute A\; € A;. Here A; is the set of attributes that
belongs to user u;. The private key SK is computed as

(a

SK =(D=g"5" {D; = g H(\,)",
D} =g, D) = H(,) hen)

3.3 Encryption

Before uploading data content to cloud storage, the data owner having the iden-
tity /Do computes his pseudonym as Po = H(IDp)*. Here t is the random value
selected by the data owner from Z,. The data owner publicizes his pseudonym.
To encrypt data M, the data owner runs Encrypt algorithm, as explained below.
The encryption algorithm inputs the public parameter PK, its pseudonym Pp, a
message M to be encrypted under the access tree 7, and outputs the ciphertext
C'Ty. After that, the attribute scrambling procedure, AttrScm, is applied to
the ciphertext CTy for generating new ciphertext C'T" to be located in the cloud
storage.

Data Encryption(Encrypt). This algorithm chooses a polynomial g, for each
node z (including the leaves) in a top-down manner, starting from the root node
R in the tree 7. For each node x in the tree, set the degree d, of the polynomial
gz as ky — 1. The algorithm chooses a random s € Z, and sets one point for
polynomial gg as (0, s). Rest of the dg points are chosen randomly to completely
define the polynomial gg. For every other node z, the algorithm fixes ¢,(0) =
Gparent(x) (index(r)) and selects d, number of random points to completely define
a polynomial ¢,. Let Y be the set of leaf nodes in 7. The ciphertext is built upon
the basis of the access tree 7 as CT" = (7,0 = Mw*,C = h*,C" = Po,{C, =
g™, ¢y = H(attry)™ (O} ey).

Attribute Scrambling(AttrScm). In this phase the data owner garbles each
attribute value included in 7 and obtains a new access tree 7’ by running
AttrSem(CTy,Ap,S). S is the set of attributes which are included in the access
policy of CTy. S ={\;,--- , M|l <i <k <|L|}. For each attribute included in
S, the data owner computes

Ko.s = {e(Ap, H(A))bxes
={e(H(IDo)"", H(X;))}res
Do)

= {e(H(IDo), H(X;))"'}x;es
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and replaces the value of A\, of every leaf node z related to attr, in 7 with the
value of scmgtt, € Ko,s. This results in the access tree 7’. The output of this
algorithm is CT = (T",C,C,C",{Cy, Cl,}yey)

At the end of this phase, the data owner uploads the CT on the cloud storage.

3.4 Data Access

This phase facilitates the retrieval of encrypted data from CSP.

— Data query. In the initial phase, a retriever can first gets a pseudonym list
of data owners either from the CSP or directly from the data owners. Once
the retriever determines to retrieve the data with C” = Pp from the cloud
storage, it can generate cryptographic index terms for the attributes included
in his secret key SK as follows.

Ko, = {e(D},C")}jen,
= {e(H(IDO)t7 H()‘j)ﬁ)}jel\i
={e(H(IDo),H(X;))""}jen,

After that, the retriever submits his data request query in the form of a subset
of these scrambled index information Ko.a, € Ko,a, to the CSP.

— Data Retrieval. After receiving search query in form of scrambled index
terms Ko A/, the CSP searches in his database if the requested item is present
in the storage and if it is present then whether it is satisfied by the requested
index attributes. This is done by the algorithm C(7, Ko 4/). The algorithm
returns true or false.

Let T, be a subtree of T with root node x and X’ = {2’ € Y, and parent(z')
= z}. C(7,Ko,n;) is computed recursively as follows. If = is a leaf node,
C(7x,Ko,a;) returns true if and only if attr, € Ko a;. If x is a non-leaf node
in 7, C(7,Ko,a;) returns true if and only if at least k; children return true.
For each ciphertext C'T;, where 0 < i < m, the CSP simply follows the access
tree T and determines whether C(7%, Ko, A;) returns true or not. The CSP
sends the ciphertexts to the retriever for which the algorithm C (T",KQ A;)
returns true.

3.5 Decryption

When a retriever receives the requested content from CSP in encrypted form,
then he applies the decryption algorithm DecryptNode on that encrypted content
to obtain the plaintext.
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DecryptNode(CT, SK, S). For a leaf node x in access tree the algorithm
computes as follows: If i (= attr,) € S then

e(D;, C)
(D}, Cy)

elg” - (i)™ =)
(g™ H (D))

= e(g )"

=F,

DecryptNode(CT, SK, S) =

If z is a nonleaf node then the algorithm proceeds as follows : {Vz € children
of 2}, it invokes the DecryptNode(CT, SK, z) and stores the output as F,.
Let S, is the arbitrary k, sized set of child nodes z such that F, # L, then next
step is computed as

F. o= H FAi,s/z(o)
xr z

ZES(E

[T (e(g. g)o=0) =

6 g’g qua'r‘fnt( )(index(z )))Ai,s/m(o)

(
=]
H(e(% )Tq'z()) i,5/2(0)
e(g,9)

— 7q: (0
(Here, A is Lagrange coefficient).

The decryption result becomes Fr = e(g, g)"%(©) = e(g, g)"

From this, the algorithm can decrypt the ciphertext and restore the original
data content M by computing

C B Mw?
e(C,D)/Fr  e(h*,g*7)/8)/e(g, g)s
_ Me(g,9)**
e(g%s, g(>+n/8) [e(g, g)rs
=M

4 Weaknesses in Koo et al.’s scheme

In the scheme [1], the attributes in the access policy are scrambled with
a pseudonym computed by the data owner. The pseudonym hides the data
owner(encryptor)’s identity. To fetch the documents from CSP the receiver
requires the pseudonym. The receiver gets the pseudonym in either of these
two ways:
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1. a pseudonym directly from data owner.
2. a list of pseudonyms from the CSP.

If the receiver gets a pseudonym directly from the data owner then the receiver
is knowing the data owner. The receiver scrambles his attributes using the
pseudonym and retrieves the documents from the cloud as described in the
Retrieve procedure. This compromises the anonymity of the sender. If the
receiver gets a list of pseudonyms from the CSP, then following two cases arise.

(i) The receiver does not know which pseudonym refers to which data owner.
Therefore, sender and receiver anonymity is preserved. However, concealing
the sender identity from the receiver leads an attack as described later in
this section.

(ii) It creates an operational overhead for the receiver when he gets a list of
pseudonyms from the CSP and the receiver does not know which pseudonym
refers to which data owner. The receiver can scramble his attributes either
with all pseudonyms one-by-one and send them to the CSP or the receiver
can select a subset of pseudonyms, scramble his attributes with each of the
pseudonym from subset one-by-one and send the queries to the CSP.

The scheme requires every user to get an anonymous encryption key Ao from
trusted authority. Then the user is able to encrypt and upload the documents
on CSP. However, we show that a user who knows the public parameters can
generate a pseudonym, encrypt a message and upload the document on CSP.
A user who has the knowledge of the public parameters PK = (G, g, h = ¢°,
w = e(g,9)*) chooses a random element ¢ € Z,, generates his pseudonym g* and
publishes it. The user scrambles the attributes included in 7 as e(h, H(\;)")
= e(g, H(\;))¥® V \; € T. Now, this ciphertext can be uploaded to the CSP.
Next, we show that the CSP can break the receiver anonymity, if he has the
knowledge of the public parameter and attributes in the system. The CSP per-
forms following steps to identify the attributes of a receiver who has submitted
a search query to CSP.

CSP generates a fake pseudonym say Po = g for 1 < i < n, where t is chosen
randomly from Z,. Using this fake pseudonym, CSP computes and prepares a
list of scrambled attributes for each of the attribute in the system as follows.
{e(h, HOy)) Ix,er = {elg: H)) ' Ia,er for 1<i<n.

This list of values he stores in a set T77. When a data retriever i wants a list
of pseudonyms from the CSP, then the CSP submits this list of pseudonyms
in which the fake pseudonym generated by the CSP is also included. The
data retriever ¢ will not be able to detect if there is any fake pseudonym,
as all pseudonyms are random values. Let us denote the list as L. The U
chooses a subset L’ of L, where L’ C L. Then U scrambles his attributes
using each of the pseudonym present in the L’ as Ko, a, = {e(Poi,D"”)}jen,
= {e(g",H(\;)®)}jen, = {e(g,H();))P"};cn, using each pseudonym Po; = g
present in the set L. U then submits these different sets of scrambled attributes
(Ko, A, for each Po; € L') to the CSP. The CSP needs to compare each set
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Ko, a, with the set of pre-computed values T” that he has. Whenever he finds
Ko,.a; CT’, then CSP identifies which attributes the U possesses. Once the CSP
identifies the attributes of U, then by comparing the remaining sets of scrambled
attributes Ko, o, with the stored access policies of other encrypted documents,
the CSP can either uncover the hidden access policies of other encrypted docu-
ments. Therefore, the receiver anonymity of a ciphertext is revealed.

5 Improved Scheme

The security flaws in scheme [1] occur because of the use of pseudonym. We
propose an improvement without using pseudonym, which retains the security
claims of the scheme without increasing any overhead. The improved scheme has
the following phases.

5.1 System Setup

The System setup phase is same as described in Sect. 3.1.

5.2 Key Generation

The Key Generation phase remains same as explained in Sect.3.2. In addition
to the Key Generation algorithm, the trusted authority publicizes a list of IDs
and the mapping of IDs with the data owners owing that ID. We note that the
secret parameter J scrambles the attributes in access policy, so the mapping of
IDs with the data owners do not reveal any information about the sender and
receiver of the encrypted documents stored in CSP.

5.3 Encryption

The data owner encrypts data M as per the access policy 7 by running the
Encrypt algorithm as mentioned in Sect. 3.3. After that, the attribute scram-
bling algorithm, AttrScm, is applied to the ciphertext C'T for generating the
ciphertext C'T" to be located in the cloud storage. We propose a modification in
the AttrScm algorithm by removing the use of random value ¢. The data owner
can use his secret encryption key for attribute scrambling as described below. S
is the set of attributes to be included in access tree. For each attribute from set
S={\, -+, | 1<i<k<|L|}, the data owner calculates

Ko.s ={e(Ao, H(A\j))}res
= {e(H(IDo)", H(A\;))}x,es
= {e(H(IDo),H(\;))’}x,es

and assigns scmgy, € Ko,g to leaf node x in 7 instead of A, corresponding to
attr,. This results in the access tree 7’. The new encrypted content CT to be

stored is made as CT = (7', C, C, C" {C,, C} },ev). After this phase, the data
owner uploads CT to the storage managed by the CSP.
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5.4 Data Access

Data query (Query). In this phase there is no need for a retriever to acquire a
pseudonym of any data owner. When the retriever determines to retrieve a data
with identity I Do from the CSP then the retriever generates cryptographic index
terms for corresponding attributes as

Ko, = {e(Dj, H(IDo))} jen,
= {e(H(IDo),H(\;)")}jen,
= {e(H(IDo), H();))"}jen,

After that, the retriever submits the data request query in form of Ko a; C
Ko, a, to the CSP.

Data Retrieval (Retrieve). It is same as described in Sect. 3.4.

5.5 Decrypt

The decrypt operation is same as explained in Sect. 3.5.

6 Analysis

Theorem 1. The improved scheme provides sender and receiver anonymity.

Proof. We prove that the CSP or any other unintended receiver can not learn
the sender or receiver identity. To break the sender and receiver anonymity
the adversary needs to find out the value of sender’s ID IDp and A; from the
scrambled attribute value {e(H(IDo), H();)?)};en,. For each of the attribute
A;j in the system and senders’ identities I Do ;, the following computed results
are stored in CSP.

He(H(IDo,i), H(Aj))}jen hi<i<n-

Here, n is the number of users in the system and it is assumed that every user
possesses a unique identity and a set of attributes. To compare the scrambled
attributes stored along with the ciphertext the adversary needs to get the value
of (8, where (§ is the master key of the system which the adversary can not
get. The use of § prevents any unintended retriever to generate the scrambled
attributes index terms for which he has not got the private key. The complexity
of getting the value of 3 from the public parameter h = ¢ is equivalent to
that of solving the discrete logarithm problem, which is an intractable problem.
Therefore, the adversary can not learn the sender or receiver identity from the
hidden access policy or from the search query because of scrambled attributes.O

In addition to the security strengths of the improved scheme, the scheme
reduces the communication and computation overheads, as the receiver neither
requires a pseudonym from data owner or from CSP nor uses it in attributes
scrambling procedure.
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Conclusion

Anonymous attributes based schemes provide interesting features such as sender
and/or receiver anonymity, privacy-preserved data access and unlinkability. We
discussed a recently proposed anonymous CP-ABE scheme, which claims secure
and efficient data retrieval with sender and receiver anonymity. We showed that
the scheme suffers from security weaknesses, lacks sender and receiver anonymity.
We proposed an improved scheme by removing the use of pseudonym that mit-
igates the weaknesses of the scheme and retains the claimed security features
intact without adding any communication and computation overhead.
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Abstract. Several password authentication schemes utilizing smart
cards have been proposed in the literature. Recently Kumar et al. pro-
posed a new authentication scheme to access remote server over insecure
channels. They also claimed that their scheme is able to resist various
attacks. However, in this paper we demonstrate that Kumar et al. scheme
is still vulnerable to various malicious attacks and is aslo unable to pro-
vide several essential security properties.

Keywords: Denial of Service (DoS) - User anonymity - Password
guessing - Forgery attack - Forward secrecy

1 Introduction

Several authentication scheme have been proposed for remote user authentica-
tion in the traditional client-server scenario. Lamport [1] was the first to propose
remote authentication using one-way hash function. However, Lamport’s scheme
was found to be vulnerable to stolen verifier attack. Later several authentication
schemes were proposed [2-15]. Regrettably, many of these schemes [16-18] are
often found to be vulnerable. Karupiah and Saravanan [19] analyzed the scheme
in [20] and showed that it is vulnerable to several attacks. They then proposed
a new scheme. Wang et al. in [21] proved that the schemes in [18,22] are vul-
nerable to several malicious attacks. They then presented an enhanced scheme
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to mitigate the vulnerabilities of [18,22]. Wang et al. [23] analyzed Yang et al.
[24] and Hsieh-Leu [16] schemes and found that their schemes were susceptible
to smart card loss attack. Wang et al. [23] then, proposed an efficient scheme
to overcome Yang et al. [24] and Hsieh-Leu [16] schemes vulnerabilities. Ruhul
et al. [7] illustrated the weaknesses of the scheme in [21] and also proposed an
improved scheme.

Kumar et al. [25], in 2016, for mobile networking scenario proposed a scheme
and claimed that their scheme could resist several attacks and provide various
security properties. However, after careful analysis we discerned that Kumar
et al. scheme is vulnerable to various attacks such as replay attack, offline pass-
word guessing attack, Denial of Service (DoS) attack and session key disclosure
attack. Moreover, the scheme was unable to provide essential security properties
such as forward secrecy and user anonymity.

Roadmap of the paper: The rest of the paper is organised as follows. Section 2

provides a brief overview of Kumar et al. scheme. In Sect.3 we cryptanalyze
Kumar et al. scheme. In Sect. 4, we make the conclusion.

2 Overview of the Scheme in [25]

This section briefs the scheme in [25]. It is divided into five parts. These parts are
explained extensively as follows. The nomenclature of this paper is summarized
in Table 1.

2.1 Nomenclature

Table 1. Nomenclature

Notations | Descriptions

Pw; User password

1d; User identity

S Server

ur User table

Ts Master key of S

Ts Random nonce of S

T Random nonce of user
@ Bitwise XOR operation
h(-) Hash function

I Concatanation
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2.2 Registration Phase

The steps for the registration phase are mentioned below.

1.

User selects an identity Id; and submits {Id;, MNUM} with ¢; to S, where
¢; is an individual credential data and M NUM is the legal mobile number
of the user.

When S receives {Id;, MNUM}, it computes REG; = h(Id;||zs) and sends
it to MNUM securely. Then, S keeps an user table (as shown in Table 2)
which is comprising elements {Id;, MNUM} and ¢;.

When the user receives REG;, he computes a; = h(Id;||Pw;||REG;), b; =
REG; ® Pw;). Then, he stores {Id;, a;, b;} into smart card and sends {Id;,
b;, CUN;} to S, where CUN; is the unique number of the smart card.

S receives {Id;, b;, CUN,}, then checks Id; € UT or not. If the condition
holds, S inserts {CUN;, b;} into UT.

Table 2. User table of the server S

User ID | Variable M NUM | CUN | Credential
Idl bl 9894567 CUN1 C1
Idz b2 9904558 CUN2 C2
Ids bs 9704956 | CUNS3 | cs
Id, bn 9774511 |CUN,, | cn

2.3 Login and Authentication Phase

The detailed steps of this phase are as follows

1.

At card reader machine, user inserts the card and keys Pw;. After

receiving the password, the reader calculates REG} = b; & Pw;, af =

h(Id;||Pw;||REGY) and verifies a} < oa I not, the login process is ended.
Else, the user has entered the correct password. Then, reader generates a
nonce 7; and finds ¢; = h(Id;||r;]|Pw;) and d; = r; & Pw;. The reader then
transmits {Id;, ¢;, d;} to the server.

When S receives {Id;, ¢;, d;}, it checks Id; € UT or not. If not, session
is ended. Else, S sends a OTP (one-time password) to MNUM of the User.
After the user receives the OTP, he sends it to S. Then, S checks the OTP ver-
ification. If the verification is not true, the session is ended. Else, it computes
REG? = h(Id;||zs), Pw} =b; ® REG, rf = d; ® Pw;, ¢f = h(Id;||r}||Pw])
and verifies ¢} L ¢i. If not, the session is ended.

S now generates a nonce 7, and finds g; = v} @ rs, fi = h(Id;||r}||rs||REGT).
It then sends {f;, g;} to the user.
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4. After receiving {f;, gi}, the user derives r} = g;®r;, f* = h(Id;||r;||ri||REG;)
and verifies whether f7 < fi. If the verification fails, it ends the session.

Otherwise, both compute the session key SK = h(Id;||REG;||ri||rs) and
start the secure session.

2.4 Password Update Phase
The steps for the password change process are mentioned below.

1. At card reader machine, user inserts the card and keys Pw;. After receiving
Puw;, the reader finds REG; = b; ® Pw;, aF = h(Id;||Pw;||REG?) and checks
whether a} - a;. If true, the user is prompted to enter the new password
Pw?* to the user.

2. After receiving Pw*", the reader computes b*" = REG; ® Pw}*"), a?*" =

h(Id;||Pwl”||REG;) and substitutes b;, a; with ", a?¢* in the smart card.
Hence, the password has been updated successfully.

2.5 Forgot Password Recover Phase
The steps for recovering the user’s password are as follows.

1. User submits {Id;, MNUM} to S.

2. When receiving {Id;, MNUM}, S verifies Id; € UT and MNUM € UT or
not. If true, S finds REG; = h(Id;||zs) and Pw; = b; @ REG;. Otherwise,
the request is terminated.

3. S then sends Pw; to the user’s M NUM securely.

2.6 Smart Card Revocation Phase

The steps to acquire a new smart card without re-registration are as follows.

1. The user submits {Id;, MNUM?} and his personal credentials to the server.

2. After receiving {Id;, MNUM?}, S verifies the validity of the user on the basis
of the personal credentials and {Id;, M NUM }. If the check holds, S computes
REG; = h(Id;||zs) and transmits it to M NUM of the user securely.

3. After receiving REG;, the user computes a*¥ = h(Id;||Pw!*"||REG;) and
breY = REG,; @ Pwl*™).

4. The user then acquires a new smart card containing {Id;, a?*, b7¢*}. The
user then sends {Id;, b**, CUN;,} to the server.

5. After receiving {Id;, b7, CUN,}, S checks whether the Id; exists in the
user table. If it does, S further enters b** and CUN;} into the table.
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3 Cryptanalysis of the Scheme in [25]

This section proves that the scheme in [25] is susceptible to various types of
attacks. We establish the following two assumptions. Note that the assumptions
are relatively reasonable and have also been used in recent related works [26-31].

1. Adversary has absolute control on the insecure public medium. Therefore,
he can modify, inject, delete and block messages transmitted over the public
channel [32].

2. The secret stored data may be extricated by the adversary from the
lost /stolen smart card via side channel attacks [33-35].

Thus the adversary can extricate the security credentials {Id;, a;, b;} from the
lost/stolen smart card. He can also trap the messages such as my={Id;, ¢;, d;}
and ma={f;, g;} between S and user.

3.1 Lack of user anonymity

In scheme [25], the Id; is sent as a palindrome in m;={Id;, ¢;, d;} to S. Therefore,
an adversary can identify a particular user and track his login history. Hence,
the scheme of Kumar et al. is not confering the user anonymity feature.

3.2 Incorrect Password Change Process

In scheme [25], the credentials associated with Pw; kept in the smart card are b;
and a;. After a successful password update, the smart card is updated with the
parameters b7 and a“". However, recall that the parameter b; is also stored
in the User table at the server side. Moreover, there is no updation message
sent to the remote server. Therefore, the user is denied services permanently
if he tries to login after a successful password change process. Hence, we show
that Kumar et al’s incorrect password change phase culminates into a Denial of
Service (DoS) attack.

3.3 Susceptible to Off-Line Password Guessing Attack

We assume that the login request message mi={Id;, ¢;, d;} is intercepted by the
adversary during any login and authentication session. The, the user’s password
can be acquired as follows.

1. Adversary guesses the password Pw,.

2. Computes r; = d; ® Pw,

3. Computes ¢; = h(Idy||r;||Pw,)

4. Verify ¢; < c;. If verification does not hold, reiterate steps 14 till the correct
password is found.

If ¢ ~ C; is true, then this implies that Pw; = Pw, and hence, the adversary
has successfully obtained the user’s password. Thus, we prove that the scheme
in [25] is susceptible to offline password guessing attack.
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3.4 Disclosure of Session Key

As discussed in Sect. 3.3, the adversary can discover the random number r; and
password Pw; of user. Furthermore, he has {Id;, a;, b;} in accordance with our
assumption 2. Thus, he can derive REG; = b; ® Pw; = REG; ® Pw; & Pw;
where b; = REG; & Pw;. Moreover, he has trapped the message ma={f:, g:}
and therefore further derives ry = g; ®r; where g; = r; ©rs. Thus, the adversary
can deduce SK = h(Id;||REG;||r:||rs)-

3.5 Absence of Perfect Forward Secrecy

As discussed in Sect. 3.4, the session key is disclosed for i*" session. Note that

Pw;, Id; as well as REG,; are static parameters for all the sessions. We assume
that the attacker has intercepted the messages {Id;, c;11, dit1} as well as {fiy1,
gi+1} for the i + 1*" session. He then computes the user’s random number Tit1
(random value of i + 1" session) as discussed in Sect. 3.3. He further derives the
server’s random number r for the i+ 1" session as discussed in Sect. 3.4. Hence,
the attacker deduces SK = h(Id;||REG;||ris1]||rs) for the i + 1t" session. Thus,
the scheme in [25] does not confer the property of forward secrecy.

3.6 Replay Attack

It is clear that there is no mechanism for the remote server to verify the fresh-
ness of data in the user’s login request message mi={Id;, ¢;, d;}. Hence, any
previously legitimate login request can be replayed by the attacker to get login
as a valid user, and remote server cannot detect this malicious behavior and will
respond to user (actually Attacker) as usual. Therefore, the scheme of Kumar
et al. is susceptible to replay attack.

4 Conclusion

In this paper we analyzed the scheme coined by Kumar et al. scheme for remote
login and pointed out that Kumar et al. scheme is susceptible to several malicious
attacks like offline password guessing attack, Denial of Service (DoS) attack and
replay attack. Furthermore, our analysis revealed that Kumar et al. scheme
is unable to provide crucial security features such as perfect forward secrecy
and user anonymity. Moreover, their password change process was found to be
inefficient and thus Kumar et al. scheme is unsuitable for practical applications.

References

1. Lamport, L.: Password authentication with insecure communication. Commun.
ACM 24(11), 770-772 (1981)

2. Amin, R.: Cryptanalysis and an efficient secure id-based remote user authentication
scheme using smart card. IJCA 75, 1149-1157. Citeseer (2013)



32

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

M. Karuppiah et al.

. Amin, R., Biswas, G.P.: Anonymity preserving secure hash function based authen-
tication scheme for consumer USB mass storage device. In: IEEE 2015 Third
International Conference on Computer, Communication, Control and Information
Technology (C3IT), pp. 1-6 (2015)

Amin, R., Biswas, G.P.: Design and analysis of bilinear pairing based mutual
authentication and key agreement protocol usable in multi-server environment.
Wirel. Pers. Commun. 84, 439-462 (2015)

Amin, R., Biswas, G.P.: A novel user authentication and key agreement protocol
for accessing multi-medical server usable in TMIS. J. Med. Syst. 39(3), 1-17 (2015)
Amin, R., Biswas, G.P.: Remote access control mechanism using rabin public
key cryptosystem. In: Mandal, J., Satapathy, S., Kumar Sanyal, M., Sarkar, P.,
Mukhopadhyay, A. (eds.) Information Systems Design and Intelligent Applications,
pp. 525-533. Springer, Heidelberg (2015)

Amin, R., Maitra, T., Rana, S.P.: An improvement of wang. et. al’.s remote user
authentication scheme against smart card security breach. Int. J. Comput. Appl.
75(13), 37-42 (2013)

Giri, D., Maitra, T., Amin, R., Srivastava, P.: An efficient and robust rsa-based
remote user authentication for telecare medical information systems. J. Med. Syst.
39(1), 1-9 (2015)

He, D., Kumar, N., Chilamkurti, N.: A secure temporal-credential-based mutual
authentication and key agreement scheme with pseudo identity for wireless sensor
networks. Inf. Sci. 321, 263-277 (2015)

He, D., Kumar, N., Chilamkurti, N., Lee, J.H.: Lightweight ECC based RFID
authentication integrated with an ID verifier transfer protocol. J. Med. Syst.
38(10), 1-16 (2014)

Islam, S.H.: A provably secure ID-based mutual authentication and key agreement
scheme for mobile multi-server environment without ESL attack. Wirel. Pers. Com-
mun. 79(3), 1975-1991 (2014)

Islam, S.H.: Design and analysis of a three party password-based authenticated
key exchange protocol using extended chaotic maps. Inf. Sci. 312, 104-130 (2015)
Islam, S., Biswas, G.P., Choo, K.K.R.: Cryptanalysis of an improved smartcard-
based remote password authentication scheme. Inf. Sci. Lett. 3(1), 35-40 (2014)
Islam, S., Khan, M.K., Obaidat, M., Muhaya, F.: Provably secure and anonymous
password authentication protocol for roaming service in global mobility networks
using extended chaotic maps. Wirel. Pers. Commun. 84, 2013-2034 (2015)
Kumari, S., Khan, M.K.: Cryptanalysis and improvement of a robust smart-card-
based remote user password authentication scheme. Int. J. Commun. Syst. 27,
3939-3955 (2013). doi:10.1002/dac.2590

Hsieh, W.B., Leu, J.S.: Exploiting hash functions to intensify the remote user
authentication scheme. Comput. Secur. 31(6), 791-798 (2012)

Kumari, S., Khan, M.K., Li, X.: An improved remote user authentication scheme
with key agreement. Comput. Electr. Eng. 40(6), 1997-2012 (2014)

Ku, W.C., Chen, S.M.: Weakness and improvement of an efficient password based
remote user authentication scheme using smart cards. IEEE Trans. Consum. Elec-
tron. 50(1), 204-207 (2004)

Karuppiah, M., Saravanan, R.: A secure remote user mutual authentication scheme
using smart cards. J. Inf. Secur. Appl. 19(4-5), 282-294 (2014). do0i:10.1016/j.jisa.
2014.09.006

Ramasamy, R., Muniyandi, A.P.: New remote mutual authentication scheme using
smart cards. Trans. Data Priv. 2(2), 141-152 (2009)


http://dx.doi.org/10.1002/dac.2590
http://dx.doi.org/10.1016/j.jisa.2014.09.006
http://dx.doi.org/10.1016/j.jisa.2014.09.006

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Secure Remote Login Scheme with Password and Smart Card 33

Wang, X.M., Zhang, W.F., Zhang, J.S., Khan, M.K.: Cryptanalysis and improve-
ment on two efficient remote user authentication scheme using smart cards. Com-
put. Stan. Interfaces 29(5), 507-512 (2007)

Yoon, E.J., Ryu, E.K., Yoo, K.Y.: Further improvement of an efficient password
based remote user authentication scheme using smart cards. IEEE Trans. Consum.
Electron. 50(2), 612-614 (2004)

Wang, D., Ma, C.G., Zhang, Q.M., Zhao, S.: Secure password-based remote user
authentication scheme against smart card security breach. J. Netw. 8(1), 148-155
(2013)

Yang, G., Wong, D.S., Wang, H., Deng, X.: Two-factor mutual authentication
based on smart cards and passwords. J. Comput. Syst. Sci. 74(7), 1160-1172 (2008)
Kumar, R., Amin, R., Karati, A., Biswas, G.P.: Secure remote login scheme with
password and smart card update facilities. In: Das, S., Pal, T., Kar, S., Satapathy,
S., Mandal, J. (eds.) Proceedings of the 4th International Conference on Frontiers
in Intelligent Computing: Theory and Applications (FICTA). Advances in Intelli-
gent Systems and Computing (AISC), vol. 404, pp. 495-505. Springer, Heidelberg
(2015). doi:10.1007/978-81-322-2695-6-41

Karuppiah, M., Saravanan, R.: A secure authentication scheme with user
anonymity for roaming service in global mobility networks. Wirel. Pers. Commun.
84(3), 2055-2078 (2015)

Karuppiah, M., Saravanan, R.: Cryptanalysis and an Improvement of New Remote
Mutual Authentication Scheme using Smart Cards. Journal of Discrete Mathemat-
ical Sciences and Cryptography 18(5), 623-649 (2015)

Wu, F., Xu, L., Kumari, S., Li, X., Das, A.K., Khan, M.K., Karuppiah, M., Baliyan,
R.: A novel and provably secure authentication and key agreement scheme with
user anonymity for global mobility networks. Netw. Secur. Commun. 9, 3527-3542
(2016). doi:10.1002/sec.1558

Kumari, S., Karuppiah, M., Li, X., Wu, F., Das, A.K., Odelu, V.: A Secure Trust-
Extended Authentication Mechanism for VANETSs. Security and Communication
Network (2016)

Karuppiah, M., Kumari, S., Das, A.K., Li, X., Wu, F., Basu, S.A.: A secure light-
weight authentication scheme with user anonymity for roaming service in ubiqui-
tous networks. Secur. Commun. Netw. 9, 4192-4209 (2016)

Karuppiah, M.: Remote user authentication scheme using smart card: a review.
Int. J. Internet Protoc. Technol. 9, 107-120 (2016)

Xu, J., Zhu, W.T.| Feng, D.G.: An improved smart card based password authen-
tication scheme with provable security. Comput. Stand. Interfaces 31(4), 723-728
(2009)

Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
Advances in Cryptology — CRYPTO’ 99. LNCS, vol. 1666, pp. 388-397. Springer,
Heidelberg (1999). doi:10.1007/3-540-48405-1_25

Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Examining smart-card security under
the threat of power analysis attacks. IEEE Trans. Comput. 51(5), 541-552 (2002)
Ma, C.G., Wang, D., Zhao, S.D.: Security flaws in two improved remote user
authentication schemes using smart cards. Int. J. Commun. Syst. 27, 2215-2227
(2012). doi:10.1002/dac.2468


http://dx.doi.org/10.1007/978-81-322-2695-6-41
http://dx.doi.org/10.1002/sec.1558
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1002/dac.2468

Design of Secure and Efficient Electronic
Payment System for Mobile Users

Prerna Mohit!®), Ruhul Amin?, and G.P. Biswas’

! Indian Institute of Technology (ISM), Dhanbad 826004, India
prernamohit@outlook.com
2 Thapar University, Patiala 147004, India

Abstract. The recent advancement in smart phones and its widespread
popularity switches the users of traditional computing to mobile comput-
ing. In addition, to facilitate users, hand held devices such as a mobile
phone application for the payment method should be accepted for practi-
cal implementation. Recently, Yang et al. proposed an electronic payment
protocol using payment gateway and claims that this scheme is suitable
for cloud computing, where payment gateway is placed in the cloud area
and all the communication between user, merchant, bank is performed
via the payment gateway. However, it is known that cloud server is not
considered as completely secured entity. Hence, by putting payment gate-
way on cloud server the author is endangering the security of system as
a consequence it is not suitable for cloud environment. In this paper, we
propose an efficient electronic payment protocol for mobile environment
where mobile users can directly communicate with the merchant. It has
been shown that our protocol has better security performance in terms
of different attacks.

Keywords: e-payment - Mobile commerce - Security -+ Symmetric key

1 Introduction

With the rapid development of online shopping, the demand of secure payment
system is imperative and increased with time. In electronic transaction appli-
cation, people mainly use mobile device to deal with the transaction due to
user friendly services. One of the objectives of electronic payment transactions
is to provide security to the customer during the process of the transaction as
it is performed over a public channel. In order to protect the data from a mali-
cious action, that may cause loss and theft of the customers money. An efficient
electronic payment protocol is proposed. The use of online payment systems
was mainly among banking institutions. During the same time, credit cards and
ATM’s were first introduced to customers. The exponential growth of the Inter-
net has helped the development of online payment systems and has changed
the way consumers do business. The electronic payment system is considered
as an integral part of any E-commerce system and categorized as Business-
to-Business (B2B), Business-to-Consumer (B2C), Consumer-to-Business (C2B),
and Consumer-to-Consumer (C2C) transaction.
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1.1 Study and Review on Existing Research

For the protection of online payment transactions, there are different type of
electronic payment systems have been suggested by researchers and scientist
in [1-3,13]. In 2001, Chari et al. [4] shows that mobile communication is differ-
ent from electronic communication as the underlying technologies are different.
Therefore, the idea of security in mobile commerce should be different from that
of the electronic commerce. However, there are some of well-known existing pro-
tocols for secure electronic payment exists such as secure electronic transaction
(SET) [5], Internet Key Protocol (iK' P) [6] and these protocol are success-
fully implemented over Internet. However, Kungpisdan et al. [7] justified that
SET and iKP payment protocols are not suitable for mobile communication pay-
ment transaction and only be suitable for electronic communication for payment
transaction. Then, Tellez et al. in [8] also supports in [7] that existing SET and
iKP payment protocols are inapplicable for mobile payment transaction in wire-
less network due to their heavy computational and communication operations
and proposed an improved protocol. Then, Kungpisdan et al. [9] proposed an
enhanced version of [7]. In 2008 Fun et al. [10] discusses a new protocol for per-
sonal mobile payment, which is based on a client centric model using symmetric
key [10] and also claims that the protocol achieves privacy protection for the
pair of communication entity. Isaac et al. [11] proposes a secure payment trans-
action protocol using payment gateway, where the client and merchant always
communicate via a payment gateway in order to exchange message. Later on,
Yang et al. in [12] shows that Isaac et al.’s in [11] scheme does not provides
non-repudiation and suffers from the key management problem. Hence, Yang
et al. [12] proposed a new mobile payment protocol and claimed that it is suit-
able for cloud computing environment.

1.2 Organization of the Paper

Section 2 gives the preliminary for the protocol, which also includes review of
Yang et al. protocol and its weaknesses. Section 3 presents the proposed protocol
for e-payment system. The security and performance evaluation of our protocol
are given in Sect. 4. Finally, we conclude the paper in Sect. 5.

2 Preliminary

This section explains some of the concepts used in order to understand our
protocol.

2.1 RSA Digital Signature

1. Key Generation: Randomly select two prime numbers p, ¢ and compute
n=piq, ¢(n)=(p—1)x(g—1).
Choose e such that ged(¢(n),e)= 1.
Compute d = e~ tmod(¢(n))
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2. Signature: Compute Sig = M%mod n
Send Stig, M

3. Verification: M’ = Sig®mod n
check M = M’; if correct accept; otherwise reject

2.2 Roles

The proposed scheme, consists of five entities: Client (C), Merchant (M), Pay-
ment Gateway (PG), Issuer (I) and Acquirer (A). They are introduced as follows.

— Merchant: A person or company, who is selling its goods.
— Client: A person or organization using the services of merchant.
— Payment gateway: Use in the payment transaction between the bank and

merchant/client.
— Issuer: The client’s bank.
— Acquirer: The merchant’s bank.

Table 1. List of the symbols used in Yang et al.’s scheme

Notation Meaning

NID¢ The temporary identity of the client

ID; The identity of the participant i

TInfo The transaction information includes time, date, and the serial number
Price The amount of the payment

m The payment information computed by m = (NID¢,TInfo, Price)
SRequest | The signature request

TSs; The timestamp generated by the participant i

Issuerrp The identity of the issuer

Acquirer;p | The identity of the acquirer

Stt The state of a transaction

KSa_p The session key shared between A and B

2.3 Review of Yang et al. e-payment System [12]

We briefly review Yang et al.’s e-payment protocol, where all the transactions
are performed via payment gateway. The detail of the scheme is described below.
The list of notations used in this paper is given in Table 1.

Step1 C — PG: NIDg, A
PG — M: NID¢, A
M — PG: TInfo
PG — C: TInfo
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Step 2 C—PG: SRequest = (h(TInfo),IDc, NID¢, h(m), Price, TSc)kse_,;
PG — I SRequest
I - PG: (S)KSC—I
Decrypt [SRequest]; check T'Se
S = h(m)¥mod n
PG — C: (S)KScfz

Step 3 C — PG: (S,m,h(TInfo), TSc,IssurerD)ks._pq
Decrypt and get (S, m, h(TInfo),TSc,Issurerp)
PG — M: (S,m,h(TInfo), TSc, Issuerip)ksy_pa

Step 4 M — PG: (S,m,h(TInfo), Dy, TS, Issuerip, Acquirerip)k sy po

Step 5 PG — L. (S,NID¢,IDy, h(TInfo), Price, Acquireryp) using private
network
PG — A: (h(TInfo), Price,IDy, Issuerp)

Step 6 I — PG: PResponse, h(TInfo)
A — PG: Stt,h(TInfo)

Step 7 PG — C: PResponse, h(TInfo)
PG — M: Stt,h(TInfo)

2.4 Weakness of Yang et al.

We found that Yang et al.’s scheme is not suitable for cloud computing, as it
was claimed by Yang that her scheme provides anonymity for cloud client. The
details are discussed below.

— It is assumed that the Payment Gateway is in the area of cloud and due to
this the protocol can be implemented in cloud environment.

— The payment gateway plays very important role as all the entities commu-
nicate through the payment gateway for payment related request. Moreover,
the client cannot communicate directly with the merchant to process the
Payment request.

— In short, the security of Yang et al.’s scheme directly depends on the security
of Payment Gateway.

However, it is known that the cloud servers are not considered as secure [14,15].
So, by putting the Payment gateway in cloud the security of transaction is
becoming more dangerous.

3 Proposed Protocol for e-payment System

In this section, a new payment scheme is proposed for online transaction sys-
tem. The proposed scheme consists of two phases, namely the set up phase
and transaction phase. The detailed descriptions of each phase are given below.
Table 2 introduces the notations used in our protocol.
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Table 2. List of the symbols used

Notation Meaning

NIDc The temporary identity of the client

ID; The identity of the i’th participant

IDp The identity of the product

TID The transaction information includes transaction time, date, and the
serial number

PI The payment information computed by PI = h(TID || Price || h(OI))

Ol The order information computed by OI = h(IDp || h(Price) || TID)

T; The timestamp generated by i

h() One-way hash function

Stt The state of a transaction

Kap Secret key between A and B

Vs The value- subtraction

PResponse | The product response

PRequest The product request

VCRequest | The value claim request

VC Response | The value claim response

3.1 Proposed Architecture and Discussion

In Fig. 1, we have provided the architecture of e-payment, which consists of five
entities, namely Client (C), Merchant (M), Payment Gateway (PG), Acquirer
(A) and Issuer (I). The client requests for the product by looking on the mer-
chant’s web site. Additionally, the merchant provides product detail, including
serial number, price, date, time to client. Now, the mobile client asks for the
product request including the value need to be subtracted by bank and for-
wards it to merchant, where M keeps the product request and forwards the
value claim request to payment gateway. The gateway performs some verifica-
tion steps and forwards value substraction request to issuer. At the same time,
Payment Gateway forwards some encrypted message to Acquirer. On receiving
the value substraction request, issuer verifies it and sends value substraction
respond to payment gateway and acknowledgement for payment gateway to A.
Then, A forwards it to payment gateway. The payment gateway computes value
claimed response and forwards it to M, where merchant verifies it and generates
product response which is acceptable after verification.
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4 Merchant web site

\4
—
—
—

/ Payment AN
Gateway
3 g}

lssuer Acquirer

Client

Fig. 1. Proposed model of e-payment mechanism

3.2 Setup Phase

In Setup phase, each entity the client, merchant, issuer, acquirer registers with
the payment gateway to establish their secret key with gateway Kop, Ky p,
Kip, K 4p respectively. Secret key is required to perform secure communication.
In addition, the client and merchant also establish a secret key Kcpr between
them self.

The issuer as well as client use RSA signature to perform digital signature
on the document using the private key. Note that the public key pair has been
certified by a certificate authority.

3.3 Transaction Phase

Client starts the transaction by sending its temporary identity to the merchant.
In the whole transaction process, the client can directly communicate with mer-
chant while for communication with bank, the merchant as well as the client
required the payment gateway to make the communication more simple. Detail
description of the protocol is given below, where the symbol A — B : C' means
a message C' is sent to B by A. The detail, description is shown in Fig. 2.

Stepl C — M: NID¢
M — C: {IDp,TID, Price} k.,

Step 2 C — M: PRequest = {TID,NID¢c,OI,Tc2,VS} ko
VS = {S’L’g7 PI, IDc, Tcl}ch
MD = h(PI), Sig = M D%mod n
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Fig. 2. The steps of the proposed protocol

M — PG: VCRequest = {VS,IDys, Price, TID, T} ko, p
Decrypt PRequest; Check |Th — Teo| < AT

PG — I: VSRequest = {PI, Sig, Price, IDc,ID A}k, ,

Decrypt VCRequest; Check |Tpg — Ty| < AT

Decrypt V'S; Check |Tpg — Toe| < AT and h(PI) =?sig®mod n
PG — A: {IDp;,ID 4, Price} g, ,

I — A: Acknowledgement

Decrypt (V SRequest); Check Sig¢mod n =7h(PI)
Check I D¢ in its database and find M N of client
I — C: OTP Request

C — I. OT P Response

A — PG: Acknowledgement

I — PG: VSResponse = {stt, h(price), Sigr}
AD =h(ID¢ || MN)
MD; = h(AD); Sigr = M D{mod n

PG — M: VCRespond = {stt,h(OI), Sigr}
Check h(OI) =? Stored h(OI)

M — C: PRespond = Sigy

verify Sig§mod n =?h(h(ID¢ || MN))

————————— e L -
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4 Security Analysis

This section discusses various types of attacks to analyze the security of the
proposed protocol. The detail is described below

1. Confidentiality: In this scheme we always encrypt data before transferring
it to the other communicating party. If adversary A interrupts between com-
munication. A get the encrypted message which can not be decrypted without
the key. Hence, confidentiality is always achieved.

2. Non-repudiation: The Issuer uses the client’s signature to ensure that the
legal person send the request to deduct the money from its account. The client
also can verify the issuer signature. If there are some problems, the client as
well as the issuer can not deny from the fact the signature is performed by
them. Thus, non-repudiation is achieved.

3. Replay attack: We use timestamps, which is checked by the receiv-
ing party if the time stamps is not legal and not showing the valid
time interval. For example, when the merchant receives PRequest =
{TID,NID¢,0I,Tc2,VS} ke, - The merchant first decrypt it and check
|Th — Toz| < AT ie. if it is larger than mention time, then the merchant
will discover that message will send by attacker A. Therefore, the protocol
can defend against replay attack.

4. Insider attack: As the communicated message are encrypted by the ses-
sion key between sending and receiving party. So, only the two can see the
message. For instance, let us consider that if merchant want to know the orig-
inal identity of client I D¢, contain in the message V.S, it is impossible for
merchant as it is encrypted by client-issuer key.

5. Anonymity: The client identity /D¢ is always kept secret during the com-
munication and client use temporary identity NI Do which is session depen-
dent for communication. Thus, it prevents client’s Anonymity.

6. Impersonation attack: If attacker A, interrupts the message of the client
and trying to be like client by modifying its message PRequest which con-
tain V.S where further contain Sig signature of the client. Which cannot be
performed by A. Thus, the protocol protects impersonation attack.

4.1 Performance Analysis

This section gives the computation cost comparison of our scheme with related
scheme used in online transactions [11,12] as shown in Table4. Tt is found that
our scheme has less computation cost, then [11] but more the [12]. Moreover,
Yang et al. uses private channel in order to communicate with bank. We do
not consider concatenation, hash operation, as its computation is very less than
symmetric encryption/decryption. The notation Ts refers to symmetric encryp-
tion/decryption (Table 3).
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Table 3. Security comparison of proposed scheme with related schemes

Schemes Isaac et al. [11] | Yang et al. [12] | Our protocol
Provide confidentiality Yes Yes Yes
Provide integrity Yes Yes Yes
Provide non-repudiation No Yes Yes
Resist anonymity No Yes Yes
Resist replay attack Yes Yes Yes
Resist insider attack Yes Yes Yes
Resist impersonation attack | No No Yes

Table 4. Computation cost comparison of the proposed scheme with related schemes

Schemes | Isaac et al. [11] | Yang et al. [12] | Our protocol
Client 4 Tg 3Ts 2Ts
Merchant | 5 Ts 2Ts 2Ts
Gateway |3 Ts 2Ts 4 Ts

5 Conclusion

This paper presents a new method for electronic payment system, which is
the improvement of Yang et al. e-payment system. Our protocol withstands
the security weaknesses found in Yang et al.’s scheme. In our implementa-
tion, the payment gateway acts as a proxy to communicate between bank and
client /merchant. The security analysis shows that the proposed scheme can resist
against various type of attacks.
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Abstract. Security of data is considered to be one of the most important
concerns in today’s world. Data is vulnerable to various types of intrusion
attacks that may reduce the utility of any network or systems. Constantly
changing and the complicated nature of intrusion activities on computer net-
works cannot be dealt with IDSs that are currently operational. Identifying and
preventing such attacks is one of the most challenging tasks. Deep Learning is
one of the most effective machine learning techniques which is getting popular
recently. This paper checks the potential capability of Deep Neural Network as a
classifier for the different types of intrusion attacks. A comparative study has
also been carried out with Support Vector Machine (SVM). The experimental
results show that the accuracy of intrusion detection using Deep Neural Network
is satisfactory.

Keywords: Security - Intrusions - Deep Neural Network * Support Vector
Machine

1 Introduction

Intrusion Detection System [1, 2] is a type of security management system for com-
puters and networks. It gathers and analyzes information from various areas within a
computer or a network to identify possible security breaches, which include both
intrusions (attacks from outside the organization) and misuse (attacks from within the
organization). ID uses vulnerability assessment, developed to assess the security of a
computer system or network. Data is considered to be the most important aspect of any
organization. If the organization’s data is secure, only then it can successfully carry out
its operations. However, data have always been under a constant threat from external
attacks. The hackers and crackers come up with new ways every day to destroy or steal
the data that every organization holds so precious. In this paper, we have analyzed a
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dataset containing information about the various attacks that have been carried out by
the hackers and based on the parameters, an attempt to predict the kind of attack that
will be used by the hacker, is carried out. The data set has been obtained from UCI
machine learning repository. The data set is related to intrusion detection system
(IDS) and in this work, a Deep learning [3] approach based on neural network has been
adopted to predict different types of IDS attacks.

An Intrusion Detection System, popularly known as IDS, is a software that mon-
itors the network for malicious activities or violations of policies regarding cybercrime
and produces a report to the management system. IDS is related to network security just
like a firewall, it differs from a firewall in the manner of looking for intrusions. The
firewall looks at the outward intrusions in order to prevent them and limits the access
between networks to prevent intrusion. On the other hand, IDS evaluates an intrusion
that has already taken place and then sends an alarm signal. A lot of predictions has
been accomplished using machine learning [4, 5, 12, 13, 15]. Also, several intrusion
detection systems were proposed by several authors using roughest theory and other
methods [7]. In this paper, we have used a multilayer feed forward network to represent
a deep learning concept for IDS. The feed forward network includes input layers, about
400 hidden layer neurons and output neurons. The activation functions used are rec-
tifier activation function and softmax activation function.

Deep learning has been used in this paper. It is a branch of machine learning that
attempts to model higher level abstractions in data by using model architectures with
non-linear transformations [6]. It is chosen since it focuses on computational models
for information representation. It is implemented in such a way that it is able to display
classification invariance with respect to a wide range of transformations and distortions.
It enables us to train a network having a large set of observations and excerpt signals
from this network. The deep learning algorithms use simple features in the lower layers
and more complex features in the higher layers. Here, each hidden layer has statistical
knowledge about the lower layers while higher layer representations are more complex.
The network is trained using greedy layer-wise training which involves the training of
the hidden layers one at a time in a bottom-up fashion. Deep learning has a myriad of
applications. It is used in the medical field where robotics surgery is becoming a
common trend, which relies extensively on tactile equipment. Deep learning is utilized
for developing the robotic equipment. This may enable the doctors to move to a
precision of a millimeter. Also, we can see the application of deep learning in the field
of automotive in terms of self-driving cars, which apply the concepts of deep learning
to emulate the senses of sight and hearing. It is also used in military forces in a country
where a large number of military drones utilize the concept of deep learning to follow a
moving target. Much research is required in this field as it is not yet fully functional.
Currently, Google Brain is a technology used by Google that uses neural networks to
recognize high level inputs only from watching unlabeled images from YouTube.

IDS set has been used in the Support Vector Machine (SVM) as well and the result
is juxtaposed with the one obtained by using the Neural Network. The results obtained
from the Support Vector Machine are complimentary to the ones obtained by using
Neural Networks. Thus, it confirms that the results obtained are satisfactory.
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2 Deep Neural Network

The neural network used is a multilayer feed forward neural network. In this network,
the information moves in only one direction, forward, from the input nodes, through
the hidden nodes (if any) and to the output nodes [8]. There are no cycles or loops in
the network. Each neuron in one layer has direct connections to the neurons in the
subsequent layers. It contains an input layer, a number of hidden layers and an output
layer. The back propagation method is used for learning the weights of the network.
The input layer has an identity function as its activation function. The output layer and
the hidden layers may have rectifier or softmax activation function. Also, a multilayer
neuron does not have a linear activation function in all its neurons. Some of its neurons
might have a nonlinear activation function (Fig. 1).

INPUTLAYER HIDDEN LAYER 1 HIDOEN LAYER 2 OUTPUT LAYER

Fig. 1. Feed forward neural network [18]

Feed forward neural network is popular due to 2 factors:

(1) It has the ability to give very closely related approximations for complex multi-
variate nonlinear function directly from input values.

(i) It has a strong modelling capability for a large class of natural and artificial
phenomena.

However, in most of the practical scenarios, all parameters of a feed forward
network need to be adjusted in a backward way which leads to creation of depen-
dencies among various neurons in various layers.

Mean squared error (MSE) measures the average of the squares of the “errors”, that
is, the difference between the estimator and what is being estimated [9].

The mean square error is calculated in the following way:

MSE = RSS/N
where MSE — Mean Squared Error
RSS — Residual Sum of Squares
N — Population Size
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RSS is also known as Sum of Squared Residuals (SSR) and Sum of Squared Error
(SSE). It is given by [9, 10],

RSS = 3" (i —f(x)? (1)

So, MSE is given by,

=3 ) @)

The value of R? denotes how close the obtained result is to the expected regression
line. R? can have a value within the range [0,1]. The higher value of RZ, the more
accurate the obtained result is. It can be computed in the following way:

R? = SSr/SSt where,
SSr = Z(yi — )

SSk=> (51 —y)° (4)

(3)

In some of the research experiments, another class of neural network is used which
is known as deep belief network and is composed of Restricted Boltzmann Machines
(RBMs) and uses a greedy layer by layer learning algorithm. However, the type of
architecture used in this paper has a better approach since it provides discriminating
powers for pattern classification by characterizing the posterior distributions of classes
conditioned on the data. The following table contains definitions of the terms used here
(Table 1).

3 Experimental Results and Outcome

The data set used in the experiment is the KDD Cup 1999 dataset which is a collection
of simulated raw TCP dump data over an epoch of 9 weeks on a LAN. The training
data has about 5 million connection records from seven weeks of network traffic and
two weeks of testing data yielded around 2 million connection records. The training
data have 22 of the total 29 attacks present in the test data. The known attack types are
present in the training set while the novel attacks are additional attacks that are present
in the test data set and not in the training data set. The attack types are grouped into 4
categories:

DOS — Denial of Service (DoS) attack — e.g. syn flooding

Probing — Surveillance and other probing — e.g. port scanning

U2R - Unauthorized access to the root user privileges. e.g. Buffer overflow attacks
R2L — Unauthorized access from a remote machine, e.g. password guessing.

The training set has about 494,021 records from which 97,277 are normal, 391,458
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are DOS attacks, 4107 are Probe, 1126 are R2L and 52 are U2R connections. Each
connection has about 41 attributes describing different features of connection and a
label assigned to each either as an attack type or normal. This data set was used
originally in The Third International Knowledge Discovery and Data Mining Tools
Competition, which was held in conjunction with KDD-99 The Fifth International
Conference on Knowledge Discovery and Data Mining. This database contains a
standard set of data to be audited, which includes a wide variety of intrusions
simulated in a military network environment.

Table 1. Basics terminology [11, 16, 17]

Terminology

Meaning

Deep Learning

Deep Belief Networks

Boltzmann Machine

Restricted Boltzmann
Machine

Deep Boltzmann
Machine

Deep Neural Network

Deep Auto Encoder

Distributed
Representation

It is a class of machine learning techniques, based on a set of
algorithms that use multiple layers with complex structures
composed of non-linear transformations to model high level data
It is a probabilistic generative model composed of multiple layers of
stochastic, hidden variables. The top two layers have undirected,
symmetric connections. The lower layers have direct connections
from above and as such receive top-down

It is a network of neuron like units that are symmetrically connected.
They are concerned with making stochastic decisions about whether
to be on or off

It consists of a layer of visible units and a layer of hidden units with
no visible-visible and hidden-hidden connections

It is a special kind of BM where hidden neurons are arranged in a
deep layered manner. There exist no visible-visible or
hidden-hidden connections within the same layer. This involves a
connection between only the adjacent layers

It is a multilayer network with many hidden layers. The weights in
these networks are fully connected and pre-trained

It is a special kind of deep neural network where the output target is
the input itself. Deep Belief Networks or distorted training data are
used to train the network

It is the representation of the data in such a way that it appears to be
generated by interaction of various hidden factors. They form a basis
for deep learning

3.1 Simulation Results

The data set that was used had response values in column 42 with losses being set as
Cross Entropy in order to get classification model (Table 2). The input data set has
been divided into two parts - training frame and validation frame. 75% of the data set
has been assigned as the training frame and 25% of the data set has been assigned as
the validation frame. Upon running the algorithm, a scoring history in the form a graph
was obtained as shown below. The graph produced is between training and validation
frame as x axis and epochs as the y axis. It depicts the similarity between the training
and validation frame and that the model that has been created is correct (Fig. 2).
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Parameter | Value Description

Response C42 Response column

column

Hidden 200,200 Hidden layer sizes (e.g. 100,100)

Seed 7069314529076090000 | Seed for random numbers (affects sampling) - Note:
only reproducible when running single threaded

Loss Cross Entropy Loss Function

Fig. 2.
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3.1.1 Experimental Outcome of Deep Neural Network
The activation functions used are rectifier activation function and softmax activation
function (Table 3).

Table 3. Status of neurons

Training and validation error of deep learning neural network

A|lB |C D E|F G H|I J K L

1 | 119 | Input 01(0]- - - - - - -

2 200 | Rectifier |0 |0 | 0.6364 | 0.4589 |0 |0.0015|0.1133 | 0.4745|0.1081
3 1200 | Rectifier |0 |0 | 0.6957 | 0.4432 |0 | 0.0028 | 0.0984 | 0.9853|0.0676
4 | 23| Softmax |0 |0 [0.9427|0.2252 |0 | 0.3050 | 0.4532 | —0.2707 | 0.0619
A — Layer, B — Union, C — Type, D - L1, E - L2, F — Mean Rate, G — rate_RMS, H

— Momentum, I — Mean Weight, ] — Weight RMS, K — Mean Bias, L. — Bias RMS.
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The rectifier is an activation function defined as,
f(x) = max(0, x) (3)

Where x is the input.
It can also be expanded to include Gaussian noise given as,

f(x) = max(0, x + N(0, o(x))) (6)

Softmax function is a generalization of logistic function that squashes a
M-dimensional vector z of arbitrary real values to a M dimensional vector c(z) of real
values in the range (0,1) that add up to 1. The function is given by,

T
& Wi

e ™)

P(y = jlx) =

3.1.2 Output - Training Metrics
This includes the output obtained from the training set. The following training metrics
depict the efficacy of the implementation (Table 4).

Table 4. Output training metrics

Parameters Values

Description Metrics reported on temporary training frame with 9910 samples

Model_category | Multinomial
Scoring Time | 1442054607700

MSE 0.000961
R? 0.999944
Logloss 0.012146

The Mean Square Error is approximately 0.09%. The value of R? is 0.999944
which means that it is more than 99% similar to the expected result. Log loss function
maps the variables to the real numbers which represent the cost associated. Hit Ratio is
the number of times a correct prediction was made over total predictions. Top 10 hit
ratios are used for the prediction and that has been given in the following Table 5.

3.1.3 Output - Validation Metrics
Output Validation metrics depict the output of the testing set. The following output
metrics help in determining the efficacy of the model (Table 6).

Here as well, the MSE value is 0.09%. The R? value is more than 99%, which
means the predicted value is 99% correct. The hit ratio is given in the following
Table 7.
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Table 5. Hit ratio for training set

K (Number of hits) | Hit ratio
0.9989
1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

O 00 1 QN bW~

—_
=]

Table 6. Output validation metrics

Name of the parameter | Outcomes

Description Metrics reported on full validation frame
Model_category Mutinomial

MSE 0.000970

R’ 0.999944

Logos 0.011482

Table 7. Hit ratio for validation metrics

~

Hit ratio
0.9989
0.9997
0.9998
0.9998
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999

O 00N N B |W N -

—
=]

4 Comparison with Support Vector Machine (SVM)

Support vector machines are supervised learning models that are used in machine
learning that utilize learning algorithms to analyze and recognize patterns for classi-
fication [14]. It’s training algorithm creates a model that assigns new examples into one
category or the other and thus is a non-probabilistic binary linear classifier. It is a
representation in terms of points in space such that there exists a clear gap in between
various kinds of points grouped together. New data are predicted and classified based
on how much it is closer to one particular group than the other.
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4.1 Simulation Results for SVM

SV type: C-svc (classification)

Parameter: cost C = 5, Gaussian Radial Basis kernel function.

Hyperparameter: sigma = 0.05

Number of Support Vectors: 16860

Objective Function Value:

—2.0098 —11.4563 —31.787 —98.428 —50.5466 —1.999 —22.3287 —1.999 —1.7028
—1.8817 —1.9603 —1.9239 —1 —1.8357 —1 —8.426 —10.269 —9.3452 —1.7028
—7.5755 —1.7028 —-24.0647 —19.539 -1.8817 —13.127 —1.8817 —33.4674
—1.9603 —18.2219 —1.9603 —1.924 —15.5029 —1.924 —1.8357 —1 —1.8357
Training error: 0.15365

Cross validation error: 0.00435

As we can see, the cross validation error is very low. Hence the model is accurate.
Comparison between the neural network and SVM can be tabulated as follows
(Table 8):

Table 8. Comparison between deep neural network & SVM

Deep neural network | SVM
Error: 0.000961 Error: 0.15365
Accuracy: 0.999944 | Accuracy: 0.84635

5 Conclusion

In this work, the training and validation models have a very high R? value. This high
value has indicated that the adopted model is highly accurate. Application of the deep
learning algorithm to the Intrusion detection System has enabled us to produce a
detailed confusion matrix for the training set, as well as for the validation set. The result
is supported along with a precise MSE graph. With the loss being set as Cross Entropy,
we get a classification model that can be used to detect future intrusion attacks. The
results obtained by Deep Neural Network are compared with the results obtained by
Support Vector Machine.
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Abstract. The immunity of Boolean functions against fast algebraic
attacks is an important cryptographic property. When deciding the opti-
mal immunity of an n-variable Boolean function against fast algebraic
attacks, one may need to compute the ranks of a series of matrices of
size 74 (5) X Xoi_ () over binary field F for each positive integer
e less than [%] and corresponding d. In this paper, for an n-variable bal-
anced Boolean function, exploiting the combinatorial properties of the
binomial coefficients, when n is odd, we show that the optimal immunity
is only determined by the ranks of those matrices such that > 5 _, (7;) is
even. When n is even but not the power of 2, we show that the optimal
immunity is only determined by the ranks of those matrices such that
¢, (7) is even or such that both 3°¢_ (7) and 3%, (%) are odd.
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1 Introduction

Boolean functions play a vital role in coding theory and in symmetric cryptogra-
phy [8]. Various criteria related to cryptographically desirable Boolean functions
have been proposed.

Boolean functions used in stream ciphers, especially in the filer and combina-
tion generators of stream ciphers based on linear feedback shift registers, should
have large algebraic immunity, in order to help resist algebraic attacks [3,6,14].
Moreover, Boolean functions should also have the resistance against a variant
of the algebraic attack, called the fast algebraic attack (FAA) [1,5,7]. To a cer-
tain degree the algebraic immunity can be covered by the immunity of Boolean
functions against fast algebraic attacks (FAA’s). Algebraic immunity, as well as
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the immunity against FAA’s, has been considered as a important cryptographic
property for Boolean functions used in stream ciphers [10,11,15,16,19].

Studies show that a good immunity for an n-variable function f against
FAA’s is that deg(fg) > d for any nonzero n-variable Boolean function g of
algebraic degree at most e, where 1 < e < [§] and d is as large as possible but
less than n—e, suchasd=n—e—1,d=n—e—2ord =n—e—3[2,10,13,15].
In particular, if deg(fg) > n— e for any nonzero n-variable Boolean function g of
degree at most e and any positive integer e < [n/2], then we say that Boolean
function f has the optimal immunity against fast algebraic attacks.

When considering the immunity of n-variable Boolean function f against
FAA’s, we may need to determine whether deg(fg) > d for any nonzero n-
variable Boolean function g of degree at most e. Clearly, if it is true for each integer
e=1,2,---,[5] —1landd =n — e — 1, then f has the optimal immunity. This
problem is then converted into determining the ranks of a series of matrices of size

> (1))

over Fy, denoted by W(f;e,d), for each integer positive e less than [5] and
corresponding d. More precisely, deg(fg) > d for a given nonzero n-variable
Boolean function g of degree at most e if and only if W (f;e,d) has full column
rank [10,12].

A class of n-variable balanced Boolean functions [4], called Carlet-Feng func-
tions, denoted by ¢cp, was proved to satisfy deg(¢cr-g) > n—e—1 and
even satisfy deg(¢pcr - g) > n — e when n = 2% + 1 with positive integer s, for
any nonzero n-variable Boolean function g of degree at most e and any posi-
tive integer e < [n/2] [12]. Another class of even n-variable balanced Boolean
functions [17], called Tang-Carlet functions, denoted by 7¢ r, may also have good
immunity, i.e., it was proved that deg(7cr-g) > n—e—2 for all possible functions
g and integers e [13].

In this paper, we further discuss the generic method of deciding the immunity
of Boolean functions against FAA’s by observing the combinatorial properties
of W(f;e,d) matrix. For an n-variable balanced Boolean function f, when n is
odd, we show that the optimal immunity can be determined only by the ranks
of those W (f;e,d) matrices such that > ¢, (?) is even; when n is even but not
the power of 2, we show that the optimal immunity can be determined only by
the ranks of those W (f;e,d) matrices such that Y7, (') is even or such that
both Y7 (%) and St () are odd. This result may help us better study the
optimal immunity of balanced Boolean functions against FAA’s, and shorten the
actual time of deciding the optimal immunity of a Boolean function, because the
number of matrices, whose ranks that we need to compute, may be smaller.

2 Preliminaries

Let n be a positive integer. An n-variable Boolean function f is viewed as a
mapping from vector space F5 to binary field F; and has a unique n-variable
polynomial representation over
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Folwy, @2, 2]/ (2] — 21,25 — To, - , T2 — Ty,),

called the algebraic normal form (ANF) of f,

fler, @2, ,xn) = ap + E a;T; + E QijT;Tj + -+ Q12..0T1T2 T,
1<i<n 1<i<j<n

where ag, a;, a5, - . ., @12..., belong to Fo. For simplicity, an n-variable Boolean
function f(z) sometimes is written as f(z) = ZCQF,; fex®, where

[ c1 C2...
¢ =iy’

and f. € Fo. We denote by B,, the set of all the n-variable Boolean functions.

For f € B, the set of © = (x1,22, -+ ,2,) € Fy for which f(z) = 1 is
called the support of the function, denoted by supp(f). The Hamming weight of
f is the cardinality of supp(f), denoted by wt(f). Boolean function f is called
balanced if wt(f) = 2"~1. The algebraic degree of Boolean function f, denoted
by deg(f), is the degree of its ANF. It is well-known that the algebraic degree
of a balanced n-variable Boolean function is less than n, i.e., the coefficient of
term z1x9 - - - xo in its ANF must be zero.

A Boolean function g € B,, is called an annihilator of f € B, if fg = 0. The
lowest algebraic degree of all the nonzero annihilators of f and 1+ f is called
algebraic immunity of f or 1+ f, denoted by AZ,(f), and it has been proved
that AZ,(f) < [5] for a given f € B,. A Boolean function f € B, has the
mazimum algebraic immunity if AT, (f) = [5].

Definition 1. An n-variable Boolean function f has the optimal immunity
against FAA’s if deg(fg) > n — e for any nonzero n-variable Boolean function
g of degree at most e and for any positive integer e < [n/2].

It is not hard to see that n-variable Boolean functions with the optimal
immunity against FAA’s have the maximum algebraic immunity. Also, Boolean
functions with the optimal immunity against FAA’s were said to be perfect
algebraic immune functions in [12].

When studying the immunity of Boolean Functions against FAA’s, the fol-
lowing two sets of vectors and a matrix over Fy are useful.

For © = (x1,22, -+ ,x,) € Fy, let wia(x) be the number of its nonzero
coordinates. Denote W, by the set {z € Fy | wta(z) < e} in lexicographic order
and Wy by the set {z € F% |wtz(z) > d+1} in reverse lexicographic order where
1 <e<[2]and d < n. As a matter of fact, the orderings of W, and Wy do not
essentially affect the deciding results on the immunity of Boolean functions, but
good orderings may be good for observing and computing [9].

Let z = (z1+ 1,22 +1,--- ,x, +1). It is clear that if z is the i-th element in
W, and & € Wy then Z is the i the element in Wy. In particular, 1,, = (11---1)
and 0,, = (00---0) are the first elements in Wq and W, respectively.

For y,z € F%, let z C y be an abbreviation for supp(z) C supp(y), where
supp(z) = {i|z; =1}; and let yNz = (y1 A z1,¥2 A 22, -+, Yn A 2p,), Where A is
the bit AND operation.
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Denote W (f; e, d) by a matrix over Fy related to function f € B,,, which has
been mentioned in Sect. 1. It is a

> ()x()

matrix with ij-th element equal to
Wi = Wyz = fynz,

where y is the i-th element in YW, and z is j-th element in W,. It was shown that
one can determine the (optimal) immunity against FAA’s through computing the
rank of matrix W(f;e,d).

Theorem 1 ([10,12]). Let f € B,. There exists no non-zero function g of
degree at most e such that the product fg has degree at most d, i.e., deg(fg) >
d+ 1, if and only if W(f;e,d) has full column rank.

According to Theorem 1, if W(f;e,n — e — 1) has full column rank then
deg(fg) > n — e for any nonzero n-variable Boolean function g of degree at
most e. Then from Theorem 1 we have a sufficient condition such that an n-
variable Boolean function having the optimal immunity against FAA’s.

Corollary 1. An n-variable Boolean function has the optimal immunity against
fast algebraic attacks if W(f;e,n —e — 1) has full column rank for each integer
e=1,2,---,[2] - 1.

3 Deciding the Immunity of Balanced Boolean Functions
in Odd Variables Against Fast Algebraic Attacks

Balanced Boolean functions are more interesting for cryptography. From this
section, we focus on the optimal immunity of n-variable balanced Boolean func-
tions against FAA’s.

It is clear that W(f;e,n — e — 1) is a symmetric matrix of size > ;_, () x
Yo (7;) For simplicity, we denote W(f;e,n —e — 1) by W(f;e). Then the
immunity of function f against FAA’s is related to the problem whether matrix
W (f;e) has nonzero determinant over Fy. It was also noted that W(f;e) has an

interesting property about its determinant.

Lemma 1 ([12]). If wi1 = >_; () + 1 mod 2 then det(W(f;e)) = 0, and if
w11 = Y5 (7) mod 2 then

det(W(f;e)) = det(W(f;e)h),

where W (f; )Y is the matriz that results from W(f;e) by removing the first
row and the first column. In particular, when wi1 =0, det(W(f;e)) =1 only if

Sio (7) is even.
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For balanced Boolean functions, entry wi1(= f1,) in Lemma 1 is always
zero. Then it was further proved in [12] that an n-variable balanced Boolean
function has the optimal immunity against FAA’s only if n = 2°+1 with positive
integer s. More precisely, it was proved that Zf:o (?) are all even for each integer
e=1,2,---,[5] =1 only if n = 2° + 1 with positive integer s. This means that
det(W(f;e)) = 0 and deg(fg) > n — e may never hold for some n and e. For
example, if n =7 and e = 2, then }_7  (7) =29 is odd, and det(W(f;e)) = 0.
In this case, we can only determine whether deg(fg) > n—e— 1. That is to say,
it may be the best case for an n-variable balanced function f against FAA’s that
deg(fg) > n—e when >_;_ (%) is even and deg(fg) >n—e—1 when i, (7)
is odd. The Carlet-Feng functions [4], denoted by ¢cp, was proved to satisfy
deg(¢cr - g) = n—e when Y ;o (%) is even and deg(¢cr - g) > n —e — 1 when
>0 (%) is odd, for any nonzero n-variable Boolean function g of degree at most

e and any positive integer e < [n/2] [12]. We say that balanced functions like
the Carlet-Feng functions have the optimal immunity against FAA’s.

Definition 2. Let f be an n-variable balanced Boolean function. The function
f has the optimal immunity against fast algebraic immunity if deg(fg) > n —e
when Y;_, (%) is even and deg(fg) > n—e —1 when >;_, (7) is odd for any
nonzero n-variable Boolean function g of degree at most e and for any positive
integer e < [n/2].

According to Theorem 1 again, if W(f;e,n — e — 2) has full column rank then
deg(fg) > n—e—1 for any nonzero n-variable Boolean function g with deg(g) < e.
This implies that one can determine the optimal immunity by computing the rank
of W(f;e,n—e—1) = W(f;e) or W(f;e,n —e — 2) for all the possible e. The
following corollary provides a generic method of deciding the optimal immunity of
balanced Boolean functions against FAA’s.

Corollary 2. An n-variable balanced Boolean function has the optimal immu-
nity against fast algebraic attacks if the following two conditions hold for each
n

positive integer e less than 5 :

1. det(W(f;e)) =1 when Y5 (%) is even;

K3
2. W(f;e,n—e—2) has full column rank when >;_, (’:) 1s odd.

For balanced Boolean functions in odd number of variables, we give a sim-
plified sufficient condition, compared to Corollary 2, such that they have the
optimal immunity against FAA’s. More precisely, we prove that the optimal
immunity is determined only by the determinant (rank) of W (f;e) over Fy such
that 5, (") is even. This observation is mainly based on the following combi-

1
natoric property.

Lemma 2. Let n be odd and e be integers with 1 < e < n. If >i_, () is odd,

i
n—1
then both e and Zf:ol (") are even. Moreover, Y, 2, () is even.
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Proof. Note that

()=S0 () = (1) e

According to Lucas’ theorem about the binomial coefficient, for positive integers
n and e, the congruence relation holds

s—1
(n) = H (nk> mod 2,
(& (%
k=0

—1 ~1 . .
where n =37, ni2" and e = >rco ex2" are the binary expansions of n and e

respectively. Since n is odd it follows that n — 1 = Zz; np2®. We have

()= () ) () (0) moae

e €s_1 €5—9 €1 €0
where ng_1,--- ,ny are not all zero. If e > 1 and (”gl) is odd then eg = 0, which
means that e is even. Then we have

3 ()= (20) = () () () (1) =oma

. e+l /n\ . 3
ie, > i) (7) is even. Moreover, we also have
n—1

()= () = () () () () () momen

This implies that (E) must be even, otherwise n;y = ng = --- = ns_1 = 0,
2

which is a contradiction. This completes the proof. (Il

Theorem 2. Let n be odd and e be integers with 1 < e < [5]. Let f be an n-
variable balanced Boolean function. If det(W(f;e)) = 1 for each integer e such
that Zf:o (7;) is even, then f has the optimal immunity against fast algebraic
attacks.

Proof. Function f satisfies the first condition in Corollary 2. When Y ¢_, (?) is
odd we need to check the rank of W(f;e,n — e — 2), which is a

= n < (n

2 0)x0)
i=n—e—1 =0

matrix. But this happens only when 2 < e < [§] — 2 because 23:0 (") and

i

ZE (") are always even by Lemma 2. Note that )" (™) =35 (1)

% i=n—e—1 \{ [
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and then matrix W(f;e,n — e — 2) consists of the first > ;_, () columns of
W(f;e+ 1,n —e—2), which is a square matrix of size

e+1 n e+1 n
> ()2 (0)
i=0 <Z> i—o \!

According to Lemma 2, if >°;_, (%) is odd then Zfi& (") must be even. We have
det(W(f;e+1,n—e—2)) = det(W(f;e+ 1)) = 1, hence W(f;e,n — e — 2)
has full column rank for integer e such that ) ;_, (7;) is odd. This means that
f also satisfies the second condition in Corollary 2. Finally, for the maximum

n—1

e =[2]—1= 2 we have W(f;e) has full rank because Y, % () must be
even according to Lemma 2. Therefore, f has the optimal immunity. O

As an example of using Theorem 2, when n = 13 we have the sequence
(Ciso (33),-+ 0, (%)) = (14, 92,378, 1093, 2380, 4096). By the method from
Corollary 2, we may need to compute the determinants of 5 square matrices, and
the rank of one matrix of size 2380 x 1093. It accounts for the vast majority of
the total computational cost to compute the determinants of the square matrix
of order 4096. However, using the method from Theorem 2, we do not need
to compute the rank of the matrix of size 2380 x 1093 anymore, though the
computational complexity is unchanged.

We randomly choose 100 balanced Boolean functions in 13 variables and
determine if each of them has the optimal immunity by the method from Corol-
lary 2 and by the method from Theorem 2 respectively. We implement the test
by using g++ compiler and Number Theory Library (NTL, a C++ library for
doing number theory) on a laptop computer (Intel Core i7-6820hq at 2.7 Ghz,
8 GB RAM, Ubuntu 16.04). The results show that the time of deciding the opti-
mal immunity of a balanced Boolean function in 13 variables can fall by 23% on
average.

Similarly, when n = 15 we have the sequence (Zilzo (1i5), e ,ZZZO (11,5)) =
(16,121,576, 1941, 4994, 9949, 16384). Using the method from Theorem 2, we do
not need to compute the rank of the matrix of size 16384 x 9949. We randomly
choose 100 balanced Boolean functions in 15 variables for the test. The results
show that the the time can fall by nearly 35% on average.

There is a special case of Theorem 2 when n = 2° 4+ 1 with positive s. In this
case, i g (7;) is even for each integer e less than n/2. The theorem still holds,

but it is the same as Corollary 2.

4 Deciding the Immunity of Balanced Boolean Functions
in Even Variables Against Fast Algebraic Attacks

In this section, for balanced Boolean functions in even number of variables,
similarly, we give a reduced sufficient condition, compared to Corollary 2, such
that they have the optimal immunity against FAA’s.
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Lemma 3. Let m > 1 be odd. If n = 2' - m with positive integer t, then
Z?:/g_l (") must be even.

Proof. As in the proof of Lemma 2. we have Zn/z ! (M = ( n-l ) mod 2. Since

n/2—1
n = 2'-m with odd m > 1 and positive ¢ it follows that
] s—1
n—1= ZMk2t+k +(2—1) and n/2-1= ka2t+k—1 I (2t_1 _,
k=1

where m = Zz;é mi2F is the binary expansions of m. According to Lucas’
theorem about the binomial coefficient, we have

a0 = ()G G G ) ) - () e

In particular, when t = 1 we have

() = (o) = () G = G () () ) o

This implies that ( /2 1) must be even, otherwise m; = mg =--- =my_1 =0,
which is a contradiction. This completes the proof. (]

Theorem 3. Letn be even but not the power of 2 and e be integers with 1 < e <
[5]. Let f be an n-variable balanced Boolean function. If W(f;e) has full rank
over Fy for each integer e such that Y ;_, (T;) is even, and W(f;e,n—e—2) has
full column rank over Fy for each integer e such that both 5 () and Zeﬂ (M
are odd, then f has the optimal immunity against fast algebraic attacks.

Proof. For each integer e from 1 to n/2 — 1, if 37 (%) is even, then W(f;e)
have full rank. This means that f satisfies the first condition of Corollary 2. If
¢ o (7) is odd but 3277, (7) is even, then W (f; e+ 1) has full rank. Note that
W(f;e,n—e—2) consists of the first >_;_, () columns of W(f;e+1,n—e—2) =

W (f;e+1). It follows that W( f; e,n—e—2) has full column rank. This means that
[ satisfies the second condition of Corollary 2. If both >;_ (/) and ZEH (") are
odd, then we have W (f; e, n—e—2) has full column rank, which directly satisfies
the second condition of Corollary 2. Finally, for the maximum e = n/2 — 1 we
have W(f;n/2— 1) has full rank because Z"/2 ! (") must be even according to
Lemma 3. This means that f satisfies the first condition of Corollary 2 for the
maximum e = n/2 — 1. This complete the proof. O

As an example of using Theorem 3, when n = 14 we have the sequence
o (), .20 (M) = (15,106,470, 1471, 3473, 6476). Using the method
from Theorem 3, we do not need to compute the rank of the matrix of size 6476 x
3473. The experiment shows that the time of deciding the optimal immunity of
a balanced Boolean function in 14 variables can fall by 38% on average.
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The conditions given by Theorem 3 can be further reduced for an n-variable
Boolean function f and n = 2m with odd m > 1, if we only want to decide
whether deg(fg) > n — e — 2 for any nonzero n- Varlable Boolean function g of
degree at most e and for any positive integer e < n/2. In this case, f can be also
considered as a boolean function with almost optimal immunity against FAA’s.
As mentioned in Sect. 1, Tang-Carlet functions, denoted by 7¢r, were proved to
satisfy deg(rcr - g) > n — e — 2 for any nonzero n-variable Boolean function g
of degree at most e and for any positive integer e < n/2 [13].

Lemma 4. Let n = 2m with odd m > 1. If both >_;_, (}) and ZPH (1) are
odd, then Y42 (") must be even.

Proof. As in the proof of Lemma 2, we have Zf o (M) =" 1) mod 2. Since m is
odd it follows that n —1=2m—-1=1+5% ;" Y my2k 1 where m = Sz Omk2
is the binary expansion of m. According to Lucas’ theorem about the binomial
coefficient, for positive integers m and e, we have

()= ) - ) @) G)

= . mod 2,

e 0 €s—1 es €2 €1/ \€o

where e = Zk o 2" is the binary expansion of e and m,_1,--- ,m; are not all
zero. If e > 1 and ( . ) is odd then e; = 0, which also means that

e=0mod4 or e=1mod4.

This implies that 577 (") must be even if both 3¢_, (%) and 377, (7) are
odd. O

Corollary 3. Let n = 2m with odd m > 1 and e be integers with 1 < e < m—1.
Let f be an n-variable balanced Boolean function. If W(f;e) has full rank for
each integer e such that ¢ (%) is even, then deg(fg) > n —e —2 for any
nonzero n-variable Boolean function g of degree at most e and for any positive
integer e < n/2.

Proof. Tt 325 (7) is even or 2¢_ (") is odd but Y574 () is even, as in the
proof of Theorem 3, we have deg(fg) > n — e or deg(fg) > n — e — 1 respec-
tively for any nonzero n-variable Boolean function g of degree at most e. If both
¢ o (") and 32550 (%) are odd, then we have 377 (") is even by Lemma 4 and
then W(f;e+2,n—e—3) = W(f;e+2) has full rank. Note that W(f;e,n—e—3)
consists of the first 3;_ (%) columns of W(f;e+2,n—e—3). Therefore, in this
case, W(f;e,n—e—3) has full column rank. This means that deg(fg) > n—e—2
for any nonzero n-variable Boolean function g of degree at most e. O

When n = 2° with positive s, i.e., when n is the power of 2, Theorem 3 is no
longer applicable. In this case, it is not hard to see that Zf:o (T;) is odd for each
integer e less than n/2. Therefore, we may need to compute the rank of matrix
W(f;e,n —e —2) for each integer e less than n/2 according to Corollary 2.
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Conclusion

In this paper, we further discuss the sufficient conditions of deciding the opti-
mal immunity of balanced Boolean functions against FAA’s. By exploiting the
combinatorial properties of W (f;e,d) matrix, we give two reduced conditions
such that balanced Boolean functions have the optimal immunity against FAA’s.
This result may help us better study the immunity of Boolean functions against
FAA’s, and decrease the actual time of deciding the optimal immunity of bal-
anced Boolean functions against FAA’s.
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Abstract. Cellular automata (CA) is universally known as very good
pseudorandom sequence generator. It has wide applications in several
fields like VLSI design, error-correcting codes, test pattern generation,
cryptography etc. Most of these applications use 3-neighborhood one
dimensional CA. Cellular automata have been chosen as a better crypto-
primitives for providing very good pseudorandom sequences and their
high diffusion property. The randomness and diffusion properties can be
increased with the increase of the size of neighborhood radius of the CA
cell. In this work, we study a class of 5-neighborhood null boundary linear
CA. We present an algorithm for synthesizing 5-neighborhood linear CA
from its characteristic polynomial by assuming that some of the CA sub-
polynomials are available.

Keywords: Cellular automata + 5-neighborhood linear rules - CA syn-
thesis algorithm

1 Introduction

Cellular Automata (CA) have long been of interest to researchers for their theo-
retical properties and practical applications. It was initiated in the early 1950’s
by John von Neumann [12] and Stan Ulam as a general framework for modeling
complex structures capable of self-reproduction and self-repair. In 1986, Wol-
fram first applied CA in pseudorandom number generation [15]. CA has made
understanding of many occurrences in nature easier. The simple and regular
structure of CA has attracted researchers and practitioners of different fields.
In the last two decades, one-dimensional (1-D) CA based Pseudorandom Num-
ber Generators (PRNGs) have been extensively studied [2,5,10,11]. Though the
recent interest is more focused on two-dimensional (2-D) CA PRNGs [9,13] since
it seems that their randomness is much better than that of 1- D CA PRNGs, but
considering the design complexity and computation efficiency, it is quite difficult
to conclude which one is better. Compared to 2-D CA PRNGs, 1-D CA PRNGs
are easier to be implemented in a large scale [3,8,14]. Random bit generators
play an important role in different computer simulation methods such as Monte
Carlo techniques, Browmian dynamics, stochastic optimization, computer-based
© Springer Nature Singapore Pte Ltd. 2017

D. Giri et al. (Eds.): ICMC 2017, CCIS 655, pp. 68-83, 2017.
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gaming, test pattern generation for VSLI circuit test, error-correcting codes,
image processing, neural networks and cryptography etc. Most of these works
are devoted to the study of cellular automata as pseudorandom bit generators. A
central problem in any stream cipher scheme is to generate long, unpredictable
random key sequences and Cellular Automata resolves this problem.

In most of all these applications, 1-D elementary cellular automata (i.e. three-
neighborhood CA) are used. There are also some applications [6,9,13] of five or
more neighborhood 2-D CA but that need more hardware complexity. In [7], it
has been shown a 4-neighborhood nonlinear 1-D CA as a better cryptographic
primitive. The randomness and diffusion properties of the CA can be developed
with the increase of the size of neighborhood radius of the CA cell. More diffusion
property of CA can make fast initialization of a stream cipher. In this paper,
we study 5-neighborhood linear 1-D CA for providing very good pseudorandom
sequences and high diffusion. We present an algorithm for synthesizing the CA.

This paper is organized as follows. Following the introduction, the basics
of CA are presented in Sect.2. In Sect.3, we present 5-neighborhood Linear
Hybrid Cellular Automata with the CA transition matrix and the characteristic
polynomial. A recurrence relation is introduced for determining the characteristic
polynomial and a CA synthesis algorithm is presented. We also present the
randomness and diffusion properties of 5-neighborhood CA rule vectors and the
comparison of their properties with 3/4 neighborhood CA. Finally, the paper is
concluded in Sect. 4.

2 Basics of Linear Cellular Automata

Cellular Automata are studied as mathematical model for self organizing sta-
tistical systems [12]. CA can be one-dimensional or multi-dimensional. One-
dimensional CA random number generators have been extensively studied in
the past [4,11,15]. In one-dimensional CA, they can be considered as an array
of cells where each cell is a one bit memory element. The neighbor set N(i) is
defined as the set of cells on which the state transition function of the i-th cell
is dependent on each iteration. In three-neighborhood CA, each cell evolves in
every time step based on some combinatorial logic on the cell itself and its two
nearest neighbors. More formally, for a three-neighborhood CA, the neighbor set
of i-th cell is defined as N (i) = {s;—1, Si, Si+1}. The state transition function of
is i-th cell of 3-neighborhood CA is as follows:

t+1 t t t
Si+ :fi(si—lvsiasi-i-l)

where, st denotes the current state of the i-th cell at time step t and si*
denotes the next state of the i-th cell at time step t+1 and f; denotes some
combinatorial logic for i-th cell. The set of all feedback functions is considered
as ruleset for the CA. Since, a three-neighborhood CA having two states (0 or
1) in each cell, can have 28 = 8 possible binary states, there are total 22° =
256 possible boolean functions, called rules. Each rule can be represented as
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an decimal integer from 0 to 255. If the combinatorial logic for the rules have
only Boolean XOR, operation, then it is called linear or additive rule. Some of
the three-neighborhood additive CA rules are 0, 60, 90, 102, 150 etc. Moreover,
if the combinatorial logic contains AND/OR operations, then it is called non-
linear rule. An n cell CA with cells {s1, 82, - ,s,} is called null boundary CA
if 8,41 = 0 and sp = 0. Similarly for a periodic boundary CA s,11 = s1. A
CA is called uniform, if all its cells follow the same rule. Otherwise, it is called
non-uniform or hybrid CA. If all the ruleset of a hybrid CA are linear, then we
call the CA a linear one. However, out of all possible Boolean functions, called
rules, only two are of prime interest i.e. Rule 90 and 150 (ascertained from the
decimal value of their position in the truth table). The state of the i-th cell at
time instant t can be expressed as:

0, if d; —Rule 90

1 gt st d =
i =81 Ddies; D iy, d; { 1, if d; —Rule 150

Thus, an LHCA can be completely specified by a combination of Rule 90 and
150, denoted as an n-tuple [dy,ds, -+ ,d,]. An example of a 5-cell CA L can be
found in Fig. 1, specified by the rule vector [1,1,1,1,0]. Further details of CA
can be found in [4].

v v
0 +—> > > > >@P < 0
PTeTETETS

D 0 D D 2 D 3
Q, Q, Q, Q, Q,
I | I ] ]

clk

Fig. 1. 3-neighborhood null boundary LHCA £ with rule vector [1, 1, 1, 1, 0]

3 5-Neighborhood Linear Cellular Automata

In the previous section, we have studied 1D elementary CA (i.e. 3-neighborhood
CA) [4,11]. In this section, we consider a 5-neighborhood null boundary n-cell
Linear Hybrid CA (LHCA) denoted by {s1,s2, -, s}, where the state of a
cell at a given instant is updated based upon its five neighboring cells including
itself and because of null boundary s_1 = sg = 0, Sp41 = Spt2 = 0. More
formally, for a five-neighborhood CA, the neighbor set of i-th cell is defined as
N(i) = {si—2,8i—1, Sis Si+1, Si+2}- The state transition function of is i-th cell of
5-neighborhood CA is as follows:

t 1
+ fl( z 27 i— 1751781+1’ z+2)
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Table 1. Linear rules of 5-neighborhood LHCA

Rules | State transition function of i*" cell

t+1 _ _t t
Ruleo | s =st_, @ st

Ruley sf“ =5t ,® sfﬂ ® stio

Rules s’fl =st ,®st® sﬁ_‘_Q

Rules SE'H =si ,®st® 5§+1 @ s§+2
Rules s’;“ =5l ,®si_ 1@ siio

Rules sf“ =5l ,®si_ 1 Dsiy, Dl
Ruleg sz'H =5t ,®si_ost® s§+2

t+1 t t t t t
Ruler sﬁ =58,_2DSi_1DBs; Dsiy1Dsiq2

where, s! denotes the current state of the i-th cell at time step t and sﬁ“ denotes
the next state of the i-th cell at time step t+1 and f; denotes some combinatorial
logic for i-th cell. Since, a 5-neighborhood CA having two states (0 or 1) in each
cell, can have 2° = 32 possible binary states, there are total 22° = 232 possible
boolean functions. Out of all possible Boolean functions, called rules, there are
total 2° = 32 possible linear rules. Based on neighborhood radius exactly 5, there
are only 22 = 8 liner rules shown in Table 1.

Table 2. Counting rule vectors of max. period 5-bit 5-neighborhood CA

Ruley
Rules
Rules
Ruley
Rules
Ruleg 6 5
Rule7| 4 5 5 8 2
Ruleg Rule; Rules Rules Rules Rules Ruleg

2

N O N N O N
NN O N

O DN | DN DN

DO DN O W~

For all possible pair of these 8 linear rules, maximum period 5-neighborhood
CA rule vectors can be obtained. Table2 shows the number of rule vectors
obtained for maximum period 5-bit 5-neighborhood CA against each pair of
the linear rules shown in Table 1. From Table 2, we see that only the pair of rule
combinations, (Rules, Ruler), provides largest number of rule vectors (i.e. 8).
Therefore, we consider these two linear rules (i.e. Rules, Ruler), denoted as Ry
and Ry, respectively, to design 5-neighborhood LHCA. These two linear rules
can again be specified as follows:

Lot ot t t t
RO - S; = S;,_92 ©® Si—1 ¥ Si+1 S>) Si+2

Lot ot t t t t
Ry s, =5 _9®8,_1® 8 DSipqDSipo
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where, st is the current state and si™ is the next state of the i-th cell of the
CA. Thus, the state transition function of i-th cell of the CA can be expressed
as:

0, ifit" cell follows rule Rq

1 _ ot t ¢ ¢ " _
5, =8, oDs;_ 1 Ddi.s; Dsiy DSiyg, di = {1

. if 4*" cell follows rule R;
Thus, a five-neighborhood n-cell LHCA £ denoted by {si,s2, -+ ,sn}, can be
completely specified by a combination of these two rules Ry and R;, denoted
as an n-tuple [dy,da, -+, d,], called the rule vector of the CA. An example of a
5-cell null boundary 5-neighborhood CA can be found in Fig. 2, specified by the
rule vector [1,1,1,0,0].

. . . 0
0 v Wy IR17 vy iV
0 1> ? " ? PP ->?<- 0
Do D, D, Dy || Pa
Q, Q, Q, Q, Q,
M — | I

clk

Fig. 2. 5-neighborhood null boundary LHCA £ with rule vector [1, 1, 1, 0, 0]

A five-neighborhood n-cell LHCA L can be characterised by an n x n matrix,
called characteristic matrix. The characteristic matrix A for the n-cell CA rule
vector [dy,da, - ,dy,] is as follows:

fdi 1 1.0 0 ------ 0 07
1d, 1 10 .----- B
1 1d3s 1 1 -----. :

1dys 1 1 0
[0 0 covveeeeeen 0 01 1 dy]

The state of a CA at time step t is an n-tuple formed from the states of the
individual cells. The CA state is expressed in matrix form as follows

St:[si,-.- st]

r n
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The next state of the CA is denoted as

St = [stH1 ... st

ren

The next-state of the CA, S**!, is computed as

(St+1)T —A. (St)T
or, St+1 — ((St-i—l)T)T

where, A is the CA transition matrix and (S?)T = [st, .-+ sL]T (the superscript
T represents the transpose of the vector) and the product is a matrix-vector
multiplication over GF(2). It has been shown that A - (S?)7 is indeed the next
state of the CA. Therefore, the next state of the i*" cell is computed as the
product of the i*" row of A and (S*)T as follows:

t+1
S; _[Oa"'a071517di717170a"'70]

t t t t .t t 17T
(81 810y Si—158is Siq1y Siga " 5 Sl

= sio+ i1+ disi+ s+ sip
The characteristic polynomial A,, of the n-cell CA is defined by
A, = |2 — Al

where, x is an indeterminate, Z is the identity matrix of order n, and A is the
CA transition matrix. The matrix #Z — A is called the characteristic matrix of
the CA. The characteristic polynomial is a degree n polynomial in x.

The following example clearly illustrates how the characteristic polynomial
of a 5-neighborhood linear CA can be computed using the characteristic matrix
of the CA.

Example 1: Let us consider a 5-cell null boundary 5-neighborhood linear CA
with the rule vector [1, 1, 1, 0, 0]. We have [d1,ds,ds,ds,ds] = [1,1,1,0,0]. The
transition matrix A is as follows:

d 1100 1 1 1 0 0

1d, 110 1 1 1 1 0

A=|11d31 1|=]1 1 1 1 1

01 1dy41 0 1 1 0 1

0011ds 0 0 1 1 0

The corresponding characteristic matrix is as follows:

x+d 1 1 0 0 r+1 1 1 0 O
1 z+4+dy 1 1 0 1 z4+1 1 1 0
I — A= 1 1 z+ds 1 1 = 1 1 z+11 1
0 1 1 z4+dy 1 0 1 1 1
0 0 1 1 z+ds 0 0 1 1 =z
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where, x is an indeterminate, Z is the identity matrix with dimension 5, and A
is the CA transition matrix shown above. The characteristic polynomial Aj of
the 5-cell CA is defined as follows:

r+1 1 1 0 0
1 z+1 1 1 O
As=1] 1 1 z4+11 1|=z+2*4+22+2+1
0 1 1 = 1
0 0 1 1 =z

Theorem 1. Let A, be the characteristic polynomial of a n-cell null bound-
ary 5-neighborhood Linear CA with rule vector [dy,da, - - ,dy]. A, satisfies the
following recurrence relation:

A_3=0, A,=0 A_1=0, Ag=1
Ay =(x+dp)An1+ Ao+ (@+dn-1)An—35+ An_g, n>0 (1)

Proof: Consider the transition matrix A for the n-cell null boundary 5-
neighborhood Linear CA with rule vector [dy,ds, -, d,]

(di 1 1 0 0 ------ 0 07
1d, 110 ------ B
1 1d3 1 1.

[ ) B | 1 d,—1 1

[0 0 «cvveeeeeeee 00 1 1 d, |
The characteristic polynomial A,, of the CA is defined by
A, = |2 — A
r+d 1 1 0 o .- 0 0
1 z+d2 1 1 (N 0
1 1 2+ds 1 1 -oeeen
0 1 1 x+dy 1 ------
An: .
...... 1 2+dn_s 1 1 0
: e e 1 1 z4+dn_o 1 1
0 e e 0 1 1 z4+d,; 1
0 0 e e 0 0 1 1 z—+d,
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By expanding the determinant shown above with respect to the last row, we can
compute A, as follows: A, = (x +d,) * Ap—1 + 1% B+ 1% C, where B and C
with dimension (n — 1) x (n — 1) are as follows:

z+d; 1 1 0 0 --vvn 0
1 z4+dy 1 1 o ------ 0
1 1 z4+ds 1 1 .-
0 1 1 z4+dg 1 oeee
B = .
...... 1 x+dn_3 1 0
...... ]_ ]_ x+dn721
0 - e e e 0 1 1 1
and
r+dy 1 1 0 0 - 0 0
1 z+dy 1 1 0 ------ 0
1 1 z+4+d3 1 1 -----
0 1 1 z4dy 1 oeee
C= ,
...... 1 v+d,_3 1 0
: e e 1 1 1 1
0 cee e 0 1 z4+d,_11

By expanding the determinant B with respect to the last column, we can compute
B as follows: B = A,,_2 + D, where D with dimension (n — 2) x (n — 2) is as
follows:

et+d 1 1 0 0 -oon : 0
1 13+d2 1 1 0 -----
1 1 ad+d; 1 1 -
1 1 ds 1 -+ -
D— 0 +dy
L e e e e 1 x+dn73 1
0 cee e e e 0 1 1

By expanding the determinant C with respect to the last column, we can compute
C as follows: C = E + F, where E and F with dimension (n — 2) x (n — 2) are
as follows:
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x+d 1 1 0 0 -vve 0
1 x+dy 1 1 0 -
1 1 x+d3 1 | RIS
o 0 1 1 xz+dg 1 oo
...... 1 z+d,_3 1
[0 I N 1 1 1
and
z+dy 1 1 0 0 - - . 0
1 x4ds 1 1 0 -----. ..
1 1 z+ds 1 | T
o 0 1 1 x+dgy 1 ------
: e e 1 x_i_dn_g 1
0 cee e 0 1 T+ dn_1

By expanding the determinant F with respect to the last column, we can compute
F as follows:
F= (3j + dnfl) * Ap_z+ Ap_y

Note that the determinant E can be easily found by changing rows into columns
and columns into rows of the determinant D, therefore, D and E determines the
same polynomial and so, D+E determines zero in GF(2). Finally, we have

*A,_1+1xB+1xC

*Ap 1+ (A 2+ D)+ (E+F)

*Ap_1+ A9+ F

*Ap 1+ A o+ (4 dy1)*Aps+ Ay

Il
—~ o~~~
&
+
QL
3
—_— — — —

Theorem 1 provides an efficient algorithm to compute the Characteristic poly-
nomial of a CA. Initially, A_3, A_5, A_; are all set to zero and Ay is set to
one. Equation (1) is applied to obtain A;. It is then reapplied to calculate Ag
from A_5 to Ay, Continuing, the polynomials Az, Ay, - -+ , A,, are computed.

The following example clearly illustrates how the characteristic polynomial
of a 5-neighborhood linear CA can be computed using the recurrence relation
shown above. Table 3 shows characteristic polynomials of a 5-cell null boundary
5-neighborhood linear CA.

Example 2: Let us consider a 5-cell null boundary 5-neighborhood linear CA
with the rule vector [1, 1, 1, 0, 0]. We have, [dy, ds, d3,ds,ds] = [1,1,1,0,0]
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A :0, Ao=0 A1=0Ag=1
=(x+d)Ao+ A1+ (z+do)A2+ A3
=(@+1).140+0+0=2+1

Ay =(x+do)A +Ag+ (x+d1)A1 + Ay
=@@+)(z+1)+1+0+0=2"
=(z+ds)Ae+ A1+ (x+d2)Ao+ A4

:(x+1)x +@+1)+(x+1)+0
=23 +2?

Ay = (z+dy)As+ As + (x + d3) A1 + Ay
=@+0)(@+a)+2® +(xz+ D@ +1)+1
=zt 42?141
=t g3

As = (x+ds)As+ Az + (& + dy)As + Ay
=@ +0)(z* +2°) + (@* +2%) + ( + 0)(2?) + (z + 1)
=+t P+ 4+ +1
=S+t + 22441

3.1 Synthesis of 5-Neighborhood Linear CA

In this section, we present an algorithm Algorithm1 for synthesizing b5-
neighborhood CA from its characteristic polynomial.

Algorithm 1. Synthesis Algotithm

Input: The characteristic polynomial of an n-cell CA, A,

Output: 5-neighborhood rule vector [d1,da, - ,dy]

Suppose, Ap_1, An_2 and A,,_3 are known and A_3 =A_s=A_1=0,40 = 1.
Here, all operations are done in GF(2).

Consider An = (1: + dn)An—l + An—? + (1’ + dn—l)An—B + An—4

Compute x + d, using Division Algorithm

For k=n downto 3
Consider Ay = (x 4+ dg)Ak—1 + Ag—2 + (x + di—1) Ar—3 + Ag_4
Compute z + dip—1 and Ag_4 using Division Algorithm

End for

Consider Ay = (z 4+ d1)Ao

Compute = + di

8. Return [d1,d2, - ,dy]

Gr W=

o

Explanation: Suppose, A,,_1, A,,_2 and A,,_3 are known. Here, all operations
are done in GF(2). We consider the recurrence relation:

An = (Z‘ + dn)An—l + An—Q + (-T + dn—l)An—3 + An—4
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Table 3. Characteristic polynomials of null boundary 5-neighborhood LHCA

Sl No. | Rule vector | Characteristic polynomial | Primitive polynomial
1 00000 242+ NO
2 00001 Pttt NO
3 00010 L4t +at+r+1 YES
4 00011 242241 YES
5 00100 P4zt +a®+2>+2+1 NO
6 00101 2 +r+1 NO
7 00110 z® + 2?2 NO
8 00111 2ttt 41 YES
9 01000 P4ttt +r+1 YES
10 01001 P4t +r+1 NO
11 01010 2+ NO
12 01011 24zt +1 NO
13 01100 x° + 2? NO
14 01101 z® + 2t + 22 NO
15 01110 P 4at+r+1 NO
16 01111 P4 +r+1 NO
17 10000 L4t +d+22+x NO
18 10001 z° NO
19 10010 24+t +r+1 NO
20 10011 24t +22+zx NO
21 10100 P +z+1 NO
22 10101 z° + z? NO
23 10110 2° 4 a2t + 22 NO
24 10111 P4+t +r+1 YES
25 11000 z®+ 241 YES
26 11001 P4t +22+x NO
27 11010 24zt +1 NO
28 11011 242+ NO
29 11100 P+t +r+1 YES
30 11101 4ttt +r+1 YES
31 11110 P4t +r+1 NO
32 11111 P 4at+2d+22+2x+1NO

0-Rule Rp; 1-Rule R;

Now, we follow the Table4. In the step 1, A, and A, _; are known. By the
polynomial division algorithm, considering A,, as dividend and A, _; as divisor,
the degree 1 quotient polynomial (x + d,) is uniquely determined and easily
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calculated; since, the remainder polynomial in the relation (i.e. A,_s + (x +
dp—1)An—3+A,_4) is of degree less than n—1. In the step 2, A,,, A1, A,—2 and
A, _3 are known. In the above relation, the polynomial A, +(z+d,,)An—14+A,—2
is of degree n — 2. Now, if the polynomial division algorithm is again applied
considering A, 4+ (x 4+ dp)An—1 + Ap—2 as dividend and A,,_3 as divisor then,
it will calculate (z + d,,—1) as quotient and A, _4 as remainder from the above
relation. In the step 3, we consider the relation:

An—l = ('T + dn—l)An—2 + An—S + (l‘ + dn—Q)An—4 + An—5

Now, A,—1, Apn—2, A,—3 and A,,_4 are known and (z+d,,—1) is also known as it
is computed in the previous step. If we apply the division algorithm considering
Ap_ 1+ (x+dy—1)An_o+ A, _3 as dividend and A,,_4 as divisor, it can calculate
(x 4+ dn—2) as quotient and A,,_5 as remainder from the above relation. In this
way, if we proceed for n steps, then we get the sequence of degree 1 quotient
polynomials as follows:

[(1’ + dn)v (39 + dnfl)v (x + dn*Q)’ T ,(:C + d2)7 (:L’ + dl)}

where di(1 < k < n) is either 0 or 1. By taking the constant terms of these
quotient polynomials and reversing, we get the rule vector [dy,ds, -+ ,d,] for a
5-neighborhood LHCA with the characteristic polynomial A,,. The total number
of polynomial divisions performed is O(n), where, n is degree of the character-
istic polynomial A, of n-bit CA. Each polynomial division needs O(n?) time.
Therefore, the required time complexity for this algorithm is O(n?).

3.2 Randomness of 5-Neighborhood Linear CA Rule Vectors

A statistical test suite is developed by National Institute of Standards and Tech-
nology (NIST) that is known as NIST-statistical test suite [1]. The NIST Test
Suite is a statistical package consisting of 15 tests that were developed to test the
randomness of (arbitrarily long) binary sequences produced by either hardware
or software based cryptographic random or pseudorandom number generators.
To test the randomness of 5-neighborhood linear CA rule vectors, we consider a
24-bit 5-neighborhood maximum period LHCA with rule vector

[1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,1]

where d; = 0 in the rulevector [dy, - - - ,da3] represents that ith cell of the CA
follows rule Ry and d; = 1 in the rulevector [dp, - - - , dag] represents that ith cell
of the CA follows rule Rq. 100 bit-streams with each stream of 1,00,000 bits
are generated from the middle cell (12!"cell) of this 24-bit LHCA and stored
in a data file, and then the data file is fed to NIST test suite. The generated
bit-streams show high randomness property as depicted in Table 5.

3.3 Diffusion Property of 5-Neighborhood Linear CA Rule Vectors

To test the diffusion property of 5-neighborhood linear CA rule vectors, we
consider a 24-bit 5-neighborhood maximum period LHCA [sq, - - - , $23] with the
same rule vector
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Table 4. Synthesis of 5-neighborhood linear CA

Step | Known Known poly, | Relation Evaluated | Evaluated
quotient | subpoly used quotient | sub-poly
1 — An, An—1 Ap=(x+dn)An—1+ Apn_2 T+ dp —
+(@ 4+ dn-1)An—3+ An—4
2 x+dn Ap, Ap_1, Ap=(x+dn)An_1+ An_2 T+ dn—1 | Ap—sa
An72:An73 +(Z+dn—l)An73 +An74
3 Tt+dp—1|An_1,An—2, | Ap—1 = (@ +dn-1)An—2+ An_3s Tz+dn_2 | An_s
Ap—3,An—a +(x+dn—2)An—a+ An_s
4 T+dn—o| Ap—2,An_3, | Ap—o=(x+dn—2)An—3+An_sa |z+dn_3 | Apn_s
An—47 An—s +(CC + dn—3)An—5 + An—G
n-3 |z +ds As, Ay, As = (x+ds)As + A3 T+ dy Ay
Az, Ag +(z+da)Az + Ay
n-2 |xz+ds Ay, As, Ag, Ay = (z+da)As + Ag x +ds —
A, Ao +(z +d3)A1 + Ao
n-1 |z +ds As, Ao, A1, A3:(Jt+d3)A2+A1 x + do —
Ap, A1 +(x +d2)Ag+ A1
n — A1, Ao Aq :(.’Z+d1)A0 x + dp —

Table 5. Results of NIST-statistical test suite

Sl. No | Test name P-value | Status
1 Frequency test 0.883171 | Pass
2 BlockFrequency (block len.=128) 0.851383 | Pass
3 Cumulative sums 0.574903 | Pass
4 Runs 0.383827 | Pass
5 Longest run 0.867692 | Pass
6 FFT 0.401199 | Pass
7 Non-OverlappingTemplate (block len.=9) | 0.474986 | Pass
8 OverlappingTemplate (block len.=9) 0.066882 | Pass
9 ApproximateEntropy (block len.=10) 0.798139 | Pass
10 Random excursions test 0.350485 | Pass
11 Random excursions variant Test 0.534146 | Pass

[1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0, 1]

as considered in the previous section, and some CA initial values and we notice
the status of the CA cells in some clock cycles. The result of the CA states for
some clock cycles is depicted in Table 6. The result shows that the diffusion rate
of CA cell contents is 2 times faster than 3-neighborhood CA. For the sake of
simplicity, the rule value of the CA is given in hexadecimal notation i.e. a CA
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rule value 0z A5 denotes the rule vector [1,0,1,0,0,1,0, 1] and a CA initial value
0z A5 denotes the CA value [10100101].

Table 6. Diffusion of 5-neighborhood LHCA rule vector

CA initial (in Hex)

Remarks

Average case

000800

12" cell bit is diffused to MSB/LSB in 6/7

clock cycles, respectively.

001000 11%" cell bit is diffused to MSB/LSB in 11/6
clock cycles, respectively.
Worst case | 800000 0" cell bit is diffused to LSB in 16 clock
cycles
000001 237 cell bit is diffused to MSB in 16 clock

cycles

Table 7. Comparison of 5-neighborhood linear CA with 3/4 neighborhood CA

Properties

3-neighborhood
LHCA

4-neighborhood LHCA

5-neighborhood
LHCA

State transition
function of ‘"
cell

a _t+1 __
5

f’i(’5§717 sza S7tl+1)

5?‘_1 = fz‘(sf—175§75§+1>3§+2)
or

1
SE+ = f’i(8572as§7153578§+1)

t+1
5.+:

%
fi(S;%ny 52717

t ot t
SiySit1, Si+2)

# of linear rules |23 =8 24 =16,2* =16 2° =32
(neighborhood

radius at most r,

r=3,4,5)

# of linear rules |2' =2 22 =4,22=4 2% =8
(neighborhood

radius exactly r,

r=3,4,5)

Rules < Rule 90, Rule | < sﬁ“ =st_ 1 @st ®sl,, | <Ro,Ra >b
combinations 150 > sf"'l = sﬁ_l@sf@sfﬂ ®s§+2 >

(with largest no. or

of max period
CA rule vectors)

t+1 _ ot ¢ ¢
<s; =58, 2Ds;-1Dsiq1,
t+1 ot ¢ oot

8, = 8;2D8;_1Bs;Ds;11 >

Diffusion rate of
n-bit CA
(Average case)

At least n/2
clock cycles

At least n/4 clock cycles

At least n/4
clock cycles

Diffusion rate of
n-bit CA (Worst
case)

At most (n — 1)
clock cycles

At most (n — 1) clock cycles

At most 3n/4
clock cycles

a siT! denotes the state of the i-th cell at time step t-+1

b Rules Ry, Ri are defined in Sect. 3.
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3.4 Comparison of Properties of 5-Neighborhood Linear CA
with 3/4 Neighborhood Linear CA

In this section, we study the comparison of properties of 5-neighborhood linear
CA with 3/4 neighborhood linear CA, shown in Table7. Delay will obviously
increase for 5-neighborhood CA with respect to 3-neighborhood CA. On the
other hand, one clock cycle period is at least the time period required for one
time CA evolving and the average diffusion rate for 5-neighborhood CA is 2
times faster than 3-neighborhood CA. Therefore, because of high diffusion rate,
5-neighborhood CA is also suitable for high speed application.

4 Conclusion

In this paper, we have studied 5-neighborhood null boundary linear CA with
two linear rules. The characteristic polynomial has been realized from 5-
neighborhood rule vector of the CA. We have presented an algorithm for syn-
thesizing the 5-neighborhood CA from its characteristic polynomial by assum-
ing some CA sub-polynomials. We have shown the randomness and diffusion
properties of the 5-neighborhood CA rule vectors and the comparison of their
properties with 3/4 neighborhood CA. At present, we are working on how the
CA can be synthesized from its characteristic polynomial without the knowledge
of CA sub-polynomials.
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Abstract. Many mathematical, engineering and cryptographic appli-
cations require the solution of sparse linear equations over large order
finite fields. The Gaussian elimination is a standard algorithm used for
the above. However, its use remains limited because of its implementa-
tion difficulty for large matrices. For large and sparse linear systems the
iterative Lanczos and Wiedemann are the most efficient techniques. How-
ever, the computation intensive matrix vector multiplications in these
algorithms make them unsuitable for large systems, increasing the com-
putation time due to constant accesses to the RAM and hard disk for
fetching and storing data. In this paper we present a cache optimized
implementation of the Lanczos and Wiedemann algorithm that can be
used for very large matrices even when there is not sufficient cache to
store all the non zero matrix elements. Our algorithm makes optimal
use of the cache, decreases the number of memory accesses and there-
fore reduces the time taken for the algorithms to provide a solution.
The results show an improvement of 16% in Lanczos and 13% in Wiede-
mann in the execution time, with number of equations as 105 and same
numbers of variables over the field of order 529 bits.

Keywords: Sparse matrices - Finite field - Cache + Lanczos algorithm -
Wiedemann algorithm

1 Introduction

Public key cryptosystems like the RSA and the Diffie Hellman key exchange rely
on the integer factorization and the discrete logarithmic problem (Odlyzko 1984).
Factorizing integers and computing the discrete transform are difficult tasks and
often involve the solution to a system of large and sparse linear equations over
finite fields GF(p). For small systems the Gaussian elimination works perfectly.
However as the size and sparsity increases the Gaussian elimination becomes inef-
ficient because of its fill-in problem. The Gaussian elimination can turn a sparse
system to a dense one, to find a solution. The iterative methods that use succes-
sive approximation to obtain accurate solutions, like Lanczos algorithm (Lanczos
1952) and Wiedemann algorithm (Wiedemann 1986) work well for such systems.

© Springer Nature Singapore Pte Ltd. 2017
D. Giri et al. (Eds.): ICMC 2017, CCIS 655, pp. 84-95, 2017.
DOI: 10.1007/978-981-10-4642-1_8
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But the problem with these algorithms is the computation intensive matrix-vector
multiplications. This component increases the timing results of the program for
large sparse systems where the data required for computation may be so large
that it cannot fit into the cache. The access to the data would require constant
calls to the hard disk and the ROM, increasing the time required for finding the
solution. In this paper, we give a cache optimized implementation of the Lanc-
zos and Wiedemann Algorithm for improvement in performance by the reduc-
tion in memory accesses, specifically for systems with low memory. Researchers
have developed techniques for the cache efficient programs to solve compute inten-
sive problems by optimally utilizing cache. The Cache efficient matrix transposi-
tion suggested in (Chatterjee & Sen 2000) studies the contributions of the data
cache, the translation look aside buffer, register tiling, and the array layout func-
tion to the overall running time of the algorithms. Peter D. Sulatycke and Kanad
Ghose suggested multithreaded fast multiplication of sparse matrices (Sulatycke
& Ghose 1998). An efficient implementation of IIR and FIR filters by fitting the
filter parameters in processor’s cache (Ilmonen & Lokki 2006). This addresses the
problem of a slower algorithm due to the inability of fitting the whole data into
cache. The algorithm in (Zoican 2007) works by rearranging the filter equations to
achieve a better cache hit rate. The convolution problem is broken down into a sum
of sub-convolutions and several elements are computed together to achieve cache
optimization. The efficient binary-mesh partitioning algorithm (Tchiboukdjian,
Danjean, & Raffin 2010), and multiple string matching (Tan, Liu, & Liu 2008)
aims to obtain efficient cache utilization for automata based algorithms by reduc-
ing the space requirements and by improving the cache locality for table-lookup-
based algorithms. For solving dense system parallel solution for solving linear
equations using Newton’s iterative method (Pan & Reif 1989) was developed
by choosing initial approximate inverse of the matrix. Preconditioned iterative
method (Reif 1998) to find the approximate solution of sparse linear systems of
equations was developed in which the condition number was obtained using alge-
braic and combinatorial methods. To solve matrix equations of the form A; x
B; = Fy and Ay x By = Fy, iterative approach (Ding, Liu, & Ding 2010) was
designed by Ding et al. using iterative approach. They did not give any idea to
select step size.

This paper is described in six sections. Section2 provides an overview of
the iterative Lanczos and Wiedemann algorithm. Section 3 gives an introduction
to the CRS form for the storage of sparse matrices. Section4 describes Cache
optimized solution for sparse linear system over large order finite field. Section 5
describes the results obtained and Sect. 6 concludes.

2 Lanczos and Wiedemann Algorithms

Lanczos (Lanczos 1952) and Wiedemann (Wiedemann 1986) algorithms are the
most common algorithms for finding the solution of linear system of equations
over finite field. These algorithms use an iterative approach to obtain their solu-
tions. In this section we discuss these two algorithms.



86 A K. Bhateja and V. Kannan

2.1 Lanczos Algorithm

Lanczos algorithm (Lanczos 1952) was invented for solving linear systems over
real number field. LaMacchia and Odlyzko (LaMacchia & Odlyzko 1990) modi-
fied for solving linear system over finite field.

Let the system of linear equations is given by

Az =w (1)

where A is an n*n square symmetric matrix and z and w are n*I column
matrices, over the finite field F.

The algorithm is given as follows-

Let the initial vector

wo = w. (2)
Calculate
v1 = Awg (3)
and ( )
V1, V1
wy =0 — w, 4
! (U0>Ul) ’ ( )

For further values of i i.e. for ¢ >= 1 define,

vi+1= Awi, (5)
('Ui+177)i+1) (’Ui+1yvi)
it1 = Vigl — P — i 6
L e T ) (wigy ) (6)
and
= ) g

(wia ’Ui+1)
And the algorithm terminates when the condition (wy, Awy) = 0 is satisfied

because this gives a vector orthogonal to a set of n orthogonal vectors is a space
of dimension of n. This happens for some (k <= n). The solution is given by

j—1

xr = Z(szl) (8)

=0

However, in general the matrices to be solved are asymmetric and hence, the
Lanczos needs to be modified to work for such matrices. Consider an asymmetric
m x n(m >n) matrix B such that the system is given by

Br=w’ (9)
A symmetric matrix A can then be formed as

A=BTD?’B (10)
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and
w = BT D*w (11)

where D is a diagonal matrix of the order m x m whose elements belong to

A solution to Az=b will then be a solution to (9).

However we do not need to calculate the matrix A to compute w;. The vector
matrix multiplication Aw; can be computed as

BT D*(BXw;) (12)

Let the number of non zeros be given as nonz. Let the cost of addition and
multiplication be s; and sy. The cost of computing (8) can then be given as
2 % nonz * S1 + n * s3. Also each inner product costs about n * s1 + n * s5. The
total cost of each iteration is then given by

Ti(n) =2%nonz X s1+4*nxs;+5%knx sy (13)
And the total cost for the running of the algorithm is then given by n «T;(n)

for n iterations.

2.2 Wiedemann Algorithm

Wiedemann Algorithm (Wiedemann 1986) doesn’t require the matrix A to be
symmetric or positive-definite. Let pa(x) be the minimal polynomial of the
matrix A. Wiedemann starts by probabilistically determining g4 (z). Let

pa(z) =zt — Cy12%t — .. .Crz — Cy (14)
where
d=deg(pa(z)) <=n (15)
Since
pa(A) =0, (16)

from the Cayley Hamilton Algorithm, we have
APy — Cy 1 Ay — . Cp AP =0 (17)

Let vy, be the element of A¥v at some particular position. The sequence vy,
for k >= 0, satisfies the recurrence relation

Vg = Cg_1Vp—1 + ... + Civ1 + Coug (18)

For all £ >= d. The minimal polynomial C(z) with degree d’ <= d can be
calculated using the Berlekamp Massey Algorithm (Berlekamp 2015).
Put k = d and v = b in (17) to get

A(ASD — Cq 1 A2 — ¢ Ab = cob (19)
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If Cy # 0, it becomes:
= (Co) A" b — Cy_1 AT 20— ... C1 Ab (20)

which is a solution to Az = b.
The time consuming task in both Lanczos and Wiedemann is the computa-
tion of the matrix vector products A%b for i = 0, 1, 2...., which requires O(n?).

A. The calculation of matrix-vector multiplications will be needed to compute
and check for the correct minimum polynomial in Wiedemann and for the
computation of v;; 1 values in Lanczos. This step involves the costliest matrix-
vector multiplication. Also, in Wiedemann, the range of the loop variable ¢
is twice the dimension of matrix A.

B. The calculation of the solution vector also, involves the computation intensive
matrix-vector multiplication in addition to scalar-vector and vector-vector
multiplication, vector addition and subtraction. This step, in comparison to
the first, is less costlier as the range of the loop variable 7 is equal to the
dimension of matrix A (viz. ¢ = 0,1,...,n — 1) that is half of the range
in the first step, for Wiedemann, though it is as costly as the first step
considering a single iteration.

To improve the execution time of these algorithms we need to pay attention
to optimally utilize cache so that the same element should not be fetched again
and again memory.

3 Representation of Matrices

In RSA cryptanalysis and for finding the discrete log over a field of high order,
the number of equations to be solved reaches the order of 10° or more. Also,
the coefficient matrix A will have a majority of its elements as zero. To store
such sparse matrices various methods are available, like the Compressed Col-
umn Storage Format (CCS) and Compressed Row Storage Format (CRS) (Bai,
Demmel, Dongarra, Ruhe, & Vorst 2000), Jagged Diagonal Format (Saad 1989),
Compressed Diagonal Storage Format (Bai et al. 2000) and linked list represen-
tation (Horowitz & Sahni 1983) are some methods used for the purpose. The
CRS and CCS are the most efficient storage schemes due to their low memory
requirements. The CRS maintains three arrays namely the value array, the col-
umn index and the row pointer. The value array stores the non- zero elements of
the sparse matrix. The column index stores the column number corresponding
to the non-zero elements stored in the value array and the row pointer array
stores the beginning of each row. We used this scheme to store the sparse matrix
for implementation. CRS for a matrix A method is described in Fig. 1.

Compressed Column Storage Format (CCS) is very similar to CRS. The only
difference is, while storing in this format we are moving across a column first,
storing the row number in the second array and the cumulative number of ele-
ments in a column in the final array.
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1003
2070
0001
5000

Value = [132715}
Col_Index = [0 3023 0]

Row_ptr = [0 24 5]

Fig. 1. Representation of matrix A in CRS form.

For an m x n matrix, the CRS representation requires a total of 2 X nonz +
m instead of an initial m x n space for the storage of the matrix, where nonz is
the number of non zeros in the matrix A and m is the number of rows in the
matrix.

In a similar way compressed column storage (CCS) can also be as shown in
Fig. 2.

Value = [132715]
Row_Index = [O 0112 3]

Col_ptr = [0 24 5]

Fig. 2. Representation of matrix A in CCS form.

4 Cache Optimized Solution for Sparse Linear System

Both Lanczos and Wiedemann algorithm include the compute intensive matrix-
vector multiplication that makes a significant contribution to the running time
of the algorithms. We have developed an algorithm for matrix vector multiplica-
tion with CRS representation by optimally utilizing the cache. Our algorithm for
matrix-vector multiplication reduces the time taken by this matrix-vector mul-
tiplication, by making effective use of the available cache. Even though the CRS
representation reduces the space required for the storage, the number of non- zeros
themselves can increase to a limit where their storage may cause difficulty and
insufficient memory, when the field order is large say 512 bits. The standard imple-
mentation of Lanczos and Wiedemann algorithm require that all the three arrays
value, column index and row pointer. Since the cache cannot accommodate the
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entire data due to insufficient space, the matrix vector multiplication works by
making accesses to RAM or hard disk (if RAM is also not sufficient to store these
arrays). The same set of data may be accessed and brought back to the cache for
computation more than once. This increases the running time of the algorithms.

In our implementation, we retrieve an optimum number of non-zero values that
can be completely accommodated in the cache, utilizing the complete capacity
of cache, instead of retrieving the complete value and column index arrays. The
required data is moved into the cache and processing is done on the retrieved data.
This ensures that the computations are done within the cache. After the data in
cache is processed, a new block of data is moved into the cache. The same set of
non-zero values is not retrieved again. This method reduces the number of mem-
ory accesses for file read and write, reducing the time required to read files. Our
results show a significant increase in the efficiency by the implementation of the
above method. The program could also show an increase in the running time if the
number of elements retrieved at a time are less than what the cache can be made
to accommodate, thus increasing the number of avoidable cache accesses. Thus
the method relies on a proper sensing of the available cache. The cache memory
can be thought of as a buffer between the CPU registers of limited memory but
high speed, and a comparatively slower but bigger main system memory (RAM).
The similar operating speed of the Cache and the CPU prevents the CPU from
waiting for the data. The configuration of the cache is such, that when data is to
be read from RAM, the system first checks for the presence of data in the cache.
If data is found in the cache, it is retrieved quickly to be used by the CPU.

If the data however, is not cached, the data is read from the RAM and
transferred to the CPU. It is also cached for future references. If the CPU needs
the same bit of data (a value from the same address), it will automatically look
in cache first, which is much faster than RAM. The importance of the above
mechanism also comes from the fact that all of this is done transparently with
respect to the CPU so that the only difference is in the amount of time taken
for the data to be retrieved. Transfer rate is not the only problem. Latency also
reduces the CPU performance.

The other important reasons for the effectiveness of the cache are attributed
to the exhibition of two forms of locality.

A. Spatial locality:- data within a block are likely to be fetched together.
B. Temporal locality:- data that has been recently used is likely to be used again
in a short period of time.

The above suggest that benefits can be gained by implementing quickly acces-
sible memory (temporal) and storing relevant information in small blocks (spatial)
as efficiently as possible. When the dataset is large, it cannot fit into the small
cache and needs to be stored in RAM /hard disk. Conclusively, we need to access
RAM /hard disk for retrieving and storing the resultant and newly generated data.
The access pattern to RAM /hard disk should be such as to minimize the number
of accesses. Also, it would be preferable to store maximum amount of data in the
cache to reduce the access time. However, since all of the data cannot be accom-
modated in the cache, we have retrieved only a small amount of data equal to the
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available capacity of cache. Also, since data is stored sequentially i.e. in order of
being retrieved, we benefit greatly from the spatial and temporal locality of cache.
Other improvements in the implementation were done as follows:-

A. For the generation of Av iteratively for i = 0,1,...,2n — 1, we compute A%v
in the i'" iteration by multiplying the matrix A and vector A*~!v (which
has already been computed in the previous iteration). We maintain a single
vector that stores only the previously computed vector A°~'v. However, the
rest of the previously computed A*~'v are stored in a file.

B. Only the matrix B was stored in CRS format. Matrix B? is not stored explic-
itly. The same data used to store B is used for the computations with B?.
Corresponding adjustments are made in the program to use the data for B*.
As said before, the same data is not retrieved again. All the required compu-
tations using a set of data are done at once when the data is bought to the
cache from the hard disk. This reduces the number of calls to the hard disk.

4.1 Our Algorithm

Let S be the size of available cache, total_-nonzeros be the total number of non
zeros in the matrix A. For every batch of non zeros to be processed, we need
the entire row pointer vector, and non zero values from the value array and
their corresponding column indices from the column array. Say, N non zeros
are retrieved from the value array during one batch computation, then the N
corresponding column indices also need to be brought into the cache. Hence, the
total number of values bought to the cache are 2 x N + rows, which is equal to
the total number of non-zeros that can be accommodated in the cache, rem be
the remaining number of non zeros left to be brought to the cache and undergo
computation. col array stores the column index, val array stores the non zero
values and row array store the number of non zeros in a row, rows is the number
of rows, the array C stores the result of matrix-vector multiplication.

Algorithm:-
int rem = total_nonzeros, R = row[0], r = 1,loop = 0;
int val[N], col[N], row[rows], z[rows];
while (rem > 0)
if (rem >= N)
Retrieve next N values of val array and col array
y=N;
loop++;
rem =rem — N,
else if (rem < N)
Retrieve next rem values of val array and col array
Yy = rem;
loop++;
rem = rem-N;
for i =1 to N
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Calculate the row j and col k of val[loop x N + i].

Multiply the element with zfj/ i.e. C[j][k] = val[k] * x[j].
end

5 Experimental Results

The implementation was done on a 64-bit Intel core i3-2348M processor on
Ubuntu 14.04 LTS operating system and a RAM of 3.6 GB. For arithmetic

Table 1. Improvement in execution time by optimally utilizing cache

Equations(Matrix Size) | Field Size | Sparsity | % Improvement | % Improvement
(in bits) in Lanczos in Wiedemann
10% x 103 131 1% 7.82 5.2
10% x 10® 131 2% 8.40 5.74
10% x 103 131 3% 8.70 5.83
103 x 103 263 1% 8.20 5.21
10% x 102 263 2% 8.90 5.68
10% x 103 263 3% 9.20 6.01
103 x 103 529 1% 10.35 6.11
10% x 102 529 2% 10.83 6.26
10% x 103 529 3% 11.4 6.83
10* x 10* 131 1% 12.85 8.03
10* x 10* 131 2% 13.02 9.06
10* x 10* 131 3% 13.46 9.26
10* x 10* 263 1% 12.87 8.67
10* x 10* 263 2% 13.5 9.00
10* x 10* 263 3% 14.22 9.58
10* x 10* 529 1% 13.62 10.35
10* x 10* 529 2% 13.98 10.48
10* x 10* 529 3% 14.60 11.01
10° x 10° 131 1% 15.00 11.13
10° x 10° 131 2% 15.3 11.52
10° x 10° 131 3% 15.72 11.74
10° x 10° 263 1% 15.63 11.48
10° x 10° 263 2% 15.98 12.05
10° x 10° 263 3% 16.11 12.86
10° x 10° 529 1% 15.656 13.01
10° x 10° 529 2% 16.321 13.67
10° x 10° 529 3% 16.50 13.93
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with large integers we used the GNU/MP library (Granlund 1991). The imple-
mentation was done in C language and compiled using GCC. Table 1 shows the
results obtained from the implementation of Lanczos, Cache optimized Lanczos,
Wiedemann and Cache optimized Wiedemann for solving n x n linear sparse
system over finite field of size 131, 263 and 529 bits with n = 103, 10* and 10°.

The results are plotted and shown in the Figs.3, 4, 5, 6, 7 and 8. The
results show improvement in the timing of cache optimized Lanczos compared
to the standard Lanczos and of Cache Optimized Wiedemann in comparison to
Wiedemann. For the field of order 529 bits, the improvement in execution time
is 16% in Lanczos and 13% in Wiedemann, with number of equations as 10°.
In general, an increase in the field size and the sparsity lead to a proportionate
increase in the time taken for the algorithm to give a solution.

4 45 5 1 15 2 25 3 s 4 45 5
Number of Equations (10")

1 15 2 25 3 35
Number of Equations (10 )

Fig. 3. Timing results of Lanczos and
cache optimized Lanczos, (variation
with number of equations), with spar-
sity 1% and field order 529 bits

%0
Field (rumber of bits)

Fig. 5. Timing results of Lanczos and
cache optimized Lanczos (variation
with field order) with sparsity 1% and
number of equations 10°

Fig.4. Timing results of Wiedemann
and cache optimized Wiedemann (vari-
ation with number of equations) with
sparsity 1% and field order 529 bits

s
126210

124
2 /

- Wiedemann
g 118 — Wiedemam Effcient

108 /\

Yo w0 w0 20 %0 0
Field (number of bis)

400 450 500 550
Fig. 6. Timing results of Wiedemann
and cache optimized Wiedemann (vari-
ation with field order) with sparsity 1%
and number of equations 10°
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== Lanczos Efficient === Wiedemann Efficient
‘0// ‘”
g 95 g 12
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el 12 14 16 18 Sn:w 22 24 26 28 3 |0$‘ 12 14 16 18 So.zsly 22 24 26 28 3
Fig. 7. Timing results of Lanczos and Fig. 8. Timing results of Wiedemann
cache optimized Lanczos (variation and cache optimized Wiedemann (vari-
with sparsity) with field order 529 bits ation with sparsity) with field order 529
and number of equations 10° bits and number of equations 10°

6 Conclusion

In this paper, we have considered a cache optimized implementation of the Lanc-
zos and Wiedemann algorithms with CRS implementation. Our program senses
the cache to retrieve an optimal amount of data that can completely occupy the
cache. The data retrieved is required only once. The processing is done with data
available in the cache. Once, the required processing has been done, the data is
removed from the cache and the next block of data is brought to the cache for
further computations. The results show an improvement in execution time 16%
in Lanczos and 13% in Wiedemann, with 10° number of equations over a field
of order 529 bits.
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Abstract. In this paper, we introduce the notion of connected fair dom-
ination in graphs. A connected fair dominating set in a graph G (or
CFD-set) is a dominating set S such that (S) is connected in G and all
vertices not in S are dominated by the same number of vertices from S,
i.e., every two vertices not in S has the same number of neighbours in
S. The connected fair domination number of G (cfd(G)) is the minimum
cardinality of a CFD-set in G. Apart from finding cfd(G) for some stan-
dard graphs G, we proved various bounds on cfd(G) in terms of order
and some other graph parameters of G.

Keywords: Fair domination - Connected domination + Diagonal ramsey
numbers

1 Introduction

The theory of domination in graphs has been an active area of research from
the time of its inception. Two domination books [3,4] provide a comprehensive
report of the vastness of research in the area of domination in graphs and its
relation to other graph parameters. The notion of connected domination intro-
duced in [5] gained a lot of attention due to its application in connectivity of
networks, virtual backbone etc. In a simply modelled telecommunications net-
work, the model consists of a central core of nodes and endnodes. The endnodes
are client locations and the core nodes are interconnected and have switching
ability. Naturally the core nodes are costly and one would want to minimize
the number of core nodes while still maintaining their interconnectedness for
example see [6]. This is ideally modelled by finding the connected domination
number of the graph modelling your network and locating your core nodes at
the vertices that form a minimum connected dominating set. The trouble is, you
also must maintain fairness. In order to keep clients from feeling that they are
not getting their fair share of resources, and that everyone has “equal” access to
the network, it would be ideal for each endnode (client location) to have access
(be adjacent) to the same number of core nodes. It is with this additional con-
straint on the connected domination number in mind, that we initiate in this
paper the study of connected fair domination in graphs, which is an extension
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of fair domination introduced by Caro et.al. in [1] and in [2]. For notation and
graph theory terminology, we in general follow [3,7].

Let G = (V, E) be a simple connected undirected n vertex graph and ~. be
its connected domination number. A set S C V is said to be a connected k-fair
dominating set, in short kCFD-set, if

1. S dominates G,
2. (S) is connected and
3. YoeV\S I|Nw)NS|=k.

Clearly for a connected graph G, V itself is a kCFD-set. The connected k-fair
domination number of G, denoted by cfd;(G), is the minimum cardinality of a
kCFD-set in G. A kCFD-set of cardinality cfdy(G) is called a cfdy(G)-set.

A connected fair dominating set, abbreviated as CFD-set, in G is a kKCFD-
set for some integer k > 1. The connected fair domination number, denoted
by cfd(G), of a graph G is the minimum cardinality of a CFD-set in G, i.e.,
cfd(@) = min{cfd;(G)}, where the minimum is taken over all integers k where
1<k <n-—1. A CFD-set of G of cardinality cfd(G) is called a cfd(G)-set.

We start with some observations and inequalities involving cfd(G) for some
standard graphs.

Observations

1. cfd(G) < n where n is the number of vertices in G.

2. 7.(G) < cfd(G) where ~.(G) is the connected domination number of G.

3. fd(G) < cfd(G), where fd(G) is the fair domination number of G. (See [1], for
definition of fd(G)).

4. cfd(P,) = cfd(Cy,) = n — 2, where P, and C,, denote path and cycle on n
vertices respectively.

5. cfd(K,) = 1 and cfd(K,, ) = 2, where K,, and K,,, denote the complete
graph and complete bipartite graph.

2 Bounds on cfd(G) in Terms of Order of G

Theorem 1. For any connected graph G with n vertices, cfd(G) < n — 1.

Proof: If n = 2, then G = K and hence cfd(G) < 1. Let n > 3. Then 7.(G) <
n — 2. Let D be a y.-set of G and |D| < n — 2. We choose v € V' \ D and set
C =V \ {u}. Clearly, C' dominates G (as D C () and 3rd condition also holds
for C. Only thing remains to be shown is that (C) is connected. Let a, b € C'. Since
a and b are either in D or adjacent to some vertices in D and (D) is connected,
there exists a path from joining a and b in (C') and hence (C') is connected. Thus,
C'is a CFD-set in G with n — 1 vertices and thereby proving cfd(G) <n —1. O

Remark 1. The bound in Theorem 1 is tight. Consider the graphs in Fig. 1. They
have cfd(G) = 4 and 5 respectively. It is easy to check that there does not exist
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any fair connected dominating set of size 3 or less for the first one (in left). For
the other one (in right), we present a formal proof.

Consider the graph G on 6 vertices given in Fig.1 (right). We prove that
cfd(G) = 5. If possible, let cfd(G) < 4. Observe that a is a pendant vertex and b
is a support vertex in G. Thus any one of them should be in any dominating set
of G. As we are looking for connected dominating sets (CDS), b should be there.
Now b dominates all the vertices in G except e. Thus to dominate e, either d or
f should be in the CDS along with b.

Case 1: If b,d € CDS, to maintain connectedness of CDS, atleast one of ¢ or f
should be in CDS.

Case la: If b,¢,d € CDS, then a,e, f are atleast dominated 1,1, 3 times respec-
tively. So {b, ¢, d} is not a CFD-set in G. Now if we include exactly one vertex
in CDS other than a, then a will be dominated once by CDS and the last
vertex will be dominated atleast twice. Thus only way to keep a outside CDS
is to take all other vertices in CDS. That gives a CFD-set of size 5. On the
other hand if we include a in CDS; i.e., a,b,c,d € CDS, f is dominated thrice
and e is dominated only once. Thus, we need to include either e or f in CDS,
thereby making it a CFD-set of size 5.

Case 1b: If b,d, f € CDS, then {b,d, f} is not a CFD-set in G as e is dominated
twice and a is dominated once. Similar to that in Case la, only way to keep
a outside CDS is to take all other vertices in CDS. That gives a CFD-set of
size 5. On the other hand if we include a in CDS, i.e., a,b,d, f € CDS, ¢
is dominated thrice and e is dominated twice. Thus, the only option is to
include either of ¢ or e in CDS, thereby making it a CFD-set of size 5.

Case 2: If b, f € CDS, as already d is dominated twice and a can be dominated
at most once, we need to either include all the vertices except a in CDS or
we need to include a in CDS. As in the first case, we get a CFD-set of size 5,
we include a in CDS, i.e., a,b, f € CDS. Now, ¢, d are dominated twice and
e is dominated once. So, we need to include more vertices in CDS.

Case 2a: a,b,c, f € CDS. In this case d is dominated twice and e is dominated
once. Thus we need to include one more vertex making it a CFD-set of size 5.

Case 2b: a,b,d, f € CDS. In this case ¢ is dominated thrice and e is dominated
twice. Thus we need to include one more vertex making it a CFD-set of size 5.

Case 2c: a,b, e, f € CDS. In this case ¢ is dominated twice and d is dominated
thrice. Thus we need to include one more vertex making it a CFD-set of size 5.

Thus, combining all cases, we get cfd(G) = 5 and thereby proving the result. O

Remark 2. The gap cfd(G) — v.(G) can be arbitrarily large. Consider the fol-
lowing graph from [1]. For n > 3, define a graph on 2n vertices as follows:
V(G) = X UY where X = {x1,x2,...,2,} and Y = {y1, 92, ...,yn}. Edges are
defined as follows: x; ~ y; if and only if ¢ > j. For 4,j > 1, x; ~ x;.

Clearly, {x,,y1} is a connected dominating set and 7.(G) = 2. It was proved
in [1] that fd(G) = 2n — 2. Since cfd(G) > fd(G), we have cfd(G) — v.(G) >
2n —2—2 = 2n—4. Thus, as n increases, cfd(G) — v7.(G) increases arbitrarily. O
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a

Fig. 1. Sharpness of upper bound

Theorem 2. Let T be a tree with n > 3 wvertices out of which | are pendant
vertices. Then cfd(T) =n — .

Proof: Let T be a tree with n vertices out of which [ are pendant vertices.
Then the set N of non-pendant vertices of T' is a CFD-set of size n — [. Thus,
cfd(T) <n-—1.

If possible, let cfd(T) < n — 1 and let S be a cfd(T")-set. Then S does not
contain atleast one non-pendant vertex, say u, and deg(u) > 2. Let v, w be two
neighbours of u. If both v,w € S, then S is not a CDS as there is no path
joining v and w in (S) (only path joining v and w in G is v ~ u ~ w). If both
v,w & S, then S contains a neighbour of u, other than v and w, say z, which
dominates u. Again there exists some neighbour of v, say y (other than ), in S
which dominates v. Now (S) being connected, there should be a path between
x and y. As T is a tree, there exists a unique path in 7', namely x ~u ~v ~ gy
joining x and y. Since u, v ¢ S, this path does not exist in (S}, thereby making it
disconnected. Thus, the only possibility left is when u has exactly two neighbours
v,w, i.e., deg(u) = 2 and exactly one of them isin S. Let v € S and w ¢ S. Since,
w ¢ S, there exists a neighbour of w, say z (other than u), in S which dominates
w. Now (S) being connected, there should be a path between v and z. As T is
a tree, there exists a unique path in 7', namely v ~ u ~ w ~ z joining v and z.
Since u,w ¢ S, this path does not exist in (), thereby making it disconnected.

Thus, combining all the cases, it follows that all non-pendant vertices of T
must be in S, i.e., cfd(T) > n — [ and hence cfd(T) =n — 1. O

Corollary 1. Let T be a tree with n > 3 vertices. Then cfd(T) = ~v.(T). O

Corollary 2. For any connected graph G with n vertices out of which | are
pendant vertices, cfd(G) <n — 1. O
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Theorem 3. For a connected reqular graph G onn > 3 vertices, cfd(G) < n—2.

Proof: Let G be a connected r-regular graph. Let D be the minimum connected
dominating set of G. Then |D| < n—2. Choose u,v € V\D and set S = V\{u, v}.
As D C S, S dominates G. Let a,b € S. Since a and b are either in D or adjacent
to some vertices in D and (D) is connected, there exists a path from joining a
and b in (S) and hence (S) is connected. Now, two cases may arise:

Case 1: u ~ v in G. As G is r-regular, both v and v are adjacent to exactly r —1
vertices in S. Note that asn > 3, r > 2.
Case 1: u o4 v in G. Similarly, in this case, both u and v are adjacent to exactly
r vertices in S.
Thus, S is a CFD-set in G with n — 2 vertices and thereby proving cfd(G) <
n— 2. 0
Theorem 4. Let G be a graph on n vertices with diameter 2, maximum degree
A and minimum degree 0. If A+ 6 <n —1, then cfd(G) <n — 2.

Proof: Let v be a vertex of degree 6. As diam(G) = 2, (N[v]) is a connected
dominating set of G. Consider the n—d—1 vertices in V'\ N[v]. They have degrees
lying between 1 and A. If n — 6 —1 > Aie, A+ 3§ < n— 1, by Pigeon-hole
Principle, there exists at least two vertices uy,uz € V' \ N[v] with same degree
k where 1 <k < A. Let C =V \ {ug,uz2}. As C D Nv|, C' dominates G.

For two vertices u/,u” € C, either they are adjacent, or they are adjacent
to same vertex in N[v] or they are connected by a path u',v1,v,ve,u” where
v1,v2 € N[v]. Thus (C) is connected.

Now, if uy ~ ug in G, then both u; and us are adjacent to k — 1 vertices in
C. If u; o ug in G, then both are adjacent to k vertices in C. In any case, C is
a connected fair dominating set in G. Thus cfd(G) < n — 2. O

Theorem 5. Let G be a 3-connected graph on n vertices. Then cfd(G) < n —2.

Proof: Since G is 3-connected, we have § > 3. Now, there exists at least two
vertices u,v in G such that deg(u) = deg(v) = k where 3 < k < n — 1. Let
C =V \ {u,v}. Since G is 3-connected, (C) is connected. Now, according as u
and v are adjacent or non-adjacent in G, then v and v are adjacent to k — 1
or k vertices in C'. Thus C is a connected fair dominating set in G and hence
cfd(G) <n—2. O

Theorem 6. Let G be a regular connected graph on n vertices with connected
domination number .. Moreover, let k be the highest positive integer such
that n — 7. > R(k,k) where R(k,k) is the diagonal Ramsey number. Then
cfd(G) <n—k.

Proof: Let C be a 7 -set of an r-regular graph G. Then |V \ C| = n — 7.. Thus
(V'\ C) contains an independent set of size k or a clique of size k.
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Case 1: Let D C V'\C be an independent set of size k in (V'\C). Consider V'\ D.
We have |V \ D| =n—k. Since C C V\ D, V\ D is a connected dominating
set in G (using arguments similar to that used in proof of Theorem 1). Since
(D) is an edgeless graph in V' \ C, vertices in D are adjacent to exactly r
vertices in V' '\ D. Thus V' \ D is a CFD-set in G and hence cfd(G) < n — k.

Case 2: Let D C V\ C be a clique of size k in (V' \ C). Similar to that of Case 1,
V\ D is a connected dominating set of size n — k in G. Since (D) is a clique
in V'\ C, vertices in D are adjacent to exactly r — k + 1 vertices in V' \ D.
Thus V' \ D is a CFD-set in G and hence cfd(G) < n — k. 0

Theorem 7. For a connected graph G with n vertices and m edges,

n

AG) 1 < cfd(G) <m —1.

Proof: The lower bound follows from that fact that ~.(G) > a7 and

Y(G) < cfd(G). For the upper bound, first note that for a connected graph
m>n—1.

If m = n—1 in a connected graph G, then G is a tree and in that case

cfd(G) =n—1=m+1—1, where [ is the number of pendant vertices. Now as

a tree contain atleast 2 pendant vertices, cfd(G) < m — 1.
If m > n, then cfd(G) <n—-1<m— 1. O

3 Bounds on cfd(G) in terms of other graph parameters

An outer-connected out-reqular set, abbreviated as OCOR-set is a subset @) of
vertices in V such that (V'\ Q) is connected and |N(u) N (V\ Q)| = [N(v)N(V'\
Q)| > 0 for all u,v € Q.

Let G be a connected graph and C be a ~.-set of G. Then |C| < n — 2.
Choose u € V' \ C and set @ = {u}. Following the line of proof of Theorem 1, it
can be shown that @ is an OCOR-set of G. Hence, every connected graph has a
non-empty OCOR-set. The outer-connected out-regular number of a connected
graph G, denoted by &,cor (G) is the maximum cardinality of an OCOR-set in G.
An OCOR-set of size Eoeor (G) is called a &oeor(G)-set of G. It trivially follows
that &yeor(G) > 1 for any connected graph G.

Theorem 8. For every connected graph G on n vertices, cfd(G) +&ocor (G) = n.

Proof: Let D be a cfd(G)-set. Then, by Theorem 1, |D| <n—1. Let Q = V\ D.
Then @ is an OCOR-set in G and hence &,cor(G) > |Q| = n — cfd(G), ie.,
cfd(G) + &ocor (G) > 1.

On the other hand, let @ be an &,cor(G)-set. Then |Q| > 1. Let D =V \ Q.
Then D is a CFD-set in G and hence cfd(G) < |D| = n — &ocor (G), 1.€., cfd(G) +
¢ocor(G) < n. Thus we have the desired result. O

Theorem 9. If G is a connected graph such that g is connected and G has an
efficient dominating set, then cfd(G) = fd(G) = ~(G).
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Proof: Let S be an efficient dominating set of G of size 7.(G). Then |S| > 2,
because |S| = 1 implies that G has a universal vertex v (i.e., adjacent to all other
vertices), which in turn implies that v is an isolated vertex in G contradicting
that G is connected. Thus S dominates G, S is an independent set in G and
every vertex in V(G) \ S is adjacent to exactly one vertex of S in G.

Hence, in G, every vertex in V(G) \ S is adjacent to exactly |S| — 1 vertices
of S and thus S is also a dominating set of G. Moreover, as S is an independent
set in G, (S) is a complete subgraph in G' and hence connected in G. Thus, S is
a connected (|S| — 1)-fair dominating set in G and hence cfd(G) < 7.(G).

Now, we note that for any graph G’ with an efficient dominating set, we have
Ye(G") = v(G’). Thus, we have

7(G) = 7(G) = fd(G) (by Observation 2 in [1])
= fd(G) (by Theorem 4(a) in [1])
< cfd(G) (by Observation 3 in this paper)
Hence, we conclude that cfd(G) = fd(G) = v(G). O

4 Concluding Remarks

In this paper, we introduce the notion of connected fair domination number
cfd(G) of a connected graph G and proved various bounds on cfd(G) in terms of
the number of vertices and some other graph parameters. However, relationship
of cfd(G) with respect to other graph parameters, still remain unexplored and
can be an interesting topic for further investigation.
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Abstract. In this paper combining the features of swap sequence and
swap operation based Particle Swarm Optimization (PSO), Ant Colony
Optimization (ACO) and K-Opt operation a hybrid algorithm is pro-
posed to solve well known Traveling Salesman Problem (TSP). Inter-
change of two cities of a path of a TSP is known as swap operation and a
sequence of such operations is called swap sequence. Using swap opera-
tion and swap sequence PSO operations are redefined to solve TSP. Here
ACO is used a small number of iterations to generate initial swarm of
PSO. Then PSO operations are made on this swarm a sufficient num-
ber of times to find optimal path. During PSO iterations if a particle
does not change its position for a predefined number of iterations then
K-Opt operation is made on it a finite number of times to improve its
position. The algorithm is tested with bench mark test problems from
TSPLIB and it is observed that algorithm is more efficient with respect
to accuracy as well as execution time to solve standard T'SPs (Symmetric
as well as Asymmetric) compared to existing algorithms. Details of the
proposed algorithm along with swap operation, swap sequence and K-opt
operation for the algorithm are elaborately discussed for the readers.

Keywords: Traveling salesmen problem + Ant colony optimization -
Particle swarm optimization + Swap sequence + Swap operation + K-Opt

1 Introduction

The Traveling Salesmen Problem(TSP) is one of the standard combinatorial
discrete optimization problem. The problem consists of a set of n vertices
(node/cities) where distance between any two vertices is known. A salesman
starts from a vertex, visits all the vertices exactly once and returned to the

© Springer Nature Singapore Pte Ltd. 2017
D. Giri et al. (Eds.): ICMC 2017, CCIS 655, pp. 103-119, 2017.
DOI: 10.1007/978-981-10-4642-1_10



104 I. Khan et al.

starting vertex in such a way that the total distance traveled is a minimum. So
the goal of the problem is to find a shortest possible tour through the set of
vertices in such a way that each vertex is visited exactly once except for the
starting vertex. It is also well-known NP-hard problem, can’t be solved exactly
in polynomial time [25,27]. Generally there are two approaches to solve a TSP
exact methods and heuristic methods. The exact methods are required huge time
for larger n, thus heuristic methods are typically used to solve a TSP. The exact
methods include cutting plane [32], LP relaxation [6], branch and bound [39],
branch and cut [36], etc. Only small size TSPs can be solved by exact methods in
a reasonable time. On the other hand, several problems have been solved using
heuristic or soft computing based techniques such as Ant Colony Optimization
[9], local search [18], hybrid algorithm [12] and genetic algorithm [34]. In a TSP,
when distance between vertices (node/cities) x; and z; is equal to the distance
between vertex x; and z; then the problem is called Symmetric Traveling Sales-
men Problem (STSP). Changdar et al. [4] solved a multi-objective solid TSP
under fuzziness. In TSP with precedence constraint [33] there exists an order in
which the vertices are to be visited. On the other hand, if the distance between
vertices (node/city) x; and z; is not equal to the distance between vertices
(node/cite) x; and z;, then the problem is called Asymmetric Traveling Sales-
men problem (ATSP). Majumder and Bhunia [28] solved a ATSP with imprecise
travel times using a genetic algorithm. In the TSP with time windows [12], each
vertex is visited within a specified time window. In double TSP [38], the targets
can be reached by two sales persons operating in parallel. Combing features of
PSO, ACO and 3-Opt a hybrid algorithm PSO-ACO-3-Opt is presented by Mahi
et al. [30] to solve TSP. Shi et al. [41] presented a PSO based algorithm for TSP.
Geng et al. [13] proposed an effective local search algorithm based on Simulated
Annealing (SA) and greedy search technique to solve the TSP. Jolai & Ghanbari
[20] presented an improved Artificial Neural Network (ANN) approach for TSP.
Dorigo et al. [9] proposed an Ant System to solve TSP. Dorigo & Gambardella [8]
described an artificial ant colony (ACO) capable of solving the TSP. Karaboga
& Gorkemli [21] proposed a new Artificial Bee Colony (ABC) algorithm called
Combinatorial ABC for TSP. Bontoux & Feillet [3] proposed a hybrid algorithm
to solve TSP. Beam-ACO algorithm [24] which is a hybrid method combining
ACO with beam search was used to solve TSP. Gunduz et al. [16] presented a
new heuristic method based on swarm intelligence algorithms for solving TSP.
Tsai et al. [42] presented a meta-heuristic approach called ACOMAC algorithm
for solving TSP.

From the above discussion it can be concluded that heuristic approaches are
more powerful to solve TSP in a feasible time period. Since 1995, PSO has been
proven to succeed in continuous optimization problems and much work has been
done effectively in this area. But it can be used to solve TSP also. Using the
concept of swap operator and swap sequence and redefining some operators of
PSO on the basis of them, Wang et al. [41] proposed a special PSO to solve
TSP. Akhand et al. [1] improved this algorithm to find solution of TSP and
named it velocity tentative PSO. On the other hand ACO is a well established
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technique to solve TSP [8,24,29]. Both the algorithms PSO and ACO sometimes
converge to local optimal path(tour). K-Opt is a technique which can be apply on
a tour(path) to overcome this convergence. In fact local search with K-exchange
neighborhoods, K-Opt, is the most widely used heuristic method for the TSP.
It works like as a mutation function. K-Opt is a tour improvement algorithm,
where in each step K links of the current tour are replaced by K links in such a
way that a shorter tour is achieved [17].

In this paper, combining the features of swap sequence and swap operation
based PSO [44], ACO and K-Opt operation a hybrid algorithm is proposed to
solved STSP as well as ATSP. In proposed method ACQO is used a small number
of iterations to generate initial solution set(swarm) of PSO. PSO operations are
made on this swarm to find optimal path of a TSP. During PSO iterations if a
particle does not change its position for a predefined number of iterations then
K-Opt operation is made on it a finite number of times to improve its position.
Here actually 3-Opt operation is used for this purpose and it is found that it
acts better than 2-Opt operation for large size TSPs. The proposed algorithm
is tested with bench mark test problems from TSPLIB and it is observed that
algorithm is more eflicient with respect to accuracy as well as execution time to
solve standard TSPs (STSP as well as ATSP) compared to existing algorithms.

The rest of the paper is organized as follows: in Sect.2, mathematical for-
mulation of the problem is presented. In Sect. 3, some features of swap sequence
based PSO (SSPSO) is discussed. Features of ACO are discussed in Sect.4.
K-Opt (Local Search) algorithm is presented in Sect.5. Proposed algorithm is
presented in Sect. 6. Experimental results are discussed in Sect.7. A brief con-
clusion is drawn on Sect. 8.

2 Model Formulation

A TSP can be represented by a graph G = (V, E), where V = 1,2, ...N is the set
of vertices or nodes and F is the set of edges. Here each node represents a city
and each edge represents path between two cities. Each edge associated with a
distance which represents the distance between the cities associated with it. A
salesman travels distances to visiting N number of cities (or nodes) cyclically.
In one tour he visits each city exactly once, and finishes up where he started
with a minimum travel distance. Let d;; be the distance between j-th city and
k-th city. Then the model is mathematically formulated as [6], Determine xj,
ji=12.N, k=12 ..N, to

N N
Minimize Z = Y ) z;rdjk
j=1k=1
N
subject to Y xjp =1, for k=1,2,..,N (1)
j=1

N
Yaj=1, forj=1,2,..,N
k=1

where zj;, = 1 if the salesman travels from city-j to city-k, otherwise x;;, = 0.
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Let (z1,Z2...,xn,z1) be a complete tour of a salesman, where z; €
{1,2,..,N} for j = 1,2,...,N and all z;’s are distinct, ie., (z1,22...,2n,Z1)
is the sequence of cities in which the salesman travels the cities. Then the above
model reduces to [23],

Determine a complete tour (z1,Z2,.......... TN,T1)
L N=1 (2)
to minimize Z = ) dyju,, + daya,
i=1

3 Swap Sequence Based Particle Swarm Optimization
(SSPSO) for TSP

PSOs are exhaustive search algorithms based on the emergent motion of a flock of
birds searching for food [10,22] and has been extensively used/modified to solve
complex decision making problems in different field of science and technology
([2,11,14,15]). A PSO normally starts with a set of potential solutions (called
swarm) of the decision making problem under consideration. Individual solutions
are called particles and food is analogous to optimal solution. In simple terms
the particles are flown through a multi-dimensional search space, where the
position of each particle is adjusted according to its own experience and that of its
neighbors. Each particle ¢ has a position vector (X;(t)), a velocity vector (V;(t)),
the position at which the best fitness (Xppesti(t)) encountered by the particle
so far, and the best position of all particles (Xgpest(t)) in current generation t.
In generation (¢ + 1), the position and velocity of the particle are changed to
Xi(t+1) and V;(t + 1) using following rules:

Vit +1) = wV;(t) + c1r1 (Xppesti(t) — Xi(1)) + cara(Xgpest (t) — Xi(t)) (3)
Xit+1)=X;t)+ Vi(t+1) (4)

The parameters ¢; and ¢y are set to constant values, which are normally taken
as 2, 1 and 7o are two random values, uniformly distributed in [0, 1], w(0 <
w < 1) is inertia weight which controls the influence of previous velocity on the
new velocity. It is mainly used to solve continuous optimization problems. It
is also used to solve TSPs where swap sequence and swap operations are used
to find velocity of a particle and its updating ([26,43,44]). A PSO that uses
swap sequence and swap operation is called SSPSO. As discussed in Sect. 2, in a
TSP a potential solution is represented by a sequence of nodes. In SSPSO, swap
operations on different nodes are used to update a solution. A swap sequence
represents a sequence of swap operations used to transform a solution to another
solution. Basic operations of SSPSO are briefly presented below:

Swap Operator

Consider a normal solution sequence of TSP with n nodes, X = (z1,z2,...zy,
x1), where z; € {1,2,..n} and each z; are distinct. Here swap operator,
SO(i,j) is defined as exchange of node x; and node z; in solution sequence
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X. Then we define X' = X 4+ SO(i,j) as a new sequence on operating opera-
tor SO(i,7) on X. So the plus sign ‘+’, above has its new meaning. It can be
given a concrete example: suppose there is a TSP problem with six nodes, and
X = (z1, 22,23, 24,25,26) = (1,3,5,2,4,6) be a sequence. The swap operator is
SO(2,4), then X' = X + SO(2,4) = (1,3,5,2,4,6) + SO(2,4) = (1,2,5,3,4,6),
i.e., nodes of position 2 and position 4 are exchanged.

Swap Sequence

A swap sequence SS is made up of one or more swap operators. Let
SS = (504,504, ...,50,,), where SO1,503,...,SO,, are swap operators. swap
sequence acting on a solution means all the swap operators of the swap sequence
act on the solution in order. This can be described by the following formula:

X' =X + 88 =X + (501,80, ...,50,) = (X + SO1) + SO3)... + SO,,)

Different swap sequences acting on the same solution may produce the same
new solution. All these swap sequences are named the equivalent set of swap
sequences. In the equivalent set, the sequence which has the least number of
swap operators is called Basic Swap Sequence of the set or Basic Swap Sequence
(BSS) in short.

Several swap sequences can be merged into a new swap sequence. Here the
operator @ is defined as merging two swap sequences into a new swap sequence.
Suppose there is two swap sequences, SS1 and SS2 act on one solution X in
order, namely SS1 first, SS2 second and a new solution X’ is obtained. Let
there is another swap sequence SS’ acting on the same solution X and get the
solution X', then S5’ is called merging of SS1 and SS52 and it is represented as:

SS"=581a 552

Here, S5’ and SS1 & SS2 are in the same equivalent set.

The Construction of Basic Swap Sequence

Suppose there is two solutions, A and B, and our task is to construct a Basic
Swap Sequence SS which can act on B to get solution A. We define SS =
A — B (Here the sign — also has its new meaning). We can swap the nodes in
B according to A from left to right to get S.S. So there must be an equation
A =B+ SS. For example, consider two solutions:

A=(1,2,3,4,5),B = (2,3,1,5,4)

Here A(1) = B(3) = 1. So the first swap operator is SO(1,3). Let Bl = B +
SO(1,3) then we get the following result:

B1:(1,3,2,5,4)
Again A(2) = B1(3) = 2, so the second operator is SO(2,3) and B2 = Bl +

SO(2,3). The third operator is SO(4,5), and B3 = B2 + SO(4,5). Finally we
get the Basic swap sequence SS = A — B = (50(1,3),50(2,3),50(4,5)).
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The Transformation of the Particle Updating Formulas
For solving TSP formulas (3) and (4) of PSO have to transformed using swap
sequences and swap operations as follows:

‘/z(t + 1) - ‘/z(t) bri© (Xpbesti(t) - Xz(t)) Dro® (ngest(t) - Xz(t)) (5)
Xi(t+1) = X;(t) + Vi(t + 1) (6)

Here r1, r9 are random numbers between 0 and 1. Velocity V;(t) represent a swap
sequence. 71 © (Xppesti(t) — X;(t)) means all swap operators in BSS (Xppesti () —
X;(t)) should be maintained with the probability of r1, i.e., each swap operator
in BSS (Xppesti(t) — Xi(t)) should be selected with probability 7. The same
meaning is for the expression 7o ® (Xgpest(t) — X;(t)). From here it is seen that
the bigger the value of r; the greater the influence of Xppessi(t) is, for more
swap operators in (Xppest(t) — X;(t)) will be maintained, it is also the same as
2 © (Xgpest (t) — Xi(t)).

4 Ant Colony Optimization (ACO)

The ACO algorithm was developed by Dorigo et al. [7] as inspired by actual
ant colony behaviors to solve TSP. Ant algorithm are multi-agent system in
which the behavior for each single agent, called artificial ant or ant, is inspired
by the behavior of real ants. As discussed earlier a TSP consists of a set of IV
vertices (node/cites) where distance between two vertices is known. The goal
of the problem is to find a shortest possible tour(path) from starting node s to
destination node D. In ACO, a special variable 7;;, called artificial pheromone
trail, which associated with any two vertices i and j is defined. The ant used this
pheromone in a stochastic way to decide which node to move to next. At the
beginning of the search process a constant amount of pheromone are assigned
to all the edges. When ants visit each node for creating a possible tour(path),
the pheromone would be updated by ants. Maximum pheromone is available on
the path through which maximum ants travel. An ant k is currently located at
node 14, selects the next node j, based on the following transition probability:

EHOUA0 ek
~ P if j € NF(t)
Pty = &, a0 )

k
ueNi

0 if j¢& NE(t).

where 7;; represents the pheromone value and 7;; represents the heuristic value
of the move from node i to j at time step t. NF(t) represent the set of nodes
which are not yet visited by ant & (when it is at node 7). o and [ are positive
real parameters whose values determine the relative importance of pheromone
versus heuristic information. 7;; is calculated by following equation,

1
mij = o (8)

)
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where d;; is the distance (cost) between the node ¢ and j. During visit of nodes
by the ants small amount of pheromone would be evaporated from each edge
and some pheromone are deposited on the edges through which the ants move.
For each edge(i, j), evaporation takes place using the following rule:

Tij(f,) — (1 — p)Tij(t) (9)

with p € [0,1]. p is the constant, that specifies the rate at which pheromone
evaporate. The more evaporate pheromone, the more random the search, that is
p =1, the search is completely random. After completion of a tour(path) from s
to D by each ant, the pheromone on each edge(i, j) is updated (due to deposit
of pheromone) as

ng

Tij(t+1) = mi;(t) + > ATl (1) (10)

k=1

where ATZ@ (t) is the amount of pheromone deposited by ant k on edge(i, 7) and
k at time step ¢ and here AT,Z- (t) is taken as

if k-th ant passes through edge (i,j)

1
k :
ATij(t) = {6‘(Xk) (11)

otherwise

5 K-Opt Operation

K-Opt is a local search algorithm based on exchange of K parts (sub-tours) and
their reverses (reverse sub-tours) of a tour(path) of a TSP to find a better tour.
It has been proven to be very successful for TSPs and similar problems. While
breaking (removes) K edges in a tour, there are (K —1)!25~! ways to reconnect
it (including the initial tour) to form a valid tour [40]. Each new combination
gives a new tour. Among these tours one may be better than the original tour
and can be taken as an improvement. In the case of 2-Opt algorithm removes
two edge form the tour, and reconnects the all combination of sub-tours and
their reverses (Fig. 1). Continue this process until no 2-Opt improvements can
be found. Similarly in the case of 3-Opt, breaking 3 edges in a tour there are
total 8 cases of reconnection (Fig.2). If a tour is 3-optimal it is also 2-optimal
[40]. Continue break (remove) edges form tour i.e. K = 1,2,3...,n and get new
algorithm, like 2-Opt, 3-Opt, 4-Opt and so on. But increase of K increases time
complexity. Due to this, here 3-Opt operation is used and it is found that it acts
better than 2-Opt operation for large size TSPs.
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Fig. 2. All combinations of sub_toures for k=3

6 Proposed Algorithm

A Hybrid Algorithm Based on ACO, PSO and K-Opt Algorithm for
Solving TSP

It is assumed that problem involves n nodes, d;; represent distance between
node ¢ and node j. In the algorithm a one dimensional array of size n, Xy(t)
is used to represent k-th solution in iteration ¢, i.e., path of k-th ant, which
is again k-th particle of the swarm. N is node set and t is iteration counter.
ny is swarm size. Maxitl, Maxit2, Mazit3 represent number of iterations of
ACO part, PSO part and K-Opt part of the algorithm respectively. f(Xx(t))
represent total length of the path X (t). Other notations in the algorithm are
same as previously discussed.

// ACO Operations

1. Start Algorithm
Set values of Maxitl, Maxit2, Maxit3, «, 3, p. Set t=0.
3. Set 7;(t) = nij(t>=(d+)7" for i = 1,2,...,n;7 = 1,2,...,n, where r is
positive real number.
4. repeat
for k=1 to n;, do
i=a random node from the node set N ={1,2,...,n}.
=1
X[l =4 //Construct a path Xi(t).
=N —{i}
repeat
Select next node j from Nik based on the transition
probability defined in Eq. (7).
l=1+1
Xp(@)[l] =j
i =]
N = NF — {i}
until NF =) //0 is null set

N
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Calculate the path length f(Xj(t))
end for
for i =1 to n step 1 do
for j =1 to n step 1 do
// Pheromone evaporation.
Reduce the pheromone, 7;;(t) using Eq. (9)
end for
end for
for i =1 to n do
for j=1 to n do
7ij(t +1) = 75(t)
Update 7;;(t + 1) using Eq. (10).

end for
end for
t=t+1

Until (t > Mawitl)

//PSO Operations

. for k=1 to n do

Xi(0) = Xp(t — 1)
Xpbestk (0) =Xy (O)
V(0)=S0(4i, j) where i, j are randomly generated from the
set N and
P F ]

end for

. t=1

. Xgpest= solution having minimum path length from the solution
set {X:1(0), X2(0),...X,, (0)}
. repeat
for k=1 to ng, do
Determine Vi (t) using Eq. (5)
Determine Xj(t) using Eq. (6)
If f(Xpbestr(t — 1)) > f(Xk(1))
Xpbestk (t) = X (t)
else
Xpbestk (t) = Xpbestk (t - 1)
end if
IE f(Xypest) > F(Xi(2)
ngest = Xy (t)
end if
If (Xgpest = Xi(t)) holds for a predefined consecutive number
of iterations then apply
K-Opt operation on Xj(¢) to improve its position (Sect.6.1)
end for
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9. t=t+1.
Until (¢t > Mazit2)

10. Output Xgpeq
11. End of Algorithm.

6.1 K-Opt Operation on a Complete Tour X(t)

Detailed algorithm of k-opt operation for K = 3 is presented below. In the
algorithm a one dimensional array of size n, Xiem, (t), is used to represented
temporary k-th solution in iteration ¢, i.e., k-th particle of the swarm. Xp;(t)
and X7, (t), i = 1,2, 3 are one dimensional arrays used to represent sub-tour and
revers_sub-tour of the original tour Xj(t).

for i=1 to Maxit3 do

Remove 3 edges(randomly selected) from tour Xj(f), it makes 3
sub-tours Xy;(t), i=1,2,3.

Reverses of the contains of these sub-tours are called
revers_sub-tours, represented

by XJ,(t), i=1,2,3, i.e., X7,(t)= revers_sub-tour(Xyi(t)), X],(t)=
revers_sub-tour(Xys(t)), Xj;(t)= revers_sub-tour(Xys(t)).

Now combing the sub-tours {Xpi(t), Xpa(t), Xus(t)}, {Xi1(t),
Xio(t), X]4(t)} new tours can be formed in following 8

combinations:
i A{ Xk (1), sz(t) X3 (1)}
i1 { X (1), X5o (1), Xis(2)}
111 {Xg1(t), Xe2(t), Xi5() }
iv {Xkl(t) X 3(t) X,:Q(t)}
v { Xk (), Xis(t), Xin(t)}
vi { X (t), Xi5(t), Xia(t)}
vii {Xp1 (1), Xio(t), Xis(t)}
viii {Xp(t), Xi5(t), Xia(t)}

for each combination do
Create a complete tour from the combination and let it be
Xiem, (t)
if f(Xtemk (t) < f(Xk:(t))
Xi(t) = Xiem, (t)
end if
end for

end for

7 Experimental Results

All computational experiments are conducted with Dev C++ 5.8.3, core i3 CPU
@ 2.10 GH,, Windows 8.1 Operating System and 4 GB RAM. Performance of the
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proposed algorithm is tested using different size standard TSPs from TSPLIB.
From each problem algorithm is tested by running the program 20 times for
different seeds of random number generator and the best solution obtained, the
average value of the solutions, Standard deviation (SD) value and percentage
of relative error (Error(%)) according to optimal solution are calculated. The
percentage of relative Error(%) is calculated using the following equation.

average solution — optimal solution

Error(%) = x 100 (12)

optimal solution

The results obtained by proposed algorithm for seventeen different test problems
from TSPLIB are presented in Table 1.

In Table 1 results of STSPs and ATSPs are displayed separately. In the Table
Best column represent the best solution obtained by proposed method and
optimal solution are taken from TSPLIB. The problems whose optimal solutions
(according to TSPLIB) are obtained by proposed approach are presented in bold
face. It is found from the Table 1 that the algorithm produces optimal solution
for most of the problems taken for the test and for others it gives solutions very
near to optimal solutions. For problems like, rat99, elil01, kroA200, fiv56, the
algorithm does not provide optimal solution but other parameters like average,

Table 1. The Result obtained by the proposed algorithm for STSP and ATSP

Problem | Optimal | Best | Worst | Average | SD Error(%) | Time(S)
STSP | grl7 2085 2085 2085 | 2085.00 | 0.00|00.00 1.56
bays29 2020 2020 2024 | 2020.05 0.8900.01 10.05
swiss42 1273 1273 1273 | 21273.00 |  0.00 | 00.00 7.46

eli51 426 426 427 426.29| 0.46| 0.07 19.91
berlinb2 | 7542 7542 7555 | 7543.29 | 3.90 0.01 20.28
st70 675 675 681 676.00 1.73| 0.14 100
eli76 538 538 541 538.15| 0.65| 0.02 150
rat99 1211 1212 1216 | 1213.90| 0.99]00.07 200

kroA100 | 21282 21282 | 21406 | 21319.00| 47.79|00.17 305.01
kroC100 | 20749 20749 | 20992 | 20862.25| 45.15|00.18 350.01
elil01 629 630 637 631.20 1.50| 0.34 200.90
1lin105 14379 14379 | 14385 | 14379.29 1.30{00.00 320.10
prl24 59030 59030 | 59320 | 59118.64 | 98.30 | 00.15 305.00
pr152 73682 73682 73705 | 73691.64 | 28.26| 0.12 1031.32
kroA200 | 29368 29402 | 30016 | 29640.00 | 145.0 | 0.46 350.12
ATSP | br17 39 39 bf39 39.00| 0.00|00.00 1.13
ftv33 1286 1286 1286 | 1286.00| 0.00|00.00 5.56
ry48 14422 14422 | 14642 | 14452.79 | 64.79 | 0.21 15.12
ftvs6 1608 1629 1689 | 1642.19 | 18.87| 0.810 25.12
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Table 2. Compare results using 2-Opt and 3-Opt in test problems

Problem | Optimal | ACO 4+ PSO +2-Opt | ACO + PSO + 3-Opt
STSP | grl7 2085 2085 2085
bays29 2020 2028 2020
swiss42 1273 1284 1273
elib1 426 447 426
berlin52 | 7542 7800 7542
st70 675 699 675
eli76 538 550 538
rat99 1211 1270 1212
kroA100 | 21282 21910 21282
kroC100 | 20749 20892 20749
elil01 629 795 630
lin105 14379 15500 14379
prl24 59030 62040 59030
prls2 73682 73910 73682
kroA200 | 29368 30290 29402
ATSP | brl7 39 39 39
ftv33 1286 1340 1286
ry48 14422 14020 14422
ftvb6 1608 1648 1629

Sd, Error(%) and Time(s) are better compare to [30]. Small values of SD and
Error(%) of the solutions of the problems ensure that obtained solutions of the
problems are very close to optimal solutions.

Table 2 represent results obtained by proposed method due to different test
problems using 2-Opt and 3-Opt operations in the algorithm. In the case of small
size problems like gr17 and brl7 both the approaches provide same solution as
optimal solution. But for large size problems 2-Opt and 3-Opt produces different
solutions. Problems for which optimal solutions are obtained by the algorithms
are presented in bold face in the Table2. In some problems like rat99, elil01,
kroA200, fiv56, using 3-Opt, the algorithm does not provide optimal solution
but it produces better solutions than that obtained by the algorithm using
2-Opt. It is also clear from Table2 that for all the problems algorithm with
3-Opt provide better result than that using 2-Opt. So in proposed algorithm
3-Opt operation is used.

Table 3 represents the effect of swarm size in the algorithm for different test
problems. Swarm sizes like 10, 20, 30 and number of city(node) of the test
problems are used for the test. In the case of small size problem like gr17 bays29,
swissd2 for STSPs and br17 for ASTSPs the algorithm gives same solution as
optimal solution for different swarm size. For problems like eli51, berlin52, st70,
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Table 3. The Result obtained by the proposed method for various number of ants

Problem | Optimal | Swarm Swarm Swarm Swarm
size =10 size =20 size =30 size = Problem size
STSP | grl7 2085 2085 2085
bays29 2020 2020 2020 2020
swiss42 1273 1273 1273 1273 1273
eli51 426 426 428 429 427
berlin52 | 7542 7542 7590 7610 7610
st70 675 675 680 689 702
eli76 538 538 545 552 570
rat99 1211 1212 1222 1230 1249
kroA100 | 21282 21282 21492 21572 21825
kroC100 | 20749 20749 20790 20785 20892
elil01 629 630 680 720 790
lin105 14379 14379 14420 14510 14705
prl24 59030 59030 60120 60350 60480
prl52 73682 73682 73710 73699 73750
kroA200 | 29368 29402 29803 29901 30230
ATSP | brl7 39 39 39
ftv33 1286 1286 1294 1315 1301
ry48 14422 14424 14460 14510 14510
ftv56 1608 1629 1642 1672 1690

eli76, rat99, kroA100, lin105, pr124, kroA200, ftv33, ry48, ftvb6 the algorithm
provide better solution for swarm size 10. So in the proposed algorithm swarm
size is taken as 10.

Table 4 represents a comparison of all computational results of the proposed
algorithm with other existing algorithms in the literature. From Table4, it is
clear that proposed approach is better compared to other existing approaches
in the literature both with respect to accuracy and computational time. For
the test problems like eli51, st70, eli76, rat99, elil01, kroA200 the algorithm
produces better values of Avg, SD, Error compared to other algorithm. For
the test problem kroA100, proposed method provide optimal solution but other
parameters like Avg, SD, Error are not better compared to WFA with 3-Opt
(Othman et al., 2013). In some test problems the proposed method does not
provide optimal solution but the solution are very near to optimal solution,
due to minimum standard deviation (SD) compared to other algorithms in the
literature.
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Table 4. Comparison of results obtained by proposed approach with other method in
literature

Method Problem |eli5 berlin52 |st70 eil76 rat99 kroA100 |eil101 |1lin105 kroA200
Optimal 426 7542 675 538 1211 21282 629 14379 29368
Best 426 7542 675 538 1212 21282 630 14379 29402
RABNET- Avg 438.70 |8073.97 |- 556.10 |- 21868.47 654.83|14702.17 |30257.53
TSP
(2006] [37]
SD 3.52 270.14 |- 8.03 - 245.76 6.57 |328.37 342.98
Error(%) |2.98 7.05 - 3.36 - 2.76 4.11 2.25 3.03
Modified Avg 437.47 |7932.50 |- 556.33 |- 21522.73 |648.64|14400.7 30190.27
RABNET
-TSP
(2009) [31]
SD 4.20 277.25 |- 5.30 - 93.34 3.85 |44.03 273.38
Error(%) |2.69 5.18 - 3.41 - 1.13 3.12 0.15 2.80
SA ACO PSO |Avg 427.27 |7542.00 |- 540.20 |- 21370.30 |635.23/14406.37 29738
(2012) [5]
SD 0.45 0.00 - 2.94 - 123.36 3.59 |37.28 356.07
Error(%) |0.30 0.00 - 0.41 - 0.41 0.99 |0.19 1.26
WFA with Avg 426.65 |7542.00 |- 541.22 |- 21282.00 (639.87/143790.00|29654.03
2-opt
(2013) [35]
SD 0.66 0.00 - 0.66 - 0.00 2.88 |0.00 151.42
Error(%) |0.15 0.00 - 0.60 - 0.00 1.73 0.00 0.97
WFA with Avg 426.60 7542 - 539.44 |- 21282.80(633.50/14459.40 |29646.50
3-opt
(2013) [35]
SD 0.52 0.00 - 1.51 - 0.00 3.47 1.38 110.91
Error(%) |0.14 0.00 - 0.27 - 0.00 0.72  |0.56 0.95
HACO Avg 431.20 |7560.54 |- - 1241.33 |- - - -
(2012) [19]
SD 2.00 67.48 - - 9.60 - - - -
Error(%) (1.22 0.23 - - 1.42 - - - -
PSO-ACO- |Avg 426.45 |7543.20678.20 |538.30 |1227.40 |21445.10 [623.70/14379.15 29646.05
30pt
(2015) [30]
SD 0.61 2.37 1.47 0.47 1.98 78.24 2.12 |0.48 114.71
Error(%) |0.11 0.02 0.47 0.06 0.28 0.77 0.59 |0.00 0.95
Proposed Avg. 426.297543.29 676.00/538.15/1213.90|21319.50 |31.20 (14379.29 |29642.00
Method
SD 0.46 3.90 1.73 0.65 0.99 47.79 1.50 |[1.30 165
Error(%)|0.07 0.01 0.14 0.00 0.07 0.17 0.34 |0.00 0.46

8 Conclusion

Here for the first time combining the features of swap sequence and swap opera-
tion based PSO, ACO and K-Opt operation a new hybrid algorithm is presented
to solve STSP as well as ATSP. Here ACO is used a small number of iterations
to generate initial swarm of PSO. Then PSO operations are made on this swarm
a sufficient number of times to find optimal path. During PSO iterations if a
particle does not change its position for a predefined number of iterations then
K-Opt operation (for K =3) is made on it a finite number of times to improve its
position. The performance of the proposed algorithm is tested using different size
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standard TSPs from TSPLIB. In most of the TSPs considered for test the pro-
posed algorithm provide optimal solution. In some test problems the proposed
algorithm does not provide optimal solutions but the solutions are very close to
optimal solutions. The performance of proposed method is better if and only if
small numbers of ants (10 in proposed method) used in ACO. All experimen-
tal results imply that proposed approach is better compared to other existing
approaches in the literature both with respect to accuracy and computational
time. The algorithm can be used to solve TSPs in fuzzy environment, rough
environment, rough-fuzzy environment and etc. Proposed algorithm can be used
to solved solid TSP and vehicle routing problem and router (networking) related
problem with minor modification.
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Abstract. Many symmetric key encryption schemes have been designed
to ensure the confidentiality of data only. Data integrity plays an impor-
tant role of security in various encryption scheme. Assuming this fact,
many researchers have focused their research to design Authenticated
Encryption (AE) schemes that provide both confidentiality and authen-
ticity. FASER is one of them which was submitted in CAESAR competi-
tion and withdrawn in later due to an attack reported in the paper [6]. It
has two parent ciphers namely FASER128 and FASER256. Cryptanaly-
sis of FASER128 was studied by the authors in [6,7] and mentioned some
serious flaws in the design of the crypto algorithm. Due to these flaws,
both the parent ciphers of the FASER have been withdrawn. In this
paper, we study the cryptanalysis of FASER128 by key recovery attack
and discuss some weaknesses. We have also suggested some modifications
of cryptoalgorithm to avoid the key recovery attack.

Keywords: Stream cipher - Key recovery attack - Authenticated
encryption

1 Introduction

The CAESAR (Competition for Authenticated Encryption: Security, Applica-
bility, and Robustness) competition was started in 2014 and its aim is to find
Authenticated encryption schemes that (1) offer advantages over AES-GCM and
(2) are suitable for widespread adoption. The notion of Authenticated encryption
was first coined by the seminal work by Bellare and Namprempre [3] in 2000,
Bellare, Kohno T. and Namprempre [4] in 2002 and then further extended by
several authors. Authenticated encryption schemes are key-based cryptographic
schemes comprising of both an encryption and an authentication that provides
confidentiality and authenticity. Confidentiality assures that adversary cannot
gain much information from ciphertext corresponding to plaintext while authen-
ticity ensures that ciphertext has not been altered which was delivered by authen-
tic sender to receiver. Since the security of authenticated ciphers depends on both
encryption and authentication, therefore the designer’s should have to take more
precautions to design encryption as well as authentication schemes because due
to this an attacker has more choices to execute the attack either in any one of
© Springer Nature Singapore Pte Ltd. 2017
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the encryption or the authentication or both of them simultaneously and also
has more chances to get the information such as authentication tag and so on.
Thus, it is more tedious job to design a good authenticated encryption scheme.
FASER [5] is an Authenticated encryption schemes that consists of two parent
ciphers: FASER128 and FASER256. The nomenclature represents the maximum
secret key length that can be used in each cipher. The two parent ciphers of
FASER, FASER128 and FASER256, had been submitted to CAESAR competi-
tion but due to key recovery attack proposed in [6], it was later withdrawn from
CAESAR competition.

FASER128 and FASER256 both are comprise of two identical state registers,
one for encryption E and one for authentication A followed by three components
FSR, MIX, MAJ. They have also consist of three processes that is initialization,
update, finalization. In this paper, we studied an attack of encryption portion
only therefore the details about an authentication portion is not included. The
recommended key parameter set for FASER128 includes 16 byte key(secret), 8
byte secret message number, 8 byte public message number, and 8 byte tag.
The paper is organised as follows: Sect.2 deals the structure and function of
FASERI128. In Sect. 3, we discuss key recovery attack on FASER128 and describe
a method to recover full key of the crypto algorithm. Section 4 deals some obser-
vations about the weaknesses of FASER128 and find some suitable situations
experimentally to avoid this attack and finally, we conclude with conclusion.

2 Description of FASER128

This section deals the details of structure of FASER128.

2.1 Components of FASER 128
State Register

FASER128 has two identical state registers, one is used for encryption and other
is used for authentication, denoted by E and A respectively. Both the state reg-
isters are identical in size, that is, 256. It is represented as F = (Ej3, Ey, E1, Ep)
and A = (As, Aa, Ay, Ap) where each E; or A; is 64 bits in size.

FSR E

FSR (Feedback Shift Register)is used for updation of state register of FASER128.
The FSR is made up of 8 sub-FSRs, where 2 sub-FSR is comprised of one LFSR
(Linear Feedback Shift Register) and one NLFSR (Nonlinear Feedback Shift
Register). These two sub-FSRs are operate on 64-bits in size and coprime to

each other. They are also updated independently in different region of state.
The FSR X is defined as follows:



122 M.K. Dubey et al.

FSRIT(X) :y « 216 @ 215 © T14 - 713 (T16, - -+, 1, T0) < (T15,- -+, T0,Y)
FSR23(X) : y « w22 ® x21 ® 12 - T11 (@22, ...,%1,%0) < (T21,...,%0,Y)
FSR29(X) : y < 228 ® o7 ® T19 - T12 (T2s,...,T1,T0) « (T27,...,%0,¥)
FSR31(X) :y « w30 ® x11 ® 21 - ©13 (¥30, . ..,%1,%0) < (T29,...,%0,Y)
FSR33(X) :y «+ 232 ® 219 (32,...,%1,%0) < (231,...,%0,¥)
FSR35(X) 1y « 234 ® w32 (%34, .., %1,%0) < (33, .,%0,Y)
FSRAI(X) : y « x40 B 37 (T40,- -+ 21, %0) < (39, -+, T0,Y)
FSR47(X) LY — Ty D Ta1 (.T46, ... ,.%‘1,.1‘0) — (.Z‘45, .. ,l‘o,y)
The feedback update of the FSR F can be described as
FeedFSR(X) = (FSRg(Xg),FSRQ(XQ),FSRl(Xl),FSRQ(X())) (1)
where
FSR() X() == FSR33 H33 XO H FSR31 L31 XO 5

| FSR23(Las(X>
Hy7(X3)) | FSR17(Ly7(X3)

)
);
);
)

(Xo) (H33(Xo0)) (L31(Xo)
FSRi(X1) = FSR35(H35(X1)) || F'SR29(Lag(X1)
(X2) (Hi1(X2)) (L23(X2)

) ( ) (Laz(

H;(X) and L;(X) represent the i-th most significant (High) bits of 64-bit X
and i-th least significant (Low) bits of 64-bit X respectively, and || denotes
concatenation. In one update of the FSR E, the FSR is clocked 8 times, that is,

FSR(X) = (FeedFSR)®

where the FSR is clocked at once then each subFSR is being clocked indepen-
dently. Consequently, all 64-bits are updated in each state register of the FSR E.

'P D c | Finalization I
Ny, \L

Tag

Fig. 1. FASER block diagram
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Mix function

The Mix function combines the initial states from the sub-FSRs. The purpose of
Mix function is to defuse the information across the state register and provide
good diffusion property. The input is the entire state (X3, X2, X1, Xo) and the
output gives three 64-bit words such that

Yo=Xok3)d (X; K12) & (X x 43) 8 (X3 « 27)
V1 = (Xo << 22) @ (X1 << 54) ® (X2 < 5) @ (X3 << 30) (2)
Yo = (Xo «50) @ (X7 « 35) & (Xo K 14) @ (X3 <« 60)

where “<” denotes the bitwise rotation to the left (Fig.1).

MAJ function

The MAJ function operates on 64-bit words which is the bitwise majority func-
tion say MAJ. The output of Mix function is used as an input of Majority
function. The output of MAJ function is defined as follows:

Z:(Yo/\Yl)\/(YO/\}/Q)\/(Yl /\}/2)7 (3)

where A and V means the bitwise multiplication and bitwise Xor respectively.

2.2 Processes of FASER128

FASER128 executes the following processes: initialization, update and finaliza-
tion which are elucidated as follows:

Initialization

The purpose of initialization is to initialize the two state registers E and A
using the secret key K and the public message number PMN or whole secret
key. First, the inputs are directly fed into the register, least significant byte first.
The remaining bytes are filled with a constant, 0z5a...5a to identify the key for
the encryption. The register contents are then diffused so that the inputs (K
and PMN) affect the entire state as follows. Here TWEAK is defined as below:
TWEAK(X)Z(I63,1‘627 ey X2, 1‘1,580) — (1,1762, FN 71’2,07 1)

Update

In each clock, the encryption of FASER128 is a synchronous stream cipher that
produces a ciphertext of 64-bit word at each clock and an authentication function
that accumulate the ciphertext. The FSR update function is an identical to the
encryption function and the authentication function where they differ only at the
initialization process. When FASER128 is clocked at once, each FSR is clocked
8 times.
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Algorithm 1. Initialization (E, K, PMN)

Input: 1. E = 025A || ... | 025A || PMN | K,
Output: £ = FSR(E)

2. Fori=1to 8

3. E = FSR(E),

4. (Y2, Y1,Y0) = MIX(E)
5. FE = (E3,E: ® Y2, E1 ® Y1, Eo @ Yo)
6. E = (Es, E1, Eo, E5)
7. end for

8. TWEAK(E)
9.Fori=1to 8

10. E = FSR(E),

Here, we only focus on procedure for update of encryption and so we omit
procedure for update of authentication. The following describes one update of
FASER128 to process one 64-bit plaintext word P;. FASER128 continues to clock
until all the inputs have been processed. The pseudo-code for the procedure
update is

Algorithm 2. Update(F, F;)
E = FSR(E)
(Y, Y1,Yo) = MIX(E)
Z = MAJ(Y2, Y, Yo)
Ci=P o Z.

Finalization

This process generates the tag based on the contents of the authenticated reg-
ister. The update of the authenticated register is almost similar to the update
function. We have also ignored detail of this process due to irrelevance for this
attack.

3 Key Recovery Attack

In this section, we give details about the key recovery attack discussed in [7].
This attack can be divided into two phases: phase I deals the recovery the initial
state of the register E of the FSR F, and phase II deals the recovery of the full
secret key K by reverting the procedure of initialization of Algorithm 1.
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3.1 Phase I: Find Linear Relations

This phase is devoted to find some linear relations based on the following exper-
iments. For a 64-bit word variable X, we denote by X'[i] the i-th bit of the
value of X at time ¢ > 0, where 0 < ¢ < 63. The main idea behind the key
recovery attack is to find experimentally the certain linear relationship between
the output key bits Z![i] and Z'T![i + 8 mod 64] for some i to generate some
linear equations among the state of the register E/, and then recover the state of
the FSR E by solving these linear equations. For example, set i = 54. We have

Z'54] = Y] [54] Y [54] @ Yi[54] Y4 [54] @ Y4 [54]Y{ [54]
Y{[54] = X{[51] @ X1[42] @ Xi[11] @ X%[27] @
Y [54] = X}[32] @ X1[0] @ X5[49] & X3[24]
Y7 [54] = X{[4] ® X7[19] © X5[40] ® X%[58)
and
Z'62] = YT 62V 62] @ YT [62] YT 62] @ Yi T [62] V) T [62]
Yir62] = XEHH59) @ X (50 @ XAT[19] @ X411 ([35] )
Y[T62] = XETH40] @ XTI 8] @ XETH[57) @ XET1[32]
[62]

YiTH62] = XETH12] @ Xit[27) @ XET[48] @ XiT[2).

To find linear equations, we observe every ‘" bit of Y{[i], Y{[i], YZ[i] and
Y [i48], Y [i 48], Yo [i+8] of 64-bit registers and compare each component
X1 [i] with X,i“ [i + 8] for kK =0,1,2,3 and check whether they are equal or not.
The purpose that these bits belong to either in LFSR or NLFSR of the compo-
nents of FSR X},. Example, for i = 54, X{[p] = Xé'H[p—I—S} for p = 51,42,11,27.
Similarly, some other relations can also be obtain as follows.

Xtp) = X p + 8] forp = 51,32,4

X![p] = X p + 8] forp = 42,0, 19 o
Xi[p| = XLt [p + 8] for p = 11,49, 40

X3lp] = Xt+1[p + 8] forp = 27,24

Using (2), (4) and (5), we get

YiTH62] = Y4 [54] © X4[58] @ XiT1[2].
Now, we have
Z'pa) @ 2 62) = (YiTV[62]vy T 62] @ YT [62] s T 62] @ Yo T 62] YT [62])

a(Yy TV 62]Y T [62] @ YT [62](Y4 [54] @ X5[58]
eX3T2)) @ (Y5 [54] ® X3[58] @ X5 [2)Ye T [62]).
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which gives
Z'[54) @ 2'1[62] = (X§[58] © X5 [2]) (Yo [54] & Y, [62]). (7)
In particular, if Z![54] & Z**1[62] = 1, then we have

Xis8l@ Xit 2l =1 (8)
Yi[54] @ YiT[62] = 1. (9)

The above equation also holds for i = 55. Indeed, we have Z![55] & Z'*1[63] =
(X4[59] @ XETH3])(YE[55] @ Y{T[63]). Thus, when Z![55] @ Z!*+1[63] = 1, we
also have

X;[59) @ X373 =1 (10)
Yi[55) @ YT [63] = 1. (11)

Recovering the initial states of X3

Equations (8) and (10) involve the expression of X3 only for the different initial
states. Thus, to recover the initial states of X3 we have to solve the expression
about 64 nonlinear equations. For this purpose, we collect 64 nonlinear equations
which satisfies key bits of Z![54] @ Z!*1[62] = 1 or Z![55]@® Z!T1[63] = 1 for each
possible time ¢t 4+ j(j > 0). Now, X3 is comprise of 47-bit state of linear sub-
FSR and 17-bit state of non-linear sub-FSR, therefore we get linear equations
that involve 47-bit state variables Hy7(X%) of the linear sub-FSR and 17-bit
state variables L17(X%) of the nonlinear sub-FSR of X3. Assuming the 17-bit of
Ly7(X%) at time ¢ are known, then 64 nonlinear equations are reduced to linear
equations on 47 variables Hy7(X3%) of the linear sub-FSR of X3. Further we check
whether 64 %64 matrix is consistent or not. If not then we look for another guess.
Thus we can recover 47 variable of Hy7(X%) out of 64 equations. The rest of the
equations are used to check the correctness of recovered X%. Finally, X} can
be determined uniquely. In order to collect 64 linear equations in the form of
Eq. (8), we require less than 400 64-bit words. We find one equation for each
possible state j on average. After collecting these equations we have to guess 217
possible states L17(X%) of the nonlinear sub-FSR of X3 to find unique solution.
Finally, we solve a linear system of 47 bit variables Hy7(X%) for each possible
states of L17(X%). Thus we can recover initial states of the feedback of the linear
sub-FSR of X3 in a simple manner.

Recovering the initial states of X,

Set i = 3. We find from (6),
Y1) = g 3]
Y1) = Y{[3] @ X3[62] © X, (6] (12)
Yi 1] = i3]

ot
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From the computation of Z¢[3] and Z!T1[11], we get Z![3]® Z!T1[11] = (Xi[62]®
XEH6)).(YE[3] @ Y4[3]). If Z(3] @ Z'*+1[11] = 1, then we have

Xj[62] ® X5t'6] =1 (13)

Yel3 @ Y{[3 = L.

Clearly, the Eq.(13) involves the state variables of X, only. Similarly, to
recover X4, we first collect 64 linear equations by those key bits satisfying
ZWi[3] @ Z'TH[11] = 1, for j > 0. For this purpose, we have to guess 23-
bit state variable Log(X4%) of the non-linear sub-FSR of X5 and solve 41 out of
64 linear equations of 41-bit state variables Hy(X%) of the linear sub-FSR of
X5. This process is repeated for each possible j on average until we get the solu-
tions. The rest of the linear equations are used to check the correctness. Finally

X! can be determined uniquely. In this case we have to guess 223 possible states
Lo3(X}) of the nonlinear sub-FSR of X3.

Recovering the initial states of X,
Set 7 = 37. Similar to previous sections, we observe that
ZM37) + Z'H 145 = (Y{[37] + Yo T [45])(X|[25]) + X | [33]
+ X5[58] + X311 [2] + X4[10] + X5TH[18]).
If Z4[37] + Z'*1[45] = 1, then
Y37 + Yyt [45] = 1 (15)
XH[25) + X1 [33] + X24[58] + X4TH2] + XA[10] + XEHH18] = 1. (16)
The above relation also holds for ¢ = 38, that is,
Z'[38] + Z'T1[46] = (Y{[38] + Y5 T [46])(X{[26] + X {7 [34]
+ X3[59] + X5 [3] + X4[11] + X4T19))
If Z'[38] + Z'T1[46] = 1, then
Y [38] + Y4t [46] = 1 (17)
X1[26] + X771 [34] + X3[59] + X571 [3] + X§[11] + X5[19] = 1. (18)
Since X% and X! are known by previous sections, therefore we easily find the
linear equations that involves the initial state of X7 only. Once enough linear
equations are collected, we guess the state Lag(X?) of the nonlinear sub-FSR of
X, directly and solve with 35 linear equations out of 64 linear equations of the
state variables Hs5(X7}) of the linear sub-FSR of X; and the rest of the equa-
tions is used to check the correctness of X}. Finally, we get the unique solution

of X!. In this case we have to guess 22 possible states Lag(X?) of the nonlinear
sub-FSR of X;.
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Recovering the initial states of X,

Set 7 = 50. We observe that
ZH[50] + 21 [58] = (Y{[50] + Y41 [58])(X5[28] + X T[36] + Xt[60] + XTT1[4])

As similar process to previous section, we observe that if Z*[50] + Z!*1[58] = 1,
then Y*[0][50] 4+ Y41 [58] = 1 and X¢[28] + X7 [36] + Xt[60] + XiT1[4] = 1.
Also, it also holds for i = 59, that is,

Z'[51) 4+ Z59] = (Y [51] + Y3 [59]) (X§[29] + XEH37] + XE[61] + XIHH[5)).
We also observe that

Z'[56] + Z1H0] = (Y{[56] + Y{TH0])(XF[21] + XEH1[29] + XE[60] + X4 [4))
Z'[57) 4+ 2" 1] = (Y5 [57) + Y 1) (X1 [22) + X[ 30] + X3[61] + X571 [5])

Now, X%, X! and X} are known by previous sections, therefore knowing these
values, we easily find the equations in terms of initial state of X{ only and recover
the initial states of X{ using above equations. In this case, we guess the state
L31(X{) of the nonlinear sub-FSR of X, directly and solve the 33 linear equations
of the state variables Hz3(X{) of the linear sub-FSR of X, and the rest of the
equations are used to check the correctness of X{.

3.2 Phase II: Recovering the Key K

This section deals to recover the key K from the state register F of the FSR F.
If the process of initialization is known then one can easily recover the state F,
since FSRE is invertible. At initialization process, the three values of TWEAK
is not known, therefore we easily get the intermediate state (that is, TWEAK)
of initialization process of Algorithm1 in 23 possible values of E denoted by
Ey,Es, ..., Eg because TWEAK is not a permutation. For each possible value
E;(1 <17 <8), we invert steps from 7 to 2 in turn. It is experimentally observed
that the rank of the matrix of the linear transformation determined by steps 4
and 5 at initialization process is 189, therefore we have to fix three (that is, 23)
arbitrary value of matrix to recover the state. Since steps 2—7 loop eight times,
so we can get totally 2% possible values to reach step 2 for each E;, denoted by
E; j, where 1 < j < 2%, Finally, we verify whether the prefix of each possible
E; ; (totally 2! possible values) is equal to 0z5aba...5a or not. If some Ej ;
gives the correct solution, then one candidate K is written down. Here it should
be emphasized that all candidates K are valid and they are equivalent to each
other.

4 Flaws in Design and Methods to Avoid the Attack

We have already seen that FASER128 is a weak cryptosystem and weaknesses are
found mainly in Mix and MAJ functions. The authors reported in the paper [7]
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that the rank of matrix used at initialization process of Algorithm1 was 191
while by simulating the program, it is found that it was 189. Therefore, some
complexity increases to revert the initialization process. Second observation is
that this particular attack is possible if the output sequence Z'[i] ® Z!*1[i +
8 mod 64] is not balanced for each i where 1 < i < 64. The balancedness of these
output sequences was not mentioned by the authors [7]. Another observation
is that the mixing of key stream between LFSR and NLFSR of subFSR is not
proper therefore the output sequences mentioned above is not balanced. We also
observe that these equations are possible because of the poor choice of rotation
parameters present in Mix function and if the output sequence Z![i| ® Z!*1[i +
8mod 64] is not balanced then it is always possible to get linear equations in
terms of linear sub-FSR and output sequences. Therefore we conclude that the
attack is possible if one can easily deduce linear equations corresponding to
LFSR. Based on these observations, we have done a lot of experiments to avoid
this type of attack and improve key stream cipher with the same speed and the
same security elucidated as follows:

4.1 Fixing the Rotation Parameters in Mix Function

We have analysed the strength of output key stream sequences by changing
the various rotation parameters present in the Mix function. If we denote these
rotation parameters present in Mix variable is as [t;;] matrix where ¢, 0 <¢ <3
denote the corresponding to rotation parameter of Y; variables, where 0 < j < 2,
given in Mix function. If we set {tgo = 16, t19 = 30, tog = 39, t50 = 7; to1 = 36,
t11 = 547 t21 = 52, t31 = 28; tog = 22, tlg = 37, t22 = 46, t32 = 61} In this
case one cannot find linear equation for any i corresponding to the condition
Z'i) ® Z' i + 8 mod 64] = 1. Therefore one cannot mount the key recovery
attack on the stream cipher in real time.

4.2 Changing the Set of the Rotation Parameters in Mix Function

By changing the several rotation parameters in Mix function it has been found
that if we fix MSB (most significant bits) of first four subFSR in Eq. (2), then
the following rotation parameters present in Mix function gives better results
of balancedness and consequently, we get better diffusion property and so one
cannot mount the key recovery attack on FASER128. The set of 16 rotation
parameters in Mix function are given as follows:

4.3 Changing the Clock Z*[i + 16 mod 64]

It is observed that by changing the clock of update function Z*[i + 16 mod 64]
in place of Z![i + 8 mod 64], the output sequences Z'[i] & Z!*1[i + 8 mod 64] for
each i are almost balanced at the following rotation parameters {20 47 39 16;
37 26 52v 32; 21 7 25 0} and one cannot find linear equation in this case. The
time complexity to mount the attack in this case is much high. Therefore, the
key recovery attack is not possible in this scenario.
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Set/ti; | too | tio | t2o | t30 | to1 | t11 | ta1 | t31 | toz | ti2 | to2 | t32
1 30 |22 |46 |18 | 5|21 |19 |57 |15 |63 |53 |25
2 29 |20 |19 |37 |50 |45 | 4 60 |26 |41 |12 | 2
3 48 124 |37 |12 |41 |11 |45 | 2 (54| 4 |27 |44
4 3120 4[59 |56 | 6 |42 | 1 |31 38 53 |46
5 24 118 |40 |15 /10 |51 | 7| 0 |36 |60 |49 |41
6 13 |11 | 3 |57 |34 |21 |62 |55 |51 |30 |15 |25
7 24 | 2|51 |41 | 8 12|60 |28 |15 |56 |36 |49
8 36 |46 |27 |17 |44 |60 |59 |51 |57 33 |12 |24
9 37 |47 |18 |27 |51 |61 | 9 |41 |57 | 4 |55 |46

10 38 |62 |55 |18 |27 |51 |23 |53 |33 |11 |25 |26

11 56 |37 |44 |11 |63 |52 |14 |22 |48 | 6 |59 |47

12 52 |3 |37 |58 |49 48 |10 |26 | 9 |54 | 4 45

13 34 |28 |20 |48 |13 |37 | 2 56 |21 |42 |38 |12

14 37 |18 |52 |44 |51 (28 |11 | 7 |31 |14 | 0 |40

15 30 |5 |16 |46 |53 44 |20 |28 |36 |23 |11 |59

16 42 |15 14 34 |54 |36 |38 |63 |28 |57 |49 44

5 Security Analysis

Based on change of rotation parameters and apply other parameters mentioned
in previous section, we analysed the following security issue in the cryptoalgo-
rithm of FASER128.

5.1 Avalanche Effect

For a good cryptoalgorithm, output key sequences should satisfy good avalanche
criteria, that is, change in single input key bits gives almost 50% change in
corresponding output key stream. For this purpose, we have changed every single
bit of 256 initial bits of FSR E and check the avalanche criterion of whole output
key stream. It has been found that significant change exists in output key stream.
This ensures that the output sequence satisfies avalanche criterion.

5.2 Algebraic Attacks

For FASER128, the number of variables in the output keystream from the linear
subFSRs and nonlinear subFSRs is v = 256 + 64n where n is number of rounds
and the number of equations is e = 128n, discussed in [5]. Hence algebraic attack
is not applicable in this case.

Side channel attacks and other security issues are same as discussed in [5].
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6 Conclusion

In this paper, we have discussed cryptanalysis of FASER128 by method of key
recovery attack [7] which require only a few key words, that is, about less than
400 words and recovered all possible keys K in real time with single PC. So,
FASERI128 is a very insecure cryptosystem. It is observed that some sets of
rotation parameters present in Mix function mentioned in Sect. 4 gives significant
improvements to avoid this particular type of attack. By changing the clock of
update functions also gives better improvement to avoid this attack with the
same security and the same speed mentioned in [5].
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Abstract. The system identification is a broad area of research in var-
ious fields of engineering. Among them, our concern is to identify the
aircraft dynamics by means of the measured motion and control vari-
ables using a new approach which is based on the support vector machine
(SVM) regression. Due to the computational complexity of SVM, it is
suggested to adopt the advanced version of SVM i.e. least square support
vector machine (LSSVM) to be used for system identification. LSSVM
regression is a network-based approach which requires a user defined
kernel function and a set of input-output data for its training before
the prediction phase like a neural-network (NN) based procedure. In
this paper, LSSVM regression has been used to identify the non-linear
dynamics of aircraft using real flight data.

Keywords: System identification -+ LSSVM regression - Kernel function

1 Introduction

System Identification (SI) is basically concerned with the mathematical mod-
elling which is obtained from the available measured input and output data
of the system [1]. Tt is like solving an inverse problem from the given data
implicitly [2]. There are three quantities involved in the process of identify-
ing the system which are the inputs, mathematical functions representing the
dynamical system, and the outputs. SI attempts only to find the mathematical
functions [3,4].

The mathematical functions can be represented in the form of differential
equations which are simply formulated based on the process of physics leading
to Newtonian mechanics. This type of modelling is said to be phenomenological
models which, requires a high level of information a prior, leads to a complex
model [3]. So, a different type of model is required which can approximate the
observed behaviour for specific input without any intention of knowing the inter-
nal dynamics of system. It is said to be a behavioural model which is easy to
derive and establish an overall cause-effect relationship.

Another way of classifying the system identification process is to divide mod-
elling based on parametric and non-parametric approaches. The parametric app-
roach involves a well-known established structure based on physical processes just
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like phenomenological model either in the linear or non-linear form. One way of
structured modelling is based on state-space which can be represented in the form
of linear or non-linear, continuous or discontinuous, time-invariant or time-variant,
and deterministic or stochastic [5]. Another way is based on transfer function which
is applicable only to represent linear system. The non-parametric approach is an
alternative non-hectic strategy using some kind of a mathematical function repre-
senting an input-output relationship. Such models have been developed using arti-
ficial neural network (ANN) [6]. ANN is a multi-layer feed forward neural network
with a number of neurons in each layer. The first layer of the network is input layer,
then intermediate as hidden layer and finally output layer. Each neuron except the
input layer gets the signals from the previous layer neurons multiplied with some
weights and it processes the signal through the transfer function such as sigmoid,
log sigmoid etc. For training of ANN, either supervised learning or unsupervised
learning is preferred. Through supervised learning methodologies, ANN is trained
for network weights so that it becomes an approximate representation of input-
output relationship [7,8]. Many aerospace researchers have used ANN as a func-
tion estimator for identifying the aircraft dynamics nonlinearly [9-12]. They have
used various types of neural network architecture for further investigation such as
for aircraft parameters estimation.

Some of the drawbacks have been identified with neural network such as lesser
generalization capability of the network and more iteration required for training.
Such limitations occurred due to the concept of empirical risk minimization
(ERM) principal employed by the ANN. These limitations have been overcome
by using one of the statistical strategies using structural risk minimization (SRM)
principle such as support vector machine (SVM) [13]. SVMs have been widely
used in the field of classification, pattern recognition, and function estimation.
It has been used for non-linear mapping from input space to output space which
takes out the problem to a quadratic programming and hence the solution is
found to be global minimum. The solution of the quadratic programming makes
it computationally hard. So, a modified version of SVM, known as least square
support vector machine (LSSVM), has been used for non-linear mapping which
is computationally faster than SVM [14,15].

In this paper, LSSVM regression method is presented to address the problem
of the identifying the aircraft’s dynamics by means of using the real flight data.
Section 2 represents the basic prerequisites used for system identification in the
process of data gathering and its compatibility. Section3 represents the basic
mathematical formulation of LSSVM regression for non-linear mapping from
input space to output space, and the input-output details for non-linear mod-
elling. Section 4 represents the results obtained during the training and predict-
ing phase. Section 5 represents the concluding remarks on the LSSVM regression
method used for modelling of aircraft’s dynamics.

2 Prerequisites for System Identification/Modelling

The process of the system identification is fully dependent on available input-
output data, so the preliminary step is the real flight data gathering and the
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second step is the data compatibility check to verify and improve the quality of
data from biases, scale factors, and time lags etc. [3].

2.1 Data Gathering

Data gathering is a process of recording inputs and outputs while performing a
certain type of experiment which is basically to excite the mode of the aircraft.
As it is a data acquisition process to record the aircraft motion variables and
control surface deflections, but it is fully dependent on the quality of sensors
in terms of accuracy and noise, sampling rate, signal conditioners, and data
recording equipment.

The first step in data gathering process is to define the type of experiment
such as excitation mode of short-period, phugoid, pushover-pullup, level-turn,
thrust variation, bank-to-bank roll, Dutch roll manoeuvre, and steady heading
steady sideslip. To excite each of the above manoeuvres, a corresponding exci-
tation input is given to either of the control surfaces such as elevator, aileron,
rudder, and/or the throttle setting. These excitation inputs are as: (i) step,
(ii) doublet, (iii) 3-2-1-1 signal, (iv) modified 3-2-1-1 signal.

The second step is to take care with the instrumentation and measurement
unit for signal processing and data recording to fulfil the following criteria [3]:

— Lower sampling rate satisfying Nyquist frequency criteria.

— Anti-aliasing filter introducing the same time delay in the signals.

— Recording of raw data for further processing such as differentiation, integra-
tion, or filtering of the data.

— Highly critical measurements like translational accelerations, angular rates,
and control surface deflections must be sampled at higher and uniform rates
while slowly varying parameters like altitude at slower rate.

— All data channels must be synchronized with time.

— The signal-to-noise ratio of 10:1 is desirable.

— All sensors must be calibrated in laboratory with high accuracy.

— Data reduction must be avoided at the time of recording.

2.2 Data Compatibility Check

Data compatibility check is another important step after the data gathering
process which checks and improves the quality of the recorded data in terms of
scale factor, zero shift biases, and time lags. It uses well defined kinematic equa-
tions of aircraft motion to reconstruct the flight path with the same trim condi-
tions as used in while doing the flight test. Thus, a mismatch in the measured
and flight path reconstructed is used to determine the systematic instrument
errors such as scale factors, zero shifts, and time delays using the conventional
output error method [3].

A real flight data has been generated using a research aircraft “HANSA” at
IIT Kanpur, India [10,11]. The short period mode of the longitudinal dynamics
has been excited using the control surface — elevator from the steady state trim
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Fig. 1. Measured flight data

condition. For system identification purpose, we have chosen the longitudinal
measured data of aircraft such as angle-of-attack («), pitch angle (8), pitch rate
(q), velocity of the aircraft (V'), the linear accelerations along the body axes
(az & a), and the control surface deflection (d.). The generated flight data is
shown in the Fig. 1.

3 Least Square Support Vector Machine Regression
Based Modelling

This section is divided into a number of sections to ease the understanding of
the modelling process step-by-step.

3.1 Mathematical Formulation of LSSVM Regression

Least Square support vector machine (LSSVM), is based on one of the statis-
tical learning principles, and employs the structural risk minimization (SRM)
principle which has been found to be superior to empirical risk minimization
(ERM) principle used in fuzzy logic (FL) and neural network (NN) [14,15]. The
theoretical relationship between the input space and output space is given by a
function which is as follows:

y=f(z) =w'¢(x)+b v €R, ye R (1)
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Where, ¢(x) — a non-linear transformational matrix between the input space
and the output space, z— p dimensional input vector, w — weighting vector, and
b — bias.

For non-linear modelling, a finite number of sample data is obtained from
measurement {(x;, y;), ¢ =1, 2, 3, ..., n}. It is desired that all of the data can
be fitted by the functional relationship in the Eq. (1) with e precision which
arises two inequality conditions as follows:

yi —wlo(x;) —b<e
wlhg(x;) + b —y; <e”’

i=1,2,3, ... n (2)

By introducing a slack variable (&), the optimization goal using the SRM
principle is given as follows:

. 2
{g}}gg J= g lwl® + e, &

i=1,2,3, .. n (3)
Sub. toy; = wl¢(z;) +b+¢&;

Where, c is a predefined constant that is to minimize the cost function J. Its
value determines the training error and the regression function flatness.

One can use the Lagrange function approach to solve the above cost function
subjected to the equality constraints. Thus, the Lagrange function is given as
follows:

L= %HwIIQ +ed &= ai(wo@) + b+& — ) )
=1 =1

The following equations are obtained from Karush-Kuhn-Tucker’s condition:

w = 2?21 az(b(xz)
Zﬂ—l a; = 0
" 5
a; = c&; (%)
wlo(x;) +b+& -y, =0,i=1,2..n

After eliminating w and &; from the above equations, one can get the following

linear system:
0 17 bl |0
o ] = 3] ®

Where, y = [y1, Y2, .-+ yn]T; 1, = [1,1,...,1]T; a = [a1, as, ..., ay T;

;= K(zg, x)) i,5 = 1,2, ...,n.

Now, the Eq. (6) can be easily solved by using least-square method for the
parameters “a” and “b”. Therefore, LSSVM regression based model is given as
follows:

y=flz)= Zaz—K(mi) +b (7)
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Fig. 2. Structure of LSSVM regression

In LSSVM regression methodology, a non-linear relationship requires only
to solve the linear Eq. (6) with known kernel function, K and c. In Fig.2, the
network architecture of LSSVM regression is shown.

Some of the typical choices of kernel function are given below:

Linear Kernel Function: K (z,z;) = 7

Multi-Layer Perceptron Kernel Function: K (z,z;) = tanh(yz! z + )
Polynomial Kernel Function: K (z, ;) = (yzlx + )4, v>0

L s

Radial Basis Kernel Function: K (x,x;) = exp (—7 ||z — xi||2) ,v>0

Where,y is the kernel width. Thus, the training of LSSVM requires v and c
parameters to be well chosen so that the root-mean-square error (RMSE) can be
minimized to its lowest value. In our case, radial basis kernel function has been
used.

3.2 Input-Output Details for Modelling

Figure 2 shows the architecture of LSSVM regression for a multi-input single-
output (MISO) system whereas our objective is to extend the concept of MISO
system into multi-input multi-output (MIMO) system. The MIMO system archi-
tecture of LSSVM regression has been implemented using MATLAB in which
i"sample of the input vector is given as follows:

@i = [a(i), 0i), q(i), V(i), Cp(i), CL(i), Cm(i)]" (8)

Where, a - angle of attack, 6 - pitch angle, ¢ - pitch rate, V' - velocity of
the aircraft, and Cp, Cr and C,, are the coefficients of drag, lift and pitching
moment respectively, which are represented here for longitudinal dynamics of
the aircraft in a simplified form, and they are given as follows [11]:

Cp(i) = —Cx(i) cos(a(i)) — Cz(i) sin(a(i)) 9)
Cr(i) =  Cx(i)sin(a(i)) — Cz(i) cos(a(i)) (10)
Cn(i) = [Iyq(i) — FengZenccl/(q(i)Se) (11)



138 H.O. Verma and N.K. Peyada

Where, the body forces coefficients (C'x and Cz) are given as follows:
Ox (i) = ma%®/qs
Cz(i) = ma%%/qS

(12)
(13)

In the Egs. (9-13), the terms used are as follows: a§% and a$%- the linear
body accelerations at centre of gravity (CG) of the aircraft along x and z axis,
respectively, Fenq - total thrust, Z.,cq - the vertical distance between CG and
the engine, I, - the moment of inertia of the aircraft along the y-axis, g - the
dynamic pressure of the ambient, S - reference area, and ¢- aerodynamic chord
length.

For the training of MIMO system based LSSVM regression, the target vector
has been considered at (i+1)" instant which is given as follows:

Z(i+1) = [a(i+1), 0(i+1), q(i+1), V(i+1), a{C@+1), aSC3i+1)T (14)

4 Results and Discussion

As the LSSVM regression mathematical formulation has been given in the Sect. 3
for multi-input single-output (MISO) case, while the nonlinear mapping has been
done using MATLAB code for multi-input multi-output (MIMO) case which is
the extension of the MISO case. The radial basis kernel function has been chosen
for LSSVM regression model. The values of “c” and “4” have been determined
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Table 1. RMSE of different outputs

Output | 0 q 1% ax az
RMSE |0.0010|0.0011 | 0.0030 | 0.0790 | 0.0254 | 0.1357

by trial and error method which ensures least value of the root-mean-square
error (RMSE) at the output. First “y” has been selected based on normalization
of the norm of the input vectors and then “c” value has been varied from “1”
to some finite value, say 10. Finally, v = 1 and ¢ = 2, have been chosen for our
purpose. Table 1 shows the root- mean-square error of the outputs.

It is found that as the c value changes from the lower to a higher value,
robustness is improved but it leads to over fitting which defines that any small
change in the input value will not have any effect on the response. Once the
modelling part is over, two sets of the data are used to predict from the trained
model: one has the whole input data set having 349 samples while the other
has a part of the whole input data set having 101 samples from 2—4 second
interval of time. Figure 3 shows the first type of prediction case, in which there
is a comparison between the predicted values from the trained model and the
measured values of the output used at the time of training, while Fig.4 shows
the second type of prediction case. Both the results have shown a quite good
matching with the measured outputs.
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5 Conclusion

In this paper, a new method has been proposed for identifying the dynamics
of the aircraft using LSSVM regression method. It uses the non-linear mapping
characteristics of LSSVM to establish a relationship between the chosen input
and output variables which is fully dependent on the design parameters of the
method. Such type of modelling concept can be used for any non-linear system
where dynamic equations of motions are complex or completely unknown but
input-output variables are measurable. Here, we have approached to model the
short period dynamics of aircraft at a well defined operating condition which can
be used in the design of control system of the aircraft. One can further extend
the concept of the modelling for a global model which describes for the whole
flight envelope.
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Abstract. The efficiency of any numerical scheme measures on the
accuracy of the scheme and its computational time. An efficient mesh-
free augmented local radial basis function (RBF-FD) method has been
developed for steady incompressible Navier-Stokes equations in spheri-
cal geometry with unbounded domain which is based on accommodative
FAS-FMG multigrid method. The axi-symmetric spherical polar Navier-
Stokes equations are solved without using transformation. The non-linear
convective terms are handled efficiently by considering upwind type of
RBF nodes. The developed scheme saves around 34% of the CPU time
than the usual RBF-FD method.

Keywords: Radial basis function + Accommodative FAS-FMG mul-
tilevel method - Meshless method - Unbounded flows - Navier-Stokes
equations

1 Introduction

The increasing use of computational fluid dynamics (CFD) for engineering design
and analysis demands highly efficient solution methods. The discretization of
numerical methods for solving elliptic Navier-Stokes(N-S) equations generally
results in solving a system of algebraic equations. If the number of unknowns
are large, solving by a direct method, such as Gaussian elimination, can be ineffi-
cient. Therefore, iterative methods like point Gauss-Seidel and line Gauss-Seidel
are used to solve the huge linearized system of equations. For better convergence
of the iterative methods, a good initial solution is essential. It was also found
that Gauss-Seidel iterative method is effective for the first few iterations and
then the error elimination process becomes slow. Based on this fact, a fast finite
difference numerical method has been developed by Hyman [1] to solve elliptic
partial differential equations with Dirichlet boundary conditions. His method
is based on a local mesh refinement technique which provides a better initial
guess for the iterative algorithms. The solution is achieved quickly and the CPU
© Springer Nature Singapore Pte Ltd. 2017
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time is minimized. Over the past few decades, finite difference based multigrid
methods have been developed to solve the system of equations so as to improve
the convergence rate of iterative methods and hence their efficiency. Ghia et al.
[2] developed accommodative version of the Full Approximation Scheme-Full
MultiGrid (FAS-FMG) procedure of Brandt [3] and applied this to Navier-Stokes
equations. It is well known that RBF based methods suffer from high compu-
tational cost compared to conventional mesh based methods. The calculation of
RBF weights corresponding to the neighboring particles of a data point, requires
expansive square root and matrix inversion processes. Moreover, the calculation
of derivative approximation at a given order of accuracy usually requires more
number of neighboring particles (or nodes) for meshfree methods in an irregular
grid than for finite difference method (FDM) on a cartesian grid. As a result,
the bandwidth of matrices representing the governing algebraic equations greatly
expands in case of meshfree methods [4,5]. Therefore, the iteration process gets
slowed down due to the relatively dense matrix equations and the computational
efficiency is reduced. At the same time, meshfree methods have the advantage
of handling complex geometries efficiently. However, generation of an efficient
mesh, which could ensure accurate results, is generally a tedious and time con-
suming task in the cartesian grid. To make the numerical scheme efficient Ding
et al. [4] combined the conventional FD scheme with meshfree least square based
finite differences (MLSFD). In a similar manner Javed et al. [5] used a hybrid
scheme which combines RBF-FD with conventional FD schemes. The aim of
the paper is to develop an efficient RBF-FD method to reduce the overall CPU
time for solving Navier-Stokes equations in spherical geometry without using
any transformation.

2 Augmented RBF-FD Formulation for Curvilinear
Coordinates

The RBF based local method (RBF-FD) which has been proposed by Shu et al.
[6], Tolstykh et al. [7], Cecil et al. [8], Wright and Fornberg [9] is spectrally
accurate for a sparse matrix, better conditioned linear system and more flexi-
bility for nonlinearities. Wright and Fornberg [9] described the derivative of a
function at a given point depending on the neighborhood points like in finite
difference method. That is the derivative of a function at a particular point is
approximated by the linear combination of surrounding points. Chandini and
Sanyasiraju (2006) applied this method for solving non-linear convection diffu-
sion equation [10].

2.1 Augmented Radial Basis Function

Given a set of n distinct data points (r;,6;) and corresponding data values
fi» 3=1,2,...,n, the augmented RBF interpolant for axi-symmetric spherical
polar coordinates is given by
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s(r,0) =" Xjdj+ Y onpi(r,0) (1)
j=1 k=1

where ¢; = /1 +2{(rcosf — (rcos);)%+ (rsind — (rsin);)2}, {pk(r,0)}7",
is a basis for I1,,(R?) (space of all d-variate polynomial with degree less than m)
and s(r;,60;) = f;. For solving the linear system m extra conditions are required.
The extra conditions are chosen by taking the expansion coefficient vector A € R™
orthogonal to I7,,(R%).

ie.

> Aipk(ry,0;) =0, k=1,2,....M (2)
j=1

To determine the expansion coefficient A; and «j we solve the following sym-

metric linear system:
Alp A\ (f
5) (3) - (o) ®

where A is the coefficient matrix with entries

a;j = \/1 +e2{((rcos); — (rcos#);)? + ((rsinf); — (rsind);)?},

j=12,...,n, i=1,2,...,nand pis the n x M matrix with elements py(r;,6;)
forj=1,2,...,nand k =1,2,..., M. We use Lagrange form of RBF interpolant
to derive RBF-FD formulae. The interpolant is given by

s(r,0) = 1;(r,0)u(r;,0;) (4)
j=1

where ¢;(r, 0) satisfies the cardinal conditions

1, ifj=k

o k=1,2,...,n. (5)
0,ifj#k

(1, O) = 05k = {

Closed form representation for 1;(r,6) can be obtained by considering that
the right hand side vector of (3) stems from each #;’s. Then by Cramer’s rule
on (3) to (4) gives

det(A;(r,0))
i(r,0) = ——L2 722 6
'1/1‘7(7", ) d@t(A) ( )

where A;(r,0) is same as matrix A, except that the jth row is replaced by the
vector

B(r,0) = [p1d2 . .. pn|p1(r,0)p2(r,0) . . . D (1, 0)] (7)

where ¢; are defined as above and p;(r,0) € II,,(R?)

To approximate derivative of a function at a given point the derivation from
(4) to (7) can be used. The linear differential operator of a function u at a given
point (r;,6;) is l(u(r;, 0;)) and can be calculated using values of the function at
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neighborhood points of (r;,6;) (say n; nodes (r1,61), (r2,02), ..., (Tn;,0n,))

Then
Tu z ZC” r]? (8)

By applying Lagrange RBF interpolation (4)
U(u(r;, 0;)) =~ U(s(ri, 0;) Zl Y(ri, 0)u(ry, 0;)). (9)

From (8) and (9)
cij =l((ri,0:)), j=1,2,...,n

The weights are computed by solving the linear system:

(40,69 - (222)

where A is the part of coefficient matrix of Eq. (3), B(r,#) is the row vector in
(7) and g is a vector related to a in (1) and C' = [¢1,¢a, ..., ¢p,] . By using the
values of C'in (8) we will get an equation on u(r;,6;), j=1,2,...,n;. These n;
points are some pomts from w(r;,0;), which are nearer to the ith internal point.

Clearly Eq. (2) gives Z cij = 0, 1 is the internal points. i.e. sum of expansion

coefficient is 0, like the tradltlonal finite difference method.

2.2 Navier-Stokes Equations in Spherical Geometry

The flow of steady incompressible viscous flow past a sphere with uniform free-
stream velocity Uy, (from left to right) is considered for this study. The governing
N-S equations expressed in stream function ¢ and vorticity w formulation in axi-
symmetric spherical polar coordinates are

0% 1 0% coth oy

— + 5= — — = —rwsinf 10
or?  r2 062 r2 00 (10)
and

82w+387w+i82w+c0t087w_ <.u2 _Re (qral+ 8qr+qrw g9 Ow w@qe)
or2 ror r2 062 r2 90 r2sin?6 2 19} or r r 00 r 00

(1)
Here Re is the Reynolds number defined as Re = 2Uy,a/v, where a is radius

of the sphere and v is kinematic coefficient of viscosity. ¢ and gy are the non-
dimensional radial and transverse velocity components defined as

1 oy 1 9y

ar = r2sinf 00’ % = rsinf or (12)
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which are obtained by dividing the corresponding dimensional components by

the stream velocity Us. They are chosen in such a way that the equation of
continuity in spherical polar coordinates is satisfied.

The boundary conditions to be satisfied are:

— 1) o) — 8111 — — 1 9%y
— On the surface of the sphere (r =1): ¢ = £ =0, W= =5 e
— At large distances from the sphere (r — oo) Y — 5 sin 20, w—0
— Along the axis of symmetry (§ =0 and 0§ = 7): ¢ = O w=0

The surface vorticity is calculated by using the procedure given in [11]

3thaj  way

W=~ g
J Ar?sing; 2

where Ar is the distance between the given boundary point (i.e. (1,j) points)
and nearest neighborhood point (i.e. (2,j) points).

The first and second order derivatives of ¥, w with respect to r and 6 are
calculated at ith point using Eqs. (4) to (8) as follows:

o ot oY -

By =i ® > ai(ry,6;), Bg V=i © > aliw(rs,0;),
j=1 j=1

Ow o

EL}:M ~ Z:lbijw(Tjaaj)v
iz

w -
%‘W:Wi ~ bejw(rjaaj)v

=1

82/1/} — rr 821/) —
2 lv=: @ Z% CGRA 07 o=y & Za?f?# r5:95),

062

32'“ WzNZb w(rj, 0), 392'“’ WzNZb

’I“j,

where ajj, afj, a;l,a ,9]9, b bif s bfj, b%9, are similar to ¢;; in the Eq. (8).

We first solve the governing Eq. (10) for ¢ by taking w value from the previous
iteration. Then we solve Eq. (11) for w. Thus the non-linear terms like g, 5% a“’ in
the Eq. (11) are locally linearized with known values of .

The Eq. (10) is discretized at ith internal point as follows:

g

1 cot 6; .
Z(a?f + ﬁaff 2 Zafj)zb(rj,@j) = r,w; sin ;.
i i

As 1; is known now, we calculate

1o
qr = 7,,12 Sin9i (%)1/1=¢i 72 Sll’le Zaz_/w T]? ) - gl<ba‘Y)

Similarly calculate

9q;
( or )1/):1Z1i = di, (q9)w:1/)i

-1 oy 0qe .
m(ar )Jyp=yp; = €i and (W)w:wi = fi-
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Now Eq. (11) is discretized at ith internal point as follows:

nie 20, cot9 1
ijl(bij + 7b’bj 72()?]9 ba 2 . 2 )W(Tj79j) =

2 r7 sin® 6;
Bes~ g+ d; + b" Ji

2 j=1 rz)w(rjae )

We finally get the following linear systems of equations for ¢ and w
Dy =F (13)

and
Ew=F (14)

where D = [D1D,...Dy] and each D;(i = 1,2,...,N) is a row vector for ith
internal point and Fj is the column matrix. Similarly E and F5.

The system of linear Egs. (13) and (14) so obtained is first solved for ¢ at all
internal nodes and then w at all internal nodes using the Gauss-Seidel iterative
method. This completes one iteration. The iterations are continued until the
Root Mean Square(RMS) error of the dynamic residuals is less than 1075.

Upwind model supporting nodes: Upwind model supporting nodes is
applied for convective terms to achieve the results at higher far fields and for
high Reynolds numbers. All the other derivatives are approximated by central
model supporting nodes. For convective terms, one nearest neighborhood point
depending on the flow direction (radial or transverse) is chosen as supporting
node. The choice of the node in the flow direction is explained below and shown
in the Fig. 1 (bottom):

qr < 0, g—‘: is approximated by using a forward point of reference point in

radial direction.

qr > 0, —‘: is approximated by using a backward point of reference point in
radial direction.

qe < 0, 86—“9’ is approximated by using a forward point of reference point in
angular direction.

q >0 q-<0

@< Reference Point '<0 q- >0
A supporting point @Reference Point

A supporting point

Fig. 1. Choice of local supporting nodes: (a) central model (top) and (b) upwind model
(bottom)
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- qp >0, g—“g is approximated by using a backward point of reference point in

angular direction.

The convective terms in Eq. (11) are discretized by choosing the upwind type
of nodes as described above. The modified discretization of the Eq. (11) at ith
internal point is given below.

ng rr 2 ” 99 COtei 9 1 ) N
ijl(bij"'fibij *b 72 bij — m)w(rﬁ@g)—

R m; ” i m; i i fi
76(2],:1 gibi; + Zj di + Zj L7y ijl %b?j + ijl E)W(ij 0;)

where m; are supporting nodes considered for the convection terms.

2.3 Accommodative FAS-FMG Multilevel Algorithm

Ghia et al. [2] developed accommodative version of the Full Approximation
Scheme-Full MultiGrid (FAS-FMG) procedure of Brandt [3] and applied in finite
difference method to Navier-Stokes equations. Here we consider various sets of
levels for a fixed domain such that there is no pre specified connection between
any two sets. This can be from a coarser level to a finer level i.e. with additional
nodes than the previous set and finally the finest with some more additional
nodes than the finer one, etc. i.e. L', L2, ..., L™ are the set of levels with increas-
ing number of nodes in the same domain. Prolongation (P} ;) is a operator which
transfers a coarse level to a finer level solution. First we solved system of linear
equations obtained in Egs. (13) and (14) by using iterative scheme Gauss-Seidel
in the coarsest level (L') until get convergent solutions i.e. D'y! = F! and
E'w! = F}. Then prolongate the known convergent solutions to next finer level
by prolongation operator and interpolate the rest points by RBF-FD method.
Repeat the procedure until get the convergent solution at finest level (L™). The
procedure as summarize as below:

1. Solve the algebraic system of linear equations Dy = F; and Fw = Fj,
obtained by discretizing the governing equations using RBF-FD method, in
the coarsest set of nodes (L') until convergence using iterative technique such
as Gauss-Seidel. N

2. Prolongate the coarsest set solution to the next finer set i.e. 1)? = P(¢!) and
W? = P(wh).

3. The solution at additional points can be obtained by RBF-FD interpolation.
Using this as starting solution, achieve convergent solution in the finer set i.e.
D%*)? = F? and E*w? = F2.

4. Repeat the above procedure for the next finer set and so on until the finest
set and achieve convergent solution in the finest set.

3 Results and Discussion

The upwind model RBF-FD is used for the parameters in the range Re = 10 —
200 for various shape parameters and different far fields. The choice of shape
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Table 1. Choice of € for Re =100 (upwind model) with different sets of nodes and its
order of accuracy

Epsilon |65 x 65 |76 x 76 |97 x 97 | 113 x 113|129 x 129 | 141 x 141 | 151 x 151 | Order
0.9 0.441081 | 0.463888 | 0.495871 | 0.509397 |0.517249 |0.520756 | 0.522337 | O(h22)
1.0 0.467295 | 0.488748 | 0.518180 | 0.530440 | 0.537066 | 0.539834 | 0.541309 |O(h3)
1.1 0.491931 | 0.512595 | 0.540030 | 0.550902 | 0.557199 | 0.558764 | 0.559075 |O(h?)

parameter ¢ is also tested in comparison with finite difference model. The results
are obtained from different scattered points such as 652, 762,972, 1132, 1292, 1412
and 1512 and presented in the Tablel for different . To check the order of
accuracy of the results in the absence of exact solution, the divided differences
of the drag coefficient values d(Cp)/dh for Re = 100 with various step sizes h of
the data in Table1 are plotted for e = 0.9,1.0 and 1.1. The decay of d(Cp)/dh
as function of h is presented on a log-log scale in the Fig.2. Here, the value of
‘h’ in x-axis is taken as the average of step sizes of the grids corresponding to
the divided differences. The slopes of the curves are parallel to the dotted lines
of O(h??),0(h?),0(h?) respectively for e = 0.9,1.0 and 1.1. This shows that
d(Cp)/dh — 0 at the rate of O(h*?),O(h®) and O(h?) respectively. Hence the
order of accuracy are respectively 3.2, 4 and 3. We choose ¢ = 1.0 for Re = 100.

The results for Re = 100 are tested with different far fields 30,40 and 50
times the radius of the sphere to fix the artificial unbounded domain. For each far
field, the shape parameter ¢ is chosen as explained above and the drag coefficient
values are presented in the Table 2. From the table, we can observe that the far
field of 40 times the radius of sphere is sufficient to get satisfactory results as
the values are almost same with the other far fields of 30 and 50. The drag
coefficient values which are obtained in a similar fashion for Re = 10 — 200 are
tabulated in the Table3 along with other literature values [12-18]. The drag
coefficient values agree with literature values. The last column of the Table 3
shows the relative percentage error with respect to fourth order accurate based
finite difference scheme [12]. The streamlines and vorticity lines are plotted for
Re = 100 in Fig. 3 whose separation length and separation angle are found to be
3.68 and 58°.8’ respectively. It is also found that the flow got separated initially
at Re = 20. To the best of our knowledge, most of the numerical results available
in the literature with regard to the model problem considered here are at the
most second order accurate. The recent results presented for this problem in
the reference [12] are fourth order accurate due to HOCS discretization. The

Table 2. Choice of far-field for Re =100 and its order of accuracy

Far-field | Epsilon |65 x 65 |76 X 76 |97 x 97 |113 x 113|129 x 129|141 x 141|151 x 151 | Order
30 1.3 0.4991620.516811|0.534433|0.540208 |0.541791 | 0.541744 |0.541015 O(h2)
40 1.0 0.467295 |0.488748|0.518180 |0.530440 |0.537066 |0.539834 |0.541309 |O(h®)
50 0.8 0.425276 |0.4528380.495113|0.514586 |0.527217 |0.533476 |0.535483 |O(h'-®)
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Table 3. Comparison of drag coefficient results with other literature values for
different Re

Re |Clair et al.|Dennis and |Fornberg|Juncu and |Feng and Atefi Sekhar and| RBF-|Relative
[14] (1970) |Walker [13]|[15] Mihail [16] Michaelides|et al. [18] | Raju [12] |FD |percentage
(1971) (1988)  |(1990) [17] (2000) |(2007) |(2012) error w.r.t. [12]
10 [2.14 2.21 - - - - 2.13 2.23 |4.69
20 |1.36 1.36 - - 1.34 - 1.34 1.38 |2.98
40 0.93 0.90 - - 0.88 - 0.89 0.88 |1.12
100/0.55 - 0.54 0.53 0.55 0.55 0.54 0.54 |0.00
200| — - 0.38 - — - 0.38 0.35 |7.89
34
1] -//-
23
= < PP
5 4] . T o4 L.
2 . 3
Q . e
-] PR k-]
Lo —a—Re=100(£=0.9) 0.014 —-—Re=3100(s=1A0)
- L. on?? - - -o(h’)
0.028 0.032 0036 004 0.044 0024 0026 0028 003 0032 0.034 0.036
h h
14
< IR
T o014 ..
-
Q
35
0.014 —a—Re=100(s-1.1)
- - -0h?)
0.03  0.035 0.04 0.045 0.05 0.055

h

Fig. 2. Calculation of order of accuracy for Re = 100 with € = 0.9,1.0 and 1.1

y

19.0139

463247
0.00150807
-0.0180682

-5.93828E-27

-1.44537E-13
-0.241915
2

e
6

-8
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Fig. 3. Streamlines lines (top) and vorticity lines (bottom) for Re =100
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Table 4. Effect of efficient model that combined with RBF-FD in N-S equations for
Re=40

No. of steps | Finest nodes | Coarsest nodes | CPU time (mins) | %

1 129 x 129 129 x 129 13.17 —

2 129 x 129 65 x 65 8.72 33.79
3 129 x 129 33 x 33 8.64 34.4

present results with RBF-FD are also fourth order accurate and exhibits all the
flow characteristics that match with experimental, theoretical and numerical
results. This ensures that the RBF-FD scheme captures all flow characteristics
particularly in unbounded flows, and the results are higher order accurate.

By applying the proposed efficient scheme the CPU times for Re = 40 with
e = 0.55 obtained for three sets of nodes are presented in Table4. From the
table it is clear that single set (129%) number of nodes takes 13.17 min but if we
apply two levels (i.e. 652 and 129%) the same solution is coming with 8.72 min
computation time. Similarly for three levels (332, 652 and 129?) take 8.64 min
thereby saving almost 34% of the CPU time when compared to the usual RBF-
FD method with finest set of nodes while achieving the same level of accuracy.

4 Conclusions

An accommodative FAS-FMG multilevel augmented RBF-FD method is devel-
oped and implemented to incompressible spherical polar Navier-Stokes equa-
tions. The accommodative FAS-FMG multigrid analogy with local refinement is
adopted to achieve the efficiency. The developed scheme saves almost 34% of the
CPU time when compared to CPU time of the solution obtained from the finest
set of nodes solely while achieving the same level of accuracy.
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Abstract. In this paper, the concept of Bessel sequence and frame are
introduced in semi-inner product spaces. Some properties of the Bessel
sequences and frame are investigated in smooth uniformly convex Banach
spaces. One characterization of the space of all Bessel sequences has been
pointed out. Examples of frames are constructed in the real sequence
spaces [P, 1 < p < oo.

Keywords: Semi-inner product space - Uniformly convex smooth
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1 Introduction and Preliminaries

With a view to establishing Hilbert space type arguments in Banach spaces,
Lumer [19] constructed, a type of inner product called semi-inner product
denoted by [.,.] with a more general axiom system. The corresponding space
with this semi-inner product is called a semi-inner product space. Using the
semi-inner product a norm can be defined by ||z|| = [x,2]2. Lumer [19] showed
that there are normed linear spaces, where the semi-inner product can be defined
in many different ways. Subsequently, Giles [15] showed that in a fairly large class
of Banach spaces it is possible to construct a semi-inner product with many of
the desirable attributes of an inner product. He has shown that if X is a smooth
uniformly convex Banach space, then it is possible to define a unique semi-inner
product. Semi-inner product spaces have been studied by Lumer [19], Giles [15],
Koehler [17] and Nanda [20].

Frame theory became popular only after 1990’s. Now a days Frame the-
ory, Wavelet analysis are rich areas of research due to their applications in sig-
nal processing, inverse-scattering problem, noise analysis and many other fields.
Frame is an extension of the concept of a basis where this spanning set makes use of
© Springer Nature Singapore Pte Ltd. 2017

D. Giri et al. (Eds.): ICMC 2017, CCIS 655, pp. 155-169, 2017.
DOI: 10.1007/978-981-10-4642-1_14



156 N.K. Sahu et al.

its redundancy in applications. A great deal of work in frame theory has been done

by Christensen [8-11]; Casazza and Christensen [5,6] and Favier and Zalik [13].
The main goal of this paper is to introduce the concept of Bessel sequence

and frame in semi-inner product spaces. We first quote the following definitions:

Semi-inner product space [19]: Let X be a vector space over the field F of
real or complex numbers. A functional [.,.] : X x X — F is called a semi-inner
product (s.i.p in short) if it satisfies the following:

ety E =z 24y 2, Vayze X,
. [Ax,y] = ANz,y], VA€ Fand z,y € X;
. [z, 2] > 0, for x # 0;

N, 9] < @, 2]y, y]. The pair (X, [.,.]) is called a semi-inner product space.

Uniformly convex Banach space: A complete normed space X is uniformly
convex if given € > 0, there exists d(¢) > 0 such that, for z,y € X with ||z| =

llyll = 1 it holds that w <1—4(e) when ||z —y|| > e.

Smooth Banach space: A Banach space X is said to be smooth if for any
linearly independent elements z and y in X, the function ¥ (t) = |z + ty|| is
differentiable for all values of t.

Uniformly convex smooth Banach space: A Banach space which is uni-
formly convex and smooth is called a uniformly convex smooth Banach space.

Giles [15] has proved that if the underlying space is a uniformly convex
smooth Banach space then it is possible to define a semi-inner product, uniquely.
Also the unique semi-inner product has the following nice properties:

(i) [z, \y] = A[z,y] for all scalars .
(ii) [z,y] = 0 if and only if y is orthogonal to z, that is if and only if ||y| <
lly + Az||, for all scalars A.
(iii) Generalized Riesz representation theorem:- If f is a continuous linear func-
tional on X then there is a unique vector y € X such that f(x) = [z,y], for
all z € X.
(iv) The semi-inner product is continuous.

Example 1.1. The sequence space [P, p > 1 and the functions space LP, p >
1 are uniformly convex smooth Banach spaces. So one can define semi-inner
product on these spaces, uniquely. Giles [15] has shown that the functions space
LP, p > 1is a semi-inner product space with the semi-inner product defined by

1 _
[z,y] = ||yvgg/xxyl” Ysgn(y)dp, Y x,y € LT(X, ).
p

Similarly the real sequence space [P, p > 1 is a semi-inner product space with
the semi-inner product defined by

= szZIy (@D)P2y(i)a(i), ¥ x = {2(i)}, y = {y(i)} € IP.
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Bessel sequence and frame in Hilbert space are defined as follows:

Bessel sequence: A set of elements {f;}3° in a Hilbert space H is called a
Bessel sequence if there exists a constant B > 0 such that

S WA < B f | for all f € H, where (.,.) is an inner product
in H.

Frame: A family of elements {f;},c;r C H is called a frame for the Hilbert
space H if there exist constants A, B > 0 such that

AN FIPS YXier K f)P < B f |2, for all f € H.

Frames in LP spaces and other Banach function spaces are effective tools for mod-
eling a variety of natural signals and images. They are also used in the numerical
computation of integral and differential equations. There is plethora of literature
available for frames in Banach spaces also. For classical frame theory in Banach
spaces one may refer to Christensen and Heil [12], Grochenig [16]. Frames for shift
invariant subspaces of LP space are studied by Aldroubi et al. [1] in 2001. Casazza
et al. [7] in 2005, characterized Banach frames in separable Banach spaces, and
related them to series expansion in Banach spaces. M. Fornasier [14] studied the
Banach frames and atomic decomposition characterization of a-modulation spaces
in 2007. (p,Y)-Bessel operator sequences, (p,Y )-operator frames, and (p,Y)-Riesz
bases for a Banach space X, are introduced and discussed by Cao et al. [3] in 2008.
Liu [18] studied Schauder frames in Banach spaces in 2010. Schauder frame is a
concept which is a natural generalization of frames in Hilbert spaces and Schauder
bases in Banach spaces. Carando et al. [4] in 2011, discussed the reconstruction for-
mula of Banach frames for the functions space LP, (1 < p < oo) and Lorentz space
L1 (1 < p,q < oo) with respect to a solid sequence space.

The frames in Banach spaces using semi-inner product was defined by H. Zhang
and J. Zhang [22] in 2011. They generalized the classical theory on frames and Riesz
bases under this new perspective. They also established the Shannon sampling the-
orem in Banach spaces using semi-inner product structure.

In our work the concept of Bessel sequence and frame are introduced in some
semi-inner product spaces, which are uniformly convex smooth Banach spaces
with homogeneity property. Properties of these Bessel sequence and frame have
been studied.

2 Bessel Sequence

We define Bessel sequence on a uniformly convex smooth Banach space consisting
of norm |||, 1 < p < oo. We consider our Banach space as a semi-inner prod-
uct space and use the semi-inner product to define Bessel sequence in this class of
Banach spaces. For the rest of the paper we assume that X is a real uniformly con-
vex smooth Banach space with norm ||. ||, and semi-inner product [.,.]. We denote
semi-inner product on the real sequence space 17 by [., ], and |.||4-

Definition 2.1. A set of elements y = {y;}5°, C X is called a Bessel sequence
if there exists a constant B > 0 such that
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o}

3 llyi, 2)|” < B(|lall,)?, Yz € X,

i=1
where 1 < p,q < co and % + % = 1. The number B is called Bessel bound.

We now prove some preliminary results for the existence of Bessel sequence
in a uniformly convex smooth Banach space.

Lemma 2.1. Let X be areal smooth uniformly convex Banach space with ||.||, .
For some sequence y = {y;}2; € X and some element x € X, suppose that the

) xlle—2
series Zciyi i, 2] is convergent for all ¢ = {¢;}52; € 9. Also assume

= Ky 2]}
th , 1728 i G q i . 14
at C’LW - € [9. Then the mapping T:019 — X, defined by

x]|?

ZC"%H{ G

is a bounded linear operator. The generalized adjoint operator of T'is TT : X —
19 given by TTa = {[y;, 7]}32,.

Proof. Consider the sequence of bounded linear operators T, : [9 — X defined
by
a]|a—?

ZC’:‘”H{ PG

One can easily see that T;, — T pointwise. Hence T is bounded. Also T is linear.
For z € X and ¢ = {¢;}2, € 14,

]Iq ?

Z“y’ ||{ Ay
z]|~?
- Z‘” Tl ey
= [{Ci}i:h {[yia z]}i24]q
= The = {ly;, o]}
Remark 2.1. Since T : 19 — X is a bounded linear operator, then T : X — 9

is bounded on X and it holds that || T (x)||, < ||T||||z|p, for all z € X (see Pap
and Pavlovic [21]). Hence

(U ye 2} < NTN ()
= > a2l < ITN(lll,)".

i=1
Hence the Bessel sequence on the semi-inner product space X is well defined.
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We now obtain the following results for Bessel sequences.
Theorem 1. Let y = {y;}2; be a sequence in X. Assume that

s, 2ll*™2 > _ . :
G5 € 1. Then the sequence y is a Bessel sequence if and only

{lys, x]}|9=2 ) i=1
lyi, 2]
if T {c¢;}2, — Z clyZW is a well defined and bounded operator

from [ into X.

Proof. Firstly, suppose that y = {y;}52, is a Bessel sequence with bound B.

Let ¢ = {c¢;}2, € 19. We have to show that T{c;}32, is well defined, that is
i ciy,;MVFQ_2 is convergent.
= 7 Ky 2l

Let n,m € N and n > m. Then

i el

HZ%II{ G Zc"%ll{ G

" lys, a]|*=2
P> Ciyi||{[zi,x]}||q-2”

i=m-+1
]Iq 2 ‘
= Cy
ol % i 1||{ 2y
<sup 3 o Al _QQHy“ Bl
l2l=1 ;51 H{ ] }|7

n

S 7 1\—2
<( X (elppiaes)) s (2 lvell)

i=m+1 (B2 —

N 7 Y L A——
< (X (el oo 21

llzl=1

d g2l

:< Z (|01|W) )ZBP'

q—2 0o
The right hand side goes to 0 as n,m — oo, since { u} €
i=1

“IH{lys, a]}|a2
q 2
17 and Z'Cl H{ |}”q 5, for n € N, is a Cauchy sequence. Therefore

-2

{z:cZ Yi ”{ i,z }Hq 5 }7 n € N, is a Cauchy sequence in X and is convergent
ylu

smce X is complete.
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z]|*~?

Zczyz 2 Zczyz y“ Hq ’ B} as n — 0.
H{ ]}~ [y, x] ]9~

This implies that T{c;}$2, is well defined and T is bounded.

Conversely, suppose that T is well defined and ||T|| < C, where C is any
positive constant.

We have (||T7(z)||o)? < [|T]|7(||z]|»)?, for all € X, where % + % =1 (see
Pap and Pavlovic [21]).

= Y2 My, 2]|2 < CU(||z||,)?, for all € X and thus {f;}52, is a Bessel
sequence.

We now prove a stability result for Bessel sequences.

Theorem 2. Let y = {y;}52, be a Bessel sequence in a uniformly convex smooth
Banach space X Suppose that the operator 1" : 17 — X, defined by T{¢;}°, =

-2
Z CiYi Mol 72 i, @ }” , satisfies ||T'|| < M, where M is a positive real constant.
y’Lv

Let g = {9:}52, be another sequence in X, and assume that there exist constants
A, it > 0 such that

w]|*~?

“Z"”%n{ \42 Zc’*‘”n{ |

<A||chy1”{ }Hq 2||Jr/¢ Z\cl| 4,V scalars {c,},n e N. (1)

Then {g;}22, is a Bessel sequence with bound [(1 + A\)M + pu]¥, where K =
K(p,q).

Proof. Since y = {y;}:2, is a Bessel sequence the operator
[y, =]|7

{1y, 2172

operator and | T|| < M. From ineqlzality (1), we have

T :19 — X defined by T{c;}2°, = Z iy is well defined, bounded
=1

”chglu{?’zy}uq 2”*”; e
< ||,ch‘yzn{|{z“x}|\q 2 ZCZ T
Z”y’u{ly“ T 2‘|+“§‘C" .

= “chg’ T

< (14 X) HZczyzH{ ];;172H +M(Z‘Ci|q)%. (2)
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The above inequality holds for all scalar sequences ¢ = {¢,}, n € N.
Now deﬁne a bounded linear operator U : 9 — X by U(c) =
lgs w]|*?

ZC gz,
3 Z
1{lgs, w]}H|e=2"

Clearly U is linear. Now from (2), as n — oo
1T < @+ T + plel
< (@E+MITlell + plel
<A+ MM +plllell, ¥V oe={eZ, €l
Hence U is a well defined operator from 17 into X and |U|| < (1 4+ A)M + u.

Now from Theorem 1, it is concluded that g = {g;}$2, is a Bessel sequence with
Bessel bound [(1 4+ A\)M + p]?.

Next we prove that the set of all Bessel sequences in a uniformly convex
smooth Banach space is a linear space.

Theorem 3. Let X be a uniformly convex smooth Banach space and Bx be
the set of all Bessel sequences in X. Then By is a linear space.

Proof. Let y = {yr}72, and z = {z,}72; be two Bessel sequences with bounds
By and Bs, respectively. We show that the set ay + 8z = {ayr + B2, }72, where
a, B € C, is also a Bessel sequence.

1 1
Z|ayk+6zk» )i = Z|Olyim ] + Bz, x]|) @
k=1 k=1
l 1
Z|a| [y, z]7]) @ ZW\ [z, 2]7]) @
= |a|( Z|yk, e+ 18( Z|2k, )

< lal(Bu(llll,)) 7 + 18I(Ba(ll2],)") 7
= (la| By +181B5) (llll,)-

1 1
= > ket ok + Bz, 2]|7 < (la| B +168|B3 ) (||l - ) 1

Hence ay + [z is also a Bessel sequence with bound (|a|Bf + |3|Bs)?, and
consequently, Bx is a linear space.

Our next four theorems will show that the set of all Bessel sequences By
in a uniformly convex smooth Banach space X is a Banach space and it is a
BK-space as well as an AK-space (for definitions of BK-space and AK-property
see Boos [2], Chap. 7).

Theorem4 Bx is a normed linear space with the norm |y| gy

sup Zlyzﬁ @, for y = {yx}3°, € Bx and z € X.
lzllp<1 p—
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Proof. Clearly ||.||py : Bx — R.Now let y = {y;}52; and z = {#;}3°, bein By.

. 1
) Iyl = sup (3 e, 2)9) >0

lzllp <1 ;5

(i) layl B = sup Zlayk, )i

llzll,<
q 1
= sup E ot |y, @]|7) @
lell,<1 15

oo
1
= sup |of( Zlyk, )+ = lalllyllzx-

lzll,<1 —1

1
(i@) [ly + zllpx = sup Z\ykJer, z]|?)s

lellp <1 5=y
1
< sup (3 {llye ] + [awr ]}
lellp<1 3
s 1 > 1
< sup {O vk 2llD7 + O |zw, 2]|9) 7}
lzllp<1 23 k=1
o 1
< sup (O llyw,2l|)7 + sup Zl[zwll
lzllp<1 =} lzllp<1 oy
oo
. l
(iv) Also |lylsx = sup Z Yg, x]|7)s = 0
llzllp<1 k=

{yrtiz, =0.
Hence Bx is a normed linear space.

1

© = lyllsx +2lBx-

if and only if y =

Theorem 5. The set of all Bessel sequences By in a uniformly convex smooth

Banach space X is a Banach space.

Proof. Theorem 4 shows that Bx is a normed linear space with respect to the

norm |ly[|px = Sup Z\ym ,fory = {yp}p2, € Bx and z € X. We
<1
P

prove that By is complete in the above norm.

Let {y,} be a Cauchy sequence in Bx, where y, = {yn, } and « € X. For
n,meN, n>m, |yn — ymlBx — 0 as n,m — co. This implies that
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1
Sup Z|ynk ymk7 H )‘1—>0asn,m—>oo,
lz]l,<1 k=1

= sup Z Ynp — Ymy, 2]|7 — 0 as n,m — oo.
Hoc||p<1;€ 1

:>Z|ynk7 ymk,$]|q—>03,sn,m—>oo,

= |[ynk7 ]_ [ymk7x“ —0as n,m — o0.

Hence, we see that {[yn,,x]} is a Cauchy sequence in C. C is complete. Hence
{lYns 2]} = [yk, ] € C, where y;, = nILH;O Y-
Now for y = {yx}32, we have

Q=

o0
lyn = yllBx = sup O Wne — s 2]|%)
lollp<1

k=1

1

= sup Z Ynro ] — [y, z]|?) 7.
l2llp<1 1=

The right hand side of the above equation goes to 0 as n — oo because [y, , ] —
[yk, x] as n — oo.

Next we show that y € By. That is to show that > .2, |y, z]|? <
B(||z|lp)?, Vz € X. Let B,, be the corresponding Bessel bounds for the
Bessel sequences y,,. Also let B = sup B,, < co. Now

n

(oo}
> ks
k=1

Mg

| im [yp,,«]|*

n—oo

>
Il
—

Il
M8
T’—.‘

im |[yn,, ]|
(o)

o0
= nlLH;O Z Y 7]
k=1

< B(|lz|lp)!, Yz e X.

=
Il
—

This shows that y € Bx and hence By is a Banach space.

Next, we show that By has two important properties as a sequence space. We
require the following definitions for that purpose.

BK-space: A coordinate space Y is called a BK-space if it is a Banach space
and the linear functionals defined by f;(y) = v, for each ¢ € I are continuous,
where T is the index set and y = {y;}icr €Y.

AK-space: Let Y be a BK-space and y = {y;}icr be a sequence in Y. Let
Y™ = (y1,92, .., Yn,0,0,..) be the nth section of the vector 3. Then Y is called
an AK-space if lim ||y["] —ylly =0, forally € Y.
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For more on FK, BK and AK spaces, please see [2, Chap. 7]. Our next two
results show that Bx is a BK-space with AK-property.
Theorem 6. Byx is a BK-space.

Proof. Let {y,} be a sequence in Bx and y, — y € Bx as n — oc.

= lon=3llmx =0 as oo

1
= sup Z“Jnk Y, z]|f)a =0 as n— o0
lells<1 3=y

o0

= O ne —wro2l)T =0 as n— oo
k=1
= |[Yn, =Ykl =0 as n—oo and VreX with |z[, <1
= Yn, — Yk AS N — OO.
This implies that Bx is a BK-space.
Theorem 7. By is an AK-space.

Proof. Let y = (y1,Y2,93,-...) € Bx. Assume that z = (y1,¥2,..-,Yn,0,0,...).
We can see that z is also in Bx. Now for x € X, we have

»Q\»—-

ly = 2llx = sup Z |[ys, 2] (3)

I|P<1 1=n-+1
o0
Since the series Z [[y:, 2]|? is convergent, the remainder term Z [[y:, 2]|? —
i=1 i=n+1

0 as n — oo. Therefore the right hand side of (3) goes to 0 as n — co. Conseq-
uently ||y — z||g, — 0 as n — oo. This proves that By is an AK-space.

We have shown that the collection of all Bessel sequences form a BK-space with
AK-property, it is possible to infer many of the benefits of being such a space
(see [2]). It is natural to ask if we can obtain the topological and Kéthe-Toeplitz
duals of this sequence space. We do not have any answers at this point of time.

3 Frame

Definition 3.1. A sequence of elements {f;}2; in X is called a frame if there
exist positive constants A and B such that

Allellp) < llyisall? < B(llz,)?, Vo € X,
i=1

where 1 < p,q < oo and % + % = 1. A and B are called lower and upper frame
bound respectively.



Bessel Sequences and Frames in Semi-inner Product Spaces 165

If A = B then the frame is called a tight frame and if A = B = 1 then the frame
is called a Parseval frame. A frame is called a normalized frame if each frame
element has unit norm.
Since a frame y = {y;}32, is a Bessel sequence, the operator T : [9 — X
defined by
z]|e?

ZC’%H{ G

is bounded and linear. Because of Lemma 2.1, the generalized adjoint operator
of Tis TT : X — 14, defined by Tz = {[y;, z]}32,.

Remark 3.1. Taking the composition of the two operators T and T defined
in Lemma 2.1, we get a new operator S, which is called as frame operator. The
frame operator S : X — X is defined as

z]|1~

S(z) = TTT Z ||{ 2]} g[yza z]y;.

If X is a real semi-inner product space, then one can easily calculate that

o0

[Sx,z]? = Z|yi,

Now we have

S|l = ITT |l < | T T x|
< ITT Ml = 1T 1]

Hence S is bounded.

Therefore the frame operator S is a positive and bounded operator. One
can easily see that S is a nonlinear operator. Hence we can not use the usual
methods of Hilbert space frame theory to obtain the inverse frame operator and
the reconstruction formula.

Orthogonal set: A vector x is said to be orthogonal to a vector y in a Banach
space Y in the sense of semi-inner product, if [z,y]y = 0, where [.,.]y is semi-
inner product in Y. If each vector is orthogonal to all other vectors in Y in the
sense of semi-inner product then Y is said to be an orthogonal set.

We now prove the following results for frames in X.

Theorem 8. Let {y;}2; be a parseval frame in a uniformly convex smooth
Banach space X. Suppose that ||y;||, = 1, for all 4. Then {y;}$°, is an orthonor-
mal set in the sense of semi-inner product.
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Proof. Given ||y;|l, = 1 for all i. It is to prove that [y;,y;] = ;;, where §;; =1
if ¢ = 5 and 0 otherwise.
Choose some y arbitrarily. Now

(lywllp)® = Mlye wll* = lowllp)® + D i vl
i=1 ik

= 1=1+3" 0 llyi yrll?
= 2 ik Yo yk]|T =0
= [yi, Y] = dik-

Continuous semi-inner product: A semi-inner product is said to be a con-
tinuous semi-inner product if it is continuous in the second argument. Note that,
a semi-inner product is automatically continuous in the first argument because
of the linearity property in the first argument.

In the following theorem we assume that X is a real uniformly convex smooth
Banach space with a continuous semi-inner product.

Theorem 9. Let y = {y;}2; be a sequence of elements in X. Suppose that
there exist constants A, B > 0 such that A(||z||,)? < > ooy [y, 2]|¢ < B(||z||,)4
for all z in a dense subset V of X. Then y = {y;}52, is a frame for X, with B
and A as upper and lower frame bounds, respectively.

Proof. To prove this theorem it is enough to show that
A(l]]) Z yi, x]|* < B([|z|p)? for all z € X. (4)

First we prove the right hand side of the inequality (4).

oo
Suppose to the contrary, there exists some zy € X such that Z lyi, zo]|? >
i=1
B(||zol[p)?. Since V' is dense in X, we can find a sequence {7 ;}32; C V such
that zg ; — o, as j — oo. We can find a finite set F' C I (index set) such that
> ier |lyis xol|? > B([|zollp)?-
Since xg ; — xg, as j — 00, it follows that for very large j,

D liswo,3]1” > Blllzo 1)
1€EF

oo
This contradicts the fact that z,; € V. Hence Z llyi, z]|? < B(||z||p)? for all
i=1
r e X.
Next we prove the left hand side of the inequality (4). Consider z € X and
take {z;} CV with 2; — z as j — oo.
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Since X is a continuous real semi-inner product space, we have

[vi, x;] — [yi, @] for ; — x as j — oo.

Hence Z| i, ;]| Z| yi, x]|? for x; — x as j — oo.
i=1
But A(||z;|l,)? Z i, x;]|? for all j.

o0
This implies that A(||z||,)? < Z [[y:, 2]|? as j — oo.
i=1
Thus {y;}2; is a frame for X with B and A as upper and lower frame
bounds, respectively.

Example 3.1. Consider the real sequence space [P, 1 < p < co. Consider the
set {e;}3°,, where ¢; = (0,0, ...,1,0,0..), where 1 is at the i coordinate and 0
at the other coordinates.

The semi-inner product of type (p) in I? is defined as

9] = s Z il 2 yis, Vo = {232 and y = {y:}32.

IIyII

o
(llllp)P—2

We compute that [e;,2] = [(0,0,..,1,0,0,..), (21, z2, .., T4, ...)]
1
] 5 |2;]7P~ 1) Therefore

p—2,. )| =
|23 [P~"x; and |[e;, x]|7 = (Il q(p—2

q_ —-1)
; |[€’L7‘r]| ; (”117” )q(pfg) |l’1|

Hence the set {e;}32, is a Parseval frame for [P. We can also establish the recon-
struction formula in this case. The set of elements {e;}5°; is a Parseval frame if
e, 2]

and only if z = Z H%h”q_Q[ei, x)e;, for all z € X. We see that

= |[€1‘7$]|472

(p—1)(g—2) Iwi|p72

lei,z]e; = |24 Ti€q

1 1
(l]lp)a—2 ; (lzllp) =2 (a=2)tp=2

_ Z s ‘(pfl)((172)+(11*2)xiei
i=1

; =
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Hence {e;}$2, is a Parseval frame.

One can also verify that the following sets (i), (ii) and (iii) are frames for the

real sequence space I, 1 < p < oo.

(i)
(i)
(iii)
(iv)
(v)

4

{e1,0,€2,0,€3,0,....} is a Parseval frame.

{e1,e1,ea,69,...... } is a tight frame with bound 2.
{%, %, %, 6—22, ....} is a tight frame with bound (\ﬁ)ﬁ
{e1,€2,e2,€3,€3, €3, ...... } is not a frame.

ey ey €3 e3 e3 ; < —
{617\/57\/57\/5’\/5’\/? ...... } is not a frame unless p = 2.

Conclusion

Since the sequence spaces [P, p > 1 and the function spaces LP, p > 1 are uni-
formly convex smooth Banach spaces, the development of frame theory on these
spaces using semi-inner product will lead to another new area of applied func-
tional analysis. The frame operator which has been defined is in general nonlin-

ear,

its invertibility is an immediate open problem. The study of its invertibility

and applications is a subject of future research of the authors.

Acknowledgements. The authors are thankful to the referees for their valuable sug-
gestions which improved the presentation of the paper.
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Abstract. In this paper we consider criss-cross method for finding solu-
tion of a linear complementarity problem. The criss-cross method is a
pivoting procedure. We show that the criss-cross method is able to com-
pute solution of a linear complementarity problem in finite steps in case
of some new matrix classes. We present a numerical illustration to show
a comparison between criss-cross method and Lemke’s algorithm with
respect to number of iterations before finding a solution. Finally we raise
an open problem in the context of criss-cross method.

Keywords: Criss-cross method - Complementarity problem - Lemke’s
algorithm - Positive subdefinite matrix - Generalized positive subdefinite
matrix * Fully copositive matrix

1 Introduction

The criss-cross method is known to be finite for linear complementarity prob-
lem with positive semidefinite bisymmetric matrices and P-matrices and also for
oriented matroid programming problems. We say that the criss-cross method
possesses finiteness if it finds a solution or detects infeasibility in a finite number
of steps. Zionts [20] proposed the criss-cross method for solving linear program-
ming in 1969. Bland introduced smallest subscript rule for the simplex method.
Using the concept of Bland [1], Chang [2], Terlaky [11] and Wang [18] inde-
pendently proposed finite criss-cross method. It was observed that the proposed
method works remarkably similar as the smallest subscript pivot of Bland [1] for
the simplex. Recently, Fukuda, Luthi and Namiki [8] introduced a class of non-
simplex pivot method which belongs to the finite criss-cross method of Chang,
Terlaky and Wang. Compared to simplex method, criss-cross method is a pivot-
ing procedure without ensuring feasibility. Hertog et al. [10] studied criss-cross
method in the context of linear complementarity problem. Lemkes algorithm is a
© Springer Nature Singapore Pte Ltd. 2017
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well-known to find solution of a linear complementarity problem. It is true that
both simplex and Lemke’s algorithms are similar type of pivoting procedure.
The limitations of Lemke’s algorithm is either unable to solve several instances
of linear complementarity problem or takes many iterations before to arrive at
the desired solution.

The linear complementarity problem is defined as follows. Given A € R"*"
and a vector ¢ € R", the linear complementarity problem LCP(q, A) is the
problem of finding a solution v € R™ and u € R™ to the following system of
linear equations and inequalities:

v—Au = ¢, v>0,u>0 (1)

viu =0 (2)

It is well studied in the literature on mathematical programming and a num-
ber of applications are reported in operations research, multiple objective pro-
gramming problem, mathematical economics, geometry and engineering. Some
new applications of the linear complementarity problem have been reported in
the area of stochastic games. This sort of applications and the potential for
future applications have motivated the study of the LCP, especially the study
of the algorithms for the LCP and the study of matrix classes. In fact, much
of linear complementarity theory and algorithms are based on the assumption
that the matrix A belongs to a particular class of matrices. The early motivation
for studying the linear complementarity problem was that the KKT optimality
conditions for linear and quadratic programs reduce to an LCP. The algorithm
presented by Lemke and Howson to compute an equilibrium pair of strategies to
a bimatrix game, later extended by Lemke (known as Lemke’s algorithm) to solve
an LCP(g, A), contributed significantly to the development of the linear comple-
mentarity theory. In fact, the study of the LCP really came into prominence only
when Lemke and Howson and Lemke showed that the problem of computing a
Nash equilibrium point of a bimatrix game can be posed as an LCP. However,
Lemke’s algorithm does not solve every instance of the linear complementar-
ity problem, and in some instances of the problem may terminate inconclusively
without either computing a solution to it or showing that no solution to it exists.
Extending the applicability of Lemke’s algorithm to more matrix classes have
been considered. For recent books on the linear complementarity problem and
its applications see Cottle, Pang and Stone [5] and Murty [15].

The principal pivot transform (PPT) of LCP(g,A) with respect to «
(obtained by pivoting on A,,) is given by LCP(¢’, M) where M is the PPT
of A with ¢/, = —A;lq, and ¢ = qa — AaaA,lqe. This problem is known
as linear complementarity problem or LCP(q, A). We define F(q, A) = {u €

":q+ Au > 0} and S(q, A) = {u € F(q, A): u’(q + Au) = 0}. LCP(q, A) has
a various application in the context of mathematical programming.

In this paper we consider finiteness of criss-cross method with respect to
some new matrix classes to find solution of a linear complementarity problem.
We consider the matrix classes which rely essentially on sign properties and
examine the solution of linear complementarity problem. The purpose of this
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paper is to characterize the new matrix classes in the context of finiteness of
criss-cross method.

The paper is organized as follows. Section 2 contains some notations, defi-
nitions and a few well-known results used in the next sections. In Sect.3 the
criss-cross method and necessary properties to execute criss-cross method are
discussed. Section 4 presents the characterization of the sign properties of matri-
ces in connection with the criss-cross method. A numerical example for finding
solution of an LCP(gq, A) to demonstrate the effectiveness and efficiencies of criss-
cross method compared with Lemke’s algorithm is presented. We show that the
applicability of criss-cross method can be enlarge which is illustrated with the
help of an example. This issue is addressed as an open problem.

2 Preliminaries

We consider matrices and vectors with real entries. Any vector u € R™ is a
column vector, u* denotes the transpose of u. For any matrix A € R"*", A?
denotes its transpose. A vector u € R™ is said to be unisigned if either u € R’}
or —u € R, where R and R, denote the nonnegative and positive orthant
in R" respectively.

The principal pivot transform (PPT) is a fundamental concept for developing
many theories and algorithms in optimization theory and plays an important role
in the study of matrix classes. The principal pivot transform of A, a real n x n

matrix, with respect to o C {1,2,...,n} is defined as the matrix given by
Myo Myg
M — [e7e} (6707
|:Maa Maa:|
where,

Maa = (Aaa)_17 Ma&:_(Aaa)_lAa&a M&a = A(ioz(Aoza)_la Maa = A&& -
A&a (Aaa)ilAa&-

Note that PPT is only defined with respect to those « for which det A, # 0.
When o = (), by convention det Ao, = 1 and M = A.

Lemke’s algorithm is a pivotal kind of technique to compute LCP(q, A).

Step 1: Decrease ug so that one of the variables v;, 1 <i < n, say v, is reduced
to zero. We now have a basic feasible solution with ug in place of v, and with
exactly one pair of complementary variables (v,., u,-) being non-basic.

Step 2: At each iteration, the complement of the variable which has been
removed in the previous iteration is to be increased. In the second iteration,
for instance, u,. will be increased.

Step 3: If the variable selected at step 2 to enter the basis can be arbitrarily
increased, then the procedure terminates in a secondary ray. If a new basic
feasible solution is obtained with ug = 0, we have solved (1) and (2). If in
the new basic feasible solution uy > 0, we have obtained a new basic pair of
complementary variables (v, us). We repeat step 2.
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Lemke’s algorithm consists of the repeated applications of steps 2 and 3. If
non-degeneracy is assumed, the procedure terminates either in a secondary ray
or in a solution to (1) and (2). Ramamurthy [17] showed that Lemke’s algorithm
for the linear complementarity problem can be used to check whether a given
Z-matrix is a Py-matrix and it can also be used to analyze the structure of finite
Markov chains.

Several matrix classes are defined in the context of LCP(g, A). A matrix is
said to be in Q if for every ¢ € R™, S(q, A) # 0. Qo consists the matrices for
which S(q, A) # 0 whenever F(q, A) # 0. A matrix is said to be Ry if LCP(0, A)
has unique solution. A matrix A is said to be positive semidefinite (PSD) if
u'Au > 0 for all w € R™ and A is positive definite (PD) if u'Au > 0 for all
0 # u € R™. A matrix A is said to be column sufficient matrix if for all u € R",
u;i(Au); <0 for all i implies u;(Au); = 0 for all i. A is said to be row sufficient
if A® is column sufficient. A is sufficient if A is both row and column sufficient.
A € R™™ is said to be fully copositive matrix (Cg) if every PPT of A is a
copositive matrix. A € R™ "™ is said to be pseudomonotone matrix if for all
u,v >0, (v—u)lAu>0 = (v—u)tAv > 0.

Martos [12] proposed positive subdefinite (PSBD) matrices to address
pseudo-convex functions. The nonsymmetric PSBD matrices was studied to con-
nect generalized monotonicity and the linear complementarity problem. Later
Crouzeix and Komlési [6] enlarged PSBD class by introducing the class of
GPSBD matrices. This class was studied in the context of the processability
of linear complementarity problem by Lemke’s algorithm. A matrix A is said to
be PSBD matrix if for all uw € R", u!Au < 0 implies Atu is unisigned.

A matrix A € R™*" is called GPSBD [6], [16] if 3 ¢; > 0 and f; > 0 with
e;+ fi=1,i=1,2,...,n such that

- either — e;u; + fi(Alu); > 0 for all i,
Vue kR, UAu<O:>{or —ezu; + fi(Atu); <0 for all 4. (3)

when e; = 0 for all 4, then A is PSBD. A is called merely generalized positive
subdefinite (MGPSBD) matriz when A is GPSBD but not PSBD matrix.
We state some results which will be required in the next section.

Theorem 2.1 [7]. Suppose A € R™ is PSBD and rank(A) > 2. Then A® is
PSBD at least one of the following conditions holds:
(i) A is PSD,
(ii) (A+ A') >0,
(iii) A is C{.
Theorem 2.2 [7]. A matriz A € R™ is pseudomonotone if and only A is PSBD

and copositive with the additional condition that in case A = abt,b; = 0 implies
a; = 0.

Theorem 2.3 [9]. If A is pseudomonotone, then A is a row sufficient matriz.

Proposition 1 [3]. Every principal submatriz of a (column, row) sufficient
matriz is (column, row) sufficient.
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Proposition 2 [3]. Both column and row sufficient matrices have nonnegative
principal submatrices, and hence nonnegative diagonal elements.

Proposition 3 [3].

(i) Let A be row sufficient with a;; = 0 for some i. If a;; # 0 for some j, then
aj; # 0, and in this case a;jaj; < 0.
(ii) Let A be column sufficient with a;; = 0 for some i. If aj; # 0 for some j,
then a;; # 0, and in this case aj;a;; < 0.
(iii) Let A be sufficient with a;; = 0 for some i. Then a;; # 0 for some j, if and
only if aj; # 0, and in this case a;ja;; < 0.

In case if a diagonal element of A say a;; for some i is zero. Then there is a
consequence of the above theorem

(i) For row sufficient matrices: If a;; > 0 for all j, then a;; < 0 for all j. If
aj; <0 for all j, then a;; > 0 for all j.
(i) For column sufficient matrices: If a;; > 0 for all j, then a;; < 0 for all j.
If a;j <0 for all j, then aj; > 0 for all j.
(iii) For sufficient matrices: a;; < 0 for all j, if and only if aj; > 0 for all j.
Also a;; > 0 for all j, if and only if a;; <0 for all j.

Theorem 2.4 [3]. Any principal pivotal transform of a (column, row) sufficient
matriz is (column, row) sufficient.

Theorem 2.5 [4]._ A 2x2 matriz A is sufficient if and only if for every principal
pivotal transform A of A

1. a; > 0 and
2. fori=1,24fa; =0, then either a;; =aj; =0 or a;; a;; <0 fori# j.

Theorem 2.6 [4]. A matriz A is sufficient if and only if every principal pivotal
transform A of A is sufficient of order 2.

Theorem 2.7 [14]. If A € R2*2NC{ N Qu, then A is PSD matriz.

Theorem 2.8 [19]. Let A be an n x n (n > 2) pseudomonotone matriz. Then
under each of the following conditions, A is column sufficient.

(i) A is copositive plus.
(’LZ) A € Ry.

Theorem 2.9 [10]. Let LCP (g, A) be given, where A is a sufficient matriz, q
is an arbitrary vector. Then LCP (q,A) can be processed by criss-cross method
in a finite number of steps.
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3 Criss-Cross Method

Let (u,v) be the solution of a given LCP(g, A). Suppose the initial basis matrix
is G, and the initial tableau is [— A, G, q]. A tableau is said to be complementary
if u and v satisfy the complementarity condition i.e. utv = 0. Let —A denote the
non-basic part of any complementarity tableau. Non-basic part of any comple-
mentary tableau is a principal pivotal transform of the matrix —A. Criss-Cross
method will STOP if it finds a solution or detects infeasibility, while EXIT
indicates that the method fails to execute the problem. The criss-cross method
is as follows:

Step 1: Let the starting basis be defined by v, and let v = ¢, u = 0 be the
initial solution. The initial tableau is given by [—A4, G, ¢].

Step 2: Let k := min {i: v; <0 or u; < 0}. If there is no such k, then STOP;
a feasible complementary solution has been found. Suppose there exists a k
such that v; < 0, then we have to make pivot so that vy leaves the basis.

Step 3: If —ax; < 0, then make a diagonal pivot and repeat the procedure that
is v; leaves and wuy enters the basis. If —agy > 0, then EXIT. If —ax, = 0,
go to Step 4.

Step 4: Here ayy = 0 is the case. Choose r := min {j : —ay; < 0}.

— If there is an r and a,pag,. < 0, then make an exchange pivot on (r, k)
and repeat the procedure. Exchange pivot means vy, u, leave from the
basis and wuyg, v, enter into the basis.

— Otherwise either LCP(q, A) is infeasible or criss-cross method is unable
to process the solution.

Hertog et al. [10] showed that if a matrix is sufficient matrix then criss-cross
method will process LCP(q, A) in a finite number of steps. We discuss the neces-
sary and sufficient conditions which ensure not to encounter EXIT by criss-cross
method. The method operates on diagonal and exchange pivots only, so com-
plementarity in each step is preserved. The criss-cross method STOP implies
either LCP(q, A) has a solution or it is infeasible.

4 Finiteness of Criss-Cross Method

Hertog et al. [10,11] define three properties so that criss cross method can process
in finite number of steps. § denotes the class of matrices such that for each
A € § and for each vector ¢ € R"™ the problem LCP(g, A) is processed by the
criss-cross method in a finite number of steps. Also suppose that § is closed
with respect to principal pivot transformation, and complete with respect to
principal submatrices of every matrix A € §. Orthogonality property ensures
the finiteness of the method. Orthogonality property says that any row vector of
a tableau is orthogonal to column vector of its dual tableau. Firstly we rewrite
the first two properties.
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Property 1. If A € §, the diagonal elements of any principal pivotal transform
of —A are nonpositive.

Property 2. If —ay; = 0 for some k&, then —ay; < 0 if and only if —a;, > 0 for
any j.

The first property says about the diagonal pivot whereas second property guar-
antees the exchange pivot. Both Properties1 and 2 ensure the complementary
and feasibility conditions. We now consider the third property which says finite-
ness of criss-cross method. Suppose there are two tableau defined based on sign
properties and these types are exclusive for LCP(g, A) if at most one of them
may exist for the problem.

Property 3. For a given LCP(q, A) we define following cases for which the pairs
of cases PQ, RS, PR, and )S are exclusive for any index 1 <k <n:

P: We have a complementary tableau with v; > 0,u; > 0 for ¢ < k, and
v = 0,u < 0.

Q: We have a complementary tableau with v; > 0,u; > 0 for i« < k, and
v < 0,u = 0.

R: We have a complementary tableau with us < 0 for some s < k,and ag; > 0
for 1 < k, ass = 0, and asr < 0; and symmetrically a;s < 0 for i < k, and
ags > 0.

S: We have a complementary tableau with vy < 0 for some s < k, and agz; > 0 for
i <k, ass =0, and ag, < 0; and symmetrically a;s < 0 for ¢ < k, and ags > 0.

To prove the finiteness of the method the only restrictive requirement in the
property that P and @ tableau are exclusive. On the other hand remaining pairs
follow from orthogonality property as shown in [11]. We now prove the following
results.

Theorem 4.1. Suppose A € MGPSBD NCy with 0 < f; < 1V i. Then criss-
cross method processes LCP(q, A).

Proof. Let Iy = {i :u; > 0} and Iy = {i : u; < 0}. We consider the following
three cases (C1, C2, C3).

C1l: I, =0. Then
utAu = vt Alu = Z(u)i(Atu)i <0.
Since A € Cy, [(v);(A'u);] =0, Vi.
C2: I, =0. Then
(—u)t A (—u) = ulAlu =Y "(u)i(A'u); < 0.
Since A € Cy, [(v);(A'u);] =0, Vi.

C3: Suppose 3 u such that (u);(A%u); <0fori=1,2,...,nand (u)r(A'u)r <0
for at least one k € {1,2,...,n}. Let I; # () and I # (). Then
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ut Aty = Z[ul(Atu),] <0.
i
This implies
—equ; + fi(A'u); >0, Vi or
—e;u; + fl(Atu% <0, V.
Let us consider —e;u; + fi(A'u); > 0, V i. Then for all i € I, —e;u? +
fiui(A*(u); > 0. This implies [u;(A'u);] > %uf > 0, V i € I. so,

Z[ui(Atu)i] > 0. Since u;(A'u); < 0 for i = 1,...,n. Therefore, [u;(A'u);] =
i€l
0, Vi.

So to show the above result it is enough to show that A satisfies the above
mentioned two properties. Here Property 1 follows from the Proposition 2. Prop-
erty 2 follows from Proposition 3. ]

Remark 1. From the above result LCP(q, A) is processable by criss-cross
method in general. If A, A®* € MGPSBD N Cy with 0 < f; < 1 for all i then
LCP(q, A) is processable by criss-cross method in a finite number of steps.

Our next theorem states that under some condition if A belongs to PSBD
matrix class, then the criss-cross method will process LCP(q, A) in a finite num-
ber of steps.

Theorem 4.2. Suppose A is a PSBD matriz with rank(A) > 2. Then under
each of the following conditions criss-cross method processes LCP(q,A) in a
finite number of steps.

(Z) A s Co,

(ii) A is Ry.

Proof. As A is PSBD N Cy, At is a PSBD N Cy with rank(A?) > 2. Now A
and A’ is pseudomonotone matrix by Theorem 2.1 as shown in [7]. Again any
pseudomonotone matrices are row sufficient by Theorem 2.3 as shown in [9], so
A and A? are row sufficient. So A is sufficient.

To prove (ii) we proceed as follows: Here A is PSBD, so A is pseudomonotone.
Hence A is row sufficient. Again as A is Ry and by Theorem 2.8 as shown in

[19] A is column sufficient, hence A is sufficient. So criss-cross method processes
LCP(q, A) in a finite number of steps by Theorem 2.9 as shown in [10]. [ |

Theorem 4.3. Let A € Cg N Qo. Then criss-cross method processes LCP(q, A)
in a finite number of steps.

Proof. As A € C’g N Qp, A and all its PPTs are completely Qp. So here all
2 x 2 submatrices of A or its principal pivotal transform are in Cg N Qp- So all
2 x 2 submatrices of A are PSD matrix by Theorem 2.7 as shown in [14]. As
all PSD matrices are sufficient, so here all 2 x 2 submatrices of A are sufficient
also. So A or every matrix obtained by means of a principal pivotal transform
is sufficient of order 2. By Theorem 2.5 as shown in [4] A is sufficient. So criss-
cross method processes LCP(g, A) in a finite number of steps by Theorem 2.9 as
shown in [10]. [
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Theorem 4.4. Let A, A € R”X"OC({ with positive diagonals. Then criss-cross
method processes LOP(q, A) in a finite number of steps.

Proof. Since A, A* €¢ R™" N C’({ with positive diagonals, A, A® are column
sufficient [see Theorem 3.4 in [13]]. Hence A is sufficient and Hence by Theorem
2.9 as shown in [10] criss-cross method processes LCP(g, A) in a finite number
of steps. |

We make use of the following example to demonstrate the applicability of
criss-cross method and a comparison with Lemke’s algorithm.

Example 1. We consider an LCP(q, A) for which A = [_01 3} and q = [21} .

Note that that A € PSBD N Cj with full rank. Hence from the above theorem A is
sufficient matrix. Now we apply criss-cross method to solve the above LCP(q, A)
(Table 1).
In the first iteration, w; and ws are in the basis. Since diagonal pivot is not
applicable, we apply exchange pivot according to the method and obtain the
solutions of the given LCP(q, A). Here u = [2, 1/4]' and v = [0, 0]*.
Now we apply Lemke’s algorithm to solve the same LCP(g, A) (Table 2).
The Lemke’s algorithm requires four iterations to solve LCP(g, A) whereas
criss-cross method requires two iterations.

Table 1. Solution using criss-cross method considering Property 2

V1 V2 | U1 U2 | q
wll 00 [@ -1
w o 1Mo |2
up| —1/4/0 [0 |1 |1/4
w01 0 2

Table 2. Solution using Lemke’s algorithm

V1 V2 |uUl|u2 |[Uo |q
v |1 0 0 |—4|-1 -1
va |0 11 0-11]2
uo | —1 010 4 1
vg | —1 11 410 3
uo | —1 00 411 1
up | —1 11 410 3
uz | —1/410 |0 1/1/4/1/4
w1 |0 1|1 0—-11]2
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4.1 An Open Problem
-2
ass = 0, we apply exchange pivot without considering Property 2 (Table 3).

Let us consider an LCP(q, A) for which A = {(1) (ﬂ and ¢ = { . Since a1; =

Table 3. Solution using criss-cross method without considering Property 2

U1 V2 U1
U1 1 0 0

1)20 1 @

us | —1/2/0 0

ol ol N
OF
|
—

The solution for LCP(q, A) is uw = [2, 1/2]" and v = [0, 0]*. Note that A is
neither GPSBD nor sufficient matrix. However we obtain the solution of this
problem by applying criss-cross method. Hence we raise the following questions.
Is it possible to apply the criss-cross method to find solutions of an LCP(q, A),
where A does not belong to GPSBD or sufficient matriz?
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Abstract. In this article, we model an “Imprecise Constrained Cover-
ing Solid Travelling Salesman Problem with Credibility” (ICCSTSPC),
a generalization of Covering Salesman Problem (CSP), in fuzzy environ-
ment. A salesman begins from an initial node, visits a subset of nodes
exactly once using any one of appropriate vehicles available at each step,
so that unvisited nodes are within a predetermined distance from the vis-
ited nodes, and returns to the initial node within a restricted time. Here
the travelling costs and travelling times between any two nodes and the
covering distance all are considered as fuzzy. Thus the problem reduces
to find the optimal tour for a set of nodes with the proper conveyances
so that total travelling cost is minimum within a restricted time. The
ICCSTSPC is reduced to a set of Imprecise Constrained Covering Solid
Travelling Salesman Problems by solving Unicost Set Cover Problem
(USCP) using Random Insertion-Deletion (RID). These reduced Con-
strained Solid Travelling Salesman Problems (CSTSPs) are solved by
an Improved Genetic Algorithm (IGA), which consists of probabilistic
selection, order crossover, proposed generation dependent inverse muta-
tion. A random mutation for vehicles is proposed to get a better cost at
each generation of IGA by choosing an alternative vehicle for each node.
Hence the ICCSTSPC is solved by a random insertion-deletion (RID) for
covering set and IGA, i.e., RID-IGA. To justify the performance of the
RID-IGA, some test problems are solved. The model is illustrated with
some randomly generated crisp and fuzzy data.

Keywords: Solid TSP - Covering Salesman Problem - Improved GA

1 Introduction

Travelling Salesman Problem (TSP), which is one of the most well known NP-
complete problems, was first formulated in 1930. Many researchers have been
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developed some generalizations of TSPs, e.g., TSP with precedence constraints
[13], stochastic TSP [1], symmetric TSP [12], asymmetric TSP [11] etc.

In 1989, Current and Schilling [3] first introduced the model of Covering
Salesman Problem (CSP), which is a generalization of TSP. In CSP, a salesmen
selects a subset of nodes from the total node set, starts from an initial node, visits
all nodes of the subset exactly once, such that all other nodes be covered within
a predetermined distance from the visited nodes, and at the end, comes back
to the initial node. Current et al. developed a simple heuristic method to solve
CSP cousisting of two parts, first is the unicost set covering problem (USCP) to
find minimum number of nodes to cover all other nodes, and the next step is to
solve TSPs for different USCP solutions (if exist) to get the path with minimum
cost. Later, Golden et al. [6] developed two local search (LS) algorithms LS1 and
LS2. Salari et al. [14] developed an integer programming based LS for CSP and
after that, a hybrid algorithm consisting of ant colony optimization (ACO) and
dynamic programming technique for CSP was introduced by Salari et al. [15].

Genetic Algorithm (GA) is a nature inspired soft computing technique. Dif-
ferent types of GAs have been developed in last few decades, e.g., Adaptive
GA [17], Hybrid GA [18], NSGA-II etc. [5], Fuzzy age based GA [10] etc. were
developed for several research areas.

Solid travelling salesman problem (STSP) is an extension of TSP, where the
salesman can avail any one kind of appropriate vehicle at each node. Considering
different types of vehicles and risks, Changdar et al. [2] developed the model of
STSP in crisp and fuzzy environments. Later, Maity et al. [10] extended the
same problem to bi-random and random-fuzzy environments. Both Changdar
et al. and Maity et al. solved their problems using their own modified GAs.

Imprecise Constrained Covering Solid Travelling Salesman Problem with
Credibility (ICCSTSPC) can be defined as a generalized CSP, in which the
travel costs, travel times and covering distance are taken as fuzzy, also, there
are several types of conveyances at each node for travel. None has investigated
this type of realistic CSP yet. Given a set of nodes N. A salesman begins from
any one node and visits a subset of nodes N’ C N, each node exactly once, by
choosing a suitable vehicle available at each node, such that all nodes out of the
tour are covered within a predetermined distance from the visited nodes, and at
the end, returns to the initial node within a restricted time.

We solve the above mentioned ICCSTSPC in two steps, first we find the
minimal covering sets with least nodes by solving USCP within a time bound
(we take 60s). We propose RID to solve USCP, which inserts nodes randomly
(each node at most once), the insertion process stops when the feasibility of
set cover is satisfied and we get a set cover. The obtained set cover is then gone
through the deletion process which checks each nodes of the cover whether it can
be deleted or not without violating the set cover feasibility. If such nodes exist,
those are deleted to obtain a minimal set cover. This process may generates a
few solutions having different number of nodes in the given runtime bound, but
only the solutions with minimum number of nodes are selected for the next step,
i.e., obtaining optimal paths for each of those solutions by solving CSTSPs.
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For CSTSPs, we modify an improved GA (IGA), which consists of probabilis-
tic selection, order crossover, generation dependent inverse mutation and random
mutation for vehicles (at each node) are introduced. So the model ICCSTSPC is
solved by a combined RID-IGA method, which is applied on randomly generated
100x 100 distance matrix (crisp), and 100 x 100 x 3 cost and time matrices (fuzzy)
respectively are used for illustration of the model. The distance matrix is used
to solve the USCP and other two for solving constrained STSP (CSTSP). To
justify the performance of IGA, it is tested with some TSP benchmark problems
and CSPs of Salari et al.’s [15].

2 Mathematical Preliminaries

2.1 Fuzzy Credibility Approach

Let (a,b,c) be a TEN, then the credibility measures [9] for the events £ < r and
& > r are given by:

0, if r <a
r—a if a <r <¥b;
< — 2(b7a7 1 - — 1
Oresn =110y, itp<r<c M)
1, if r > c.
0, ifr>e¢;
T ifb<r<g
S 0y = ) 2y HOST>G 9
Cr€=n=N1(ryn,  ifas<r<y @
1, ifr <a.

The following lemmas can be easily proven from the above Eqgs. (1) and (2):

Lemma 2.1.a: If £ = (a,b,c¢) be a fuzzy variable with a < b < ¢, then for a
predetermined 3, 0 < 8 <1, Cr(§ <r) > [ is equivalent to

(i) (1 —20)a+26b <r, when 5 < 0.5

(ii) 2(1 = B)b+ (26 — 1)c < r, when § > 0.5;

Lemma 2.1.b: If £ = (a,b,¢) be a fuzzy variable with a < b < ¢, then for a
predetermined 3, 0 < 8 <1, Cr(£ > r) > [ is equivalent to

(i) 260+ (1 — 2B)c > r, when 3 < 0.5;

(ii) 2(1 = B)a+ (26 —1)b > r, when 5 > 0.5

3 Mathematical Formulations

3.1 Covering Salesman Problem

For a complete graph G = (N, A), minimize the total tour cost when a salesman
starts from an initial node of a subset N’ C N of nodes, visits each node exactly
once and comes back to the initial node, so that the unvisited nodes be within a
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predetermined distance from at least one of the visited nodes. The mathematical
formulation of this problem may be stated as:

IN| N
Minimize Z = chzjxi]‘ (3)
i=1 j=1
Subject to:
IN|
SN ey >1vieN )
i=1j€D;
[N |N|
Swiu=Y a;=0or LYkeN (5)
=1 j=1
zi; € {0,1} (6)
>3 wy<IS|—-1, VSCN' CN, 2< 8] <|N'| -2 (7)
ieS jes

where, N’ is the set of visiting nodes, ¢;; is the cost from the node i to the
node j,
_J 1,3 an edge between i and j,
i = 0, otherwise;

D; ={j: dj; < A}, d;j = shortest distance between ¢ and j, A; = maximum
covering distance at node j.

Equation (3) minimizes the total travelling cost. (4) implies that all nodes of
the graph are either visited or covered by the visited nodes. Equation (5) points
that each vertex has same indegree and outdegree. (6) represents the binary
nature of the decision variable z;; and (7) is the subtour elimination constraint.

The above Egs. (3)—(7) can be rewritten as follows:

Let N = {x1,22,73,...,75|} be the set of nodes. Determine a complete tour
(Tans Tags Tags - -y Loy, s Tay )y, M < |N| to
m—1
minimize Z (Ta;Tary) + c(Ta,, Ta,); (8)
i=1
such that, z; € B(za,,As,), V z; € N and for some i; (9)

where o; € {1,2,3,...,|N|} and o; # «; for i # j, c(i,j) = ¢;;, B(a,r) means
closed disc with center a and radius r, A; = maximum covering distance at
node j.

3.2 Model-1: Constrained Covering Solid Travelling Salesman
Problem (CCSTSP)

In the above mentioned CSP, let N = {x1,22,3,...,2n|} be the set of nodes
and V = {v1,v2,0s,...,0,} be the set of vehicles. Determine a complete tour
(Tags Tags Tags -y Loy, s Tay )y, M < |N| to
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m—1
minimize Z (T, Taryy s Vy,) + (Zay Tar, Vi ); (10)
i=1
such that,
m—1
Z t(l‘ail‘aiH ? ’Ulai) + t(x(xmx(xl I ’U(/)zm) S tmaa:a (11)
i—1
z; € B(wq,,Aw,;), ¥ zj € N and for some i. (12)

where o; € {1,2,3,...,|N[} and o; # «; for i # j, v,, € V, V o €
{1,2,3,..., [N}, cli,j, k) = cijk, t(i,4,k) = tijk; tmae being the maximum
allowed total time for the tour, B(a,r) means closed disc with center a and

radius r, A; = maximum covering distance at node j.

3.3 Model-2: Imprecise Constrained Covering Solid Travelling
Salesman Problem with Credibility (ICCSTSPC)

If, in the above CCSTSP, we consider the covering distance, vehicle costs as fuzzy,
also, add a time constraint, where both the time from each node to another node
and the maximum total allowed time for a complete tour are also taken as fuzzy,
the above model is transformed in credibility approach as: Determine a complete
tour

(xalaxazaxasa'"7'rozm7xa1)7 m§|N‘
to minimize F
subject to
m—1
CT(Z c(xaixai+17vtlli) + C(mamxan?}«;m) <F)>p (13)
i=1
m—1
Cr( t(:raixa“rl,v;i) + t(x()Mn,:CO‘l?v:Xm) < tmax) > 7 (14)
i=1
COr(Aa, > d(zj,74,)) >1, ¥ x; € N and for some i. (15)

where (3, v and 7 are the confidence levels for travelling cost, travelling time and
covering distance respectively.

Using Lemmas 2.1.a and 2.1.b and subtraction formula for fuzzy numbers the
above Egs. (16), (17) and (18) can be rewritten as: Determine a complete tour

(Tans Tass Tags - -3 Taps Tay ), M < |N| to
minimize F
subject to
(1-26)Cy +208C, < F, when B < 0.5; (16)
21 -p)Ca+ (26 —-1)C3 < F, when (> 0.5.
(1 = 29)(T1 — tmazs) + 2712 — tmaz,) < 0, when ~ < 0.5; (17)
2(1 = )T — tmazy) + (27 = 1)(T3 — tmaz,) <0,  when ~ > 0.5.
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2n(Aa)2 + (1 —2n)(An,)s > d(zj, xa,), when n < 0.5;
(277 - 1)(A0ti)1 + 2(1 - n)(Aai)2 2 d(xj’mlli)7 when 1> 0.5,
vV x; € N and for some 1,
(18)
where, the costs, times and the maximum allowable time are taken in the form
(c1,c2,c3) and (t1,t2,t3) and (tmaw, , tmass s tmazs) respectively. d(z;, x;) is the
shortest distance between the nodes z; and x;. The covering distance at the
node z,, is considered as TFN: ((Ay,)1, (An, )2, (Aa,)s),

i

m—
Z xl)xl+lavl )k + (C(.Tm7x]_,vm>)k,

—1

T = ) (t(xi, Tig1,v:))k + E(Tms T1,0m))k, K =1,2,3.
1

3

%

4 Solution Procedure

4.1 RID for USCP
RID for USCP

1.S— ¢ //S being the null set
2.N={1,2,...,n} //IN being the full set of nodes
3.1+ 1
4. while ¢ < total no. of nodes do

aeN-S

S—S Ua

1« 1+ 1 if feasibility of SCP is satisfied then

| break;

end

t—1
end
5.4+ 1

6. whilei <t—1do

if S— {i} is not a set cover then
| break;
else
| S 5—{i}
end
end

7. repeat the process to search for another solution
8. Mark the solutions with minimum nodes as optimal solutions
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4.2 Improved Genetic Algorithm (IGA) for CSTSP

To solve the reduced CSTSPs for the marked USCP solutions, we modify an
Improved GA (IGA) which includes Probabilistic Selection [10], Order crossover,
generation dependent Inverse mutation and random mutation (at each node) for
the vehicles.

Initialization: In GA for CSTSPs, a chromosome is formed by arranging all
the nodes on the tour in any order without any repetition. Let n represent
the number of nodes and m represent the number of chromosomes, and V' =

{v1,v2,...,vp} be the total set of different conveyances. Then each chromosome
Xi, (1 =1,2,...,m) and corresponding vehicle set can be represented as X; =
(i1, Ti2, - - -y Tip) and VY = (v}, Vg, ..., v}, ) respectively.

Algorithm for initialization
Data: Number of chromosomes m, number of nodes n
Result: A set of m chromosomes each having n different nodes
while i=1 to m do
while j=1 to n do
label: ¢t = rand[1,n]
for k=1 to j-1 do
if t=x;; then

| goto label;
end
zij =t temp = rand[l,p|, vi; = Viemp
end
end

end

The algorithms of conventional Probabilistic selection, Order crossover, pro-
posed generation dependent inverse mutation and random mutation for vehicles
are given below:
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Algorithm for probabilistic selection

Data: pop-size(m), population set, probability of selection(ps),
max-gen(g)

Result: mating pool

for i=1 to g do

for j=1 to m do

1. a=rand]0,1]

. To=rand[10,100]

. b=rand|0,1]

. k=1+100x (i/g)
 T=Ty(1 — b)*

- Pb=€Xp (fmzn - f(XJ))/T
. if a < pp then

| select jth chromosome
end

else if a < p; then
| select the current chromosome
end
else
| select the chromosome with the value fin
end

N O Uk W N

end
end

Algorithm for order Crossover:
Data: number of nodes N, parenty, parents
Result: of fspring:, of fsprings
1. ry=rand[1,N], ro=rand[1,N] such that 1 <r; <7y <N
2. for i=ry to r do
| of fspring:[i] = parents]i]

end
3. temp=ro+1
4. fori=ry+1 to N and i=1 tor;y — 1 do
if parenty[i] ¢ of fspring; then

of fspring:[temp] = parent[i]

temp «— temp + 1

if temp=N+1 then

| temp — 0
end

end
end
5. 81 = rand[l, N], so = rand[l, N] such that 1 < s; <s3 <N
6. for i = s1 to sy do
| of fsprings[i] = parent,[i]
end
7. temp = s9+1
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8 fori=s5+1to Nandi=1to sy —1do
if parentsli] ¢ of fsprings then
of fsprings[temp] = parents|i]
temp «— temp + 1
if temp = N + 1 then
| temp <0
end

end
end

Algorithm for inverse Mutation
Data: number of nodes n, chromosome
Result: mutated chromosome
1. generate rl=rand[1,n] and r2=rand[1,n] such that r1 < r2
2. for i=r1 to r2/2 do
| nodeli] < node[r2 — i+ rl]
end

Random mutation for vehicles
Data: number of nodes n, chromosome, number of vehicles p, cost matrix
Result: chromosome with mutated vehicles
for i =1 ton do

temp = rand[1, p|,

if cost(zi, Tit1, Viemp) < cost(z;, xit1,v]) then

| replace v} by vtemp

end

end

Combining all the above algorithms, the whole IGA can be presented as
follows:
Procedure IGA for CSTSP
Data: Maximum number of generation (maxgen), pop-size, number of
nodes, cost matrix [¢;jklnxnxp, time matrix [tijklnxnxp, tmazs Pss
Pe
Result: Minimum tour cost
1. Initialization of chromosomes
2. Set gen «— 1, glob-best = loc-best = MAX-INT
3. Selection procedure
4. for i=1 to pop-size do
if rand|0,1] < p. then
| ith is selected for crossover
end
end
5. procedure crossover among the mating pools
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6. for ¢ = 1 to pop-size do
—1_ 015
Pm= Jgen
if rand|0, 1] < p,, then
| select i chromosome for mutation and mutation for vehicles
end

end
7. Procedure mutation and mutation for vehicles
8. for i = 1 to pop-size do
if cost[i] < loc-best then
loc-best = costli];
mem = 1;
end
end
9. gen —gen+1
10. if loc-best < glob-best and time[mem| < t;,q, then
| glob-best «— loc-best
end

11. if gen < mazgen then
| goto step 3

else
| goto step 12

end
12. end

4.3 RID-IGA Algorithm for CCSTSPs

Ultimately, the algorithm of RID-IGA used for the solution of the proposed
CCSTSPs is as follows:
Algorithm of RID-IGA for CCSTSP
Data: number of nodes n, distance matrix [d;;]nxn, cost matrix
[Cijklnxnxp, time matrix [;jklnxnxp, tmaz, covering distance
matrix [A;]1xn
Result: complete tour with minimum cost such that visited nodes cover
all unvisited nodes

1. solve the USCP for [A;]1xn using [A;]1xn
2. for i= 1 to total no. of USCP solutions do
mincost — CSTSP[USCPJi]]
if mincost > CSTSP[USCP[i+ 1]] then
| mincost — CSTSP[USCPIi + 1]]
end
end
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5 Numerical Experiments

5.1 Verification with Earlier Results

To test the performance of the IGA implemented in C++ code, we consider
some test problems from TSBLIB and compared with best known results of
those in Table 1. Salari et al. [15] used the some TSP benchmark problems and
solved using a hybrid algorithm consisting of Dynamic Programming and Ant
Colony Optimization (ACO). Results of some of these problems are obtained by
RID-IGA algorithm and are compared in Table 2.

Table 1. Algorithm tested with benchmark problems [16]:

Problem | Best known result | IGA result | Generation
grl7 2085 2085 169
fri26 937 937 246
bayg29 1610 1610 358
bays29 2020 2020 327
dantzig42 699 699 478
eil51 426 426 542
€il76 538 538 728
kroA100 | 21282 21638 1041

5.2 Proposed Experiment

For computational results of the proposed CCSTSP, we generate a 100 x 100
distance matrix with lower bound 20 and upper bound 90 and a 100 x 100 x 3
costs with lower bound 35 and upper bound 180 and time matrices with lower
bound 60 and upper bound 360 such that the vehicles with higher cost assume
lesser time. The third dimension of the matrices imply the number of available
vehicles at each node. For ICCSTSPC, distance, cost and time matrices are
formed in fuzzy environment (TFN) with the same lower and upper bounds.
At first, the USCP was solved taking the covering distance as 30 distance units
for CCSTSP and (26,30,33) in case of ICCSTSPC for each node within a time
bound 60 s. In the second step, CSTSP was solved for all obtained USCP solution
in that time bound by IGA. The paths with minimum costs among all USCP
results are considered as the near optimal solutions of the CCSTSP problem,
some of which (5 best solutions without time constraint and 5 solutions with
time constraints) are given in Table3. In Table4, the experimental results of
ICCSTSPC are presented for different confidence levels, where both cases—
without and with time constraints are considered, n, 8 and «y being the confidence
levels of covering distance, travelling costs and travelling times respectively.
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Table 2. Comparison with Salari et al.’s [15] results

Problem | No. of nearest nodes | Salari’s method | IGA result
eil51 7 164 158
9 159 157
11 147 149
berlin52 | 7 3887 3891
9 3430 3362
11 3262 2832
st70 7 288 292
9 259 241
11 247 233
€il76 7 207 184
9 186 173
11 170 161
pr76 7 50275 51277
9 45348 42916
11 43028 42607
rat99 7 486 453
9 455 441
11 444 423
kroA100| 7 9674 10558
9 9159 8860
11 8901 9316

Table 3. Near optimal solutions of CCSTSP:

Optimized covering path (nodes/vehicles)

Cost

tmaz

62/0 90/1 66/1 14/2 18/0 84/2 48/2 50/0 71/1 34/2 87/0 67/1

537.6

52/0 22/2 2/1 50/1 11/0 15/1 47/1 7/0 80/2 61/1 34/0 6/1

585.7

47/2 4/1 32/0 31/2 93/1 49/2 53/1 35/1 44/2 9/2 66/2 65/2

629.4

44/0 1/0 66/2 74/0 48/2 30/1 93/1 49/2 760 40/0 29/2 19/1

630.25

74/2 57/2 47/1 95/0 49/0 10/0 11/2 89/2 35/2 56/2 80/2 5,2

642.4

87/162/0 90/2 71/1 50/2 67/2 66/1 14/2 18/1 48/1 34/1 84/0

554.45

1200

90/1 66/2 67/2 87/2 62/2 84/1 18/1 14/2 48/1 50/0 71/1 34/0

567.4

1190

34/1 71/1 50/2 62/2 67/2 66/1 14/0 87/1 48/0 84/2 18/1 90/1

569.6

1180

67/2 66/1 14/0 18/1 90/1 62/2 50/0 84/0 34/1 71/0 48/0 87/1

575

1175

84/2 18/1 14/2 66/2 34/0 71/1 50/0 48/2 87/2 67/0 62/0 90/1

587.25

1170
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6 Discussion

From Table 1, we observe that proposed IGA algorithm gives the best known
results for the first seven TSP problems. For the last problem kroA100, with
order size 100, the proposed algorithm results slightly higher value than the best
known one within maximum number of generation 1200.

Table 2 presents the comparisons between RID-IGA and Salari et al.’s [15]
hybrid ACO-Dynamic programming algorithm for some CSP problems, which
are originated from TSP benchmark problems. Here, the distance and the cost
matrices are the same as there is no choice of vehicles. In most of the cases, we
get better results by the proposed RID-IGA.

In Table 3, five best near optimal paths without time constraints and five
best paths imposing the time constraints of the proposed CCSTSP are given.
As the maximum allowable time decreases the resulting optimal cost becomes
higher, which is as per our expectation.

Finally, in Table 4, where the results of the proposed ICCSTSPC are discussed
briefly, it can be observed that the number of nodes increase with the increment
of the n, which is the confidence level of covering distance. We also notice that for
each fixed value of 7, as the value § (confidence level of travelling costs) varies,
we get a path with minimum value at 5 = 0.6. Some results with different values
of 7’s (confidence level of traveling time) are shown in the same table.

7 Conclusion

In the present article, a fuzzy set based Imprecise Constrained Covering Solid
Travelling Salesman Problem with Credibility along with a Combined method
RID-IGA has been discussed. This problem can be well applicable for the most
useful real-world problems like Rural Health Care Delivery Systems, Courier
Logistics, big merchant houses, government officials and other similar prob-
lems. In these types of problems, it is not always possible to attend all the
cities/villages of the network in consideration, but a few places are selected for
the tour so that people from the adjoining areas within an approximate range r,
i.e., within a range (r; — 01, 71,71 + 02), can avail the facilities. This uncertainty
on covering distance has not been investigated by other researchers on covering
salesman problem.

Also, there may be more than one vehicles at each node, from which, any
one type of suitable one can be chosen by the salesperson. The travelling costs
of the vehicles depend upon several factors like availability, sudden increment of
fuel price etc. and similarly the travel time also may vary due to bad condition
of road or vehicle, experience of driver etc., so the imprecise travelling costs and
times are taken as fuzzy numbers.

The proposed model can further be extended by imposing some restrictions
like mandatory inclusion or exclusion of some particular nodes, or inducing time
windows on some nodes etc. Also, the proposed algorithm can be further devel-
oped by improving selection, crossover and mutation techniques of IGA.
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Abstract. In this paper some Newton like methods for unconstrained
optimization problem are restructured using g-calculus (quantum calcu-
lus). Two schemes are proposed, (1) g-Newton line search scheme, (2)
a variant of g-Newton line search scheme. Global convergence of these
schemes are discussed and numerical illustrations are provided.

Keywords: g-derivative - Newton like method - Unconstrained opti-
mization

1 Introduction

g-calculus (quantum calculus) has been one of the research interests in the field of
Mathematics and Physics for last few decades. g-analogue of ordinary derivative,
first introduced by F.H. Jackson, has its wide applications in several areas like,
operator Theory [2], ¢-Taylor formula and its remainder [10,11], mean value the-
orems of g-calculus [16], fractional integral and derivatives [14], integral inequali-
ties [7]. Some recent developments using g-derivatives can be found in variational
calculus [3], transform calculus [1], sampling theory [12], g-version of Bochner
Theorem [9], and so on. Soterroni et al. [17] first studied the use of g-derivative in
the area of unconstrained optimization, which is the g-variant of steepest descent
method. However, further significant works on g-calculus in other areas of numer-
ical optimization viz. Newton, Quasi Newton, Conjugate gradient methods and
their variations are yet to study.

In this paper a new variation of Newton like method for unconstrained opti-
mization problem is developed using g-calculus. This concept is based on ¢-
Newton Kantorvich scheme [15]. In this paper, initially, g-derivative of gradient
of the given function is used to propose a local convergent scheme and then
this idea is extended by associating a line search technique to justify its global
convergence property. Next, a sequence {¢y, } is introduced in the scheme instead
of considering a fixed positive number g, whose limiting case is the g-version of
practical line search Newton scheme. Quadratic convergence of the first scheme
is proved without using the second order sufficient optimality condition. First
order differentiability is sufficient to prove the global convergence of the pro-
posed schemes. The second scheme, being a g-analogue of line search Newton
method, requires weaker conditions than the classical one.

© Springer Nature Singapore Pte Ltd. 2017
D. Giri et al. (Eds.): ICMC 2017, CCIS 655, pp. 196-208, 2017.
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In Sect. 2, some notations and definitions from g-calculus and other prerequi-
sites are provided, which are used in sequel throughout the paper. g-Newton line
search method is introduced and its convergence analysis is provided in Sect. 3.
A variant of ¢-Newton line search method is developed further and numerical
illustrations are described in Sect. 4. Finally, concluding remarks are provided in
Sect. 5.

2 Prerequisites

2.1 Notations and Definitions on Quantum Calculus

For a function f: R — R, the g-derivative (¢ # 1) of f ( denoted by D, . f ), is

defined as o) F(ga)
L) (gz) 0
Dyof(x) =1 U0 7
fl(x), =0

Suppose f : R™ — R, whose partial derivatives exist. For z € R", consider an
operator €,; on f as

(€qif)(@) = f(@1, @25+, i1, qTiy Tig1, - -+ Tn).
The g-partial derivative (¢ # 1) of f at & with respect to z;, denoted by Dy , f, is

f(z)—(eq.if)(x)
_q’iv. P X # 0
quxif(z) = { af (1=a) b

Er) x; =0

Denote g(z) = Vf(z) = [91(2), g2(x), ..., gn(z ] L i = af . The Jacobi matrix
of g-partial derivative of g(z), denoted by Dyg(x) becomeb

Dy0,91(2) Doy 91(2) ... Dy, 91(x)
Dugte) = | Do) Duns ) Dunn )
D190 (%) Dy,2;9n(2) - - Dy, gn ()

nxn

In short we write,

Dqg(x) = [Dq,xjgi(x)]nxm i,7=1(1)n.

2.2 Symmetric Indefinite Factorization

A real symmetric matrix A can be expressed as PAPT = LBLT, where L is a
lower triangular matrix, P is a permutation matrix and B is a block diagonal
matrix which allows at most 2 x 2 blocks. This requires a pivot block initially.
There are several pivoting strategies available in the literature (see Bunch, Kauf-
man and Parlett [4], Golub and Van Loan [8], and also by Duff and Reid [5],
Fourer and Mehrotra [6]) to take care the sparsity of the matrix. The symmet-
ric indefinite factorization allows to determine the inertia of B and inertia of
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B remains equal to inertia of A. An indefinite factorization can be modified to
ensure that the modified factors are the factors of a positive definite matrix. This
idea is briefed in the following algorithm (See [13]). For this purpose MATLAB
in-built command Idl() is used in this paper since it is less expensive.

Algorithm 1. Modifying Symmetric Indefinite Matrix to Positive
Definite [13]

Step 1: Compute the factorization PAPT = LBLT.

Step 2: Perform the spectral decomposition of B as B = QAQ”, where Q
is the matrix whose columns consist of eigen vectors and A is the diagonal
matrix whose diagonal elements are respective eigen values B.

Step 3: Construct a modification matrix F such that LBLT is
sufficiently positive definite as follows.

Suppose A; are the eigen values of B. Choose parameter 6 > 0 and define
F as F = Qdiag(r;) QT, where

0, if A > 6
Ti =
0— N, if A <0

Step 4: A matrix E has to be added to A to make it positive definite.
P(A+ E)PT = L(B + F)LT provides E = P'LFLTP. So

Apin(A+ E) = 6.

Output: A £ A+ E is the positive definite matrix.

2.3 Zoutendjik Theorem

Consider k" iteration of an optimization algorithm in the form z(*+1) = z(®) 4
Pk, where py is a descent direction and «y, satisfies Wolfe condition. Suppose
f is bounded below in R™ and that f is continuously differentiable in an open
set containing the level set .Z = {z : f(x) < f(x0)}, where z¢ is the starting
point of the iteration.

Assume also that Vf is Lipschitz continuous on .Z. That is, there exists a
constant L > 0 such that

IVf(z) = V@) < Lz -2 Ve, €2,

then
Z cos? 0| V|2 < oo,
k>0

where 6}, is the angle between py and Vf*), Vf*) = vf(z(*),
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3 Proposing g-Newton Line Search Scheme
for Unconstrained Optimization Problem

Consider a general unconstrained optimization problem
(P) minchR"f(z)v

where f € €' and second order partial derivatives of f exist on ; = 0. ¢-Taylor
expansion [15] of Vf(z) at the local minimum point z* of (P) is

Vi), ~ [VE®)], + [Z Dy, VE(W)(@; = 2| (i=1,2,...,n).

j=1 ‘
In matrix form, this can be expressed as
V() = Vf®) + D,V fz®)(z* — z*).

Assuming that the optimal solution is attained at (k+ 1) iteration, i.e.
Vf(z*) =0 and z* = *+1) a modified Newton scheme may be considered as

204 = 2®) — [0,V @)1V (D), e)

where D,V f(z(®)) can be derived as in Subsect. 2.1. The matrix D, f(x) is not
necessarily symmetric. For example, consider a function f(z,y) = xy?+2z*. Then
Vf(z,y) = [y +42°, 22y]" and

D,V (x) = (“2(1 ISAREE Q)) ,

which is not symmetric for all ¢. We may consider the symmetric counterpart Dq
of Dg as Dy = §(Dy+DY). In addition to this D,V f(x) may not be positive def-
inite for some g. Positive definiteness of D,V f will be discussed in next section.
Here we assume the symmetric counterpart DqV f and the positive definiteness
of D,V f in a local neighborhood of z*.

The modified iteration scheme (2) may be expressed as

a* ) = 2™ — [D V(") 71V f(a®). (3)

Theorem 1. Suppose g-partial derivatives of Vf with respect to z;(j =
1,2,...,n) exist in a ball N(z*,R) for some R > 0 and x* be the local opti-
mum solution to the problem (P). Moreover, Dqu is positive definite at x* and
following two assumptions hold for some M > 0 and 3 > 0.

AL |[Vf(z) = V() = DV )z — y)ll < Mz =y,
A2, | DV f(a®) 1| < B.

Then the sequence {x*)} described in (3) converges to the solution x* quadrat-
ically and ||V f(z)|| vanishes quadratically in the vicinity of z*.
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Proof. Consider a point z(*+1 = z(*) 45, in the vicinity of z* along the direction
pr € R™. Then
gD g = o) _ g — D, V(W) TV f(2)
= DV f(@®) T DV f(#) (2" — 27) = Vf(2®)).

D — || <[[DgV (™)~ |DgV f(z®))(@®) — 2%) — V(™))
= |DgV (") [V f(z*) = V(@") = DeV (™) (@ -z
< B.M.|z* —2® |2 (by assumptions)
Above inequality guarantees the quadratic convergence of the scheme. Since
D,V is positive definite at z*, so there exists some R’ > 0 such that D,V f is
positive definite in the neighborhood Ny (z*, Rl). If the above process is repeated,
we get

—1 k
3+ — o < (BM)? [la* — 2O,

So the initial pomt £ may be chosen in such a way that z(® ¢
No(z*, min(R, R, 3 5257)) to achieve quadratic order convergence.

From (3), D,V f(z®)(z++1) — () = —¥ f(2(*)). Hence,

IV £ (@ ® D) = [V f(a* D) = Vf(@®)) = DV f(a*))py|
§ M.||x(k+1) o x(k)||2
= M.|[DyV f(2*) 7V ()2
< M| DV f(a® ) Y| [V £ (™))
= MBIV (™).

This proves that the gradient norm vanishes quadratically in the vicinity of z*.

Note: One may note that this local scheme does not demand the existence of
second order partial derivatives of f except at the points on x; = 0. In the follow-
ing optimization problem Newton scheme can not be applied, but the proposed
scheme can be applied efficiently.

Ezample 1. Consider min g ,)cre f1(,y), where

J@-1pPsint + (@ -1 42y —1)4, ifz £l

fi(z,y) attains the minimum at (1,1) (see Fig.1). Since 2 8
(1,1), f1 is not twice differentiable. So second order sufficient conditions can
not be applied to justify the existence of the minimum point as in the case of
higher order numerical optimization methods. Hence, Newton method can not
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be applied. But, the proposed scheme can be applied as described below. Here,
for ¢ # 1,
_ 3(g— 1)sin L (a=D°
DAy = [H0- Dty 5
M Ag-1)

Let I = {g € R | 3(g — I)sin 23 > 0, 12sin 23 > (o=l 1 L}, If we choose

€0,)N(1+ 5,1+ M) for k € Z, then D, f1(1, 1) is positive definite.
On Matlab R-2013b platform, with several initial points, tolerance limit of the
gradient norm as 107°, the proposed scheme (3) reaches to the solution (1,1).
Results are summarized in Table1 for several ¢, (¢ = 0.85,0.87,0.89,0.93,0.95)
with same set of different initial guesses and a pictorial illustration is provided

in Figs.1 and 2.

Note: Scheme (3) has following assumptions, which may be burden to the deci-
sion maker and hence the scheme should be further modified.

— The initial points are selected in the vicinity of the solution. Hence this scheme
is further extended to a global convergent scheme in Subsect. 3.1, which is free
from the choice of initial point.

— Selection of ¢ is difficult. To avoid this, the global convergent scheme in Sub-
sect. 3.1 is further modified in Sect. 4, where any sequence {q } with some mild
property is chosen instead of fixed gq.

3.1 Global Convergence Property of the Proposed Scheme

The iterative scheme (3) has local convergence property. To achieve global con-
vergence of the proposed scheme under some mild conditions, a line search may
be associated with every iterating point, starting with any initial point. In the

;

s i

T v
o o SR

0.7 0.8 0.9 1 1.1

X

Fig. 1. Surface plot of fi(z,y) Fig. 2. Iteration points for fi(z,y)
with initial guess (.77, .91)
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Table 1. g-Newton iteration scheme (3) for fi(z,y)

q | Initial guess | Number of iterations | Final gradient norm
.85 (.82,.85) 92 9.9104e - 06
(.72, .95) 7 9.8387e—-06
(.77, .91) 88 9.8560e — 06
(.97,.81) 94 9.8291e - 06
(1.1,.9) 90 9.9379¢ - 06
.871(.82,.85) 74 9.8573e—-06
(.72, .95) 24 9.9638e - 06
(.77, .91) 46 9.7381e-06
(.97,.81) 33 9.7424e - 06
(1.1,.9) 31 9.5994e - 06
.89/ (.82,.85) 58 9.7938e - 06
(.72, .95) 47 9.9908e - 06
(.77, .91) 53 9.8469¢ - 06
(.97,.81) 59 9.9094e - 06
(1.1,.9) 56 9.9792e - 06
.93 (.82,.85) 94 9.8214e-06
(.72, .95) 24 9.9638e - 06
(.77, .91) 46 9.7381e—-06
(.97,.81) 33 9.7424e - 06
(1.1,.9) 31 9.5994e - 06
.95 (.82,.85) 35 5.2470e - 06
(.72, .95) 17 9.2732e - 06
(.77, .91) 19 9.7412e-06
(.97,.81) 23 9.9306e - 06
(1.1,.9) 21 9.7126e - 06

local scheme, described in Sect. 3, DV f is a symmetric matrix but not necessar-
ily a positive definite matrix. For global convergence one needs to have a positive
definite matrix. Consider the following ¢-Newton line search scheme as

gk — (k) _ ak(TLI(k))_1Vf(x(k)), (4)

where Tq(k) is a positive definite approximation of the matrix D,V f (z*)) and
oy is the step length at z(F). Dqu(x(k)) is the symmetric counterpart of
D,V f(z®). )

D,V f as well as D,V f may not be positive definite at (¥ We need the
matrix Tq(k) to be positive definite, which may be achieved using symmetric
indefinite factorization, described in Subsect.2.2. D,V f(z*)) can be modified
to Tq(k) as ~

¥ = D,V f(z®) + X,
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where E® is the matrix, which is added to D,V f(z®) to force T4" to be
positive definite.

Lemma 1. Let I{(Ték)) denotes the condition number of Ték). If there exists

some C > 0 such that /{(Tq(k)) < C for every k, then under all the standard
assumption of Zoutendjik Theorem, ||V f(z*)|| — 0 as k — 0.

Proof. Let the eigenvalues of Tq(k) be 0 < )\gk) < )\ék) <...< )\%k). Since )\gk) is
the smallest eigenvalue of Tq(k)7 for any u € R”,

W TP = AP [ul?.
Let 6, be the angle between pj, and Vf*) where p;, = f(Tq(k))*Vf(k). Hence,

7", 7 (k) .
cos by — — ka MR ¥ i/ BC Hpklu) _ 5)
IVFE el IV LS [kl Vo

Again VO = | T{7pell < ITS" | sl = A7 |[pe||. Using this in (5), we have

cos 0 Vf(k)Tpk > )\gk) 1 > 1
k=T 2 T s T T 2 =
IVAED el — AP iz — ©

Hence, under the assumption of Zoutendjik condition (that is, cos? 8 ||V f*) > —
0), i.e. limg_o [|[Vf®| = 0.

Lemma 1 justifies that ¢-Newton line search scheme (4) converges to a critical
point. It is more likely that as the functional value reduces at every iteration,
the scheme converges to a local minimum. However, the convergence rate of the
scheme can be justified when 2(*) approaches to the solution as k — oo. In the
vicinity of the solution, o may be chosen as unit length. Moreover, in the vicin-
ity of the solution, DqV f (x(k)) being positive definite, so, for sufficiently large
k, Tq(k) = D,Vf (). Above discussion may be summarized as the following
Algorithm.

Algorithm 2. g-Newton Scheme with Line Search for Unconstrained Opti-
mization

Choose starting point z(?), tolerance limit €, k = 0, fix ¢ > 0;
for k=0,1,2...
Compute D,V f(z*);
Compute Tq(k) = D,V f(z™™) + Ey by Algorithm 1;
kD) = g (k) _ ozk(Tq(k))_1Vf(a:(k)), ay, is computed by
Armijo-Backtracking inexact line search;
if |V £ (D) < e
Stop;
else
k=k+1;
end;
end;
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The line search scheme (4) is an extension to global convergent version of the
local convergent scheme (3). In Example 1, initial points were chosen very close
to the solution. Here, for the same objective function, one may choose the initial
point not necessarily in the vicinity of the solution and can apply Algorithm 2. At

. . — 11.2535 835.3760 Do
the initial point (1.6,4) for ¢ = 0.95, D,V f1 = <835.3760 161.5360)’ which is
not positive definite. For this initial point and backtracking factor 0.7 in Armijo-
backtracking inexact line search with terminating condition ||V f1]| < 107°, 35
iterations are required to reach at the solution. The result is summarized in
Table 2. One may observe that

- D V f is not necessarily p031t1ve definite up to 23" iteration.

- after 2374 iteration D,V f(z(®)) is positive definite which indicates that the
iterating points are entermg in the neighborhood of the minimum point (1,1)
after 237 iteration.

— the matrix Ej corresponding to the positive definite Dqu(m(k)) is a null
matrix.

Note : Both the iterating schemes (3) and (4) do not require the second order
partial derivatives of f over the whole domain. If we further consider f € %2
only in the vicinity of the solution, not necessarily in the whole domain of f,
then scheme (3) behaves almost like practical Newton method. This is justified
in next section for which a sequence {q;} is associated to the scheme instead of
a fixed ¢ at each iteration. We say this new scheme as variant of ¢-Newton line
search scheme.

Table 2. ¢-Newton iteration line search scheme (Algorithm 2) for fi(x,y)

(k) f(x(k)) D WV f( (k))

1. 11.2 4 374604
6) 130.1750 535 835. 3760) ( 09.8776 —374.66 3>

835.3760 161.5360 374.6643 342.4763

112.2 1
56,8833 638 —0. 573)

—0.1573 9.9466

? [

i) e )
o (o) o () (
(o) o () ()
o Gl
) e (22, 227

3.6318 . 0002>

24

34 2.2845e-08

0.0001 .0189
1.7287 —0.0001
0.0001 .0185

1.7265 —O0. 0001)

35 2.0017e—-08
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4 A Variant of g-Newton Line Search Method

In general the Newton direction (py) at (*) satisfies V2 f(z(F)pN = —V f(z*)).
Since the Hessian matrix V2 f may not be positive definite at the points, away
from the solution of (P), so pY may not be a descent direction. There are several
approaches to make the Hessian positive definite. g-analogue of this practical
Newton scheme is developed here.

— f € €' and Vf is Lipschitz continuous.
— f € €2 in the vicinity of the solution.
y

Lemma 2. Let {qr} be a real sequence defined by g1 = 1 — (kg—iklﬁ’ with 0 <
qo < 1, a fized number, then qx converges to 1 as k — oo.

The matrix Dy, Vf(x®) is computed at the iterating point z(¥), If
- Dé’Z)Vf(x(k)) is modified as Tq(,f) = D,S?Vf(ac(k)) + Ej; for some matrix Ej,
such that Tq(f ) becomes positive definite, and

— Ej, is computed using symmetric indefinite factorization as described in Sub-
sect. 2.2,

then the modified direction is the solution of the system Tq(f)pk = —Vf(z®)
and the corresponding scheme can be expressed as

2R+ — (k) _ ak(Téf))_1Vf(m(k)). (6)

This scheme differs from the scheme (4) in the sense that it uses the sequence
{qi} instead of a fixed ¢. Following algorithm explores this concept.

Algorithm 3. Variant of ¢-Newton line search method

Choose starting point (%), tolerance limit €, k = 0, fix ¢o € (0,1);
for k=0,1,2,...

Compute D,V f(z*);

Compute Tq(f) = Dél,f)Vf(a:(k)) + Ej by Algorithm 1;

2D = o) — o (TS =19 £(28), oy, is computed by
Armijo-Backtracking inexact line search;

if [Vf(a* )| < e

Stop;
else
dk+1 = 1-— 4(]@3&)2;
k=k+1,
end;

end;
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4.1 Convergence Analysis

Convergence proof of Algorithm 3 is similar to that of Algorithm 2 under Zou-
tendzik condition with the assumption of bounded condition number of the
matrix Tq(,f ), Assuming the sequence z(®) converges to z*, we discuss the follow-
ing convergence result. The (i, )" entry of Dy Vfis Dy, «, %' In the vicinity
of x*,

lim D, Vf= lim D, ,Vf=V>f.

k—o0 qr—1
Hence, for a local minimum point 2*, Dy, V f(z) is positive definite for sufficiently

large k and = € Nbd(z*). So in limiting case the variant of g-Newton line search
scheme reduces to Newton algorithm.

4.2 Numerical Example for Global Convergent Schemes

Consider the following optimization problem min, ,)cr2 f2(7,y), where

(7)

100(y — 22?2+ (1—2)%2+¢, z>c,

fa(z, ):{x 2 22 _ (1=¢)?

21 =2)* +100(y —2°)* = —*(x —c)+¢c, w<c
f2 € C! and second order partial derivative of fo with respect to 2 does not exist
at 7 = —1.2,y € Rand ¢ = —1.2. So in general f» ¢ C2. However, f, € C? in the
vicinity of the minimum point (1, 1). So, for some initial points (viz. (—1.2,1)),
the practical Newton line search can not be applied where as, ¢-Newton line
search (Algorithm 2) and variant of g-Newton line search (Algorithm 3) can be
applied. For Algorithm 2, ¢ is fixed, say ¢ = 0.999 and for Algorithm 3, a sequence
q is considered, g = 1 — q’;cgl with go = 0.95. Both the Algorithms are executed
with same initial point (z(%),y(®) = (—1.2,1), terminating condition ||V fa <
10~°. Backtracking factor and Armijo parameter are chosen to be 0.7 and 10~*
respectively. Solution of (7) is attained in 35 iterations in case of Algorithm 2 and
34 iterations in case of Algorithm 3. These are pictorially illustrated in Figs. 3
and 4.

Fig. 3. Algorithm 2 for fa(z,y) with initial guess (—1.2, 1)
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Fig. 4. Algorithm 3 for f2(x,y) with initial guess (—1.2, 1)

Conclusion

In this paper quantum calculus is used to develop Newton like schemes for uncon-
strained optimization problems, for which existence of second order partial deriv-
atives at every point is not required. Further a variant of this line search scheme
is proposed which behaves like practical Newton line search method in limiting
case. The global convergence of both schemes have been discussed with numer-
ical examples. The authors hope that this concept may be further modified for
other numerical optimization schemes.

References

10.

11.

12.

Abreu, L.: A g-sampling theorem related to the g-Hankel transform. Proc. Am.
Math. Soc. 133(4), 1197-1203 (2005)

Aral, A., Gupta, V., Agarwal, R.P.: Applications of q-Calculus in Operator Theory.
Springer, New York (2013)

Bangerezako, G.: Variational g-calculus. J. Math. Anal. Appl. 289(2), 650-665
(2004)

Bunch, J.R., Kaufman, L., Parlett, B.N.: Decomposition of a symmetric matrix.
Numer. Math. 27(1), 95-109 (1976)

Duff, 1.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric
linear. ACM Trans. Math. Softw. (TOMS) 9(3), 302-325 (1983)

Fourer, R., Mehrotra, S.: Solving symmetric indefinite systems in an interior-point
method for linear programming. Math. Program. 62(1-3), 15-39 (1993)
Gauchman, H.: Integral inequalities in g-calculus. Comput. Math. Appl. 47(2),
281-300 (2004)

Golub, G.H., Van Loan, C.F.: Matrix Computations, vol. 3. JHU Press, Baltimore
(2012)

Griinbaum, F.A., Haine, L.: The g-version of a theorem of bochner. J. Comput.
Appl. Math. 68(1), 103-114 (1996)

Ismail, M.E., Stanton, D.: Applications of g-Taylor theorems. J. Comput. Appl.
Math. 153(1), 259-272 (2003)

Jing, S.C., Fan, H.Y.: g-Taylor’s formula with its g-remainder. Commun. Theor.
Phys. 23(1), 117 (1995)

Koornwinder, T.H., Swarttouw, R.F.: On g-analogues of the Fourier and Hankel
transforms. Trans. Am. Math. Soc. 333(1), 445-461 (1992)



208

13.

14.

15.

16.

17.

S.K. Chakraborty and G. Panda

Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations
Research and Financial Engineering, 2nd edn. Springer, New York (2006)
Rajkovic, P.M., Marinkovi, S.D., Stankovic, M.S.: Fractional integrals and deriva-
tives in g-calculus. Appl. Anal. Discrete Math. 1(1), 311-323 (2007)

Rajkovic, P.M., Marinkovic, S.D., Stankovic, M.S.: On g-Newton Kantorovich
method for solving systems of equations. Appl. Math. Comput. 168(2), 1432-1448
(2005)

Rajkovic, P.M., Stankovic, M.S., Marinkovic, S.D.: Mean value theorems in
g-calculus. Matematicki Vesnik 54, 171-178 (2002)

Soterroni, A.C., Galski, R.L., Ramos, F.M.: The g-gradient vector for uncon-
strained continuous optimization problems. In: Hu, B., Morasch, K., Pickl, S.,
Siegle, M. (eds.) Operations Research Proceedings 2010, pp. 365-370. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-20009-0_58


http://dx.doi.org/10.1007/978-3-642-20009-0_58

Existence Results of a Generalized Mixed
Exponential Type Vector Variational-Like
Inequalities

N.K. Mahato'®™) and R.N. Mohapatra?

! Indian Institute of Information Technology,
Design and Manufacturing (IIITDM), Jabalpur, India
nihariitkgp@gmail.com
2 Central University Florida, Orlando, USA
Ram.Mohapatra@ucf.edu

Abstract. In this paper, we introduce a new generalized mixed expo-
nential type vector variational-like inequality problems (GMEVVLIP)
and a-relaxed exponentially (p,7n)-monotone mapping. We prove the
existence results of (GMEVVLIP) by utilizing the KKM technique
and Nadlar’s results with a-relaxed exponentially (p,n)-monotone map-
ping in Euclidian spaces. The present work extends some corresponding
results of (GMEVVLIP) [1].
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1 Introduction

Due to the wide range of applicability of vector variational inequality problem,
it has been generalized in many directions and established the existence results
under various conditions (see [2-6]). Exponential type vector variational-like
inequality problems was introduced by [7,8] with exponential type invexities.
In this paper, we have define a very new vector variational inequality prob-
lem namely generalized mixed exponential type vector variational-like inequality
problems which involved an exponential type function.

In the study of vector variational inequality problem the generalized
monotonicity assumption of the operator plays a very important role. Wu and
Huang [9] defined the concepts of relaxed n-a pseudomonotone mappings to
study vector variational-like inequality problem in Banach spaces. Ceng and
Yao [10] considered generalized variational-like inequalities with generalized a-
monotone multifunctions. In 2009, Usman and Khan [1] discussed the solvability
of the generalized mixed vector variational-like inequality problem with relaxed
n — a-P-monotone mappings. Very recently, Plubtieng and Thammathiwat [11]
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considered new generalized mixed vector variational-like inequalities and studied
the existence of solution of the same problem with C-monotonicity assumption.
In this paper we introduced a very new generalized monotone mapping called
a-relaxed exponentially (p,n)-monotone mappings.

Inspired and motivated by [1,7,8,11], we introduce a more general prob-
lem generalized mixed exponential type vector variational-like inequality prob-
lems in R™. We introduce a new generalized mixed exponential type vector
variational-like inequality problems (GMEVVLIP) and a-relaxed exponentially
(p, n)-monotone mapping. We prove the existence results of (GMEVVLIP) by
utilizing the KKM technique and Nadlar’s results with a-relaxed exponentially
(p,n)-monotone mapping in R™. The results presented here, are extension and
improvement of some previous results in the literature.

2 Preliminaries

Let Y = R" be a Euclidian space and C' be a nonempty subset of Y. C' is called
a cone if A\C C C, for any A > 0. Further, the cone C is called convex cone if
C+ C C C. C is pointed cone if C is cone and C N (=C) = {0}. C is said to
be proper cone, if C' # Y. Now, consider C' C Y is a pointed closed convex cone
with intC # () with apex is at origin, where intC' is the set of interior points of
C. Then, C induced a vector ordering in Y as follows:

(i) z<cyey—vel;
(i) edecyey—z¢C;
(i) = <inee y —x € intC}
(iv) = Lintc y =y —x & intC.
By (Y, C), we denote an ordered space with the ordering of ¥ defined by set
C'. Tt is obvious that the ordering relation “<c” defined above, is a partial order.
The following properties are elementary:

(i) e dcyer+z%cy+z forany 2,y,2 €Y,
(i) z €ecy < Az Lo My, for any A > 0.

Let K C X be nonempty closed convex subset of a Euclidian space X = R™
and (Y,C) be an ordered space induced by the closed convex pointed cone C
whose apex at origin with intC # (). The following definitions and lemmas will
be useful in the sequel.

Lemma 2.1 ([10]). Let (Y, C) be an ordered space induced by the pointed closed
convex cone C' with intC # (). Then for any z,y,z € Y, the following relation-
ships hold:

Z2&inic T >0y = 2 Limc Y
z2Fimc®<cy = 2z Fincy.

Definition 2.1. f: X — Y is C-convex on X if f(tx + (1 — t)y) <c¢ tf(z) +
(1—1t)f(y), forall z, y € X, t €[0,1].
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Definition 2.2. A mapping f : K — Y is said to be completely continuous if
for any sequence {z,} € K, z, — z¢ € K weakly, then f(z,) — f(xo).

Definition 2.3. Let f : K — 2% be a set-valued mapping. Then f is said to
be KKM mapping if for any {y1,y2,...,ynt of K we have co{y1,y2,...,yn} C

n

U f(y;), where co{y1,ya2,...,yn} denotes the convex hull of y1,ys2, ..., Yn-

i=1

Lemma 2.2 ([12]). Let M be a nonempty subset of a Hausdorfl topological
vector space X and let f: M — 2% be a KKM mapping. If f(y) is closed in X

for all y € M and compact for some y € M, then ﬂ fy) #0.
yeM

Lemma 2.3 ([13]). Let E be a normed vector space and H be a Hausdorff met-
ric on the collection CB(FE) of all closed and bounded subsets of E, induced by
a metric d in terms of d(x,y) = || — y|| which is defined by

H(A, B) = max | sup inf ||z — sup inf ||z — ,
(4,5) = e (sup it o =, sup in o )

for A, B € CB(E). If A and B are any two members in CB(F), then for each
€ > 0 and each = € A, there exists y € B such that

[z =yl < (1 +€)H(A, B).

In particular, if A and B are compact subset in F, then for each x € A, there
exists y € B such that
|z —yll < H(A, B).

Definition 2.4. Let n : X x X — X be a bi-mapping and A : K — L(X,Y)
be a single-valued mapping, where L(X,Y") be space of all continuous linear
mappings from X to Y. Suppose T : K — 2L(XY) be the nonempty compact
set-valued mapping, then

(i) A is said to be n-hemicontinuous if 1ir51+ (Alz +tly — x)),n(y,x)) =
t—

(Az,n(y, x)), for each z,y € K.

(ii) T is said to be H-hemicontinuous, if for any given z,y € K, the mapping
t — H(T(x +t(y — ), Tx) is continuous at 07, where H is the Hausdorff
matric defined on CB(L(X,Y)).

Definition 2.5. A mapping f : X — X is said to be affine if for any z; € K
and \; > 0, (1 <i<n), with >1" | \; = 1, we have

f (Z Az‘%‘) = Z )\if(xi)-
i=1 i=1
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Definition 2.6. Let X be a Euclidian space. A function f : X — R is lower
semicontinuous at xg € X if

flzo) < limninff(xn)

for any sequence {z,} € X such that x,, converges to xg.

Definition 2.7. Let X be a Euclidian space. A function f : X — R is weakly
upper semicontinuous at zg € X if

f(zo) > limsup f(x,)

n

for any sequence {z,,} € X such that x,, converges to xg weakly.

Lemma 2.4 (Brouwer’s fixed point theorem [14]). Let S be a nonempty, com-
pact and convex subset of a finite-dimensional space and T : S — S be a
continuous mapping. Then there exists a z € S such that T'(z) = z.

3 (GMEVVLIP) with a-relaxed Exponentially
(p, n)-monotone

Let K C X be nonempty closed convex subset of a Euclidian space X and
(Y, C) be an ordered Euclidian space induced by the closed convex pointed cone
C whose apex at origin with intC' # (). Let p € R be a nonzero real number,
n: KxK — Xand f: KxK — Y be two bi-mappings, A : L(X,Y) — L(X,Y)
be a mapping, where L(X,Y) be space of all continuous linear mappings from
X toY,and T : K — 2L(XY) be a vector set-valued mapping. Then The
generalized mixed exponential type vector variational-like inequality problems
(GMEVVLIP) is to find v € K and z € T'(u), such that

<Ax, l(em(w — 1)> + f(u,v) Lintc 0, Yo € K. (3.1)
p

(GMEVVLIP) has wide range of application to vector optimization problems
and vector variational inequalities problems.

Definition 3.1. The mapping T : K — L(X,Y) is said to be a-relaxed expo-
nentially (p,n)-monotone if for every pair of points u,v € K, we have

<Tu —Tw, 1(e]”"(u’”) — 1)> >c a(u —v), (3.2)
p

where o : X — Y with a(tx) = ta(x) for all t > 0 and x € X, where ¢ > 1, a
real number.
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Definition 3.2. Let A : L(X,Y) — L(X,Y). A multivalued mapping T :
K — 28(X5Y) with compact valued is said to be a-relaxed exponentially (p,7)-
monotone with respect to A if for each pair of points u,v € K, we have

<A:c — Ay, %(e’"’(“’”) - 1)> >c a(u—v), Ve e T(u),y € T(v). (3.3)

where a: X — Y with a(tz) = t9a(x) for all ¢ > 0 and « € X, where ¢ > 1, a
real number.

Remark 3.1

(i) If & = 0 then Definition 3.1 is called exponentially (p,n)-monotone, i.e. for
each pair of points u,v € K, we have

1
<Tu — Tw, —(eP"®?) — 1)> >c 0.
p

(ii) If @ = 0 then Definition 3.2 is called exponentially (p,n)-monotone with
respect to A, i.e. for each pair of points u,v € K, we have

<Am — Ay, l(epn(um) — 1)> >c 0, Vo € T(u),y € T'(v).
p

So every exponentially (p,n)-monotone mapping is a-relaxed exponentially
(p,n)-monotone map with o = 0.

Theorem 3.1. Let K be a nonempty bounded closed convex subset of a real
Euclidian space X and (Y,C) is an ordered Euclidian space induced by the
pointed closed convex cone C whose apex is at origin with intC' # (). Suppose
n: K x K — X be affine in the first argument with n(x,z) = 0,Vz € K. Let
f K xK — Y be a C-convex in the second argument with the condition
flz,z) = 0,Vz € K. Let A : L(X,Y) — L(X,Y) be a continuous mapping
and T : K — 2L(XY) be a nonempty compact valued mapping, which is H-
hemicontinuous and a-relaxed exponentially (p,n)-monotone with respect to A.
Then the following two statements (a) and (b) are equivalent:

(a) there exists © € K and T € T'(w) such that
1 _
<Ax, ~(ePnw:@) _ 1)> + f(@,v) Lintc 0, Yo € K.
b
(b) there exists @ € K such that

<Ay7 %(ep"(”’ﬂ) - 1)> + f(@,v) Line a(v —7), Yv e K,y € T(v).
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Proof. Let the statement (a) is true, i.e. there exist w € K and T € T'(u) such
that

<Ax, %(emﬂv@ — 1)> + f(@,v) Lintc 0, Yo € K. (3.4)
Since T is a-relaxed exponentially (p,n)-monotone with respect to A, we have
<Ay — Az, %(ep"(”’ﬂ) - 1)> + f(@,v) >¢ a(v—1)
+ f(w,v), Yv € K,y € T(v)

= <Ay, %(ep"(”’m - 1)> + f(@,v) >¢ <Ax, %(emm) - 1)>
+ a(v—a) + f(u,v), Yo € K,y € T(v)

- <Ay, %(epn(v,ﬂ) — 1)> + f(@,v) — alv—1a) >¢ <A:v, %(epn(v,ﬂ) _ 1)>
+ f(u,v), Yv e K,y € T(v). (3.5)

From (3.4), (3.5) and Lemma 2.1, we get
1 _
<Ay, E(fzm(v’u) - 1)> + £(@,v) Lintc a(v —1), Yv € K,y € T(v).

Conversely, suppose that the statement (b) is true, i.e. there exists u € K
such that

<Ay, %(em@ﬂ) — 1)> + f(@,v) Lintc a(v —1), Vv € K,y € T(v). (3.6)

Let v € K be any point. Letting v; = tv + (1 — t)w, t € (0,1], as K is convex,
vy € K. Let y, € T(v;), we have from (3.6),

<Ayt, ]%(ep"(”“m — 1)> + f(@,v) Lintc a(vy — 1) = ta(v — 7). (3.7)

<Ayt, %(e””(”“ﬁ) — 1)> + f(w,v)
= <Ayt, %(epn(“’*(l*t)ﬂﬂ) - 1)> + f(@, tv + (1 — t)7)
— <Ayt, %(eptn(vﬂ)Jr(lft)pn(ﬂﬂ) _ 1)> + f(@,tv + (1 — t)u)
<e (A (D < 1) 4 (1= (@D - 1)) 4 10

= t{<Ayt, %(em(wﬂ) — 1)> +tf(a,v)} (3.8)
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By (3.7), (3.8) and Lemma 2.1, we get
1 _
<Ayt, ~(epn0®) 1)> + f(@,v) Lintc t7  a(v — ). (3.9)
p

Since T'(v;) and T'(u) are compact, by lemma, for each fixed y; € T'(v;), there
exists x; € T(u) such that

e — 2]l < H(T(00), T())- (3.10)
Since T'(w) is compact, without loss off generality, we may assume that
vy —»TE€T(u)ast— 0T,
Also T is H-hemicontinuous, thus it follows that
H(T(v),T(w)) — 0 ast— 0F.
Now by (3.10) we have

lye = Z < llye — @l + |z — 2|
< H(T(v), T(@)) + ||zs — 7| = 0 ast — 0. (3.11)

Since A is continuous, letting ¢t — 07, we have
1 (v ﬂ) —1 — _ 1 (v E)
1 { g 2~ 1)) — tapo ) - {4z, Lemem 1))
p p
1 _
<| <Ayt — AT, ~(ePn ) — 1)> [t~ (v — @)
p

1 _
< [|Ay: — Afllllg(e”"(”’“) =Dl + " aw -7
—0 ast— 0. (3.12)

From (3.7), we have
<Ayt7 %(ep"(”’ﬂ) — 1)> + f(@,v) — P ta(v — 7w € V/(—intO)
Since V/(—intC) is closed, therefore from (3.12) we have
<A3;, %( p(vT) _ 1)> + f(@,v) € V/(—intC)

= <Ax, l(em@@ - 1)> + f(@,v) Lintc 0, Yv € K.
p

Which completes the proof. O
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Theorem 3.2. Let K be a nonempty bounded closed convex subset of a Euclid-
ian space X and (Y,C) is an ordered Euclidian space induced by the proper
pointed closed convex cone C whose apex is at origin with intC # (. Suppose
n: K x K — X be affine in the first argument with n(z,z) = 0,Vax € K. Let
f: K x K — Y be completely continuous in the first argument and affine in
the second argument with the condition f(x,z2) = 0,Vx € K. Let « : X — Y
is weakly lower semicontinuous. Let A : L(X,Y) — L(X,Y) be a continuous
mapping and T : K — 25(XY) he a nonempty compact valued mapping, which
is H-hemicontinuous and a-relaxed exponentially (p,n)-monotone with respect
to A. Then (GMEVVLIP) is solvable, i.e. there exist u € K and z € T(u) such
that

1
<Ax, f(ep”(”’“) — 1)> + f(u,v) Linte 0, Yv € K.
p
Proof. Consider the set valued mapping F : K — 2% such that
Fv)={ueK: <Ax, %(e’"’(“’“) - 1)>+f(u,v) Lintc 0, for somez € T(u)},VveK.

First we claim that F' is a KKM mapping.
If F is not a KKM mapping, then there exists {u1,usg,...,u,} C K such
m

that co{ui,ug,...,um} € U F(u;), that means there exists at least a u €
i=1

m m
co{uy,ug, ..., um}, u = Ztiui7 where t; > 0,7 =1,2,...,m, Zti =1, but
i=1 i=

i=1
From the construction of F', for any x € T'(u) we have

1
<Ax, f(ep”(“i’“) - 1)> + flu,uy) <inee 0;Mori =1,2,...,m. (3.13)
p
From (3.13), and since 7 is affine in the first argument, it follows that

0 = <Am, %(em’(“’“) - 1)> + f(u,u)

pn(z i, u) m
=1 - 1>> + £l Y i)
i=1

A$77(ei:1 _1)> +Ztlf(u7ul)
p i=1
1 m m

Az, =) ty(ePn(uew) + > tif(u,u;
Ly )+ 3o hslen)

(
< ) itmn(uivu
|

<.
—
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_ iti {<AJ;, %(em(ui,u) - 1)> + f(uvul)}
i=1

<intc Oa

which implies that 0 € intC this contradicts the fact that C' is proper. Hence
F is a KKM mapping.
Define another set valued mapping G : K — 2% such that

Gv)y={ueK: <Ay7 %(ep"(v’w — 1)> + f(u,v) Lintc a(v—u), Vy € T(v)},Vv € K.

Now we will prove that F(v) C G(v), Yv € K.
Let u € F(v), there exists some z € T'(u) such that

<A:r, %(em@vu) - 1)> + f(u,v) Lintc 0. (3.14)

Since T is a-relaxed exponentially (p,n)-monotone with respect to A, therefore
Vv € K,y € T(v), we have

<Am, Lernow) _ 1)> + F(u,v) <o <Ay, %(em”*“) - 1)> 4 F(uw) — a(o —w). (3.15)

p

From (3.14), (3.15) and Lemma 2.1, we have

<Ay, %(e’”’(”’“) — 1)> + f(u,v) Linte a(v —u), Yv € K,y € T(v).

Therefore u € G(v), i.e. F(v) C G(v), Vv € K.

This implies that G is also a KKM mapping.

We claim that for each v € K, G(v) C K is closed in the weak topology of X.

Let us suppose, @ € G(v) the weak closure of G(v). Since X is reflexive,
there is sequence {uy} in G(v) such that {u,} converges weakly to @ € K. Then
for each y € T'(v), we have

<Ay, %(6”’7(”’“") - 1)> + [ (tns v) Lintc (v — up)

1
= <Ay, —(ePn(voun) _ 1)> + f(tn,v) — a(v —uy,) € Y/—intC.
p

Since, Ay and f are completely continuous and Y/—intC is closed