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Preface

This book covers a new Fuzzy Logic domain—the Type-2 Fuzzy Logic, which has
recently received an increasing attention from both academia and industry due to its
advantages in handling information uncertainty in computational systems. More
particularly, it covers a particular domain related to process modelling and control
applications. It provides a new approach for those who seek to use in a single
framework the advantages of model-based control algorithms, such as the possi-
bility of developing high-performing closed-loop systems, and the superior model
uncertainty manipulation capabilities of Type-2 Fuzzy Logic.

Its contents are presented in a bottom-up approach starting with the introduction
of the fundamental concepts of Type-2 Fuzzy Sets, describing how process models
can be easily developed according to its principles and, ultimately, integrate them in
state-of-the art model-based control algorithms. Throughout the book, theory is
complemented with practical applications and reader is invited to take his learning
process one one-step forward by implementing his own applications using the book
materials.

Aveiro, Portugal Rómulo Antão
December 2016
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Chapter 1
Introduction

The development of flexible control algorithms to manipulate a process close to its
best performance without human supervision has been one the most sought goals
of control and system modeling theory. The work of Zadeh during the early 60’s
in the theory of Fuzzy Sets(FSs) and Fuzzy Logic (FL) introduced a fundamental
degree of fuzziness in computational systems. That strategy overcame the difficulties
of obtaining accurate descriptions of models and control systems due to the inherent
variability and noisy operation conditions of real world processes. His achievements
significantly contributed to the state-of-the-art of current technology in a broad range
of applications and even today, on the 50th anniversary of FL’s seminal work [1],
continue to bring about new approaches to optimize the way information uncertainty
is accounted for in computational systems. The Type-2 FL is one of its most recent
extensions.

Despite invariably linked with information fuzziness, the original FL theory does
not consider the inherent uncertainty of assigning a single membership function to
eachFSdefined over a numerical domain—eachmembership function chosen is itself
crisp since it is totally defined without considering any variability on its parameters
(such as its center,width, endpoints or shape). TheType-2FSovercome this limitation
by introducing additional degrees of freedom in the membership function concept so
higher levels of uncertainty over its representation are accounted for. Ultimately, a
Type-2 FS embeds itself a large number of Type-1 FSs under the same label yielding
a blurred Fuzzy Set representation.

Inspired by the simplicity of developing rule based systems, Fuzzy Logic Systems
(FLSs) (based on the Mamdani or Takagi-Sugeno (TS) structures) were naturally
improved by introducing the Type-2 FL formalisms to accommodate higher levels
of uncertainties in the system’s parameters. This transition is fairly natural since the
basic principles of FL are independent of the nature of the membership functions,
requiring only little changes in the typical FLS structure.As a elemental part of a FLS,
Type-2 FSs provides a better coverage of the crisp domain of interest and ultimately
contribute to the reduction of the number of rules required to approximate complex
input-output data relationships [2]. While the additional degrees of freedom of Type-
2 FSs shown greater potential to override conventional information representation

© Springer Nature Singapore Pte Ltd. and Higher Education Press 2017
R. Antão, Type-2 Fuzzy Logic, Nonlinear Physical Science,
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2 1 Introduction

methodologies [3, 4], especially in complex scenarios described by non-linear data
dependencies, generally their use requires a larger computational effort due to com-
plexity of the required calculations. For that reason, a great amount of research in
Type-2 FL domains has been put towards developing more efficient representations
such as Interval Type-2 FSs [5], in order to get around this bottleneck and further
extend its applicability to real world scenarios. Such approach is already yielding
promising results, leading to successful applications in traditional FL domains such
as modeling, control or classification systems.

As far as control systems development is concerned, the state-of-the-art of Type-2
FLSs does not seem to be taking full advantage of the most important achievements
of model based control algorithms. Literature mainly highlights approaches based
on PID structures [6–8]—whose discrete-time implementations still have deep roots
in traditional continuous-time concepts such as step response analysis. One can also
findmodel-based approaches usingDirect Inversemodels, obtained bymeans of ana-
lytical methods that directly invert Type-2 TS FuzzyModels(FMs) [9, 10] or bymod-
eling the inverse dynamics of the system [11]. While inverse model controllers are
intuitively simple and eventual steady-state errors can be compensated by integrating
the inverse model in an Internal Model Control structure [10], such approaches may
not work satisfactory when a system’s inverse model is not well-damped. To some
extent, Type-2 Fuzzy Control state-of-the-art is not considering the improvements
brought by model-based control design techniques such as Pole-Placement [12] or
Model Predictive Control (MPC) [13]. The latter approach became, in fact, one of
the most popular methods in both industrial and academic communities, efficiently
handling a wide range of control problems with large number of design variables
such as systems with multiple control inputs and control signal constraints. One of
its simplest, yet robust implementations is the Generalized Predictive Control (GPC)
algorithm [14].

The process’s model is a cornerstone of every MPC implementation and its accu-
racy ultimately defines the quality of the control system in terms of tracking capa-
bilities and robustness to external disturbances. While most of time linear approx-
imations are enough, in some applications it is of uttermost importance to develop
models that take in account the possible non-linearities of the process. Traditionally,
MPC implementations are based on linear models but, in order to extend its theory
to non-linear processes, the combination of FMs with MPC became increasingly
discussed in recent years and has been the object of important studies regarding its
stability and applicability [15–17]. More particularly, TS FMs shown advantageous
for such purpose by two main reasons:

• Capability of modeling complex non-linear processes using input-output data
along with a priori knowledge of the system provided by the user. By combining
the efficiency of fuzzy reasoning in handling uncertain information and the neural
networks learning ability in model’s development, TS Fuzzy systems retain an
important level of interpretability and adaptability in their structure.
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• Its structure follows a two-layered computing schemewhich partitions a non-linear
system as a contributions of several locally linear models. Such topology avoids
the use of extensive non-linear optimization algorithms during model training and
allows the design of controllers according to linear control theory.

Type-2 FL is formal extension of its original Type-1 counterpart and shares many
of its applications but, up to the date, examples of the use of Type-2 TS FMs as
support for MPC algorithms are scarse [18]. Hence the main goal of this book is
to present a systematic methodology to merge both domains and assess the perfor-
mance improvements achieved over classical implementations of MPC, developing
a closed loop control algorithm based on MPC theory and a Type-2 FMs which can
be implemented in general purpose embedded systems.

In this line of thought, this book aims to expand the reader’s knowledge of Type-2
FL in the following four topics:

• Develop simpler methods for training a Type-2 Takagi-Sugeno FM. While cur-
rently every parameters of such structure are trained as part of a single error min-
imization problem, it is computationally more efficient and tractable to the user
to consider two separate problems: the training of a supporting Type-1 Takagi-
Sugeno Fuzzy System and the introduction of a Footprint-of-Uncertainty (FOU)
over the respective parameters. The width of the latter can be adjusted so the
approximation capabilities of the model are improved.

• Apply the principles of Type-2FL to reduce the influence ofmodeling uncertainties
on locally linear prediction models. The development of a multi-step predictor
for a non-linear system typically establishes a trade-off between accuracy and
computational complexity. While a good compromise can be usually achieved
using locally linear approximations from TS FMs, in changing operation regimes
the predictor’s validity may be significantly reduced. Though, its performance can
be improved by obtaining a linearized model from a Type-2 Takagi-Sugeno FM
and so the necessary procedures will be presented.

• Create model-based control algorithms according to the GPC principles using
Type-2 FS. By synthesizing a control law based on linearized Type-2 TS FMs, a
superior closed loop tracking performance and robustness to unmodeled operation
conditions can be achieved comparatively to traditional GPC implementations.

• Implement a closed loop controller based on GPC theory and a Type-2 TS FMs in
embedded platforms. The higher computational requirements of Type-2 FL based
systems impose significant constraints over their use in real-time applications.
Therefore, the algorithm’s turnaround time will be evaluated when executed in a
ARM� Cortex�–M4 c© microcontroller in order to assess its possible applications
and limitations.



4 1 Introduction

1.1 Book Outline

The contents of this book spans over seven chapters, organized as follows:

• Chapter 2 introduces the fundamental concepts of FLS and their extension to a
particular branch of the Type-2 FL theory based on Interval Type-2 Fuzzy Sets.

• Chapter 3 focuses on a particular implementation of the fuzzy inference mech-
anisms, the TS Fuzzy Systems, presenting the improvements of its traditional
formulation (based on Type-1 Fuzzy Sets) according to the most recent devel-
opments on Type-2 Fuzzy Sets’ theory. The procedures for system identification
based on the proposed structure are outlined.

• Chapter 4 presents an approach for the development of a n-step ahead prediction
model based on the linearization of a Type-2 Takagi-Sugeno FM. The capabilities
of such methodology are evaluated using two non-linear processes as benchmark
systems.

• Chapter 5 proposes the use of Interval Type-2 FMs for the development of a MPC
according to the GPC theory. Based on the two benchmark scenarios presented in
the previous chapter, the performance of the respective closed loop control systems
will be evaluated under several unmeasured external disturbances.

• Chapter 6 presents a Processor-in-the-Loop framework based on a ARM�

Cortex�-M4 development board and the MATLAB� Simulink�. The proposed
system is implemented not only to evaluate the feasibility of implementing Type-
2 FLS in computationally constrained platforms, but also to improve the devel-
opment and testing stages of complex embedded systems, providing an easier
transition between the simulation and real world environments.

• Finally Chap. 7 presents the concluding remarks regarding the proposed method-
ologies, discussing some possible lines of work for future development.
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Chapter 2
Fuzzy Logic Systems

2.1 Introduction

The human mind has always shown a remarkable capability of coordinating a wide
variety of physical and mental tasks without using any explicit measurements and
computations. Considerable efforts were made since the early 1950s towards the
development of a scientific theory of intelligence and the development of an artificial
model of the brain capable to mimic our perception, cognition and behavioral systems
[1, 2]. Despite the accomplishments of system’s theory and artificial intelligence,
that are increasingly present in our daily activities, in practice computational systems
still present several limitations that keep them behind human capabilities. The high
dimensionality of information structures stored in computational systems resulting
from the use of crisp measurements is one of the major burdens that the development
of an intelligence framework must overcome. Uncertainties and imprecisions on
information can at first instance be seen as a disadvantage for a decision process
but they are important information compression mechanisms that let people make
choices in a quick way. Without such tools, taking a decision would be a never
ending process, requiring every infinitesimal part of information and its respective
combinations to be considered. Therefore, the development of intelligent systems has
to focus on the human capability of manipulating imprecise, uncertain and sometimes
incomplete information.

Zadeh was challenged by this problem in 1965 and, in his seminal paper [3],
he lays the foundation-stone of a methodology known as FL, where the objects
of computation are words and propositions drawn from natural language. While
Boolean logic results are restricted to values “0 and 1”, FL defines for the first time
a computational framework to efficiently manipulate intermediate results between
the values of absolute true and absolute false. The fuzzy information representation
is based on Fuzzy Sets, which are no more than a simple way to translate a crisp
measurement into a degree of belonging in a linguistic label. This means that fuzzy

© Springer Nature Singapore Pte Ltd. and Higher Education Press 2017
R. Antão, Type-2 Fuzzy Logic, Nonlinear Physical Science,
DOI 10.1007/978-981-10-4633-9_2
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sets can handle some concepts that we commonly deal with in daily life, like “very
cold”, “cold”, “hot”, “very hot”, without having to know the specific temperature
ranges each concept refers to. Therefore, Fuzzy Logic is more like human thinking
because of its reliance on degrees of truth and the use of linguistic variables.

Initially, FL theory was not well-received by the peer community in engineering
domains due to its unusual vagueness. Nonetheless, since 1970, it has been widely ap-
plied in control applications, establishing successive milestones. Its principles were
used to control a laboratory-built steam engine by Mamdani at the University of
London in 1974 [4] and the first industrial application was a cement kiln controller
built in Denmark in 1979 [5]. Despite born in the USA and theoretically validated in
Europe, it was in Japan that FL gained broad notoriety when several Japanese com-
panies pioneered successful practical applications with high impact in the society.
One of the most renowned projects was presented in 1987, when Hitachi turned over
control of a subway in Sendai, Japan, to a fuzzy system (Fig. 2.1). Fuzzy control
techniques were used in all the critical operations of the train’s control system, such
as accelerating, breaking, and stopping operations [6] but also in traffic planning and
predicting customer’s usage of subway facilities. In 1987, Yamakawa successfully
developed a fuzzy controller applied to a inverted pendulum experiment—a classic
control problem [7]. A few years later, NASA took fuzzy logic beyond our planet
aboard the Endeavour space shuttle, transporting a Commercial Refrigerator Incu-
bator Module as an experimental payload, which successfully allowed the control of
a test chamber’s air temperature according to a pre-programmed profile [8]. Since
then, several companies have been using fuzzy logic to control hundreds of house-
hold appliances, implement decision making systems and improve the performance
of many other electronic devices present in our daily life such as air conditioners,
video cameras, televisions, washing machines, bus time tables, medical diagnoses
or anti-lock braking systems.

Fig. 2.1 Sendai subway 1000 Series—The first subway coach using a fuzzy control system
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Fuzzy Logic Systems are typically developed around two main types of inference
frameworks: the Mamdani [9] and the Takagi-Sugeno [10] methods. Despite the
differences between the two methods, when non-linear Fuzzy Sets are used to model
linguistic labels, FLSs become non-linear structures with universal approximation
capabilities [11], a property of major importance when they are used as support for
modeling and control techniques. Since both inference mechanisms share several
theoretical principles, this chapter will firstly introduce FL’s fundamentals based on
the Mamdani inference.

2.2 Type-1 Fuzzy Sets

With the development of FL, the Type-1 FSs were defined for the first time. Type-1
FSs are a computational formalism that mimics our tendency to group crisp mea-
surements displayed under a numeric scale using the same linguistic term when a
more specific distinction is not required for a good understanding. For example, we
describe temperatures using a linguistic terms that go from “Very Cold” to “Very
Hot”, speed using terms from “Very Slow” to “Very Fast” or the visible colors from
“Violet” to “Red”. With these descriptions, we are capable of abstain ourselves from
the crispness of numeric scales expressed in ◦C, km/h or nm. Each Type-1 Fs is syn-
tactically represented by a label Fi characterized by a Membership Function (MF),
a two-dimensional function that defines the degree of association of a numeric value
under the respective linguistic label using a crisp number in the range [0–1]. Different
shapes of MFs can be considered, namely triangular, trapezoidal or gaussian shaped
functions. Figure 2.2 depicts an example of a generic input domain partitioned using
gaussian shaped MFs.
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Fig. 2.2 Generic input domain partition using Type-1 Fuzzy Sets
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2.3 Type-1 Fuzzy Logic Systems

One of the most appreciated methods of manipulating linguistic information is to use
FLSs based on If-Then rules, a method that can be easily used to develop models and
control algorithms in a way closer to human perception and thinking. There exist also
alternatives to the use of rule based systems [12] involving arithmetic approaches
using the Extension Principle [13]. To enunciate the required logic statements, this
principle redefines common algebraic operations such as addition, multiplication,
among many others to the domain of Fuzzy Sets. Sometimes it is hard to define
If-Then rules using compact algebraic operations. Nevertheless, this approach is
particularly useful in situations where the problem has a high dimensionality, i.e. the
number of existing rules used to describe the system is so high that it may result in
a computationally inefficient process.

A FLS based on Type-1 FSs consists of four main elements, as depicted in Fig. 2.3
and briefly described as follows.

• The Fuzzifier, which is an interface which maps a crisp number into a fuzzy domain
defined by a Fuzzy Set. The most widely method is the singleton fuzzifier, in which
measurements are considered perfect and therefore modeled as crisp values, i.e.,
as singletons.

• The Rule-Base, which is the heart of a FLS and is composed by information given
by experts or extracted from numerical data, is often organized as several If-Then
statements, where the If part of a rule is its antecedent, and the Then part of the
rule is its consequent.

• The Inference Engine, which is the mechanism that implements the algebras re-
quired to manipulate Fuzzy Sets. In the same way humans use many inferential
procedures, there exist several methods to do so based on FL. The Mamdani and
the Takagi-Sugeno inference mechanisms are the two most popular ones [14].

• The Output Processor, which is the final stage of the FLS and implements the
defuzzification procedures to aggregate the output fuzzy set into a single crisp value
adequate to the FLS application scenario (usually a process’s output prediction in
modeling applications or the actuation value of a control system).

Fuzzifier Rule Base

Inference Output Processor

Crisp
Input

Type-1
Fuzzy Sets

Type-1
Fuzzy Sets

Crisp
Output

Fig. 2.3 Type-1 fuzzy Logic System structure
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2.3.1 Fuzzifier

As pointed out previously, the singleton fuzzifier is the most used method to im-
plement the Fuzzifier stage of a FLS due to its conceptual simplicity and easy data
manipulation in the subsequent stages of the FLS. Other functions could be used
to perform this operation, as gaussian or triangular functions, but then calculating
the firing levels of each antecedent membership function would become a far more
complex process [13]. For this reason, singletons are considered in this work, and
defined as:

μAx (x) =
{

1, x = x ′
0, otherwise

, (2.1)

where x ′ is the input value. This concept is depicted in Fig. 2.4.

2.3.2 Rule-Base

Rules play a central role in the structure of a FLS and are a simple way to gather
the knowledge that define the behavior of a fuzzy system in a specific application.
These rules are developed using different types of FSs, that are associated with the
linguistic terms that appear in the rule’s antecedent and consequent parts and are
interconnected by operators that establish the relationship dependencies between
fuzzy terms.

The most used rule structure is presented in Eq. (2.2)

Ri : I f x1 is F
i
1 and · · · and x j is F

i
j , Then yi is Gi , (2.2)

where Ri represents the i th fuzzy rule, Fl
j and Gi are linguistic terms characterized

by Type-1 Fuzzy Sets, i = {1, · · · , M} where M is the number of fuzzy rules,

x′

Ax
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μ

Fig. 2.4 Depiction of a singleton input
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j = {1, · · · , N } where N is the number of antecedents, x j are the fuzzy system
inputs and yi is the rule output.

The linguistic terms F and G can assume several different shapes such as tri-
angular, trapezoidal or gaussian. The latter form was employed in this work, being
defined as presented in Eq. (2.3).

g(c, σ, x) = exp

[
−1

2

(
x − c

σ

)2
]

(2.3)

The rule structure (2.2) is just one example of many prospective ways to embed
knowledge in a FLS. Similarly to our natural language, one can employ other com-
binations of FSs using for example or relationships, consider the negation of fuzzy
sets, or even using non-obvious connectives like unless or comparative terms [13].
Though, in most scenarios, such logical statements can be represented using the more
regular structure of Eq. (2.2).

2.3.3 Inference Engine

The manipulation of fuzzy sets can be performed according to several different
algebraic operations depending on the possible combinations of operators used for
implementing the rule’s connective terms, implication methods and rule aggregation.
Let us consider two Type-1 FS F1 and F2 characterized by the MFs μF1(x) and μF2(x)

F1 =
∫
x∈ R

μF1(x)dx , F2 =
∫
x∈ R

μF2(x)dx . (2.4)

The basic logic operations (union, (s-norm), intersection (t-norm) and comple-
ment (c-norm)) that provide the support for FS’s manipulation can be defined as
follows:

μF1∪F2(x) = max
[
μF1(x), μF2(x)

]
, f or x ∈ R

μF1∩F2(x) = min
[
μF1(x), μF2(x)

]
,

μF (x) = 1 − μF (x) .

(2.5)

The intersection operator can also be implemented based on the algebraic product
and is defined as:

μF1∩F2(x) = μF1(x) ∗ μF2(x), x ∈ R . (2.6)

Since the usual way of constructing a rule is to use the and connectives, the t-norm
operators are the most used ones. Regardless the implementation followed, since
the membership grades μF1(x) and μF2(x) are crisp numbers, any of the operations
presented in Eqs. (2.5) and (2.6) yields a crisp number. More particularly, when these
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Fig. 2.5 Operation between singleton input and the antecedents of a Type-1 FLS using a t-norm
operator (minimum or product)

operators are used to aggregate several fired FSs from the antecedent part of the rule,
the obtained result is typically referred to as the i th rule firing level f i . Figure 2.5
depicts the use of the t-norm in a two antecedent operation.

When both rule’s antecedents and consequent are expressed using Type-1 FS, the
implication of the rule’s firing level over the consequent FS is typically obtained
using one of the Mamdani implication methods, namely the Mamdani minimum or
the Mamdani product. These methods are based on the t-norm operators previously
described and are applied between the rule’s firing level f i and its consequent FS,
Gi (x)

f i → Gi (y) = min{ f i , μGi (y)}, f or y ∈ R

f i → Gi (y) = f iμGi (y) .
(2.7)

Depending whether the minimum or the product t-norm is used, one obtains a
clipped or a scaled version of the consequent MF, as depicted in Fig. 2.6.

The inference process ends up by obtaining a fuzzy set determined by the aggre-
gation of the output of all the fired FLSs rules. One of the most used methods to do
so is to use a t-conorm—the fuzzy union, which is no more than a method for finding
the maximum value of the overlapped FSs. This is depicted in Fig. 2.7.
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(a) Fired output sets using the minimum
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(b) Fired output sets using the product
t-norm.

Fig. 2.6 Mamdani inference operations using Type-1 FSs
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Fig. 2.7 Type-1 Fuzzy Set fired consequents’ aggregation procedure, after using the mamdani
minimum implication

Still, this final step is not consensual among authors, existing some that give
preference to aggregate the output of every rule before defuzzification while others
perform the aggregation as part of the defuzzification procedure. Given this fact there
exist several different methods to implement FLS defuzzification stage, as will be
following discussed.
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2.3.4 Output Processor

The Output Processor is employed to obtain a crisp output from the FS resulting
from the inference procedure, a process known as defuzzification. The literature is
rich in defuzzifiers methods but, considering applications in modeling and control
domains, their computational efficiency is often the main exclusion criterion. From
the available methods, the Centroid and the Center-of-Sets defuzzifiers are the most
frequently used ones [13], and represent good examples of the two different aggre-
gation/defuzzification approaches.

The Centroid defuzzifier obtains a crisp value by finding the centroid of a Type-1
FS resulting from the union of the consequent fuzzy sets. By sampling the resulting
Gout FS into K points, as depicted in Fig. 2.8, its centroid is given by:

yC =

K∑
i=1

yiμGout (yi )

K∑
i=1

μGout (yi )

. (2.8)

Alternatively, the Center-of-Sets defuzzifier does not rely on prior aggregation of
every fired consequent FS. Instead, it replaces every rule’s consequent Type-1 FS by
a singleton placed at its centroid which amplitude is given by the respective rule’s
firing level. The defuzzifier output value is then obtained by calculating the centroid
of the Type-1 FS comprised of these singletons, and is given by:

yCOS =

M∑
i=1

ci f i

M∑
i=1

f i
, (2.9)
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Fig. 2.8 Defuzzification procedure based on the centroid method applied to the Gout fuzzy set
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Fig. 2.9 Defuzzification procedure based on the Center-of-Sets method, using the centroid of each
fired consequent fuzzy sets separately

where ci is the centroid of the i t h consequent FS, M is the number of rules of the
FLS and fi is each rule’s firing level. This procedure is depicted in Fig. 2.9.

The latter approach is usually preferred when implemented in computationally
constrained systems since the centroid of each consequent’s FS can be calculated a
priori and stored in the system, before the fuzzy system is deployed. After performing
this step, the FLS’s output is obtained as a weighted average of the pre-calculated
centroids.

2.3.5 Considerations About Type-1 Fuzzy Logic Systems

The importance of the additive structure that a Fuzzy Logic System presents goes
far beyond its rules’ intelligibility. By using several rules, one is in fact defining
several fuzzy patches and average the ones that overlap, ultimately performing a
multi-variable function approximation. Such procedure’s accuracy improves as the
fuzzy patches grow in number and shrink in size.

The Type-1 FSs have been found to provide good results in uncertainty modeling,
but there are several opinions referring that using them as a model for a linguistic
label is an incorrect scientific theory [15]. As is pointed out in Jerry Mendel’s line
of reasoning [15], it is easy to understand the reasons for this refutation:

• A Type-1 FS representation for a word is well-defined by its Membership Function
that is totally certain once all of its parameters are specified.

• Words mean different things to different people and so are uncertain.
• Therefore, it is a contradiction to say that something that is certain can model

something that is uncertain.
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The same way the variance provides a measure of dispersion about the mean,
the uncertainty of a linguistic term also needs to be captured, and is not possible to
represent such when a single static MF is used. In Fuzzy Set’s theory, this second
order uncertainty can be modeled by Type-2 Fuzzy Sets.

2.4 Type-2 Fuzzy Sets

The concept of Type-2 FSs was developed by Zadeh in 1975 as an extension of
Type-1 FSs [16], but it only gained broader audience much more recently with the
several developments proposed by Mendel and Karnik [17]. Type-1 FSs introduced
an important degree of fuzziness to create a linguistic partition of a crisp domain.
Nonetheless, the MFs used to do so are themselves crisp since they are totally defined
without considering any uncertainty on their parameters. Type-2 FS overcome this
limitation by defining a secondary degree of fuzziness. In this case, the membership
value for each input of a FS is itself defined as a FS in the [0, 1] domain [13]. To
better understand this new dimensionality, suppose the process of defining a concept
as a Type-1 FS by polling a group of experts. After gathering all the responses, cer-
tainly it will be noticed that the endpoints of the membership function will vary from
person to person. The union of all embedded Type-1 FSs eventually will end up in a
blurred area, known as FOU, that is bounded by two MFs, namely the Upper Mem-
bership Function (UMF) and the Lower Membership Function (LMF). Furthermore,
each membership function given by a person can be assigned with a variable weight
according to the amount of confidence associated to its opinion, defining this way
the secondary degree of fuzziness. For this reason, a Type-2 FS representation em-
beds additional degrees of freedom which can better handle uncertainties caused by
noisy data and changing environments as is required for example when developing a
process’s model. Figure 2.10 gives a better overview of the new concepts introduced
by Type-2 FSs, which can be generically represented by:

F̃ =
∫
u∈X

μ(u)du =
∫
u∈X

∫
x∈Jx

g(x)dxdu Jx ⊆ 
, X ⊆ [0, 1] , (2.10)

where the g(x) is one of the possible primary MFs, x is the FS input value and u is
the primary membership degree.

Until the late nineties, research work on Type-2 FSs was of highly mathematical
and theoretical nature, having few publications dedicated to it [18]. The main inves-
tigation line was focused on the development of logical operators, with important
works from Mizumoto and Tanaka [19], Dubois and Prade [20] and more recently
Karnik and Mendel [17]. Another important topic that has received little attention
in the literature is the process of acquisition of the Type-2 FSs’ membership func-
tions. From the few works published about this topic, Turksen [21] proposes that a
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(a) FOU of a Type-2 Fuzzy Set, evincing several embedded Fuzzy Sets.

(b) Vertical slice over the FOU, evincing the variable secondary
membership value of each embedded Fuzzy Set.

Fig. 2.10 Representation of a Type-2 Fuzzy Set

Type-2 FS representation can be constructed with the mean and standard deviations
of scatter points obtained from surveys. More recently Wagner and Hagras [22] pro-
posed a recursive algorithm to define an optimal approximation of the second degree
membership function based on the collected data histogram for the cases of linguis-
tic variables and noisy sensor measurements. The representation and manipulation
algebras of Type-2 FSs are also non-closed problems, existing some recent propos-
als such as [23–25] that introduce simplifications in the Type-2 FSs’s representation
while maintaining the uncertainty in information representation over the inference
stages.
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2.5 Type-2 Fuzzy Logic Systems

The success of Type-1 FLSs naturally led to the development of FLSs based on
Type-2 FSs. The structure of a Type-2 FLSs shares the same core components of its
Type-1 counterpart, namely: a Fuzzifier, a Rule-Base, an Inference Engine and an
Output Processor. While in Type-1 FLSs the final stage resumes to a defuzzification
procedure, in the Type-2 case the Output Processor embraces an additional stage so
that Type-2 FS is firstly converted into an equivalent Type-1 FS. This procedure is
implemented by a Type-Reduction (TR) algorithm, which will be presented further
in this document. The interdependency of the referred blocks is depicted in Fig. 2.11.

Type-2 FSs can be used either on antecedent, consequent or both levels of the
Type-2 FLS, depending on whether is advantageous to account for uncertainties at
the referred parts of the rule. As a consequence of its additional degrees of freedom, it
has been argued that Type-2 FLSs have a great potential to produce better performing
systems. The main reasons for this statement are the following:

• Given the fact that a Type-2 FS embeds itself a large number of Type-1 FS under
the same label, it is possible to cover the same range of operation of a Type-1 FS
with a smaller number of labels and rules, reducing the complexity of modeling,
tuning and understanding a rule-base system comparatively to a similar performing
Type-1 FS. This rule reduction capability is particularly advantageous in situations
when the number of system inputs tend to increase, as it reduces the number of
possible combinations of the linguistic labels that describe each input.

• In a Type-2 FLS, since each input and output is indirectly represented by a large
number of Type-1 FSs, more complex input/output relationships that could not be
obtained with in a Type-1 FLS can now be modeled without necessarily increase
the number of rules [26].

While the additional degrees of freedom of Type-2 FSs revealed a considerable
potential of supplanting conventional methodologies [23, 25], especially in complex
non-linear modeling tasks, generally their use calls for a greater computational effort.
Since Type-2 FS membership degrees are given as a function of a Type-1 FS, the
formalisms of elementary fuzzy computations such as the union, intersection and

Fuzzifier Rule Base

Inference Type-Reducer

Defuzzifier

Output Processor

Crisp
Input

Type-2
Fuzzy Sets

Type-2
Fuzzy Sets

Type-1
Fuzzy Sets

Crisp
Output

Fig. 2.11 Type-2 Fuzzy Logic System structure
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complement are performed in a three-dimensional space, requiring far more com-
plex procedures based on Zadeh’s Extension Principle to implement such algebras.
Moreover, the accuracy of the TR procedure depends on the number of discretiza-
tion points of the FS input domain, which naturally is as better as many evaluation
points are used - but the computational complexity also increases likewise. For that
reason, a great amount of research in Type-2 Fuzzy Logic domains has been put to-
wards developing more efficient representations in order to overcome this bottleneck
and further extend its applicability to scenarios where the available computational
resources are insufficient to cope with the time constants of the application scenarios.

In the past decade, Type-2 FSs’ theory publication rate increased significantly,
putting stronger efforts towards the reduction of its theoretical complexity and inher-
ent computational effort - the two main problems that kept this uncertainty modeling
tool away from real world applications until recent years. Shortly after its first publi-
cations, most of the authors focused on a simplified representation known as Interval
Type-2 Fuzzy Sets (IT2FSs). In a IT2FS, the MFs uncertainty is restricted to the
FOU and considers the third dimension of the Fuzzy Set as uniformly distributed
with a membership value “1” [18]. As so, each primary membership is associated
with the same third dimension, and each fuzzy set is characterized solely by its LMF
and UMF. This concept is depicted in Fig. 2.12.

The Interval Type-2 FS can also be represented based on triangular, gaussian,
trapezoidal or sigmoidal MFs. However, while one can define an arbitrary FOU as
a piecewise function, the use of the referred classical shapes simplify further model
adjustments in training procedures. For this reason, the literature mostly uses gaussian
MFs since their FOU can be modeled by varying their mean and standard deviation,
as follows:

F̃i (ci , σi , x) = exp

[
−1

2

(
x − ci

σi

)2
]

= G(ci , σi , x), σ i
j ∈ [σ1i , σ2i ] and ci ∈ [c1i , c2i ] .

(2.11)

Figure 2.13 illustrates the resulting Type-2 FS by varying each one of the referred
parameters individually.

The use of an interval based representation significantly reduced the complexity
of all the calculations required in the FLSs and, for that reason, turned Interval
Type-2 Fuzzy Logic Systems (IT2FLSs) feasible in practical scenarios. Despite the
changes in the nature of the MFs, the basic principles of fuzzy logic remain valid
and, consequently, IT2FSs’ manipulation procedures are very similar to the ones
already presented regarding its Type-1 counterpart. Following, a brief analysis of the
Type-2 FLS based on the Mamdani inference will be performed assuming that both
antecedent and consequent FSs are of Type-2 nature.
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(a) FOU of an Interval Type-2 Fuzzy Set, evincing several embedded
Fuzzy Sets.

(b) Vertical slice over the FOU, evincing the constant secondary
membership value of each embedded Fuzzy Set.

Fig. 2.12 Representation of an interval Type-2 Fuzzy Set
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Fig. 2.13 Two possible representations of an interval Type-2 Fuzzy Set based on gaussian mem-
bership functions
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2.5.1 Fuzzifier

Similarly to the Type-1 FLS, the simplest way of implementing the fuzzifier of a
Type-2 FLS is to map a crisp input into a Singleton FS, as defined in Eq. (2.12).
While information uncertainty is not explicitly considered in the fuzzification stage,
it is indirectly accounted for in the rule’s FSs representation

μ Ãx
(x) =

{
1, x = x ′
0, otherwise

(2.12)

where x ′ is the system’s input value.

2.5.2 Rule-Base

As a natural extension of Type-1 FLS, the Type-2 FLSs also synthesize their Rule-
Base in a set of If-Then rules, establishing the relations between the system’s input
and output. Regardless the Fuzzy Sets nature, the procedure how rules are created
remains the same. Therefore, a Type-2 FLS rule is represented as follows:

Ri : I f x1 is F̃
i
1 and · · · and x j is F̃

i
j , Then yi is G̃i , (2.13)

where Ri represents the i th fuzzy rule, F̃ i
j and G̃i are linguistic terms characterized

by Interval Type-2 FSs, i = {1, · · · , M} where M is the number of rules, j =
{1, · · · , N } where N is the number of antecedents, x j are the FLS inputs and yi is
the rule output.

2.5.3 Inference Engine

The main difference between a Type-1 FLS and a Type-2 FLS lies in their inference
engine. In Sect. 2.2, it was concluded that the result of the j th input and corresponding
antecedent operations in the i th rule yields a crisp number (μi

j ) referred as member-
ship degree. In an IT2FS the result of this operation is an interval given by μ̃i

j as
follows:

μ̃Fi
j
(x j ) =

[
μ

F̃ i
j
(x j ), μF̃ i

j
(x j )

]
(2.14)

where x j is the j th FLS system input.

Despite the apparent complexity of this result, an interval based representation
allows the direct use of the basic fuzzy logic operations (union (s-norm), intersection
(t-norm) and complement (c-norm)) as previously defined in Eqs. (2.5) and (2.6) by
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Fig. 2.14 Representation of the operation between singleton input and the antecedents of a Type-2
FLS using a t-norm operator (minimum or product)

considering the upper and lower bounds of the IT2FS separately. As so, the t-norm
operator, which is used to perform the intersection of the antecedent FS is defined
as:

f i = T N
j=1μF̃ i

j
(x j ) f

i = T N
j=1μF̃ i

j
(x j ) (2.15)

where T is a t-norm (product or minimum). The result of input and antecedent
operations (for the minimum and product t-norm) is depicted in Fig. 2.14.

Similarly, the Mamdani implication methods (the Mamdani’s minimum and prod-
uct) can be directly used with IT2FS by applying the t-norm operator to the rule’s
firing level f̃ i and the consequent G̃i . This procedure is performed by considering
the upper and lower bounds of f̃ i and G̃i separately, as presented in Fig. 2.15 for the
minimum and product t-norms.

The inference process yields a FS determined by the aggregation of the output
of all the fired fuzzy sets. Similarly to the Type-1 FLS case, one can merge the
contribution of each rule by finding the maximum value of the overlapped FSs, as
depicted in Fig. 2.16. To obtain a crisp output after this procedure, one will have to
apply a TR algorithm firstly, as will be discussed in the following subsection.
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Fig. 2.15 Mamdani inference operations using Type-2 FSs
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Fig. 2.16 Type-2 Fuzzy Sets fired consequents’ aggregation procedure, after using the Mamdani
minimum implication



2.5 Type-2 Fuzzy Logic Systems 25

2.5.4 Type-Reduction

In order to develop practical applications based on the Type-2 FL, it becomes nec-
essary to obtain a crisp value from the combination of all fired FS. To accomplish
this goal, it is a prerequisit to obtain the centroid of a Type-2 FS, represented as
an interval often referred to as type-reduced set. The Karnik-Mendel (KM) algo-
rithm [27], which can be seen as an extension of Type-1 defuzzification procedure,
is currently the most accurate TR method found in literature. Though, given its iter-
ative nature, it is the most complex stage of the fuzzy inference process, requiring
extensive calculations even when the simpler IT2FSs are used.

2.5.4.1 Karnik-Mendel Type-Reduction

The KM algorithm is an iterative process which allows one to obtain an interval of
uncertainty given by [yl , yr ] for the centroid of an Interval Type-2 FS. Similarly to
the Type-1 FSs defuzzification case, Karnik and Mendel [13] also proposed several
methods to perform the Type-2 FSs’ TR based on approaches of the Type-1 FLS
defuzzification procedures, namely: Height and Modified Height TR, Centroid TR
and Center-of-Sets TR. The choice of the defuzzification method has significant
implications in the result’s quality. The Height and Modified Height are the less
complex ones to implement. However, it is known that when a single rule is triggered,
these methods may return inconsistent results [13]. The Centroid one requires a large
amount of calculations because, for each new system input, it has firstly to merge the
consequent part FS of every rule and only then obtain the centroid of the resulting
FS. Finally, the Center-of-Sets TR is usually the employed method since it performs
a smaller amount of operations when compared with the Centroid one. Its efficiency
is due to the a priori computation of each consequent FS’s centroid. Since the FS’s
centroid value is independent from the system’s input variables, this result can be
used as a constant in the Center-of-Sets TR. Therefore, the only procedure that has to
be performed after each new input into the system is a weighted average of the stored
centroids according to a combination of the upper and lower firing levels of each rule.
Since the Center-of-Sets TR inevitably requires one to compute the centroid of each
consequent Type-2 FS once, the Centroid TR will be hereby presented.

Similarly to the Centroid defuzzification procedure, the Centroid TR starts by
obtaining K samples from a Type-2 FS. Since the FOU of a Type-2 FS embeds
several Type-1 FS, to perform the TR one has firstly to obtain two Type-1 FS whose
centroid best approximates the upper and lower bounds of the Type-2 FS centroid.
Considering for example the G̃out FS, the procedure starts by using its sampled
upper and lower bounds to find the optimal values for the switching points [L, R], as
depicted in Fig. 2.17.
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Fig. 2.17 Switching points in computing yl and yr

The candidate points are obtained as follows in Eqs. (2.16) and (2.17).

yl(k) =

k∑
i=1

yiμi
G̃out

+
K∑

i=k+1
yiμi

G̃out

k∑
i=1

μi
G̃out

+
K∑

i=k+1
μi

G̃out

, (2.16)

yr (k) =

k∑
i=1

yiμi
G̃out

+
K∑

i=k+1
yiμi

G̃out

k∑
i=1

μi
G̃out

+
K∑

i=k+1
μi
G̃out

, (2.17)
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where k is an integer in [1, K − 1] interval, and K represents the number of dis-
cretization points. Then, the optimal interval bounds can be obtained by yl and yr ,
as follows:

yl = min
k∈[1,M−1] yl(k) ≡ y(L) ≡

L∑
i=1

yiμi
G̃out

+
K∑

i=L+1
yiμi

G̃out

L∑
i=1

μi
G̃out

+
K∑

i=L+1
μi

G̃out

, (2.18)

yr = max
k∈[1,M−1] yr (k) ≡ y(R) ≡

R∑
i=1

yiμi
G̃out

+
K∑

i=R+1
yiμi

G̃out

R∑
i=1

μi
G̃out

+
K∑

i=R+1
μi
G̃out

, (2.19)

where L and R are switch points satisfying

yL ≤ yl < yL+1 , (2.20)

yR ≤ yr < yR+1 . (2.21)

The choice of whether we start from the upper or lower firing levels when finding
the left and right bounds of each switching point has a very simple explanation.
Take yl as an example: yl has to be the minimum value of the FLS output. Since yi

is ordered ascendantly along the horizontal axis of Fig. 2.12, a large weight (upper
bound of the firing interval) should be chosen in the left of the switch point and a
small weight (lower bound of the firing interval) for its right side. As finding all the
centroid [yl , yr ] candidates is a computationally inefficient approach, an iterative
procedure to find the optimal switching points is presented in Table 2.1.

Despite the improvements brought by Interval Type-2 FS representations, the KM
algorithm still requires a large number of iterations to find the optimal type-reduced
FS. Therefore, several enhancements and simplifications were proposed in the recent
years for the sake of reducing its computational footprint.

2.5.4.2 Optimized Type-Reduction Algorithms

With the development of simpler and alternative algorithms, Type-2 FL definitely
gathered the attention of a broader number of researchers, having a direct impact
in an increasing number of applications in domains such as modeling, control and
classification and pattern recognition observed in recent years.
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Table 2.1 Iterative Karnik-Mendel algorithm

Step For computing yl For computing yr

1. Initialize

μi
G̃out

=
μi
G̃out

+ μi
G̃out

2
and compute

y =

M∑
i=1

yiμi
G̃out

M∑
i=1

μi
G̃out

Initialize

μi
G̃out

=
μi
G̃out

+ μi
G̃out

2
and compute

y =

M∑
i=1

yiμi
G̃out

M∑
i=1

μi
G̃out

2. Find l ∈ [1, M − 1] such that
yl < y < yl+1

Find r ∈ [1, M − 1] such that
yr < y < yr+1

3. Set

μi
G̃out

=

⎧⎪⎪⎨
⎪⎪⎩

μi
G̃out

, n ≤ l

μi
G̃out

, n > l

and compute

y′ =

M∑
i=1

yiμi
G̃out

M∑
i=1

μi
G̃out

Set

μi
G̃out

=

⎧⎪⎪⎨
⎪⎪⎩

μi
G̃out

, n ≤ r

μi
G̃out

, n > r

and compute

y′ =

M∑
i=1

yiμi
G̃out

M∑
i=1

μi
G̃out

4. If y′ = y, stop and
set yl = y and L = l;

otherwise, set y = y′;
and go to step 2

If y′ = y, stop and
set yr = y and R = r ;
otherwise, set y = y′;
and go to step 2

The Type-Reduction methods found in literature can be grouped into two main
categories:

• Enhancements to the KM algorithm, that improve directly the original formulation
of the KM by choosing a better initialization and termination conditions, to reduce
the number of iterations and to optimize the computing technique speeding up
each iteration of the TR process.

• Alternative TR algorithms, which unlike the iterative KM algorithms, are mostly
presented in a closed-form representation and provide faster results than the KM
method.

In [28] a thorough analysis about the current TR algorithms’ state-of-the-art is
done and it was observed that enhanced versions of the KM algorithm are, in general,
faster than its original formulation. Yet, the gains may vary with the size of the
FLS rule base. From the presented approaches, the Enhanced Opposite Direction
Searching Algorithm (EODS) [29] shown itself as the fastest one achieving gains
up to 70% (relative to the original KM) when the FLS has less than 100 rules—as
is used in most part of non-linear processes’ modeling applications. It is important
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to highlight that, despite their algorithmic differences, enhanced versions of the KM
algorithms give exactly the same outputs as its original formulation.

While KM algorithms have been widely adopted, some closed-form methods that
bypass this TR procedure have been proposed. However, since their methodologies
may be significantly different than the original KM algorithms their outputs may
also be quite different. Therefore, a compromise between accuracy and complexity
of the method may be necessary. For example, Wu and Tan [30] introduced a method
which eliminates TR by defining a collection of Type-1 FS embedded by the footprint
of uncertainty. Alternatively, Wu-Mendel Uncertainty Bound method [31] directly
uses the uncertainty bounds of the FS and was shown to be the closed-form method
giving the closest approximation to the KM and presented an execution turnaround
time very close to a similar sized Type-1 FLS. Despite their good performance, a
closed-form approach is not adopted in this work since the best performing ones
hinder the decomposition of the model output as sum of locally linear models. The
capability of decomposing the system in such way is of great advantage to the present
work as it allows an efficient implementation of the online training procedures and
the synthesis of the control law based on the Generalized Predictive Control theory.

2.5.5 Defuzzifier

After applying one of the possible TR methods, the obtained Interval Fuzzy Set still
has to be converted into a crisp number so it becomes suited to the most part of the
FLS application scenarios. Anyway, this procedure is fairly straightforward, and the
defuzzified value obtained by simply computing the average of the interval’s left and
right endpoints as:

yout = yr + yl
2

. (2.22)

2.6 Comparative Analysis

The noise reduction properties of Type-2 Fuzzy MFs have been several times pointed
in literature as one of its main advantages when compared to its Type-1 counterparts.
To study the influence of the antecedent part membership functions’ FOU width in
the rule activation level when the FLS’s inputs are corrupted by a disturbance, a
comparative analysis will be performed by probing its input domain with different
magnitude noise levels. This comparison will be based on Gaussian-shaped FS with
uncertain mean (as presented in Fig. 2.13, where its FOU is bounded by the upper
and lower MFs as defined by the equations:
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μ
F̃
(x) =

⎧⎪⎨
⎪⎩
G(c2, σ, x), x < c1+c2

2

G(c1, σ, x), x ≥ c1+c2
2

, (2.23)

μF̃ (x) =

⎧⎪⎨
⎪⎩
G(c1, σ, x), x < c1

1, c1 ≤ x ≤ c2

G(c2, σ, x), x > c2

. (2.24)

In a similar approach as presented in [32], this procedure will be based on a simple
FLS comprising a single input and two rules defined by two overlapping MFs (F̃1

and F̃2 ) such that, for a certain input value x , the following conditions are satisfied:

μ2 = 1 − μ
1

, (2.25a)

μ
2

= 1 − μ1 , (2.25b)

where μi and μ
i

are the upper and lower firing levels of F̃i (x), respectively.
To simplify this evaluation, it is considered that the output is given by Nie Tan

closed form Type-Reduction [33],

y =

M∑
i=1

( f i + f
i
)yi

M∑
i=1

( f i + f
i
)

(2.26)

where yi is the output of each rule and f i and f
i

are equivalent to μi and μ
i
, respec-

tively, since the system solely has one antecedent. Therefore, based on Eqs. (2.25)
and (2.26), the contribution of each rule to the model output is weighted by

ri (x) = f i + f
i

M∑
k=1

( f k + f
k
)

= μi (x) + μi (x)

2
.

(2.27)

If the system’s input is corrupted by a gaussian noise of magnitude n, then the
firing strength becomes:

ri (x + n) = μ
i
(x + n) + μi (x + n)

2
. (2.28)
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Fig. 2.18 Surface of the NSE of the evaluated system depending on the input noise level and the
antecedent parameter’s FOU width

Based on Eqs. (2.27) and (2.28), one can evaluate the relationship between the
firing level distortion caused by the input noise and the FOU width for a single rule
by obtaining the Normalized Squared Error (NSE) as

NSE =
n1∫

n=−n1

x2∫
x=x1

[
ri (x) − ri (x + n)

ri (x)

]2

dxdn, f or n ∈ R x ∈ R . (2.29)

The solution of Eq. (2.29) is obtained numerically by varying in the same pro-
portion the values c1 and c2 relatively to a Type-1 FS initially centred in c and then
corrupting the input variable with a noise signal with different Signal-to-Noise Ratios
(SNRs), defined relatively to the maximum input value of the fuzzy set’s domain.
The maximum uncertainty percentage relatively to the FS upper and lower MF’s
center is limited to 10%, as with higher values a great portion of the input space
a large portion of the upper and lower membership degrees become closer to one
and zero respectively, thus not providing a desirable input space partition for a TS
system. Figure 2.18 presents the dependency of the NSE on the noise level and the
uncertainty ratio, and the results obtained by averaging 50 trials for every parameters’
combination.
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Table 2.2 Distortion level for different SNR considering 10% uncertainty over the membership
function’s center.

SNR 18 19 20 21 22 23 24 25 27 32

NSE 13.11 10.64 8.98 7.35 6.13 5.09 4.21 3.13 1.88 0.70

σ 0.98 0.81 0.72 0.47 0.46 0.39 0.38 0.24 0.13 0.05

For a better comparison between the different scenarios, a bi-dimensional pro-
jection perspective of the previous surface is presented in Fig. 2.19 and the results
relative to the 10% uncertainty level summarized in Table 2.2.

From the presented results two main conclusions can be obtained regarding the
noise properties of Type-2 FSs:

• For a given SNR, increasing its FOU reduces the distortion observed at each rule
firing level when comparing to the Type-1 counterpart which served as starting
point (when a 0% uncertainty factor is considered in the MF’s center);

• For reduced noise levels, the use of Type-2 FS at the antecedent part of the rule
base does not bring significant improvements comparing to its Type-1 counterpart,
as is evinced by the flatter region observed in Fig. 2.19 as SNR is increased.
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2.7 Conclusions

This chapter presented the fundamental theory of Type-1 Fuzzy Logic Systems and
how its extension to the Type-2 Fuzzy Logic formalisms can be performed. In the
recent years, Type-2 Fuzzy Logic has been acclaimed as a significant improvement
over the fundamental Fuzzy Logic theory. Despite the lack of an irrefutable theoreti-
cal proof of it, the fact is that most recent publications present practical applications
where the use of Type-2 Fuzzy Logic is shown to be advantageous, mostly in sce-
narios where uncertain information representations are manipulated. The evaluative
scenario concluding this chapter points also in that direction. Therefore, the concepts
here introduced will be further developed in the succeeding chapters, by integrating
them with more flexible structures in terms of learning capabilities.
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Chapter 3
Takagi-Sugeno Fuzzy Logic Systems

3.1 Introduction

The achievements obtained by Fuzzy Logic undoubtedly changed the way expert
information is represented, manipulated, and interpreted in computational systems.
Nevertheless, the initialization ofMamdani FLSs’main parameters, namely itsmem-
bership functions and their interdependency relations, is a process that depends on
the knowledge of an expert (which may be subjective and is ultimately limited by its
know-how). Takagi and Sugeno [1] were among the first researchers who recognized
that FLSs could be further enhanced with autonomous learning techniques. Together,
they proposed a new structure for the consequent part of the rules, introducing also
methodologies to autonomously create and improve the FLSs’ performance. Their
method uses heuristic and non-linear optimization algorithms for the antecedent part
of the rule-base and a Kalman Filter for the consequent one. It is however for their
innovative FLS’s structure supporting their work that Takagi and Sugeno are nowa-
days known in FLSs’ literature (effectively coining the concept of Takagi-Sugeno
FLSs), serving their work as the stepping stone for many successful research topics.

In what concerns to learning ability, Artificial Neural Networks(ANNs) stand in
the exact opposite side of traditional FLSs. ANNs can approximate any arbitrary
function representing a system’s input/output behavior by means of a network of
several activation functions, with parameters that can be autonomously tuned based
on simple concepts as the output error back-propagation. It is a problem, though,
that the knowledge of these systems is stored in an opaque way for the system’s
designer since the learning results are stored in a large set of parameter values with
hardly any interpretable features. To overcome such limitation and improve FLSs
adaptability, different structures inspired byMulti-Layer Neural Networks have been
presented over the last years. These hybrid architectures, referred to as Neuro-Fuzzy
Systems [2], reveal themselves as an approach that benefits from the readability of
a fuzzy rule and the learning ability of ANNs. Among many Neuro-Fuzzy archi-
tectures, the most referred ones are the Fuzzy Adaptive Learning Control Network
(FALCON) [3], the Generalized Approximate Reasoning based Intelligence Control
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(GARIC) [4], Neural Fuzzy Controller (NEFCON) [5], the Self Constructing Neural
Fuzzy Inference Network (SONFIN) [6] and ultimately the Adaptive network based
Fuzzy Inference System (ANFIS) [7].

Thismultitude of Neuro Fuzzy Systems(NFSs)’s implementations is in its essence
similar, but present some fundamental differences [8]: while some use ANNs as a
pre or post-processing stage for the FLSs, other focus on reorganizing well known
structures such as the Mamdani FLS or the Takagi-Sugeno FLS ones into an equiv-
alent Multi-Layer Neural Network. Some authors take the system’s learning capa-
bilities further ahead, proposing algorithms to develop the model in a completely
autonomous approach, providing system-wide adaption mechanisms to optimize
their structure. However, most of them focus on the parameter level adaption, leaving
the structure problem up to an application expert analysis (effectively making use of
the Fuzzy Systems intelligibility).

The ANFIS architecture is one of the most successful Neuro-Fuzzy systems’
implementations due to its functional equivalence to the TS FLSs, providing a sim-
ple methodology to convert If-Then rules into an adaptive Radial Basis Function
Network (RBFN). Due to the typical TS FLS formulation, where each rule’s out-
put is given by a function of its input variables, the conversion of the inference and
aggregation procedures is fairly straightforward. A similar procedure could also be
performed according to the Mamdani type of FLS, but its applicability it is restricted
to very specific types of defuzzification procedures (Center-of-Sets) for it to become
a computationally efficient alternative. As will be clear further in this book, the bal-
ance between computational speed and methodology accuracy are major concerns
when a FLS is used as a model in real-time systems, thus making the TS systems
better candidates than the Mamdani ones to accomplish such task.

Since the structures of TS FLSs and ANFIS are deeply related, this chapter will
begin by presenting the former one, starting with the Type-1 FS which will be then
extended to the several possible architectures based on Type-2 ones. Then, the pro-
cedures employed for training of the TS FLS will be presented.

3.2 Type-1 Takagi-Sugeno Fuzzy Logic Systems

Takagi-Sugeno FLS are a type of Fuzzy Systems’ which, along with the Mamdani
one, became the de facto standards in fuzzy modeling and control applications.
Similarly to the Mamdani FLSs, the Takagi and Sugeno [1] ones establish an input-
output relation based on a set of If-Then rules. In the latter case, while the system’s
input space is partitioned by Type-1 FS, the consequent part of each rule is usually
given by a first order polynomial. Even though it is possible to use higher-order
polynomials, first-order ones are widely preferred due to their closeness with linear
modeling techniques [9]. Equation (3.1) presents the structure of a first-order Type-1
TS model rule,

Ri : I f x1 is Fi
1 and · · · and x j is Fi

j

T hen yi = ci1x1 + · · · + cij x j ,
(3.1)
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where Ri represents the i th fuzzy rule, Fi
j are linguistic terms characterized by Type-

1 FS, cij are the consequent polynomial parameters, i = {1, · · · ,M} where M is the
number of fuzzy rules, j = {1, · · · , N } where N is the number of antecedents, x j

are the fuzzy system inputs and yi is the rule output.
The algebraic nature of each rule’s consequent part inherently implements defuzzi-

fication mechanism in TS FLSs, not requiring any further steps to convert a fired
output Type-1 FS into an equivalent crisp value, as opposed to the Mamdani case.
Consequently, the global output of a Type-1 TS FLS is obtained straightforwardly
using the Center-of-Sets defuzzification, which is no more than a weighted average
of the output of the M rules according to their firing level, as follows in Eq. (3.2):

y(x) =

M∑

i=1
f i yi

M∑

i=1
f i

=

M∑

i=1
f i (ci1x1 + ci2x2 + · · · + ciN xN )

M∑

i=1
f i

, (3.2)

where f i is the rule’s firing level, defined as:

f i = T N
k=1μFi

k
(xk) , (3.3)

and T N
k=1 denotes a t-norm, a operator which merges the firing levels of each

rule’s antecedent. Similarly to the aggregation procedures presented on the previ-
ous chapter, the minimum and product operators are usually employed. The latter
the most commonly used and also adopted in this work. As so, f i becomes:

f i (x) =
N∏

k=1

μFi
k
(xk) . (3.4)

In Fig. 3.1 the main concepts supporting the TS FLS inference mechanism are
depicted.

While providing a relatively simple model structure andmaintaining an important
level of decipherability, the Takagi–Sugeno FLSs also offer an efficient and accu-
rate way of modeling non-linear behaviors. The antecedent part of the If-Then rules
allows one to partition a system’s input space using several input/output linear func-
tions, which are valid approximations of the global non-linear system under different
operating regions. Considering a particular local model output, given by yi (x) and
defined for an operation point in the vicinity of x, its validity for the current operating
regime (given by the input vector x = [x1, x2, · · · , xN ]) is as high as its firing level
( f i ) is closer to unity, and consequently lower when the local approximation is no
longer valid. Figure3.2 presents a simple case where such approach can be used to
model a non-linear input/output relationship.

The overall non-linear behavior of the system can be obtained by a smooth interpo-
lation of simpler local linear subsystems which are transparent up to a certain degree.
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Fig. 3.1 Example of a two rules—two antecedent Type-1 Takagi-Sugeno FLS
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Fig. 3.2 Example of a three rule (M = 3) partition with a single input (N = 1) TS FLS to model
a non-linear function

Such feature overcomes the limitations of someblack-box non-linearmodelingmeth-
ods such as Neural-Networks or Volterra series, where the model dimensionality can
increase significantly and the relationships between the system variables becomes
intractable. Demonstrating the theoretical and practical utility of TS FLSs, it has also
been proved that they are also universal approximators [7], attesting their capability
of approximate any reasonable function with subjective accuracy depending on the
number of rules and the training level.
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3.3 Type-2 Takagi-Sugeno Fuzzy Logic Systems

Inspired by the simplicity of TS FLS for developing rule based systems, researchers
further extended their traditional structure with the Type-2 FL formalisms in order
to accommodate higher levels of uncertainty over the system’s parameters. As is
discussed in [10], this transition is fairly natural since the fundamental principles of
FL are independent from the nature of the membership functions. Nevertheless, little
changes are required in the inference engine and defuzzifier blocks.

When developing a Type-2 TS FLS, its parameter’s uncertainty can be accounted
at different parts of the rule-base, namely at its antecedent (‘A’) or consequent (‘C’)
level. Table3.1 summarizes the possible combinations that can be made.

fcomputat
The literature of Type-2 TS FLSs tends to put more emphasis in the former two

representations (A2-C1 and A2-C0) since they effectively make use of Type-2 FSs.
However, by using Type-1 FSs at the consequent part of the rule, the A1-C1 system
also accounts with higher level of uncertainty over its parameters (comparatively to
the traditional Type-1 TS systems) and, for that reason, is included in the spectrum
of Type-2 TS FLSs. The A2-C1 and A2-C0 TS FLSs distinguish themselves in their
consequent part: in the A2-C0 case, the consequents are a linear combination of crisp
values (a polynomial in its traditional sense), whereas in the A2-C1 the consequent
part is a linear combination of Type-1 FSs. In the latter case, the Type-1 FS resulting
from the output of each rule can be obtained by using the Extension Principle [10].
However, since the calculations necessary to obtain a crisp output value can become
quite complex, their simpler interval representations are often preferred in practical
applications. In the following subsections the more general A2-C1 structure will be
firstly detailed, referring then to the simpler A2-C0 and A1-C1 cases.

3.3.1 A2-C1 Structure

In order to better understand how the typical FLSmain blocks are implemented under
a Takagi-Sugeno structure, the information processing stages of this system will be
thoroughly analyzed considering IT2FSs and Interval Type-1 Fuzzy Sets(IT1FSs)
at the antecedent and consequent parts of the rule base, respectively. Extending the

Table 3.1 Characterization of Type-2 TS FLSs according to the type of parameters used in the
antecedent and consequent parts of the rule base

A2–C1 A2–C0 A1–C1

Antecedent Type-2 fuzzy sets Type-2 fuzzy sets Type-1 fuzzy sets

Consequent Type-1 fuzzy sets Crisp numbers Type-1 fuzzy sets
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generic rule described in Eq. (3.1) to the present case, an A2-C1 TS FLS rule is
defined as follows:

Ri : I f x1 is F̃ i
1 and · · · and x j is F̃ i

j ,

Then yi = Ci
1x1 + · · · + Ci

j x j (k) ,
(3.5)

where Ri represents the i th fuzzy rule, F̃ i
j are IT2FSs, C

i
j denotes the consequent

polynomial parameters given by an IT1FSs, i = {1, · · · ,M}where M is the number
of fuzzy rules, j = {1, · · · , N } with N representing the number of antecedents, x j

the fuzzy system inputs and yi the rule output. Each fuzzy set Ci
j is characterized by

its center (cij ) and spread (sij ) values:

Ci
j = [cij − sij ; cij + sij ] . (3.6)

Despite the interval representation of the rule’s consequent part parameters, ulti-
mately the output of this stage can be summarized as two separate polynomials
yielding an upper and lower bound for each rule output, represented as:

yi =
N∑

j=1
(cij ∗ x j + sij ∗ ∣

∣x j

∣
∣)

, yi =
N∑

j=1
(cij ∗ x j − sij ∗ ∣

∣x j

∣
∣) .

(3.7)

The main difference between Type-2 TS FLSs and their Type-1 counterpart lies
in the aggregation mechanisms used to merge the output of each rule. Similarly to
the Type-2 Mamdani FLS case, to obtain the output of a Type-2 TS FLS a Type-
Reduction procedure is required, in order to account with the additional degrees of
freedom provided by the Type-2 FSs.

3.3.1.1 Type-Reduction

The implementation of the Type-Reduction algorithm for a IT2FLS is, in its essence,
very similar to the procedure already presented in the previous chapter. Considering
the more general A2-C1 TS FLS, each bound of the output interval (y and y) is
obtained separately by a Center-of-Sets Type-Reduction according to the upper and

lower output of each rule (yi , yi ) and their respective firing levels ( f i , f
i
). To

find the set of upper and lower firing levels that give the best approximation of
the system’s global output, each rule’s output (yi and yi ) must be firstly reordered
ascendantly, yielding geometric representations similar to those depicted in Fig. 3.3.
This procedure is mandatory when using a Type-Reduction algorithm based on the
KM principles.
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(a) Lower bound output of every system’s rule (yi) sorted in ascending order.
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Fig. 3.3 a Lower bound output of every system’s rule (yi ) sorted in ascending order. bUpper bound

output of every system’s rule (yi ) sorted in ascending order. Polygons obtained after reordering each
rule’s output in order to apply the Karnik-Mendel Type-Reduction procedure

This polygon can be interpreted as a special IT2FS, as the area bounded by the
rule’s upper and lower firing levels in fact resemble one. Hence, the principles of
Karnik-Mendel Type-Reduction can be applied to this set of points so that the optimal
switching points (L and R) are found. In this procedure is usual practice to ensure that
yi and yi have no duplicate elements, which can be easily achieved by combining the
weights of duplicate elements. Then, y and y are obtained in the following equations:

y =

L∑

i=1
yi f

i +
M∑

i=L+1
yi f i

L∑

i=1
f
i +

M∑

i=L+1
f i

, (3.8)

y =

R∑

i=1
yi f i +

M∑

i=R+1
yi f

i

R∑

i=1
f i +

M∑

i=R+1
f
i

, (3.9)



42 3 Takagi-Sugeno Fuzzy Logic Systems

f 1 f 2

f L

f M

f
M

f
L

f
2

f
1

y1 y2 yL yM

0.2

0.4

0.6

0.8

1

f R

f 1 f 2 f M

f
M

f
R

f
2

f
1

y1 y2 yR yM

0.2

0.4

0.6

0.8

1

(b) Computing y: Switching from the lower bounds of the firing
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Fig. 3.4 aComputing y: Switching from the upper bounds of the firing intervals to the lower ones. b
Computing y: Switching from the lower bounds of thefiring intervals to theupper ones.Computation
of the optimal output bound in the A2-C1 case using the Karnik-Mendel Type-reduction

where L and R are the switch points satisfying

yL ≤ y < yL+1 , (3.10)

yR ≤ y < yR+1 . (3.11)

In Fig. 3.4 the optimal Type-Reduced Fuzzy Sets are represented in bold for the
upper and lower outputs:

Due to the compact representation of the Type-2 TS FLS consequents, in TS
systems the Type-Reduction procedures require fewer calculations comparatively to
the Mamdani case presented in the previous chapter.
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3.3.1.2 Defuzzifier

After applying one of the Type-Reduction methods, the obtained Interval Fuzzy Set
still has to be converted into a crisp number so that it becomes suited to the most part
of the FLS application scenarios. This procedure is fairly straightforward, yielding
the defuzzified value by simply computing the average of the interval’s left and right
endpoints:

yout = y + y

2
. (3.12)

When such level of uncertainty representation is not necessary, the Type-2 TS
FLSs can be simplified by performing some changes over the type of the antecedent
or the consequent part of the FLS, as will be presented in the following sections.

3.3.2 A2-C0 Structure

As a particular case of the A2-C1 structure, where the consequent functions are poly-
nomials with crisp-number parameters, the A2-C0 FLSs differ on their consequent
part structure which is defined as follows:

Ri : I f x1 is F̃ i
1 and · · · and x j is F̃ i

j ,

Then yi = ci1x1 + · · · + cij x j (k) ,
(3.13)

where Ri represents the i th fuzzy rule, F̃ i
j are IT2FSs, cij denote the consequent

polynomial parameters, i = {1, · · · ,M} where M is the number of fuzzy rules,
j = {1, · · · , N } where N is the number of antecedents, x j are the fuzzy system
inputs and yi is the rule output.

Despite yielding just a single output for each rule, this approach also considers
an uncertainty degree bounded by the rule’s firing level interval. For this reason and
by establishing a parallelism with the A2-C1 case, the procedure to calculate the
bounds of the system output, [y, y], is the same as presented in Eqs. (3.8) and (3.9)

except that now yi = yi = yi . It is important to note that, despite this equivalence,
the limits R and L obtained from the Type-Reduction algorithm are not necessarily
equal, as is depicted in Fig. 3.5.
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Fig. 3.5 a Computing y: Switching from the upper bounds of the firing intervals to the lower
bounds. b Computing y: Switching from the lower bounds of the firing intervals to the upper
bounds. Computation of the optimal output bounds in the A2-C0 case using the Karnik-Mendel
Type-Reduction

3.3.3 A1-C1 Structure

Considering now the last casewhere both antecedent and consequent part parameters’
are Type-1 FSs, each FLS’s rule can be written as:

Ri : I f x1 is Fi
1 and · · · and x j is Fi

j ,

Then yi = Ci
1x1 + · · · + Ci

j x j (k) ,
(3.14)

where Ri represents the i th fuzzy rule, Fi
j are Type-1 FSs, Ci

j stands for the conse-
quent polynomial parameters given by an IT1FSs, i = {1, · · · ,M} where M is the
number of fuzzy rules, j = {1, · · · , N } where N is the number of antecedents, x j

are the fuzzy system inputs and yi is the rule output.
In this scenario, all the model uncertainty is treated in the consequent part of the

rule. Thus, the firing level of each rule is given by a crisp number as was defined
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previously in Eq. (3.3). Similarly to the A2-C1 case, the output of each rule is given
by an IT1FS yielding an interval bounded by [yi , yi ]. Each values can be obtained
as:

yi =
N∑

j=1
(cij x j + sij

∣
∣x j

∣
∣) ,

yi =
N∑

j=1
(cij x j − sij

∣
∣x j

∣
∣) .

(3.15)

Since the firing levels are crisp values, the extended output of the FLS does not
require the use of the Karnik-Mendel algorithm, and are simply obtained by:

Y =

⎡

⎢
⎢
⎢
⎣

M∑

i=1
f i yi

M∑

i=1
f i

,

M∑

i=1
f i yi

M∑

i=1
f i

⎤

⎥
⎥
⎥
⎦

, (3.16)

which ultimately resumes to:

y = y + y

2
=

M∑

i=1
f i (

N∑

j=1
cij x j )

M∑

i=1
f i

. (3.17)

Comparing the results from Eqs. (3.2) and (3.17), it is possible to conclude that
the output of an A1-C1 TS FLS and the standard Type-1 TS FLS are in fact identical.
For this reason, in applications where the goal is to obtain the defuzzified output
of the FLS, one may choose the latter model since there is no effective advantage
in implementing this more complex approach. Nonetheless, if there is interest in
evaluating the uncertainty degree of the obtained output, such information can be
inferred by evaluating the width of the extended output given by Eq. (3.16), which
can only be derived from the A1-C1 FLS [11].

3.4 ANFIS Based on Type-2 TS Fuzzy Logic Systems

As a formal extension of the well known Type-1 TS FLS, the Type-2 TS FLSs can
also be represented according to a layered architecture that best characterizes aMulti-
Layer Neural System. This structure is generically depicted in Fig. 3.6 and will be
presented in the sequel.

Layer 1: This layer, also known as the input layer, is defined by N nodes which
embrace the crisp values relative to each input variable x j .
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Fig. 3.6 Parallelism between the Type-2 TS FLS and the ANFIS structures

Layer 2: In this layer, the fuzzification operation is performed by evaluating the
membership degree of each input variable x j in the respective fuzzy set considered
in the antecedents part of the M FLS rules. Assuming that each FS is defined by a
gaussian function with fixed mean and uncertain standard deviation, as defined:

F̃ i
j (c

i
j ,σ

i
j , x j ) = exp

⎡

⎣−1

2

(
x j − cij

σi
j

)2
⎤

⎦

= G(cij ,σ
i
j , x j ), cij ∈ [c1ij , c2ij ] .

(3.18)

Unlike a Type-1 FS, where the measured membership grade is given by a number,
when using IT2FSs this value is represented as an interval of uncertainty given by:

[μi
j
,μi

j ] = [G(c1ij ,σ
i
j , x j ),G(c2ij ,σ

i
j , x j )] (3.19)

Layer 3: In this layer, the upper and lower bounds of each rule firing strength are
calculated. This interval is obtained by using the product t-norm operator [10] over
the upper and lower membership values of each rule antecedents:

f i =
N∏

k=1

μi
k
(xk) , (3.20)

f
i =

N∏

k=1

μi
k(xk) . . (3.21)

At the output of this layer, it is obtained and interval [ f i , f
i
] denoting the uncer-

tainty regarding each rule firing level.
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Layer 4: Each node of the fourth layer implements the inference mechanism
according to the Takagi-Sugeno principles. Considering the A2-C1 structure, the
result is a linear combination of IT1FSs, yielding an interval bounded by [yi , yi ],
whose limits are obtained by means of:

yi =
N∑

j=1

(cij x j + sij
∣
∣x j

∣
∣) , (3.22)

yi =
N∑

j=1

(cij x j − sij
∣
∣x j

∣
∣) . (3.23)

Layer 5: The fifth layer of the A2-C1 TS FLS is responsible for combining the
output of each rule according to their upper and lower firing level bounds. This
procedure is performed by using the iterative Karnik-Mendel algorithm (or one of
its enhanced versions) or a closed-form approximation such as the Wu-Mendel’s
Uncertainty Bound Type-Reducer previously presented.

Layer 6: Finally, in the sixth layer the output of the Type-2 TS FLS is defuzzified
using the average of the two endpoints y and y, hence:

y = y + y

2
(3.24)

As was already referred, one advantage of this structure is the possibility of devel-
oping adaptation mechanisms for the model parameters based on the approximation
error of the network to a input-output data dependency. The succeeding section will
depict such procedures.

3.5 Training Algorithms for TS Fuzzy Systems

As was previously shown, the multi-layered architecture of TS FLSs is formally
equivalent to the Feed-Forward ANN structure. Hence, the same algorithms used
in ANN’s training (mostly based on the output error back-propagation) are nat-
ural candidates for the development of the TS model’s adaptation. In multi-layered
systems, the training methods which minimize the error between the desired out-
put and the model’s output are typically implemented in two separate steps [12].
Firstly the Feed-Forward computations are performed, obtaining the values of every
intermediate node of the model, followed by a backwards parameter’s adaptation
based on the observation of the output error. The model adaption can then be per-
formed as a single optimization problem, by training every parameter according to
the information given by the gradient and Hessian of the output error (using the Gra-
dient descent, Gauss-Newton or Levenberg-Marquardt methods for instance [12]).
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However, a more efficient and stable procedure can be alternatively employed. Since
the estimation obtained by a TS system can be expressed as a weighted combination
of several locally linear functions, the model training can be divided into two smaller
problems. Apart from reducing the procedure’s complexity for the consequent part
parameters’, such approach alsominimizes possible numerical problems relatedwith
the larger number of estimated unknowns and the possibility of the non-linear opti-
mization methods to be stuck into local minima. The referred approach, known as
Hybrid Training [2] is performed as follows:

• At a given sampling instant, considering the parameters of the model’s antecedent
part fixed, the output of the TS Fuzzymodel results from theweighted contribution
of several linear models according to the firing level of their respective rules.
Therefore, the consequent part parameters can be trained using a least squares
method such as the Recursive Least Squares (RLS).

• Afterwards, by fixing the consequent parameters, the non-linear part of the model
can be trained by back-propagating the output error to each one of the antecedent
parameters using methods based on the error signal derivatives.

As was clear from the previous sections, the use of Type-2 FL concepts over the
TS FLSs yield a significant amount of additional unknown parameters that must
be estimated. Their optimal values can be obtained either by directly employing
optimization algorithms [13, 14], or using recursive trained algorithms [15, 16]. Yet,
considering a Type-2 TS Fuzzy model estimation solely as an error minimization
problem misses the initial purpose of embedding uncertainty intervals over Type-
1 FLS and, when applied without supervision, may result in FOU that no longer
have a valid meaning for the model’s interpretability. Hence, as every membership
function is ultimately obtained by varying one or several parameters of a Type-1 FS,
the training methods further presented focus on the Type-1 TS model structure. The
obtained parameters can then be used as a starting point for the development of its
Type-2 TS Fuzzymodel, by expanding the uncertainty intervals by a factor so that the
overall model performance is improved. Despite the simplicity and intuitiveness of
this approach, it is currently not discussed in literature.Nonetheless, it is fairly simpler
than theType-2TS training procedures currently available and itwas found to provide
superior numerical robustness in the development of model based controllers [17].

In the following sections, the local training procedures used in the development
of a Type-1 TS FLS will be presented.

3.5.1 Model Initialization

The initialization of the antecedent part of the Type-1 FLS plays an important role in
the definition of the system’s structure as it will ultimately set the minimum number
of rules necessary to approximate the input-output dependencies of the system. Since
its appropriate dimension is hardly known at the beginning of the design stage, it
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is common practice to use one-pass clustering algorithms over a large input-output
dataset in order to extract natural groupings of data from it. Clustering is usually
employed in classification problems and it is also often adopted as an initializa-
tion procedure of the FLSs’ rule base. Despite the differences in nomenclature and
information organization, a n-dimensional cluster is functionally equivalent to the
antecedent part of a rule with n input variables. Therefore, such approach can be used
to obtain the appropriate number of rules as well as defining the center and variance
of each membership function of the model’s input space.

Literature is rich in clustering algorithms that, ultimately, represent variations of
the original Fuzzy C-Means (FCM) clustering algorithm [18]. The FCM algorithm is
an iterative optimization method used to find the optimal centers of the membership
functions that partition the input space of a FLS, aiming tominimize the cost function:

J =
K∑

k=1

C∑

i=1

μm
ik‖xk − vi‖2 , (3.25)

where K is the number of data points, C is the number of clusters, xk is the kth n-
dimensional data point, vi is the i th cluster center,μik is the degree of themembership
of the kth data in the i th cluster and m is a constant greater than 1 (typically m = 2)
that defines the width of the cluster. Provided the desired number of clusters and an
initial guess for each cluster center vi , the FCM algorithm will converge to a solution
which represents either a local or global minimum of the given cost function.

As in every non-linear optimization problem, the quality of the solution found is
highly related with the choice of the initial values of the clusters’ centers. Using the
Mountain Method [19], such constraint is overcome by simply using a grid parti-
tion of a n-dimensional input space as a starting point for the clusters’ parameters.
However, the computational complexity of such approach can escalate very eas-
ily, growing exponentially with the number of input variables of the system. The
Subtractive Clustering algorithm [20] circumvents the dimensionality issues of the
previous method by considering each data point (and not each one of the possible
grid partitions) as a potential cluster center. The computational complexity depends
on the dimensionality of the data set but, more importantly, is unrelated with the
input space dimensionality.

In the Subtractive Clustering algorithm, the possible cluster centers are found
according to a metric that evaluates the potential of each data point in assuming such
role. Such metric is presented in the equation:

Pi =
n∑

j=1, j �=i

exp
[−α‖xi − x j‖2

]
, (3.26)

where

α = 4

r2a
(3.27)



50 3 Takagi-Sugeno Fuzzy Logic Systems

and ra is a positive constant related with the radius of influence of each possible
cluster center candidate. Thus, the points with higher number of neighbor points
will present an higher potential value, having more chances to be selected as cluster
centers. After calculating the potential of every point, the data point with higher
potential value is selected as the first cluster. Let x∗

1 be the location of the first cluster
center and P∗

1 its potential. The potential of every remaining data point is revised by
the equation:

Pi ⇐ Pi − P∗
1 exp

[−β‖xi − x∗
1‖2

]
, (3.28)

where

β = 4

r2b
(3.29)

and rb is a positive constant. This second step effectively penalizes the data points
closer to the first cluster reducing their potential of be selected as cluster centers in
the successive iterations of the algorithm. To avoid the selection of closely spaced
clusters, rb should be greater than ra usually in the proportion of rb = 1.5ra . This
procedure is repeated until the potential of the kth cluster is a small fraction of the
first cluster extracted, as follows:

P∗
k < εP∗

1 . (3.30)

The value of this threshold, ε, will define the number of data points accepted as
cluster centers and set the dimensionality of the rule base.

As far as it concerns the variance of the gaussian fuzzy MF, its value can be
obtained considering the equivalence between Eq. (3.31) and the clustering metric
presented in Eq. (3.26). Thus, a gaussian membership function can be defined as:

F(x, c,σ) = exp

[

− (x − c)2

2σ2

]

, (3.31)

and the variance of the membership functions obtained via Subtractive Clustering is
given by:

σ2 = r2a
8

. (3.32)

While the Subtractive Clustering algorithm significantly contributed to the devel-
opment of smaller yet well performing TS systems, not every input variable is strictly
relevant for an accurate non-linear input space partitioning. If all input variables
present at the consequent part regressive model are considered, one can easily end
up in a combinatorial problemwhich leads to a very large structure and even reduce its
extrapolation capabilities. Therefore, it is of great importance to establish a balance
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between the model accuracy and its complexity. Based on this premise [21] proposed
a methodology where only the regressors having a non-linear impact in the parame-
ters of the consequent part of the TS systems are considered in the rule extraction
procedure. In fact, those are the state variables that define the necessity of employing
different linear approximations over different operating scenarios. Opposing to the
Mamdani inference procedure, pruning the antecedent part of a TS structure does not
necessarily impairs its approximation capability since the consequent one inherently
establishes the output interdependency with every input variable.

3.5.2 Training of the Antecedent Part of the Rule Base

After the model initialization stage, the parameters of the antecedent part can be
fine-tuned using a non-linear optimization algorithm such as the Gradient Descent
or the Levenberg-Marquardt [22, 23]. Since the input space of a TS Fuzzy Model
is less likely to present significant variations over the time, the initial antecedent
parameters estimations are usually fairly close to the optimal ones. Thus, while it
may be argued that the Gradient Descent trainingmight present a slower convergence
towards the optimal solution than Hessian based methods such as the LM, for the
majority of applications this is not a restrictive drawback as the adaptiveness of the
model resides mostly at its consequent part. Therefore, the Gradient Descent update
rules for the variance and the center of each antecedent part of Type-1 FS can be
obtained based on the minimization of the squared error of the prediction model as:

cij (k + 1) = cij (k) − η
∂E

∂cij
, (3.33a)

σi
j (k + 1) = σi

j (k) − η
∂E

∂σi
j

, (3.33b)

where E is the prediction error and η is the learning coefficient, usually chosen in
the interval 0 < η ≤ 0.2 [12].

The partial derivatives of each free parameter present in the antecedent part of the
rule base are obtained as considering

E = 1

2

K∑

k=1

(yd(k) − y(k))2 (3.34)

and

G(cij ,σ
i
j , x j ) = exp

⎡

⎣−1

2

(
x j − cij

σi
j

)2
⎤

⎦ . (3.35)
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Therefore,

∂E

∂σi
j

= ∂E

∂y

∂y

∂ f i
∂ f i

∂μi
j

∂μi
j

∂σi
j

, (3.36)

∂E

∂cij
= ∂E

∂y

∂y

∂ f i
∂ f i

∂μi
j

∂μi
j

∂cij
, (3.37)

where
∂E

∂y
= −1 , (3.38)

∂y

∂ f i
=

yi
M∑

i=1
f i −

M∑

i=1
f i yi

(
M∑

i=1
f i

)2 , (3.39)

∂ f i

∂μi
j

=
N∏

k=1,k �= j

μi
k , (3.40)

∂μi
j

∂cij
=

(
x j − cij

)

(σi
j )
2

G(cij ,σ
i
j , x j ) , (3.41)

and

∂μi
j

∂σi
j

=
(
x j − cij

)2

(σi
j )
3

G(cij ,σ
i
j , x j ) . (3.42)

At this stage, the importance of the Forward Pass for the training of every
antecedent part parameter is clearer, since the values of parameters μi

j and f i depend
on the execution of one iteration of the TS FLS for a given a set of input values.

3.5.3 Training of the Consequent Part of the Rule Base

When a system to be identified is linear on its parameters, procedures based on
the squared error minimization such as the RLS algorithm are know to provide the
best convergence to the solution which better approximates a specific input/output
behavior [24]. The TS FLSs fall into this category since, by considering that at
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given instant the antecedent part firing levels’ are constant, the output of the system
is no more than a weighted combination of linear functions given by each rule’s
consequent part.

The training procedure for the consequent part of the rule base can be translated
into a least squares numerical optimization problem according to two different ways,
using either a global or a local optimization approach. The global approach leads to:

θ = arg min
K∑

k=1

(

y∗
k −

N∑

n=1

f iϕθ̂i

)

, (3.43)

where y∗ denotes the system output to approximate, ϕi is the n-dimensional obser-
vation vector, θ = [θ1 θ2 · · · θN ] represents the concatenation of all the individual
rule’s parameter vectors, fi is the normalized firing level of each rule, N is the number
of rules of the system and K is the length of the training dataset.

Considering now the local training approach, the model parameters are obtained
by:

θi = arg min
K∑

k=1

(
f i y∗

k − f iϕθ̂i

)
, (3.44)

where y∗ is the system output to approximate, ϕ is the n-dimensional observation
vector, and θi is the parameter vector of each individual rule, f i is the normalized
firing level of each rule, N is the number of rules of the system and K is the length
of the training dataset.

In the former approach, employed for example in [15], every consequent functions
parameters’ are trained as a whole in a single regression problem, while in the latter
case the training of the consequent part of each rule constitutes a separate optimiza-
tion problem. In terms of error minimization, the method used is not crucial but, if
each rule output is to be interpreted as a local model, then the employed approach
ultimately defines its usability. As is argued in [25, 26], a globally optimal model by
no means guarantees a locally adequate behavior of the sub-models that constitute
the TS structure, often leading to over-fitting problems and meaningless parameters
estimates which can ultimately result in numerical instability as verified in [15]. A
simple interpretation of this problem is depicted in Fig. 3.7.

From the depicted scenario, the model estimated by local optimization properly
describes the local behavior of the function, despite giving a less accurate global
fitting. For the global optimization approach, the opposite holds—a better global fit
is obtained but the consequent part functions are not relevant for a local description
of the system’s behavior. As will be clearer in the further chapters, the validity of the
localmodelswill be important to perform the synthesis ofmodel based controllers. To
comply with this requirement, constrained and multi-criteria optimization methods
can be applied over the global training approach [26] in order to restrict the parameters
domain of freedom. However, the training procedure becomes a quadratic optimiza-
tion problem instead of a least squares one, increasing both the complexity and the
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Fig. 3.7 The result of local (left) and global (right) optimization of the consequent parameters for
a single input two rule’s system. The dashed line is the system output

required computational effort. For this reason, establishing a compromise between
modeling accuracy and training method complexity, the local training approach will
be followed in the present book using a weighted RLS algorithm.

While the RLS algorithm provides an efficient method of performing the local
training of each rule consequent part, it is known that its conventional formulation
lacks the required adaptability to track time varying parameters [24] since it gives the
same importance to all the previous samples for the current time estimation. To over-
come this issue, modified versions of the cited algorithm introduced an exponential
weight that reduces the significance of past samples according to their obsolescence
[24]. Yet, in practical scenarios, where the system excitation is insufficient or not uni-
form over the whole parameters’ space, this information loss mechanism can lead
to numerical stability problems due to a phenomenon referred in the literature as
covariance matrix windup [24]. Therefore, several heuristics have been proposed to
overcome this problem either by adjusting the algorithm forgetting factor considering
the evolution of the estimation error or by monitoring the evolution of the covariance
matrix [24]. Approaches based on the latter method are considered more robust and,
among the existing methods, the Directional Forgetting mechanism [27, 28] stands
out for its simplicity, stability and capability of maintaining the adaptability of the
estimator to fast and slow parameter’s variations. Despite its superiority over long
training epochs, Hybrid TS model learning techniques continue to put emphasis in
methods that periodically reset the covariance matrix of the estimator to maintain
is stability and adaptability. Therefore, it represents an approach that can be simply
interpreted as a “reset” of the estimator. Only few publications tackle this problem
using the Recursive Least Squares with Directional Forgetting (RLSDF) algorithm
[29, 30] but, given its proven robustness, it will be used in the examples presented
in this book and will be following defined.
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Considering that, at each sampling instant, the estimated output results from the
weighted contribution of several linear models according to each rule’s normalized
firing level, f i , the output of the model is given by:

y =

M∑

i=1
f i yi

M∑

i=1
f i

. (3.45)

Following a local training based approach, the cost function J to be minimized is
defined as the sum of the cost functions Ji of each sub-model, as:

J =
R∑

i=1

Ji , (3.46)

where
Ji = (y∗ − ϕT θ̂i ) f

iλi (y
∗ − ϕT θ̂i ) . (3.47)

Expression 3.47 can ultimately be rewritten as:

Ji = (
√

f i y∗ −
√

f iϕT θ̂i )λi (
√

f i y∗ −
√

f iϕT θ̂i ) , (3.48)

where, for the i th system’s rule, f i is the normalized activation level, ϕ the n-
dimensional observation vector, θ̂i the n-dimensional parameter’s vector of the
locally linear sub-model and λi a weight related to the estimator forgetting fac-
tor. Assuming that the model has R rules, the same number of linear models must be
estimated and, consequently, the same number of cost functions must be optimized.

At the time instant k, the parameters of the discrete-time linear predictor for the
i th rule can be recursively obtained using the weighted RLSDF algorithm as follows:

θ̂i (k) = θ̂i (k − 1) + K (k)εi (k) , (3.49a)

εi (k) =
√

f i y∗(k) −
√

f iϕ(k)T θ̂i (k) , (3.49b)

ri (k) = f iϕT (k)Pi (k − 1)ϕ(k) , (3.49c)

K (k) =
√

f i Pi (k − 1)ϕ(k)

1 + ri (k)αi (k)
, (3.49d)

Pi (k) = Pi (k − 1) − K (k)
√

f iϕT (k)αi (k)Pi (k − 1) , (3.49e)
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αi (k) =
⎧
⎨

⎩

λi − 1 − λi

ri (k)
, ri (k) > 0

1, ri (k) = 0
. (3.49f)

The λi parameter represents the algorithm forgetting factor and it is usually cho-
sen in the interval 0.95 ≤ λi ≤ 1 [27]. The value of λi establishes a commitment
regarding the algorithm’s capability in tracking fast/slow variations of the model
parameters.

3.6 Conclusions

The development of rule-base systems according to the Takagi-Sugeno structure sig-
nificantly expanded the domains of applicatbility of Fuzzy Logic Systems due to
their closeness to well known linear modeling theory and the use of simple training
algorithms (derived for their equivalent ANFIS structure). By inheritance of Type-1
Takagi-Sugeno Fuzzy Logic Systems’ main properties and due to their informa-
tion uncertainty representation features, Type-2 Fuzzy Logic Systems based on the
Takagi-Sugeno structure have a superior potential to excel in systemmodeling tasks.

Since every Type-2 Takagi-Sugeno Fuzzy Logic Systems is ultimately defined
by embedding a Footprint-of-Uncertainty over its Type-1 counterpart parameters,
the procedure of defining a Type-2 Fuzzy Logic System is significantly simplified
if one focus on the centers of the uncertainty intervals. Such approach seems to be
disregarded by the related literature but, despite its simplicity, it is not less valid than
the currently available ones. In fact, it provides to the practitioner a deeper insight
regarding the influence of the uncertainty factors on the quality and accuracy of the
developed systems and is computationally less demanding due to the smaller number
of parameters that must be tuned. Such dependency will be clearer in the succeeding
chapters, by studying the applicability of Type-2 Fuzzy Logic Systems in modeling
and control applications.
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Chapter 4
System Modeling Using Type-2
Takagi-Sugeno Fuzzy Systems

4.1 Introduction

The development of computational models capable of accurately describe a process’s
dynamic response is a task ultimately dependent on its physical phenomena com-
plexity and the type of disturbances that may affect its operation. According to the
literature [1], there exist several different approaches to obtain such system’s descrip-
tion:

• Physical models
• Black-Box models
• Grey-Box models

When a deep knowledge about the physical laws underlying the system’s behav-
ior is present, it becomes possible to develop models based on a set of differential
equations describing the rate of change of the system’s state variables. The devel-
opment of fundamental models typically requires a large number of parameters but,
once each one of them is available, either estimated from experimental scenarios or
simply by being well known physical constants, it becomes possible to extrapolate
results from a large range of operation regions. However, many times such procedure
become a time demanding task, requiring specific test conditions so the influence of
individual parameters is isolated. This condition is even more problematic when the
system presents non-linear behavior since the superposition principle is no longer
valid. Consequently, a large number of possible combinations of input variables has
to be necessarily tested, ultimately posing a large search space for numerical opti-
mization algorithms to obtain the set of parameter that best approximate the process
response. For this reason, the use of physical modeling methods in the development
of prediction models and controller synthesis is very restricted.

In what concerns the parameters’ interpretability, Black-Box models advocate
the opposite paradigm in a model development procedure in the sense that the it
is developed on an information processing perspective, without any considerations
regarding the process’s physical properties. As so, a mathematical description of
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the system is developed aiming to find relationships among variables that best fits
the input/output data obtained from the process. Typically, such descriptions can
be represented using polynomial structures, either based on linear Auto-Regressive
MovingAveragewith eXogenous input (ARX) andAuto-Regressivewith eXogenous
inputs (ARX) structures, or on Non-Linear Auto-Regressive with eXogenous input
(NARX) such as Feed-Forward Neural Networks, Wiener or Hammerstein models
[1]. In any of its forms, an input-output model can be generically represented as:

ŷ(k) = f (y(k − 1), · · · , y(k − ny), u(k − d − 1), · · · ,

u(k − d − nu), v(k − 1), · · · , v(k − nc)) ,
(4.1)

where f defines the variables’ interdependency, ŷ is the predicted output, y are the
process’s past outputs, and its exogenous inputs are given by the actuation values
u and the measured external disturbances v. The parameters ny , nu , nc are chosen
according to the relevancy of the past values to the present estimation and d represents
the process’s dead-time.

Obtaining a Black-Box model is a procedure which encompasses several stages,
typically grouped as: structure selection, parameter identification and model vali-
dation [2]. Due to its iterative nature, such procedure is not a single-pass one, and
typically requires several experiments before a robust yet simple model is obtained.

There may exist scenarios where the process’s dynamic behavior is totally
unknown and a Black-Boxmodeling approach is ultimately used to develop a model.
Nevertheless, most of the times the little knowledge available about the process can
significantly reduce the number of iterations required to find an optimal model. By
combining the fundamental and Black-Box modeling principles, an approach known
as Grey-Box modeling emerge. Empirical relations (which usually have a limited
region of validity) can be established among the relevant system variables, reducing
the model structure size while closely approximate the plant dominant dynamics in a
specific operation region. Knowing how disturbances affect its operation, the noise’s
spectral distribution, the non-linearities over the expected operation regime or the
memory that the system has about past inputs or outputs are some of the parameters
that may give important hints to accomplish this task [2].

The parameters of a Grey-Box model do not present any physical meaning. Nev-
ertheless, when such models are developed according to linear systems’ identifica-
tion theory, important relations can be established between their parameters and the
dynamic response of the system (as stability and transient response analysis) [3]. For
this reason, despite the improved modeling capabilities of non-linear approaches,
linear strategies continue to have a large adoption due to their simpler structure and
easier theoretical analysis. As was presented in Chap. 3, Takagi-Sugeno FLSs stand
in between both methods, providing a simple framework to approximate non-linear
input-output relations based on the use of several locally linear dynamic models.
Considering their use in process modeling applications, the linear consequent part of
the model can also be developed according to a Grey-Box principles, thus extending
important developments from linear modeling and control theory to TS FLSs.

http://dx.doi.org/10.1007/978-981-10-4633-9_3
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4.2 Locally Linear Models Based on Type-2 TS Fuzzy
Logic Systems

The use of TS FLSs in system modeling applications is a natural process since a
dynamic interpretation of its structure is obtained by replacing its input variables
with the relevant regression variables. Considering the particular case of developing
linear systems based on the ARX structure, the consequent part of the TS model is
commonly represented as:

A(z−1)y(k) = B(z−1)z−du(k) + C(z−1)v(k) , (4.2)

where u(k) and y(k) are the control and output sequences of the plant, d is the dead
time of the system and v(k) is white noise. The symbols A, B, and C represent the
polynomials represented in the backward shift operator z−1:

A(z−1) = 1 + a1z−1 + a2z−2 + · · · + ana z
−na ,

B(z−1) = b1z−1 + b2z−2 + · · · + bnb z
−nb ,

C(z−1) = 1 + c1z−1 + c2z−2 + · · · + cnc z
−nc ,

(4.3)

where the parameters na and nb are related to the order of the estimated ARX model
and nc related with the expected type of disturbance.

As was already referred, the interpolation features provided by TS descriptions
provide good approximations of non-linear behaviors as long an adequate num-
ber of rules are employed. Nonetheless, in modeling applications, the parameters
of each locally linear approximations used at every rule’s consequent part will be
very likely affected by uncertainty factors due to time varying conditions of the
modeled processes. Type-2 TS FLSs inherently encode in their structure the mecha-
nisms necessary to represent such variability and their inclusion in system modeling
applications is performed by assuming the existence of a uncertainty factor over
the parameters of a Type-1 TS Fuzzy model. The antecedent part of the model can
be extended by varying either the variance or the mean value of the membership
functions that partition the model’s input space. The consequent parameters can be
generically defined in an interval representation p̃, as:

p̃ = [p − s; p + s] ≡ [p; p] , (4.4)

where the center of the interval (p) is given by the coefficients of the polynomials
A, B and C presented in (4.3), and s is the width of the considered uncertainty
interval, which can be defined as a percentage of the parameter p. Ultimately, a
Type-2 TS Fuzzy Model can represent each rule consequent by two polynomial
functions associated with the upper and lower bounds of its parameters. Together
with the Type-Reduction mechanisms, such representation constitute a compact and
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effective way of embedding several possible models that best approximate a specific
operation point of a process. A generic definition of the i th rule of a system with M
If-Then rules and N antecedents is presented as follows:

I f y(k − 1) is F̃ i
1 and · · · and u(k − 1) is F̃ i

N ,

Then
Ai (z−1)yi (k) = Bi (z

−1)u(k) + Ci (z
−1)v(k)

A
i
(z−1)yi (k) = Bi (z

−1)u(k) + Ci (z
−1)v(k)

,

(4.5)

and:

[Ai , A
i ](z−1) = [1, 1] + [a1i , a1i ] + [a2i , a2i ]z−1 + · · · + [anai , anai ]zna , (4.6a)

[Bi , Bi ](z−1) = [b1i , b1i ]z−1 + · · · + [bnbi , bnbi ]znb , (4.6b)

[Ci ,Ci ](z−1) = [1, 1] + [c1i , c1i ]z−1 + · · · + [cnci , cnci ]znc . (4.6c)

4.2.1 Development of the Interpolated Interval
Type-2 Fuzzy Model

One of the advantages upcoming from the existence of a system’s model is the possi-
bility of developing control techniques capable of adapting their performance to dif-
ferent operating conditions. Model based control techniques such as Pole-Placement
[4] or Model Predictive Control [5] are some examples of such approach. From the
point of view of the system’s behavior prediction, TS FLSs provide a simple mecha-
nism of interpolating its output based on the weighted contribution of several locally
linear models. However, when a model is used in a model-based control framework,
it is important not only to have the predicted output but, also the parameters of an
equivalentmodel. Fortunately, since the TSFLSs’ rule aggregation is of linear nature,
one can obtain a single linear model where each parameter results from the weighted
contribution of every locally linear model partially activated at the current operating
region [6]. Naturally, transitory regions that activate several partitions of the input
space result from the contribution of several models and, therefore, present higher
levels of uncertainty. For this reason, in [7] this issue is overcame and the model’s
accuracy is improved by merging a set of the best performing linear models at each
region obtained by a genetic algorithm. By combiningmultiple TS fuzzymodels, one
can improve the overall identification performance of the model, since the expected
error upcoming from the use of multiple models will (in the worst case scenario)
not exceed the expected error of the individual models [8]. The present work aims
to extend such principle by using the model uncertainty representation according to
the Type-2 TS FLSs’ principles.
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Since a Type-2 FLS output is ultimately represented by a bounded output, two
average models of the plant (ỹ(k) and ỹ(k)) will be obtained. Hence, defining the
upper and lower bounds separately and having the C polynomial equal to unity
(leading to an ARX model) the average estimated model (ỹ) is represented as:

ỹ(k) = [1 − Ã(z−1)]y(k − 1) + B̃(z−1)u(k) (4.7a)

where,
Ã(z−1) = 1 + ã1z

−1 + ã2z
−2 + · · · + ãna z

na , (4.8a)

B̃(z−1) = b̃1z
−1 + · · · + b̃nb z

nb . (4.8b)

The coefficients of the polynomials Ã(z−1) and B̃(z−1) are obtained by averaging
the M consequent models, separately for the upper and lower bounds, according to
their normalized firing level. This procedure is presented in the equations:

ãk =

M∑

i=1
wiaik

M∑

i=1
wi

, k = 1, · · · , na , (4.9a)

b̃k =

M∑

i=1
wibik

M∑

i=1
wi

k = 0, · · · , nb . (4.9b)

For the lower average model, the weights w that define the contribution of each
sub-model for the expression of ỹ(k) and the parameters aik and bik are given by:

w ≡ w = [ f 1, f
2
, · · · , f

L
, f L+1, · · · , f M ], aki ≡ aki , bki ≡ bki , (4.10)

while for the upper average model, the parameters are given by:

w ≡ w = [ f 1, f 2, · · · , f R, f
R+1

, · · · , f
M ], aik ≡ aik, bik ≡ b

i
k . (4.11)

The values of the boundaries L and R are given by the Type-Reduction algorithm,
previously presented in the Chap.2.

http://dx.doi.org/10.1007/978-981-10-4633-9_2
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4.2.2 Development of the n-step Ahead Predictor

When the developed model is integrated on a Model Predictive Control framework,
the accuracy of the system’s predicted behavior given by a locally linear model ulti-
mately defines the success of the control law in accomplishing the desired closed
loop performance metrics. However, the use of locally linear models to approxi-
mate a non-linear system’s response several steps ahead of current sampling instant,
particularly during transient conditions, is usually a sub-optimal approach. Never-
theless, in modeling and control applications, locally linear approximations usually
yield computationally efficient methods without significant loss in accuracy [9].

Literature highlights two different ways of using locally linearized models to
predict the behavior of a system during a future time window [9]:

• By considering a fixed linearized model constant over the prediction window
(obtained at the extrapolation instant);

• By performing successive linearizations of the model at each new expected oper-
ating point over the prediction window.

While potentially more accurate, the latter approach has a larger computational
burden directly dependent on the length of the prediction window. In addition, in
mildly non-linear scenarios, when such approach is integrated in a closed loop control
algorithm, it is known for not yielding significant improvements comparing to the
former method [9]. For this reason, the present work will focus on the use of locally
linear models which are assumed as constant over the whole prediction window.

Analyzing the simpler case based on a linearized Type-1 TS fuzzy model, one
can obtain an approximation of the system’s predicted response by evaluating its
free response, assuming that future control actions will remain equal to the current
control action u(k) and disturbances ε are constant. Therefore, considering a one
step-ahead predictor for a second order system given by Eq. (4.2) and assuming its
dead-time equal to 0, two consecutive iterations of the predictor can be written as:

ŷ(k) = −a1y(k − 1) − a2y(k − 2) + b1u(k − d − 1) + b2u(k − 2) + ε(k) , (4.12a)

ŷ(k + 1) = −a1y(k) − a2y(k − 1) + b1u(k) + b2u(k − 1) + ε(k + 1) . (4.12b)

Thus, an incremental model can be obtained by subtracting two consecutive iter-
ations, yields:

ŷ(k + 1) = (1 − a1)y(k) − (a2 − a1)y(k − 1) + a2y(k − 2)
+b1�u(t) + b2�u(t − 1) + ε(k + 1) − ε(k) ,

(4.13)
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where � = 1 − z−1. Considering that a constant disturbance is present over the
prediction window (Np), the developed predictor will be offset-free (since ε(k +
1) − ε(k) = 0). Thus, the free response (f (k+n)) over the future n-steps is recursively
given by:

f (k + 1) = (1 − a1)y(k) − (a2 − a1)y(k − 1) + a2y(k − 2)
+b1�u(k) + b2�u(k − 1) ,

f (k + 2) = (1 − a1) f (k + 1) − (a2 − a1)y(k) + a2y(k − 1) + b2�u(k − 1) ,

f (k + 3) = (1 − a1) f (k + 2) − (a2 − a1) f (k + 1) + a2y(k) ,

f (k + 4) = (1 − a1) f (k + 3) − (a2 − a1) f (k + 2) + a2 f (k + 1) ,

f (k + Np) = (1 − a1) f (k + Np − 1) − (a2 − a1) f (k + Np − 2) + a2 f (k + Np − 3) .

(4.14)

Regarding the application of the extrapolation hereby presented to Interval Type-2
TS Fuzzy Models, the obtained results remain valid by developing a n-step ahead
predictor considering the parameters of the upper and lower bounds of the model
separately and average the obtained estimations.

4.3 Application Scenarios

To assess the improvements attained with the use of IT2FLSs, two non-linear
processes will be used as support for the development of the n-step ahead predictors.
The Fermentation Reactor [9] and the Coupled Tanks systems [10] are two classical
benchmark frameworks frequently used in the literature to evaluate the performance
and robustness of non-linear modeling and control methodologies. To provide a com-
parative standpoint in the results discussion, two additional n-step ahead predictors
will be implemented based on a linear ARX model and a Type-1 TS Fuzzy Model.

4.3.1 Fermentation Reactor Modeling

Yeast fermentation is a biochemical process that, having ethanol and carbon-dioxide
as a sub-product, has significant value for several branches of food industry such
as bakeries, breweries and distilleries as well as to other domains such as pharma-
ceutical and chemical plants. The yeast fermentation reaction is itself a composition
of several interdependent physical/chemical processes and, for that reason, requires
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Fig. 4.1 Diagram of the continuous fermentation reactor

fairly complex models to be accurately simulated. In the work of [11], an extended
model of this reaction is developed by complementing its kinetic properties (from
which most part of the models existent in literature are based on [12]) with the heat
transfer equations that directly influence the fermentation process. The biochemical
reactions occurs in a reactor which is modeled as a stirred tank with constant sub-
strate feed flow and a constant outlet flow containing the product (ethanol), substrate
(glucose) and biomass (suspension of yeast), as generically depicted in Fig. 4.1.

The first-principle model of the yeast fermentation process is defined by the fol-
lowing set of non-linear differential equations:

dV (t)

dt
= Fi t − Fe(t) ,

dcX (t)

dt
= μX (t)cX (t)

cS(t)

KS + cS(t)
exp(−KPcP(t)) − Fe(t)

V (t)
cX (t) ,

cP(t)

dt
= μPcX (t)

cS(t)

KS1 + cS(t)
exp(−KPcP(t)) ,

cs(t)

dt
= − 1

RSX
μX (t)cX (t)

cs(t)

KS1 + cS(t)
exp(−KPcP(t))

− 1

RSP
μPcX (t)

cS(t)

KS1 + cS(t)
exp(−KP1cP(t))

+ Fi (t)

V (t)
cS,in(t) − Fe(t)

V (t)
cS(t) ,

dCO2

dt
= kla(t)(c

∗
O2

(t) − cO2(t)) − τO2(t) − Fe(t)

V (t)
cO2(t) ,
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dTr (t)

dt
= Fi (t)

V (t)
(Tin(t) + 273) − Fe(t)

V (t)
(Tr (t) + 273) + τO2(t)�Hr

32ρrCheat,r

− KT AT (Tr (t) − Tag(t))

VρrCheat,r
,

dTag(t)

dt
= Fag(t)

Vj
(Tin,a − Tag(t)) + KT AT (Tr (t) − Tag(t))

VjρagCheat,ag
, (4.15)

where

c∗
O2

= (14.6 − 0.3943Tr (t) + 0.007714T 2
r (t) − 0.0000646T 3

r (t)) × 10− ∑
(Hi Ii )(t) ,

(Hi Ii )(t) = 0.5HNa
MNa

V (t)
+ 2HCa

MCa

V (t)
+ 2HMg

mMgCl2

MMgCl2

MMg

V (t)

+ 0.5HCl

(
mNaCl

MNaCl
+ 2

mMgCl2

MMgCl2

)
MCl

V (t)
+ 2HCO3

mCaCO3

MCaCO3

MCO3

V (t)

+ 0.5HH10
−pH(t) + 0.5HOH10

−(14−pH(t)) ,

kla(t) = kla01.024
Tr(t)−20 ,

τO2 (t) = μO2

1

YO2

cX (t)
cO2 (t)

KO2 + cO2 (t)
,

μX = A1 exp(− Ea1

R(Tr (t) + 273)
) − A2 exp(− Ea2

R(Tr (t) + 273)
) . (4.16)

Themodel parameters and the nominal operation point of the system are presented
in Tables4.1 and 4.2, respectively.

Fermentation reactions are of exothermic nature and, since they are dependent on
living organisms whose growth rate is highly sensitive to temperature variations, it is
important to avoid temperature runaway of the reactor. Driven by this, temperature
control is a key factor to ensure the reaction stability and can be efficiently used to
indirectly obtain its sought products according to the demanded specifications. For
this purpose and since sterility is often a crucial factor in such reactions, cooling
jackets are usually employed as opposed to cooling coils into the fermenter itself
[12]. Hence, from the perspective of a control algorithm, the reactor is a single-
input single-output process: the coolant flow rate (Fag) is the input (the manipulated
variable) and the reactor’s temperature (Tr ) is the output (the controlled variable), as
depicted in Fig. 4.2.

The dynamic behavior of the Tr (Fag) dependency ultimately defines the com-
plexity developed model. In the present scenario, both steady-state and dynamic
properties of the process are of non-linear nature. As is shown by Figs. 4.3 and 4.4,
the steady-state gain and the incremental gain are highly dependent on the current
operating point.
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Table 4.1 Parameters of the first-principle model of the yeast fermentation reactor

A1 = 9.5 × 108 kla0 = 38 l h−1 MMg = 24g mol−1

A2 = 2.55 × 1033 Kla0 = 8.86mg l−1 MMgCl2 = 95 g mol−1

AT = 1m2 Kla0 = 0.139g l−1 MNa = 23 g mol−1

Cheat,ag = 4.18J (g K)−1 Kla0 = 0.07g l−1 MNaCl = 58.5 g mol−1

Cheat,r = 4.18J (g K)−1 Kla0 = 1.03g l−1 R = 8.31J (mol K)−1

Ea1 = 55000 J mol−1 Kla0 = 1.68g l−1 RSP = 0.435

Ea2 = 229999J mol−1 Kla0 = 3.6 × 105 J (h m2

K)−1
RSX = 0.607

HCa = −0.303 mCaCO3 = 100g Vj = 50 l

HCl = 0.844 mMgCl2 = 100g YO2 = 0.97mg−1

HC03 = 0.485 mNaCl = 500g �Hr = 518kJ (mol O2)−1

HH = −0.774 MCa = 40g mol−1 μO2 = 24 l h−1

HMg = −0.314 MCaCO3 = 90g mol−1 μP = 24 l h−1

HNa = −0.550 MCl = 35.5g mol−1 ρag = 24 g l−1

HOH = 0.941 MCO3 = 60g mol−1 ρr = 24g l−1

Table 4.2 Nominal operating point of the yeast fermentation reactor

cO2 = 3.106953 mg l−1 Fi = 51 l h−1

cP = 12.515241g l−1 pH = 6

cS = 29.738924g l−1 Tag = 27.053939 ◦C
cS,in = 60g l−1 Tin = 25 ◦C
CX = 0.904677g l−1 Tin,ag = 20 ◦C
Fag = 18 l h−1 Tr = 29.4 ◦C
Ea2 = 51 l h−1 V = 1000 l

Fig. 4.2 Diagram of the continuous fermentation reactor considering the actuation and controller
variables
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Fig. 4.3 Steady-state gain Tr (Fag) of the yeast fermentation reactor
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Fig. 4.4 Dependency of the incremental gain with the operating point

Yeast fermentation is a nonlinear process with relatively slow dynamic behavior
which is mainly imposed by the glucose decomposition rate [11]. Consequently,
when the reaction’s operation point is changed, the attained settling time is in the
scale of hours and, as so, one sample per hour is enough to capture the process’s
relevant dynamics.

In order to develop a model with “good” approximation capabilities over all the
operational regimes of the process, a pseudo random sequence of control inputs was
generated over the [0, 200] l h−1 control range, with steps changing every 200h so
the system reaches its steady-state. To better simulate the conditions of a real world
scenario, the actuation variable was corrupted by gaussian noise with zero mean and
variance of 0.1 l h−1 while the reactor’s temperaturemeasurementswere corrupted by
gaussian noisewith zeromean and 0.05 ◦Cvariance. In Fig. 4.5, the training sequence
and the system response are partially depicted (comprising a segment 2000h of
the complete training set), evincing the slow dynamics of the reactor’s temperature
variations.

On related literature [9], the same model is also used as a benchmark system and
it was found that a second order regressive models with no dead-time are typically
used to model this system. Accordingly, the regression variables considered during
the identification of the model’s consequent part parameters are following presented:
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Fig. 4.5 Partial depiction of the response of the system to a pseudo-random control sequence used
for model extraction

ŷ(k) = f (y(k − 1), y(k − 2), u(k − 1), u(k − 2)) . (4.17)

The Subtractive Clustering algorithm was used to partition the model’s inputs
space thus obtaining the centers and variance of themembership functions that define
a Type-1 TS Fuzzy Model. This process considers solely the y(k − 1) and u(k − 1)
regressors as input variables, since small changes are observed over subsequent
samples. The optimal input space partition was found considering yielding a total of
5 rules. The parameters of the membership functions that define the antecedent part
of the model are presented in Table4.3. Subsequently the consequent part parameters
of themodel were trained using the Recursive Least Squares procedure. The obtained
Type-1 TS Fuzzy Model parameters will be then used as initialization of the Type-2
counterpart.

During the development of the Interval Type-2 TS Model its was found that its
output is more sensitive to the width of the uncertainty interval of the consequent
parameters than the antecedent ones. For this reason, and considering the conclusions
obtained in Chap.2 regarding the width of the antecedent Type-2 MF, a 5% uncer-
tainty over the antecedent function’s center was assumed, yielding a good coverage
of the model’s input space. Regarding the choice of the uncertainty interval of the
consequent part parameters, several trials where performed to evaluate the influence
of uncertainty ratio over the nominal value of the parameters. For each trial, it was
considered that the system is at the steady-state operating point (where Fag = 32.5

http://dx.doi.org/10.1007/978-981-10-4633-9_2
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Table 4.3 Center and variance of eachMF used in the Type-1 TS Fuzzymodel input space partition

Fag(l h−1) Tr (◦C)
u(k − 1) y(k − 1)

Center σ 2 Center σ 2

Rule 1 5.6 15.36 33.28 3.78

Rule 2 26.1 15.36 30.15 3.78

Rule 3 58.3 15.36 29.92 3.78

Rule 4 88.3 15.36 27.01 3.78

Rule 5 119.6 15.36 26.43 3.78

0 2 4 6 8 10 12 14 16 18
0

1

2

Uncertainty ratio over consequent part parameters (%)

N
SE

Fig. 4.6 Normalized Squared Error of 10 step-ahead estimations using a Type-2 TS Fuzzy model
for different uncertainty ratios over the consequent part parameters, normalized to the Type-1 TS
Fuzzy model estimation error

l h−1 and Tr = 29.4 ◦C), performed then a step in the control signal (Fag) in the
range �u(k) ∈ [−32.5, 37.5]. For each step, the change in the process output (Tr )
is then obtained 10 sampling instants after. Due to the change of the process gain
over different operation points, it is expected the model approximation capabilities
to deteriorate when large changes in the operation point are performed. Therefore,
long prediction horizons may reveal inadequate since the local linearization used in
the extrapolation may no longer be valid. Figure4.6 illustrates this procedure, reveal-
ing the influence of the uncertainty bounds in the prediction error of the Type-2 TS
model.

As is clear from the obtained results, which are normalized to the error obtained
with a Type-1 TS model, increasing the uncertainty width of the Type-2 TS model’s
parameters is beneficial for the model prediction capabilities. This behavior is
observed approximately up to 12% uncertainty ratio, fromwhich its prediction capa-
bilities start to deteriorate. Once again, the results obtained for the 0% value (NSE
= 1) supports the equivalence between a Type-1 and a Type-2 TS model with 0%
uncertainty ratio.

In Figs. 4.7, 4.8 and 4.9, are presented the Type-2 TS model 10 step-ahead pre-
dictions for several changes in the control signal in the conditions of the previous
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Fig. 4.7 Reactor’s temperature variation for different actuation steps over the nominal point
(29.4 ◦C). The 10 step-ahead estimations given by predictors based on a linear ARXmodel, Type-1
TS Fuzzy model and a Type-2 TS Fuzzy model with 12% uncertainty ratio over the consequent part
parameters

evaluation considering the 12, 5 and 15% uncertainty ratios. These results are then
comparedwith extrapolation obtained by two additional predictors (ARX andType-1
TS FLS).

As is observed in Fig. 4.7, the use of a single linear ARX predictor clearly reveals
an approach incapable of providing long term predictions due to the significant
change of the process gain. On the contrary, for the given scenario, the TS Fuzzy
Models reveal their superior interpolation capabilities by providing better predictions
of the local behavior of the system over the considered horizon. The results obtained
also show that the Type-1 TS model predicts the system behavior with a small error
relatively to the real system behavior. This occurs when the step in the cooling
medium is limited to the interval�u(k) ∈ [−10, 10]. As the step amplitude increases,
the model starts to diverge. When a Type-2 TS model with an uncertainty factor of
12% over the consequent parameters is used, the model remains close to the real
behavior of the system over the whole considered interval. As will be shown in
the Chap.5 this improvement is important for the performance enhancements of the
predictive controller developed based the Type-2 TS Fuzzy Model framework. In
Figs. 4.8 and 4.9, the influence of the uncertainty interval width at the consequent
part parameters is evaluated for 5 and 15% scenarios.

In the former figure the differences between the Type-1 and Type-2 TS Fuzzy
Models are little (due to the small width of the considered intervals and consequent
equivalence of the models). In contrast, when the uncertainty width is increased
significantly, the Type-2 FuzzyModel is no longer advantageous, as is evinced in the
latter case where it presents a larger error over the prediction horizon than its Type-1
counterpart. While in this scenario the magnitude of the error is relatively small, the
increase of themodel’s parameters uncertainty results in an increase of the predictor’s
error in the vicinity of the current operating point (for small variations of the cooling
medium flow rate). When such model is integrated in a closed loop model-based
controller and operating at steady-state, such predictor inaccuracies will ultimately
produce a more active control signal—which is not necessarily desirable.

http://dx.doi.org/10.1007/978-981-10-4633-9_5
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Fig. 4.8 Reactor’s temperature variation for different actuation steps over the nominal point
(29.4 ◦C). The 10 step-ahead estimations given by predictors based on a linear ARXModel, Type-1
TS Fuzzy model and a Type-2 TS Fuzzy Model with 5% uncertainty ratio over the consequent part
parameters
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Fig. 4.9 Reactor’s temperature variation for different actuation steps over the nominal point
(29.4 ◦C). The 10 step-ahead estimations given by predictors based on a linear ARXModel, Type-1
TS Fuzzy model and a Type-2 TS Fuzzy Model with 15% uncertainty ratio over the consequent
part parameters

4.3.2 Coupled Tanks Modeling

The control of the liquid level in tanks is a common problem in industries that require
fluids to be pumped and stored between several deposits. Often, such tanks are used
to perform mixing reactions that, depending on their nature, can result in sudden
volumetric changes of the liquids, thus requiring a tight control of their level and
flow rates to comply with the tank’s storage capacities. The Coupled Tanks System
(CTS) [10] used in this evaluation is based on a small scale system consists of two
tanks, having each one an independent pump to control the inflow of liquid and an
outlet at the bottom responsible for the liquid leakage. Additionally, the tanks are
interconnected by a channel which allows the liquid to flowbetween them.A diagram
of this setup is presented in Fig. 4.10.
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Fig. 4.10 Diagram of the coupled tanks system

Based on the Bernoulli’s equations for a non-viscous, incompressible fluid in
steady-state flow, the dynamics of the CTS can be modeled by the resulting set of
non-linear differential equations:

a1
dh1
dt

= q1 − α1

√
h1 − sgn(h1 − h2)α3

√|h1 − h2| , (4.18a)

a2
dh2
dt

= q2 − α2

√
h2 + sgn(h1 − h2)α3

√|h1 − h2| . (4.18b)

where a1 and a2 denote the cross-sectional area of the tank 1 and 2, h1 and h2 are the
liquid level in tank 1 and 2, q1 and q2 are the volumetric flow rate (cm3 s−1) of Pump
1 and 2, α1, α2 and α3 are proportionality coefficient corresponding to the

√
h1,

√
h2

and
√
h1 − h2 terms which depend on the discharge coefficients of each outlet and

the gravitational constant. The reservoir model parameters were obtained from the
setup described in [13], and are presented in Table4.4.

By choosing which pumps and rotary valves are directly manipulated, one can
develop either a Single-Input Single-Output (SISO) or a Multiple-Input Multiple-
Output (MIMO) system model to evaluate the variations of the liquid level of the

Table 4.4 Parameters of the simulated coupled tanks system

a1 a2 α1 α2 α3

36.52cm2 36.52cm2 5.6186 5.6182 10
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Fig. 4.11 Steady-state gain h2(q1) of the coupled tanks system
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Fig. 4.12 Dependence of the incremental gain with the operating point

tanks. In the present evaluation scenario, the Pump 1 will be the actuation variable
and the liquid level of the Tank 2 the controlled one and is considered that the valves
at the tank interconnection and respective outlets maintain a constant aperture. Using
this configuration, the presented setup can be considered as a non-linear second order
SISO system.

On related literature [10], this system is modeled using second order regressive
models with no dead-time. Accordingly, the regression variables considered during
the identification of the model’s consequent part parameters are:

ŷ(k) = f (y(k − 1), y(k − 2), u(k − 1), u(k − 2)) . (4.19)

As is evinced by Figs. 4.11 and 4.12 the system’s steady-state gain is of non-linear
nature and its incremental gain highly dependent on the current operation point.

In order to extract amodel capable of approximate the system’s operation region, a
pseudo random sequence of control inputs was generated (considering the maximum
flow rate for the Pump 1 to be 80cm3s−1), with steps changing every 200s and
the Pump 2 turned off. By evaluating several step responses, a sampling interval
of 2 s was chosen as appropriate to capture the plant’s behavior. An unmeasured
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Fig. 4.13 Response of the system to a pseudo-random control sequence used for model extraction

gaussian disturbance is introduced in the control signal of Pump 1 with zero mean
and variance of 0.5cm3 s−1 while the Tank 2 liquid level measurements are corrupted
by a gaussian noise with zero mean and variance of 0.05cm. Figure4.13 partially
details the changes in the Tank 2 level to a sequence of different liquid flow rates at
the Tank 1 inlet.

Once again, for comparative purposes, three models were developed based on the
linear ARX, Type-1 and Type-2 TS Fuzzy Models. The Type-1 TS Fuzzy model was
obtained using the Subtractive Clustering algorithm considering solely the y(k − 1)
and u(k − 1), followed by a training of the consequent part parameters based on
the Recursive Least Squares Algorithm. The optimal input space partition was found
yielding a total of 4 rules, which come out to the antecedent part parameters presented
in Table4.5.

Similarly to the previous scenario, the influence of the uncertainty ratio ration over
the Type-2 TS model parameters was evaluated by measuring the model’s 10 step-
ahead prediction error considering the system at the steady-state, with q1 = 60cm3s−1

and h2 = 24.7cm and control step variations in the interval �u ∈ [−50, 20]. The
Type-2 MF at the antecedent part of the rule base were obtained considering a
5% uncertainty ratio over the Type-1 ones. The obtained results are represented
in Fig. 4.14.
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Table 4.5 Center and variance of eachMF used in the Type-1 TS Fuzzymodel input space partition

q1(cm3 s−1 h2(cm)

u(k − 1) y(k − 1)

Center σ 2 Center σ 2

Rule 1 8.6 11.30 0.79 6.20

Rule 2 32.8 11.30 7.51 6.20

Rule 3 54.1 11.30 19.92 6.20

Rule 4 71.9 11.30 35.06 6.20

0 2 4 6 8 10 12
0

2

4

Uncertainty ratio over consequent part parameters (%)
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Fig. 4.14 Normalized squared error of 10 step-ahead estimations using a Type-2 TS Fuzzy model
for different uncertainty ratio over the consequent part parameters, normalized to the Type-1 TS
Fuzzy model estimation error
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Fig. 4.15 Tank 2 liquid level variation (nominal value of 24.7cm) due to a actuation steps in the
Pump 1. Comparison between the estimations given by a predictor based on a linear ARX Model,
Type-1 TS Fuzzy model and a Type-2 TS FuzzyModel with 8% uncertainty width over the nominal
consequent part parameters
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In comparison to the previous evaluation scenario, the uncertainty ratio introduced
in the consequent part parameters has a similar influence over the prediction model’s
accuracy, showing that increasing its value is beneficial up to a certain limit. In
the Coupled Tanks model case, the optimal Type-2 TS model is obtained when a
uncertainty ratio of 8% is used over the nominal parameters’ values.

Figures4.15, 4.16 and 4.17, for Type-2 TSmodels results are obtained considering
uncertainty widths of 8%, 4%, and 12% respectively, depict the prediction accuracy
of the three evaluated models for different step changes over the nominal operation
point.
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Fig. 4.16 Tank 2 liquid level variation (nominal value of 4.7cm) due to a actuation steps on the
Pump 1. Comparison between the estimations given by a predictor based on a linear ARX model,
Type-1 TS FuzzyModel and a Type-2 TS FuzzyModel with 4% uncertainty width over the nominal
consequent part parameters
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Fig. 4.17 Tank 2 liquid level variation (nominal value of 24.7cm) due to a actuation steps in the
Pump 1. Comparison between the estimations given by a predictor based on a linear ARX model,
Type-1 TS Fuzzymodel and a Type-2 TS Fuzzymodel with 12% uncertainty width over the nominal
consequent part parameters
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Similarly to the previously evaluated scenario, it is clear that the considered uncer-
tainty widths in the Type-2 TS Fuzzy Model significantly influence the performance
of the developed predictor. The scenariowith 8%uncertaintywidth presented the best
results and for that reason, will be used in the controller synthesis further presented.

4.4 Conclusions

In the present chapter an approach for the development of a predictive Type-2 TS
Fuzzy Model based on the weighted contribution of locally linear models was pre-
sented. The evaluated scenarios show that the uncertainty width considered in the
Type-2 TS FuzzyModel parameters significantly influence the developed predictor’s
performance and, for this reason, the choice of this parameter may be subject to an
optimization procedure. One relevant conclusion is that the prediction model’s per-
formance can be slightly improved based on the Type-2 FL, without increasing the
model complexity with new rules and regression parameters thus providing a better
support for model-based linear controllers. The succeeding chapter will develop such
application, providing comparative results of a closed loop control system based on
the described non-linear processes.
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Chapter 5
Model Predictive Control Using Type-2
Takagi-Sugeno Fuzzy Systems

5.1 Introduction

Model Predictive Control (MPC) is one of the most researched synthesis approaches
which, based on a model of a process, computes the best control strategy according
to a set of predefined goals over a future time horizon. In fact, this is one of the most
distinguishable features of MPC. While, traditionally, control systems determine the
course of actions based on the evolution of the error of previous iterations, MPC
is driven by evaluating the expected future error due to a chosen control trajectory
in a receding horizon fashion. The success of MPC is in part due to the following
factors [1]:

• Applicability to a broad class of systems which are difficult to control (i.e.
processes with significant time-delays or non-minimum phase behavior)

• Ability to handle constraints imposed in the control as well in the system states
• Algebraic approach to obtain a closed-loop controller
• Easily extended to MIMO processes
• Good tracking performance
• Computational feasibility

The genesis of MPC goes back to early 1980s [2] as a result from the commit-
ment of practitioners to solve specialized control needs of power plants and petro-
leum refineries. Due to its origins, many of the MPC practical implementations are
currently found in industry, mainly in scenarios where the time constants of the
controlled processes are measured in the scale above seconds. Examples of its prac-
tical feasibility are found in chemical, petrochemical, paper or in food processing
industries [2]. They represent applications where the control goals usually need to
be stated not solely based on a reference signal (as in classical control systems such
as PID or Pole-Placement), but also considering several natural evaluative metrics
related with the quality of the final products and their cost.

Motivated by its high level of “simplicity” and flexibility in handling complex
control scenarios, academia continued to put efforts in developing MPC beyond just
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Fig. 5.1 Basic structure of a MPC algorithm

industrial practices, proposing several extensions based on the most recent develop-
ments in system’s modeling and optimization domains to address complex non-linear
problems in any potential controllable scenario [3]. While in the past the available
computational resources restrained their use in real-time applications, the theoretical
results achieved were not unfruitful. Nowadays, the available computational power
even in small embedded systems is turning some of the proposed non-linear MPC
approaches into successful practical applications. Dynamic systems with fast time
constants in automotive industry [4], such as in engine control, or in aerospace appli-
cations, as in Unmanned Aerial Vehicle flight control system, [5] are some examples
of its recent applications.

MPC is not an unique technique but rather a set of different methodologies rooted
on three common functional blocks, interconnected as presented in Fig. 5.1.

Due to the predictive nature of this control approach, the model’s process plays a
central role in a MPC algorithm as it provides the mean to extrapolate the expected
future behavior of the system. The quality of its predictions ultimately not only deter-
mine the capability of achieve the control goals, but also drive the level of computa-
tional complexity required to obtain the optimal control sequence. As was previously
pointed, MPC algorithms were developed from practitioners and, for that reason, tra-
ditionally consider the simplest model capable of give accurate enough predictions.
Linear models often satisfy this paradigm, assuming that their uncertainty and some
gain scheduling in the control law suffices to overcome mildly non-linearities that
industrial processes present [6]. Among the linear modeling approaches found in the
related literature, one can distinguish three main groups:

• Truncated Impulse Response Models—traditionally favored by industry appli-
cations. These models are obtained by performing simple tests such as the step
response and easily interpretable, but require far more data to tune their large
number of parameters than the following two approaches
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• State Space Models—most widespread in the academic research, particularly in
the USA, allowing simple derivations for the controller and easily extended to the
multi-variable case

• Transfer Function Models and polynomial methods—curiously these methods are
preferred by academics in Europe, and clearly evince the influence of concepts
such as dead-time and time constants in their representations. Furthermore, their
structure can be easily constructed using both technological knowledge about the
process and information provided by data-sets [3]. Due to the easiness in obtaining
a regression model, such approach has a closer connection to popular black-box
identification techniques what grants it an additional advantage in discrete-time
process modeling. However, in multidimensional scenarios, transfer function mod-
els may lead to cumbersome and non minimal representations which are harder to
interpret and manipulate

Nevertheless, to address physical processes with strong non linearities, litera-
ture proposes several models based on non-linear structures such as Cascade (serial)
models, Volterra series, Wavelets, Neural Networks and ultimately Fuzzy Systems
[3]. Among the referred approaches, non-linear MPC implementations tend to give
preference to neural models, existing a wider consensus in the optimal approaches
to use such structures in the predictive control domain [3]. This option is mainly due
to their advantages in terms of approximation accuracy (they are well known uni-
versal approximators), reasonably low number of parameters and a simple structure.
Moreover, a considerable number of training and structure optimization algorithms
are available for neural models, which make the modeling task a seamless process
for practitioners less experienced with the physical details and the relevant variables
of the controlled process.

On the other hand, the concept of incorporating FL into neural models has become
increasingly important in recent years and has been object of important studies regard-
ing their stability and applicability in MPC [7]. In contrast to the pure neural networks
and fuzzy systems, neuro-fuzzy models based on the Takagi–Sugeno structure have
been proven suitable for the use in non-linear MPC. In [8–10] are presented some
examples of the successful applications of MPC using fuzzy models.

Regarding the objective function, the first algorithm ever proposed according to the
MPC principles, known as Model Algorithmic Control (MAC) [11], was designed to
solely minimize the predicted deviations of the process from the reference trajectory
in a least-squares sense. The Dynamic Matrix Control (DMC) [12] algorithm was
in fact the first to use the two evaluative metrics that are nowadays considered as
standard elements of a MPC objective function. The first one takes into account
the differences between the predicted trajectory of the output variable and the set-
point trajectory (i.e. the predicted control errors) over the prediction horizon Np.
The role of the second part of the objective function is to introduce a penalty term to
reduce excessive (and hence disadvantageous) changes of the manipulated variable.



84 5 Model Predictive Control Using Type-2 Takagi-Sugeno Fuzzy Systems

In addition, it also improves the numerical properties of the optimization process [6].
Therefore, the generic quadratic cost function is typically used:

J =
N∑

p=1

[ŷ(k + p|k) − r(k + p)]2 +
N∑

p=1

[Δu(k + p − 1|k)]2 , (5.1)

where ŷ(k + p|k) is a p-step ahead predictor of the system on instant k, r(k + p) is
the future reference trajectory and Δu(k + p − 1|k) is the control signal increment
and N is the optimization horizon (for the predictor and control signal in this case).

It is important to note that the relevance of each performance index to the final
cost function can be adjusted according to several weighting factors. They are usually
tuned to achieve a desired closed loop dynamic performance, but they can also be
dictated by economic objectives of the control system. The choice of a well posed
performance index is also a fundamental condition when developing a MPC strategy
capable of achieve offset free reference tracking [6]. By other words, in steady state,
the minimum of J must be consistent with zero tracking errors. Equation (5.1) satisfies
this condition by considering Δu rather u in the cost function penalty factor. If the
absolute value ofu was used instead, the performance index would be biased, favoring
operation points which require control signals with smaller absolute magnitude. For
obvious reasons such constraint does not comply with the goals of a closed loop
control system with a wide operation region.

Ultimately, the choices taken in the previous blocks sum up in an optimization
problem that has to be solved online in between each sampling instant according to
the new information inferred by the current state of the process. The reliance of MPC
in linear models is motivated by the reduced computational complexity necessary
to find the solution for the optimization problem and easiness in developing adap-
tive strategies to cope with time-varying conditions in specific application scenarios
[13]. Although providing a sub-optimal representation of non-linear processes, linear
models allow one to synthesize a simple linear algebra problem yielding an explicit
solution of the problem. On the other hand, whereas non-linear models invariably
escalate the complexity of synthesizing the control law to a non-linear optimization
problem, which must be solved using heavy iterative methods such as the Levenberg-
Marquardt [14, 15] or the Broyden–Fletcher–Goldfarb–Shanno [16] algorithms. Fur-
thermore, such methods provide no guarantees to find an optimal solution in useful
time due to the non-convex nature of the problem. In this perspective, under certain
circumstances it is an acceptable compromise to work with a sub-optimal model.
As will be further presented in this chapter, by using linear approximations of non-
linear models in the vicinity of the current process operation point, one is capable
to retain a significant modeling accuracy (ultimately defining the success in closed
loop reference tracking) while simultaneously reducing the optimization problem
complexity.
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5.2 Generalized Predictive Control

One of the most used implementations of MPC in industry is the Generalized Predic-
tive Control (GPC) [17] due to its simplicity, flexibility and robustness in controlling
complex systems, where self-tuning controller methods such as pole-placement and
other minimum-variance methods [13] are less efficient due to their sensitivity to ini-
tial design assumptions. Similarly to many other MPCMPC implementations, in its
unconstrained form the GPC synthesizes the control law based on the minimization
of a multi-step cost function that weights the quadratic terms of the control error and
the control increments on a finite time horizon into the future, as represented:

J =
Np∑

p=d+1

[ŷ(k + p|k) − r(k + p)]2 +
Nu∑

p=d+1

[λ(z−1)Δu(k + p − 1|k)]2 , (5.2)

where ŷ(k + p|k) is a p-step ahead predictor of the system on instant k, r(k + p)
represents the future reference trajectory, Δ = 1 − z−1, λ(z−1) stands for a weight
polynomial introducing a penalty factor over the control signal activity and d + 1 is
the first output value that can be controlled from the present iteration. The variables
Np and Nu are the prediction and control horizons, respectively. Figure 5.2 illustrates
the main GPC concept, considering a dead-time d = 1.

The choice of the parameter d is deeply related with the system dead-time. If a
system has a dead-time of 2 samples, for example, it would be superfluous to try
to minimize the difference y(k + 1) − r(k + 1) since this quantity although in the

Fig. 5.2 Reference, control and predicted output in a GPC algorithm
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Fig. 5.3 Free and forced response

future, cannot be influenced by present or future control actions. When no a priori
knowledge of the delay is present, it is usual to set this value to 0. Concerning the
length of the prediction window (Np), this value should be selected in order to ensure
the predictor’s validity over the chosen interval - if the process is of non-linear nature,
its dynamics may change significantly during the prediction window. Regarding the
parameter Nu , it is pointless to attribute a value higher than (Np − d − 1), since only
control actions up to this point would have effect in the output within the horizon Np.
Nonetheless, as is suggested by [17] the value of Nu is usually substantially smaller
than the prediction horizon. The concept of control horizon is in fact one of the
novelty factors introduced by the GPC strategy, which considers the control signal
increments null after the Nu window. This simplification significantly reduces the
dimensionality of the matrix operations required to compute the control signal and
improves the robustness of the control law when unknown future weighting factors,
(λ), are required for the controller to be realizable.

When no other constraints are imposed to the process’ variables, the attainment of
the optimal control signal is a simple algebraic cost function minimization problem.
Without entering at this stage in significant calculations, the GPC algorithm synthesis
problem based on linear models starts by assuming that the predicted output of the
model, ŷ results form the contribution of the forced response of the system y f and
its free response y0, as presented in Fig. 5.3. The forced response is determined by
future increments of the manipulated variable while the free response depends only
on the past values of the manipulated variable and the previous values of the system
output.

Based on this property, one can rewrite the model transfer function as presented:

ŷ = y f + y0 , (5.3)

which can be further rewritten as

ŷ = GΔu + y0 , (5.4)



5.2 Generalized Predictive Control 87

where G is a Np by Nu lower triangular matrix representing the impulse response of
the transfer function from u to y

⎡

⎢⎢⎢⎢⎢⎣

g1,0 0 0 · · · 0
g2,1 g2,0 · · · · · · 0
g3,2 g3,1 g3,0 · · · 0
...

...
...

. . .
...

gNp,Np−1 gNp,Np−2 gNp,Np−3 · · · gNp,Np−Nu

⎤

⎥⎥⎥⎥⎥⎦
. (5.5)

It worths noting that if the plant dead-time is d > 0 the first p rows of G will be
null. Generally in self-tunned modeling scenarios d will not be known a priory but,
despite that, GPC theory provides a stable solution for the minimization problem
even if the leading rows of G are zero, as long as a reasonable estimate of the model
order is used [17].

Assuming that the control activity weight factor λ is constant over the time, the
cost function (5.2) can be represented using a vector/matrix form, as follows:

J = (ŷ − r)T (ŷ − r) + λΔuTΔu
= (GΔu + y0 − r)T (GΔu + y0 − r) + λΔuTΔu .

(5.6)

By setting the partial derivatives of J with respect to Δu as zero, one obtains the
control law for the unconstrained scenario as presented in the equation:

Δu = (GTG + λI)−1GT (r − y0) . (5.7)

As GPC is used in a receding horizon fashion, only the first optimal control
increment of Δ u is applied and so, the effective control signal is obtained as u(k) =
u(k − 1) + Δu(1). At the next sampling event, the “optimal” control increment is
calculated once again considering new Np step-ahead predictions, effectively closing
the control loop.

From Eq. (5.7), a very simple interpretation regarding the operation of the GPC
can be attained. If the expected future reference tracking error is zero, i.e. the free
response of the system y0 is sufficient to achieve the control set-point r , then no
further increments in the control signal are necessary. Otherwise, there will be an
increment in the control action proportional to the future error independently from the
current absolute value of the control variable. Moreover, it is evinced the importance
of the prediction model accuracy: since the controller gain is solely proportional to
the future error, if the model predictions become biased then the controller will not
achieve the sought zero error reference tracking.

Figure 5.4 summarizes the procedure of synthesizing a control law based on the
GPC theory.
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Fig. 5.4 GPC algorithm control

5.3 Derivation of a n-step Ahead Predictor

To optimize the cost function defined in Eq. (5.2) one has to firstly obtain an optimal
prediction ŷ for every sample within the prediction horizon. Most SISO plants can
be described around a particular set-point and after linearization by a Controlled
Auto-Regressive Moving Average (CARMA) model:

A(z−1)y(k) = B(z−1)z−du(k − 1) + C(z−1)

Δ
v(k) , (5.8)

where u(k) and y(k) are the input and output sequences of the plant, d is the dead
time of the system, v(k) is an unknown disturbance and Δ = 1 − z−1. The symbols
A, B, and C denote the following polynomials in the backward shift operator z−1:

A(z−1) = 1 + a1z−1 + a2z−2 + · · · + anaz−na ,

B(z−1) = b1z−1 + b2z−2 + · · · + bnbz−nb ,

C(z−1) = 1 + c1z−1 + c2z−2 + · · · + cncz−nc .

(5.9)

When no specific disturbance model is used, polynomial C is chosen to be 1
which is sufficient to account with the influence of white noise or a random walk
disturbance in the system [6]. Considering only the disturbance part of Eq. (5.8), we
can rewrite it as follows:

n(k) = 1

Δ
v(k) ≡ n(k) = n(k − 1) + v(k). (5.10)

In fact, the integrator present in the disturbance model introduces the required
integral action into the GPC control law so that one estimates the system’s steady-
state output and get offset-free reference tracking. This feature is more clear if we
represent the model in an incremental fashion. The model, known as Controlled
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Auto-Regressive Incremental Moving Average (CARIMA) model and represented
in Eq. 5.8, relates the output signal with the control increments Δuk = uk − uk−1.

ΔA(z−1)y(k) = B(z−1)z−dΔu(k − 1) + C(z−1)v(k) , (5.11)

This representation can be obtained by subtracting two consecutive estimations
(ŷ(k) and ŷ(k − 1)), effectively eliminating the influence of non zero mean unknown
disturbances due to the relation stated in Eq. (5.10) (assuming its average value
remains constant, namely n(k + 1) = n(k)). Consequently, the only perturbation
remaining is v(k) which is zero mean and its influence can be assumed null in the
future time-steps.

Based on the CARIMA model previously presented, there exist several different
ways of deriving the prediction equations necessary to minimize the cost function
(5.2). A straightforward and transparent approach is to make use of the one-step
ahead predictor:

ŷ(k + 1|k)=−ã1y(k) − · · · − ãna y(k − na − 1) + b2Δu(k − 1) + · · · + bnbΔu(k − nb)︸ ︷︷ ︸
free response

+ b1Δu(k)︸ ︷︷ ︸ ,

(5.12)
where the ã coefficients are obtained as:

Ã(z−1) = ΔA(z−1) . (5.13)

By recursively deriving successive predictors, a compact matrix/vector form can
be written explicitly in terms of the model coefficients as:

y
k→

= GΔu
k→︸ ︷︷ ︸

forced response

+ F y
←k

+ G ′ Δu
←k−1

︸ ︷︷ ︸
free response

. (5.14)

Details regarding the derivation of the G, F and G ′ matrices (the latter is obtained
from G) based on the successive recursion of the predictor can be found in [6].
While the underlying principles of this approach are more tractable for the user, the
method’s notation may become cumbersome for large prediction horizons. Thus,
a more efficient way of coding this process for an arbitrary prediction and control
window advocates the Diophantine methods [18], as will be hereby presented.

In order to obtain an explicit expression for prediction model (ŷ) for any future
sampling instant p, one has to consider the Diophantine equation

1 = Ep(z
−1) Ã(z−1) + z−pFp(z

−1) . (5.15)

for the time instant p assuming the disturbance polynomial C equal to 1.
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Following, the polynomials Ep(z−1) and Fp(z−1),

Ep(z
−1) = ep,0 + ep,1z

−1 + · · · + ep,p−1z
−(p−1) , (5.16a)

Fp(z
−1) = f p,0 + f p,1z

−1 + · · · + f p,naz
−na , (5.16b)

are of order p − 1 (with (d + 1) ≤ p ≤ Np) and na respectively, and are obtained
dividing 1 by Ã(z−1) until the remainder can be factorized as z−pFp(z−1).

Multiplying Eq. (5.11) by Ep(z−1)z p, and considering that v(k) is white noise,
one obtains:

Ep(z
−1) Ã(z−1)y(k + p) = Ep(z

−1)B(z−1)Δu(k + p − d − 1) + Ep(z
−1)v(k + p) . (5.17)

If we consider Eq. (5.15), then (5.17) can be rewritten as:

(1 − z−p Fp(z
−1))y(k + p) = Ep(z

−1)B(z−1)Δu(k + p − d − 1) + Ep(z
−1)v(k + p) (5.18)

and subsequently, simplified as:

y(k + p) = Fp(z
−p)y(k) + Ep(z

−1)B(z−1)Δu(k + p − d − 1) + Ep(z
−1)v(k + p) . (5.19)

Since the degree of the polynomial Ep(z−1) = p − 1, the noise terms in Eq. (5.19)
are all in the future. Therefore, the best prediction of y(k + p|k) is given by:

ŷ(k + p|k) = Gp(z
−1)Δu(k + p − d − 1) + Fp(z

−1)y(k) , (5.20)

where Gp(z−1) = Ep(z−1)B(z−1).
The polynomials Ep+1 and Fp+1 can be obtained by the same procedure previously

presented and can ultimately be derived recursively as:

Ep+1(z
−1) = Ep(z

−1) + ep+1, j z
− j , (5.21)

where ep+1, j = f p,0. The coefficients of the polynomial Fp+1(z−1) can be recursively
obtained as:

f p+1,i = f p,i+1 − f p,0ãi+1 i = 0, · · · , na − 1 , (5.22)
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where f p,na = 0. The polynomial Gp+1 can be obtained recursively as:

Gp+1 = Ep+1B = (Ep + f p,0z− j )B
= Gp + f p,0z− j B .

(5.23)

That is, the first j coefficients of Gp+1 will be identical to those of Gp and the
remaining ones will be given by:

gp+1,p+i = gp,p+i−1 + f p,0bi i = 1, · · · , nb . (5.24)

To initialize the recursion of Eq. (5.15) for p = d + 1, · · · , Np iterations, one has
to consider the following initial values for the polynomials Ed+1(z−1), Fd+1(z−1)

and Gd+1(z−1):
Ed+1 = 1, (5.25)

From Eq. (5.15) it comes:

Fd+1 = zd+1(1 − Ã(z−1)), (5.26)

and,
Gd+1 = Ed+1(z

−1)B(z−1) = B(z−1). (5.27)

Considering now the following set of j ahead optimal predictions:

ŷ(k + d + 1|k) = Gd+1(z−1)Δu(k) + Fd+1(z−1)y(k) ,

ŷ(k + d + 2|k) = Gd+2(z−1)Δu(k + 1) + Fd+2(z−1)y(k) ,
...

ŷ(k + d + Np|k) = Gd+Np (z
−1)Δu(k + Np − 1) + Fd+Np (z

−1)y(k) ,

(5.28)

they can be rewritten in a more compact form as in Eq. (5.29) (as previously presented
in Eq. (5.14))

y = G(z−1)u︸ ︷︷ ︸
forced response

+F(z−1)y(k) + G’(z−1)Δu(k − 1)︸ ︷︷ ︸
free response

, (5.29)

where:

y =

⎡

⎢⎢⎢⎣

ŷ(k + d + 1)

ŷ(k + d + 2)
...

ŷ(k + d + Np)

⎤

⎥⎥⎥⎦ , u =

⎡

⎢⎢⎢⎣

Δu(k)
Δu(k + 1)

...

Δu(k + Nu − 1)

⎤

⎥⎥⎥⎦ ,
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G(z−1) =

⎡

⎢⎢⎢⎣

g1,0 0 · · · 0
g2,1 g2,0 · · · 0

g3,2 g3,1
. . .

...

gNp,Np−1 gNp,Np−2 · · · gNp,Np−Nu

⎤

⎥⎥⎥⎦ , F(z−1) =

⎡

⎢⎢⎢⎣

Fd+1(z−1)

Fd+2(z−1)
...

Fd+Np (z
−1)

⎤

⎥⎥⎥⎦ ,

G′(z−1) =

⎡

⎢⎢⎢⎢⎢⎣

(Gd+1(z−1))z

(Gd+2(z−1) − g0 − g1z−1)z2

...

(Gd+Np (z
−1) − g0 − g1z−1 − · · · − gNp−1z−(Np−1))zNp

⎤

⎥⎥⎥⎥⎥⎦
.

Based on the cost minimization procedure generically presented in Sect. 5.2, the
optimal control increments are obtained by:

u = (GTG + λI)−1GT (R − Fy(k) − G’Δu(k − 1)) , (5.30)

where R = [r(k + d + 1), · · · , r(k + Np))] is the reference set-point in the Np pre-
diction horizon.

As GPC is implemented in a receding horizon fashion, the control signal sent to
the process is incremented by the first value of u, Δu(k), which is given by:

Δu(k) = K(R − Fy(k) − G’Δu(k − 1)) , (5.31)

where K is the first row of matrix (GTG + λI)−1GT ,

K = [1 0 0 · · · 0]Nu (G
TG + λI)−1GT . (5.32)

Following this approach, the accuracy problems that the prediction model may
present when extrapolating the system’s response in long time horizons are min-
imized. This is due to the constant corrections of the optimal control trajectory
performed according to the most recent system samples.

5.4 Extension of Generalized Predictive Control to
Non-linear Models

The predictor derived in the previous section assumes the existence of a linear plant
model complete enough to fully capture the process dynamics. If the process non-
linearity is not significant, then the integral action of the linear GPC algorithm will
compensate eventual inaccuracies and eliminate the steady-state error. However,
since some physical processes possibly present complex non-linear relations, a sim-
ple linear model may prove itself insufficient for a successful application of the GPC
algorithm. The mismatch between the model and the corresponding physical process



5.4 Extension of Generalized Predictive Control to Non-linear Models 93

is more significant in situations where operation point of the process changes fast
and significantly, resulting in slow or unstable closed loop response in such opera-
tion regions [3]. For this reason, to apply the GPC principles in domains where its
success has been hindered by the non-linear behavior of the process, several exten-
sions to its original linear formulation have been proposed in recent years. Though,
it is important that such enhancements, apart from improving the performance of the
closed loop system, maintain the similar level of simplicity and effectiveness that
traditional linear GPC accustomed its practitioners in industry.

The most straightforward way of dealing with GPC in non-linear processes is
to directly use a single non-linear model describing every operational regime and
to solve an optimization problem that yields the control trajectory that minimizes
a considered cost function. Models based on ANNs are particularly successful for
such purpose due to their regular structure and universal approximation capabilities
[3]. However, without any further simplifications of the model, a non-linear GPC
optimization problem has to be solved on-line at each sampling instant. Apart from
being computationally demanding, non-linear optimization algorithms neither guar-
antee that a global optimal solution is found due to the non-convex nature of the
problem (which may result in unsatisfactory control quality), nor that convergence
to a sub-optimal one is obtained in useful time (what may hinder their use in on-line
GPC implementations requiring short sampling periods).

Despite the increasingly availability of powerful embedded systems in the market,
practical implementations of GPC for non-linear processes circumvent this problem
by relying on linear approximations of the non-linear model. This approach, known
as instantaneous linearization [3], computes at each sampling instant a linear model
of the process so that one can obtain a estimation of the free and forced responses
of the process over the prediction horizon. By using this procedure it is possible
to derive an explicit control law using a similar process as previously presented on
Sect. 5.3. The idea of such approach is presented on Fig. 5.5.

As is clear from the difference in the amount of publications between both lines
of work, “theoretical purists tend to stay away from linearization approaches” [3].

Fig. 5.5 Structure of the GPC algorithm based on a linearization of a non-linear model
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The main reason for such conduct is that linearization procedures make the stability
and robustness analysis much more difficult than in the case of GPC based on pure
non-linear models due to the possibility of existing discontinuities in the parameters
of the models underlying the controller synthesis procedure [10].

There are two main lines of work regarding the use of linearized models in GPC.
In the first approach, one calculates a linear approximation of the non-linear model
for the current operating point and consider its parameters constant for the whole
prediction horizon. Yet, in some scenarios where changes in the operation region are
significant, there may exist a larger discrepancy between the real process trajectory
and the estimated one in the end of the prediction horizon, what may lead to subopti-
mal results. When such assumption is not sufficient, one can alternatively perform the
linearization along a future input trajectory to account with the possible model varia-
tions. Since such trajectory is not known a priori, the optimization process requires a
larger number of iterations within the prediction horizon to converge towards the opti-
mal control increments. Nevertheless, when the inherent limitations of GPC designs
based on single linear approximation are accounted for, very little differences can be
seen between the optimal trajectories obtained by both approaches [3].

As was presented in Chap. 4, TS FS proved their ability to accurately approxi-
mate any non-linear dependency between input and output variables. In the present
application scenario, this modeling approach is particularly advantageous since its
structure inherently considers a set of locally linearized models valid within a cer-
tain operation region defined by its non-linear fuzzy boundaries. By employing the
available fuzzy inference mechanisms, one can also efficiently interpolate the out-
put of the several local models to obtain an approximate linear model valid for the
current operation regime. Performing this operation at each sampling instant, a TS
Fuzzy Model can in fact be considered a linear time-varying model. For that reason,
it can be easily integrated with traditional model-based control methodologies such
as GPC to overcome the majority of the limitations and difficulties imposed other
approaches based on non-linear models. Successful applications resulting from the
synergy between Fuzzy Models and Predictive Control can already be found in liter-
ature. They span theoretical analysis such as in [10, 19], focused in the analysis of the
robust stability conditions and supported with numerical simulations, up to practical
ones evincing the robustness of the method to disturbances in industrial domains
such as in the control of a non-linear heat-exchanger pilot plant [20], a stirred tank
reactor [8] or a binary distillation column [21].

5.4.1 Generalized Predictive Control Using Type-2 TS Fuzzy
Models

The extension of the GPC based on TS Fuzzy Systems to the Type-2 FL case is a
straightforward procedure [22]. As was presented in Chap. 4, a Type-2 Fuzzy Model
can ultimately be represented by two average sub-models related with the upper and

http://dx.doi.org/10.1007/978-981-10-4633-9_4
http://dx.doi.org/10.1007/978-981-10-4633-9_4
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Fig. 5.6 Structure of the GPC algorithm based on Type-2 TS Fuzzy models

lower bounds of the output value uncertainty interval. Based on each sub-model, the
GPC theory can be directly applied thus, two control increments will be obtained,
namely Δu and Δu. The effective control action performed by the controller is then
given by averaging the control increments obtained as:

u(k) = u(k − 1) + Δu + Δu(k)

2
. (5.33)

In Fig. 5.6, the functional diagram of the GPC based on Type-2 TS Fuzzy Models
is presented.

5.5 Application Scenarios

To evaluate the enhancements obtained by combining the modeling capabilities of
IT2FLSs and the GPC theory, the Fermentation Reactor and Coupled Tanks Systems
presented in the previous chapter will be used as benchmark for the proposed model
based predictive controller. Additionally, its performance will be compared with two
additional implementations based on an linear ARX and a Type-1 TS Fuzzy mod-
els. Figure 5.7 displays the evaluated closed loop system along with the considered
disturbances affecting its operation.

The models used as support for the GPC algorithm are considered fixed during
closed loop operation. While model adaptability is a highly sought feature in control
systems [13], it also presents several problems due to its unpredictable influence
in the model parameters and, consequently, in the closed loop behavior. Consid-
ering the particular scenarios where the closed loop control system must perform
quick changes between different operation regimes, the use of adaptive models may
eventually result in suboptimal or even unstable control as the model update rate
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Fig. 5.7 Diagram of the closed loop control system

may be insufficient to cope with the significant changes verified on some parame-
ters. Nevertheless, by considering the compared models fixed, the advantages of the
GPC control algorithm based on Type-2 TS Fuzzy models in coping with inherent
modeling uncertainties will be better highlighted. In the evaluations performed, the
dynamic equations of the benchmark systems were implemented in continuous time
while the GPC is executed in discrete time.

5.5.1 Fermentation Reactor’s Temperature Control

As was previously presented, from the perspective of a control algorithm the Fer-
mentation Reactor is a single-input single-output process, the coolant flow rate (Fag)
the manipulated variable and the reactor’s temperature (Tr ) the controlled one, as
shown in Fig. 5.8.

The maximum allowed cooling fluid’s flow rate is 80 l h−1 and the reactor’s
temperature is controlled within the [28–33] ◦C interval. The performance of the GPC
in the Fermentation Reactor’s Temperature Control will be assessed considering the
following operation scenarios:

Fig. 5.8 Diagram of the Fermentation Reactor
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• Different amplitude reference step signals are used by closed loop system as con-
trol goals. An unmeasured gaussian disturbance with zero mean and standard
deviation of 0.1 l h−1 is added to the control signal while the reactor’s temperature
measurements are corrupted by a gaussian disturbance with zero mean and 0.05 ◦C
standard deviation. The system’s model is trained under these conditions.

• Under similar operation conditions of the previous scenario, a step change in the
substrate temperature from 25 to 27 ◦C is introduced. This type of disturbance can
occur due to ambient temperature changes.

In the evaluated controllers, the considered prediction and control horizons are
10 and 3 samples respectively and the control signal updated once every hour. When
employing TS fuzzy models the control activity penalty factor (λGPC ) is set to 0.01.
Its value is changed to 0.1 when the ARX model is adopted. These parameters are
chosen so that a control signal with satisfactory transient response is attained while
maintaining its robustness to noise. The difference in the control activity penalty
factor between the ARX and the TS Fuzzy based implementations already anticipates
the superiority of the latter approaches since they allow one to synthesize a faster
control law for identical disturbance levels. As was presented in the previous chapter,
the TS structures used to implement the controllers are composed by 5 rules. The
Type-2 TS Model used considered 5 and 12% uncertainty factors over the antecedent
and consequent part parameters, respectively. The obtained results are evaluated
using four distinct metrics: the Mean Squared Error (MSE), the overshoot (OS),
the settling time (TS) of the controlled variable and the Control Effort (CE) of the
actuation variable. The latter one is estimated by the cost function as:

CE =
t+N∑

k=t

Δu(k)2

N
(5.34)

In Fig. 5.9, the closed loop response of the system is presented considering dif-
ferent set-points and operating conditions identical to the training stage.

This evaluation scenario shows that the closed loop responses of the ts Fuzzy
Model based controllers present a similar transient response, standing out a slight
improvement when the Type-2 one is used. Despite the worse performance of the
linear arx based controller during the step transient stage, it is also capable of achieve
zero steady-state error. This result attests the robustness of GPC even in the case of
significant model mismatches (as long they are compensated with an adequate control
activity penalty factor). A detailed view of the system’s behavior when the set-point
is changed from 29◦C to 31.5◦C is presented in Fig. 5.9, and the comparative metrics
relative to the three control systems are presented in Table 5.1.

In this comparison scenario, the Type-2 TS based GPC achieves improved met-
rics relatively to the Type-1 and ARX based controllers, reducing the MSE over the
evaluated interval by approximately 6% and 65%, respectively. Additionally, there is
a significant improvement in the step response overshoot and settling time which, in
this specific application, leads to a reduction of the transient response length by sev-
eral hours. As there is a large dependence of the reaction sub-products’ parameters on
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Fig. 5.9 Closed loop behavior of the reactor’s temperature during a yeast fermentation reaction
using three different GPC algorithms based on locally linear models

the reactor’s temperature, the use of a faster controller allows one to perform a quick
change between different operation regimes as production requirements dictate.

To evaluate the disturbance rejection capabilities of each controller and its per-
formance under model mismatches, several set-point changes were performed after
the raw material’s temperature at the reactor’s intake is increased from 25 to 27 ◦C at
instant t = 50 h, as shown in Fig. 5.11. The obtained results reveal that the Type-2
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Fig. 5.10 Detailed view of the process’s response to a change in the controller’s reference signal

Table 5.1 Comparative metrics under nominal operation measured at reference step (29.0 to
31.5 ◦C) as presented in Fig. 5.10

MSE (×10−2) CE Os (◦C) Ts (h)

ARX 19.50 10.2 0.499 180

A1-C0 7.54 14.6 0.153 53

A2-C1 6.81 11.9 0.028 48

TS GPC controller provides a faster transient response when external perturbations
interfere with the reactor’s temperature. Additionally, its advantages are more pro-
nounced when the controller is operating in a different regime that the one it was
trained for. Despite the significant change on the cooling fluid’s flow rate required
during the period [0–50] h, the Type-2 TS based controller provides a more “desir-
able” closed loop response. Table 5.2 briefly summarized the comparative metrics
obtained for the three controllers.

Ultimately, to assess the model dimensionality reduction capabilities of Type-2
Fuzzy Models, the 5 Rule Type-2 TS Fuzzy Model was compared with a 9 Rule
Type-1 TS one. By increasing the number of rules of the latter model, one expects it
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Fig. 5.11 Evaluation of the closed loop performance after the process is disturbed by a change in
the substrate temperature

Table 5.2 Comparative metrics measured at reference step (29 to 31.5 ◦C) after introduction of a
disturbance, as presented in Fig. 5.11 in the interval [350–550] h

MSE (×10−1) CE Os (◦C) Ts (h)

ARX 4.15 14.6 0.350 130

A1-C0 3.14 31.4 0.275 100

A2-C1 2.56 30.4 0.051 68

to perform similarly to its Type-2 counterpart. Figure 5.12 displays their performance
under nominal operating conditions.

Establishing a comparative standpoint with the previous evaluations, Fig. 5.13
provides a depiction of the system’s response when the reference signal changes
from 29 to 31.5 ◦C. The comparative metrics are summarized in Table 5.3.

The results demonstrate that the controller based on the Type-1 TS Fuzzy model
achieves a transient response closer to the one obtained with the Type-2 model in the
ascending transitions. This improvement comes at the cost of an slight increase of
control signal activity, what is not necessarily good as the system’s noise robustness
may be reduced. It is observed though that the descending transitions of the system’s
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Fig. 5.12 Comparison between two predictive controllers based on a 5 Rule Type-2 TS Fuzzy
model and a 9 Rule Type-1 TS Fuzzy model (Np = 10; Nu = 3, λGPC = 0.01)

Table 5.3 Comparative metrics under nominal operation measured at reference step (29.0 to
31.5 ◦C) presented in Fig. 5.13

MSE (×10−2) CE Os (◦C) Ts (h)

A1-C0 (5 Rules) 7.54 14.6 0.153 53

A1-C0 (9 Rules) 8.64 37.4 0.051 49

A2-C1 (5 Rules) 6.81 11.9 0.028 48

response is slightly degraded comparing to the controller based on the 5 Rule Type-1
TS Fuzzy model (presented in Fig. 5.9). This behavior is due to the non-linear nature
of the Reactor’s temperature model in the warming-up/cooling-down stages.

Evaluating now the system’s behavior after increasing the raw material’s tem-
perature from 25 to 27 ◦C, the differences between both modeling approaches
become more clear as depicted in Fig. 5.14. The comparative metrics are presented
in Table 5.4.

With these results, one may conclude that the Type-2 TS Fuzzy Model improve-
ments are not solely related to its equivalence to a larger Type-1 Fuzzy Model.
The Type-Reduction mechanism establishes a dependency between the uncertainty
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Fig. 5.13 Detailed view of the process’s closed loop response under identical conditions to the
training procedure using a GPC based on a 9 Rule Type-1 and a 5 Rule Type-2 Fuzzy model

Table 5.4 Comparative metrics under constant disturbance: measured at reference step (29.0–
31.5 ◦C) after introduction of a disturbance, as presented in Fig. 5.14 in the interval [350–550] h

MSE (×10−1) CE Os
◦C) Ts (h)

A1-C0 (5 Rules) 3.14 31.4 0.275 102

A1-C0 (9 Rules) 6.73 10.1 0.122 112

A2-C1 (5 Rules) 2.56 30.4 0.051 68

degrees of the input space partition (defined by the upper and lower bounds of a
rule’s firing level) and the system’s output that has more degrees of freedom than
those obtained with a Type-1 TS Fuzzy Model, ultimately leading to systems which
perform differently. Therefore, it is not expected to attain a proportional relationship
between the number of rules and the performance metrics obtained of the two types
of TS Fuzzy Models.

The manipulation of the additional degrees of freedom provided by Type-2 FL
naturally requires a superior computational complexity comparatively to its Type-1
counterpart. Therefore, Table 5.5 presents an overview of the mean control loop exe-
cution time and its standard deviation for the two modeling approaches. The obtained
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Fig. 5.14 Comparison between two predictive controllers based on a 5 Rule Type-2 TS Fuzzy model
and a 9 Rule Type-1 TS Fuzzy model (Np = 10, Nu = 3, λGPC = 0.01) after the raw material’s
temperature (Tin) is changed from 25 to 27 ◦C at instant t = 50 h

Table 5.5 Execution time of the GPC algorithm based on TS Fuzzy models

5 rule 5 rule 9 rule

A1-C0 model A2-C1 model A1-C0 model

Mean 8.74 × 10−4s 15.35 × 10−4s 10.22 × 10−4s

Std. Deviation 5.08 × 10−9s 1.78 × 10−8s 6.86 × 10−9s

metrics refer to the execution of the one step-ahead predictor and the synthesis of
the control law, resulting from the average of 56 set-point changes.

The use of a GPC based on the 5 Rule Type-2 TS Fuzzy Models requires a larger
computational effort, approximately 1.76 and 1.5 times larger than the 5 Rule and
9 Rule Type-1 TS Fuzzy models, respectively. Nevertheless, after the analysis per-
formed in this chapter, one may conclude that the Type-2 TS Model based controller
presents in this scenario an improved servo performance and disturbance rejection
that, when no computational time constraints are present, makes it the preferred
approach.
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5.5.2 Coupled Tanks Liquid Level Control

The Coupled Tanks System is a setup widely used for benchmarking control algo-
rithms [23, 24] due to the multitude of combinations of actuation and controlled
variables that can be defined upon. As was presented in Chap. 4, by choosing which
pumps and rotary valves are directly manipulated, one can develop either a SISO or
a MIMO control system to control the liquid level of one of the tanks. In the scenario
presently evaluated, the Pump 1 will be the actuation variable and the liquid level of
the Tank 2 the controlled variable. The maximum flow rate for the Pump 1 is 90 cm3

s−1, while the Pump 2 (which will act as an unmeasured disturbance) is limited to
20 cm3 s−1 and the liquid height in Tank 2 controllable in the [0,45]cm interval. By
coupling solely two reservoirs, this setup can be seen as a non-linear second order
SISO system, where the remaining actuators available are unmodeled disturbances
which will be used to evaluate the robustness of the developed control algorithm.
Figure 5.15 depicts the setup used in the present test.

Similarly to the application scenario previously evaluated, three predictive con-
trollers’ implementations based on linear ARX, Type-1 TS and Type-2 TS Fuzzy
Models will be compared. The results further presented were obtained according to
the following test scenarios:

• Different amplitude reference step signals are used. An unmeasured gaussian dis-
turbance is introduced in the control signal of Pump 1 with zero mean and vari-
ance of 0.5 cm3 s−1 while the Tank 2 liquid level measurements are corrupted by
a gaussian noise with zero mean and variance of 0.05 cm. The Pump 2 is turned
off during this evaluation. The system’s model is trained under these operation
conditions.

Fig. 5.15 Diagram of the coupled tanks control system

http://dx.doi.org/10.1007/978-981-10-4633-9_4
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Table 5.6 Comparative metrics under nominal operation measured during the reference step (15
to 25 cm) presented in Fig. 5.16

MSE CE Os (cm) Ts (s)

ARX 3.20 32.7 2.5 180

A1-C0 4.55 6.53 5.1 302

A2-C1 2.48 4.96 0.4 102

• Under similar conditions of the previous test, the Pump 2 is used to introduce a
gain change in the closed loop system by turning it on with a constant flow rate of
20 cm3 s−1, directly disturbing the Tank 2 liquid level.

• Ultimately, maintaining the actuation and measurement disturbance levels of the
initial test, the Pump 2 is used to introduce a low frequency disturbance in the closed
loop system. To do so, Pump 2 is controlled so its flow rate varies sinusoidally in
the interval [0, 16] cm3 s−1 with a period of 800 s.

In the three GPC implementations, the prediction and control horizons were 10
and 3 samples and the control activity penalty factor λGPC = 0.5. The controller
algorithm updates its output every 2 s (at the same rate of the sampling interval).
According to the models developed in the previous chapter, a good compromise
between modeling accuracy and dimensionality is achieved using TS Fuzzy Models
with 4 rules. The Type-2 TS Model used considered 5% and 8% uncertainty factors
over the antecedent and consequent part parameters, respectively.

Regarding the first evaluative scenario, the response of the plant to the several
control systems is presented in Fig. 5.16. The advantages of the GPC controller
based on the Type-2 TS Fuzzy Model comparing to the remaining ones are clear,
providing a closed loop response with the fastest settling time and minimal overshoot
(close to a critically damped behavior) without saturating the control signal. Table 5.6
overviews the evaluated metrics, obtained during the [1300–1900] s time interval.
When comparing the controllers based on the linear ARX and the Type-1 TS models,
at first instance the former approach seems more advantageous. However, such results
come at a cost of a significantly higher control effort given the linear ARX model
mismatches (highlighted in the Chap. 4). As so, to attain a more stable control signal,
this penalty factor would have to be increased ultimately yielding a slower transient
response.

To test the model based controllers when the plant deviates from the nominal
operation conditions, the Pump 2 is manipulated to supply a constant flow rate of
20 cm3 s−1. As depicted in Fig. 5.17, this disturbance is activated at the time instant
t = 200 s, introducing a change in the plant’s steady state gain.

Similarly to the previous evaluation, the GPC based on the Type-2 TS Fuzzy
Model maintains a superior closed loop performance, presenting faster disturbance
suppression and a critically damped behavior on the subsequent set-point transitions.
Table 5.7 presents an overview of the obtained metrics.

http://dx.doi.org/10.1007/978-981-10-4633-9_4


106 5 Model Predictive Control Using Type-2 Takagi-Sugeno Fuzzy Systems

100 400 700 1000 1300 1600 1900 2200
10

15

20

25

30

35

Time (s)

Time (s)

Time (s)

h
2

(c
m

)

System Output vs Reference

hsp2
ARX
A1-C0
A2-C1

100 400 700 1000 1300 1600 1900 2200
20

40

60

80

q 1
(c

m
3

s−
1
)

Control Signal

ARX A2-C1 A1-C0

100 400 700 1000 1300 1600 1900 2200
−10

−5

0

5

10

h
2

(c
m

)

Control Error

ARX A2-C1 A1-C0

Fig. 5.16 Closed loop behavior of the coupled tanks system using three different GPC algorithms
based on locally linear models

Finally, the process is subjected to an unmeasured sinusoidal disturbance intro-
duced by the Pump 2. Its flow rate was manipulated sinusoidally, with an amplitude
varying within the [0–16] cm3 s−1 interval and a period of 800 s. This low frequency
disturbance was considered to be in the region of interest of the system, consid-
ering the settling time values during nominal operation conditions. As depicted in
Fig. 5.18, the sinusoidal disturbance was significantly attenuated in every controller
implementation, existing a maximum ripple of approximately 0.35 cm around the
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Fig. 5.17 Evaluation of the closed loop performance after the process is disturbed by Pump 2 with
a constant liquid flow rate (h2 = 20 cm3 s−1) after t = 200 s

Table 5.7 Comparative metrics under constant disturbance: measured at reference step (15 to
25 cm) presented in Fig. 5.17

MSE CE Os (cm) Ts (s)

ARX 3.32 33.4 1.7 162

A1-C0 3.79 3.79 2.6 311

A2-C1 2.05 3.37 0.2 139

reference signal. Yet, the TS Fuzzy Models based ones perform significantly bet-
ter in terms of the required control effort. The comparative metrics presented in
Table 5.8.

The evaluation scenarios hereby presented demonstrated the importance of the
control activity penalty factor on the control signal’s robustness. While at first
instance the closed loop system output behavior based on the linear ARX system
is very close to the Type-1 TS based one, such result comes at the expense of an
increased actuator’s activity cost. A coarser model may provide sufficient informa-
tion about the system’s behavior trend, hence a well dampened control law is capable
of control the system’s output. However, for a finer control quality and faster transient



108 5 Model Predictive Control Using Type-2 Takagi-Sugeno Fuzzy Systems

Table 5.8 Comparative metrics under sinusoidal disturbance: MSE, control effort (CE), overshoot
(OS) and oscillation amplitude at the output (Oa) measured after the reference step (15–25 cm)
presented in Fig. 5.18

MSE CE Os (cm) Oa (cm)

ARX 2.70 27.35 1.82 0.15

A1-C0 2.16 7.16 2.98 0.35

A2-C1 2.08 4.23 0.02 0.3
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Fig. 5.18 Evaluation of the closed loop performance after the process is disturbed by Pump 2 with
a sinusoidal flow rate (q2)
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response, a more accurate model is required. Therefore, the results attained justify
the choice of the approach based on Type-2 TS Fuzzy models.

5.6 Conclusions

The procedure hereby described to extend the use of a Type-2 Fuzzy Model to
Model Predictive Controllers can be interpreted as an instantaneous linearization
of the process dynamics on the current operating point. The process non-linearity is
naturally embedded on the firing level that weights the contribution of each sub-model
to the final one, and ultimately leads to the development of a simple linear structure
with variable parameters. As the modeled plant is of non-linear nature, the validity
of the global model predictions is restricted to a limited operation region. Hence,
GPC algorithms based on linearized models are inherently sub-optimal because their
predictions are likely to be different from those obtained by the original non-linear
one. Thus, one must not rely too heavily on the linearized model (as when using long
prediction horizons) and design a controller that does not violate the limitations of
the approximation such as avoiding abrupt changes in the operation region by simply
limiting the process’s set-point slew-rate. When such limitations are considered, one
has a computationally efficient non-linear GPC framework capable of achieve well
performing closed loop control systems.
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Chapter 6
Processor-In-the-Loop Simulation

6.1 Introduction

Empowered by the increasing computational power broadly available in current com-
puter technology, the use of simulation software is an ubiquitous approach both in
academia and industry during the development path of a large number of systems.
Process’s modeling and control is one particular domain that greatly benefited from
the availability of such tool, overcoming two important constraints that dictate the
course of actions taken during a new product’s implementation—Time and Cost [1].
Such factors are typically related with the following problems:

• Availability of the plant
• Cost and time of building a control system prior to testing
• Difficulty in obtaining repeatable conditions during the development stage
• Time consuming testing for system’s validation
• High cost due to failure

Simulation tools are also an important asset during the initial stages of control sys-
tems’ development because they allow the execution of several benchmarking trial
cases which can then be taken as reference for the subsequent validation stages of
the algorithm implementation. However, achieving optimal results under a simulated
environment is solely a partial achievement towards its deployment under real oper-
ation conditions. While the computational power of a general purpose computer is
of great advantage for the simulation stages, the very same systems are not adequate
for the final implementation of application specific control loops. For such purposes,
embedded computer systems are better suited since their “simpler” hardware and
software architectures allow low-level access to peripheral devices interfacing with
actuation and sensor systems and are better compliant with the strict timing require-
ments that control algorithms typically demand.

Ideally, an embedded control system is tested against the real plant, but it is
common to find scenarios involving several limitations and risks in the scope of
the testing (such as going beyond the range of the control system parameters or
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plant capabilities). Hence, the validation of complex algorithms implemented in such
platforms presents additional engineering challenges: How can a meaningful set of
test vectors that approximate the input/output behavior of a process under control be
generated? How can the control algorithm behavior be analyzed in real-time under
specific operation conditions? How will the algorithm’s turnaround time affect the
operation of the actual system? The advantages of physical process’s simulation
previously enumerated can be used as well to overcome such questions and, together
with the algorithm’s execution in an embedded platform, provide a superior test
platform closer to the conditions experienced when a system is deployed in the real
environment.

Hardware-In-the-Loop (HIL) simulation is a technique for performing system-
level testing of embedded systems in a comprehensive, cost effective and repeatable
way using a combination of electronic hardware and custom software. Such approach
is mostly used in the validation of embedded systems when they cannot be tested eas-
ily, thoroughly, and repeatably in their operational environments [1]. To accomplish
so, HIL replaces the plant under control with a powerful computer system capable of
simulate several interconnected processes in Real-Time based on their dynamicmod-
els. In the tested system’s point of view, there will be as little differences as possible
comparatively to a real scenario. Figure6.1 depicts this closed loop architecture.

The interconnection between the simulation model and the controller hardware
can be implemented using A/D and D/A conversion stages based not only in analog
signals that approximate the plant’s sensors and the actuation systems, but also sup-
ported by common serial communication interfaces such as RS-232, CAN, RS-422
or Ethernet, represented in Fig. 6.2.

Nowadays there exist several of-the-shelf platforms dedicated to HIL simula-
tions, supported by powerful Digital Signal Processing architectures capable of con-
duct complex real-time simulations. A few examples are dSpace� [2], National
Instruments� [3] and OPAL-RT� [4], currently the world leaders in this market.
Besides simulating the physical processes’ nominal behavior, such systems often

Fig. 6.1 Block diagram of embedded system connected to a HIL simulator
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Fig. 6.2 Components of a simple HIL simulation

feature fault simulation tests which are particularly relevant for safety-critical sys-
tems in order to assess under repeatable conditions failure mode test scenarios that
are difficult to conduct under real environment [2]. Complemented with simulation
software such as Simulink� [5] and analog and digital I/OFront-End software asNI’s
LabView� [3], a HIL solution provides an efficient, reusable and safe environment
where the product development can centered in the functionality of the controller
without risks for either the engineer or the plant. The development of Electronic
Control Units dedicated to vehicle’s safety features [6] and engine control [7] in
automotive industry or flight control systems in aerospace industry [8, 9] are some
examples of projects whose success heavily depends on HIL’s testing reliability.

Despite all the advantages, HIL’s architecture also poses some limitations that
should be highlighted. Firstly, since such frameworks are intended for real-time
design verification, the simulated systems must consider the throughput of the HIL’s
processor that iterates them. For that reason, it is necessary to deterministically bound
the require execution time of each simulation iteration (by using fixed-step solvers for
example [2]). Consequently, highly complex process models are not adequate when
a small iteration’s turnaround time is required (as in high frequency control loops).
Secondly, since the embedded system is decoupled from the HIL and is dependent on
the simulator outputs, one cannot simple pause the simulator for in-circuit diagnosis.
Hence, the full set of features provided by a HIL system are not necessarily the most
adequate during earlier development stageswhich aremore focused on the embedded
system’s firmware.

Processor-In-the-Loop (PIL) simulation can be considered as an intermediate
stage between the traditional and HIL simulations. Similarly to the latter framework,
a PIL simulation features a test environment where an embedded platform that runs
the control algorithm is connected to a host computer that iterates a model of a physi-
cal process. Thus, an evaluation regarding the execution conditions of the developed
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Fig. 6.3 Block diagram of embedded system connected to a PIL simulator

algorithm in a computationally constrained system can be performed, enhancing the
optimization procedures for important factors such as code size, memory footprint
and algorithm execution turnaround time. However, in the PIL case the simulation
process is not executed in real-time, but its the pace established by the code execu-
tion time and message exchange delays between both platforms. By doing so, the
validation of the developed firmware can be performed step by step comparing with
the results obtained in the earlier computational simulations. The principles of PIL
based development are depicted in Fig. 6.3.

Price-wise speaking, the costs of development based on a PIL framework are
significantly smaller compared to the off-the-shelf HIL systems. Currently, some
simulation software as Simulink� [5] and PLECS� [10] already support several
development boards based on microcontrollers from the major manufacturers in the
market (STM and Microchip for example), providing code generation tools [11]
that significantly ease the task of converting the developed algorithms for different
execution platforms.

Yet, the use of such tools present some restrictions and drawbacks, because of:

• Support only a limited set of commercially available embedded systems and devel-
opment boards that may not be a perfect match for a final product

• Code generation tools most certainly will not produce the most efficient firmware
for an embedded system due to the complexity of some algebras used in control
algorithms

• Are mostly based on closed-source code

For those reasons and to ease the evaluation of the control algorithms imple-
mented previously presented in an embedded platform, a PIL architecture based on
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the MATLAB�/Simulink� environment (for model simulation) and a embedded
control system supported by the FreeRTOS� real-time kernel [12] is developed in
the sequel.

6.2 PIL Architecture

According to the principles of a Processor-In-the-Loop testing framework previously
presented, three main elements of its architectures must be specified, namely:

• The simulation software used by a host for the iteration of a continuous time
models

• The embedded system software architecture
• The communication interface

TheSimulink� toolbox [5], as part of theMATLAB� software provides an impor-
tant framework for simulation of continuous time systems described by their trans-
fer functions. Furthermore, its simulation capabilities can be significantly enhanced
with the integration of additional toolboxes that already include models of com-
plex processes and elements. They can be interconnected in a block-based approach,
spanning categories such as mechanical parts, hydraulics, thermodynamic features,
or electronics components, reducing the necessity of having a deep knowledge about
the otherwise required mathematical models. Since Simulink� allows several meth-
ods of simulation (and among them a script based one), it is possible to implement
discrete time control systems that take advantages of Simulink� continuous-time
simulation—the control systems implemented in the previous chapterwere simulated
according to this approach. Consequently, the control algorithm can be decoupled
from the model execution, easing the extension of the simulation software to include
an embedded system in the loop for the implementation of the control algorithm.
Bearing these ideas in mind, in the MATLAB� environment the code of control
algorithm is exchanged by a communication link that transmits the plant data to the
Micro-Controller Unit (MCU) and receives from it the output of the control algo-
rithm. In the MCU side, the firmware is developed around two main tasks: receive
and transmit the data over the communication link and implementation of the con-
trol algorithm. These main elements are sequentially interconnected as presented in
Fig. 6.4.

6.2.1 Development Board

The implementation of versatile digital feedback control loops based on embedded
systems improved the quality of many industrial processes. Still, the best performing
control algorithms require computationally intensive procedures which, when exe-
cuted in low-cost embedded systems, severely restrict their usability to applications
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Fig. 6.4 Sequence of events during one loop of the PIL simulation

with slowdynamics to copewith the control loop calculations’ turnaround time.Tack-
ling the high performance algorithmic needs in low-cost embedded designs, ARM�

recently introduced in themarket a System-on-a-Chip based on a new processor fam-
ily - the ARM� Cortex� M4. Complementing the available portfolio composed by
the broadly used, general purpose, low-cost and low-power ARM� Cortex�-M3 and
M0 families, systems based on the Cortex� M4 core stand out in the state-of-the-art
of embedded systems. They feature an instruction set optimized for Digital Signal
Processing operations, a single cycle Multiply and Accumulate (MAC) unit and a
single-precision hardware Floating-Point Unit (FPU). The availability of a hardware
FPU in such a small semiconductor die at relative low cost per unit is perhaps one of
the most important enhancements of the referred architecture as it significantly sim-
plifies the development of computationally heavy algorithms that otherwise would
have to be developed through fixed-point representations. Depending on the com-
plexity of the calculations employed in the algorithms, such procedure can become an
elaborate task, requiring a deep analysis of every intermediate assessment to ensure
overflow and underflow conditions will not be met during normal execution.

In order to ease the prototyping of embedded control systems, it is important to
have a reusable core system featuring a basic set of peripherals devices frequently
used in such applications. In the past, MCUs were often encapsulated in easy to use
Dual In-line Packaging (DIP)MCUs but, currently the most powerful embedded sys-
tems are only available in high density pin-out packages which significantly increase
the complexity of the earlier prototyping stages. Hence, to overcome such constraint,
during the present work a system-on-a-module based on a � Cortex� M4MCUwas
designed following a DIP layout that can be easily integrated in prototype electronic
systems. Figure6.5 depicts the developed module.

The computing power of the ARM� Cortex� M4 core covers the needs of sev-
eral different applications in a broad range of domains, spanning from embedded
control loops to multimedia applications. For the purpose of control system’s devel-
opment, the NXP LPC4337 MCU is used [13] featuring a dual core architecture
with a 204 MHz ARM� Cortex� M4 and a low power ARM� Cortex� M0 co-
processor (which can be used to handle less demanding tasks as communications
with other devices and free up the main core for real-time processing), 1 MB of
flash and 136 kB on-chip SRAM, along with several configurable peripherals as two
High-speed USB controllers, Ethernet, Hardware controlled PulseWidth Modulated
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Fig. 6.5 Development board for embedded control based on the ARM� Cortex� M4 core

output ports, multiple communication buses and typical digital/analog ports. Hence,
considering control and digital signal processing applications, the development board
was designed to provide easy access to the following features:

• 16 hardware controlled PWMoutputs using theMotor Control peripheral and State
Configurable Timer (SCT) outputs

• 8 channels for two 10-bit ADCs and one 10-bit DAC with data conversion rate
400 kSamples/s

• Network communications based on 10/100 Ethernet link for high throughput data
communications

• Two Controller Area Network (CAN), one SPI (Serial Peripheral Interface), I2C
(Inter-Integrated Circuit) and one interfaces for connecting additional devices

• Integrated USB/UART converter
• High Speed USB controller with Host and Device capabilities
• One I2S (Inter-IC Sound) for connectivity with digital audio systems

To ease the interconnectivity of the board with the remaining systems, its pin-out
was organized in functional groups as depicted in Fig. 6.6. It is important to note that
the output ports of the board are not exclusive to the highlighted features and that it
is possible to remap some of them with several other functionalities (peripherals or
general purpose I/O).

6.2.2 Embedded System’s Software Architecture

The increasingly computational power, memory resources and high peripheral inte-
gration available in most recent embedded systems led to significant changes in the
software architecture paradigm of such small devices. In the past, embedded systems
were mostly developed focusing on a particular task, but nowadays it is not uncom-
mon to integrate several control loops and additional functionalities such as network
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Fig. 6.6 Peripherals available in the controller board

communications in the same system which compete for processor time for their exe-
cution. In such highly integrated products, implementing software under amonolithic
approach can easily become intractable for a developer. For that reason, following
the longstanding practices of software development supported by an operative sys-
tem, the development of an embedded system’s firmware under a multi-task model
with several abstraction layers has become crucial for the implementation of more
complex projects. Complying with these requirements, the open-source FreeRTOS�

real-time kernel [12] provides an platform agnostic Application Programming Inter-
face (API) that establishes an abstraction layer for creating multi-task systems and
managing their timings, execution priorities and inter-task communication require-
ments. The implemented tasks are scheduled by a tick-based fixed priority scheduler
that supports preemption, which is particularly relevant for an easy development of
time-triggered systems such as control loops.

Even though a program can be segmented in several tasks, in most cases there
exist interdependencies among them such as execution precedences or concurrent
access of shared resources as memory or peripherals. For that reason, FreeRTOS�

also provides on its API synchronization mechanisms such as semaphores, mutexes
and message queues to avoid race conditions between tasks that would ultimately
result in an inconsistent execution of the program. Since its API is written mostly
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in C and is open source, this kernel is highly portable and scalable. Hence, a large
portion of a system’s firmware easily ported to a diverse range of embedded platforms
currently supported.

6.2.2.1 PIL Integration

Using the task-based organization provided by the FreeRTOS� kernel, the embedded
system’s firmware can be segmented in three main objectives to be successfully
integrated in the PIL framework: communication with the simulation host, update
of the control system’s variables and execution for the control algorithm. Following
this approach, the embedded system tested in the PIL framework will require limited
changes to be interfaced with a real controlled plant.

As part of a PIL system, the three implemented tasks follow a producer/consumer
paradigm, existing a precedence order for their execution. Since they cannot be
executed concurrently, they are createdwith the samepriority level. Figure6.7 depicts
the sequence of events that occur at each control algorithm iteration.

Taking advantage of the high transmission rates of the Ethernet interface avail-
able in the development board, the communications between the Simulator and the
Embedded System are performed over an UDP socket. Such simple transmission
model encompasses a minimum set of protocol mechanisms which avoid significant
overhead at network level related with message delivery failures, which is partic-
ularly suited to time-sensitive applications. In such cases, as in real-time systems,
dropping the delayed packets is preferable than waiting for them. Establishing a par-
allelism with a deployed control system, the UDP communication task assumes the
role of the ADC and DAC systems, providing the communication endpoints with the
controlled process (remotely executed in this case). The System State Update task is
responsible for the management of the relevant data for the controlled algorithm, as
updating its regression variables (previous plant’s samples and controller’s outputs).
Finally, the controller task implements the evaluated control algorithm. The low pri-
ority task can be used for debug purposes, as to signal stack overflow conditions or
any other relevant events during the firmware development.

Fig. 6.7 Event triggered RTOS tasks during the Processor-In-the-Loop simulation
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Fig. 6.8 Time triggered RTOS tasks during the real process control

Since the purpose of the PIL architecture is to provide an easy test framework for
the validation of the final control system, the previously developed system can be
easily extended to a time-triggered operation mode. In this scenario, the importance
of the UDP stack execution is deprecated to a low priority level since its role is
exchanged by a task responsible for managing the ADC readouts and control the
process’s actuators. Communications with a host computer can still be performed
for data-logging and reconfiguration purposes which do not present any real-time
requirements. As is depicted in the Fig. 6.8 the sampling task and controller tasks are
now time-triggered according to the required sampling and actuation frequencies.

6.3 System Evaluation

To evaluate the PIL framework and assess the capabilities of the developed system-
on-a-module, the Fermentation Reactor Temperature Control simulator previously
tested will serve as benchmark for the following tests:

• Firstly, the GPC control algorithm based on the Type-2 TS FLS is executed in the
embedded system and is compared with the implementation previously evaluated
on simulation

• Secondly, the performance improvements obtained with the introduction of the
FPU in the embedded system architecture are compared with the algorithm’s turn-
around time when the calculations are performed using either the hardware or
software floating-point implementations

• Ultimately, the computational cost of the three GPC implementations that were
used as comparison standpoint in the previous chapter are be evaluated by mea-
suring their execution turnaround time

Similarly to the models used as support to the GPC implementations in the previ-
ous chapter, the linear approximations of the process are based on the typical second
order systems’s with no dead-time structure (yielding a 4 parameter linear model)
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Fig. 6.9 Closed loop behavior of the reactor’s temperature during a yeast fermentation reaction
using a PIL simulation

and, in the cases where Type-1 and Type-2 Fuzzy Logic Models are used, a total of
5-Rules are employed to partition the model’s input space.

The first evaluation scenario will highlight the PIL framework as a firmware
development aiding tool. The MATLAB� work environment allows one to inspect
the simulation results and to check the state of every intermediate variable, so that it is
possible to verify that the values computed in the ideal simulation and in the embed-
ded system mutually agree. In this test, the loop is closed by a GPC controller based
on Type-2 TS Fuzzy Models that is executed in the MCU. As depicted in Fig. 6.9, it
is seen that the control signal waveform for the MATLAB� implementation and the
MCU one overlap near perfectly. Consequently, the resulting process’s closed loop
response is similar to the results obtained in the Chap.5.

Although not clear at a first instance, there is a negligible difference between
both controller signals as presented in Fig. 6.10. This mismatch is several orders of
magnitude smaller than the signal of interest and is justifiable for accumulated errors
due to the differences in the floating point representations between both architectures
(MATLAB� uses the double-precision (64 bit) representation while the MCU uses
single-precision one (32 bit)).

http://dx.doi.org/10.1007/978-981-10-4633-9_5
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Fig. 6.10 Difference between the control signal when executed in the embedded system and in the
MATLAB�

Table 6.1 Turnaround time of the predictor and control algorithm based on Type-2 Fuzzy model
executed in the ARM� Cortex� M4

Hardware FPU (µs) Emulated FPU

GPC 59 513µs

Type-2 Fuzzy model 110 924 µs

Total 169 1.43ms

Putting now into perspective the importance of the hardware Cortex� M4 FPU
for solving computationally intensive mathematical algorithms, the execution turn-
around time for the GPC control system implementation based on a Type-2 Fuzzy
Model was measured. The obtained results are presented on Table6.1. In this test, the
Cortex� M4 core was configured to run at its maximum operating frequency (204
MHz) and the measurements were taken considering the execution of the required
floating-point computations, either using the standard C floating-point emulation
library, or using the available hardware FPU.

Meeting our initial expectations, the introduction of the Cortex� M4 hardware
FPU lead to a significant improvement of the algorithms’ turnaround time, reducing
it by a factor of approximately 8.5. Such achievement is important as it enables
one to develop control loops for a broader range of processes. The ones with faster
dynamics are particularly challenging as they demand for high frequency control
loops in order correctly track their response to disturbances and operation regime’s
variations [14].

Comparing the computational burden of the three GPC algorithm’s implemen-
tations (based on the linear ARX model, Type-1 Fuzzy model and Type-2 Fuzzy
model) the turnaround time of the predictor and control algorithms was measured
(when using the hardware FPU), as presented in Table6.2.

Similarly to the results presented in Chap.5, the GPC implementation based on
the Type-2 Fuzzy Model poses a higher turnaround time due to the larger number

http://dx.doi.org/10.1007/978-981-10-4633-9_5


6.3 System Evaluation 123

Table 6.2 Algorithms’ turnaround time using based on different model based control implemen-
tations (N.A.—not available)

ARX linear model Type-1 Fuzzy model
(µs)

Type-2 Fuzzy model
(µs)

GPC 25.4µs 29.2 59

Model N/A 15.7 110

Total 25.4 µs 44.9 169

of model parameters and required calculations to obtain the control action. For the
opposing reasons, the linear ARX based implementation presents the smaller com-
putational time. Focusing firstly in the comparison between the linear ARX/ Type-1
FuzzyModel’s metrics, the major difference in the execution are due to the necessity
of executing the Type-1 FuzzyModel and performing linearization to obtain a control
law. Since in the GPC implementation based on the linear ARX structure the model
is considered fixed, the metrics related with the model’s execution time are not avail-
able (N.A.). Considering now the two Fuzzy Model based GPC implementations,
the differences in execution time are a consequence of the higher complexity of the
Type-2 Fuzzy Model. The observed difference is mainly due to the Type-Reduction
algorithm which takes approximately 79µs to complete (72% of the model’s exe-
cution time). The GPC algorithm takes approximately the double amount of time to
execute in the Type-2 Fuzzy Model case as it effectively executed twice in order to
obtain the upper and lower bounds of the control signal.

Contextualizing the measured computational time in the deployment of process’s
of control loops, one verifies that the use of the hardware FPU in the Cortex� M4
core significantly reduces theMCUwork load, leaving a large headroom to copewith
systems with faster dynamics (thus requiring a control loop with higher execution
frequency) or to perform additional non real-time tasks without compromising the
schedulability of the overall system. Assuming that theMCU computational power is
dedicated to the control task and aDMAcontroller to transfer theADCmeasurements
to the control algorithm variables’ memory region, one can develop control loops
that can meet the requirements of many “fast” processes. More particularly, for the
model structure considered in this evaluation, one can expect to execute a control
loop at approximately 6 kHz.

6.4 Conclusions

The possibility of developing control algorithms in simulation frameworks and
executing them in computationally constrained platforms such as general purpose
embedded systems is of great importance for their deployment in real environ-
ments and achieve the sough performance improvements in process’s manipulation.
Processor-In-the Loop frameworks are undoubtedly a valuable tool supporting this
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transition. Yet, inmany cases such step is ultimately not adopted since the complexity
of the developed methods hinder their broad deployment given their superior costs of
implementation. Type-2 Fuzzy Logic based systems have been several times pointed
as computationally demanding but, as was assessed in this chapter, it is well under
the capabilities of currently available embedded systems. The performance improve-
ments achieved with the hardware FPU significantly contributed to the success of
this analysis.

As a direct consequence of the observed results, one can say that such powerful
microcontrollerswill ease the development of quicker and better control loops coping
with physical systems with faster dynamics. Additionally, the available performance
head-room can certainly be used to deal with the overhead introduced by additional
features such as a real-time kernel. Developing software in embedded systems under
a monolithic approach can easily become intractable for a developer so software
abstraction layers implemented by frameworks as FreeRTOS� kernel become crucial
to efficiently develop multi-task systems with real-time constraints.
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Chapter 7
Conclusions

The knowledge embedded in Rule-Base systems, derived either from human experts
or from clustering algorithms, is most of the times inconsistent due to interpersonal
differences on the definition of the rule’s membership functions or incomplete in
some regions of the input/output space as a result from operation conditions not
experienced during a model’s training stage. The theory of Type-2 FLS focus on the
mitigation of these problems and is already proving its advantages comparatively to
alternative approaches already well established in literature.

Many improvementes of its original concepts were already proposed. Simpli-
fications such as Interval Type-2 Fuzzy Sets and computationally efficient Type-
Reduction algorithms, significantly contributed to the increase of the range of its
possible application scenarios. Such changes did not compromised Type-2 FLS’s
main feature—embed in a compact representation the multitude of small deviations
that can be defined over a single membership function.

As an incremental step over the long-standing FL theory, Type-2 FL shares many
of its principles and applications. Hence, the majority of its recent publications nat-
urally focus on the comparative analysis with its Type-1 counterpart, assessing its
robustness in modeling and control applications under time-variant and noisy oper-
ation conditions. Despite all the successful implementations of model based con-
trol systems deployed both in industrial and in consumer level applications, Type-2
FL and GPC theories were up to the date two disjoint fields of expertise. Type-2
Fuzzy Control literature continues to put emphasis in traditional PID algorithms.
More recently they became significantly biased towards the use of computationally
intensive Genetic and other Bio-Inspired optimization. In a sense of control theory
fundamentals, such approaches “blindly” seek the optimal controller parameters to
achieve the best input/output behavior. While at first instance model based control
algorithms present the developer with complex algebraic formulations to attain a
control law, ultimately they become simpler to implement, are more predictable and
provide well performing controllers which are better suited for real world applica-
tions. For that reason, this book proposed the development of a control system based
on Generalized Predictive Control algorithms and Interval Type-2 Takagi-Sugeno
Fuzzy Models.

© Springer Nature Singapore Pte Ltd. and Higher Education Press 2017
R. Antão, Type-2 Fuzzy Logic, Nonlinear Physical Science,
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In what regards to the model development procedures, as discussed in Chap.3,
the ability of keeping a meaningful model representation after the training stage is
important not only for its interpretability but also to ensure the robustness of the sub-
sequent controller synthesis procedures. Comparatively to Type-1 Fuzzy Models,
Type-2 TS inherently present a greater number of tunable parameters which grant
them superior levels of adaptation but, at the same time, require greater care during
the training stage. Since a Type-2 Fuzzy Set representation inherently establishes an
interdependency between its tunable parameters (its uncertainty bounds are defined
based on a spread factor over a nominal value), the training mechanisms must ensure
that such parameters are not driven in significantly different directions, ultimately
disrupting the concept of a Footprint of Uncertainty. Unfortunately, under long train-
ing procedures such scenario is not so uncommon. Therefore, in order to overcome
such limitation, the methods used in this book focused on finding the approximate
centers of such FOU, introducing afterwards the uncertainty factors. As it was shown
in this book, a relatively small “fuzzily” defined FOU used in combination with a
Type-Reduction algorithm already introduces significant changes in the input/output
relationships of themodel, yielding improved results without necessarily increase the
model dimensionality. Following such approach provides the user a deeper insight
about the influence of the uncertainty factors on the quality and accuracy of the
developed model. Furthermore, it makes the training algorithm less demanding in
a computational sense given the smaller number of parameters that must be tuned.
Ultimately, it improves the dynamic model’s numerical robustness since a smaller
number of degrees of freedom reduce the chances of the optimization problem to
diverge to unwanted solutions or be trapped in a local minima.

As was debated in the Chaps. 4 and 5, the efficiency of a GPC implementation is
ultimately defined by the accuracy of the model used for approximating the expected
future behavior of a physical process. Since in some applications the model mis-
match is significant, the control law obtained is not capable to ensure the quality
metrics sought for the closed loop system. To overcome such limitation, non-linear
GPC implementations received in recent year a crescent interest from researchers but
still, methods based on linear approximations of the processes are of great value for
industry due to the computational efficiency of the closed form algebraic methods
required to solve them. Takagi-Sugeno Fuzzy Models stand as a particular type of
structure that complies with both requirements and, by extending it with the Type-2
Fuzzy Logic formalisms, one aimed to improve the accuracy of its locally linearized
models to extrapolate better n-step ahead predictors. Such improvements are particu-
larly important during abrupt changes on the operation regimes, transients where the
overall model results from the contribution of several locally linear sub-models with
smaller validity and, consequently, the uncertainty over the obtained predictions is
inherently higher. Based on the results attained, it was observed that, at the cost of a
small increase of the computational effort, a Generalized Predictive Controller based
on Type-2 FLSs presents an improved transient behavior comparatively to its Type-1
and linear ARX counterparts under similar operation conditions, more particularly
when the system is subject to unmodeled disturbances. Although the computational
timewas not a limitation factor in the presented scenarios, the improvements achieved

http://dx.doi.org/10.1007/978-981-10-4633-9_3
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with the proposed method can be extended to non-linear systems with smaller time
constants as well, proving itself as a valid alternative approach to non-linear model
predictive control that require the use of heavy non-linear optimization algorithms at
every control interval. The analysis performed only considered systems up to second
order and without dead-time. Thus, the tests under different conditions remain for a
future evaluation.

Even though the proposed control framework was developed and evaluated under
simulated conditions, the data samples used during the model extraction procedures
and the closed loop test scenarios were corrupted by gaussian noise, introducing
disturbances with amplitudes similar to those possibly occuring in real operation
conditions. Hence, together with the developed Processor-in-the-Loop framework,
it is expected that the time of deployment of the proposed control system can be
significantly reduced in future works inspired by this book, thus taking the state-of-
the-art of Type-2 Fuzzy Logic one little step forward.



Appendix

Included Software

This book is accompanied with a software framework that provides the test scenarios
evaluated in this book and, more importantly, allows complementary work to be
developed based on the proposed principles. The materials comprise examples for
the Matlab platform and a C implementation for embedded systems.

Regarding the Matlab implementations, no additional toolboxes are required and
4fourindependent projects are provided, namelly:

• ARX—Reactor: GPC implementation based on linear ARX model of the Stirred
Reactor temperature control process.

• ARX—Tank: GPC implementation based on linear ARX model of the Coupled
Tanks liquid level control process.

• TS—Reactor: GPC implementation based on Takagi Sugeno Fuzzymodels (Type-
1 and Type-2) of the Stirred Reactor temperature control process.

• TS—Tank: GPC implementation based on Takagi Sugeno Fuzzy models (Type-1
and Type-2) of the Coupled Tanks liquid level control process.

The referred examples include the datasets and identified models’ parameters
(inside the data folder), so the closed loop control scripts can be straightforwardly
evaluated. Nevertheless, the reader can generate newdatasets and performnewmodel
identifications using the openloop and getmodel scripts. If so, to achieve proper
control results, a successful model identification is required thus the identification
stages must provide proper excitation of the model over its different operation ranges
and controllable regimes due to their non-linear nature (as described in Chap. 4). This
is required so each individualmodel parameters’ converge to their appropriate values.

© Springer Nature Singapore Pte Ltd. and Higher Education Press 2017
R. Antão, Type-2 Fuzzy Logic, Nonlinear Physical Science,
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Additionally, a generic library written in C is distributed for embedded systems
implementation. The example of the control task (ctrltask.c) exemplifies the sequence
of actions to implement the closed loop controller. It is written using the FreeRTOS
API but can easily be ported to any other embedded platform. The file t2fls.h allows
the user to parametrize the model by the number of regression variables, number of
rules and its antecedents, while the gpc.h sets the parameters related with the control
algorithm as its control and estimation windows.

The companion software is available at: http://extras.springer.com

http://extras.springer.com
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